jackkuo commited on
Commit
06697af
·
verified ·
1 Parent(s): 1a43aa3

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +68 -0
  2. 19E4T4oBgHgl3EQfaQyU/content/2301.05063v1.pdf +3 -0
  3. 19E4T4oBgHgl3EQfaQyU/vector_store/index.pkl +3 -0
  4. 3dE1T4oBgHgl3EQflwTE/content/2301.03290v1.pdf +3 -0
  5. 3dE1T4oBgHgl3EQflwTE/vector_store/index.faiss +3 -0
  6. 3tAyT4oBgHgl3EQfb_f6/content/tmp_files/2301.00276v1.pdf.txt +4010 -0
  7. 3tAyT4oBgHgl3EQfb_f6/content/tmp_files/load_file.txt +0 -0
  8. 5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf +3 -0
  9. 5NE0T4oBgHgl3EQfvgGE/vector_store/index.pkl +3 -0
  10. 5NFIT4oBgHgl3EQf7itm/content/tmp_files/2301.11398v1.pdf.txt +967 -0
  11. 5NFIT4oBgHgl3EQf7itm/content/tmp_files/load_file.txt +532 -0
  12. 5tFKT4oBgHgl3EQf-i5C/content/2301.11958v1.pdf +3 -0
  13. 5tFKT4oBgHgl3EQf-i5C/vector_store/index.faiss +3 -0
  14. 5tFKT4oBgHgl3EQf-i5C/vector_store/index.pkl +3 -0
  15. 69AzT4oBgHgl3EQfEvpR/content/tmp_files/2301.00998v1.pdf.txt +2670 -0
  16. 69AzT4oBgHgl3EQfEvpR/content/tmp_files/load_file.txt +0 -0
  17. 6NE4T4oBgHgl3EQf1g37/content/tmp_files/2301.05292v1.pdf.txt +659 -0
  18. 6NE4T4oBgHgl3EQf1g37/content/tmp_files/load_file.txt +259 -0
  19. 6tE1T4oBgHgl3EQf7AVi/content/2301.03529v1.pdf +3 -0
  20. 6tE1T4oBgHgl3EQf7AVi/vector_store/index.faiss +3 -0
  21. 6tE1T4oBgHgl3EQf7AVi/vector_store/index.pkl +3 -0
  22. 89E0T4oBgHgl3EQfwgGc/content/tmp_files/2301.02634v1.pdf.txt +695 -0
  23. 89E0T4oBgHgl3EQfwgGc/content/tmp_files/load_file.txt +0 -0
  24. 9NFPT4oBgHgl3EQfYjSJ/content/2301.13073v1.pdf +3 -0
  25. 9NFPT4oBgHgl3EQfYjSJ/vector_store/index.faiss +3 -0
  26. 9NFPT4oBgHgl3EQfYjSJ/vector_store/index.pkl +3 -0
  27. 9tFJT4oBgHgl3EQfoyxM/content/tmp_files/2301.11597v1.pdf.txt +1172 -0
  28. 9tFJT4oBgHgl3EQfoyxM/content/tmp_files/load_file.txt +0 -0
  29. 9tFST4oBgHgl3EQfbTje/content/tmp_files/2301.13799v1.pdf.txt +0 -0
  30. 9tFST4oBgHgl3EQfbTje/content/tmp_files/load_file.txt +0 -0
  31. ANE3T4oBgHgl3EQfsQvt/content/tmp_files/2301.04667v1.pdf.txt +1522 -0
  32. ANE3T4oBgHgl3EQfsQvt/content/tmp_files/load_file.txt +0 -0
  33. CdA0T4oBgHgl3EQfAf80/vector_store/index.faiss +3 -0
  34. CdA0T4oBgHgl3EQfAf80/vector_store/index.pkl +3 -0
  35. CdAyT4oBgHgl3EQfR_ex/content/2301.00078v1.pdf +3 -0
  36. D9E1T4oBgHgl3EQfWgQs/content/2301.03114v1.pdf +3 -0
  37. DdAzT4oBgHgl3EQfwf7y/content/tmp_files/2301.01725v1.pdf.txt +1707 -0
  38. DdAzT4oBgHgl3EQfwf7y/content/tmp_files/load_file.txt +0 -0
  39. FdE4T4oBgHgl3EQffw1T/vector_store/index.faiss +3 -0
  40. FdE4T4oBgHgl3EQffw1T/vector_store/index.pkl +3 -0
  41. FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf +3 -0
  42. FtE0T4oBgHgl3EQfhAHl/vector_store/index.faiss +3 -0
  43. FtE0T4oBgHgl3EQfhAHl/vector_store/index.pkl +3 -0
  44. G9AyT4oBgHgl3EQffPiq/content/2301.00337v1.pdf +3 -0
  45. G9AyT4oBgHgl3EQffPiq/vector_store/index.faiss +3 -0
  46. G9AyT4oBgHgl3EQffPiq/vector_store/index.pkl +3 -0
  47. GNAyT4oBgHgl3EQfSvfA/content/tmp_files/2301.00093v1.pdf.txt +1795 -0
  48. GNAyT4oBgHgl3EQfSvfA/content/tmp_files/load_file.txt +0 -0
  49. GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf +3 -0
  50. GdAzT4oBgHgl3EQfxf4V/vector_store/index.faiss +3 -0
.gitattributes CHANGED
@@ -662,3 +662,71 @@ gNE0T4oBgHgl3EQf6QIN/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -tex
662
  XdE2T4oBgHgl3EQfYgeB/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
663
  WNAzT4oBgHgl3EQfKPsc/content/2301.01092v1.pdf filter=lfs diff=lfs merge=lfs -text
664
  odAzT4oBgHgl3EQfAPrQ/content/2301.00924v1.pdf filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
662
  XdE2T4oBgHgl3EQfYgeB/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
663
  WNAzT4oBgHgl3EQfKPsc/content/2301.01092v1.pdf filter=lfs diff=lfs merge=lfs -text
664
  odAzT4oBgHgl3EQfAPrQ/content/2301.00924v1.pdf filter=lfs diff=lfs merge=lfs -text
665
+ JtFLT4oBgHgl3EQfKS8v/content/2301.12007v1.pdf filter=lfs diff=lfs merge=lfs -text
666
+ ldFJT4oBgHgl3EQfZSxF/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
667
+ INE0T4oBgHgl3EQfhwHS/content/2301.02437v1.pdf filter=lfs diff=lfs merge=lfs -text
668
+ qdAzT4oBgHgl3EQfrP0p/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
669
+ QNAyT4oBgHgl3EQf7voS/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
670
+ 9NFPT4oBgHgl3EQfYjSJ/content/2301.13073v1.pdf filter=lfs diff=lfs merge=lfs -text
671
+ rdAzT4oBgHgl3EQf5_7j/content/2301.01870v1.pdf filter=lfs diff=lfs merge=lfs -text
672
+ CdAyT4oBgHgl3EQfR_ex/content/2301.00078v1.pdf filter=lfs diff=lfs merge=lfs -text
673
+ JtFLT4oBgHgl3EQfKS8v/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
674
+ xtE2T4oBgHgl3EQfMAY2/content/2301.03719v1.pdf filter=lfs diff=lfs merge=lfs -text
675
+ l9AyT4oBgHgl3EQfYfeT/content/2301.00205v1.pdf filter=lfs diff=lfs merge=lfs -text
676
+ rdAzT4oBgHgl3EQf5_7j/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
677
+ 9NFPT4oBgHgl3EQfYjSJ/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
678
+ X9E3T4oBgHgl3EQf1guW/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
679
+ FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf filter=lfs diff=lfs merge=lfs -text
680
+ m9FAT4oBgHgl3EQfch31/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
681
+ odAzT4oBgHgl3EQfAPrQ/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
682
+ pNA0T4oBgHgl3EQfKP-o/content/2301.02102v1.pdf filter=lfs diff=lfs merge=lfs -text
683
+ wNFKT4oBgHgl3EQf4y7W/content/2301.11935v1.pdf filter=lfs diff=lfs merge=lfs -text
684
+ 3dE1T4oBgHgl3EQflwTE/content/2301.03290v1.pdf filter=lfs diff=lfs merge=lfs -text
685
+ J9AyT4oBgHgl3EQf6Pof/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
686
+ bdE0T4oBgHgl3EQfngG8/content/2301.02514v1.pdf filter=lfs diff=lfs merge=lfs -text
687
+ D9E1T4oBgHgl3EQfWgQs/content/2301.03114v1.pdf filter=lfs diff=lfs merge=lfs -text
688
+ J9AyT4oBgHgl3EQf6Pof/content/2301.00817v1.pdf filter=lfs diff=lfs merge=lfs -text
689
+ NdE2T4oBgHgl3EQfBgbQ/content/2301.03604v1.pdf filter=lfs diff=lfs merge=lfs -text
690
+ NNFOT4oBgHgl3EQf2DS3/content/2301.12941v1.pdf filter=lfs diff=lfs merge=lfs -text
691
+ pNA0T4oBgHgl3EQfKP-o/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
692
+ wNFKT4oBgHgl3EQf4y7W/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
693
+ 19E4T4oBgHgl3EQfaQyU/content/2301.05063v1.pdf filter=lfs diff=lfs merge=lfs -text
694
+ NdE2T4oBgHgl3EQfBgbQ/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
695
+ XtE0T4oBgHgl3EQf3gJ0/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
696
+ RtE0T4oBgHgl3EQf1wIT/content/2301.02702v1.pdf filter=lfs diff=lfs merge=lfs -text
697
+ RtE0T4oBgHgl3EQf1wIT/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
698
+ Q9FRT4oBgHgl3EQfKjda/content/2301.13499v1.pdf filter=lfs diff=lfs merge=lfs -text
699
+ g9E4T4oBgHgl3EQfRwz4/content/2301.04994v1.pdf filter=lfs diff=lfs merge=lfs -text
700
+ XtE0T4oBgHgl3EQf3gJ0/content/2301.02726v1.pdf filter=lfs diff=lfs merge=lfs -text
701
+ l9AyT4oBgHgl3EQfYfeT/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
702
+ G9AyT4oBgHgl3EQffPiq/content/2301.00337v1.pdf filter=lfs diff=lfs merge=lfs -text
703
+ Q9FRT4oBgHgl3EQfKjda/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
704
+ G9AyT4oBgHgl3EQffPiq/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
705
+ bNE3T4oBgHgl3EQfdgoA/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
706
+ NNFOT4oBgHgl3EQf2DS3/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
707
+ 6tE1T4oBgHgl3EQf7AVi/content/2301.03529v1.pdf filter=lfs diff=lfs merge=lfs -text
708
+ 3dE1T4oBgHgl3EQflwTE/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
709
+ FdE4T4oBgHgl3EQffw1T/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
710
+ 5tFKT4oBgHgl3EQf-i5C/content/2301.11958v1.pdf filter=lfs diff=lfs merge=lfs -text
711
+ X9E3T4oBgHgl3EQf1guW/content/2301.04747v1.pdf filter=lfs diff=lfs merge=lfs -text
712
+ b9FPT4oBgHgl3EQfxTU1/content/2301.13166v1.pdf filter=lfs diff=lfs merge=lfs -text
713
+ I9FET4oBgHgl3EQfrCVC/content/2301.10089v1.pdf filter=lfs diff=lfs merge=lfs -text
714
+ FtE0T4oBgHgl3EQfhAHl/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
715
+ L9FRT4oBgHgl3EQf2Ti5/content/2301.13660v1.pdf filter=lfs diff=lfs merge=lfs -text
716
+ JtAyT4oBgHgl3EQf5_rl/content/2301.00816v1.pdf filter=lfs diff=lfs merge=lfs -text
717
+ 5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf filter=lfs diff=lfs merge=lfs -text
718
+ CdA0T4oBgHgl3EQfAf80/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
719
+ r9FST4oBgHgl3EQfQThz/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
720
+ bNE3T4oBgHgl3EQfdgoA/content/2301.04534v1.pdf filter=lfs diff=lfs merge=lfs -text
721
+ I9FET4oBgHgl3EQfrCVC/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
722
+ r9FST4oBgHgl3EQfQThz/content/2301.13758v1.pdf filter=lfs diff=lfs merge=lfs -text
723
+ g9E4T4oBgHgl3EQfRwz4/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
724
+ b9FPT4oBgHgl3EQfxTU1/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
725
+ MtE4T4oBgHgl3EQfKQyA/content/2301.04928v1.pdf filter=lfs diff=lfs merge=lfs -text
726
+ GdAzT4oBgHgl3EQfxf4V/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
727
+ JtAyT4oBgHgl3EQf5_rl/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
728
+ 5tFKT4oBgHgl3EQf-i5C/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
729
+ 6tE1T4oBgHgl3EQf7AVi/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
730
+ GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf filter=lfs diff=lfs merge=lfs -text
731
+ mdAyT4oBgHgl3EQf_vr-/content/2301.00916v1.pdf filter=lfs diff=lfs merge=lfs -text
732
+ xtE2T4oBgHgl3EQfMAY2/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
19E4T4oBgHgl3EQfaQyU/content/2301.05063v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8957cf49d3465270b5b65d5cbb635b2061fc7a6d16eb837eceac867f0af58e2f
3
+ size 538043
19E4T4oBgHgl3EQfaQyU/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8c01235a9d240ae3e7a5cf0be9094c5f0a5436d33072c9611f62cb70df104ee1
3
+ size 98978
3dE1T4oBgHgl3EQflwTE/content/2301.03290v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3c22299adb0c299162dfd75210339b39ada504d77b9388673aa0c823e9cb5016
3
+ size 5746631
3dE1T4oBgHgl3EQflwTE/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:840c8e2649add5643ce4c29b938d26768e33a2a950f42f7f333b7d2c051df53d
3
+ size 11337773
3tAyT4oBgHgl3EQfb_f6/content/tmp_files/2301.00276v1.pdf.txt ADDED
@@ -0,0 +1,4010 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.00276v1 [cs.IT] 31 Dec 2022
2
+ 1
3
+ Impact of Phase-Shift Error on the Secrecy
4
+ Performance of Uplink RIS Communication
5
+ Systems
6
+ Abdelhamid Salem, Member, IEEE, Kai-Kit Wong, Fellow, IEEE, and Chan-Byoung Chae,
7
+ Fellow, IEEE
8
+ Abstract
9
+ Reconfigurable intelligent surface (RIS) has been recognized as a promising technique for the sixth gen-
10
+ eration (6G) of mobile communication networks. The key feature of RIS is to reconfigure the propagation
11
+ environment via smart signal reflections. In addition, active RIS schemes have been recently proposed to
12
+ overcome the deep path loss attenuation inherent in the RIS-aided communication systems. Accordingly, this
13
+ paper considers the secrecy performance of up-link RIS-aided multiple users multiple-input single-output (MU-
14
+ MISO) communication systems, in the presence of multiple passive eavesdroppers. In contrast to the existing
15
+ works, we investigate the impact of the RIS phase shift errors on the secrecy performance. Taking into account
16
+ the complex environment, where a general Rician channel model is adopted for all the communication links,
17
+ closed-form approximate expressions for the ergodic secrecy rate are derived for three RIS configurations,
18
+ namely, i) passive RIS, ii) active RIS, iii) active RIS with energy harvesting (EH RIS). Then, based on the
19
+ derived expressions, we optimize the phase shifts at the RIS to enhance the system performance. In addition,
20
+ the best RIS configuration selection is considered for a given target secrecy rate and amount of the power
21
+ available at the users. Finally, Monte-Carlo simulations are provided to verify the accuracy of the analysis,
22
+ and the impact of different system parameters on the secrecy performance is investigated. The results in this
23
+ Abdelhamid Salem is with the department of Electronic and Electrical Engineering, University College London, London, UK, (emails:
24
25
+ Kai-Kit Wong is with the department of Electronic and Electrical Engineering, University College London, London, UK, Kai-Kit
26
+ Wong is also affiliated with Yonsei University, Seoul, Korea (email: [email protected]).
27
+ Chan-Byoung Chae is with Yonsei University, Seoul, Korea (e-mail: [email protected]).
28
+ The work is supported by the Engineering and Physical Sciences Research Council (EPSRC) under grant EP/V052942/1. For the
29
+ purpose of open access, the authors will apply a Creative Commons Attribution (CCBY) licence to any Author Accepted Manuscript
30
+ version arising.
31
+
32
+ 2
33
+ paper show that, an active RIS scheme can be implemented to enhance the secrecy performance of RIS-aided
34
+ communication systems with phase shift errors, especially when the users have limited transmission power.
35
+ Index Terms
36
+ Reconfigurable intelligent surface, Physical layer security, MU-MISO, MRC.
37
+ I. INTRODUCTION
38
+ Reconfigurable intelligent surface (RIS), also known as intelligent reflecting surface (IRS), has been
39
+ proposed recently as a promising technique to extend the coverage and improve the spectral efficiency
40
+ of wireless communication networks [1], [2]. Specifically, RIS is composed of reflecting elements, each
41
+ of which independently imposes a phase shift on the incident signals. By tuning the phase shifts of the
42
+ reflecting elements, RIS can convert the propagation environments into smart ones and thus enhance
43
+ the received signals quality [1], [2]. Due to these advantages, RIS techniques have been extensively
44
+ considered in the literature. For instance, in [3], the fundamental capacity limit of RIS-aided multiple-
45
+ input multipleoutput (MIMO) communication systems has been considered. The achievable ergodic rate
46
+ of a RIS-assisted MIMO system which comprises links of a Rician channel was derived in [4]. In [5], a
47
+ closed-form asymptotic ergodic sum rate of a RIS-assisted MIMO communication system was derived
48
+ under the assumption that the number of base station (BS) antennas tends to infinity. In [6], the up-link
49
+ achievable rate in RIS-aided massive MIMO systems has been analyzed and optimized. The authors
50
+ in [7], [8] analyzed the achievable rate of RIS-assisted multiple users (MU) up-link massive MIMO
51
+ system under Rician fading channels. In [9], [10], a closed-form expression of ergodic achievable rate
52
+ for RIS-aided massive MIMO systems with zero forcing (ZF) detector has been derived. In addition, a
53
+ closed-form analytical expression for the symbol error probability and the upper bound on the channel
54
+ capacity of a RIS communication system have been derived in [11]. The work in [12] considered the
55
+ impact of hardware impairments on a general RIS MU-MISO system with Rayleigh fading channels.
56
+ The ergodic capacity of RIS MIMO networks over Rayleigh-Rician channels was considered in [13].
57
+ However, the practical implementation of passive RIS-aided communication systems may face several
58
+ challenges. For instance, the transmitted signal propagates through the RIS experiences a double-fading
59
+ attenuation, e.g, source-RIS and RIS-destination links. This issue has been tackled in the literature by
60
+ increasing the number of passive RIS elements [14]. However, this solution leads to an increase in
61
+
62
+ 3
63
+ the size of the RIS module, which is impractical in some scenarios. To tackle this issue the authors
64
+ in [15] proposed RIS with active elements. The main idea of active RIS is to adjust the phase shifts
65
+ and also amplify the reflected signal attenuated from the first link with extra power consumption.
66
+ Theoretical comparison between the active RIS-assisted system and the passive RIS-aided system has
67
+ been presented in [16]. The results in [16] show that the active RIS has better performance than
68
+ passive RIS. The use of active RIS elements to overcome the double-fading problem has been also
69
+ investigated in [17], where the results illustrated that using active elements results in a severe reduction
70
+ in the physical size of RIS to achieve a certain performance. To reduce the power consumption of
71
+ active RIS, a sub-connected architecture has been proposed in [18]. The energy efficiency in an active
72
+ RIS-aided MU-MISO down-link system has been investigated in [19].
73
+ Although fixed embedded batteries can be used to power the RIS, these batteries cannot be relied on
74
+ for long time and uninterrupted operations. In addition, wired charging might not be possible to use if
75
+ the RIS is deployed in inaccessible places. Therefore, equipping RIS elements with energy harvesting
76
+ (EH) modules can solve these issues. Accordingly, a self-sustainable RIS approach was proposed and
77
+ studied in the resent researches on RIS. In this regard, in [20] time switching (TS) and power splitting
78
+ (PS) EH protocols for the RIS to harvest sufficient amount of energy from an access point have
79
+ been proposed and investigated. The work in [21] considered a self-sustainable RIS-aided MU-MISO
80
+ communication systems, in which the RIS collected energy from the radio frequency (RF) transmitter
81
+ using the PS protocol. In [22], a novel transmission policy for a communication network assisted by
82
+ self-sustainable RIS has been proposed, where the RIS harvests energy from an energy transmitter to
83
+ support its operation. In [23], self-sustainable RIS with the PS protocol to assist broadcasting network
84
+ was studied. In [24], self-sustainable RIS-aided communication between a gateway and a device was
85
+ studied, in which the RIS harvested energy prior communication.
86
+ Moreover, due to the broadcast nature of wireless channels, confidential messages are vulnerable
87
+ to eavesdropping attacks. For the provision of secure transmission, physical layer security (PHYSec)
88
+ has been proposed from the information theory perspective [25], [26]. PHYSec exploits the nature of
89
+ wireless channels to enhance the system security [25], [26]. PHYSec of RIS systems has also been
90
+ studied in the literature. In [27], the secrecy throughput maximization problem has been formulated
91
+ and solved to enhance the secrecy performance of the RIS-assisted MIMO systems. In [28], a novel
92
+ active RIS design to enhance the security of wireless transmission was proposed. PHYSec of RIS-
93
+
94
+ 4
95
+ aided wireless networks has been considered in [29] to achieve secure transmission between a source
96
+ and a legitimate user in the presence of a malicious eavesdropper. In [30], RIS has been used to
97
+ perform secure transmission from a multiple antennas transmitter to a multiple antennas legitimate
98
+ receiver. Further work in [31] considered the secrecy transmission in a RIS-aided multiple antennas
99
+ communication, where the secrecy rate was improved by optimizing the RIS location. In [32], an active
100
+ RIS-aided multiple antennas PHYSec transmission scheme was considered, where the active RIS was
101
+ designed to amplify the signal actively.
102
+ Accordingly, this paper investigates the impact of phase shift error on the secrecy performance of
103
+ up-link RIS-aided MU-MISO systems in the presence of multiple eavesdroppers. The BS receives
104
+ the users messages only through the RIS, while eavesdroppers can receive the signals from both the
105
+ direct and reflected links. Under Rician fading channels and phase shift errors, the ergodic secrecy
106
+ rate is analyzed for three RIS configurations, namely, 1) passive RIS, 2) active RIS, and 3) EH RIS.
107
+ Based on the derived rate expressions, the phase shifts at the RIS are optimized to enhance the system
108
+ performance. Then, the best RIS configuration selection is considered based on the target secrecy rate
109
+ and amount of power available at the users. For clarity we list the main contributions of this work as
110
+ follows:
111
+ 1) We investigate the impact of RIS phase shift error on the secrecy performance of up-link MU-
112
+ MIMO systems in the presence of multiple passive eavesdroppers.
113
+ 2) New closed-form explicit analytical expressions for the ergodic secrecy rate are derived for
114
+ the RIS-assisted MU-MIMO systems, when the RIS is passive, active and EH node under Rician
115
+ fading channels. This channel model is more general but also very challenging to be considered
116
+ mathematically. The derived secrecy rate expressions are simple, explicit and in closed form, and
117
+ provide several important practical design insights.
118
+ 3) Based on the derived expressions, a genetic algorithm (GA)-based approach is used to obtain the
119
+ optimal phase shifts. Also, a simple suboptimal technique is proposed to enhance the secrecy rate for
120
+ a legitimate user.
121
+ 4) Given a target secrecy rate, we calculate the required user power, and we present steps to select
122
+ best RIS configuration which depend mainly on the available power at the users.
123
+ 5) Finally, Monte-Carlo simulations are performed to validate the analytical expressions. Then, the
124
+ impact of several system parameters on the secrecy performance are investigated.
125
+
126
+ 5
127
+ The results in this work show that active RIS is an efficient scheme to achieve secure communication
128
+ in the presence of phase shift errors at the RIS, especially when there is no sufficient amount of power
129
+ at the users.
130
+ Next, Section II presents the RIS-aided uplink MU-MISO system model. In Section III, we derive
131
+ the ergodic secrecy rate of the passive RIS model. Section IV presents the ergodic secrecy rate of the
132
+ active RIS scheme. Section V derives the ergodic secrecy rate of the EH RIS scheme. Section VII
133
+ depicts our numerical results. Our main conclusions are summarized in Section VIII.
134
+ II. SYSTEM MODEL
135
+ Consider a typical up-link RIS-aided MU-MISO communication system consisting of a multiple
136
+ antennas BS, an RIS and K single-antenna users in the presence of J single antenna passive eaves-
137
+ droppers. The BS is equipped with N antennas, and the RIS is equipped with M reflecting elements,
138
+ as shown in Fig. 1.
139
+ UE 1
140
+ UE k
141
+ UE K
142
+ .
143
+ .
144
+ .
145
+ .
146
+ Eave J
147
+ .
148
+ .
149
+ Eave 1
150
+ BS
151
+ RIS
152
+ Figure 1: An RIS-aided uplink MU-MISO system with N BS antennas, M RIS elements, K users and
153
+ J eavesdroppers.
154
+ The BS and RIS are connected to control and adjust the phase shifts of the the RIS elements. It is
155
+ assumed that the eavesdroppers can hear the signals from the direct and reflected links, and trying to
156
+ eavesdrop a specific confidential message in the system. On the other side, the direct links between the
157
+ users and BS are assumed to be blocked, which justifies the use of the RIS. It is known that, the RIS is
158
+ most likely to be installed on the buildings, and thus it can create channels dominated by line-of-sight
159
+ (LoS) path along with scatters. Accordingly, a Rician fading model is considered for the RIS channels.
160
+ The channel matrix between the RIS and the BS is denoted by G ∈ CN×M , and the channel vector
161
+
162
+ 6
163
+ between user k and the RIS is presented by hr,k ∈ CM×1. The mathematical expressions of the channel
164
+ matrix G and the channel vector hr,k can be expressed, respectively, as
165
+ G =
166
+ ��
167
+ ρb
168
+ ρb + 1
169
+ ¯G +
170
+
171
+ 1
172
+ ρb + 1
173
+ ˜G
174
+
175
+ ,
176
+ hr,k =
177
+ ��
178
+ ρk
179
+ ρk + 1
180
+ ¯hr,k +
181
+
182
+ 1
183
+ ρk + 1
184
+ ˜hr,k
185
+
186
+ (1)
187
+ where ρb and ρk are the Rician factors, ¯G and ¯hr,k are the LoS components and ˜G and ˜hr,k are the
188
+ NLoS components, in which
189
+ ¯G = aN (φa
190
+ r, φe
191
+ r) aH
192
+ M (φa
193
+ t , φe
194
+ t) ,
195
+ ¯hr,k = aM (φa
196
+ kr, φe
197
+ kr)
198
+ (2)
199
+ where φa
200
+ kr, φe
201
+ kr denote the azimuth and elevation angles of arrival (AoA) from user k to the RIS ,
202
+ respectively, φa
203
+ t , φe
204
+ t are the azimuth and elevation angles of departure (AoD) at the BS from the RIS,
205
+ respectively, φa
206
+ r, φe
207
+ r are the azimuth and elevation AoA from the RIS to the BS, respectively. The kth
208
+ element of the vector aX can be written as [aX (φ1, φ2)]k = ej2π d
209
+ λ (xk sin φ1 sin φ2+yk cos φ2), where λ is the
210
+ wavelength, d is the elements/antennas spacing, and xk = (k − 1) mod√x, yk = k−1
211
+
212
+ X . On the other
213
+ hand, the channel vector between the RIS and eavesdropper j is presented by hej,r ∈ C1×M , and
214
+ the channel from user k to eavesdropper j is hej,k ∈ C1×1. The direct channel fading is assumed to
215
+ be Rayleigh fading due to extensive scatterers, while for the RIS-related channels, is assumed to be
216
+ Rician fading. Thus the expression of hej,ris given by
217
+ hej,r =
218
+ ��
219
+ ρej,r
220
+ ρej,r + 1
221
+ ¯hej,r +
222
+
223
+ 1
224
+ ρej,r + 1
225
+ ˜hej,r
226
+
227
+ (3)
228
+ where ρej,r is the Rician factor, ¯hej,r and ˜hej,r are the LoS of NLoS components, respectively.
229
+ The channel state information (CSI) of the eavesdroppers is assumed to be unknown at the BS/RIS
230
+ (only statistical information can be known), and the eavesdroppers are non-colluding. Therefore, the
231
+ ergodic secrecy rate can be calculated by [33]
232
+ ˆRs =
233
+
234
+ ˆRbk − ˆRej,k
235
+ �+
236
+ (4)
237
+ where [l]+= max (0, l), ˆRbk = E {Rbk}, Rbk is the up-link rate of user k, and ˆRej,k = max E
238
+
239
+ Rej,k
240
+
241
+ ,
242
+ Rej,k is the rate at eavesdropper j.
243
+
244
+ 7
245
+ In the following sections, we consider the secrecy performance of the three RIS configurations.
246
+ III. PASSIVE RIS
247
+ As we have mentioned earlier, passive RIS reflects the users messages constructively to the BS with
248
+ passive elements. Thus, the received signal at the BS can be expressed as
249
+ yb =
250
+ K
251
+
252
+ k=1
253
+
254
+ pk Luk,bG˜Θhr,kxk + nb
255
+ (5)
256
+ where Luk,b = d−αr
257
+ uk,rd−αb
258
+ r,b
259
+ is the large scale fading, duk,r is the distance between user k and RIS, dr,b
260
+ is the distance between RIS and the BS, αr and αb are the path-loss exponents, nb is the additive
261
+ wight Gaussian noise (AWGN) at the BS, nb ∼ CN (0, σ2
262
+ bI), ˜Θ = ¯ΘΘ where Θ = diag (θ), and
263
+ θ = [θ1, ......, θM]Tis the RIS reflection coefficients with θm = ejϕm, where ϕm∈[0, 2π) is the phase
264
+ shift of element m. However, in practical systems, phase shift errors can exist due to imperfect channel
265
+ knowledge and finite precision in phase adjustment. Thus, we define ¯Θ = [ej ¯
266
+ ϕ1, ...., ej ¯
267
+ ϕM] as the phase-
268
+ shift errors at the RIS. The phase-error is modeled according to Von-Mises (VM) distribution with
269
+ zero-mean and a characteristic function (CF) E [ej ¯
270
+ ϕm] = I1(κ)
271
+ I0(κ) = ρ (κ), where κ is the concentration
272
+ parameter and Ii is the modified Bessel function of the first kind and order i. By applying the receive
273
+ beamforming vector wk at the BS, the received signal of user k is
274
+ yb,k =
275
+
276
+ pk Luk,bwkG¯ΘΘhr,kxk+
277
+ K
278
+
279
+ i=1
280
+ i̸=k
281
+
282
+ pi Lui,bwkG¯ΘΘhr,ixi + wknb.
283
+ (6)
284
+ On the other hand, the received signal at eavesdropper j to detect user k signal is
285
+ yej,k = √pkxk
286
+ ��
287
+ d−αe
288
+ ej,k hej,k +
289
+
290
+ Luk,ejhej,r ¯ΘΘhr,k
291
+
292
+ +
293
+ K
294
+
295
+ i=1
296
+ i̸=k
297
+ √pixi
298
+
299
+
300
+
301
+
302
+ d−αe
303
+ ej,i hej,i+
304
+ K
305
+
306
+ i=1
307
+ i̸=k
308
+
309
+ Lui,ejhej,r ¯ΘΘhr,i
310
+
311
+
312
+  + nej
313
+ (7)
314
+ where d−αe
315
+ ej,k is the distance between user k and eavesdropper j, αe is the path-loss exponent, Luk,B =
316
+ d−αr
317
+ uk,rd−e
318
+ ej,r and d−e
319
+ ej,r denotes the distance between the RIS and eavesdropper j.
320
+
321
+ 8
322
+ To calculate the ergodic secrecy rate, the ergodic up-link rate for user k and ergodic rate at the
323
+ eavesdropper j should be derived, which will be considered in the following sub-sections.
324
+ A. Ergodic Up-link rate of user k
325
+ To calculate the ergodic user rate, maximum ratio combining (MRC) is adopted at the BS. The
326
+ beamforming matrix is given by W = (GΘH)H, and thus wk = hH
327
+ r,kΘHGH. The signal to interference
328
+ plus noise ratio (SINR) at the BS to decode user k signal can be written as
329
+ γbk =
330
+ pk Luk,b
331
+ ��hH
332
+ r,kΘHGHGΘ¯Θhr,k
333
+ ��2
334
+ K�
335
+ i=1
336
+ i̸=k
337
+ pi Lui,b
338
+ ��hH
339
+ r,kΘHGHGΘ¯Θhr,i
340
+ ��2 +
341
+ ��hH
342
+ r,kΘHGH��2 σ2
343
+ b
344
+ .
345
+ (8)
346
+ Lemma 1. The ergodic up-link rate of user k in passive RIS-aided MU-MISO systems under Rician
347
+ fading channels and with phase shift error can be calculated by
348
+ E {Rbk} ≈ log2
349
+
350
+
351
+
352
+
353
+
354
+
355
+
356
+ 1 +
357
+ pk Luk,bξk
358
+ K�
359
+ i=1
360
+ i̸=k
361
+ pi Lui,bςi + υkσ2
362
+ b
363
+
364
+
365
+
366
+
367
+
368
+
369
+
370
+ (9)
371
+ where
372
+ ξk = E
373
+ ���hH
374
+ r,kΘHGHGΘ¯Θhr,k
375
+ ��2�
376
+ =
377
+ 1
378
+ (ρb + 1)2 (ρk + 1)2
379
+
380
+ a1N2 + a2NM2 + a3NM + a4N
381
+
382
+ a1 =
383
+
384
+ ρ (κ)2 (ρk + ρb + 1)2 +
385
+
386
+ 1 − ρ (κ)2�
387
+ ρkρ2
388
+ b + ρ2
389
+ b
390
+
391
+ M2
392
+ +
393
+ ��
394
+ (2ρk + 3ρb + 2 − ρkρb) ρ (κ)2 + (1 + ρk) ρb
395
+
396
+ ρbρk |fk|2 + (ρk + ρb + 2)2
397
+ − ρ (κ)2 (ρk + ρb + 1)2 − 2ρ (κ)2 ρkρb − 2
398
+
399
+ M
400
+ +ρ (κ)2 ρ2
401
+ bρ2
402
+ k |fk|4 + 2
403
+ ��
404
+ 1 − ρ (κ)2�
405
+ (ρk + ρb) + 2
406
+
407
+ ρbρk |fk|2,
408
+ a2 =
409
+
410
+ −ρ (κ)2 ρkρb (1 + ρk) M2�
411
+ + (ρk + ρb + 1) ρbρr + (ρk + ρb + 1)2 − (ρk + 1) ρ2
412
+ b,
413
+ a3 =
414
+ ��
415
+ (ρk + 1) ρ (κ)2�
416
+ + (ρk + 1)
417
+
418
+ ρbρk |fk|2 − 2ρbρkρ (κ)2 + 2ρbρk + 2ρk + 2ρb − 1,
419
+ a4 = 2ρbρr |fk|2 �
420
+ 1 + ρ (κ)2�
421
+ and
422
+
423
+ 9
424
+ ςi = E
425
+ ���hH
426
+ r,kΘHGHGΘ¯Θhr,i
427
+ ��2�
428
+ =
429
+ 1
430
+ (ρb + 1)2 (ρk + 1) (ρi + 1)
431
+
432
+ b1N2 + b2NM2 + b3NM
433
+
434
+ b1 =
435
+
436
+ ρi + 1 − ρ (κ)2 ρi
437
+
438
+ M2ρ2
439
+ b
440
+ +M
441
+ ��
442
+ ρi + 1 − ρ (κ)2 ρi
443
+
444
+ ρ2
445
+ bρk |fk|2 + ρ (κ)2 ρ2
446
+ bρi |fi|2 + (ρk + 2ρb + 1)
447
+
448
+ ρi + 1 − ρ (κ)2 ρi
449
+
450
+ + ρ (κ)2 ρi
451
+
452
+ +
453
+
454
+ 2ρb |fi|2 + ρk
455
+ ��¯hH
456
+ k ¯hi
457
+ ��2 + 2ρbρkRe
458
+
459
+ f ∗
460
+ kfi¯hH
461
+ i ¯hk
462
+ ��
463
+ ρ (κ)2 ρi
464
+ +
465
+
466
+ ρ (κ)2 ρbρi |fi|2 + 2ρi
467
+
468
+ 1 − ρ (κ)2�
469
+ + 2
470
+
471
+ ρbρk |fk|2
472
+ b2 =
473
+
474
+ (ρb + 1) ρk + (ρb + 1)2 − ρ2
475
+ b
476
+
477
+ (ρi + 1) − (ρb + 1) ρbρiρ (κ)2 − 1
478
+ b3 = (ρi + 1) ρbρk |fk|2 + (ρk + 1) ρ (κ)2 ρbρi |fi|2
479
+ and
480
+ υk = E
481
+ ���hH
482
+ r,kΘHGH��2�
483
+ =
484
+ Luk,b
485
+ (ρb + 1) (ρk + 1)
486
+
487
+ ρbρk |fk|2 + (ρb + ρk + 1) M
488
+
489
+ Proof: The proof is provided in Appendix A.
490
+ B. Ergodic Rate at Eavesdropper j
491
+ The SINR at eavesdropper j to decode user k signal can be expressed as
492
+ γej,k =
493
+ pk
494
+ ���d
495
+ − αr
496
+ 2
497
+ uk,r d
498
+ − αe
499
+ 2
500
+ ej,r hej,rΘ¯Θhr,k + d
501
+ − αe
502
+ 2
503
+ ej,k hej,k
504
+ ���
505
+ 2
506
+ K�
507
+ i=1
508
+ i̸=k
509
+ pi
510
+ ���d
511
+ − αr
512
+ 2
513
+ ui,r d
514
+ − αe
515
+ 2
516
+ ej,r hej,rΘ¯Θhr,i + d
517
+ − αe
518
+ 2
519
+ ej,i hej,i
520
+ ���
521
+ 2
522
+ + σ2ej
523
+ .
524
+ (10)
525
+ Lemma 2. The ergodic rate at eavesdropper j in up-link passive RIS-aided MU-MISO systems under
526
+ Rician fading channels and with phase shift error can be calculated by
527
+ E
528
+
529
+ Rej,k
530
+
531
+ = log2
532
+
533
+
534
+
535
+
536
+
537
+
538
+
539
+ 1 +
540
+ pk xk
541
+ K�
542
+ i=1
543
+ i̸=k
544
+ pi yi + σ2
545
+ ej
546
+
547
+
548
+
549
+
550
+
551
+
552
+
553
+ (11)
554
+ where
555
+ xk =
556
+
557
+ d−αr
558
+ uk,rd−αe
559
+ ej,r
560
+
561
+ ρej
562
+ ρej +1
563
+ ρk
564
+ ρk+1
565
+
566
+ M + ρ (κ)2 ξ
567
+
568
+ +
569
+ ρej
570
+ ρej +1
571
+ 1
572
+ ρk+1M +
573
+ ρk
574
+ ρk+1
575
+ 1
576
+ ρej +1M +
577
+ 1
578
+ ρej +1
579
+ 1
580
+ ρk+1M
581
+
582
+ + d−αe
583
+ ej,r
584
+
585
+ ,
586
+ and
587
+
588
+ 10
589
+ yi = d−αr
590
+ ui,r d−αe
591
+ ej,r
592
+
593
+ ρej
594
+ ρej +1
595
+ ρi
596
+ ρi+1
597
+
598
+ M + ρ (κ)2 ξ
599
+
600
+ +
601
+ ρej
602
+ ρej +1
603
+ 1
604
+ ρi+1M +
605
+ ρi
606
+ ρi+1
607
+ 1
608
+ ρej +1M +
609
+ 1
610
+ ρej +1
611
+ 1
612
+ ρi+1M + d−αe
613
+ ej,i
614
+
615
+ .
616
+ Proof: The proof is provided in Appendix B.
617
+ Finally, the ergodic secrecy rate in passive RIS scheme is presented in the next theorem.
618
+ Theorem 1. The ergodic secrecy rate in passive RIS-aided MU-MISO systems under Rician fading
619
+ channels and with phase shift error can be calculated by
620
+ ˆRs =
621
+
622
+ 
623
+ log2
624
+
625
+
626
+
627
+
628
+
629
+
630
+
631
+ 1 +
632
+ pk Luk,bξk
633
+ K�
634
+ i=1
635
+ i̸=k
636
+ pi Lui,bςi + υkσ2
637
+ b
638
+
639
+
640
+
641
+
642
+
643
+
644
+
645
+ − log2
646
+
647
+
648
+
649
+
650
+
651
+
652
+
653
+ 1 +
654
+ pk xk
655
+ K�
656
+ i=1
657
+ i̸=k
658
+ pi yi + σ2ej
659
+
660
+
661
+
662
+
663
+
664
+
665
+
666
+
667
+ 
668
+ .+
669
+ (12)
670
+ IV. ACTIVE RIS
671
+ As we mentioned earlier, active RIS can adjust the phase shifts and also amplify the reflected signal
672
+ to compensate the attenuation from the first link with extra power consumption. The signal reflected
673
+ by the active IRS can be written as
674
+ yr = ˜Θ
675
+ K
676
+
677
+ k=1
678
+
679
+ pk d−αr
680
+ uk,rhr,ixi + ˜Θnr
681
+ (13)
682
+ where nr is the noise at RIS elements nr ∼ CN (0, σ2
683
+ rI). In this case ˜Θ = ¯ΘΘ where Θ = diag (θ),
684
+ and θ = [θ1, ......, θM]T with θm = ̺mejϕm, ̺m > 1 and ϕm∈[0, 2π) represents the amplification factor
685
+ and phase shift coefficient, respectively, at element m. For simplicity, we assume that ̺m = ̺ and then
686
+ define Θ = ̺diag {ejϕ1, ...., ejϕM}. The active RIS amplification power can be expressed as
687
+ Pr =
688
+ � K
689
+
690
+ k=1
691
+ pk
692
+ dαr
693
+ uk,r
694
+ E
695
+ ����˜Θhr,i
696
+ ���
697
+ 2�
698
+ + E
699
+ ����˜Θnr
700
+ ���
701
+ 2��
702
+ =
703
+ � K
704
+
705
+ k=1
706
+ pk
707
+ dαr
708
+ uk,r
709
+ M̺2 + M̺2σ2
710
+ r
711
+
712
+ (14)
713
+ where E
714
+ ���˜Θnr
715
+ ���
716
+ 2
717
+ = M̺2σ2
718
+ r, and E
719
+ ���˜Θhr,i
720
+ ���
721
+ 2
722
+ =
723
+ ̺2
724
+ ρi+1
725
+
726
+ ρiE
727
+ �¯hH
728
+ r,i¯hr,i
729
+
730
+ + E
731
+
732
+ ˜hH
733
+ r,i˜hr,i
734
+ ��
735
+ =
736
+ ̺2
737
+ ρi+1 (ρiM + M) =
738
+ M̺2. Thus, the amplification factor for each element on the active RIS is given by
739
+ ̺ =
740
+
741
+
742
+
743
+
744
+
745
+ Pr
746
+ M
747
+ � K
748
+
749
+ k=1
750
+ pk
751
+ dαr
752
+ uk,r + σ2
753
+ r
754
+ �.
755
+ (15)
756
+
757
+ 11
758
+ By applying the receive beamforming vector wk at the BS, the received signal of user k is
759
+ yb,k =
760
+
761
+ pk Luk,bwkG¯ΘΘhr,kxk+
762
+ K
763
+
764
+ i=1
765
+ i̸=k
766
+
767
+ pi Lui,bwkG¯ΘΘhr,ixi +
768
+
769
+ d−αr
770
+ r,b wkG¯ΘΘnr + wknb.
771
+ (16)
772
+ On the other hand, the received signal at eavesdropper j to detect user k signal is
773
+ yej,k = √pkxk
774
+ ��
775
+ d−αe
776
+ ej,k hej,k +
777
+
778
+ Luk,ejhej,r ¯ΘΘhr,k
779
+
780
+ +
781
+ K
782
+
783
+ i=1
784
+ i̸=k
785
+ √pixi
786
+
787
+
788
+
789
+
790
+ d−αe
791
+ ej,i hej,i+
792
+ K
793
+
794
+ i=1
795
+ i̸=k
796
+
797
+ Lui,ejhej,r ¯ΘΘhr,i
798
+
799
+
800
+  +
801
+
802
+ d−αe
803
+ ej,r hej,r ¯ΘΘnr + nej.
804
+ (17)
805
+ A. Ergodic Up-link rate of user k
806
+ Applying MRC beamforming at the BS, the SINRs at the BS to decode user k signal can be expressed
807
+ as
808
+ γbk =
809
+ pk Luk,b
810
+ ��hH
811
+ r,kΘHGHGΘ¯Θhr,k
812
+ ��2
813
+ K�
814
+ i=1
815
+ i̸=k
816
+ pi Lui,b
817
+ ��hH
818
+ r,kΘHGHGΘ¯Θhr,i
819
+ ��2 + d−αr
820
+ r,b
821
+ ��hH
822
+ r,kΘHGHG¯ΘΘ
823
+ ��2 σ2
824
+ r +
825
+ ��hH
826
+ r,kΘHGH��2 σ2
827
+ b
828
+ .
829
+ (18)
830
+ Lemma 3. The ergodic up-link rate of user k in active RIS-aided MU-MISO systems under Rician
831
+ fading channels and with phase shift error can be calculated by
832
+ E {Rbk} ≈ log2
833
+
834
+
835
+
836
+
837
+
838
+
839
+
840
+ 1 +
841
+ pk Luk,bξk̺4
842
+ K�
843
+ i=1
844
+ i̸=k
845
+ pi Lui,bςi̺4 + ̺4d−αr
846
+ r,b σ2
847
+ rνk + ̺2υkσ2
848
+ b
849
+
850
+
851
+
852
+
853
+
854
+
855
+
856
+ (19)
857
+ where
858
+ νk = E
859
+ ��hH
860
+ r,kΘHGHG¯ΘΘ
861
+ ��2 =
862
+ 1
863
+ (ρb + 1)
864
+
865
+ (ρk + 1)
866
+ (X1 + X2)
867
+ (20)
868
+ and X1 = E
869
+
870
+ |∆1,1|2�
871
+ + E
872
+
873
+ |∆1,2|2�
874
+ + E
875
+
876
+ |∆1,3|2�
877
+ + E
878
+
879
+ |∆1,4|2�
880
+ + E
881
+
882
+ ∆1,1∆∗
883
+ 1,4
884
+
885
+
886
+ 12
887
+ E
888
+
889
+ |∆1,1|2�
890
+ = ρ2
891
+ bρk
892
+ ���
893
+ aH
894
+ M (φa
895
+ kr, φe
896
+ kr) ΘHaH
897
+ M (φa
898
+ r, φe
899
+ r) aH
900
+ N (φa
901
+ b, φe
902
+ b) aN (φa
903
+ b, φe
904
+ b)
905
+ ���2 × M,
906
+ E
907
+
908
+ |∆1,2|2�
909
+ = ρbρk
910
+ ��aH
911
+ M (φa
912
+ kr, φe
913
+ kr) ΘHaM (φa
914
+ r, φe
915
+ r)
916
+ ��2 NM,
917
+ E
918
+
919
+ |∆1,3|2�
920
+ = ρbρkMN
921
+
922
+ ρ (κ)2 M +
923
+
924
+ 1 − ρ (κ)2�
925
+ M
926
+
927
+ , E
928
+
929
+ |∆1,4|2�
930
+ = ρk
931
+
932
+ N2M + NM2�
933
+ ,
934
+ E
935
+
936
+ ∆1,1∆∗
937
+ 1,4
938
+
939
+ = ρbρk
940
+
941
+ aH
942
+ M (φa
943
+ kr, φe
944
+ kr) ΘHaH
945
+ M (φa
946
+ r, φe
947
+ r) aH
948
+ N (φa
949
+ b, φe
950
+ b) aN (φa
951
+ b, φe
952
+ b)
953
+
954
+ × (aM (φa
955
+ r, φe
956
+ r) Θ) ρkaH
957
+ M (φa
958
+ kr, φe
959
+ kr) ΘHNΘ,
960
+ and X2 = E
961
+
962
+ |∆2,1|2�
963
+ + E
964
+
965
+ |∆2,2|2�
966
+ + E
967
+
968
+ |∆2,3|2�
969
+ + E
970
+
971
+ |∆2,4|2�
972
+ + E
973
+
974
+ ∆2,1∆∗
975
+ 2,4
976
+
977
+ E
978
+
979
+ |∆2,1|2�
980
+ = ρ2
981
+ b
982
+ ��ΘHaH
983
+ M (φa
984
+ r, φe
985
+ r) aH
986
+ N (φa
987
+ b, φe
988
+ b) aN (φa
989
+ b, φe
990
+ b) aM (φa
991
+ r, φe
992
+ r) Θ
993
+ ��2
994
+ F ,
995
+ E
996
+
997
+ |∆2,2|2�
998
+ = ρb
999
+ ��ΘHaM (φa
1000
+ r, φe
1001
+ r)
1002
+ ��2 NM,
1003
+ E
1004
+
1005
+ |∆2,3|2�
1006
+ = ρbMN
1007
+ ���aH
1008
+ M (φa
1009
+ r, φe
1010
+ r) Θ¯Θ
1011
+ ��2�
1012
+ = ρbM2N,
1013
+ E
1014
+
1015
+ |∆2,4|2�
1016
+ = ρ2
1017
+ k
1018
+
1019
+ N2M + NM2�
1020
+ ,
1021
+ E
1022
+
1023
+ ∆2,1∆∗
1024
+ 2,4
1025
+
1026
+ = ρk
1027
+
1028
+ ΘHaH
1029
+ M (φa
1030
+ r, φe
1031
+ r) aH
1032
+ N (φa
1033
+ b, φe
1034
+ b) aN (φa
1035
+ b, φe
1036
+ b)
1037
+
1038
+ (aM (φa
1039
+ r, φe
1040
+ r) Θ) ρkΘNΘH.
1041
+ Proof: The proof is provided in Appendix C.
1042
+ B. Ergodic Rate at Eavesdropper j
1043
+ The SINR at eavesdropper j to decode user k signal in this scenario can be written as
1044
+
1045
+ 13
1046
+ γej,k =
1047
+ pk
1048
+ ���d
1049
+ − αr
1050
+ 2
1051
+ uk,r d
1052
+ − αe
1053
+ 2
1054
+ ej,r hej,rΘ¯Θhr,k + d
1055
+ − αe
1056
+ 2
1057
+ ej,k hej,k
1058
+ ���
1059
+ 2
1060
+ K�
1061
+ i=1
1062
+ i̸=k
1063
+ pi
1064
+ ���d
1065
+ − αr
1066
+ 2
1067
+ ui,r d
1068
+ − αe
1069
+ 2
1070
+ ej,r hej,rΘ¯Θhr,i + d
1071
+ − αe
1072
+ 2
1073
+ ej,i hej,i
1074
+ ���
1075
+ 2
1076
+ + d−αe
1077
+ ej,r
1078
+ ��hej,r ¯ΘΘ
1079
+ ��2 σ2r + σ2ej
1080
+ .
1081
+ (21)
1082
+ Lemma 4. The ergodic rate at eavesdropper j in up-link active RIS-aided MU-MISO systems under
1083
+ Rician fading channels and with phase shift error can be calculated by
1084
+ E
1085
+
1086
+ Rej,k
1087
+
1088
+ = log2
1089
+
1090
+
1091
+
1092
+
1093
+
1094
+
1095
+
1096
+ 1 +
1097
+ pk xj
1098
+ K�
1099
+ i=1
1100
+ i̸=k
1101
+ piyi + zjσ2
1102
+ r + σ2
1103
+ ej
1104
+
1105
+
1106
+
1107
+
1108
+
1109
+
1110
+
1111
+ (22)
1112
+ where
1113
+ xj =
1114
+
1115
+ d−αr
1116
+ uk,rd−αe
1117
+ ej,r ̺2 �
1118
+ ρej
1119
+ ρej +1
1120
+ ρk
1121
+ ρk+1
1122
+
1123
+ M + ρ (κ)2 ξ
1124
+
1125
+ +
1126
+ ρej
1127
+ ρej +1
1128
+ 1
1129
+ ρk+1M +
1130
+ ρk
1131
+ ρk+1
1132
+ 1
1133
+ ρej +1M +
1134
+ 1
1135
+ ρej +1
1136
+ 1
1137
+ ρk+1M
1138
+
1139
+ + d−αe
1140
+ ej,r
1141
+
1142
+ ,
1143
+ yk = d−αr
1144
+ ui,r d−αe
1145
+ ej,r ̺2 �
1146
+ ρej
1147
+ ρej +1
1148
+ ρi
1149
+ ρi+1
1150
+
1151
+ M + ρ (κ)2 ξ
1152
+
1153
+ +
1154
+ ρej
1155
+ ρej +1
1156
+ 1
1157
+ ρi+1M +
1158
+ ρi
1159
+ ρi+1
1160
+ 1
1161
+ ρej +1M +
1162
+ 1
1163
+ ρej +1
1164
+ 1
1165
+ ρi+1M + d−αe
1166
+ ej,i
1167
+
1168
+ which have been derived in Appemdix B, and
1169
+ zj = d−αe
1170
+ ej,r E
1171
+ ���hej,r ˜Θ
1172
+ ���
1173
+ 2
1174
+ = d−αe
1175
+ ej,r
1176
+ ̺2
1177
+ ρej,r+1
1178
+
1179
+ ρej,rE
1180
+
1181
+ ¯hH
1182
+ ej,r¯hej,r
1183
+
1184
+ + E
1185
+
1186
+ ˜hH
1187
+ ej,r˜hej,r
1188
+ ��
1189
+ = d−αe
1190
+ ej,r
1191
+ ̺2
1192
+ ρej,r+1
1193
+
1194
+ ρej,rM + M
1195
+
1196
+ = d−αe
1197
+ ej,r M̺2.
1198
+ The ergodic secrecy rate in active RIS scheme is presented in the following Theorem.
1199
+ Theorem 2. The ergodic secrecy rate in active RIS-aided MU-MISO systems under Rician fading
1200
+ channels and with phase shift error can be calculated by
1201
+ ˆRs =
1202
+
1203
+ 
1204
+ log2
1205
+
1206
+
1207
+
1208
+
1209
+
1210
+
1211
+
1212
+ 1 +
1213
+ pk Luk,bξk̺4
1214
+ K�
1215
+ i=1
1216
+ i̸=k
1217
+ pi Lui,bςi̺4 + ̺4d−αr
1218
+ r,b σ2rνk + ̺2υkσ2
1219
+ b
1220
+
1221
+
1222
+
1223
+
1224
+
1225
+
1226
+
1227
+ − log2
1228
+
1229
+
1230
+
1231
+
1232
+
1233
+
1234
+
1235
+ 1 +
1236
+ pk xj
1237
+ K�
1238
+ i=1
1239
+ i̸=k
1240
+ piyi + zjσ2r + σ2ej
1241
+
1242
+
1243
+
1244
+
1245
+
1246
+
1247
+
1248
+
1249
+ 
1250
+ +
1251
+ .
1252
+ (23)
1253
+ V. EH RIS
1254
+ Following the recent works in [20], [21], [22], [23], [24], in this section, the RIS is an energy
1255
+ constrained node and it can harvest RF energy to support its operation. Thus, in this scenario the
1256
+
1257
+ 14
1258
+ whole operation time block, T, is split into two time periods, the energy transfer (ET) slot and the
1259
+ information transfer (IT) slot. During the ET slot, the BS transmits energy signals to the RIS to support
1260
+ its operation. During the IT slot, the users deliver their messages to the BS through the RIS. We denote
1261
+ τT as the time duration for the ET, and (1 − τ) T as the time duration for IT. The received signals at
1262
+ the RIS in the first sub-slot is expressed as
1263
+ yr =
1264
+
1265
+ PbGpWpxp + nr
1266
+ (24)
1267
+ where Pb is the BS power, Gp =
1268
+ ��
1269
+ ρp
1270
+ ρp+1 ¯Gp +
1271
+
1272
+ 1
1273
+ ρp+1 ˜Gp
1274
+
1275
+ is the BS-RIS channel in the ET slot, Wp
1276
+ is the precoding matrix and xp is the energy signals vector. Using the maximum ratio transmission
1277
+ (MRT) scheme, the harvested power at the RIS can be expressed as Pr = ηeff τPb∥Gp∥2
1278
+ F
1279
+ 1−τ
1280
+ , which can
1281
+ be written as Pr =
1282
+ ηeff τPbTr(GbGH
1283
+ b )
1284
+ 1−τ
1285
+ where ηeff is the efficiency of EH. Since GbGH
1286
+ b
1287
+ has Wishart
1288
+ distribution, the average harvested power can be written as
1289
+ Pr = ηeffτPbE
1290
+
1291
+ Tr
1292
+
1293
+ GbGH
1294
+ b
1295
+ ��
1296
+ 1 − τ
1297
+ = ηeffτPbNM
1298
+ 1 − τ
1299
+ .
1300
+ (25)
1301
+ By substituting (25) into (15), the amplification factor for each element on the RIS in this case is given
1302
+ by
1303
+ ˆ̺ =
1304
+
1305
+
1306
+
1307
+
1308
+
1309
+ ηeffτPbNM
1310
+ M (1 − τ)
1311
+ � K�
1312
+ k=1
1313
+ pk
1314
+ dαr
1315
+ uk,r + σ2
1316
+ r
1317
+ �.
1318
+ (26)
1319
+ A. Ergodic Up-link rate of user k
1320
+ Applying MRC beamforming at the BS, the SINR at the BS to decode user k signal can be expressed
1321
+ as
1322
+ γbk =
1323
+ pk Luk,b
1324
+ ��hH
1325
+ r,kΘHGHGΘ¯Θhr,k
1326
+ ��2
1327
+ K�
1328
+ i=1
1329
+ i̸=k
1330
+ pi Lui,b
1331
+ ��hH
1332
+ r,kΘHGHGΘ¯Θhr,i
1333
+ ��2 + d−αr
1334
+ r,b
1335
+ ��hH
1336
+ r,kΘHGHG¯ΘΘ
1337
+ ��2 σ2r +
1338
+ ��hH
1339
+ r,kΘHGH��2 σ2
1340
+ b
1341
+ .
1342
+ (27)
1343
+ Lemma 5. The ergodic up-link rate of user k in EH RIS-aided MU-MISO systems under Rician fading
1344
+ channels and with phase shift error can be calculated by
1345
+
1346
+ 15
1347
+ E {Rbk} ≈ (1 − τ) log2
1348
+
1349
+
1350
+
1351
+
1352
+
1353
+
1354
+
1355
+ 1 +
1356
+ pk Luk,bξkˆ̺4
1357
+ K�
1358
+ i=1
1359
+ i̸=k
1360
+ pi Lui,bςiˆ̺4 + ˆ̺4d−αr
1361
+ r,b σ2rνk + ˆ̺2υkσ2
1362
+ b
1363
+
1364
+
1365
+
1366
+
1367
+
1368
+
1369
+
1370
+ .
1371
+ (28)
1372
+ Proof: This expression can be obtained by following same derivation in Appendix C.
1373
+ B. Ergodic Rate at Eavesdropper j
1374
+ The SINR at eavesdropper j to decode user k signal is given by
1375
+ γej,k =
1376
+ pk
1377
+ ���d
1378
+ − αr
1379
+ 2
1380
+ uk,r d
1381
+ − αe
1382
+ 2
1383
+ ej,r hej,rΘ¯Θhr,k + d
1384
+ − αe
1385
+ 2
1386
+ ej,k hej,k
1387
+ ���
1388
+ 2
1389
+ K�
1390
+ i=1
1391
+ i̸=k
1392
+ pi
1393
+ ���d
1394
+ − αr
1395
+ 2
1396
+ ui,r d
1397
+ − αe
1398
+ 2
1399
+ ej,r hej,rΘ¯Θhr,i + d
1400
+ − αe
1401
+ 2
1402
+ ej,i hej,i
1403
+ ���
1404
+ 2
1405
+ + d−αe
1406
+ ej,r
1407
+ ��hej,r ¯ΘΘ
1408
+ ��2 σ2
1409
+ r + σ2
1410
+ ej
1411
+ .
1412
+ (29)
1413
+ Lemma 6. The ergodic rate at eavesdropper j in up-link EH RIS-aided MU-MISO systems under
1414
+ Rician fading channels and with phase shift error can be calculated by
1415
+ E
1416
+
1417
+ Rej,k
1418
+
1419
+ = (1 − τ) log2
1420
+
1421
+
1422
+
1423
+
1424
+
1425
+
1426
+
1427
+ 1 +
1428
+ pk ˆxj
1429
+ K�
1430
+ i=1
1431
+ i̸=k
1432
+ piˆyi + ˆzjσ2r + σ2ej
1433
+
1434
+
1435
+
1436
+
1437
+
1438
+
1439
+
1440
+ (30)
1441
+ where
1442
+ ˆxj =
1443
+
1444
+ d−αr
1445
+ uk,rd−αe
1446
+ ej,r ˆ̺2 �
1447
+ ρej
1448
+ ρej +1
1449
+ ρk
1450
+ ρk+1
1451
+
1452
+ M + ρ (κ)2 ξ
1453
+
1454
+ +
1455
+ ρej
1456
+ ρej +1
1457
+ 1
1458
+ ρk+1M +
1459
+ ρk
1460
+ ρk+1
1461
+ 1
1462
+ ρej +1M +
1463
+ 1
1464
+ ρej +1
1465
+ 1
1466
+ ρk+1M
1467
+
1468
+ + d−αe
1469
+ ej,r
1470
+
1471
+ ,
1472
+ ˆyi = d−αr
1473
+ ui,r d−αe
1474
+ ej,r ˆ̺2 �
1475
+ ρej
1476
+ ρej +1
1477
+ ρi
1478
+ ρi+1
1479
+
1480
+ M + ρ (κ)2 ξ
1481
+
1482
+ +
1483
+ ρej
1484
+ ρej +1
1485
+ 1
1486
+ ρi+1M +
1487
+ ρi
1488
+ ρi+1
1489
+ 1
1490
+ ρej +1M +
1491
+ 1
1492
+ ρej +1
1493
+ 1
1494
+ ρi+1M + d−αe
1495
+ ej,i
1496
+
1497
+ ˆzj = d−αe
1498
+ ej,r M ˆ̺2,
1499
+ which have been derived in the previous section.
1500
+ Finally, the ergodic secrecy rate in EH RIS scheme is presented in the next Theorem.
1501
+ Theorem 3. The ergodic secrecy rate of user k in EH active RIS-aided MU-MISO systems under
1502
+ Rician fading channels and with phase shift error can be calculated by
1503
+
1504
+ 16
1505
+ ˆRs
1506
+ =
1507
+
1508
+ 
1509
+ (1 − τ) log2
1510
+
1511
+
1512
+
1513
+
1514
+
1515
+
1516
+
1517
+ 1 +
1518
+ pk Luk,bξk ˆ̺4
1519
+ K�
1520
+ i=1
1521
+ i̸=k
1522
+ pi Lui,bςiˆ̺4 + ˆ̺4d−αr
1523
+ r,b σ2
1524
+ rνk + ˆ̺2υkσ2
1525
+ b
1526
+
1527
+
1528
+
1529
+
1530
+
1531
+
1532
+
1533
+ − (1 − τ) log2
1534
+
1535
+
1536
+
1537
+
1538
+
1539
+
1540
+
1541
+ 1 +
1542
+ pk ˆxj
1543
+ K�
1544
+ i=1
1545
+ i̸=k
1546
+ piˆyi + ˆzjσ2r + σ2ej
1547
+
1548
+
1549
+
1550
+
1551
+
1552
+
1553
+
1554
+
1555
+ 
1556
+ +
1557
+ .
1558
+ (31)
1559
+ VI. SYSTEM DESIGN
1560
+ In this section, based on the derived analytical expressions, we first design the phase shifts of the RIS
1561
+ configurations considered in this work. Then, the best RIS configuration selection scheme is presented.
1562
+ A. Phase Shift Optimization
1563
+ The secrecy rate expressions presented in Theorems, 1, 2 and 3, show that the secrecy performance
1564
+ relies on the phase shifts of the RIS elements. In this work, it is assumed that the CSI of the
1565
+ eavesdroppers is unknown at the BS/RIS (only channel distribution known). Therefore, to enhance
1566
+ the system performance, the RIS phase shifts can be optimized by maximizing the achievable ergodic
1567
+ sum rate. Since the phase shift at each unit of the RIS lies in the range of [0; 2π), the phase shift
1568
+ optimization problem can be formulated as
1569
+ max
1570
+ Θ
1571
+ K�
1572
+ i=1
1573
+ ˆRbi
1574
+ s.t
1575
+ θm ∈ [0, 2π) ,
1576
+ ∨m.
1577
+ (32)
1578
+ Due to the complicated formula of the ergodic sum rate, it is difficult to optimize (32) based on
1579
+ the conventional techniques. However, GA-based methods can be employed to solve this optimization
1580
+ problem. Due to the page limitation, we refer readers to [6] for more details about the GA methods.
1581
+
1582
+ 17
1583
+ As an efficient suboptimal solution, the RIS phase shifts can be aligned to user k, who transmits
1584
+ the confidential message. This presents a simple sub-optimal solution for enhancing the secrecy rate
1585
+ [6]. Accordingly, the phase shifts should be
1586
+ θm = −2π d
1587
+ λ (xmtk + ymlk) , tk = sin φa
1588
+ kr sin φe
1589
+ kr − sin φa
1590
+ t sin φe
1591
+ t, lk = cos φe
1592
+ kr − cos φe
1593
+ t.
1594
+ (33)
1595
+ B. RIS Configuration Selection Scheme
1596
+ Based on the required secrecy rate (rs) and amount of the power available at user k, and the RIS,
1597
+ we can decide which system configuration, i.e., passive RIS, active RIS or EH RIS, should be selected.
1598
+ A) If user k has sufficient amount of power to achieve the target secrecy rate, in this case passive
1599
+ RIS can be implemented. Based on the secrecy rate expression provided in Theorem 1, the required
1600
+ user k power, pk, to achieve the target secrecy rate, rs, can be obtained by solving
1601
+ rs = log2
1602
+
1603
+
1604
+
1605
+
1606
+
1607
+
1608
+
1609
+ 1 +
1610
+ pk Luk,bξk
1611
+ K�
1612
+ i=1
1613
+ i̸=k
1614
+ pi Lui,bςi + υkσ2
1615
+ b
1616
+
1617
+
1618
+
1619
+
1620
+
1621
+
1622
+
1623
+ − log2
1624
+
1625
+
1626
+
1627
+
1628
+
1629
+
1630
+
1631
+ 1 +
1632
+ pk xk
1633
+ K�
1634
+ i=1
1635
+ i̸=k
1636
+ pi yi + σ2
1637
+ ej
1638
+
1639
+
1640
+
1641
+
1642
+
1643
+
1644
+
1645
+ (34)
1646
+ which can be found as
1647
+ pk = p1 − p2
1648
+ p3 − p4
1649
+ (35)
1650
+ where p1 =
1651
+ K
1652
+
1653
+ i=1
1654
+ i̸=k
1655
+ pi Lui,bςi+υkσ2
1656
+ b
1657
+ K
1658
+
1659
+ i=1
1660
+ i̸=k
1661
+ pi Lui,bςi+υkσ2
1662
+ b
1663
+ , p2 =
1664
+ 2rs
1665
+ K
1666
+
1667
+ i=1
1668
+ i̸=k
1669
+ pi yi+2rsσ2
1670
+ ej
1671
+ K
1672
+
1673
+ i=1
1674
+ i̸=k
1675
+ pi yi+σ2ej
1676
+ , p3 =
1677
+ 2rs xk
1678
+ K
1679
+
1680
+ i=1
1681
+ i̸=k
1682
+ pi yi+σ2ej
1683
+ and p4 =
1684
+ Luk,bξk
1685
+ K
1686
+
1687
+ i=1
1688
+ i̸=k
1689
+ pi Lui,bςi+υkσ2
1690
+ b
1691
+ .
1692
+ B) If user k has limited amount of power, e.g., the user power, pk, is less than the power required
1693
+ in (35). In this case active RIS can be implemented to provide the target secrecy rate. Based on the
1694
+ secrecy rate expression provided in Theorem 2, the required RIS power, ̺ or Pr ,to achieve the target
1695
+ secrecy rate, rs, can be obtained by solving
1696
+
1697
+ 18
1698
+ rs = log2
1699
+
1700
+
1701
+
1702
+
1703
+
1704
+
1705
+
1706
+ 1 +
1707
+ pk Luk,bξk̺2
1708
+ K�
1709
+ i=1
1710
+ i̸=k
1711
+ pi Lui,bςi̺2 + ̺2d−αr
1712
+ r,b σ2rνk + υkσ2
1713
+ b
1714
+
1715
+
1716
+
1717
+
1718
+
1719
+
1720
+
1721
+ − log2
1722
+
1723
+
1724
+
1725
+
1726
+
1727
+
1728
+
1729
+ 1 +
1730
+ pk̺2x1 + pkx2
1731
+ K�
1732
+ i=1
1733
+ i̸=k
1734
+ pi̺2y1i+
1735
+ K
1736
+
1737
+ i=1
1738
+ i̸=k
1739
+ piy2i + z1̺2σ2r + σ2ej
1740
+
1741
+
1742
+
1743
+
1744
+
1745
+
1746
+
1747
+ (36)
1748
+ where x1 = d−αr
1749
+ uk,rd−αe
1750
+ ej,r
1751
+
1752
+ ρej
1753
+ ρej +1
1754
+ ρk
1755
+ ρk+1
1756
+
1757
+ M + ρ (κ)2 ξ
1758
+
1759
+ +
1760
+ ρej
1761
+ ρej +1
1762
+ 1
1763
+ ρk+1M +
1764
+ ρk
1765
+ ρk+1
1766
+ 1
1767
+ ρej +1M +
1768
+ 1
1769
+ ρej +1
1770
+ 1
1771
+ ρk+1M
1772
+
1773
+ , x2 =
1774
+ d−αe
1775
+ ej,r ,
1776
+ y1i = d−αr
1777
+ ui,r d−αe
1778
+ ej,r
1779
+
1780
+ ρej
1781
+ ρej +1
1782
+ ρi
1783
+ ρi+1
1784
+
1785
+ M + ρ (κ)2 ξ
1786
+
1787
+ +
1788
+ ρej
1789
+ ρej +1
1790
+ 1
1791
+ ρi+1M +
1792
+ ρi
1793
+ ρi+1
1794
+ 1
1795
+ ρej +1M +
1796
+ 1
1797
+ ρej +1
1798
+ 1
1799
+ ρi+1M
1800
+
1801
+ , y2i = d−αe
1802
+ ej,i ,
1803
+ and z1 = d−αe
1804
+ ej,r M. After some simplifications, the last equation can be expressed as
1805
+ ̺4 (q1 − q3) + ̺2 (q2 − q4 − q5 + q7) + (q8 − q6) = 0
1806
+ (37)
1807
+ where
1808
+ q1 =
1809
+ K�
1810
+ i=1
1811
+ i̸=k
1812
+ pi Lui,bςi
1813
+ K
1814
+
1815
+ i=1
1816
+ i̸=k
1817
+ piy1i+d−αr
1818
+ r,b σ2
1819
+ rνk
1820
+ K�
1821
+ i=1
1822
+ i̸=k
1823
+ piy1i+
1824
+ K
1825
+
1826
+ i=1
1827
+ i̸=k
1828
+ pi Lui,bςiz1σ2
1829
+ r+d−αr
1830
+ r,b σ2
1831
+ rνkz1σ2
1832
+ r+
1833
+ K�
1834
+ i=1
1835
+ i̸=k
1836
+ pi Lui,bςipkx1+
1837
+ d−αr
1838
+ r,b σ2
1839
+ rνkpkx1,
1840
+ q2 =
1841
+
1842
+ υkσ2
1843
+ b
1844
+ K
1845
+
1846
+ i=1
1847
+ i̸=k
1848
+ piy1i + υkσ2
1849
+ bz1σ2
1850
+ r + υkσ2
1851
+ bpkx1
1852
+
1853
+  ,
1854
+ q3 =
1855
+ K�
1856
+ i=1
1857
+ i̸=k
1858
+ piy1ipk Luk,bξk+z1σ2
1859
+ rpk Luk,bξk+
1860
+ K
1861
+
1862
+ i=1
1863
+ i̸=k
1864
+ piy1i
1865
+ K�
1866
+ i=1
1867
+ i̸=k
1868
+ pi Lui,bςi+z1σ2
1869
+ r
1870
+ K
1871
+
1872
+ i=1
1873
+ i̸=k
1874
+ pi Lui,bςi+
1875
+ K
1876
+
1877
+ i=1
1878
+ i̸=k
1879
+ piy1id−αr
1880
+ r,b σ2
1881
+ rνk+
1882
+ z1σ2
1883
+ rd−αr
1884
+ r,b σ2
1885
+ rνk,
1886
+ q4 =
1887
+ K�
1888
+ i=1
1889
+ i̸=k
1890
+ piy2ipk Luk,bξk+σ2
1891
+ ejpk Luk,bξk+
1892
+ K
1893
+
1894
+ i=1
1895
+ i̸=k
1896
+ piy2i
1897
+ K
1898
+
1899
+ i=1
1900
+ i̸=k
1901
+ pi Lui,bςi+σ2
1902
+ ej
1903
+ K�
1904
+ i=1
1905
+ i̸=k
1906
+ pi Lui,bςi+
1907
+ K�
1908
+ i=1
1909
+ i̸=k
1910
+ piy2id−αr
1911
+ r,b σ2
1912
+ rνk+
1913
+ σ2
1914
+ ejd−αr
1915
+ r,b σ2
1916
+ rνk,
1917
+ q5 =
1918
+
1919
+
1920
+ K�
1921
+ i=1
1922
+ i̸=k
1923
+ piy1iυkσ2
1924
+ b + z1σ2
1925
+ rυkσ2
1926
+ b
1927
+
1928
+ , q6 =
1929
+ K�
1930
+ i=1
1931
+ i̸=k
1932
+ piy2iυkσ2
1933
+ b + σ2
1934
+ ejυkσ2
1935
+ b,
1936
+ q7 =
1937
+ K�
1938
+ i=1
1939
+ i̸=k
1940
+ pi Lui,bςi̺22rspkx2+̺2d−αr
1941
+ r,b σ2
1942
+ rνk2rspkx2+
1943
+ K
1944
+
1945
+ i=1
1946
+ i̸=k
1947
+ pi Lui,bςi2rsσ2
1948
+ ej+d−αr
1949
+ r,b σ2
1950
+ rνk2rsσ2
1951
+ ej+
1952
+ K
1953
+
1954
+ i=1
1955
+ i̸=k
1956
+ pi Lui,bςi2rs
1957
+ K�
1958
+ i=1
1959
+ i̸=k
1960
+ piy2i + d−αr
1961
+ r,b σ2
1962
+ rνk2rs
1963
+ K�
1964
+ i=1
1965
+ i̸=k
1966
+ piy2i,
1967
+
1968
+ 19
1969
+ q8 = υkσ2
1970
+ b2rspkx2 + υkσ2
1971
+ b2rsσ2
1972
+ ej + υkσ2
1973
+ b2rs
1974
+ K
1975
+
1976
+ i=1
1977
+ i̸=k
1978
+ piy2i.
1979
+ Thus, from (15), the RIS power should be higher than or equal to
1980
+ Pr = M
1981
+
1982
+ − (q2 − q4 − q5 + q7) ±
1983
+
1984
+ (q2 − q4 − q5 + q7)2 − 4 (q1 − q3) (q8 − q6)
1985
+ 2 (q1 − q3)
1986
+
1987
+
1988
+ � K
1989
+
1990
+ k=1
1991
+ pk
1992
+ dαr
1993
+ uk,r
1994
+ + σ2
1995
+ r
1996
+
1997
+ .
1998
+ (38)
1999
+ C) If user k and the RIS have limited amount of power, e,g., user k power, pk, is less than the
2000
+ required power in (35) and the RIS power, Pr, is less than the required power in (38). In this case EH
2001
+ RIS can be implemented to provide the target secrecy rate. Based on (25) and (38), the required BS
2002
+ power, Pb, to charge the RIS and achieve the target secrecy rate, rs, can be obtained by
2003
+ Pb = M (1 − τ)
2004
+ ηeffτNM
2005
+
2006
+ − (q2 − q4 − q5 + q7) ±
2007
+
2008
+ (q2 − q4 − q5 + q7)2 − 4 (q1 − q3) (q8 − q6)
2009
+ 2 (q1 − q3)
2010
+
2011
+
2012
+ ×
2013
+ � K
2014
+
2015
+ k=1
2016
+ pk
2017
+ dαr
2018
+ uk,r
2019
+ + σ2
2020
+ r
2021
+
2022
+ .
2023
+ (39)
2024
+ VII. NUMERICAL RESULTS
2025
+ In this section, we present simulation and numerical results to assess the accuracy of the derived
2026
+ expressions and the secrecy performance of the RIS schemes considered in this paper. Monte-Carlo
2027
+ simulations with 105 independent trials are excuted. The locations of the BS and the RIS are (0 m, 0
2028
+ m), (20 m, 20 m), respectively, while the users are scattered on the corners of a square. Specifically,
2029
+ the coordinates for the users square are (30 m, 5 m), (35 m, 5 m), (30 m,−5 m), and (35 m,−5 m),
2030
+ respectively, while the eavesdroppers are distributed in a circle centered at (20 m, 0 m) with radius
2031
+ of 10 m. Unless otherwise specified, the simulation settings are assumed as follows: K = J = 4,
2032
+ N = 10, M = 5, the users power pi = 2W, the active RIS power Pr = 7W , the BS power in EH
2033
+ RIS scenario Pb = 50W, and the nodes have same noise variance, σ2 = −70 dBm. In addition, the
2034
+ path-loss exponent is 2.7, the Rician factors ρ = 0.5. The values of the AoA and AoD of the BS and
2035
+ the RIS are uni-formally distributed in (0, 2π), and the concentration parameter of RIS phase error
2036
+ κ = 2.
2037
+
2038
+ 20
2039
+ Firstly, in Fig. 2, we illustrate the ergodic secrecy rate versus the transmission user power, pk, for
2040
+ the three considered RIS schemes. Fig. 2a shows the secrecy rate with phase shift errors and Fig. 2b,
2041
+ presents the secrecy rate for the ideal scenario, when there is no phase error at RIS. It is clear from
2042
+ this figure that the analytical results are in good agreement with the simulated results, which confirms
2043
+ the validity of the analysis presented in this paper. It is also evident that for the given parameters
2044
+ values, the secrecy rate loss due to the imperfect phase shift at the RIS is about 0.75 bits/s/Hz. In
2045
+ addition, passive RIS achieves the lowest secrecy rate, but with small amount of power consumption.
2046
+ The secrecy rate gain of active RIS above passive RIS is about 0.8 bits/s/Hz for a given user power.
2047
+ Furthermore, high secrecy rates can be achieved and controlled by implementing EH RIS. However,
2048
+ in this case the BS should transmit high power in the EH phase to provide sufficient amount of energy
2049
+ at the RIS to achieve higher secrecy rates.
2050
+ 0
2051
+ 10
2052
+ 20
2053
+ 30
2054
+ 40
2055
+ 50
2056
+ 60
2057
+ pk (W)
2058
+ 0
2059
+ 0.5
2060
+ 1
2061
+ 1.5
2062
+ 2
2063
+ 2.5
2064
+ Secrecy Rate (bits\sec\Hz)
2065
+ Active RIS
2066
+ Passive RIS
2067
+ Analytical
2068
+ EH RIS
2069
+ (a) Secrecy rate versus user, k , power with phase shift error.
2070
+ 0
2071
+ 10
2072
+ 20
2073
+ 30
2074
+ 40
2075
+ 50
2076
+ 60
2077
+ pk (W)
2078
+ 0
2079
+ 0.5
2080
+ 1
2081
+ 1.5
2082
+ 2
2083
+ 2.5
2084
+ 3
2085
+ 3.5
2086
+ Secrecy Rate (bits\sec\Hz)
2087
+ Active RIS
2088
+ Passive RIS
2089
+ Analytical
2090
+ EH RIS
2091
+ (b) Secrecy rate versus user, k , power with no phase shift error.
2092
+ Figure 2: Secrecy rate versus user, k , power with and without phase shift error.
2093
+ To explain the impact of the phase errors at the RIS on the secrecy performance, in Fig. 3, we plot
2094
+ the secrecy rate versus the concentration parameter of the phase error, κ. Additionally, the results of
2095
+ ideal RIS are also presented in this figure. It can be observed from these results that the secrecy rate
2096
+ enhances as the concentration parameter, κ, increases. In addition, at high concentration parameter
2097
+ values, κ −→ ∞, the secrecy rate achieved by imperfect RIS saturates to that achieved by ideal RIS.
2098
+ This can be explained by the fact that the phase error at the RIS is assumed to follow a Von Mises
2099
+ distribution, thus high concentration parameter values make the error fluctuate in a smaller range, and
2100
+
2101
+ 21
2102
+ 2
2103
+ 4
2104
+ 6
2105
+ 8
2106
+ 10
2107
+ 12
2108
+ 14
2109
+ 16
2110
+ 18
2111
+ 20
2112
+ 0
2113
+ 0.2
2114
+ 0.4
2115
+ 0.6
2116
+ 0.8
2117
+ 1
2118
+ 1.2
2119
+ 1.4
2120
+ 1.6
2121
+ 1.8
2122
+ 2
2123
+ Secrecy Rate (bits\sec\Hz)
2124
+ Ideal RIS without Error
2125
+ RIS with Error
2126
+ RIS with Error
2127
+ RIS with Error
2128
+ Ideal RIS without Error
2129
+ Active RIS
2130
+ Passive RIS
2131
+ EH RIS
2132
+ Ideal RIS without Error
2133
+ Figure 3: Secrecy rate versus concentration parameter, κ, of RIS phase error.
2134
+ when κ −→ ∞, the error at the RIS tends to zero. Accordingly, the secrecy rate of imperfect RIS
2135
+ converges to the ideal RIS case as κ −→ ∞, as explained in Fig. 3.
2136
+ Furthermore, Fig. 4 shows the secrecy rate versus the number of BS antennas N for the all RIS
2137
+ schemes. It is evident and as expected, increasing the number of BS antennas N enhances the secrecy
2138
+ performance for the all RIS schemes. It should be pointed out that the number of BS antennas, N, has
2139
+ impact only on the received signal at the BS, thus increasing N results in enhancing the rate of the
2140
+ legitimate users. However N dose not have any impact on the rate at the eavesdroppers. Having said
2141
+ that in EH RIS, increasing N also increases the amount of the harvested energy at the RIS. Thus, in
2142
+ EH RIS, N has impact on both achievable rates at the BS and the eavesdroppers.
2143
+ In Fig. 5, we depict the secrecy rate versus the number of RIS elements, M, for the all considered RIS
2144
+ schemes. To obtain clear insights and results, in this figure the noise variance at the nodes is assumed
2145
+ to be σ2 = −20 dBm. Notably and as expected, increasing M results in enhancing the secrecy rate
2146
+ for the all considered scenarios. In addition, as we can notice from the analytical expressions of the
2147
+ secrecy rate presented in this paper, the number of RIS elements M has impact on both the achievable
2148
+ rate at the BS and the eavesdroppers, e.g., adding more RIS elements increases the rate at the BS and
2149
+ the eavesdroppers. However this improvement in the rate is essential at the BS, because the RIS phase
2150
+ shifts are designed to be toward the BS direction. Furthermore, in the EH RIS scheme, increasing the
2151
+
2152
+ 22
2153
+ 5
2154
+ 10
2155
+ 15
2156
+ 20
2157
+ N
2158
+ 0
2159
+ 0.2
2160
+ 0.4
2161
+ 0.6
2162
+ 0.8
2163
+ 1
2164
+ 1.2
2165
+ 1.4
2166
+ 1.6
2167
+ 1.8
2168
+ Secrecy Rate (bits\sec\Hz)
2169
+ Passive RIS
2170
+ Analytical
2171
+ Active RIS
2172
+ EH RIS
2173
+ Figure 4: Secrecy rate versus number of BS antennas, N, with phase shift error.
2174
+ 20
2175
+ 40
2176
+ 60
2177
+ 80
2178
+ 100
2179
+ 120
2180
+ 140
2181
+ M
2182
+ 0
2183
+ 1
2184
+ 2
2185
+ 3
2186
+ 4
2187
+ 5
2188
+ 6
2189
+ Secrecy Rate (bits\Sec\Hz)
2190
+ Active RIS
2191
+ Passive RIS
2192
+ EH RIS
2193
+ Analytical
2194
+ Figure 5: Secrecy rate versus number of RIS elements, M, with phase shift error.
2195
+ number of the RIS elements, M, leads to an increase in the amount of the harvested energy at the RIS
2196
+ and thus Pr will be high when the number of elements M is very large.
2197
+ In order to illustrate the RIS configuration selection scheme, in Fig. 6 we plot the user power
2198
+ versus the target secrecy rate for different values of the concentration parameter of RIS phase error,
2199
+ κ = 2 and 8. Firstly, in Figs. 6a and 6b, we consider two examples, when the target secrecy rate is
2200
+ assumed to be rs = 0.75 (bits/s/Hz) and rs = 1.2 (bits/s/Hz) for κ = 2 and 8. As we can see from
2201
+
2202
+ 23
2203
+ the results in Fig. 6a, when rs = 0.75 (bits/s/Hz), passive RIS can achieve the target secrecy rate
2204
+ with total transmission power is PT = pk = 50W, (neglecting the small amount of power consuming
2205
+ at passive RIS elements), and in the active RIS scheme the user transmission power can be reduced
2206
+ to around pk = 7W and thus the total transmission power is PT = pk + Pr = 14W, while EH
2207
+ RIS scheme can achieve the target secrecy rate with the smallest amount of the user power which is
2208
+ about pk = 2.95W, but with the highest total transmission power PT = pk + Pb = 52.95W. Similar
2209
+ observations can be noticed from the second scenario when rs = 1.2 (bits/s/Hz), passive RIS achieves
2210
+ the target secrecy rate with the highest user power, while EH RIS achieves, rs, with the smallest user
2211
+ power but with very high total consumption power, and the active RIS scheme works between these
2212
+ two regions. In addition, the concentration parameter of RIS phase error, κ, has essential impact on
2213
+ the required user power. By comparing Figs 6a and 6b, one can notice that as κ increases the required
2214
+ user power to achieve the target secrecy rate decreases. For instance when the target secrecy rate is
2215
+ rs = 0.75 (bits/s/Hz), the required user power in the passive RIS scheme is about 50W when κ = 2,
2216
+ and 20W when κ = 8. This is due to the fact explained in Fig. 3.
2217
+ Then, in Figs. 6c and 6d, we present the RIS configuration selection scheme when the available
2218
+ user power is pk = 20W for κ = 2 and 8. In the first case when κ = 2, if the target secrecy rate
2219
+ is rs ≤ 0.45 (bits/s/Hz), passive RIS can be selected, and active RIS can be implemented if the
2220
+ target secrecy rate is rs ≤ 1.17 (bits/s/Hz), while EH RIS can be selected if rs ≤ 1.87 (bits/s/Hz).
2221
+ These secrecy rate regions of the RIS schemes become wider as the concentration parameter of RIS
2222
+ phase error, κ, increases. In Fig. 6d when κ = 8, passive RIS can be selected to achieve secrecy
2223
+ rates up to rs ≤ 0.77 (bits/s/Hz), and active RIS can be selected to perform secrecy rates less
2224
+ than or equal to rs ≤ 1.635 (bits/s/Hz), whilst EH RIS can be used to achieve secrecy rates up to
2225
+ rs ≤ 2.48 (bits/s/Hz).
2226
+
2227
+ 24
2228
+ 0
2229
+ 0.5
2230
+ 1
2231
+ 1.5
2232
+ 2
2233
+ 2.5
2234
+ Target Secrecy Rate (bits/s/Hz)
2235
+ 0
2236
+ 10
2237
+ 20
2238
+ 30
2239
+ 40
2240
+ 50
2241
+ 60
2242
+ User Power (W)
2243
+ Passive RIS
2244
+ Active RIS, Pr=7W
2245
+ EH RIS, Pb=50W
2246
+ Target Secrecy Rate
2247
+ rs=1.2 (bits/s/Hz)
2248
+ Target Secrecy Rate
2249
+ rs=0.75 (bits/s/Hz)
2250
+ (a) The user power versus target secrecy rate when κ = 2 .
2251
+ 0
2252
+ 0.5
2253
+ 1
2254
+ 1.5
2255
+ 2
2256
+ 2.5
2257
+ 3
2258
+ Target Secrecy Rate (bits/s/Hz)
2259
+ 0
2260
+ 10
2261
+ 20
2262
+ 30
2263
+ 40
2264
+ 50
2265
+ 60
2266
+ User Power (W)
2267
+ Passive RIS
2268
+ Active RIS, Pr=7W
2269
+ EH RIS, Pb=50W
2270
+ Target Secrecy Rate
2271
+ rs=1.2 (bits/s/Hz)
2272
+ Target Secrecy Rate
2273
+ rs=0.75 (bits/s/Hz)
2274
+ (b) The user power versus target secrecy rate when κ = 8.
2275
+ 0
2276
+ 0.5
2277
+ 1
2278
+ 1.5
2279
+ 2
2280
+ 2.5
2281
+ Target Secrecy Rate (bits/s/Hz)
2282
+ 0
2283
+ 10
2284
+ 20
2285
+ 30
2286
+ 40
2287
+ 50
2288
+ 60
2289
+ User Power (W)
2290
+ Passive RIS
2291
+ Active RIS, Pr=7W
2292
+ EH RIS, Pb=50W
2293
+
2294
+ Only EH RIS
2295
+ can be selected
2296
+
2297
+ Active RIS
2298
+ can be selected
2299
+ Passive RIS
2300
+ can be selected
2301
+ Available
2302
+ power pk
2303
+ (c) RIS configuration selection scheme when pk = 20W and κ = 2.
2304
+ 0
2305
+ 0.5
2306
+ 1
2307
+ 1.5
2308
+ 2
2309
+ 2.5
2310
+ 3
2311
+ Target Secrecy Rate (bits/s/Hz)
2312
+ 0
2313
+ 10
2314
+ 20
2315
+ 30
2316
+ 40
2317
+ 50
2318
+ 60
2319
+ User Power (W)
2320
+ Passive RIS
2321
+ Active RIS, Pr=7W
2322
+ EH RIS, Pb=50W
2323
+ Available
2324
+ power pk
2325
+ Passive RIS
2326
+ can be selected
2327
+
2328
+ Active RIS
2329
+ can be selected
2330
+
2331
+ Only EH RIS
2332
+ can be selected
2333
+ (d) RIS configuration selection scheme when pk = 20W and, κ = 8.
2334
+ Figure 6: The user power versus target secrecy rate for different values of the concentration parameter
2335
+ of RIS phase error, κ.
2336
+ VIII. CONCLUSIONS
2337
+ In this paper the impact of phase shift error on the secrecy performance of up-link RIS-aided MU-
2338
+ MISO systems was considered. Under Rician fading channels and phase shift errors the ergodic secrecy
2339
+ rate for, passive RIS, active RIS, and EH RIS have been analyzed. Then, the phase shifts at the RIS
2340
+ have been optimized based on the derived rate expressions. In addition, according to the target secrecy
2341
+ rate and amount of power available at the users, the best RIS configuration selection scheme has been
2342
+ considered. The results presented in this work demonstrated that an active RIS scheme can enhance
2343
+ the secrecy performance of imperfect RIS elements, especially when the users have limited amount of
2344
+
2345
+ 25
2346
+ power. Furthermore, increasing the number of BS antennas, the concentration parameter of RIS phase
2347
+ error, and the number of RIS elements lead to the enhancement of the secrecy performance.
2348
+ APPENDIX A
2349
+ By using Jensen inequality, the ergodic rate can be expressed as
2350
+ E {Rbk} ≈ log2
2351
+
2352
+
2353
+
2354
+
2355
+
2356
+
2357
+
2358
+ 1 + E
2359
+
2360
+
2361
+
2362
+
2363
+
2364
+
2365
+
2366
+
2367
+
2368
+
2369
+
2370
+
2371
+
2372
+ pk Luk,b
2373
+ ��hH
2374
+ r,kΘHGHGΘ¯Θhr,k
2375
+ ��2
2376
+ K�
2377
+ i=1
2378
+ i̸=k
2379
+ pi Lui,b
2380
+ ��hH
2381
+ r,kΘHGHGΘ¯Θhr,i
2382
+ ��2 +
2383
+ ��hH
2384
+ r,kΘHGH��2 σ2
2385
+ b
2386
+
2387
+
2388
+
2389
+
2390
+
2391
+
2392
+
2393
+
2394
+
2395
+
2396
+
2397
+
2398
+
2399
+
2400
+
2401
+
2402
+
2403
+
2404
+
2405
+
2406
+ .
2407
+ (40)
2408
+ Due to the paper length limitation, in this Appendix we will explain how to calculate the average
2409
+ of the first term, similarly and by following similar steps we can find the average of the other terms.
2410
+ The first term is
2411
+ E
2412
+
2413
+ Pk Luk,b
2414
+ ��hH
2415
+ r,kΘHGHGΘ¯Θhr,k
2416
+ ��2�
2417
+ = Pk Luk,bE
2418
+ ���hH
2419
+ r,kΘHGHGΘ¯Θhr,k
2420
+ ��2�
2421
+ (41)
2422
+ where
2423
+ hH
2424
+ r,kΘHGHGΘ¯Θhr,k = hH
2425
+ r,kΘH
2426
+
2427
+ ρb
2428
+ ρb + 1
2429
+ ¯GH ¯G +
2430
+ √ρb
2431
+ ρb + 1
2432
+ ¯GH ˜G +
2433
+ √ρb
2434
+ ρb + 1
2435
+ ˜GH ¯G +
2436
+ 1
2437
+ ρb + 1
2438
+ ˜GH ˜G
2439
+
2440
+ Θ¯Θhr,k
2441
+ =
2442
+ 1
2443
+ ρb + 1hH
2444
+ r,kΘH �
2445
+ ρb ¯GH ¯G + √ρb ¯GH ˜G + √ρb ˜GH ¯G + ˜GH ˜G
2446
+
2447
+ Θ¯Θhr,k =
2448
+ 1
2449
+ ρb + 1hH
2450
+ r,kA¯Θhr,k
2451
+ (42)
2452
+ where A = ΘH �
2453
+ ρb ¯GH ¯G + √ρb ¯GH ˜G + √ρb ˜GH ¯G + ˜GH ˜G
2454
+
2455
+ Θ. Now (42) can be expressed as
2456
+ hH
2457
+ r,kΘHGHGΘ¯Θhr,k =
2458
+ 1
2459
+ (ρb + 1) (ρk + 1)
2460
+ �√ρk¯hH
2461
+ r,k + ˜hH
2462
+ r,k
2463
+
2464
+ A¯Θ
2465
+ �√ρk¯hr,k + ˜hr,k
2466
+
2467
+ =
2468
+ 1
2469
+ (ρb + 1) (ρk + 1)
2470
+
2471
+
2472
+ ρk¯hH
2473
+ r,kA¯Θ¯hr,k
2474
+
2475
+ ��
2476
+
2477
+ ∆1
2478
+ + √ρk¯hH
2479
+ r,kA¯Θ˜hr,k
2480
+
2481
+ ��
2482
+
2483
+ ∆2
2484
+ + √ρk˜hH
2485
+ r,kA¯Θ¯hr,k
2486
+
2487
+ ��
2488
+
2489
+ ∆3
2490
+ + ˜hH
2491
+ r,kA¯Θ˜hr,k
2492
+
2493
+ ��
2494
+
2495
+ ∆4
2496
+
2497
+
2498
+
2499
+ (43)
2500
+
2501
+ 26
2502
+ The channels are independent and have zero mean. Thus by removing the zero expectation terms,
2503
+ we can get
2504
+ E
2505
+ ���hH
2506
+ r,kΘHGHGΘ¯Θhr,k
2507
+ ��2�
2508
+ =
2509
+ 1
2510
+ (ρb + 1)2 (ρk + 1)2E
2511
+
2512
+
2513
+
2514
+ �����
2515
+ 4
2516
+
2517
+ i=1
2518
+ ∆i
2519
+ �����
2520
+ 2
2521
+
2522
+
2523
+ =
2524
+ 1
2525
+ (ρb + 1)2 (ρk + 1)2
2526
+
2527
+ 4
2528
+
2529
+ i=1
2530
+ E
2531
+
2532
+ |∆i|2�
2533
+ + 2E {∆1∆∗
2534
+ 4}
2535
+
2536
+ (44)
2537
+ Now the first term
2538
+ ∆1 = ρk¯hH
2539
+ r,kΘH �
2540
+ ρb ¯GH ¯G + √ρb ¯GH ˜G + √ρb ˜GH ¯G + ˜GH ˜G
2541
+
2542
+ Θ¯Θ¯hr,k
2543
+ =
2544
+
2545
+
2546
+ ��ρbρk¯hH
2547
+ r,kΘH ¯GH ¯GΘ¯Θ¯hr,k
2548
+
2549
+ ��
2550
+
2551
+ ∆1,1
2552
+ + √ρbρk¯hH
2553
+ r,kΘH ¯GH ˜GΘ¯Θ¯hr,k
2554
+
2555
+ ��
2556
+
2557
+ ∆1,2
2558
+ +√ρbρk¯hH
2559
+ r,kΘH ˜GH ¯GΘ¯Θ¯hr,k
2560
+
2561
+ ��
2562
+
2563
+ ∆1,3
2564
+ + ρk¯hH
2565
+ r,kΘH ˜GH ˜GΘ¯Θ¯hr,k
2566
+
2567
+ ��
2568
+
2569
+ ∆1,4
2570
+
2571
+
2572
+
2573
+ (45)
2574
+ The average of the first term
2575
+ E
2576
+
2577
+ |∆1|2�
2578
+ = E
2579
+
2580
+ |∆1,1|2�
2581
+ + E
2582
+
2583
+ |∆1,2|2�
2584
+ + E
2585
+
2586
+ |∆1,3|2�
2587
+ + E
2588
+
2589
+ |∆1,4|2�
2590
+ + 2E
2591
+
2592
+ ∆1,1∆H
2593
+ 1,4
2594
+
2595
+ (46)
2596
+ where ∆1,1 = ρbρk¯hH
2597
+ r,kΘH ¯GH ¯GΘ¯Θ¯hr,k, which can be written as
2598
+ ∆1,1 = ρbρkaH
2599
+ M (φa
2600
+ kr, φe
2601
+ kr) ΘHaH
2602
+ M (φa
2603
+ r, φe
2604
+ r) aM (φa
2605
+ r, φe
2606
+ r) Θ¯ΘaM (φa
2607
+ kr, φe
2608
+ kr) ,
2609
+ ∆1,1 = ρbρk
2610
+ � M
2611
+
2612
+ m=1
2613
+ aH
2614
+ M,m (φa
2615
+ kr, φe
2616
+ kr) e−jϕmaH
2617
+ M,m (φa
2618
+ r, φe
2619
+ r)
2620
+ � � M
2621
+
2622
+ m=1
2623
+ aM,m (φa
2624
+ kr, φe
2625
+ kr) ejϕmej ¯
2626
+ ϕmaM,m (φa
2627
+ r, φe
2628
+ r)
2629
+
2630
+ .
2631
+ (47)
2632
+ The average can now be written as
2633
+
2634
+ 27
2635
+ E
2636
+
2637
+ |∆1,1|2�
2638
+ = ρ2
2639
+ bρ2
2640
+ k
2641
+ � M
2642
+
2643
+ m=1
2644
+ aH
2645
+ M,m (φa
2646
+ kr, φe
2647
+ kr) e−jϕmaH
2648
+ M,m (φa
2649
+ r, φe
2650
+ r)
2651
+ �2
2652
+ ×
2653
+
2654
+ M + ρ (κ)2
2655
+ �����
2656
+ M
2657
+
2658
+ m1=1
2659
+ M
2660
+
2661
+ m2̸=m1
2662
+
2663
+ aM,m1 (φa
2664
+ kr, φe
2665
+ kr) ejϕm1aM,m1 (φa
2666
+ r, φe
2667
+ r)
2668
+ � �
2669
+ aM,m2 (φa
2670
+ kr, φe
2671
+ kr) ejϕm2aM,m2 (φa
2672
+ r, φe
2673
+ r)
2674
+ �H
2675
+ �����
2676
+ 2
2677
+
2678
+ (48)
2679
+ E
2680
+
2681
+ |∆1,1|2�
2682
+ = ρ2
2683
+ bρ2
2684
+ k |fk|2 ��
2685
+ 1 − ρ (κ)2�
2686
+ M + ρ (κ)2 |fk|2�
2687
+ (49)
2688
+ where fk =
2689
+ M
2690
+
2691
+ m=1
2692
+ fk,m, fk,m = aH
2693
+ M.m (φa
2694
+ r, φe
2695
+ r) ejϕmaM,m (φa
2696
+ kr, φe
2697
+ kr). The second term,
2698
+ ∆1,2 = √ρbρkaH
2699
+ M (φa
2700
+ kr, φe
2701
+ kr) ΘHaM (φa
2702
+ r, φe
2703
+ r) aH
2704
+ N (φa
2705
+ b, φe
2706
+ b) ˜GΘ¯ΘaM (φa
2707
+ kr, φe
2708
+ kr)
2709
+ = √ρbρkf ∗
2710
+ k
2711
+ M
2712
+
2713
+ m=1
2714
+ N
2715
+
2716
+ n=1
2717
+ aH
2718
+ N,n (φa
2719
+ b, φe
2720
+ b) ˜gnmejϕmej ¯
2721
+ ϕmaM,m (φa
2722
+ kr, φe
2723
+ kr) ,
2724
+ (50)
2725
+ E
2726
+
2727
+ |∆1,2|2�
2728
+ = ρbρ2
2729
+ kNM |fk|2 .
2730
+ (51)
2731
+ The third term
2732
+ ∆1,3 = √ρbρkaH
2733
+ M (φa
2734
+ kr, φe
2735
+ kr) ΘH ˜GHaN (φa
2736
+ b, φe
2737
+ b) aH
2738
+ M (φa
2739
+ r, φe
2740
+ r) Θ¯ΘaM (φa
2741
+ kr, φe
2742
+ kr)
2743
+ = √ρbρk
2744
+ M
2745
+
2746
+ m=1
2747
+ N
2748
+
2749
+ n=1
2750
+ aH
2751
+ N,n (φa
2752
+ b, φe
2753
+ b) ˜gH
2754
+ nme−jϕmaM,m (φa
2755
+ kr, φe
2756
+ kr)
2757
+ M
2758
+
2759
+ m=1
2760
+ ej ¯
2761
+ ϕmfk,m,
2762
+ (52)
2763
+ E
2764
+
2765
+ |∆1,3|2�
2766
+ = ρbρ2
2767
+ k
2768
+
2769
+ NMρ (κ)2 |fk|2 +
2770
+
2771
+ 1 − ρ (κ)2�
2772
+ NM2�
2773
+ .
2774
+ (53)
2775
+ The forth term
2776
+ ∆1,4 = ρkaH
2777
+ M (φa
2778
+ kr, φe
2779
+ kr) ΘH ˜GH ˜GΘ¯ΘaM (φa
2780
+ kr, φe
2781
+ kr)
2782
+
2783
+ 28
2784
+ = ρk
2785
+ M
2786
+
2787
+ m1=1
2788
+ aH
2789
+ M,m1 (φa
2790
+ kr, φe
2791
+ kr) e−jϕm˜gH
2792
+ nm1
2793
+ M
2794
+
2795
+ m2=1
2796
+ ˜gnm2ejϕmej ¯
2797
+ ϕmaM,m2 (φa
2798
+ kr, φe
2799
+ kr) ,
2800
+ (54)
2801
+ E
2802
+
2803
+ |∆1,4|2�
2804
+ = ρkNM
2805
+
2806
+ Mρ (κ)2 + 1 − ρ (κ)2�
2807
+ + NM2.
2808
+ (55)
2809
+ The last term
2810
+ E
2811
+
2812
+ ∆1,1∆∗
2813
+ 1,4
2814
+
2815
+ = N |fk|2 �
2816
+ Mρ (κ)2 + 1 − ρ (κ)2�
2817
+ .
2818
+ (56)
2819
+ Similarly, following the same way we can find the average of the other terms.
2820
+ APPENDIX B
2821
+ Using Jensen inequality, the ergodic rate can be written as
2822
+ E
2823
+
2824
+ Rej,k
2825
+
2826
+ ≈ log2
2827
+
2828
+
2829
+
2830
+
2831
+
2832
+
2833
+
2834
+ 1 + E
2835
+
2836
+
2837
+
2838
+
2839
+
2840
+
2841
+
2842
+
2843
+
2844
+
2845
+
2846
+
2847
+
2848
+ pk
2849
+ ���d
2850
+ − αr
2851
+ 2
2852
+ uk,r d
2853
+ − αe
2854
+ 2
2855
+ ej,r hej,rΘ¯Θhr,k + d
2856
+ − αe
2857
+ 2
2858
+ ej,k hej,k
2859
+ ���
2860
+ 2
2861
+ K�
2862
+ i=1
2863
+ i̸=k
2864
+ pi
2865
+ ���d
2866
+ − αr
2867
+ 2
2868
+ ui,r d
2869
+ − αe
2870
+ 2
2871
+ ej,r hej,rΘ¯Θhr,i + d
2872
+ − αe
2873
+ 2
2874
+ ej,i hej,i
2875
+ ���
2876
+ 2
2877
+ + σ2
2878
+ ej
2879
+
2880
+
2881
+
2882
+
2883
+
2884
+
2885
+
2886
+
2887
+
2888
+
2889
+
2890
+
2891
+
2892
+
2893
+
2894
+
2895
+
2896
+
2897
+
2898
+
2899
+ (57)
2900
+ The average of the first term, after removing the zero expectation terms can be calculated by,
2901
+ E
2902
+ ����d
2903
+ − αr
2904
+ 2
2905
+ uk,r d
2906
+ − αe
2907
+ 2
2908
+ ej,r hej,rΘ¯Θhr,k + d
2909
+ − αe
2910
+ 2
2911
+ ej,k hej,k
2912
+ ���
2913
+ 2�
2914
+ = d−αr
2915
+ uk,rd−αe
2916
+ ej,r E
2917
+ ���hej,rΘ¯Θhr,k
2918
+ ��2�
2919
+ + d−αe
2920
+ ej,r
2921
+ (58)
2922
+ where
2923
+ E
2924
+ ���hej,rΘ¯Θhr,k
2925
+ ��2�
2926
+ = E
2927
+ �����
2928
+ ��
2929
+ ρej
2930
+ ρej + 1
2931
+
2932
+ ρk
2933
+ ρk + 1
2934
+ ¯hejΘ¯Θ¯hr,k +
2935
+
2936
+ ρej
2937
+ ρej + 1
2938
+
2939
+ 1
2940
+ ρk + 1
2941
+ ¯hejΘ¯Θ˜hr,k
2942
+ +
2943
+
2944
+ ρk
2945
+ ρk + 1
2946
+
2947
+ 1
2948
+ ρej + 1
2949
+ ˜hejΘ¯Θ¯hr,k +
2950
+
2951
+ 1
2952
+ ρej + 1
2953
+
2954
+ 1
2955
+ ρk + 1
2956
+ ˜hejΘ¯Θ˜hr,k
2957
+ ������
2958
+ 2
2959
+
2960
+
2961
+ (59)
2962
+ E
2963
+ ���hej,rΘ¯Θhr,k
2964
+ ��2�
2965
+ =
2966
+ ρej
2967
+ ρej + 1
2968
+ ρk
2969
+ ρk + 1E
2970
+ ��¯hejΘ¯Θ¯hr,k
2971
+ ��2 +
2972
+ ρej
2973
+ ρej + 1
2974
+ 1
2975
+ ρk + 1E
2976
+ ���¯hejΘ¯Θ˜hr,k
2977
+ ���
2978
+ 2
2979
+
2980
+ 29
2981
+ +
2982
+ ρk
2983
+ ρk + 1
2984
+ 1
2985
+ ρej + 1E
2986
+ ���˜hejΘ¯Θ¯hr,k
2987
+ ���
2988
+ 2
2989
+ +
2990
+ 1
2991
+ ρej + 1
2992
+ 1
2993
+ ρk + 1E
2994
+ ���˜hejΘ¯Θ˜hr,k
2995
+ ���
2996
+ 2
2997
+ (60)
2998
+ Now
2999
+ ¯hejΘ¯Θ¯hr,k =
3000
+ � M
3001
+
3002
+ m=1
3003
+ aM,m (φa
3004
+ kr, φe
3005
+ kr) ejϕmej ¯
3006
+ ϕmaM,m
3007
+
3008
+ φa
3009
+ ejr, φe
3010
+ ejr
3011
+ ��
3012
+ (61)
3013
+ E
3014
+ ��¯hejΘ¯Θ¯hr,k
3015
+ ��2 = E
3016
+ �����
3017
+ M
3018
+
3019
+ m=1
3020
+ aM,m (φa
3021
+ kr, φe
3022
+ kr) ejϕmej ¯
3023
+ ϕmaM,m
3024
+
3025
+ φa
3026
+ ejr, φe
3027
+ ejr
3028
+ ������
3029
+ 2
3030
+ = M+ρ (κ)2
3031
+ M
3032
+
3033
+ m1=1
3034
+ M
3035
+
3036
+ m2̸=m1
3037
+
3038
+ aM,m1 (φa
3039
+ kr, φe
3040
+ kr) ejϕm1aM,m1 (φa
3041
+ r, φe
3042
+ r)
3043
+ � �
3044
+ aM,m2 (φa
3045
+ kr, φe
3046
+ kr) ejϕm2aM,m2 (φa
3047
+ r, φe
3048
+ r)
3049
+ �H
3050
+ = M + ρ (κ)2 ξ
3051
+ (62)
3052
+ where ξ =
3053
+ M
3054
+
3055
+ m1=1
3056
+ M
3057
+
3058
+ m2̸=m1
3059
+ (aM,m1 (φa
3060
+ kr, φe
3061
+ kr) ejϕm1aM,m1 (φa
3062
+ r, φe
3063
+ r)) (aM,m2 (φa
3064
+ kr, φe
3065
+ kr) ejϕm2aM,m2 (φa
3066
+ r, φe
3067
+ r))
3068
+ H.
3069
+ Similarly, the second term,
3070
+ ¯hejΘ¯Θ˜hr,k = aM
3071
+
3072
+ φa
3073
+ ejr, φe
3074
+ ejr
3075
+
3076
+ Θ¯Θ˜hr,k =
3077
+ M
3078
+
3079
+ m=1
3080
+ aMm
3081
+
3082
+ φa
3083
+ ejr, φe
3084
+ ejr
3085
+
3086
+ ejϕmej ¯
3087
+ ϕm �
3088
+ ˜hr,k
3089
+
3090
+ m
3091
+ (63)
3092
+ E
3093
+ ���¯hejΘ¯Θ˜hr,k
3094
+ ���
3095
+ 2
3096
+ = E
3097
+ �����
3098
+ M
3099
+
3100
+ m=1
3101
+ aMm
3102
+
3103
+ φa
3104
+ ejr, φe
3105
+ ejr
3106
+
3107
+ ejϕmej ¯
3108
+ ϕm �
3109
+ ˜hr,k
3110
+
3111
+ m
3112
+ �����
3113
+ 2
3114
+ E
3115
+ ���¯hejΘ¯Θ˜hr,k
3116
+ ���
3117
+ 2
3118
+ = M+
3119
+ E
3120
+
3121
+ M
3122
+
3123
+ m1=1
3124
+ M
3125
+
3126
+ m2̸=m1
3127
+
3128
+ aMm1
3129
+
3130
+ φa
3131
+ ejr, φe
3132
+ ejr
3133
+
3134
+ ejϕm1ej
3135
+ ¯
3136
+ ϕm1 �
3137
+ ˜hr,k
3138
+
3139
+ m1
3140
+ � �
3141
+ aMm2
3142
+
3143
+ φa
3144
+ ejr, φe
3145
+ ejr
3146
+
3147
+ ejϕm2ej
3148
+ ¯
3149
+ ϕm2 �
3150
+ ˜hr,k
3151
+
3152
+ m2
3153
+ �H�
3154
+ = M
3155
+ (64)
3156
+ other terms,
3157
+
3158
+ 30
3159
+ ˜hejΘ¯Θ¯hr,k =
3160
+ M
3161
+
3162
+ m=1
3163
+ ˜hej,mejϕmej ¯
3164
+ ϕmaM,m (φa
3165
+ kr, φe
3166
+ kr)
3167
+ (65)
3168
+ E
3169
+ ���˜hejΘ¯Θ¯hr,k
3170
+ ���
3171
+ 2
3172
+ = M+
3173
+ E
3174
+
3175
+ M
3176
+
3177
+ m1=1
3178
+ M
3179
+
3180
+ m2̸=m1
3181
+ ��
3182
+ ˜hej
3183
+
3184
+ m1 ejϕm1ej
3185
+ ¯
3186
+ ϕm1aMm1 (φa
3187
+ kr, φe
3188
+ kr)
3189
+ � ��
3190
+ ˜hej
3191
+
3192
+ m2 ejϕm2ej
3193
+ ¯
3194
+ ϕm2aMm2 (φa
3195
+ kr, φe
3196
+ kr)
3197
+ �H�
3198
+ = M
3199
+ (66)
3200
+ and
3201
+ ˜hejΘ¯Θ˜hr,k =
3202
+ M
3203
+
3204
+ m=1
3205
+
3206
+ ˜hej
3207
+
3208
+ m ejϕmej ¯
3209
+ ϕm �
3210
+ ˜hr,k
3211
+
3212
+ m
3213
+ (67)
3214
+ E
3215
+ ���˜hejΘ¯Θ˜hr,k
3216
+ ���
3217
+ 2
3218
+ = E
3219
+ �����
3220
+ M
3221
+
3222
+ m=1
3223
+
3224
+ ˜hej
3225
+
3226
+ m ejϕmej ¯
3227
+ ϕm �
3228
+ ˜hr,k
3229
+
3230
+ m
3231
+ �����
3232
+ 2
3233
+ = M
3234
+ (68)
3235
+ Now, we are ready to write the average of the first term,
3236
+ E
3237
+ ���hej,rΘ¯Θhr,k
3238
+ ��2�
3239
+ =
3240
+ ρej
3241
+ ρej + 1
3242
+ ρk
3243
+ ρk + 1
3244
+
3245
+ M + ρ (κ)2 ξ
3246
+
3247
+ +
3248
+ ρej
3249
+ ρej + 1
3250
+ 1
3251
+ ρk + 1M
3252
+ +
3253
+ ρk
3254
+ ρk + 1
3255
+ 1
3256
+ ρej + 1M +
3257
+ 1
3258
+ ρej + 1
3259
+ 1
3260
+ ρk + 1M
3261
+ (69)
3262
+ Similarly we can find the average of the second term as,
3263
+ E
3264
+ ����d
3265
+ − αr
3266
+ 2
3267
+ ui,r d
3268
+ − αe
3269
+ 2
3270
+ ej,r hej,rΘ¯Θhr,i + d
3271
+ − αe
3272
+ 2
3273
+ ej,i hej,i
3274
+ ���
3275
+ 2�
3276
+ = d−αr
3277
+ ui,r d−αe
3278
+ ej,r E
3279
+ ���hej,rΘ¯Θhr,i
3280
+ ��2�
3281
+ + d−αe
3282
+ ej,i
3283
+ (70)
3284
+ E
3285
+ ���hej,rΘ¯Θhr,i
3286
+ ��2�
3287
+ =
3288
+ ρej
3289
+ ρej + 1
3290
+ ρi
3291
+ ρi + 1
3292
+
3293
+ M + ρ (κ)2 ξ
3294
+
3295
+ +
3296
+ ρej
3297
+ ρej + 1
3298
+ 1
3299
+ ρi + 1M
3300
+ +
3301
+ ρi
3302
+ ρi + 1
3303
+ 1
3304
+ ρej + 1M +
3305
+ 1
3306
+ ρej + 1
3307
+ 1
3308
+ ρi + 1M
3309
+ (71)
3310
+
3311
+ 31
3312
+ APPENDIX C
3313
+ Using Jensen inequality, the ergodic rate can be written as
3314
+ E {Rbk} ≈ log2 (1 + E {γbk})
3315
+ (72)
3316
+ We will follow similar steps as in Appendix A,
3317
+ hH
3318
+ r,kΘHGHG¯ΘΘ =
3319
+ 1
3320
+ ρb + 1hH
3321
+ r,kA¯Θ
3322
+ (73)
3323
+ where A = ΘH �
3324
+ ρb ¯GH ¯G + √ρb ¯GH ˜G + √ρb ˜GH ¯G + ˜GH ˜G
3325
+
3326
+ Θ. Last expression can be written as
3327
+ hH
3328
+ r,kΘHGHG¯ΘΘ =
3329
+ 1
3330
+ (ρb + 1)
3331
+
3332
+ (ρk + 1)
3333
+ �√ρk¯hH
3334
+ r,k + ˜hH
3335
+ r,k
3336
+
3337
+ A¯Θ
3338
+ =
3339
+ 1
3340
+ (ρb + 1)
3341
+
3342
+ (ρk + 1)
3343
+
3344
+
3345
+ √ρk¯hH
3346
+ r,kA¯Θ
3347
+
3348
+ ��
3349
+
3350
+ ∆1
3351
+ + ˜hH
3352
+ r,kA¯Θ
3353
+ � �� �
3354
+ ∆2
3355
+
3356
+
3357
+
3358
+ (74)
3359
+ The average can be written as,
3360
+ E
3361
+ ���hH
3362
+ r,kΘHGHG¯ΘΘ
3363
+ ��2�
3364
+ =
3365
+ 1
3366
+ (ρb + 1)2 (ρk + 1)
3367
+ E
3368
+
3369
+
3370
+
3371
+
3372
+
3373
+ ρr
3374
+ �������
3375
+ ¯hH
3376
+ r,kA¯Θ
3377
+ � �� �
3378
+ ∆1
3379
+ �������
3380
+ 2
3381
+ +
3382
+ �������
3383
+ ˜hH
3384
+ r,kA¯Θ
3385
+ � �� �
3386
+ ∆2
3387
+ �������
3388
+ 2
3389
+
3390
+
3391
+
3392
+
3393
+ (75)
3394
+ ∆1 = √ρk¯hH
3395
+ r,kΘH �
3396
+ ρb ¯GH ¯G + √ρb ¯GH ˜G + √ρb ˜GH ¯G + ˜GH ˜G
3397
+
3398
+ Θ¯Θ
3399
+ =
3400
+
3401
+
3402
+ ρb
3403
+ √ρk¯hH
3404
+ r,kΘH ¯GH ¯GΘ¯Θ
3405
+
3406
+ ��
3407
+
3408
+ ∆1,1
3409
+ + √ρb
3410
+ √ρk¯hH
3411
+ r,kΘH ¯GH ˜GΘ¯Θ
3412
+
3413
+ ��
3414
+
3415
+ ∆1,2
3416
+ +√ρb
3417
+ √ρk¯hH
3418
+ r,kΘH ˜GH ¯GΘ¯Θ
3419
+
3420
+ ��
3421
+
3422
+ ∆1,3
3423
+ + √ρk¯hH
3424
+ r,kΘH ˜GH ˜GΘ¯Θ
3425
+
3426
+ ��
3427
+
3428
+ ∆1,4
3429
+
3430
+
3431
+
3432
+ (76)
3433
+ E
3434
+
3435
+ |∆1|2�
3436
+ = E
3437
+
3438
+ |∆1,1|2�
3439
+ + E
3440
+
3441
+ |∆1,2|2�
3442
+ + E
3443
+
3444
+ |∆1,3|2�
3445
+ + E
3446
+
3447
+ |∆1,4|2�
3448
+ + 2E
3449
+
3450
+ ∆1,1∆H
3451
+ 1,4
3452
+
3453
+ (77)
3454
+
3455
+ 32
3456
+ where
3457
+ ∆1,1 = ρb
3458
+ √ρk
3459
+
3460
+ aH
3461
+ M (φa
3462
+ kr, φe
3463
+ kr) ΘHaH
3464
+ M (φa
3465
+ r, φe
3466
+ r) aH
3467
+ N (φa
3468
+ b, φe
3469
+ b) aN (φa
3470
+ b, φe
3471
+ b)
3472
+ � �
3473
+ aM (φa
3474
+ r, φe
3475
+ r) Θ¯Θ
3476
+
3477
+ (78)
3478
+ E
3479
+
3480
+ |∆1,1|2�
3481
+ = ρ2
3482
+ bρk
3483
+ ���
3484
+ aH
3485
+ M (φa
3486
+ kr, φe
3487
+ kr) ΘHaH
3488
+ M (φa
3489
+ r, φe
3490
+ r) aH
3491
+ N (φa
3492
+ b, φe
3493
+ b) aN (φa
3494
+ b, φe
3495
+ b)
3496
+ ���2
3497
+ × E
3498
+ ���aM (φa
3499
+ r, φe
3500
+ r) Θ¯Θ
3501
+ ��2�
3502
+ (79)
3503
+ E
3504
+
3505
+ |∆1,1|2�
3506
+ = ρ2
3507
+ bρk
3508
+ ���
3509
+ aH
3510
+ M (φa
3511
+ kr, φe
3512
+ kr) ΘHaH
3513
+ M (φa
3514
+ r, φe
3515
+ r) aH
3516
+ N (φa
3517
+ b, φe
3518
+ b) aN (φa
3519
+ b, φe
3520
+ b)
3521
+ ���2 × M
3522
+ (80)
3523
+ The second term can be expressed as,
3524
+ ∆1,2 = √ρb
3525
+ √ρkaH
3526
+ M (φa
3527
+ kr, φe
3528
+ kr) ΘHaM (φa
3529
+ r, φe
3530
+ r)
3531
+ M
3532
+
3533
+ m=1
3534
+ N
3535
+
3536
+ n=1
3537
+ aH
3538
+ N,n (φa
3539
+ b, φe
3540
+ b) ˜gnmejϕmej ¯
3541
+ ϕm
3542
+ (81)
3543
+ E
3544
+
3545
+ |∆1,2|2�
3546
+ = ρbρk
3547
+ ��aH
3548
+ M (φa
3549
+ kr, φe
3550
+ kr) ΘHaM (φa
3551
+ r, φe
3552
+ r)
3553
+ ��2 NM
3554
+ (82)
3555
+ The third term can be written as
3556
+ ∆1,3 = √ρb
3557
+ √ρk
3558
+ M
3559
+
3560
+ m=1
3561
+ N
3562
+
3563
+ n=1
3564
+ aH
3565
+ M,m (φa
3566
+ kr, φe
3567
+ kr) ˜gH
3568
+ nme−jϕmaN,n (φa
3569
+ b, φe
3570
+ b)
3571
+ M
3572
+
3573
+ m=1
3574
+ aH
3575
+ M,m (φa
3576
+ r, φe
3577
+ r) ej ¯
3578
+ ϕmejϕm
3579
+ (83)
3580
+ E
3581
+
3582
+ |∆1,3|2�
3583
+ = ρbρkMN
3584
+
3585
+ E
3586
+ �����
3587
+ M
3588
+
3589
+ m=1
3590
+ aH
3591
+ M,m (φa
3592
+ r, φe
3593
+ r) ej ¯
3594
+ ϕmejϕm
3595
+ �����
3596
+ 2
3597
+
3598
+ (84)
3599
+ E
3600
+
3601
+ |∆1,3|2�
3602
+ = ρbρkMN
3603
+
3604
+ M + ρ (κ)2
3605
+ M
3606
+
3607
+ m1=1
3608
+ M
3609
+
3610
+ m2̸=m1
3611
+ aH
3612
+ M,m1 (φa
3613
+ r, φe
3614
+ r) ejϕm1aM,m2 (φa
3615
+ r, φe
3616
+ r) e−jϕm2
3617
+
3618
+ (85)
3619
+ E
3620
+
3621
+ |∆1,3|2�
3622
+ = ρbρkMN
3623
+
3624
+ ρ (κ)2 M +
3625
+
3626
+ 1 − ρ (κ)2�
3627
+ M
3628
+
3629
+ (86)
3630
+
3631
+ 33
3632
+ The forth term can be represented as,
3633
+ ∆1,4 = √ρk
3634
+ N
3635
+
3636
+ n=1
3637
+ M
3638
+
3639
+ m1=1
3640
+ aH
3641
+ M,m1 (φa
3642
+ kr, φe
3643
+ kr) e−jϕm˜gH
3644
+ nm1
3645
+ M
3646
+
3647
+ m2=1
3648
+ ˜gnm2ejϕmej ¯
3649
+ ϕm
3650
+ (87)
3651
+ E
3652
+
3653
+ |∆1,4|2�
3654
+ = ρk
3655
+
3656
+ N2M + NM2�
3657
+ (88)
3658
+ Now the last term can be written as
3659
+ E
3660
+
3661
+ ∆1,1∆∗
3662
+ 1,4
3663
+
3664
+ = ρbρk
3665
+
3666
+ aH
3667
+ M (φa
3668
+ kr, φe
3669
+ kr) ΘHaH
3670
+ M (φa
3671
+ r, φe
3672
+ r) aH
3673
+ N (φa
3674
+ b, φe
3675
+ b) aN (φa
3676
+ b, φe
3677
+ b)
3678
+
3679
+ ×
3680
+
3681
+ aM (φa
3682
+ r, φe
3683
+ r) Θ¯Θ
3684
+
3685
+ ρk¯hH
3686
+ r,kΘH ˜GH ˜GΘ¯Θ
3687
+ (89)
3688
+ E
3689
+
3690
+ ∆1,1∆∗
3691
+ 1,4
3692
+
3693
+ = ρbρk
3694
+
3695
+ aH
3696
+ M (φa
3697
+ kr, φe
3698
+ kr) ΘHaH
3699
+ M (φa
3700
+ r, φe
3701
+ r) aH
3702
+ N (φa
3703
+ b, φe
3704
+ b) aN (φa
3705
+ b, φe
3706
+ b)
3707
+
3708
+ (aM (φa
3709
+ r, φe
3710
+ r) Θ) ρk¯hH
3711
+ r,kΘHNΘ
3712
+ (90)
3713
+ We will repeat similar steps for ∆2,
3714
+ ∆2 =
3715
+
3716
+
3717
+ ρb˜hH
3718
+ r,kΘH ¯GH ¯GΘ¯Θ
3719
+
3720
+ ��
3721
+
3722
+ ∆2,1
3723
+ + √ρb˜hH
3724
+ r,kΘH ¯GH ˜GΘ¯Θ
3725
+
3726
+ ��
3727
+
3728
+ ∆2,2
3729
+ +√ρb˜hH
3730
+ r,kΘH ˜GH ¯GΘ¯Θ
3731
+
3732
+ ��
3733
+
3734
+ ∆2,3
3735
+ + ˜hH
3736
+ r,kΘH ˜GH ˜GΘ¯Θ
3737
+
3738
+ ��
3739
+
3740
+ ∆2,4
3741
+
3742
+
3743
+
3744
+ (91)
3745
+ E
3746
+
3747
+ |∆2|2�
3748
+ = E
3749
+
3750
+ |∆2,1|2�
3751
+ + E
3752
+
3753
+ |∆2,2|2�
3754
+ + E
3755
+
3756
+ |∆2,3|2�
3757
+ + E
3758
+
3759
+ |∆2,4|2�
3760
+ + 2E
3761
+
3762
+ ∆2,1∆H
3763
+ 2,4
3764
+
3765
+ (92)
3766
+ where
3767
+ ∆2,1 = ρb˜hH
3768
+ r,kΘH ¯GH ¯GΘ¯Θ
3769
+ (93)
3770
+
3771
+ 34
3772
+ E
3773
+
3774
+ |∆2,1|2�
3775
+ = ρ2
3776
+ b
3777
+ ��ΘHaH
3778
+ M (φa
3779
+ r, φe
3780
+ r) aH
3781
+ N (φa
3782
+ b, φe
3783
+ b) aN (φa
3784
+ b, φe
3785
+ b) aM (φa
3786
+ r, φe
3787
+ r) Θ
3788
+ ��2
3789
+ F
3790
+ (94)
3791
+ and
3792
+ ∆2,2 = √ρb˜hH
3793
+ r,kΘHaM (φa
3794
+ r, φe
3795
+ r)
3796
+ M
3797
+
3798
+ m=1
3799
+ N
3800
+
3801
+ n=1
3802
+ aH
3803
+ N,n (φa
3804
+ b, φe
3805
+ b) ˜gnmejϕmej ¯
3806
+ ϕm
3807
+ (95)
3808
+ E
3809
+
3810
+ |∆2,2|2�
3811
+ = ρb
3812
+ ���˜hH
3813
+ r,kΘHaM (φa
3814
+ r, φe
3815
+ r)
3816
+ ���
3817
+ 2
3818
+ NM
3819
+ (96)
3820
+ while
3821
+ ∆2,3 = √ρb
3822
+ M
3823
+
3824
+ m=1
3825
+ N
3826
+
3827
+ n=1
3828
+ ˜hH
3829
+ r,k,nm˜gH
3830
+ nme−jϕmaN,n (φa
3831
+ b, φe
3832
+ b)
3833
+ M
3834
+
3835
+ m=1
3836
+ aH
3837
+ M,m (φa
3838
+ r, φe
3839
+ r) ej ¯
3840
+ ϕmejϕm
3841
+ (97)
3842
+ E
3843
+
3844
+ |∆2,3|2�
3845
+ = ρbMN
3846
+
3847
+ E
3848
+ �����
3849
+ M
3850
+
3851
+ m=1
3852
+ aH
3853
+ M,m (φa
3854
+ r, φe
3855
+ r) ej ¯
3856
+ ϕmejϕm
3857
+ �����
3858
+ 2
3859
+  = ρbMN
3860
+
3861
+ ρ (κ)2 M +
3862
+
3863
+ 1 − ρ (κ)2�
3864
+ M
3865
+
3866
+ (98)
3867
+ Finally,
3868
+ ∆2,4 = ρk
3869
+ N
3870
+
3871
+ n=1
3872
+ M
3873
+
3874
+ m1=1
3875
+ ˜hH
3876
+ r,k,nm1e−jϕm˜gH
3877
+ nm1
3878
+ M
3879
+
3880
+ m2=1
3881
+ ˜gnm2ejϕmej ¯
3882
+ ϕm
3883
+ (99)
3884
+ E
3885
+
3886
+ |∆2,4|2�
3887
+ = ρ2
3888
+ k
3889
+
3890
+ N2M + NM2�
3891
+ (100)
3892
+ and
3893
+ E
3894
+
3895
+ ∆2,1∆∗
3896
+ 2,4
3897
+
3898
+ = E
3899
+
3900
+ ρbρk
3901
+
3902
+ ˜hH
3903
+ r,kΘHaH
3904
+ M (φa
3905
+ r, φe
3906
+ r) aH
3907
+ N (φa
3908
+ b, φe
3909
+ b) aN (φa
3910
+ b, φe
3911
+ b)
3912
+ � �
3913
+ aM (φa
3914
+ r, φe
3915
+ r) Θ¯Θ
3916
+
3917
+ ρk˜hH
3918
+ r,kΘH ˜GH ˜GΘ¯Θ
3919
+
3920
+ = ρk
3921
+
3922
+ ΘHaH
3923
+ M (φa
3924
+ r, φe
3925
+ r) aH
3926
+ N (φa
3927
+ b, φe
3928
+ b) aN (φa
3929
+ b, φe
3930
+ b)
3931
+
3932
+ (aM (φa
3933
+ r, φe
3934
+ r) Θ) ρkΘNΘH
3935
+ (101)
3936
+
3937
+ 35
3938
+ REFERENCES
3939
+ [1] M. Di Renzo, A. Zappone, M. Debbah, M.-S. Alouini, C. Yuen, J. de Rosny, and S. Tretyakov, “Smart radio environments
3940
+ empowered by reconfigurable intelligent surfaces: How it works, state of research, and the road ahead,” IEEE Journal on Selected
3941
+ Areas in Communications, vol. 38, no. 11, pp. 2450–2525, 2020.
3942
+ [2] C. Pan, H. Ren, K. Wang, J. F. Kolb, M. Elkashlan, M. Chen, M. Di Renzo, Y. Hao, J. Wang, A. L. Swindlehurst, X. You,
3943
+ and L. Hanzo, “Reconfigurable intelligent surfaces for 6g systems: Principles, applications, and research directions,” IEEE
3944
+ Communications Magazine, vol. 59, no. 6, pp. 14–20, 2021.
3945
+ [3] S. Zhang and R. Zhang, “Capacity characterization for intelligent reflecting surface aided mimo communication,” IEEE Journal
3946
+ on Selected Areas in Communications, vol. 38, no. 8, pp. 1823–1838, 2020.
3947
+ [4] J. Zhang, J. Liu, S. Ma, C.-K. Wen, and S. Jin, “Large system achievable rate analysis of ris-assisted mimo wireless communication
3948
+ with statistical csit,” IEEE Transactions on Wireless Communications, vol. 20, no. 9, pp. 5572–5585, 2021.
3949
+ [5] K. Xu, J. Zhang, X. Yang, S. Ma, and G. Yang, “On the sum-rate of ris-assisted mimo multiple-access channels over spatially
3950
+ correlated rician fading,” IEEE Transactions on Communications, vol. 69, no. 12, pp. 8228–8241, 2021.
3951
+ [6] K. Zhi, C. Pan, H. Ren, and K. Wang, “Power scaling law analysis and phase shift optimization of ris-aided massive mimo systems
3952
+ with statistical csi,” IEEE Transactions on Communications, vol. 70, no. 5, pp. 3558–3574, 2022.
3953
+ [7] Z. Peng, X. Chen, C. Pan, M. Elkashlan, and J. Wang, “Performance analysis and optimization for ris-assisted multi-user massive
3954
+ mimo systems with imperfect hardware,” IEEE Transactions on Vehicular Technology, vol. 71, no. 11, pp. 11 786–11 802, 2022.
3955
+ [8] J. Dai, F. Zhu, C. Pan, H. Ren, and K. Wang, “Statistical csi-based transmission design for reconfigurable intelligent surface-aided
3956
+ massive mimo systems with hardware impairments,” IEEE Wireless Communications Letters, vol. 11, no. 1, pp. 38–42, 2022.
3957
+ [9] K. Zhi, C. Pan, H. Ren, and K. Wang, “Ergodic rate analysis of reconfigurable intelligent surface-aided massive mimo systems
3958
+ with zf detectors,” IEEE Communications Letters, vol. 26, no. 2, pp. 264–268, 2022.
3959
+ [10] K. Zhi, C. Pan, G. Zhou, H. Ren, M. Elkashlan, and R. Schober, “Is ris-aided massive mimo promising with zf detectors and
3960
+ imperfect csi?” IEEE Journal on Selected Areas in Communications, vol. 40, no. 10, pp. 3010–3026, 2022.
3961
+ [11] K. Zhi, C. Pan, H. Ren, and K. Wang, “Statistical csi-based design for reconfigurable intelligent surface-aided massive mimo
3962
+ systems with direct links,” IEEE Wireless Communications Letters, vol. 10, no. 5, pp. 1128–1132, 2021.
3963
+ [12] A. Papazafeiropoulos, C. Pan, P. Kourtessis, S. Chatzinotas, and J. M. Senior, “Intelligent reflecting surface-assisted mu-miso
3964
+ systems with imperfect hardware: Channel estimation and beamforming design,” IEEE Transactions on Wireless Communications,
3965
+ vol. 21, no. 3, pp. 2077–2092, 2022.
3966
+ [13] M. A. Mosleh, F. Héliot, and R. Tafazolli, “Ergodic capacity analysis of reconfigurable intelligent surface assisted mimo systems
3967
+ over rayleigh-rician channels,” IEEE Communications Letters, pp. 1–1, 2022.
3968
+ [14] H. Guo, Y.-C. Liang, J. Chen, and E. G. Larsson, “Weighted sum-rate maximization for reconfigurable intelligent surface aided
3969
+ wireless networks,” IEEE Transactions on Wireless Communications, vol. 19, no. 5, pp. 3064–3076, 2020.
3970
+ [15] R. Long, Y.-C. Liang, Y. Pei, and E. G. Larsson, “Active reconfigurable intelligent surface-aided wireless communications,” IEEE
3971
+ Transactions on Wireless Communications, vol. 20, no. 8, pp. 4962–4975, 2021.
3972
+ [16] K. Zhi, C. Pan, H. Ren, K. K. Chai, and M. Elkashlan, “Active ris versus passive ris: Which is superior with the same power
3973
+ budget?” IEEE Communications Letters, vol. 26, no. 5, pp. 1150–1154, 2022.
3974
+ [17] M. H. Khoshafa, T. M. N. Ngatched, M. H. Ahmed, and A. R. Ndjiongue, “Active reconfigurable intelligent surfaces-aided wireless
3975
+ communication system,” IEEE Communications Letters, vol. 25, no. 11, pp. 3699–3703, 2021.
3976
+
3977
+ 36
3978
+ [18] K. Liu, Z. Zhang, L. Dai, S. Xu, and F. Yang, “Active reconfigurable intelligent surface: Fully-connected or sub-connected?” IEEE
3979
+ Communications Letters, vol. 26, no. 1, pp. 167–171, 2022.
3980
+ [19] Y. Ma, M. Li, Y. Liu, Q. Wu, and Q. Liu, “Active reconfigurable intelligent surface for energy efficiency in mu-miso systems,”
3981
+ IEEE Transactions on Vehicular Technology, pp. 1–6, 2022.
3982
+ [20] B. Lyu, P. Ramezani, D. T. Hoang, S. Gong, Z. Yang, and A. Jamalipour, “Optimized energy and information relaying in self-
3983
+ sustainable irs-empowered wpcn,” IEEE Transactions on Communications, vol. 69, no. 1, pp. 619–633, 2021.
3984
+ [21] Y. Zou, Y. Long, S. Gong, D. T. Hoang, W. Liu, W. Cheng, and D. Niyato, “Robust beamforming optimization for self-sustainable
3985
+ intelligent reflecting surface assisted wireless networks,” IEEE Transactions on Cognitive Communications and Networking, vol. 8,
3986
+ no. 2, pp. 856–870, 2022.
3987
+ [22] Z. Chu, P. Xiao, D. Mi, W. Hao, M. Khalily, and L.-L. Yang, “A novel transmission policy for intelligent reflecting surface assisted
3988
+ wireless powered sensor networks,” IEEE Journal of Selected Topics in Signal Processing, vol. 15, no. 5, pp. 1143–1158, 2021.
3989
+ [23] H. Ma, H. Zhang, W. Zhang, and V. C. M. Leung, “Beamforming optimization for reconfigurable intelligent surface with power
3990
+ splitting aided broadcasting networks,” IEEE Transactions on Vehicular Technology, pp. 1–6, 2022.
3991
+ [24] W. Jaafar, L. Bariah, S. Muhaidat, and H. Yanikomeroglu, “Time-switching and phase-shifting control for ris-assisted swipt
3992
+ communications,” IEEE Wireless Communications Letters, vol. 11, no. 8, pp. 1728–1732, 2022.
3993
+ [25] A. Wyner, “The wire-tap channel,” Bell Syst. Tech. J., vol. 54, no. 8, pp. 1355–1387, Oct. 1975.
3994
+ [26] P. K. Gopala, L. Lai, and H. El Gamal, “On the secrecy capacity of fading channels,” IEEE Trans. Inf. Theory, vol. 54, no. 10,
3995
+ pp. 4687–4698, Oct. 2008.
3996
+ [27] W. Shi, Q. Wu, F. Xiao, F. Shu, and J. Wang, “Secrecy throughput maximization for irs-aided mimo wireless powered communication
3997
+ networks,” IEEE Transactions on Communications, vol. 70, no. 11, pp. 7520–7535, 2022.
3998
+ [28] L. Dong, H.-M. Wang, and J. Bai, “Active reconfigurable intelligent surface aided secure transmission,” IEEE Transactions on
3999
+ Vehicular Technology, vol. 71, no. 2, pp. 2181–2186, 2022.
4000
+ [29] H. Guo, Z. Yang, Y. Zou, B. Lyu, Y. Jiang, and L. Hanzo, “Joint reconfigurable intelligent surface location and passive beamforming
4001
+ optimization for maximizing the secrecy-rate,” IEEE Transactions on Vehicular Technology, pp. 1–13, 2022.
4002
+ [30] J. Luo, F. Wang, S. Wang, H. Wang, and D. Wang, “Reconfigurable intelligent surface: Reflection design against passive
4003
+ eavesdropping,” IEEE Transactions on Wireless Communications, vol. 20, no. 5, pp. 3350–3364, 2021.
4004
+ [31] J. Bai, H.-M. Wang, and P. Liu, “Robust irs-aided secrecy transmission with location optimization,” IEEE Transactions on
4005
+ Communications, vol. 70, no. 9, pp. 6149–6163, 2022.
4006
+ [32] W. Lv, J. Bai, Q. Yan, and H.-M. Wang, “Ris-assisted green secure communications: Active ris or passive ris?” IEEE Wireless
4007
+ Communications Letters, pp. 1–1, 2022.
4008
+ [33] P. Xu, G. Chen, G. Pan, and M. D. Renzo, “Ergodic secrecy rate of ris-assisted communication systems in the presence of discrete
4009
+ phase shifts and multiple eavesdroppers,” IEEE Wireless Communications Letters, vol. 10, no. 3, pp. 629–633, 2021.
4010
+
3tAyT4oBgHgl3EQfb_f6/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
5NE0T4oBgHgl3EQfvgGE/content/2301.02619v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d48608565382785a4a26c1b5451e5d0bfff1a2cbe6fd13dd2ca2aa0d1a8949ba
3
+ size 199046
5NE0T4oBgHgl3EQfvgGE/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:83d52dec2cd0291df04f6e5d7a97989e29cfdacc51f71aeab86ade62520c37c1
3
+ size 75526
5NFIT4oBgHgl3EQf7itm/content/tmp_files/2301.11398v1.pdf.txt ADDED
@@ -0,0 +1,967 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.11398v1 [math.SP] 26 Jan 2023
2
+ ˇSmigoc’s glue for universal realizability in the
3
+ left half-plane∗
4
+ Jaime H. Alfaro, Ricardo L. Soto†
5
+ Dpto. Matem´aticas, Universidad Cat´olica del Norte, Casilla 1280
6
+ Antofagasta, Chile.
7
+ Abstract
8
+ A list Λ = {λ1, λ2, . . . , λn} of complex numbers is said to be real-
9
+ izable if it is the spectrum of a nonnegative matrix. Λ is said to be
10
+ universally realizable (UR) if it is realizable for each possible Jordan
11
+ canonical form allowed by Λ. In this paper, using companion matrices
12
+ and applying a procedure by ˇSmigoc, is provides a sufficient condi-
13
+ tion for the universal realizability of left half-plane spectra, that is,
14
+ Λ = {λ1, . . . , λn} with λ1 > 0, Re λi ≤ 0, i = 2, . . . , n. It is also shown
15
+ how the effect of adding a negative real number to a not UR left half-
16
+ plane list of complex numbers, makes the new list UR, and a family
17
+ of left half-plane lists that are UR is characterized.
18
+ AMS classification:
19
+ 15A18, 15A20, 15A29
20
+ Key words: Nonnegative matrix; companion matrix; Universal realizabil-
21
+ ity; ˇSmigoc’s glue.
22
+ 1
23
+ Introduction
24
+ A list Λ = {λ1, λ2, . . . , λn} of complex numbers is said to be realizable if it
25
+ is the spectrum of an n-by-n nonnegative matrix A, and A is said to be a
26
+ realizing matrix for Λ. The problem of the realizability of spectra is called the
27
+ ∗Supported by Universidad Cat´olica del Norte-VRIDT 036-2020, N´ucleo 6 UCN
28
+ VRIDT 083-2020, Chile.
29
+ †E-mail addresses: [email protected] (R. L. Soto), [email protected] (J. H. Alfaro).
30
+ 1
31
+
32
+ nonnegative inverse eigenvalue problem (NIEP). From the Perron-Frobenius
33
+ Theorem we know that if Λ = {λ1, λ2, . . . , λn} is the spectrum of an n-
34
+ by-n nonnegative matrix A, then the leading eigenvalue of A equals to the
35
+ spectral radius of A, ρ(A) =: max
36
+ 1≤i≤n |λi| . This eigenvalue is called the Perron
37
+ eigenvalue, and we shall assume in this paper, that ρ(A) = λ1.
38
+ A matrix is said to have constant row sums, if each one of its rows sums
39
+ up to the same constant α. The set of all matrices with constant row sums
40
+ equal to α, is denoted by CSα. Then, any matrix A ∈ CSα has the eigenvector
41
+ eT = [1, 1, . . . , 1], corresponding to the eigenvalue α. The real matrices with
42
+ constant row sums are important because it is known that the problem of
43
+ finding a nonnegative matrix with spectrum Λ = {λ1, . . . , λn}, is equivalent
44
+ to the problem of finding a nonnegative matrix in CSλ1 with spectrum Λ (see
45
+ [3]). We denote by ek, the n-dimensional vector, with 1 in the kth position
46
+ and zeros elsewhere. If Λ = {λ1, . . . , λn}, then sk(Λ) =
47
+ n
48
+
49
+ i=1
50
+ λk
51
+ i , k = 1, 2, . . . .
52
+ A list Λ = {λ1, λ2, . . . , λn} of complex numbers, is said to be diagonaliz-
53
+ ably realizable (DR), if there is a diagonalizable realizing matrix for Λ The
54
+ list Λ is said to be universally realizable (UR), if it is realizable for each possi-
55
+ ble Jordan canonical form (JCF) allowed by Λ. The problem of the universal
56
+ realizability of spectra, is called the universal realizability problem (URP).
57
+ The URP contains the NIEP, and both problems are equivalent if the given
58
+ numbers λ1, λ2, . . . , λn are distinct. In terms of n, both problems remain
59
+ unsolved for n ≥ 5. It is clear that if Λ is UR, then Λ must be DR. The
60
+ first known results on the URP are due to Minc [7, 8]. In terms of the URP,
61
+ Minc [7] showed that if a list Λ = {λ1, λ2, . . . , λn} of complex numbers is the
62
+ spectrum of a diagonalizable positive matrix, then Λ is UR. The positivity
63
+ condition is necessary for Minc’s proof, and the question set by Minc himself,
64
+ whether the result holds for nonnegative realizations was open for almost 40
65
+ years. Recently, two extensions of Minc’s result have been obtained in [1, 4].
66
+ In [1], Collao et al. showed that a nonnegative matrix A ∈ CSλ1, with a pos-
67
+ itive column, is similar to a positive matrix. Note that if A is nonnegative
68
+ with a positive row and AT has a positive eigenvector, then AT is also similar
69
+ to a positive matrix. Besides, if Λ is diagonalizably realizable by a matrix
70
+ A ∈ CSλ1 having a positive column, then Λ is UR. In [4], Johnson et al. in-
71
+ troduced the concept of ODP matrices, that is, nonnegative matrices with all
72
+ positive off-diagonal entries (zero diagonal entries are permitted) and proved
73
+ 2
74
+
75
+ that if Λ is diagonalizably ODP realizable, then Λ is UR. Note that both
76
+ extensions contain, as a particular case, Minc’s result in [7]. Both extensions
77
+ allow us to significantly increase the set of spectra that can be proved to be
78
+ UR, as for instance, certain spectra Λ = {λ1, . . . , λn} with s1(Λ) = 0, which
79
+ is not possible from Minc’s result. In particular, we shall use the extension
80
+ in [1] to generate some of our results.
81
+ Remark 1.1 In [1], Section 2, Theorem 2.1 and Corollary 2.1, there is an
82
+ error in assuming that if A is nonnegative with a positive row, then AT, which
83
+ has a positive column, is similar to a positive matrix. The reason is that we
84
+ cannot guarantee that AT has a positive eigenvector.
85
+ Regarding non-positive universal realizations, we mention that in [10,
86
+ 2] the authors proved, respectively, that lists of complex numbers Λ =
87
+ {λ1, . . . , λn}, of Suleimanova type, that is,
88
+ λ1 > 0, Re λi ≤ 0, |Re λi| ≥ |Im λi| , i = 2, 3, . . . , n,
89
+ or of ˇSmigoc type, that is,
90
+ λ1 > 0, Re λi ≤ 0,
91
+
92
+ 3 |Re λi| ≥ |Im λi| , i = 2, 3, . . . , n,
93
+ (1)
94
+ are UR if and only if they are realizable if and only if
95
+ n
96
+
97
+ i=1
98
+ λi ≥ 0.
99
+ Outline of the paper: The paper is organized as follows: In Section 2, we
100
+ present the mathematical tools that will be used to generate our results. In
101
+ Section 3, we study the URP for a left half-plane list and we give a sufficient
102
+ condition for it to be UR. In Section 4, we discuss the effect of adding a
103
+ negative real number −c to a left half-plane list Λ = {λ1, −a±bi, . . . , −a±bi},
104
+ which is not UR (or even not realizable), or we do not know whether it is,
105
+ and we show how Λ ∪ {−c} becomes UR. We also characterize a family of
106
+ left half-plane lists that are UR. In Section 5, we show that the merge of two
107
+ lists diagonalizably realizable Γ1 ∈ CSλ1 and Γ2 ∈ CSµ1 is UR. Examples
108
+ are shown to illustrate the results.
109
+ 2
110
+ Preliminaries
111
+ Throughout this paper we use the following results: The first one, by ˇSmigoc
112
+ [9], gives a procedure that we call ˇSmigoc’s glue technique, to obtain from two
113
+ 3
114
+
115
+ matrices A and B of size n-by-n and m-by-m, respectively, a new (n+m−1)-
116
+ by-(n + m − 1) matrix C, preserving in certain way, the corresponding JCFs
117
+ of A and B. The second one, by Laffey and ˇSmigoc [6] solves the NIEP for
118
+ lists of complex numbers on the left half-plane, that is, lists with λ1 > 0,
119
+ Re λi ≤ 0, i = 2, . . . , n. Moreover, we also use Lemma 5 in [6].
120
+ Theorem 2.1 [9] Suppose B is an m-by-m matrix with a JCF that contains
121
+ at least one 1-by-1 Jordan block corresponding to the eigenvalue c:
122
+ J(B) =
123
+ � c
124
+ 0
125
+ 0
126
+ I(B)
127
+
128
+ .
129
+ Let t and s, respectively, be the left and the right eigenvectors of B associated
130
+ with the 1-by-1 Jordan block in the above canonical form. Furthermore, we
131
+ normalize vectors t and s so that t
132
+ Ts = 1. Let J(A) be a JCF for the n-by-n
133
+ matrix
134
+ A =
135
+
136
+ A1
137
+ a
138
+ bT
139
+ c
140
+
141
+ ,
142
+ where A1 is an (n − 1)-by-(n − 1) matrix and a and b are vectors in C
143
+ n-1.
144
+ Then the matrix
145
+ C =
146
+
147
+ A1
148
+ at
149
+ T
150
+ sb
151
+ T
152
+ B
153
+
154
+ has JCF
155
+ J(C) =
156
+
157
+ J(A)
158
+ 0
159
+ 0
160
+ I(B)
161
+
162
+ .
163
+ Theorem 2.2 [6] Let Λ = {λ1, λ2, . . . , λn} be a list of complex numbers with
164
+ λ1 ≥ |λi| and Re λi ≤ 0, i = 2, . . . , n. Then Λ is realizable if and only if
165
+ s1 = s1(Λ) ≥ 0,
166
+ s2 = s2(Λ) ≥ 0,
167
+ s2
168
+ 1 ≤ ns2.
169
+ Lemma 2.1 [6] Let t be a nonnegative real number and let λ2, λ3, . . . , λn be
170
+ complex numbers with real parts less than or equal to zero, such that the list
171
+ {λ2, λ3, . . . , λn} is closed under complex conjugation. Set ρ = 2t−λ2−· · ·−λn
172
+ and
173
+ f(x) = (x − ρ)
174
+ n
175
+
176
+ j=2
177
+ (x − λj) = xn − 2txn−1 + b2xn−2 + · · · + bn.
178
+ (2)
179
+ Then b2 ≤ 0 implies bj ≤ 0 for j = 3, 4, . . . , n.
180
+ 4
181
+
182
+ 3
183
+ Companion matrices and the ˇSmigoc’s glue.
184
+ We say that a list Λ = {λ1, λ2, . . . , λn} of complex numbers is on the left half-
185
+ plane if λ1 > 0, Re λi ≤ 0, i = 2, 3, . . . , n. In this section we give a sufficient
186
+ condition for a left half-plane list of complex numbers to be UR. Of course,
187
+ it is our interest to consider lists of complex numbers containing elements
188
+ out of realizability region of lists of ˇSmigoc type. Our strategy consists in to
189
+ decompose the given list Λ = {λ1, λ2, . . . , λn} into sub-lists
190
+ Λk = {λk1, λk2, . . . , λkpk}, λ11 = λ1, k = 1, 2, . . . , t,
191
+ with auxiliary lists
192
+ Γ1
193
+ =
194
+ Λ1
195
+ Γk
196
+ =
197
+ {s1(Γk−1), λk1, λk2, . . . , λkpk},
198
+ k = 2, , . . . , t,
199
+ each one of them being the spectrum of a nonnegative companion matrix
200
+ Ak, in such a way that it be possible to apply ˇSmigoc’s glue technique to
201
+ the matrices Ak, to obtain an n-by-n nonnegative matrix with spectrum Λ
202
+ for each possible JCF allowed by Λ. In the case s1(Λ) > 0, with λi ̸= 0,
203
+ i = 2, . . . , n, we may choose, if they exist, sub-lists Γk being the spectrum
204
+ of a diagonalizable nonnegative companion matrix with a positive column.
205
+ Then, after ˇSmigoc’s glue, we obtain a diagonalizable nonnegative n-by-n
206
+ matrix A with spectrum Λ and a positive column, which is similar to a
207
+ diagonalizable positive matrix. Thus, from the extension in [1], Λ is UR.
208
+ Next we have the following corollary from Theorem 2.1:
209
+ Corollary 3.1 Let Λ = {λ1, λ2, . . . , λn} be a realizable left half-plane list of
210
+ complex numbers. Suppose that for each JCF J allowed by Λ, there exists a
211
+ decomposition of Λ as
212
+ Λ
213
+ =
214
+ Λ1 ∪ Λ2 ∪ · · · ∪ Λt, where
215
+ Λk
216
+ =
217
+ {λk1, λk2, . . . , λkpk}, k = 1, 2, . . . , t, λ11 = λ1,
218
+ with auxiliary lists
219
+ Γ1
220
+ =
221
+ Λ1,
222
+ Γk
223
+ =
224
+ {s1(Γk−1), λk1, λk2 . . . , λkpk}, k = 2, . . . , t,
225
+ being the spectrum of a nonnegative companion matrix Ak with JCF J(Ak)
226
+ as a sub-matrix of J, k = 1, 2, . . . , t.
227
+ Then Λ is universally realizable.
228
+ 5
229
+
230
+ Proof.
231
+ Since each matrix Ak, k = 1, 2, . . . , t, is nonnegative companion
232
+ with JCF J(Ak) being a submatrix of J, then, from ˇSmigoc’s glue applied to
233
+ matrices Ak, we obtain an n-by-n nonnegative matrix with spectrum Λ and
234
+ JCF J. As J is any JCF allowed by Λ, then Λ is UR.
235
+ The following result is well known and useful.
236
+ Lemma 3.1 Let A be a diagonalizable irreducible nonnegative matrix with
237
+ spectrum Λ = {λ1, . . . , λn} and a positive row or column. Then A is similar
238
+ to a diagonalizable nonnegative matrix B ∈ CSλ1, with a positive row or
239
+ column.
240
+ Proof. If A is irreducible nonnegative, it has a positive eigenvector xT =
241
+ [x1, . . . , xn]. Then if D = dig{x1, . . . , xn}, the matrix
242
+ B = D−1AD =
243
+ �xj
244
+ xi
245
+ ai,j
246
+
247
+ ∈ CSλ1
248
+ is nonnegative with a positive row or column.
249
+ Suppose all lists Γk in Corollary 3.1, can be taken as the spectrum of a
250
+ diagonalizable nonnegative companion matrix Ak with a positive column (the
251
+ last one). Then, since the glue of matrices Ak gives an n-by-n diagonalizable
252
+ irreducible nonnegative matrix A with a positive column and spectrum Λ, A
253
+ is similar to a diagonalizable positive matrix with spectrum Λ and therefore
254
+ Λ is UR. This is what the next result shows.
255
+ Corollary 3.2 Let Λ = {λ1, λ2, . . . , λn}, λi ̸= 0, i = 2, . . . , n, s1(Λ) > 0, be
256
+ a realizable left half-plane list of complex numbers. If there is a decomposition
257
+ of Λ as in Corollary 3.1, with all lists Γk being the spectrum of a diagonal-
258
+ izable nonnegative companion matrix Ak, with a positive column, then Λ is
259
+ universally realizable.
260
+ Proof. It is enough to prove the result for two lists Γk of the decomposition
261
+ of Λ. Let Γk−1 and Γk, k = 2, . . . , t, be the spectrum, respectively, of matrices
262
+ Ak−1 and Ak, which are diagonalizable nonnegative companion with a posi-
263
+ tive column (the last one). Then Ak−1 and Ak are irreducible. In particular,
264
+ Ak has a positive eigenvector s and, since AT
265
+ k is also irreducible, Ak has also
266
+ a positive left eigenvector tT with tTs = 1. Now, let
267
+ Ak−1 =
268
+ � A1,k−1
269
+ a
270
+ bT
271
+ s1(Γk−1)
272
+
273
+ .
274
+ 6
275
+
276
+ Since the last column of Ak−1 is positive, the vector a is also positive and
277
+ atT is a positive submatrix. Therefore, the glue of Ak−1 with Ak,
278
+ Ck =
279
+ � A1,k−1
280
+ atT
281
+ sbT
282
+ Ak
283
+
284
+ ,
285
+ is a diagonalizable nonnegative matrix with its last column being positive.
286
+ Note that Ck is also irreducible. Then Ck has, besides, a positive eigenvector,
287
+ and from Lemma 3.1 Ck is similar to a matrix with constant row sums and
288
+ with its last column being positive. Thus, Ck is similar to a diagonalizable
289
+ positive matrix. Then, ˇSmigoc’s glue applied to all matrices Ak gives an n-
290
+ by-n diagonalizable irreducible nonnegative matrix A with a positive column
291
+ and spectrum Λ. Therefore, A is similar to a diagonalizable positive matrix
292
+ with spectrum Λ and from the extension in [1] Λ is UR.
293
+ Observe that if λi ̸= 0, i = 2, . . . , n; s1(Λ) > 0; b2(Ak) > 0 in Corollary
294
+ 3.2, then we can guarantee the existence of an n-by-n diagonalizable nonneg-
295
+ ative irreducible matrix A with spectrum Λ and a positive column. Thus,
296
+ this is enough to show the universal realizability of Λ.
297
+ Example 3.1 Consider the list
298
+ Λ
299
+ =
300
+ {23, −2, −2, −1 ± 5i, −1 ± 5i, −1 ± 5i, −2 ± 7i, −2 ± 7i}, with
301
+ Γ1
302
+ =
303
+ {23, −1 ± 5i}, Γ2 = {21, −2, −1 ± 5i, −2 ± 7i},
304
+ Γ3
305
+ =
306
+ {13, −2, −1 ± 5i, −2 ± 7i}.
307
+ The diagonalizable companion matrices
308
+ A1
309
+ =
310
+
311
+
312
+ 0
313
+ 0
314
+ 598
315
+ 1
316
+ 0
317
+ 20
318
+ 0
319
+ 1
320
+ 21
321
+
322
+  , A2 =
323
+
324
+ 
325
+ 0
326
+ 0
327
+ 0
328
+ 0
329
+ 0
330
+ 57 876
331
+ 1
332
+ 0
333
+ 0
334
+ 0
335
+ 0
336
+ 35 002
337
+ 0
338
+ 1
339
+ 0
340
+ 0
341
+ 0
342
+ 6266
343
+ 0
344
+ 0
345
+ 1
346
+ 0
347
+ 0
348
+ 1695
349
+ 0
350
+ 0
351
+ 0
352
+ 1
353
+ 0
354
+ 69
355
+ 0
356
+ 0
357
+ 0
358
+ 0
359
+ 1
360
+ 13
361
+
362
+ 
363
+ ,
364
+ A3
365
+ =
366
+
367
+ 
368
+ 0
369
+ 0
370
+ 0
371
+ 0
372
+ 0
373
+ 35 828
374
+ 1
375
+ 0
376
+ 0
377
+ 0
378
+ 0
379
+ 20 618
380
+ 0
381
+ 1
382
+ 0
383
+ 0
384
+ 0
385
+ 3194
386
+ 0
387
+ 0
388
+ 1
389
+ 0
390
+ 0
391
+ 903
392
+ 0
393
+ 0
394
+ 0
395
+ 1
396
+ 0
397
+ 5
398
+ 0
399
+ 0
400
+ 0
401
+ 0
402
+ 1
403
+ 5
404
+
405
+ 
406
+ 7
407
+
408
+ realize lists Γ1, Γ2 and Γ3, respectively.
409
+ ˇSmigoc’s glue technique applied to
410
+ matrices A1, A2 and A3 gives a 13-by-13 diagonalizable irreducible nonnega-
411
+ tive matrix with a positive column and spectrum Λ. Therefore, from Lemma
412
+ 3.1 and [1], Λ is UR.
413
+ 4
414
+ The effect of adding a negative real number
415
+ to a not UR list
416
+ In this section we show how to add a negative real number −c to a list of
417
+ complex numbers
418
+ Λ = {λ, −a ± bi, . . . , −a ± bi}, λ, a, b > 0, with s1(Λ) > 0,
419
+ which is not UR or we do not know whether it is, makes
420
+ Λc = {λ, −c, −a ± bi, . . . , −a ± bi
421
+
422
+ ��
423
+
424
+ (n−2) complex numbers
425
+ }
426
+ UR.
427
+ For instance, the list Λ1 = {6, −1 ± 3i, −1 ± 3i} is realizable, but
428
+ we do not know whether it is UR, while Λ2 = {17, −3 ± 9i, −3 ± 9i} is not
429
+ realizable. However, both lists become UR if we add an appropriate negative
430
+ real number −c to each of them.
431
+ We start this section with a lemma which gives a formula to compute the
432
+ coefficient b2 in (2), Lemma 2.1, for lists Λc
433
+ Lemma 4.1 Let
434
+ Λc = {λ, −c, −a ± bi, . . . , −a ± bi
435
+
436
+ ��
437
+
438
+ (n−2) complex numbers
439
+ }
440
+ be a realizable left half-plane lists of complex numbers and let Λc = Λ1 ∪ Λ2 ∪
441
+ · · ·∪Λt be a decomposition of Λc, −c ∈ Λt, with auxiliary lists Γk with realizing
442
+ companion matrices Ak, k = 1, 2, . . . , t, as in Corollary 3.1, associated with a
443
+ desired JCF allowed by Λc. Then the entry in position (n − 1, n) of a matrix
444
+ Ak, k = 1, 2, . . . , t, is
445
+ b2 = p(2aλ − 2a2n + (4k − 2p + 1)a2 − b2) + c(λ − (n − 2)a),
446
+ (3)
447
+ 8
448
+
449
+ where (k −1) is the number of pairs −a±bi of the last list Γt of the diagonal-
450
+ izable decomposition of Λc, plus the number of pairs −a ± bi of each previous
451
+ list Γk, k = 1, . . . , t − 1, of the decomposition, and p is the number of pairs
452
+ −a ± bi of the corresponding list Γk. Moreover, b2 increases if k increases.
453
+ Proof. It is well known that b2 =
454
+
455
+ 1≤j1<j2≤n
456
+ λj1λj2, with λji ∈ Γk, from which
457
+ b2 in (3) is obtained. Moreover it is clear that b2 increases when k increases.
458
+ Example 4.1 Consider
459
+ Λc = {77
460
+ 4 , −3, −2 ± 5i, . . . , −2 ± 5i
461
+
462
+ ��
463
+
464
+ 8 complex numbers
465
+ }.
466
+ The last diagonalizable list from the diagonalizable decomposition of Λc is
467
+ Γ4 : (x − 29
468
+ 4 )(x + 3)(x + 2 − 5i)(x + 2 + 5i)
469
+ with realizing matrix
470
+ A4
471
+ =
472
+
473
+ 
474
+ 0
475
+ 0
476
+ 0
477
+ 2523
478
+ 4
479
+ 1
480
+ 0
481
+ 0
482
+ 841
483
+ 4
484
+ 0
485
+ 1
486
+ 0
487
+ 39
488
+ 4
489
+ 0
490
+ 0
491
+ 1
492
+ 1
493
+ 4
494
+
495
+  −→ b2(A4) = 39
496
+ 4
497
+ b2
498
+ =
499
+ p(2aλ − 2a2n + (4k − 2p + 1)a2 − b2) + c(λ − (n − 2)a)
500
+ b2(A4)
501
+ =
502
+ (477
503
+ 4 − 80 + (8 − 2 + 1)4 − 25) + 3(77
504
+ 4 − 16) = 39
505
+ 4 .
506
+ Suppose we want to obtain a nonnegative matrix with JCF
507
+ J = diag{J1(77
508
+ 4 ), J1(−3), J2(−2 + 5i), (J2(−2 − 5i)}.
509
+ Then,
510
+ Γ′
511
+ 1
512
+ =
513
+ {77
514
+ 4 , −2 ± 5i, −2 ± 5i}
515
+ Γ′
516
+ 2
517
+ =
518
+ {45
519
+ 4 , −3, −2 ± 5i, −2 ± 5i}.
520
+ 9
521
+
522
+ If A′
523
+ 1, A′
524
+ 2 are companion realizing matrices for Γ′
525
+ 1 and Γ′
526
+ 2, respectively, then
527
+ from Lemma 4.1, b2(A′
528
+ 2) = 103
529
+ 4 , b2(A′
530
+ 1) = 80 guarantee that A′
531
+ 1 and A′
532
+ 2 are
533
+ nonnegative. Next, the glue of A′
534
+ 1 with A′
535
+ 2 gives a nonnegative matrix with
536
+ JCF J.
537
+ Theorem 4.1 Let Λ = {λ, −a ± bi, . . . , −a ± bi}, fixed λ, a, b > 0, be a list
538
+ of complex numbers with s1(Λ) > 0. If
539
+ (2n − 11)a2 + b2
540
+ 2a
541
+ ≤ λ,
542
+ (4)
543
+ and there is a real number c > 0 such that
544
+ 2a(na − λ) + b2 − 7a2
545
+ λ − (n − 2)a
546
+ ≤ c ≤ λ − (n − 2)a,
547
+ (5)
548
+ then
549
+ Λc = {λ, −c, −a ± bi, . . . , −a ± bi
550
+
551
+ ��
552
+
553
+ (n−2) complex numbers
554
+ }
555
+ becomes universally realizable.
556
+ Proof. Consider the decomposition Λc = Λ1 ∪ Λ2 ∪ · · · ∪ Λ n−2
557
+ 2 , with
558
+ Λ1
559
+ =
560
+ {λ, −a ± bi},
561
+ Λk
562
+ =
563
+ {−a ± bi}, k = 2, . . . ,n − 4
564
+ 2
565
+ ,
566
+ Λ n−2
567
+ 2
568
+ =
569
+ {−c, −a ± bi}.
570
+ We take the auxiliary sub-lists
571
+ Γ1
572
+ =
573
+ Λ1 = {λ, −a ± bi}
574
+ Γ2
575
+ =
576
+ {λ − 2a, −a ± bi}
577
+ Γ3
578
+ =
579
+ {λ − 4a, −a ± bi}
580
+ ...
581
+ Γ n−4
582
+ 2
583
+ =
584
+ {λ − (n − 6)a, −a ± bi},
585
+ Γ n−2
586
+ 2
587
+ =
588
+ {λ − (n − 4)a, −c, −a ± bi},
589
+ 10
590
+
591
+ where Γ n−4
592
+ 2
593
+ and Γ n−2
594
+ 2
595
+ are the spectrum of the diagonalizable companion ma-
596
+ trices
597
+ A n−4
598
+ 2
599
+ =
600
+
601
+
602
+ 0
603
+ 0
604
+ (a2 + b2)(λ − (n − 6)a)
605
+ 1
606
+ 0
607
+ 2aλ − a2(2n − 11) − b2
608
+ 0
609
+ 1
610
+ λ − (n − 4)a
611
+
612
+
613
+ and
614
+ A n−2
615
+ 2
616
+ =
617
+
618
+ 
619
+ 0
620
+ 0
621
+ 0
622
+ (a2 + b2)(λ − (n − 4)a)c
623
+ 1
624
+ 0
625
+ 0
626
+ (a2 + b2)(λ − (n − 4)a) + (7a2 − b2 + 2aλ − 2a2n)c
627
+ 0
628
+ 1
629
+ 0
630
+ (λ − (n − 2)a)c + (7a2 − b2 + 2aλ − 2a2n)
631
+ 0
632
+ 0
633
+ 1
634
+ λ − (n − 2)a − c
635
+
636
+  ,
637
+ respectively. Observe that sub-lists Γ n−6
638
+ 2 , . . . , Γ2, Γ1 have the same pair of
639
+ complex numbers that the list Γ n−4
640
+ 2 , but with a bigger Perron eigenvalue.
641
+ Then, if Γ n−4
642
+ 2
643
+ is diagonalizably companion realizable, Γ n−6
644
+ 2 , . . . , Γ2, Γ1 also
645
+ are. Thus, from Lemma 2.1 we only need to consider the entries in position
646
+ (2, 3) in A n−4
647
+ 2
648
+ and in position (3, 4) in A n−2
649
+ 2 . From (4) and (5) these entries
650
+ are nonnegative and therefore A n−4
651
+ 2
652
+ and A n−2
653
+ 2
654
+ are diagonalizable companion
655
+ realizing matrices. Thus, after applying n−4
656
+ 2
657
+ times ˇSmigoc’s glue to the ma-
658
+ trices A1, . . . , A n−2
659
+ 2 , we obtain an n-by-n diagonalizable nonnegative matrix
660
+ A with spectrum Λc. Thus Λc is DR.
661
+ To obtain an n-by-n nonnegative matrix A with spectrum Λc and a non-
662
+ diagonal JCF J, we take Λc = Λ1 ∪ · · · ∪ Λt with auxiliary lists Γk being the
663
+ spectrum of a companion matrix Ak with JCF as a sub-matrix of J. Next we
664
+ need to prove that all Ak are nonnegative. To do that, we compute b2(At)
665
+ from the formula in (3), where At (with Γt containing −c) is the last diago-
666
+ nalizable matrix in the diagonalizable decomposition of Λc. From (4) and (5)
667
+ b2(At) ≥ 0. From Lemma 4.1 all b2(Ak), k = 1, . . . , t − 1, are nonnegative.
668
+ Therefore the glue of matrices Ak gives an n-by-n nonnegative matrix A with
669
+ the desired JCF J.
670
+ Example 4.2 i) Λ = {6, −1 ± 3i, −1 ± 3i} is realizable by the companion
671
+ matrix
672
+ C =
673
+
674
+ 
675
+ 0
676
+ 0
677
+ 0
678
+ 0
679
+ 600
680
+ 1
681
+ 0
682
+ 0
683
+ 0
684
+ 140
685
+ 0
686
+ 1
687
+ 0
688
+ 0
689
+ 104
690
+ 0
691
+ 0
692
+ 1
693
+ 0
694
+ 0
695
+ 0
696
+ 0
697
+ 0
698
+ 1
699
+ 2
700
+
701
+ 
702
+ ,
703
+ 11
704
+
705
+ with a non-diagonal JCF. We do not know whether Λ has a diagonalizable
706
+ realization. Then, consider the list
707
+ Λc = {6, ���c, −1 ± 3i, −1 ± 3i}.
708
+ Condition (4) is satisfied and from (5) we have 1 ≤ c ≤ 2. Then for c = 2,
709
+ we have that
710
+ Γ1 = {6, −1 ± 3i},
711
+ Γ2 = {4, −2, −1 ± 3i}
712
+ are the spectrum of diagonalizable nonnegative companion matrices
713
+ A1 =
714
+
715
+
716
+ 0
717
+ 0
718
+ 60
719
+ 1
720
+ 0
721
+ 2
722
+ 0
723
+ 1
724
+ 4
725
+
726
+  , and A2 =
727
+
728
+ 
729
+ 0
730
+ 0
731
+ 0
732
+ 80
733
+ 1
734
+ 0
735
+ 0
736
+ 36
737
+ 0
738
+ 1
739
+ 0
740
+ 2
741
+ 0
742
+ 0
743
+ 1
744
+ 0
745
+
746
+  ,
747
+ respectively. Then, from ˇSmigoc’s glue we obtain a diagonalizable nonnegative
748
+ matrix with spectrum Λc. It is clear that, from the characteristic polynomial
749
+ associated to Λc, Λc has also a companion realization A3,
750
+ A3 =
751
+
752
+ 
753
+ 0
754
+ 0
755
+ 0
756
+ 0
757
+ 0
758
+ 1200
759
+ 1
760
+ 0
761
+ 0
762
+ 0
763
+ 0
764
+ 880
765
+ 0
766
+ 1
767
+ 0
768
+ 0
769
+ 0
770
+ 348
771
+ 0
772
+ 0
773
+ 1
774
+ 0
775
+ 0
776
+ 104
777
+ 0
778
+ 0
779
+ 0
780
+ 1
781
+ 0
782
+ 4
783
+ 0
784
+ 0
785
+ 0
786
+ 0
787
+ 1
788
+ 0
789
+
790
+ 
791
+ ,
792
+ with a JCF with blocks of maximum size. Note that the formula in (3) gives
793
+ (k = 2, p = 1, t = 2) b2(A2) = 2, while (k = 3, p = 2) gives b2(A3) = 4.
794
+ Therefore Λc is UR. Observe that if 1 ≤ c ≤ 2, then
795
+ Λc = {6, −c, −1 ± 3i, −1 ± 3i}
796
+ is also UR.
797
+ ii) Consider the list Λ = {17, −3±9i, −3±9i}. Since s1(Λ) = 5 and s2(Λ) =
798
+ 1, Λ is not realizable. From condition (5), 24
799
+ 5 ≤ c ≤ 5. Then for c = 5,
800
+ Λc = {17, −5, −3 ± 9i, −3 ± 9i}
801
+ 12
802
+
803
+ is UR. In fact,
804
+ Γ1 = {17, −3 ± 9i} and Γ2 = {11, −5, −3 ± 9i}
805
+ are the spectrum of diagonalizable nonnegative companion matrices, which
806
+ from ˇSmigoc’s glue give rise to a diagonalizable nonnegative matrix with
807
+ spectrum Λc. From the characteristic polynomial associated to Λc we obtain
808
+ a nonnegative companion matrix with spectrum Λc and non-diagonal JCF.
809
+ Therefore, Λc is UR.
810
+ Observe that in Theorem 4.1, in spite that s1(Λ) > 0, if s1(Λ) is small
811
+ enough, there are lists Λc, which are not UR or we cannot to prove they are
812
+ from our procedure. However, from Theorem 4.1 we may compute a Perron
813
+ eigenvalue λ, which guarantees that for a family of lists Λc, with c > 0 and
814
+ n ≥ 6, Λc will be UR. Then, the following result characterizes a family of
815
+ left half-plane lists, which are UR.
816
+ Corollary 4.1 The left half-plane lists of the family
817
+ Λc = { 1
818
+ 2a((2n − 7)a2 + b2), −c, −a ± bi, . . . , −a ± bi
819
+
820
+ ��
821
+
822
+ (n−2) complex numbers
823
+ },
824
+ with 0 <
825
+
826
+ 3a < b, 0 < c ≤ b2−3a2
827
+ 2a
828
+ , are universally realizable..
829
+ Proof. It is clear that for λ =
830
+ 1
831
+ 2a ((2n − 7)a2 + b2) , conditions (4) and (5)
832
+ in Theorem 4.1 are satisfied. Moreover, from 0 <
833
+
834
+ 3a < b, λ − (n − 2)a =
835
+ b2−3a2
836
+ 2a
837
+ > 0.
838
+ Then, from Corollary 4.1 some left half-plane lists that are UR are:
839
+ i) Λc
840
+ =
841
+ {2n − 3
842
+ 2
843
+ a, −c, −a ± 2ai, . . . , −a ± 2ai
844
+
845
+ ��
846
+
847
+ (n−2) complex numbers
848
+ }, with 0 < c ≤ a
849
+ 2
850
+ ii) Λc
851
+ =
852
+ {(n + 1)a, −c, −a ± 3ai, . . . , −a ± 3ai
853
+
854
+ ��
855
+
856
+ (n−2) complex numbers
857
+ }, with 0 < c ≤ 3a
858
+ .
859
+ iii) Λc
860
+ =
861
+ {2n + 9
862
+ 2
863
+ a, −c, −a ± 4ai, . . . , −a ± 4ai
864
+
865
+ ��
866
+
867
+ (n−2) complex numbers
868
+ }, with 0 < c ≤ 13
869
+ 2 a
870
+ iv) Λc
871
+ =
872
+ {8n − 3
873
+ 8
874
+ a, −c, −a ± 5
875
+ 2ai, . . . , −a ± 5
876
+ 2ai
877
+
878
+ ��
879
+
880
+ (n−2) complex numbers
881
+ }, with 0 < c ≤ 13
882
+ 8 a,
883
+ 13
884
+
885
+ and so on.
886
+ Observe that in Corollary 4.1, if c is strictly less than its upper bound,
887
+ then Λc, as we have seen, can be realized by a diagonalizable matrix with its
888
+ last column being positive. Then, from the extension in [1], Λc is UR.
889
+ 5
890
+ The merge of spectra
891
+ Let Γ1 = {λ1, λ2, . . . , λn} and Γ2 = {µ1, µ2, . . . , µm} be lists of complex
892
+ numbers. In [5] the authors define the concept of the merge of the spectra Γ1
893
+ with Γ2 as
894
+ Γ = {λ1 + µ1, λ2, . . . , λn, µ2, . . . , µm},
895
+ and prove that if Γ1 and Γ2 are diagonalizably ODP realizable, then the
896
+ merge Γ1 with Γ2, is also diagonalizably ODP realizable, and therefore from
897
+ the extension in [4], Γ is UR. Here we set a similar result as follows:
898
+ Theorem 5.1 Let Γ1 = {λ1, λ2, . . . , λn}, λ1 > |λi| , i = 2, . . . , n, be the
899
+ spectrum of a diagonalizable nonnegative n-by-n matrix A ∈ CSλ1 with its last
900
+ column being positive. Let Γ2 = {µ1, µ2, . . . , µm}, µ1 > |µi| , i = 2, . . . , m, be
901
+ the spectrum of a diagonalizable nonnegative m-by-m matrix B ∈ CSµ1 with
902
+ its last column being positive. Then
903
+ Γ = {λ1 + µ1, λ2, . . . , λn, µ2, . . . , µm}
904
+ is universally realizable..
905
+ Proof. Let A ∈ CSλ1 be a diagonalizable nonnegative matrix with spec-
906
+ trum Γ1 and with its last column being positive. Then A is similar to a
907
+ diagonalizable positive matrix A′. If α1, . . . , αn are the diagonal entires of A′,
908
+ then
909
+ A1 = A′ + e[0, 0, . . . , µ1] =
910
+ � A′
911
+ 11
912
+ a
913
+ bT
914
+ αn + µ1
915
+
916
+ ∈ CSλ1+µ1
917
+ is diagonalizable positive with spectrum {λ1 + µ1, λ2, . . . , λn} and diagonal
918
+ entries α1, α2, . . . , αn + µ1. Let B ∈ CSµ1 be a diagonalizable nonnegative
919
+ matrix with spectrum Γ2 and with its last column being positive. Then B is
920
+ similar to a diagonalizable positive matrix B′ and
921
+ B1 = B′ + e[αn, 0, . . . , 0]
922
+ 14
923
+
924
+ is diagonalizable positive with spectrum {µ1 + αn, µ2, . . . , µm}. Now, by ap-
925
+ plying the ˇSmigoc’s glue to matrices A1 and B1, we obtain a diagonalizable
926
+ positive matrix C with spectrum Γ. Hence, Γ is UR
927
+ Theorem 5.1 is useful to decide, in many cases, about the universal real-
928
+ izability of left half-plane list of complex numbers, as for instance:
929
+ Example 5.1 Is the list
930
+ Γ = {30, −1, −5, −1 ± 3i, −1 ± 3i, −1 ± 3i, −3 ± 9i, −3 ± 9i} UR?
931
+ Observe that from the results in Section 4,
932
+ Γ1
933
+ =
934
+ {21, −5, −3 ± 9i, −3 ± 9i}.
935
+ Γ2
936
+ =
937
+ {9, −1, −1 ± 3i, −1 ± 3i, −1 ± 3i}
938
+ are the spectrum of a diagonalizably nonnegative matrix with constant row
939
+ sums and a positive column (the last one). Then, they are similar to diag-
940
+ onalizable positive matrices and from Theorem 5.1, the merge Γ is also the
941
+ spectrum of a diagonalizable positive matrix. Therefore, Γ is UR.
942
+ References
943
+ [1] M. Collao, M. Salas, R. L. Soto, Spectra universally realizable by doubly
944
+ stochastic matrices, Special Matrices 6 (2018) 301-309.
945
+ [2] R. C. Diaz, R. L. Soto, Nonnegative inverse elementary divisors problem
946
+ in the left half-plane, Linear Multilinear Algebra 64 (2016) 258-268.
947
+ [3] C. R. Johnson, Row stochastic matrices similar to doubly stochastic
948
+ matrices, Linear Multilinear Algebra 10 (1981) 113-130.
949
+ [4] C. R. Johnson, A. I. Julio, R. L. Soto, Nonnegative realizability with
950
+ Jordan structure, Linear Algebra Appl. 587 (2020) 302-313.
951
+ [5] C. R. Johnson, A. I. Julio, R. L. Soto, Indices of diagonalizable and
952
+ universal realizability of spectra, submitted.
953
+ [6] T. J. Laffey, H. ˇSmigoc, Nonnegative realization of spectra having neg-
954
+ ative real parts, Linear Algebra Appl. 416 (2006) 148-159.
955
+ 15
956
+
957
+ [7] H. Minc, Inverse elementary divisor problem for nonnegative matrices,
958
+ Proc. of the Amer. Math. Society 83 (1981) 665-669.
959
+ [8] H. Minc, Inverse elementary divisor problem for doubly stochastic ma-
960
+ trices, Linear Multilinear Algebra 11 (1982) 121-131.
961
+ [9] H. ˇSmigoc, The inverse eigenvalue problem for nonnegative matrices,
962
+ Linear Algebra Appl. 393 (2004) 365-374.
963
+ [10] R. L. Soto, R. C. D´ıaz, H. Nina, M. Salas, Nonnegative matrices with
964
+ prescribed spectrum and elementary divisors, Linear Algebra Appl. 439
965
+ (2013) 3591-3604.
966
+ 16
967
+
5NFIT4oBgHgl3EQf7itm/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,532 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf,len=531
2
+ page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
3
+ page_content='11398v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
4
+ page_content='SP] 26 Jan 2023 ˇSmigoc’s glue for universal realizability in the left half-plane∗ Jaime H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
5
+ page_content=' Alfaro, Ricardo L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
6
+ page_content=' Soto† Dpto.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
7
+ page_content=' Matem´aticas, Universidad Cat´olica del Norte, Casilla 1280 Antofagasta, Chile.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
8
+ page_content=' Abstract A list Λ = {λ1, λ2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
9
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
10
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
11
+ page_content=' , λn} of complex numbers is said to be real- izable if it is the spectrum of a nonnegative matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
12
+ page_content=' Λ is said to be universally realizable (UR) if it is realizable for each possible Jordan canonical form allowed by Λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
13
+ page_content=' In this paper, using companion matrices and applying a procedure by ˇSmigoc, is provides a sufficient condi- tion for the universal realizability of left half-plane spectra, that is, Λ = {λ1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
14
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
15
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
16
+ page_content=' , λn} with λ1 > 0, Re λi ≤ 0, i = 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
17
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
18
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
19
+ page_content=' , n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
20
+ page_content=' It is also shown how the effect of adding a negative real number to a not UR left half- plane list of complex numbers, makes the new list UR, and a family of left half-plane lists that are UR is characterized.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
21
+ page_content=' AMS classification: 15A18, 15A20, 15A29 Key words: Nonnegative matrix;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
22
+ page_content=' companion matrix;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
23
+ page_content=' Universal realizabil- ity;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
24
+ page_content=' ˇSmigoc’s glue.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
25
+ page_content=' 1 Introduction A list Λ = {λ1, λ2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
26
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
27
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
28
+ page_content=' , λn} of complex numbers is said to be realizable if it is the spectrum of an n-by-n nonnegative matrix A, and A is said to be a realizing matrix for Λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
29
+ page_content=' The problem of the realizability of spectra is called the ∗Supported by Universidad Cat´olica del Norte-VRIDT 036-2020, N´ucleo 6 UCN VRIDT 083-2020, Chile.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
30
+ page_content=' †E-mail addresses: rsoto@ucn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
31
+ page_content='cl (R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
32
+ page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
33
+ page_content=' Soto), jaime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
34
+ page_content='alfaro@ucn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
35
+ page_content='cl (J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
36
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
37
+ page_content=' Alfaro).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
38
+ page_content=' 1 nonnegative inverse eigenvalue problem (NIEP).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
39
+ page_content=' From the Perron-Frobenius Theorem we know that if Λ = {λ1, λ2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
40
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
41
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
42
+ page_content=' , λn} is the spectrum of an n- by-n nonnegative matrix A, then the leading eigenvalue of A equals to the spectral radius of A, ρ(A) =: max 1≤i≤n |λi| .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
43
+ page_content=' This eigenvalue is called the Perron eigenvalue, and we shall assume in this paper, that ρ(A) = λ1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
44
+ page_content=' A matrix is said to have constant row sums, if each one of its rows sums up to the same constant α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
45
+ page_content=' The set of all matrices with constant row sums equal to α, is denoted by CSα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
46
+ page_content=' Then, any matrix A ∈ CSα has the eigenvector eT = [1, 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
47
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
48
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
49
+ page_content=' , 1], corresponding to the eigenvalue α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
50
+ page_content=' The real matrices with constant row sums are important because it is known that the problem of finding a nonnegative matrix with spectrum Λ = {λ1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
51
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
52
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
53
+ page_content=' , λn}, is equivalent to the problem of finding a nonnegative matrix in CSλ1 with spectrum Λ (see [3]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
54
+ page_content=' We denote by ek, the n-dimensional vector, with 1 in the kth position and zeros elsewhere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
55
+ page_content=' If Λ = {λ1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
56
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
57
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
58
+ page_content=' , λn}, then sk(Λ) = n � i=1 λk i , k = 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
59
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
60
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
61
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
62
+ page_content=' A list Λ = {λ1, λ2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
63
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
64
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
65
+ page_content=' , λn} of complex numbers, is said to be diagonaliz- ably realizable (DR), if there is a diagonalizable realizing matrix for Λ The list Λ is said to be universally realizable (UR), if it is realizable for each possi- ble Jordan canonical form (JCF) allowed by Λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
66
+ page_content=' The problem of the universal realizability of spectra, is called the universal realizability problem (URP).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
67
+ page_content=' The URP contains the NIEP, and both problems are equivalent if the given numbers λ1, λ2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
68
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
69
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
70
+ page_content=' , λn are distinct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
71
+ page_content=' In terms of n, both problems remain unsolved for n ≥ 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
72
+ page_content=' It is clear that if Λ is UR, then Λ must be DR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
73
+ page_content=' The first known results on the URP are due to Minc [7, 8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
74
+ page_content=' In terms of the URP, Minc [7] showed that if a list Λ = {λ1, λ2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
75
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
76
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
77
+ page_content=' , λn} of complex numbers is the spectrum of a diagonalizable positive matrix, then Λ is UR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
78
+ page_content=' The positivity condition is necessary for Minc’s proof, and the question set by Minc himself, whether the result holds for nonnegative realizations was open for almost 40 years.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
79
+ page_content=' Recently, two extensions of Minc’s result have been obtained in [1, 4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
80
+ page_content=' In [1], Collao et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
81
+ page_content=' showed that a nonnegative matrix A ∈ CSλ1, with a pos- itive column, is similar to a positive matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
82
+ page_content=' Note that if A is nonnegative with a positive row and AT has a positive eigenvector, then AT is also similar to a positive matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
83
+ page_content=' Besides, if Λ is diagonalizably realizable by a matrix A ∈ CSλ1 having a positive column, then Λ is UR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
84
+ page_content=' In [4], Johnson et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
85
+ page_content=' in- troduced the concept of ODP matrices, that is, nonnegative matrices with all positive off-diagonal entries (zero diagonal entries are permitted) and proved 2 that if Λ is diagonalizably ODP realizable, then Λ is UR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
86
+ page_content=' Note that both extensions contain, as a particular case, Minc’s result in [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
87
+ page_content=' Both extensions allow us to significantly increase the set of spectra that can be proved to be UR, as for instance, certain spectra Λ = {λ1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
88
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
89
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
90
+ page_content=' , λn} with s1(Λ) = 0, which is not possible from Minc’s result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
91
+ page_content=' In particular, we shall use the extension in [1] to generate some of our results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
92
+ page_content=' Remark 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
93
+ page_content='1 In [1], Section 2, Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
94
+ page_content='1 and Corollary 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
95
+ page_content='1, there is an error in assuming that if A is nonnegative with a positive row, then AT, which has a positive column, is similar to a positive matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
96
+ page_content=' The reason is that we cannot guarantee that AT has a positive eigenvector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
97
+ page_content=' Regarding non-positive universal realizations, we mention that in [10, 2] the authors proved, respectively, that lists of complex numbers Λ = {λ1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
98
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
99
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
100
+ page_content=' , λn}, of Suleimanova type, that is, λ1 > 0, Re λi ≤ 0, |Re λi| ≥ |Im λi| , i = 2, 3, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
101
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
102
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
103
+ page_content=' , n, or of ˇSmigoc type, that is, λ1 > 0, Re λi ≤ 0, √ 3 |Re λi| ≥ |Im λi| , i = 2, 3, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
104
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
105
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
106
+ page_content=' , n, (1) are UR if and only if they are realizable if and only if n � i=1 λi ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
107
+ page_content=' Outline of the paper: The paper is organized as follows: In Section 2, we present the mathematical tools that will be used to generate our results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
108
+ page_content=' In Section 3, we study the URP for a left half-plane list and we give a sufficient condition for it to be UR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
109
+ page_content=' In Section 4, we discuss the effect of adding a negative real number −c to a left half-plane list Λ = {λ1, −a±bi, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
110
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
111
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
112
+ page_content=' , −a±bi}, which is not UR (or even not realizable), or we do not know whether it is, and we show how Λ ∪ {−c} becomes UR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
113
+ page_content=' We also characterize a family of left half-plane lists that are UR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
114
+ page_content=' In Section 5, we show that the merge of two lists diagonalizably realizable Γ1 ∈ CSλ1 and Γ2 ∈ CSµ1 is UR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
115
+ page_content=' Examples are shown to illustrate the results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
116
+ page_content=' 2 Preliminaries Throughout this paper we use the following results: The first one, by ˇSmigoc [9], gives a procedure that we call ˇSmigoc’s glue technique, to obtain from two 3 matrices A and B of size n-by-n and m-by-m, respectively, a new (n+m−1)- by-(n + m − 1) matrix C, preserving in certain way, the corresponding JCFs of A and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
117
+ page_content=' The second one, by Laffey and ˇSmigoc [6] solves the NIEP for lists of complex numbers on the left half-plane, that is, lists with λ1 > 0, Re λi ≤ 0, i = 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
118
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
119
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
120
+ page_content=' , n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
121
+ page_content=' Moreover, we also use Lemma 5 in [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
122
+ page_content=' Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
123
+ page_content='1 [9] Suppose B is an m-by-m matrix with a JCF that contains at least one 1-by-1 Jordan block corresponding to the eigenvalue c: J(B) = � c 0 0 I(B) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
124
+ page_content=' Let t and s, respectively, be the left and the right eigenvectors of B associated with the 1-by-1 Jordan block in the above canonical form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
125
+ page_content=' Furthermore, we normalize vectors t and s so that t Ts = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
126
+ page_content=' Let J(A) be a JCF for the n-by-n matrix A = � A1 a bT c � , where A1 is an (n − 1)-by-(n − 1) matrix and a and b are vectors in C n-1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
127
+ page_content=' Then the matrix C = � A1 at T sb T B � has JCF J(C) = � J(A) 0 0 I(B) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
128
+ page_content=' Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
129
+ page_content='2 [6] Let Λ = {λ1, λ2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
130
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
131
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
132
+ page_content=' , λn} be a list of complex numbers with λ1 ≥ |λi| and Re λi ≤ 0, i = 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
133
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
134
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
135
+ page_content=' , n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
136
+ page_content=' Then Λ is realizable if and only if s1 = s1(Λ) ≥ 0, s2 = s2(Λ) ≥ 0, s2 1 ≤ ns2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
137
+ page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
138
+ page_content='1 [6] Let t be a nonnegative real number and let λ2, λ3, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
139
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
140
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
141
+ page_content=' , λn be complex numbers with real parts less than or equal to zero, such that the list {λ2, λ3, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
142
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
143
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
144
+ page_content=' , λn} is closed under complex conjugation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
145
+ page_content=' Set ρ = 2t−λ2−· · ·−λn and f(x) = (x − ρ) n � j=2 (x − λj) = xn − 2txn−1 + b2xn−2 + · · · + bn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
146
+ page_content=' (2) Then b2 ≤ 0 implies bj ≤ 0 for j = 3, 4, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
147
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
148
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
149
+ page_content=' , n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
150
+ page_content=' 4 3 Companion matrices and the ˇSmigoc’s glue.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
151
+ page_content=' We say that a list Λ = {λ1, λ2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
152
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
153
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
154
+ page_content=' , λn} of complex numbers is on the left half- plane if λ1 > 0, Re λi ≤ 0, i = 2, 3, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
155
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
156
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
157
+ page_content=' , n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
158
+ page_content=' In this section we give a sufficient condition for a left half-plane list of complex numbers to be UR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
159
+ page_content=' Of course, it is our interest to consider lists of complex numbers containing elements out of realizability region of lists of ˇSmigoc type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
160
+ page_content=' Our strategy consists in to decompose the given list Λ = {λ1, λ2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
161
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
162
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
163
+ page_content=' , λn} into sub-lists Λk = {λk1, λk2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
164
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
165
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
166
+ page_content=' , λkpk}, λ11 = λ1, k = 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
167
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
168
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
169
+ page_content=' , t, with auxiliary lists Γ1 = Λ1 Γk = {s1(Γk−1), λk1, λk2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
170
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
171
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
172
+ page_content=' , λkpk}, k = 2, , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
173
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
174
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
175
+ page_content=' , t, each one of them being the spectrum of a nonnegative companion matrix Ak, in such a way that it be possible to apply ˇSmigoc’s glue technique to the matrices Ak, to obtain an n-by-n nonnegative matrix with spectrum Λ for each possible JCF allowed by Λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
176
+ page_content=' In the case s1(Λ) > 0, with λi ̸= 0, i = 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
177
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
178
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
179
+ page_content=' , n, we may choose, if they exist, sub-lists Γk being the spectrum of a diagonalizable nonnegative companion matrix with a positive column.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
180
+ page_content=' Then, after ˇSmigoc’s glue, we obtain a diagonalizable nonnegative n-by-n matrix A with spectrum Λ and a positive column, which is similar to a diagonalizable positive matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
181
+ page_content=' Thus, from the extension in [1], Λ is UR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
182
+ page_content=' Next we have the following corollary from Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
183
+ page_content='1: Corollary 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
184
+ page_content='1 Let Λ = {λ1, λ2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
185
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
186
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
187
+ page_content=' , λn} be a realizable left half-plane list of complex numbers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
188
+ page_content=' Suppose that for each JCF J allowed by Λ, there exists a decomposition of Λ as Λ = Λ1 ∪ Λ2 ∪ · · · ∪ Λt, where Λk = {λk1, λk2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
189
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
190
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
191
+ page_content=' , λkpk}, k = 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
192
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
193
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
194
+ page_content=' , t, λ11 = λ1, with auxiliary lists ��1 = Λ1, Γk = {s1(Γk−1), λk1, λk2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
195
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
196
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
197
+ page_content=' , λkpk}, k = 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
198
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
199
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
200
+ page_content=' , t, being the spectrum of a nonnegative companion matrix Ak with JCF J(Ak) as a sub-matrix of J, k = 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
201
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
202
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
203
+ page_content=' , t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
204
+ page_content=' Then Λ is universally realizable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
205
+ page_content=' 5 Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
206
+ page_content=' Since each matrix Ak, k = 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
207
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
208
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
209
+ page_content=' , t, is nonnegative companion with JCF J(Ak) being a submatrix of J, then, from ˇSmigoc’s glue applied to matrices Ak, we obtain an n-by-n nonnegative matrix with spectrum Λ and JCF J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
210
+ page_content=' As J is any JCF allowed by Λ, then Λ is UR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
211
+ page_content=' The following result is well known and useful.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
212
+ page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
213
+ page_content='1 Let A be a diagonalizable irreducible nonnegative matrix with spectrum Λ = {λ1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
214
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
215
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
216
+ page_content=' , λn} and a positive row or column.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
217
+ page_content=' Then A is similar to a diagonalizable nonnegative matrix B ∈ CSλ1, with a positive row or column.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
218
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
219
+ page_content=' If A is irreducible nonnegative, it has a positive eigenvector xT = [x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
220
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
221
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
222
+ page_content=' , xn].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
223
+ page_content=' Then if D = dig{x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
224
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
225
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
226
+ page_content=' , xn}, the matrix B = D−1AD = �xj xi ai,j � ∈ CSλ1 is nonnegative with a positive row or column.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
227
+ page_content=' Suppose all lists Γk in Corollary 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
228
+ page_content='1, can be taken as the spectrum of a diagonalizable nonnegative companion matrix Ak with a positive column (the last one).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
229
+ page_content=' Then, since the glue of matrices Ak gives an n-by-n diagonalizable irreducible nonnegative matrix A with a positive column and spectrum Λ, A is similar to a diagonalizable positive matrix with spectrum Λ and therefore Λ is UR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
230
+ page_content=' This is what the next result shows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
231
+ page_content=' Corollary 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
232
+ page_content='2 Let Λ = {λ1, λ2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
233
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
234
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
235
+ page_content=' , λn}, λi ̸= 0, i = 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
236
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
237
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
238
+ page_content=' , n, s1(Λ) > 0, be a realizable left half-plane list of complex numbers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
239
+ page_content=' If there is a decomposition of Λ as in Corollary 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
240
+ page_content='1, with all lists Γk being the spectrum of a diagonal- izable nonnegative companion matrix Ak, with a positive column, then Λ is universally realizable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
241
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
242
+ page_content=' It is enough to prove the result for two lists Γk of the decomposition of Λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
243
+ page_content=' Let Γk−1 and Γk, k = 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
244
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
245
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
246
+ page_content=' , t, be the spectrum, respectively, of matrices Ak−1 and Ak, which are diagonalizable nonnegative companion with a posi- tive column (the last one).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
247
+ page_content=' Then Ak−1 and Ak are irreducible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
248
+ page_content=' In particular, Ak has a positive eigenvector s and, since AT k is also irreducible, Ak has also a positive left eigenvector tT with tTs = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
249
+ page_content=' Now, let Ak−1 = � A1,k−1 a bT s1(Γk−1) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
250
+ page_content=' 6 Since the last column of Ak−1 is positive, the vector a is also positive and atT is a positive submatrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
251
+ page_content=' Therefore, the glue of Ak−1 with Ak, Ck = � A1,k−1 atT sbT Ak � , is a diagonalizable nonnegative matrix with its last column being positive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
252
+ page_content=' Note that Ck is also irreducible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
253
+ page_content=' Then Ck has, besides, a positive eigenvector, and from Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
254
+ page_content='1 Ck is similar to a matrix with constant row sums and with its last column being positive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
255
+ page_content=' Thus, Ck is similar to a diagonalizable positive matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
256
+ page_content=' Then, ˇSmigoc’s glue applied to all matrices Ak gives an n- by-n diagonalizable irreducible nonnegative matrix A with a positive column and spectrum Λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
257
+ page_content=' Therefore, A is similar to a diagonalizable positive matrix with spectrum Λ and from the extension in [1] Λ is UR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
258
+ page_content=' Observe that if λi ̸= 0, i = 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
259
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
260
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
261
+ page_content=' , n;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
262
+ page_content=' s1(Λ) > 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
263
+ page_content=' b2(Ak) > 0 in Corollary 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
264
+ page_content='2, then we can guarantee the existence of an n-by-n diagonalizable nonneg- ative irreducible matrix A with spectrum Λ and a positive column.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
265
+ page_content=' Thus, this is enough to show the universal realizability of Λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
266
+ page_content=' Example 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
267
+ page_content='1 Consider the list Λ = {23, −2, −2, −1 ± 5i, −1 ± 5i, −1 ± 5i, −2 ± 7i, −2 ± 7i}, with Γ1 = {23, −1 ± 5i}, Γ2 = {21, −2, −1 ± 5i, −2 ± 7i}, Γ3 = {13, −2, −1 ± 5i, −2 ± 7i}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
268
+ page_content=' The diagonalizable companion matrices A1 = \uf8ee \uf8f0 0 0 598 1 0 20 0 1 21 \uf8f9 \uf8fb , A2 = \uf8ee \uf8ef\uf8ef\uf8ef\uf8ef\uf8ef\uf8ef\uf8f0 0 0 0 0 0 57 876 1 0 0 0 0 35 002 0 1 0 0 0 6266 0 0 1 0 0 1695 0 0 0 1 0 69 0 0 0 0 1 13 \uf8f9 \uf8fa\uf8fa\uf8fa\uf8fa\uf8fa\uf8fa\uf8fb , A3 = \uf8ee \uf8ef\uf8ef\uf8ef\uf8ef\uf8ef\uf8ef\uf8f0 0 0 0 0 0 35 828 1 0 0 0 0 20 618 0 1 0 0 0 3194 0 0 1 0 0 903 0 0 0 1 0 5 0 0 0 0 1 5 \uf8f9 \uf8fa\uf8fa\uf8fa\uf8fa\uf8fa\uf8fa\uf8fb 7 realize lists Γ1, Γ2 and Γ3, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
269
+ page_content=' ˇSmigoc’s glue technique applied to matrices A1, A2 and A3 gives a 13-by-13 diagonalizable irreducible nonnega- tive matrix with a positive column and spectrum Λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
270
+ page_content=' Therefore, from Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
271
+ page_content='1 and [1], Λ is UR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
272
+ page_content=' 4 The effect of adding a negative real number to a not UR list In this section we show how to add a negative real number −c to a list of complex numbers Λ = {λ, −a ± bi, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
273
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
274
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
275
+ page_content=' , −a ± bi}, λ, a, b > 0, with s1(Λ) > 0, which is not UR or we do not know whether it is, makes Λc = {λ, −c, −a ± bi, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
276
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
277
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
278
+ page_content=' , −a ± bi � �� � (n−2) complex numbers } UR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
279
+ page_content=' For instance, the list Λ1 = {6, −1 ± 3i, −1 ± 3i} is realizable, but we do not know whether it is UR, while Λ2 = {17, −3 ± 9i, −3 ± 9i} is not realizable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
280
+ page_content=' However, both lists become UR if we add an appropriate negative real number −c to each of them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
281
+ page_content=' We start this section with a lemma which gives a formula to compute the coefficient b2 in (2), Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
282
+ page_content='1, for lists Λc Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
283
+ page_content='1 Let Λc = {λ, −c, −a ± bi, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
284
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
285
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
286
+ page_content=' , −a ± bi � �� � (n−2) complex numbers } be a realizable left half-plane lists of complex numbers and let Λc = Λ1 ∪ Λ2 ∪ · ·∪Λt be a decomposition of Λc, −c ∈ Λt, with auxiliary lists Γk with realizing companion matrices Ak, k = 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
287
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
288
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
289
+ page_content=' , t, as in Corollary 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
290
+ page_content='1, associated with a desired JCF allowed by Λc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
291
+ page_content=' Then the entry in position (n − 1, n) of a matrix Ak, k = 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
292
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
293
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
294
+ page_content=' , t, is b2 = p(2aλ − 2a2n + (4k − 2p + 1)a2 − b2) + c(λ − (n − 2)a), (3) 8 where (k −1) is the number of pairs −a±bi of the last list Γt of the diagonal- izable decomposition of Λc, plus the number of pairs −a ± bi of each previous list Γk, k = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
295
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
296
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
297
+ page_content=' , t − 1, of the decomposition, and p is the number of pairs −a ± bi of the corresponding list Γk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
298
+ page_content=' Moreover, b2 increases if k increases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
299
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
300
+ page_content=' It is well known that b2 = � 1≤j1<j2≤n λj1λj2, with λji ∈ Γk, from which b2 in (3) is obtained.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
301
+ page_content=' Moreover it is clear that b2 increases when k increases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
302
+ page_content=' Example 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
303
+ page_content='1 Consider Λc = {77 4 , −3, −2 ± 5i, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
304
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
305
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
306
+ page_content=' , −2 ± 5i � �� � 8 complex numbers }.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
307
+ page_content=' The last diagonalizable list from the diagonalizable decomposition of Λc is Γ4 : (x − 29 4 )(x + 3)(x + 2 − 5i)(x + 2 + 5i) with realizing matrix A4 = \uf8ee \uf8ef\uf8ef\uf8f0 0 0 0 2523 4 1 0 0 841 4 0 1 0 39 4 0 0 1 1 4 \uf8f9 \uf8fa\uf8fa\uf8fb −→ b2(A4) = 39 4 b2 = p(2aλ − 2a2n + (4k − 2p + 1)a2 − b2) + c(λ − (n − 2)a) b2(A4) = (477 4 − 80 + (8 − 2 + 1)4 − 25) + 3(77 4 − 16) = 39 4 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
308
+ page_content=' Suppose we want to obtain a nonnegative matrix with JCF J = diag{J1(77 4 ), J1(−3), J2(−2 + 5i), (J2(−2 − 5i)}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
309
+ page_content=' Then, Γ′ 1 = {77 4 , −2 ± 5i, −2 ± 5i} Γ′ 2 = {45 4 , −3, −2 ± 5i, −2 ± 5i}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
310
+ page_content=' 9 If A′ 1, A′ 2 are companion realizing matrices for Γ′ 1 and Γ′ 2, respectively, then from Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
311
+ page_content='1, b2(A′ 2) = 103 4 , b2(A′ 1) = 80 guarantee that A′ 1 and A′ 2 are nonnegative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
312
+ page_content=' Next, the glue of A′ 1 with A′ 2 gives a nonnegative matrix with JCF J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
313
+ page_content=' Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
314
+ page_content='1 Let Λ = {λ, −a ± bi, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
315
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
316
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
317
+ page_content=' , −a ± bi}, fixed λ, a, b > 0, be a list of complex numbers with s1(Λ) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
318
+ page_content=' If (2n − 11)a2 + b2 2a ≤ λ, (4) and there is a real number c > 0 such that 2a(na − λ) + b2 − 7a2 λ − (n − 2)a ≤ c ≤ λ − (n − 2)a, (5) then Λc = {λ, −c, −a ± bi, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
319
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
320
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
321
+ page_content=' , −a ± bi � �� � (n−2) complex numbers } becomes universally realizable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
322
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
323
+ page_content=' Consider the decomposition Λc = Λ1 ∪ Λ2 ∪ · · · ∪ Λ n−2 2 , with Λ1 = {λ, −a ± bi}, Λk = {−a ± bi}, k = 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
324
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
325
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
326
+ page_content=' ,n − 4 2 , Λ n−2 2 = {−c, −a ± bi}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
327
+ page_content=' We take the auxiliary sub-lists Γ1 = Λ1 = {λ, −a ± bi} Γ2 = {λ − 2a, −a ± bi} Γ3 = {λ − 4a, −a ± bi} .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
328
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
329
+ page_content=' Γ n−4 2 = {λ − (n − 6)a,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
330
+ page_content=' −a ± bi},' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
331
+ page_content=' Γ n−2 2 = {λ − (n − 4)a,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
332
+ page_content=' −c,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
333
+ page_content=' −a ± bi},' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
334
+ page_content=' 10 where Γ n−4 2 and Γ n−2 2 are the spectrum of the diagonalizable companion ma- trices A n−4 2 = \uf8ee \uf8f0 0 0 (a2 + b2)(λ − (n − 6)a) 1 0 2aλ − a2(2n − 11) − b2 0 1 λ − (n − 4)a \uf8f9 \uf8fb and A n−2 2 = \uf8ee \uf8ef\uf8ef\uf8f0 0 0 0 (a2 + b2)(λ − (n − 4)a)c 1 0 0 (a2 + b2)(λ − (n − 4)a) + (7a2 − b2 + 2aλ − 2a2n)c 0 1 0 (λ − (n − 2)a)c + (7a2 − b2 + 2aλ − 2a2n) 0 0 1 λ − (n − 2)a − c \uf8f9 \uf8fa\uf8fa\uf8fb ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
335
+ page_content=' respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
336
+ page_content=' Observe that sub-lists Γ n−6 2 , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
337
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
338
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
339
+ page_content=' , Γ2, Γ1 have the same pair of complex numbers that the list Γ n−4 2 , but with a bigger Perron eigenvalue.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
340
+ page_content=' Then, if Γ n−4 2 is diagonalizably companion realizable, Γ n−6 2 , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
341
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
342
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
343
+ page_content=' , Γ2, Γ1 also are.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
344
+ page_content=' Thus, from Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
345
+ page_content='1 we only need to consider the entries in position (2, 3) in A n−4 2 and in position (3, 4) in A n−2 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
346
+ page_content=' From (4) and (5) these entries are nonnegative and therefore A n−4 2 and A n−2 2 are diagonalizable companion realizing matrices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
347
+ page_content=' Thus, after applying n−4 2 times ˇSmigoc’s glue to the ma- trices A1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
348
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
349
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
350
+ page_content=' , A n−2 2 , we obtain an n-by-n diagonalizable nonnegative matrix A with spectrum Λc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
351
+ page_content=' Thus Λc is DR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
352
+ page_content=' To obtain an n-by-n nonnegative matrix A with spectrum Λc and a non- diagonal JCF J, we take Λc = Λ1 ∪ · · · ∪ Λt with auxiliary lists Γk being the spectrum of a companion matrix Ak with JCF as a sub-matrix of J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
353
+ page_content=' Next we need to prove that all Ak are nonnegative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
354
+ page_content=' To do that, we compute b2(At) from the formula in (3), where At (with Γt containing −c) is the last diago- nalizable matrix in the diagonalizable decomposition of Λc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
355
+ page_content=' From (4) and (5) b2(At) ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
356
+ page_content=' From Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
357
+ page_content='1 all b2(Ak), k = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
358
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
359
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
360
+ page_content=' , t − 1, are nonnegative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
361
+ page_content=' Therefore the glue of matrices Ak gives an n-by-n nonnegative matrix A with the desired JCF J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
362
+ page_content=' Example 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
363
+ page_content='2 i) Λ = {6, −1 ± 3i, −1 ± 3i} is realizable by the companion matrix C = \uf8ee \uf8ef\uf8ef\uf8ef\uf8ef\uf8f0 0 0 0 0 600 1 0 0 0 140 0 1 0 0 104 0 0 1 0 0 0 0 0 1 2 \uf8f9 \uf8fa\uf8fa\uf8fa\uf8fa\uf8fb , 11 with a non-diagonal JCF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
364
+ page_content=' We do not know whether Λ has a diagonalizable realization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
365
+ page_content=' Then, consider the list Λc = {6, −c, −1 ± 3i, −1 ± 3i}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
366
+ page_content=' Condition (4) is satisfied and from (5) we have 1 ≤ c ≤ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
367
+ page_content=' Then for c = 2, we have that Γ1 = {6, −1 ± 3i}, Γ2 = {4, −2, −1 ± 3i} are the spectrum of diagonalizable nonnegative companion matrices A1 = \uf8ee \uf8f0 0 0 60 1 0 2 0 1 4 \uf8f9 \uf8fb , and A2 = \uf8ee \uf8ef\uf8ef\uf8f0 0 0 0 80 1 0 0 36 0 1 0 2 0 0 1 0 \uf8f9 \uf8fa\uf8fa\uf8fb , respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
368
+ page_content=' Then, from ˇSmigoc’s glue we obtain a diagonalizable nonnegative matrix with spectrum Λc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
369
+ page_content=' It is clear that, from the characteristic polynomial associated to Λc, Λc has also a companion realization A3, A3 = \uf8ee \uf8ef\uf8ef\uf8ef\uf8ef\uf8ef\uf8ef\uf8f0 0 0 0 0 0 1200 1 0 0 0 0 880 0 1 0 0 0 348 0 0 1 0 0 104 0 0 0 1 0 4 0 0 0 0 1 0 \uf8f9 \uf8fa\uf8fa\uf8fa\uf8fa\uf8fa\uf8fa\uf8fb , with a JCF with blocks of maximum size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
370
+ page_content=' Note that the formula in (3) gives (k = 2, p = 1, t = 2) b2(A2) = 2, while (k = 3, p = 2) gives b2(A3) = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
371
+ page_content=' Therefore Λc is UR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
372
+ page_content=' Observe that if 1 ≤ c ≤ 2, then Λc = {6, −c, −1 ± 3i, −1 ± 3i} is also UR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
373
+ page_content=' ii) Consider the list Λ = {17, ��3±9i, −3±9i}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
374
+ page_content=' Since s1(Λ) = 5 and s2(Λ) = 1, Λ is not realizable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
375
+ page_content=' From condition (5), 24 5 ≤ c ≤ 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
376
+ page_content=' Then for c = 5, Λc = {17, −5, −3 ± 9i, −3 ± 9i} 12 is UR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
377
+ page_content=' In fact, Γ1 = {17, −3 ± 9i} and Γ2 = {11, −5, −3 ± 9i} are the spectrum of diagonalizable nonnegative companion matrices, which from ˇSmigoc’s glue give rise to a diagonalizable nonnegative matrix with spectrum Λc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
378
+ page_content=' From the characteristic polynomial associated to Λc we obtain a nonnegative companion matrix with spectrum Λc and non-diagonal JCF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
379
+ page_content=' Therefore, Λc is UR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
380
+ page_content=' Observe that in Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
381
+ page_content='1, in spite that s1(Λ) > 0, if s1(Λ) is small enough, there are lists Λc, which are not UR or we cannot to prove they are from our procedure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
382
+ page_content=' However, from Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
383
+ page_content='1 we may compute a Perron eigenvalue λ, which guarantees that for a family of lists Λc, with c > 0 and n ≥ 6, Λc will be UR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
384
+ page_content=' Then, the following result characterizes a family of left half-plane lists, which are UR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
385
+ page_content=' Corollary 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
386
+ page_content='1 The left half-plane lists of the family Λc = { 1 2a((2n − 7)a2 + b2), −c, −a ± bi, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
387
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
388
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
389
+ page_content=' , −a ± bi � �� � (n−2) complex numbers }, with 0 < √ 3a < b, 0 < c ≤ b2−3a2 2a , are universally realizable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
390
+ page_content='. Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
391
+ page_content=' It is clear that for λ = 1 2a ((2n − 7)a2 + b2) , conditions (4) and (5) in Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
392
+ page_content='1 are satisfied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
393
+ page_content=' Moreover, from 0 < √ 3a < b, λ − (n − 2)a = b2−3a2 2a > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
394
+ page_content=' Then, from Corollary 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
395
+ page_content='1 some left half-plane lists that are UR are: i) Λc = {2n − 3 2 a, −c, −a ± 2ai, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
396
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
397
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
398
+ page_content=' , −a ± 2ai � �� � (n−2) complex numbers }, with 0 < c ≤ a 2 ii) Λc = {(n + 1)a, −c, −a ± 3ai, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
399
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
400
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
401
+ page_content=' , −a ± 3ai � �� � (n−2) complex numbers }, with 0 < c ≤ 3a .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
402
+ page_content=' iii) Λc = {2n + 9 2 a, −c, −a ± 4ai, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
403
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
404
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
405
+ page_content=' , −a ± 4ai � �� � (n−2) complex numbers }, with 0 < c ≤ 13 2 a iv) Λc = {8n − 3 8 a, −c, −a ± 5 2ai, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
406
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
407
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
408
+ page_content=' , −a ± 5 2ai � �� � (n−2) complex numbers }, with 0 < c ≤ 13 8 a, 13 and so on.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
409
+ page_content=' Observe that in Corollary 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
410
+ page_content='1, if c is strictly less than its upper bound, then Λc, as we have seen, can be realized by a diagonalizable matrix with its last column being positive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
411
+ page_content=' Then, from the extension in [1], Λc is UR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
412
+ page_content=' 5 The merge of spectra Let Γ1 = {λ1, λ2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
413
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
414
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
415
+ page_content=' , λn} and Γ2 = {µ1, µ2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
416
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
417
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
418
+ page_content=' , µm} be lists of complex numbers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
419
+ page_content=' In [5] the authors define the concept of the merge of the spectra Γ1 with Γ2 as Γ = {λ1 + µ1, λ2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
420
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
421
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
422
+ page_content=' , λn, µ2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
423
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
424
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
425
+ page_content=' , µm}, and prove that if Γ1 and Γ2 are diagonalizably ODP realizable, then the merge Γ1 with Γ2, is also diagonalizably ODP realizable, and therefore from the extension in [4], Γ is UR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
426
+ page_content=' Here we set a similar result as follows: Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
427
+ page_content='1 Let Γ1 = {λ1, λ2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
428
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
429
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
430
+ page_content=' , λn}, λ1 > |λi| , i = 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
431
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
432
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
433
+ page_content=' , n, be the spectrum of a diagonalizable nonnegative n-by-n matrix A ∈ CSλ1 with its last column being positive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
434
+ page_content=' Let Γ2 = {µ1, µ2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
435
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
436
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
437
+ page_content=' , µm}, µ1 > |µi| , i = 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
438
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
439
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
440
+ page_content=' , m, be the spectrum of a diagonalizable nonnegative m-by-m matrix B ∈ CSµ1 with its last column being positive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
441
+ page_content=' Then Γ = {λ1 + µ1, λ2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
442
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
443
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
444
+ page_content=' , λn, µ2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
445
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
446
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
447
+ page_content=' , µm} is universally realizable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
448
+ page_content='. Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
449
+ page_content=' Let A ∈ CSλ1 be a diagonalizable nonnegative matrix with spec- trum Γ1 and with its last column being positive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
450
+ page_content=' Then A is similar to a diagonalizable positive matrix A′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
451
+ page_content=' If α1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
452
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
453
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
454
+ page_content=' , αn are the diagonal entires of A′, then A1 = A′ + e[0, 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
455
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
456
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
457
+ page_content=' , µ1] = � A′ 11 a bT αn + µ1 � ∈ CSλ1+µ1 is diagonalizable positive with spectrum {λ1 + µ1, λ2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
458
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
459
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
460
+ page_content=' , λn} and diagonal entries α1, α2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
461
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
462
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
463
+ page_content=' , αn + µ1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
464
+ page_content=' Let B ∈ CSµ1 be a diagonalizable nonnegative matrix with spectrum Γ2 and with its last column being positive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
465
+ page_content=' Then B is similar to a diagonalizable positive matrix B′ and B1 = B′ + e[αn, 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
466
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
467
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
468
+ page_content=' , 0] 14 is diagonalizable positive with spectrum {µ1 + αn, µ2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
469
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
470
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
471
+ page_content=' , µm}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
472
+ page_content=' Now, by ap- plying the ˇSmigoc’s glue to matrices A1 and B1, we obtain a diagonalizable positive matrix C with spectrum Γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
473
+ page_content=' Hence, Γ is UR Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
474
+ page_content='1 is useful to decide, in many cases, about the universal real- izability of left half-plane list of complex numbers, as for instance: Example 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
475
+ page_content='1 Is the list Γ = {30, −1, −5, −1 ± 3i, −1 ± 3i, −1 ± 3i, −3 ± 9i, −3 ± 9i} UR?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
476
+ page_content=' Observe that from the results in Section 4, Γ1 = {21, −5, −3 ± 9i, −3 ± 9i}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
477
+ page_content=' Γ2 = {9, −1, −1 ± 3i, −1 ± 3i, −1 ± 3i} are the spectrum of a diagonalizably nonnegative matrix with constant row sums and a positive column (the last one).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
478
+ page_content=' Then, they are similar to diag- onalizable positive matrices and from Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
479
+ page_content='1, the merge Γ is also the spectrum of a diagonalizable positive matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
480
+ page_content=' Therefore, Γ is UR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
481
+ page_content=' References [1] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
482
+ page_content=' Collao, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
483
+ page_content=' Salas, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
484
+ page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
485
+ page_content=' Soto, Spectra universally realizable by doubly stochastic matrices, Special Matrices 6 (2018) 301-309.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
486
+ page_content=' [2] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
487
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
488
+ page_content=' Diaz, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
489
+ page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
490
+ page_content=' Soto, Nonnegative inverse elementary divisors problem in the left half-plane, Linear Multilinear Algebra 64 (2016) 258-268.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
491
+ page_content=' [3] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
492
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
493
+ page_content=' Johnson, Row stochastic matrices similar to doubly stochastic matrices, Linear Multilinear Algebra 10 (1981) 113-130.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
494
+ page_content=' [4] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
495
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
496
+ page_content=' Johnson, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
497
+ page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
498
+ page_content=' Julio, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
499
+ page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
500
+ page_content=' Soto, Nonnegative realizability with Jordan structure, Linear Algebra Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
501
+ page_content=' 587 (2020) 302-313.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
502
+ page_content=' [5] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
503
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
504
+ page_content=' Johnson, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
505
+ page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
506
+ page_content=' Julio, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
507
+ page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
508
+ page_content=' Soto, Indices of diagonalizable and universal realizability of spectra, submitted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
509
+ page_content=' [6] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
510
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
511
+ page_content=' Laffey, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
512
+ page_content=' ˇSmigoc, Nonnegative realization of spectra having neg- ative real parts, Linear Algebra Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
513
+ page_content=' 416 (2006) 148-159.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
514
+ page_content=' 15 [7] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
515
+ page_content=' Minc, Inverse elementary divisor problem for nonnegative matrices, Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
516
+ page_content=' of the Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
517
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
518
+ page_content=' Society 83 (1981) 665-669.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
519
+ page_content=' [8] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
520
+ page_content=' Minc, Inverse elementary divisor problem for doubly stochastic ma- trices, Linear Multilinear Algebra 11 (1982) 121-131.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
521
+ page_content=' [9] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
522
+ page_content=' ˇSmigoc, The inverse eigenvalue problem for nonnegative matrices, Linear Algebra Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
523
+ page_content=' 393 (2004) 365-374.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
524
+ page_content=' [10] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
525
+ page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
526
+ page_content=' Soto, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
527
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
528
+ page_content=' D´ıaz, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
529
+ page_content=' Nina, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
530
+ page_content=' Salas, Nonnegative matrices with prescribed spectrum and elementary divisors, Linear Algebra Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
531
+ page_content=' 439 (2013) 3591-3604.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
532
+ page_content=' 16' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/5NFIT4oBgHgl3EQf7itm/content/2301.11398v1.pdf'}
5tFKT4oBgHgl3EQf-i5C/content/2301.11958v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4793883e423753fbd8febf6d6eda6ee2bf2990a42b3361cf8dbaef36c3ccf772
3
+ size 652703
5tFKT4oBgHgl3EQf-i5C/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:07efe7bbb2a90246c5019cb5ff2fb56d9584d824c25be2cbcf3387e1974a273c
3
+ size 5373997
5tFKT4oBgHgl3EQf-i5C/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9543f57b33b0022bbb98ddcfc9f15c02c7b1c6be8377f0afec6c0b552b456f77
3
+ size 233245
69AzT4oBgHgl3EQfEvpR/content/tmp_files/2301.00998v1.pdf.txt ADDED
@@ -0,0 +1,2670 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+ Vocabulary-informed Zero-shot and Open-set
3
+ Learning
4
+ Yanwei Fu, Xiaomei Wang, Hanze Dong, Yu-Gang Jiang, Meng Wang, Xiangyang Xue, Leonid Sigal
5
+ Abstract—Despite significant progress in object categorization, in recent years, a number of important challenges remain; mainly, the
6
+ ability to learn from limited labeled data and to recognize object classes within large, potentially open, set of labels. Zero-shot learning
7
+ is one way of addressing these challenges, but it has only been shown to work with limited sized class vocabularies and typically
8
+ requires separation between supervised and unsupervised classes, allowing former to inform the latter but not vice versa. We propose
9
+ the notion of vocabulary-informed learning to alleviate the above mentioned challenges and address problems of supervised, zero-
10
+ shot, generalized zero-shot and open set recognition using a unified framework. Specifically, we propose a weighted maximum margin
11
+ framework for semantic manifold-based recognition that incorporates distance constraints from (both supervised and unsupervised)
12
+ vocabulary atoms. Distance constraints ensure that labeled samples are projected closer to their correct prototypes, in the embedding
13
+ space, than to others. We illustrate that resulting model shows improvements in supervised, zero-shot, generalized zero-shot, and large
14
+ open set recognition, with up to 310K class vocabulary on Animal with Attributes and ImageNet datasets.
15
+ Index Terms—Vocabulary-informed learning, Generalized zero-shot learning, Open-set recognition, Zero-shot learning.
16
+ !
17
+ 1
18
+ INTRODUCTION
19
+ Object recognition, more specifically object categorization, has
20
+ seen unprecedented advances in recent years with development
21
+ of convolutional neural networks (CNNs) [41]. However, most
22
+ successful recognition models, to date, are formulated as su-
23
+ pervised learning problems, in many cases requiring hundreds,
24
+ if not thousands, labeled instances to learn a given concept
25
+ class [15]. This exuberant need for large labeled instances
26
+ has limited recognition models to domains with hundreds to
27
+ thousands of classes. Humans, on the other hand, are able
28
+ to distinguish beyond 30, 000 basic level categories [8]. Even
29
+ more impressive is the fact that humans can learn from few
30
+ examples, by effectively leveraging information from other
31
+ object category classes, and even recognize objects without
32
+ ever seeing them (e.g., by reading about them on the Internet).
33
+ This ability has spawned the research in few-shot and zero-
34
+ shot learning.
35
+ Zero-shot learning (ZSL) has now been widely studied
36
+ in a variety of research areas including neural decoding of
37
+ fMRI images [54], character recognition [44], face verification
38
+ [42], object recognition [43], and video understanding [27],
39
+ [82]. Typically, zero-shot learning approaches aim to recog-
40
+ nize instances from the unseen or unknown testing target
41
+ • Yanwei Fu and Hanze Dong are with the School of Data Science, Fudan
42
+ University, Shanghai. Email: {yanweifu,hzdong15}@fudan.edu.cn.
43
+ • Xiaomei Wang, Yu-Gang Jiang and Xiangyang Xue are with the School of
44
+ Computer Science, Shanghai Key Lab of Intelligent Information Processing,
45
+ Fudan University. Email: {17110240025,ygj,xyxue}@fudan.edu.cn.
46
+ • Yu-Gang Jiang is the corresponding author. Yanwei Fu is also with
47
+ AITRICS.
48
+ • Meng
49
+ Wang
50
+ is
51
+ with
52
+ the
53
+ School
54
+ of
55
+ Computer
56
+ and
57
+ Information
58
+ Science,
59
+ Hefei
60
+ University
61
+ of
62
+ Technology,
63
+ Hefei,
64
+ China.
65
+ Email:
66
67
+ • Leonid Sigal is with the Department of Computer Science, University of
68
+ British Columbia, BC, Canada. Email: [email protected].
69
+ categories by transferring information through intermediate-
70
+ level semantic representations, from known observed source
71
+ (or auxiliary) categories for which many labeled instances
72
+ exist. In other words, supervised classes/instances, are used
73
+ as context for recognition of classes that contain no visual
74
+ instances at training time, but that can be put in some
75
+ correspondence with supervised classes/instances. Therefore,
76
+ a general experimental setting of ZSL is that the classes in
77
+ target and source (auxiliary) dataset are disjoint. Typically, the
78
+ learning is done on the source dataset and then information is
79
+ transferred to the target dataset, with performance measured
80
+ on the latter.
81
+ This setting has a few important drawbacks: (1) it assumes
82
+ that target classes cannot be mis-classified as source classes
83
+ and vice versa; this greatly and unrealistically simplifies the
84
+ problem; (2) the target label set is often relatively small,
85
+ between ten [43] and several thousand unknown labels [24],
86
+ compared to at least 30, 000 entry level categories that humans
87
+ can distinguish; (3) large amounts of data in the source
88
+ (auxiliary) classes are required, which is problematic as it has
89
+ been shown that most object classes have very few instances
90
+ (long-tailed distribution of objects in the world [72]); and
91
+ (4) the vast open set vocabulary and corresponding semantic
92
+ knowledge, defined as part of ZSL [54], is not leveraged in
93
+ any way to inform the learning or source class recognition.
94
+ A few works recently looked at resolving (1) through
95
+ class-incremental learning [66], [68] or generalized zero-shot
96
+ learning (G-ZSL) [11], [54] which are designed to distinguish
97
+ between seen (source) and unseen (target) classes at the testing
98
+ time and apply an appropriate model – supervised for the
99
+ former and ZSL for the latter. However, (2)–(4) remain largely
100
+ unresolved. In particular, while (2) and (3) are artifacts of the
101
+ ZSL setting, (4) is more fundamental; e.g., a recent study [34]
102
+ argues that concepts, in our own brains, are represented in
103
+ the form of a continuous semantic space mapped smoothly
104
+ arXiv:2301.00998v1 [cs.CV] 3 Jan 2023
105
+
106
+ 2
107
+ Fig. 1.
108
+ Illustration of the semantic embeddings learned (left) using support vector regression (SVR) and (right)
109
+ using the proposed vocabulary-informed learning (Deep WMM-Voc) approach. In both cases, t-SNE visualization is
110
+ used to illustrate samples from 4 source/auxiliary classes (denoted by ×) and 2 target/zero-shot classed (denoted by
111
+ ◦) from the ImageNet dataset. Decision boundaries, illustrated by dashed lines, are drawn by hand for visualization.
112
+ The large margin constraints, both among the source/target classes and the external vocabulary atoms, are denoted
113
+ by arrows and words on the right. Note that the WMM-Voc approach on the right leads to a better embedding with
114
+ more compact and separated classes (e.g., see truck and car or unicycle and tricycle).
115
+ across the cortical surface. For example, consider learning
116
+ about a car by looking at image instances in Figure 1. Not
117
+ knowing that other motor vehicles exist in the world, one may
118
+ be tempted to call anything that has 4-wheels a car. As a
119
+ result, the zero-shot class truck may have a large overlap with
120
+ the car class (see Figure 1 (left)). However, imagine knowing
121
+ that there also exist many other motor vehicles (trucks, mini-
122
+ vans, etc). Even without having visually seen such objects,
123
+ the very basic knowledge that they exist in the world and are
124
+ closely related to a car should, in principle, alter the criterion
125
+ for recognizing instance as a car (making the recognition
126
+ criterion stricter in this case). Encoding this in our vocabulary-
127
+ informed learning model results in better separation among
128
+ classes (see Figure 1 (right)).
129
+ To tackle the limitations of ZSL and towards the goal
130
+ of generic recognition, we propose the idea of vocabulary-
131
+ informed learning. Specifically, assuming we have few labeled
132
+ training instances and a large, potentially open set, vocab-
133
+ ulary/semantic dictionary (along with textual sources from
134
+ which statistical semantic relations among vocabulary atoms
135
+ can be learned), the task of vocabulary-informed learning is to
136
+ learn a unified model that utilizes this semantic dictionary to
137
+ help train better classifiers for observed (source) classes and
138
+ unobserved (target) classes in supervised, zero-shot, general-
139
+ ized zero-shot, and open set image recognition settings.
140
+ In particular, we formulate Weighted Maximum Margin
141
+ Vocabulary-informed Embedding (WMM-Voc), which learns
142
+ a joint embedding for visual features and semantic words.
143
+ In this formulation, two maximum margin sets of constraints
144
+ are simultaneously optimized. The first set ensures that la-
145
+ beled training visual instances, belonging to a particular class,
146
+ project close to semantic word vector prototype corresponding
147
+ to the class name in the embedding space. The second set
148
+ ensures that these instances are closer to the correct class
149
+ word vector prototype than to any of the incorrect ones in
150
+ the embedding space; including those that may not contain
151
+ training data (i.e., zero-shot). The constraints in the first
152
+ set further take into the account the distribution of training
153
+ samples for each class, and nearby classes, to dynamically
154
+ set appropriate margins. In other words, for some classes the
155
+ distance, between the projected training sample and the word
156
+ vector prototype, is explicitly penalized more (or less) than for
157
+ others. This weighting is derived using extreme values theory.
158
+ Contributions: Our main contribution is to propose a
159
+ novel paradigm for potentially open set image recognition:
160
+ vocabulary-informed learning (Voc), which is capable of uti-
161
+ lizing vocabulary over unsupervised items, during training, to
162
+ improve recognition. We extend the model initially proposed
163
+ by us in a conference paper [29] to include class-specific
164
+ weighting in the data term, as well as the ability to run the
165
+ models as an end-to-end network. Particularly, classification is
166
+ done through the nearest-neighbor distance to class prototypes
167
+ in the semantic embedding space. Semantic embedding is
168
+ learned subject to constraints ensuring that labeled images
169
+ project into semantic space such that they end up closer to
170
+ the correct class prototypes than to incorrect ones (whether
171
+ those prototypes are part of the source or target classes). We
172
+ show that word embedding (word2vec) can be used effectively
173
+
174
+ mini van
175
+ X××o×0
176
+ roller
177
+ 0
178
+ skate
179
+ %
180
+ 00
181
+ XOX
182
+ 8.
183
+ x8
184
+ X
185
+ %
186
+ X
187
+ X
188
+ to
189
+ 8
190
+ 8
191
+ 8
192
+ 8
193
+ to
194
+ 00
195
+ 88
196
+ skate
197
+ 8
198
+ board
199
+ 8
200
+ 8
201
+ xo
202
+ helicopter
203
+ motorcycle
204
+ dirigible
205
+ motor
206
+ Q
207
+ scooter3
208
+ to initialize the semantic space. Experimentally, we illustrate
209
+ that through this paradigm: we can achieve very competitive
210
+ supervised (on source classes), ZSL (on target classes) and
211
+ G-ZSL performance, as well as open set image recognition
212
+ performance with a large number of unobserved vocabulary
213
+ entities (up to 300, 000); effective learning with few samples
214
+ is also illustrated. Critically, our models can be directly utilized
215
+ in G-ZSL scenario and still has much better results than the
216
+ baselines.
217
+ 2
218
+ RELATED WORK
219
+ Our model belongs to a class of transfer learning approaches
220
+ [55], also sometimes called meta-learning [79] or learning to
221
+ learn [70]. The key idea of transfer learning is to transfer
222
+ the knowledge from previously learned categories to recognize
223
+ new categories with no training examples (zero-shot learning
224
+ [43], [59]), few examples (one-shot learning [19], [71]) or
225
+ from vast open set vocabulary [29]. The process of knowledge
226
+ transfer can be done by sharing features [4], [5], [22], [33],
227
+ [73], [81], semantic attributes [43], [58], [60], or contextual
228
+ information [74].
229
+ Visual-semantic embeddings have been widely used for
230
+ transfer learning. Such models embed visual features into a
231
+ semantic space by learning projections of different forms.
232
+ Examples include WSABIE [80], ALE [2], SJE [3], DeViSE
233
+ [24], SVR [18], [43], kernel embedding [33] and Siamese
234
+ networks [37].
235
+ 2.1
236
+ Open-set Recognition
237
+ The term “open set recognition” was initially defined in [65],
238
+ [66] and formalized in [6], [7], [63] which mainly aim at
239
+ identifying whether an image belongs to a seen or unseen
240
+ classes. The problem is also known as class-incremental
241
+ learning. However, none of these methods can further identify
242
+ classes for unseen instances. The exceptions are [24], [53]
243
+ which augment zero-shot (unseen) class labels with source
244
+ (seen) labels in some of their experimental settings. Similarly,
245
+ we define the open set image recognition as the problems of
246
+ recognizing the class name of an image from a potentially
247
+ very large open set vocabulary (including, but not limited
248
+ to source and target labels). Note that methods like [65],
249
+ [66] are orthogonal but potentially useful here – it is still
250
+ worth identifying seen or unseen instances to be recognized
251
+ with different label sets. Conceptually similar, but different
252
+ in formulation and task, open-vocabulary object retrieval [32]
253
+ focused on retrieving objects using natural language open-
254
+ vocabulary queries.
255
+ 2.2
256
+ One-shot Learning
257
+ While most of machine learning-based object recognition
258
+ algorithms require a large amount of training data, one-shot
259
+ learning [20] aims to learn object classifiers from one, or very
260
+ few examples. To compensate for the lack of training instances
261
+ and enable one-shot learning, knowledge must be transferred
262
+ from other sources, for example, by sharing features [5],
263
+ semantic attributes [27], [43], [58], [60], or contextual infor-
264
+ mation [74]. However, none of the previous work had used
265
+ the open set vocabulary to help learn the object classifiers.
266
+ 2.3
267
+ Zero-shot Learning
268
+ Zero-shot Learning (ZSL) aims to recognize novel classes with
269
+ no training instance by transferring knowledge from source
270
+ classes. ZSL was first explored with use of attribute-based
271
+ semantic representations [18], [26], [27], [28], [42], [56]. This
272
+ required pre-defined attribute vector prototypes for each class,
273
+ which is costly to obtain for a large-scale dataset. Recently,
274
+ semantic word vectors were proposed as a way to embed
275
+ any class name without human annotation effort; they can
276
+ therefore serve as an alternative semantic representation [3],
277
+ [24], [31], [53] for ZSL. Semantic word vectors are learned
278
+ from large-scale text corpus by language models, such as
279
+ word2vec [52] or GloVec [57]. However, most of the previous
280
+ work only use word vectors as semantic representations in ZSL
281
+ setting, but have neither (1) utilized semantic word vectors
282
+ explicitly for learning better classifiers; nor (2) for extending
283
+ ZSL setting towards open set image recognition. A notable
284
+ exception is [53] which aims to recognize 21K zero-shot
285
+ classes given a modest vocabulary of 1K source classes; we
286
+ explore vocabularies that are up to an order of the magnitude
287
+ larger – 310K.
288
+ Generalized zero-shot recognition (G-ZSL) [11] relaxed the
289
+ problem setup of conventional zero-shot learning by consider-
290
+ ing the training classes in the recognition step. Chao et al.
291
+ [11] investigated the G-ZSL task and found that it is less
292
+ effective to directly extend the existing zero-shot learning
293
+ algorithms to deal with G-ZSL setting. Recently, Xian et
294
+ al. [54] systematically compared the evaluation settings for
295
+ ZSL and G-ZSL. Comparing against existing ZSL models,
296
+ which are inferior in the G-ZSL scenario, we show that our
297
+ vocabulary-informed frameworks can be directly utilized for
298
+ G-ZSL and achieve very competitive performance.
299
+ 2.4
300
+ Visual-semantic Embedding
301
+ Mapping between visual features and semantic entities has
302
+ been explored in three ways: (1) directly learning the embed-
303
+ ding by regressing from visual features to the semantic space
304
+ using Support Vector Regressors (SVR) [18], [43] or neural
305
+ network [68]; (2) projecting visual features and semantic
306
+ entities into a common new space, such as SJE [3], WSABIE
307
+ [80], ALE [2], DeViSE [24], and CCA [25], [28]; (3) learning
308
+ the embeddings by regressing from the semantic space to
309
+ visual features, including [1], [10], [38], [49].
310
+ In contrast to other embedding methods, our model trains a
311
+ better visual-semantic embedding from only few training in-
312
+ stances with the help of a large amount of open set vocabulary
313
+ items (using a maximum margin strategy). Our formulation
314
+ is inspired by the unified semantic embedding model of
315
+ [35], however, unlike [35], our formulation is built on word
316
+ vector representation, contains a data term, and incorporates
317
+ constraints to unlabeled vocabulary prototypes.
318
+ 3
319
+ VOCABULARY-INFORMED LEARNING
320
+ 3.1
321
+ Problem setup
322
+ Assume a labeled source dataset Ds = {xi, zi}Ns
323
+ i=1 of Ns
324
+ samples, where xi ∈ Rp is the image feature representation
325
+
326
+ 4
327
+ of image i and zi ∈ Ws is a class label taken from a set
328
+ of English words or phrases W; consequently, |Ws| is the
329
+ number of source classes. Further, suppose another set of class
330
+ labels for target classes Wt, also taken from W, such that
331
+ Ws ∩Wt = ∅, for which no labeled samples are available. We
332
+ note that potentially |Wt| >> |Ws|.
333
+ Given a new test image feature vector x∗ the goal is then to
334
+ learn a function z∗ = f(x∗), using all available information,
335
+ that predicts a class label z∗. Note that the form of the problem
336
+ changes drastically depending on the label set assumed for z∗:
337
+ • Supervised learning: z∗ ∈ Ws;
338
+ • Zero-shot learning: z∗ ∈ Wt ;
339
+ • Generalized zero-shot learning: z∗ ∈ {Ws, Wt};
340
+ • Open set recognition: z∗ ∈ W.
341
+ Note that open set recognition is similar to generalized zero-
342
+ shot learning, however, in open set setting additional distractor
343
+ classes that do not exist in either source or target datasets are
344
+ present. We posit that a single unified f(x∗) can be learned for
345
+ all cases. We formalize the definition of vocabulary-informed
346
+ learning (Voc) as follows:
347
+ Definition 3.1. Vocabulary-informed Learning (Voc):
348
+ is a
349
+ learning setting that makes use of complete vocabulary data
350
+ (W) during training. Unlike a more traditional ZSL that typi-
351
+ cally makes use of the vocabulary (e.g., semantic embedding)
352
+ at test time, Voc utilizes exactly the same data during training.
353
+ Notably, Voc requires no additional annotations or semantic
354
+ knowledge; it simply shifts the burden from testing to training,
355
+ leveraging the vocabulary to learn a better model.
356
+ The vocabulary W can be represented by semantic embed-
357
+ ding space learned by word2vec [52] or GloVec [57] on large-
358
+ scale corpus; each vocabulary entity w ∈ W is represented as
359
+ a distributed semantic vector u ∈ Rd. Semantics of embedding
360
+ space help with knowledge transfer among classes, and allow
361
+ ZSL, G-ZSL and open set image recognition. Note that such
362
+ semantic embedding spaces are equivalent to the “semantic
363
+ knowledge base” for ZSL defined in [54] and hence make it
364
+ appropriate to use Vocabulary-informed Learning in ZSL.
365
+ 3.2
366
+ Learning Embedding and Recognition
367
+ Assuming we can learn a mapping g : Rp → Rd, from image
368
+ features to this semantic space, recognition can be carried out
369
+ using simple nearest neighbor distance, e.g., f(x∗) = car if
370
+ g(x∗) is closer to ucar than to any other word vector; uj in
371
+ this context can be interpreted as the prototype of the class
372
+ j. Essentially, the attribute or semantic word vector of the
373
+ class name can be taken as the class prototype [30]. The
374
+ core question is then how to learn the mapping g(x) and
375
+ what form of inference is optimal in the semantic space.
376
+ For learning we propose the discriminative maximum margin
377
+ criterion that ensures that labeled samples xi project closer
378
+ to their corresponding class prototypes uzi than to any other
379
+ prototype ui in the open set vocabulary i ∈ W \ zi.
380
+ Learning Embedding: To learn the function f(x), one needs
381
+ to establish the correspondence between visual feature space
382
+ and semantic space. Particularly, in the training step, each
383
+ image sample xi is regressed towards its corresponding class
384
+ prototype uzi by minimizing
385
+ W = arg min
386
+ W
387
+ Ns
388
+
389
+ i=1
390
+ L (xi, uzi) + λ ∥ W ∥2
391
+ F
392
+ (1)
393
+ where L (xi, uzi) = ∥g (xi) − uzi∥2
394
+ 2 ; and g : Rp → Rd is
395
+ the mapping from image features to semantic space; ∥ · ∥F
396
+ indicates the Frobenius Norm. If g (x) = W T x is a linear
397
+ mapping, we have the closed form solution for Eq. (1). The
398
+ loss function in Eq. (1) can be interperted as a variant of SVR
399
+ embedding. However, this is too limiting. To learn the linear
400
+ embedding matrix W, we introduce and discuss two sets of
401
+ methods in Section 3.3 and Section 3.4.
402
+ Recognition: The recognition step can be formulated using
403
+ the nearest neighbor classifier. Given a testing instance x⋆,
404
+ z⋆ = arg min
405
+ i
406
+ ��W T x⋆ − ui
407
+ ��2
408
+ 2 .
409
+ (2)
410
+ Eq. (2) measures the distance between predicted vector and the
411
+ class prototypes in the semantic space. In terms of different
412
+ label set, we can do supervise, zero-shot, generalized zero-shot
413
+ or open set recognition without modifications.
414
+ In particular, we explore a simple variant of Eq. (2) to
415
+ classify the testing instance x⋆,
416
+ z∗ = arg min
417
+ i
418
+ ∥ W T x∗ − ω (ui) ∥2
419
+ 2,
420
+ (3)
421
+ where the Nearest Neighbor (NN) classifier measures distance
422
+ between the predicted semantic vectors and a function of pro-
423
+ totypes in the semantic space, e.g., ω (ui) = ui is equivalent
424
+ to Eq (2). In practice, we employ semantic vector prototype
425
+ averaging to define ω (·). For example, sometimes, there might
426
+ be more than one positive prototype, such as pig, pigs and hog.
427
+ In such the circumstance, choosing the most likely prototype
428
+ and using NN may not be sensible, hance we introduce the
429
+ averaging strategy to consider more prototypes for robustness.
430
+ Note that this strategy is known as Rocchio algorithm in infor-
431
+ mation retrieval. Rocchio algorithm is a method for relevance
432
+ feedback that uses more relevant instances to update the query
433
+ for better recall and possibly precision in the vector space
434
+ (Chap 14 in [51]). It was first suggested for use in ZSL in [27];
435
+ more sophisticated algorithms [25], [58] are also possible.
436
+ 3.3
437
+ Maximum Margin Voc Embedding (MM-Voc)
438
+ The maximum margin vocabulary-informed embedding learns
439
+ the mapping g(x) : Rp → Rd, from low-level features x to the
440
+ semantic word space by utilizing maximum margin strategy.
441
+ Specifically, consider g(x) = W T x, where1 W ⊆ Rp×d.
442
+ Ideally we want to estimate W such that uzi = W T xi for all
443
+ labeled instances in Ds. Note that we would obviously want
444
+ this to hold for instances belonging to unobserved classes as
445
+ well, but we cannot enforce this explicitly in the optimization
446
+ as we have no labeled samples for them.
447
+ Data Term: The easiest way to enforce the above objective
448
+ is to minimize Euclidian distance between sample projections
449
+ 1. Generalizing to a kernel version is straightforward, see [76].
450
+
451
+ 5
452
+ and appropriate prototypes in the embedding space,
453
+ D (xi, uzi) =
454
+ ��W T xi − uzi
455
+ ��2
456
+ 2 .
457
+ (4)
458
+ Where we need to minimize this term with respect to each
459
+ instance (xi, uzi), where zi is the class label of xi in Ds. Such
460
+ embedding is also known, in the literature, as data embedding
461
+ [35] or compatibility function [3].
462
+ To make the embedding more comparable to support vector
463
+ regression (SVR), we employ the maximal margin strategy –
464
+ ϵ−insensitive smooth SVR (ϵ−SSVR) [46] in Eq. (1). That is,
465
+ L (xi, uzi) = Lϵ (xi, uzi) + λ ∥ W ∥2
466
+ F
467
+ (5)
468
+ where Lϵ (xi, uzi) = 1T | ξ |2
469
+ ϵ; λ is regularization coefficient.
470
+ (|ξ|ϵ)j = max
471
+
472
+ 0,
473
+ ���W T
474
+ ⋆jxi − (uzi)j
475
+ ��� − wzi · ϵ
476
+
477
+ (6)
478
+ |ξ|ϵ ∈ Rd; ()j indicates the j-th value of corresponding vector;
479
+ W⋆j is the j-th column of W, and wzi is the scaling weight
480
+ derived from the density of class zi and it’s neighboring
481
+ classes. In our conference version [29], equal weight wzi is
482
+ used for all classes. Here we notice that it is beneficial to
483
+ use the density/coverage of each labeled training class as the
484
+ constraint in learning the projection from visual feature space
485
+ to semantic space. We introduce a specific weighting strategy
486
+ to compute wzi in Section 3.4.
487
+ The conventional ϵ−SVR is formulated as a constrained
488
+ minimization problem, i.e., convex quadratic programming
489
+ problem, while ϵ−SSVR employs quadratic smoothing [89] to
490
+ make Eq. (5) differentiable everywhere, and thus ϵ−SSVR can
491
+ be solved as an unconstrained minimization problem directly2.
492
+ Triplet Term: Data term above only ensures that labelled
493
+ samples project close to their correct prototypes. However,
494
+ since it is doing so for many samples and over a number
495
+ of classes, it is unlikely that all the data constraints can be
496
+ satisfied exactly. Specifically, consider the following case, if
497
+ uzi is in the part of the semantic space where no other entities
498
+ live (i.e., distance from uzi to any other prototype in the em-
499
+ bedding space is large), then projecting xi further away from
500
+ uzi is asymptomatic, i.e., will not result in misclassification.
501
+ However, if the uzi is close to other prototypes then minor
502
+ error in regression may result in misclassification.
503
+ To embed this intuition into our learning, we enforce more
504
+ discriminative constraints in the learned semantic embedding
505
+ space. Specifically, the distance of D (xi, uzi) should not only
506
+ be as small as possible, but should also be smaller than the
507
+ distance D (xi, ua), ∀a ̸= zi. Formally, we define the triplet
508
+ term
509
+ MV (xi, uzi) = 1
510
+ 2
511
+ AV
512
+
513
+ a=1
514
+
515
+ C + 1
516
+ 2D (xi, uzi) − 1
517
+ 2D (xi, ua)
518
+ �2
519
+ +
520
+ ,
521
+ (7)
522
+ where a ∈ Wt (or more precisely a ∈ W \ Ws) is selected
523
+ from the open vocabulary; C is the margin gap constant. Here,
524
+ [·]2
525
+ + indicates the quadratically smooth hinge loss [89] which
526
+ 2. In practice, our tentative experiments shows that the Eq. (4) and Eq. (5)
527
+ will lead to the similar results, on average; but formulation in Eq. (5) is more
528
+ stable and has lower variance.
529
+ is convex and has the gradient at every point. To speedup
530
+ computation, we use the closest AV target prototypes to each
531
+ source/auxiliary prototype uzi in the semantic space. We also
532
+ define similar constraints for the source prototype pairs:
533
+ MS (xi, uzi) = 1
534
+ 2
535
+ BS
536
+
537
+ b=1
538
+
539
+ C + 1
540
+ 2D (xi, uzi) − 1
541
+ 2D (xi, ub)
542
+ �2
543
+ +
544
+ (8)
545
+ where b ∈ Ws is selected from source/auxiliary dataset
546
+ vocabulary. This term enforces that D (xi, uzi) should be
547
+ smaller than the distance D (xi, ub), ∀b ̸= zi. To facilitate the
548
+ computation, we similarly use closest BS prototypes that are
549
+ closest to each prototype uzi in the source classes. Note that,
550
+ the Crammer and Singer loss [13], [75] is the upper bound of
551
+ Eq. (7) and (8) which we use to tolerate slight variants of uzi
552
+ (e.g., the prototypes of ’pigs’ Vs. ’pig’).
553
+ To sum up, the complete triplet maximum margin term is:
554
+ M (xi, uzi) = MV (xi, uzi) + MS (xi, uzi) .
555
+ (9)
556
+ We note that the form of rank hinge loss in Eq. (7) and (8) is
557
+ similar to DeViSE [24], but DeViSE only considers loss with
558
+ respect to source/auxiliary data and prototypes.
559
+ Maximum Margin Vocabulary-informed Embedding: The
560
+ complete combined objective can now be written as:
561
+ W = argmin
562
+ W
563
+ nT
564
+
565
+ i=1
566
+ (αLϵ (xi, uzi) +
567
+ (1 − α)M (xi, uzi)) + λ ∥ W ∥2
568
+ F , (10)
569
+ where α ∈ [0, 1] is the coefficient that controls contribution
570
+ of the two terms. One practical advantage is that the objective
571
+ function in Eq. (10) is an unconstrained minimization problem
572
+ which is differentiable and can be solved with L-BFGS. W is
573
+ initialized with all zeros and converges in 10 − 20 iterations.
574
+ 3.4
575
+ Weighted
576
+ Maximum
577
+ Margin
578
+ Voc
579
+ Embedding
580
+ (WMM-Voc)
581
+ We note that there is no previous method that directly estimates
582
+ the density of source training classes in the semantic space.
583
+ However, doing so may lead to several benefits. First, the num-
584
+ ber of training instances in source classes may be unbalanced.
585
+ In such a case, an estimate of the density of samples in a
586
+ training class can be utilized as a constraint in learning the
587
+ embedding characterized by Eq. (6). Second, in the semantic
588
+ space, the instances from the classes whose data samples
589
+ span a large radius [62] may reside in the neighborhood
590
+ of many other classes or open vocabulary. This can happen
591
+ when the embedding is not well learned. We can interpret this
592
+ phenomenon as hubness [45], [67]3. Adding a penalty based
593
+ on the density of each training class may be helpful in better
594
+ learning the embedding and alleviating the hubness problem.
595
+ This subsection introduces a strategy for estimating the
596
+ density of each known class in the semantic space (i.e.,
597
+ wzi in Eq. (6)). Generally, we know the prototype of each
598
+ known and novel class in the semantic space. To estimate
599
+ 3. However, the causes for hubness are still under investigation [16], [67].
600
+
601
+ 6
602
+ Fig. 2. Illustration of margin distribution of prototypes in
603
+ the semantic space.
604
+ the density/coverage of a known class, one needs to look at
605
+ pairwise distance between a prototype and the nearest negative
606
+ instance and the furthest positive instance. This intuition leads
607
+ us to introduce the concept of margin distribution.
608
+ Margin Distribution: The concept of margin is fundamen-
609
+ tal to maximum margin classifiers (e.g., SVMs) in machine
610
+ learning. The margin enables an intuitive interpretation of such
611
+ classifiers in searching for the maximum margin separator in a
612
+ Reproducing Kernel Hilbert Space. Previous margin classifiers
613
+ [92] aim to maximize a single margin across all training
614
+ instances. In contrast, some recent studies [17], [62], [64], [90]
615
+ suggest that the knowledge of margin distribution of instances,
616
+ rather than a single margin across all instances, is crucial for
617
+ improving the generalization performance of a classifier.
618
+ The “instance margin” is defined as the distance between
619
+ one instance and the separating hyperplane. Formally, for one
620
+ instance i in the semantic space g (xi) and sufficiently many4
621
+ samples g (xj) (zi ̸= zj) drawn from well behaved class
622
+ distributions5. We define the distance dij = ∥g (xi) − g (xj)∥.
623
+ For instance i, we can obtain a set of distances Di
624
+ =
625
+ {dij, zj ̸= zi} with the minimal values ¯di⋆ = minDi. As
626
+ shown in [62], the distribution for the minimal values of the
627
+ margin distance is characterized by a Weibull distribution.
628
+ Based on this finding, we can express the probability of g (x)
629
+ being included in the boundary estimated by g (xi):
630
+ ψ (g (x) ; g (xi)) = exp
631
+
632
+
633
+ �∥g (x) − g (xi)∥
634
+ λi
635
+ �κi�
636
+ ,
637
+ (11)
638
+ where κi and λi are Weibull shape and scale parameters
639
+ obtained by fitting Di using Maximum Likelihood Estimate
640
+ (MLE), which is summarized6 in Alg. 1. Equation (11) quan-
641
+ titatively describes the margin of one specific class, probabilis-
642
+ 4. In our experiments, we use all available training instances here.
643
+ 5. The well behaved indicates that the moments of the distribution should
644
+ be well-defined. For example, Cauchy distribution is not well-behaved [39].
645
+ 6. codes released in https://github.com/xiaomeiyy/WMM-Voc.
646
+ tically, in our semantic embedding space. Note that Eq. (11)
647
+ requires ψ (·) to be non-degenerate margin distribution, which
648
+ is essentially guaranteed by Extreme Value Theorem [40].
649
+ Algorithm 1 EVT estimator by Weibull distribution.
650
+ Input: Extreme values x1, · · · , xn
651
+ Output: Estimated parameters ˆκ, ˆλ
652
+ If n == 1:
653
+ ˆκ = ∞, ˆλ = x1.
654
+ Else:
655
+ 1. Sort x1, · · · , xn to get x[1] ≥ · · · ≥ x[n]
656
+ (where x[i] is the re-ordered value).
657
+ 2. Maximum likelihood estimator for κ:
658
+ n � �
659
+
660
+ [i] log x[i] − xκ
661
+ [n] log x[n]
662
+
663
+ � �
664
+
665
+ [i] − xκ
666
+ [n]
667
+
668
+ =
669
+
670
+ log x[i]
671
+ (12)
672
+ 3. Solve Eq. (12), and numerically estimate ˆκ.
673
+ (e.g., using fzero function in MATLAB)
674
+ 4. Compute ˆλ =
675
+ �� �
676
+ xˆκ
677
+ [i] − xˆκ
678
+ [n]
679
+
680
+ /n
681
+ �1/ˆκ
682
+ .
683
+ Margin Distribution of Prototypes: Consider a class zi
684
+ which in the embedding space is represented by a prototype
685
+ uzi. In accordance with above formalism, we can also assume
686
+ sufficiently many samples g (xj) drawn from other (zi ̸= zj)
687
+ well behaved class distributions. We can also consider the
688
+ prototypes of vast open vocabulary uzj (zi ̸= zj, zj ∈ Wt).
689
+ Under these assumptions, we can obtain a set of distances
690
+ Duzi = {
691
+ ��uzi − gzj
692
+ �� , zj ̸= zi, gzj ∈
693
+
694
+ g (xj) , uzj
695
+
696
+ } for the
697
+ prototype uzi. As a result, the distribution for the minimal
698
+ values of the margin distance for uzi is given by a Weibull
699
+ distribution. The probability that gzi is included in the bound-
700
+ ary estimated by uzi is given by
701
+ ψ (gzi; uzi) = exp
702
+
703
+
704
+
705
+ ∥gzi − uzi∥
706
+ λuzi
707
+ �κuzi �
708
+ .
709
+ (13)
710
+ The above equation models the distribution of minimum value;
711
+ thus it can be used to estimate the boundary density (or more
712
+ specifically, the boundary distribution) of class zi.
713
+ We set significant level to 0.05 to approximately esti-
714
+ mate the minimal value ¯duzi⋆. As illustrated in Figure 2, if
715
+ ψ (gzi; uzi) < 0.05, we will assume gzi does not belong to
716
+ the prototype uzi; otherwise, gzi is included in the boundary
717
+ estimated by uzi. In term of the significant level of 0.05,
718
+ we can further denote the minimal values as ¯d(0.05)
719
+ uzi⋆ , i.e.,
720
+ exp
721
+
722
+
723
+ � ¯d(0.05)
724
+ uzi ⋆
725
+ λuzi
726
+ �κuzi �
727
+ = 0.05. Thus we have
728
+ ¯d(0.05)
729
+ uzi⋆ = λuzi · log1/κuzi
730
+ � 1
731
+ 0.05
732
+
733
+ (14)
734
+ Coverage Distribution of Prototypes: Now, for class zi
735
+ consider the nearest instance from another class g (xj) where
736
+ zi ̸= zj; with sufficient many instances g (xk) from class zi,
737
+ we have pairwise unique ("within class") distance:
738
+ cuzik = ∥g (xk) − uzi∥.
739
+ (15)
740
+
741
+ Positiveinstances
742
+ Negativeinstances
743
+ ★ Prototypes
744
+ id7
745
+ We consider outliers those instances g (xk) that have larger
746
+ distance to uzi than the nearest instance g (xj) (zi ̸= zj)
747
+ of another class. To remove the outliers we hence consider
748
+ Cuzi =
749
+
750
+ cuzik|cuzik ≤ minzj̸=zk ∥g (xj) − uzi∥
751
+
752
+ . As illus-
753
+ trated in Figure 2, we only consider positive instances within
754
+ the orange circle and all other instances with larger distance
755
+ are removed. Then the distribution of the largest distance
756
+ ¯cuzi⋆ = max Cuzi will follow a reversed Weibull distribution.
757
+ This allows us to get the probability distribution to describe
758
+ positive instances,
759
+ φ (g (xk) ; uzi) = 1 − exp
760
+
761
+
762
+ �−
763
+
764
+ ∥g (xk) − uzi∥
765
+ λ′uzi
766
+ �κ
767
+
768
+ uzi
769
+
770
+
771
+
772
+ (16)
773
+ where κ
774
+
775
+ i and λ
776
+
777
+ i are reverse Weibull shape and scale pa-
778
+ rameters individually obtained from fitting the largest Cuzi ,
779
+ ¯cuzi⋆ is the distance between instance and prototype, φ is the
780
+ probability that the instance is in the class.
781
+ Similar to the margin distribution, we can estimate the
782
+ coverage by setting the significant level to 0.05. As shown in
783
+ Figure 2, we establish two boundaries to estimate the scale of
784
+ each class probabilistically. If φ (g (xk) ; uzi) ⩾ 0.05, g (xk)
785
+ is included in the coverage distribution uzi. The maximum
786
+ values ¯c(0.05)
787
+ uzi⋆
788
+ can be computed as φ (g (xk) ; uzi) = 0.05. It
789
+ results in,
790
+ ¯c(0.05)
791
+ uzi⋆ = λ′
792
+ uzi · log
793
+ 1/κ
794
+
795
+ uzi
796
+
797
+ 1
798
+ 1 − 0.05
799
+
800
+ .
801
+ (17)
802
+ By combining the terms computed in Eq. (14) and (17), we
803
+ can obtain the weight wzi for class zi in Eq. (6),
804
+ wzi ∝
805
+
806
+ ¯d(0.05)
807
+ uzi⋆ + ¯c(0.05)
808
+ uzi⋆
809
+
810
+ (18)
811
+ As explained in Algorithm 1, we set ˆκ = ∞, ˆλ = x1 in
812
+ one-shot setting. In few-shot learning setting, we can estimate
813
+ ˆκ and ˆλ directly. In addition, such an initialization of weights
814
+ (ˆκ and ˆλ) intrinsically helps learn the embedding weight W.
815
+ The learning process of parameters: The process could
816
+ be interpreted as a form of block coordinate descent where
817
+ we estimate the embedding/mapping; then density within that
818
+ embedding and so on. In practice, the weights wzi are initially
819
+ randomized. But they do not play an important role at the
820
+ beginning of the optimization, since
821
+ ���W T
822
+ ⋆jxi − (uzi)j
823
+ ��� is very
824
+ large in the first few iterations. In other words, the optimization
825
+ is initially dominated by the data term and maximum margin
826
+ terms play little role. However, once we can get a relative
827
+ good mapping (i.e., smaller
828
+ ���W T
829
+ ⋆jxi − (uzi)j
830
+ ���) after several
831
+ training iterations, the weight wzi starts becoming significant.
832
+ By virtue of such an optimization, the weighted version can
833
+ achieve better performance than the previous non-weighted
834
+ version in our conference paper [29].
835
+ Deep Weighted Maximum Margin Voc Embedding (Deep
836
+ WMM-Voc). In practice, we extend WMM-Voc to include
837
+ a deep network for feature extraction. Rather than extracting
838
+ low-level features using an off-the-shelf pre-trained model in
839
+ Eq. (10), we use an integrated deep network to extract xi
840
+ from the raw images. As a result, the loss function in Eq. (10)
841
+ is also used to optimize the parameters of the deep network.
842
+ In particular, we fix the convolutional layers of corresponding
843
+ network and fine-tune the last fully connected layer in our task.
844
+ The network was trained using stochastic gradient descendent.
845
+ 4
846
+ EXPERIMENTS
847
+ 4.1
848
+ Experimental setup
849
+ We conduct our experiments on Animals with Attributes
850
+ (AwA) dataset, and ImageNet 2012/2010 dataset.
851
+ AwA dataset: AwA consists of 50 classes of animals (30, 475
852
+ images in total). In [43] standard split into 40 source/auxiliary
853
+ classes (|Ws| = 40) and 10 target/test classes (|Wt| = 10)
854
+ is introduced. We follow this split for supervised and zero-
855
+ shot learning. We use ResNet101 features (downloaded from
856
+ [54]) on AwA to make the results more easily comparable to
857
+ state-of-the-art.
858
+ ImageNet 2012/2010 dataset: ImageNet is a large-scale
859
+ dataset. We use 1000 (|Ws| = 1000) classes of ILSVRC 2012
860
+ as the source/auxiliary classes and 360 (|Wt| = 360) classes
861
+ of ILSVRC 2010 that are not used in ILSVRC 2012 as target
862
+ data. We use pre-trained VGG-19 model [12] to extract deep
863
+ features for ImageNet.
864
+ Recognition tasks: We consider several different settings in
865
+ a variety of experiments. We first divide the two datasets into
866
+ source and target splits. On source classes, we can validate
867
+ whether our framework can be used to solve one-shot and
868
+ supervised recognition. By using both the source and target
869
+ classes, transfer learning based settings can be evaluated.
870
+ 1) SUPERVISED recognition: learning is on source classes;
871
+ test instances come from the same classes with Ws as
872
+ recognition vocabulary. In particular, under this setting,
873
+ we also validate the one- and few-shot recognition sce-
874
+ narios, i.e., classes have one or few training examples.
875
+ 2) ZERO-SHOT recognition: In ZSL, learning is on the
876
+ source classes with Ws vocabulary; test instances come
877
+ from target dataset with Wt as recognition vocabulary.
878
+ 3) GENERAL-ZERO-SHOT
879
+ recognition:
880
+ G-ZSL
881
+ uses
882
+ source classes to learn, with test instances coming from
883
+ either target Wt or original Ws recognition vocabulary.
884
+ 4) OPEN-SET recognition: Again source classes are used
885
+ for learning, but the entire open vocabulary with |W| ≈
886
+ 310K atoms is used at test time. In practice, test images
887
+ come from both source and target splits (similar to
888
+ G-ZSL); however, unlike G-ZSL there are additional
889
+ distractor classes. In other words, chance performance
890
+ for open-set recognition is much lower than for G-ZSL.
891
+ We test both our Voc variants – MM-Voc and WMM-Voc.
892
+ Additionally, we also validate the Deep WMM-Voc by fine-
893
+ tuning the WMM-Voc on VGG-19 architecture and optimizing
894
+ the weights with respect to the loss in Eq. (10).
895
+ Competitors: We compare to a variety of the models in the
896
+ literature, including:
897
+ 1) SVM: SVM classifier trained directly on the training
898
+ instances of source data, without the use of semantic
899
+ embedding. This is the standard (SUPERVISED/ONE-
900
+ SHOT) learning setting and the learned classifier can only
901
+
902
+ 8
903
+ predict the labels within the source classes. Hence, SVM
904
+ is inapplicable in ZSL, G-ZSL, and open-set recognition
905
+ settings.
906
+ 2) SVR-Map: SVR is used to learn W and the recognition
907
+ is done, similar to our method, in the resulting semantic
908
+ manifold. This corresponds to only optimizing Eq. (5).
909
+ 3) Deep-SVR: This is a variant SVR, which further allows
910
+ fine-tuning of the underlying neural network generating
911
+ the features. In this case, W is expressed as the last
912
+ linear layer and the entire network is fine-tuned with
913
+ respect to the loss encoding only the data term (Eq. (5)).
914
+ 4) SAE: SAE is a semantic encoder-decoder paradigm that
915
+ projects visual features into a semantic space and then
916
+ reconstructs the original visual feature representation
917
+ [38]. The SAE has two variants in learning the embed-
918
+ ding space, i.e., semantic space to feature space (S→F),
919
+ and feature space to semantic space (F→S). By default,
920
+ the best result of these two variants are reported.
921
+ 5) ESZSL: ESZSL first learns the mapping between visual
922
+ features and attributes, then models the relationship
923
+ between attributes and classes [61].
924
+ 6) DeVise, ConSE, AMP: To compare with state-of-the-art
925
+ large-scale zero-shot learning approaches we implement
926
+ DeViSE [24] and ConSE [53]7. ConSE uses a multi-
927
+ class logistic regression classifier for predicting class
928
+ probabilities of source instances; and the parameter
929
+ T (number of top-T nearest embeddings for a given
930
+ instance) was selected from {1, 10, 100, 1000} that gives
931
+ the best results. ConSE method in supervised setting
932
+ works the same as SVR. We use the AMP code provided
933
+ on the author webpage [31].
934
+ Metrics: Classification accuracies are reported as the eval-
935
+ uation metrics on most of tasks. In our conference version
936
+ [29], we further introduce an evaluation setting for OPEN-
937
+ SET tasks where we do not assume that test data comes from
938
+ either source/auxiliary domain or target domain. Thus we split
939
+ the two cases (i.e., SUPERVISED-like, and ZERO-SHOT-like
940
+ settings), to mimic SUPERVISED and ZERO-SHOT scenarios
941
+ for easier analysis. Particularly, in G-ZSL task, this newly
942
+ introduced evaluation setting is corresponding to the evaluation
943
+ metrics defined in [85]: (1) S → T: Test instances from seen
944
+ classes, the prediction candidates include both seen and unseen
945
+ classes; (2) U → T: Test instances from unseen classes, the
946
+ prediction candidates include both seen and unseen classes.
947
+ (3) The harmonic mean is used as the main evaluation metric
948
+ to further combine the results of both S → T and U → T:
949
+ H = 2·(Acc(U → T) × Acc(S → T))
950
+ (Acc(U → T) + Acc(S → T)).
951
+ (19)
952
+ Setting of Parameters: For the recognition tasks, we learn
953
+ classifiers by using various number of training instances.
954
+ We compare relevant baselines with results of our method
955
+ variants: MM-Voc, WMM-Voc, Deep WMM-Voc. Each setting
956
+ is repeated/tested 10 times. The averaged results are reported
957
+ to reduce the variance. For each setting, our Voc methods are
958
+ trained by a single model to be capable of solving the tasks
959
+ 7. Codes for [24] and [53] are not publicly available.
960
+ of supervised, zero-shot, G-ZSL and open-set recognition.
961
+ Specifically,
962
+ 1) In Deep WMM-Voc, we fix λ to 0.01 and α = 0.6 with
963
+ the learning rate initially set to 1e−5 and is reduced by
964
+ 1
965
+ 2 every 10 epochs. AV and BS are set to 5 in order to
966
+ balance performance and computational cost of pairwise
967
+ constraints.
968
+ 2) To solve Eq. (10) at a scale, one can use Stochastic
969
+ Gradient Descent (SGD) which makes great progress ini-
970
+ tially, but often is slow when approaching convergence.
971
+ In contrast, the L-BFGS method mentioned above can
972
+ achieve steady convergence at the cost of computing the
973
+ full objective and gradient at each iteration. L-BFGS
974
+ can usually achieve better results than SGD with good
975
+ initialization, however, is computationally expensive. To
976
+ leverage benefits of both of these methods, we utilize a
977
+ hybrid method to solve Eq. (10) in large-scale datasets:
978
+ the solver is initialized with few instances to approx-
979
+ imate the gradients using SGD first; then gradually
980
+ more instances are used and switch to L-BFGS is made
981
+ with iterations. This solver is motivated by Friedlander
982
+ et al. [23], who theoretically analyzed and proved the
983
+ convergence for the hybrid optimization methods. In
984
+ practice, we use L-BFGS and the Hybrid algorithms for
985
+ AwA and ImageNet respectively. The hybrid algorithm
986
+ can save between 20 ∼ 50% training time as compared
987
+ with L-BFGS.
988
+ Open set vocabulary. We use Google word2vec to learn
989
+ the open set vocabulary set from a large text corpus of
990
+ around 7 billion words: UMBC WebBase (3 billion words),
991
+ the latest Wikipedia articles (3 billion words) and other web
992
+ documents (1 billion words). Some rare (low frequency)
993
+ words and high frequency stopping words were pruned in the
994
+ vocabulary set: we remove words with the frequency < 300
995
+ or > 10 million times. The result is a vocabulary of around
996
+ 310K words/phrases with openness ≈ 1, which is defined as
997
+ openness = 1 −
998
+
999
+ (2 × |Ws|) / (|W|) [66].
1000
+ 4.2
1001
+ Experimental results on AwA dataset
1002
+ 4.2.1
1003
+ Learning Classifiers from Few Source Training
1004
+ Instances
1005
+ We are particularly interested in learning of classifiers from
1006
+ few source training instances. This is inclined to mimic human
1007
+ performance of learning from few examples and illustrate
1008
+ ability of our model to learn with little data8. We show
1009
+ that, our vocabulary-informed learning is able to improve the
1010
+ recognition accuracy on all settings.
1011
+ By only using 200 training instances, we report the results
1012
+ on standard supervised (on source classes), zero-shot (on
1013
+ target classes), and generalized zero-shot recognition (both
1014
+ on source and target classes) as shown in Table 2. Note that
1015
+ for ZSL and G-ZSL, our settings is a more realistic and yet
1016
+ 8. As for feature representations, the ResNet100 features from [54] are
1017
+ trained from ImageNet 2012 dataset, which potentially have some overlapped
1018
+ classes with AwA dataset.
1019
+
1020
+ 9
1021
+ Methods
1022
+ S. Sp
1023
+ Features
1024
+ Acc.
1025
+ WMM-Voc
1026
+ W
1027
+ CNNresnet101
1028
+ 90.79
1029
+ WMM-Voc: closed
1030
+ W
1031
+ CNNresnet101
1032
+ 84.51
1033
+ Deep WMM-Voc
1034
+ W
1035
+ CNNresnet101
1036
+ 90.65
1037
+ Deep WMM-Voc: closed
1038
+ W
1039
+ CNNresnet101
1040
+ 83.85
1041
+ SAE
1042
+ W
1043
+ CNNresnet101
1044
+ 71.42
1045
+ ESZSL
1046
+ W
1047
+ CNNresnet101
1048
+ 74.17
1049
+ Deep-SVR
1050
+ W
1051
+ CNNresnet101
1052
+ 67.22
1053
+ Akata et al. [3]
1054
+ A+W
1055
+ CNNGoogleNet
1056
+ 73.90
1057
+ TMV-BLP [25]
1058
+ A+W
1059
+ CNNOverFeat
1060
+ 69.90
1061
+ AMP (SR+SE) [31]
1062
+ A+W
1063
+ CNNOverFeat
1064
+ 66.00
1065
+ PST [58]
1066
+ A+W
1067
+ CNNOverFeat
1068
+ 54.10
1069
+ Latem [83]
1070
+ A+W
1071
+ CNNresnet101
1072
+ 74.80
1073
+ SJE [3]
1074
+ A+W
1075
+ CNNresnet101
1076
+ 76.70
1077
+ DeViSE [24]
1078
+ W
1079
+ CNNresnet101
1080
+ 72.90
1081
+ ConSE [53]
1082
+ W
1083
+ CNNresnet101
1084
+ 63.60
1085
+ CMT [68]
1086
+ W
1087
+ CNNresnet101
1088
+ 58.90
1089
+ SSE [91]
1090
+ W
1091
+ CNNresnet101
1092
+ 54.50
1093
+ SSE [91]
1094
+ W
1095
+ CNNVGG19
1096
+ 57.49
1097
+ TASTE [87]
1098
+ W
1099
+ CNNVGG19
1100
+ 89.40
1101
+ KLDA+KRR [48]
1102
+ W
1103
+ CNNGoogleNet
1104
+ 79.30
1105
+ CLN+KRR [48]
1106
+ W
1107
+ CNNVGG19
1108
+ 81.00
1109
+ UVDS [50]
1110
+ W
1111
+ CNNVGG19
1112
+ 62.88
1113
+ DEM [10]
1114
+ W
1115
+ CNNInception-V2
1116
+ 86.70
1117
+ DS [60]
1118
+ W/A
1119
+ CNNOverFeat
1120
+ 52.70
1121
+ SYNC [9]
1122
+ W/A
1123
+ CNNresnet101
1124
+ 72.20
1125
+ Relation Net [69]
1126
+ A
1127
+ CNNInception-V2
1128
+ 84.50
1129
+ ESZSL [61]
1130
+ A
1131
+ CNNresnet101
1132
+ 74.70
1133
+ UVDS [50]
1134
+ A
1135
+ CNNGoogleNet
1136
+ 80.28
1137
+ GFZSL [78]
1138
+ A
1139
+ CNNVGG19
1140
+ 80.50
1141
+ DEM [10]
1142
+ A
1143
+ CNNInception-V2
1144
+ 78.80
1145
+ SE-GZSL [77]
1146
+ A
1147
+ CNNVGG19
1148
+ 69.50
1149
+ cycle-CLSWGAN [21]
1150
+ A
1151
+ CNNresnet101
1152
+ 66.30
1153
+ f-CLSWGAN [84]
1154
+ A
1155
+ CNNresnet101
1156
+ 68.20
1157
+ PTMCA [47]
1158
+ A
1159
+ CNNresnet101
1160
+ 66.20
1161
+ Jayaraman et al. [36]
1162
+ A
1163
+ low-level
1164
+ 48.70
1165
+ DAP [43]
1166
+ A
1167
+ CNNVGG19
1168
+ 57.50
1169
+ DAP [43]
1170
+ A
1171
+ CNNresnet101
1172
+ 57.10
1173
+ DAP [43]
1174
+ A
1175
+ CNNOverFeat
1176
+ 53.20
1177
+ ALE [2]
1178
+ A
1179
+ CNNresnet101
1180
+ 78.60
1181
+ Yu et al. [86]
1182
+ A
1183
+ low-level
1184
+ 48.30
1185
+ IAP [43]
1186
+ A
1187
+ CNNOverFeat
1188
+ 44.50
1189
+ HEX [14]
1190
+ A
1191
+ CNNDECAF
1192
+ 44.20
1193
+ AHLE [2]
1194
+ A
1195
+ low-level
1196
+ 43.50
1197
+ TABLE 1
1198
+ Zero-shot comparison on AwA. We compare the
1199
+ state-of-the-art ZSL results using different semantic
1200
+ spaces (S. Sp) including word vector (W) and attribute
1201
+ (A). 1000 dimension word2vec dictionary is used for our
1202
+ model. (Chance-level =10%). Different types of features
1203
+ are used by different methods. WMM-Voc: closed and
1204
+ Deep WMM-Voc: closed are the two variants of our
1205
+ model obtained by learning the vocabulary-informed
1206
+ constraints only from known classes (i.e., closed set),
1207
+ similar to our conference version [29].
1208
+ ZSL results by 100-d word vector
1209
+ 40
1210
+ 200
1211
+ 800
1212
+ 1600
1213
+ 12139
1214
+ 24295
1215
+ Training Instance Number
1216
+ 0
1217
+ 20
1218
+ 40
1219
+ 60
1220
+ 80
1221
+ 100
1222
+ Top1 Accuracy(%)
1223
+ WMM-Voc
1224
+ Deep WMM-Voc
1225
+ Deep-SVR
1226
+ SAE(F->S)
1227
+ SAE(S->F)
1228
+ ESZSL
1229
+ ZSL results by 1000-d word vector
1230
+ 40
1231
+ 200
1232
+ 800
1233
+ 1600
1234
+ 12139
1235
+ 24295
1236
+ Training Instance Number
1237
+ 0
1238
+ 20
1239
+ 40
1240
+ 60
1241
+ 80
1242
+ 100
1243
+ Top1 Accuracy(%)
1244
+ WMM-Voc
1245
+ Deep WMM-Voc
1246
+ Deep-SVR
1247
+ SAE(F->S)
1248
+ SAE(S->F)
1249
+ ESZSL
1250
+ Fig. 3. The ZSL results on AwA by different settings.
1251
+ more challenging than those in previous methods [38], [61],
1252
+ since the source classes have few training instances. We also
1253
+ compare using 100/1000-dimensional word2vec representation
1254
+ (i.e., d = 100/1000). Both the Top-1 and Top-5 classification
1255
+ accuracy is reported. Note that the key novelty of our WMM-
1256
+ Voc comes from directly estimating the density of source train-
1257
+ ing classes. Such an approach would be helpful in alleviating
1258
+ the hubness problem and should lead to better performance
1259
+ in zero-shot learning. As shown in Table 2, the improvement
1260
+ from MM-Voc to WMM-Voc and then further to Deep WMM-
1261
+ Voc validate this point.
1262
+ We highlight the following observations: (1) Deep WMM-
1263
+ Voc achieves the best zero-shot learning accuracy compared
1264
+ with the other state-of-art methods. It is 18.45% and 21.02%
1265
+ higher than SAE and ESZSL respectively on Top-1 accuracy.
1266
+ Our WMM-Voc can still beat the state-of-the-art SAE and
1267
+ ESZSL by outperforming 17.67% and 20.24% individually on
1268
+ Top-1 accuracy. (2) In supervised learning task, the ESZSL
1269
+ and Deep WMM-Voc have almost the same performance, if we
1270
+ consider the variances in sampling the 200 training instances.
1271
+ Our WMM-Voc is slightly better than these two methods.
1272
+ (3) In G-ZSL setting, our two models get significantly better
1273
+ performance compared with the other competitors. Notably,
1274
+ the Top-1 accuracy of SAE and ESZSL is 0. While Deep
1275
+ WMM-Voc and WMM-Voc both have higher accuracy. This
1276
+ shows the effectiveness of our two models. (4) As expected,
1277
+ the deep models that fine-tune features along with classifiers
1278
+ (Deep-SVR and Deep WMM-Voc) are better than counterparts
1279
+ with pre-extracted representations (SVR-Map, WMM-Voc).
1280
+ 4.2.2
1281
+ Results on different training/testing splits
1282
+ We conduct experiments using different number of training
1283
+ instances and compare results on tasks of supervised, zero-
1284
+ shot and generalized zero-shot learning. On each split, we use
1285
+ both 100 and 1000 dimensional word vectors. We use 12,156
1286
+ testing instances from source classes in supervised, G-ZSL
1287
+ and open-set setting as well as 6,180 testing instances from
1288
+
1289
+ 10
1290
+ Dimension
1291
+ SVR-Map
1292
+ Deep-SVR
1293
+ SAE
1294
+ ESZSL
1295
+ MM-Voc
1296
+ WMM-Voc
1297
+ Deep WMM-Voc
1298
+ Supervised
1299
+ 100-dim
1300
+ 51.4/-
1301
+ 71.59/91.98
1302
+ 70.22/92.60
1303
+ 74.86/94.85
1304
+ 58.01/87.88
1305
+ 75.57/94.31
1306
+ 76.23/94.85
1307
+ 1000-dim
1308
+ 57.1/-
1309
+ 76.32/95.22
1310
+ 75.32/94.17
1311
+ 75.08/94.27
1312
+ 59.1/77.73
1313
+ 79.44/96.01
1314
+ 76.55/96.22
1315
+ Zero-shot
1316
+ 100-dim
1317
+ 52.1/-
1318
+ 53.12/84.24
1319
+ 67.96/95.08
1320
+ 73.69/95.83
1321
+ 61.10/96.02
1322
+ 82.78/98.92
1323
+ 84.87/98.87
1324
+ 1000-dim
1325
+ 58.0/-
1326
+ 64.29/88.71
1327
+ 71.42/97.18
1328
+ 74.17/97.12
1329
+ 83.84/96.74
1330
+ 89.09/99.21
1331
+ 88.07/99.40
1332
+ G-ZSL
1333
+ 100-dim
1334
+ -
1335
+ 5.65/54.45
1336
+ 2.15/52.7
1337
+ 2.88/68.37
1338
+ 19.74/85.79
1339
+ 28.92/88.01
1340
+ 33.04/89.11
1341
+ 1000-dim
1342
+ -
1343
+ 0/39.84
1344
+ 0/35.91
1345
+ 0/33.09
1346
+ 8.54/59.79
1347
+ 27.98/90.47
1348
+ 34.77/90.76
1349
+ TABLE 2
1350
+ Classification accuracy (Top-1 / Top-5) on AwA dataset for SUPERVISED, GENERAL ZERO-SHOT and ZERO-SHOT settings for
1351
+ 100-dim and 1000-dim word2vec representation (200 instances).
1352
+ target classes in zero-shot, G-ZSL and open-set setting. All the
1353
+ competitors are using the same types of features – ResNet101.
1354
+ Supervised learning: The results are compared in Figure 4.
1355
+ As shown in the figure, we observe that our method shows
1356
+ significant improvements over the competitors in few-shot
1357
+ setting; however, as the number of instance increasing, the
1358
+ visual semantic mapping, g(x), can be well learned, and the
1359
+ effects of additional vocabulary-informed constraints, become
1360
+ less pronounced.
1361
+ Zero-shot learning: The ZSL results are compared in Figure
1362
+ 3. On all the settings, our two Voc methods – Deep WMM-
1363
+ Voc and WMM-Voc outperforms all the other baselines. This
1364
+ validates the importance of information learning from the
1365
+ open vocabulary. Further, we compare our results with the
1366
+ state-of-the-art ZSL results on AwA dataset in Table 1. Our
1367
+ two models achieve 90.79% and 90.65% accuracy, which
1368
+ is markedly higher than all previous methods. This is par-
1369
+ ticularly impressive, if we take into account the fact that
1370
+ we use only a semantic space and no additional attribute
1371
+ representations (unlike many other competitor methods). We
1372
+ argue that much of our success and improvement comes from
1373
+ a more discriminative information obtained using the open
1374
+ set vocabulary and corresponding large margin constraints,
1375
+ rather than from the features. Varying the number of training
1376
+ instances may slightly affect accuracy of methods reported
1377
+ in Table 1. Therefore we report the best results of each
1378
+ competitor and our own method at different number of train-
1379
+ ing instances {200, 800, 1600, 121319, 24295}.All competing
1380
+ methods in Figure 3 use the same features.
1381
+ General zero-shot learning:. The general zero-shot learning
1382
+ results are compared in Table 3. We consider the accuracies of
1383
+ both U → T (ZERO-SHOT-like) and S → T (SUPERVISED-like).
1384
+ In term of the harmonic mean H, our methods have signifi-
1385
+ cantly better performance in the general zero-shot setting. This
1386
+ again shows that our framework can have better generalization
1387
+ by learning from the open vocabulary. On the other hand, in the
1388
+ terms of Area Under Seen-Unseen accuracy Curve (AUSUC),
1389
+ the performance of Deep-SVR is very weak and the scores
1390
+ of ESZSL and SAE are lower than our method. Overall, the
1391
+ results of AUSUC still support the superiority of our methods
1392
+ on G-ZSL tasks. Notably, since the source domain only have
1393
+ 24295 instances (including training and testing images), we
1394
+ are unable to obtain the results of SUPERVISED-like setting
1395
+ (S → T), H and AUSUC with all source instances.
1396
+ Supervised results by 100-d word vector
1397
+ 200
1398
+ 800
1399
+ 1600
1400
+ 12139
1401
+ Training Instance Number
1402
+ 0
1403
+ 20
1404
+ 40
1405
+ 60
1406
+ 80
1407
+ 100
1408
+ Top1 Accuracy(%)
1409
+ WMM-Voc
1410
+ Deep WMM-Voc
1411
+ Deep-SVR
1412
+ SAE(F->S)
1413
+ SAE(S->F)
1414
+ ESZSL
1415
+ Supervised results by 1000-d word vector
1416
+ 200
1417
+ 800
1418
+ 1600
1419
+ 12139
1420
+ Training Instance Number
1421
+ 0
1422
+ 20
1423
+ 40
1424
+ 60
1425
+ 80
1426
+ 100
1427
+ Top1 Accuracy(%)
1428
+ WMM-Voc
1429
+ Deep WMM-Voc
1430
+ Deep-SVR
1431
+ SAE(F->S)
1432
+ SAE(S->F)
1433
+ ESZSL
1434
+ Fig. 4. Supervised learning results of AwA datasets.
1435
+ 4.2.3
1436
+ Large-scale open set recognition
1437
+ We also compare the results on OPEN-SET310K setting with
1438
+ the large vocabulary of approximately 310K entities; as such
1439
+ the chance performance is much lower. We use 100-dim word
1440
+ vector representations as the semantic space. While our OPEN-
1441
+ SET variants do not assume that test data comes from either
1442
+ source/auxiliary domain or target domain, we split the two
1443
+ cases to mimic SUPERVISED and ZERO-SHOT scenarios for
1444
+ easier analysis. The results are shown in Figure 5.
1445
+ On SUPERVISED-like setting, Figure 5 (left), our Deep
1446
+ WMM-Voc and WMM-Voc have better performance than the
1447
+ other baselines. The better results are largely due to the better
1448
+ embedding matrix W learned by enforcing maximum margins
1449
+ between training class name and open set vocabulary on source
1450
+ training data. This validates the effectiveness of proposed
1451
+ framework. In particular, we find that (1) The “deep” version
1452
+ always has better performance than their corresponding “non-
1453
+ deep” counterparts. For example, the Deep-SVR and Deep
1454
+ WMM-Voc achieve higher open-set recognition accuracy than
1455
+ SVR-Map and WMM-Voc. (2) The WMM-Voc has better
1456
+ performance than MM-Voc; this shows that the weighting
1457
+ strategy introduced in Section 3.4 can indeed help better learn
1458
+
1459
+ 11
1460
+ TABLE 3
1461
+ The G-ZSL results (100-dim/1000-dim) of AwA dataset. We compare the results by varying the number of training
1462
+ instances (No.of Tr. Ins.) of each class. Where H is defined in Eq. (19) without calibrated stacking, AUSUC means
1463
+ the Area Under Seen-Unseen accuracy Curve with calibrated stacking and ’-’ represents the unavailable results.
1464
+ Metrics
1465
+ ESZSL
1466
+ SAE
1467
+ Deep-SVR
1468
+ WMM-Voc
1469
+ Deep WMM-Voc
1470
+ 200
1471
+ U → T
1472
+ 2.88/0
1473
+ 2.15/0
1474
+ 5.65/0
1475
+ 28.92/27.98
1476
+ 33.04/34.77
1477
+ S → T
1478
+ 75.76/76.08
1479
+ 70.13/75.32
1480
+ 71.22/76.32
1481
+ 70.20/74.20
1482
+ 71.16/69.48
1483
+ H
1484
+ 5.55/0
1485
+ 4.17/0
1486
+ 10.47/0
1487
+ 40.96/40.64
1488
+ 45.13/46.35
1489
+ AUSUC
1490
+ 0.4231/0.4344
1491
+ 0.3885/0.4556
1492
+ 0.3048/0.3939
1493
+ 0.4840/0.5190
1494
+ 0.5028/0.4776
1495
+ 800
1496
+ U → T
1497
+ 0.19/0
1498
+ 0.78/0
1499
+ 5.34/0.02
1500
+ 25.57/25.68
1501
+ 27.59/27.77
1502
+ S → T
1503
+ 81.14/83.95
1504
+ 78.02/83.41
1505
+ 78.92/81.46
1506
+ 74.23/77.33
1507
+ 75.53/77.19
1508
+ H
1509
+ 0.38/0
1510
+ 1.54/0
1511
+ 10.00/0.04
1512
+ 38.04/38.56
1513
+ 40.42/40.85
1514
+ AUSUC
1515
+ 0.4409/0.4710
1516
+ 0.3870/0.4483
1517
+ 0.3452/0.4400
1518
+ 0.4764/0.5387
1519
+ 0.4953/0.5353
1520
+ 1600
1521
+ U → T
1522
+ 0.71/0
1523
+ 0.87/0
1524
+ 4.69/0
1525
+ 24.63/27.22
1526
+ 33.66/32.86
1527
+ S → T
1528
+ 85.62/86.24
1529
+ 81.08/85.48
1530
+ 83.30/86.02
1531
+ 74.99/77.67
1532
+ 78.96/78.64
1533
+ H
1534
+ 1.41/0
1535
+ 1.72/0
1536
+ 8.88/0
1537
+ 37.08/40.31
1538
+ 47.20/46.35
1539
+ AUSUC
1540
+ 0.4507/0.5139
1541
+ 0.4190/0.4740
1542
+ 0.3776/0.4780
1543
+ 0.5016/0.5572
1544
+ 0.5554/0.5733
1545
+ 12139
1546
+ U → T
1547
+ 0.37/0
1548
+ 0.44/0
1549
+ 5.19/0
1550
+ 27.80/30.53
1551
+ 32.23/28.19
1552
+ S → T
1553
+ 89.98/91.16
1554
+ 88.18/91.26
1555
+ 85.37/85.64
1556
+ 77.36/78.34
1557
+ 80.64/78.32
1558
+ H
1559
+ 0.74/0
1560
+ 0.88/0
1561
+ 9.79/0
1562
+ 40.90/43.94
1563
+ 46.05/41.46
1564
+ AUSUC
1565
+ 0.5096/0.5294
1566
+ 0.4493/0.5120
1567
+ 0.3353/0.4397
1568
+ 0.5144/0.5319
1569
+ 0.5525/0.5394
1570
+ 24295
1571
+ U → T
1572
+ 0.83/0
1573
+ 0.37/0
1574
+ 5.39/0
1575
+ 27.15/29.42
1576
+ 35.65/31.78
1577
+ S → T
1578
+ -
1579
+ -
1580
+ -
1581
+ -
1582
+ -
1583
+ H
1584
+ -
1585
+ -
1586
+ -
1587
+ -
1588
+ -
1589
+ AUSUC
1590
+ -
1591
+ -
1592
+ -
1593
+ -
1594
+ -
1595
+ the embedding from visual to semantic space.
1596
+ On ZERO SHOT-like setting, our method still has a notable
1597
+ advantage over that of SVR-Map, Deep-SVR methods on Top-
1598
+ k (k > 3) accuracy, again thanks to the better embedding
1599
+ W learned by Eq. (10). However, we notice that our top-
1600
+ 1 accuracy on ZERO SHOT-like setting is lower than Deep
1601
+ SVR method. We find that our method tends to label some
1602
+ instances from target data with their nearest classes from
1603
+ within source label set. For example, “humpback whale” from
1604
+ testing data is more likely to be labeled as “blue whale”.
1605
+ However, when considering Top-k (k > 3) accuracy, our
1606
+ method still has advantages over baselines. It suggests that
1607
+ the semantic embeddings may be suffering from the problem
1608
+ that density of source classes is more concentrated than that
1609
+ of target classes. To show the effectiveness of WMM-Voc, as
1610
+ opposed to MM-Voc, we employ the False Positive Rate as the
1611
+ metric, rfp = Ne/Nun, where Ne means the number of testing
1612
+ unseen instances predicted as seen ones and Nun defines
1613
+ the number of testing unseeen instances. Experiments are
1614
+ conducted on AwA dataset with all training instances, and 100-
1615
+ dim word vector prototypes. The false positive rates are 0.16,
1616
+ 0.10, 0.12, 0.05 and 0.06 by using SVR, Deep-SVR, MM-Voc,
1617
+ WMM-Voc and Deep WMM-Voc, respectively. They further
1618
+ validates that WMM-Voc outperforms MM-Voc.
1619
+ 4.3
1620
+ Experimental results on ImageNet dataset
1621
+ We validate our methods on large-scale ImageNet 2012/2010
1622
+ dataset; the 1000-dimensional word2vec representation is used
1623
+ here since this dataset has larger number of classes than AwA.
1624
+ Testing Classes
1625
+ AwA dataset
1626
+ Aux.
1627
+ Targ.
1628
+ Total
1629
+ Vocab
1630
+ OPEN-SET310K
1631
+ (left)
1632
+ (right)
1633
+ 40 / 10
1634
+ 310K
1635
+ 0
1636
+ 5
1637
+ 10
1638
+ 15
1639
+ 20
1640
+ Hit@k
1641
+ 50
1642
+ 55
1643
+ 60
1644
+ 65
1645
+ 70
1646
+ 75
1647
+ 80
1648
+ 85
1649
+ 90
1650
+ 95
1651
+ 100
1652
+ Accuracy (%)
1653
+ SUPERVISED-like(Aux)
1654
+ 0
1655
+ 5
1656
+ 10
1657
+ 15
1658
+ 20
1659
+ Hit@k
1660
+ 0
1661
+ 10
1662
+ 20
1663
+ 30
1664
+ 40
1665
+ 50
1666
+ 60
1667
+ 70
1668
+ Accuracy (%)
1669
+ ZERO SHOT-like(Tag)
1670
+ SVR-Map
1671
+ MM-Voc
1672
+ Deep-SVR
1673
+ Deep WMM-Voc
1674
+ WMM-Voc
1675
+ Fig. 5.
1676
+ Openset results of AwA datasets. We use
1677
+ 1600 training instances equally sampled from all source
1678
+ classes to train the model.
1679
+ The instances of testing classes are equally sampled; making
1680
+ experiment less sensitive to the problem of unbalanced data.
1681
+ To be specific, 50×1, 000 testing instances from source classes
1682
+ are used in supervised, G-ZSL and open-set setting as well as
1683
+
1684
+ 12
1685
+ TABLE 4
1686
+ The classification accuracy (Top-1 / Top-5) of ImageNet 2012/2010 dataset on ZERO-SHOT and SUPERVISED settings using
1687
+ 3000 source training instances.
1688
+ Settings
1689
+ SVR-Map
1690
+ Deep-SVR
1691
+ ESZSL
1692
+ SAE
1693
+ MM-Voc
1694
+ WMM-Voc
1695
+ Deep WMM-Voc
1696
+ Supervised
1697
+ 25.6/–
1698
+ 31.26/50.51
1699
+ 38.26/64.38
1700
+ 32.95/54.44
1701
+ 37.1/62.35
1702
+ 35.95/62.77
1703
+ 38.92/65.35
1704
+ Zero-shot
1705
+ 4.1/–
1706
+ 5.29/13.32
1707
+ 5.86/13.71
1708
+ 5.11/12.62
1709
+ 8.90/14.90
1710
+ 8.50/20.73
1711
+ 9.26/21.99
1712
+ 360 × 100 testing instances from target classes are used in
1713
+ zero-shot, G-ZSL and open-set setting. The VGG-19 features
1714
+ of ImageNet pre-trained network are utilized as the input of
1715
+ all algorithms to make a fair comparison. We employ the
1716
+ Deep-SVR, SAE, ESZSL as baselines under the SUPERVISED,
1717
+ ZERO-SHOT and GENERAL ZERO-SHOT settings respectively.
1718
+ 4.3.1
1719
+ Pseudo-few-shot Source Training instances
1720
+ The standard few-shot learning assumes disjoint instance set
1721
+ on source and target domains, as discussed in Sec. 4.3.2.
1722
+ As an ablation study, we would like to simulate a few-shot-
1723
+ like learning task on source domain by slightly violating
1724
+ the standard few-shot learning assumption. We name this
1725
+ setting “Pseudo-few-shot learning”: only few source training
1726
+ instances are used here and the feature extractor – VGG-
1727
+ 19 model is pre-trained on ILSVRC 2012 dataset [12]. The
1728
+ “Pseudo-” here indicates that large amount of instances are
1729
+ used to train the feature extractor, but not used in training
1730
+ classifiers. Thus the experiments in this section can be served
1731
+ as an additional ablation study to reveal the insights of our
1732
+ model in addressing the few-shot-like task on source domain.
1733
+ Particularly, we conduct the experiments of using few-shot
1734
+ source training instance, i.e., 3,000 training instances used
1735
+ here. The results are listed in Table 4. We introduce this
1736
+ setting to particularly focus on learning from few training
1737
+ samples per class, in order to mimic human capability and
1738
+ performance in learning from few examples. We show that
1739
+ our vocabulary-informed learning framework enables learning
1740
+ with little data. In particular, we highlight that the Top-5
1741
+ performance of WMM-Voc is much higher (>5%) than that
1742
+ of MM-Voc, despite the slightly worse performance on Top-
1743
+ 1 accuracy. Note that the degradation of Top-1 results on
1744
+ ImageNet is also understandable. Note, WMM-Voc is only
1745
+ fitting the 3000 training instances on ImageNet dataset, and
1746
+ the features of these training instances may not be fine-
1747
+ tuned/optimized for the newly introduced penalty term of
1748
+ WMM-Voc. Once the features of training instances are fine-
1749
+ tuned by the deep version; we can show that the Deep WMM-
1750
+ Voc can improve from MM-Voc and WMM-Voc.
1751
+ Critically, with different settings in Table 4, our vocabulary-
1752
+ informed learning can beat the other baselines under all
1753
+ settings. We highlight several findings:
1754
+ (1) The supervised performance of our methods stands
1755
+ out from the state-of-art. Specifically, our Deep WMM-Voc
1756
+ achieves the highest supervised recognition accuracy, with
1757
+ ESZSL following closely. SVR-Map appears to be the worst.
1758
+ (2) On Zero-shot learning task, our proposed Deep WMM-
1759
+ Voc gets 9.26% Top-1 and 21.99% Top-5 accuracy. It outper-
1760
+ forms all the other baselines. Comparing with our previous
1761
+ Supervised Learning results of ImageNet
1762
+ 3k
1763
+ 5k
1764
+ 10k
1765
+ 20k
1766
+ 50k
1767
+ Training Instance Number
1768
+ 0
1769
+ 20
1770
+ 40
1771
+ 60
1772
+ Top1 Accuracy(%)
1773
+ WMM-Voc
1774
+ Deep WMM-Voc
1775
+ Deep-SVR
1776
+ SAE(F->S)
1777
+ SAE(S->F)
1778
+ ESZSl
1779
+ Zero-shot Learning results of ImageNet
1780
+ 3k
1781
+ 5k
1782
+ 10k
1783
+ 20k
1784
+ 50k
1785
+ Training Instance Number
1786
+ 0
1787
+ 2
1788
+ 4
1789
+ 6
1790
+ 8
1791
+ 10
1792
+ Top1 Accuracy(%)
1793
+ WMM-Voc
1794
+ Deep WMM-Voc
1795
+ Deep-SVR
1796
+ SAE(F->S)
1797
+ SAE(S->F)
1798
+ ESZSL
1799
+ Fig. 6. The supervised and zero-shot learning results on
1800
+ ImageNet 2012/2010 dataset.
1801
+ MM-Voc result in [29], our result is 0.36% higher than MM-
1802
+ Voc. This improvement is statistically significant due to the
1803
+ few number of training instances and large number of testing
1804
+ instances. Additionally, the Top-1 result of WMM-Voc is
1805
+ 8.5% which is also comparable to that of MM-Voc, and far
1806
+ higher than those of SVR, Deep-SVR, ESZSL and SAE. This
1807
+ validates the effectiveness of learning from open vocabulary
1808
+ proposed in our two variants.
1809
+ (3) In G-ZSL setting, we observe that both Deep WMM-
1810
+ Voc and WMM-Voc outperform all the other baselines. The
1811
+ full set of experiments on G-ZSL under different settings are
1812
+ reported in Table 5.
1813
+ 4.3.2
1814
+ Few-shot Target Training instances
1815
+ We further introduce few-shot learning experiments on target
1816
+ instances to validate the performance of our methods. The
1817
+ experiments are conducted on ImageNet dataset. In total, there
1818
+ are 360 target classes from ImageNet 2010 data split with
1819
+ 100 instances per class; the feature extractor – VGG-19 is
1820
+ trained on the 1000 classes from ImageNet 2012. The 1 or
1821
+ 3 training instances are sampled from each target class. The
1822
+ other instances of the target classes are utilized as the test
1823
+ set. This is the few-shot learning setting, which is consistent
1824
+ with general definition [20]. We compare to SVM, KNN,
1825
+ Deep SVR, and SAE. The results are shown in Table 6. We
1826
+ can see that our method (WMM-Voc) can beat all the other
1827
+ competitors. Particularly, we have an obvious advantage in 1-
1828
+ shot target setting. Our Deep variant (Deep WMM-Voc) has
1829
+
1830
+ 13
1831
+ TABLE 5
1832
+ The G-ZSL results (1000-dim) of ImageNet datasets. We
1833
+ compare the results of using different number of training
1834
+ instances (No.) D-SVR, W-V and D-W-V indicate Deep
1835
+ SVR, WWM-Voc, and Deep WWM-Voc, respectively.
1836
+ No.
1837
+ Metrics
1838
+ ESZSL
1839
+ SAE
1840
+ D-SVR
1841
+ W-V
1842
+ D-W-V
1843
+ 3000
1844
+ U → T
1845
+ 0.46
1846
+ 0.24
1847
+ 0.20
1848
+ 2.02
1849
+ 1.93
1850
+ S → T
1851
+ 38.07
1852
+ 32.86
1853
+ 31.06
1854
+ 32.40
1855
+ 36.61
1856
+ H
1857
+ 0.91
1858
+ 0.48
1859
+ 0.40
1860
+ 3.80
1861
+ 3.67
1862
+ 10000
1863
+ U → T
1864
+ 0.38
1865
+ 0.18
1866
+ 0.18
1867
+ 2.01
1868
+ 1.99
1869
+ S → T
1870
+ 49.65
1871
+ 46.23
1872
+ 33.54
1873
+ 32.87
1874
+ 43.53
1875
+ H
1876
+ 0.75
1877
+ 0.36
1878
+ 0.36
1879
+ 3.79
1880
+ 3.81
1881
+ 50000
1882
+ U → T
1883
+ 0.37
1884
+ 0.19
1885
+ 0.20
1886
+ 2.11
1887
+ 2.15
1888
+ S → T
1889
+ 57.43
1890
+ 54.55
1891
+ 36.75
1892
+ 33.16
1893
+ 47.28
1894
+ H
1895
+ 0.74
1896
+ 0.38
1897
+ 0.40
1898
+ 3.97
1899
+ 4.11
1900
+ TABLE 6
1901
+ Results of few-shot target training instances on
1902
+ ImageNet dataset.
1903
+ Method
1904
+ 1-instance
1905
+ 3-instance
1906
+ SVM
1907
+ 2.65
1908
+ 9.81
1909
+ KNN
1910
+ 5.23
1911
+ 13.3
1912
+ Deep SVR
1913
+ 14.01
1914
+ 25.00
1915
+ SAE
1916
+ 14.93
1917
+ 26.42
1918
+ WMM-Voc
1919
+ 17.26
1920
+ 26.59
1921
+ Deep WMM-Voc
1922
+ 17.95
1923
+ 30.44
1924
+ better performance both in 1- and 3-shot setting. This shows
1925
+ the efficacy of proposed methods in few-shot learning task.
1926
+ 4.3.3
1927
+ Results on different training/testing splits
1928
+ We further validate our findings on ImageNet 2012/2010
1929
+ dataset. In general, our framework has advantages over the
1930
+ baselines since open vocabulary helps inform the learning
1931
+ process when few training instances or limited training data is
1932
+ available. The results are compared in Figure 6.
1933
+ Supervised learning: As shown in Figure 6, we compare the
1934
+ supervised results by increasing the training instances from
1935
+ 3,000 to 50,000. With 3,000 training instances, the results of
1936
+ Deep WMM-Voc are better than all the other baselines with
1937
+ the help of learning from free vocabulary. We further evaluate
1938
+ our models with larger number of training instances (> 3
1939
+ per class). We observe that for standard supervised learning
1940
+ setting, the improvements achieved using vocabulary-informed
1941
+ learning tend to somewhat diminish as the number of training
1942
+ instances substantially grows. With large number of training
1943
+ instances, the mapping between low-level image features and
1944
+ semantic words, g(x), becomes better behaved and effect of
1945
+ additional constraints, due to the open-vocabulary, becomes
1946
+ less pronounced.
1947
+ Zero-shot Learning: We further validate the results on zero-
1948
+ shot learning setting. Figure 6 shows that our models can beat
1949
+ all other baselines. Our Deep WMM-Voc always performs
1950
+ the best with the source training instances increased from
1951
+ TABLE 7
1952
+ ImageNet comparison to state-of-the-art on ZSL: We
1953
+ compare the results of using 3, 000/all training instances
1954
+ for all methods; T-1 (top 1) and T-5 (top 5) classification
1955
+ in (%) is reported. The VGG-19 features are used for all
1956
+ methods.
1957
+ Methods
1958
+ S. Sp
1959
+ T-1
1960
+ T-5
1961
+ Deep WMM-Voc
1962
+ W
1963
+ 9.26/10.29
1964
+ 21.99/23.12
1965
+ WMM-Voc
1966
+ W
1967
+ 8.5/8.76
1968
+ 20.30/21.36
1969
+ MM-Voc
1970
+ W
1971
+ 8.9/9.5
1972
+ 14.9/16.8
1973
+ SAE
1974
+ W
1975
+ 5.11/9.32
1976
+ 12.26/21.04
1977
+ ESZSL
1978
+ W
1979
+ 5.86/8.3
1980
+ 13.71/18.2
1981
+ Deep-SVR
1982
+ W
1983
+ 5.29/5.7
1984
+ 13.32/14.12
1985
+ Embed [88]
1986
+ W
1987
+ –/11.00
1988
+ –/25.70
1989
+ ConSE [53]
1990
+ W
1991
+ 5.5/7.8
1992
+ 13.1/15.5
1993
+ DeViSE [24]
1994
+ W
1995
+ 3.7/5.2
1996
+ 11.8/12.8
1997
+ AMP [31]
1998
+ W
1999
+ 3.5/6.1
2000
+ 10.5/13.1
2001
+ Chance
2002
+
2003
+ 2.78e-3
2004
+
2005
+ 3,000 to 50,000. The WMM-Voc always has the second
2006
+ best performance; especially when only few source training
2007
+ instances are available, i.e., 3,000 and 5,000 training instances.
2008
+ Our Deep WMM-Voc and WMM-Voc demonstrate significant
2009
+ improvements over the competitors in ZSL task. The good
2010
+ performance of Deep WMM-Voc and WMM-Voc is largely
2011
+ due to our vocabulary-informed learning framework which can
2012
+ leverage the discriminative information from open vocabulary
2013
+ and max-margin constraints, helping to improve performance.
2014
+ General Zero-shot Learning: In G-ZSL, our methods still
2015
+ have the best performance compared to the baselines, as seen
2016
+ from Table 5. The Top-1 results of WMM-Voc and Deep
2017
+ WMM-Voc are beyond 2%; in contrast, the performance of
2018
+ other state-of-art methods are lower than 0.5%.
2019
+ Varying training set size: In Figure 6 we also evaluate our
2020
+ model with the larger number of training instances (> 3 per
2021
+ class) in all settings. The results are inline with prior findings.
2022
+ The state-of-the-art on ZSL: We compare our results to sev-
2023
+ eral state-of-the-art large-scale zero-shot recognition models.
2024
+ Our results are better than those of ConSE, DeViSE, Deep-
2025
+ SVR, SAE, ESZSL and AMP on both T-1 and T-5 metrics
2026
+ with a very significant margin. Poor results of DeViSE with
2027
+ 3, 000 training instances are largely due to the inefficient
2028
+ learning of visual-semantic embedding matrix. AMP algorithm
2029
+ also relies on the embedding matrix from DeViSE, which
2030
+ explains similar poor performance of AMP with 3, 000 training
2031
+ instances. Table 7 shows that our Deep WMM-Voc obtains
2032
+ good performance with (all) 50,000 training instances. Top-5
2033
+ accuracy of our methods are beyond 20%. This again validates
2034
+ that our proposed methods can have the advantages of learning
2035
+ from limited available training instances by leveraging the
2036
+ discriminative information from open vocabulary. Embed [1]
2037
+ has slightly better ZSL performance compared to our models.
2038
+ However, unlike the other works that directly use word vector
2039
+ representations of class names, [1] require additional textual
2040
+ descriptions of each class to learn better class prototypes.
2041
+ Open-set recognition: The open set image recognition results
2042
+
2043
+ 14
2044
+ Testing Classes
2045
+ ImageNet Data
2046
+ Aux.
2047
+ Tag.
2048
+ Total
2049
+ Vocab
2050
+ OPEN-SET310K
2051
+ (left)
2052
+ (right)
2053
+ 1000 / 360
2054
+ 310K
2055
+ 0
2056
+ 5
2057
+ 10
2058
+ 15
2059
+ 20
2060
+ Hit@k
2061
+ 5
2062
+ 10
2063
+ 15
2064
+ 20
2065
+ 25
2066
+ 30
2067
+ Accuracy (%)
2068
+ SUPERVISED-like(Aux)
2069
+ 0
2070
+ 5
2071
+ 10
2072
+ 15
2073
+ 20
2074
+ Hit@k
2075
+ 0
2076
+ 1
2077
+ 2
2078
+ 3
2079
+ 4
2080
+ 5
2081
+ 6
2082
+ Accuracy (%)
2083
+ ZERO SHOT-like(Tag)
2084
+ MM-Voc
2085
+ Deep-SVR
2086
+ Deep WMM-Voc
2087
+ WMM-Voc
2088
+ Fig. 7.
2089
+ Open set recognition results on ImageNet
2090
+ 2012/2010 dataset: Openness=0.9839. Chance=3.2e −
2091
+ 4%. We use the synsets of each class— a set of synony-
2092
+ mous (word or prhase) terms as the ground truth names
2093
+ for each instance. We use the model trained with 50,000
2094
+ instances sampled equally from source classes.
2095
+ are shown in Figure 7. On SUPERVISED-like settings, we
2096
+ notice the MM-Voc and WMM-Voc have similar open set
2097
+ recognition accuracy. Since this dataset is very large, linear
2098
+ mapping g(x) may not have enough capacity to model the
2099
+ embedding mapping from visual space to semantic space. Thus
2100
+ adding constraints on source training classes in WMM-Voc
2101
+ may slightly hinder the learning such an embedding. That
2102
+ explains why the results of WMM-Voc are slightly inferior
2103
+ to MM-Voc. Deep WMM-Voc has the best performance, due
2104
+ to its ability to fine-tune low-level feature representation while
2105
+ learning the embedding. On the ZERO-SHOT-like setting, our
2106
+ WMM-Voc and Deep WMM-Voc have the best performance.
2107
+ Qualitative visualization: We illustrate the embedding space
2108
+ learned
2109
+ by
2110
+ our
2111
+ Deep
2112
+ WMM-Voc
2113
+ model
2114
+ for
2115
+ the
2116
+ Ima-
2117
+ geNet2012/2010 dataset in Figure 1. In particular, we have
2118
+ 4 source/auxiliary and 2 target/zero-shot classes in this figure.
2119
+ The better separation among classes is largely attributed to
2120
+ open-set max-margin constraints introduced in our vocabulary-
2121
+ informed learning model. We further visualize the semantic
2122
+ space in Figure 8. Critically, we list seven target classes
2123
+ on AwA dataset, as well as their surrounding neighbor-
2124
+ hood open vocabulary. For example, “orcas” is very near to
2125
+ “killer_whale”. While “orcas” are semantically different from
2126
+ “killer_whale”, the difference is much smaller if we compare
2127
+ the “orcas” with the other classes, such as “spider monkey”,
2128
+ “grizzly_bear” and so on. Hence the “orcas” can be used
2129
+ to help learn the class of “killer_whale” in our vocabulary-
2130
+ informed learning framework.
2131
+ killer_whale
2132
+ chihuahua_dog
2133
+ dalmatian_dog
2134
+ buffalo
2135
+ grizzly_bear
2136
+ collie
2137
+ spider_monkey
2138
+ Word prototype:
2139
+ golden_retriever
2140
+ collies
2141
+ fox_terrier
2142
+ sheepdog
2143
+ shetland_pony
2144
+ jack_russell_terrier
2145
+ cattle_dog
2146
+ wellard
2147
+ drover
2148
+ collie
2149
+ killer_whale
2150
+ tilikum
2151
+ orcas
2152
+ brancheau
2153
+ orca
2154
+ seaworld
2155
+ bottlenose_dolphin
2156
+ sea_lion
2157
+ whale
2158
+ seaworld_orlando
2159
+ spider_monkey
2160
+ capybara
2161
+ giant_anteater
2162
+ marmoset
2163
+ tamarin
2164
+ macaw
2165
+ howler_monkeys
2166
+ squirrel_monkeys
2167
+ macaque
2168
+ macaws
2169
+ grizzly_bear
2170
+ grizzly
2171
+ polar_bear
2172
+ elk
2173
+ grizzly_bears
2174
+ coyote
2175
+ caribou
2176
+ mountain_lion
2177
+ mountain_goats
2178
+ bighorn_sheep
2179
+ buffalo
2180
+ minneapolis
2181
+ detroit
2182
+ chicago
2183
+ kansas_city
2184
+ pittsburgh
2185
+ erie
2186
+ duluth
2187
+ minnesota
2188
+ grand_rapids
2189
+ chihuahua_dog
2190
+ ciudad_ju_rez
2191
+ sonora
2192
+ sinaloa
2193
+ coahuila
2194
+ durango
2195
+ jalisco
2196
+ michoac_n
2197
+ zacatecas
2198
+ nuevo_leon
2199
+ dalmatian_dog
2200
+ istria
2201
+ ragusa
2202
+ dalmatian_coast
2203
+ kor_ula
2204
+ gradisca
2205
+ sardinian
2206
+ zadar
2207
+ croatian
2208
+ istrian
2209
+ Fig. 8.
2210
+ Visualization of the semantic space: We
2211
+ show the t-SNE visualization of the semantic space. The
2212
+ words in boxes are the mapping of training image in the
2213
+ semantic space, and close neighbors are shown. The
2214
+ neighborhoods extend the single training data to a space
2215
+ semantically meaningful.
2216
+ 5
2217
+ CONCLUSION AND FUTURE WORK
2218
+ This paper introduces the learning paradigm of vocabulary-
2219
+ informed learning, by utilizing open set semantic vocabulary
2220
+ to help train better classifiers for observed and unobserved
2221
+ classes in supervised learning, ZSL, G-ZSL, and open set
2222
+ image recognition settings. We formulate vocabulary-informed
2223
+ learning in the maximum margin frameworks. Extensive ex-
2224
+ perimental results illustrate the efficacy of such learning
2225
+ paradigm. Strikingly, it achieves competitive performance with
2226
+ very few training instances and is relatively robust to a large
2227
+ open set vocabulary of up to 310, 000 class labels.
2228
+ ACKNOWLEDGMENTS
2229
+ This work was supported in part by NSFC Project (61702108,
2230
+ 61622204), STCSM Project (16JC1420400), Eastern Scholar
2231
+ (TP2017006), Shanghai Municipal Science and Technol-
2232
+ ogy Major Project (2017SHZDZX01, 2018SHZDZX01) and
2233
+ ZJLab.
2234
+ REFERENCES
2235
+ [1]
2236
+ 2.4, 4.3.3
2237
+ [2]
2238
+ Z. Akata, F. Perronnin, Z. Harchaoui, and C. Schmid. Label-embedding
2239
+ for image classification.
2240
+ IEEE transactions on pattern analysis and
2241
+ machine intelligence, 38(7):1425–1438, 2015. 2, 2.4, 4.2
2242
+ [3]
2243
+ Z. Akata, S. Reed, D. Walter, H. Lee, and B. Schiele. Evaluation of
2244
+ output embeddings for fine-grained image classification. In Proceedings
2245
+ of the IEEE Conference on Computer Vision and Pattern Recognition,
2246
+ pages 2927–2936, 2015. 2, 2.3, 2.4, 3.3, 4.2
2247
+ [4]
2248
+ Y. Amit, M. Fink, N. Srebro, and S. Ullman.
2249
+ Uncovering shared
2250
+ structures in multiclass classification.
2251
+ In Proceedings of the 24th
2252
+ international conference on Machine learning, pages 17–24. ACM,
2253
+ 2007. 2
2254
+ [5]
2255
+ E. Bart and S. Ullman. Cross-generalization: Learning novel classes
2256
+ from a single example by feature replacement.
2257
+ In 2005 IEEE Com-
2258
+ puter Society Conference on Computer Vision and Pattern Recognition
2259
+ (CVPR’05), volume 1, pages 672–679. IEEE, 2005. 2, 2.2
2260
+
2261
+ 15
2262
+ [6]
2263
+ A. Bendale and T. Boult.
2264
+ Towards open world recognition.
2265
+ In
2266
+ Proceedings of the IEEE Conference on Computer Vision and Pattern
2267
+ Recognition, pages 1893–1902, 2015. 2.1
2268
+ [7]
2269
+ A. Bendale and T. Boult. Towards open set deep networks. In Computer
2270
+ Vision and Pattern Recognition, 2016 IEEE Conference on. IEEE, 2016.
2271
+ 2.1
2272
+ [8]
2273
+ I. Biederman. Recognition-by-components: a theory of human image
2274
+ understanding. Psychological review, 94(2):115, 1987. 1
2275
+ [9]
2276
+ S. Changpinyo, W.-L. Chao, B. Gong, and F. Sha. Synthesized classifiers
2277
+ for zero-shot learning.
2278
+ In Proceedings of the IEEE Conference on
2279
+ Computer Vision and Pattern Recognition, pages 5327–5336, 2016. 4.2
2280
+ [10] S. Changpinyo, W.-L. Chao, and F. Sha. Predicting visual exemplars
2281
+ of unseen classes for zero-shot learning. In Proceedings of the IEEE
2282
+ International Conference on Computer Vision, pages 3476–3485, 2017.
2283
+ 2.4, 4.2
2284
+ [11] W.-L. Chao, S. Changpinyo, B. Gong, and F. Sha. An empirical study
2285
+ and analysis of generalized zero-shot learning for object recognition in
2286
+ the wild. In European Conference on Computer Vision, pages 52–68.
2287
+ Springer, 2016. 1, 2.3
2288
+ [12] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman. Return of the
2289
+ devil in the details: Delving deep into convolutional nets. arXiv preprint
2290
+ arXiv:1405.3531, 2014. 4.1, 4.3.1
2291
+ [13] K. Crammer and Y. Singer.
2292
+ On the algorithmic implementation of
2293
+ multiclass kernel-based vector machines. Journal of machine learning
2294
+ research, 2(Dec):265–292, 2001. 3.3
2295
+ [14] J. Deng, N. Ding, Y. Jia, A. Frome, K. Murphy, S. Bengio, Y. Li,
2296
+ H. Neven, and H. Adam. Large-scale object classification using label
2297
+ relation graphs. In European conference on computer vision, pages 48–
2298
+ 64. Springer, 2014. 4.2
2299
+ [15] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet:
2300
+ A large-scale hierarchical image database. In 2009 IEEE conference on
2301
+ computer vision and pattern recognition, pages 248–255. IEEE, 2009.
2302
+ 1
2303
+ [16] G. Dinu, A. Lazaridou, and M. Baroni. Improving zero-shot learning by
2304
+ mitigating the hubness problem. arXiv preprint arXiv:1412.6568, 2014.
2305
+ 3
2306
+ [17] H. Dong, Y. Fu, L. Sigal, S. J. Hwang, Y.-G. Jiang, and X. Xue. Learning
2307
+ to separate domains in generalized zero-shot and open set learning: a
2308
+ probabilistic perspective. arXiv preprint arXiv:1810.07368, 2018. 3.4
2309
+ [18] A. Farhadi, I. Endres, D. Hoiem, and D. Forsyth. Describing objects
2310
+ by their attributes. In 2009 IEEE Conference on Computer Vision and
2311
+ Pattern Recognition, pages 1778–1785. IEEE, 2009. 2, 2.3, 2.4
2312
+ [19] L. Fei-Fei, R. Fergus, and P. Perona. A bayesian approach to unsu-
2313
+ pervised one-shot learning of object categories. In IEEE International
2314
+ Conference on Computer Vision, 2003. 2
2315
+ [20] L. Fei-Fei, R. Fergus, and P. Perona.
2316
+ One-shot learning of object
2317
+ categories.
2318
+ IEEE Trans. Pattern Anal. Mach. Intell., 28(4):594–611,
2319
+ Apr. 2006. 2.2, 4.3.2
2320
+ [21] R. Felix, B. Vijay Kumar, I. Reid, and G. Carneiro.
2321
+ Multi-modal
2322
+ cycle-consistent generalized zero-shot learning. In Proceedings of the
2323
+ European Conference on Computer Vision, pages 21–37, 2018. 4.2
2324
+ [22] F. Fleuret and G. Blanchard. Pattern recognition from one example by
2325
+ chopping. In Advances in Neural Information Processing Systems, pages
2326
+ 371–378, 2006. 2
2327
+ [23] M. P. Friedlander and M. Schmidt.
2328
+ Hybrid deterministic-stochastic
2329
+ methods for data fitting.
2330
+ SIAM Journal on Scientific Computing,
2331
+ 34(3):A1380–A1405, 2012. 2
2332
+ [24] A. Frome, G. S. Corrado, J. Shlens, S. Bengio, J. Dean, T. Mikolov,
2333
+ et al. Devise: A deep visual-semantic embedding model. In Advances
2334
+ in neural information processing systems, pages 2121–2129, 2013. 1,
2335
+ 2, 2.1, 2.3, 2.4, 3.3, 6, 7, 4.2, 7
2336
+ [25] Y. Fu, T. M. Hospedales, T. Xiang, Z. Fu, and S. Gong. Transductive
2337
+ multi-view embedding for zero-shot recognition and annotation.
2338
+ In
2339
+ European Conference on Computer Vision, pages 584–599. Springer,
2340
+ 2014. 2.4, 3.2, 4.2
2341
+ [26] Y. Fu, T. M. Hospedales, T. Xiang, and S. Gong. Attribute learning for
2342
+ understanding unstructured social activity. In European Conference on
2343
+ Computer Vision, pages 530–543. Springer, 2012. 2.3
2344
+ [27] Y. Fu, T. M. Hospedales, T. Xiang, and S. Gong. Learning multimodal
2345
+ latent attributes. IEEE transactions on pattern analysis and machine
2346
+ intelligence, 36(2):303–316, 2013. 1, 2.2, 2.3, 3.2
2347
+ [28] Y. Fu, T. M. Hospedales, T. Xiang, and S. Gong. Transductive multi-
2348
+ view zero-shot learning.
2349
+ IEEE transactions on pattern analysis and
2350
+ machine intelligence, 37(11):2332–2345, 2015. 2.3, 2.4
2351
+ [29] Y. Fu and L. Sigal. Semi-supervised vocabulary-informed learning. In
2352
+ Proceedings of the IEEE Conference on Computer Vision and Pattern
2353
+ Recognition, pages 5337–5346, 2016. 1, 2, 3.3, 3.4, 4.1, 1, 4.3.1
2354
+ [30] Y. Fu, T. Xiang, Y.-G. Jiang, X. Xue, L. Sigal, and S. Gong. Recent
2355
+ advances in zero-shot recognition: Toward data-efficient understanding
2356
+ of visual content. IEEE Signal Processing Magazine, 35(1):112–125,
2357
+ 2018. 3.2
2358
+ [31] Z. Fu, T. Xiang, E. Kodirov, and S. Gong. Zero-shot object recognition
2359
+ by semantic manifold distance. In Proceedings of the IEEE conference
2360
+ on computer vision and pattern recognition, pages 2635–2644, 2015.
2361
+ 2.3, 6, 4.2, 7
2362
+ [32] S. Guadarrama, E. Rodner, K. Saenko, N. Zhang, R. Farrell, J. Donahue,
2363
+ and T. Darrell. Open-vocabulary object retrieval. In Robotics: science
2364
+ and systems, volume 2, page 6, 2014. 2.1
2365
+ [33] T. Hertz, A. B. Hillel, and D. Weinshall. Learning a kernel function for
2366
+ classification with small training samples. In Proceedings of the 23rd
2367
+ international conference on Machine learning, pages 401–408. ACM,
2368
+ 2006. 2
2369
+ [34] A. G. Huth, S. Nishimoto, A. T. Vu, and J. L. Gallant. A continuous
2370
+ semantic space describes the representation of thousands of object and
2371
+ action categories across the human brain.
2372
+ Neuron, 76(6):1210–1224,
2373
+ 2012. 1
2374
+ [35] S. J. Hwang and L. Sigal. A unified semantic embedding: Relating tax-
2375
+ onomies and attributes. In Advances in Neural Information Processing
2376
+ Systems, pages 271–279, 2014. 2.4, 3.3
2377
+ [36] D. Jayaraman and K. Grauman. Zero-shot recognition with unreliable
2378
+ attributes. In Advances in neural information processing systems, pages
2379
+ 3464–3472, 2014. 4.2
2380
+ [37] G. Koch, R. Zemel, and R. Salakhutdinov. Siamese neural networks for
2381
+ one-shot image recognition. In ICML deep learning workshop, volume 2,
2382
+ 2015. 2
2383
+ [38] E. Kodirov, T. Xiang, and S. Gong. Semantic autoencoder for zero-shot
2384
+ learning. In Proceedings of the IEEE Conference on Computer Vision
2385
+ and Pattern Recognition, pages 3174–3183, 2017. 2.4, 4, 4.2.1
2386
+ [39] S. Kotz, N. Balakrishnan, and N. L. Johnson. Continuous multivariate
2387
+ distributions, Volume 1: Models and applications, volume 1. John Wiley
2388
+ & Sons, 2004. 5
2389
+ [40] S. Kotz and S. Nadarajah.
2390
+ Extreme value distributions: theory and
2391
+ applications. World Scientific, 2000. 3.4
2392
+ [41] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification
2393
+ with deep convolutional neural networks.
2394
+ In Advances in neural
2395
+ information processing systems, pages 1097–1105, 2012. 1
2396
+ [42] N. Kumar, A. C. Berg, P. N. Belhumeur, and S. K. Nayar. Attribute and
2397
+ simile classifiers for face verification. In 2009 IEEE 12th International
2398
+ Conference on Computer Vision, pages 365–372. IEEE, 2009. 1, 2.3
2399
+ [43] C. H. Lampert, H. Nickisch, and S. Harmeling. Attribute-based classifi-
2400
+ cation for zero-shot visual object categorization. IEEE Transactions on
2401
+ Pattern Analysis and Machine Intelligence, 36(3):453–465, 2014. 1, 2,
2402
+ 2.2, 2.4, 4.1, 4.2
2403
+ [44] H. Larochelle, D. Erhan, and Y. Bengio.
2404
+ Zero-data learning of new
2405
+ tasks. In AAAI, volume 1, page 3, 2008. 1
2406
+ [45] A. Lazaridou, G. Dinu, and M. Baroni. Hubness and pollution: Delving
2407
+ into cross-space mapping for zero-shot learning. In Proceedings of the
2408
+ 53rd Annual Meeting of the Association for Computational Linguistics
2409
+ and the 7th International Joint Conference on Natural Language Pro-
2410
+ cessing (Volume 1: Long Papers), volume 1, pages 270–280, 2015. 3.4
2411
+ [46] Y.-J. Lee, W.-F. Hsieh, and C.-M. Huang. epsilon-ssvr: A smooth support
2412
+ vector machine for epsilon-insensitive regression. IEEE Transactions on
2413
+ Knowledge & Data Engineering, (5):678–685, 2005. 3.3
2414
+ [47] T. Long, X. Xu, Y. Li, F. Shen, J. Song, and H. T. Shen.
2415
+ Pseudo
2416
+ transfer with marginalized corrupted attribute for zero-shot learning. In
2417
+ 2018 ACM Multimedia Conference on Multimedia Conference, pages
2418
+ 4281–4289. ACM, 2018. 4.2
2419
+ [48] T. Long, X. Xu, F. Shen, L. Liu, N. Xie, and Y. Yang. Zero-shot learning
2420
+ via discriminative representation extraction. Pattern Recognition Letters,
2421
+ 109:27–34, 2018. 4.2
2422
+ [49] Y. Long, L. Liu, L. Shao, F. Shen, G. Ding, and J. Han. From zero-shot
2423
+ learning to conventional supervised classification: Unseen visual data
2424
+ synthesis. In Proceedings of the IEEE Conference on Computer Vision
2425
+ and Pattern Recognition, pages 1627–1636, 2017. 2.4
2426
+ [50] Y. Long, L. Liu, F. Shen, L. Shao, and X. Li. Zero-shot learning using
2427
+ synthesised unseen visual data with diffusion regularisation. IEEE Trans-
2428
+ actions on Pattern Analysis and Machine Intelligence, 40(10):2498–
2429
+ 2512, 2018. 4.2
2430
+ [51] C. Manning, P. Raghavan, and H. Schütze. Introduction to information
2431
+ retrieval. Natural Language Engineering, 16(1):100–103, 2010. 3.2
2432
+ [52] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Dis-
2433
+ tributed representations of words and phrases and their compositionality.
2434
+ In Advances in neural information processing systems, pages 3111–
2435
+ 3119, 2013. 2.3, 3.1
2436
+
2437
+ 16
2438
+ [53] M. Norouzi, T. Mikolov, S. Bengio, Y. Singer, J. Shlens, A. Frome,
2439
+ G. S. Corrado, and J. Dean. Zero-shot learning by convex combination
2440
+ of semantic embeddings. arXiv preprint arXiv:1312.5650, 2013. 2.1,
2441
+ 2.3, 6, 7, 4.2, 7
2442
+ [54] M. Palatucci, D. Pomerleau, G. E. Hinton, and T. M. Mitchell. Zero-shot
2443
+ learning with semantic output codes. In Advances in neural information
2444
+ processing systems, pages 1410–1418, 2009. 1, 1, 2.3, 3.1, 4.1, 8
2445
+ [55] S. J. Pan and Q. Yang. A survey on transfer learning. IEEE Transactions
2446
+ on Data and Knowledge Engineering, 22(10):1345–1359, 2010. 2
2447
+ [56] D. Parikh and K. Grauman. Relative attributes. In 2011 International
2448
+ Conference on Computer Vision, pages 503–510. IEEE, 2011. 2.3
2449
+ [57] J. Pennington, R. Socher, and C. Manning. Glove: Global vectors for
2450
+ word representation. In Proceedings of the 2014 conference on empirical
2451
+ methods in natural language processing (EMNLP), pages 1532–1543,
2452
+ 2014. 2.3, 3.1
2453
+ [58] M. Rohrbach, S. Ebert, and B. Schiele. Transfer learning in a trans-
2454
+ ductive setting. In Advances in neural information processing systems,
2455
+ pages 46–54, 2013. 2, 2.2, 3.2, 4.2
2456
+ [59] M. Rohrbach, M. Stark, and B. Schiele. Evaluating knowledge transfer
2457
+ and zero-shot learning in a large-scale setting. In CVPR 2011, pages
2458
+ 1641–1648. IEEE, 2011. 2
2459
+ [60] M. Rohrbach, M. Stark, G. Szarvas, I. Gurevych, and B. Schiele. What
2460
+ helps where–and why? semantic relatedness for knowledge transfer.
2461
+ In 2010 IEEE Computer Society Conference on Computer Vision and
2462
+ Pattern Recognition, pages 910–917. IEEE, 2010. 2, 2.2, 4.2
2463
+ [61] B. Romera-Paredes and P. Torr. An embarrassingly simple approach to
2464
+ zero-shot learning. In International Conference on Machine Learning,
2465
+ pages 2152–2161, 2015. 5, 4.2, 4.2.1
2466
+ [62] E. M. Rudd, L. P. Jain, W. J. Scheirer, and T. E. Boult. The extreme
2467
+ value machine.
2468
+ IEEE transactions on pattern analysis and machine
2469
+ intelligence, 40(3):762–768, 2017. 3.4
2470
+ [63] H. Sattar, S. Muller, M. Fritz, and A. Bulling.
2471
+ Prediction of search
2472
+ targets from fixations in open-world settings.
2473
+ In Proceedings of the
2474
+ IEEE Conference on Computer Vision and Pattern Recognition, pages
2475
+ 981–990, 2015. 2.1
2476
+ [64] R. E. Schapire, Y. Freund, P. Bartlett, W. S. Lee, et al. Boosting the
2477
+ margin: A new explanation for the effectiveness of voting methods. The
2478
+ annals of statistics, 26(5):1651–1686, 1998. 3.4
2479
+ [65] W. J. Scheirer, L. P. Jain, and T. E. Boult. Probability models for open
2480
+ set recognition.
2481
+ IEEE transactions on pattern analysis and machine
2482
+ intelligence, 36(11):2317–2324, 2014. 2.1
2483
+ [66] W. J. Scheirer, A. Rocha, A. Sapkota, and T. E. Boult. Towards open
2484
+ set recognition. IEEE Transactions on Pattern Analysis and Machine
2485
+ Intelligence, 2013. 1, 2.1, 4.1
2486
+ [67] Y. Shigeto, I. Suzuki, K. Hara, M. Shimbo, and Y. Matsumoto. Ridge
2487
+ regression, hubness, and zero-shot learning. In Joint European Con-
2488
+ ference on Machine Learning and Knowledge Discovery in Databases,
2489
+ pages 135–151. Springer, 2015. 3.4, 3
2490
+ [68] R. Socher, M. Ganjoo, C. D. Manning, and A. Ng. Zero-shot learning
2491
+ through cross-modal transfer.
2492
+ In Advances in neural information
2493
+ processing systems, pages 935–943, 2013. 1, 2.4, 4.2
2494
+ [69] F. Sung, Y. Yang, L. Zhang, T. Xiang, P. H. Torr, and T. M. Hospedales.
2495
+ Learning to compare: Relation network for few-shot learning.
2496
+ In
2497
+ Proceedings of the IEEE Conference on Computer Vision and Pattern
2498
+ Recognition, pages 1199–1208, 2018. 4.2
2499
+ [70] S. Thrun. Learning to learn: Introduction. 1996. 2
2500
+ [71] T. Tommasi and B. Caputo. The more you know, the less you learn: from
2501
+ knowledge transfer to one-shot learning of object categories. Technical
2502
+ report, 2009. 2
2503
+ [72] A. Torralba, R. Fergus, and W. T. Freeman. 80 million tiny images:
2504
+ A large data set for nonparametric object and scene recognition. IEEE
2505
+ transactions on pattern analysis and machine intelligence, 30(11):1958–
2506
+ 1970, 2008. 1
2507
+ [73] A. Torralba, K. P. Murphy, and W. T. Freeman. Sharing visual features
2508
+ for multiclass and multiview object detection. IEEE Transactions on
2509
+ Pattern Analysis & Machine Intelligence, (5):854–869, 2007. 2
2510
+ [74] A. Torralba, K. P. Murphy, and W. T. Freeman. Using the forest to see
2511
+ the trees: exploiting context for visual object detection and localization.
2512
+ Communications of the ACM, 53(3):107–114, 2010. 2, 2.2
2513
+ [75] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin
2514
+ methods for structured and interdependent output variables. Journal of
2515
+ machine learning research, 6(Sep):1453–1484, 2005. 3.3
2516
+ [76] A. Vedaldi and A. Zisserman.
2517
+ Efficient additive kernels via explicit
2518
+ feature maps. In IEEE Transactions on Pattern Analysis and Machine
2519
+ Intelligence, 2011. 1
2520
+ [77] V. K. Verma, G. Arora, A. Mishra, and P. Rai. Generalized zero-shot
2521
+ learning via synthesized examples. In Proc. 31th IEEE Conf. Comput.
2522
+ Vis. Pattern Recognit., pages 4281–4289, 2018. 4.2
2523
+ [78] V. K. Verma and P. Rai. A simple exponential family framework for
2524
+ zero-shot learning. In Joint European Conference on Machine Learning
2525
+ and Knowledge Discovery in Databases, pages 792–808. Springer, 2017.
2526
+ 4.2
2527
+ [79] R. Vilalta and Y. Drissi. A perspective view and survey of meta-learning.
2528
+ Artificial intelligence review, 18(2):77–95, 2002. 2
2529
+ [80] J. Weston, S. Bengio, and N. Usunier.
2530
+ Wsabie: Scaling up to large
2531
+ vocabulary image annotation.
2532
+ In Twenty-Second International Joint
2533
+ Conference on Artificial Intelligence, 2011. 2, 2.4
2534
+ [81] L. Wolf and I. Martin. Robust boosting for learning from few examples.
2535
+ In 2005 IEEE Computer Society Conference on Computer Vision and
2536
+ Pattern Recognition (CVPR’05), volume 1, pages 359–364. IEEE, 2005.
2537
+ 2
2538
+ [82] Z. Wu, Y. Fu, Y.-G. Jiang, and L. Sigal. Harnessing object and scene
2539
+ semantics for large-scale video understanding. In Proceedings of the
2540
+ IEEE Conference on Computer Vision and Pattern Recognition, pages
2541
+ 3112–3121, 2016. 1
2542
+ [83] Y. Xian, Z. Akata, G. Sharma, Q. Nguyen, M. Hein, and B. Schiele.
2543
+ Latent embeddings for zero-shot classification. In Proceedings of the
2544
+ IEEE Conference on Computer Vision and Pattern Recognition, pages
2545
+ 69–77, 2016. 4.2
2546
+ [84] Y. Xian, T. Lorenz, B. Schiele, and Z. Akata.
2547
+ Feature generating
2548
+ networks for zero-shot learning. In Proceedings of the IEEE conference
2549
+ on computer vision and pattern recognition, pages 5542–5551, 2018.
2550
+ 4.2
2551
+ [85] Y. Xian, B. Schiele, and Z. Akata.
2552
+ Zero-shot learning-the good, the
2553
+ bad and the ugly. In Proceedings of the IEEE Conference on Computer
2554
+ Vision and Pattern Recognition, pages 4582–4591, 2017. 4.1
2555
+ [86] F. X. Yu, L. Cao, R. S. Feris, J. R. Smith, and S.-F. Chang. Design-
2556
+ ing category-level attributes for discriminative visual recognition.
2557
+ In
2558
+ Proceedings of the IEEE Conference on Computer Vision and Pattern
2559
+ Recognition, pages 771–778, 2013. 4.2
2560
+ [87] Y. Yu, Z. Ji, J. Guo, and Y. Pang. Transductive zero-shot learning with
2561
+ adaptive structural embedding. IEEE Transactions on Neural Networks
2562
+ and Learning Systems, 29(9):4116–4127, 2018. 4.2
2563
+ [88] L. Zhang, T. Xiang, and S. Gong. Learning a deep embedding model for
2564
+ zero-shot learning. In Proceedings of the IEEE Conference on Computer
2565
+ Vision and Pattern Recognition, pages 2021–2030, 2017. 7
2566
+ [89] T. Zhang. Solving large scale linear prediction problems using stochastic
2567
+ gradient descent algorithms. In Proceedings of the twenty-first interna-
2568
+ tional conference on Machine learning, page 116. ACM, 2004.
2569
+ 3.3,
2570
+ 3.3
2571
+ [90] T. Zhang and Z.-H. Zhou.
2572
+ Large margin distribution machine.
2573
+ In
2574
+ Proceedings of the 20th ACM SIGKDD international conference on
2575
+ Knowledge discovery and data mining, pages 313–322. ACM, 2014.
2576
+ 3.4
2577
+ [91] Z. Zhang and V. Saligrama. Zero-shot learning via semantic similarity
2578
+ embedding. In Proceedings of the IEEE international conference on
2579
+ computer vision, pages 4166–4174, 2015. 4.2
2580
+ [92] Z.-H. Zhou. Large margin distribution learning. In IAPR Workshop on
2581
+ Artificial Neural Networks in Pattern Recognition, pages 1–11. Springer,
2582
+ 2014. 3.4
2583
+ Yanwei Fu received the Ph.D. degree from
2584
+ Queen Mary University of London in 2014, and
2585
+ the M.Eng. degree from the Department of Com-
2586
+ puter Science and Technology, Nanjing Univer-
2587
+ sity, China, in 2011. He held a post-doctoral po-
2588
+ sition at Disney Research, Pittsburgh, PA, USA,
2589
+ from 2015 to 2016. He is currently a tenure-track
2590
+ Professor with Fudan University. His research
2591
+ interests are image and video understanding,
2592
+ and life-long learning.
2593
+
2594
+ 17
2595
+ Xiaomei Wang is a PhD student in the School of
2596
+ Computer Science of Fudan University. She re-
2597
+ ceived the Master degree of communication and
2598
+ information system from Shanghai University in
2599
+ 2016 and the Bachelor degree of electronic infor-
2600
+ mation engineering from Shandong University of
2601
+ Technology in 2012. Her reaseach interests in-
2602
+ clude zero-shot/few-shot learning, image/video
2603
+ captioning and visual question answering.
2604
+ Hanze Dong is an undergraduate student ma-
2605
+ joring in mathematics (data science track) at
2606
+ the School of Data Science, Fudan University.
2607
+ He works in Shanghai Key Lab of Intelligent
2608
+ Information Processing under the supervision
2609
+ of Professor Yanwei Fu. His current research
2610
+ interests include both machine learning theory
2611
+ and its applications.
2612
+ Yu-Gang Jiang is Professor of Computer Sci-
2613
+ ence at Fudan University and Director of Fudan-
2614
+ Jilian Joint Research Center on Intelligent Video
2615
+ Technology, Shanghai, China. He is interested
2616
+ in all aspects of extracting high-level informa-
2617
+ tion from big video data, such as video event
2618
+ recognition, object/scene recognition and large-
2619
+ scale visual search. His work has led to many
2620
+ awards, including the inaugural ACM China Ris-
2621
+ ing Star Award, the 2015 ACM SIGMM Rising
2622
+ Star Award, and the research award for out-
2623
+ standing young researchers from NSF China. He is currently an as-
2624
+ sociate editor of ACM TOMM, Machine Vision and Applications (MVA)
2625
+ and Neurocomputing. He holds a PhD in Computer Science from City
2626
+ University of Hong Kong and spent three years working at Columbia
2627
+ University before joining Fudan in 2011.
2628
+ Meng Wang is a professor at the Hefei Univer-
2629
+ sity of Technology, China. He received his B.E.
2630
+ degree and Ph.D. degree in the Special Class
2631
+ for the Gifted Young and the Department of
2632
+ Electronic Engineering and Information Science
2633
+ from the University of Science and Technology of
2634
+ China (USTC), Hefei, China, in 2003 and 2008,
2635
+ respectively. His current research interests in-
2636
+ clude multimedia content analysis, computer vi-
2637
+ sion, and pattern recognition. He has authored
2638
+ more than 200 book chapters, journal and con-
2639
+ ference papers in these areas. He is the recipient of the ACM SIGMM
2640
+ Rising Star Award 2014. He is an associate editor of IEEE Transactions
2641
+ on Knowledge and Data Engineering (IEEE TKDE), IEEE Transactions
2642
+ on Circuits and Systems for Video Technology (IEEE TCSVT), IEEE
2643
+ Transactions on Multimedia (IEEE TMM), and IEEE Transactions on
2644
+ Neural Networks and Learning Systems (IEEE TNNLS).
2645
+ Xiangyang Xue received the BS, MS, and PhD
2646
+ degrees in communication engineering from Xi-
2647
+ dian University, Xi’an, China, in 1989, 1992, and
2648
+ 1995, respectively. He is currently a professor of
2649
+ computer science with Fudan University, Shang-
2650
+ hai, China. His research interests include com-
2651
+ puter vision, multimedia information processing
2652
+ and machine learning.
2653
+ Leonid Sigal is an Associate Professor in the
2654
+ Department of Computer Science at the Univer-
2655
+ sity of British Columbia and a Faculty Member
2656
+ of the Vector Institute for Artificial Intelligence.
2657
+ He is a recipient of Canada CIFAR AI Chair
2658
+ and NSERC Canada Research Chair (CRC) in
2659
+ Computer Vision and Machine Learning. Prior
2660
+ to this he was a Senior Research Scientist at
2661
+ Disney Research. He completed his Ph.D. at
2662
+ Brown University in 2008; received his M.A.
2663
+ from Boston University in 1999, and M.Sc. from
2664
+ Brown University in 2003. Leonid’s research interests lie in the areas
2665
+ of computer vision, machine learning, and computer graphics. Leonid’s
2666
+ research emphasis is on machine learning and statistical approaches
2667
+ for visual recognition, reasoning, understanding and analytics. He has
2668
+ published more than 70 papers in venues and journals in these fields
2669
+ (including TPAMI, IJCV, CVPR, ICCV and NeurIPS).
2670
+
69AzT4oBgHgl3EQfEvpR/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
6NE4T4oBgHgl3EQf1g37/content/tmp_files/2301.05292v1.pdf.txt ADDED
@@ -0,0 +1,659 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ A Novel Framework for Handling Sparse Data in Traffic Forecast
2
+ Nikolaos Zygouras
3
+ Huawei Amsterdam Research Center
4
+ Netherlands
5
6
+ Dimitrios Gunopulos
7
+ National and Kapodistrian University of Athens
8
+ Greece
9
10
+ ABSTRACT
11
+ The ever increasing amount of GPS-equipped vehicles provides in
12
+ real-time valuable traffic information for the roads traversed by
13
+ the moving vehicles. In this way, a set of sparse and time evolving
14
+ traffic reports is generated for each road. These time series are a
15
+ valuable asset in order to forecast the future traffic condition. In
16
+ this paper we present a deep learning framework that encodes the
17
+ sparse recent traffic information and forecasts the future traffic con-
18
+ dition. Our framework consists of a recurrent part and a decoder.
19
+ The recurrent part employs an attention mechanism that encodes
20
+ the traffic reports that are available at a particular time window.
21
+ The decoder is responsible to forecast the future traffic condition.
22
+ CCS CONCEPTS
23
+ • Information systems → Data stream mining; Location based
24
+ services; Geographic information systems.
25
+ KEYWORDS
26
+ travel time estimation, traffic forecasting, deep learning, trans-
27
+ former, GPS trajectories, mining mobility data
28
+ ACM Reference Format:
29
+ Nikolaos Zygouras and Dimitrios Gunopulos. 2022. A Novel Framework
30
+ for Handling Sparse Data in Traffic Forecast. In The 30th International
31
+ Conference on Advances in Geographic Information Systems (SIGSPATIAL
32
+ ’22), November 1–4, 2022, Seattle, WA, USA. ACM, New York, NY, USA, 4 pages.
33
+ https://doi.org/10.1145/3557915.3560968
34
+ 1
35
+ INTRODUCTION
36
+ In recent years, the wide usage of mobile devices and the corre-
37
+ sponding collection of vast amounts of spatiotemporal data have
38
+ resulted in the development of various novel Location Based Ser-
39
+ vices (LBS). The LBS are software services that integrate geographic
40
+ information providing appropriate services and information to the
41
+ users [7]. Traffic forecasting and travel time estimation are un-
42
+ doubtedly two of the widely used LBS and a lot of recent research
43
+ work has been conducted towards improving their performance.
44
+ The importance of such services is indicated by the fact that the
45
+ vast majority of drivers consults several times a day services that
46
+ Part of this work was done while N. Zygouras was at the National and Kapodistrian
47
+ University of Athens, Greece.
48
+ Permission to make digital or hard copies of part or all of this work for personal or
49
+ classroom use is granted without fee provided that copies are not made or distributed
50
+ for profit or commercial advantage and that copies bear this notice and the full citation
51
+ on the first page. Copyrights for third-party components of this work must be honored.
52
+ For all other uses, contact the owner/author(s).
53
+ SIGSPATIAL ’22, November 1–4, 2022, Seattle, WA, USA
54
+ © 2022 Copyright held by the owner/author(s).
55
+ ACM ISBN 978-1-4503-9529-8/22/11.
56
+ https://doi.org/10.1145/3557915.3560968
57
+ Porto
58
+ Airport
59
+ Estádio do
60
+ Dragão
61
+ Timestamp now
62
+ ?
63
+ ?
64
+ Historical Data
65
+ Predictions
66
+ Travel
67
+ Times
68
+ ...
69
+ ...
70
+ ?
71
+ r1
72
+ r2
73
+ Porto
74
+ Airport
75
+ Estádio
76
+ do
77
+ Dragão
78
+ r|P |
79
+ q
80
+ Figure 1: The travel time estimation problem for a given
81
+ query path 𝑃𝑞 (blue line) and time of departure 𝑡𝑞 in the city
82
+ of Porto, that starts at 10:00 from the airport of Porto and
83
+ ends at the Estádio do Dragão, the entire path is decomposed
84
+ by a set of |𝑃𝑞| road segments 𝑟1 → 𝑟2 → · · · → 𝑟 |𝑃 | and for
85
+ each road segment we have a time series of travel time re-
86
+ ports, received by the available probe vehicles.
87
+ perform travel time estimation in order to appropriately choose the
88
+ fastest route to follow.
89
+ Motivated by this, in this paper we propose a novel path based
90
+ travel time estimation technique that considers the available traffic
91
+ reports that have been received by the set of the available probe
92
+ vehicles. Each probe vehicle moves in the road network and reports
93
+ the time that was required to traverse each individual road segment.
94
+ In this way, for each road segment of the road network a time series
95
+ of the reported travel times are generated, illustrated at the right
96
+ part of Figure 1. Our technique receives a query path along with
97
+ a time of departure and estimates the time of arrival considering
98
+ the current traffic condition of the road network. Our problem is
99
+ illustrated in Figure 1. A query path 𝑃𝑞 and a time of departure 𝑡𝑞
100
+ are received as input and the task is to estimate the time that is
101
+ required to traverse the whole path 𝑃𝑞 if the driver departs at 𝑡𝑞.
102
+ We propose a novel deep learning framework which is comprised
103
+ of a recurrent part and a decoder. The recurrent part encodes the
104
+ sparse traffic reports that are available at each time window using
105
+ an attention mechanism and an embedding representations for
106
+ each road segment. The decoder is responsible to forecast the traffic
107
+ condition of the next time window.
108
+ 2
109
+ RELATED WORK
110
+ In DeepGTT the travel time distribution for any route is learnt by
111
+ conditioning on the real-time traffic [5]. Initially, an embedding is
112
+ arXiv:2301.05292v1 [cs.LG] 12 Jan 2023
113
+
114
+ 12:30Aveleda
115
+ Casteloda
116
+ Maia
117
+ Lavra
118
+ Gondim
119
+ EN542
120
+ EN13
121
+ Mioue
122
+ Silva Escura
123
+ Vila Novada
124
+ Barca
125
+ EN105-2
126
+ Telha
127
+ Moreira
128
+ A28
129
+ SaoPedro
130
+ Fins
131
+ 160m
132
+ NTo7Maig-Este,Vermoim
133
+ PortoViaNorte)
134
+ A3Porto.Braqo
135
+ Alfen
136
+ Vermoim
137
+ Nogueira
138
+ ZonoIndustrial
139
+ A41
140
+ Maiat
141
+ deifena
142
+ A.41
143
+ OLIPORI
144
+ A3
145
+ Perafita
146
+ A41 /Moia /(AE) Broga/A42 Felgueiras
147
+ EN14
148
+ Milheiros
149
+ Santa Cruz
150
+ Gueifaes
151
+ Ermesinde
152
+ doBispo
153
+ Refinaria
154
+ Balio
155
+ deMatosinhos
156
+ EN15-1
157
+ VILPL
158
+ dstoias
159
+ Aguas Santas
160
+ A4
161
+ Guifoes
162
+ Sao Mamede
163
+ deInfesta
164
+ Pedroucos
165
+ Baguimdo
166
+ Senhora da
167
+ Monte
168
+ Hora
169
+ 34m
170
+ Matosinhos
171
+ EN12
172
+ RioTinto
173
+ Paranhos
174
+ EM612
175
+ EN12
176
+ Pargue
177
+ Aldoar
178
+ daCidode
179
+ Ranalde
180
+ EN15
181
+ Bogvista
182
+ Fanzeres
183
+ Nevogilde
184
+ tecedc
185
+ For
186
+ Fan
187
+ Cedofeita
188
+ Areias/W12Circunva/acao
189
+ Lordelo.do
190
+ Campanttransavia
191
+ F-GZHUSUPERBOCKSIGSPATIAL ’22, November 1–4, 2022, Seattle, WA, USA
192
+ Zygouras et al.
193
+ estimated for each link considering its characteristics, then a non-
194
+ linear factorization model generates the speed and finally an atten-
195
+ tion mechanism is used to generate the observed travel time. Also,
196
+ in HETETA [3] the road map is translated into a multi-relational
197
+ network, considering the traffic behavior patterns. Temporal and
198
+ graph convolutions are used in order to learn spatiotemporal het-
199
+ erogeneous information, considering recent, daily and weekly traf-
200
+ fic. CompactETA [2] provides an accurate ETA estimation with
201
+ low latency. Graph attention network was employed in order to
202
+ encode spatial and temporal dependencies of the weighted road
203
+ network and the sequential information of the route is encoded
204
+ with positional encoding. A multi-layer perceptron was used for
205
+ online inference. The authors in [6] proposed a multitask represen-
206
+ tation learning model which predicts the travel time of an origin-
207
+ destination pair extracting a representation that preserves trips
208
+ properties and road network structure. ConSTGAT [1] proposed
209
+ a spatiotemporal graph neural network exploiting the spatial and
210
+ temporal information with a 3D-attention mechanism and a model
211
+ with convolutions over local windows in order to capture route’s
212
+ contextual information. STGNN-TTE [4] adopted a spatial–temporal
213
+ module to capture the real-time traffic condition and a transformer
214
+ layer to estimate the links’ travel time and the total routes’ travel
215
+ time synchronously.
216
+ 3
217
+ OUR APPROACH
218
+ 3.1
219
+ Problem Definition
220
+ Road Network is represented as a directed graph 𝐺(𝑉, 𝐸), where
221
+ the nodes 𝑉 represent the junctions and the edges 𝐸 represent the
222
+ |𝐸| roads segments. A road segment 𝑟 ∈ 𝐸 is the part of the road net-
223
+ work between two consecutive junctions without any intermediate
224
+ junction between them.
225
+ Trip 𝑇 is a time ordered sequence of |𝑇 | points 𝑝1 → · · · → 𝑝 |𝑇 |;
226
+ each point 𝑝 contains the geospatial coordinates of the moving
227
+ object along with the corresponding timestamp 𝜏 that the vehicle
228
+ was at this particular location 𝑝 = (𝑙𝑜𝑛,𝑙𝑎𝑡,𝜏).
229
+ Map-matched Trip 𝑇𝐺 is a sequence of |𝑇𝐺 | consecutive points
230
+ 𝑝′
231
+ 1 → · · · → 𝑝′
232
+ |𝑇𝐺 | that comes from map matching trip 𝑇 on the
233
+ road network 𝐺. Each point 𝑝′ corresponds to a road segment that
234
+ was traversed by𝑇. Each point 𝑝′ of the map matched trip contains
235
+ a triplet (𝑟,𝑡𝑡,𝜏); 𝑟 is the traversed road segment, 𝑡𝑡 is the travel
236
+ time of the road segment 𝑟 and is computed assuming that the
237
+ vehicle moved with the same speed in the road network between
238
+ two consecutive GPS points and 𝜏 is the timestamp that the travel
239
+ time is reported to the system.
240
+ Travel time reports 𝐷 is the collection of travel times for the
241
+ road segments as they are extracted by the trips of all the available
242
+ probe vehicles that traverse the road network. Each travel time
243
+ report (𝑟,𝑡𝑡,𝑡,𝑇𝑖𝑑) contains the information of the map-matched
244
+ trips enriched by the id of the trip 𝑇𝑖𝑑.
245
+ Path 𝑃 is a sequence of |𝑃| consecutive road segments 𝑟1 → · · · →
246
+ 𝑟 |𝑃 |, where 𝑟𝑖 is the 𝑖th road segment of 𝑃.
247
+ Below we define formally the traffic forecasting problem.
248
+ Traffic Forecasting: Given the available travel times of the last
249
+ 𝐿 time windows T𝑡−𝐿+1:𝑡 a traffic forecasting model forecasts the
250
+ travel times of the next 𝐻 time windows T𝑡+1:𝑡+𝐻, where the vector
251
+ T𝑡 contains the travel times of the 𝐸 road segments at time 𝑡. The
252
+ Road
253
+ Network
254
+ Trajectories
255
+ Travel Times
256
+ Reports
257
+ D
258
+ Travel Times
259
+ ZScores
260
+ Aggregated
261
+ Travel Times
262
+ M
263
+ Time
264
+ Window
265
+ length
266
+ Roads
267
+ Embeddings
268
+ Matrix
269
+ Factorization
270
+ Map
271
+ Matching
272
+ Extracting
273
+ Roads Segs
274
+ Statistics
275
+ Figure 2: Data preparation.
276
+ input matrix T𝑡−𝐿+1:𝑡 ∈ R|𝐸 |×𝐿 has missing values for the roads
277
+ that were not traversed by any vehicle at a given time window. The
278
+ forecasted matrix T𝑡+1:𝑡+𝐻 ∈ R|𝐸 |×𝐻 contains forecasts for all the
279
+ road segments 𝐸 for the next 𝐻 time windows.
280
+ 3.2
281
+ Data Preparation
282
+ The first step of the proposed framework is to preprocess the raw
283
+ data and prepare them appropriately in order to feed them to the
284
+ neural network. The overview of the data preparation approach is
285
+ illustrated in Figure 2 and described below.
286
+ Map Matching. Firstly, we map-match the available trips matching
287
+ them to the road network 𝐺. Each trip 𝑇 is transformed into a map-
288
+ matched trip 𝑇𝐺. This procedure generates the set of the available
289
+ travel time reports 𝐷. This step is common to both the historical
290
+ data that are used to train our model and the streaming traffic data
291
+ that will be used to make forecasts in real time.
292
+ Modeling the periodicity of traffic. In order to model the peri-
293
+ odicity of traffic we estimate from the historical travel time reports
294
+ the average travel time 𝑎𝑣𝑔_𝑡𝑡𝑖,ℎ𝑜𝑢𝑟 for each road segment 𝑟𝑖 ∈ 𝐸
295
+ and for different hours of day ℎ𝑜𝑢𝑟 ∈ [1 . . . 24]. Then, we subtract
296
+ from each travel time the historical average travel time for that road
297
+ segment at the given hour. In this way, we force the deep learning
298
+ framework to model, for each different road segment, the deviation
299
+ from the average travel time for the different hours of the day.
300
+ Standardizing Travel Times. Since road segments have different
301
+ lengths and speed limits we selected to standardize the travel time
302
+ reports, considering the average behaviour of each different road
303
+ segment. More specifically, for each road segment 𝑟𝑖 we compute
304
+ the historical average travel time 𝜇𝑖 and standard deviation of travel
305
+ times 𝜎𝑖 and we use these values in order to standardize the travel
306
+ times per road segment. For instance, if 𝑡𝑡5 is a travel time that is re-
307
+ ported for the road segment 𝑟5 then the corresponding Z-Score will
308
+ be 𝑡𝑡5−𝜇5
309
+ 𝜎5
310
+ . In the rest of the paper we assume that travel times are
311
+ the Z-Scores of travel times with subtracted the average historical
312
+ travel time for the different hours of the day.
313
+ Aggregating travel times. The historical travel time reports 𝐷
314
+ are grouped together generating a sparse matrix 𝑀 ∈ R|𝐸 |×𝑊 . The
315
+ rows of 𝑀 correspond to the |𝐸| road segments of the road network
316
+ 𝐺 and the columns correspond to the𝑊 time windows. In this work
317
+ we use time windows of 15 minutes. If more than one travel time
318
+ reports are available for a particular road segment 𝑟𝑖 at the same
319
+ time window 𝑤𝑗 then 𝑀𝑖𝑗 contains the average travel time of the
320
+ available travel times.
321
+
322
+ A Novel Framework for Handling Sparse Data in Traffic Forecast
323
+ SIGSPATIAL ’22, November 1–4, 2022, Seattle, WA, USA
324
+ Roads
325
+ Embeddings
326
+ Travel
327
+ Times
328
+ Scaled Dot-Product
329
+ Attention
330
+ Ki
331
+ Qi
332
+ Vi
333
+ headi
334
+ MatMul
335
+ MatMul
336
+ i=1...h
337
+ Concatenate
338
+ Concatenate
339
+ Linear
340
+ Linear
341
+ Linear
342
+ Linear
343
+ Linear
344
+ h
345
+ h
346
+ Figure 3: Multi-Head Scaled Dot-Product
347
+ Attention
348
+ Roads
349
+ Embeddings
350
+ Travel
351
+ Times
352
+ Roads
353
+ Embeddings
354
+ Travel
355
+ Times
356
+ Attention Mechanism
357
+ +
358
+ Norm.
359
+ +
360
+ +
361
+ Linear
362
+ x2
363
+ Roads
364
+ Embeddings
365
+ Travel
366
+ Times
367
+ Attention Mechanism
368
+ +
369
+ Norm.
370
+ +
371
+ +
372
+ Conv1D
373
+ x2
374
+ Norm.
375
+ V
376
+ K
377
+ Q
378
+ Encoder
379
+ Output
380
+ N
381
+ Figure 4: Encoder Block.
382
+ V
383
+ Roads
384
+ Embeddings
385
+ Travel
386
+ Times
387
+ Attention Mechanism
388
+ +
389
+ Norm.
390
+ +
391
+ +
392
+ Linear
393
+ x2
394
+ Norm.
395
+ V
396
+ K
397
+ Q
398
+ Attention Mechanism
399
+ +
400
+ Norm.
401
+ +
402
+ K
403
+ Q
404
+ Roads
405
+ Embeddings
406
+ Travel Times
407
+ Encoder
408
+ Output
409
+ Figure 5: Decoder Block.
410
+ Extracting Road Segments Embeddings. An embedding repre-
411
+ sentation 𝐸𝑖 is detected for each road segment 𝑟𝑖 considering its
412
+ historical travel time reports. Here, we follow the process intro-
413
+ duced by [9]. We perform matrix factorization in the sparse matrix
414
+ 𝑀, learning a matrix P ∈ R|𝐸 |×𝑑 contains a 𝑑-dimensional embed-
415
+ ding representation of the available road segments
416
+ Feeding the Model. The deep learning model that is described
417
+ in Section 3.4 receives as input two vectors that contain: (i) the
418
+ aggregated travel times that are available for a given time window
419
+ and (ii) the corresponding road segments. For instance, consider
420
+ a road network 𝐺 that is comprised of |𝐸| = 5 road segments [𝑟𝑖],
421
+ 𝑖 ∈ [1, . . . , 5]. If for a particular time window only the travel times
422
+ 𝑡𝑡2 and 𝑡𝑡5 of road segments 𝑟2 and 𝑟5 respectively are available,
423
+ then the inputs to the deep learning model will be the following: the
424
+ vector of the travel times T = [𝑡𝑡2,𝑡𝑡5, ∅, ∅, ∅] ∈ R|𝐸 | and the vector
425
+ of the road segments ids R = [𝑟2,𝑟5, ∅, ∅, ∅] ∈ Z|𝐸 |. Then, inside the
426
+ deep learning model the ids of the road segments are transmitted
427
+ to an embedding layer. This layer transforms the vector R into a
428
+ matrix of road segments embeddings E = [𝐸2, 𝐸5, ∅, ∅, ∅] ∈ R|𝐸 |×𝑑.
429
+ The embedding representation of the road segments is trainable
430
+ and initialized with matrix P, computed using matrix factorization
431
+ as it was described above.
432
+ 3.3
433
+ Attention Mechanism
434
+ Here, we extend the "Scaled Dot-Product Attention" that was intro-
435
+ duced in [8]. The proposed attention mechanism encodes a varying
436
+ number of travel time reports received at a particular time window.
437
+ We consider as input here the following: (i) the embeddings’ matrix
438
+ of the road segments that have been traversed by the probe vehi-
439
+ cles at a particular time window along with (ii) the vector of the
440
+ corresponding reported travel times. The overview of the proposed
441
+ attention mechanism is illustrated in Figure 3.
442
+ Initially, the Query 𝑄𝑖, Key 𝐾𝑖 and Value 𝑉𝑖 matrices are com-
443
+ puted using the embeddings E of the available road segments, com-
444
+ puted earlier. Therefore, three parameter matrices 𝑊 𝑄
445
+ 𝑖
446
+ ∈ R𝑑×𝑑,
447
+ 𝑊 𝐾
448
+ 𝑖
449
+ ∈ R𝑑×𝑑 and 𝑊 𝑉
450
+ 𝑖
451
+ ∈ R𝑑×𝑑 are trained using the training in-
452
+ stances and are used to compute the matrices 𝑄𝑖 = E𝑊 𝑄
453
+ 𝑖 , 𝐾𝑖 =
454
+ E𝑊 𝐾
455
+ 𝑖
456
+ and 𝑉𝑖 = E𝑊 𝑉
457
+ 𝑖 . The index 𝑖 ∈ [1, . . . ,ℎ] of the different
458
+ parameter matrices stands for the ℎ parallel attention layers.
459
+ The next step is to compute the attention scores using the 𝑄𝑖
460
+ and 𝐾𝑖 matrices. The scores indicate the focus that will be placed at
461
+ the travel times of other road segments, that have been reported at
462
+ the same time window. Multiple attention heads ℎ𝑒𝑎𝑑𝑖 ∈ R|𝐸 |×|𝐸 |
463
+ are computed in parallel according to eq. 1 indicating the attention
464
+ at each particular road segment.
465
+ ℎ𝑒𝑎𝑑𝑖 = 𝑠𝑜𝑓 𝑡𝑚𝑎𝑥(
466
+ 𝑄𝑖𝐾𝑇
467
+ 𝑖
468
+
469
+ 𝑑
470
+ ), 𝑖 ∈ [1, . . . ,ℎ]
471
+ (1)
472
+ The road segments’ embeddings and travel times are then up-
473
+ dated considering the computed attention heads. More specifi-
474
+ cally we train the parameter matrices 𝑊 𝑂1 ∈ Rℎ𝑑×𝑑 and 𝑊 𝑂2 ∈
475
+ Rℎ|𝐸 |×|𝐸 | that are multiplied with the concatenated values 𝑉𝑖 and
476
+ travel times T respectively.
477
+ E′ = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1𝑉1, . . . ,ℎ𝑒𝑎𝑑ℎ𝑉ℎ)𝑊 𝑂1
478
+ (2)
479
+ T ′ = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1T, . . . ,ℎ𝑒𝑎𝑑ℎT)𝑊 𝑂2
480
+ (3)
481
+ 3.4
482
+ Traffic Transformer’s Architecture
483
+ Here we describe our model’s architecture, which is based on the
484
+ original implementation of Transformer model described in [8].
485
+ 3.4.1
486
+ Encoder. The encoder considers all travel time reports that
487
+ are available at a given time window, encodining the traffic con-
488
+ dition of that time window. It is comprised by a set of 𝑁 identical
489
+ blocks. The first block receives as input the roads segments embed-
490
+ dings and the travel times that are available at a given time window,
491
+ following the data preparation procedure described in Section 3.2.
492
+ The rest encoder blocks receive as input the output of the previous
493
+ block. Figure 4 illustrates the overview of the encoder block.
494
+
495
+ SIGSPATIAL ’22, November 1–4, 2022, Seattle, WA, USA
496
+ Zygouras et al.
497
+ Encoder
498
+ Roads
499
+ Embeddings
500
+ Travel
501
+ Times
502
+ Encoder
503
+ Block
504
+ Roads
505
+ Ids
506
+ Travel
507
+ Times
508
+ Decoder
509
+ Block
510
+ N
511
+ Encoder
512
+ Encoder
513
+ Block
514
+ Roads
515
+ Ids
516
+ Travel
517
+ Times
518
+ Decoder
519
+ Block
520
+ N
521
+ ...
522
+ ...
523
+ Decoder
524
+ Decoder
525
+ Block
526
+ Query
527
+ Roads Ids
528
+
529
+ N
530
+
531
+
532
+ t - L - 1
533
+ t
534
+ t + 1
535
+ ...
536
+ ...
537
+ 1st Recurrent Cell
538
+ Lth Recurrent Cell
539
+ Embedding
540
+ Embedding
541
+ Embedding
542
+ Figure 6: Overview of our model.
543
+ Each block first transmits the matrix of the available roads em-
544
+ beddings E and the corresponding vector of travel times T at the
545
+ attention mechanism. The attention mechanism produces the ma-
546
+ trix E′ and the vector T ′. Then, residual connections are employed
547
+ at the output of the attention mechanism, normalizing the sum of
548
+ the received roads segments embeddings E with the output of the
549
+ attention mechanism E′. The output is transmitted to two dense
550
+ layers followed by another residual connection. For the travel times
551
+ the output of each encoder block is the sum of the received travel
552
+ times T and the output of the attention mechanism T ′.
553
+ 3.4.2
554
+ Decoder. The decoder (Figure 5) is responsible to forecast
555
+ the travel times of the next time window, considering the encoder’s
556
+ output. The decoder consists of a set of 𝑁 blocks, similarly to the
557
+ encoder. Each block receives as input the output of the encoder and
558
+ the output of the previous block. In the training phase the first block
559
+ receives as input (i) the embeddings of the road segments that are
560
+ available in the target time window and (ii) a vector of zeros. For the
561
+ testing phase the first block receives as input (i) the embeddings
562
+ of all the road segments 𝐸 and (ii) a vector of zeros. Recall that
563
+ we are working with the Z-Scores of travel times aggregated per
564
+ road segment. Consequently, the vector of zeros corresponds to the
565
+ average travel for each road segment.
566
+ Each block of the decoder contains two attention mechanisms.
567
+ Firstly, the embeddings of the queried road segments and the travel
568
+ times are transmitted to the first attention mechanism, followed
569
+ by a residual connection. Then a second attention mechanism is
570
+ employed, receiving as input the embedding matrix E′
571
+ 1 that resulted
572
+ from the first attention mechanism along with the embeddings and
573
+ the travel times that come from the output of the encoder. The main
574
+ difference here is that the matrices 𝑉𝑖 and 𝐾𝑖 are computed from
575
+ the output of the encoder and that the considered travel times come
576
+ from the encoder. Then, the embedding output E′
577
+ 2 of the second
578
+ attention mechanism is followed again by a residual connection.
579
+ This is followed by two dense layers and a second residual connec-
580
+ tion. Finally, the travel times that result from each block is the sum
581
+ of the original travel times T that were received as input along
582
+ with travel times that result from the first and the second attention
583
+ mechanism T ′
584
+ 1 and T ′
585
+ 2 respectively.
586
+ 3.4.3
587
+ Recurrent Neural Network. The final module of our proposed
588
+ model is a recurrent model that considers the sequence of the last
589
+ 𝐿 time windows. Each cell of the recurrent network encapsulates
590
+ an encoder (consisting of 𝑁 encoder blocks) along with a single
591
+ decoder block. Here the decoder block is responsible to aggregate
592
+ the information that has been encoded from the previous time win-
593
+ dow with the information that has been encoded from the current
594
+ time window. Figure 6 illustrates this recurrent architecture. The
595
+ encoder and the decoder blocks of the different recurrent cells share
596
+ the same weights among the 𝐿 different time windows.
597
+ The output of the last recurrent cell is used by the decoder model
598
+ in order to make forecasts. The decoder model consists of 𝑁 decoder
599
+ blocks that are different from each other and from the decoder
600
+ block that lies inside the recurrent cells. The output of the last
601
+ decoder block contains the predicted travel times of the queried
602
+ road segments for the next time window. This will be the Z-Scores
603
+ of the travel times for the road segments that were queried at the
604
+ first decoder block.
605
+ 4
606
+ CONCLUSION
607
+ In this paper we presented a novel deep learning framework that
608
+ considers the current traffic condition of the road network and is
609
+ used to forecast the traffic condition. Our framework can efficiently
610
+ encode the travel time reports that are available at a particular
611
+ time window via an attention mechanism that considers only the
612
+ available travel times reports and the corresponding embeddings
613
+ of the road segments.
614
+ ACKNOWLEDGMENTS
615
+ This research has been financed by the European Union through the
616
+ H2020 LAMBDA Project (No. 734242), the EU ICT-48 2020 project
617
+ TAILOR (No. 952215) and the Horizon Europe AUTOFAIR Project
618
+ (No. 101070568).
619
+ REFERENCES
620
+ [1]
621
+ Xiaomin Fang, Jizhou Huang, Fan Wang, Lingke Zeng, Haijin Liang, and Haifeng
622
+ Wang. 2020. Constgat: contextual spatial-temporal graph attention network for
623
+ travel time estimation at baidu maps. In Proceedings of the 26th ACM SIGKDD
624
+ International Conference on Knowledge Discovery & Data Mining, 2697–2705.
625
+ [2]
626
+ Kun Fu, Fanlin Meng, Jieping Ye, and Zheng Wang. 2020. Compacteta: a fast
627
+ inference system for travel time prediction. In Proceedings of the 26th ACM
628
+ SIGKDD International Conference on Knowledge Discovery & Data Mining, 3337–
629
+ 3345.
630
+ [3]
631
+ Huiting Hong, Yucheng Lin, Xiaoqing Yang, Zang Li, Kung Fu, Zheng Wang,
632
+ Xiaohu Qie, and Jieping Ye. 2020. Heteta: heterogeneous information network
633
+ embedding for estimating time of arrival. In Proceedings of the 26th ACM SIGKDD
634
+ International Conference on Knowledge Discovery & Data Mining, 2444–2454.
635
+ [4]
636
+ Guangyin Jin, Min Wang, Jinlei Zhang, Hengyu Sha, and Jincai Huang. 2022.
637
+ Stgnn-tte: travel time estimation via spatial–temporal graph neural network.
638
+ Future Generation Computer Systems, 126, 70–81.
639
+ [5]
640
+ Xiucheng Li, Gao Cong, Aixin Sun, and Yun Cheng. 2019. Learning travel time
641
+ distributions with deep generative model. In The World Wide Web Conference,
642
+ 1017–1027.
643
+ [6]
644
+ Yaguang Li, Kun Fu, Zheng Wang, Cyrus Shahabi, Jieping Ye, and Yan Liu. 2018.
645
+ Multi-task representation learning for travel time estimation. In Proceedings of
646
+ the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data
647
+ Mining, 1695–1704.
648
+ [7]
649
+ Jochen Schiller and Agnès Voisard. 2004. Location-based services. Elsevier.
650
+ [8]
651
+ Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
652
+ Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you
653
+ need. Advances in neural information processing systems, 30, 5998–6008.
654
+ [9]
655
+ Nikolaos Zygouras, Nikolaos Panagiotou, Yang Li, Dimitrios Gunopulos, and
656
+ Leonidas Guibas. 2019. Htte: a hybrid technique for travel time estimation in
657
+ sparse data environments. In Proceedings of the 27th ACM SIGSPATIAL Interna-
658
+ tional Conference on Advances in Geographic Information Systems, 99–108.
659
+
6NE4T4oBgHgl3EQf1g37/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,259 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf,len=258
2
+ page_content='A Novel Framework for Handling Sparse Data in Traffic Forecast Nikolaos Zygouras Huawei Amsterdam Research Center Netherlands nikolas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
3
+ page_content='zygouras@huawei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
4
+ page_content='com Dimitrios Gunopulos National and Kapodistrian University of Athens Greece dg@di.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
5
+ page_content='uoa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
6
+ page_content='gr ABSTRACT The ever increasing amount of GPS-equipped vehicles provides in real-time valuable traffic information for the roads traversed by the moving vehicles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
7
+ page_content=' In this way, a set of sparse and time evolving traffic reports is generated for each road.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
8
+ page_content=' These time series are a valuable asset in order to forecast the future traffic condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
9
+ page_content=' In this paper we present a deep learning framework that encodes the sparse recent traffic information and forecasts the future traffic con- dition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
10
+ page_content=' Our framework consists of a recurrent part and a decoder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
11
+ page_content=' The recurrent part employs an attention mechanism that encodes the traffic reports that are available at a particular time window.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
12
+ page_content=' The decoder is responsible to forecast the future traffic condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
13
+ page_content=' CCS CONCEPTS Information systems → Data stream mining;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
14
+ page_content=' Location based services;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
15
+ page_content=' Geographic information systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
16
+ page_content=' KEYWORDS travel time estimation, traffic forecasting, deep learning, trans- former, GPS trajectories, mining mobility data ACM Reference Format: Nikolaos Zygouras and Dimitrios Gunopulos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
17
+ page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
18
+ page_content=' A Novel Framework for Handling Sparse Data in Traffic Forecast.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
19
+ page_content=' In The 30th International Conference on Advances in Geographic Information Systems (SIGSPATIAL ’22), November 1–4, 2022, Seattle, WA, USA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
20
+ page_content=' ACM, New York, NY, USA, 4 pages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
21
+ page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
22
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
23
+ page_content='1145/3557915.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
24
+ page_content='3560968 1 INTRODUCTION In recent years, the wide usage of mobile devices and the corre- sponding collection of vast amounts of spatiotemporal data have resulted in the development of various novel Location Based Ser- vices (LBS).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
25
+ page_content=' The LBS are software services that integrate geographic information providing appropriate services and information to the users [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
26
+ page_content=' Traffic forecasting and travel time estimation are un- doubtedly two of the widely used LBS and a lot of recent research work has been conducted towards improving their performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
27
+ page_content=' The importance of such services is indicated by the fact that the vast majority of drivers consults several times a day services that Part of this work was done while N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
28
+ page_content=' Zygouras was at the National and Kapodistrian University of Athens, Greece.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
29
+ page_content=' Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
30
+ page_content=' Copyrights for third-party components of this work must be honored.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
31
+ page_content=' For all other uses, contact the owner/author(s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
32
+ page_content=' SIGSPATIAL ’22, November 1–4, 2022, Seattle, WA, USA © 2022 Copyright held by the owner/author(s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
33
+ page_content=' ACM ISBN 978-1-4503-9529-8/22/11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
34
+ page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
35
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
36
+ page_content='1145/3557915.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
37
+ page_content='3560968 Porto Airport Estádio do Dragão Timestamp now ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
38
+ page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
39
+ page_content=' Historical Data Predictions Travel Times .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
40
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
41
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
42
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
43
+ page_content=' ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
44
+ page_content=' r1 r2 Porto Airport Estádio do Dragão r|P | q Figure 1: The travel time estimation problem for a given query path 𝑃𝑞 (blue line) and time of departure 𝑡𝑞 in the city of Porto, that starts at 10:00 from the airport of Porto and ends at the Estádio do Dragão, the entire path is decomposed by a set of |𝑃𝑞| road segments 𝑟1 → 𝑟2 → · · · → 𝑟 |𝑃 | and for each road segment we have a time series of travel time re- ports, received by the available probe vehicles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
45
+ page_content=' perform travel time estimation in order to appropriately choose the fastest route to follow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
46
+ page_content=' Motivated by this, in this paper we propose a novel path based travel time estimation technique that considers the available traffic reports that have been received by the set of the available probe vehicles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
47
+ page_content=' Each probe vehicle moves in the road network and reports the time that was required to traverse each individual road segment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
48
+ page_content=' In this way, for each road segment of the road network a time series of the reported travel times are generated, illustrated at the right part of Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
49
+ page_content=' Our technique receives a query path along with a time of departure and estimates the time of arrival considering the current traffic condition of the road network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
50
+ page_content=' Our problem is illustrated in Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
51
+ page_content=' A query path 𝑃𝑞 and a time of departure 𝑡𝑞 are received as input and the task is to estimate the time that is required to traverse the whole path 𝑃𝑞 if the driver departs at 𝑡𝑞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
52
+ page_content=' We propose a novel deep learning framework which is comprised of a recurrent part and a decoder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
53
+ page_content=' The recurrent part encodes the sparse traffic reports that are available at each time window using an attention mechanism and an embedding representations for each road segment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
54
+ page_content=' The decoder is responsible to forecast the traffic condition of the next time window.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
55
+ page_content=' 2 RELATED WORK In DeepGTT the travel time distribution for any route is learnt by conditioning on the real-time traffic [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
56
+ page_content=' Initially, an embedding is arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
57
+ page_content='05292v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
58
+ page_content='LG] 12 Jan 2023 12:30Aveleda Casteloda Maia Lavra Gondim EN542 EN13 Mioue Silva Escura Vila Novada Barca EN105-2 Telha Moreira A28 SaoPedro Fins 160m NTo7Maig-Este,Vermoim PortoViaNorte) A3Porto.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
59
+ page_content='Braqo Alfen Vermoim Nogueira ZonoIndustrial A41 Maiat deifena A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
60
+ page_content='41 OLIPORI A3 Perafita A41 /Moia /(AE) Broga/A42 Felgueiras EN14 Milheiros Santa Cruz Gueifaes Ermesinde doBispo Refinaria Balio deMatosinhos EN15-1 VILPL dstoias Aguas Santas A4 Guifoes Sao Mamede deInfesta Pedroucos Baguimdo Senhora da Monte Hora 34m Matosinhos EN12 RioTinto Paranhos EM612 EN12 Pargue Aldoar daCidode Ranalde EN15 Bogvista Fanzeres Nevogilde tecedc For Fan Cedofeita Areias/W12Circunva/acao Lordelo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
61
+ page_content='do Campanttransavia F-GZHUSUPERBOCKSIGSPATIAL ’22, November 1–4, 2022, Seattle, WA, USA Zygouras et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
62
+ page_content=' estimated for each link considering its characteristics, then a non- linear factorization model generates the speed and finally an atten- tion mechanism is used to generate the observed travel time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
63
+ page_content=' Also, in HETETA [3] the road map is translated into a multi-relational network, considering the traffic behavior patterns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
64
+ page_content=' Temporal and graph convolutions are used in order to learn spatiotemporal het- erogeneous information, considering recent, daily and weekly traf- fic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
65
+ page_content=' CompactETA [2] provides an accurate ETA estimation with low latency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
66
+ page_content=' Graph attention network was employed in order to encode spatial and temporal dependencies of the weighted road network and the sequential information of the route is encoded with positional encoding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
67
+ page_content=' A multi-layer perceptron was used for online inference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
68
+ page_content=' The authors in [6] proposed a multitask represen- tation learning model which predicts the travel time of an origin- destination pair extracting a representation that preserves trips properties and road network structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
69
+ page_content=' ConSTGAT [1] proposed a spatiotemporal graph neural network exploiting the spatial and temporal information with a 3D-attention mechanism and a model with convolutions over local windows in order to capture route’s contextual information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
70
+ page_content=' STGNN-TTE [4] adopted a spatial–temporal module to capture the real-time traffic condition and a transformer layer to estimate the links’ travel time and the total routes’ travel time synchronously.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
71
+ page_content=' 3 OUR APPROACH 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
72
+ page_content='1 Problem Definition Road Network is represented as a directed graph 𝐺(𝑉, 𝐸), where the nodes 𝑉 represent the junctions and the edges 𝐸 represent the |𝐸| roads segments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
73
+ page_content=' A road segment 𝑟 ∈ 𝐸 is the part of the road net- work between two consecutive junctions without any intermediate junction between them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
74
+ page_content=' Trip 𝑇 is a time ordered sequence of |𝑇 | points 𝑝1 → · · · → 𝑝 |𝑇 |;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
75
+ page_content=' each point 𝑝 contains the geospatial coordinates of the moving object along with the corresponding timestamp 𝜏 that the vehicle was at this particular location 𝑝 = (𝑙𝑜𝑛,𝑙𝑎𝑡,𝜏).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
76
+ page_content=' Map-matched Trip 𝑇𝐺 is a sequence of |𝑇𝐺 | consecutive points 𝑝′ 1 → · · · → 𝑝′ |𝑇𝐺 | that comes from map matching trip 𝑇 on the road network 𝐺.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
77
+ page_content=' Each point 𝑝′ corresponds to a road segment that was traversed by𝑇.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
78
+ page_content=' Each point 𝑝′ of the map matched trip contains a triplet (𝑟,𝑡𝑡,𝜏);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
79
+ page_content=' 𝑟 is the traversed road segment, 𝑡𝑡 is the travel time of the road segment 𝑟 and is computed assuming that the vehicle moved with the same speed in the road network between two consecutive GPS points and 𝜏 is the timestamp that the travel time is reported to the system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
80
+ page_content=' Travel time reports 𝐷 is the collection of travel times for the road segments as they are extracted by the trips of all the available probe vehicles that traverse the road network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
81
+ page_content=' Each travel time report (𝑟,𝑡𝑡,𝑡,𝑇𝑖𝑑) contains the information of the map-matched trips enriched by the id of the trip 𝑇𝑖𝑑.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
82
+ page_content=' Path 𝑃 is a sequence of |𝑃| consecutive road segments 𝑟1 → · · · → 𝑟 |𝑃 |, where 𝑟𝑖 is the 𝑖th road segment of 𝑃.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
83
+ page_content=' Below we define formally the traffic forecasting problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
84
+ page_content=' Traffic Forecasting: Given the available travel times of the last 𝐿 time windows T𝑡−𝐿+1:𝑡 a traffic forecasting model forecasts the travel times of the next 𝐻 time windows T𝑡+1:𝑡+𝐻, where the vector T𝑡 contains the travel times of the 𝐸 road segments at time 𝑡.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
85
+ page_content=' The Road Network Trajectories Travel Times Reports D Travel Times ZScores Aggregated Travel Times M Time Window length Roads Embeddings Matrix Factorization Map Matching Extracting Roads Segs Statistics Figure 2: Data preparation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
86
+ page_content=' input matrix T𝑡−𝐿+1:𝑡 ∈ R|𝐸 |×𝐿 has missing values for the roads that were not traversed by any vehicle at a given time window.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
87
+ page_content=' The forecasted matrix T𝑡+1:𝑡+𝐻 ∈ R|𝐸 |×𝐻 contains forecasts for all the road segments 𝐸 for the next 𝐻 time windows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
88
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
89
+ page_content='2 Data Preparation The first step of the proposed framework is to preprocess the raw data and prepare them appropriately in order to feed them to the neural network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
90
+ page_content=' The overview of the data preparation approach is illustrated in Figure 2 and described below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
91
+ page_content=' Map Matching.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
92
+ page_content=' Firstly, we map-match the available trips matching them to the road network 𝐺.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
93
+ page_content=' Each trip 𝑇 is transformed into a map- matched trip 𝑇𝐺.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
94
+ page_content=' This procedure generates the set of the available travel time reports 𝐷.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
95
+ page_content=' This step is common to both the historical data that are used to train our model and the streaming traffic data that will be used to make forecasts in real time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
96
+ page_content=' Modeling the periodicity of traffic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
97
+ page_content=' In order to model the peri- odicity of traffic we estimate from the historical travel time reports the average travel time 𝑎𝑣𝑔_𝑡𝑡𝑖,ℎ𝑜𝑢𝑟 for each road segment 𝑟𝑖 ∈ 𝐸 and for different hours of day ℎ𝑜𝑢𝑟 ∈ [1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
98
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
99
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
100
+ page_content=' 24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
101
+ page_content=' Then, we subtract from each travel time the historical average travel time for that road segment at the given hour.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
102
+ page_content=' In this way, we force the deep learning framework to model, for each different road segment, the deviation from the average travel time for the different hours of the day.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
103
+ page_content=' Standardizing Travel Times.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
104
+ page_content=' Since road segments have different lengths and speed limits we selected to standardize the travel time reports, considering the average behaviour of each different road segment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
105
+ page_content=' More specifically, for each road segment 𝑟𝑖 we compute the historical average travel time 𝜇𝑖 and standard deviation of travel times 𝜎𝑖 and we use these values in order to standardize the travel times per road segment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
106
+ page_content=' For instance, if 𝑡𝑡5 is a travel time that is re- ported for the road segment 𝑟5 then the corresponding Z-Score will be 𝑡𝑡5−𝜇5 𝜎5 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
107
+ page_content=' In the rest of the paper we assume that travel times are the Z-Scores of travel times with subtracted the average historical travel time for the different hours of the day.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
108
+ page_content=' Aggregating travel times.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
109
+ page_content=' The historical travel time reports 𝐷 are grouped together generating a sparse matrix 𝑀 ∈ R|𝐸 |×𝑊 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
110
+ page_content=' The rows of 𝑀 correspond to the |𝐸| road segments of the road network 𝐺 and the columns correspond to the𝑊 time windows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
111
+ page_content=' In this work we use time windows of 15 minutes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
112
+ page_content=' If more than one travel time reports are available for a particular road segment 𝑟𝑖 at the same time window 𝑤𝑗 then 𝑀𝑖𝑗 contains the average travel time of the available travel times.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
113
+ page_content=' A Novel Framework for Handling Sparse Data in Traffic Forecast SIGSPATIAL ’22, November 1–4, 2022, Seattle, WA, USA Roads Embeddings Travel Times Scaled Dot-Product Attention Ki Qi Vi headi MatMul MatMul i=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
114
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
115
+ page_content='h Concatenate Concatenate Linear Linear Linear Linear Linear h h Figure 3: Multi-Head Scaled Dot-Product Attention Roads Embeddings Travel Times Roads Embeddings Travel Times Attention Mechanism + Norm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
116
+ page_content=' + + Linear x2 Roads Embeddings Travel Times Attention Mechanism + Norm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
117
+ page_content=' + + Conv1D x2 Norm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
118
+ page_content=' V K Q Encoder Output N Figure 4: Encoder Block.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
119
+ page_content=' V Roads Embeddings Travel Times Attention Mechanism + Norm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
120
+ page_content=' + + Linear x2 Norm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
121
+ page_content=' V K Q Attention Mechanism + Norm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
122
+ page_content=' + K Q Roads Embeddings Travel Times Encoder Output Figure 5: Decoder Block.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
123
+ page_content=' Extracting Road Segments Embeddings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
124
+ page_content=' An embedding repre- sentation 𝐸𝑖 is detected for each road segment 𝑟𝑖 considering its historical travel time reports.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
125
+ page_content=' Here, we follow the process intro- duced by [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
126
+ page_content=' We perform matrix factorization in the sparse matrix 𝑀, learning a matrix P ∈ R|𝐸 |×𝑑 contains a 𝑑-dimensional embed- ding representation of the available road segments Feeding the Model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
127
+ page_content=' The deep learning model that is described in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
128
+ page_content='4 receives as input two vectors that contain: (i) the aggregated travel times that are available for a given time window and (ii) the corresponding road segments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
129
+ page_content=' For instance, consider a road network 𝐺 that is comprised of |𝐸| = 5 road segments [𝑟𝑖], 𝑖 ∈ [1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
130
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
131
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
132
+ page_content=' , 5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
133
+ page_content=' If for a particular time window only the travel times 𝑡𝑡2 and 𝑡𝑡5 of road segments 𝑟2 and 𝑟5 respectively are available, then the inputs to the deep learning model will be the following: the vector of the travel times T = [𝑡𝑡2,𝑡𝑡5, ∅, ∅, ∅] ∈ R|𝐸 | and the vector of the road segments ids R = [𝑟2,𝑟5, ∅, ∅, ∅] ∈ Z|𝐸 |.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
134
+ page_content=' Then, inside the deep learning model the ids of the road segments are transmitted to an embedding layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
135
+ page_content=' This layer transforms the vector R into a matrix of road segments embeddings E = [𝐸2, 𝐸5, ∅, ∅, ∅] ∈ R|𝐸 |×𝑑.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
136
+ page_content=' The embedding representation of the road segments is trainable and initialized with matrix P, computed using matrix factorization as it was described above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
137
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
138
+ page_content='3 Attention Mechanism Here, we extend the "Scaled Dot-Product Attention" that was intro- duced in [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
139
+ page_content=' The proposed attention mechanism encodes a varying number of travel time reports received at a particular time window.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
140
+ page_content=' We consider as input here the following: (i) the embeddings’ matrix of the road segments that have been traversed by the probe vehi- cles at a particular time window along with (ii) the vector of the corresponding reported travel times.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
141
+ page_content=' The overview of the proposed attention mechanism is illustrated in Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
142
+ page_content=' Initially, the Query 𝑄𝑖, Key 𝐾𝑖 and Value 𝑉𝑖 matrices are com- puted using the embeddings E of the available road segments, com- puted earlier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
143
+ page_content=' Therefore, three parameter matrices 𝑊 𝑄 𝑖 ∈ R𝑑×𝑑, 𝑊 𝐾 𝑖 ∈ R𝑑×𝑑 and 𝑊 𝑉 𝑖 ∈ R𝑑×𝑑 are trained using the training in- stances and are used to compute the matrices 𝑄𝑖 = E𝑊 𝑄 𝑖 , 𝐾𝑖 = E𝑊 𝐾 𝑖 and 𝑉𝑖 = E𝑊 𝑉 𝑖 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
144
+ page_content=' The index 𝑖 ∈ [1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
145
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
146
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
147
+ page_content=' ,ℎ] of the different parameter matrices stands for the ℎ parallel attention layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
148
+ page_content=' The next step is to compute the attention scores using the 𝑄𝑖 and 𝐾𝑖 matrices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
149
+ page_content=' The scores indicate the focus that will be placed at the travel times of other road segments, that have been reported at the same time window.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
150
+ page_content=' Multiple attention heads ℎ𝑒𝑎𝑑𝑖 ∈ R|𝐸 |×|𝐸 | are computed in parallel according to eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
151
+ page_content=' 1 indicating the attention at each particular road segment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
152
+ page_content=' ℎ𝑒𝑎𝑑𝑖 = 𝑠𝑜𝑓 𝑡𝑚𝑎𝑥( 𝑄𝑖𝐾𝑇 𝑖 √ 𝑑 ), 𝑖 ∈ [1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
153
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
154
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
155
+ page_content=' ,ℎ] (1) The road segments’ embeddings and travel times are then up- dated considering the computed attention heads.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
156
+ page_content=' More specifi- cally we train the parameter matrices 𝑊 𝑂1 ∈ Rℎ𝑑×𝑑 and 𝑊 𝑂2 ∈ Rℎ|𝐸 |×|𝐸 | that are multiplied with the concatenated values 𝑉𝑖 and travel times T respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
157
+ page_content=' E′ = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1𝑉1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
158
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
159
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
160
+ page_content=' ,ℎ𝑒𝑎𝑑ℎ𝑉ℎ)𝑊 𝑂1 (2) T ′ = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1T, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
161
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
162
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
163
+ page_content=' ,ℎ𝑒𝑎𝑑ℎT)𝑊 𝑂2 (3) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
164
+ page_content='4 Traffic Transformer’s Architecture Here we describe our model’s architecture, which is based on the original implementation of Transformer model described in [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
165
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
166
+ page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
167
+ page_content='1 Encoder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
168
+ page_content=' The encoder considers all travel time reports that are available at a given time window, encodining the traffic con- dition of that time window.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
169
+ page_content=' It is comprised by a set of 𝑁 identical blocks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
170
+ page_content=' The first block receives as input the roads segments embed- dings and the travel times that are available at a given time window, following the data preparation procedure described in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
171
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
172
+ page_content=' The rest encoder blocks receive as input the output of the previous block.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
173
+ page_content=' Figure 4 illustrates the overview of the encoder block.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
174
+ page_content=' SIGSPATIAL ’22, November 1–4, 2022, Seattle, WA, USA Zygouras et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
175
+ page_content=' Encoder Roads Embeddings Travel Times Encoder Block Roads Ids Travel Times Decoder Block N Encoder Encoder Block Roads Ids Travel Times Decoder Block N .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
176
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
177
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
178
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
179
+ page_content=' Decoder Decoder Block Query Roads Ids ∅ N ∅ ∅ t - L - 1 t t + 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
180
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
181
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
182
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
183
+ page_content=' 1st Recurrent Cell Lth Recurrent Cell Embedding Embedding Embedding Figure 6: Overview of our model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
184
+ page_content=' Each block first transmits the matrix of the available roads em- beddings E and the corresponding vector of travel times T at the attention mechanism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
185
+ page_content=' The attention mechanism produces the ma- trix E′ and the vector T ′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
186
+ page_content=' Then, residual connections are employed at the output of the attention mechanism, normalizing the sum of the received roads segments embeddings E with the output of the attention mechanism E′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
187
+ page_content=' The output is transmitted to two dense layers followed by another residual connection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
188
+ page_content=' For the travel times the output of each encoder block is the sum of the received travel times T and the output of the attention mechanism T ′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
189
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
190
+ page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
191
+ page_content='2 Decoder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
192
+ page_content=' The decoder (Figure 5) is responsible to forecast the travel times of the next time window, considering the encoder’s output.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
193
+ page_content=' The decoder consists of a set of 𝑁 blocks, similarly to the encoder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
194
+ page_content=' Each block receives as input the output of the encoder and the output of the previous block.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
195
+ page_content=' In the training phase the first block receives as input (i) the embeddings of the road segments that are available in the target time window and (ii) a vector of zeros.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
196
+ page_content=' For the testing phase the first block receives as input (i) the embeddings of all the road segments 𝐸 and (ii) a vector of zeros.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
197
+ page_content=' Recall that we are working with the Z-Scores of travel times aggregated per road segment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
198
+ page_content=' Consequently, the vector of zeros corresponds to the average travel for each road segment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
199
+ page_content=' Each block of the decoder contains two attention mechanisms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
200
+ page_content=' Firstly, the embeddings of the queried road segments and the travel times are transmitted to the first attention mechanism, followed by a residual connection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
201
+ page_content=' Then a second attention mechanism is employed, receiving as input the embedding matrix E′ 1 that resulted from the first attention mechanism along with the embeddings and the travel times that come from the output of the encoder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
202
+ page_content=' The main difference here is that the matrices 𝑉𝑖 and 𝐾𝑖 are computed from the output of the encoder and that the considered travel times come from the encoder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
203
+ page_content=' Then, the embedding output E′ 2 of the second attention mechanism is followed again by a residual connection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
204
+ page_content=' This is followed by two dense layers and a second residual connec- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
205
+ page_content=' Finally, the travel times that result from each block is the sum of the original travel times T that were received as input along with travel times that result from the first and the second attention mechanism T ′ 1 and T ′ 2 respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
206
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
207
+ page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
208
+ page_content='3 Recurrent Neural Network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
209
+ page_content=' The final module of our proposed model is a recurrent model that considers the sequence of the last 𝐿 time windows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
210
+ page_content=' Each cell of the recurrent network encapsulates an encoder (consisting of 𝑁 encoder blocks) along with a single decoder block.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
211
+ page_content=' Here the decoder block is responsible to aggregate the information that has been encoded from the previous time win- dow with the information that has been encoded from the current time window.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
212
+ page_content=' Figure 6 illustrates this recurrent architecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
213
+ page_content=' The encoder and the decoder blocks of the different recurrent cells share the same weights among the 𝐿 different time windows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
214
+ page_content=' The output of the last recurrent cell is used by the decoder model in order to make forecasts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
215
+ page_content=' The decoder model consists of 𝑁 decoder blocks that are different from each other and from the decoder block that lies inside the recurrent cells.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
216
+ page_content=' The output of the last decoder block contains the predicted travel times of the queried road segments for the next time window.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
217
+ page_content=' This will be the Z-Scores of the travel times for the road segments that were queried at the first decoder block.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
218
+ page_content=' 4 CONCLUSION In this paper we presented a novel deep learning framework that considers the current traffic condition of the road network and is used to forecast the traffic condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
219
+ page_content=' Our framework can efficiently encode the travel time reports that are available at a particular time window via an attention mechanism that considers only the available travel times reports and the corresponding embeddings of the road segments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
220
+ page_content=' ACKNOWLEDGMENTS This research has been financed by the European Union through the H2020 LAMBDA Project (No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
221
+ page_content=' 734242), the EU ICT-48 2020 project TAILOR (No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
222
+ page_content=' 952215) and the Horizon Europe AUTOFAIR Project (No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
223
+ page_content=' 101070568).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
224
+ page_content=' REFERENCES [1] Xiaomin Fang, Jizhou Huang, Fan Wang, Lingke Zeng, Haijin Liang, and Haifeng Wang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
225
+ page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
226
+ page_content=' Constgat: contextual spatial-temporal graph attention network for travel time estimation at baidu maps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
227
+ page_content=' In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2697–2705.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
228
+ page_content=' [2] Kun Fu, Fanlin Meng, Jieping Ye, and Zheng Wang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
229
+ page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
230
+ page_content=' Compacteta: a fast inference system for travel time prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
231
+ page_content=' In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 3337– 3345.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
232
+ page_content=' [3] Huiting Hong, Yucheng Lin, Xiaoqing Yang, Zang Li, Kung Fu, Zheng Wang, Xiaohu Qie, and Jieping Ye.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
233
+ page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
234
+ page_content=' Heteta: heterogeneous information network embedding for estimating time of arrival.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
235
+ page_content=' In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2444–2454.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
236
+ page_content=' [4] Guangyin Jin, Min Wang, Jinlei Zhang, Hengyu Sha, and Jincai Huang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
237
+ page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
238
+ page_content=' Stgnn-tte: travel time estimation via spatial–temporal graph neural network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
239
+ page_content=' Future Generation Computer Systems, 126, 70–81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
240
+ page_content=' [5] Xiucheng Li, Gao Cong, Aixin Sun, and Yun Cheng.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
241
+ page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
242
+ page_content=' Learning travel time distributions with deep generative model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
243
+ page_content=' In The World Wide Web Conference, 1017–1027.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
244
+ page_content=' [6] Yaguang Li, Kun Fu, Zheng Wang, Cyrus Shahabi, Jieping Ye, and Yan Liu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
245
+ page_content=' 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
246
+ page_content=' Multi-task representation learning for travel time estimation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
247
+ page_content=' In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 1695–1704.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
248
+ page_content=' [7] Jochen Schiller and Agnès Voisard.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
249
+ page_content=' 2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
250
+ page_content=' Location-based services.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
251
+ page_content=' Elsevier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
252
+ page_content=' [8] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
253
+ page_content=' 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
254
+ page_content=' Attention is all you need.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
255
+ page_content=' Advances in neural information processing systems, 30, 5998–6008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
256
+ page_content=' [9] Nikolaos Zygouras, Nikolaos Panagiotou, Yang Li, Dimitrios Gunopulos, and Leonidas Guibas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
257
+ page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
258
+ page_content=' Htte: a hybrid technique for travel time estimation in sparse data environments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
259
+ page_content=' In Proceedings of the 27th ACM SIGSPATIAL Interna- tional Conference on Advances in Geographic Information Systems, 99–108.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NE4T4oBgHgl3EQf1g37/content/2301.05292v1.pdf'}
6tE1T4oBgHgl3EQf7AVi/content/2301.03529v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c352c03bbdfd969fa5c79d56079f793a58c2e4fc74502d54f5ddd695fa29d6d1
3
+ size 911724
6tE1T4oBgHgl3EQf7AVi/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cadec6fb0ead707bc3212ddaba7210f02c40db99690831c2c7a0ef8b0859027c
3
+ size 4063277
6tE1T4oBgHgl3EQf7AVi/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bc79becfebd3ef8ae69c4716e46c2d0cc8bf30da45aad86691ce0c35762e6348
3
+ size 170716
89E0T4oBgHgl3EQfwgGc/content/tmp_files/2301.02634v1.pdf.txt ADDED
@@ -0,0 +1,695 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.02634v1 [math.LO] 6 Jan 2023
2
+ ON DISJOINT STATIONARY SEQUENCES
3
+ MAXWELL LEVINE
4
+ Abstract. We answer a question of Krueger by obtaining disjoint stationary
5
+ sequences on successive cardinals. The main idea is an alternative presentation
6
+ of a mixed support iteration, using it even more explicitly as a variant of
7
+ Mitchell forcing. We also use a Mahlo cardinal to obtain a model in which
8
+ ℵ2 /∈ I[ℵ2] and there is no disjoint stationary sequence on ℵ2, answering a
9
+ question of Gilton.
10
+ 1. Introduction and Background
11
+ In order to develop a more vivid picture of the infinite cardinals, set theorists
12
+ study a variety of objects that can potentially exist on these cardinals. The objects
13
+ of interest for this paper are called disjoint stationary sequences. These were intro-
14
+ duced by Krueger to answer a question of Abraham and Shelah about forcing clubs
15
+ through stationary sets. Beginning in joint work with Friedman, Krueger wrote a
16
+ series of papers in this area, connecting a wide range of concepts and answering
17
+ seemingly unrelated questions of Foreman and Todorˇcevi´c [4, 11, 12, 13, 14, 15].
18
+ Generally, the new arguments hinged on the behavior of two-step iterations of the
19
+ form Add(τ) ∗ P.
20
+ In order to extend the application of these arguments as widely as possible,
21
+ Krueger developed the notion of mixed support forcing [12, 15]. These forcings
22
+ are to some extent an analog of the forcing that Mitchell used to obtain the tree
23
+ property at double successors of regular cardinals. Their most notable feature is the
24
+ appearance of quotients insofar as the forcings took the form M ≃ ¯M ∗ Add(τ) ∗ Q
25
+ where ¯M is a partial mixed support iteration. The appearance of Add(τ) after
26
+ the initial component, together with the preservation properties of the quotient Q,
27
+ allowed Krueger’s new arguments to go through various complicated constructions.
28
+ Mixed support iterations have found several applications since [5], particularly in
29
+ regard to guessing models [16].
30
+ The main idea in this paper is to use a version of Mitchell forcing to accomplish
31
+ the task of a mixed support iteration. Specifically, this version of Mitchell forcing
32
+ takes the form M ≃ ¯M ∗ Add(τ) ∗ Q.1 The trick used to obtain this structural
33
+ property is reminiscent of the one usd by Cummings et al. in “The Eightfold Way”
34
+ to demonstrate that subtle variations in the definitions of Mitchell forcing—up to
35
+ merely shifting a L´evy collapse by a single coordinate—can substantially alter the
36
+ properties of the forcing extension. The benefit of the forcing used here is that it
37
+ comes with a projection analysis of the sort that Abraham used for Mitchell forcing
38
+ [1]. Both the forcing itself and its quotients are projections of products of the form
39
+ 1The extent to which all variations of these forcings are equivalent or not is left as a loose
40
+ end. Here we only deal with the case where the two-step iteration Add(τ) ∗ P takes the form
41
+ Add(τ) ∗
42
+ ˙
43
+ Col(µ, δ).
44
+ 1
45
+
46
+ 2
47
+ MAXWELL LEVINE
48
+ A× T where A has a good chain condition and T has a good closure property. This
49
+ allows us to obtain preservation properties conveniently, without having to delve
50
+ into too many technical details. Abraham in fact used this projection analysis to
51
+ extend Mitchell’s result to successive cardinals. This is exactly what we do here
52
+ for disjoint stationary sequences, answering the first component of a question of
53
+ Krueger [15, Question 12.8]:
54
+ Theorem 1. Suppose λ1 < λ2 are two Mahlo cardinals in V . Then there is a
55
+ forcing extension in which there are disjoint stationary sequences on ℵ2 and ℵ3.
56
+ We lay out the basic definition and concepts in the following subsections and
57
+ then develop the proof in Section 2. We also achieve one of Krueger’s separations
58
+ for successive cardinals, which answers a component of another one of his questions
59
+ [15, Question 12.9]:
60
+ Theorem 2. Suppose λ1 < λ2 are two Mahlo cardinals in V . Then there is a forc-
61
+ ing extension in which for µ ∈ {ℵ1, ℵ2}, there are stationarily many N ∈ [H(µ+)]µ
62
+ that are internally stationary but not internally club.
63
+ The last main result is motivated by work of Gilton and Krueger, who answered
64
+ a question from “The Eightfold Way” by obtaining stationary reflection for subsets
65
+ of ℵ2 ∩ cof(ω) together with failure of approachability at ℵ2 (i.e. ℵ2 /∈ I[ℵ2]) using
66
+ disjoint stationary sequences [5]. This result used the fact that the existence of a
67
+ disjoint stationary sequence implies failure of approachability. Gilton asked for the
68
+ exact consistency strength of the failure of approachability at ℵ2 together with the
69
+ nonexistence of a disjoint stationary set on ℵ2 [7, Question 9.0.15]. (He pointed
70
+ out that Cox found this separation using PFA [2].) It is known that the failure
71
+ of approachability requires the consistency strength of a Mahlo cardinal, and in
72
+ Section 3 we show that a Mahlo cardinal is sufficient for the separation:
73
+ Theorem 3. Suppose that λ is Mahlo in V . Then there is a forcing extension in
74
+ which ℵ2 /∈ I[ℵ2] and there is no disjoint stationary sequence on ℵ2.
75
+ Disjoint stationary sequences are known to be interpretable in terms of canonical
76
+ structure (see Fact 6 below), and the main idea for Theorem 3 is a simple master
77
+ condition argument that exploits this connection.
78
+ We note that all three of these theorems can be generalized to arbitrarily high
79
+ cardinals.
80
+ 1.1. Basic Definitions. We assume familiarity with the basics of forcing and large
81
+ cardinals. We use the following conventions: If P is a forcing poset, then p ≤ q
82
+ for p, q ∈ P means that p is stronger than q. We say that P is κ-closed if for all
83
+ ≤P-decreasing sequences ⟨pξ : ξ < τ⟩ with τ < κ, there is a lower bound p, i.e.
84
+ p ≤ pξ for all ξ < τ. We say that P has the κ-chain condition of all antichains
85
+ A ⊆ P have cardinality strictly less than κ.
86
+ Now we give our main definitions:
87
+ Definition 4. Given a regular cardinal µ, a disjoint stationary sequence on µ+ is
88
+ a sequence ⟨Sα : α ∈ S⟩ such that:
89
+ • S ⊆ µ+ ∩ cof(µ) is stationary,
90
+ • Sα is a stationary subset of Pµ(α) for all α ∈ S,
91
+ • Sα ∩ Sβ = ∅ if α ̸= β.
92
+
93
+ ON DISJOINT STATIONARY SEQUENCES
94
+ 3
95
+ We write DSS(µ+) to say that there is a disjoint stationary sequence on µ+.
96
+ Definition 5. Given a stationary N ∈ [H(Θ)]κ,2 we say:
97
+ • N is internally unbounded if ∀x ∈ Pκ(N), ∃M ∈ N, x ⊆ M,
98
+ • N is internally stationary if Pκ(N) ∩ N is stationary in Pκ(N),
99
+ • N is internally club if Pκ(N) ∩ N is club in Pκ(N),
100
+ • N is internally approachable if there is an increasing and continuous con-
101
+ tinuous chain ⟨Mξ : ξ < κ⟩ such that |Mξ| < κ and ⟨Mη : η < ξ⟩ ∈ Mξ+1
102
+ for all ξ < κ such that N = �
103
+ ξ<κ Mξ.
104
+ Although disjoint stationary sequences may seem unrelated the separation of
105
+ variants of internal approachability, there are deep connections here, for example:
106
+ Fact 6 (Krueger, [15]). If µ is regular and 2µ = µ+, then DSS(µ+) is equivalent to
107
+ the existence of a stationary set U ⊆ [H(µ+)]µ such that every N ∈ U is internally
108
+ internally unbounded but not internally club.
109
+ 1.2. Projections and Preservation Lemmas. Technically speaking, our main
110
+ goal is to show that certain forcing quotients behave nicely.
111
+ We will make an
112
+ effort to demonstrate the preservation properties of these quotients directly. These
113
+ quotients will be defined in terms of projections:
114
+ Definition 7. If P1 and P2 are posets, a projection is an onto map π : P1 → P2
115
+ such that:
116
+ • p ≤ q implies that π(p) ≤ π(q),
117
+ • if r ≤ π(p), then there is some q ≤ p such that π(q) ≤ r.
118
+ A projection is trivial if π(p) = π(q) implies that p and q are compatible.
119
+ Trivial projections are basically ismorphisms:
120
+ Fact 8. If π : P1 → P2 is a trivial projection, then P1 ≃ P2.
121
+ For our purposes, we are interested in the preservation of stationary sets. The
122
+ chain condition gives us preservation fairly straightforwardly. The following fact is
123
+ implicit in parts of the literature, and a version of it can be found in this paper in
124
+ the form of Proposition 26.
125
+ Fact 9. If P has the µ-chain condition and S ⊂ Pµ(X) is stationary, then P forces
126
+ that S is stationary in P V
127
+ µ (X).
128
+ However, we must place demands on our stationary sets in order for them to be
129
+ preserved by closed forcings.
130
+ Definition 10. A stationary set S ⊂ Pµ(H(Θ)) is internally approachable of length
131
+ τ if for all N ∈ S with N ≺ H(Θ), there is a continuous chain of elementary
132
+ submodels ⟨Mi : i < τ⟩ such that N = �
133
+ i<τ Mi and for all i < τ, ⟨Mi : i < j⟩ ∈
134
+ Mj+1. In this case we write S ⊆ IA(τ).
135
+ Fact 11. If S ⊂ Pµ(H(Θ)) ∩ IA(τ) is an internally approachable stationary set,
136
+ τ < µ, and P is µ-closed, then P forces that S is stationary in Pµ(H(Θ)V ).
137
+ 2See Jech for details on stationary sets [10].
138
+
139
+ 4
140
+ MAXWELL LEVINE
141
+ 1.3. Costationarity of the Ground Model. The notion of ground model co-
142
+ stationarity is a key ingredient in arguments pertaining to disjoint stationary se-
143
+ quences. It will specifically give us the disjointness, since we will be picking sta-
144
+ tionary sets that are not added by initial segments of these forcings.
145
+ Gitik obtained the classical result:
146
+ Fact 12 (Gitik [8]). If V ⊂ W are models of ZFC with the same ordinals, W \ V
147
+ contains a real, and κ is a regular cardinal in W such that (κ+)W ≤ λ, then
148
+ P W
149
+ κ (λ) \ V is stationary.
150
+ Because we will need Fact 11, we will actually use Krueger’s refinement of Gitik’s
151
+ theorem:
152
+ Fact 13 (Krueger [15]). Suppose V ⊂ W are models of ZFC with the same ordinals,
153
+ W \ V contains a real, µ is a regular cardinal in W, and X ∈ V is such that
154
+ (µ+)W ⊆ X, and that in W, Θ is a regular cardinal such that X ⊂ H(Θ). Then in
155
+ W the set {N ∈ Pµ(H(Θ)) ∩ IA(ω) : N ∩ X /∈ V } is stationary.
156
+ 2. The New Mitchell Forcing
157
+ 2.1. Defining the Forcing. In this subsection we will illustrate the basic idea of
158
+ this paper by using our new take on Mitchell forcing to prove a known result:
159
+ Theorem 14 (Krueger [15]). If λ is a Mahlo cardinal and µ < λ are regular
160
+ cardinals, there is a forcing extension in which 2ω = µ+ = λ and there is a disjoint
161
+ stationary sequence on λ.
162
+ Specifically, we will define a forcing M+(τ, µ, λ) such that the model W in
163
+ Theorem 14 can be realized as an extension by M+(ω, µ, λ).
164
+ For standard technical reasons, we define a poset ismorphic to Add(τ, λ):
165
+ Definition 15. Given a regular τ and a set of ordinals Y , we let Add∗(τ, Y ) be
166
+ the poset consisting of partial functions p : {δ ∈ Y : δ is inaccessible} × τ → {0, 1}
167
+ where | dom p| < τ. We let p ≤Add∗(τ,Y ) q if and only if p ⊇ q.
168
+ Note: In later subsections we will conflate Add(τ, λ) and Add∗(τ, λ) to simplify
169
+ notation.
170
+ Definition 16. Let λ be inaccessible and let τ < µ < λ be regular cardinals such
171
+ that τ <τ = τ. We define a forcing M+(τ, µ, λ) that consists of pairs (p, q) such
172
+ that:
173
+ (1) p ∈ Add∗(τ, λ),
174
+ (2) q is a function such that:
175
+ (a) dom q ⊂ {δ < λ : δ is inaccessible},
176
+ (b) | dom q| < µ,
177
+ (c) ∀δ ∈ dom(q), p↾((δ + 1) × τ) ⊩Add∗(τ,δ+1) “q(δ) ∈
178
+ ˙
179
+ Col(µ, δ)”.
180
+ We let (p, q) ≤ (p′, q′) if and only if:
181
+ (i) p ≤Add∗(τ,λ) p′,
182
+ (ii) dom q ⊇ dom q′,
183
+ (iii) for all δ ∈ dom q′, p↾((δ + 1) × τ) ⊩Add∗(τ,δ+1) “q(δ) ≤ ˙
184
+ Col(µ,δ) q′(δ)”
185
+ First we go through the more routine properties that one would expect of this
186
+ forcing.
187
+
188
+ ON DISJOINT STATIONARY SEQUENCES
189
+ 5
190
+ Proposition 17. M+(τ, µ, λ) is τ-closed and λ-Knaster.
191
+ Proof. Closure uses the facts that Add∗(τ, λ) is τ-closed and ⊩Add(τ,δ+1) “ ˙
192
+ Col(µ, δ)
193
+ is µ-closed” for all δ. Knasterness uses a standard application of the Delta System
194
+ Lemma.
195
+
196
+ Crucially, we get a nice termspace:
197
+ Definition 18. Let T = T(M+(τ, µ, λ)) be the poset consisting of conditions q
198
+ such that:
199
+ (1) dom q ⊂ λ ∩ {δ < λ : δ is inaccessible},
200
+ (2) | dom q| < µ,
201
+ (3) ∀δ ∈ dom q, ⊩Add∗(τ,δ+1) q(δ) ∈
202
+ ˙
203
+ Col(µ, δ)”.
204
+ Most importantly, we let q ≤ q′ if and only if:
205
+ (i) dom q ⊇ dom q′,
206
+ (ii) for all δ ∈ dom q, ⊩Add∗(τ,δ+1) “q(δ) ≤ q′(δ)”.
207
+ Proposition 19. There is a projection Add∗(τ, λ)×T(M+(τ, µ, λ)) ։ M+(τ, µ, λ).
208
+ Proof. We let π be the projection with the definition π(p, q) = (p, q). This is au-
209
+ tomatically order-preserving because the ordering ≤Add∗(τ,λ)×T is coarser than the
210
+ ordering ≤M+(τ,µ,λ). For obtaining the density condition, suppose (r, s) ≤M+(τ,µ,λ)
211
+ (p0, q0). We want to find some (p1, q1) such that (p1, q1) ≤Add∗(τ,λ)×T (p0, q0) and
212
+ (p1, q1) ≤M+(τ,µ,λ) (r, s). To do this, we first let p1 = r, and then we define q1
213
+ with dom q1 = dom r such that at each coordinate δ ∈ dom q1, we use standard
214
+ arguments on names to show that we can get both p0 ↾ ((δ + 1) × τ) ⊩Add∗(τ,λ)
215
+ “q1(δ) ≤ s(δ)” as well as 1Add∗(τ,λ) ⊩Add∗(τ,λ) “q1(δ) ≤ q0(δ)”.
216
+
217
+ Proposition 20. T is µ-closed.
218
+ Proof. This as an application of the Mixing Principle. Given a ≤T-decreasing se-
219
+ quence ⟨qi : i < τ⟩ with τ < µ we let d = �
220
+ i<τ dom qi. Then we define a lower
221
+ bound ¯q with domain d such that for all δ ∈ d, q(δ) is a canonically-defined name
222
+ for a lower bound of the qi(δ)’s (where i is large enough that δ ∈ dom qi).
223
+
224
+ Then we get the standard consequences of the termspace analysis:
225
+ Proposition 21. The following are true in any extension by M+(τ, µ, λ):
226
+ (1) V -cardinals up to and including µ are cardinals.
227
+ (2) For all α < λ, |α| = µ.
228
+ (3) λ = µ+.
229
+ (4) 2τ = λ.
230
+ Proof. (1) follows from the projection analysis and the fact that T is µ-closed and
231
+ Add∗(τ, λ) is τ +-cc, and from τ-closure of M+(τ, µ, λ). (2) follows from the fact
232
+ that for all inaccessible δ < λ, M+(τ, µ, λ) projects onto Col(µ, δ). (3) follows from
233
+ (1) and (2) plus λ-Knasterness. (4) follows from the fact that M+(µ, λ) projects
234
+ onto Add∗(τ, λ), so it forces that 2τ ≥ λ. Since the poset has size λ, it also forces
235
+ that 2τ ≤ λ.
236
+
237
+ The following lemma is the crux of the new idea.
238
+
239
+ 6
240
+ MAXWELL LEVINE
241
+ Lemma 22. If δ0 < λ is inaccessible, then there is a forcing equivalence
242
+ M+(τ, µ, λ) ≃ M+(τ, µ, δ0) ∗ Add(τ) ∗ Q
243
+ where M+(τ, µ, δ0) ∗ Add(τ) forces that Q is a projection of a product of a µ-closed
244
+ forcing and a τ +-cc forcing.
245
+ Proof. More precisely, we will show that there is a forcing equivalence M+(τ, µ, λ) ≃
246
+ M+(τ, µ, δ0) ∗ Add(τ) ∗ (P × R) where the following hold in the extension by
247
+ M+(τ, µ, δ0) ∗ Add(τ):
248
+ • R is a projection of a product of a µ-closed forcing and Add∗(τ, λ), and
249
+ • V [M+(τ, µ, δ0)][Add(τ, 1)] |= “P is µ-closed”.
250
+ The statement of the lemma can then be obtained by merging P with the closed
251
+ component of the product that projects onto R.
252
+ First we describe P and R. To do this, we fix some notation. Given Y ⊆ λ, we let
253
+ πY
254
+ Add denote the projection (p, q) → p↾(Y × τ) from M+(τ, µ, λ) onto Add∗(τ, Y ).
255
+ For any poset P, we employ the convention that Γ(P) denotes a canonical name for
256
+ a P-generic. If X ⊂ P, then we use the notation ↑ X := {q ∈ P : ∃p ∈ X, p ≤ q}.
257
+ We will let
258
+ P := Col(µ, δ0)V [(↑(πδ0
259
+ Add”Γ(M+(τ,µ,δ0))))×Γ(Add(τ))]
260
+ if we are working in an extension by M+(τ, µ, δ0) ∗ Add(τ). (In other words, the
261
+ poset P will be the version of Col(µ, δ0) as interpreted in the extension of V by
262
+ Add∗(τ, δ + 1) where the initial coordinates come from M+(τ, µ, δ0) and the last
263
+ coordinate comes from the additional copy of Add(τ).)
264
+ Still working in an extension by M+(τ, µ, δ0) ∗ Add(τ), the poset R consists of
265
+ pairs (p, q) such that the following hold:
266
+ (1) p ∈ Add∗(τ, (δ0, λ)),
267
+ (2) q is a function such that
268
+ (a) dom q ⊂ {δ ∈ (δ0, λ) : δ is inaccessible},
269
+ (b) | dom q| < µ,
270
+ (c) ∀δ ∈ dom(q), p↾((δ0, (δ + 1)) × τ) ⊩Add∗(τ,(δ0,δ+1)) “q(δ) ∈
271
+ ˙
272
+ Col(µ, δ)”.
273
+ The ordering is the one analogous to that of M+(τ, µ, λ). An easy adaptation of
274
+ the arguments for the projection analysis for M+(τ, µ, λ) will then give a projection
275
+ analysis for R.
276
+ The rest of the proof of the lemma consists of verifying the more substantial
277
+ claims.
278
+ Claim 23. M+(τ, µ, λ) ≃ M+(τ, µ, δ0) ∗ Add(τ, 1) ∗ (P × R).
279
+ Proof. We identify M+(τ, µ, δ0) ∗ Add(τ, 1) ∗ (P × R) with the dense subset of con-
280
+ ditions ((r, s), t, u, (r, ˙s′)) such that ˙s′ is forced to have a specific domain in V . The
281
+ fact that this subset is dense follows from the fact that M+(τ, µ, λ) ∗ Add(τ) has
282
+ the µ-covering property.
283
+ We will argue that there is a trivial projection defined by
284
+ π : (p, q) �→ ((p↾(δ0 × τ), q↾δ0)
285
+
286
+ ��
287
+
288
+ M+(µ,δ0)
289
+ , p↾({δ0} × τ)
290
+
291
+ ��
292
+
293
+ Add(τ)
294
+ , q∗(δ0)
295
+ � �� �
296
+ P
297
+ , (¯p, ¯q)
298
+ � �� �
299
+ R
300
+ )
301
+ such that
302
+ • ¯p := p↾((δ0, λ) × τ);
303
+
304
+ ON DISJOINT STATIONARY SEQUENCES
305
+ 7
306
+ • q∗(δ0) is obtained by changing q(δ0) from an Add∗(τ, δ0 + 1)-name to an
307
+ Add(τ) as interpreted in the extension by the relevant generic, namely
308
+ (↑ (πδ0
309
+ Add”Γ(M+(τ, µ, δ0))));
310
+ • ¯q has domain (δ0, λ), and for each δ ∈ (δ0, λ), ¯q(δ) has changes analogous
311
+ to the changes made to q∗(δ0).
312
+ It is clear that π is order-preserving. We also want to show that if
313
+ ((r, s), t, u, (r′, ˙s′)) ≤M+(τ,µ,δ0)∗Add(τ)∗(P×R) π(p0, q0)
314
+ then there is some (p1, q1) ≤M+(µ,λ) (p0, q0) such that π(p1, q1) ≤ ((r, s), t, u, (r′, s′)).
315
+ This can be done by taking:
316
+ • p1 = r ∪ ˜t ∪ r′ where ˜t writes t as as a partial function {δ} × τ → {0, 1},
317
+ • q1 = s ∪ ˜u ∪ ˜s′ where ˜u reinterprets u as a Add∗(δ0 + 1)-name and for each
318
+ δ ∈ dom( ˙s′), ˜s′ reinterprets ˙s′(δ) as a Add∗(δ + 1)-name.
319
+ Last, we argue that π(p0, q0) = π(p1, q1) implies that (p0, q0) and (p1, q1) are
320
+ compatible. Suppose that (p0, q0) and (p1, q1) are incompatible. If p0 and p1 are
321
+ incompatible as elements of Add∗(τ, λ), then one of pi ↾ (δ0 × τ), pi ↾ ({δ0} × τ),
322
+ and pi ↾((δ0, λ) × τ) must be distinct for i = 0 and i = 1. Otherwise, there is some
323
+ p′ ≤ p0, p1 and some δ ∈ dom q0∩dom q1 inaccessible such that p′ ⊩ “q0(δ) ⊥ q1(δ)”,
324
+ which implies that q0(δ) ̸= q1(δ). Therefore, one of qi ↾ δ0, qi(δ0), or qi ↾ (δ0, λ) is
325
+ distinct for i ∈ {0, 1}.
326
+
327
+ Claim 24. V [M+(τ, µ, δ0)][Add(τ, 1)] |= “P is µ-closed”.
328
+ Proof. In fact, our argument will also show that V [M+(τ, µ, δ0)][Add(τ, 1)] |= “P =
329
+ Col(µ, δ0)”. We fix some arbitrary generics:
330
+ • G is M+(τ, µ, δ0)-generic over V ,
331
+ • r is Add(τ)-generic over V [G],
332
+ • H is the Add∗(τ, δ0)-generic induced from G by πδ0
333
+ Add,
334
+ • K is the generic for the quotient of M+(τ, µ, δ0) by Add∗(τ, δ0), i.e. the
335
+ generic such that V [H][K] = V [G],
336
+ • T is the generic for the termspace forcing T(M+(τ, µ, δ0)), so that V [G] ⊂
337
+ V [T ][H].
338
+ It is enough to argue that V [G][r] |= “P is µ-closed” knowing that V [H][r] |= “P
339
+ is µ-closed”. Because adjoining G does not change the definition of Add(τ), and
340
+ because K is defined in terms of the subsets of τ adjoined by the filter H, we have
341
+ V [G][r] = V [H][K][r] = V [H][r][K]. Therefore, it is enough to show that K does
342
+ not add <µ-sequences over V [H][r], so that V [H][r]’s version of Col(µ, δ0) remains
343
+ µ-closed in V [G][r]. We have
344
+ V [H][r] ⊂ V [H][r][K] = V [H][K][r] = V [G][r] ⊂ V [T ][H][r] = V [H][r][T ],
345
+ and Easton’s Lemma implies that T does not add new <µ-sequences over V [H][r],
346
+ so therefore K does not add new <µ-sequences over V [H][r] since it is an interme-
347
+ diate factor of the extension.
348
+
349
+ This completes the proof of the lemma.
350
+
351
+ Now we have an application for the case where τ = ω.
352
+ Proposition 25. If λ is Mahlo then V [M+(ω, µ, λ)] |= DSS(λ).
353
+ This basically repeats Krueger’s argument for [15, Theorem 9.1].
354
+
355
+ 8
356
+ MAXWELL LEVINE
357
+ Proof. Let G be M+(ω, µ, λ)-generic over V . The set of V -inaccessibles in λ will
358
+ form the stationary set S ⊂ µ+ ∩ cof(µ) carrying the disjoint stationary sequence
359
+ in the extension by M+(ω, µ, λ). For every such δ ∈ S, let ¯G be the generic on
360
+ M+(ω, µ, δ) induced by G and let r be the Add(ω)-generic induced by G via π{δ}
361
+ Add.
362
+ We use Fact 13 to obtain a stationary set S∗
363
+ δ ⊂ Pµ(H(δ))V [ ¯
364
+ G][r] such that for all
365
+ N ∈ S∗
366
+ δ, N ∩ δ /∈ V [ ¯G] and such that S∗
367
+ δ is also internally approachable by a ω-
368
+ sequence. Therefore we can apply Lemma 22 with Fact 11 and then Fact 9 to find
369
+ that S∗
370
+ δ is stationary in V [G]. We then let Sδ = {N ∩ δ : N ∈ S∗
371
+ δ}, and we see that
372
+ ⟨Sδ : δ ∈ S⟩ is a disjoint stationary sequence.
373
+
374
+ 2.2. Proving the Main Theorems. Now we will apply the new version of Mitchell
375
+ forcing to answer Krueger’s questions. Theorem 1 follows quickly:
376
+ Proof of Theorem 1. Begin with a ground model V in which λ1 < λ2 and the λ’s
377
+ are Mahlo.
378
+ Let M1 = M+(ω, ℵ1, λ1).
379
+ (Any λ1-sized forcing that turns λ1 into
380
+ ℵ2 and adds a disjoint stationary sequence on ℵ2 would work, so we could also
381
+ use a more standard mixed support iteration.) Then let ˙M2 be an M1-name for
382
+ M+(ω, λ1, λ2). We argue that if G1 is M1-generic over V and G2 is ˙M2[G1]-generic
383
+ over V [G1], then V [G1][G2] |= “DSS(λ1)∧DSS(λ2)”. We get DSS(λ2) from the fact
384
+ that λ2 remains Mahlo in V [G1] together with Proposition 25, so we only need to
385
+ argue that the disjoint stationary sequence ⃗S := ⟨Sα : α ∈ S⟩ ∈ V [G1] remains a
386
+ disjoint stationary sequence in V [G1][G2].
387
+ Working in V [G1], preservation of ⃗S follows from the projection analysis: Let H1
388
+ and H2 be chosen so that H1 is T := T(M2)-generic over V [G1], H2 is Add(ω, λ2)V [G1]-
389
+ generic over V [G1][H1], and V [G1][G2] ⊆ V [G1][H1][H2]. Since T is λ1-closed, it
390
+ preserves stationarity of S and the Sα’s, and Add(ω, λ2)V [G1] still has the countable
391
+ chain condition in V [G1][H1]. It follows that the stationarity of S is preserved in
392
+ V [G1][H1][H2], as well as the stationarity of the Sα’s (by Fact 9). Therefore ⃗S is a
393
+ disjoint stationary sequence on λ1 in V [G1][G2].
394
+
395
+ It will take a bit more work to show that Theorem 2 holds in the same model
396
+ given for Theorem 1. Note that we cannot just apply Fact 6 because 2ω = ℵ3 in
397
+ the model for Theorem 1, plus it is consistent that there can be a stationary set
398
+ which is internally unbounded but not internally stationary [13].
399
+ We will give some facts on preservation of the distinction between stationary
400
+ sets that are internally stationary but not internally club:
401
+ Proposition 26. Suppose P is ν-closed and S ⊆ Pδ(X) is a stationary set such
402
+ that |X|<δ ≤ ν and δ ≤ ν. Then ⊩P “S is stationary in Pδ(X)”.
403
+ Proof. Let
404
+ ˙C be a P-name for a club in Pδ(X).
405
+ Let ⃗x = ⟨xξ : ξ ≤ ¯ν⟩ be an
406
+ enumeration of Pδ(X) (where ¯ν ≤ ν). We construct a sequence ⃗z = ⟨zξ : ξ ≤ ¯ν⟩ ⊆
407
+ Pδ(X) and a ≤P-descending sequence ⟨pξ : ξ ≤ ¯ν⟩ such that for all ξ, pξ ⊩ “xξ ⊆
408
+ zξ ∈ ˙C”. Let D be the set of unions �
409
+ i<¯δ zξi for all increasing chains ⟨zξi : i < ¯δ⟩ ⊂
410
+ ⃗z (where ¯δ < δ). Since D is a club in Pδ(X) defined in V , there is some w ∈ D ∩ S.
411
+ Let ⟨zξi : i < ¯δ⟩ be an ⊆-increasing chain with ¯δ < δ such that �
412
+ i<¯δ zξi = w and
413
+ let ξ∗ < ¯ν be such that ξ∗ > supi<¯δ ξi. Then pξ∗ ⊩ “w ∈ ˙C ∩ S”.
414
+
415
+ Proposition 27. Let P1 have the δ-chain condition, let P2 be ν-closed, and let X
416
+ be a set such that |X|δ ≤ ν with δ+ ≤ ν. If S ⊆ [X]δ is stationary and internally
417
+
418
+ ON DISJOINT STATIONARY SEQUENCES
419
+ 9
420
+ stationary but not internally club, then P1 × P2 forces that S is stationary and
421
+ internally stationary but not internally club.
422
+ Proof. First, S remains stationary in the extension by P2 by Proposition 26, and it
423
+ remains stationary in the further extension by P1 by the fact that P1 still has the
424
+ δ-chain condition together with Fact 9. If N ∈ S, then N ∩ Pδ(N) is stationary, so
425
+ its stationarity is preserved by the same reasoning, using the fact that we still have
426
+ the appropriate chain condition. The fact that N is not internally club is preserved
427
+ in the extension by P2 because of ν-closure and the fact that δ ≤ ν, and then it
428
+ is preserved in the further extension by P1 because the proof of Fact 9 shows that
429
+ added clubs contain ground model clubs.
430
+
431
+ We use a concept from Harrington and Shelah to handle Mahlo cardinals:
432
+ Definition 28. [9] Let N be a model of some fragment of ZFC. We say that M ≺ N
433
+ is rich if the following hold:
434
+ (1) λ ∈ M;
435
+ (2) ¯λ := M ∩ λ ∈ λ;
436
+ (3) ¯λ is an inaccessible cardinal in N;
437
+ (4) The size of M is ¯λ;
438
+ (5) M is closed under < ¯λ-sequences and ¯λ < λ.
439
+ Lemma 29. If λ is Mahlo, then M+(ω, µ, λ) forces that there are stationarily many
440
+ Z ∈ [µ+]µ which are internally stationary but not internally club.
441
+ This follows Krueger’s proof of [15, Theorem 10.1], making necessary changes
442
+ for Mahlo cardinals, and including enough details to show that we can get the
443
+ necessary preservation of stationarity simply from the projection analysis. We do
444
+ not need guessing functions (which are used in Krueger’s argument) because we are
445
+ only obtaining one instance of separation per large cardinal.
446
+ Proof of Lemma 29. Denote M := M+(ω, µ, λ) and let ˙C be an M-name for a club
447
+ in ([H(µ+)]µ)V [M]. We want to find an M-name ˙Z for an element of ([H(µ+)]µ)V [M]∩
448
+ ˙C that is internally stationary but not internally club. Let ˙F be an M-name for
449
+ a function (H(µ+)V [M])<ω → H(µ+)V [M] with the property that all of its closure
450
+ points are in ˙C. Let Θ be as large as needed for the following discussion and let N
451
+ be the structure (H(Θ), ∈, <Θ, M, ˙F, λ, µ) where <Θ is a well-ordering of H(Θ).
452
+ Since λ is Mahlo, we can find some M ≺ N with µ ⊂ M that is a rich submodel of
453
+ cardinality ¯λ. Now set G to be M-generic over V . Note that H(λ)V [G] = H(λ)[G]
454
+ because M has the λ-chain condition and M ⊂ H(λ). We will argue that Z :=
455
+ M[G] ∩ H(λ)[G] is what we are looking for.
456
+ Claim 30. Z ∈ C := ˙C[G].
457
+ Proof. We have ¯λ ≤ |Z| ≤ |M| ≤ ¯λ and ¯λ has cardinality µ in N[G], so Z ∈
458
+ [H(λ)V [G]]µ. If a1, . . . , an ∈ Z, there are M-names ˙b1, . . . , ˙bn ∈ M ∩ H(λ) such
459
+ that ai = ˙bi[G] for all 1 ≤ i ≤ n.
460
+ By elementarity, M contains the <Θ-least
461
+ maximal antichain A ⊂ M of conditions deciding ˙F(˙b1, . . . , ˙bn). Since |A| < λ,
462
+ |A| ∈ M∩λ = ¯λ, so it will follow that A ⊂ M. Therefore if p ∈ G∩A, then p ∈ M in
463
+ particular, so p ⊩ ˙F(˙b1, . . . , ˙bn) = ˙b∗ for some ˙b∗ ∈ M∩H(λ) where we automatically
464
+ get ˙b∗ ∈ H(¯λ), and therefore F(a1, . . . , an) = a∗ := ˙b∗[G] ∈ M[G] ∩ H(λ)[G] = Z
465
+ (where of course F := ˙F[G]).
466
+
467
+
468
+ 10
469
+ MAXWELL LEVINE
470
+ For the rest of the proof let ¯G := πM(G) where πM is the Mostowski collapse
471
+ relative to M. Since πM(M) = M+(ω, µ, ¯λ), there is an extension πM : M[G] ∼=
472
+ πM(M)[ ¯G]. We also denote h := πM(H(λ)[G] ∩ M[G]). Note that h<¯λ ⊂ h by the
473
+ facts that M is rich and πM(M) has the ¯λ-chain condition.
474
+ Claim 31. Z is internally stationary.
475
+ Proof. First, we argue that S := Pµ(h)N[ ¯
476
+ G] is stationary in N[G]. By Lemma 22,
477
+ the quotient M/ ¯G is a projection of a forcing of the form A1 ∗ ( ˙T × A2) where A1
478
+ has the countable chain condition, ˙T is an A1-name for a µ-closed forcing, and A2
479
+ also has the countable chain condition. Let K1, KT , and K2 be respective generics
480
+ such that V [G] ⊆ V [ ¯G][K1][KT ][K2]. Working in N[ ¯G], note that S′ ∩ IA(ω) is
481
+ stationary, and therefore has its stationarity preserved in V [ ¯G][K1] by Fact 9.
482
+ We must also show that the stationarity of S′ will be preserved by countably
483
+ closed forcings over N[ ¯G][K1]. Suppose ⟨Mn : n < ω⟩ witnesses internal approach-
484
+ ability of some N ∈ S′ in V [ ¯G] with respect to the structure H(λ+)V [ ¯
485
+ G], and let
486
+ Mω := �
487
+ n<ω Mn. Then we can see that ⟨Mn[K1] : n < ω⟩ is a chain of elementary
488
+ submodels of H(λ)[ ¯G][K1] = H(λ)V [ ¯
489
+ G][K1]. We also have Mn[K1] ∩ V [ ¯G] = M and
490
+ Mω[K1] ∩ V [ ¯G] = Mω ∈ S′ with Mω[K1] ≺ H(λ)V [ ¯
491
+ G][K1]. If we choose the Mn’s to
492
+ be elementary substructures of H(λ+)V [ ¯
493
+ G](∈, <∗, ˙C, . . .) where <∗ is a well-ordering
494
+ and ˙C is a A1 ∗ ˙T-name for a club, then an argument almost exactly like the one
495
+ showing that internal approachability is preserved (i.e. the proof of Fact 11) will
496
+ show that S′ is stationary in N[ ¯G][K1][KT ].
497
+ Then the extension of N[ ¯G][K1][KT][K2] over N[ ¯G][K1][KT ] preserves the sta-
498
+ tionarity of S′ by another application of Fact 9, so we get stationarity in N[G].
499
+ Now that we have established preservation of stationarity of S′, we can finish
500
+ the argument. Since |h| = µ in N[G], we can write h = �
501
+ i<µ xi where ⟨xi : i < µ⟩
502
+ is a continuous and ⊂-increasing chain of elements of Pµ(h). The chain is a club
503
+ in h, so there is a stationary X ⊆ µ such that {xi : i ∈ X} ⊆ T . For all i < µ,
504
+ the fact that |xi| < µ implies that xi ∈ h, and so xi = πM(yi) for some yi ∈ Z.
505
+ Therefore ⟨yi : i < µ⟩ is ⊂-increasing and continuous with union Z, and in particular
506
+ ⟨yi : i ∈ X⟩ is stationary in Z.
507
+
508
+ Claim 32. Z is not internally club.
509
+ Proof. Suppose for contradiction that Z is internally club and hence that there is
510
+ a ⊂-increasing and continuous chain ⟨Zi : i < µ⟩ ∈ N[G] with |Zi| < µ for all i < µ
511
+ and �
512
+ i<µ Zi = Z. So for all i < µ, Zi ⊂ Z, and so ⟨πM[Zi] : i < µ⟩ is an ⊂-
513
+ increasing and continuous chain with union h. If we let Wi := πM[Zi] for all i < µ,
514
+ then the fact that |Wi| < µ implies that Wi = πM(Zi). Therefore ⟨Wi : i < µ⟩ is a
515
+ continuous and ⊂-increasing chain of sets in Pµ(h) with union h.
516
+ Next we define a set U ∈ N[ ¯G][r] (where r is the generic induced by G from
517
+ π{¯λ}
518
+ Add) as
519
+ {A ∈ Pµ(H(χ)) ∩ IA(ω) : A �� h /∈ N[ ¯G]}.
520
+ We have a real in N[ ¯G][r] \ N[ ¯G] and (µ+)N[ ¯
521
+ G][r] = λ ⊂ H(λ). Hence we apply
522
+ Fact 13 to see that U is stationary in N[ ¯G][r], and it remains stationary in N[G] by
523
+ the preservation properties of the quotient (i.e. Lemma 22 combined with Fact 11
524
+ and Fact 9). Therefore in N[G], {A ∩ h : A ∈ U} is stationary in Pµ(h). Since
525
+ ⟨Wi : i < µ⟩ is club in h, there is some i < µ such that Wi = A ∩ h for some A ∈ U.
526
+
527
+ ON DISJOINT STATIONARY SEQUENCES
528
+ 11
529
+ But by definition, A ∩ h /∈ N[ ¯G], and subsets of Wi of cardinality < ¯λ are in N[ ¯G],
530
+ so this is a contradiction.
531
+
532
+ This completes the proof of the lemma.
533
+
534
+ Proof of Theorem 2. Let M1 be any λ1-sized forcing that turns λ1 into ℵ2 and adds
535
+ stationarily many N ∈ [H(ℵ2)]ℵ1 that are internally stationary but not internally
536
+ club. Let ˙M2 be an M1-name for M+(ω, λ1, λ2), let G1 be M1-generic over V , and
537
+ let G2 be ˙M2[G1]-generic over V [G1]. Then we can see that the theorem holds
538
+ in V [G1][G2]: the distinction between internally stationary and internally club on
539
+ [H(ℵ2)]ℵ1 is preserved in V [G1][G2] by Proposition 27, and we get a distinction
540
+ between internally stationary and internally club for [H(ℵ3)]ℵ2 by Lemma 29.
541
+
542
+ 3. A Club Forcing and a Guessing Sequence
543
+ 3.1. A review of the tools. The main idea of the proof of Theorem 3 is to force
544
+ a club through the complement of a canonical stationary set, which is described as
545
+ follows:
546
+ Fact 33 (Krueger,[15]). Suppose µ is an uncountable regular cardinal and µ<µ ≤
547
+ µ+. Let x = ⟨xα : α < µ+⟩ enumerate [µ+]<µ and let
548
+ S(x) := {α ∈ µ+ ∩ cof(µ) : Pµ(α) \ ⟨xβ : β < α⟩ is stationary}.
549
+ Then DSS(µ+) holds if and only if S(x) is stationary.
550
+ The natural thing to do is to define the following:
551
+ Definition 34. Let µ be an uncountable regular cardinal such that µ<µ = µ+
552
+ and let x and S(x) be defined as in Fact 33. Then let P(x) be the set of closed
553
+ bounded subsets p of µ+ such that p ∩ S(x) = ∅. We let p′ ≤ p if and only if
554
+ p′ ∩ (max p + 1) = p.
555
+ We will also crucially need a characterization of diamonds. This following ap-
556
+ pears in joint work with Gilton and Stejskalov´a [6].
557
+ Fact 35. The following are equivalent:
558
+ (1) λ is Mahlo and ♦λ(Reg) (where of course Reg = {τ < λ : τ regular}) holds.
559
+ (2) There is a function ℓ : λ → Vλ such that for every transitive structure N
560
+ satisfying a rich fragment of ZFC that is closed under λ+-sequences in V ,
561
+ the following holds: For every A ∈ N with A ∈ H(λ+) and any a ⊂ H with
562
+ |a| < λ, there is a rich M ≺ N with a ∪ {ℓ} ⊂ M such that ℓ(¯λ) = πM(A)
563
+ (where ¯λ = M ∩ λ and πM is the Mostowski collapse).3
564
+ We can always use such an ℓ assuming the consistency of a Mahlo cardinal: If λ
565
+ is Mahlo in a model V , then it is Mahlo in G¨odel’s class L where ♦λ(S) holds for
566
+ all regular λ and stationary S ⊂ λ.
567
+ We use a poset that appears in Gilton’s thesis [7] and is discussed in the same
568
+ paper with the guessing sequence [6]. We denote this poset MG
569
+ ℓ (κ, λ) and black-box
570
+ its basic properties:
571
+ Fact 36. [3, 7] The following hold for MG
572
+ ℓ (κ, λ):
573
+ 3The original is stated with a different quantification—for all rich structures, there exists a
574
+ function, not the other way around. However, the proof works with the quantification used here.
575
+
576
+ 12
577
+ MAXWELL LEVINE
578
+ • MG
579
+ ℓ (κ, λ) has the λ-chain condition;
580
+ • MG
581
+ ℓ (κ, λ) is κ-closed;
582
+ • If ℓ(δ) = P for some κ+-closed forcing, then we have the forcing equivalence:
583
+ MG
584
+ ℓ (κ, λ) ≃ MG
585
+ ℓ (κ, δ) ∗ (P × Add(κ, δ⊕)) ∗ Nδ⊕
586
+ where:
587
+ – α⊕ takes the least inaccessible larger than α, and
588
+ – Nδ⊕ is a projection of a product of a square-κ+-cc and a κ+-closed
589
+ forcing.
590
+ 3.2. The proof. Now we prove Theorem 3. Fix κ and λ as in the statement of
591
+ the theorem and let µ = κ+. We can assume that ♦λ(Reg) holds, so let ℓ witness
592
+ Fact 35 and let M = MG
593
+ ℓ (κ, λ). We have V [M] |= µ<µ ≤ µ+, so we fix an M-name
594
+ ˙x of [µ+]<µ in V [M] as well as a sequence of names ⟨ ˙xα : α < µ+⟩ that canonically
595
+ represent the elements listed by ˙x. Then let ˙P be an M-name for P( ˙x). Let G be
596
+ M-generic over V and let H be P := ˙P[G]-generic over V [G]. Then the model in
597
+ which the theorem is realized is V [G][H].
598
+ Note: If M ≺ N is rich and πM is the Mostowski collapse relative to M, we will
599
+ typically denote πM(a) as ¯a.
600
+ The following lemma is the crux of the proof:
601
+ Lemma 37. Let M ≺ N be a rich model chosen to witness Fact 35 in the sense
602
+ of having the properties that M ∩ λ = ¯λ and ℓ(¯λ) = πM( ˙P(˙x)). Suppose ¯G0 ∗ ¯H0 is
603
+ ¯M ∗ ¯P-generic over V .
604
+ Then there is a G0 ∗ H0 which is M ∗ P( ˙x)-generic over V and a rich M ≺ N
605
+ such that:
606
+ (1) if j : ¯M → M ⊂ N is the inverse of the Mostowski collapse, then there is a
607
+ lift j : ¯M[ ¯G0][ ¯H0] → N[G0][H0];
608
+ (2) ¯M[ ¯G0][ ¯H0]<¯λ ⊆ ¯M[ ¯G0];
609
+ (3) N[G0] is an extension of N[ ¯G0][ ¯H0] by Add(κ, (M ∩ λ)⊕) ∗ N(M∩λ)⊕.
610
+ Proof. We will lift the elementary embedding j : ¯M → N to j : ¯M[ ¯G0][ ¯H0] →
611
+ N[G0][H0]. We therefore fix the notation ¯λ = M ∩ λ, and we have an ¯M-generic
612
+ ¯G0, so we let P = ˙P( ˙x)[G0].
613
+ To perform the lift, we need to show that we can absorb the generic ¯H0. We
614
+ can see that N[ ¯G0] |= “πM(P) is ¯λ-closed”, which follows from the fact that ¯M has
615
+ the ¯λ-chain condition. By the guessing property of ℓ we have a forcing equivalence
616
+ M/G0 ≃ (¯P × Add(κ, ¯λ⊕)) ∗ ˙N¯λ⊕, giving us (3).
617
+ The first stage of the lift j : ¯M[ ¯G0] → N[G0] works by choosing a generic G′ over
618
+ M/ ¯G0 such that G′ projects to ¯H0. Then we let G0 = ¯G0 × G′ and we see that
619
+ j” ¯G0 ⊆ G0.
620
+ To lift the embedding further, we use a master condition argument. Specifically,
621
+ we want to show that ∪ ¯H0 ∪ {¯λ} is a condition in P. This follows because ¯λ /∈ S(x)
622
+ (as evaluated in N[G0]) because ¯M[ ¯G0]<¯λ ⊂ ¯M[ ¯G0] and therefore Pµ(¯λ) \ ⟨xβ : β <
623
+ ¯λ⟩ will be empty, so of course it will be nonstationary. Hence we choose H0 to be a
624
+ generic containing ∪ ¯H0 ∪ {¯λ} . It then follows that ¯M[ ¯G0][ ¯H0]<¯λ ⊆ ¯M[ ¯G0], giving
625
+ us (2).
626
+
627
+ Proposition 38. ˙P[G] is λ-distributive over V [G].
628
+
629
+ ON DISJOINT STATIONARY SEQUENCES
630
+ 13
631
+ Proof. Suppose there were (m, ˙p) ∈ M ∗ ˙P forcing that some ˙f collapses λ over
632
+ V . Then a suitably-chosen N := (H(Θ), ∈, <Θ, M ∗ ˙P, (m, ˙p), ˙f, . . .) would contain
633
+ the <Θ-least such example, and so we can find a rich M ≺ N witnessing Fact 35
634
+ with (m, ˙p) ∈ M and such that ℓ(¯λ) = πM( ˙P). Then (2) from Lemma 37 obtains a
635
+ contradiction.
636
+
637
+ Proposition 39. V [G][H] |= ¬DSS(µ+).
638
+ Proof. Since P is λ-distributive over V [G], x remains an enumeration of [µ+]<µ in
639
+ V [M][P]. Moreover, P forces that S(x) is nonstationary in V [M][P], so we can apply
640
+ Fact 33.
641
+
642
+ Proposition 40. V [G][H] |= ¬AP(µ+).
643
+ Proof. This is exactly as in Lemma 5.9 [6], where we imitate the argument of “The
644
+ Eightfold Way” and use property (3) of the lift, except that here P stands for a
645
+ P(x) rather than the iteration Pα used in [6]. The main point is that if we are
646
+ using an embedding j : ¯M[ ¯G][ ¯H] → N[G][H], then the extension by G ∗ H over
647
+ the extension by ¯G ∗ ¯H has the correct branch preservation properties (as given by
648
+ the distributivity of ˙P[G] and the closure and square-chain condition of the posets
649
+ projecting onto N¯λ⊕).
650
+
651
+ Now we are finished with the proof of Theorem 3.
652
+ 4. Further directions
653
+ We propose some other considerations along the lines of the question: Why did
654
+ we have to do more work to get Theorem 2 after obtaining Theorem 1? Or rather,
655
+ is the assumption 2µ = µ+ necessary for Fact 6?
656
+ Question 1. Is it consistent for µ regular that exactly one of DSS(µ+) and “inter-
657
+ nally club and internally unbounded are distinct for [H(µ+)]µ” holds?
658
+ On a similar note, the assumption that 2µ = |H(µ+)| is also used in a folklore
659
+ result that assuming 2µ = µ+, the distinction between internally unbounded and
660
+ internally approachable for [µ+]µ requires a Mahlo cardinal.
661
+ Question 2. What is the exact equiconsistency strength of the separation of inter-
662
+ nally approachable and internally unbounded for [H(µ+)]µ for regular µ?
663
+ References
664
+ [1] Uri Abraham. Aronszajn trees on ℵ2 and ℵ3. Ann. Pure Appl. Logic, 24(3):213–230, 1983.
665
+ [2] Sean D. Cox. Forcing axioms, approachability, and stationary set reflection. J. Symb. Log.,
666
+ 86(2):499–530, 2021.
667
+ [3] James Cummings, Sy-David Friedman, Menachem Magidor, Assaf Rinot, and Dima Sinapova.
668
+ The eightfold way. Journal of Symbolic Logic, 83(1):349–371, 2018.
669
+ [4] Sy-David Friedman and John Krueger. Thin stationary sets and disjoint club sequences.
670
+ Trans. Amer. Math. Soc., 359(5):2407–2420, 2007.
671
+ [5] Thomas Gilton and John Krueger. A note on the eightfold way. Proc. Amer. Math. Soc.,
672
+ 148(3):1283–1293, 2020.
673
+ [6] Thomas Gilton, Maxwell Levine, and ˇS´arka Stejskalov´a. Trees and stationary reflection at
674
+ double successors of regular cardinals. Journal of Symbolic Logic. To appear.
675
+ [7] Thomas Daniells Gilton. On the Infinitary Combinatorics of Small Cardinals and the Car-
676
+ dinality of the Continuum. ProQuest LLC, Ann Arbor, MI, 2019. Thesis (Ph.D.)–University
677
+ of California, Los Angeles.
678
+
679
+ 14
680
+ MAXWELL LEVINE
681
+ [8] Moti Gitik. Nonsplitting subset of Pκ(κ+). J. Symbolic Logic, 50(4):881–894 (1986), 1985.
682
+ [9] Leo Harrington and Saharon Shelah. Some exact equiconsistency results in set theory. Notre
683
+ Dame Journal of Formal Logic, 26(2):178–188, 1985.
684
+ [10] Thomas Jech. Set Theory. Springer Monographs in Mathematics. Springer-Verlag, Berlin, the
685
+ third millennium, revised and expanded edition, 2003.
686
+ [11] John Krueger. Internally club and approachable. Adv. Math., 213(2):734–740, 2007.
687
+ [12] John Krueger. A general Mitchell style iteration. MLQ Math. Log. Q., 54(6):641–651, 2008.
688
+ [13] John Krueger. Internal approachability and re��ection. J. Math. Log., 8(1):23–39, 2008.
689
+ [14] John Krueger. Internally club and approachable for larger structures. Fund. Math.,
690
+ 201(2):115–129, 2008.
691
+ [15] John Krueger. Some applications of mixed support iterations. Ann. Pure Appl. Logic, 158(1-
692
+ 2):40–57, 2009.
693
+ [16] Matteo Viale. Guessing models and generalized Laver diamond. Ann. Pure Appl. Logic,
694
+ 163(11):1660–1678, 2012.
695
+
89E0T4oBgHgl3EQfwgGc/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
9NFPT4oBgHgl3EQfYjSJ/content/2301.13073v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8e562e03f11399e9cdce7c9002b63b580bb66e4c8a509f68216ef4b5d2be5811
3
+ size 619645
9NFPT4oBgHgl3EQfYjSJ/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7d35cd604918e488cc682a1bdb9c8ba814d66a0d4934a669ad2d45f75ea9564d
3
+ size 3997741
9NFPT4oBgHgl3EQfYjSJ/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2bf361114ebc4aca95b1008459fe23e4093805c255e729afe86e45eb00018c2b
3
+ size 160254
9tFJT4oBgHgl3EQfoyxM/content/tmp_files/2301.11597v1.pdf.txt ADDED
@@ -0,0 +1,1172 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+ MissBeamNet: Learning Missing Doppler Velocity
3
+ Log Beam Measurements
4
+ Mor Yona and Itzik Klein
5
+ Abstract—One of the primary means of sea exploration is
6
+ autonomous underwater vehicles (AUVs). To perform these tasks,
7
+ AUVs must navigate the rough challenging sea environment.
8
+ AUVs usually employ an inertial navigation system (INS), aided
9
+ by a Doppler velocity log (DVL), to provide the required
10
+ navigation accuracy. The DVL transmits four acoustic beams to
11
+ the seafloor, and by measuring changes in the frequency of the
12
+ returning beams, the DVL can estimate the AUV velocity vector.
13
+ However, in practical scenarios, not all the beams are successfully
14
+ reflected. When only three beams are available, the accuracy of
15
+ the velocity vector is degraded. When fewer than three beams
16
+ are reflected, the DVL cannot estimate the AUV velocity vector.
17
+ This paper presents a data-driven approach, MissBeamNet, to
18
+ regress the missing beams in partial DVL beam measurement
19
+ cases. To that end, a deep neural network (DNN) model is
20
+ designed to process the available beams along with past DVL
21
+ measurements to regress the missing beams. The AUV velocity
22
+ vector is estimated using the available measured and regressed
23
+ beams. To validate the proposed approach, sea experiments were
24
+ made with the ”Snapir” AUV, resulting in an 11 hours dataset of
25
+ DVL measurements. Our results show that the proposed system
26
+ can accurately estimate velocity vectors in situations of missing
27
+ beam measurements. Our dataset and codebase implementing
28
+ the described framework is available at our GitHub repository.
29
+ Index Terms—Autonomous Underwater Vehicles, Navigation,
30
+ Doppler Velocity Log, Deep-Learning
31
+ I. INTRODUCTION
32
+ The demand for autonomous underwater vehicles (AUV)
33
+ is significantly growing [1], [2], [3], [4]. AUVs are used in
34
+ a variety of applications, such as seafloor exploration and
35
+ mapping [5], pipeline inspection [6], [7], and underwater mine
36
+ detection [8]. An accurate navigation system is necessary
37
+ for the AUV to navigate challenging sea conditions and
38
+ successfully perform the required tasks. From a navigational
39
+ perspective, the commonly used global navigation satellite
40
+ system (GNSS) is unavailable underwater. Furthermore, un-
41
+ derwater currents and the ever-changing landscape make it
42
+ difficult to use simultaneous localization and mapping (SLAM)
43
+ [9]. Consequently, most AUVs employ an inertial navigation
44
+ system (INS) aided by a Doppler velocity log (DVL). The INS
45
+ provides a complete navigation solution comprising position,
46
+ velocity, and orientation using three-axis accelerometers and
47
+ three-axis gyroscopes. However, due to inertial measurement
48
+ errors, the pure inertial solution will drift over time [10].
49
+ The DVL provides an accurate estimate of the AUV velocity
50
+ vector, which is used to aid the INS and obtain an accurate
51
+ navigation solution. The fusion between INS and DVL is well
52
+ addressed in the literature under normal DVL operating condi-
53
+ tions. For example, a rotational dynamic model was shown to
54
+ improve the INS/DVL fusion performance [11]. Furthermore,
55
+ an adaptive Kalman filter aimed at finding the optimal window
56
+ length for each measurement has been suggested [12]. In
57
+ order to improve the extended Kalman filter, an innovative
58
+ unscented Kalman filter was developed for AUV navigation
59
+ [13]. Recently, a dedicated neural network was proposed to
60
+ cope with current estimation during INS/DVL fusion [14].
61
+ The DVL emits four acoustic beams to the seafloor and mea-
62
+ sures the changes in the reflected beams’ frequency. Using the
63
+ frequency shift, the beam’s velocity is calculated. The AUV
64
+ velocity vector can be estimated when at least three beams
65
+ are reflected back. In real-life scenarios, however, beams may
66
+ not reflect back to the DVL for several reasons, such as if the
67
+ AUV passes over a deep trench in one of the directions, an
68
+ underwater sand wave changes the seafloor surface, or when
69
+ the AUV operates in extreme roll and pitch angles. In such
70
+ scenarios, the DVL cannot estimate the AUV velocity vector,
71
+ and the INS/DVL loosely coupled approach cannot be applied.
72
+ Since the tightly coupled approach uses any of the available
73
+ beams, it can be implemented for the fusion process. Yet, for
74
+ practical considerations, the loosely coupled method is usually
75
+ implemented [15], [16]. To cope with situations of partial
76
+ beam measurement, a model-based extended loosely coupled
77
+ approach was suggested [17].
78
+ The use of data-driven approaches in navigation and their
79
+ benefits over model-based approaches were recently summa-
80
+ rized in [18]. A novel method of improving the accuracy of
81
+ the estimated DVL velocity in underwater navigation using a
82
+ neural network structure was suggested [19]. Furthermore, a
83
+ deep learning network that utilizes attitude and heading data
84
+ in order to improve navigation accuracy and fault tolerance
85
+ was developed [20].
86
+ This paper presents, a learning framework, MissBeamNet, to
87
+ regress the missing DVL beams and enable AUV velocity vec-
88
+ tor estimation. To that end, we leveraged our initial research
89
+ to regress only a single beam [21]. The contributions of this
90
+ research are:
91
+ ‚ A modular framework capable of regressing one, two, or
92
+ three missing beams.
93
+ ‚ A robust long short-term memory network architecture
94
+ able to accurately regress the missing beams.
95
+ ‚ Inclusion of depth measurements to improve beam re-
96
+ gression accuracy.
97
+ ‚ A GitHub repository containing our code and dataset as a
98
+ benchmark dataset and solution and to encourage further
99
+ research in the field.
100
+ Here, we provide a thorough analysis of the missing beam sce-
101
+ narios. In addition, we compare our results to two model-based
102
+ approaches: 1) an average of the missing beam to estimate the
103
+ current one (baseline) and 2) the virtual beam approach [17].
104
+ arXiv:2301.11597v1 [cs.RO] 27 Jan 2023
105
+
106
+ 2
107
+ All analyses were made on a dataset consisting of 11 hours
108
+ of DVL recordings made by the Snapir AUV [23] during its
109
+ mission in the Mediterranean Sea. We further demonstrate
110
+ the superiority of MissBeamNet over current model-based
111
+ approaches and its ability to estimate the AUV velocity vector
112
+ in situations of missing DVL beam measurements.
113
+ The remainder of the paper is organized as follows: Section II
114
+ describes the AUV sensors and the model-based partial DVL
115
+ approaches. Section III presents our MissBeamNet framework,
116
+ while Section IV gives our sea experiment results. Finally, our
117
+ conclusions are presented in Section V.
118
+ II. PROBLEM FORMULATION
119
+ This section briefly describes the AUV sensors used in this
120
+ research and presents the baseline model-based approaches to
121
+ coping with missing beam measurements.
122
+ A. AUV Sensors
123
+ 1) DVL: The DVL transmits four acoustic beams to the
124
+ seafloor, which reach the seafloor and bounce back to the DVL
125
+ transducers. The DVL measures the change in frequency in
126
+ each direction. Based on [24], the relative velocity of each
127
+ beam is calculated by:
128
+ Vrel “ pFD ` bF,D ` nF,Dq1000 ¨ Cp1 ` SFcq
129
+ 2fs
130
+ (1)
131
+ where FD is the Doppler frequency shift, bF,D and nF,D are
132
+ the bias and noise of the Doppler frequency shift, respectively,
133
+ SFc is the scale factor error, C is the speed of sound, and fs
134
+ is the transmitted acoustic frequency. The DVL transducers
135
+ send acoustic beams in four directions. The standard DVL
136
+ configuration is the ”Janus Doppler configuration”.In this
137
+ configuration, the transducers are in an ”X” shape, and the
138
+ direction of each beam is described by the following equation:
139
+ bi “
140
+ »
141
+ —–
142
+ cos ˜ψi sin ˜θ
143
+ sin ˜ψi sin ˜θ
144
+ cos ˜θ
145
+
146
+ ffifl
147
+ (2)
148
+ where ˜θ is the (fixed) pitch angle and ˜ψi is the yaw angle
149
+ defined for each beam i as:
150
+ ˜ψi “ pi ´ 1q90 deg `45 deg, i “ 1, 2, 3, 4.
151
+ (3)
152
+ The estimated DVL velocity in the platform frame is:
153
+ ˜vp
154
+ t{p “ pAT Aq´1AT y
155
+ (4)
156
+ where ˜vp
157
+ t{p is the velocity vector, A is the direction matrix
158
+ defined as:
159
+ A “
160
+ »
161
+ ———–
162
+ bT
163
+ 1
164
+ bT
165
+ 2
166
+ bT
167
+ 3
168
+ bT
169
+ 4
170
+
171
+ ffiffiffifl
172
+ (5)
173
+ and y is the measured beams vector
174
+ y “
175
+
176
+ ˜y1
177
+ ˜y2
178
+ ˜y3
179
+ ˜y4
180
+ ‰T .
181
+ (6)
182
+ 2) Pressure sensor: A pressure sensor measures the pres-
183
+ sure of a fluid or gas. In underwater navigation, a pressure
184
+ sensor can be used to measure the water pressure at different
185
+ depths, which can be used to determine the depth of the sub-
186
+ merged vehicle. The underlying physical equation to estimate
187
+ the AUV depth is [26]:
188
+ p “ ρ ¨ g ¨ h ` ρp0
189
+ (7)
190
+ where p [Kpa] is the measured pressure, p0 is the pressure
191
+ in
192
+ the
193
+ atmosphere
194
+ equalling
195
+ 101.3[Kpa],
196
+ ρ
197
+ is
198
+ water
199
+ density[kg{m3],
200
+ g
201
+ is
202
+ the
203
+ gravity
204
+ magnitude,
205
+ assumed
206
+ here constant and equal to 9.81 [m{s2], and h [m] is the
207
+ depth of the AUV.
208
+ B. Model-based approaches for missing beams
209
+ 1) Average: An average in a time window refers to the
210
+ average value of a measurement over a specific period of time
211
+ (the ’time window’). This can be useful for smoothing out
212
+ noisy or erratic measurements, and reducing the effects of
213
+ random errors. In the context of measurement synthesizing the
214
+ average is a standard method that uses the average between the
215
+ measurements in the previous time window, to assume the cur-
216
+ rent measurement. For a time window with N measurements,
217
+ the average is :
218
+ AV pxq “ 1
219
+ N
220
+ N
221
+ ÿ
222
+ k“1
223
+ xk
224
+ (8)
225
+ The size of the time window is chosen based on the charac-
226
+ teristics of the sensor and system. For example, a small time
227
+ window may be used for measurements that change rapidly,
228
+ while a larger time window may be more suitable for relatively
229
+ stable measurements.
230
+ 2) Virtual Beam: The last velocity vector measurement can
231
+ be utilized to predict the current velocity vector [17]. This
232
+ method replaces the missing DVL beam measurement with
233
+ the previously available measurement. For example, if beam
234
+ #1 is absent, solving (4) with the known velocity vector at
235
+ k ´ 1 gives an estimate of its velocity:
236
+ y1,k « bT
237
+ 1 rˆvx,k´1
238
+ ˆvy,k´1
239
+ ˆvz,k´1s
240
+ (9)
241
+ where k is the time index and ˆvj,k´1 is the estimated velocity
242
+ component from the previous step for j “ x, y, z. This
243
+ approximated beam velocity is then used, together with the
244
+ measured beams, in (4) to predict the current velocity vector.
245
+ III. MISSBEAMNET FRAMEWORK
246
+ We propose a deep learning framework, MissBeamNet, as a
247
+ mechanism to handle missing DVL beam measurements (1,2,
248
+ or 3 beams) and allow the estimation of the AUV velocity
249
+ vector. The MissBeamNet framework utilizes n past DVL
250
+ beam measurements and the currently available beams as input
251
+ to an end-to-end neural network, which regresses the missing
252
+ beams. Then, the regressed and currently available measured
253
+ beams are plugged into the model-based least squares (LS)
254
+ estimator to estimate the AUV velocity vector. Figure 1
255
+
256
+ 3
257
+ describes our MissBeamNet framework.
258
+ Our proposed MissBeamNet can cope with the following
259
+ scenarios:
260
+ ‚ If three beams are available, MissBeamNet will regress
261
+ one missing beam.
262
+ ‚ If two beams are available, MissBeamNet will regress
263
+ two missing beams.
264
+ ‚ If one beam is available, MissBeamNet will regress three
265
+ missing beams.
266
+ Note, that MissBeamNet was not designed to handle complete
267
+ DVL outages, as it requires at least one available beam. For
268
+ total outages, other solutions exist [27], [28]. We consider two
269
+ Fig. 1.
270
+ MissBeamNet framework utilizing past DVL beam measurements to
271
+ regress the missing beams.
272
+ types of neural networks as our baseline network architectures.
273
+ The first is based on a one-dimension convolution neural
274
+ network (CNN), while the other is based on long-short-term
275
+ memory (LSTM) cells. Both networks have been proven to
276
+ work with time-series data, such as those considered in our
277
+ scenario.
278
+ A. Baseline Network Architectures
279
+ 1) Convolutional Neural Network: In CNN layers, there is
280
+ a sparse interaction between the input and output, as appose to
281
+ fully connected layers, where all the input parameters directly
282
+ interact with the output. The convolution operator is a linear
283
+ operator that involves multiplying an input with a kernel
284
+ containing learned parameters. The kernel slides through the
285
+ input, and the result is the sum of all the multiplications:
286
+ yt “
287
+ pÿ
288
+ k“1
289
+ xt`kwk
290
+ (10)
291
+ where t is the timestamp, p is the kernel length, w is the
292
+ learned kernel parameter, and x,y are the input and output, re-
293
+ spectively. The fact that CNN shares parameters by passing the
294
+ same kernels through all the input makes CNN architectures
295
+ very popular in situations with large inputs. Figure 2 describes
296
+ our baseline CNN architecture, including network parameters,
297
+ for a scenario of two missing beams. The network is a multi-
298
+ head network where past DVL measurements are the input to
299
+ the first head, and current DVL measurements are the input to
300
+ the second head. The same structure and parameters are used
301
+ when one or three beams are missing. The selected activation
302
+ function between the layers is Relu and the stride and padding
303
+ are set to one.
304
+ 2) Long Short-Term Memory Network: LSTM is an ad-
305
+ vanced version of a recurrent neural network (RNN) and solves
306
+ its shortcomings. RNNs are capable of handling temporal
307
+ data by using information from prior inputs. However, if
308
+ the sequence is long, the RNN may face a problem known
309
+ as vanishing/exploding gradients [29]. For example, when a
310
+ Fig. 2.
311
+ Baseline CNN architecture with an example of two missing beams.
312
+ gradient is small, it may continue to decrease until the model
313
+ is no longer learning. The LSTM addresses these problems
314
+ using three types of gates: The forget gate, the input gate, and
315
+ the output gate.
316
+ The role of the forget gate is to forget unwanted information
317
+ from the previous output and current input:
318
+ ft “ σpxtU f ` ht´1W f ` bfq
319
+ (11)
320
+ where xt is the input, ht´1 is the output of the previous LSTM
321
+ cell, W f and bf are the weights and biases of the forget gate,
322
+ respectively. In (11) sigmoid function is employed to bring the
323
+ parameter it wants to forget closer to zero. The output of the
324
+ forget gate is then multiplied by the previous cell state. The
325
+ role of the input gate is to update the cell state Ct´1, by first
326
+ calculating the input gate it:
327
+ it “ σpxtU i ` ht´1W i ` biq
328
+ (12)
329
+ where U i and wi are the gate weights and bi is the bias.
330
+ Second, calculating the estimated cell state ˜Ct:
331
+ ˜Ct “ tanhpxtU g ` ht´1W g ` bgq
332
+ (13)
333
+ where U g and wg are the gate weights and bg is the bias. The
334
+ results of (11),(12), and (13) are used for the current cell state
335
+ calculations:
336
+ Ct “ ft ¨ Ct´1 ` it ¨ ˜Ct
337
+ (14)
338
+ As the name implies, the output gate ot determines which
339
+ parameters are important as the output and next hidden state.
340
+ ot “ σpxtU o ` ht´1W o ` boq
341
+ (15)
342
+ where U t and wt are the gate weights and bt is the bias. The
343
+ output gate results are then multiplied by a tanh layer of the
344
+ cell state to calculate the current output and hidden state
345
+ ht “ ot ¨ tanhpCtq
346
+ (16)
347
+ Figure 3 describes our LSTM baseline network structure.
348
+ Previous beam measurements are used as input to the LSTM
349
+ layers. After the LSTM features extraction, the features are
350
+ concatenated with available beam measurements into a fully
351
+ connected layer, which performs the final process resulting in
352
+ the output of the regressed missing beams. Note that, like our
353
+ baseline CNN network, this is a multi-head network where past
354
+ DVL measurements are inputs to the first head, and current
355
+ DVL measurements are inputs to the second head. Figure 4
356
+ describes the LSTM architecture parameters in the scenario of
357
+ two missing beams. The activation function between the layers
358
+ is Relu. The same structure and parameters are also used when
359
+ one or three beams are missing.
360
+
361
+ Current beams
362
+ E-
363
+ LSEstimator
364
+ ★Velocityvector
365
+ Past n DVL beam measurements,
366
+ Neural network
367
+ Regressed beamsInput:
368
+ 1DCNN1
369
+ 1DCNN2
370
+ 1DCNN3
371
+ 1DCNN 4
372
+ 1DCNN5
373
+ 1DCNN6
374
+ 1DCNN7
375
+ 4X6
376
+ 16@2X1
377
+ 32@3X1
378
+ 64@3X1
379
+ 64@3X1
380
+ 128@3X1
381
+ 128@3X1
382
+ 256@3X1
383
+ Flatten layer
384
+ Fully connected 1
385
+ Dropoutlayer
386
+ Fully connected 2
387
+ 1280
388
+ probability = 0.3
389
+ 640
390
+ Fully connected 3
391
+ Output:
392
+ 2 missing
393
+ 10
394
+ beams
395
+ Current beams
396
+ 24
397
+ Fig. 3.
398
+ Baseline LSTM structure.
399
+ Fig. 4.
400
+ Baseline LSTM architecture with an example of two missing beams.
401
+ B. Training Process
402
+ The training process of deep neural networks requires defin-
403
+ ing a loss function. The common loss functions for regression
404
+ problems are mean absolute error (MAE) or mean squared
405
+ error (MSE). In this paper, we use MSE loss defined by:
406
+ MSE “ 1
407
+ n
408
+ n
409
+ ÿ
410
+ i“1
411
+ pyactual ´ ypredictedq2
412
+ (17)
413
+ where n is the number of samples, yactual is the target, and
414
+ ypredicted is the model output. Generally, the MSE loss func-
415
+ tion will try to adjust the model to better handle outliers than
416
+ MAE due to the MSE squared error. However, in our scenarios,
417
+ an AUV operates in varying sea conditions, therefore we adopt
418
+ the MSE loss. During training, the loss function is calculated
419
+ after each forward propagation in order to use the method of
420
+ gradient descent and set the DNN initial weight and biases on
421
+ values that will provide the desired result. Forward propagation
422
+ is the process of the data going through all the layers of
423
+ the architecture, like (10) for CNN and (11)-(16) for LSTM
424
+ networks. After completing the forward propagation process,
425
+ the back propagation process updates the weights and biases
426
+ of all the layers with a gradient descent principle
427
+ θ “ θ ´ η∇θJpθq
428
+ (18)
429
+ where θ is the vector of weights and biases, Jpθq is the loss
430
+ function with the DNN weights and biases set to θ, ∇θ is the
431
+ gradient operator, and η is the learning rate.
432
+ The learning rate is a crucial hyperparameter, which dictates
433
+ how fast the weights and biases change after each training
434
+ batch. If the selected learning rate is too low, it might converge
435
+ in a local minimum, and if it is too high, the model might not
436
+ converge at a minimum. Our selected optimizer for all tested
437
+ architectures is an adaptive moment estimation (ADAM) [30].
438
+ IV. ANALYSIS RESULTS
439
+ A. Dataset Description
440
+ To examine the proposed approach, data from sea experi-
441
+ ments were employed. All experiments were conducted in the
442
+ Mediterranean Sea by the ”Snapir” (ECA A18D), a 5.5[m]
443
+ long AUV capable of reaching 3000[m] depth. It is equipped
444
+ with the Teledyne RDI Work Horse navigator DVL[31], which
445
+ has a four-beams Janus convex configuration with a sample
446
+ rate of 1[Hz]. To train the deep neural network, first, all invalid
447
+ Fig. 5.
448
+ The ”Snapir” being pulled out of the water after a successful mission.
449
+ DVL data was removed (some of the invalid readings occurred
450
+ when actual beams were missing). Then, the data was divided
451
+ into routes that the AUV performed. Approximately 60% of
452
+ the missions were used as the training dataset and the rest as
453
+ the test dataset. The training dataset comprised 23,243 samples
454
+ corresponding to 387 minutes of recording, and the test dataset
455
+ had 276 minutes of recording (16,618 samples).
456
+ Figure 6 shows an experiment with challenging dynamics
457
+ which is part of the test dataset.
458
+ Fig. 6.
459
+ Experiment example from the test dataset.
460
+ The total of 663 minutes of recordings consists of two
461
+ parts: 300 minutes from our initial data collection cam-
462
+ paign [22] and 363 minutes in the current campaign.
463
+ The complete dataset is publicly available at our GitHub
464
+ https://github.com/ansfl/MissBeamNet.
465
+
466
+ output
467
+ fully connected 2
468
+ fully connected 1
469
+ OOOOOOO
470
+ flatten layer
471
+ co
472
+ LSTM
473
+ LSTM
474
+ LSTM
475
+ LSTM
476
+ LSTM
477
+ LSTM
478
+ ho
479
+ cell
480
+ cell
481
+ cell
482
+ cell
483
+ cell
484
+ cell
485
+ Beams
486
+ Beams t
487
+ Beams t
488
+ Beams t.
489
+ Beams t.
490
+ Beams t,
491
+ Beam 1
492
+ current
493
+ beams
494
+ Beam 2
495
+ 5
496
+ Beam 3
497
+ 5
498
+ Beam 4Input:
499
+ LSTM
500
+ Fully connected 1
501
+ 4X6
502
+ hidden state = 500
503
+ 3000
504
+ Fully connected 1
505
+ 2 missing
506
+ Output
507
+ 6
508
+ beams
509
+ Current beams:
510
+ 20
511
+ 9-
512
+ 10
513
+ 15
514
+ -20
515
+ -25
516
+ 30
517
+ 35
518
+ 0
519
+ 1000
520
+ 2000
521
+ 3000
522
+ 4000
523
+ 5000
524
+ Time [s]5
525
+ B. Performance Metric
526
+ Performance metrics compare different models/methods and
527
+ choose the one with the best performance. Throughout the
528
+ research, we used the performance metric of root mean squared
529
+ error (RMSE), which is widely used to evaluate models on
530
+ regression tasks. RMSE is calculated by taking the root of the
531
+ average of squared differences between the predicted values
532
+ and the target values
533
+ RMSE “
534
+ cřn
535
+ i“1pyactual ´ ypredictedq2
536
+ n
537
+ (19)
538
+ The RMSE results are in the same units as the original data,
539
+ making it easy to interpret.
540
+ C. Baseline Architectures Comparison
541
+ To compare our two baseline architectures described in
542
+ Section
543
+ III-B, we consider a scenario with two missing
544
+ beams, namely, beams #1 and #2, and assume six past beam
545
+ measurements are used. In addition to these two baseline
546
+ architectures, we examine the possibility of using only
547
+ past beam measurements instead of the baseline multi-head
548
+ approach. These two architectures are denoted as CNN A
549
+ and LSTM A. The results of the test dataset in terms of
550
+ RMSE are presented in Figure 7. The results shows that
551
+ Fig. 7.
552
+ RMSE results for network architecture comparison.
553
+ using the baseline architectures (multi-head) obtained better
554
+ performance than working with all the inputs in a single
555
+ head. In addition, the performance of the baseline LSTM
556
+ showed an improvement of 27 % over the baseline CNN.
557
+ D. Number of Past Beam Measurement Influence
558
+ The number of past measurements utilized by the network
559
+ is defined as the window-size length. The length of the
560
+ optimal window size is crucial for model performance. The
561
+ window size regularizes the model performance between the
562
+ long and short movement patterns. If the selected window
563
+ size is too short, the model might miss the pattern of the
564
+ AUV movement, and if it is too long, the model might not
565
+ react well enough to a movement that just started. Figure 8
566
+ shows the RMSE of the baseline LSTM model with different
567
+ window-size lengths (between 3-10) when beams #1 and
568
+ #2 are being regressed. The results suggest that the optimal
569
+ window-size length on our dataset is six measurements.
570
+ Fig. 8.
571
+ RMSE as a function of the window size for the baseline LSTM
572
+ network.
573
+ E. Additional Input Information
574
+ To improve the model performance even further, additional
575
+ inputs are considered.
576
+ 1) Depth Sensor: The last depth sensor reading.
577
+ 2) AUV Velocity Vector: Domain knowledge is used to
578
+ transform the raw data (in this case, the beams) into
579
+ meaningful features using feature engineering. Feature
580
+ engineering is prevalent in classical machine learning
581
+ methods, but less in deep neural networks. The assump-
582
+ tion when using a neural network is thet model will
583
+ learn the essential relations between features indepen-
584
+ dently. The beams and the velocity vector are related,
585
+ as the latter is estimated using the former. That is,
586
+ the model is not receiving new information. Yet, in
587
+ the proposed LSTM-based model, there are only two
588
+ fully connected layers, and therefore feature engineering
589
+ may help achieve better accuracy or shorten the network
590
+ convergence time.
591
+ Figure 9 describes the performance of each input with our
592
+ baseline LSTM architecture, including additional inputs of 1)
593
+ depth, 2) velocity vector, and 3) depth and velocity vector.
594
+ The tested case is when beams #1 and #2 are missing, and
595
+ beams #3 and #4 are inserted as a two-phase input to our
596
+ baseline LSTM network. All of the additional inputs improved
597
+ Fig. 9.
598
+ Velocity RMSE as a function of different input selection for our
599
+ baseline LSTM network.
600
+ the performance of the baseline LSTM, and the best approach
601
+ was obtained using all three input types - beam measurements
602
+ (baseline), depth sensors, and the velocity vector. In this
603
+ instance, there was a 16% improvement compared to the
604
+ LSTM baseline.
605
+ F. Missing Beams Analysis
606
+ There are 14 combinations of missing beams: four combina-
607
+ tions of one missing beam, six of two missing beams, and four
608
+ of three missing beams. In the proposed approach a different
609
+ network needs to be trained for each of those combinations.
610
+ Training for all networks used the same hyper-parameters:
611
+
612
+ 0.14
613
+ 0.12
614
+ 0.10
615
+ MSE
616
+ 0.06
617
+ 0.04
618
+ 0.02
619
+ 0.00
620
+ LSTMA
621
+ Baseline LSTM
622
+ CNN-A
623
+ Baseline CNN
624
+ Architecture0.100
625
+ 0.095
626
+ [m/s]
627
+ 0.090
628
+ E
629
+ 0.085
630
+ 0.080
631
+ 0.075
632
+ 3
633
+ 4
634
+ 5
635
+ 6
636
+ 7
637
+ 8
638
+ 9
639
+ 10
640
+ # of past measurements0.0750
641
+ 0.0725
642
+ 0.0700
643
+ 兰0.0675
644
+ S
645
+ MSE
646
+ 20.0650
647
+ 0.0625
648
+ 0.0600
649
+ 0.0575
650
+ Baseline LSTM
651
+ Baseline LSTM +
652
+ Baseline LSTM +
653
+ Baseline LSTM +
654
+ altitude
655
+ velocity vector
656
+ altitude + velocity vector
657
+ Architecture6
658
+ MSE loss function with a learning rate of 0.00005, batch size
659
+ of 1 sequence, and 150 epochs. In the following sections, we
660
+ present the performance of our MissBeamNet approach com-
661
+ pared to the average (baseline) and virtual beam approaches.
662
+ For this analysis, we employed our baseline LSTM network
663
+ described in Section 3.1.2. Based on the results of Section
664
+ 4.4, we use six past DVL beam measurements and, based on
665
+ Section 4.5, both the depth sensor reading and velocity vector
666
+ were are added as additional inputs. The results were obtained
667
+ on the testing dataset.
668
+ 1) One missing beam: When one beam is missing, the
669
+ least squared approach (4) can be used to obtain the estimated
670
+ AUV velocity vector. Table I presents the results of estimating
671
+ the missing beam, the speed error obtained when using the
672
+ estimated fourth beam together with the measured three, and
673
+ the improvement of our MissBeamNet approach over the two
674
+ model-based approaches.
675
+ Both model-based and MissBeamNet methods were supe-
676
+ rior tp the three beams solution, indicating that regressing the
677
+ fourth beam is critical to improving the AUV speed estima-
678
+ tion accuracy. Specifically, MissBeamNet, improved the speed
679
+ accuracy by over 90%. In addition, MissBeamNet performed
680
+ significantly better than the model-based approaches, with a
681
+ 40%-68% improvement. Taking the mean of performance of
682
+ all four scenarios MissBeamNet improved the model-based
683
+ approaches by over 49.8 %.
684
+ 2) Two Missing Beams: When considering two missing
685
+ beams, six different combinations exist. In such scenarios,
686
+ the AUV velocity cannot be estimated. Following the same
687
+ procedure as the previous one missing beam scenarios, Table
688
+ II presents the results of two missing beams. The results show
689
+ a significant difference between the speed error in each com-
690
+ bination, even in the model-based approaches, emphasizing
691
+ the problem’s complexity. Yet, in all cases, MissBeamNet
692
+ was more accurate than the model-based approaches, with a
693
+ minimum improvement of 20% that reached almost 50%. The
694
+ average improvement over the baseline model-based approach
695
+ was 28.7% compared to 49.8% when only one beam was miss-
696
+ ing. This is attributed to the model receiving less information
697
+ from two current beams compared to three when only one is
698
+ missing.
699
+ 3) Three Missing Beams: Table III presents the results
700
+ for the four scenarios in which three beams are missing. As
701
+ expected, the speed error when three beams are missing is
702
+ higher than in the two or one missing beams scenarios. Yet,
703
+ MissBeamNet use improved results by at least 21% over the
704
+ model-based approaches. For three missing beams, the average
705
+ improvement was 24% compared to 28.7% when two beams
706
+ were missing, only 4.7% less, indicating that even with only
707
+ one beam at hand, the AUV velocity can be estimated.
708
+ 4) Hyperparameter Tuning: One of the main challenges in
709
+ deep learning research is to find the best combination of hy-
710
+ perparameters for the proposed architecture. Each architecture
711
+ has several parameters that can influence model performance,
712
+ including the number of layers, the number of parameters in
713
+ each layer, the type of cost function, the learning rate, and
714
+ batch size. To demonstrate the potential of hyperparameter
715
+ tuning, we evaluated three different hyperparameters. The
716
+ first was the learning rate, which affects how much each
717
+ batch changes the weights and biases III-B. The second hyper
718
+ parameter was the number of hidden parameters in the LSTM
719
+ layer ht III-A2, and the third hyperparameter is the number
720
+ of parameters in the LSTM output. To test the importance of
721
+ hyperparameter tuning, each parameter was set with a few
722
+ available options, and a seed was set (equal initialization
723
+ in each run). We focused on a one missing beam scenario,
724
+ which has four options - missing beam #1, #2, #3, or #4.
725
+ For each case, 15 randomly selected combinations of the
726
+ three hyperparameters were examined. Table IV presents the
727
+ potential of hyperparameter tuning. It is important to note that
728
+ out of the 15 tested hyperparameter combinations, only a few
729
+ were better than the results before tuning. Yet, they were able
730
+ to improve the missing beam estimation and, consequently,
731
+ reduce the speed error and increase the rate of improvement
732
+ compared to the two model-based approaches.
733
+ V. CONCLUSIONS
734
+ Here, we presented MissBeamNet, a deep learning-based
735
+ framework developed to compensate for partial DVL measure-
736
+ ment scenarios (1, 2, or 3 missing beams). To that end, an
737
+ LSTM-based dedicated DNN was derived. We demonstrated
738
+ that the best input to the network is past DVL measurements,
739
+ past depth sensor measurements, previous velocity vectors,
740
+ and the currently available measured beams. Once the missing
741
+ beams are regressed, they are combined with the available
742
+ beams and plugged into the classical model-based approach
743
+ to estimate the AUV velocity vector.
744
+ To evaluate MissBeamNet, sea experiments with the Uni-
745
+ versity of Haifa’s ”Snapir” AUV were conducted. The data
746
+ included several trajectories collected for different purposes
747
+ and under various sea conditions. We provide a thorough
748
+ analysis of all 14 missing beam combinations and explore
749
+ several means to enhance our baseline architecture. The results
750
+ show that MissBeamNet allows estimating the missing DVL
751
+ beams and, consequently, the AUV velocity vector. Addi-
752
+ tionally, MissBeamNet significantly improves the accuracy of
753
+ the velocity vector in all examined scenarios compared to
754
+ the model-based approaches. The improvement of all three
755
+ missing beam combinations was above 20 % over the model-
756
+ based approaches. For two missing beams, performance was
757
+ generally better compared to three missing beams since the
758
+ model uses one additional measured beam. Finally, we show
759
+ that hyperparameters-tuned models improve the accuracy of
760
+ MissBeamNet by more than 40%.
761
+ REFERENCES
762
+ 1 Q. Luo, Y. Shao, J. Li, X. Yan and C. Liu, A multi-AUV cooperative
763
+ navigation method based on the augmented adaptive embedded cuba-
764
+ ture Kalman filter algorithm., Neural Comput and Applic vol. 34, pp.
765
+ 18975–18992 2022.
766
+ 2 M. Mohammadi, M.M. Arefi, N. Vafamand and O. Kaynak Control of
767
+ an AUV with completely unknown dynamics and multi-asymmetric input
768
+ constraints via off-policy reinforcement learning, Neural Comput and
769
+ Applic vol. 34, pp. 5255–5265 2022.
770
+ 3 RR.B. Wynn, V.A.I. Huvenne, T.P. Le Bas, B.J. Murton, D.P. Connelly,
771
+ B.J. Bett, H.A. Ruhl, K.J. Morris, J. Peakall, D.R. Parsons, E.J. Sumner,
772
+ S.E. Darby, R.M. Dorrell and J.E. Hunt, Autonomous Underwater Vehicles
773
+ (AUVs): their past, present and future contributions to the advancement
774
+ of marine geoscience Marine Geology., vol. 352, pp. 451-468. 2014.
775
+
776
+ 7
777
+ TABLE I
778
+ ONE MISSING BEAM SCENARIO RESULTS ON THE TEST DATASET
779
+ Case
780
+ Approach
781
+ Beam 1
782
+ Beam 2
783
+ Beam 3
784
+ Beam 4
785
+ Avg.
786
+ results
787
+ Missing beam [m/s]
788
+ Average (baseline)
789
+ 0.110
790
+ 0.101
791
+ 0.101
792
+ 0.111
793
+ 0.106
794
+ Virtual beam
795
+ 0.139
796
+ 0.109
797
+ 0.110
798
+ 0.129
799
+ 0.121
800
+ MissBeamNet (ours)
801
+ 0.065
802
+ 0.048
803
+ 0.034
804
+ 0.067
805
+ 0.053
806
+ Speed error [m/s]
807
+ Average (baseline)
808
+ 0.066
809
+ 0.061
810
+ 0.061
811
+ 0.067
812
+ 0.064
813
+ Virtual beam
814
+ 0.079
815
+ 0.065
816
+ 0.066
817
+ 0.077
818
+ 0.072
819
+ Three beams
820
+ 0.450
821
+ 0.437
822
+ 0.438
823
+ 0.449
824
+ 0.443
825
+ MissBeamNet (ours)
826
+ 0.039
827
+ 0.029
828
+ 0.021
829
+ 0.040
830
+ 0.032
831
+ MissBeamNet improvement %
832
+ Average (baseline)
833
+ 40.9
834
+ 52.4
835
+ 65.6
836
+ 40.3
837
+ 49.8
838
+ Virtual beam
839
+ 50.6
840
+ 55.3
841
+ 68.1
842
+ 48.0
843
+ 55.5
844
+ Three beams
845
+ 91.3
846
+ 93.3
847
+ 95.2
848
+ 91.1
849
+ 92.7
850
+ TABLE II
851
+ TWO MISSING BEAM SCENARIO RESULTS ON THE TEST DATASET
852
+ Case
853
+ Approach
854
+ Beam
855
+ 1,2
856
+ Beam
857
+ 1,3
858
+ Beam
859
+ 1,4
860
+ Beam
861
+ 2,3
862
+ Beam
863
+ 2,4
864
+ Beam
865
+ 3,4
866
+ Avg.
867
+ result
868
+ Missing beams [m/s]
869
+ Average (baseline)
870
+ 0.106
871
+ 0.106
872
+ 0.111
873
+ 0.101
874
+ 0.107
875
+ 0.106
876
+ 0.106
877
+ Virtual beam
878
+ 0.121
879
+ 0.121
880
+ 0.131
881
+ 0.110
882
+ 0.119
883
+ 0.120
884
+ 0.120
885
+ MissBeamNet (ours)
886
+ 0.062
887
+ 0.052
888
+ 0.085
889
+ 0.076
890
+ 0.057
891
+ 0.066
892
+ 0.066
893
+ Speed error [m/s]
894
+ Average (baseline)
895
+ 0.092
896
+ 0.077
897
+ 0.096
898
+ 0.088
899
+ 0.079
900
+ 0.092
901
+ 0.087
902
+ Virtual beam
903
+ 0.106
904
+ 0.069
905
+ 0.114
906
+ 0.096
907
+ 0.065
908
+ 0.105
909
+ 0.092
910
+ MissBeamNet (ours)
911
+ 0.055
912
+ 0.057
913
+ 0.075
914
+ 0.066
915
+ 0.061
916
+ 0.058
917
+ 0.062
918
+ MissBeamNet improvement %
919
+ Average (baseline)
920
+ 40.2
921
+ 25.9
922
+ 21.9
923
+ 25.0
924
+ 22.8
925
+ 36.9
926
+ 28.7
927
+ Virtual beam
928
+ 48.1
929
+ 17.4
930
+ 34.2
931
+ 31.25
932
+ 6.15
933
+ 44.7
934
+ 30.3
935
+ TABLE III
936
+ THREE MISSING BEAM SCENARIO RESULTS ON THE TEST DATASET
937
+ Case
938
+ Approach
939
+ Beam
940
+ 1,2,3
941
+ Beam
942
+ 2,3,4
943
+ Beam
944
+ 1,2,4
945
+ Beam
946
+ 1,3,4
947
+ Avg.
948
+ results
949
+ Missing beams [m/s]
950
+ Average (baseline)
951
+ 0.104
952
+ 0.108
953
+ 0.107
954
+ 0.105
955
+ 0.106
956
+ Virtual beam
957
+ 0.118
958
+ 0.124
959
+ 0.124
960
+ 0.116
961
+ 0.120
962
+ MissBeamNet (ours)
963
+ 0.071
964
+ 0.073
965
+ 0.077
966
+ 0.071
967
+ 0.073
968
+ Speed error [m/s]
969
+ Average (baseline)
970
+ 0.102
971
+ 0.108
972
+ 0.106
973
+ 0.103
974
+ 0.105
975
+ Virtual beam
976
+ 0.102
977
+ 0.109
978
+ 0.111
979
+ 0.099
980
+ 0.105
981
+ MissBeamNet (ours)
982
+ 0.077
983
+ 0.081
984
+ 0.083
985
+ 0.078
986
+ 0.079
987
+ MissBeamNet improvement %
988
+ Average (baseline)
989
+ 24.5
990
+ 25.0
991
+ 21.7
992
+ 24.3
993
+ 23.9
994
+ Virtual beam
995
+ 24.5
996
+ 25.7
997
+ 25.2
998
+ 21.2
999
+ 24.1
1000
+ TABLE IV
1001
+ HYPERPARAMETERS TUNING
1002
+ Case
1003
+ Approach
1004
+ Beam 1
1005
+ Beam 2
1006
+ Beam 3
1007
+ Beam 4
1008
+ Missing beam [m/s]
1009
+ Before tuning
1010
+ 0.065
1011
+ 0.048
1012
+ 0.034
1013
+ 0.067
1014
+ After tuning
1015
+ 0.011
1016
+ 0.017
1017
+ 0.02
1018
+ 0.012
1019
+ Speed error [m/s]
1020
+ Before tuning
1021
+ 0.039
1022
+ 0.029
1023
+ 0.021
1024
+ 0.040
1025
+ After tuning
1026
+ 0.007
1027
+ 0.010
1028
+ 0.012
1029
+ 0.007
1030
+ Learning rate
1031
+ Before tuning
1032
+ 5e-05
1033
+ 5e-05
1034
+ 5e-05
1035
+ 5e-05
1036
+ After tuning
1037
+ 1e-04
1038
+ 1e-04
1039
+ 5e-05
1040
+ 1e-05
1041
+ hidden LSTM
1042
+ parameters ht
1043
+ Before tuning
1044
+ 500
1045
+ 500
1046
+ 500
1047
+ 500
1048
+ After tuning
1049
+ 250
1050
+ 750
1051
+ 750
1052
+ 100
1053
+ LSTM output
1054
+ parameters
1055
+ Before tuning
1056
+ 7
1057
+ 7
1058
+ 7
1059
+ 7
1060
+ After tuning
1061
+ 7
1062
+ 5
1063
+ 7
1064
+ 5
1065
+ MissBeamNet Tuning
1066
+ improvement %
1067
+ Average (baseline)
1068
+ 89.4
1069
+ 83.6
1070
+ 80.3
1071
+ 89.5
1072
+ Virtual beam
1073
+ 91.1
1074
+ 84.6
1075
+ 81.8
1076
+ 90.9
1077
+ Three beams
1078
+ 98.4
1079
+ 97.7
1080
+ 97.2
1081
+ 98.4
1082
+ Before tuning
1083
+ 82.2
1084
+ 67.5
1085
+ 42.8
1086
+ 82.5
1087
+ 4 E. Bovio, D. Cecchi and F. Baralli, Autonomous underwater vehicles for
1088
+ scientific and naval operations, Annual Reviews in Control,Vol. 30, Issue
1089
+ 2, 2006.
1090
+ 5 A. Kume, T. Maki, T. Sakamaki, and T. Ura, A Method for Obtaining
1091
+ High-Coverage 3D Images of Rough Seafloor Using AUV – Real-Time
1092
+ Quality Evaluation and Path-Planning, Journal of robotics and mecha-
1093
+ tronics,vol.25 (2), pp.364-374, 2013.
1094
+ 6 Niu, H., Adams, S., Lee, K., Husain, T. and N. Bose, Applications of
1095
+ Autonomous Underwater Vehicles in Offshore petroleum industry envi-
1096
+ ronmental effects monitoring, Journal of Canadian Petroleum Technology,
1097
+ vol.48, 2009.
1098
+ 7 Z. Hongwei, Z. Shitong, W. Yanhui, L. Yuhong, Y.Yanan, Z. Tian and
1099
+ B. Hongyu,Subsea pipeline leak inspection by autonomous underwater
1100
+ vehicle, Applied ocean research, Vol.107, pp.102321, 2021.
1101
+ 8 F. Maussang, J. Chanussot and A. Hetet, Automated segmentation of SAS
1102
+ images using the mean - standard deviation plane for the detection of
1103
+ underwater mines, Oceans 2003. Celebrating the Past ... Teaming Toward
1104
+ the Future, IEEE, vol.4, pp. 2155–2160, 2003.
1105
+ 9 A.Palomer, P. Ridao and D. Ribas, Multibeam 3D underwater SLAM with
1106
+ probabilistic registration, Sensors vol. 16, 4, pp. 560, 2016.
1107
+ 10 Y. K. Thong, M. S. Woolfson, J. A. Crowe, B. R. Hayes-Gill, and
1108
+ R. E. Challis, Dependence of inertial measurements of distance on
1109
+ accelerometer noise Meas. Sci. Technol., vol. 13 (8), pp. 1163, 2002.
1110
+ 11 A. Karmozdi, M. Hashemi, H. Salarieh and A. Alasty, INS-DVL Navi-
1111
+ gation Improvement Using Rotational Motion Dynamic Model of AUV,
1112
+ IEEE Sensors Journal, vol. 20, no. 23, pp. 14329-14336, 2020.
1113
+ 12 M.Emami and M.R. Taben, A novel intelligent adaptive Kalman Filter
1114
+ for estimating the Submarine’s velocity: With experimental evaluation ,
1115
+ Ocean Engineering, vol. 158, pp. 403-411, 2018.
1116
+ 13 B. Allotta, A. Caiti, R. Costanzi, F. Fanelli, D. Fenucci, E. Meli, and A.
1117
+ Ridolfi, A new AUV navigation system exploiting unscented Kalman filter,
1118
+ Ocean Engineering, vol. 113, pp. 121-132, 2016.
1119
+ 14 P. Liu, B. Wang, G. Li, D. Hou, Z. Zhu and Z. Wang, SINS/DVL
1120
+ Integrated Navigation Method With Current Compensation Using RBF
1121
+ Neural Network, IEEE Sensors Journal, vol. 22, no. 14, pp. 14366-14377,
1122
+ 2022.
1123
+ 15 P. Liu, B. Wang, Z. Deng, M. Fu INS/DVL/PS tightly coupled underwater
1124
+
1125
+ 8
1126
+ navigation method with limited DVL measurements., IEEE Sensors, vol.
1127
+ 18, no. 7, pp. 2994-3002, 2018.
1128
+ 16 Z. Yonggang, Y. Ding, L. Ning. A tightly integrated SINS/DVL navigation
1129
+ method for autonomous underwater vehicle, International Conference on
1130
+ Computational and Information Sciences, pp. 1107-1110, 2013.
1131
+ 17 A. Tal, I. Klein, and R. Katz. Inertial navigation system/Doppler velocity
1132
+ log fusion with partial DVL measurements, IEEE Sensors, vol. 17, no. 2,
1133
+ pp. 415, 2017.
1134
+ 18 I. Klein, Data-Driven Meets Navigation: Concepts, Models, and Experi-
1135
+ mental Validation, 2022 DGON Inertial Sensors and Systems (ISS), pp.
1136
+ 1-21, 2022.
1137
+ 19 N.Cohen and I. klein, BeamsNet: A data-driven approach enhancing
1138
+ Doppler velocity log measurements for autonomous underwater vehicle
1139
+ navigation, Engineering Applications of Artificial Intelligence, vol. 114,
1140
+ pp. 1055216, 2022.
1141
+ 20 X. Zhang, B. He, G. Li, X. Mu, Y. Zhou and T. Mang, NavNet: AUV
1142
+ navigation through deep sequential learning, IEEE Access, vol. 8, pp.
1143
+ 59845-59861, 2020.
1144
+ 21 M. Yona and I. Klein, Compensating for Partial Doppler Velocity Log
1145
+ Outages by Using Deep- Learning Approaches, IEEE International Sym-
1146
+ posium on Robotic and Sensors Environments (ROSE), pp. 1-5, 2021.
1147
+ 22 A. Shurin, A. Saraev ,M. Yona, Y. Gutnik, S. Faber, A. Etzion and I.
1148
+ Klein, The autonomous platforms inertial dataset, IEEE Access, vol. 10,
1149
+ pp. 10191-10201, 2022.
1150
+ 23 The Hatter department of marine technologies, ocean instruments:
1151
+ https://www.marinetech.haifa.ac.il/ocean-instruments
1152
+ 24 Teledyne RD Instruments, Adcp Coordinate Transformation Formulas and
1153
+ Calculation.
1154
+ 25 P. A. Miller, J. A. Farrell, Y. Zhao and V. Djapic, Autonomous Underwater
1155
+ Vehicle Navigation, IEEE Journal of Oceanic Engineering, vol. 35, no. 3,
1156
+ pp. 663-678, 2010.
1157
+ 26 C.T. Crowe, D.F. Elger, and J.A. Roberson, Engineering Fluid Mechanics,
1158
+ Boston: Cengage Learning, pp.21-27, 2016.
1159
+ 27 I. Klein and Y. Lipman, Continuous INS/DVL Fusion in Situations of DVL
1160
+ Outages 2020 IEEE/OES Autonomous Underwater Vehicles Symposium
1161
+ (AUV), pp. 1-6,2020.
1162
+ 28 I. Klein, Y. Gutnik and Y. Lipman, Estimating DVL Velocity in Complete
1163
+ Beam Measurement Outage Scenarios, IEEE Sensors Journal, vol. 22, no.
1164
+ 21, pp. 20730-20737, 2022,
1165
+ 29 R. Pascanu, T. Mikolov and Y. Bengio, On the difficulty of training re-
1166
+ current neural networks Proceedings of the 30th International Conference
1167
+ on Machine Learning, pp.1310-1318, 2013.
1168
+ 30 P. Diederik and B. Jimmy Adam: A Method for Stochastic Optimization,
1169
+ 3rd International Conference for Learning Representations, 2015.
1170
+ 31 Teledyne marine manual for the Teledyne RDI Work Horse navigator
1171
+ DVL.
1172
+
9tFJT4oBgHgl3EQfoyxM/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
9tFST4oBgHgl3EQfbTje/content/tmp_files/2301.13799v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
9tFST4oBgHgl3EQfbTje/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
ANE3T4oBgHgl3EQfsQvt/content/tmp_files/2301.04667v1.pdf.txt ADDED
@@ -0,0 +1,1522 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MNRAS 000, 1–13 (2023)
2
+ Preprint 13 January 2023
3
+ Compiled using MNRAS LATEX style file v3.0
4
+ Unravelling the mass spectrum of destroyed dwarf galaxies with the
5
+ metallicity distribution function
6
+ Alis J. Deason1,2★, Sergey E. Koposov3,4,5†, Azadeh Fattahi1, Robert J. J. Grand6,7
7
+ 1 Institute for Computational Cosmology, Department of Physics, Durham University, South Road, Durham DH1 3LE, UK
8
+ 2 Centre for Extragalactic Astronomy, Department of Physics, Durham University, South Road, Durham DH1 3LE, UK
9
+ 3Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ, UK
10
+ 4 Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK
11
+ 5 Kavli Institute for Cosmology, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK
12
+ 6Instituto de Astrofisica de Canarias, Calle Via Lactea s/n, E-38205 La Laguna, Tenerife, Spain
13
+ 7Departamento de Astrofisica, Universidad de La Laguna, Av. del Astrofisico Francisco Sanchez s/n, E-38206, La Laguna, Tenerife, Spain
14
+ Accepted XXX. Received YYY; in original form ZZZ
15
+ ABSTRACT
16
+ Accreted stellar populations are comprised of the remnants of destroyed galaxies, and often dominate the ‘stellar haloes’ of
17
+ galaxies such as the Milky Way (MW). This ensemble of external contributors is a key indicator of the past assembly history
18
+ of a galaxy. We introduce a novel statistical method that uses the unbinned metallicity distribution function (MDF) of a stellar
19
+ population to estimate the mass spectrum of its progenitors. Our model makes use of the well-known mass-metallicity relation of
20
+ galaxies and assumes Gaussian MDF distributions for individual progenitors: the overall MDF is thus a mixture of MDFs from
21
+ smaller galaxies. We apply the method to the stellar halo of the MW, as well as the classical MW satellite galaxies. The stellar
22
+ components of the satellite galaxies have relatively small sample sizes, but we do not find any evidence for accreted populations
23
+ with 𝐿 > 𝐿host/100. We find that the MW stellar halo has 𝑁 ∼ 1 − 3 massive progenitors (𝐿 ≳ 108𝐿 ⊙) within 10 kpc, and likely
24
+ several hundred progenitors in total. We also test our method on simulations of MW-mass haloes, and find that our method is
25
+ able to recover the true accreted population within a factor of two. Future datasets will provide MDFs with orders of magnitude
26
+ more stars, and this method could be a powerful technique to quantify the accreted populations down to the ultra-faint dwarf
27
+ mass-scale for both the MW and its satellites.
28
+ Key words: Galaxies: dwarf – Galaxy: halo – Local Group – galaxies: luminosity function
29
+ 1 INTRODUCTION
30
+ Dark matter haloes of all shapes and sizes grow by accumulating
31
+ lower mass constituents (or subhaloes). The galaxies at the centres
32
+ of these haloes grow via ongoing star formation, but can also form
33
+ diffuse ‘stellar haloes’ from the stellar material deposited by the
34
+ accretion of subhaloes (if they contain stars). Depending on the mass-
35
+ scale, this accreted stellar material can amount to significant (e.g.
36
+ clusters, ∼ 20 − 30%) or minuscule (e.g. dwarfs, ∼ 0 − 5%) fractions
37
+ of the overall stellar mass of the central galaxy (Purcell et al. 2007).
38
+ Despite having a relatively low stellar mass and surface brightness,
39
+ stellar haloes retain a record of the lower mass systems that have been
40
+ digested by haloes over time, and quantifying and understanding this
41
+ accreted relic has been a major research focus in astronomy for several
42
+ decades (see e.g. Helmi 2008; Belokurov 2013).
43
+ The most-studied stellar halo is, unsurprisingly, that of our own
44
+ Milky Way (MW) galaxy. However, despite significant progress in
45
+ recent years, we still only have a qualitative view of the mass spectrum
46
+ of dwarf galaxies that have been consumed by the MW. Most notably,
47
+ it has become clear since the game-changing Gaia mission (Gaia
48
+ ★ E-mail: [email protected] (AD)
49
+ † E-mail: [email protected] (SK)
50
+ Collaboration et al. 2016), that the inner stellar halo (within ∼ 20
51
+ kpc) is dominated by one ancient, massive accretion event, dubbed
52
+ the Gaia-Enceladus-Sausage (GES, Belokurov et al. 2018; Helmi
53
+ et al. 2018). There is also some evidence that an additional massive
54
+ structure resides in the very central regions of the galaxy (within ∼ 4
55
+ kpc), and was accreted even earlier than the GES (Kruijssen et al.
56
+ 2019; Horta et al. 2021a). However, it is debated whether or not this
57
+ is really an accreted structure, or rather in-situ MW material (see
58
+ e.g. Myeong et al. 2022; Rix et al. 2022). These massive progenitors,
59
+ join the already discovered streams and substructures, such as the
60
+ Sagittarius and Orphan streams (e.g. Newberg et al. 2003; Majewski
61
+ et al. 2004; Belokurov et al. 2007b), and the Virgo (Jurić et al. 2008)
62
+ and Hercules-Aquila (Belokurov et al. 2007a) clouds (although the
63
+ latter structures may be related to the GES, see e.g. Simion et al.
64
+ 2019; Chandra et al. 2022), and more stellar structures in the halo are
65
+ continuously being discovered (e.g. Naidu et al. 2020). The overall
66
+ inventory of the Galactic stellar halo is evolving, but the picture
67
+ is far from complete, and we have no quantitative ‘mass-spectrum’
68
+ of destroyed dwarfs akin to the surviving satellite dwarf luminosity
69
+ function (Koposov et al. 2008; Tollerud et al. 2008; Drlica-Wagner
70
+ et al. 2020; Nadler et al. 2020), which is a pillar of the field.
71
+ Many of the halo structures that have been discovered in the
72
+ MW are identified in phase-space and/or action-angle space. This,
73
+ © 2023 The Authors
74
+ arXiv:2301.04667v1 [astro-ph.GA] 11 Jan 2023
75
+
76
+ 2
77
+ Deason, Koposov et al.
78
+ of course, is where an astrometric mission such as Gaia has en-
79
+ abled a deeper understanding of the phase-space structure of the halo
80
+ by providing 6D measurements (at least for the inner halo). How-
81
+ ever, even with perfect 6D data, robustly identifying distinct halo
82
+ substructures is challenging. Indeed, massive progenitors can have
83
+ several ‘clumps’ in dynamical spaces which cannot be unambigu-
84
+ ously disentangled (e.g. Callingham et al. 2022) and when the stellar
85
+ material is fully phase-mixed it becomes more difficult to identify
86
+ from the background (e.g. Johnston et al. 2008). Furthermore, even
87
+ in the space of conserved quantities the clumps may not stay com-
88
+ pact due to perturbations from massive systems such as the LMC
89
+ (Koposov et al. 2022b). This is where chemical information can be
90
+ crucial, as galaxies of different mass (and star formation history) can
91
+ have distinct chemical signatures (e.g. Venn et al. 2004; Tolstoy et al.
92
+ 2009). Most notable, is the well-known mass-metallicity relation for
93
+ galaxies, which extends down to the dwarf mass-scales (e.g. Skillman
94
+ et al. 1989; Kirby et al. 2011).
95
+ More massive galaxies are, on average, more metal-rich, and the
96
+ relation between mass and metallicity exists over several orders of
97
+ magnitude in mass (e.g. Tremonti et al. 2004; Kirby et al. 2013).
98
+ This relation can, to first order, be explained by the larger gravi-
99
+ tational wells of more massive galaxies, which are able to retain
100
+ metals (Dekel & Silk 1986). Lower mass galaxies lack the gravity to
101
+ resist the expulsion of metals due to feedback mechanisms. On the
102
+ dwarf mass-scale, not only does the average metallicity vary with
103
+ mass, but the width of the metallicity distribution function (MDF)
104
+ also varies, with the lowest mass dwarfs having a wider spread of
105
+ metallicities (e.g. Kirby et al. 2011). The combined MDF of a popu-
106
+ lation of accreted dwarf galaxies, such as a stellar halo, is therefore
107
+ the superposition of several individual MDFs. Thus, in principle,
108
+ metallicity measurements alone contain a unique record of the mass
109
+ spectrum of accreted dwarfs. Indeed, the disentangling of a MDF
110
+ into its individual components is the main focus of this work. Fi-
111
+ nally, it is worth noting that previous work on the MDFs of dwarf
112
+ galaxies has focused on surviving dwarfs, which, depending on the
113
+ largely unknown redshift evolution of the mass-metallicity relation,
114
+ may or may not be relevant for the destroyed dwarfs that make-up
115
+ stellar haloes (see e.g. Fattahi et al. 2020; Naidu et al. 2022).
116
+ In this work, we consider Galactic-sized stellar haloes as well as
117
+ the (potential) stellar haloes of dwarf galaxies. In principle, dwarf
118
+ galaxies themselves can cannibalise lower-mass dwarfs, and form
119
+ what we classically think of as a ‘stellar halo’. However, unlike larger
120
+ mass-scales where the merging dark matter clumps all contain stars,
121
+ at lower mass scales (below ∼ 109𝑀⊙ in halo mass) dark matter sub-
122
+ haloes may not have any stars at all (e.g. Benitez-Llambay & Frenk
123
+ 2020). A recent study by Deason et al. (2022) showed that the very
124
+ existence of a stellar halo around a dwarf galaxy can have important
125
+ implications for both small-scale galaxy formation and the nature of
126
+ dark matter. For example, the mass-threshold for galaxy formation,
127
+ which is largely determined by the epoch of reionization, can have
128
+ a major effect on the stellar haloes of dwarf galaxies: for models
129
+ with a high mass threshold for galaxy formation (≳ 109𝑀⊙) dwarf
130
+ galaxies should not have stellar haloes at all! Thus, the detection
131
+ or non-detection of lower mass accretion events surrounding dwarf
132
+ galaxies, particularly at the ultra-faint mass scale (𝑀star ≲ 105𝑀⊙),
133
+ is of utmost importance.
134
+ In order to study the MDFs of accreted populations, we need
135
+ large, ideally unbiased, spectroscopic samples with metallicity mea-
136
+ surements. For both the Galactic halo, and dwarf satellite galaxies in
137
+ the MW, extensive samples are hard to come by, but there has been
138
+ significant progress in recent years (e.g. Kirby et al. 2011; Zhao et al.
139
+ 2012; Kunder et al. 2017; Majewski et al. 2017; Walker et al. 2007;
140
+ Conroy et al. 2019; Taibi et al. 2022). Moreover, and importantly,
141
+ we are entering a new era of spectroscopic surveys in the MW, with
142
+ several projects such as DESI, WEAVE, and 4MOST on the horizon
143
+ (Cooper et al. 2022; Dalton et al. 2012; de Jong et al. 2019). Thus,
144
+ with these new surveys in mind, we develop a new modeling method
145
+ to extract the mass spectrum of accreted components from a sample
146
+ of [Fe/H] measurements and apply this to current datasets.
147
+ The paper is organised as follows. In Section 2 we outline our
148
+ methodology and introduce the statistical model. This is a fairly tech-
149
+ nical section that some readers may want to skip over! The method is
150
+ applied to spectroscopic samples of classical dwarf satellite galaxies,
151
+ and Galactic halo data in Section 3. We test the method on state-of-
152
+ the-art cosmological simulations of MW-mass galaxies in Section
153
+ 4, and discuss caveats and future prospects in Section 5. Finally, we
154
+ summarise our main findings in Section 6.
155
+ 2 MDF MODELING
156
+ In this Section, we present the methodology that allows us to take
157
+ samples with measured [Fe/H], and some estimate of the total lu-
158
+ minosity of the system, and use them to provide constraints on the
159
+ number of discrete stellar systems of different luminosities that can
160
+ contribute to a given galaxy.
161
+ This next Section is fairly technical, so a less statistically-minded
162
+ reader may want to skip it and continue with Section 3. The Python
163
+ code implementing the inference method presented in this section is
164
+ released on GitHub1.
165
+ 2.1 General statistical model
166
+ We construct a generative model that allows us to represent the
167
+ metallicity distribution function (MDF) as a mixture of MDFs from
168
+ smaller galaxies. Throughout this work, we will assume that the MDF
169
+ of each smaller galaxy can be represented by a Gaussian.
170
+ The generic model, where the sample of stars for the MDF is
171
+ coming from several galaxies, can be described with these model
172
+ parameters:
173
+ • Number of galaxies N
174
+ • 𝐿𝑖 individual galaxy luminosities (where 1 < 𝑖 < 𝑁)
175
+ • 𝜇𝑖 mean galaxy metallicities
176
+ • 𝜎𝑖 widths of MDF of individual galaxies.
177
+ We can then assume that the number of stars in the sample scales
178
+ linearly with galaxy luminosity. This assumption is accurate for stel-
179
+ lar populations of similar ages. For that assumption to hold, our
180
+ sample must not be biased towards one galaxy or another (e.g. if
181
+ our sample comes from a small volume that has an unrepresentative
182
+ subsample of certain galaxies). If the proportionality holds, one can
183
+ write the MDF as
184
+ 𝑃(𝑧|𝑁, {𝐿𝑖}, {𝜇𝑖}, {𝜎𝑖}) =
185
+ 1
186
+ � 𝐿𝑖
187
+ 𝑖=𝑁
188
+ ∑︁
189
+ 𝑖=1
190
+ 𝐿𝑖N (𝑧|𝜇𝑖, 𝜎𝑖)
191
+ (1)
192
+ Here, for clarity, we use 𝑧 as a short-hand notation of [Fe/H]. Given
193
+ our expectation that galaxy luminosities and metallicities are corre-
194
+ lated (Tremonti et al. 2004; Kirby et al. 2011), we can assume that
195
+ galaxies follow a mass metallicity relation (or luminosity metallicity
196
+ relation)
197
+ 𝜇𝑖 ∼ N (𝐴 + 𝐵 log 𝐿𝑖|S)
198
+ (2)
199
+ 1 https://github.com/segasai/mdf_modeling_paper
200
+ MNRAS 000, 1–13 (2023)
201
+
202
+ Destroyed dwarfs with the MDF
203
+ 3
204
+ where 𝐴 and 𝐵 are constants i.e. taken from the mass metallicity
205
+ relation presented in Kirby et al. (2011) and Simon (2019). S is a
206
+ constant representing a scatter in the relation (found to be 0.15 dex
207
+ by Simon 2019, for MW satellites).
208
+ The individual widths 𝜎𝑖 of MDFs differ from galaxy to galaxy
209
+ but have been approximated to be slowly dependent on the galaxy
210
+ luminosity 𝜎 = 𝐶 + 𝐷 log 𝐿 (see Simon 2019). If we specify the
211
+ constants 𝐴, 𝐵, 𝐶, 𝐷, and S we have a model for the distribution
212
+ of metallicities, and this model has an integer parameter 𝑁 and
213
+ 2𝑁 floating point parameters for luminosities and metallicities of 𝑁
214
+ individual galaxies.
215
+ While this model for the MDF is valid and can be applied to real
216
+ data, it has the problem of having a variable number of parameters
217
+ and therefore is difficult to sample in practice (i.e. Green 1995).
218
+ Therefore, it would be beneficial to reformulate the model in a way
219
+ that makes the number of parameters fixed.
220
+ The first modification we can do is to group galaxies in 𝑀 lumi-
221
+ nosity bins, so that rather than represent their luminosities by discrete
222
+ parameters we represent the number of galaxies in certain luminosity
223
+ bins. Now we define:
224
+ • ˆ𝐿 𝑗 are the grid of galaxy luminosities 1 ≤ 𝑗 ≤ 𝑀
225
+ • 𝑁 𝑗 are the numbers of galaxies with luminosities ˆ𝐿 𝑗.
226
+ • 𝜇 𝑗,𝑘 are mean metallicities of k-th galaxy with luminosity ˆ𝐿 𝑗.
227
+ 1 < 𝑘 < 𝑁 𝑗
228
+ Where due to mass metallicity relation
229
+ 𝜇 𝑗,𝑘 ∼ N (𝐴 + 𝐵 log ˆ𝐿 𝑗 |S)
230
+ or
231
+ 𝜇 𝑗,𝑘 = 𝐴 + 𝐵 log ˆ𝐿 𝑗 + S𝜖 𝑗,𝑘
232
+ where 𝜖 𝑗,𝑘 ∼ N (0, 1). Here S could either be a constant or a deter-
233
+ ministic function of ˆ𝐿 𝑗
234
+ The MDF model is now
235
+ 𝑃 �𝑧|{𝑁 𝑗}, {𝜖 𝑗,𝑘}� =
236
+ 1
237
+ � 𝑁 𝑗 𝐿 𝑗
238
+ 𝑗=𝑀
239
+ ∑︁
240
+ 𝑗=1
241
+ ˆ𝐿 𝑗
242
+ ������
243
+ 𝑘=𝑁𝑗
244
+ ∑︁
245
+ 𝑘=1
246
+ N (𝑧|𝜇 𝑗,𝑘, 𝜎𝑗,𝑘)
247
+ ������
248
+ .
249
+ The likelihood of the data consisting of (for simplicity) a single
250
+ star with metallicity z would be exactly 𝑃(𝑧|{𝑁 𝑗}, {𝜖 𝑗,𝑘}). The only
251
+ problem with this formulation is that this likelihood still depends
252
+ on a variable number of parameters 𝜖 𝑗,𝑘 so one would prefer to
253
+ marginalise over these.
254
+ 𝑃(𝑧|{𝑁 𝑗}) =
255
+
256
+ 𝑃(𝑧|{𝑁 𝑗}, {𝜖 𝑗,𝑘})N ({𝜖 𝑗,𝑘}|0, 1)𝑑𝜖 𝑗,𝑘
257
+ While this marginalisation is difficult, and may be impossible to
258
+ do analytically, one can simply perform a Monte-Carlo integration
259
+ over 𝑄 samples from a normal distribution, where 𝜖 𝑗,𝑘,𝑞 are the q-th
260
+ sample 1 ≤ 𝑞 ≤ 𝑄 from N (0, 1)
261
+ 𝑃(𝑧|{𝑁 𝑗}) ≈ 1
262
+ 𝑄
263
+ 𝑞=𝑄
264
+ ∑︁
265
+ 𝑞=1
266
+ 𝑃(𝑧|{𝑁 𝑗}, {𝜖 𝑗,𝑘,𝑞})
267
+ Finally, instead of directly doing the summation we can simply
268
+ treat this as likelihood with integer parameter 𝑞
269
+ 𝑃(𝑧|{𝑁 𝑗}, 𝑞) = 𝑃(𝑧|{𝑁 𝑗}, {𝜖 𝑗,𝑘,𝑞})
270
+ (3)
271
+ where 𝑞 is a nuisance seed parameter that we marginalise over
272
+ −4.0
273
+ −3.5
274
+ −3.0
275
+ −2.5
276
+ −2.0
277
+ −1.5
278
+ −1.0
279
+ −0.5
280
+ 0.0
281
+ 0.5
282
+ [Fe/H]
283
+ 0.0
284
+ 0.2
285
+ 0.4
286
+ 0.6
287
+ 0.8
288
+ 1.0
289
+ dP
290
+ d[Fe/H]
291
+ MV =-4.0
292
+ MV =-4.0
293
+ MV =-10.0
294
+ MV =-10.0
295
+ MV =-10.0,
296
+ 20 x {-4.0}
297
+ Figure 1. The simulated MDFs for a few systems of different luminosities.
298
+ The black lines show the expected MDFs in our model for a system with
299
+ 𝑀𝑉 = −4, with solid and dashed curves showing the MDFs when using a
300
+ different random seed that controls the offset of the galaxy with respect to
301
+ the mass metallicity relation. Red curves similarly show the MDF of a single
302
+ 𝑀𝑉 = −10 galaxy with different random seeds. The green curve shows the
303
+ MDF for a synthetic galaxy that consists of stars coming from one galaxy
304
+ with 𝑀𝑉 = −10 and 20 galaxies with 𝑀𝑉 = −4.
305
+ under the uniform prior 𝑈(1, 𝑄). Here, we assume that 𝜖 𝑗,𝑘,𝑞 are
306
+ coming from a pseudo-random number generator that is seeded by
307
+ 𝑞 and provides normally distributed samples. We then will need to
308
+ sample the posterior over {𝑁 𝑗} and 𝑞, which gives the model with
309
+ 𝑀 + 1 parameters. Armed with Eqn 3 that specifies the likelihood
310
+ function for the metallicity distribution, the only missing ingredient
311
+ for the model are the priors.
312
+ We assume that occupation numbers {𝑁𝑖} (i.e. numbers of galaxies
313
+ in luminosity bins) have a prior distribution of ⌊10𝑥⌋ where 𝑥 ∼
314
+ 𝑈(−1, 4). This is essentially the log uniform of integers distribution
315
+ with 20% prior volume at 𝑁𝑖 = 0 and 20% for 1 ≤ 𝑁𝑖 ≤ 10, and
316
+ 20 ≤ 𝑁𝑖 ≤ 100 etc.
317
+ Finally, we complement the model with the constraint on the total
318
+ luminosity of the system. Specifically, we require that the combined
319
+ luminosity of multiple galaxies must match certain known total lu-
320
+ minosity log 𝐿tot with some uncertainty 𝜎𝐿. This provides a term for
321
+ the log of the posterior.
322
+ log(
323
+ ∑︁
324
+ 𝑁𝑖 ˆ𝐿𝑖) ∼ 𝑁(log 𝐿tot|𝜎𝐿)
325
+ A final remark that despite the introduction of the formalism based
326
+ on binned number of galaxies, we have found the model is more stable
327
+ when at least one contributor to the MDF (likely the one being the
328
+ most massive main progenitor) is represented directly (rather than
329
+ in a bin) by the satellite luminosity 𝐿main, metallicity 𝑧main and that
330
+ also obeys the mass-metallicity relation.
331
+ To illustrate our modeling approach, in Figure 1 we show the
332
+ expected [Fe/H] distributions given our model. Specifically, solid
333
+ black and red curves show possible MDFs for a single galaxy of
334
+ 𝑀𝑉 = −4 and 𝑀𝑉 = −10, respectively. Dashed lines of same colours
335
+ show the MDFs when different random seeds are used. The green
336
+ curve shows a distribution that we might expect if we observe stars
337
+ coming from a single 𝑀𝑉 = −10 galaxy and 20 𝑀𝑉 = −4 systems.
338
+ This shows a prominent tail towards low metallicities, and this is
339
+ exactly what allows us to probe the number of possible mergers with
340
+ low luminosity systems.
341
+ MNRAS 000, 1–13 (2023)
342
+
343
+ 4
344
+ Deason, Koposov et al.
345
+ 2.2 Sampling
346
+ In the previous section, we have introduced the likelihood function
347
+ for the metallicity distribution that is conditional on the number of
348
+ different dwarf galaxies 𝑁 𝑗 on a grid of luminosities. The model
349
+ also has an integer seed parameter 𝑞. It is not trivial to sample inte-
350
+ ger parameters, especially if we expect multiple modes. To perform
351
+ the sampling we decide to use the dynamic nested sampling as im-
352
+ plemented in the dynesty package (Speagle 2020; Koposov et al.
353
+ 2022a). As nested sampling is technically invalid if the likelihood
354
+ surface has plateaus (Fowlie et al. 2020), we add a a small level of
355
+ deterministic noise with standard deviation of 0.01 to the likelihoods,
356
+ which should not affect the inference.
357
+ 3 APPLICATIONS
358
+ We now apply the method described above to observational data.
359
+ Here, we focus on the classical MW satellites (§3.1) and the MW
360
+ stellar halo (§3.2).
361
+ 3.1 Classical dwarf satellite galaxies
362
+ We start from the homogeneous sample of dwarf galaxy members
363
+ presented in Kirby et al. (2011) as provided in the Strasbourg astro-
364
+ nomical Data Center (CDS). As mentioned in the previous section,
365
+ the key assumption that we rely on for our method is that the abun-
366
+ dances that we model are random samples from the system. This is
367
+ likely not technically correct for the data at hand since the stellar
368
+ samples in dwarfs tend to be biased towards the centres of systems
369
+ (see e.g. Walker & Peñarrubia 2011), and may have slight metallic-
370
+ ity biases caused by the colour-magnitude selection of spectroscopic
371
+ targets. We will, however, proceed ignoring these issues.
372
+ We take the sample of stars from Kirby et al. (2011) and only
373
+ consider stars with small metallicity uncertainty 𝜎[Fe/H] < 0.2. This
374
+ catalogue has measurements of 10 MW satellites with more than
375
+ 10 stars: Canes Venatici I, Draco, Fornax, Hercules, Leo I, Leo II,
376
+ Sculptor, Sextans, Ursa Minor and Ursa Major I. We then proceed to
377
+ model each of the dwarfs with the machinery presented in Section 2.
378
+ We take the luminosities of each system from McConnachie (2012)
379
+ (using an updated catalogue from January 2021) and adopt an 𝑀𝑉
380
+ uncertainty for each system of 0.1 mag. For each system, we use
381
+ the luminosity bins that are 1 magnitude wide from 𝑀𝑉 = 0 to the
382
+ luminosity of the dwarf itself minus 2.5 magnitudes.
383
+ The posterior samples on the number of possible dwarf galaxies
384
+ that contributed to the systems’ MDF are shown in Figures 2 and
385
+ 3. We show measurements for 8 out of 10 systems spanning the
386
+ luminosity range from 𝑀𝑉 ∼ −5 for Ursa Major I to 𝑀𝑉 ∼ −13
387
+ for Fornax. The panels are ordered by system luminosity. The total
388
+ number of stars varies from 𝑁 = 15 for Ursa Major I to 𝑁 = 789
389
+ for Leo I. Figure 2 shows the constraints on the differential number
390
+ of systems that have contributed to the dwarfs’ MDF, while Figure 3
391
+ shows constraints on the cumulative counts of the number of systems
392
+ brighter than a certain value. The blue/orange bands show the 16/84
393
+ and 1/99 percentiles, and the black line shows the median of the
394
+ posterior. The green bands show the constraints if we do not use
395
+ metallicities at all. This is essentially a prior and corresponds to the
396
+ case where the only constraint comes from ensuring the combination
397
+ of galaxies matches the total luminosity of the system. Note that,
398
+ because we include all the stars in the galaxy, we expect to measure
399
+ 𝑁merged = 1 at around the total luminosity of the dwarf galaxy (shown
400
+ with the solid red line). Although technically this is an ‘in-situ’ rather
401
+ than an accreted component, what we are actually constraining are
402
+ the contributors to the MDF, regardless of their origin.
403
+ We now look at the posteriors in more detail. First, we focus on
404
+ clear cases where the data is particularly constraining. These are the
405
+ cases of Fornax, Leo I, Leo II, and Draco, where the spectroscopic
406
+ samples have hundreds of members. We see that their differential
407
+ posterior distributions (Figure 2) have a peak with a value of one
408
+ next to the system luminosity (highlighted in red) and show the value
409
+ consistent with zero for 𝑀𝑉 ,host ≲ 𝑀𝑉 ≲ 𝑀𝑉 ,host+5. Thus, the data
410
+ suggests that these systems did not experience a merger with a dwarf
411
+ that is larger than 1% of the system luminosity. This is also seen in the
412
+ cumulative plots, where we see the implied number 𝑁merged(< 𝑀𝑉 )
413
+ is flat and equal to one in the range 𝑀𝑉 ,host ≲ 𝑀𝑉 ≲ 𝑀𝑉 ,host + 5.
414
+ Looking at the implications for the number of faint contributors to
415
+ the MDF for Fornax, Leo I, Leo II, and Draco systems, we can see
416
+ that our constraints on 𝑁merged shoot up and become significantly
417
+ broader. The differential counts are essentially unconstrained. For
418
+ example, for the Fornax MDF contributors at 𝑀𝑉 = 0 (top left panel
419
+ of Figure 2) the 1-𝜎 confidence interval is 0 < 𝑁merged < 100 as the
420
+ data allows many faint dwarfs before the observed MDF is affected
421
+ significantly. The behavior of the cumulative counts for the faint
422
+ MDF contributors is somewhat misleading as it rises at faint 𝑀𝑉
423
+ purely because we are summing over bins with non-negative values.
424
+ Fainter dwarf galaxies like CVnI or UMa have a smaller number of
425
+ spectroscopic observations. In Figure 2 we see that the posteriors on
426
+ the number of MDF contributors start to rise next to 𝑀𝑉 = 𝑀𝑉 ,host,
427
+ which indicates that we cannot even rule out that the galaxy is a
428
+ product of a merger of two systems with similar luminosities. The
429
+ constraints on the cumulative number of mergers for fainter dwarfs
430
+ do not show a flat 𝑁merged = 1 part next to the luminosity of the
431
+ system and instead rises to faint luminosities. We also see that for
432
+ faint systems, the posteriors basically look very close to priors.
433
+ 3.2 Galactic stellar halo
434
+ We next apply our method to the Galactic stellar halo. It has been
435
+ realised for some time that the stellar halo of the MW comprises
436
+ an assortment of destroyed dwarf debris, and thus the metallicity
437
+ distribution of these halo stars retains a memory of their dwarf galaxy
438
+ progenitors.
439
+ Large, homogeneous samples of halo stars with metallicity mea-
440
+ surements are hard to come by, and this is a significant limitation of
441
+ our current study. At present, we build a sample of halo stars based
442
+ on several spectroscopic surveys and use the latest Gaia data (Gaia
443
+ Collaboration et al. 2021), to help select a clean halo sample. We
444
+ begin by cross-matching stars with spectroscopic data from SDSS
445
+ (Abolfathi et al. 2018), RAVE (Kunder et al. 2017), LAMOST (Zhao
446
+ et al. 2012), APOGEE (Majewski et al. 2017), and GALAH (Buder
447
+ et al. 2021) with Gaia DR3. This results in 𝑁 = 656, 0819 stars. To
448
+ estimate distances to the stars we use the Bailer-Jones et al. (2021)
449
+ photogeometric distances computed from Gaia EDR3. We only con-
450
+ sider stars with reasonable parallax 𝜎𝜛/𝜛 < 0.5, and restrict our
451
+ sample to 𝑟 < 10 kpc and |𝑧| > 1 kpc. Finally, to avoid disk con-
452
+ tamination, we apply a cut on the rotational velocity of the stars. We
453
+ impose a fairly strict cut to remove the majority of thick disk and/or
454
+ splash stars (Belokurov et al. 2020), and only include those with ret-
455
+ rograde orbits 𝑣𝜙 < −50 km/s. The resulting spatial (top-panel) and
456
+ metallicity distribution (bottom-panel) of the stars are shown in Fig.
457
+ 4. In the bottom panel, we also show the MDF for the stars without the
458
+ 𝑣𝜙 cut in grey. Our restriction to retrograde orbits is fairly stringent
459
+ but, as can be seen in the figure, it is effective at removing disk stars,
460
+ which have prograde orbits and are generally more metal-rich. We
461
+ MNRAS 000, 1–13 (2023)
462
+
463
+ Destroyed dwarfs with the MDF
464
+ 5
465
+ −10
466
+ −5
467
+ 100
468
+ 101
469
+ 102
470
+ Nmerged
471
+ For
472
+ −10
473
+ −5
474
+ MV
475
+ LeoI
476
+ −10
477
+ −5
478
+ MV
479
+ LeoII
480
+ −10
481
+ −5
482
+ MV
483
+ Sex
484
+ −10
485
+ −5
486
+ MV
487
+ 100
488
+ 101
489
+ 102
490
+ Nmerged
491
+ UMi
492
+ −10
493
+ −5
494
+ MV
495
+ Dra
496
+ −10
497
+ −5
498
+ MV
499
+ CVnI
500
+ −10
501
+ −5
502
+ MV
503
+ UMaI
504
+ Figure 2. The inferred contributions from systems to the MDF of different dwarf galaxies from our analysis. In each panel, the black curve shows the median
505
+ number of galaxies of a given luminosity that could have contributed to the MDF. The blue and orange bands show the 16/84 and 1/99 percentiles, respectively.
506
+ The green band shows the sampling of the prior with only the constraint on total luminosity of the system. The vertical red line on each panel shows the
507
+ luminosity of each system. Note that the logarithmic y-axis is cut-off at 𝑁merged = 10−1, so median values at this level are consistent with zero.
508
+ −10
509
+ −5
510
+ 100
511
+ 101
512
+ 102
513
+ Nmerged(< MV )
514
+ For
515
+ −10
516
+ −5
517
+ MV
518
+ LeoI
519
+ −10
520
+ −5
521
+ MV
522
+ LeoII
523
+ −10
524
+ −5
525
+ MV
526
+ Sex
527
+ −10
528
+ −5
529
+ MV
530
+ 100
531
+ 101
532
+ 102
533
+ Nmerged(< MV )
534
+ UMi
535
+ −10
536
+ −5
537
+ MV
538
+ Dra
539
+ −10
540
+ −5
541
+ MV
542
+ CVnI
543
+ −10
544
+ −5
545
+ MV
546
+ UMaI
547
+ Figure 3. The inferred contributions to the MDF from our analysis. This is similar to Figure 2 but shows the cumulative numbers. Each panel shows a different
548
+ dwarf galaxy. In each panel, the black curve shows the median number of galaxies of a given luminosity or brighter that could have contributed to the MDF.
549
+ The blue and orange bands show the 16/84 and 1/99 percentiles, respectively. The green band shows the sampling of the prior with only the constraint on total
550
+ luminosity of the system. The vertical red line on each panel shows the luminosity of each system.
551
+ apply our modelling procedure to stars with −4 < [Fe/H] < −0.82,
552
+ and 𝜎([Fe/H]) < 0.2, which results in a sample of 𝑁 = 21, 813 stars.
553
+ 2 Note that this metallicity cut is made in both the data and model, so there
554
+ is no metallicity bias introduced with our selection.
555
+ Our sample is comprised of 5 different spectroscopic surveys, with
556
+ varying selection functions. Here, we aim to maximise the number of
557
+ halo stars with metallicity measurements by combining these surveys
558
+ but note that, ideally, a more homogeneous sample would be used.
559
+ For now, we continue on, under the assumption that there are no
560
+ MNRAS 000, 1–13 (2023)
561
+
562
+ 6
563
+ Deason, Koposov et al.
564
+ 0
565
+ 2
566
+ 4
567
+ 6
568
+ 8
569
+ 10
570
+ R [kpc]
571
+ -10
572
+ -5
573
+ 0
574
+ 5
575
+ 10
576
+ |z| [kpc]
577
+ 0
578
+ 2
579
+ 4
580
+ 6
581
+ 8
582
+ 10
583
+ -10
584
+ -5
585
+ 0
586
+ 5
587
+ 10
588
+ -4
589
+ -3
590
+ -2
591
+ -1
592
+ 0
593
+ 1
594
+ [Fe/H]
595
+ 0.0
596
+ 0.2
597
+ 0.4
598
+ 0.6
599
+ 0.8
600
+ 1.0
601
+ 1.2
602
+ 1.4
603
+ dN
604
+ All
605
+ vφ < -50 km/s
606
+ log(g) < 3.5
607
+ log(g) > 3.5
608
+ Figure 4. Top panel: The spatial distribution in the 𝑧 vs. 𝑅 plane of our MW
609
+ halo sample. Bottom panel: The metallicity distribution of the sample. The
610
+ grey line indicates the MDF without a cut in 𝑣𝜙, which leads to the inclusion of
611
+ (metal-rich) disk stars. The dashed red line indicates the median metallicity
612
+ of our halo sample ([Fe/H] = −1.5). We also show the MDFs of our halo
613
+ sample split by log(𝑔) with the blue and purple dotted lines, respectively.
614
+ The gray line-filled region indicates the metal-rich regime ([Fe/H] > −0.8)
615
+ that is excluded in our modelling.
616
+ significant metallicity biases in this combined sample. However, we
617
+ stress that future work with upcoming spectroscopic surveys such as
618
+ DESI (Cooper et al. 2022) and WEAVE (Dalton et al. 2012) will be
619
+ much better suited for this type of analysis.
620
+ In our analysis, we adopt a total halo luminosity of 𝑀𝑉
621
+ =
622
+ −17.7 ± 0.5. This is consistent with recent measurements which
623
+ suggest 𝐿 ∼ 1 × 109��⊙, and also allows a range around this value
624
+ encompassing the majority of observational constraints and their un-
625
+ certainties (Deason et al. 2019; Mackereth & Bovy 2020; Horta et al.
626
+ 2021b). The top panels of Fig. 5 show the resulting number of de-
627
+ stroyed dwarfs in the MW halo as a function of 𝑀𝑉 . We consider
628
+ dwarfs with 0 > 𝑀𝑉 > −22, using 22 bins with 1 mag bin size. Note
629
+ that the size of our sample means that we are unlikely constraining
630
+ dwarfs with 𝑀𝑉 ≳ −10, which will not be represented by a large
631
+ enough number of stars (see e.g. Section 5.2). In blue, we show the
632
+ results when the Kirby et al. (2011) mass-metallicity relation is used,
633
+ which is appropriate for surviving dwarf galaxies in the MW. In re-
634
+ cent work, Naidu et al. (2022) (see also Fattahi et al. 2020) argue
635
+ that destroyed dwarfs may not lie on this relation, and a relation with
636
+ ∼ 0.3 dex offset to lower metallicities is more appropriate. We show
637
+ the results with this offset applied in orange.
638
+ Our model predicts several hundred (𝑁 ∼ 400) destroyed dwarfs
639
+ with 𝑀𝑉 ≲ −10. However, the different mass-metallicity relations
640
+ (relevant for either ‘surviving’ or ‘destroyed’ dwarfs) predict different
641
+ distributions of progenitor masses, particularly at larger masses. For
642
+ example, when using the Kirby et al. (2011) mass-metallicity relation
643
+ applicable for surviving dwarf galaxies, we estimate 𝑁 = 1 massive
644
+ dwarf progenitor with 𝐿 ∼ 108.5𝐿⊙, but this rises to 𝑁 = 3 when the
645
+ relation more relevant to destroyed dwarf galaxies is used instead.
646
+ This seems to be at odds with our adopted total halo luminosity of 𝐿 ∼
647
+ 1 × 109𝐿⊙. Indeed, by summing the predicted numbers of destroyed
648
+ dwarfs we find that the total luminosity when the Kirby et al. (2011)
649
+ relation is used is 1.1+0.2
650
+ −0.2 × 109𝐿⊙, but this rises to 3.4+7.2
651
+ −2.3 × 109𝐿⊙
652
+ when an 0.3 dex offset is applied to the mass-metallicity relation.
653
+ Clearly, in this latter case, the bias in metallicity has pushed the
654
+ progenitor masses higher, and, because we have allowed a fairly
655
+ flexible total luminosity, resulted in a high halo luminosity. However,
656
+ it is still consistent with the input luminosity within 1 − 𝜎.
657
+ In the bottom panel of Fig. 5 we show the results when the total
658
+ halo luminosity is fixed to 𝑀𝑉 = −17.7 (technically, an uncertainty
659
+ of 0.01 dex is adopted). Here, the ‘fiducial’ result using the Kirby
660
+ et al. (2011) mass-metallicity relation is only slightly changed. For
661
+ example, the most massive progenitor is shifted to a slightly lower
662
+ luminosity (by ∼ 1 dex in 𝑀𝑉 ), and the total number of dwarfs with
663
+ 𝑀𝑉 < −10 is reduced (𝑁 ∼ 300). In general, the changes are within
664
+ the predicted uncertainties. When an 0.3 dex metallicity offset is
665
+ applied to the mass-metallicity relation, fixing the halo luminosity
666
+ has a greater effect. This is unsurprising given that allowing for a
667
+ more flexible halo luminosity favours a higher value than the fiducial
668
+ 1×109𝐿⊙. In this case, the most massive progenitor has 𝐿 ∼ 108.1𝐿⊙
669
+ (compared to 𝑁 ∼ 3 with 𝐿 ∼ 108.5𝐿⊙ when the total luminosity
670
+ is more flexible). The number of low mass dwarfs is also reduced,
671
+ with 𝑁 ∼ 110 with 𝑀𝑉 < −10. This exercise emphasizes how
672
+ important the assumed total halo luminosity, as well as the adopted
673
+ mass-metallicity relation are for this type of analysis.
674
+ We also show the surviving dwarf satellite luminosity function for
675
+ comparison in Fig. 5. Here, we show the observed (solid purple) and
676
+ completeness-corrected (dashed purple) cumulative number counts
677
+ given by Drlica-Wagner et al. (2020). The numbers of low luminosity
678
+ satellite systems are much lower than the predicted number of de-
679
+ stroyed dwarfs. This is perhaps unsurprising given that our estimates
680
+ are likely overestimated at low luminosities, owing both to sample
681
+ size and our assumption of Gaussian MDFs (see Section 5.1). Inter-
682
+ estingly, the (cumulative) number counts are similar at intermediate
683
+ luminosities (−16 ≲ 𝑀𝑉 ≲ −12) but destroyed dwarfs as massive
684
+ as the LMC are not favoured unless the adopted mass-metallicity
685
+ relation is adjusted from the fiducial 𝑧 = 0 form.
686
+ Fattahi et al. (2020) show using the Auriga simulation suite that
687
+ the number of destroyed dwarfs in MW-mass haloes is larger than
688
+ MNRAS 000, 1–13 (2023)
689
+
690
+ Destroyed dwarfs with the MDF
691
+ 7
692
+ 20
693
+ 15
694
+ 10
695
+ 5
696
+ 0
697
+ MV
698
+ 10
699
+ 1
700
+ 100
701
+ 101
702
+ 102
703
+ 103
704
+ N(merged)
705
+ MW halo: MV =
706
+ 17.7 ± 0.5
707
+ 20
708
+ 15
709
+ 10
710
+ 5
711
+ 0
712
+ MV
713
+ 10
714
+ 1
715
+ 100
716
+ 101
717
+ 102
718
+ 103
719
+ N(merged < MV)
720
+ Satellite dwarf LF
721
+ Mass-Metallicity relation:
722
+ Kirby+2011
723
+ Kirby+2011
724
+ 0.3 dex
725
+ 20
726
+ 15
727
+ 10
728
+ 5
729
+ 0
730
+ MV
731
+ 10
732
+ 1
733
+ 100
734
+ 101
735
+ 102
736
+ 103
737
+ N(merged)
738
+ MW halo: MV =
739
+ 17.7 (fixed)
740
+ 20
741
+ 15
742
+ 10
743
+ 5
744
+ 0
745
+ MV
746
+ 10
747
+ 1
748
+ 100
749
+ 101
750
+ 102
751
+ 103
752
+ N(merged < MV)
753
+ Satellite dwarf LF
754
+ Mass-Metallicity relation:
755
+ Kirby+2011
756
+ Kirby+2011
757
+ 0.3 dex
758
+ Figure 5. The estimated differential (left) and cumulative (right) number of destroyed dwarfs in the MW halo. The dark(light) shaded regions show the
759
+ 16-84(1-99) percentiles, and the solid lines are the medians. The dashed black line indicates the assumed total stellar halo luminosity (𝑀𝑉 = −17.7). In the top
760
+ panels, the total luminosity has a flexible uncertainty of ±0.5 dex, whereas in the bottom panel the total luminosity is kept fixed. The results in blue are for when
761
+ the 𝑧 = 0 mass-metallicity relation for dwarfs is assumed (Kirby et al. 2011). In orange, we show the results when an −0.3 dex offset is applied to the relation,
762
+ which has been postulated to be more applicable to destroyed dwarfs (Naidu et al. 2022). For comparison, we show the surviving dwarf satellite luminosity
763
+ function in purple. The dashed line indicates the completeness-corrected LF derived by Drlica-Wagner et al. (2020).
764
+ the number of surviving satellites, at least down to 𝑀𝑉 ∼ −8. This is
765
+ in agreement with our results, however, our estimated total number
766
+ of destroyed dwarfs is far higher than these models (by a factor of
767
+ ∼ 3 − 10, see also Fig. 7). This could be a genuine tension with
768
+ the models, but it is worth stressing that our number estimates at
769
+ low luminosities are likely biased high, and the numbers could be
770
+ reduced if we had larger sample sizes and/or the metal-poor tails of
771
+ higher mass systems are taken into account (see Section 5.1).
772
+ Finally, given the heterogeneous nature of our sample of halo stars,
773
+ we consider how different cuts in surface gravity affect the results.
774
+ Namely, dwarf stars and giants can have different metallicity biases,
775
+ and probe different volumes in magnitude-limited surveys. The MDF
776
+ of our halo sample split by log(𝑔) was shown in Fig. 4. Here, we
777
+ MNRAS 000, 1–13 (2023)
778
+
779
+ 8
780
+ Deason, Koposov et al.
781
+ 22
782
+ 20
783
+ 18
784
+ 16
785
+ 14
786
+ 12
787
+ 10
788
+ 8
789
+ 6
790
+ 4
791
+ 2
792
+ 0
793
+ MV
794
+ 10
795
+ 1
796
+ 100
797
+ 101
798
+ 102
799
+ 103
800
+ N(merged < MV)
801
+ MV =
802
+ 17.7 (fixed)
803
+ All
804
+ log(g) > 3.5
805
+ log(g) < 3.5
806
+ Figure 6. The estimated cumulative number of destroyed dwarfs in the MW
807
+ halo. Same as Fig. 5, but split into two bins with low (log(g) < 3.5) and high
808
+ (log(g) > 3.5) surface gravity stars. The thick gray line indicates the overall
809
+ sample. The stellar halo luminosity is fixed (𝑀𝑉 = −17.7).
810
+ can see there are slight differences for low and high log(𝑔), and now
811
+ we consider how our inferred number counts of destroyed dwarfs
812
+ are affected. The cumulative number of destroyed dwarfs is shown
813
+ in Fig. 6 with two different bins of log(𝑔), appropriate for dwarf
814
+ stars (log(𝑔) > 3.5) and giants (log(𝑔) < 3.5). It is worth bearing in
815
+ mind that our overall sample is dominated by the high surface gravity
816
+ dwarf stars (approximately ∼ 2/3 have log(𝑔) > 3.5). Note that here
817
+ we only use the Kirby et al. (2011) mass-metallicity relation, and
818
+ the total halo luminosity is fixed. Encouragingly, the total number of
819
+ progenitors (for 𝑀𝑉 ≲ −10) is very similar for the two bins of log(𝑔).
820
+ However, massive progenitors (𝐿 ≳ 108𝐿⊙) are only favoured in the
821
+ high log(𝑔) sample. This is likely because the MDF is biased towards
822
+ lower metallicities for the giant star sample (see Fig. 4). Moreover,
823
+ the giant and dwarfs are probing slightly different volumes, with
824
+ the high surface gravity dwarfs more concentrated around the solar
825
+ neighbourhood. This exercise highlights the difficulty of using a
826
+ ‘hodge-podge’ of halo stars for our analysis, and it will clearly be
827
+ preferable for future work to have a more homogeneous sample,
828
+ where the selection function is clearly defined.
829
+ 4 AURIGA SIMULATIONS
830
+ Our modeling procedure makes various assumptions and simplifica-
831
+ tions. For example, it assumes each progenitor galaxy is sampled in a
832
+ representative way, and that their MDFs are adequately described by a
833
+ Gaussian distribution. In reality, this may not be the case, particularly
834
+ for volume-limited Galactic-sized stellar haloes. To this end, we test
835
+ our model on simulated MW stellar haloes, which are representative
836
+ of ‘realistic’ accreted populations. We apply our modeling procedure
837
+ to halo stars in the Auriga simulations (Grand et al. 2017); these cos-
838
+ mological hydrodynamical simulations are a suite of 𝑁 ∼ 30 high
839
+ resolution (𝑚 𝑝 ∼ 5×104𝑀⊙) MW-mass (1−2×1012𝑀⊙) haloes. In
840
+ this work, we make use of the 𝑁 = 28 haloes studied in Fattahi et al.
841
+ (2019), which omits two haloes currently undergoing major mergers.
842
+ We only consider accreted halo stars, which are identified in Fattahi
843
+ et al. (2019) as those that formed in subhaloes other than the main
844
+ progenitor galaxy.
845
+ For each halo, we construct a sample of halo star particles within
846
+ 𝑟 < 20 kpc. This is chosen to roughly mimic the volume limit of
847
+ current observations, and ensure large enough sample sizes. The in-
848
+ put into the model is the [Fe/H] values of the stellar particles. Of
849
+ course, in the simulations, we also know the progenitor galaxy of
850
+ each star particle, and can thus test the estimated mass spectrum of
851
+ accreted dwarfs from our modeling procedure. The final ingredient
852
+ we need to define is the mass-metallicity relation for the Auriga sim-
853
+ ulations. Grand et al. (2021) show that the mass-metallicity relation
854
+ for dwarf galaxies in Auriga is in good agreement with low mass
855
+ dwarfs (𝑀star ∼ 106𝑀⊙), but is too metal-rich by ∼ 0.5 dex for more
856
+ massive dwarfs (see Figure 13 in Grand et al. 2021). We use all the
857
+ destroyed dwarf progenitors across the 𝑁 = 28 Auriga haloes to cali-
858
+ brate this relation3. However, we do exclude dwarfs that are accreted
859
+ recently (less than 5 Gyr ago) as these can have significantly different
860
+ metallicities due to ongoing star formation. The debris from these
861
+ events is still included in the analysis, but our calibration is only based
862
+ on the relatively old dwarf galaxies. Note that we only consider dwarf
863
+ progenitors with 𝑀𝑉 > −7, which corresponds to a stellar mass of
864
+ 𝑀star > 105𝑀⊙ or 𝑁 > 2 star particles. We use the ‘peak’ stellar
865
+ mass of each dwarf, which corresponds to the maximum stellar mass
866
+ the progenitor has reached. Note that we get similar results if the
867
+ stellar mass at infall is used instead. The resulting mass-metallicity4
868
+ relation for Auriga is: [Fe/H] = −1.69 + 0.39 × (log10𝐿 − 6). To es-
869
+ timate the scatter around this mean relation, we calculate the scatter
870
+ for each individual halo, and use the median value across all haloes.
871
+ This results in a scatter around the mean [Fe/H] relation of 0.3 dex.
872
+ Finally, we consider the spread in [Fe/H] for individual dwarfs. Un-
873
+ like the observations, we find no strong evidence for a variation with
874
+ dwarf mass, so instead adopt a constant dispersion of 0.4 dex of
875
+ the MDF for all dwarfs. Armed with the mass-metallicity relation
876
+ appropriate for Auriga, we can now test our modeling procedure on
877
+ these cosmological haloes.
878
+ When applying our method to the Auriga haloes, we assume the
879
+ total luminosity of the halo is known. This of course results in addi-
880
+ tional uncertainty in the real observations, but we particularly want to
881
+ investigate the systematic influences present in the cosmological sim-
882
+ ulations. We consider accreted dwarfs in the range −7 > 𝑀𝑉 > −22,
883
+ and estimate the number of dwarfs in 15 bins with bin size of 1 mag.
884
+ Fig. 7 shows the resulting cumulative number of destroyed dwarfs
885
+ in the Auriga haloes. Each panel shows a different halo, and our
886
+ estimated numbers are shown with the solid black lines (median),
887
+ and blue/orange shaded regions (16-84/1-99 percentiles). The points
888
+ with error bars are the true values, with Poisson noise adopted for
889
+ the uncertainties in each 𝑀𝑉 bin. Note that the ‘true’ values include
890
+ all dwarfs that have deposited any material within 20 kpc of the
891
+ host halo. Thus, there can be cases where only a small fraction of
892
+ a destroyed dwarf is included in the sample (see below). The green
893
+ values in Fig. 7 are for all progenitors, while the purple are only
894
+ those accreted earlier than 5 Gyr ago. In many cases, there is little
895
+ difference between the green and purple values, because most dwarfs
896
+ are accreted at earlier times. However, we highlight the most recently
897
+ accreted dwarfs because these are likely not fully phase-mixed, and
898
+ can significantly deviate from the mass-metallicity relation for (old)
899
+ dwarf galaxies in Auriga (see above). In reality, we find that these
900
+ recently accreted dwarfs only cause a significant effect if the progen-
901
+ itors are relatively massive (e.g. Halo 25).
902
+ 3 To clarify, all destroyed dwarfs are used, not just those that have debris
903
+ within 20 kpc of the host halo
904
+ 4 Note that we assume a stellar mass-to-light ratio of (𝑀/𝐿) = 2 to convert
905
+ stellar mass to luminosity.
906
+ MNRAS 000, 1–13 (2023)
907
+
908
+ Destroyed dwarfs with the MDF
909
+ 9
910
+ 1
911
+ 10
912
+ 100
913
+ N(merged < MV)
914
+ halo_2
915
+ halo_3
916
+ halo_21
917
+ halo_23
918
+ halo_1
919
+ halo_22
920
+ halo_26
921
+ 1
922
+ 10
923
+ 100
924
+ N(merged < MV)
925
+ halo_4
926
+ halo_5
927
+ halo_27
928
+ halo_19
929
+ halo_25
930
+ halo_7
931
+ halo_6
932
+ 1
933
+ 10
934
+ 100
935
+ N(merged < MV)
936
+ halo_24
937
+ halo_30
938
+ halo_18
939
+ halo_15
940
+ halo_29
941
+ halo_28
942
+ halo_14
943
+ 10
944
+ 15
945
+ 20
946
+ MV
947
+ 1
948
+ 10
949
+ 100
950
+ N(merged < MV)
951
+ halo_16
952
+ 10
953
+ 15
954
+ 20
955
+ MV
956
+ halo_8
957
+ 10
958
+ 15
959
+ 20
960
+ MV
961
+ halo_9
962
+ 10
963
+ 15
964
+ 20
965
+ MV
966
+ halo_17
967
+ 10
968
+ 15
969
+ 20
970
+ MV
971
+ halo_13
972
+ 10
973
+ 15
974
+ 20
975
+ MV
976
+ halo_12
977
+ 10
978
+ 15
979
+ 20
980
+ MV
981
+ halo_10
982
+ Figure 7. The estimated cumulative number of destroyed dwarfs for the 𝑁 = 28 Auriga haloes. The solid black line shows the median, and the shaded
983
+ blue(orange) regions the 16-84(1-99) percentiles. The red dashed line indicates the assumed total luminosity of the halo. For each halo, accreted star particles are
984
+ selected within 𝑟 < 20 kpc. The points with (Poisson) error bars indicate the ‘truth’, with all progenitors shown in green, and only those accreted > 5 Gyr ago
985
+ in purple. The latter are shown because recently accreted dwarfs are likely (i) not fully phase-mixed, and (ii) can significantly deviate from the mass-metallicity
986
+ relation for (old) dwarf galaxies in Auriga.
987
+ We discuss these results more quantitatively below, but first cast
988
+ a qualitative eye on Fig. 7. In general, our estimates agree well with
989
+ the true mass spectrum of accreted dwarfs. However, in some cases,
990
+ there can be notable differences. We find that the most significant
991
+ deviations are due to the following: (1) relatively massive progenitors
992
+ that lie off the mass-metallicity relation (e.g. Halo 2, 6) and/or (2)
993
+ progenitors with a low fraction of their material within the given
994
+ radial range (e.g. Halo 15, 27). These systematics, and sometimes the
995
+ combination of both, are most likely to cause our method to fail. On
996
+ the other hand, there are a significant number of haloes for which we
997
+ recover the mass spectrum very well, which is encouraging given the
998
+ complexity of these hydrodynamic simulations, and the cosmological
999
+ nature of their assembly histories.
1000
+ In Fig. 8 we give a more quantitative summary of our tests of
1001
+ the Auriga haloes. Here, for each halo (identified in the x-axis) we
1002
+ show the fraction of 𝑀𝑉 bins that have number estimates that agree
1003
+ within the 16-84, 5-95, and 1-99 percentile confidence limits. The
1004
+ median recovery fractions across all haloes are 0.61, 0.77, and 0.83,
1005
+ respectively. These fractions are below the expected fractions for a
1006
+ ‘perfect’ procedure, but this is unsurprising given the various sys-
1007
+ tematic influences present in the simulations, such as deviations from
1008
+ the adopted mass-metallicity relation and the presence of stellar de-
1009
+ bris that does not fully occupy the available phase-space. These, of
1010
+ course, are realistic effects that could be present in the observational
1011
+ data.
1012
+ In Fig. 9 we explore the halo-to-halo scatter more closely. In the
1013
+ left-hand panel, we show the difference between the estimated and
1014
+ 1
1015
+ 2
1016
+ 3
1017
+ 4
1018
+ 5
1019
+ 6
1020
+ 7
1021
+ 8
1022
+ 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
1023
+ Halo ID
1024
+ 0.0
1025
+ 0.2
1026
+ 0.4
1027
+ 0.6
1028
+ 0.8
1029
+ 1.0
1030
+ Fraction
1031
+ 16-84
1032
+ 5-95
1033
+ 1-99
1034
+ Figure 8. Quantifying the test with Auriga haloes. For each halo, we show
1035
+ the fraction of 𝑀𝑉 bins (1 mag wide) that have estimated numbers that
1036
+ agree within the 16 − 84 (red-filled circles), 5 − 95 (blue-filled squares), and
1037
+ 1−99 (green-filled diamonds) percentage confidence limits, respectively. The
1038
+ median values are shown with the horizontal coloured lines.
1039
+ true cumulative numbers of destroyed dwarfs as a function of 𝑀𝑉 .
1040
+ The black line shows the median of the 𝑁 = 28 haloes, and the
1041
+ blue and orange shaded regions show the 16-84 and 1-99 percentiles,
1042
+ respectively. The deviation from the true numbers is fairly symmet-
1043
+ MNRAS 000, 1–13 (2023)
1044
+
1045
+ 10
1046
+ Deason, Koposov et al.
1047
+ 22
1048
+ 20
1049
+ 18
1050
+ 16
1051
+ 14
1052
+ 12
1053
+ 10
1054
+ 8
1055
+ MV
1056
+ 40
1057
+ 20
1058
+ 0
1059
+ 20
1060
+ 40
1061
+ N(<MV)Est - N(<MV)True
1062
+ 100
1063
+ 101
1064
+ 102
1065
+ N(<MV)True
1066
+ 100
1067
+ 101
1068
+ 102
1069
+ N(<MV)Est
1070
+ MV < -17.5
1071
+ MV < -14.5
1072
+ MV < -11.5
1073
+ MV < -8.5
1074
+ Figure 9. Comparing the estimated and true numbers of destroyed progenitors in the (𝑁 = 28) Auriga haloes. Left panel: We show the difference between the
1075
+ estimated and true (cumulative) numbers as a function of 𝑀𝑉 . The solid black line shows the median, and the shaded blue(orange) regions the 16-84(1-99)
1076
+ percentiles. Right panel: The estimated versus the true number in different ranges of 𝑀𝑉 . Error bars show the Poisson errors in the true numbers and the 16-84
1077
+ percentiles in the estimated numbers.
1078
+ rical and only starts to shift from zero for very low-mass progenitors.
1079
+ It is worth noting that there is a trend toward overestimating the
1080
+ number of accreted dwarfs at lower masses. This could be a real
1081
+ effect, caused by e.g the assumption of Gaussian MDFs, however,
1082
+ this low-mass regime may also be affected by resolution limitations
1083
+ in the simulations, as the MDFs of these dwarfs are only represented
1084
+ by a handful of star particles. In the right-hand panel, we show the
1085
+ estimated vs. true cumulative number of progenitors in four differ-
1086
+ ent magnitude ranges. Here, we can see that there is considerable
1087
+ scatter around the 1-to-1 line, but the spread is fairly symmetrical.
1088
+ Finally, to quantify these findings we compute the typical accuracy
1089
+ of our 𝑁(< 𝑀𝑉 ) estimates (averaged over all 𝑀𝑉 bins); we find that
1090
+ 𝑁(< 𝑀𝑉 )est/𝑁(< 𝑀𝑉 )true = 0.9+0.6
1091
+ −0.4. Thus, we estimate that our
1092
+ method is able to recover the true 𝑁(< 𝑀𝑉 ) within 50% for most
1093
+ 𝑀𝑉 bins.
1094
+ 5 DISCUSSION
1095
+ 5.1 Caveats and potential improvements
1096
+ Probably the most significant caveat in our modeling approach is the
1097
+ assumption of Gaussian MDFs. We know that galaxies are expected
1098
+ to have metallicity distributions that are not Gaussian (Revaz et al.
1099
+ 2009; Kirby et al. 2011, 2013). The details of non-Gaussianity heav-
1100
+ ily depend on the star formation history, the timescale and intensity
1101
+ of gas inflows (Lanfranchi & Matteucci 2004; Romano & Starken-
1102
+ burg 2013), and likely other processes. The non-Gaussianity is likely
1103
+ a bigger problem for more luminous systems, as they have more ex-
1104
+ tended star-formation histories compared to faint systems, which, in
1105
+ some cases, are consistent with a single burst of star formation be-
1106
+ fore reionization (Weisz et al. 2014). What is the possible systematic
1107
+ effect of neglecting the non-Gaussianity? Assuming that the non-
1108
+ Gaussianity is not caused by accreted systems, but is intrinsic, that
1109
+ would lead us to overestimate the number of accreted fainter systems.
1110
+ Thus our constraints would be upper limits on the number of accreted
1111
+ events. However, the Gaussian assumption is something that can be
1112
+ potentially fixed in our formalism. For example it could be done by
1113
+ assuming parametric MDF families from Kirby et al. (2011), where
1114
+ one would need to assume some dependence of the MDF parameters
1115
+ on galaxy luminosity.
1116
+ Another key assumption is that all of the accreted stars are com-
1117
+ ing from dwarf galaxies. However, it is likely that some fraction of
1118
+ stars (at least in the MW) are coming from disrupted globular clus-
1119
+ ters. If trends seen in more massive galaxies extend to faint dwarfs
1120
+ (Forbes et al. 2018; Huang & Koposov 2021; Eadie et al. 2022), we
1121
+ may expect that 0.1-1% of stars coming from disrupted GCs. The
1122
+ metallicity distribution of clusters is poorly understood, and since
1123
+ individual GCs have extremely narrow MDFs it is unclear if there is
1124
+ a solution to take GCs into account in our model.
1125
+ 5.2 Future prospects
1126
+ The MDF modeling procedure we have outlined in this work has
1127
+ compelling potential when applied to future spectroscopic datasets.
1128
+ In particular, the availability of much larger numbers of stars with
1129
+ metallicity measurements will allow us to probe to lower dwarf mass
1130
+ scales, and potentially constrain the number of destroyed ultra-faint
1131
+ dwarfs. These latter measurements would not only inform us about
1132
+ the low mass accretion history of galaxies but could also be used to
1133
+ constrain small-scale galaxy formation and the nature of dark matter
1134
+ (Deason et al. 2022).
1135
+ Here, we use toy models to estimate the sample sizes needed to
1136
+ probe down to the ultra-faint mass scale (𝑀𝑉 ≳ −8). Note here we
1137
+ focus on the ideal case and ignore the potential caveats discussed
1138
+ in the previous sub-section and elsewhere. We generate Gaussian
1139
+ MDFs that follow the Kirby et al. (2011) mass-metallicity relation,
1140
+ with varying sample sizes. We consider two example cases, one
1141
+ similar to a classical dwarf galaxy (𝑀𝑉 = −13.5), and another akin
1142
+ to a Galactic stellar halo with one main progenitor (𝑀𝑉 = −17.5).
1143
+ For each case, we generate the central MDFs with no lower mass
1144
+ progenitors, or with an additional 𝑁 = 10−50 low luminosity systems
1145
+ (𝑀𝑉 = −7.5). The results of this exercise are shown in Figs. 10 and
1146
+ 11.
1147
+ It is immediately clear that as the sample sizes increase, we can
1148
+ probe to lower mass scales. However, to probe down to the ultra-
1149
+ MNRAS 000, 1–13 (2023)
1150
+
1151
+ Destroyed dwarfs with the MDF
1152
+ 11
1153
+ 0
1154
+ 5
1155
+ 10
1156
+ 100
1157
+ 101
1158
+ 102
1159
+ N(merged < MV)
1160
+ N =500
1161
+ 0
1162
+ 5
1163
+ 10
1164
+ 100
1165
+ 101
1166
+ 102
1167
+ N =1000
1168
+ 0
1169
+ 5
1170
+ 10
1171
+ 100
1172
+ 101
1173
+ 102
1174
+ N =5000
1175
+ 0
1176
+ 5
1177
+ 10
1178
+ 100
1179
+ 101
1180
+ 102
1181
+ N =10000
1182
+ 0
1183
+ 5
1184
+ 10
1185
+ 100
1186
+ 101
1187
+ 102
1188
+ N(merged < MV)
1189
+ 0
1190
+ 5
1191
+ 10
1192
+ MV
1193
+ 100
1194
+ 101
1195
+ 102
1196
+ 0
1197
+ 5
1198
+ 10
1199
+ MV
1200
+ 100
1201
+ 101
1202
+ 102
1203
+ 0
1204
+ 5
1205
+ 10
1206
+ MV
1207
+ 100
1208
+ 101
1209
+ 102
1210
+ Figure 10. Testing the method on dwarf galaxies with toy fake data. Here, dwarfs are generated with Gaussian MDFs following the adopted 𝑧 = 0 mass-metallicity
1211
+ relation. In the top row, there are no merger events (just the MDF of the central galaxy, 𝑀𝑉 = −13.5). In the bottom row, 𝑁 = 10 low mass (𝑀𝑉 = −7.5)
1212
+ systems are included. The size of the samples generated increases with each column. The solid black line shows the median, and the shaded blue(orange) regions
1213
+ the 16-84(1-99) percentiles. The vertical red dashed line indicates the 𝑀𝑉 of the central galaxy, and the green dashed line shows the 𝑀𝑉 of the accreted system
1214
+ (if included). The true number of lower-mass systems is shown with the solid horizontal green line.
1215
+ 0
1216
+ 5
1217
+ 10
1218
+ 15
1219
+ 20
1220
+ 100
1221
+ 101
1222
+ 102
1223
+ N(merged < MV)
1224
+ N =10000
1225
+ 0
1226
+ 5
1227
+ 10
1228
+ 15
1229
+ 20
1230
+ 100
1231
+ 101
1232
+ 102
1233
+ N =50000
1234
+ 0
1235
+ 5
1236
+ 10
1237
+ 15
1238
+ 20
1239
+ 100
1240
+ 101
1241
+ 102
1242
+ N =100000
1243
+ 0
1244
+ 5
1245
+ 10
1246
+ 15
1247
+ 20
1248
+ 100
1249
+ 101
1250
+ 102
1251
+ N =500000
1252
+ 0
1253
+ 5
1254
+ 10
1255
+ 15
1256
+ 20
1257
+ MV
1258
+ 100
1259
+ 101
1260
+ 102
1261
+ N(merged < MV)
1262
+ 0
1263
+ 5
1264
+ 10
1265
+ 15
1266
+ 20
1267
+ MV
1268
+ 100
1269
+ 101
1270
+ 102
1271
+ 0
1272
+ 5
1273
+ 10
1274
+ 15
1275
+ 20
1276
+ MV
1277
+ 100
1278
+ 101
1279
+ 102
1280
+ 0
1281
+ 5
1282
+ 10
1283
+ 15
1284
+ 20
1285
+ MV
1286
+ 100
1287
+ 101
1288
+ 102
1289
+ Figure 11. Same as Fig. 10 but for MW haloes. Here, one massive progenitor is generated (𝑀𝑉 = −17.5) with no other progenitors (top panel), and with
1290
+ 𝑁 = 50 additional low mass progenitors (bottom panel).
1291
+ MNRAS 000, 1–13 (2023)
1292
+
1293
+ 12
1294
+ Deason, Koposov et al.
1295
+ faint regime requires significant sample sizes that are not currently
1296
+ available. For example, for a typical classical dwarf 𝑁 ≳ 5000 stars
1297
+ are needed to unambiguously detect low mass progenitors. On the
1298
+ other hand, for Galactic stellar haloes the sample sizes likely need to
1299
+ exceed 𝑁 ≳ 105. Although these numbers are larger than the sample
1300
+ sizes currently available, they are achievable with upcoming spectro-
1301
+ scopic surveys. Indeed, the large field-of-view and copious number
1302
+ of fibres available in the DESI, WEAVE, and 4MOST instruments,
1303
+ make them ideal tools for this task. Dedicated programs focusing
1304
+ on classical dwarf satellite galaxies could yield thousands of mem-
1305
+ ber stars with spectroscopic measurements. Furthermore, the MW
1306
+ surveys planned with these facilities are predicted to obtain measure-
1307
+ ments for 𝑁 ∼ 106 halo stars between 10 − 30 kpc (e.g. Cooper et al.
1308
+ 2022). These survey data will not only provide significant numbers
1309
+ of dwarf members and halo stars with metallicity measurements, but
1310
+ will also provide more homogeneous sampling, and well-defined se-
1311
+ lection functions. This latter point is a particular downside of the
1312
+ current implementation in this work, which relies on a combination
1313
+ of data samples with ill-defined selection functions. In summary, the
1314
+ method we propose here is poised to exploit upcoming datasets to
1315
+ robustly quantify the accreted populations of stars in the MW and
1316
+ their dwarf galaxies.
1317
+ 6 CONCLUSIONS
1318
+ We have introduced a new statistical method to model the MDF of
1319
+ a stellar population as an ensemble of individual components. These
1320
+ components follow the galaxy mass-metallicity relation and are as-
1321
+ sumed to be Gaussian distributed around their mean values (with a
1322
+ mass-dependent spread). We apply the method to observations of the
1323
+ MW halo and classical dwarf satellites, and we also test the procedure
1324
+ on cosmological hydrodynamical simulations of MW-mass haloes.
1325
+ Our main conclusions are summarised as follows:
1326
+ • Most samples of stars associated with MW dwarf satellites are
1327
+ too small to robustly probe lower mass accretion events. However, we
1328
+ do not find any evidence for significant mergers, and can indeed in
1329
+ some cases (e.g. Fornax, Leo I), rule out accreted components more
1330
+ massive than 𝑀𝑉 ,host + 5 (or 𝐿host/100).
1331
+ • We constructed a sample of MW halo stars within 𝑟 < 10 kpc
1332
+ using several spectroscopic surveys and Gaia data. By adopting the
1333
+ mass-metallicity relation applicable to surviving dwarf galaxies we
1334
+ find that one massive progenitor is favoured with 𝐿 ∼ 108.5𝐿⊙, and
1335
+ there are several hundred (𝑁 ∼ 400) progenitors in total down to
1336
+ 𝑀𝑉 < −10.
1337
+ • We also consider a mass-metallicity relation more appropriate
1338
+ for destroyed dwarf galaxies for the MW stellar halo, as suggested by
1339
+ Naidu et al. (2022). Here, 𝑁 = 3 massive progenitors are favoured,
1340
+ but the total number of progenitors down to 𝑀𝑉 < −10 is similar
1341
+ to the fiducial case. By placing a stringent constraint on the total
1342
+ halo luminosity (𝐿tot = 109𝑀⊙), the two different mass-metallicity
1343
+ relations give more similar results for massive progenitors, but the
1344
+ total number of progenitors differs more significantly (by a factor of
1345
+ 3).
1346
+ • We find that the total halo luminosity in our model, and the
1347
+ adopted mass-metallicity relation, are both important assumptions.
1348
+ The former can be constrained by other means (e.g. Deason et al.
1349
+ 2019; Mackereth & Bovy 2020), and more work needs to be done to
1350
+ understand the redshift evolution of the mass-metallicity relation.
1351
+ • Our modeling procedure is applied to the hydrodynamic cos-
1352
+ mological Auriga simulations, a suite of 𝑁 ∼ 30 MW-mass haloes.
1353
+ Here, many of our assumptions (e.g. phase-mixed material, Gaus-
1354
+ sian MDFs) are unlikely to hold, so this provides a strong test for
1355
+ our method. We find that, in many cases, our procedure works well,
1356
+ and most failures come from scatter in the mass-metallicity relation
1357
+ and/or recent accretion events not fully occupying the phase-space
1358
+ we are probing. In general, we find that we can recover the true lumi-
1359
+ nosity function (𝑁(< 𝑀𝑉 )) of destroyed dwarfs to within 50% for
1360
+ most 𝑀𝑉 bins.
1361
+ • Finally, we consider how the increase in sample sizes from
1362
+ future spectroscopic surveys can allow us to probe down to the ultra-
1363
+ faint dwarf mass scale (𝑀𝑉 > −10). We find that MW stellar halo
1364
+ samples with 𝑁 ∼ 106 tracers will allow us to probe down to 𝑀𝑉 >
1365
+ −10; encouragingly, this should be feasible with upcoming surveys
1366
+ such as DESI and WEAVE. Moreover, with sample sizes exceeding
1367
+ 𝑁 ∼ 5000 we should be able to probe the lower mass accretion events
1368
+ associated with classical dwarf satellites in the MW. Our ability to
1369
+ probe down to these puny stellar systems will enable us to address
1370
+ fundamental questions about galaxy formation at the lowest mass
1371
+ scales and, potentially, the nature of dark matter.
1372
+ We have shown that using only the MDF of an (accreted) stellar
1373
+ population, the mass-spectrum of its progenitors can be uncovered.
1374
+ This is encouraging for the upcoming generation of spectroscopic sur-
1375
+ veys of the MW. However, a possible extension of this work would
1376
+ be to combine the MDF modeling with phase-space data and/or ad-
1377
+ ditional chemical dimensions (see e.g. Cunningham et al. 2022).
1378
+ The addition of dynamical information could provide tighter con-
1379
+ straints on the luminosity function of destroyed dwarfs. In particular,
1380
+ where the MDF modeling is weakest, i.e. when the stellar material
1381
+ is un-mixed in phase-space, is likely where the dynamical data is the
1382
+ most informative. Moving forward, modeling in the chemodynami-
1383
+ cal space is the next logical step, and, importantly, we will have the
1384
+ data to do this. Thus, it is clear that future datasets combined with
1385
+ modeling methods such as that presented here will provide all the
1386
+ tools needed to finally quantify the accretion history of the Galaxy
1387
+ and its satellite population.
1388
+ ACKNOWLEDGEMENTS
1389
+ AD is supported by a Royal Society University Research Fellow-
1390
+ ship. AD acknowledges support from the Leverhulme Trust and the
1391
+ Science and Technology Facilities Council (STFC) [grant numbers
1392
+ ST/P000541/1, ST/T000244/1]. AF is supported by a UKRI Future
1393
+ Leaders Fellowship (grant no MR/T042362/1). RG acknowledges
1394
+ financial support from the Spanish Ministry of Science and Innova-
1395
+ tion (MICINN) through the Spanish State Research Agency, under
1396
+ the Severo Ochoa Program 2020-2023 (CEX2019-000920-S).
1397
+ This work used the DiRAC@Durham facility managed by the In-
1398
+ stitute for Computational Cosmology on behalf of the STFC DiRAC
1399
+ HPC Facility (www.dirac.ac.uk). The equipment was funded
1400
+ by BEIS capital funding via STFC capital grants ST/K00042X/1,
1401
+ ST/P002293/1, ST/R002371/1 and ST/S002502/1, Durham Univer-
1402
+ sity and STFC operations grant ST/R000832/1. DiRAC is part of the
1403
+ National e-Infrastructure.
1404
+ For the purpose of open access, the author has applied a Cre-
1405
+ ative Commons Attribution (CC BY) licence to any Author Accepted
1406
+ Manuscript version arising from this submission.
1407
+ AD thanks Ethan Nadler for providing the completeness-corrected
1408
+ estimates of the MW dwarf satellite luminosity function.
1409
+ MNRAS 000, 1–13 (2023)
1410
+
1411
+ Destroyed dwarfs with the MDF
1412
+ 13
1413
+ DATA AVAILABILITY
1414
+ The data analysed in this article can be made available upon reason-
1415
+ able request to the corresponding authors.
1416
+ The code used to perform the MDF modeling is available on
1417
+ Github5
1418
+ REFERENCES
1419
+ Abolfathi B., et al., 2018, ApJS, 235, 42
1420
+ Bailer-Jones C. A. L., Rybizki J., Fouesneau M., Demleitner M., Andrae R.,
1421
+ 2021, AJ, 161, 147
1422
+ Belokurov V., 2013, New Astron. Rev., 57, 100
1423
+ Belokurov V., et al., 2007a, ApJ, 657, L89
1424
+ Belokurov V., et al., 2007b, ApJ, 658, 337
1425
+ Belokurov V., Erkal D., Evans N. W., Koposov S. E., Deason A. J., 2018,
1426
+ MNRAS, 478, 611
1427
+ Belokurov V., Sanders J. L., Fattahi A., Smith M. C., Deason A. J., Evans
1428
+ N. W., Grand R. J. J., 2020, MNRAS, 494, 3880
1429
+ Benitez-Llambay A., Frenk C., 2020, MNRAS, 498, 4887
1430
+ Buder S., et al., 2021, MNRAS, 506, 150
1431
+ Callingham T. M., Cautun M., Deason A. J., Frenk C. S., Grand R. J. J.,
1432
+ Marinacci F., 2022, MNRAS, 513, 4107
1433
+ Chandra V., et al., 2022, arXiv e-prints, p. arXiv:2212.00806
1434
+ Conroy C., et al., 2019, ApJ, 883, 107
1435
+ Cooper A. P., et al., 2022, arXiv e-prints, p. arXiv:2208.08514
1436
+ Cunningham E. C., et al., 2022, ApJ, 934, 172
1437
+ Dalton G., et al., 2012, in McLean I. S., Ramsay S. K., Takami H., eds, Society
1438
+ of Photo-Optical Instrumentation Engineers (SPIE) Conference Series
1439
+ Vol. 8446, Ground-based and Airborne Instrumentation for Astronomy
1440
+ IV. p. 84460P, doi:10.1117/12.925950
1441
+ Deason A. J., Belokurov V., Sanders J. L., 2019, MNRAS, 490, 3426
1442
+ Deason A. J., Bose S., Fattahi A., Amorisco N. C., Hellwing W., Frenk C. S.,
1443
+ 2022, MNRAS, 511, 4044
1444
+ Dekel A., Silk J., 1986, ApJ, 303, 39
1445
+ Drlica-Wagner A., et al., 2020, ApJ, 893, 47
1446
+ Eadie G. M., Harris W. E., Springford A., 2022, ApJ, 926, 162
1447
+ Fattahi A., et al., 2019, MNRAS, 484, 4471
1448
+ Fattahi A., et al., 2020, MNRAS, 497, 4459
1449
+ Forbes D. A., Read J. I., Gieles M., Collins M. L. M., 2018, MNRAS, 481,
1450
+ 5592
1451
+ Fowlie A., Handley W., Su L., 2020, MNRAS, 497, 5256
1452
+ Gaia Collaboration et al., 2016, A&A, 595, A1
1453
+ Gaia Collaboration et al., 2021, A&A, 649, A1
1454
+ Grand R. J. J., et al., 2017, MNRAS, 467, 179
1455
+ Grand R. J. J., et al., 2021, MNRAS, 507, 4953
1456
+ Green P. J., 1995, Biometrika, 82, 711
1457
+ Helmi A., 2008, A&ARv, 15, 145
1458
+ Helmi A., Babusiaux C., Koppelman H. H., Massari D., Veljanoski J., Brown
1459
+ A. G. A., 2018, Nature, 563, 85
1460
+ Horta D., et al., 2021a, MNRAS, 500, 1385
1461
+ Horta D., et al., 2021b, MNRAS, 500, 5462
1462
+ Huang K.-W., Koposov S. E., 2021, MNRAS, 500, 986
1463
+ Johnston K. V., Bullock J. S., Sharma S., Font A., Robertson B. E., Leitner
1464
+ S. N., 2008, ApJ, 689, 936
1465
+ Jurić M., et al., 2008, ApJ, 673, 864
1466
+ Kirby E. N., Lanfranchi G. A., Simon J. D., Cohen J. G., Guhathakurta P.,
1467
+ 2011, ApJ, 727, 78
1468
+ Kirby E. N., Cohen J. G., Guhathakurta P., Cheng L., Bullock J. S., Gallazzi
1469
+ A., 2013, ApJ, 779, 102
1470
+ Koposov S., et al., 2008, ApJ, 686, 279
1471
+ Koposov
1472
+ S.,
1473
+ et
1474
+ al.,
1475
+ 2022a,
1476
+ joshspeagle/dynesty:
1477
+ v1.2.3,
1478
+ doi:10.5281/zenodo.6609296, https://doi.org/10.5281/zenodo.
1479
+ 6609296
1480
+ 5 https://github.com/segasai/mdf_modeling_paper
1481
+ Koposov S. E., et al., 2022b, arXiv e-prints, p. arXiv:2211.04495
1482
+ Kruijssen J. M. D., Pfeffer J. L., Reina-Campos M., Crain R. A., Bastian N.,
1483
+ 2019, MNRAS, 486, 3180
1484
+ Kunder A., et al., 2017, AJ, 153, 75
1485
+ Lanfranchi G. A., Matteucci F., 2004, MNRAS, 351, 1338
1486
+ Mackereth J. T., Bovy J., 2020, MNRAS, 492, 3631
1487
+ Majewski S. R., et al., 2004, AJ, 128, 245
1488
+ Majewski S. R., et al., 2017, AJ, 154, 94
1489
+ McConnachie A. W., 2012, AJ, 144, 4
1490
+ Myeong G. C., Belokurov V., Aguado D. S., Evans N. W., Caldwell N.,
1491
+ Bradley J., 2022, ApJ, 938, 21
1492
+ Nadler E. O., et al., 2020, ApJ, 893, 48
1493
+ Naidu R. P., Conroy C., Bonaca A., Johnson B. D., Ting Y.-S., Caldwell N.,
1494
+ Zaritsky D., Cargile P. A., 2020, ApJ, 901, 48
1495
+ Naidu R. P., et al., 2022, arXiv e-prints, p. arXiv:2204.09057
1496
+ Newberg H. J., et al., 2003, ApJ, 596, L191
1497
+ Purcell C. W., Bullock J. S., Zentner A. R., 2007, ApJ, 666, 20
1498
+ Revaz Y., et al., 2009, A&A, 501, 189
1499
+ Rix H.-W., et al., 2022, ApJ, 941, 45
1500
+ Romano D., Starkenburg E., 2013, MNRAS, 434, 471
1501
+ Simion I. T., Belokurov V., Koposov S. E., 2019, MNRAS, 482, 921
1502
+ Simon J. D., 2019, ARA&A, 57, 375
1503
+ Skillman E. D., Kennicutt R. C., Hodge P. W., 1989, ApJ, 347, 875
1504
+ Speagle J. S., 2020, MNRAS, 493, 3132
1505
+ Taibi S., Battaglia G., Leaman R., Brooks A., Riggs C., Munshi F., Revaz Y.,
1506
+ Jablonka P., 2022, A&A, 665, A92
1507
+ Tollerud E. J., Bullock J. S., Strigari L. E., Willman B., 2008, ApJ, 688, 277
1508
+ Tolstoy E., Hill V., Tosi M., 2009, ARA&A, 47, 371
1509
+ Tremonti C. A., et al., 2004, ApJ, 613, 898
1510
+ Venn K. A., Irwin M., Shetrone M. D., Tout C. A., Hill V., Tolstoy E., 2004,
1511
+ AJ, 128, 1177
1512
+ Walker M. G., Peñarrubia J., 2011, ApJ, 742, 20
1513
+ Walker M. G., Mateo M., Olszewski E. W., Gnedin O. Y., Wang X., Sen B.,
1514
+ Woodroofe M., 2007, ApJ, 667, L53
1515
+ Weisz D. R., Dolphin A. E., Skillman E. D., Holtzman J., Gilbert K. M.,
1516
+ Dalcanton J. J., Williams B. F., 2014, ApJ, 789, 148
1517
+ Zhao G., Zhao Y.-H., Chu Y.-Q., Jing Y.-P., Deng L.-C., 2012, Research in
1518
+ Astronomy and Astrophysics, 12, 723
1519
+ de Jong R. S., et al., 2019, The Messenger, 175, 3
1520
+ This paper has been typeset from a TEX/LATEX file prepared by the author.
1521
+ MNRAS 000, 1–13 (2023)
1522
+
ANE3T4oBgHgl3EQfsQvt/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
CdA0T4oBgHgl3EQfAf80/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3ed3048861d0234c800b79e69916404e4e77e332ed125e3b56f545db4a897f69
3
+ size 5832749
CdA0T4oBgHgl3EQfAf80/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4ce119295c7ffa30f5f8bad79dba507ad3eeaf0c4b50e56839d47208d0710463
3
+ size 217696
CdAyT4oBgHgl3EQfR_ex/content/2301.00078v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:597b36a890a0710654a47970108a4a3bda400d9c6abce163293dfbabd4107c30
3
+ size 17029956
D9E1T4oBgHgl3EQfWgQs/content/2301.03114v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a6daf61373995572892cae0f6a8b8e7f1cfe4cc9dfa797199aaf53682788ea77
3
+ size 16024585
DdAzT4oBgHgl3EQfwf7y/content/tmp_files/2301.01725v1.pdf.txt ADDED
@@ -0,0 +1,1707 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Including the effect of depth-uniform ambient currents on waves in a
2
+ non-hydrostatic wave-flow model
3
+ Dirk P. Rijnsdorpa,∗, Arnold van Rooijenb, Ad Reniersa, Marion Tissiera, Floris de Wita,c, Marcel Zijlemaa
4
+ aEnvironmental Fluid Mechanics section, Faculty of Civil Engineering and Geosciences, Delft University of Technology,
5
+ Netherlands
6
+ bOceans Graduate School & UWA Oceans Institute, The University of Western Australia, Australia
7
+ cSvasek Hydraulics, The Netherlands
8
+ Abstract
9
+ Currents can affect the evolution of waves in nearshore regions through altering their wavenumber and
10
+ amplitude. Including the effect of ambient currents (e.g., tidal and wind-driven) on waves in phase-resolving
11
+ wave models is not straightforward as it requires appropriate boundary conditions in combination with a
12
+ large domain size and long simulation duration. In this paper, we extended the non-hydrostatic wave-flow
13
+ model SWASH with additional terms that account for the influence of a depth-uniform ambient current on
14
+ the wave dynamics, in which the current field can be taken from an external source (e.g., from observations
15
+ or a circulation model). We verified the model ability by comparing predictions to results from linear theory,
16
+ laboratory experiments and a spectral wave model that accounts for wave interference effects. With this
17
+ extension, the model was able to account for current-induced changes to the wave field (i.e., changes to the
18
+ wave amplitude, length and direction) due to following and opposing currents, and two classical examples of
19
+ sheared currents (a jet-like current and vortex ring). Furthermore, the model captured the wave dynamics
20
+ in the presence of strong opposing currents. This includes reflections of relatively small amplitude waves at
21
+ the theoretical blocking point, and transmission of breaking waves beyond the theoretical blocking point for
22
+ larger wave amplitudes. The proposed model extension allows phase-resolving models to more accurately
23
+ and efficiently simulate the wave dynamics in coastal regions with tidal and/or wind-driven flows.
24
+ Keywords:
25
+ wave-current interactions, non-hydrostatic, SWASH.
26
+ 1. Introduction
27
+ Complex coastal regions such as estuaries and tidal inlets often feature the joint occurrence of surface
28
+ gravity waves (e.g., swell and wind seas) and currents (e.g., riverine, tidal, and wind-driven flows). These
29
+ processes typically occur at different spatial and temporal length scales.
30
+ Currents generally experience
31
+ ∗Corresponding author.
32
+ Email address: [email protected] (Dirk P. Rijnsdorp)
33
+ Preprint submitted to Elsevier
34
+ January 5, 2023
35
+ arXiv:2301.01725v1 [physics.flu-dyn] 4 Jan 2023
36
+
37
+ variations at hour to day timescales and over O(km) length scales. To the contrary, waves have periods of
38
+ several seconds and length scales of O(10 − 100 m).
39
+ Waves propagating over spatially varying currents conserve wave action (e.g., Bretherton and Garret,
40
+ 1968; Mei et al., 2005) but experience a change in their wavelength associated with the Doppler’ shift (e.g.,
41
+ Peregrine, 1976; Holthuijsen, 2007). As a result, the wave celerity and group velocity change, resulting in
42
+ changes in wave amplitude and wave direction (current-induced shoaling and refraction). In strong currents
43
+ that oppose the direction of wave propagation, the group velocity cg approaches zero, resulting in significant
44
+ increases of the wave height and wave-blocking when cg = 0 (e.g., Chawla and Kirby, 2002). Furthermore,
45
+ waves steepen in opposing currents which may trigger wave breaking resulting in additional dissipation of
46
+ wave energy (e.g., Chawla and Kirby, 2002). Current-induced changes in the wave shape can in turn impact
47
+ the magnitude of wave-driven sediment transport (e.g., Roelvink and Stive, 1989; Hoefel and Elgar, 2003).
48
+ Including for the current effects on waves is thus important when predicting sediment transport and the
49
+ resulting morphological changes in coastal regions.
50
+ To date, modelling of combined wave-current actions in coastal regions has generally relied on the
51
+ coupling of phase-averaged wave models and circulation models (e.g., Lesser et al., 2004; Roelvink et al.,
52
+ 2009; Uchiyama et al., 2010; Kumar et al., 2012; Dodet et al., 2013; Olabarrieta et al., 2014) through either
53
+ the radiation stress (e.g., Longuet-Higgins and Stewart, 1962, 1964) or vortex force formalism (e.g., Craik
54
+ and Leibovich, 1976; McWilliams et al., 2004). Such coupled models have been successfully adopted to
55
+ simulate the hydrodynamics in a variety of nearshore regions, ranging from sandy beaches (e.g., Orzech
56
+ et al., 2011; Hansen et al., 2015; Luijendijk et al., 2017; Rafati et al., 2021) to tidal inlets and rivers where
57
+ strong ambient currents can occur (e.g., Dodet et al., 2013; Chen et al., 2015; Nienhuis et al., 2016; Hopkins
58
+ et al., 2018). However, such a coupled approach relies on spectral wave models that do not intrinsically
59
+ account for phase-dependent (e.g., wave-interference and diffraction) and nonlinear wave processes (e.g.,
60
+ triad interactions and wave breaking) but rely on parametrizations thereof.
61
+ As an alternative to phase-averaged wave models, phase-resolving wave models have been developed
62
+ to simulate the nearshore evolution of waves in the presence of ambient currents. Linear phase-resolving
63
+ wave models based on the mild-slope equations have been shown to capture changes to the wave kinematics
64
+ associated with the Doppler shift (e.g., Booij, 1981; Kirby and Dalrymple, 1986). This has allowed such
65
+ models to capture the effect of prescribed ambient currents on the nearshore wave evolution (e.g., Chen
66
+ et al., 2005; Touboul et al., 2016). Models based on the mild-slope equations generally rely on assumptions
67
+ of linear wave theory, although they can be extended to account for higher order wave effects (e.g., Kaihatu
68
+ and Kirby, 1995). Furthermore, they do not inherently account for wave-induced currents but require a
69
+ coupling to a circulation model to capture such effects.
70
+ Alternatively, weakly to fully nonlinear phase-resolving wave-flow models based on Boussinesq-type for-
71
+ mulations (e.g., Peregrine, 1967; Madsen et al., 1991; Nwogu, 1993; Kirby, 2016) or the non-hydrostatic
72
+ 2
73
+
74
+ approach (e.g., Zijlema et al., 2011; Ma et al., 2012; Wei and Jia, 2014) can be used to simulate waves and
75
+ wave-induced currents in coastal regions (e.g., Chen et al., 1999; Feddersen et al., 2011; Rijnsdorp et al.,
76
+ 2015; Baker et al., 2021). Such models intrinsically account for phase-dependent wave effects, nonlinear
77
+ wave interactions, and the generation of wave-induced currents (e.g., longshore currents and rip currents).
78
+ However, directly including tidal and/or wind-driven currents in such models is not straightforward due to
79
+ the range of spatial and temporal scales required. For example, including tidal currents in a phase-resolving
80
+ model would typically require a significantly larger computational time to allow for spin-up of the tidal flow
81
+ and a larger domain with appropriate boundary conditions to allow for the propagation of the tidal wave
82
+ in and out of the domain. Due to the excessive computational costs of such a model setup, this presently
83
+ inhibits a direct inclusion of such currents in phase-resolving wave-flow models.
84
+ Several efforts have been made to account for the interactions between waves and a prescribed ambient
85
+ current in nonlinear phase-resolving models based on the Boussinesq or non-hydrostatic approach. Most
86
+ efforts focused on extending Boussinesq-type formulations to account for interactions between waves and an
87
+ ambient current (e.g., Son and Lynett, 2014; Yang and Liu, 2020, 2022). Efforts to extend non-hydrostatic
88
+ models have been limited to de Wit et al. (2017), who added a spatially homogeneous pressure term in the
89
+ alongshore momentum equation of a non-hydrostatic model to simulate the nearshore wave dynamics in the
90
+ presence of alongshore tidal flows at a sandy beach. Despite this progress on including the effect of ambient
91
+ currents on waves in nonlinear phase-resolving wave-flow models, their application at complex coastal sites
92
+ have not yet been able to account for the effect of spatially varying current fields from tides and/or wind on
93
+ the wave dynamics (e.g., Risandi et al., 2020; Rijnsdorp et al., 2021; Baker et al., 2021).
94
+ In this work, we extend the non-hydrostatic wave model SWASH (Zijlema et al., 2011) to account
95
+ for the effect of a prescribed depth-uniform ambient current on the wave dynamics, in which the current
96
+ field can be obtained from an external source (e.g., observations or a circulation model). By introducing a
97
+ separation of scales and assuming vertically uniform mean flows, we derive additional terms to the governing
98
+ equations that account for the effect of a spatially varying depth-uniform current on the waves (Section 2).
99
+ Comparisons with linear wave theory, a spectral wave model and flume experiments show that the proposed
100
+ model is able to account for changes in the wave height and wavelength due to an ambient currents (Section
101
+ 3-4). In Section 5-6, we conclude that the proposed extension allows non-hydrostatic models to account for
102
+ the effect of ambient currents on waves.
103
+ 2. Numerical Methodology
104
+ 2.1. Governing equations
105
+ The governing equations of the model are the Reynolds-Averaged Navier-Stokes (RANS) equations for
106
+ an incompressible fluid that is bounded by the bottom d(x, y) and a free-surface ζ(x, y, t), where (x, y, z)
107
+ 3
108
+
109
+ are the Cartesian coordinates and t is time,
110
+ ∂u
111
+ ∂x + ∂v
112
+ ∂y + ∂w
113
+ ∂z = 0,
114
+ (1)
115
+ ∂u
116
+ ∂t + u∂u
117
+ ∂x + v ∂u
118
+ ∂y + w∂u
119
+ ∂z + g ∂ζ
120
+ ∂x + ∂pnh
121
+ ∂x
122
+ = ∂τxx
123
+ ∂x + ∂τxy
124
+ ∂y
125
+ + ∂τxz
126
+ ∂z ,
127
+ (2)
128
+ ∂v
129
+ ∂t + u∂v
130
+ ∂x + v ∂v
131
+ ∂y + w∂v
132
+ ∂z + g ∂ζ
133
+ ∂y + ∂pnh
134
+ ∂y
135
+ = ∂τyx
136
+ ∂x + ∂τyy
137
+ ∂y + ∂τyz
138
+ ∂z ,
139
+ (3)
140
+ ∂w
141
+ ∂t + u∂w
142
+ ∂x + v ∂w
143
+ ∂y + w∂w
144
+ ∂z + ∂pnh
145
+ ∂z
146
+ = ∂τzx
147
+ ∂x + ∂τzy
148
+ ∂y + ∂τzz
149
+ ∂z .
150
+ (4)
151
+ In this set of equations, pnh is the non-hydrostatic pressure, (u, v, w) are the velocity components in (x, y, z)
152
+ direction, respectively, τ represents the turbulent stress (estimated using an eddy viscosity approximation).
153
+ The kinematic boundary conditions at the bottom and the free-surface follow from the assumption that the
154
+ vertical boundaries of the fluid are single valued functions of the horizontal coordinates,
155
+ wz=ζ = ∂ζ
156
+ ∂t + u ∂ζ
157
+ ∂x + v ∂ζ
158
+ ∂y ,
159
+ (5)
160
+ wz=−d = −u∂d
161
+ ∂x − v ∂d
162
+ ∂y .
163
+ (6)
164
+ Integrating the local continuity equation over the water column results in a global continuity equation that
165
+ describes the temporal evolution of the free-surface,
166
+ ∂ζ
167
+ ∂t + ∂
168
+ ∂x
169
+ ζ
170
+
171
+ −d
172
+ udz + ∂
173
+ ∂y
174
+ ζ
175
+
176
+ −d
177
+ vdz = 0.
178
+ (7)
179
+ Assuming a constant atmospheric pressure (equal to zero for convenience) and neglecting viscous stresses
180
+ at the free-surface, the non-hydrostatic pressure is set to zero at the free-surface (e.g., Stelling and Zijlema,
181
+ 2003). At the bottom, the tangential stress is prescribed based on the quadratic friction law (in the case
182
+ of a coarse vertical resolution) or the law of the wall (in the case of a fine vertical resolution). Turbulent
183
+ stresses are modelled using the eddy-viscosity model and the k-ϵ turbulence closure model (See Rijnsdorp
184
+ et al., 2017, for more details). Combined with boundary conditions at all horizontal edges of the physical
185
+ domain, the above set of equations forms the basis of the SWASH model.
186
+ 2.2. Including the effect of currents on waves
187
+ In this work, we set out to decouple the modelling of the surface waves and the currents that are
188
+ slowly-varying with respect to the wave timescale (e.g., tidal currents and wind-driven currents). With this
189
+ approach, we aim to account for the current effect on waves through prescribing an ambient current field
190
+ from an other model (e.g., a circulation model) that alters the wave dynamics solved by the RANS equations.
191
+ 4
192
+
193
+ To this end, we separate the horizontal flow variables and surface elevation as,
194
+ u(x, y, z, t) = U(x, y) + u′(x, y, z, t),
195
+ (8)
196
+ v(x, y, z, t) = V (x, y) + v′(x, y, z, t),
197
+ (9)
198
+ ζ(x, y, t) = η(x, y) + ζ′(x, y, t).
199
+ (10)
200
+ In these equations, [...]′ denotes variables which we associate with wave-related motions and wave-induced
201
+ currents. Capital letters (U and V ) represent vertically uniform horizontal flow velocities and η a mean
202
+ water level, which both vary over a timescale much larger than the wave motions and are considered to be
203
+ constant over the wave-timescale. Substituting this separation of variables into the governing equations and
204
+ neglecting the viscous contributions and tangential stress at the bottom yields,
205
+ ∂U + u′
206
+ ∂x
207
+ + ∂V + v′
208
+ ∂y
209
+ + ∂w
210
+ ∂z = 0,
211
+ (11)
212
+ ∂U + u′
213
+ ∂t
214
+ + (U + u′)∂U + u′
215
+ ∂x
216
+ + (V + v′)∂U + u′
217
+ ∂y
218
+ + w∂U + u′
219
+ ∂z
220
+ + g ∂η + ζ′
221
+ ∂x
222
+ + ∂pnh
223
+ ∂x
224
+ = 0,
225
+ (12)
226
+ ∂V + v′
227
+ ∂t
228
+ + (U + u′)∂V + v′
229
+ ∂x
230
+ + (V + v′)∂V + v′
231
+ ∂y
232
+ + w∂V + v′
233
+ ∂z
234
+ + g ∂η + ζ′
235
+ ∂y
236
+ + ∂pnh
237
+ ∂y
238
+ = 0,
239
+ (13)
240
+ ∂w
241
+ ∂t + (U + u′)∂w
242
+ ∂x + (V + v′)∂w
243
+ ∂y + w∂w
244
+ ∂z + ∂pnh
245
+ ∂z
246
+ = 0,
247
+ (14)
248
+ ∂η + ζ′
249
+ ∂t
250
+ + ∂
251
+ ∂x
252
+ η+ζ′
253
+
254
+ −d
255
+ (U + u′)dz + ∂
256
+ ∂y
257
+ η+ζ′
258
+
259
+ −d
260
+ (V + v′)dz = 0.
261
+ (15)
262
+ By taking the temporal average over the wave-motion scales and integrating the horizontal momentum
263
+ equations over the vertical we obtain the following depth-averaged mean flow equations,
264
+ ∂U
265
+ ∂x + ∂V
266
+ ∂y = 0,
267
+ (16)
268
+ ∂U
269
+ ∂t + U ∂U
270
+ ∂x + V ∂U
271
+ ∂y + g ∂η
272
+ ∂x = −
273
+ η
274
+
275
+ −d
276
+ (u′ ∂u′
277
+ ∂x + v′ ∂u′
278
+ ∂y )dz,
279
+ (17)
280
+ ∂V
281
+ ∂t + U ∂V
282
+ ∂x + V ∂V
283
+ ∂y + g ∂η
284
+ ∂y = −
285
+ η
286
+
287
+ −d
288
+ (u′ ∂v′
289
+ ∂x + v′ ∂v′
290
+ ∂y )dz,
291
+ (18)
292
+ ∂η
293
+ ∂t + ∂ (d + η) U
294
+ ∂x
295
+ + ∂ (d + η) V
296
+ ∂y
297
+ = − ∂
298
+ ∂x
299
+ η+ζ′
300
+
301
+ −d
302
+ u′dz − ∂
303
+ ∂y
304
+ η+ζ′
305
+
306
+ −d
307
+ v′dz.
308
+ (19)
309
+ In these equations, we can recognise the contribution to the radiation stress gradient from the orbital
310
+ velocities (e.g., u′ ∂u′
311
+ ∂x ) and contributions in the global continuity equation that are related to stokes drift
312
+ (i.e., the part of the integral above the wave trough in the right-hand-side of Eq. 19). In the following we
313
+ assume that waves do not influence the ambient currents, and neglect these contributions in the mean flow
314
+ equations.
315
+ 5
316
+
317
+ Subsequently, we derive a new set of wave equations by subtracting the mean equations (16)-(19) from
318
+ the instantaneous equations (11)-(15),
319
+ ∂u′
320
+ ∂x + ∂v′
321
+ ∂y + ∂w
322
+ ∂z = 0,
323
+ (20)
324
+ ∂u′
325
+ ∂t + u′ ∂u′
326
+ ∂x + v′ ∂u′
327
+ ∂y + w∂u′
328
+ ∂z + g ∂ζ′
329
+ ∂x + ∂pnh
330
+ ∂x
331
+ = −(U ∂u′
332
+ ∂x + u′ ∂U
333
+ ∂x + V ∂u′
334
+ ∂y + v′ ∂U
335
+ ∂y ),
336
+ (21)
337
+ ∂v′
338
+ ∂t + u′ ∂v′
339
+ ∂x + v′ ∂v′
340
+ ∂y + w∂v′
341
+ ∂z + g ∂ζ′
342
+ ∂y + ∂pnh
343
+ ∂y
344
+ = −(U ∂v′
345
+ ∂x + u′ ∂V
346
+ ∂x + V ∂v′
347
+ ∂y + v′ ∂V
348
+ ∂y ),
349
+ (22)
350
+ ∂w
351
+ ∂t + u′ ∂w
352
+ ∂x + v′ ∂w
353
+ ∂y + w∂w
354
+ ∂z + ∂pnh
355
+ ∂z
356
+ = −(U ∂w
357
+ ∂x + V ∂w
358
+ ∂y ),
359
+ (23)
360
+ ∂ζ′
361
+ ∂t + ∂
362
+ ∂x
363
+ η+ζ′
364
+
365
+ −d
366
+ u′dz + ∂
367
+ ∂y
368
+ η+ζ′
369
+
370
+ −d
371
+ v′dz = −∂ζ′U
372
+ ���x
373
+ − ∂ζ′V
374
+ ∂y .
375
+ (24)
376
+ In the above set of equations, we can recognise the original set of equations (when dropping the prime
377
+ superscripts) including several additional terms (on the right-hand-side) that account for the influence of a
378
+ depth-uniform ambient current on the wave motions. We note that the influence of changes in the mean
379
+ water level associated with the ambient current in the global continuity equation (i.e., the integral up to η+ζ′
380
+ in Eq. (24)) can be straightforwardly incorporated by incorporating η in the still water depth (d = d + η).
381
+ 2.3. Numerical implementation
382
+ In the numerical implementation of the governing set of equations, the continuous description of time
383
+ and horizontal dimensions are replaced by discrete approximations. In SWASH, the equations are discretised
384
+ on regular or curvilinear grid for the horizontal dimensions and a terrain-following layering system for the
385
+ vertical coordinate. A staggered grid arrangement is used to position the flow variables on the grid. Further
386
+ details regarding the numerical implementation of the original set of equations can be found in several
387
+ previous papers (e.g., Stelling and Zijlema, 2003; Zijlema and Stelling, 2005; Zijlema et al., 2011), and will
388
+ not be detailed here.
389
+ 𝑖!
390
+ 𝑖 + 1!
391
+ 𝑖"
392
+ 𝑖
393
+ 𝑖 + 1
394
+ 𝜁#, 𝑈
395
+ 𝑢#
396
+ 𝑖 − 1"
397
+ 𝑖 − 1
398
+ Figure 1: Illustration of the arrangement of the ambient velocity U and wave-related variables [ζ, u] on the computational grid.
399
+ 6
400
+
401
+ The flow velocities [U, V ] from the ambient current are positioned on the grid at the same location as
402
+ the free-surface variable of the original set of equations ζ′ (i.e., at horizontal cell centres, see Fig. 1). Linear
403
+ interpolation is used to define the ambient current on the SWASH grid in the case that the ambient current is
404
+ provided on a coarser grid. The numerical implementation of the additional terms is – where possible – based
405
+ on the existing implementation of the advective terms. The terms in the horizontal momentum equations
406
+ are discretised using the MacCormack predictor-corrector technique (MacCormack, 1969) combined with
407
+ flux limiters (See Zijlema et al., 2011, for more details). We use a flux limited first-order Euler scheme to
408
+ discretise the terms in the vertical momentum equation. Finally, the terms in the global continuity equation
409
+ are discretised using central differences and the Crank-Nicholson method.
410
+ 3. Linear properties of the model equations
411
+ We analysed the linear properties of the model equations by deriving the numerical linear dispersion
412
+ relationship (see Appendix
413
+ C) to verify that the model captures the effect of currents on waves.
414
+ The
415
+ numerical dispersion relationship derived from the extended model equations (20)-(24) provides a polynomial
416
+ relationship fN between the absolute wave frequency ω (in the reference frame of a stationary observer) and
417
+ the wavenumber k for depth d and current velocity U depending on the number of layers N,
418
+ ω = fN(k, d, U, N).
419
+ (25)
420
+ We compared linear wave properties based on this numerical dispersion relationship with the Doppler
421
+ shifted dispersion relationship from linear theory (e.g., Holthuijsen, 2007),
422
+ ω − kU = σ =
423
+
424
+ gk tanh kd,
425
+ (26)
426
+ in which σ is the intrinsic angular frequency (in the reference frame of an observer that is moving with the
427
+ current). Based on this numerical and linear dispersion relationship, several wave properties can be derived.
428
+ The relative group velocity (in a reference frame moving with the current) is given by cg,r = ∂σ
429
+ ∂k , and the
430
+ absolute group velocity (in the reference frame of a fixed observer) is cg = cg,r + U.
431
+ Furthermore, we also compared the numerical dispersion relationship of the extended model equations
432
+ to the Doppler shifted numerical relationship of the original model equations,
433
+ ω − kU = σ = fN,U=0(k, d, N),
434
+ (27)
435
+ where fN,U=0 is the numerical dispersion relationship in the absence of a current (Smit et al., 2014). This
436
+ Doppler shifted numerical dispersion relationship provides the influence of a current on waves when the
437
+ current is simulated as part of the model equations (e.g., by means of a pump system as described in
438
+ Appendix B). Importantly, we found that all linear properties based on Eq. (25) (the numerical dispersion
439
+ 7
440
+
441
+ Figure 2: Absolute relative error in the absolute wave frequency ω (panel a-c) and relative group velocity cg,r = ∂σ
442
+ ∂k (panel
443
+ d-f) as a function of the normalized water depth kd for U = [0, −2, −4] m/s (left to right panels, as indicated by the subplot
444
+ titles) based on the numerical dispersion relationship of the N layer system. Results are shown for N = [1, 2, 4] layers. The
445
+ vertical dashed lines indicate where blocking occurs, with the colors indicating the number of layers of the numerical dispersion
446
+ relationship. The vertical black line indicates where blocking occurs according to the linear dispersion relionship.
447
+ relationship of the extended model equations) and Eq.
448
+ (27) (the Doppler shifted numerical dispersion
449
+ relationship) were identical. This confirms that the linear effect of current on waves can be captured by
450
+ including additional terms in the model equations.
451
+ In the remainder of this section, we therefore only
452
+ compared linear wave properties based on the numerical dispersion relationship of the extended model
453
+ equations (25) and the Doppler shifted dispersion relationship based on linear theory (26).
454
+ Assuming that the horizontal scales are sufficiently resolved, the dispersive property of the model depends
455
+ on the number of vertical layers (Fig. 2b). Introducing a current does not significantly affect the error in
456
+ wave dispersion, as ∆ω under currents is comparable to the case with U = 0 m/s (compare Fig. 2a,c,d with
457
+ Fig. 2b). Discrepancies in cg,r similarly depend on the number of layers and are not significantly affected
458
+ by introducing a current (Fig. 2e-f). When introducing an opposing current (U < 0), no wave solution
459
+ exists beyond a certain kd as indicated by the vertical lines in Fig. 2c-d and 2g-h. Here, waves are blocked
460
+ as cg = 0. The kd at which blocking occurs is sensitive to the number of layers, and is in better agreement
461
+ with linear theory when a larger number of layers is used. This is further illustrated in Fig. 3, which shows
462
+ the current velocity at which blocking occurs (Ub) as a function of kd based on the linear and numerical
463
+ dispersion relationship. With coarse vertical resolutions, waves are blocked on weaker opposing currents
464
+ compared to linear theory. Increasing the number of vertical layers improves Ub, with errors in Ub < 10%
465
+ for kd < [2, 7, 30] in the case of N = [1, 2, 4] layers, respectively. These findings show that the number of
466
+ 8
467
+
468
+ U= 4m/s
469
+ U=0m/s
470
+ U=-2m/s
471
+ U=-4m/s
472
+ a)
473
+ b)
474
+ ()
475
+ (p
476
+ 4
477
+ 白4
478
+ 32
479
+ 0
480
+ 100
481
+ 100
482
+ 101
483
+ 10°
484
+ 100
485
+ 15
486
+ f)
487
+ h)
488
+ e
489
+ g)
490
+ 10
491
+ 4
492
+ △5
493
+ 0
494
+ 10°
495
+ 100
496
+ 101
497
+ 100
498
+ 101
499
+ 10°101
500
+ kd (rad)
501
+ kd (rad)
502
+ kd (rad)
503
+ kd (rad)Figure 3: Panel a: Blocking current velocity Ub (panel a) as a function of kd based on the linear dispersion relationship (black
504
+ line) and the numerical dispersion relationship for N = [1, 2, 4] (blue, red, and yellow line, respectively). Panel b: Absolute
505
+ relative error in Ub from the numerical dispersion relationship for N = [1, 2, 4] relative to the linear dispersion relationship as
506
+ a function of kd.
507
+ layers controls the accuracy with which the model recovers the linear wave properties in the presence of a
508
+ current.
509
+ 4. Test Cases
510
+ 4.1. Linear waves on opposing and following currents
511
+ To verify the numerical implementation of the additional terms in the governing equations, we compared
512
+ model predictions of changes in the wavelength and wave amplitude due to a gradient in the current velocity
513
+ to linear wave theory. As illustrated by the linear properties of the equations (Sec. 3), waves that travel over
514
+ a current gradient experience a change in their kinematics. The wavelength decreases and the amplitude
515
+ increases for waves on an opposing current and vice-versa on a following current. In this section, we verify
516
+ if the developed model captures these changes to the wave field for linear waves that interact with opposing
517
+ and following currents. We considered monochromatic waves with a height of H = 0.01 m and wave periods
518
+ T = [5, 10, 15] s in water of constant depth d = 10 m (corresponding to kd = [1.7, 0.7, 0.4] in the absence
519
+ of a current). A range of current velocities was simulated with U ranging from -6 to 4 m/s with 0.25 m/s
520
+ increments.
521
+ We compared the influence of the current on the wave height and the wavelength with linear wave theory.
522
+ The change in wavelength and group velocity follows from the linear dispersion relationship (26). The change
523
+ in wave height follows from the conservation of wave action,
524
+
525
+ ∂x
526
+ cgE
527
+ σ
528
+ = 0,
529
+ (28)
530
+ with the wave energy density E of a monochromatic wave (E = 1/8H2) and the absolute group velocity cg
531
+ taken from linear theory (with cg = cg,r +U, and cg,r = ∂σ
532
+ ∂k obtained from the linear dispersion relationship).
533
+ 9
534
+
535
+ 0
536
+ 20
537
+ a
538
+ (s /u)
539
+ -5
540
+ △Ub
541
+ 10
542
+ °-10
543
+ -15
544
+ 0
545
+ 10-1
546
+ 100
547
+ 101
548
+ 100
549
+ 101
550
+ 10-1
551
+ kd (rad)
552
+ kd4.1.1. Model set-up
553
+ To allow for the current effect on the waves to develop, the model setup included a transition region with
554
+ a width of several wavelengths to gradually transition from no current to the respective maximum current
555
+ velocity. The transition region had a width of 10L0, and the region with maximum flow had a width of 10L0
556
+ (with L0 the wavelength in the absence of a current). These widths were found to be sufficient to allow
557
+ for a gradual change in the wave dynamics, and provided a sufficiently large domain to determine the wave
558
+ parameters in the presence of the current. Waves were generated at the left boundary with a wavemaker
559
+ based on linear wave theory which was positioned 3L0 away from the transition region. A sponge layer with
560
+ a width of 5L0 was positioned in front of the right boundary to absorb the waves and prevent any wave
561
+ reflections. The sponge layer was positioned at a distance of 3L0 from the transition region. The model
562
+ was set-up with two layers in the vertical. The horizontal resolution and time-step were selected based on a
563
+ sensitivity study (Appendix A): the horizontal grid resolution was set at ∆x = L0/100 and the time-step
564
+ was set at ∆t = T/1000 (with T the incident wave period). The surface elevation ζ was outputted at all
565
+ computational grid points for a duration of 5 wave periods after a spin-up time that ensured statistically
566
+ stationary results inside the numerical domain.
567
+ We used zero-crossing analysis in the maximum current region to determine the wavelength in presence
568
+ of a current. First, the surface elevation ζ was interpolated to a fine horizontal grid in the current region to
569
+ allow for an accurate estimation of the wavelength independent of the grid resolution. The wavelength was
570
+ subsequently computed from the zero-crossing analysis as the average wavelength over the current region
571
+ and the output duration. We computed the wave height in the current region as H = 2√2m0 (with the
572
+ zeroth order moment m0 computed as the standard deviation of the surface elevation ζ). To gain insight in
573
+ the spatial variation of H, we computed the mean, the maximum and minimum value of H in the current
574
+ region. Results were excluded when wave-blocking occurred in the model simulation. Wave blocking was
575
+ recognised when the wave energy at the down-wave end of the domain (behind the current region) was < 1%
576
+ of the incident wave energy at the numerical wavemaker.
577
+ 4.1.2. Results
578
+ To illustrate the impact of the current on the wave field, Fig. 4 shows an example of the surface elevation
579
+ inside the model domain for three different current velocities. For these three cases, modelled changes to
580
+ the surface elevation in opposing and following currents qualitatively agreed with the expected changes to
581
+ the wave field. In an opposing current, the wavelength decreased and the wave height increased (Fig. 4a).
582
+ In contrast, the wavelength increased and the wave height decreased for a following current (Fig. 4c). In
583
+ all three illustrative cases, the wave signal at the downwave end of the flume (x > 3000 m) was identical to
584
+ the incident wave signal (x = 0). This confirms that wave action is conserved in these simulations.
585
+ To verify the model results quantitatively, we compared the change in the wave height and wavelength
586
+ 10
587
+
588
+ Figure 4: Snapshot of the modelled surface elevation (blue line, left axis) and ambient current velocity (red line, right axis)
589
+ in the numerical domain for three different current velocities (U = [−3, 0, 3] m/s) for a monochromatic wave with amplitude
590
+ a = 0.01 m and period T = 10 s). The dashed black line indicates the envelope of the wave elevation, and the title of each
591
+ panel indicates the respective current velocity.
592
+ 11
593
+
594
+ opposing current (U= -3 m/s)
595
+ 1.0
596
+ a)
597
+ (-)
598
+ 0.5
599
+ (s/w) n
600
+ H/2
601
+ 0.0
602
+ 0
603
+ 0.5
604
+ 1.0
605
+ 3
606
+ no current
607
+ 1.0
608
+ b)
609
+ 0.5
610
+ (s/w) n
611
+ H/2
612
+ 0.0
613
+ 0
614
+ 0.5
615
+ 1.0
616
+ following current (U= 3 m/s)
617
+ 1.0
618
+ C)
619
+ (-) H/2
620
+ 0.5
621
+ (s/
622
+ 0.0
623
+ 0
624
+ U (m/
625
+ 0.5
626
+ 1.0
627
+ -3
628
+ 0
629
+ 500
630
+ 1000
631
+ 1500
632
+ 2000
633
+ 2500
634
+ 3000
635
+ x (m)Figure 5: Normalized change to the wave height H (panel a) and wavelength L (panel b) as a function of the current velocity
636
+ U for small-amplitude monochromatic waves with T = [5, 10, 15] s. The wave height and wavelength were normalized by the
637
+ wave parameters in absence of a current (indicated by [...]0). Converged model results of simulations (with ∆t = T/1000 and
638
+ ∆x = L/100) are indicated by colored lines (see legend) and results from linear wave theory are indicated by the thick black
639
+ line. In the left panel, the horizontal blue line with dotted markers indicates the average change to the simulated wave height
640
+ H in the current region and the vertical line with horizontal bars indicates the maximum and minimum simulated H inside the
641
+ current region. The dashed vertical black lines indicate the current velocity at which wave blocking occurs according to linear
642
+ wave theory.
643
+ inside the current region with the results from linear wave theory (Fig. 5). For all three wave periods,
644
+ linear wave theory predicted that the wave height and wavelength varied significantly for the considered
645
+ range of current velocities (using Eq. 28). For opposing currents, the wave height H increased and the
646
+ wavelength L decreased, and vice versa for following currents (as was visually observed in Fig. 4). Current
647
+ induced changes to the wave field were larger for shorter wave periods, with wave blocking occurring for
648
+ T = [5, 10, 15] s at U ≈ [−1.92, −3.74, −4.87] m/s (indicated by the vertical black dashed line).
649
+ SWASH captured the changes to the wave height and wavelength for the range of ambient current
650
+ velocities and the three wave periods (Fig. 5). This included the nonlinear dependence of H and L for
651
+ U < 0 m/s. Furthermore, the model captured blocking of waves for opposing currents that are stronger
652
+ than the critical flow velocity of linear wave theory (indicated by the dashed black lines in Fig. 5). For all
653
+ three wave periods, simulations with current velocities stronger than the theoretical blocking velocity showed
654
+ a strong decay of the wave height down-wave of the blocking point (not shown). For simulations with U close
655
+ to but just weaker than the theoretical blocking velocity, dissipation of wave energy occurred in the model
656
+ over the current region (visible as the difference between the vertical lines with horizontal bars in Fig. 5a,
657
+ which indicates the maximum and minimum H in the current region). In the absence of physical mechanisms
658
+ for dissipation, this is likely related to numerical diffusion when the waves (with shorter lengths) propagate
659
+ in the current region. For weaker U this dissipation becomes smaller and the model results were in good
660
+ agreement with linear theory. This numerical dissipation was found to be dependent on the horizontal grid
661
+ 12
662
+
663
+ 2.0
664
+ 4 -
665
+ a)
666
+ T=5 s
667
+ b)7
668
+ T=10 s
669
+ 1.5
670
+ 1
671
+ T=15 s
672
+ 1
673
+ H/Ho
674
+ L/Lo
675
+ 1.0
676
+ 2
677
+ -
678
+ 1
679
+ 0.5
680
+ 0 -
681
+ 0.0
682
+ -6
683
+ -4
684
+ -2
685
+ 0
686
+ 2
687
+ 4
688
+ -6
689
+ -4
690
+ 2
691
+ 2
692
+ U (m/s)
693
+ U (m/s)resolution and time step, with improved agreement for strong U for finer spatial and temporal resolutions
694
+ (in accordance with the results in Appendix A).
695
+ 4.2. Sheared current fields
696
+ In coastal regions, spatially varying current fields exist (e.g., tidal currents) that can induce wave re-
697
+ fraction and result in focal zones that give rise to wave interference patterns (e.g., Yoon and Liu, 1989;
698
+ Akrish et al., 2020). In this section, we verify the ability of the model to capture such wave patterns using
699
+ two classical examples of wave-current interactions: the interactions of waves with a jet-like current and a
700
+ vortex ring. Model results were compared with the spectral wave model SWAN (Booij et al., 1999) extended
701
+ with a quasi-coherent formulation that accounts for wave interference due to variable topography (Smit and
702
+ Janssen, 2013; Smit et al., 2015) and currents (Akrish et al., 2020).
703
+ 4.2.1. Model set-up
704
+ The model set-up was based on the work of Akrish et al. (2020).
705
+ The region of interest spanned a
706
+ domain of 4 × 4 km. Two different simulations were considered, one with a jet-shaped and the other with
707
+ a vortex-shaped current field, positioned along the central axis of the domain. The maximum velocities for
708
+ the simulations were 0.38 m/s and 1.0 m/s, respectively (refer to Akrish et al., 2020, for a mathemetical
709
+ formulation of the current fields). At the wavemaker positioned along the western boundary, a Gaussian
710
+ shaped wave-spectrum in frequency and direction was forced with Hs = 1 m, Tp = 20 s and a standard
711
+ deviation of 0.0015 Hz in frequency space and 1.78◦ in directional space. The waves had a mean direction
712
+ of θ0=15◦ and 0◦ (in Cartesian coordinates) for the jet and vortex current, respectively.
713
+ In the SWAN model, the physical domain was discretised with ∆x = ∆y = 50 m. The spectral domain
714
+ was discretised with 45 discrete frequencies that were logarithmically spaced between 0.005 and 0.085 Hz,
715
+ and with a directional resolution of 2◦ between -90 and 90◦.
716
+ For the SWASH model, we extended the
717
+ domain with a 500 m wide sponge layer at the eastern side of the domain to prevent any wave reflections.
718
+ The domain was discretised with a resolution of ∆x = 2 m and ∆y =4 m (which resulted in ≈ 100 points
719
+ per wavelength throughout the domain). The time step was set at ∆t = 0.05 s, equalling 300 points per
720
+ wave period and resulting in CFL ≈ 0.6.
721
+ 4.2.2. Results
722
+ Due to changes in wavelength induced by the current, waves were refracted by the vortex ring (Fig.
723
+ 6a-c and 6g-i). This current-induced refraction resulted in considerable variations in the significant wave
724
+ height, with ridges of larger wave heights where waves focussed and depressions of lower wave heights where
725
+ waves diverged (Fig.
726
+ 6a-f).
727
+ For this current field, quasi-coherent (QC) effects needed to be taken into
728
+ account in SWAN to resolve the constructive and de-constructive wave interference that altered the wave
729
+ field downstream of the vortex ring (e.g., Akrish et al., 2020).
730
+ The bulk wave heights and mean wave
731
+ 13
732
+
733
+ Figure 6: Changes to the significant wave height Hm0 and mean wave direction θ due to a vortex ring current field. Panels
734
+ a-c show a spatial overview of the significant wave height (colors) and mean wave direction (black arrows), with the red arrows
735
+ indicating the ambient current field, for SWASH (panel a), SWAN including the Quasi-Coherent (QC) formulation (panel b)
736
+ and default SWAN (panel c). Panels d-i show the wave height (d-f) and mean wave direction (g-i) along three alongshore
737
+ transects predicted by SWASH (black lines), SWAN QC (orange lines) and default SWAN (blue lines).
738
+ directions predicted by the extended SWASH model were in satisfactory agreement with the results from
739
+ the SWAN QC model throughout the domain.
740
+ Similarly, waves refract as they propagated into the jet-like current field, resulting in a change of
741
+ mean wave direction (Fig.
742
+ 7g-i) and in regions with increased and decreased wave heights due to con-
743
+ vergence/divergence of wave energy (Fig. 7a-f). Similar to the vortex ring, quasi-coherent effects need to be
744
+ incorporated in SWAN to account for the constructive and de-constructive wave interference that altered the
745
+ wave field, although this effect was smaller compared to the vortex ring. In general, the SWASH predictions
746
+ were in good agreement with SWAN QC. The results of this test case, and the vortex ring, illustrate that
747
+ SWASH including the additional terms in the model equations is able to capture the effect of current-induced
748
+ 14
749
+
750
+ SWASH
751
+ SWAN QC
752
+ SWAN
753
+ 4000
754
+ 1.5
755
+ af
756
+ bi
757
+ 3000
758
+ 1.0
759
+ (w)
760
+ 2000
761
+ 1000
762
+ 0.5
763
+ 0.0
764
+ 0
765
+ 1000
766
+ 2000
767
+ 3000
768
+ 0
769
+ 1000
770
+ 2000
771
+ 3000
772
+ 0
773
+ 1000
774
+ 2000
775
+ 3000
776
+ x (m)
777
+ x (m)
778
+ x (m)
779
+ x=1000 m
780
+ x=2000 m
781
+ x=3000 m
782
+ 1.5
783
+ (p
784
+ el
785
+ 1.0
786
+ 0.5
787
+ 0.0
788
+ SWASH
789
+ SWAN QC
790
+ 15
791
+ (6
792
+ 15
793
+ h)
794
+ 15
795
+ SWAN
796
+ (6ap)
797
+ 0
798
+ 0
799
+ 0
800
+ 15
801
+ 15
802
+ 15
803
+ 2000
804
+ 4000
805
+ 2000
806
+ 4000
807
+ 0
808
+ 2000
809
+ 4000
810
+ y (m)
811
+ y (m)
812
+ y (m)Figure 7: Changes to the significant wave height Hm0 and mean wave direction θ due to a jet-like current field. Panels a-c
813
+ show a spatial overview of the significant wave height (colors) and mean wave direction (black arrows), with the red arrows
814
+ indicating the ambient current field, for SWASH (panel a), SWAN including the Quasi-Coherent (QC) formulation (panel b)
815
+ and default SWAN (panel c). Panels d-i show the wave height (d-f) and mean wave direction (g-i) along three alongshore
816
+ transects predicted by SWASH (black lines), SWAN QC (orange lines) and default SWAN (blue lines).
817
+ refraction on the wave propagation and the resulting spatial variability in the wave field.
818
+ 4.3. Wave blocking, reflections and breaking on opposing currents
819
+ As a final test case, we compare model predictions with the laboratory experiment of Chawla and Kirby
820
+ (1999, 2002) that considered wave blocking on opposing currents. The flume had a length of 30 m, a width
821
+ of 0.6 m and still water depth of 0.5 m, with a pump system to generate a recirculating current (with a
822
+ discharge of 0.095 m3/s) and a perforated wavemaker to generate waves on the current. A spatially varying
823
+ current was generated by means of a false wall constricting the width of the flume, with a minimal width of
824
+ 0.36 m (see black line in Fig. 8a). Blocking of waves occurred close to the start of this narrow part of the
825
+ flume.
826
+ 15
827
+
828
+ SWASH
829
+ SWAN QC
830
+ SWAN
831
+ 4000
832
+ 1.5
833
+ a
834
+ h)
835
+ 3000
836
+ 1.0
837
+ (w) ^
838
+ 2000
839
+ 1000
840
+ 0.5
841
+ 0-
842
+ 0.0
843
+ 0
844
+ 10002000 3000
845
+ 0
846
+ 1000
847
+ 2000
848
+ 3000
849
+ 0
850
+ 1000
851
+ 20003000
852
+ x (m)
853
+ x (m)
854
+ x (m)
855
+ x=1000 m
856
+ x=2000 m
857
+ x=3000 m
858
+ 1.5
859
+ e)
860
+ f)
861
+ 1.0
862
+ 0.5
863
+ 0.0
864
+ SWASH
865
+ 30
866
+ 30
867
+ 30
868
+ SWAN OC
869
+ (6
870
+ h)
871
+ i)
872
+ SWAN
873
+ (deg)
874
+ 15
875
+ 15
876
+ 15
877
+ +0
878
+ +0
879
+ 0
880
+ 2000
881
+ 4000
882
+ 0
883
+ 2000
884
+ 4000
885
+ 2000
886
+ 4000
887
+ y (m)
888
+ y (m)
889
+ y (m)Figure 8: Overview of the numerical setup of the Chawla and Kirby (1999) flume experiment. The top panel (a) shows the
890
+ flume width (black line, left axis) and a snapshot of the modelled free-surface elevation for test case 1 (blue line, right axis).
891
+ The bottom panel (b) shows the modelled (red line) and measured (black markers) current velocity (in the absence of waves).
892
+ The experiments with monochromatic waves considered a total of 23 test conditions that included 3
893
+ different incident wave periods (T = [1.2, 1.3, 1.4] s) for a range of wave heights (H = 0.012 − 0.14 m).
894
+ For the low amplitude and low period waves, waves reflected with negligible transmission of wave energy
895
+ beyond the blocking point. For increasing wave heights, waves started breaking at the blocking point of
896
+ linear theory combined with increased transmission of wave energy beyond this theoretical blocking point.
897
+ In this paper, we considered 4 out of the 23 test cases: the largest and smallest wave height of both the
898
+ smallest and largest wave period (see Table 1). For case R1 and R11 waves reflected at the blocking point,
899
+ whereas waves were breaking and wave energy was transmitted beyond the theoretical blocking point for
900
+ case B6 and B18.
901
+ We compared model predictions with these laboratory observations for these 4 test cases. Furthermore,
902
+ we also computed the wave height transformation based on conservation of wave action.
903
+
904
+ ∂x
905
+ cgE
906
+ σ
907
+ = 0,
908
+ (29)
909
+ Conservation of wave action is computed based on the linear dispersion relationship (similar to Sec. 4.1) and
910
+ also based on the nonlinear dispersion relationship from 2nd order Stokes theory (e.g., Dean and Dalrymple,
911
+ 1991). This nonlinear dispersion relationship accounts for the effect of amplitude dispersion, which was
912
+ found to be important for these laboratory experiments (Chawla and Kirby, 2002).
913
+ 16
914
+
915
+ 0.6
916
+ (w)
917
+ a)
918
+ width
919
+ 0.3
920
+ 0.03
921
+ (w) 2
922
+ 0.0
923
+ 0.00
924
+ EO'O-
925
+ 0.0
926
+ b)
927
+ (s/w) n
928
+ 0.2
929
+ -0.4
930
+ 0.6
931
+ 15
932
+ 10
933
+ -5
934
+ 0
935
+ n
936
+ 10
937
+ x (m)H (m)
938
+ T (s)
939
+ Ub (m/s)
940
+ kd (U = 0 m/s)
941
+ kd (U = −0.32 m/s)
942
+ kd (U = Ub m/s)
943
+ R1
944
+ 0.012
945
+ 1.2
946
+ -0.47
947
+ 1.53
948
+ 2.36
949
+ 5.59
950
+ B6
951
+ 0.126
952
+ 1.2
953
+ -0.47
954
+ 1.53
955
+ 2.36
956
+ 5.59
957
+ R11
958
+ 0.015
959
+ 1.4
960
+ -0.55
961
+ 1.22
962
+ 1.69
963
+ 4.14
964
+ B18
965
+ 0.141
966
+ 1.4
967
+ -0.55
968
+ 1.22
969
+ 1.69
970
+ 4.14
971
+ Table 1: Experimental conditions (wave height H, wave period T, theoretical blocking velocity Ub, and normalized water depth
972
+ kd for three current velocities) of the four test cases of the Chawla and Kirby (1999) flume experiment that were considered
973
+ in this paper. The wave height and wave period were measured at the first wave gauge inside the flume, at a distance of 4.2
974
+ m (case 1 and 3) and 5.2 m downstream (case 2 and 4) of the start of the narrow flume section. The blocking velocity was
975
+ computed based on the linear dispersion relationship. The normalized water depth based on linear wave theory is provided in
976
+ the absence of the current, for U = −0.32 m/s, and at the theoretical blocking velocity Ub.
977
+ 4.3.1. Model setup
978
+ We used a curvilinear grid with a constant streamwise resolution but varying alongshore width and
979
+ resolution to replicate the flume in the numerical model. Based on the sensitivity study for linear waves
980
+ (Appendix A), the horizontal grid resolution in streamwise direction was set to ensure at least 100 points per
981
+ wavelength (in the absence of a current). This resulted in a total of 1500 cells in the streamwise direction.
982
+ We used 3 cells in the spanwise direction to reduce computational overhead. This implies that spanwise
983
+ effects were not included in the modelling, such as the sidewall boundary layers that were observed in the
984
+ flume (Chawla and Kirby, 2002). To investigate the influence of the vertical resolution, simulations were
985
+ run with [2, 4, 20] layers. The model time step was set at a value that corresponds to CFL ≈ 0.4 resulting in
986
+ about 250-500 points per wave period, which was found to be sufficiently fine for these test conditions. Waves
987
+ were generated based on linear wave theory at x = −15 m (in the absence of a current), with the incident
988
+ wave height calculated from conservation of wave action (Eq. (28)) based on the measured wave height at
989
+ the first wave gauge (located at x ≈ −5 m). A sponge layer with a width of at least three wavelengths was
990
+ positioned at the end of the flume to prevent wave reflections.
991
+ We conducted two sets of simulations to replicate the four test cases. In the first set, which serves as a
992
+ benchmark for the proposed model extension, the waves and current were modelled simultaneously through
993
+ the original set of model equations. A re-circulating current was generated through modifying the kinematic
994
+ boundary condition at the bottom (see Appendix B). The resulting discharge that is imposed at the bottom
995
+ replicates a pump system through which a volume of water is pumped into the domain at one end of the
996
+ flume and is taken out at the other end of the flume. In this manner, a current was generated inside the
997
+ numerical flume. In all simulations with this pump system, the discharge was set at Q = 0.095 m3/s based
998
+ on Chawla and Kirby (2002). With this model set-up, the modelled depth-averaged current field was in
999
+ good agreement with observations taken in the flume for a reference case excluding waves (Fig. 8b). In the
1000
+ 17
1001
+
1002
+ second set of simulations, we account for the current through the additional terms in the equations that
1003
+ were derived in Section 2. The ambient current velocities were obtained from the simulation with the pump
1004
+ system without waves (Fig. 8b). In the following, we refer to the simulations with the additional terms to
1005
+ model the influence of the current on waves as an Ambient Current (AC) simulation, and we refer to the
1006
+ benchmark simulations as a Pump simulation.
1007
+ Non-hydrostatic models like SWASH inherently account for the dissipation by breaking waves but require
1008
+ high vertical resolutions to capture the onset of wave breaking correctly (e.g,. Smit et al., 2013). To capture
1009
+ the onset of breaking with coarse resolutions, Smit et al. (2013) introduced the Hydrostatic Front Approxi-
1010
+ mation (HFA) that neglects the non-hydrostatic pressure locally to trigger wave breaking (i.e., switching to
1011
+ the Non-Linear Shallow Water Equations, NSLWE). However, numerical instabilities developed in all 2-layer
1012
+ simulations with HFA. We believe this is related to the normalized water depth of the waves at breaking.
1013
+ For depth-induced wave breaking in the absence of currents (for which the HFA is normally applied), the
1014
+ normalized water depth is relatively low at breaking (kd < 1), resulting in a relatively small non-hydrostatic
1015
+ pressure contribution. In the wave-current simulations of this test case, the normalized water depth is rela-
1016
+ tively large (kd > 4 near wave blocking, see Table 1). As a results, the contribution from the non-hydrostatic
1017
+ pressure is relatively large at the location of incipient wave breaking. Excluding a relatively large contri-
1018
+ bution from the non-hydrostatic pressure likely resulted in numerical instabilities and caused the model to
1019
+ crash. As a result, the HFA approach cannot be used to improve the model predictions of the 2-layer model
1020
+ in the case of breaking waves on a strong opposing current. In the following, we therefore only show results
1021
+ for 2-layer simulations excluding HFA.
1022
+ 4.3.2. Results - wave reflections
1023
+ For the wave condition with the smallest wave height and wave period (case R1, Table 1), waves reflected
1024
+ at the blocking point, resulting in a nodal pattern in the wave height H and negligible transmission of wave
1025
+ energy for x > 0 m (Fig. 9a). An energy balance based on conservation of wave action (eq. (28)) provided
1026
+ a reasonable good description of the location of wave blocking. Differences between the energy balance with
1027
+ the linear dispersion relationship and 2nd order Stokes dispersion relationship were generally small except
1028
+ near the blocking location, where the blocking location is spatially shifted by approximately 0.25 m when
1029
+ accounting for amplitude dispersion.
1030
+ In Fig. 9a, we compare both results of the simulations with an Ambient Current (AC) and of a benchmark
1031
+ simulation in which the current is included through a re-circulating pump. Both model setups (AC and
1032
+ Pump) reproduced this blocking and reflection of waves as the simulations captured the nodal pattern in
1033
+ the wave height for x < 0 m and wave energy was not transmitted beyond x = 0 m (Fig. 9a). Model
1034
+ simulations were found to be sensitive to the number of layers, and were approximately converged for 4
1035
+ layers (as illustrated by the results of the AC simulations). The nodal structure in H was stronger and
1036
+ 18
1037
+
1038
+ Figure 9: Comparisons between the measured and modelled wave height for test cases R1 and R11 of the wave-current flume
1039
+ experiment of Chawla and Kirby (1999). The black circle markers indicate the experimental observations, and the coloured
1040
+ lines indicate the model predictions (light and dark blue, 2 and 4-layer simulations with AC (Ambient Current), respectively;
1041
+ black, benchmark 4-layer simulation with pump system). The thin red lines show the results from an energy balance based
1042
+ on conservation of wave action using the linear dispersion relationship (dashed red line) and the 2nd order Stokes dispersion
1043
+ relationship (full red line).
1044
+ spatially shifted towards the wavemaker using two vertical layers with both the AC (Fig. 9a) and Pump
1045
+ setup (not shown). This indicates that reflections were stronger and blocking occurred at a weaker opposing
1046
+ current velocity when using this coarsest vertical resolution. Increasing the vertical resolution improved the
1047
+ results of the AC simulation, although H was over predicted at blocking compared to the measurements
1048
+ and the benchmark simulation. Results of the 4-layer benchmark Pump simulation were in good agreement
1049
+ with the measurements, apart from a slight spatial shift (approx. 0.15m) of the blocking location and nodal
1050
+ pattern.
1051
+ For test case R11, blocking was expected at x ≈ 0 m based on the energy balance with linear dispersion
1052
+ (Fig. 9b). In contrast, the energy balance with 2nd order dispersion predicted no blocking but transmission
1053
+ of energy for x > 0m. In the laboratory, partial reflections occurred at the blocking point with partial
1054
+ transmission of energy for x > 0. Both the AC and Pump simulations captured these patterns. Similar to
1055
+ case R1, simulations approximately converged when 4 layers were used. The 4-layer benchmark simulation
1056
+ was in best agreement with the observations, and captured both the spatial variability and magnitude of
1057
+ H. The 4-layer AC simulations overpredicted H near the linear blocking point for x > 0 m (similar to test
1058
+ case R1) and predicted weaker reflections resulting in a less pronounced nodal pattern for x < 0 m.
1059
+ These results show that the proposed extension of the model equations captured the overall patterns in
1060
+ the wave height that was observed in the laboratory and simulated by the benchmark model. Model results
1061
+ of both the AC and Pump simulations were found to be sensitive to the number of layers, indicating that
1062
+ the dispersive properties of the model affected the location of blocking and controlled the magnitude of wave
1063
+ reflections. Discrepancies in the blocking location at coarse vertical resolutions were larger for case R1 (with
1064
+ 19
1065
+
1066
+ case R1
1067
+ case R11
1068
+ 0.10
1069
+ a)
1070
+ b)
1071
+ EBL
1072
+ (w)
1073
+ EBNL
1074
+ 0.05
1075
+ 2V AC
1076
+ 4V AC
1077
+ 4V Pump
1078
+ 0.00
1079
+ 2.0
1080
+ -1.5
1081
+ 1.0
1082
+ 0.5
1083
+ 0.0
1084
+ 0.5
1085
+ 1.0
1086
+ 2.0
1087
+ -1.5
1088
+ 1.0
1089
+ 0.5
1090
+ 0.0
1091
+ 0.5
1092
+ 1.0
1093
+ x (m)
1094
+ x (m)a smaller wave period and thus larger kd compared to R11). This is consistent with the expected response
1095
+ based on the numerical dispersion relationship (Fig. 3): the relative absolute error in Ub compared to linear
1096
+ theory was 1.49% and 0.42% for R1 and R11 when using 2 layers, respectively, and < 0.25% when using 4
1097
+ layers.
1098
+ 4.3.3. Results - wave breaking
1099
+ For larger incident wave heights (case B6 and B18), wave breaking on the opposing current was observed
1100
+ during the experiment in the narrow region of the flume (x = 0 − 5 m) and wave energy was transmitted
1101
+ beyond the blocking point from linear theory (Fig. 10). For case B6, the 2-layer AC simulation did not
1102
+ capture the transmission of wave energy beyond the blocking point, but showed signs of wave reflections
1103
+ near x = 0 m, resulting in an over prediction of the wave height for −2 < x < 0 m (Fig. 10a). Similar
1104
+ results were observed for the simulation with a Pump system (not shown). These results indicate that the
1105
+ 2-layer simulations failed to capture the breaking of waves and transmission of energy beyond the linear
1106
+ blocking point for this particular test case. Increasing the number of vertical layers significantly improved
1107
+ the model results (as indicated by the 4 and 20-layer AC simulations, Fig. 10a). In particular, the 20V
1108
+ Pump benchmark simulation captured H throughout most of the domain, including the transmission of
1109
+ energy beyond the linear blocking point and the gradual decay of H for x > 0 m. The 20V AC simulation
1110
+ also captured part of this wave transmission but only up to x ≈ 1 m, and over predicted H near x = 0 m.
1111
+ For case B18, with a larger incident wave height and period, wave energy was transmitted beyond the
1112
+ linear blocking point for the 2-layer simulation with no sign of wave reflections (Fig. 10b). However, H was
1113
+ Figure 10: Comparisons between the measured and modelled (20-layer simulations) wave height for test cases B6 and B18 of the
1114
+ wave-current flume experiment of Chawla and Kirby (1999). The black circle markers indicate the experimental observations,
1115
+ and the coloured lines indicate the model predictions (light to dark blue, 2, 4 and 20-layer simulations with AC (Ambient
1116
+ Current); black, benchmark 20-layer simulations with pump system).
1117
+ The thin red lines show the results from an energy
1118
+ balance based on conservation of wave action using the linear dispersion relationship (dashed red line) and the 2nd order
1119
+ Stokes dispersion relationship (full red line).
1120
+ 20
1121
+
1122
+ case B6
1123
+ case B18
1124
+ 0.50
1125
+ a
1126
+ b
1127
+ =
1128
+ EB,
1129
+ EBNL
1130
+ (w)
1131
+ 0.25
1132
+ 2V AC
1133
+ 4V AC
1134
+ 20V AC
1135
+ 20V Pump
1136
+ 0.00
1137
+ -4
1138
+ -2
1139
+ -4
1140
+ -2
1141
+ 2
1142
+ 4
1143
+ x (m)
1144
+ x (m)over predicted for x > −2m. Simulations with the Pump provided similar results (not shown). Increasing
1145
+ the number of vertical layers significantly improved the model results, and 20V AC simulations agreed well
1146
+ with 20V Pump simulations apart from a slight over prediction for x > −1 m. Both 20V models were also
1147
+ in satisfactory agreement with the observations, apart from an over prediction of H for x > 0 m.
1148
+ For the test cases with breaking waves, the model predictions were found to be sensitive to the vertical
1149
+ resolution. A relatively fine vertical resolution was found to be required to capture changes in the wave
1150
+ height. For case B6, a fine vertical resolution was required to prevent wave-reflections at the blocking point
1151
+ and to capture (part of) the transmission of energy for x > 0. In contrast, wave energy was transmitted
1152
+ beyond the linear blocking point at coarse resolutions for case B18.
1153
+ For this test case, higher vertical
1154
+ resolutions were required to better capture the shoaling of waves on the opposing current. The shoaling in
1155
+ 2-layer simulations was similar to the linear energy balance, whereas shoaling in the case of more vertical
1156
+ layers was comparable to the nonlinear energy balance and the measurements. This suggests that for B18
1157
+ a higher vertical resolution is required to capture the effect of (nonlinear) amplitude dispersion.
1158
+ 5. Discussion
1159
+ The results of this work demonstrated that the extended SWASH model was able to capture the dominant
1160
+ effects of currents on waves. Comparisons with linear theory and a spectral wave model showed that the
1161
+ model captured current-induced changes to the wave amplitude and length, and current-induced refraction.
1162
+ Comparisons with the laboratory experiment of Chawla and Kirby (1999, 2002) showed that the model
1163
+ reproduced the (partial) reflection of monochromatic waves on an opposing current near the blocking point
1164
+ in the case of small amplitude waves, and (partial) transmission and wave breaking in the case of larger
1165
+ amplitude waves. For these challenging test cases, model results were found to be sensitive to the number
1166
+ of vertical layers. In particular, a fine vertical resolution was required to capture the nonlinear shoaling,
1167
+ breaking and (partial) transmission of the large amplitude waves on the opposing current. Importantly, the
1168
+ results from the extended SWASH model were generally in good agreement with fully resolved benchmark
1169
+ simulations that intrinsically accounted for the wave-current interactions. This indicates that additional
1170
+ physics in the fully resolved SWASH model (e.g., vertical variations in the ambient flow, and the influence
1171
+ of waves on the ambient currents) did not significantly affect the wave dynamics in these test cases.
1172
+ Instead, this indicates that model-data discrepancies were largely inherited from the fully resolved model.
1173
+ For example, these could be related to the exclusion of span-wise flow effects, and shortcomings in the
1174
+ turbulence modelling (e.g., no wave breaking induced turbulence at the free-surface, incomplete description
1175
+ of turbulent boundary layers). To our knowledge, current state-of-the-art CFD models such as RANS and
1176
+ SPH-type models have not been widely used to simulate these nor similar laboratory experiments that
1177
+ consider such complex wave-current interactions. Only a few authors have used CFD for selected cases of
1178
+ 21
1179
+
1180
+ laboratory experiments (e.g., Olabarrieta et al., 2010; Teles et al., 2013; Chen and Zou, 2018; Yao et al.,
1181
+ 2023) but not for a wide variety of conditions such as the reflective and breaking cases that were considered
1182
+ in this work. As such, we currently lack a clear benchmark that indicates how accurate fully resolved 3D
1183
+ models including more sophisticated turbulence models can capture wave-current interactions.
1184
+ 6. Conclusions
1185
+ This study has demonstrated that the non-hydrostatic modelling approach can be extended to account
1186
+ for the effect of depth-uniform currents on the wave dynamics. By introducing a separation of scales and
1187
+ assuming vertically uniform mean currents, additional terms were derived that account for changes in the
1188
+ wave properties in the presence of spatially varying currents. These additional terms were included in the
1189
+ open-source SWASH model.
1190
+ A linear analysis of the model equations confirmed that the proposed model extension resolves the effect
1191
+ of currents on the linear wave properties (e.g., change in wavelength and group velocity). Comparisons of
1192
+ model predictions with linear wave theory further verified the numerical implementation. The extended
1193
+ SWASH model captured changes in the wavelength and amplitude in the presence of opposing and following
1194
+ currents for small amplitude waves. As a next step, we validated the model for more complex spatially
1195
+ varying flow fields: a vortex ring and a jet-like current.
1196
+ SWASH predictions were compared with the
1197
+ spectral wave model SWAN, including the Quasi-Coherent formulation to account for constructive and de-
1198
+ constructive wave interference effects. Comparisons of bulk wave parameters (significant wave height and
1199
+ mean wave direction) showed that the extended SWASH model was able to account for the current-induced
1200
+ refraction of both flow fields, and the resulting spatial variability in the wave height.
1201
+ Finally, we compared model predictions with a flume experiment that considered blocking and breaking
1202
+ of monochromatic waves on a strong opposing current. Although the model tended to overpredict the wave
1203
+ height, it was able to reproduce reflections of small amplitude waves, and breaking of larger amplitude
1204
+ waves.
1205
+ For breaking waves, model results were improved by increasing the vertical resolution (from 2
1206
+ to 20 layers). Results of the newly derived model were generally consistent with fully resolved SWASH
1207
+ simulations (in which a recirculating current was included through an inflow and outflow boundary at the
1208
+ bottom). This indicates that model-data discrepancies were largely inherited from the fully-resolved model
1209
+ and not introduced by missing physics in the extended model (e.g., no vertical variation of the ambient
1210
+ current, and no effect of waves on the ambient current).
1211
+ The findings of this work thereby demonstrated that phase-resolving models can be extended with
1212
+ additional terms to account for the major effect of ambient depth-uniform currents on the wave dynamics.
1213
+ This will allow models like SWASH to more accurately and efficiently simulate the wave dynamics in coastal
1214
+ environments where tidal and/or wind-driven currents are present.
1215
+ 22
1216
+
1217
+ Figure A.1: Changes to the height (panel a and c) and length (panel b and d) of a monochromatic wave (T = 10 s) on an
1218
+ opposing current (U = [−3, −1] m/s) as a function of the temporal resolution with a fixed grid resolution ∆x/L0 = 60 (panel
1219
+ a-b) and as a function of the horizontal grid resolution with a fixed temporal resolution ∆t = T/1000 (panel c-d). The full
1220
+ lines indicate the SWASH results and the dashed lines indicate the results according to linear wave theory. Results for U = −3
1221
+ m/s are printed in blue and results for U = −1 m/s in orange. For SWASH, the horizontal line with marker indicates the
1222
+ average change to the simulated wave height H in the current region, and the vertical lines with horizontal endings indicate
1223
+ the maximum and minimum H in the current region. The wave height and length are normalized by the incident wave height
1224
+ and length, respectively.
1225
+ Appendix A. Sensitivity study
1226
+ The behaviour of the SWASH model was found to be sensitive to the horizontal grid resolution ∆x and
1227
+ the time-step ∆t. To illustrate the sensitivity to the grid resolution, we consider a set of simulations of a
1228
+ T = 10 s monochromatic wave on a U = [−3, −1] m/s current for a range of horizontal grid and temporal
1229
+ resolutions. To study the influence of ∆t and ∆x separately, the first set considers simulations with fixed
1230
+ ∆x = L0/60 for a range of ∆t, and the second set corresponds to several simulations with fixed ∆t = T/1000
1231
+ but for a range of ∆x.
1232
+ Changes to the wavelength L were not sensitive to either ∆x and ∆t. On the other hand, changes to
1233
+ the wave height H were sensitive to the model settings. The sensitivity was larger for the stronger current
1234
+ velocity.
1235
+ Modelled changes to H were less sensitive to the horizontal grid resolution, except for coarse
1236
+ resolutions (∆x/L0 < 40), with relatively weak improvement for ∆x/L0 ≤ 40 (Fig. A.1). Modelled changes
1237
+ to H were sensitive to the time-step, especially for U = −3 m/s. For this current velocity at larger time-
1238
+ steps, significant dissipation of wave energy occurred in the current region (as illustrated by the vertical
1239
+ lines in Fig. A.1 at smaller ∆t/T). For finer temporal resolutions, this non-physical dissipation reduced
1240
+ 23
1241
+
1242
+ 3
1243
+ 1.5
1244
+ a)
1245
+ b)
1246
+ (w)
1247
+ 2
1248
+ U=3 m/s
1249
+ (w)
1250
+ 1.0
1251
+ “H/H
1252
+ U=1 m/s
1253
+ L/L o
1254
+ 0.5
1255
+ 0.0
1256
+ 103
1257
+ 104
1258
+ 103
1259
+ 104
1260
+ T/△t
1261
+ T/△t3
1262
+ 1.5
1263
+ (
1264
+ (p
1265
+ (w)
1266
+ 2
1267
+ 1.0
1268
+ H/H
1269
+ 107/7
1270
+ 0.5
1271
+ 0.0
1272
+ 50
1273
+ 100
1274
+ 150
1275
+ 50
1276
+ 100
1277
+ 150
1278
+ Lo/Ax
1279
+ Lo/Axand model results approximately converged to the solution of linear wave theory. This sensitivity to the
1280
+ horizontal grid and temporal resolution was primarily significant for strong opposing currents relative to
1281
+ the wave group velocity. For following currents and weak opposing currents the model results were not
1282
+ sensitive to ∆x and ∆t (as illustrated by the results for U = −1 m/s). Based on this sensitivity study, the
1283
+ optimal horizontal grid and temporal resolution for which model predictions were sufficiently converged was
1284
+ concluded to be ∆x = L0/100 and ∆t = T/1000.
1285
+ Appendix B. Re-circulating current
1286
+ To generate a re-circulating current in the model, we impose an inward and outward flux at the bottom
1287
+ at either side of the model domain. For this purpose, we have adopted the kinematic boundary condition
1288
+ as follows,
1289
+ wz=−d = −u∂d
1290
+ ∂x − v ∂d
1291
+ ∂y ± fs
1292
+ P
1293
+ W ,
1294
+ (B.1)
1295
+ where P is a discharge and W is the width of the region where the discharge is specified. By introducing an
1296
+ equal discharge of opposing sign in a region at either side of the numerical domain, a recirculating current
1297
+ is generated inside the domain. To reduce the spin-up time, we use a smoothing function fs to gradually
1298
+ ramp up the discharge from 0 to P. The smoothing function is defined as,
1299
+ fs = 0.5 (1 + tanh( t
1300
+ TS
1301
+ − 3)),
1302
+ (B.2)
1303
+ where TS is the smoothing period of the pump (taken as TS = 15 s in the simulations of this work).
1304
+ Appendix C. Linear semi-discrete analysis of the model equations
1305
+ The numerical dispersion relationship can be derived from the linearized and semi-discretized set of
1306
+ model equations (e.g., Cui et al., 2014; Bai and Cheung, 2013; Smit et al., 2014). Based on Smit et al.
1307
+ (2014), the linearized and semi-discretized SWASH equations extended with the additional terms for the
1308
+ wave-current interactions (on the right hand side) for N vertical layers reads,
1309
+ ∂u′
1310
+ n− 1
1311
+ 2
1312
+ ∂t
1313
+ + g ∂ζ′
1314
+ ∂x + 1
1315
+ 2
1316
+ ∂pnh,n
1317
+ ∂x
1318
+ + 1
1319
+ 2
1320
+ ∂pnh,n−1
1321
+ ∂x
1322
+ = −U
1323
+ ∂u′
1324
+ n− 1
1325
+ 2
1326
+ ∂x
1327
+ ,
1328
+ for n = 1...N,
1329
+ (C.1)
1330
+ ∂wn + wn−1
1331
+ ∂t
1332
+ + 2pnh,n − pnh,n−1
1333
+ ∆z
1334
+ = −U ∂wn + wn−1
1335
+ ∂x
1336
+ ,
1337
+ for n = 1...N,
1338
+ (C.2)
1339
+ ∂u′
1340
+ n− 1
1341
+ 2
1342
+ ∂x
1343
+ + wn − wn−1
1344
+ ∆z
1345
+ = 0,
1346
+ for n = 1...N,
1347
+ (C.3)
1348
+ ∂ζ′
1349
+ ∂t + ∆z
1350
+ N
1351
+
1352
+ n=1
1353
+ ∂u′
1354
+ n− 1
1355
+ 2
1356
+ ∂x
1357
+ = −U ζ′
1358
+ ∂x.
1359
+ (C.4)
1360
+ The flow variables in the above set of equations are located on a staggered grid, with u′ located in a cell center
1361
+ (n − 1
1362
+ 2) and w and pnh at a vertical cell face (n). Assuming a horizontal bottom (w0=0) and considering
1363
+ 24
1364
+
1365
+ the initial value problem in an infinite domain (with ∆z = d/N), we assume that the flow variables have
1366
+ a solution of the form y = ˆyexp(ikx − iωt) (where ˆy is the complex amplitude of a flow variable, k is the
1367
+ wavenumber and ω the absolute wave frequency). Substituting this into the above set of equations for each
1368
+ variable results in a system of equations of the form Aˆy = 0. The numerical dispersion relationship can
1369
+ subsequently found from Det(A) = 0 using symbolic algebra software. With the addition of an ambient
1370
+ current U, the numerical dispersion relationship provides a relationship between ω and k in the presence of
1371
+ a current with velocity U for N vertical layers. The relative group velocity can be found from the numerical
1372
+ dispersion relationship as cg,r = ∂σ
1373
+ ∂k for an arbitrary current velocity U (with ω = σ + kU).
1374
+ 25
1375
+
1376
+ References
1377
+ Akrish, G., Smit, P., Zijlema, M., Reniers, A., 2020. Modelling statistical wave interferences over shear currents. Journal of
1378
+ Fluid Mechanics 891. doi:10.1017/jfm.2020.143.
1379
+ Bai, Y., Cheung, K.F., 2013. Depth-integrated free-surface flow with parameterized non-hydrostatic pressure. International
1380
+ Journal for Numerical Methods in Fluids 71, 403–421. URL: http://doi.wiley.com/10.1002/fld.3664, doi:10.1002/fld.
1381
+ 3664.
1382
+ Baker, C.M., Moulton, M., Raubenheimer, B., Elgar, S., Kumar, N., 2021. Modeled Three-Dimensional Currents and Eddies
1383
+ on an Alongshore-Variable Barred Beach. Journal of Geophysical Research: Oceans 126. URL: https://onlinelibrary.
1384
+ wiley.com/doi/10.1029/2020JC016899, doi:10.1029/2020JC016899.
1385
+ Booij, N., 1981. Gravity waves on water with non-uniform depth and current. Ph.D. thesis. Delft University of Technology.
1386
+ Booij, N., Ris, R.C., Holthuijsen, L.H., 1999. A third-generation wave model for coastal regions: 1. Model description and
1387
+ validation.
1388
+ Journal of Geophysical Research 104, 7649–7666.
1389
+ URL: http://doi.wiley.com/10.1029/98JC02622, doi:10.
1390
+ 1029/98JC02622.
1391
+ Bretherton, F.P., Garret, C.I.R., 1968.
1392
+ Wavetrains in inhomogeneous moving media.
1393
+ Proceedings of the Royal So-
1394
+ ciety of London. Series A. Mathematical and Physical Sciences 302, 529–554.
1395
+ URL: http://link.springer.com/
1396
+ 10.1007/978-3-642-87025-5_18https://royalsocietypublishing.org/doi/10.1098/rspa.1968.0034,
1397
+ doi:10.1098/rspa.
1398
+ 1968.0034.
1399
+ Chawla, A., Kirby, J.T., 1999.
1400
+ Experimental Study of Wave Breaking and Blocking on Opposing Currents, in: Coastal
1401
+ Engineering 1998, American Society of Civil Engineers, Reston, VA. pp. 759–772. URL: http://ascelibrary.org/doi/10.
1402
+ 1061/9780784404119.056, doi:10.1061/9780784404119.056.
1403
+ Chawla, A., Kirby, J.T., 2002. Monochromatic and random wave breaking at blocking points. Journal of Geophysical Research
1404
+ 107, 3067. URL: http://doi.wiley.com/10.1029/2001JC001042, doi:10.1029/2001JC001042.
1405
+ Chen, H., Zou, Q., 2018. Characteristics of Wave Breaking and Blocking by Spatially Varying Opposing Currents. Journal of
1406
+ Geophysical Research: Oceans , 1–25URL: http://doi.wiley.com/10.1029/2017JC013440, doi:10.1029/2017JC013440.
1407
+ Chen, J., Hsu, T., Shi, F., Raubenheimer, B., Elgar, S., 2015. Hydrodynamic and sediment transport modeling of New River
1408
+ Inlet (NC) under the interaction of tides and waves.
1409
+ Journal of Geophysical Research: Oceans 120, 4028–4047.
1410
+ URL:
1411
+ https://onlinelibrary.wiley.com/doi/abs/10.1002/2014JC010425, doi:10.1002/2014JC010425.
1412
+ Chen, Q., Dalrymple, R.A., Kirby, J.T., Kennedy, A.B., Haller, M.C., 1999. Boussinesq modeling of a rip current system.
1413
+ Journal of Geophysical Research 104, 20617–20637.
1414
+ URL: http://doi.wiley.com/10.1029/1999JC900154, doi:10.1029/
1415
+ 1999JC900154.
1416
+ Chen, W., Panchang, V., Demirbilek, Z., 2005. On the modeling of wave-current interaction using the elliptic mild-slope wave
1417
+ equation. Ocean Engineering 32, 2135–2164. doi:10.1016/j.oceaneng.2005.02.010.
1418
+ Craik, A.D.D., Leibovich, S., 1976.
1419
+ A rational model for Langmuir circulations.
1420
+ J. Fluid Mech 73, 401–426.
1421
+ doi:https:
1422
+ //doi.org/10.1017/S0022112076001420.
1423
+ Cui, H., Pietrzak, J.D., Stelling, G.S., 2014. Optimal dispersion with minimized Poisson equations for non-hydrostatic free
1424
+ surface flows. Ocean Modelling 81, 1–12. URL: http://www.sciencedirect.com/science/article/pii/S146350031400078X,
1425
+ doi:10.1016/j.ocemod.2014.06.004.
1426
+ Dean, R.G., Dalrymple, R.A., 1991. Water wave mechanics for engineers and scientists.
1427
+ Dodet, G., Bertin, X., Bruneau, N., Fortunato, A.B., Nahon, A., Roland, A., 2013.
1428
+ Wave-current interactions in a wave-
1429
+ dominated tidal inlet. Journal of Geophysical Research: Oceans 118, 1587–1605. URL: http://doi.wiley.com/10.1002/
1430
+ jgrc.20146, doi:10.1002/jgrc.20146.
1431
+ Feddersen, F., Clark, D.B., Guza, R.T., 2011. Modeling surf zone tracer plumes: 1. Waves, mean currents, and low-frequency ed-
1432
+ dies. Journal of Geophysical Research 116. URL: http://doi.wiley.com/10.1029/2011JC007210, doi:10.1029/2011JC007210.
1433
+ 26
1434
+
1435
+ Hansen, J.E., Raubenheimer, B., List, J.H., Elgar, S., 2015. Modeled alongshore circulation and force balances onshore of
1436
+ a submarine canyon. Journal of Geophysical Research: Oceans 120, 1887–1903. URL: http://doi.wiley.com/10.1002/
1437
+ 2014JC010555, doi:10.1002/2014JC010555.
1438
+ Hoefel, F., Elgar, S., 2003.
1439
+ Wave-Induced Sediment Transport and Sandbar Migration.
1440
+ Science 299, 1885–1887.
1441
+ URL:
1442
+ https://www.science.org/doi/10.1126/science.1081448, doi:10.1126/science.1081448.
1443
+ Holthuijsen, L.H., 2007. Waves in oceanic and coastal waters. Cambridge University Press.
1444
+ Hopkins, J., Elgar, S., Raubenheimer, B., 2018.
1445
+ Storm Impact on Morphological Evolution of a Sandy Inlet.
1446
+ Journal
1447
+ of Geophysical Research: Oceans 123, 5751–5762. URL: https://onlinelibrary.wiley.com/doi/10.1029/2017JC013708,
1448
+ doi:10.1029/2017JC013708.
1449
+ Kaihatu, J.M., Kirby, J.T., 1995. Nonlinear transformation of waves in finite water depth. Physics of Fluids 7, 1903. URL:
1450
+ http://scitation.aip.org/content/aip/journal/pof2/7/8/10.1063/1.868504, doi:10.1063/1.868504.
1451
+ Kirby, J.T., 2016. Boussinesq Models and Their Application to Coastal Processes across a Wide Range of Scales. Journal
1452
+ of Waterway, Port, Coastal, and Ocean Engineering 142, 03116005. URL: http://ascelibrary.org/doi/10.1061/%28ASCE%
1453
+ 29WW.1943-5460.0000350, doi:10.1061/(ASCE)WW.1943-5460.0000350.
1454
+ Kirby, J.T., Dalrymple, R.A., 1986. Modeling waves in surfzones and around islands. Journal of Waterway, Port, Coastal,
1455
+ and Ocean Engineering 112, 78–93. URL: http://ascelibrary.org/doi/abs/10.1061/(ASCE)0733-950X(1986)112:1(78),
1456
+ doi:10.1061/(ASCE)0733-950X(1986)112:1(78).
1457
+ Kumar, N., Voulgaris, G., Warner, J.C., Olabarrieta, M., 2012.
1458
+ Implementation of the vortex force formalism in the
1459
+ coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system for inner shelf and surf zone appli-
1460
+ cations.
1461
+ Ocean Modelling 47, 65–95.
1462
+ URL: http://www.sciencedirect.com/science/article/pii/S1463500312000042,
1463
+ doi:10.1016/j.ocemod.2012.01.003.
1464
+ Lesser, G., Roelvink, J., van Kester, J., Stelling, G., 2004. Development and validation of a three-dimensional morphological
1465
+ model.
1466
+ Coastal Engineering 51, 883–915.
1467
+ URL: https://linkinghub.elsevier.com/retrieve/pii/S0378383904000870,
1468
+ doi:10.1016/j.coastaleng.2004.07.014.
1469
+ Longuet-Higgins,
1470
+ M.S.,
1471
+ Stewart,
1472
+ R.W.,
1473
+ 1962.
1474
+ Radiation stress and mass transport in gravity waves,
1475
+ with appli-
1476
+ cation to ‘surf beats’.
1477
+ Journal of Fluid Mechanics 13,
1478
+ 481–504.
1479
+ URL:
1480
+ http://www.journals.cambridge.org/
1481
+ abstract_S0022112062000877http://www.journals.cambridge.org/abstract%7B_%7DS0022112062000877,
1482
+ doi:10.1017/
1483
+ S0022112062000877.
1484
+ Longuet-Higgins, M.S., Stewart, R.W., 1964. Radiation stresses in water waves; a physical discussion, with applications. Deep
1485
+ Sea Research 11, 529–562. URL: http://www.sciencedirect.com/science/article/pii/0011747164900014.
1486
+ Luijendijk, A.P., Ranasinghe, R., de Schipper, M.A., Huisman, B.A., Swinkels, C.M., Walstra, D.J., Stive, M.J., 2017. The
1487
+ initial morphological response of the Sand Engine: A process-based modelling study. Coastal Engineering 119, 1–14. URL:
1488
+ https://linkinghub.elsevier.com/retrieve/pii/S0378383916302563, doi:10.1016/j.coastaleng.2016.09.005.
1489
+ Ma, G., Shi, F., Kirby, J.T., 2012. Shock-capturing non-hydrostatic model for fully dispersive surface wave processes. Ocean
1490
+ Modelling 43-44, 22–35. URL: http://linkinghub.elsevier.com/retrieve/pii/S1463500311001892https://linkinghub.
1491
+ elsevier.com/retrieve/pii/S1463500311001892, doi:10.1016/j.ocemod.2011.12.002.
1492
+ MacCormack, R., 1969. The Effect of Viscosity in Hypervelocity Impact Cratering, in: AIAA Hyper Velocity Impact Conference,
1493
+ pp. 69–354. URL: http://arc.aiaa.org/doi/pdf/10.2514/2.6901http://arc.aiaa.org/doi/abs/10.2514/2.6901, doi:10.
1494
+ 2514/2.6901.
1495
+ Madsen,
1496
+ P.A.,
1497
+ Murray,
1498
+ R.,
1499
+ Sørensen,
1500
+ O.R.,
1501
+ 1991.
1502
+ A
1503
+ new
1504
+ form
1505
+ of
1506
+ the
1507
+ Boussinesq
1508
+ equations
1509
+ with
1510
+ im-
1511
+ proved
1512
+ linear
1513
+ dispersion
1514
+ characteristics.
1515
+ Coastal
1516
+ Engineering
1517
+ 15,
1518
+ 371–388.
1519
+ URL:
1520
+ http://www.sciencedirect.
1521
+ com/science/article/pii/037838399190017Bhttp://linkinghub.elsevier.com/retrieve/pii/037838399190017B, doi:10.
1522
+ 1016/0378-3839(91)90017-B.
1523
+ 27
1524
+
1525
+ McWilliams,
1526
+ J.C.,
1527
+ Restrepo,
1528
+ J.M.,
1529
+ Lane,
1530
+ E.M.,
1531
+ 2004.
1532
+ An
1533
+ asymptotic
1534
+ theory
1535
+ for
1536
+ the
1537
+ interaction
1538
+ of
1539
+ waves
1540
+ and
1541
+ currents
1542
+ in
1543
+ coastal
1544
+ waters.
1545
+ Journal
1546
+ of
1547
+ Fluid
1548
+ Mechanics
1549
+ 511,
1550
+ 135–178.
1551
+ URL:
1552
+ http://www.journals.
1553
+ cambridge.org/abstract%7B_%7DS0022112004009358http://www.journals.cambridge.org/abstract_S0022112004009358,
1554
+ doi:10.1017/S0022112004009358.
1555
+ Mei, C.C., Stiassnie, M., Yue, D.K.P., 2005. Theory and Applications of Ocean Surface Waves. volume 23 of Advanced Series
1556
+ on Ocean Engineering.
1557
+ World Scientific.
1558
+ URL: http://www.worldscientific.com/worldscibooks/10.1142/5566https:
1559
+ //www.worldscientific.com/worldscibooks/10.1142/5566, doi:10.1142/5566.
1560
+ Nienhuis, J.H., Ashton, A.D., Nardin, W., Fagherazzi, S., Giosan, L., 2016. Alongshore sediment bypassing as a control on river
1561
+ mouth morphodynamics. Journal of Geophysical Research: Earth Surface 121, 664–683. URL: https://onlinelibrary.
1562
+ wiley.com/doi/10.1002/2015JF003780, doi:10.1002/2015JF003780.
1563
+ Nwogu, O., 1993. Alternative Form of Boussinesq Equations for Nearshore Wave Propagation. Journal of Waterway, Port,
1564
+ Coastal, and Ocean Engineering 119, 618–638. URL: http://ascelibrary.org/doi/10.1061/%28ASCE%290733-950X%281993%
1565
+ 29119%3A6%28618%29, doi:10.1061/(ASCE)0733-950X(1993)119:6(618).
1566
+ Olabarrieta, M., Geyer, W.R., Kumar, N., 2014. The role of morphology and wave-current interaction at tidal inlets: An
1567
+ idealized modeling analysis. Journal of Geophysical Research: Oceans 119, 8818–8837. URL: http://doi.wiley.com/10.
1568
+ 1002/2014JC010191, doi:10.1002/2014JC010191.
1569
+ Olabarrieta, M., Medina, R., Castanedo, S., 2010. Effects of wave–current interaction on the current profile. Coastal Engineering
1570
+ 57, 643–655. URL: http://www.sciencedirect.com/science/article/pii/S0378383910000165, doi:10.1016/j.coastaleng.
1571
+ 2010.02.003.
1572
+ Orzech, M.D., Reniers, A.J., Thornton, E.B., MacMahan, J.H., 2011. Megacusps on rip channel bathymetry: Observations and
1573
+ modeling. Coastal Engineering 58, 890–907. URL: https://linkinghub.elsevier.com/retrieve/pii/S0378383911000615,
1574
+ doi:10.1016/j.coastaleng.2011.05.001.
1575
+ Peregrine, D., 1976. Interaction of Water Waves and Currents, pp. 9–117. URL: https://linkinghub.elsevier.com/retrieve/
1576
+ pii/S0065215608700875, doi:10.1016/S0065-2156(08)70087-5.
1577
+ Peregrine, D.H., 1967.
1578
+ Long waves on a beach.
1579
+ Journal of Fluid Mechanics 27, 815–827.
1580
+ URL: http://journals.
1581
+ cambridge.org/abstract_S0022112067002605http://www.journals.cambridge.org/abstract_S0022112067002605, doi:10.
1582
+ 1017/S0022112067002605.
1583
+ Rafati, Y., Hsu, T.J., Elgar, S., Raubenheimer, B., Quataert, E., van Dongeren, A., 2021. Modeling the hydrodynamics and
1584
+ morphodynamics of sandbar migration events. Coastal Engineering 166, 103885. URL: https://linkinghub.elsevier.com/
1585
+ retrieve/pii/S0378383921000454, doi:10.1016/j.coastaleng.2021.103885.
1586
+ Rijnsdorp, D.P., Buckley, M.L., da Silva, R.F., Cuttler, M.V.W., Hansen, J.E., Lowe, R.J., Green, R.H., Storlazzi, C.D.,
1587
+ 2021. A Numerical Study of Wave-Driven Mean Flows and Setup Dynamics at a Coral Reef-Lagoon System. Journal of
1588
+ Geophysical Research: Oceans 126, 1–40. URL: https://onlinelibrary.wiley.com/doi/10.1029/2020JC016811, doi:10.
1589
+ 1029/2020JC016811.
1590
+ Rijnsdorp, D.P., Ruessink, G., Zijlema, M., 2015. Infragravity-wave dynamics in a barred coastal region, a numerical study.
1591
+ Journal of Geophysical Research: Oceans 120, 4068–4089. URL: http://doi.wiley.com/10.1002/2014JC010450https://
1592
+ onlinelibrary.wiley.com/doi/abs/10.1002/2014JC010450, doi:10.1002/2014JC010450.
1593
+ Rijnsdorp, D.P., Smit, P.B., Zijlema, M., Reniers, A.J., 2017. Efficient non-hydrostatic modelling of 3D wave-induced currents
1594
+ using a subgrid approach. Ocean Modelling 116, 118–133. URL: http://www.sciencedirect.com/science/article/pii/
1595
+ S1463500317301014http://linkinghub.elsevier.com/retrieve/pii/S1463500317301014, doi:10.1016/j.ocemod.2017.06.
1596
+ 012.
1597
+ Risandi, J., Rijnsdorp, D.P., Hansen, J.E., Lowe, R.J., 2020. Hydrodynamic Modeling of a Reef-Fringed Pocket Beach Using a
1598
+ Phase-Resolved Non-Hydrostatic Model. Journal of Marine Science and Engineering 8, 877. URL: https://www.mdpi.com/
1599
+ 28
1600
+
1601
+ 2077-1312/8/11/877, doi:10.3390/jmse8110877.
1602
+ Roelvink, D., Reniers, A., Van Dongeren, A., Van Thiel de Vries, J., McCall, R., Lescinski, J., 2009. Modelling storm impacts on
1603
+ beaches, dunes and barrier islands. Coastal Engineering 56, 1133–1152. URL: http://linkinghub.elsevier.com/retrieve/
1604
+ pii/S0378383909001252, doi:10.1016/j.coastaleng.2009.08.006.
1605
+ Roelvink, J.A., Stive, M.J.F., 1989. Bar-generating cross-shore flow mechanisms on a beach. Journal of Geophysical Research
1606
+ 94, 4785. URL: http://doi.wiley.com/10.1029/JC094iC04p04785, doi:10.1029/JC094iC04p04785.
1607
+ Smit, P., Janssen, T., Holthuijsen, L., Smith, J., 2014.
1608
+ Non-hydrostatic modeling of surf zone wave dynamics.
1609
+ Coastal
1610
+ Engineering 83, 36–48.
1611
+ URL: http://linkinghub.elsevier.com/retrieve/pii/S037838391300149Xhttps://linkinghub.
1612
+ elsevier.com/retrieve/pii/S037838391300149X, doi:10.1016/j.coastaleng.2013.09.005.
1613
+ Smit, P., Zijlema, M., Stelling, G., 2013. Depth-induced wave breaking in a non-hydrostatic, near-shore wave model. Coastal
1614
+ Engineering 76, 1–16.
1615
+ URL: http://linkinghub.elsevier.com/retrieve/pii/S0378383913000215https://linkinghub.
1616
+ elsevier.com/retrieve/pii/S0378383913000215, doi:10.1016/j.coastaleng.2013.01.008.
1617
+ Smit, P.B., Janssen, T.T., 2013.
1618
+ The evolution of inhomogeneous wave statistics through a variable medium.
1619
+ Journal of
1620
+ Physical Oceanography 43, 1741–1758.
1621
+ URL: http://journals.ametsoc.org/doi/abs/10.1175/JPO-D-13-046.1, doi:10.
1622
+ 1175/JPO-D-13-046.1.
1623
+ Smit, P.B., Janssen, T.T., Herbers, T.H.C., 2015.
1624
+ Stochastic modeling of inhomogeneous ocean waves.
1625
+ Ocean Modelling
1626
+ 96, 26–35. URL: http://www.sciencedirect.com/science/article/pii/S1463500315001080http://linkinghub.elsevier.
1627
+ com/retrieve/pii/S1463500315001080, doi:10.1016/j.ocemod.2015.06.009.
1628
+ Son, S., Lynett, P.J., 2014. Interaction of dispersive water waves with weakly sheared currents of arbitrary profile. Coastal
1629
+ Engineering 90, 64–84. URL: http://dx.doi.org/10.1016/j.coastaleng.2014.04.009, doi:10.1016/j.coastaleng.2014.
1630
+ 04.009.
1631
+ Stelling, G., Zijlema, M., 2003.
1632
+ An accurate and efficient finite-difference algorithm for non-hydrostatic free-surface flow
1633
+ with application to wave propagation.
1634
+ International Journal for Numerical Methods in Fluids 43, 1–23.
1635
+ URL: http:
1636
+ //onlinelibrary.wiley.com/doi/10.1002/fld.595/abstract, doi:10.1002/fld.595.
1637
+ Teles, M.J., Pires-Silva, A.A., Benoit, M., 2013. Numerical modelling of wave current interactions at a local scale. Ocean
1638
+ Modelling 68, 72–87. URL: http://dx.doi.org/10.1016/j.ocemod.2013.04.006, doi:10.1016/j.ocemod.2013.04.006.
1639
+ Touboul, J., Charland, J., Rey, V., Belibassakis, K., 2016. Extended mild-slope equation for surface waves interacting with a
1640
+ vertically sheared current. Coastal Engineering 116, 77–88. URL: http://dx.doi.org/10.1016/j.coastaleng.2016.06.003,
1641
+ doi:10.1016/j.coastaleng.2016.06.003.
1642
+ Uchiyama,
1643
+ Y.,
1644
+ McWilliams,
1645
+ J.C.,
1646
+ Shchepetkin,
1647
+ A.F.,
1648
+ 2010.
1649
+ Wave–current
1650
+ interaction
1651
+ in
1652
+ an
1653
+ oceanic
1654
+ circu-
1655
+ lation
1656
+ model
1657
+ with
1658
+ a
1659
+ vortex-force
1660
+ formalism:
1661
+ Application
1662
+ to
1663
+ the
1664
+ surf
1665
+ zone.
1666
+ Ocean
1667
+ Modelling
1668
+ 34,
1669
+ 16–
1670
+ 35.
1671
+ URL: http://www.sciencedirect.com/science/article/pii/S1463500310000594http://linkinghub.elsevier.com/
1672
+ retrieve/pii/S1463500310000594, doi:10.1016/j.ocemod.2010.04.002.
1673
+ Wei, Z., Jia, Y., 2014.
1674
+ Non-hydrostatic finite element model for coastal wave processes.
1675
+ Coastal Engineering 92, 31–
1676
+ 47.
1677
+ URL: http://www.sciencedirect.com/science/article/pii/S037838391400132Xhttp://linkinghub.elsevier.com/
1678
+ retrieve/pii/S037838391400132X, doi:10.1016/j.coastaleng.2014.07.001.
1679
+ de Wit, F., Tissier, M., Reniers, A., 2017. Including tidal currents in a wave-resolving model, in: Coastal Dynamics Proceedings.
1680
+ Yang, Z., Liu, P.L.F., 2022.
1681
+ Depth-integrated wave–current models. Part 2. Current with an arbitrary profile.
1682
+ Journal
1683
+ of Fluid Mechanics 936, A31.
1684
+ URL: https://www.cambridge.org/core/product/identifier/S0022112022000428/type/
1685
+ journal_article, doi:10.1017/jfm.2022.42.
1686
+ Yang, Z.T., Liu, P.L., 2020. Depth-integrated wave – current models . Part 1 . Two-dimensional formulation and applications
1687
+ doi:10.1017/jfm.2019.831.
1688
+ Yao, Y., Li, Z., Xu, C., Jiang, C., 2023. A study of wave-driven flow characteristics across a reef under the effect of tidal
1689
+ 29
1690
+
1691
+ current. Applied Ocean Research 130, 103430. URL: https://doi.org/10.1016/j.apor.2022.103430, doi:10.1016/j.apor.
1692
+ 2022.103430.
1693
+ Yoon, S.B., Liu, P.L., 1989. Interactions of currents and weakly nonlinear water waves in shallow water. Journal of Fluid
1694
+ Mechanics 205, 397–419. doi:10.1017/S0022112089002089.
1695
+ Zijlema, M., Stelling, G., Smit, P., 2011.
1696
+ SWASH: An operational public domain code for simulating wave fields and
1697
+ rapidly varied flows in coastal waters.
1698
+ Coastal Engineering 58, 992–1012.
1699
+ URL: http://linkinghub.elsevier.com/
1700
+ retrieve/pii/S0378383911000974https://linkinghub.elsevier.com/retrieve/pii/S0378383911000974,
1701
+ doi:10.1016/j.
1702
+ coastaleng.2011.05.015.
1703
+ Zijlema, M., Stelling, G.S., 2005. Further experiences with computing non-hydrostatic free-surface flows involving water waves.
1704
+ International Journal for Numerical Methods in Fluids 48, 169–197. URL: http://onlinelibrary.wiley.com/doi/10.1002/
1705
+ fld.821/abstracthttp://doi.wiley.com/10.1002/fld.821, doi:10.1002/fld.821.
1706
+ 30
1707
+
DdAzT4oBgHgl3EQfwf7y/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
FdE4T4oBgHgl3EQffw1T/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e13b329f85265c30a67cf6826786870e1e7efbaeed9f339e97fe0d82de2dd8a8
3
+ size 4587565
FdE4T4oBgHgl3EQffw1T/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:999dd5a9311cfb0f7cf2e3befa0d09362bacec617485de818fc04c995e6b12e9
3
+ size 164054
FtE0T4oBgHgl3EQfhAHl/content/2301.02427v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bbf13794c57e74d3293e18747cedabb14b4ac17718ea3945090f95c0e49de6bc
3
+ size 430689
FtE0T4oBgHgl3EQfhAHl/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:023539e4461c236a28dea3136ad5c27617c0a1a5b29d73c247978c0855380013
3
+ size 1966125
FtE0T4oBgHgl3EQfhAHl/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:676c0c0743075eadbe61ea831b788e5c6e44b0c8defd8237464e9167fd825015
3
+ size 77211
G9AyT4oBgHgl3EQffPiq/content/2301.00337v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c749dffd2ad7c55d660a0ae2d09ea1f2a35de7f953ab92f9072bbb43a6755641
3
+ size 4321009
G9AyT4oBgHgl3EQffPiq/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f39c2cc2aa7f4b27392a98a107da41c98c6e0d36d21d06323232eb63f612f461
3
+ size 4194349
G9AyT4oBgHgl3EQffPiq/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:be6a5c833683ced43cc3126d2c4d912712e713dc1d907f5e37d2c5e79b7cef1e
3
+ size 162112
GNAyT4oBgHgl3EQfSvfA/content/tmp_files/2301.00093v1.pdf.txt ADDED
@@ -0,0 +1,1795 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ DECOUPLING GENERALISED CONFIGURATION SPACES ON
2
+ SURFACES
3
+ LUCIANA BASUALDO BONATTO
4
+ Abstract. The configuration space of k points on a manifold carries an action of
5
+ its diffeomorphism group. The homotopy quotient of this action is equivalent to
6
+ the classifying space of diffeomorphisms of a punctured manifold, and therefore ad-
7
+ mits results about homological stability. Inspired by the works of Segal, McDuff,
8
+ Bodigheimer, and Salvatore, we look at generalised configuration spaces where par-
9
+ ticles have labels and even partially summable labels, in which points are allowed to
10
+ collide whenever their labels are summable. These generalised configuration spaces
11
+ also admit actions of the diffeomorphism group and we look at their homotopy quo-
12
+ tients. Our main result is a decoupling theorem for these homotopy quotients on
13
+ surfaces: in a range, their homology is completely described by the product of the
14
+ moduli space of surfaces and a generalised configuration space of points in R∞.
15
+ Using this result, we show these spaces admit homological stability with respect to
16
+ increasing the genus, and we identify the stable homology. This can be interpreted
17
+ as an Diff-equivariant homological stability for factorization homology. In addition,
18
+ we use this result to study the group completion of the monoid of moduli spaces of
19
+ configurations on surfaces.
20
+ 1. Introduction
21
+ The ordered configuration space of k points on a smooth manifold M without bound-
22
+ ary is defined as
23
+ �Ck(M) := {(m1, . . . , mk) ∈ M k | mi ̸= mj if i ̸= j}.
24
+ When M is a smooth manifold with boundary, we denote by �Ck(M) the space of ordered
25
+ configurations of k points in its interior. The symmetric group Σk acts on this space
26
+ by permuting the order of the k points. The configuration space of k points on M,
27
+ denoted Ck(M), is the quotient �Ck(M)/Σk.
28
+ We denote by Diff∂(M) the group of
29
+ diffeomorphisms of a manifold M which fix a collar of its boundary.
30
+ In this paper, we will focus on 2-dimensional manifolds and we denote by F k
31
+ g,b an
32
+ orientable surface of genus g, k punctures, and b ≥ 1 boundary components.
33
+ The
34
+ spaces Ck(Fg,b) admit an action of the group Diff∂(Fg,b), where a diffeomorphism φ
35
+ acts by taking a collection of k points to its image via φ. Of interest here, is the Borel
36
+ construction (homotopy quotient) of this action, denoted Ck(Fg,b)//Diff∂(Fg,b), to which
37
+ we refer to as a moduli of configurations of k points in Fg,b. It is simple to show that
38
+ Ck(Fg,b)//Diff∂(Fg,b) ≃ BDiff∂(F k
39
+ g,b)
40
+ (1.1)
41
+ and in fact this relation is not only true for surfaces, but for any manifold with k
42
+ punctures. In particular, this allows us to deduce homological stability results for these
43
+ moduli of configurations of k points, directly from the known theorems for classifying
44
+ spaces of punctured surfaces. For instance, when b ≥ 1 these spaces admit homological
45
+ stability when increasing the genus and when increasing then number of points [Har85,
46
+ Date: January 3, 2023.
47
+ 2020 Mathematics Subject Classification. 57R19, 55R80, 55R40, 55P47.
48
+ This material is based upon work supported by CNPq (201780/2017-8) and by the NSF Grant No.
49
+ DMS-1928930 while the author participated in a program hosted by the MSRI in 2022.
50
+ 1
51
+ arXiv:2301.00093v1 [math.AT] 31 Dec 2022
52
+
53
+ 2
54
+ LUCIANA BASUALDO BONATTO
55
+ Har90, RW16, RW14]. Moreover, it was shown in [BT01] that the stable homology of this
56
+ classifying space can be computed from the homology of BDiff∂(Fg,b)×B(Σk ≀GL+
57
+ 2 (R)),
58
+ what is known as a decoupling theorem.
59
+ In this paper, we study the analogue of this moduli space for generalised configuration
60
+ spaces. As a first case, we look at labelled configurations: given a pointed space Z, the
61
+ space of configurations in M with labels in Z is the quotient
62
+ C(M; Z) :=
63
+
64
+ ��
65
+ k≥0
66
+ �Ck(M) ×Σk Zk
67
+
68
+
69
+
70
+
71
+ under the relation (m1, . . . , mk; z1, . . . , zk) ∼ (m1, . . . , mk−1; z1, . . . , zk−1) if zk is the
72
+ basepoint of Z. We can interpret this space geometrically by considering it as the space
73
+ of particles in M where each particle is labelled by an element of Z, and a particle is
74
+ allowed to disappear if labelled by the basepoint.
75
+ This space has been of interest since the 70’s, appearing on the seminal works of
76
+ May [May72] and Segal [Seg73]. It was noted that the space C(Rn; Z) can be given the
77
+ structure of an (A∞-)monoid by taking multiplication to be roughly given by stacking
78
+ configurations side by side [Seg73]. One of the main results about this space is what
79
+ today is called a scanning map C(Rn; Z) → ΩnΣnZ which was shown by Segal to induce
80
+ a weak-homotopy equivalence on group-completions. This idea has been generalised in
81
+ many directions. For instance, B¨odigheimer [B¨od87] proved an analogous statement for
82
+ configurations on general manifolds. In addition, similar results were proven for the
83
+ case where the spaces of labels has extra structure, such as (partial) multiplications
84
+ [McD75, Seg79, Gue95, Kal01, Sal01]. We discuss the later case in Section 1.1.
85
+ More recently this labelled configuration space and scanning map argument have been
86
+ expanded to sophisticated constructions in factorization homology [AFT17] on the one
87
+ hand and, on the other, in the form of configuration spaces of manifolds, has been used
88
+ to compute the stable homology of the moduli spaces of Riemann surfaces [MW07] and
89
+ higher dimensional manifolds [GRW18, GRW17].
90
+ Labelled configuration spaces also inherit an action of the diffeomorphism group.
91
+ Even more, if Z is a pointed GL+
92
+ 2 (R)-space, we can define an action of Diff∂(Fg,b) on
93
+ C(M; Z) where a diffeomorphism φ acts by taking a collection of k points to its image
94
+ via φ, and the label z of a point w is taken to the label dwφ·z of the point φ(w). Unlike
95
+ the case of configurations with a fixed number of points, C(Fg,b; Z)//Diff∂(Fg,b) is not
96
+ in general equivalent to the classifying space of a diffeomorphism group. Hence we ask
97
+ if it still has homological stability and if it admits an analogous decoupling theorem.
98
+ For a surface Fg,b, with b ≥ 1, taking the boundary connected sum with the surface
99
+ F1,1 induces a homomorphism Diff∂(Fg,b) → Diff∂(Fg+1,b), given by extending a map
100
+ on Fg,b by the identity. We call this the stabilisation map and study what it induces on
101
+ the moduli of configuration spaces:
102
+ Theorem A. Let Z be a pointed GL+
103
+ 2 (R)-space and b ≥ 1. The stabilisation map on
104
+ the Borel constructions
105
+ s∗ : C(Fg,b; Z)//Diff∂(Fg,b) → C(Fg+1,b; Z)//Diff∂(Fg+1,b)
106
+ induces a homology isomorphism in degrees ≤ 2
107
+ 3g.
108
+ Moreover, we can determine precisely what the stable homology is:
109
+ Theorem B. Let Z is a pointed connected GL+
110
+ 2 (R)-space. There is a map
111
+ C(Fg,b; Z)//Diff∂(Fg,b) → Ω∞MTSO(2) × Ω∞Σ∞
112
+
113
+ EGL+
114
+ 2 (R)+
115
+
116
+ GL+
117
+ 2 (R)
118
+ Z
119
+
120
+ which is compatible with the stabilisation maps and induces a homology isomorphism in
121
+ degrees ≤ 2
122
+ 3g.
123
+
124
+ DECOUPLING GENERALISED CONFIGURATION SPACES ON SURFACES
125
+ 3
126
+ In the above, EGL+
127
+ 2 (R) denotes the total space of a universal fibration for BGL+
128
+ 2 (R),
129
+ we use (−)+ to denote adjoining a disjoint basepoint to a space, and −
130
+
131
+ GL+
132
+ 2 (R)
133
+ − denotes
134
+ the quotient of the smash product of pointed topological GL+
135
+ 2 (R)-spaces by the diagonal
136
+ action of GL+
137
+ 2 (R).
138
+ Both of the results above are consequences of Theorem C below, which is an ana-
139
+ logue of the decoupling theorem in [BT01]. It implies that the stable homology of this
140
+ moduli of configuration spaces can be understood through a decoupling map τ × ε,
141
+ which separates the points in the configurations from the underlying surfaces. The map
142
+ τ : Ck(Fg,b)//Diff∂(Fg,b) → BDiff∂(Fg,b) forgets the data of the configurations, and ε
143
+ forgets the underlying surface, but still remembers the points in the configuration and
144
+ some local tangential data around them (for a detailed description of these maps see
145
+ Section 3).
146
+ Theorem C (Decoupling Theorem for Labelled Configurations). Let τ and ε be the
147
+ maps described above. Then
148
+ τ × ε : C(Fg,b; Z)//Diff∂(Fg,b) → BDiff∂(Fg,b) × C(R∞; EGL+
149
+ 2 (R)+
150
+
151
+ GL+
152
+ 2 (R)
153
+ Z)
154
+ induces a homology isomorphism in degrees ≤ 2
155
+ 3g.
156
+ This result may be interpreted in physical terms: in the high genus limit, the con-
157
+ straints for the particles to stay on the underlying surface are lifted and the particles
158
+ are now free.
159
+ As a final application of Theorem C, we look at monoids of moduli of configurations
160
+ on surfaces. Boundary connected sum induces a multiplication on the level of classifying
161
+ spaces making
162
+
163
+ g BDiff∂(Fg,1) into a topological monoid. This important construction
164
+ and its group completion have been central in the study of the stable homology of
165
+ mapping class groups of surfaces [Mil86, Til00, MW07, GRW10, GRW18, GRW17].
166
+ This gluing of surfaces induces also a multiplication on the Borel constructions
167
+ C(Fg,1; Z)//Diff∂(Fg,1) × C(Fh,1; Z)//Diff∂(Fh,1) → C(Fg+h,1; Z)//Diff∂(Fg+h,1)
168
+ making
169
+
170
+ g C(Fg,1; Z)//Diff∂(Fg,1) into a topological monoid. We study its group com-
171
+ pletion.
172
+ Corollary D. For any pointed GL+
173
+ 2 (R)-space Z, the decoupling map induces a weak
174
+ equivalences on group completions
175
+ ΩB
176
+ ��
177
+ g C(Fg,1; Z)//Diff∂(Fg,1)
178
+
179
+ ≃ ΩB
180
+ ��
181
+ g BDiff∂(Fg,1)
182
+
183
+ ×ΩBC(R∞; EGL+
184
+ 2 (R)+
185
+
186
+ GL+
187
+ 2 (R)
188
+ Z).
189
+ 1.1. Configuration spaces with partially summable labels. The main result of
190
+ this paper considers a more general type of configuration spaces with labels in a framed
191
+ partial 2-monoid, where particles are allowed to collide if their labels are summable.
192
+ This space has been explored in works such as [McD75, Seg79, Gue95, Kal01, Sal01]
193
+ and, when the labels are E2-algebras (not partial), is equivalent to factorization ho-
194
+ mology [AF15] and topological chiral homology [Lur09]. The first example of this con-
195
+ struction can be seen in McDuff’s configuration spaces of positive and negative particles
196
+ [McD75], where particles are labelled by “charges” and are allowed to collide whenever
197
+ their charges are opposite. More generally, Salvatore [Sal01] defines partial 2-monoids,
198
+ which are, in essence, spaces with a multiplication similar to an E2-algebra structure,
199
+ but with the restriction that this multiplication does not need to be defined for every
200
+ tuple of elements (see Definition 4.4). Whenever P is equipped with a compatible ac-
201
+ tion of GL+
202
+ 2 (R), we call it a framed partial monoid, and we can define the space of
203
+ configurations in Fg,b with partially summable labels in P, denoted CΣ(Fg,b; P). The
204
+ definition CΣ(Fg,b; P) requires much more machinery then the case for non-summable
205
+
206
+ 4
207
+ LUCIANA BASUALDO BONATTO
208
+ labels, such as the Fulton-MacPherson operad, and yields more complicated models for
209
+ configuration spaces. We discuss these constructions in Section 4.1. As before, these
210
+ generalised configuration spaces admit an action of the diffeomorphism group and we
211
+ study its Borel construction.
212
+ Theorem E. Let P be a framed partial 2-monoid and b ≥ 1. The stabilisation map on
213
+ the Borel constructions
214
+ s∗ : CΣ(Fg,b; P)//Diff∂(Fg,b) → CΣ(Fg+1,b; P)//Diff∂(Fg+1,b)
215
+ induces a homology isomorphism in degrees ≤ 2
216
+ 3g.
217
+ While homological stability for configurations with summable labels with respect to
218
+ increasing the number of points had been studied in [KM16], the above result is the first
219
+ to look at stability with respect to increasing the genus. Theorem E can be interpreted
220
+ as a Diff∂-equivariant homological stability result for factorisation homology.
221
+ As in the case for labelled configurations, this result is a consequence of a decou-
222
+ pling theorem for the space CΣ(Fg,b; P)//Diff∂(Fg,b), which is the main result of this
223
+ paper. This is much more intricate than the decoupling for labelled configurations. The
224
+ proof uses a semi-simplicial resolution of CΣ(Fg,b; P) developed in section 4.2, which
225
+ we refer to as the disc model for configurations, denoted |DΣ(Fg,b; P)•| (Proposition
226
+ 4.13). This model makes explicit the connection between these spaces and factorization
227
+ homology. In the decoupling context, we naturally encounter an analogue of this space
228
+ with 2-dimensional discs with configurations embedded in R∞, we denote this space
229
+ |D2
230
+ Σ(R∞; P)•| (Definition 4.17). Using the Decoupling Theorem for Labelled Configu-
231
+ rations (Theorem D) we then prove:
232
+ Theorem F (Decoupling Theorem for Configurations with Summable Labels). For
233
+ P a framed partial 2-monoid, there is a weak equivalence CΣ(Fg,b; P)//Diff∂(Fg,b) ≃
234
+ |DΣ(Fg,b; P)•|//Diff∂(Fg,b) and the decoupling map
235
+ |DΣ(Fg,b; P)•|//Diff∂(Fg,b) → BDiff∂(Fg,b) × |D2
236
+ Σ(R∞; P)•|.
237
+ induces a homology isomorphism in degrees ≤ 2
238
+ 3g.
239
+ In future work we will discuss the homotopy type of the space |D2
240
+ Σ(R∞; P)•| and
241
+ its description as an infinite loop space. We conjecture that it is also equivalent to a
242
+ configuration in R∞ with partially summable labels.
243
+ Analogous to the case of labelled configurations, the spaces CΣ(Fg,1; P)//Diff∂(Fg,1)
244
+ assemble into a topological monoid, and the decoupling theorem descends into its group
245
+ completion.
246
+ Corollary G. For any path-connected framed partial 2-monoid with unit P, the decou-
247
+ pling map induce a homotopy equivalence
248
+ ΩB(
249
+
250
+ g CΣ(Fg,1; P)//Diff∂(Fg,1)) ≃ ΩB(
251
+
252
+ g BDiff∂(Fg,1)) × ΩB(|D2
253
+ Σ(R∞; P)•|).
254
+ 1.2. Outline of the paper. We start by recalling in Section 2 background results
255
+ which will be used throughout the paper, especially on Section 4. This can be skipped
256
+ and referred back to when necessary.
257
+ In Section 3 we introduce labelled configuration spaces and prove Theorem C. Using
258
+ this, we deduce Theorems A and B, and Corollary D.
259
+ In Section 4 we discuss the case of configurations with summable labels, and prove
260
+ the main results of the paper. We start by recalling in 4.1 the definitions of framed
261
+ partial d-monoids and configuration spaces with partially summable labels. We then
262
+ construct semi-simplicial resolutions for these spaces in Section 4.2. In Section 4.3, we
263
+ use this disc model together with the Decoupling Theorem for Labelled Configurations
264
+ (Theorem D) to prove Theorem F. Finally, we use this result to deduce Theorem E and
265
+ Corollary G.
266
+
267
+ DECOUPLING GENERALISED CONFIGURATION SPACES ON SURFACES
268
+ 5
269
+ Acknowledgements. I would like to thank Ulrike Tillmann for suggesting the prob-
270
+ lem and for the many insightful conversations. In addition, I would like to thank David
271
+ Ayala, Christopher Douglas, Jan Steinebrunner, and Nathalie Wahl for the helpful dis-
272
+ cussions and comments.
273
+ 2. Preliminaries
274
+ In this section we recall techniques and results on semi-simplicial spaces, which will
275
+ be used in Section 4. The reader may skip this part and refer back to when necessary.
276
+ For a detailed exposition of the concepts in this section see [ERW19].
277
+ A semi-simplicial space is a functor ∆op
278
+ inj → Top, where ∆inj is the category with ob-
279
+ ject the linearly ordered sets [p] = {0 < · · · < p} and morphisms the injective monotone
280
+ maps. We denote such a functor by X• and write Xp = X•({1, . . . , p}). The datum of
281
+ a semi-simplicial space is equivalent to the collection of spaces Xp, p ≥ 0, together with
282
+ face maps di : Xp → Xp−1 for i = 0, . . . , p, satisfying didj = dj−1di if i < j.
283
+ Denote by ∆p the standard p-simplex
284
+ ∆p =
285
+
286
+ (t0, . . . , tp) ∈ Rp+1���
287
+ p
288
+
289
+ i=1
290
+ ti = 1 and ti ≥ 0 for all i
291
+
292
+ .
293
+ To each morphism φ : [p] → [q] in ∆inj, there is a continuous map φ∗ : ∆p → ∆q such
294
+ that φ∗(t0, . . . , tp) = (s0, . . . , sq) with sj = �
295
+ i∈φ−1(j) ti. The geometric realisation of a
296
+ semi-simplicial space X• is the quotient space
297
+ |X•| :=
298
+ ��
299
+ p
300
+ Xp × ∆p
301
+ � �
302
+
303
+ where (x, φ∗t) ∼ (φ∗x, t), and φ is a morphism of ∆inj.
304
+ 2.1. Semi-simplicial nerve of a poset. Any topological poset (Q, <) defines a semi-
305
+ simplicial space Q• by setting Qp to be the subspace of tuples (q0 < · · · < qp) ∈ Qp+1,
306
+ and face maps
307
+ di : Qp −→ Qp−1
308
+ for 0 ≤ i ≤ p
309
+ (q0 < · · · < qi < · · · < qp) �−→ (q0 < · · · < qi−1 < qi+1 < · · · < qp).
310
+ We refer to Q• as the semi-simplicial nerve of the poset Q.
311
+ Given a topological poset (Q, <), the space Q×Q can be equipped with a partial order
312
+ where (q1, q2) < (q′
313
+ 1, q′
314
+ 2) if qi < q′
315
+ i and qj ≤ q′
316
+ j, for {i, j} = {1, 2}. We say that a pointed
317
+ such Q is a partially ordered topological monoid if it is equipped with a multiplication
318
+ − · − : Q × Q → Q
319
+ which is strictly associative, unital and order preserving. In this case, the geometric
320
+ realisation of the semi-simplicial nerve Q• is naturally endowed with a multiplication ·
321
+ defined by
322
+
323
+ (q0 < · · · < qm; t0, . . . , tm) · (q0 < · · · < qk; t0, . . . , tk)
324
+
325
+ =
326
+ = (q0 · q0 < · · · < q0 · qk < · · · < qm · q0 · · · < qm · qk; t0 · t, . . . , tm · t)
327
+ where ti · t = tit0, . . . , titk, for all i = 0, . . . , m. It is straightforward to verify that this
328
+ is well-defined.
329
+ Lemma 2.1. For (Q, <, µ) a partially ordered topological monoid, (|Q•|, |µ|) is a topo-
330
+ logical monoid. Moreover, any map of partially ordered topological monoids f : Q → Q′
331
+ induces a map of topological monoids
332
+ f∗ : |Q•| → |Q′
333
+ •|.
334
+ The proof is a straightforward computation and follows directly from the definitions.
335
+
336
+ 6
337
+ LUCIANA BASUALDO BONATTO
338
+ 2.2. Spectral sequence. We quickly recall below the spectral sequence defined in
339
+ [Seg68, Proposition 5.1] associated to a semi-simplicial space, which is the key for the
340
+ homology argument used in the proof of Theorem 4.18 (see [ERW19, Section 1.4] for a
341
+ detailed discussion).
342
+ For any semi-simplicial space X•, the geometric realisation |X•| admits a filtration
343
+ by its skeleta, with |X•|(0) = X0 and
344
+ |X•|(q) = |X•|(q−1) ∪Xq×∂∆q Xq × ∆q.
345
+ This filtration yields a spectral sequence
346
+ E1
347
+ p,q = Hp+q(|X•|(q), |X•|(q−1)) =⇒ Hp+q(|X•|)
348
+ and by excision and the Kunneth isomorphism, the left-hand term can be re-written to
349
+ give a spectral sequence with
350
+ E1
351
+ p,q ∼= Hp(Xq) =⇒ Hp+q(|X•|).
352
+ Therefore a map of semi-simplicial spaces inducing a level-wise homology isomorphism
353
+ gives an isomorphism of the first pages of the respective spectral sequences, and therefore
354
+ a homology isomorphism between the geometric realisations.
355
+ 2.3. Semi-simplicial Resolutions. In the proof of the decoupling we will use a semi-
356
+ simplicial resolution of the spaces of configurations with summable labels. Showing that
357
+ we indeed have a resolution will be a direct application of [GRW14, Theorem 6.2]. For
358
+ completeness, we quickly recall the statement of this result to clarify the conditions that
359
+ will be checked in the proof of Proposition 4.13. We follow the notation and definitions
360
+ of [GRW14].
361
+ An augmented semi-simplicial space is a triple (X•, X−1, ε•), where X• is a semi-
362
+ simplicial space, X−1 is a space and ε• is a collection of continuous maps εp : Xp →
363
+ X−1 satisfying diεp = εp−1 for all p ≥ 0 and all face maps di.
364
+ We also say that
365
+ ε• : X• → X−1 is an augmentation for X•. It is simple to verify that an augmentation
366
+ induces a continuous map |ε•| : |X•| → X−1.
367
+ Definition 2.2. An augmented topological flag complex [GRW14, Definition 6.1] is an
368
+ augmented semi-simplicial space ε : X• → X−1 such that
369
+ (i) The map Xn → X0 ×X−1 · · ·×X−1 X0 taking an n-simplex to its (n+1) vertices
370
+ is a homeomorphism onto its image, which is an open subset.
371
+ (ii) A tuple (v0, . . . , vn) ∈ X0 ×X−1 · · ·×X−1 X0 lies in Xn if and only if (vi, vj) ∈ X1
372
+ for all i < j.
373
+ In other words, in an augmented topological flag complex, the space of n-simplices
374
+ can be described as an open subspace of the (n + 1)-tuples of vertices with the same
375
+ image under ε, and such a tuple forms an n-simplex if and only if the pairs of vertices
376
+ are all 1-simplices. The result below is a criterion to determine when an augmented
377
+ topological flag complex X• → X−1 induces a weak equivalence |X•| → X−1.
378
+ Theorem 2.3 ([GRW14], Theorem 6.2). Let X• → X−1 be an augmented topological
379
+ flag complex. Suppose that
380
+ (i) The map ε : X0 → X−1 has local lifts of any map from a disc, i.e. given a map
381
+ f : Dn → X−1, a point p ∈ ε−1(f(x)), there is an open neighbourhood U ⊂ Dn
382
+ of x and a map F : U → X0 such that ε ◦ F = f|U and F(x) = p.
383
+ (ii) ε : X0 → X−1 is surjective.
384
+ (iii) For any p ∈ X−1 and any non-empty finite set {v1, . . . , vn} ∈ ε−1(p) there exists
385
+ a v ∈ ε−1(p) with (v1, v) ∈ X1 for all i.
386
+ Then |X•| → X−1 is a weak homotopy equivalence.
387
+
388
+ DECOUPLING GENERALISED CONFIGURATION SPACES ON SURFACES
389
+ 7
390
+ 3. Decoupling Labelled Configuration Spaces
391
+ In this section, we recall the definition of configuration spaces with labels and in-
392
+ troduce a model for the homotopy quotients C(Fg,b; Z)//Diff∂(Fg,b).
393
+ With this, we
394
+ construct the decoupling map of Theorem C. We then prove this result as Theorem
395
+ 3.2 and use it to prove Theorems A and B, and Corollary D. These are, respectively,
396
+ Corollary 3.4, Corollary 3.5, and Corollary 3.7 below.
397
+ Definition 3.1. Let M be a manifold and Z be a well-pointed space. The configuration
398
+ space of M with labels in Z, denoted C(M; Z), is the quotient
399
+
400
+ k≥0 �Ck(M) ×
401
+ Σk
402
+ Zk/ ∼
403
+ where �Ck(M) denotes the ordered configuration space of k points in M, and
404
+ (m1, . . . , mk; z1, . . . , zk) ∼ (m1, . . . , mk−1; z1, . . . , zk−1)
405
+ whenever zk is the basepoint of Z.
406
+ If Z is a pointed GL+
407
+ 2 (R)-space, and M is a surface Fg,b, with b ≥ 1, the space
408
+ C(Fg,b; Z) carries a natural action by the diffeomorphism group of Fg,b: for φ ∈ Diff∂(Fg,b)
409
+ φ · (m1, . . . , mk; z1, . . . , zk) := (φ(m1), . . . , φ(mk); Dm1φ · z1, . . . , Dm1φ · zk).
410
+ The basepoint relation is preserved by this action as Z is a pointed GL+
411
+ 2 (R)-space.
412
+ The decoupling result is about the homotopy quotient of this action, that is, the Borel
413
+ construction C(Fg,b; Z)//Diff∂(Fg,b).
414
+ From now on, we denote by Fg,b a fixed orientable surface of genus g, b ≥ 1 bound-
415
+ ary components, and pick once and for all a framing on Fg,b, that is, a section s of
416
+ the frame bundle Fr(TFg,b) → Fg,b. We fix now a model for EDiff∂(Fg,b) that will
417
+ be used to construct the decoupling map of Theorem 3.2. Let Emb(Fg,b, R∞) denote
418
+ colimn→∞ Emb(Fg,b, Rn). This space has a free action of Diff∂(Fg,b) by precomposition
419
+ and by [BF81] the quotient map Emb(Fg,b, R∞) → Emb(Fg,b, R∞)/Diff∂(Fg,b) has slices,
420
+ hence it is a principal Diff∂(Fg,b)-bundle. Moreover, by Whitney’s embedding theorem,
421
+ Emb(Fg,b, R∞) is weakly contractible and therefore it is a model for EDiff∂(Fg,b). We
422
+ then let
423
+ C(Fg,b; Z)//Diff∂(Fg,b) ≃ Emb(Fg,b, R∞)
424
+ ×
425
+ Diff∂(Fg,b) C(Fg,b; Z).
426
+ Analogously, we will take the model for BDiff∂(Fg,b) given by
427
+ BDiff∂(Fg,b) ≃ Emb(Fg,b, R∞)/Diff∂(Fg,b).
428
+ This can be interpreted as the space of abstract submanifolds of R∞ which are diffeo-
429
+ morphic to Fg,b, but without a fixed diffeomorphism. Analogously, a point in C(Fg,b; Z)//
430
+ Diff∂(Fg,b) consists of one such abstract manifold, together with a labelled configuration.
431
+ The decoupling map will be the product of two maps
432
+ τ : C(Fg,b; Z)//Diff∂(Fg,b) → BDiff∂(Fg,b)
433
+ (3.1)
434
+ ε : C(Fg,b; Z)//Diff∂(Fg,b) → C(R∞; EGL+
435
+ 2 (R)+
436
+
437
+ GL+
438
+ 2 (R)
439
+ Z).
440
+ (3.2)
441
+ Recall that EGL+
442
+ 2 (R) is the total space of a universal fibration for BGL+
443
+ 2 (R), we use
444
+ (−)+ to denote adjoining a disjoint basepoint to a space, and −
445
+
446
+ GL+
447
+ 2 (R)
448
+ − denotes the
449
+ quotient of the smash product of pointed topological GL+
450
+ 2 (R)-spaces by the diagonal
451
+ action of GL+
452
+ 2 (R).
453
+ Intuitively, the map τ forgets the configuration, while ε forgets the underlying surface,
454
+ but remembers the labelled configuration together with data on their tangent space on
455
+ the submanifold.
456
+
457
+ 8
458
+ LUCIANA BASUALDO BONATTO
459
+ In details, τ is the classifying map for the homotopy quotient, and it is simply the
460
+ one induced by the projection Emb(Fg,b, R∞)×Ck(Fg,b) → Emb(Fg,b, R∞).
461
+ To define ε, we take as model for BGL+
462
+ 2 (R) the oriented Grassmanian manifold of
463
+ 2-dimensional oriented subsbaces of R∞, Gr+(2, ∞), and let EGL+
464
+ 2 (R) denote the total
465
+ space of the universal GL+
466
+ 2 (R)-bundle over it. Then using the identification Fr(TR∞) ∼=
467
+ R∞ ×EGL+
468
+ 2 (R), an embedding e : Fg,b �→ R∞ induces a map e∗ : Fr(TFg,b) → ESO(2)
469
+ from the bundle of framings on TFg,b, taking a basis of TpFg,b to its image via Dpe. The
470
+ map ε takes a point represented by a labelled configuration [m1, . . . , mk; z1, . . . , zk] and
471
+ an embedding e : Fg,b �→ R∞ to the labelled configuration in R∞ given by
472
+ [e(m1), . . . , e(mk); [e∗(s(m1)), z1], . . . , [e∗(s(mk)), zk]]
473
+ where s(p) denotes the chosen oriented frame on p ∈ Fg,b. It is simple to verify that this
474
+ indeed defines a continuous function to the configuration space C(R∞; (EGL+
475
+ 2 (R))+
476
+
477
+ GL+
478
+ 2 (R)
479
+ Z).
480
+ Theorem 3.2. Let τ and ε be the maps in (3.1). Then the decoupling map
481
+ τ × ε : C(Fg,b; Z)//Diff∂(Fg,b) → BDiff∂(Fg,b) × C(R∞; (EGL+
482
+ 2 (R))+
483
+
484
+ GL+
485
+ 2 (R)
486
+ Z)
487
+ induces a homology isomorphism in degrees ≤ 2
488
+ 3g.
489
+ The proof of the result above will build upon a decoupling result for unlabelled
490
+ configurations with a fixed number of points, which was first proved by [BT01] and
491
+ generalised in [Han09, Bon22]. We show here a slight generalisation of the result which
492
+ we will need in the proof. The space C(M; Z) is constructed as a quotient of the union
493
+ of spaces �Ck(M) ×Σk Zk, and the Lemma below is about the decoupling map in each of
494
+ these components.
495
+ In fact, we will work on a slightly more general context which will be more convenient
496
+ for the proof: let X be a well-pointed space with an action of the wreath product
497
+ Σk ≀ GL+
498
+ 2 (R) (in the context above we were using X = Zk). The space �Ck(Fg,1) × X
499
+ comes equipped with two actions: Σk acts diagonally by permuting the points in the
500
+ configuration and by the action on X, and Diff∂(Fg,b) acts by
501
+ φ · (m1, . . . , mk; x) = (φ(m1), . . . , φ(mk); (dm1φ, . . . , dmkφ)(x)).
502
+ Note that the actions of Σk and Diff∂(Fg,1) on this space commute.
503
+ As before, we have maps
504
+ τk : ( �Ck(Fg,1) ×
505
+ Σk
506
+ X)//Diff∂(Fg,b) → BDiff∂(Fg,b)
507
+ (3.3)
508
+ εk : ( �Ck(Fg,1) ×
509
+ Σk
510
+ X)//Diff∂(Fg,b) → ( �Ck(R∞) × (EGL+
511
+ 2 (R))k)
512
+ ×
513
+ Σk≀GL+
514
+ 2 (R)
515
+ X.
516
+ (3.4)
517
+ Here τk is again simply the classifying map for the homotopy quotient, and εk is the
518
+ map taking a point represented by [m1, . . . , mk; x] and an embedding e : Fg,b �→ R∞ to
519
+ the class
520
+
521
+ [e(m1), . . . , e(mk); e∗(s(m1)), . . . , e∗(s(mk))], x
522
+
523
+ where s(p) denotes the chosen oriented frame on p ∈ Fg,b. We remark that replacing X
524
+ by Zk one recovers precisely the definition of the maps τ and ε in (3.1).
525
+ Lemma 3.3 ([BT01, Bon22]). For any Σk ≀GL+
526
+ 2 (R)-space X, let τk and εk be the maps
527
+ defined in (3.3). Then
528
+ τk×εk : ( �Ck(Fg,b)×
529
+ Σk
530
+ X)//Diff∂(Fg,b) → BDiff∂(Fg,b)×( �Ck(R∞)×(EGL+
531
+ 2 (R))k)
532
+ ×
533
+ Σk≀GL+
534
+ 2 (R)
535
+ X.
536
+ induces a homology isomorphism in degrees ≤ 2
537
+ 3g.
538
+
539
+ DECOUPLING GENERALISED CONFIGURATION SPACES ON SURFACES
540
+ 9
541
+ For completeness, we include a short proof of the above result. For details see [BT01,
542
+ Bon22].
543
+ Proof of Lemma 3.3. We start by reducing the proof to the case when X is a point. The
544
+ projections
545
+ ( �Ck(Fg,b) ×
546
+ Σk
547
+ X)//Diff∂(Fg,b) → Ck(Fg,b)//Diff∂(Fg,b)
548
+ BDiff∂(Fg,b) × ( �Ck(R∞) × (EGL+
549
+ 2 (R))k)
550
+ ×
551
+ Σk≀GL+
552
+ 2 (R)
553
+ X → BDiff∂(Fg,b) × Ck(R∞, BGL+
554
+ 2 (R))
555
+ are both fibrations with fibre X, and the map τk × εk induces a map between the
556
+ corresponding fibre sequences, which is the identity on the fibers. If the map between
557
+ the base spaces induces a homology isomorphism in degrees ≤ 2
558
+ 3g, then by Zeeman’s
559
+ Comparison Theorem [Zee57] applied to the Serre spectral sequences associated to these
560
+ fibrations, so does τk × εk. Hence it is enough to show that the map between the base
561
+ spaces
562
+ τk × εk : Ck(Fg,b)//Diff∂(Fg,b) → BDiff∂(Fg,b) × Ck(R∞, BGL+
563
+ 2 (R))
564
+ induces a homology isomorphism in degrees ≤ 2
565
+ 3g.
566
+ By Palais’ Theorem [Pal60], the map εk is a fibration with fiber BDiff∂(Fg,b+n).
567
+ Moreover, the map τk × εk induces a map of fibre sequences
568
+ BDiff∂(Fg,b+n)
569
+ Ck(Fg,b)//Diff∂(Fg,b)
570
+ Ck(R∞, BGL+
571
+ 2 (R))
572
+ BDiff∂(Fg,b)
573
+ BDiff∂(Fg,b) × Ck(R∞, BGL+
574
+ 2 (R))
575
+ Ck(R∞, BGL+
576
+ 2 (R))
577
+ proj
578
+ τk×εk
579
+ εk
580
+ where the leftmost map is the one induced by capping off the n extra boundary compo-
581
+ nents by gluing discs. This map was shown to induce a homology isomorphism in the
582
+ range ≤ 2
583
+ 3g [Har85, Iva87, Iva89, Iva93, Bol12, RW16]. Hence, by Zeeman’s Compar-
584
+ ison Theorem [Zee57] applied to the Serre spectral sequences associated to these fibre
585
+ sequences, the map between the total spaces also induces homology isomorphisms in the
586
+ range ≤ 2
587
+ 3g.
588
+
589
+ Equipped with Lemma 3.3, we are now ready to prove Theorem 3.2.
590
+ Proof of Theorem 3.2. The spaces C(Fg,b; Z) and C(R∞; (EGL+
591
+ 2 (R))+ ∧GL+
592
+ 2 (R) Z) con-
593
+ sist of configuration with an arbitrary number of particles. However they have natural
594
+ filtrations C≤k(−) by the subspaces of configurations with at most k points. These
595
+ induce filtrations
596
+ Xk := C≤k(Fg,b; Z)//Diff∂(Fg,b)
597
+ Yk := BDiff∂(Fg,b) × C≤k(R∞; (EGL+
598
+ 2 (R))+
599
+
600
+ GL+
601
+ 2 (R)
602
+ Z).
603
+ that are preserved under the map τ × δ.
604
+ We will inductively show the restrictions
605
+ Xk → Yk are homology isomorphisms for all k.
606
+ Since Z is a space with a good basepoint, the inclusions Xk−1 �→ Xk and Yk−1 �→ Yk
607
+ are cofibrations. Their subquotients are
608
+ Xk/Xk−1 = (EDiff∂(Fg,b))+
609
+
610
+ Diff∂(Fg,b)
611
+ �Ck(Fg,b)+ ∧
612
+ Σk Z∧k
613
+ and
614
+ Yk/Yk−1 = (BDiff∂(Fg,b))+ ∧ �Ck(R∞)+ ∧
615
+ Σk ((EGL+
616
+ 2 (R))+
617
+
618
+ GL+
619
+ 2 (R)
620
+ Z)∧k.
621
+
622
+ 10
623
+ LUCIANA BASUALDO BONATTO
624
+ Comparing the spectral sequences associated to these filtrations, it is enough to show
625
+ that the induced map on these subquotients is a homology isomorphism. Consider the
626
+ map of cofibrations:
627
+ EDiff∂(Fg,b)
628
+ ×
629
+ Diff∂(Fg,b) Ck(Fg,b)
630
+ EDiff∂(Fg,b)
631
+ ×
632
+ Diff∂(Fg,b) ( �Ck(Fg,b) ×
633
+ Σk
634
+ Z∧k)
635
+ Xk/Xk−1
636
+ BDiff∂(Fg,b) × Ck(R∞, BGL+
637
+ 2 (R))
638
+ BDiff∂(Fg,b) × ( �Ck(R∞) ×
639
+ Σk
640
+ ((EGL+
641
+ 2 (R))+
642
+
643
+ GL+
644
+ 2 (R)
645
+ Z)∧k)
646
+ Yk/Yk−1
647
+ τk×εk
648
+ τk×εk
649
+ By Lemma 3.3 with X = ∗ the left-hand map induces a homology isomorphism in
650
+ degrees ≤ 2
651
+ 3g, and by the same result with X = Z∧n, so does the middle map. Then
652
+ by the five lemma, the right-hand map also induces a homology isomorphism in degrees
653
+ ≤ 2
654
+ 3g, as required.
655
+
656
+ 3.1. Homological Stability. Let Fg+1,b be a surface of genus g+1 and b ≥ 1 boundary
657
+ components, which is obtained from Fg,b by a boundary connected sum with F1,1. Then
658
+ extending diffeomorphisms by the identity on F1,1 gives a map of topological groups
659
+ s : Diff∂(Fg,b) �→ Diff∂(Fg+1,b)
660
+ which we refer to as the stabilisation map.
661
+ Moreover, the inclusion Fg,1 �→ Fg+1,b
662
+ induces a continuous map of labelled configuration spaces C(Fg,b; Z) → C(Fg+1,b; Z)
663
+ which is s-equivariant. Together this implies we have an induced map on the Borel
664
+ constructions:
665
+ Corollary 3.4. For b ≥ 1, the stabilisation map on the Borel constructions
666
+ s∗ : C(Fg,b; Z)//Diff∂(Fg,b) → C(Fg+1,b; Z)//Diff∂(Fg+1,b)
667
+ induces a homology isomorphism in degrees ≤ 2
668
+ 3g.
669
+ The above result is a corollary of Theorem 3.2, however care has to be taken with
670
+ respect to the model we have used for the Borel constructions and classifying spaces.
671
+ Namely, it is not clear how to define a stabilisation map on the level of embedding
672
+ spaces Emb(Fg,b, R∞) → Emb(Fg+1,b, R∞) which induces the desired map on Borel
673
+ constructions.
674
+ This can be remedied by taking as model for EDiff∂(Fg,b) a weakly
675
+ contractible subspace of Emb(Fg,b, R∞) that still has a free and has proper action of
676
+ Diff∂(Fg,b) and in which the stabilisation is clear.
677
+ Fix a boundary component of Fg,b and an embedding S1 �→ {0}×R∞. We denote by
678
+ Emb∂(Fg,b, (−∞, 0]×R∞) the space of all extensions to an embedding of Fg,b which are
679
+ standard on a collar neighbourhood of the marked boundary. By the same arguments
680
+ as above, Emb∂(Fg,b, (−∞, 0] × R∞) is a model for EDiff∂(Fg,b), and the inclusion map
681
+ Emb∂(Fg,b, (−∞, 0] × R∞) �→ Emb(Fg,b, R∞)
682
+ is a Diff∂(Fg,b)-equivariant weak homotopy equivalence. Fixing an embedding e : F1,2 �→
683
+ R∞ which restricts to the chosen embedding on a collar of the boundary, we get an
684
+ inclusion
685
+ Emb∂(Fg,b, (−∞, 0] × R∞) → Emb∂(Fg+1,b, (−∞, 0] × R∞)
686
+ given by extending any embedding of Fg,b by e. This is clearly compatible with the
687
+ stabilisation map.
688
+ Proof of Corollary 3.4. Using as model for EDiff∂(Fg,b) the space Emb∂(Fg,b, (−∞, 0]×
689
+ R∞) described above, we get a commutative diagram
690
+
691
+ DECOUPLING GENERALISED CONFIGURATION SPACES ON SURFACES
692
+ 11
693
+ C(Fg,b; Z)//Diff∂(Fg,b)
694
+ C(Fg+1,b; Z)//Diff∂(Fg+1,b)
695
+ BDiff∂(Fg,b) × C(R∞; (EGL+
696
+ 2 (R))+
697
+
698
+ GL+
699
+ 2 (R)
700
+ Z)
701
+ BDiff∂(Fg+1,b) × C(R∞; (EGL+
702
+ 2 (R))+
703
+
704
+ GL+
705
+ 2 (R)
706
+ Z).
707
+ s
708
+ τ×ε
709
+ τ×ε
710
+ s×id
711
+ By Theorem 3.2 the vertical maps induce homology isomorphisms in degrees ≤ 2
712
+ 3g,
713
+ and by Harer’ Stability Theorem [Har85, Iva87, Iva89, Iva93, Bol12, RW16] and Kun-
714
+ neth’s Theorem, so does the bottom map. Therefore the top map must also induce
715
+ homology isomorphisms in degrees ≤ 2
716
+ 3g.
717
+
718
+ The Decoupling Theorem also allows us to identify what the homology stabilises to.
719
+ Let C(F∞; Z)//Diff∂(F∞) and BDiff∂(F∞) be respectively
720
+ C(F∞; Z)//Diff∂(F∞) := colim(C(F1,1; Z)//Diff∂(F1,1)
721
+ s−→ C(F2,1; Z)//Diff∂(F2,1)
722
+ s−→ . . . )
723
+ BDiff∂(F∞) := colim(BDiff∂(F1,1
724
+ s−→ BDiff∂(F2,1)
725
+ s−→ . . . ).
726
+ Corollary 3.5. For Z a pointed connected GL+
727
+ 2 (R)-space, the decoupling map induces
728
+ τ × ε : C(F∞; Z)//Diff∂(F∞) → Ω∞MTSO(2) × Ω∞Σ∞
729
+
730
+ EGL+
731
+ 2 (R)+
732
+
733
+ GL+
734
+ 2 (R)
735
+ Z
736
+
737
+ which is a homology isomorphism in all degrees.
738
+ Proof. Theorem 3.2 and Corollary 3.4 imply that the decoupling map on the colimits
739
+ τ × ε : C(F∞; Z)//Diff∂(F∞) → BDiff∂(F∞) × C(R∞, EGL+
740
+ 2 (R)+
741
+
742
+ GL+
743
+ 2 (R)
744
+ Z)
745
+ (3.5)
746
+ induces a homology isomorphism. By [GTMW09, MW07], BDiff∂(F∞) admits a map to
747
+ Ω∞MTSO(2) which is a homology isomorphism, and by [Seg73], the right-most config-
748
+ uration space in (3.5) is homotopy equivalent to Ω∞Σ∞ �
749
+ EGL+
750
+ 2 (R)+ ∧GL+
751
+ 2 (R) Z
752
+
753
+ .
754
+
755
+ 3.2. Monoid of Moduli of Labelled Configuration Spaces. Gluing two surfaces
756
+ Fg,1 and Fh,1 along part of their boundary defines a map of topological groups
757
+ Diff∂(Fg,1) × Diff∂(Fh,1) → Diff∂(Fg+h,1).
758
+ This can be made into an associative operation if we fix once and for all oriented surfaces
759
+ Fg,b of genus g and one boundary component, and compatible with the stabilisation (see
760
+ Section 3.1). Using these choices for our surfaces, we can see that the above map gives an
761
+ associative operation in the collection of diffeomorphism groups of all Fg,1. An example
762
+ of such surfaces and multiplication is depicted in Figure 1.
763
+ µ
764
+ ,
765
+ =
766
+ Figure 1. Example of the map µ : MC(C)2 × MC(C)3 → MC(C)5
767
+ where C is the space of colours, with white as the basepoint.
768
+ Up to homotopy, the above gluing process is equivalent to gluing the boundary circles
769
+ of surfaces Fg,1 and Fh,1, to two of the three boundary circles of F0,3, what is called the
770
+ pair of pants multiplication. We choose to think of this multiplication in terms of the
771
+ first description because in this way the product is strictly associative.
772
+ This operation also induces a multiplication on the classifying spaces BDiff∂(Fg,1),
773
+ which can be made associative by picking a convenient model. As in Section 3.1, we
774
+ will use as EDiff∂(Fg,1) a certain subspace of Emb(Fg,1, R∞).
775
+ Namely, we can fix
776
+
777
+ 12
778
+ LUCIANA BASUALDO BONATTO
779
+ embeddings δg : S1 �→ [0, g] × R∞ such that δg(S1) ∩ ({0} × R∞) = {0} × (−1, 1) × {0}
780
+ and δg(S1) ∩ ({g} × R∞) = {g} × (−1, 1) × {0}. We denote by Embδg(Fg,1, [0, g] × R∞)
781
+ the space of all extensions to an embedding of Fg,1 which are standard on a collar
782
+ neighbourhood of the boundary. By the same arguments as above, Embδg(Fg,1, [0, g] ×
783
+ R∞) is a model for EDiff∂(Fg,1), and the inclusion map
784
+ Embδg(Fg,1, [0, g] × R∞) �→ Emb(Fg,1, R∞)
785
+ is a Diff∂(Fg,1)-equivariant weak homotopy equivalence.
786
+ By picking embeddings δg
787
+ which are compatible with the stabilisation map, we can define a multiplication
788
+ Embδg(Fg,1, [0, g] × R∞) × Embδh(Fh,1, [0, h] × R∞) → Embδg+h(Fg+h,1, [0, g + h] × R∞)
789
+ by extending an embedding of Fg,1 by the translation of the embedding of Fh,1 in the
790
+ first coordinate by g. This is clearly associative and it is compatible with the associative
791
+ multiplication on the diffeomorphism groups.
792
+ Taking as model for EDiff∂(Fg,1) the spaces Embδg(Fg,1, [0, g] × R∞) we obtain
793
+ an associative multiplication on classifying spaces.
794
+ This structure equips the space
795
+
796
+ g≥0BDiff∂(Fg,1) with the structure of a topological monoid, which we refer to as the
797
+ surface monoid. This is equivalent to the one studied by Tillmann in [Til00], which was
798
+ essential in the proof of the Madsen-Weiss Theorem [MW07].
799
+ The operation on diffeomorphism groups and spaces EDiff∂(Fg,1) described above,
800
+ together with the fixed identifications Fg+h,1 = Fg,1#∂Fh,1, induce an associative mul-
801
+ tiplication also on the Borel constructions (see Figure 1)
802
+ µ : C(Fg,1; Z)//Diff∂(Fg,1) × C(Fh,1; Z)//Diff∂(Fh,1) → C(Fg+h,1; Z)//Diff∂(Fg+h,1).
803
+ Definition 3.6. We denote by MC(Z)g := C(Fg,1; Z)//Diff∂(Fg,1). The monoid of
804
+ moduli of configurations labelled by Z is the topological monoid given by the disjoint
805
+ union MC(Z) :=
806
+
807
+ g≥0MC(Z)g together with the operation µ.
808
+ Theorem 3.7. For any pointed GL+
809
+ 2 (R)+-space Z, the decoupling map induces a weak
810
+ equivalences on group completions
811
+ ΩB
812
+ ��
813
+ g C(Fg,1; Z)//Diff∂(Fg,1)
814
+
815
+ ≃ ΩB
816
+ ��
817
+ g BDiff∂(Fg,1)
818
+
819
+ ×ΩB C(R∞; EGL+
820
+ 2 (R)+
821
+
822
+ GL+
823
+ 2 (R)
824
+ Z).
825
+ Segal showed in [Seg73] that the space Ω∞Σ∞(X) is the group completion of the con-
826
+ figuration space C(R∞; X) seen as a topological monoid where the operation is roughly
827
+ given by transposition. Using the inclusion Embδg(Fg,1, [0, g] × R∞) �→ Emb(Fg,b, R∞),
828
+ we see that the decoupling map of Theorem 3.2 induces a map between the spaces using
829
+ the current model. The proof of the above theorem will consist of showing that the
830
+ decoupling induces a monoidal map between MC(Z) and the monoids Tillmann and
831
+ Segal, and to show that this induces a homotopy equivalence on group completions.
832
+ Lemma 3.8. The maps τ and ε defined in 3.1 are compatible with these monoidal
833
+ structures.
834
+ For the map τ, this result follows directly from the definition. For ε, some care has
835
+ to be taken into making the configuration spaces into actual topological monoids (see
836
+ [Seg73]). Namely, instead of C(R∞; X), we use the homotopy equivalent space
837
+ C′(R∞, X) = {(c, t) ∈ C(R∞, X) × R : t ≥ 0, c ⊂ (0, t) × R∞}.
838
+ The monoidal structure is given by juxtaposition, ie. (c, t), (c′, t′) �→ (c ∪ Tt(c′), t + t′)
839
+ where Tt(−) is the map that translates a configuration by t on the first direction. The
840
+ map τ of the decoupling theorem is then equivalent to the monoidal map MC(Z) →
841
+ C′(R∞, X) taking an element of [e, c] ∈ MC(Z)g to (τ([e, c]), g).
842
+
843
+ DECOUPLING GENERALISED CONFIGURATION SPACES ON SURFACES
844
+ 13
845
+ Proof of Theorem 3.7. It is enough to show that the map of monoids given by the decou-
846
+ pling induces a homotopy equivalence on group completions. As the group completions
847
+ are loop spaces, they are in particular simple and, by the Whitehead theorem for simple
848
+ spaces, it suffices to show that it induces a homology equivalence on the group comple-
849
+ tions. Both monoids are homotopy commutative, hence the group completion theorem
850
+ [MS76] can be applied. Therefore it is enough to prove that the induced map on the
851
+ limit spaces (defined in Section 3.1)
852
+ τ × ε : C(F∞; Z)//Diff∂(F∞) → BDiff∂(F∞) × C(R∞; EGL+
853
+ 2 (R)+
854
+
855
+ GL+
856
+ 2 (R)
857
+ Z)
858
+ (3.6)
859
+ is a homology equivalence. This holds by Theorem 3.2 and Corollary 3.4.
860
+
861
+ 4. Decoupling Configuration Spaces with Partially Summable Labels
862
+ In this section we prove the main result of this paper, which is a decoupling result for
863
+ configuration spaces with partially summable labels. In this case, the labelling space is
864
+ equipped with a partial multiplication and the particles are allowed to collide whenever
865
+ their labels can be multiplied. The space CΣ(M; P) of configurations in M with par-
866
+ tially summable labels in P has been defined in [Sal01] and its definition requires more
867
+ sophisticated tools such as the Fulton-MacPherson configuration spaces and operad. In
868
+ section 4.1 we recall these definitions and the concept of a partial d-monoids.
869
+ To prove the decoupling theorem for CΣ(M; P), we develop a semi-simplicial resolu-
870
+ tion for this space in section 4.2, denoted |DΣ(M; P)•|. In Proposition 4.13 we show
871
+ that indeed this space is weakly equivalent to CΣ(M; P). In the decoupling context, we
872
+ naturally encounter another space of discs with configurations which is constructed in
873
+ Definition 4.17.
874
+ With these semi-simplicial spaces, we prove Theorem F, combining Corollary 4.14
875
+ and Theorem 4.18. We then use this to deduce Theorem E and Corollary G, which are,
876
+ respectively Corollaries 4.19 and 4.20.
877
+ 4.1. Fulton-MacPherson configuration space and partially summable labels.
878
+ In this section we recall the concept of a configuration space with summable labels in a
879
+ partial monoid as described in [Sal01].
880
+ A partial d-monoid P is, in essence, a space with a continuous operation that is
881
+ not defined on all collections of elements, but only on a subset of composable elements.
882
+ The data defining such a partial monoid consists of the subset of composable elements,
883
+ together with an operation on this subset which is associative. We are interested in
884
+ partial monoids that moreover have the structure of an Ed-algebra. Essential to this
885
+ construction is Fd, the Fulton-MacPherson operad in dimension d. This is a cofibrant
886
+ replacement for the little d-discs operad and therefore will be used to make precise the
887
+ notion of a Ed-partial monoid. Crucially for us, the Fulton-MacPherson operad is defined
888
+ in terms of configuration spaces of points, in which the particles in the configuration are
889
+ allowed to collide, but keeping track of the relative position of the particles before they
890
+ collided and the order in which collided.
891
+ We follow the definition of the Fulton-MacPherson configuration space Ck(M) of a
892
+ manifold M as described in [Sin04]. To make it precise, we consider M as embedded in
893
+ some Rm and we denote by k the set {1, . . . , k}. We record the directions of particles
894
+ in a collision, by defining for (i, j) ∈ �C2(k), a map πi,j : �Ck(Rm) → Sm−1 sending
895
+ a configuration (x1, . . . , xk) to the unit vector in the direction xi − xj. The order of
896
+ collision is recorded by defining for (i, j, ℓ) ∈ �C3(k) the map si,j,ℓ : �Ck(Rm) → [0, ∞]
897
+ sending (x1, . . . , xk) to |xi − xj|/|xi − xℓ|.
898
+
899
+ 14
900
+ LUCIANA BASUALDO BONATTO
901
+ Definition 4.1 ([Sin04], Definition 1.3). The Fulton-MacPherson configuration space
902
+ Ck(M) of the manifold M is the closure of the image of the map
903
+ i × (πi,j| �
904
+ Ck(M)) × (si,j,k| �
905
+ Ck(M)) : �Ck(M) −→ M k × (Sm−1)k(k−1) × [0, ∞]k(k−1)(k−2).
906
+ The space Ck(M) is homotopy equivalent to the ordered configuration space �Ck(M)
907
+ [Sin04, Corollary 4.5] and whenever M is compact, Ck(M) is a compactification of
908
+ �Ck(M). Moreover, this construction is functorial with respect to embeddings [Sin04,
909
+ Corollary 4.8], i.e. any embedding f : M �→ N induces an embedding f∗ : Ck(M) →
910
+ Ck(N).
911
+ The following result gives a convenient way to represent elements of Ck(M), which
912
+ will be used throughout the chapter.
913
+ Proposition 4.2 ([Sin04], Theorem 3.8). Each element in Ck(M) is uniquely deter-
914
+ mined by:
915
+ (1) A configuration of points P1, . . . , Pl in the interior of M, with 1 ≤ l ≤ n (we
916
+ refer to these as the infinitesimal configuration),
917
+ (2) For each 1 ≤ i ≤ l, a tree Ti with fi leaves (twigs), no bivalent vertices,
918
+ so that �l
919
+ i=1 fi = n, and for each vertex in Ti of valence m an element in
920
+ Cm(TPiM)/G(d), where G(d) is the group of affine transformations of Rd gen-
921
+ erated by translations and positive dilations.
922
+ (3) A global ordering of the k leaves of the trees.
923
+ This interpretation of the elements of Ck(M) also provides a way of describing the
924
+ map f∗ : Ck(M) → Ck(N) induced by an embedding f : M �→ N into a d′-manifold N:
925
+ it takes a point with infinitesimal configurations P1, . . . , Pl ∈ M to one with infinitesimal
926
+ configurations f(P1), . . . , f(Pl) ∈ N, it preserves the trees and ordering of the leaves,
927
+ but changes the labels of the vertices of the trees by taking a label ξ ∈ Cm(TPiM)/G(d)
928
+ to the label DPif(ξ) ∈ Cm(Tf(Pi)N)/G(d′).
929
+ The Fulton-MacPherson operad Fd is built out of subspaces of these configurations
930
+ in Rd.
931
+ Intuitively, for each k ≥ 0 the space Fd(k) is the subspace of the ordered
932
+ configurations of k points in Rd, in which the points have collided at the origin.
933
+ Definition 4.3. The Fulton-MacPherson operad in dimension d, denoted Fd, is defined
934
+ by taking Fd(k) to be the pullback
935
+ Fd(k)
936
+ Ck(Rd)
937
+ 0
938
+ (Rd)k.
939
+
940
+ In other words, it is the subspace of Ck(Rd) with infinitesimal configuration given by a
941
+ single point at the origin.
942
+ With the description of this space as in Proposition 4.2, the composition of this operad
943
+ is given by grafting of trees. Pictorially, we will often represent elements of Fd(k) as
944
+ trees of configurations such as in the rightmost picture of Figure 2.
945
+ As shown in [Sal01], there exists a model structure on the category of topological op-
946
+ erads in which Fd is a cofibrant replacement of the little d-discs operad. An algebra over
947
+ Fd, called by Salvatore a d-monoid, consists of a space A together with Σk-equivariant
948
+ maps
949
+ Fd(k) × Ak → A
950
+ which commute with the structure maps of Fd.
951
+
952
+ DECOUPLING GENERALISED CONFIGURATION SPACES ON SURFACES
953
+ 15
954
+ 10
955
+ 9
956
+ 8
957
+ 5
958
+ 1
959
+ 7
960
+ 6
961
+ 4
962
+ 3
963
+ 2
964
+ 11
965
+ 12
966
+ 10
967
+ 9
968
+ 8
969
+ 5
970
+ 1
971
+ 7
972
+ 6
973
+ 4
974
+ 3
975
+ 2
976
+ 11
977
+ 12
978
+ 8
979
+ 5
980
+ 1
981
+ 3
982
+ 9
983
+ 7
984
+ 2
985
+ 12
986
+ 10
987
+ 6
988
+ 4
989
+ 11
990
+ Figure 2. Representation of an element in the space F2(12) in terms
991
+ of a tree of infinitesimal configurations.
992
+ Definition 4.4 ([Sal01], Definition 1.7 and 2.6). A partial d-monoid is a space P to-
993
+ gether with monomorphisms of Σk-spaces
994
+ i : Compk �→ Fd(k) ×Σk P k.
995
+ and composition maps ρ : Compk → P such that
996
+ (1) The unit η × P : P → Fd(1) × P factors uniquely through �η : P → Comp1 and
997
+ the composition ρ ◦ �η is the identity idP ;
998
+ (2) For f ∈ Fd(k) and [fj; pj] ⊂ Compmj, for j = 1, . . . , k, the element
999
+ [f; ρ(f1; p1), . . . , ρ(fk; pk)] ∈ Fd(k) ×Σk P k
1000
+ belongs to Compk if and only if
1001
+ [µ(f; f1, . . . , fk); p1, . . . , pk]
1002
+ belongs to Compm1+···+mk. Moreover, if that is the case, then their image by ρ
1003
+ coincide.
1004
+ A pointed space (P, 0) is a partial d-monoid with unit if in addition it satisfies
1005
+ 3. For every k there is an inclusion u : Fd(k) ×Σk
1006
+
1007
+ k P �→ Compk such that the
1008
+ composition with i◦u is the subspace inclusion, and ρ◦i : Fd(k)×Σk
1009
+
1010
+ k P → P
1011
+ is the projection onto the P coordinate.
1012
+ The definition above is better understood when in comparison to Ed-algebras, which
1013
+ Salvatore calls d-monoids. Given a d-monoid M and a infinitesimal configuration f ∈
1014
+ Fd(k), we can always compose any k elements of M via the composition rule described by
1015
+ f. In a partial d-monoid P, that is not the case. We instead are given a subset of the k-
1016
+ tuples of P which are composable via the operation described by a given f ∈ Fd(k). The
1017
+ space Compk should be then thought of as the pairs of possible composition rules in Fd
1018
+ together with the tuples of elements of P which can be composed with this composition
1019
+ rule. The map ρ is computes the results of compositions, whenever they are defined.
1020
+ Example 4.5.
1021
+ (a) Any space X admits the structure of a trivial partial d-monoid,
1022
+ by defining Comp1 = {[1, x] : x ∈ X} and Compk = ∅, for all k ̸= 1. In this
1023
+ case, the only composition rule that can be performed is the identity and no
1024
+ other collection of points in X is composable in any way.
1025
+ (b) When X is a space equipped with a basepoint ∗, we can define a unital partial
1026
+ d-monoid by setting Compk = Fd(k) × ∨kX and ρ(f, x) = xi, where xi is the
1027
+ unique non-basepoint coordinate, or ∗ otherwise. In this case, the basepoint
1028
+ acts as a unit and compositions are only defined when done with the unit.
1029
+
1030
+ 16
1031
+ LUCIANA BASUALDO BONATTO
1032
+ (c) Every d-monoid is trivially a partial d-monoid. In particular, every Ωd-space is
1033
+ a partial d-monoid.
1034
+ (d) The canonical inclusion id,n : Rd �→ Rd+n also allows us to construct a partial
1035
+ (d + n)-monoid P from a partial d-monoid by adding n trivial composition
1036
+ directions. We call this the naive upgrade of a partial d-monoid P and denote
1037
+ it Td,nP. The underlying space of Td,nP is P, and we define CompTd,nP
1038
+ k
1039
+ to be
1040
+ the image of
1041
+ CompP
1042
+ k �→ Fd(k) ×Σk P k
1043
+ (in,k)∗
1044
+ �−−−−→ Fd+n(k) ×Σk P k = Fd+n(k) ×Σk (Td,nP)k.
1045
+ In [Sal01], it was always assumed that the partial d-monoids were good, in the sense
1046
+ described below.
1047
+ Definition 4.6. A partial d-monoid P is good if for every k the inclusion CompP
1048
+ k �→
1049
+ Fd(k) ×Σk P k is a cofibration.
1050
+ From now on, we always assume partial d-monoids to be good and to have a unit.
1051
+ For future applications, we are further interested in partial d-monoids with compatible
1052
+ actions of GLd(R), so we introduce this concept here and perform our constructions in
1053
+ this more general setting.
1054
+ Recall from Proposition 4.2 that an element of Fd(k) is described by a tree with k
1055
+ ordered leaves and a decoration of the vertices by elements of �C|v|(Rd)/G(d). The action
1056
+ of GLd(R) on Rd induces an action on �C|v|(Rd)/G(d). This gives an action of this group
1057
+ on Fd(k) for every k, and it is simple to check that the operad maps µ are all GLd(R)
1058
+ equivariant.
1059
+ Definition 4.7 ([Sal01], Definition 4.3). The framed Fulton-MacPherson operad de-
1060
+ noted fFd, is the operad defined by fFd(k) = Fd(k) × GLd(R)k, with structure map
1061
+ �µ((x, g1, . . . , gk);(x1, g1
1062
+ 1, . . . , gm1
1063
+ 1 ), . . . , (xk, g1
1064
+ k, . . . , gmk
1065
+ k
1066
+ ))
1067
+ = (µ(x; g1x1, . . . , gkxk), g1g1
1068
+ 1, . . . , gkgmk
1069
+ k
1070
+ ).
1071
+ The construction above is an instance of the construction A ⋊ G, the semi-direct
1072
+ product of an operad A and group G. This construction, and the proof that the above
1073
+ indeed defines an operad can be found in [SW03, Definition 2.1].
1074
+ Definition 4.8 ([Sal01], Definition 4.8). A framed partial d-monoid with unit is a
1075
+ pointed GLd(R)-space P together with monomorphisms of Σk ≀ GLd(R)-spaces
1076
+ i : fCompk �→ fFd(k) ×Σk P k.
1077
+ and GLd(R)-equivariant composition maps ρ : fCompk → P satisfying properties 1-3
1078
+ of Definition 4.4.
1079
+ The GLd(R)-bundle of frames on M induces a (GLd(R))k-bundle fCk(M) on Ck(M),
1080
+ acted on by Σk. This is called the framed configuration space of k points in M. Using
1081
+ the description of Proposition 4.2, an element of the space fCk(M) can be uniquely
1082
+ determined by an infinitesimal configuration in M with labelled trees, together with
1083
+ additional k frames of the tangent planes associated to the k leaves of the trees.
1084
+ Then the space of framed configurations fC(M) =
1085
+
1086
+ k fCk(M) is a right fFd-module,
1087
+ with GLd(R)-equivariant multiplication maps
1088
+ m : fCk(M) ×Σk (fFd(n1) × · · · × fFd(nk)) → fCn1+···+nk(M).
1089
+ defined by grafting the element of fFd(ni) on the i-th leaf of the element of fCk(M),
1090
+ for all i = 1, . . . , k and using the frame on the leaves to identify Cm(Rd)/G(d) with a
1091
+ configuration on the tangent space of M ([Sal01, Proposition 4.5]). It is simple to verify
1092
+ that any co-dimension zero embedding e : M �→ N induces a right fFd-homomorphism
1093
+ e∗ : fC(M) �→ fC(N).
1094
+
1095
+ DECOUPLING GENERALISED CONFIGURATION SPACES ON SURFACES
1096
+ 17
1097
+ Definition 4.9 ([Sal01], Definition 4.14). Let P be a framed partial d-monoid, and let
1098
+ M be a manifold of dimension d. Then the space of configurations in M with partially
1099
+ summable labels in P, denoted CΣ(M; P) is defined as the co-equalizer of the following
1100
+
1101
+ k
1102
+
1103
+ fCk(M) ×Σk
1104
+
1105
+
1106
+ π∈Map(n,k)
1107
+ k�
1108
+ i=1
1109
+ fCompP
1110
+ π−1(i)
1111
+ ��
1112
+
1113
+ k
1114
+ fCk(M) ×Σk P k
1115
+ (m×id)◦(id ×i)
1116
+ id ×ρk
1117
+ An element of CΣ(M; P) is then an equivalence class of elements in
1118
+
1119
+ k fCk(M) ×Σk
1120
+ P k. From the description of fCk(M) above, we can see that an element in CΣ(M; P)
1121
+ can be represented by an infinitesimal configuration w1, . . . , wl of ℓ < k points in M
1122
+ together with trees Ti, for i = 1, . . . , ℓ, where the vertices of Ti are labelled by elements
1123
+ in xi
1124
+ j ∈ fFd, and the leaves of the trees are labelled by elements of pi
1125
+ k ∈ P.
1126
+ The
1127
+ equivalence relation defining CΣ(M; P) implies that if some leaves labelled by p1, . . . , pk
1128
+ are departing from a vertex labelled by x ∈ fFd(k) and the composition ρ(x; p1, . . . , pk)
1129
+ is defined, then we identify this configuration with the one in which such leaves are
1130
+ removed and their vertex is replaces by a leaf labelled by ρ(x; p1, . . . , pk).
1131
+ For a framed partial d-monoid P and a co-dimension zero embedding f : M �→ N,
1132
+ we get an induced map
1133
+ f∗ :
1134
+
1135
+ k
1136
+ fCk(M) ×Σk P k →
1137
+
1138
+ k
1139
+ fCk(N) ×Σk P k.
1140
+ With the description above, a point in the domain with infinitesimal configurations
1141
+ w1, . . . , wℓ in M, with trees Ti, for i = 1, . . . , ℓ, where the vertices of Ti are labelled by
1142
+ elements xi
1143
+ j ∈ fFd, and the leaves of the trees are labelled by elements of pi
1144
+ k ∈ P, is
1145
+ taken to the point with infinitesimal configuration φ(x1), . . . , φ(xℓ), trees Ti, i = 1, . . . , ℓ,
1146
+ and corresponding labels
1147
+ dxiφ · xi
1148
+ j and dxiφ · pi
1149
+ k.
1150
+ Here we are using the standard actions of GLd(R) on fFd and P. By the equivariance
1151
+ condition in the definition of a framed partial monoid, the map preserves the equivalence
1152
+ classes described above. Therefore any such co-dimension zero embedding induces a map
1153
+ f∗ : CΣ(M; P) → CΣ(N; P).
1154
+ (4.1)
1155
+ Seeing the group Diff∂(M) as a subspace of Emb(M, M), the above construction
1156
+ shows that CΣ(M; P) admits an action of Diff∂(M). We will be interested in a decou-
1157
+ pling theorem for the space CΣ(M; P)//Diff∂(M).
1158
+ 4.2. Disc models for configuration spaces with partially summable labels. Let
1159
+ M be a smooth compact d-manifold, possibly with boundary, and P a framed partial d-
1160
+ monoid. The group Σk ≀GLd(R) has a canonical inclusion into Diff∂(
1161
+
1162
+ k Rd). We consider
1163
+ Emb(
1164
+
1165
+ k Rd, M) to be a Σk ≀ GLd(R)-space with action given by pre-composition by the
1166
+ inverse, and CΣ(
1167
+
1168
+ k Rd; P) to be a Σk ≀ GLd(R)-space with action induced by the action
1169
+ of Diff∂(
1170
+
1171
+ k Rd), as described in the previous section.
1172
+ Definition 4.10 ([MT14]). Let Z be a pointed GLd(R)-space, The space of tubular
1173
+ configurations in M with labels in Z, denoted D(M; Z), is the quotient
1174
+
1175
+ ��
1176
+ k≥0
1177
+ Emb(
1178
+
1179
+ k Rd, M)
1180
+ ×
1181
+ Σk≀GLd(R) Zk
1182
+
1183
+
1184
+
1185
+
1186
+ where (e1, . . . , ek; z1, . . . , zk) ∼ (e1, . . . , ek−1; z1, . . . , zk−1) whenever zk is the basepoint
1187
+ of Z, for ei : Rd �→ M and zi ∈ Z.
1188
+
1189
+ 18
1190
+ LUCIANA BASUALDO BONATTO
1191
+ The space D(M; Z) is equipped with an action of Diff∂(M): for ψ ∈ Diff∂(M), an
1192
+ embedding e :
1193
+
1194
+ k Rd �→ M, and z = (z1, . . . , zk) ∈ Zk, we define
1195
+ φ · [e, z] = [φ ◦ e; De(01)φ · z1, . . . , De(0k)φ · zk]
1196
+ where 0i denotes the origin of the i-th component of
1197
+
1198
+ k Rd.
1199
+ Lemma 4.11 ([MT14], Propositions 2.7, 2.8, and 3.6). The inclusion of the origin
1200
+ i : ∗ �→ Rd induces a Diff∂(M)-equivariant weak equivalence
1201
+ i∗ : D(M; Z)
1202
+
1203
+ −→ C(M; Z).
1204
+ One can think of D(M; Z) as disc models for configuration spaces with labels. To
1205
+ construct a disc model for summable labels, we need much more structure:
1206
+ Definition 4.12. The space of surrounded configurations in M with summable labels
1207
+ in P, denoted DΣ(M; P), is the quotient
1208
+
1209
+ ��
1210
+ k≥0
1211
+ Emb(
1212
+
1213
+ k Rd, M)
1214
+ ×
1215
+ Σk≀GLd(R) CΣ(
1216
+
1217
+ k Rd; P)
1218
+
1219
+
1220
+
1221
+
1222
+ where (e :
1223
+
1224
+ mRd → M, ξ) ∼ (e′ :
1225
+
1226
+ n Rd → M, ξ′) if there are injections k �→ m and k �→ n
1227
+ such that the induced inclusions i1 :
1228
+
1229
+ k Rd →
1230
+
1231
+ mRd and i2 :
1232
+
1233
+ k Rd →
1234
+
1235
+ n Rd satisfy
1236
+ ξ ⊂ Im i1, ξ′ ⊂ Im i2
1237
+ e ◦ i1 = e′ ◦ i2,
1238
+ and e∗(ξ) = e′
1239
+ ∗(ξ′).
1240
+ Here e∗ denotes the map of configurations with summable labels induced by a codimen-
1241
+ sion zero embedding, as described in (4.1). Since the Fulton-MacPherson configuration
1242
+ spaces are functorial for co-dimension zero embeddings, we get a map
1243
+ p : DΣ(M; P) → CΣ(M; P)
1244
+ (4.2)
1245
+ taking a class (e, ξ) to the configuration e∗(ξ). By definition, this map does not depend
1246
+ on the choice of representative (e, ξ). The space DΣ(M; P) admits a partial ordering
1247
+ by declaring (e, ξ) < (e′, ξ′) if, for some representative of the classes, e(ξ) = e′(ξ′)
1248
+ and Im e ⊃ Im e′. We denote by DΣ(M; P)• the semi-simplicial nerve of the poset
1249
+ DΣ(M; P).
1250
+ By the definition of the partial order, the map p induces an augmentation DΣ(M; P)• →
1251
+ CΣ(M; P). In particular, DΣ(M; P)• is an augmented topological flag complex (Defini-
1252
+ tion 2.2), since the space of n-simplices is indeed an open subspace of the (n + 1)-tuples
1253
+ of vertices with the same image under the augmentation map, and the condition for
1254
+ a tuple to form an n-simplex is just given by checking the pairwise order relation. It
1255
+ might be helpful to keep in mind the following visualisation for elements in the space
1256
+ |DΣ(M; P)•|: any point can be expressed by a tuple
1257
+ ((e0, ξ0) < · · · < (ek, ξk); t0, . . . , tk)
1258
+ t0 · · · + tk = 1.
1259
+ The poset construction implies that for such a tuple e0(ξ0) = · · · = ek(ξk) and Im e0 ⊃
1260
+ · · · ⊃ Im ek. We can visualise it as a collection of descending embedded discs around
1261
+ the configuration ei(ξi) in M. Each collection of embedded discs has weights adding
1262
+ up to 1 and when the weight associated to a collection of embeddings goes to zero,
1263
+ that collection disappears. The equivalence relation guarantees that we can always get
1264
+ a representative for the collection of discs such that each component has at least one
1265
+ particle of the configuration inside it. See Figure 3.
1266
+ Proposition 4.13. The map p : DΣ(M; P) → CΣ(M; P) induces a weak homotopy
1267
+ equivalence
1268
+ |DΣ(M; P)•| → CΣ(M; P).
1269
+
1270
+ DECOUPLING GENERALISED CONFIGURATION SPACES ON SURFACES
1271
+ 19
1272
+ t0
1273
+ t2
1274
+ t1
1275
+ Figure 3. Element in a 2-simplex of |DΣ(F3)|.
1276
+ The proof of the above will be a direct application of Theorem 2.3 [GRW14, Theorem
1277
+ 6.2].
1278
+ Proof. As discussed before, the augmented semi-simplicial space p : DΣ(M; P)• →
1279
+ CΣ(M; P) is an augmented topological flag complex. We need to verify that the hy-
1280
+ potheses of Theorem 2.3 are satisfied:
1281
+ (i) To see that p : DΣ(M; P) → CΣ(M; P) has local sections, take f : Dn →
1282
+ CΣ(M; P) and a point (e, ξ) ∈ p−1(f(x)). Then the image of e is an open subset
1283
+ of M containing f(x), and therefore the subspace V of configurations contained
1284
+ in Im e is an open subset of CΣ(M; P) containing f(x). Let U = f −1(V ), which
1285
+ is an open neighbourhood of x in Dn. Then the map F : U → DΣ(M; P) taking
1286
+ y to (e, e−1(f(y))) satisfies p ◦ F = f|U and F(x) = (e, ξ).
1287
+ (ii) p : DΣ(M; P) → CΣ(M; P) is surjective, since any configuration ξ admits a
1288
+ tubular neighbourhood e. Then (e, e−1(ξ)) is an element of DΣ(M; P) in the
1289
+ pre-image of ξ.
1290
+ (iii) For a configuration ξ ∈ CΣ(M; P) and a non-empty finite subset {(e1, ξ1), . . . , (ek, ξk)}
1291
+ in its pre-image, we can always find e an embedding of Rd’s containing ei(ξi)
1292
+ and contained in all ei. For instance by taking e to small open discs around the
1293
+ points in the configuration.
1294
+ Then by Theorem 2.3, the map |DΣ(M; P)•| → CΣ(M; P) is a weak homotopy equiva-
1295
+ lence.
1296
+
1297
+ The space DΣ(M; P) is equipped with an action of Diff∂(M): for ψ ∈ Diff∂(M), an
1298
+ embedding e :
1299
+
1300
+ k Rd �→ M, and ξ = (x1, . . . , xk; p1, . . . , pk) a configuration of points in
1301
+
1302
+ k Rd with labels in P, we define φ · [e, ξ] = [φ ◦ e, ξ]. It is simple to verify this action
1303
+ is well-de���ned and preserves the partial order in DΣ(M; P). It follows directly from
1304
+ the definition that the augmentation map p : DΣ(M; P) → CΣ(M; P) is Diff∂(M)-
1305
+ equivariant.
1306
+ Since the partial order in DΣ(M; P) is compatible with the Diff∂(M)-action, it in-
1307
+ duces a fibrewise partial order on DΣ(M; P) ×Diff∂(M) Emb(M, R∞) over BDiff∂(M).
1308
+ Then the semi-simplicial nerve of the poset DΣ(M; P) ×Diff∂(M) Emb(M, R∞) is simply
1309
+ is the fibrewise semi-simplicial nerve DΣ(M; P)• ×Diff∂(M) Emb(M, R∞).
1310
+ Corollary 4.14. The map DΣ(M; P) → CΣ(M; P) induces a weak homotopy equiva-
1311
+ lence
1312
+ |DΣ(M; P)•
1313
+ ×
1314
+ Diff∂(M) Emb(M, R∞)| −→ CΣ(M; P)//Diff∂(M).
1315
+ The above follows directly from the definition of the definition of the partial order on
1316
+ DΣ(M; P) ×Diff∂(M) Emb(M, R∞) and Proposition 4.13.
1317
+ Corollary 4.14 allows us to use a disc model for the space of configurations with
1318
+ partially summable labels when proving the decoupling in this setting. We finish this
1319
+ section by introducing another space of discs and configurations which will be used in
1320
+ the decoupling.
1321
+ Definition 4.15. Let Z be a pointed GLd(R)-space and let M be a smooth compact
1322
+ manifold of dimension n > d. The space of d-tubular configurations in M with labels in
1323
+
1324
+ 20
1325
+ LUCIANA BASUALDO BONATTO
1326
+ Z, denoted Dd(M; Z), is the quotient
1327
+
1328
+ ��
1329
+ k≥0
1330
+ Emb(
1331
+
1332
+ k Rd, M)
1333
+ ×
1334
+ Σk≀GL+
1335
+ d (R)
1336
+ Zk
1337
+
1338
+
1339
+
1340
+
1341
+ where (e1, . . . , ek; z1, . . . , zk) ∼ (e1, . . . , ek−1; z1, . . . , zk−1) whenever zk is the basepoint
1342
+ of Z, for ei : Rd �→ M and zi ∈ Z.
1343
+ The difference between the spaces Dd(M; Z) and D(M; Z) (Definition 4.10) is that on
1344
+ the former we look at embedded discs of a lower dimension than the ambient manifold
1345
+ M.
1346
+ Lemma 4.16. Let n > d, and denote by Ed,n denote the total space of the canonical
1347
+ GL+
1348
+ d (R)-bundle over the oriented Grassmanian Gr+(d, n). The inclusion of the origin
1349
+ i : ∗ �→ Rd induces a weak equivalence
1350
+ i∗ : Dd(Rn; Z)
1351
+
1352
+ −→ C(M; (Ed,n)+
1353
+
1354
+ GL+
1355
+ d (R)
1356
+ Z).
1357
+ This result should be seen as an analogue of Lemma 4.11 in the setting of d-tubular
1358
+ configurations in Rn.
1359
+ Proof. Recall that Emb(
1360
+
1361
+ k Rd, Rn) ≃ �Ck(Rn) × (Ed,n)k, where the map to �Ck(Rn) is
1362
+ induced by the inclusion of the origins. Then we get weak equivalences
1363
+ Emb(
1364
+
1365
+ k Rd, M)
1366
+ ×
1367
+ (Σk≀GL+
1368
+ d (R))
1369
+ Zk
1370
+
1371
+ −→ ( �Ck(Rn) × (Ed,n)k)
1372
+ ×
1373
+ (Σk≀GL+
1374
+ d (R))
1375
+ Zk.
1376
+ These respect the equivalence relations and therefore induce a map
1377
+ i∗ : Dd
1378
+ Σ(Rn; P)
1379
+
1380
+ −→ C(M; (Ed,n)+
1381
+
1382
+ GL+
1383
+ d (R)
1384
+ Z).
1385
+ The proof then follows from the same arguments of [MT14, Propositions 2.7 and 2.8].
1386
+
1387
+ We also need an analogue of Definition 4.12 for the case of d-tubular configurations.
1388
+ Definition 4.17. Let M be a smooth compact manifold of dimension n > d. The space
1389
+ of d-surrounded configurations in M with summable labels in P, denoted Dd
1390
+ Σ(M; P), is
1391
+ the quotient
1392
+
1393
+ ��
1394
+ k≥0
1395
+ Emb(
1396
+
1397
+ k Rd, M)
1398
+ ×
1399
+ Σk≀GL+
1400
+ d (R)
1401
+ CΣ(
1402
+
1403
+ k Rd; P)
1404
+
1405
+
1406
+
1407
+
1408
+ where (e :
1409
+
1410
+ mRd → M, ξ) ∼ (e′ :
1411
+
1412
+ n Rd → M, ξ′) if there are injections k �→ m and k �→ n
1413
+ such that the induced inclusions i1 :
1414
+
1415
+ k Rd →
1416
+
1417
+ mRd and i2 :
1418
+
1419
+ k Rd →
1420
+
1421
+ n Rd satisfy
1422
+ ξ ⊂ Im i1, ξ′ ⊂ Im i2 and e ◦ i1 = e′ ◦ i2.
1423
+ We equip this space with a partial ordering by declaring (e, ξ) < (e′, ξ′) if, for some
1424
+ representative of the classes, e(ξ) = e′(ξ′) and Im e ⊃ Im e′.
1425
+ We denote the semi-
1426
+ simplicial nerve of this poset by Dd
1427
+ Σ(M; P)•.
1428
+ 4.3. The decoupling theorem. In this section we prove the main theorem of this
1429
+ paper, which is a decoupling result for CΣ(Fg,b; P)//Diff∂(Fg,b). As in Section 3, we take
1430
+ as a model for EDiff∂(Fg,b) the space Emb(Fg,b, R∞). For every g and b ≥ 0 we have
1431
+ τΣ × εΣ : DΣ(Fg,b; P) × Emb(Fg,b, R∞) −→ Emb(Fg,b, R∞) × D2
1432
+ Σ(R∞; P)
1433
+ ((e :
1434
+
1435
+ k R2 �→ Fg,b, ξ), f : Fg,b �→ R∞) �−→ (f, (f ◦ e, ξ)).
1436
+
1437
+ DECOUPLING GENERALISED CONFIGURATION SPACES ON SURFACES
1438
+ 21
1439
+ This map is Diff∂(Fg,b)-equivariant with respect to the diagonal action on the domain
1440
+ and the action on Emb(Fg,b, R∞) on the target, and it preserves the poset structures.
1441
+ Hence it induces a map τΣ × εΣ fitting into the following diagram
1442
+ |DΣ(Fg,b; P)•
1443
+ ×
1444
+ Diff∂(Fg,b) Emb(Fg,b, R∞)|
1445
+ |BDiff∂(Fg,b) × D2
1446
+ Σ(R∞; P)•|
1447
+ CΣ(Fg,b; P)
1448
+ ×
1449
+ Diff∂(Fg,b) Emb(Fg,b, R∞)
1450
+ BDiff∂(Fg,b) × |D2
1451
+ Σ(R∞; P)•|
1452
+
1453
+ τΣ×εΣ
1454
+
1455
+ Theorem 4.18. The map
1456
+ τΣ × εΣ : |DΣ(Fg,b; P)•
1457
+ ×
1458
+ Diff∂(Fg,b) Emb(Fg,b, R∞)| → |BDiff∂(Fg,b) × D2
1459
+ Σ(R∞; P)•|
1460
+ induces a homology isomorphism in degrees ≤ 2
1461
+ 3g.
1462
+ Theorem 4.18 and Corollary 4.14 imply Theorem F.
1463
+ The proof of the above, will consist on showing that τΣ × εΣ is a level-wise homology
1464
+ isomorphism of semi-simplicial spaces in degrees ≤ 2
1465
+ 3g and then show that this implies
1466
+ that the same holds on the geometric realisations, as done in [GRW17, Section 4]. To do
1467
+ this, we will use the spectral sequence recalled in Section 2.2, Lemma 4.11, and Theorem
1468
+ 3.2, the decoupling result for the space of non-colliding configurations with labels.
1469
+ Throughout the proof, it will be helpful to keep in mind Figure 4.
1470
+ Figure 4. Correspondence of (4.3) between an element of DΣ(F3; P)2
1471
+ (top) and D(F3, Z2) (bottom). The dotted regions represent the em-
1472
+ bedded R2’s and the arrows indicate their labels.
1473
+ Proof of Theorem 4.18. We start by showing that
1474
+ DΣ(Fg,b; P)•
1475
+ ×
1476
+ Diff∂(Fg,b) Emb(Fg,b, R∞) → BDiff∂(Fg,b) × D2
1477
+ Σ(R∞; P)•
1478
+ induces level-wise homology isomorphisms in degrees ≤ 2
1479
+ 3g.
1480
+ Let Zp be the subspace of DΣ(R2; P)p consisting of those tuples e = ((e0, ξ0), . . . , (ep, ξp))
1481
+ with e0 = id. This space is pointed by the unique class on the empty configuration. We
1482
+
1483
+ %
1484
+ %22
1485
+ LUCIANA BASUALDO BONATTO
1486
+ show there is a Diff∂(Fg,b)-equivariant homeomorphism
1487
+ DΣ(Fg,b; P)p ∼= D(Fg,b; Zp)
1488
+ (4.3)
1489
+ where D(Fg,b; Zp) is the space of tubular configurations with labels in Zp (see Definition
1490
+ 4.10). Let [(e0, ξ0) < · · · < (ep, ξp)] denote the an element in DΣ(Fg,b; P)p. Then, by
1491
+ definition e0(ξ0) = · · · = ep(ξp) and Im e0 ⊃ · · · ⊃ Im ep. Denote by ij : R2 �→
1492
+
1493
+ k R2 the
1494
+ map induced by the inclusion {j} �→ {1, . . . , k}, for 1 ≤ j ≤ k. The map DΣ(Fg,b; P)p →
1495
+ DΣ(Fg,b; Zp) takes a sequence ((e0, ξ0), . . . , (ep, ξp)), to the class represented by the
1496
+ embedding e0 and and the label associated to the jth component R2 ⊂
1497
+
1498
+ k R2 given by
1499
+ ((id, ξ0), ((e0 ◦ ij)−1 ◦ e1, ξ1) . . . , ((e0 ◦ ij)−1 ◦ ep, ξp)) ∈ Zp.
1500
+ For intuition behind this homeomorphism, see Figure 4. It is simple to explicitly con-
1501
+ struct an inverse for this map and check this is a Diff∂(Fg,b)-equivariant homeomor-
1502
+ phism.
1503
+ By Lemma 4.11, the inclusion of the origins defines Diff∂(Fg,b)-equivariant map
1504
+ D(Fg,b; Zp) → C(Fg,b; Zp) which is a weak-equivalence of Diff∂(Fg,b)-spaces. Together
1505
+ with the homeomorphism (4.3) this implies that
1506
+ DΣ(Fg,b; P)p
1507
+ ×
1508
+ Diff∂(Fg,b) Emb(Fg,b, R∞)
1509
+
1510
+ −→ C(Fg,b; Zp)
1511
+ ×
1512
+ Diff∂(Fg,b) Emb(Fg,b, R∞).
1513
+ (4.4)
1514
+ Similarly, we now show that
1515
+ D2
1516
+ Σ(R∞; P)p
1517
+
1518
+ −→ C(R∞; (ESO(2))+
1519
+
1520
+ SO(2) Zp).
1521
+ (4.5)
1522
+ By the same argument as above, we get a homeomorphism
1523
+ D2
1524
+ Σ(R∞; P)p ∼= D2(R∞; Zp)
1525
+ where D2(R∞; Zp) is the space of d-tubular configurations with labels in Zp as in Def-
1526
+ inition 4.15. By Lemma 4.16, the inclusion of the origins induces a weak homotopy
1527
+ equivalence D2(R∞; Zp) ≃ C(R∞; (ESO(2))+ ∧SO(2) Zp) which implies the homotopy
1528
+ equivalence (4.5).
1529
+ Then we have a commutative diagram
1530
+ DΣ(Fg,b; P)p
1531
+ ×
1532
+ Diff∂(Fg,b) Emb(Fg,b, R∞)
1533
+ C(Fg,b; Zp)
1534
+ ×
1535
+ Diff∂(Fg,b) Emb(Fg,b, R∞)
1536
+ BDiff∂(Fg,b) × D2
1537
+ Σ(R∞; P)p
1538
+ BDiff∂(Fg,b) × C(R∞; ESO(2)+
1539
+
1540
+ SO(2) Zp)
1541
+
1542
+ (τΣ×εΣ)p
1543
+ τ×ε
1544
+
1545
+ where the top and bottom maps are weak equivalences by (4.4) and (4.5), respectively.
1546
+ The right-hand map induces homology isomorphisms in degrees ≤ 2
1547
+ 3g by Theorem 3.2
1548
+ with Z = Zp. Therefore so does the map (τΣ × εΣ)p.
1549
+ This implies that the map between the spectral sequences associated to the semi-
1550
+ simplicial spaces X• = DΣ(Fg,b; P)•×Diff∂(Fg,b)Emb(Fg,b, R∞), and Y• = BDiff∂(Fg,b)×
1551
+ D2
1552
+ Σ(R∞; P)•
1553
+ E1
1554
+ p,q = Hq(Xp)
1555
+ Hp+q(|X•|)
1556
+ E′1
1557
+ p,q = Hq(Yp)
1558
+ Hp+q(|Y•|).
1559
+ τΣ×εΣ
1560
+ induces an isomorphism on the E1-pages for all q ≤ 2
1561
+ 3g, and therefore the right-hand
1562
+ map is also an isomorphism in such degrees.
1563
+
1564
+
1565
+ DECOUPLING GENERALISED CONFIGURATION SPACES ON SURFACES
1566
+ 23
1567
+ As in the case for labelled configuration spaces, the Decoupling Theorem for Sum-
1568
+ mable Labels, allows us to deduce homological stability results.
1569
+ Corollary 4.19. For b ≥ 1, the map induced by gluing F1,1 along the boundary
1570
+ CΣ(Fg,b; Z)//Diff∂(Fg,b) → CΣ(Fg+1,b; Z)//Diff∂(Fg+1,b)
1571
+ induces a homology isomorphism in degrees ≤ 2
1572
+ 3g.
1573
+ The proof follows from the same arguments as in the proof of Corollary 3.4.
1574
+ 4.4. Monoids of configurations on surfaces with partially summable labels.
1575
+ In this section, we show that Theorem 4.18 implies a splitting for the group completion
1576
+ of the monoid of configuration on surfaces with partially summable labels, analogous to
1577
+ Corollary 3.7.
1578
+ As in Section 3.2, gluing two surfaces Fg,1 and Fh,1 along part of their boundary
1579
+ defines an associative multiplication
1580
+ BDiff∂(Fg,1) × BDiff∂(Fh,1) → BDiff∂(Fg+h,1).
1581
+ For (P, 0) a framed partial 2-monoid with unit, the operation on diffeomorphism
1582
+ groups and spaces EDiff∂(Fg,1) described above, together with the fixed identifications
1583
+ Fg+h,1 = Fg,1#∂Fh,1, induce an associative multiplication also on the Borel construc-
1584
+ tions
1585
+ µ : CΣ(Fg,1; P)//Diff∂(Fg,1)×CΣ(Fh,1; P)//Diff∂(Fh,1) → CΣ(Fg+h,1; P)//Diff∂(Fg+h,1).
1586
+ Analogous to the construction of Chapter 3, we denote the associated Borel construction
1587
+ by
1588
+ MCΣ(P)g = CΣ(Fg,1; P)//Diff∂(Fg,1).
1589
+ This multiplication makes MCΣ(P) =
1590
+
1591
+ g≥0MCΣ(P)g into a topological monoid, which
1592
+ we refer to as the monoid of configurations with summable labels in P.
1593
+ On the other hand, the poset D2
1594
+ Σ(R∞; P) can be made into a partially ordered topo-
1595
+ logical monoid, using the same strategy Segal used to define a topological monoid equiv-
1596
+ alent to C(R∞, X), as we recalled in Section 3.2.
1597
+ Corollary 4.20. For any path-connected framed partial 2-monoid with unit P, there is
1598
+ a homotopy equivalence
1599
+ ΩB(MCΣ(P)) ≃ ΩB
1600
+ ��
1601
+ g BDiff∂(Fg,1)
1602
+
1603
+ × ΩB |D2
1604
+ Σ(R∞; P)•|.
1605
+ The proof of the above result consists of constructing a zig-zag of monoids
1606
+ (4.6)
1607
+
1608
+ g≥0
1609
+ |DΣ(Fg,1; P)•//Diff∂(Fg,1)|
1610
+
1611
+ g≥0
1612
+ BDiff∂(Fg,1) × |D2
1613
+ Σ(R∞; P)•|
1614
+ MCΣ(P)
1615
+
1616
+ τΣ×εΣ
1617
+ The vertical arrow is induced by Corollary 4.14 while the horizontal arrow is induced
1618
+ by the decoupling map. We describe the monoidal structures on the top spaces using a
1619
+ general construction for posets recalled in Section 2.1.
1620
+ Proof of Corollary 4.20. The space �
1621
+ g≥0
1622
+ |DΣ(Fg,1; P)•//Diff∂(Fg,1)| is homotopy equiva-
1623
+ lent to the geometric realisation of the semi-simplicial nerve of the poset
1624
+
1625
+ g≥0
1626
+ DΣ(Fg,1; P)//Diff∂(Fg,1)
1627
+
1628
+ 24
1629
+ LUCIANA BASUALDO BONATTO
1630
+ with partial order defined component-wise. As before, gluing surfaces along part of their
1631
+ boundary makes
1632
+
1633
+ g≥0DΣ(Fg,1; P)//Diff∂(Fg,1) into a partially ordered topological monoid.
1634
+ Moreover, one can verify that the augmentations DΣ(Fg,1; P)• → CΣ(Fg,1; P) induce a
1635
+ map of monoids. Together with Lemma 2.1, this gives a map of monoids
1636
+
1637
+ g≥0
1638
+ |DΣ(Fg,1; P)•//Diff∂(Fg,1)| → MCΣ(P).
1639
+ (4.7)
1640
+ On the other hand, the decoupling map gives a map of topological monoids
1641
+
1642
+ g≥0
1643
+ |DΣ(Fg,1; P)•//Diff∂(Fg,1)| →
1644
+
1645
+ g≥0
1646
+ BDiff∂(Fg,1) × |D2
1647
+ Σ(R∞; P)•|
1648
+ (4.8)
1649
+ just as in Lemma 3.8.
1650
+ All that remains is to verify that the maps (4.7) and (4.8) induce homotopy equiva-
1651
+ lences on group completions. As the group completions are loop spaces, they are simple
1652
+ and, by Whitehead’s theorem, it suffices to show the maps induce homology equivalences
1653
+ on the group completions. All monoids are homotopy commutative, hence the group
1654
+ completion theorem [MS76] can be applied. It implies that it is enough to show that
1655
+ the induced maps on limit spaces
1656
+ |DΣ(F∞; P)•//Diff∂(F∞)| → CΣ(F∞; P)//Diff∂(F∞)
1657
+ (4.9)
1658
+ |DΣ(F∞; P)•//Diff∂(F∞)| → BDiff∂(F∞) × |D2
1659
+ Σ(R∞; P)•|
1660
+ (4.10)
1661
+ are homology equivalences. The first map is a weak equivalence by Corollary 4.14, while
1662
+ the second map is a homology equivalence by Theorem 4.18 and Corollary 4.19.
1663
+
1664
+ References
1665
+ [AF15]
1666
+ David Ayala and John Francis, Factorization homology of topological manifolds, J. Topol.
1667
+ 8 (2015), no. 4, 1045–1084. MR 3431668
1668
+ [AFT17]
1669
+ David Ayala, John Francis, and Hiro Lee Tanaka, Factorization homology of stratified
1670
+ spaces, Selecta Math. (N.S.) 23 (2017), no. 1, 293–362. MR 3595895
1671
+ [BF81]
1672
+ E. Binz and H. R. Fischer, The manifold of embeddings of a closed manifold, Differential
1673
+ geometric methods in mathematical physics (Proc. Internat. Conf., Tech. Univ. Clausthal,
1674
+ Clausthal-Zellerfeld, 1978), Lecture Notes in Phys., vol. 139, Springer, Berlin-New York,
1675
+ 1981, With an appendix by P. Michor, pp. 310–329.
1676
+ [B¨od87]
1677
+ C-F B¨odigheimer, Stable splittings of mapping spaces, Algebraic topology, Springer, 1987,
1678
+ pp. 174–187.
1679
+ [Bol12]
1680
+ Søren K Boldsen, Improved homological stability for the mapping class group with integral
1681
+ or twisted coefficients, Mathematische Zeitschrift 270 (2012), no. 1-2, 297–329.
1682
+ [Bon22]
1683
+ Luciana Basualdo Bonatto, Decoupling decorations on moduli spaces of manifolds, Math-
1684
+ ematical Proceedings of the Cambridge Philosophical Society (2022), 1–36.
1685
+ [BT01]
1686
+ Carl-Friedrich B¨odigheimer and Ulrike Tillmann, Stripping and splitting decorated mapping
1687
+ class groups, Cohomological methods in homotopy theory (Bellaterra, 1998), Progr. Math.,
1688
+ vol. 196, Birkh¨auser, Basel, 2001, pp. 47–57.
1689
+ [ERW19]
1690
+ Johannes Ebert and Oscar Randal-Williams, Semisimplicial spaces, Algebraic & Geometric
1691
+ Topology 19 (2019), no. 4, 2099–2150.
1692
+ [GRW10]
1693
+ Sø ren Galatius and Oscar Randal-Williams, Monoids of moduli spaces of manifolds, Geom.
1694
+ Topol. 14 (2010), no. 3, 1243–1302. MR 2653727
1695
+ [GRW14]
1696
+ Søren Galatius and Oscar Randal-Williams, Stable moduli spaces of high-dimensional man-
1697
+ ifolds, Acta Math. 212 (2014), no. 2, 257–377. MR 3207759
1698
+ [GRW17]
1699
+ , Homological stability for moduli spaces of high dimensional manifolds. II, Ann. of
1700
+ Math. (2) 186 (2017), no. 1, 127–204.
1701
+ [GRW18]
1702
+ , Homological stability for moduli spaces of high dimensional manifolds. I, J. Amer.
1703
+ Math. Soc. 31 (2018), no. 1, 215–264.
1704
+ [GTMW09] Sø ren Galatius, Ulrike Tillmann, Ib Madsen, and Michael Weiss, The homotopy type of
1705
+ the cobordism category, Acta Math. 202 (2009), no. 2, 195–239.
1706
+ [Gue95]
1707
+ Martin A. Guest, The topology of the space of rational curves on a toric variety, Acta
1708
+ Math. 174 (1995), no. 1, 119–145. MR 1310847
1709
+ [Han09]
1710
+ Elizabeth Hanbury, Homological stability of non-orientable mapping class groups with
1711
+ marked points, Proc. Amer. Math. Soc. 137 (2009), no. 1, 385–392.
1712
+
1713
+ DECOUPLING GENERALISED CONFIGURATION SPACES ON SURFACES
1714
+ 25
1715
+ [Har85]
1716
+ John L. Harer, Stability of the homology of the mapping class groups of orientable surfaces,
1717
+ Ann. of Math. (2) 121 (1985), no. 2, 215–249.
1718
+ [Har90]
1719
+ , Stability of the homology of the moduli spaces of Riemann surfaces with spin
1720
+ structure, Math. Ann. 287 (1990), no. 2, 323–334.
1721
+ [Iva87]
1722
+ N. V. Ivanov, Complexes of curves and Teichm¨uller modular groups, Uspekhi Mat. Nauk
1723
+ 42 (1987), no. 3(255), 49–91, 255.
1724
+ [Iva89]
1725
+ , Stabilization of the homology of Teichm¨uller modular groups, Algebra i Analiz 1
1726
+ (1989), no. 3, 110–126.
1727
+ [Iva93]
1728
+ Nikolai V. Ivanov, On the homology stability for Teichm¨uller modular groups: closed sur-
1729
+ faces and twisted coefficients, Mapping class groups and moduli spaces of Riemann surfaces
1730
+ (G¨ottingen, 1991/Seattle, WA, 1991), Contemp. Math., vol. 150, Amer. Math. Soc., Prov-
1731
+ idence, RI, 1993, pp. 149–194.
1732
+ [Kal01]
1733
+ Sadok Kallel, Spaces of particles on manifolds and generalized Poincar´e dualities, Q. J.
1734
+ Math. 52 (2001), no. 1, 45–70. MR 1820902
1735
+ [KM16]
1736
+ Alexander Kupers and Jeremy Miller, Homological stability for topological chiral homology
1737
+ of completions, Adv. Math. 292 (2016), 755–827. MR 3464033
1738
+ [Lur09]
1739
+ Jacob Lurie, On the classification of topological field theories, Current developments in
1740
+ mathematics, 2008, Int. Press, Somerville, MA, 2009, pp. 129–280. MR 2555928
1741
+ [May72]
1742
+ J. P. May, The geometry of iterated loop spaces, Lecture Notes in Mathematics, Vol. 271,
1743
+ Springer-Verlag, Berlin-New York, 1972. MR 0420610
1744
+ [McD75]
1745
+ Dusa McDuff, Configuration spaces of positive and negative particles, Topology 14 (1975),
1746
+ no. 1, 91–107.
1747
+ [Mil86]
1748
+ Edward Y. Miller, The homology of the mapping class group, J. Differential Geom. 24
1749
+ (1986), no. 1, 1–14. MR 857372
1750
+ [MS76]
1751
+ D. McDuff and G. Segal, Homology fibrations and the “group-completion” theorem, Invent.
1752
+ Math. 31 (1975/76), no. 3, 279–284. MR 402733
1753
+ [MT14]
1754
+ Richard Manthorpe and Ulrike Tillmann, Tubular configurations: equivariant scanning
1755
+ and splitting, J. Lond. Math. Soc. (2) 90 (2014), no. 3, 940–962. MR 3291808
1756
+ [MW07]
1757
+ Ib Madsen and Michael Weiss, The stable moduli space of riemann surfaces: Mumford’s
1758
+ conjecture, Annals of mathematics (2007), 843–941.
1759
+ [Pal60]
1760
+ Richard S. Palais, Extending diffeomorphisms, Proc. Amer. Math. Soc. 11 (1960), 274–277.
1761
+ MR 117741
1762
+ [RW14]
1763
+ Oscar Randal-Williams, Homology of the moduli spaces and mapping class groups of
1764
+ framed, r-Spin and Pin surfaces, J. Topol. 7 (2014), no. 1, 155–186.
1765
+ [RW16]
1766
+ , Resolutions of moduli spaces and homological stability, J. Eur. Math. Soc. (JEMS)
1767
+ 18 (2016), no. 1, 1–81.
1768
+ [Sal01]
1769
+ Paolo Salvatore, Configuration spaces with summable labels, Cohomological methods in ho-
1770
+ motopy theory (Bellaterra, 1998), Progr. Math., vol. 196, Birkh¨auser, Basel, 2001, pp. 375–
1771
+ 395. MR 1851264
1772
+ [Seg68]
1773
+ Graeme Segal, Classifying spaces and spectral sequences, Publications Math´ematiques de
1774
+ l’IH´ES 34 (1968), 105–112.
1775
+ [Seg73]
1776
+ , Configuration-spaces and iterated loop-spaces, Invent. Math. 21 (1973), 213–221.
1777
+ MR 331377
1778
+ [Seg79]
1779
+ , The topology of spaces of rational functions, Acta Math. 143 (1979), no. 1-2,
1780
+ 39–72. MR 533892
1781
+ [Sin04]
1782
+ Dev P. Sinha, Manifold-theoretic compactifications of configuration spaces, Selecta Math.
1783
+ (N.S.) 10 (2004), no. 3, 391–428. MR 2099074
1784
+ [SW03]
1785
+ Paolo Salvatore and Nathalie Wahl, Framed discs operads and Batalin-Vilkovisky algebras,
1786
+ Q. J. Math. 54 (2003), no. 2, 213–231. MR 1989873
1787
+ [Til00]
1788
+ Ulrike Tillmann, Higher genus surface operad detects infinite loop spaces, Math. Ann. 317
1789
+ (2000), no. 3, 613–628. MR 1776120
1790
+ [Zee57]
1791
+ E. C. Zeeman, A proof of the comparison theorem for spectral sequences, Proc. Cambridge
1792
+ Philos. Soc. 53 (1957), 57–62. MR 84769
1793
+ Email address: [email protected]
1794
+ Max Planck Institute for Mathematics, Vivatsgasse 7, 53111 Bonn, Germany
1795
+
GNAyT4oBgHgl3EQfSvfA/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
GdAzT4oBgHgl3EQfxf4V/content/2301.01737v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7d667c2e7ffe93e0643caf87982ba146ad3e6179b79e77904b1240f928e62756
3
+ size 674453
GdAzT4oBgHgl3EQfxf4V/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:96a712f26d249bed2f8f4b684172a3b4404ed3ffaa262b0522c97f8db4d6ae3a
3
+ size 1900589