jackkuo commited on
Commit
a46f884
·
verified ·
1 Parent(s): 599b247

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +67 -0
  2. 0tFIT4oBgHgl3EQf3Cv8/content/tmp_files/2301.11380v1.pdf.txt +859 -0
  3. 0tFIT4oBgHgl3EQf3Cv8/content/tmp_files/load_file.txt +0 -0
  4. 1dE2T4oBgHgl3EQfigf6/content/tmp_files/2301.03960v1.pdf.txt +2939 -0
  5. 1dE2T4oBgHgl3EQfigf6/content/tmp_files/load_file.txt +0 -0
  6. 1tAzT4oBgHgl3EQf8_4M/vector_store/index.faiss +3 -0
  7. 2tAyT4oBgHgl3EQfb_cv/content/tmp_files/2301.00272v1.pdf.txt +428 -0
  8. 2tAyT4oBgHgl3EQfb_cv/content/tmp_files/load_file.txt +506 -0
  9. 2tAzT4oBgHgl3EQfuP3I/content/tmp_files/2301.01689v1.pdf.txt +1910 -0
  10. 2tAzT4oBgHgl3EQfuP3I/content/tmp_files/load_file.txt +0 -0
  11. 5NAzT4oBgHgl3EQfu_1f/content/tmp_files/2301.01699v1.pdf.txt +1534 -0
  12. 5NAzT4oBgHgl3EQfu_1f/content/tmp_files/load_file.txt +0 -0
  13. 5dE2T4oBgHgl3EQfOgbi/content/tmp_files/2301.03750v1.pdf.txt +0 -0
  14. 5dE2T4oBgHgl3EQfOgbi/content/tmp_files/load_file.txt +0 -0
  15. 5dFJT4oBgHgl3EQfkywG/content/2301.11580v1.pdf +3 -0
  16. 5tAyT4oBgHgl3EQfpfgu/content/2301.00525v1.pdf +3 -0
  17. 5tAyT4oBgHgl3EQfpfgu/vector_store/index.faiss +3 -0
  18. 5tAyT4oBgHgl3EQfpfgu/vector_store/index.pkl +3 -0
  19. 6tAzT4oBgHgl3EQfvP3q/content/2301.01705v1.pdf +3 -0
  20. 6tAzT4oBgHgl3EQfvP3q/vector_store/index.faiss +3 -0
  21. 6tAzT4oBgHgl3EQfvP3q/vector_store/index.pkl +3 -0
  22. 6tE2T4oBgHgl3EQfPAa1/content/2301.03755v1.pdf +3 -0
  23. 6tE2T4oBgHgl3EQfPAa1/vector_store/index.faiss +3 -0
  24. 6tE2T4oBgHgl3EQfPAa1/vector_store/index.pkl +3 -0
  25. 99E2T4oBgHgl3EQfmAd3/content/tmp_files/2301.03994v1.pdf.txt +2680 -0
  26. 99E2T4oBgHgl3EQfmAd3/content/tmp_files/load_file.txt +0 -0
  27. 9tE3T4oBgHgl3EQfrArn/content/2301.04657v1.pdf +3 -0
  28. 9tE3T4oBgHgl3EQfrArn/vector_store/index.faiss +3 -0
  29. 9tE3T4oBgHgl3EQfrArn/vector_store/index.pkl +3 -0
  30. AdAyT4oBgHgl3EQf3_pa/vector_store/index.faiss +3 -0
  31. AtE1T4oBgHgl3EQfpAWX/vector_store/index.pkl +3 -0
  32. BNE0T4oBgHgl3EQfPwB8/content/tmp_files/2301.02183v1.pdf.txt +2165 -0
  33. BNE0T4oBgHgl3EQfPwB8/content/tmp_files/load_file.txt +0 -0
  34. BtE3T4oBgHgl3EQfUAqQ/content/tmp_files/2301.04447v1.pdf.txt +706 -0
  35. BtE3T4oBgHgl3EQfUAqQ/content/tmp_files/load_file.txt +506 -0
  36. CtFQT4oBgHgl3EQfOzYB/content/2301.13276v1.pdf +3 -0
  37. CtFQT4oBgHgl3EQfOzYB/vector_store/index.faiss +3 -0
  38. CtFQT4oBgHgl3EQfOzYB/vector_store/index.pkl +3 -0
  39. E9E1T4oBgHgl3EQfqgWQ/content/tmp_files/2301.03344v1.pdf.txt +2447 -0
  40. E9E1T4oBgHgl3EQfqgWQ/content/tmp_files/load_file.txt +0 -0
  41. ENAyT4oBgHgl3EQfevhN/content/2301.00326v1.pdf +3 -0
  42. F9AyT4oBgHgl3EQfrPnq/content/2301.00559v1.pdf +3 -0
  43. F9AyT4oBgHgl3EQfrPnq/vector_store/index.faiss +3 -0
  44. FdAyT4oBgHgl3EQf4_rs/vector_store/index.faiss +3 -0
  45. FdE0T4oBgHgl3EQfhAGj/content/2301.02426v1.pdf +3 -0
  46. FdE0T4oBgHgl3EQfhAGj/vector_store/index.faiss +3 -0
  47. FdE0T4oBgHgl3EQfhAGj/vector_store/index.pkl +3 -0
  48. JdAzT4oBgHgl3EQfVPzH/content/tmp_files/2301.01282v1.pdf.txt +388 -0
  49. JdAzT4oBgHgl3EQfVPzH/content/tmp_files/load_file.txt +381 -0
  50. JtAzT4oBgHgl3EQfIPso/content/2301.01057v1.pdf +3 -0
.gitattributes CHANGED
@@ -3795,3 +3795,70 @@ ANE2T4oBgHgl3EQfnAgQ/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -tex
3795
  ndA0T4oBgHgl3EQfJv-v/content/2301.02095v1.pdf filter=lfs diff=lfs merge=lfs -text
3796
  1NFQT4oBgHgl3EQfETVZ/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3797
  GNFKT4oBgHgl3EQfbi5K/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3795
  ndA0T4oBgHgl3EQfJv-v/content/2301.02095v1.pdf filter=lfs diff=lfs merge=lfs -text
3796
  1NFQT4oBgHgl3EQfETVZ/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3797
  GNFKT4oBgHgl3EQfbi5K/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3798
+ otAzT4oBgHgl3EQfOftW/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3799
+ _tAyT4oBgHgl3EQfqvix/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3800
+ AdAyT4oBgHgl3EQf3_pa/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3801
+ JtAzT4oBgHgl3EQfIPso/content/2301.01057v1.pdf filter=lfs diff=lfs merge=lfs -text
3802
+ 5dFJT4oBgHgl3EQfkywG/content/2301.11580v1.pdf filter=lfs diff=lfs merge=lfs -text
3803
+ 9tE3T4oBgHgl3EQfrArn/content/2301.04657v1.pdf filter=lfs diff=lfs merge=lfs -text
3804
+ wtE3T4oBgHgl3EQf_AuU/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3805
+ rNE1T4oBgHgl3EQfiwTR/content/2301.03256v1.pdf filter=lfs diff=lfs merge=lfs -text
3806
+ VtE3T4oBgHgl3EQfbAqu/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3807
+ FdAyT4oBgHgl3EQf4_rs/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3808
+ KdE1T4oBgHgl3EQfYgTD/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3809
+ F9AyT4oBgHgl3EQfrPnq/content/2301.00559v1.pdf filter=lfs diff=lfs merge=lfs -text
3810
+ ENAyT4oBgHgl3EQfevhN/content/2301.00326v1.pdf filter=lfs diff=lfs merge=lfs -text
3811
+ 5tAyT4oBgHgl3EQfpfgu/content/2301.00525v1.pdf filter=lfs diff=lfs merge=lfs -text
3812
+ PtE1T4oBgHgl3EQfagQG/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3813
+ 1tAzT4oBgHgl3EQf8_4M/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3814
+ rdE3T4oBgHgl3EQfMgkz/content/2301.04373v1.pdf filter=lfs diff=lfs merge=lfs -text
3815
+ PNFRT4oBgHgl3EQf5jis/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3816
+ ZdAyT4oBgHgl3EQfifhm/content/2301.00396v1.pdf filter=lfs diff=lfs merge=lfs -text
3817
+ FdE0T4oBgHgl3EQfhAGj/content/2301.02426v1.pdf filter=lfs diff=lfs merge=lfs -text
3818
+ r9E2T4oBgHgl3EQfLQZF/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3819
+ qtAyT4oBgHgl3EQfzvl6/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3820
+ FdE0T4oBgHgl3EQfhAGj/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3821
+ 6tE2T4oBgHgl3EQfPAa1/content/2301.03755v1.pdf filter=lfs diff=lfs merge=lfs -text
3822
+ _tAyT4oBgHgl3EQf3vm5/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3823
+ M9E0T4oBgHgl3EQf0QJr/content/2301.02683v1.pdf filter=lfs diff=lfs merge=lfs -text
3824
+ OdAzT4oBgHgl3EQfWfyE/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3825
+ U9E2T4oBgHgl3EQfXgeS/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3826
+ NNFQT4oBgHgl3EQfWDbE/content/2301.13303v1.pdf filter=lfs diff=lfs merge=lfs -text
3827
+ PNFRT4oBgHgl3EQf5jis/content/2301.13673v1.pdf filter=lfs diff=lfs merge=lfs -text
3828
+ ZNAzT4oBgHgl3EQfY_yk/content/2301.01345v1.pdf filter=lfs diff=lfs merge=lfs -text
3829
+ gtE0T4oBgHgl3EQfpAHr/content/2301.02535v1.pdf filter=lfs diff=lfs merge=lfs -text
3830
+ WNAyT4oBgHgl3EQf8_py/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3831
+ 6tE2T4oBgHgl3EQfPAa1/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3832
+ F9AyT4oBgHgl3EQfrPnq/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3833
+ VdAyT4oBgHgl3EQfuvn4/content/2301.00621v1.pdf filter=lfs diff=lfs merge=lfs -text
3834
+ M9E0T4oBgHgl3EQf0QJr/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3835
+ RdFRT4oBgHgl3EQfLDee/content/2301.13501v1.pdf filter=lfs diff=lfs merge=lfs -text
3836
+ n9E1T4oBgHgl3EQfhwQL/content/2301.03243v1.pdf filter=lfs diff=lfs merge=lfs -text
3837
+ e9FAT4oBgHgl3EQf7h50/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3838
+ CtFQT4oBgHgl3EQfOzYB/content/2301.13276v1.pdf filter=lfs diff=lfs merge=lfs -text
3839
+ xNE4T4oBgHgl3EQfXwyr/content/2301.05044v1.pdf filter=lfs diff=lfs merge=lfs -text
3840
+ ZNFAT4oBgHgl3EQf3x5l/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3841
+ RdFRT4oBgHgl3EQfLDee/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3842
+ 9tE3T4oBgHgl3EQfrArn/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3843
+ e9FAT4oBgHgl3EQf7h50/content/2301.08745v1.pdf filter=lfs diff=lfs merge=lfs -text
3844
+ n9AyT4oBgHgl3EQflfie/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3845
+ O9E0T4oBgHgl3EQfjwGf/content/2301.02464v1.pdf filter=lfs diff=lfs merge=lfs -text
3846
+ 5tAyT4oBgHgl3EQfpfgu/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3847
+ xNE4T4oBgHgl3EQfXwyr/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3848
+ ndAyT4oBgHgl3EQflfhA/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3849
+ OdAzT4oBgHgl3EQfWfyE/content/2301.01302v1.pdf filter=lfs diff=lfs merge=lfs -text
3850
+ 6tAzT4oBgHgl3EQfvP3q/content/2301.01705v1.pdf filter=lfs diff=lfs merge=lfs -text
3851
+ oNFST4oBgHgl3EQfMTgQ/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3852
+ O9E0T4oBgHgl3EQfjwGf/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3853
+ 6tAzT4oBgHgl3EQfvP3q/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3854
+ CtFQT4oBgHgl3EQfOzYB/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3855
+ ZNAzT4oBgHgl3EQfY_yk/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3856
+ l9FLT4oBgHgl3EQfeS-E/content/2301.12090v1.pdf filter=lfs diff=lfs merge=lfs -text
3857
+ ZNFAT4oBgHgl3EQf3x5l/content/2301.08722v1.pdf filter=lfs diff=lfs merge=lfs -text
3858
+ n9E1T4oBgHgl3EQfhwQL/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3859
+ wdAzT4oBgHgl3EQfdfz3/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3860
+ M9FPT4oBgHgl3EQflTVS/content/2301.13121v1.pdf filter=lfs diff=lfs merge=lfs -text
3861
+ n9AyT4oBgHgl3EQflfie/content/2301.00454v1.pdf filter=lfs diff=lfs merge=lfs -text
3862
+ jNE2T4oBgHgl3EQfdAe8/content/2301.03902v1.pdf filter=lfs diff=lfs merge=lfs -text
3863
+ NNFQT4oBgHgl3EQfWDbE/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
3864
+ SdE2T4oBgHgl3EQfCAaW/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
0tFIT4oBgHgl3EQf3Cv8/content/tmp_files/2301.11380v1.pdf.txt ADDED
@@ -0,0 +1,859 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Electron Impact Ionization in the Icy Galilean Satellites’ Atmospheres
2
+ Shane R. Carberry Mogan1,∗, Robert E. Johnson2,3, Audrey Vorburger4, Lorenz Roth5
3
+ 1Space Sciences Laboratory, University of California, Berkeley, Berkeley, USA; 2University
4
+ of Virginia, Charlottesville, USA; 3New York University, New York, USA; 4University of
5
+ Bern, Bern, Switzerland; 5KTH Royal Institute of Technology, Stockholm, Sweden;
6
+ ∗Corresponding author: Shane R. Carberry Mogan ([email protected])
7
+ Abstract
8
+ Electron impact ionization is critical in producing the ionospheres on many plan-
9
+ etary bodies and, as discussed here, is critical for interpreting spacecraft and tele-
10
+ scopic observations of the tenuous atmospheres of the icy Galilean satellites of Jupiter
11
+ (Europa, Ganymede, and Callisto), which form an interesting planetary system. For-
12
+ tunately, laboratory measurements, extrapolated by theoretical models, were devel-
13
+ oped and published over a number of years by K. Becker and colleagues (see Deutsch
14
+ et al. 2009) to provide accurate electron impact ionization cross sections for atoms
15
+ and molecules, which are crucial to correctly interpret these measurements. Because
16
+ of their relevance for the Jovian icy satellites we provide useful fits to the complex,
17
+ semi-empirical Deutsch–M¨ark formula for energy-dependent electron impact ioniza-
18
+ tion cross-sections of gas-phase water products (i.e., H2O, H2, O2, H, O). These are
19
+ then used with measurements of the thermal plasma in the Jovian magnetosphere to
20
+ produce ionization rates for comparison with solar photo-ionization rates at the icy
21
+ Galilean satellites.
22
+ 1
23
+ Introduction
24
+ Since Galileo Galilei’s revolutionary discovery that Jupiter, the largest planet in the solar
25
+ system, has four large planetary bodies revolving around it – the “Galilean” satellites: Io,
26
+ Europa, Ganymede, and Callisto – our fascination with this planetary system has only
27
+ grown with the advancement of observational technologies. Several spacecraft have been
28
+ sent directly to or have at least passed by the Jovian system. In the 1970s, Pioneer 10 & 11
29
+ and Voyager 1 & 2 utilized Jupiter’s gravity to enhance their trajectories and observed the
30
+ giant planet and its moons up-close. From 1995–2003 Galileo orbited Jupiter, and made
31
+ several close encounters with the namesake moons. At the time of this writing, the Juno
32
+ spacecraft is currently orbiting Jupiter and has recently made close flybys of Ganymede and
33
+ Europa with 2 flybys of Io forthcoming. In addition to these in-situ observations, the Hubble
34
+ Space Telescope (HST), which has been situated in Earth’s orbit since 1990, has been used
35
+ to observe and contribute new information to our understanding of this system. To better
36
+ understand the Jovian system, the Galilean satellites, and their interconnected dynamics, as
37
+ well as address certain prevailing mysteries, three forthcoming missions, ESA’s JUpiter ICy
38
+ moons Explorer, NASA’s Europa Clipper, and CNSA’s Gan De, will send spacecraft back
39
+ to the Jovian system.
40
+ Our focus here is on the icy Galilean satellites (see Table 1) – Europa, Ganymede, and
41
+ Callisto – and their tenuous atmospheres for which the dominant constituents are water
42
+ 1
43
+ arXiv:2301.11380v1 [astro-ph.EP] 26 Jan 2023
44
+
45
+ products: H2O, O2, H2, H, and O. Because these objects orbit Jupiter within its giant mag-
46
+ netic field, they are exposed to an ambient plasma. Interactions between this plasma and the
47
+ icy Galilean satellites’ atmospheres to a large extent determine the nature of the latter. One
48
+ key aspect of this interaction is the role of the plasma electrons in dissociating, ionizing, and
49
+ exciting the gas-phase water products via impacts, which can produce observable emission
50
+ features (e.g., Hall et al. 1998, Feldman et al. 2000, Roth et al. 2017, Roth 2021, Roth et al.
51
+ 2021). In order to calculate the ionization rates to be used in future simulations of these at-
52
+ mospheres, we use the extensive laboratory data of electron impact ionization cross-sections
53
+ accumulated and summarized by K. Becker and his colleagues over a number of years as
54
+ reviewed in Deutsch et al. (2009) and references herein. Since the various laboratory mea-
55
+ surements can exhibit differences and typically cover only a limited range of energies, the
56
+ group developed a fitting procedure also presented in those papers. In this method, the
57
+ Deutsch–M¨ark (DM) formula, atomic orbital basis sets are used in expressions to fit and
58
+ extrapolate the measurements, as well as to generate cross-sections when measurements are
59
+ unavailable. In this way, they created a large number of energy-dependent electron impact
60
+ ionization cross-section distributions. Although the DM formula provides a broad range of
61
+ useful data, as well as allows the calculation of results for molecular targets to be determined
62
+ from the constituent atomic orbitals, it is not easily implemented. For example, in detailed
63
+ molecular kinetic simulations much simpler calculations are more often made, such as those
64
+ recently implemented in Carberry Mogan et al. (2022) for describing electron impacts in Cal-
65
+ listo’s atmosphere. More readily useful expressions are needed. Therefore, here we present
66
+ much more simplified fits to the results obtained via the DM formula, which we then use with
67
+ electron density and temperature data at the icy Galilean satellites to calculate ionization
68
+ rates in their atmospheres. These rates are in turn needed to help interpret past, present,
69
+ and future spacecraft and telescopic observations of these topical planetary bodies soon to
70
+ be visited by several new spacecraft.
71
+ Before we discuss the derivation of the electron impact ionization cross-section fits (Sec-
72
+ tion 3) and present the corresponding ionization rates for each species considered (Section
73
+ 4), we first review the local space environment of the icy Galilean satellites, particularly the
74
+ Jovian magnetospheric plasma in which they are embedded, as well as the observations of
75
+ water products in their atmospheres.
76
+ 2
77
+ Background
78
+ The strong dynamo generated within the interior of Jupiter produces its magnetic field, which
79
+ has a rotation period of ∼10 h. Jupiter’s magnetosphere, i.e., the environment controlled by
80
+ the planet’s magnetic field, is filled with charged particles. While the volcanic moon Io is the
81
+ main source, materials from the icy Galilean satellites’ surfaces are also a source of charged
82
+ particles (either directly ionized or lost as neutrals and ionized later in the magnetosphere)
83
+ (Johnson et al., 2004, Kivelson et al., 2004), which are picked-up, accelerated, and then
84
+ become “trapped” by this rapidly rotating field.
85
+ The combination of this fast rotating
86
+ magnetic field and the large number of charged particles trapped within it gives rise to the
87
+ plasma detected in Jupiter’s immense magnetosphere, which can extend as far as 45–100 RJ
88
+ from the planet, where RJ = 71, 492 km is the radius of Jupiter. The Jovian magnetosphere
89
+ 2
90
+
91
+ is typically divided up into three regions: the inner (<10 RJ), the middle (10–40 RJ), and the
92
+ outer (>40 RJ) regions (Khurana et al., 2004); Europa resides within the inner region, while
93
+ Ganymede and Callisto reside in the middle region. The Jovian magnetospheric plasma is
94
+ typically described as being comprised of two populations: a “cold” thermal plasma with
95
+ energies < 1 keV and a “hot” energetic plasma with energies ≥ 1 keV (Krupp et al., 2004,
96
+ Bagenal and Delamere, 2011). Both populations are composed of electrons, as well as H+,
97
+ On+, and Sn+ ions (Bagenal and Sullivan, 1981, Broadfoot et al., 1981, Nerney et al., 2017).
98
+ The sulfur and oxygen ions, both of which are of various charge states, primarily originate
99
+ from the volcanic moon Io (Bagenal and Dols, 2020). On the other hand, the hydrogen
100
+ ions originate from two different sources depending on the magnetospheric region: in the
101
+ inner region, they mainly originate in Jupiter’s atmosphere; and in the middle and outer
102
+ magnetosphere, the solar wind can gain access to the magnetosphere, becoming the main
103
+ provider of hydrogen ions thereafter.
104
+ An additional plasma contribution (electrons, H+,
105
+ On+) is associated with sputtering of the icy satellite’s surfaces (Cooper et al., 2001, Johnson
106
+ et al., 2004, Szalay et al., 2022). Here we focus on the thermal electrons as these particles
107
+ are the most relevant to ionization. Physical parameters for thermal electrons at the orbits
108
+ of Europa, Ganymede, and Callisto based on Voyager and Galileo data are listed in Table
109
+ 1.
110
+ Table 1: Physical Parameters of Europa, Ganymede, and Callisto, as well as of the Jovian
111
+ magnetosphere at their orbits
112
+ Parameters [units]
113
+ Europa
114
+ Ganymede
115
+ Callisto
116
+ Radius [km]
117
+ 1,561
118
+ 2,631
119
+ 2,410
120
+ Mass [(×1023) kg]
121
+ 0.48
122
+ 1.5
123
+ 1.1
124
+ Distance from Jupiter [RJ]
125
+ 9.38
126
+ 15.0
127
+ 26.3
128
+ Orbital Velocity [km s−1]
129
+ 13.7
130
+ 10.9
131
+ 8.20
132
+ Thermal Electron Density [cm−3]
133
+ 18–290 a,b
134
+ 1–10 a,c
135
+ 0.01–1.1 a,c
136
+ Thermal Electron Temperature [eV]
137
+ 10–30 b
138
+ 100 c
139
+ 100 c
140
+ Thermal Electron Flux d [cm−2 s−1]
141
+ (0.4–1.1)×1011 e
142
+ (0.7–6.7)×109
143
+ (0.08–7.4)×108
144
+ Plasma Azimuthal Velocity [km s−1]
145
+ 90 a
146
+ 150 a
147
+ 200 a
148
+ Relative Plasma Velocity f [km s−1]
149
+ 76 a
150
+ 139 a
151
+ 192 a
152
+ a Values taken from Kivelson et al. (2004) and references therein.
153
+ b Values taken from Bagenal et al. (2015).
154
+ c Values taken from Neubauer (1998) and references therein.
155
+ d Thermal electron flux, φe = neve, where ne is the thermal electron density, ve =
156
+
157
+ 8kBTe/π/me is the
158
+ mean Maxwellian speed of the electrons, with kBTe the thermal electron temperature, kB the Boltzmann
159
+ constant, and me the mass of an electron.
160
+ e φe calculated according to the “low/hot” (kBTe = 30 eV, ne = 63 cm−3) and “high/cold”
161
+ (kBTe = 10 eV, ne = 290 cm−3) plasma components from Table 5 in Bagenal et al. (2015).
162
+ g Relative speed between plasma azimuthal velocity and the satellites’ orbital speeds.
163
+ 3
164
+
165
+ As a result of the large relative velocities between the azimuthal velocity of the Jovian
166
+ magnetosphere and the icy Galilean satellites’ orbital velocities (Table 1), the satellites
167
+ are continuously overtaken and bombarded by the magnetospheric plasma.
168
+ The spatial
169
+ distribution of this bombardment is determined by the flow rate of the plasma particles
170
+ past the satellite as well as their thermal velocities relative to the local magnetic field lines
171
+ (Johnson et al., 2004). However, intrinsic or induced electric and magnetic fields as well
172
+ as the interactions with the tenuous atmospheres and ionospheres at these satellites can
173
+ radically modify the local fluxes of impinging particles at Ganymede (e.g., from Paranicas
174
+ et al. 2022) and at Callisto (e.g., from Strobel et al. 2002). The cyclotron radii or gyro-
175
+ radii of these charged particles depend on their mass, speed, and charge, as well as the
176
+ local magnetic field strength. Due to their small mass, electrons primarily have gyro-radii
177
+ much smaller than the satellite radius, and thus preferentially impact the satellites’ trailing
178
+ hemispheres and poles as they move up and down the rotating field lines (Johnson et al.,
179
+ 2004).
180
+ Following the Pioneer discovery of intense plasma trapped in the Jovian magnetic field
181
+ (Smith et al., 1974, Wolfe et al., 1974, Trainor et al., 1974, Frank et al., 1976) a series of ex-
182
+ periments were carried out to measure the effect this could have on the icy surfaces of Europa,
183
+ Ganymede, and Callisto (Brown et al., 1978, Lanzerotti et al., 1978). These experiments
184
+ showed that the ejection of water molecules from low-temperature ices by incident energetic
185
+ particles, a process referred to as “sputtering”, is dominated by electronic excitations and
186
+ ionizations produced in the ice (“electronic” sputtering), rather than by “knock-on” colli-
187
+ sions of the ions with water molecules (“nuclear” sputtering), the hitherto typically studied
188
+ sputtering process. Subsequent experiments led to the discovery that additional molecular
189
+ species can form in and be released from the ice, namely H2 and O2, in a process referred to
190
+ as “radiolysis” (Brown et al., 1982, Boring et al., 1983, Reimann et al., 1984, Brown et al.,
191
+ 1984), which occurs as bonds in H2O molecules are broken by the electronic energy deposited
192
+ by the impinging charged particles and the fragmented molecules recombine. Moreover, the
193
+ number of radiolytic products ejected from the icy surface per each incident charged particle
194
+ (i.e., the “sputter yield”) was shown to display a strong temperature dependence.
195
+ These discoveries had immense implications for the icy Galilean satellites: magneto-
196
+ spheric plasma-induced sputtering could erode their surfaces, and the ejected atoms and
197
+ molecules could migrate significant distances as well as escape the local gravitational en-
198
+ vironment of its host satellite or form gravitationally bound atmospheres (Johnson, 1990).
199
+ Indeed Europa was predicted to have a tenuous, predominantly O2 atmosphere due to the
200
+ radiolytic decomposition of its icy surface by the incident Jovian plasma particles (Johnson
201
+ et al., 1982, 1983, Johnson, 1990), which has been borne out by extensive HST observations
202
+ (e.g., Roth et al. 2016, and references therein). Tenuous O2 atmospheres produced via similar
203
+ processes have also been detected at Ganymede and Callisto: following the HST detection of
204
+ O emissions indicative of an O2 atmosphere at Europa (Hall et al., 1995), airglow emissions
205
+ were detected by HST in Ganymede’s O2 atmosphere (Hall et al., 1998) as well as in Europa’s
206
+ atmosphere thereby confirming the earlier observation; O emissions were detected by HST
207
+ in Callisto’s atmosphere (Cunningham et al., 2015), which were suggested to be induced by
208
+ photoelectron impacts in a near-surface, O2-dominated atmosphere; and recently atomic O
209
+ emissions have been detected at Ganymede (Roth et al., 2021) indicative of being produced
210
+ via dissociative excitations of O2 (and H2O).
211
+ 4
212
+
213
+ Although H2 can more readily escape from the atmospheres of these bodies than can the
214
+ concomitant radiolytically produced O2, a steady-state H2 atmospheric component can also
215
+ form (e.g., Carberry Mogan et al. 2022). Atomic H, the dissociated product of H2, has also
216
+ been detected at Callisto (e.g., Roth et al. 2017, Carberry Mogan et al. 2022). Moreover,
217
+ Carberry Mogan et al. (2022) and Roth et al. (2023) recently suggested that the H detected
218
+ in the extended atmospheres of Europa (Roth et al., 2017, 2023) and Ganymede (Barth et al.,
219
+ 1997, Feldman et al., 2000, Alday et al., 2017, Roth et al., 2023) are also indicative of an H2-
220
+ source. Although H2 is able to escape from these satellites’ atmospheres, it does not escape
221
+ from the Jovian system; and since its lifetime is longer than the satellites’ orbital periods
222
+ (e.g., Smyth and Marconi (2006), Leblanc et al. (2017), Carberry Mogan et al. (2022)), a
223
+ detectable toroidal cloud of neutral H2 co-rotating with the bodies can form (e.g., Szalay
224
+ et al. 2022).
225
+ The sputtering and radiolytic sources of the icy Galilean satellites’ atmospheres compete
226
+ with other sources, such as sublimation of water ice and the subsequent photochemistry of
227
+ the newly formed water vapor (e.g., Yung and McElroy 1977, Kumar and Hunten 1982).
228
+ However, with increasing distance from Jupiter, the plasma density and, as a result, the
229
+ corresponding atmospheric source decreases (Johnson et al., 2004). For example, although
230
+ gas-phase H2O has not been directly observed at Callisto, the outermost Galilean satellite,
231
+ observed geomorphological features have been interpreted to be caused by sublimation of
232
+ the surface ice rather than by sputtering (Spencer and Maloney, 1984, Spencer, 1987, Moore
233
+ et al., 1999). Further, whereas sublimation has been suggested to be the primary source of
234
+ Ganymede’s H2O atmosphere (Roth et al., 2021, Vorburger et al., 2022), sputtering has been
235
+ suggested to be a primary source of Europa’s H2O atmosphere (Addison et al., 2021).
236
+ Below we focus on deriving thermal electron impact ionization rates in these icy satellites’
237
+ atmospheres, which are needed to help understand their evolution.
238
+ 3
239
+ Method
240
+ The Deutsch-M¨ark (DM) formula was developed to employ and extrapolate laboratory data
241
+ to allow users to estimate reasonably accurate electron impact ionization cross-sections,
242
+ σ(E), over a large range of energies, E. The “modified” DM formula (Appendix A) from
243
+ Deutsch et al. (2004), hereafter referred to as “DM2004,” is a revised version of the original
244
+ formula developed by Deutsch and M¨ark (1987) and used to calculate cross-sections up to
245
+ energies ≲ keV. As discussed by Deutsch et al. (2000), hereafter referred to as “DM2000,”
246
+ and references therein, σ(E) for atoms (e.g., H and O) can be converted to σ(E) for molecules
247
+ composed of those atoms (e.g., H2O, O2, and H2).
248
+ Here we present more easily usable fits to these complex models for species of interest to
249
+ the planetary science community, and of particular interest at icy satellites. An exponentially
250
+ modified Gaussian distribution is used to compute a non-linear least-squares fit to σ(E)
251
+ derived for H, O, H2, O2, and H2O using DM2000 and DM2004. The resulting equation is
252
+ as follows (in units of ×10−16 cm2):
253
+ σ(E) = α
254
+ 2δ exp
255
+ � γ2
256
+ 2δ2 + β − log10(E)
257
+ δ
258
+ � �
259
+ erf
260
+ �log10(E) − β
261
+
262
+
263
+
264
+ γ
265
+
266
+
267
+
268
+ + δ
269
+ |δ|
270
+
271
+ + ϵ,
272
+ (1)
273
+ 5
274
+
275
+ where the coefficients α, β, γ, δ, and ϵ in Eq. 1 for H, O, H2, O2, and H2O are listed in
276
+ Table 2.
277
+ Table 2: Coefficients in Eq. 1 for H, O, H2, O2, H2O
278
+ Species
279
+ α
280
+ β
281
+ γ
282
+ δ
283
+ ϵ
284
+ H
285
+ 0.951653
286
+ 1.40862
287
+ 0.271538
288
+ 0.804953
289
+ -0.0397646
290
+ O
291
+ 1.91899
292
+ 1.72847
293
+ 0.333420
294
+ 0.864596
295
+ -0.121378
296
+ H2
297
+ 2.27256
298
+ 1.39600
299
+ 0.277991
300
+ 1.08255
301
+ -0.278929
302
+ O2
303
+ 3.20403
304
+ 1.63262
305
+ 0.241759
306
+ 0.799914
307
+ -0.0876336
308
+ H2O
309
+ 4.41745
310
+ 1.48743
311
+ 0.291951
312
+ 1.01222
313
+ -0.527864
314
+ 4
315
+ Results
316
+ Electron impact ionization cross-sections, σ(E), for H, O, H2, O2, and H2O as derived by
317
+ DM2000 and DM2004, as well as the corresponding fits calculated via Eq.
318
+ 1 with the
319
+ coefficients from Table 2, are illustrated in Figure 1. These fits, of course, account for the
320
+ ionization threshold energies occurring around 10 and 20 eV for the species considered (e.g.,
321
+ see Tables A.1–A.2 in Appendix A). By about ∼20 eV, the difference in σ(E) derived by
322
+ DM2000/DM2004 and by the corresponding fits for all of the species considered fall below
323
+ 10%, except for that of O, which drops below 10% between 20 and 30 eV. From these lower
324
+ bounds up to 1 keV, the difference remains below 10% for all species considered except for
325
+ H2, for which it exceeds 10% by ∼800 eV but is only ∼14% by 1 keV. Thus, between ∼20 eV–
326
+ 1 keV (i.e., between the ionization energy of the species considered, (e.g., Tables A.1–A.2 in
327
+ Appendix A), and the maximum energy of the thermal electrons in the Jovian magnetosphere
328
+ at the icy Galilean satellites, Table 1), the fits provided here can determine electron impact
329
+ ionization cross-sections within ∼10% accuracy of those determined via the more complex
330
+ DM models, which have been extensively tested, modified, and improved over the years,
331
+ demonstrating agreement with experimental data better than ∼20–35% (Deutsch et al. 2009
332
+ and references therein).
333
+ With the thermal electron fluxes and temperatures listed in Table 1, we use the fits for
334
+ electron impact ionization cross-sections presented in Fig. 1 to determine the corresponding
335
+ ionization rates in the water product atmospheres of Europa, Ganymede, and Callisto, which
336
+ are presented in Table 3. The difference in σ(E) derived by DM2004 and by the corresponding
337
+ fit for O electron impact ionization cross-section at 20 eV is ∼32%, making the latter (Eq. 1)
338
+ in the region of Europa’s orbit not as accurate as those of the other species, for which
339
+ the difference is always < 10% (Table 3). However, by 30 eV the difference for all species
340
+ drops to < 5%. The differences for electron impact ionization rates at incident electron
341
+ energies of 100 eV at Ganymede and Callisto are < 3% for all species. We compare these
342
+ electron impact ionization rates to the analogous photoionization rates derived according
343
+ 6
344
+
345
+ Figure 1: Top panel: Electron impact ionization cross-section, σ(E), for H (red lines), O
346
+ (blue lines), H2 (green lines), O2 (cyan lines), and H2O (magenta lines) as a function of
347
+ incident electron energy, E (x-axis). The dashed colored lines are from Deutsch et al. (2000)
348
+ (“DM2000”) for H2, O2, and H2O and from Deutsch et al. (2004) (“DM2004”) for H and O;
349
+ and the solid colored lines are the corresponding fits (“Fit”) calculated via Eq. 1 with the
350
+ coefficients from Table 2. Note the values for σ(E) begin at the ionization energies of the
351
+ species considered (e.g., Tables A.1–A.2 in Appendix A), hence the blank spaces below these
352
+ energies. Bottom panel: The dash-dotted colored lines represent the difference between σ(E)
353
+ calculated via DM2000/DM2004 and via Eq. 1, |fit−DM2000/2004|
354
+ DM2000/2004
355
+ ×100 (“Error”).
356
+ to solar activity (Huebner and Mukherjee, 2015) in Table B.1 in Appendix B. Since the
357
+ electron temperature for the “high/cold” plasma component at Europa (Table 1) is less than
358
+ the ionization energies of the atoms and molecules considered (e.g., Tables A.1 and A.2 in
359
+ Appendix A), we show ionization rates over a temperature range of 20–30 eV (“medium” to
360
+ “low/hot” plasma components from Bagenal et al. 2015). At Europa and Ganymede, electron
361
+ impact ionization rates are greater than the photoionization rates for all species. On the
362
+ other hand, at Callisto, where there is the most uncertainty in electron densities (see e.g.,
363
+ Table 1), the upper bound electron impact ionization rates are greater than the upper bound
364
+ photoionization rates for all species, but the lower bound electron impact ionization rates
365
+ are less than the lower bound photoionization rates. We note, however, that the electron
366
+ impact ionization rates relate to the upstream plasma properties, and the effective electron
367
+ impact ionization strongly depends on the details of the interaction of the plasma flow with
368
+ the moons’ atmospheres and ionospheres, which cool as well as divert the plasma around the
369
+ moons (e.g., Saur et al. 1998, 2004, Rubin et al. 2015, Dols et al. 2016).
370
+ 7
371
+
372
+ Energy, E[eV]
373
+ 101
374
+ 102
375
+ 103
376
+ 7
377
+ 10-15
378
+ cm
379
+ H
380
+ 10-17
381
+ 0
382
+ H2
383
+ 02
384
+ H20
385
+ 10-19
386
+ 100
387
+ Fit
388
+ 90
389
+ DM2000
390
+ 80
391
+ 0054320
392
+ /DM2004
393
+ Error
394
+ Error[
395
+ 102
396
+ 103
397
+ 101
398
+ Energy, E[eV]Table 3: Electron impact ionization cross-sections and rates in the water product atmo-
399
+ spheres of Europa (E), Ganymede (G), and Callisto (C)
400
+ Species
401
+ Satellite
402
+ Cross-Sectiona [cm−2]
403
+ Rateb [s−1]
404
+ Errorc [%]
405
+ H
406
+ E
407
+ (3.07–5.11)×10−17
408
+ (2.57–5.57)×10−6
409
+ 2.96–4.93
410
+ G
411
+ 5.48×10−17
412
+ (0.384–3.67)×10−7
413
+ 1.34
414
+ C
415
+ 4.38×10−10 – 4.06×10−8
416
+ O
417
+ E
418
+ (0.495–2.72)×10−17
419
+ (0.414–2.97)×10−6
420
+ 4.92–32.6
421
+ G
422
+ 1.03×10−16
423
+ (0.719–6.88)×10−7
424
+ 1.36
425
+ C
426
+ 8.22×10−10 – 7.60×10−8
427
+ H2
428
+ E
429
+ (3.99–7.52)×10−17
430
+ (3.34–8.20)×10−6
431
+ 4.64–6.86
432
+ G
433
+ 9.48×10−17
434
+ (0.664–6.35)×10−7
435
+ 2.04
436
+ C
437
+ 7.58×10−10 – 7.01×10−8
438
+ O2
439
+ E
440
+ (1.98–7.80)×10−17
441
+ (1.66–8.50)×10−6
442
+ 1.22–6.91
443
+ G
444
+ 2.22×10−16
445
+ (0.155–1.49)×10−6
446
+ 2.12
447
+ C
448
+ 1.77×10−9 – 1.64×10−7
449
+ H2O
450
+ E
451
+ (0.401–1.24)×10−16
452
+ (0.336–1.36)×10−5
453
+ 4.63–9.82
454
+ G
455
+ 2.00×10−16
456
+ (0.140–1.34)×10−6
457
+ 1.16
458
+ C
459
+ 1.60×10−9 – 1.47×10−7
460
+ a Electron impact ionization cross-sections are calculated via Eq. 1 at 20–30 eV for Europa and 100 eV
461
+ for Ganymede and Callisto. Note we only consider temperatures kBTe ≥ 20 eV at Europa because the
462
+ minimum temperature, kBTe = 10 eV (Table 1), is lower than the ionization energies of the species
463
+ considered (e.g., Tables A.1–A.2 in Appendix A).
464
+ b Electron impact ionization rates are calculated as the product of the electron impact ionization cross-
465
+ sections and the range in thermal electron fluxes given in Table 1. Note, since the minimum temperature
466
+ at Europa, kBTe = 10 eV, is lower than the ionization energies of the species considered, the lower
467
+ bound thermal electron flux is calculated according to the “medium” plasma component (kBTe = 20 eV,
468
+ ne = 158 cm−3) from Bagenal et al. (2015), Table 5 therein.
469
+ c The differences in the cross-sections derived by DM2000/DM2004 and by the corresponding fits, the
470
+ “errors,” are interpolated from that illustrated in Fig. 1 at 20–30 eV for Europa (with the lower value
471
+ calculated at 30 eV) and 100 eV for Ganymede and Callisto.
472
+ 5
473
+ Conclusion
474
+ The importance to the space physics community of data on atomic and molecular processes
475
+ driven by an ambient plasma cannot be overstated. There are so many difficult but important
476
+ observations whose interpretation is limited by the uncertainties in the atomic and molecular
477
+ database or by the limited range of energies and species studied in the laboratory. Therefore,
478
+ 8
479
+
480
+ the combination of laboratory measurements with detailed, physically-based extrapolation
481
+ procedures, as carried out by K. Becker and colleagues, will continue to be incredibly useful.
482
+ Because the accurate DM formula used to develop useful electron impact cross sections
483
+ over a large range of energies requires a considerable understanding of atomic physics, here
484
+ we present more readily useful fits to their detailed analyses for use by the space physics
485
+ community in order to prepare for the expected data from the forthcoming observations of
486
+ plasma-atmosphere interactions at the icy Jovian satellites. These are used to show the
487
+ relative importance of electron impact ionization in the icy Galilean satellites’ atmospheres
488
+ as compared to photo-ionization.
489
+ Finally, this study can be summarized as followed:
490
+ • Fits to the Deutsch–M¨ark formula for energy-dependent electron impact ionization
491
+ cross-sections have been derived for H2O, H2, O2, H, O from the species’ minimum
492
+ ionization energies up to 1 keV.
493
+ • These cross-sections are used in tandem with electron data at the orbits of Europa,
494
+ Ganymede, and Callisto to determine the corresponding electron impact ionization
495
+ rates in these bodies’ water-product atmospheres.
496
+ • At Europa and Ganymede the electron impact ionization rates are shown to exceed
497
+ the photoionization rates, whereas at Callisto, where the electron densities vary the
498
+ most, likely a result of the moon being inside or outside of the Jovian plasma sheet,
499
+ the electron impact ionization rates can be more or less than the photoionization rates.
500
+ 9
501
+
502
+ Appendix
503
+ A
504
+ DM Formula
505
+ The “modified” DM formula (Deutsch et al., 2004) derives the total energy-dependent
506
+ electron-impact ionization cross section, σ(E), of an atom as:
507
+ σ(E) =
508
+
509
+ n,l
510
+ πgn,lr2
511
+ n,lξn,lb(q)
512
+ n,l(u) [ln(cn,lu)/u] .
513
+ (2)
514
+ Here rn,l is the radius of maximum radial density of and ξn,l is the number of electrons in
515
+ the atomic subshell characterized by quantum numbers n and l; gn,l is a weighting factor
516
+ originally determined from a fitting procedure; u = E/En,l, where E is the incident energy
517
+ of the electrons and En,l is the ionization energy in the (n, l) subshell; and cn,l is a constant
518
+ determined from measured cross-sections for various values of n and l. Tables A.1 and A.2 list
519
+ values for the various terms in Eq. 2 for H and O atoms, respectively. The energy-dependent
520
+ function b(q)
521
+ n,l(u) [ln(cn,lu)/u] allows the DM formula to be applied up to keV-energy regimes,
522
+ with b(q)
523
+ n,l(u) written as the following:
524
+ b(q)
525
+ n,l(u) =
526
+ A1 − A2
527
+ 1 + (u/A3)p + A2,
528
+ (3)
529
+ where A1−3 and p are constants determined from measured cross-sections for various values
530
+ of n and l, and the superscript (q) refers to the number of electrons in the (n, l) sub-
531
+ shell. Tables A.3 and A.4 list values for the various terms in the energy-dependent function
532
+ b(q)
533
+ n,l(u) [ln(cn,lu)/u] for H and O atoms, respectively. We refer the reader to the review by
534
+ Deutsch et al. (2009) for how σ(E) of atoms are used to calculate σ(E) of molecules com-
535
+ posed of those atoms; i.e., how to estimate σ(E) of H2, O2, and H2O from σ(E) of H and
536
+ O.
537
+ 10
538
+
539
+ Table A.1: Various terms in Eq. 2 for electron impact ionization cross-section of H atoms
540
+ n
541
+ l
542
+ ξn,l
543
+ En,l a [eV]
544
+ rn,l a [(×10−11) m]
545
+ gn,l b
546
+ 1
547
+ 0
548
+ 1
549
+ 13.6
550
+ 5.29
551
+ 2.81
552
+ a En,l and rn,l are taken from Tables 2 and 4 in Desclaux (1973), respectively.
553
+ b gn,l is determined by dividing En,l from the “reduced weighting factor” gn,lEn,l = 38.20 for 1s1 in
554
+ Deutsch et al. (2000).
555
+ Table A.2: Various terms in Eq. 2 for electron impact ionization cross-section of O atoms
556
+ n
557
+ l
558
+ ξn,l
559
+ En,l a [eV]
560
+ rn,l a [(×10−11) m]
561
+ gn,l b
562
+ 1
563
+ 0
564
+ 2
565
+ 563
566
+ 0.684
567
+ 0.124
568
+ 2
569
+ 0
570
+ 2
571
+ 34.1
572
+ 4.63
573
+ 0.587
574
+ 2
575
+ 1
576
+ 4
577
+ 16.7
578
+ 4.41
579
+ 1.79
580
+ a En,l and rn,l are taken from Tables 2 and 4 in Desclaux (1973), respectively.
581
+ b gn,l is determined by dividing En,l from the “reduced weighting factors” gn,lEn,l = 70.00, 20.00, and
582
+ 30.00 for 1s2, 2s2, and 2p4, respectively, in Deutsch et al. (2000).
583
+ Table A.3: Various terms in the energy-dependent function b(q)
584
+ n,l(u) [ln(cn,lu)/u] (Eqs. 2–3)
585
+ for electron impact ionization cross-section of H atoms
586
+ n
587
+ l
588
+ q
589
+ cn,l
590
+ A1
591
+ A2
592
+ A3
593
+ p
594
+ 1
595
+ 0
596
+ 1
597
+ 1.00
598
+ 0.31
599
+ 0.87
600
+ 2.32
601
+ 1.95
602
+ Table A.4: Various terms in the energy-dependent function b(q)
603
+ n,l(u) [ln(cn,lu)/u] (Eqs. 2–3)
604
+ for electron impact ionization cross-section of O atoms
605
+ n
606
+ l
607
+ q
608
+ cn,l
609
+ A1
610
+ A2
611
+ A3
612
+ p
613
+ 1
614
+ 0
615
+ 2
616
+ 1.01
617
+ 0.23
618
+ 0.86
619
+ 3.67
620
+ 2.08
621
+ 2
622
+ 0
623
+ 2
624
+ 1.01
625
+ 0.23
626
+ 0.86
627
+ 3.67
628
+ 2.08
629
+ 2
630
+ 1
631
+ 4
632
+ 1.02
633
+ -0.15
634
+ 1.17
635
+ 4.05
636
+ 1.31
637
+ 11
638
+
639
+ B
640
+ Photoionization Rates
641
+ Table B.1 lists the range of photoionization rates determined by Huebner and Mukherjee
642
+ (2015) for a “quiet” Sun (i.e., solar minimum) – “active” Sun (i.e., solar maximum), which
643
+ are then scaled to the average Jovian system’s distance from the Sun, 5.2 AU, ignoring any
644
+ possible absorption with depth into the atmosphere.
645
+ Table B.1: Photoionization rates at 5.2 AU
646
+ Species
647
+ Rate [s−1]
648
+ H
649
+ (2.68–6.36)×10−9
650
+ O
651
+ (0.880–2.44)×10−8
652
+ H2
653
+ (2.00–4.25)×10−9
654
+ O2
655
+ (1.73–4.36)×10−8
656
+ H2O
657
+ (1.22–3.06)×10−8
658
+ Acknowledgments
659
+ S.R.C.M. acknowledges the support provided by NASA through the Solar System Workings
660
+ grant 80NSSC21K0152, A.V. acknowledges the support provided by the Swiss National Sci-
661
+ ence Foundation, and L.R. was supported by the Swedish National Space Agency through
662
+ grant 2021-00153 and by the Swedish Research Council through grant 2017-04897.
663
+ Author Contribution Statement
664
+ All authors contributed equally to this work.
665
+ Data Availability Statement
666
+ All data generated or analyzed during this study are included in this published article.
667
+ 12
668
+
669
+ References
670
+ Addison, P., Liuzzo, L., Arnold, H., and Simon, S. (2021). Influence of Europa’s time-varying
671
+ electromagnetic environment on magnetospheric ion precipitation and surface weathering.
672
+ Journal of Geophysical Research: Space Physics, 126(5):e2020JA029087.
673
+ Alday, J., Roth, L., Ivchenko, N., Retherford, K. D., Becker, T. M., Molyneux, P., and
674
+ Saur, J. (2017). New constraints on Ganymede’s hydrogen corona: Analysis of Lyman-α
675
+ emissions observed by HST/STIS between 1998 and 2014. Planetary and Space Science,
676
+ 148:35–44.
677
+ Bagenal, F. and Delamere, P. A. (2011). Flow of mass and energy in the magnetospheres of
678
+ Jupiter and Saturn. J. Geophys. Res., 116:5209.
679
+ Bagenal, F. and Dols, V. (2020). The space environment of Io and Europa. Journal of
680
+ Geophysical Research: Space Physics, 125(5):e2019JA027485.
681
+ Bagenal, F., Sidrow, E., Wilson, R. J., Cassidy, T. A., Dols, V., Crary, F. J., Steffl, A. J.,
682
+ Delamere, P. A., Kurth, W. S., and Paterson, W. R. (2015). Plasma conditions at Europa’s
683
+ orbit. Icarus, 261:1–13.
684
+ Bagenal, F. and Sullivan, J. D. (1981). Direct plasma measurements in the Io torus and
685
+ inner magnetosphere of Jupiter. Journal of Geophysical Research, 86(A10):8447–8466.
686
+ Barth, C. A., Hord, C. W., Stewart, A. I. F., Pryor, W. R., Simmons, K. E., McClintock,
687
+ W. E., Ajello, J. M., Naviaux, K. L., and Aiello, J. J. (1997). Galileo ultraviolet spec-
688
+ trometer observations of atomic hydrogen in the atmosphere of Ganymede. Geophysical
689
+ Research Letters, 24(17):2147–2150.
690
+ Boring, J. W., Johnson, R. E., Reimann, C. T., Garret, J. W., Brown, W. L., and Marcan-
691
+ tonio, K. J. (1983). Ion-induced chemistry in condensed gas solids. Nuclear Instruments
692
+ and Methods in Physics Research, 218(1-3):707–711.
693
+ Broadfoot, A. L., Sandel, B. R., Shemansky, D. E., McConnell, J. C., Smith, G. R., Holberg,
694
+ J. B., Atreya, S. K., Donahue, T. M., Strobel, D. F., and Bertaux, J. L. (1981). Overview
695
+ of the Voyager ultraviolet spectrometry results through Jupiter encounter.
696
+ Journal of
697
+ Geophysical Research, 86(A10):8259–8284.
698
+ Brown, W. L., Augustyniak, W. M., Marcantonio, K. J., Simmons, E. H., Boring, J. W.,
699
+ Johnson, R. E., and Reimann, C. T. (1984). Electronic sputtering of low temperature
700
+ molecular solids. Nuclear Instruments and Methods in Physics Research Section B: Beam
701
+ Interactions with Materials and Atoms, 1(2-3):307–314.
702
+ Brown, W. L., Augustyniak, W. M., Simmons, E., Marcantonio, K. J., Lanzerotti, L. J.,
703
+ Johnson, R. E., Boring, J. W., Reimann, C. T., Foti, G., and Pirronello, V. (1982).
704
+ Erosion and molecule formation in condensed gas films by electronic energy loss of fast
705
+ ions. Nuclear Instruments and Methods in Physics Research, 198(1):1–8.
706
+ 13
707
+
708
+ Brown, W. L., Lanzerotti, L. J., Poate, J. M., and Augustyniak, W. M. (1978). “Sputtering”
709
+ of ice by MeV light ions. Physical Review Letters, 40(15):1027.
710
+ Carberry Mogan, S. R., Tucker, O. J., Johnson, R. E., Roth, L., Alday, J., Vorburger, V.,
711
+ Wurz, P., Galli, A., Smith, H. T., Marchand, B., and Oza, A. V. (2022). Callisto’s atmo-
712
+ sphere: First evidence for H2 and constrains on H2O. Journal of Geophysical Research:
713
+ Planets.
714
+ Cooper, J. F., Johnson, R. E., Mauk, B. H., Garrett, H. B., and Gehrels, N. (2001). Energetic
715
+ Ion and Electron Irradiation of the Icy Galilean Satellites. Icarus, 149(1):133–159.
716
+ Cunningham, N. J., Spencer, J. R., Feldman, P. D., Strobel, D. F., France, K., and Osterman,
717
+ S. N. (2015). Detection of Callisto’s oxygen atmosphere with the Hubble Space Telescope.
718
+ Icarus, 254:178–189.
719
+ Desclaux, J. P. (1973). Relativistic Dirac-Fock expectation values for atoms with Z = 1 to
720
+ Z = 120. Atomic data and nuclear data tables, 12(4):311–406.
721
+ Deutsch, H., Becker, K., Matt, S., and M¨ark, T. D. (2000). Theoretical determination of
722
+ absolute electron-impact ionization cross sections of molecules. International Journal of
723
+ Mass Spectrometry, 197:37–69.
724
+ Deutsch, H., Becker, K., Probst, M., and Maerk, T. D. (2009). The semiempirical Deutsch–
725
+ M¨ark formalism: A versatile approach for the calculation of electron-impact ionization
726
+ cross sections of atoms, molecules, ions, and clusters. Advances in Atomic, Molecular, and
727
+ Optical Physics, 57:87–155.
728
+ Deutsch, H. and M¨ark, T. (1987). Calculation of absolute electron impact ionization cross-
729
+ section functions for single ionization of He, Ne, Ar, Kr, Xe, N and F. International journal
730
+ of mass spectrometry and ion processes, 79(3):R1–R8.
731
+ Deutsch, H., Scheier, P., Becker, K., and M¨ark, T. D. (2004). Revised high energy behavior
732
+ of the Deutsch-M¨ark (DM) formula for the calculation of electron impact ionization cross
733
+ sections of atoms. International Journal of Mass Spectrometry, 233(1-3):13–17.
734
+ Dols, V. J., Bagenal, F., Cassidy, T. A., Crary, F. J., and Delamere, P. A. (2016). Europa’s
735
+ atmospheric neutral escape: Importance of symmetrical O2 charge exchange.
736
+ Icarus,
737
+ 264:387–397.
738
+ Feldman, P. D., McGrath, M. A., Strobel, D. F., Moos, H. W., Retherford, K. D., and
739
+ Wolven, B. C. (2000). HST/STIS ultraviolet imaging of polar aurora on Ganymede. The
740
+ Astrophysical Journal, 535(2):1085.
741
+ Frank, L. A., Ackerson, K. L., Wolfe, J. H., and Mihalov, J. D. (1976). Observations of
742
+ plasmas in the Jovian magnetosphere. Journal of Geophysical Research, 81(4):457–468.
743
+ Hall, D. T., Feldman, P. D., McGrath, M. A., and Strobel, D. F. (1998). The far-ultraviolet
744
+ oxygen airglow of Europa and Ganymede. The Astrophysical Journal, 499(1):475.
745
+ 14
746
+
747
+ Hall, D. T., Strobel, D. F., Feldman, P. D., McGrath, M. A., and Weaver, H. A. (1995).
748
+ Detection of an oxygen atmosphere on Jupiter’s moon Europa. Nature, 373(6516):677.
749
+ Huebner, W. F. and Mukherjee, J. (2015). Photoionization and photodissociation rates in
750
+ solar and blackbody radiation fields. Planetary and Space Science, 106:11–45.
751
+ Johnson, R. E. (1990). Energetic charged-particle interactions with atmospheres and surfaces.
752
+ Springer Science & Business Media.
753
+ Johnson, R. E., Boring, J. W., Reimann, C. T., Barton, L. A., Sieveka, E. M., Garrett,
754
+ J. W., Farmer, K. R., Brown, W. L., and Lanzerotti, L. J. (1983). Plasma ion-induced
755
+ molecular ejection on the Galilean satellites: Energies of ejected molecules. Geophysical
756
+ research letters, 10(9):892–895.
757
+ Johnson, R. E., Carlson, R. W., Cooper, J. F., Paranicas, C., Moore, M. H., and Wong,
758
+ M. C. (2004). Radiation effects on the surfaces of the Galilean satellites. Jupiter: The
759
+ planet, satellites and magnetosphere, pages 485–512.
760
+ Johnson, R. E., Lanzerotti, L. J., and Brown, W. L. (1982). Planetary applications of ion
761
+ induced erosion of condensed-gas frosts.
762
+ Nuclear Instruments and Methods in Physics
763
+ Research, 198(1):147–157.
764
+ Khurana, K. K., Kivelson, M. G., Vasyliunas, V. M., Krupp, N., Woch, J., Lagg, A., Mauk,
765
+ B. H., and Kurth, W. S. (2004). The configuration of Jupiter’s magnetosphere. Jupiter:
766
+ The planet, satellites and magnetosphere, 1:593–616.
767
+ Kivelson, M. G., Bagenal, F., Kurth, W. S., Neubauer, F. M., Paranicas, C., and Saur, J.
768
+ (2004). Magnetospheric interactions with satellites. Jupiter: The planet, satellites and
769
+ magnetosphere, pages 513–536.
770
+ Krupp, N., Vasyliunas, V. M., Woch, J., Lagg, A., Khurana, K. K., Kivelson, M. G., Mauk,
771
+ B. H., Roelof, E. C., Williams, D. J., Krimigis, S. M., Kurth, W. S., Frank, L. A., and
772
+ Paterson, W. R. (2004). Dynamics of the Jovian magnetosphere. In Bagenal, F., Dowling,
773
+ T. E., and McKinnon, W. B., editors, Jupiter. The Planet, Satellites and Magnetosphere,
774
+ volume 1, pages 617–638. Cambridge University Press.
775
+ Kumar, S. and Hunten, D. M. (1982). The atmospheres of Io and other satellites. Satellites
776
+ of Jupiter, pages 782–806.
777
+ Lanzerotti, L. J., Brown, W. L., Poate, J. M., and Augustyniak, W. M. (1978). On the
778
+ contribution of water products from Galilean satellites to the Jovian magnetosphere. Geo-
779
+ physical Research Letters, 5(2):155–158.
780
+ Leblanc, F., Oza, A. V., Leclercq, L., Schmidt, C., Cassidy, T., Modolo, R., Chaufray, J.-Y.,
781
+ and Johnson, R. E. (2017). On the orbital variability of Ganymede’s atmosphere. Icarus,
782
+ 293:185–198.
783
+ Moore, J. M. et al. (1999). Mass movement and landform degradation on the icy Galilean
784
+ satellites: Results of the Galileo nominal mission. Icarus, 140(2):294–312.
785
+ 15
786
+
787
+ Nerney, E. G., Bagenal, F., and Steffl, A. J. (2017). Io plasma torus ion composition: Voy-
788
+ ager, Galileo, and Cassini. Journal of Geophysical Research (Space Physics), 122(1):727–
789
+ 744.
790
+ Neubauer, F. M. (1998). The sub-Alfv´enic interaction of the Galilean satellites with the
791
+ Jovian magnetosphere. Journal of Geophysical Research: Planets, 103(E9):19843–19866.
792
+ Paranicas, C., Mauk, B. H., Kollmann, P., Clark, G., Haggerty, D. K., Westlake, J., Liuzzo,
793
+ L., Masters, A., Cassidy, T. A., Bagenal, F., and Bolton, S. (2022). Energetic charged
794
+ particle fluxes relevant to Ganymede’s polar region. Geophysical Research Letters, page
795
+ e2022GL098077.
796
+ Reimann, C. T., Boring, J. W., Johnson, R. E., Garrett, J. W., Farmer, K. R., Brown, W. L.,
797
+ Marcantonio, K. J., and Augustyniak, W. M. (1984). Ion-induced molecular ejection from
798
+ D2O ice. Surface science, 147(1):227–240.
799
+ Roth, L. (2021).
800
+ A stable H2O atmosphere on Europa’s trailing hemisphere from HST
801
+ images. Geophysical Research Letters.
802
+ Roth, L., Ivchenko, N., Gladstone, G. R., Saur, J., Grodent, D., Bonfond, B., Molyneux,
803
+ P. M., and Retherford, K. D. (2021).
804
+ A sublimated water atmosphere on Ganymede
805
+ detected from Hubble Space Telescope observations. Nature Astronomy, pages 1–9.
806
+ Roth, L., Marchesini, G., Becker, T. M., Hoeijmakers, H. J., Molyneux, P. M., Rether-
807
+ ford, K. D., Saur, J., Carberry Mogan, S. R., and Szalay, J. R. (2023).
808
+ Probing
809
+ Ganymede’s atmosphere with HST Ly-alpha images in transit of Jupiter. arXiv preprint
810
+ arXiv:2301.05583.
811
+ Roth, L., Retherford, K. D., Ivchenko, N., Schlatter, N., Strobel, D. F., Becker, T. M., and
812
+ Grava, C. (2017). Detection of a hydrogen corona in HST Lyα images of Europa in transit
813
+ of Jupiter. The Astronomical Journal, 153(2):67.
814
+ Roth, L., Saur, J., Retherford, K. D., Strobel, D. F., Feldman, P. D., McGrath, M. A.,
815
+ Spencer, J. R., Bl¨ocker, A., and Ivchenko, N. (2016). Europa’s far ultraviolet oxygen
816
+ aurora from a comprehensive set of HST observations. Journal of Geophysical Research:
817
+ Space Physics, 121(3):2143–2170.
818
+ Rubin, M., Jia, X., Altwegg, K., Combi, M. R., Daldorff, L. K. S., Gombosi, T. I., Khu-
819
+ rana, K., Kivelson, M. G., Tenishev, V. M., T´oth, G., van der Holst, B., and Wurz, P.
820
+ (2015). Self-consistent multifluid MHD simulations of Europa’s exospheric interaction with
821
+ Jupiter’s magnetosphere. Journal of Geophysical Research: Space Physics, 120(5):3503–
822
+ 3524.
823
+ Saur, J., Neubauer, F. M., Connerney, J. E. P., Zarka, P., and Kivelson, M. G. (2004). Plasma
824
+ interaction of Io with its plasma torus. Jupiter: The planet, satellites and magnetosphere,
825
+ 1:537–560.
826
+ 16
827
+
828
+ Saur, J., Strobel, D. F., and Neubauer, F. M. (1998). Interaction of the Jovian magnetosphere
829
+ with Europa: Constraints on the neutral atmosphere. Journal of Geophysical Research:
830
+ Planets, 103(E9):19947–19962.
831
+ Smith, E. J., Davis Jr, L., Jones, D. E., Coleman Jr, P. J., Colburn, D. S., Dyal, P., Sonett,
832
+ C. P., and Frandsen, A. M. A. (1974). The planetary magnetic field and magnetosphere
833
+ of Jupiter: Pioneer 10. Journal of Geophysical Research, 79(25):3501–3513.
834
+ Smyth, W. H. and Marconi, M. L. (2006). Europa’s atmosphere, gas tori, and magnetospheric
835
+ implications. Icarus, 181(2):510–526.
836
+ Spencer, J. R. (1987). Thermal segregation of water ice on the Galilean satellites. Icarus,
837
+ 69(2):297–313.
838
+ Spencer, J. R. and Maloney, P. R. (1984). Mobility of water ice on Callisto: Evidence and
839
+ implications. Geophys. Res. Letters, 11(12):1223–1226.
840
+ Strobel, D. F., Saur, J., Feldman, P. D., and McGrath, M. A. (2002). Hubble Space Telescope
841
+ Space Telescope Imaging Spectrograph search for an atmosphere on Callisto: A Jovian
842
+ unipolar inductor. The Astrophysical Journal Letters, 581(1):L51.
843
+ Szalay, J. R., Smith, H. T., Zirnstein, E. J., McComas, D. J., Begley, L. J., Bagenal, F.,
844
+ Delamere, P. A., Wilson, R. J., Valek, P. W., Poppe, A. R., N´enon, Q., Allegrini, F.,
845
+ Ebert, R. W., and Bolton, S. J. (2022).
846
+ Water-group pickup ions from europa-genic
847
+ neutrals orbiting jupiter. Geophysical Research Letters, page e2022GL098111.
848
+ Trainor, J. H., McDonald, F. B., Teegarden, B. J., Webber, W. R., and Roelof, E. C.
849
+ (1974). Energetic particles in the Jovian magnetosphere. Journal of Geophysical Research,
850
+ 79(25):3600–3613.
851
+ Vorburger, A., Fatemi, S., Galli, A., Liuzzo, L., Poppe, A. R., and Wurz, P. (2022). 3D
852
+ Monte-Carlo simulation of Ganymede’s water exosphere. Icarus, 375:114810.
853
+ Wolfe, J. H., Collard, H., Mihalov, J., and Intriligator, D. (1974). Preliminary Pioneer 10
854
+ encounter results from the Ames Research Center plasma analyzer experiment. Science,
855
+ 183(4122):303–305.
856
+ Yung, Y. L. and McElroy, M. B. (1977). Stability of an oxygen atmosphere on Ganymede.
857
+ Icarus, 30(1):97–103.
858
+ 17
859
+
0tFIT4oBgHgl3EQf3Cv8/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
1dE2T4oBgHgl3EQfigf6/content/tmp_files/2301.03960v1.pdf.txt ADDED
@@ -0,0 +1,2939 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ The limits of human mobility traces to predict the spread of
2
+ COVID-19
3
+ Federico Delussu1,2, Michele Tizzoni1,3 †, and Laetitia Gauvin1,4†
4
+ 1ISI Foundation, via Chisola 5, 10126, Turin, Italy
5
+ 2Department of Applied Mathematics and Computer Science, DTU,
6
+ Copenhagen, Denmark
7
+ 3Department of Sociology and Social Research, University of Trento, Trento, Italy
8
+ 4Institute for Research on Sustainable DevelopmentIRD, UMR 215 Prodig, 5
9
+ cours des Humanit´es, F-93 322 Aubervilliers Cedex, France
10
+ †these authors contributed equally to this work
11
+ Abstract
12
+ Mobile phone data have been widely used to model the spread of COVID-19, however,
13
+ quantifying and comparing their predictive value across different settings is challenging.
14
+ Their quality is affected by various factors and their relationship with epidemiological in-
15
+ dicators varies over time. Here we adopt a model-free approach based on transfer entropy
16
+ to quantify the relationship between mobile phone-derived mobility metrics and COVID-
17
+ 19 cases and deaths in more than 200 European subnational regions. We found that past
18
+ knowledge of mobility does not provide statistically significant information on COVID-19
19
+ cases or deaths in most of the regions. In the remaining ones, measures of contact rates
20
+ were often more informative than movements in predicting the spread of the disease, while
21
+ the most predictive metrics between mid-range and short-range movements depended on the
22
+ region considered. We finally identify geographic and demographic factors, such as users’
23
+ coverage and commuting patterns, that can help determine the best metric for predicting
24
+ disease incidence in a particular location. Our approach provides epidemiologists and public
25
+ health officials with a general framework to evaluate the usefulness of human mobility data
26
+ in responding to epidemics.
27
+ 1
28
+ Introduction
29
+ The relationship between human movements and the spatial spread of infectious diseases has
30
+ been recognized for a long time [1, 2, 3].
31
+ Human movement has been shown to play a key
32
+ 1
33
+ arXiv:2301.03960v1 [physics.soc-ph] 10 Jan 2023
34
+
35
+ role in the dynamics of several pathogens, through two basic mechanisms: traveling infectious
36
+ individuals may introduce a pathogen in a susceptible population, and, at the same time, human
37
+ movement increase the contact rate between individuals, creating new opportunities for infection.
38
+ In the past 15 years, the increasing availability of mobility data derived from mobile phones has
39
+ fueled a large body of work aimed at identifying opportunities to use them for infectious disease
40
+ modeling and surveillance [4, 5, 6, 7, 8, 9, 10].
41
+ More recently, during the COVID-19 pandemic, mobile phone-derived data have been exten-
42
+ sively harnessed to monitor the effect of non-pharmaceutical interventions (NPIs) across coun-
43
+ tries, understand the early dynamics of COVID-19 diffusion, and forecast its spread at different
44
+ spatial scales, from countries to cities [11, 12, 13, 14, 15, 16, 17]. By measuring human move-
45
+ ments and combining them with phylogeography methods [18, 19], several studies shed light on
46
+ the cryptic spread of new variants, their persistence over time and resurgence after the relaxation
47
+ of NPIs [20, 21, 22].
48
+ Human mobility has been shown to strongly correlate with the spread of COVID-19 during
49
+ the early phase of the outbreak in China and in many other countries [23, 24, 25, 26, 27, 28].
50
+ However, once COVID-19 established a foothold in a population, the relative importance of
51
+ mobile phone-derived data to predict the epidemic dynamics on a local scale has been generally
52
+ less understood and several studies have shown conflicting evidence about the use of mobility
53
+ traces to model the spread of COVID-19 at later stages of the outbreak. For instance, it has been
54
+ shown that the explanatory power of mobility metrics in relation to the case growth rate in the
55
+ U.S., significantly declined in spring 2020, especially in rural areas [29, 30, 31]. Similar trends
56
+ have been observed in Europe [32]. In parallel, mobile phone-derived data have been proven
57
+ beneficial to model COVID-19 dynamics in largely populated urban areas of Western countries
58
+ [33, 34], but less so in countries of the Global South [35].
59
+ Several reasons have been proposed to explain the varying relationship between mobility
60
+ metrics and epidemic indicators [29]. Mobility metrics are generally derived from raw mobile
61
+ positioning data through complex and customized processing pipelines that can significantly
62
+ vary across data providers [36].
63
+ How raw data are processed, and the specific definitions of
64
+ mobility metrics can significantly impact their interpretation with respect to epidemic variables
65
+ [37]. Moreover, the relationship between mobility and epidemic patterns often relies on model-
66
+ ing assumptions, typically considering linear dependencies, that may not capture the complex
67
+ interplay of these quantities [32, 30]. Finally, mobile phone-derived metrics are generated from
68
+ a sample of users who is generally not representative of the whole population. It is therefore of
69
+ paramount importance to define standardized approaches that can quantify the added value of
70
+ mobility metrics for epidemiological analysis, and make different metrics, across settings, directly
71
+ comparable.
72
+ Here, we extensively quantify the relationship between cell phone-derived mobility metrics and
73
+ COVID-19 epidemiological indicators through a model-free approach, based on an information-
74
+ theoretic measure, transfer entropy [38], adapted for small sample sizes. Leveraging granular
75
+ 2
76
+
77
+ data provided by Meta that capture both users’ movements and colocation at a fine spatial scale
78
+ [39], we measure the information flow between mobility metrics and time series of COVID-19
79
+ incidence and deaths in four European countries, at a subnational scale, over a one year period.
80
+ We find that the relative information added by the past knowledge of mobility metrics to the
81
+ knowledge of the current state of COVID-19 time series is often not statistically significant.
82
+ In statistically significant cases instead, we show that the relative information added by
83
+ past knowledge of COVID-19 cases to the knowledge of current deaths is twice the information
84
+ flow between past knowledge of mobility metrics and current deaths. We also show that the
85
+ information flow of a given mobility metric to predict future COVID-19 incidence or deaths can
86
+ be significant in one country but not in another, even if derived from the same original data
87
+ source.
88
+ Being a general framework, our approach provides a quantitative measure of the relative
89
+ added explanation brought by mobile phone data to the prediction of epidemiological time series
90
+ that does not depend on the choice of a specific forecasting model. It thus helps to better identify
91
+ the most appropriate mobility metrics to use among those available. Our results can thus guide
92
+ epidemiologists and public health practitioners in the evaluation of mobile phone-derived mobility
93
+ metrics when they are interpreted as a precursor of epidemic activity.
94
+ 2
95
+ Results
96
+ Here, we first describe and then apply our framework to measure the information flow between
97
+ human mobility traces and the time evolution of COVID-19 in four European countries.
98
+ 2.1
99
+ A transfer entropy approach to link mobility behavior and COVID-
100
+ 19 epidemiology
101
+ With the aim of quantifying the information flow from mobility-derived data to COVID-19 data,
102
+ we first gathered a set of mobility and epidemiological indicators. Fig. 1 provides an overview
103
+ of the datasets used in the study. In Materials and Methods, we provide a full description of all
104
+ data sources and the data processing steps. We considered four European countries – Austria,
105
+ France, Italy, and Spain – and their administrative subdivisions at NUTS3 level [40] which is
106
+ the lowest, i.e. the most granular, level of the standard hierarchy of administrative regions in
107
+ Europe (Fig. 1, leftmost column).
108
+ In all administrative regions, we collected indicators of the COVID-19 epidemic dynamics,
109
+ namely, the weekly and daily numbers of new COVID-19 cases and deaths over the period, from
110
+ September 2020 until July 2021. During this period, the dynamics of COVID-19, exemplified by
111
+ the incidence of new cases (Fig. 1, rightmost column), displayed subsequent waves, as a result of
112
+ the complex interaction between the spread of new variants, the adoption of non-pharmaceutical
113
+ interventions, the introduction of vaccines.
114
+ 3
115
+
116
+ Figure 1:
117
+ Summary of behavioral and epidemiological indicators.
118
+ In each country
119
+ under study (from top to bottom: Italy, France, Austria and Spain), we consider three different
120
+ types of indicators: contact rates, movements (here for the sake of simplicity we only show the
121
+ short-range movements), and COVID-19 cases. In each plot, the blue shaded area highlights
122
+ the within-country variability, corresponding to time series in every administrative subdivision.
123
+ The blue solid line represents the average value. All curves are normalized between 0 and 1,
124
+ corresponding to their maximum value.
125
+ In each country, we also collected weekly and daily time series describing movements and
126
+ colocation patterns made available by Meta [41]. We computed contact rates from colocation
127
+ maps (see Material and Methods and the SI for details), which measure the probability that
128
+ two users from two locations are found in the same location at the same time [39]. Colocation
129
+ maps were generated by Meta on a weekly basis, only. To study human movement patterns,
130
+ we considered movement range maps provided by Meta, which report the number of users who
131
+ moved between any two 16-level Bing tiles with an 8 hour frequency [42]. To make colocation
132
+ and movement patterns comparable in terms of scale, we focused on short-range movements,
133
+ i.e. movements that occurred within the same tile, and we separately considered the mid-range
134
+ movements, i.e. movements that occur between two different tiles in the same province.
135
+ 4
136
+
137
+ Country
138
+ Contact Rate
139
+ Movement
140
+ Cases
141
+ 27
142
+ 2
143
+ 2
144
+ 20
145
+ 2
146
+ DecFigure 2: Illustration of study design. We computed the transfer entropy TEX→Y to measure
147
+ the information flow between source X (on the left) and target time series Y (right), for a given
148
+ time lag l. In the figure example, as target time series we consider the number of COVID-19
149
+ deaths, D(t). As source time series, we consider either mobility indicators, M s(t), M(t), CR(t),
150
+ or COVID-19 cases C(t). Transfer entropy quantifies the amount of information that is added
151
+ by past knowledge of mobility or cases (green and cyan bars, respectively) to current knowledge
152
+ of deaths, with respect to the knowledge of past deaths only (blue bar). After correcting the
153
+ TE for small sample sizes, and normalizing by the reference value represented by the blue bar,
154
+ we finally compare the Normalized Effective Transfer Entropy of mobility and cases (rightmost
155
+ box).
156
+ We then processed the three datasets, starting from their raw form, to aggregate them at
157
+ the NUTS3 resolution and create the time series: M s(t) for the short-range movements, M(t)
158
+ for the mid-range movements and CR(t) for the contact rates. These time series were then used
159
+ as source variables in the information-theoretic analysis. In the remainder of the paper, we will
160
+ generally refer to CR(t), M s(t), and M(t) as mobility time series as they are all derived from
161
+ human mobility data. We will also generally refer to the NUTS3 units as provinces, although
162
+ their nomenclature varies across countries.
163
+ Fig. 2 illustrates our study design based on the transfer entropy [38]. Transfer entropy is
164
+ a metric that measures the directed statistical dependence between a source and a target time
165
+ series and it has been applied to a wide range of research domains [43]. Here, our approach
166
+ consists, first, in computing the transfer entropy between mobility time series, M s(t), M(t) and
167
+ CR(t), and epidemiological time series such as the reported number of COVID-19 attributed
168
+ deaths D(t) and cases C(t), in each administrative unit, and for different temporal lags l, using
169
+ the definition of Shannon entropy, as described by the equations in Fig. 2.
170
+ Intuitively, the
171
+ transfer entropy between mobility and deaths, TEM s→D (resp. TEM→D), can be interpreted as
172
+ 5
173
+
174
+ informationflow
175
+ mobility
176
+ p(Dt+1|Dt)
177
+ small sample correction
178
+ [+↓
179
+ and normalization
180
+ H(DD)
181
+ cases
182
+ p(Dt+1|D)
183
+ -1± 1
184
+ deaths
185
+ H(Dt+1Dl) = Zp(Dt+1, D) 1og
186
+ p(D+1Dthe degree of uncertainty of the reported deaths, D, at time t that is solved jointly by the time
187
+ series of deaths and mobility trends M s (resp. M) and exceeds the current degree of uncertainty
188
+ of D, which can be solved by D’s own past.
189
+ It is known that transfer entropy estimates suffer in case of small sample sizes and non-
190
+ stationarity of the source and target time series [44].
191
+ Moreover, due to the non-parametric
192
+ nature of the transfer entropy, values computed between different source-target time series are
193
+ not directly comparable. To address these issues, we first adopted the definition of effective
194
+ transfer entropy (ETE) [44]. ETE is obtained by subtracting from the original definition of TE
195
+ a reference TE value using a shuffled version of the target time series (see Methods for details),
196
+ thus removing spurious contributions to TE due to fluctuations observed in small sample sizes.
197
+ Also, to address biases due to small sample sizes, we applied a Kernel Density Estimation, before
198
+ the time series discretization that is necessary to compute the transfer entropy.
199
+ Second, we
200
+ normalized the effective transfer entropy by the Shannon entropy of the target variable, defining
201
+ a normalized effective transfer entropy (NETE) [45]. We obtain a metric that is always positive
202
+ when it is statistically significant and whose zero value indicates the absence of information
203
+ transfer between time series. In the remainder of the article, we thus refer to the NETE between
204
+ source X and target Y as our main quantity of interest, using the symbol NX→Y to denote it.
205
+ To better understand the cause-effect relationship between mobility and COVID-19 deaths,
206
+ which are encoded in the value of NM→D ,NM s→D and NCR→D, we compared them against
207
+ the transfer entropy NC→D, where C is the time series of new COVID-19 cases. As the causal
208
+ relationship between the number of cases and deaths is established by definition, we used the
209
+ transfer entropy NC→D as a benchmark to evaluate the added value of mobility indicators to
210
+ predict COVID-19 deaths. As an example, similar values of NM s→D and NC→D would suggest
211
+ knowledge of past COVID-19 incidence encodes a similar amount of information as knowledge
212
+ of past mobility when it comes to predicting future deaths.
213
+ 2.2
214
+ The information flow between COVID-19 incidence and deaths
215
+ As previously mentioned, to gauge our transfer entropy analysis framework, we first looked at
216
+ the causal relationship between the incidence of COVID-19 cases and reported death counts. It is
217
+ clearly expected that a major source of information that provides knowledge on future deaths is
218
+ encoded in the time series of past case counts. We used the NETE to quantify such information
219
+ flow.
220
+ Fig. 3 shows the NETE between the weekly time series of COVID-19 cases and deaths in
221
+ the four countries under study.
222
+ In all countries, median values of NC→D increase from lags
223
+ equal to 1 week up to a maximum of around 2-3 weeks, and then decline rapidly beyond the
224
+ 3 weeks time lag. This is in line with early estimates of the median time delay between case
225
+ reporting and fatality, which was estimated to range between 7 and 20 days in different countries
226
+ [46, 47]. At lag equal to 2 weeks, the mean relative explanation added by time series of cases
227
+ with respect to deaths – that is how much of D(t) can be explained only by the past knowledge
228
+ 6
229
+
230
+ Figure 3:
231
+ Information flow between COVID-19 incidence and deaths.
232
+ Normalized
233
+ Effective Transfer Entropy (NETE) between COVID-19 weekly reported cases and deaths in
234
+ the NUTS3 administrative subdivisions (provinces) of Austria, France, Italy and Spain. NETE
235
+ is computed for lags ranging from 1 to 8 weeks, on the x-axis. Boxplots are computed on the
236
+ distribution of NETE values of all the administrative subdivisions in each country. The horizontal
237
+ red line marks the value NC→D = 0.
238
+ C(t − l) – is 14% (SD=8) in Spain, 8% (SD=6) in Italy, 7% (SD=5) in Austria, and 6% (SD=5)
239
+ in France. Boxplots computed on the distribution of administrative units in each country show
240
+ a substantial heterogeneity of NETE across regions for lags shorter than 4 weeks. This may
241
+ be partially explained by spatial heterogeneities in case and death reporting, and in testing
242
+ strategies. Also, NC→D values appear to be higher in Spain, with respect to the other countries.
243
+ A transfer entropy analysis of daily time series of COVID-19 cases and deaths displays consistent
244
+ results (see Fig. S1), with NETE values that fall within the same range measured on a weekly
245
+ time scale.
246
+ These results suggest NETE estimates are robust with respect to the time scale at which
247
+ source and target time series are compared. Moreover, it provides a reference value for NETE,
248
+ in terms of orders of magnitude, when the existence of a causal relationship between time series
249
+ is known.
250
+ 7
251
+
252
+ 0.4
253
+ 0.4
254
+ Austria
255
+ France
256
+ 0.3
257
+ 0.3
258
+ 0.2
259
+ 0.2
260
+ 0.1
261
+ 0.1
262
+ 0.0
263
+ 0.0
264
+ 1
265
+ 2
266
+ 3
267
+ 4
268
+ 5
269
+ 6
270
+ 1
271
+ 8
272
+ 1
273
+ 2
274
+ 3
275
+ 4
276
+ 5
277
+ 6
278
+ 7
279
+ 8
280
+ Lag (weeks)
281
+ Lag (weeks)
282
+ 0.41
283
+ 0.41
284
+ Italy
285
+ Spain
286
+ 0.3
287
+ 0.3
288
+ 0.2
289
+ 0.2
290
+ Nc
291
+ Nc
292
+ 0.1
293
+ 0.1
294
+ 0.0
295
+ 0.0
296
+ 1
297
+ 2
298
+ 3
299
+ 4
300
+ 5
301
+ 6
302
+ 7
303
+ 8
304
+ 1
305
+ 2
306
+ 3
307
+ 4
308
+ 5
309
+ 6
310
+ 8
311
+ Lag (weeks)
312
+ Lag (weeks)→ C(t)(%)
313
+ → D(t)(%)
314
+ l (weeks)
315
+ CR(t)
316
+ M(t)
317
+ M s(t)
318
+ CR(t)
319
+ M(t)
320
+ M s(t)
321
+ C(t)
322
+ 2
323
+ 9
324
+ 19
325
+ 3
326
+ 10
327
+ 7
328
+ 7
329
+ 79
330
+ 3
331
+ 20
332
+ 23
333
+ 5
334
+ 21
335
+ 8
336
+ 13
337
+ 69
338
+ 4
339
+ 27
340
+ 22
341
+ 9
342
+ 29
343
+ 9
344
+ 16
345
+ 46
346
+ 5
347
+ 33
348
+ 23
349
+ 10
350
+ 36
351
+ 8
352
+ 17
353
+ 18
354
+ 6
355
+ 35
356
+ 27
357
+ 10
358
+ 38
359
+ 14
360
+ 17
361
+ 7
362
+ 7
363
+ 29
364
+ 25
365
+ 11
366
+ 40
367
+ 12
368
+ 14
369
+ 4
370
+ 8
371
+ 27
372
+ 20
373
+ 11
374
+ 38
375
+ 15
376
+ 12
377
+ 8
378
+ Table 1: Percentage of statistically significant NETE values across provinces in all
379
+ the countries studied. This table shows the percentage of provinces, in all countries, in which
380
+ the NETE is statistically significant (p < 0.01) for lags (l) from 2 to 8 weeks.
381
+ 2.3
382
+ The information flow between mobility traces and COVID-19 dy-
383
+ namics
384
+ Having defined a benchmark of information transfer using NC→D, we measured the information
385
+ flow between behavioral time series of mobility indicators and COVID-19 cases and deaths. Fig. 4
386
+ summarizes the main results of our analysis. Values of NX→D, with X being either short range
387
+ movements, mid-range movements or contact rates, were substantially smaller than NC→D in
388
+ all countries, for any given time lag l. In particular, Fig. 4a allows to compare the distributions
389
+ of NC→D, NCR→D, NM s→D, and NM→D, at the time lag l that maximized the median NETE
390
+ for weekly time series, for all indicators. We found the largest median values of the normalized
391
+ transfer entropy at l = 7 weeks for both contact rates and movements (short-range and mid-
392
+ range). The upper quartile of the NETE distributions derived from the mobility traces generally
393
+ fell below 5%, in all countries, while the lower quartile of NC→D was always above 5%. Also,
394
+ the distributions of normalized transfer entropy computed from movements were much narrower
395
+ and often including the value N = 0 within their interquartile range. Values of NM→C, shown
396
+ in Fig. 4b, display a pattern similar to the normalized transfer entropy from the mobility time
397
+ series to the death time series, with generally low values of NETE in all countries. Compared
398
+ to movement time series, contact rates led generally to relatively higher values of NETE with
399
+ both targets, cases and deaths, as shown in Fig. 4. Our result confirms the additional value
400
+ of measuring contact rates from mobile phone data, with respect to other movement metrics
401
+ [48]. Besides, it shows that short-range mobility within a province had often a limited predictive
402
+ power to capture time trends of COVID-19 spread.
403
+ To obtain a more detailed picture of the predictive power of different mobility metrics in terms
404
+ of NETE, we computed the percentage of provinces for which mobility time series provided
405
+ significant relative information added, with respect to the past knowledge of epidemiological
406
+ 8
407
+
408
+ Figure 4:
409
+ Information flow from mobility data to COVID-19 incidence and deaths.
410
+ Comparison between the normalized effective transfer entropy computed from source time series
411
+ X and target time series of reported COVID-19 deaths D (a) and cases C (b). Source time series
412
+ are COVID-19 cases (only for deaths), contact rates, short range and mid-range movement.
413
+ Boxplots are computed from the distribution of NETE values for a given time delay, l. In panel
414
+ a: l= 2 weeks for cases, 7 weeks for contact rates and movement. In panel b: l= 6 weeks for
415
+ short range and mid-range movement. The horizontal red line marks the value NX→D = 0.
416
+ indicators only (see Tab. 1). On the one hand, our framework effectively captured the existing
417
+ causal relationship between the time evolution of cases counts and the number of deaths, as
418
+ the NETE between these indicators was statistically significant (p < 0.01) in about 80% of the
419
+ provinces, at 2 weeks lag. On the other hand, we observed a statistically significant information
420
+ transfer from mobility time series to epidemiological ones in a much smaller fraction of provinces.
421
+ Short-range movements NETE was significant in less than 20% of provinces when considered as
422
+ a predictor of both cases and deaths. Mid-range movement time series and contact rates were
423
+ significant in at most 27% and 40% of provinces. This means that in most provinces, mobility
424
+ traces did not provide any additional information to predict future COVID-19 cases or deaths,
425
+ at any lag between 2 and 8 weeks.
426
+ Measures of contact rate extracted from colocation maps were more suitable than movement
427
+ 9
428
+
429
+ a
430
+ C
431
+ 0.3
432
+ CR
433
+ Ms
434
+ 0.2
435
+ M
436
+ XN
437
+ 0.1
438
+ 0.0
439
+ b
440
+ Austria
441
+ France
442
+ Italy
443
+ Spain
444
+ CR
445
+ 0.3
446
+ Ms
447
+ M
448
+ 0.2
449
+ C
450
+
451
+ XN
452
+ 0.1
453
+ 0.0
454
+ France
455
+ Italy
456
+ Austria
457
+ Spain
458
+ Country→ C(t)(%)
459
+ → D(t)(%)
460
+ l (weeks)
461
+ CR(t)
462
+ M(t)
463
+ M s(t)
464
+ CR(t)
465
+ M(t)
466
+ M s(t)
467
+ C(t)
468
+ 2
469
+ 4 (1)
470
+ 4(1)
471
+ 4 (0)
472
+ 4 (1)
473
+ 5(2)
474
+ 4 (1)
475
+ 11 (6)
476
+ 3
477
+ 4 (2)
478
+ 4(2)
479
+ 4 (1)
480
+ 5 (2)
481
+ 4(1)
482
+ 4 (1)
483
+ 9 (4)
484
+ 4
485
+ 5 (2)
486
+ 4(1)
487
+ 4 (2)
488
+ 5 (2)
489
+ 4(1)
490
+ 5 (2)
491
+ 6 (3)
492
+ 5
493
+ 5 (2)
494
+ 4(1)
495
+ 5 (2)
496
+ 6 (3)
497
+ 4(1)
498
+ 5 (2)
499
+ 5 (2)
500
+ 6
501
+ 6 (2)
502
+ 4(1)
503
+ 5 (2)
504
+ 6 (3)
505
+ 4(2)
506
+ 5 (2)
507
+ 5 (2)
508
+ 7
509
+ 5 (2)
510
+ 5(1)
511
+ 5 (2)
512
+ 6 (3)
513
+ 5(2)
514
+ 6 (3)
515
+ 5 (2)
516
+ 8
517
+ 5 (3)
518
+ 5(1)
519
+ 5 (2)
520
+ 6 (3)
521
+ 5(2)
522
+ 6 (3)
523
+ 4 (1)
524
+ Table 2: NETE results across provinces in all the countries studied. The table shows
525
+ the average relative explanation added by source time series, with respect to past knowledge of
526
+ the target only. Only provinces having a statistically significant NETE are considered. Numbers
527
+ in parenthesis report the standard deviation computed over all provinces for which the NETE
528
+ was statistically significant.
529
+ data to capture behavioral patterns relevant to predict COVID-19 spread.
530
+ By focusing only on those provinces where we could identify a significant information flow
531
+ between mobility traces and COVID-19 indicators, we observe that the averaged relative expla-
532
+ nation added by mobility data with respect to the epidemiological data ranges between 4 − 6%,
533
+ which is about half of the averaged relative explanation added by past knowledge of cases to the
534
+ prediction of future deaths (see Tab. 2 and Figs. S2-S9 in the SI).
535
+ As a sensitivity analysis, we also computed the NETE on a shorter time window, between
536
+ September 2020 and January 2021, to exclude the confounding effect of the introduction of na-
537
+ tionwide vaccination programs. Since in those months all countries adopted mobility restrictions
538
+ to mitigate the fall COVID-19 wave, we expect a stronger relationship between mobility and
539
+ COVID-19 cases. Indeed, during this time frame, the information flow between movement time
540
+ series and COVID-19 cases was consistently higher than in the full study period (see Fig. S10).
541
+ This result indicates that, provided with time series of adequate size, the NETE can effectively
542
+ capture the time-varying relationship between human mobility time trends and COVID-19 dy-
543
+ namics.
544
+ 2.4
545
+ Identifying the determinants of mobility data predictive power for
546
+ COVID-19
547
+ Maps of Fig. 5 highlight the spatial heterogeneity of NX→D values observed within the same
548
+ country, Spain, for a given time lag and different source time series (see Figs. S11 - S13 for
549
+ the maps of Austria, France, and Italy). As previously mentioned, NC→D displays higher and
550
+ significant values in most of the country (Fig. 5a), with very few exceptions, while statistically
551
+ 10
552
+
553
+ Figure 5:
554
+ Spatial variations of normalized effective transfer entropy. Maps of NETE
555
+ values computed for different source time series and weekly COVID-19 deaths, in the provinces
556
+ of Spain: (a) source is COVID-19 cases at lag l=2 weeks, (b) source is contact rate at lag l=7
557
+ weeks, (c) source is short-range movement at lag l=7 weeks. (d) source is mid-range movement
558
+ at lag l=7 weeks. Dark grey indicates provinces with non-significant values of NETE (p > 0.01).
559
+ Provinces in white are excluded from our sample.
560
+ significant values of NM s→D are found only in 16 provinces out of 42 (Fig. 5c).
561
+ To better understand the observed heterogeneity in NETE, and identify those features that
562
+ can predict the likelihood to observe a statistically significant information transfer from mobility
563
+ 11
564
+
565
+ b
566
+ a
567
+ 0.00
568
+ 0.05
569
+ 0.10
570
+ 0.15
571
+ 0.20
572
+ 0.25
573
+ 0.30
574
+ 0.35
575
+ 0.00
576
+ 0.05
577
+ 0.10
578
+ 0.15
579
+ 0.20
580
+ 0.25
581
+ 0.30
582
+ 0.35
583
+ Nc-→D
584
+ NcR→D
585
+ d
586
+ 0.00
587
+ 0.05
588
+ 0.10
589
+ 0.15
590
+ 0.20
591
+ 0.25
592
+ 0.30
593
+ 0.35
594
+ 0.00
595
+ 0.05
596
+ 0.10
597
+ 0.15
598
+ 0.20
599
+ 0.25
600
+ 0.30
601
+ 0.35
602
+ Nms→D
603
+ NM-Dp ≥ 0.01
604
+ p <0.01
605
+ precision
606
+ 0.64
607
+ 0.90
608
+ recall
609
+ 0.95
610
+ 0.47
611
+ f1-score
612
+ 0.77
613
+ 0.62
614
+ (a) Movement
615
+ p ≥ 0.01
616
+ p<0.01
617
+ precision
618
+ 0.71
619
+ 0.92
620
+ recall
621
+ 0.95
622
+ 0.61
623
+ f1-score
624
+ 0.81
625
+ 0.74
626
+ (b) Contact rate
627
+ Table 3: Classification performance metrics. Summary of model’s classification performance
628
+ to predict the statistical significance of NETE at the p < 0.01 threshold when the input source
629
+ is short-range movement (a) or contact rate (b) and target variable are COVID-19 deaths.
630
+ to COVID-19 death counts, we resorted to a classification model. Namely, we used a random
631
+ forest classifier to predict when the value NX→D is more likely to be statistically significant, using
632
+ short-range movement and contact rate as source time series. We focused on these two metrics
633
+ as they are quantities measured at the same spatial scale. Moreover, short-range movements
634
+ represent on average 90% or more of all movements within a province (see Table S1). As input
635
+ features to the model, we considered a set of attributes of the provinces in each country. In
636
+ particular, we investigated the effects of population size, province area in square kilometers, the
637
+ density of Facebook users, the number of total cumulative deaths, the ratio between the number
638
+ of commuters traveling from or to the province, and those who live and work there, as reported
639
+ by the census (commuting flow), and the coverage consistency, that is the correlation over time
640
+ between the number of Facebook users sharing their location and the number of Facebook users
641
+ taken into account to compute the colocation maps.
642
+ The results summarized in Tab. 3 show that the model achieves a good overall performance in
643
+ terms of precision and recall, as indicated by f1-scores generally higher than 0.6. In particular, of
644
+ all provinces that are classified by the model as characterized by a statistically significant value of
645
+ NETE, 90% or more display a significant transfer of information, as shown by precision values.
646
+ On the other hand, the model’s recall is close to 0.95 when it comes to identifying provinces
647
+ characterized by a not statistically significant NETE, therefore the model correctly identifies
648
+ 95% of those provinces where there is no actual transfer of information between mobility and
649
+ deaths.
650
+ To explore the importance of province features in our classification model, we examined the
651
+ SHAP (SHapley Additive exPlanations) values associated with each, as shown in Fig. 6. SHAP
652
+ is a method based on a game theoretic approach to explaining the output of classification mod-
653
+ els [49]. As expected, the choice of the time lag to compute the NETE is crucial in determining
654
+ the presence of a significant information transfer between mobility metrics and epidemiological
655
+ indicators. Indeed, lag is ranked as the most and second most important feature explaining the
656
+ classification, for contact rate and short-range movement, respectively. Commuting flow is the
657
+ most important predictor of the statistical significance of NETE between short-range movements
658
+ 12
659
+
660
+ (a) Movement
661
+ (b) Contact rate
662
+ Figure 6: SHAP plots of feature importance to predict the statistical significance of
663
+ the NETE for all selected provinces. Color represents the feature value (blue is low and
664
+ red is high). Panel a describes the results for NM s→D, panel b for NCR→D. The SHAP value,
665
+ on the horizontal axis, indicates the feature importance on the model output, with larger values
666
+ corresponding to higher relevance. Each dot represents a single observation. Features are ranked
667
+ by importance.
668
+ and deaths: when the number of commuters leaving or entering a province represents an impor-
669
+ tant fraction with respect to those who remain within the province, the relationship between
670
+ short-range mobility and COVID-19 dynamics gets weaker. However, the same feature has only
671
+ a marginal impact on the NETE between contact rates and deaths, which suggests contact rate
672
+ should be preferred over short-range movements to predict epidemic outcomes when a province is
673
+ characterized by large population inflows/outflows. Province area and population size have also
674
+ a significant impact on the information transfer between short-range movement and COVID-19
675
+ deaths. Indeed, a larger area and population size correspond to a higher likelihood of NETE
676
+ significance for short-range movements.
677
+ This effect may partly explain why we observed NETE values that were statistically significant
678
+ only in a few provinces of Austria, where spatial units were particularly small. When looking at
679
+ the information flow between contact rates and time series of deaths, the total cumulative deaths
680
+ represent an important explanatory variable for the classification model. Besides the analysis
681
+ presented in Fig. 6 suggests that the coverage consistency needs to be sufficiently high in order
682
+ to get a statistically significant transfer entropy from contact rate to deaths. In France, where in
683
+ most provinces the coverage consistency is low and the commuting inflow and outflow are higher
684
+ than in other countries (see Table S2), mid-range movements seem to provide a better alternative
685
+ to contact rates and short-range movements to partially explain time trends of COVID-19 cases
686
+ and deaths (see Fig. S14 of the SI).
687
+ 13
688
+
689
+ High
690
+ flow
691
+ 6
692
+ Feature value
693
+ area
694
+ population
695
+ cumulated deaths
696
+ user density
697
+ D.3D.2D.10.D
698
+ 0.1
699
+ 0.2
700
+ 0.3
701
+ 0.4
702
+ SHAP value (impact on mpdel output)High
703
+ lag
704
+ cumulated deaths
705
+ coverage consistency
706
+ Feature value
707
+ population
708
+ flow
709
+ area
710
+ Wser density
711
+ D.4D.3D.2D.10.D
712
+ 0.1
713
+ 0.2
714
+ 0.3
715
+ SHAP value (impact on mpdel output)From our analysis, we thus conclude that NETE values computed using contact rates as
716
+ source time series are less sensitive to the province’s geographic or demographic features, rather
717
+ than to the noise of the target time series. Given good coverage, and consistency over time,
718
+ contact rates thus represent a better epidemiological predictor of future COVID-19 deaths than
719
+ short-range movements.
720
+ 3
721
+ Discussion
722
+ In this work, we have introduced a novel framework based on transfer entropy to quantify the
723
+ amount of information that is transferred from mobile phone-derived mobility metrics to epi-
724
+ demiological time series. Given the important role that mobility indicators have played in the
725
+ COVID-19 pandemic, we tested our approach on mobility and epidemic time series collected
726
+ in four European countries, between 2020 and 2021, at a subnational scale. We found that, in
727
+ general, the relative explanation added by mobility time series to predict future epidemic trends,
728
+ whether new cases or deaths, was relatively small, ranging between 4% and 6% on average, and
729
+ not statistically significant in the large majority of the provinces we considered, for any mo-
730
+ bility metric. As a comparison, these values were about half of the relative explanation added
731
+ by past knowledge of COVID-19 incidence to predict future deaths. Our method allowed us
732
+ to directly compare the relative explanation added by different mobile phone-derived metrics of
733
+ mobility: short- and mid-range mobility, and contact rates. We generally found a higher informa-
734
+ tion transfer from contact rates than movement, in line with previous studies [48], however, we
735
+ also observed significant heterogeneities within the same country and between countries. With
736
+ a classification model, we identified spatial features that may explain such heterogeneities. In
737
+ provinces characterized by large populations, good coverage consistency over time, and small
738
+ commuting in- and outflows, short-range movements can represent a useful metric to predict
739
+ disease dynamics. Where commuting flows are large, such as in France, and Austria, mid-range
740
+ movements, which represent less than 10% of the total movements, provided a better alternative
741
+ to short-range ones. Our results suggest the choice of the best mobility metric to inform epi-
742
+ demic predictions can depend on a number of different factors, even when using one single data
743
+ provider. Moreover, our findings show that cell phone mobility metrics do not always capture
744
+ epidemiologically-relevant behaviors and alternative data sources could be more effective for this
745
+ aim, as, for instance, the collection of survey data [50].
746
+ There is an emerging common understanding that mobility indicators measured from mobile
747
+ phone data present significant gaps and do not provide a consistent picture of mobility across
748
+ countries, and data providers [51, 52]. Previous studies have also highlighted the fact that cou-
749
+ pling between mobility indicators and COVID-19 epidemiology is often weak, and it changes over
750
+ time [29]. The approach we introduced here addresses the above challenges by providing a general
751
+ framework to evaluate the quality of metrics derived from passively collected mobility traces as a
752
+ predictor of epidemic outcomes. Our framework has the advantage of being model-free, meaning
753
+ 14
754
+
755
+ that it does not depend on modeling assumptions regarding the expected relationship between
756
+ mobility and epidemic dynamics, nor it requires any parametrization. The normalized effective
757
+ transfer entropy we adopted is a general method. It allows us to rigorously compare different
758
+ mobility indicators, across epidemiological settings, by measuring the relative information added
759
+ by mobility time series to the prediction of future disease incidence. To this end, we release the
760
+ code to reproduce our analysis between any two source and target time series (see Data and
761
+ Code Availability). Researchers can use this tool in any epidemiological context to gauge the
762
+ added value of a specific mobile phone-derived behavioral measure for epidemic intelligence.
763
+ Our study comes with a number of limitations and opens new directions for future work. We
764
+ considered mobility metrics derived from one data provider, Meta, whose user base is not rep-
765
+ resentative of the population in the countries we considered. However, alternative data sources
766
+ of mobility indicators in Europe with a similar breadth, such as Google or Apple, do not reach
767
+ the same spatial granularity and provide their data only as relative changes with respect to a
768
+ pre-pandemic baseline, thus limiting their use in a study like ours. On the other hand, movement
769
+ and colocation maps by Meta have been extensively used in several studies, including European
770
+ countries [53, 54, 55, 56, 57]. Here, we considered four countries with different public health
771
+ systems, and that adopted different testing strategies. Observed differences in the predictive
772
+ power of mobility metrics across countries may depend on the varying quality of their reporting
773
+ systems, especially at the province level. However, all four countries belong to the European
774
+ Union and we expect very similar standards of surveillance during the pandemic. Overall, it
775
+ will be important to assess our findings on mobility data from other providers, and, most im-
776
+ portantly, in countries of the non-Western world. Finally, it is important to note that transfer
777
+ entropy measurements become more accurate as the length of the source and target time series
778
+ increases [44]. We worked with a relatively short time series, addressing the bias due to the small
779
+ sample by adopting the effective transfer entropy. However, we could not systematically investi-
780
+ gate how the information transfer changed over time, performing our analysis over different time
781
+ windows and comparing them. Future work could benefit from longer epidemic time series, over
782
+ several years, to identify temporal changes in the information flow between human movements
783
+ and COVID-19 dynamics.
784
+ Measures of human mobility inferred from mobile phone data have been a critical ingredient
785
+ to inform the public health response during the COVID-19 pandemic [58] and they will be an
786
+ important asset in the fight against future pandemics. At the same time, their widespread use
787
+ raises some relevant ethical concerns due to re-identification risks [59], therefore, it is fundamental
788
+ to assess the added value of using cell phone mobility data in a given epidemic scenario and
789
+ whether the benefits outweigh the risks. Our work provides a practical guide to identifying when
790
+ and where mobile phone mobility metrics truly capture behavioral patterns that are relevant to
791
+ predict disease dynamics.
792
+ 15
793
+
794
+ 4
795
+ Materials and Methods
796
+ 4.1
797
+ Epidemiological indicators
798
+ We collected epidemiological time series in the 4 countries under study from 2 data sources.
799
+ Daily reported cumulative COVID-19 cases were collected from the COVID-19 Data Hub [60],
800
+ an open source aggregator of up-to-date COVID-19 statistics, at the NUTS3 level in Austria,
801
+ France, Italy, and Spain.
802
+ Daily reported cumulative deaths in Austria, France, and Spain were also collected from the
803
+ COVID-19 Data Hub. For Italy, death statistics were only available on a weekly time scale from
804
+ the public platform CovidStat (https://covid19.infn.it/iss/).
805
+ For the analysis, we generated daily incidence time series from cumulative data by computing
806
+ day-to-day differences. Then, we further aggregated the daily time series of deaths and cases
807
+ into weekly ones, to perform the transfer entropy analysis on a weekly scale.
808
+ 4.2
809
+ Mobility derived indicators
810
+ In our study, we computed daily and weekly movement and contact rates from data provided
811
+ by Meta through its Data for Good program [41]. Here, we first describe the raw data sources
812
+ provided by Meta and then the data processing we applied to compute the time series for the
813
+ transfer entropy analysis.
814
+ 4.2.1
815
+ Raw data sources
816
+ We collected the following datasets that were publicly released by Meta since the beginning of
817
+ the COVID-19 pandemic, in Austria, France, Italy, and Spain:
818
+ • Movement range maps. It reports the number of users who moved between any two
819
+ 16-level Bing tiles, with an 8-hour frequency.
820
+ • Users’ population. It reports the number of active users in each tile with an 8-hour
821
+ frequency. The tile resolution is 4800 x 4800 m2.
822
+ • Colocation maps. It estimates the probability that, given any two administrative regions,
823
+ p1 and p2, a randomly chosen user from p1 and a randomly chosen user from p2 are
824
+ simultaneously located in the same place during a randomly chosen minute in a given week
825
+ [39]. The dataset also reports the number of users in p1 and p2.
826
+ • Stay put. It reports for a given administrative region the daily percentage of users staying
827
+ put within a single location, defined at the 16-level Bing tile.
828
+ We formalize the description of the above datasets with the notation described in Table 4:
829
+ 16
830
+
831
+ Dataset name
832
+ Xs,t
833
+ spatial resolution
834
+ temporal resolution
835
+ population users
836
+ N (pop)
837
+ t,h
838
+ t: tile (4800 x 4800 m2)
839
+ h: 8 hour
840
+ movement between tiles
841
+ M(t1,t2),h
842
+ (t1,t2): tile pair (600 x 600 m2)
843
+ h: 8 hour
844
+ colocation probability
845
+ Pp,w
846
+ p: province
847
+ w : week
848
+ colocation users
849
+ N (coloc)
850
+ p,w
851
+ p: province
852
+ w: week
853
+ stay put
854
+ Sr,d
855
+ r: region
856
+ d: day
857
+ Table 4:
858
+ Summary of raw data sources as time series records Xs,t, where s denotes the spatial
859
+ resolution and t the temporal resolution.
860
+ original data
861
+ spatial aggregation
862
+ temporal aggregation
863
+ aggregated data
864
+ name
865
+ N (pop)
866
+ t,h
867
+ �(t ∈ p)
868
+ h interpolation and mean (h ∈ w)
869
+ N (pop)
870
+ p,w
871
+ province population users
872
+ M(t1,t2),h
873
+ � (t1, t2) ∈ p, t1 = t2
874
+ mean (h ∈ w)
875
+ M (within)
876
+ p,w
877
+ within tile province movement
878
+ M(t1,t2),h
879
+ � (t1, t2) ∈ p, t1 ̸= t2
880
+ mean (h ∈ w)
881
+ M (between)
882
+ p,w
883
+ between tiles province movement
884
+ Sr,d
885
+ ∀p ∈ r
886
+ r = p
887
+ mean (d ∈ w)
888
+ Sp,w
889
+ province stay put
890
+ Table 5: Aggregation of data sources described in Table 4, to generate our metrics of interest.
891
+ 4.2.2
892
+ Aggregation of raw data
893
+ We then processed the raw data sources of Table 4 to obtain a set of time series having the
894
+ same spatiotemporal resolution, that is weekly, at the NUTS3 scale. Results of the aggregation
895
+ process are described in Table 5. More in detail:
896
+ • Province users population. (1) we performed a spatial aggregation by summing the
897
+ population of tiles belonging to province p, thus obtaining a population at a (province,
898
+ hour) level: N (pop)
899
+ p,h
900
+ . (2) we performed a linear interpolation of the temporal gaps that were
901
+ present in N (pop)
902
+ p,h
903
+ (3) we performed a temporal aggregation by averaging in each province,
904
+ the 8h population records within a week.
905
+ • Within tile province movement (1) we first performed a temporal aggregation by
906
+ averaging M(t1,t2),h for each pair (t1, t2) over a week and obtaining M(t1,t2),w (2) we then
907
+ performed a spatial feature joining and assigned each pair (t1, t2) to the corresponding
908
+ provinces (p1, p2) (3) from M(t1,t2),w we obtained a within tile province movement
909
+ M (within)
910
+ p,w
911
+ , that is the sum of movements which occurred in the same province p and within
912
+ the same tile.
913
+ • Between tiles province movement in the pipeline above, from step (3) we obtain a
914
+ between tile province movement M (between)
915
+ p,w
916
+ , that is the sum of movements which
917
+ occurred in the same province p and between two different tiles, (t1, t2). By definition, the
918
+ sum M (between)
919
+ p,w
920
+ + M (within)
921
+ p,w
922
+ represents the total volume of movements in a province, in a
923
+ 17
924
+
925
+ week.
926
+ • Province stay put (1) we performed a temporal aggregation on a weekly scale by perform-
927
+ ing the average and obtaining Sr,w (2) we assign to each province p the regional stay-put
928
+ time series Sr,w such that p ∈ r.
929
+ 4.2.3
930
+ Computation of movement and contact rate
931
+ We finally computed our metrics of interest, movement, and contact rates, as follows.
932
+ The
933
+ short-range movement rate is defined as:
934
+ M s
935
+ p,w = M (within)
936
+ p,w
937
+ N (pop)
938
+ p,w
939
+ (1)
940
+ that is the proportion of users who moved within the same tile in a given province, in a given
941
+ week. The mid-range movement rate is defined as:
942
+ Mp,w = M (between)
943
+ p,w
944
+ N (pop)
945
+ p,w
946
+ (2)
947
+ representing the proportion of users who moved between different tiles in a given province, in a
948
+ given week. The contact rate is defined as:
949
+ CR(t)p,w = ˆPp,w · N (pop)
950
+ p,w
951
+ (3)
952
+ where ˆP denotes the colocation probability corrected by a factor that takes into account the
953
+ overestimation of colocation probabilities due to the heterogeneous distribution of users across
954
+ provinces and the presence of a significant fraction of static users in some periods of mobility
955
+ restrictions [55] (see the SI for additional details).
956
+ 4.2.4
957
+ Province sample selection
958
+ The population of Facebook users who contribute to the generation of the movement and colo-
959
+ cation time series varies across countries, and it changes over time. Moreover, the metrics of
960
+ movement (short- and mid-range) and colocation, are computed from different users’ samples of
961
+ different sizes: N (pop)
962
+ p,w
963
+ and N (coloc)
964
+ p,w
965
+ , respectively.
966
+ In our analysis, to limit bias that may be caused by the little representativeness of the
967
+ underlying sample of users, we selected NUTS3 regions in the 4 countries, according to the
968
+ following criteria.
969
+ First, we considered only regions where the sample N (pop)
970
+ p,w
971
+ represented at
972
+ least 3% of the census population to guarantee we had at least 500 users in each province.
973
+ Furthermore, we considered only those regions where the two sample sizes N (pop)
974
+ p,w
975
+ and N (coloc)
976
+ p,w
977
+ were always positively correlated over time, during the whole study period.
978
+ We denote the
979
+ Pearson’s correlation of weekly values of N (pop)
980
+ p,w
981
+ and N (coloc)
982
+ p,w
983
+ as coverage consistency.
984
+ After the selection, our analysis includes 47 provinces in Austria, 51 provinces in France, 93
985
+ provinces in Italy, and 42 provinces in Spain, for a total of 233 spatial units.
986
+ 18
987
+
988
+ Given two discrete temporal signals represented as time series X and Y the Transfer Entropy
989
+ (TE) [38] is a measure of the amount of information delivered from X to Y , defined as:
990
+ TEXY = H(Y |Y (l)) − H(Y |Y (l), X(l)) ,
991
+ (4)
992
+ where X(l), Y (l) are respectively the l-lagged time series of X and Y and TEXY is formulated
993
+ as a difference between two conditional entropy terms, where conditional entropy is expressed as
994
+ H(a|b) = H(a, b) − H(b), and H(·) is the Shannon Entropy. Given a discrete time series S, its
995
+ observations can be expressed as the sample {si; i = 1, .., n}, and we obtain the discrete proba-
996
+ bility distribution p(sj). We compute the Shannon Entropy as: H(S) = �
997
+ j p(sj) · log2(p(sj)).
998
+ Thus TEXY can be expressed as:
999
+ TEXY = H(Y, Y (l)) − H(Y (l)) − H(Y, Y (l), X(l)) + H(Y (l), X(l)).
1000
+ (5)
1001
+ The time series that we consider in our experiments are continuous, therefore they need to be dis-
1002
+ cretized before computing TEXY . We employ the Kernel Density Estimation (KDE) for Transfer
1003
+ Entropy estimation. KDE method evaluates the entropy terms of Eq.5 from the discretized den-
1004
+ sity estimated from each of the four features sets: {(Y, Y (l)), Y (l), (Y, Y (l), X(l)), (Y (l), X(l))}.
1005
+ KDE employs a Gaussian kernel for density estimation. Performing tests on synthetic datasets
1006
+ of different sizes, we checked this was the method the most adapted to small samples. For the
1007
+ selection of the kernel’s bandwidth, we use the Scott method [61]. The continuous density is
1008
+ then discretized with a grid obtained by an equal-width discretization of each feature’s density
1009
+ domain. We select 20 as the number of bins for each feature’s domain discretization. The dis-
1010
+ cretized density is computed with the integral of the continuous probability density functions
1011
+ over each grid cell. Concerning the implementation, for TE estimation we use the PyCausality
1012
+ Python package (https://github.com/ZacKeskin/PyCausality).
1013
+ Effective Transfer Entropy.
1014
+ We introduce the Effective Transfer Entropy (ETE) as a cor-
1015
+ rection to TE for small sample time series, as originally proposed by [44]:
1016
+ ETEXY = TEXY − 1
1017
+ Ns
1018
+ Ns
1019
+
1020
+ j=1
1021
+ TEX ˆ
1022
+ Yj ,
1023
+ (6)
1024
+ where the correction term is obtained by performing Ns iterations of Y shuffling, obtaining ˆYj
1025
+ and computing the average of {TEX ˆ
1026
+ Yj; j = 1, .., Ns}. In our experiments, we performed 500
1027
+ shuffling iterations.
1028
+ Normalized Transfer Entropy.
1029
+ We would like to employ TE in order to compare a set
1030
+ of input signals {Xj; j = 1, .., N} in terms of their Transfer Entropy TEXjY towards a specific
1031
+ output Y . From equation 4 we have that TEXjY is evaluated as a difference of conditional entropy
1032
+ where the first term H(Y |Y (l)) depends only on target Y . In order to ensure comparability over
1033
+ the set {TEXjY ; j = 1, .., N}, we reformulate the difference as a relative difference dividing by
1034
+ 19
1035
+
1036
+ H(Y |Y (l)). Thus the set of inputs are compared according to {TEXjY /H(Y |Y (l)); j = 1, .., N}
1037
+ and we refer to TEXY /H(Y |Y (l)) as Normalized Transfer Entropy (NTE).
1038
+ Normalized Effective Transfer Entropy.
1039
+ By combining the ETE and the NTE we can fi-
1040
+ nally introduce the Normalized Effective Transfer Entropy (NETE), which is obtained by dividing
1041
+ the ETE by the first conditional entropy term H(Y |Y (l)) as in [62]:
1042
+ NETEXY =
1043
+ TEXY −
1044
+ 1
1045
+ Ns
1046
+ �Ns
1047
+ j=1 TEX ˆ
1048
+ Yj
1049
+ H(Y |Y (l))
1050
+ (7)
1051
+ In this way, the NETE accounts both for bias in small sample time series and it ensures compa-
1052
+ rability between different input sources {Xj} in terms of information transfer to different targets.
1053
+ Besides, it enables estimating the percentage of explanation value added with respect to only
1054
+ knowing the past of the time series used as a target.
1055
+ 4.3
1056
+ Classification model
1057
+ The introduction of the ETE allows associating a p-value, a metric of statistical significance, to
1058
+ each NETE value computed between any pair of time series.
1059
+ In our study, we investigated a number of explanatory features to better understand why
1060
+ in some provinces the NETE could not identify a significant transfer of information between
1061
+ mobility time series and epidemiological indicators.
1062
+ More specifically, we trained a Random
1063
+ Forest classification model to predict the significance of NX→Y at the threshold of p < 0.01, in
1064
+ each province under study. The random forest was performed with 100 decision tree classifiers
1065
+ on various sub-samples of the dataset and used averaging to improve the predictive accuracy and
1066
+ control for over-fitting. The function to measure the quality of a split was the Gini impurity.
1067
+ Before applying the random forest, the data were split between training and test sets (30%). To
1068
+ compensate for the imbalance of the datasets, we applied a Synthetic Minority Oversampling
1069
+ Technique [63] on the test set.
1070
+ As input to the classification model we used a set of features that characterize each province:
1071
+ 1. population size (as reported by the latest available census);
1072
+ 2. area (in km2);
1073
+ 3. density of Facebook users (measured as Np,w divided by area);
1074
+ 4. total cumulative number of reported COVID-19 deaths during the study period;
1075
+ 5. commuting flow;
1076
+ 6. coverage consistency;
1077
+ 20
1078
+
1079
+ The commuting flow is defined as the ratio between the total number of daily commuters who
1080
+ travel from or to a province and the total number of commuters who work and live in that
1081
+ province.
1082
+ Commuting data were collected from the latest available census statistics in each
1083
+ country. The coverage consistency is the correlation over time between the users’ populations
1084
+ N (pop)
1085
+ p,w
1086
+ and N (coloc)
1087
+ p,w
1088
+ .
1089
+ To quantify the importance of different features in our classification model, we used their
1090
+ SHAP (SHapley Additive exPlanations) values [49]. SHAP is a method to explain model pre-
1091
+ dictions based on Shapley Values from game theory. In particular, we use TreeSHAP [64], an
1092
+ algorithm to compute SHAP values for tree ensemble models, such as the random forest classifier
1093
+ of our study.
1094
+ 5
1095
+ Data and code availability
1096
+ The data and code to reproduce our analysis are available at: https://zenodo.org/record/
1097
+ 7464949#.Y6L0CfxKhNg
1098
+ 6
1099
+ Funding
1100
+ F.D. gratefully acknowledges support from the CRT Lagrange Fellowships in Data Science for
1101
+ Social Impact of the ISI Foundation, where this work was conducted. M.T. and L.G. acknowledge
1102
+ the Lagrange Project of the ISI Foundation funded by CRT Foundation. The funders had no
1103
+ role in the study design, decision to publish, or preparation of the manuscript.
1104
+ 7
1105
+ Acknowledgements
1106
+ We gratefully acknowledge Alex Pompe for his help to understand the details of mobility data
1107
+ from Meta.
1108
+ 8
1109
+ Author contributions
1110
+ FD collected data, conducted experiments, interpreted the results, made figures, and contributed
1111
+ to the writing of the paper.
1112
+ MT and LG conceived and designed the study, conducted the
1113
+ statistical analysis, interpreted the results, made figures, and wrote the paper. All authors read
1114
+ and approved the final version of the manuscript.
1115
+ 9
1116
+ Competing interests
1117
+ The authors declare no competing interests.
1118
+ 1
1119
+
1120
+ Supplementary Information
1121
+ Correction to the colocation probability
1122
+ Colocation maps provided by Meta is defined as the number of colocation events over the number
1123
+ of possible events. This, by design, includes interactions between users staying within the same
1124
+ tile but not having actual contact with other users. For this reason, we estimate the contact
1125
+ rate in each province by removing the contribution due to the users staying put. We explain our
1126
+ approach to estimating such contribution in the following. Let us start by writing the original
1127
+ colocation probability P as:
1128
+ P = E
1129
+ N 2
1130
+ (8)
1131
+ where:
1132
+ • E is the number of colocation events within the province
1133
+ • N is the number of province colocation users.
1134
+ The exact formula should be P =
1135
+ E
1136
+ N(N−1) but as N is large we approximate it to 8. Let us
1137
+ denote R(c) the number of measured colocation events that are due to users who stay put only,
1138
+ then the corrected colocation probability should be written in the following way:
1139
+ ˆPp,w = E − R(c)
1140
+ N 2
1141
+ (9)
1142
+ We estimate R(c) by using the stay-put probability S, which is the probability of a user staying
1143
+ put. Let us call the tile population ratio probability distribution {ftl; t = 1, .., Tl} where T is
1144
+ the number of tiles in a province. This gives us an estimate of the contribution of the users who
1145
+ stay put to the colocation probability, as:
1146
+ R(c) =
1147
+ T
1148
+
1149
+ t=1
1150
+ N 2 · f 2
1151
+ t · S2.
1152
+ (10)
1153
+ So we rewrite:
1154
+ ˆPp,w = P − S2
1155
+ Tl
1156
+
1157
+ t=1
1158
+ f 2
1159
+ tl
1160
+ (11)
1161
+ We do not have access to the population of the tiles used for the colocation so we make an
1162
+ approximation using the population distribution given for each tile with dimensions 4800 m
1163
+ × 4800 m. As there are by definition 64 colocation tiles within a single population tile, the
1164
+ expression Eq.11 can be formulated as:
1165
+ ˆPp,w = Pp,w − S2
1166
+ p,w ·
1167
+ T
1168
+
1169
+ t=1
1170
+ 64 ·
1171
+
1172
+ f (p)
1173
+ t,w
1174
+ 64
1175
+ �2
1176
+ (12)
1177
+ where:
1178
+ 2
1179
+
1180
+ M s (%)
1181
+ M (%)
1182
+ Austria
1183
+ 99.6 [97.9 – 100]
1184
+ 0.5 [0.0 - 2.1]
1185
+ France
1186
+ 91.3 [88.2 – 93.7]
1187
+ 8.8 [6.3 – 11.9]
1188
+ Italy
1189
+ 89.9 [86.4 – 92.8]
1190
+ 10.2 [7.2 – 13.6]
1191
+ Spain
1192
+ 91.5 [86.1 – 95.1]
1193
+ 8.5 [4.9 – 13.9]
1194
+ Table S6: Relative proportion of mobility components in each country. Each row dis-
1195
+ plays the proportion of movements, as a percentage of the total movements within each province,
1196
+ that are represented by the short-range mobility (M s(t)) and the mid-range mobility (M(t)).
1197
+ Each table entry reports the median value and the IQR, computed over all provinces, and all
1198
+ weeks of the study period. Short-range mobility represents the large majority of movements
1199
+ within a province, in all countries.
1200
+ coverage consistency
1201
+ commuting flow
1202
+ Austria
1203
+ 0.64 [0.45–0.79]
1204
+ 1.05 [0.43–1.69]
1205
+ France
1206
+ 0.32 [0.23–0.43]
1207
+ 0.30 [0.22–0.51]
1208
+ Italy
1209
+ 0.63 [0.42–0.77]
1210
+ 0.21 [0.12–0.29]
1211
+ Spain
1212
+ 0.86 [0.68–0.91]
1213
+ 0.08 [0.05–0.10]
1214
+ Table S7: Coverage consistency and commuting flow distributions by country. Each
1215
+ table entry reports the median value and the IQR computed over all provinces, in each country,
1216
+ considered in the study.
1217
+ • f (p)
1218
+ t,w = Nt,w
1219
+ Np,w ; t ∈ p : tile t population frequency in province p.
1220
+ • Nt,w : population at (tile,week) resolution. It is obtained through mean temporal aggre-
1221
+ gation of Nt,h over the week interval denoted by w.
1222
+ • Np,w : population at (province, week) resolution.
1223
+ It is obtained through sum spatial
1224
+ aggregation of Nt,w over the tiles belonging to province p.
1225
+ • T is the number of tiles 4800 m × 4800 m
1226
+ We can introduce the quantity Qp,w as the sum of squared frequencies of the province tile
1227
+ distribution Qp,w = �
1228
+ t∈p(f (p)
1229
+ t,w)2, so that, finally:
1230
+ ˆPp,w = Pp,w − S2
1231
+ p,w · Qp,w
1232
+ 64
1233
+ (13)
1234
+ References
1235
+ [1] Ira M Longini Jr.
1236
+ A mathematical model for predicting the geographic spread of new
1237
+ infectious agents. Mathematical Biosciences, 90(1-2):367–383, 1988.
1238
+ 3
1239
+
1240
+ Figure S1:
1241
+ Comparison of NETE values computed on weekly and daily time series.
1242
+ NC→D computed between time series data collected on a weekly time scale (bottom row) and a
1243
+ daily one (top row). Daily time series were available only for Austria, France and Spain.
1244
+ [2] Aidan Findlater and Isaac I Bogoch. Human mobility and the global spread of infectious
1245
+ diseases: a focus on air travel. Trends in parasitology, 34(9):772–783, 2018.
1246
+ [3] Duygu Balcan, Bruno Gon¸calves, Hao Hu, Jos´e J Ramasco, Vittoria Colizza, and Alessandro
1247
+ Vespignani. Modeling the spatial spread of infectious diseases: The GLobal Epidemic and
1248
+ Mobility computational model. Journal of Computational Science, 1(3):132–145, 2010.
1249
+ [4] Amy Wesolowski, Caroline O Buckee, Kenth Engø-Monsen, and Charlotte Jessica Eland
1250
+ Metcalf. Connecting mobility to infectious diseases: the promise and limits of mobile phone
1251
+ data. The Journal of infectious diseases, 214(suppl 4):S414–S420, 2016.
1252
+ [5] Amy Wesolowski, Nathan Eagle, Andrew J Tatem, David L Smith, Abdisalan M Noor,
1253
+ Robert W Snow, and Caroline O Buckee. Quantifying the impact of human mobility on
1254
+ malaria. Science, 338(6104):267–270, 2012.
1255
+ [6] Lorenzo Mari, Enrico Bertuzzo, Lorenzo Righetto, Renato Casagrandi, Marino Gatto, Igna-
1256
+ cio Rodriguez-Iturbe, and Andrea Rinaldo. Modelling cholera epidemics: the role of water-
1257
+ ways, human mobility and sanitation. Journal of the Royal Society Interface, 9(67):376–388,
1258
+ 2012.
1259
+ 4
1260
+
1261
+ 0.40
1262
+ 0.40
1263
+ 0.40
1264
+ Austria
1265
+ France
1266
+ Spain
1267
+ 0.35
1268
+ 0.35
1269
+ 0.35
1270
+ 0.30
1271
+ 0.30
1272
+ 0.30
1273
+ 0.25
1274
+ 0.25
1275
+ 0.25
1276
+ 0.20
1277
+ 0.20
1278
+ →D
1279
+ 0.20
1280
+ →D
1281
+ -ON
1282
+ 0.15
1283
+ 0.15
1284
+ 0.15
1285
+ 0.10
1286
+ 0.10
1287
+ 0.10
1288
+ 0.05
1289
+ 0.05
1290
+ 0.05
1291
+ 0.00
1292
+ 0.00
1293
+ 0.00
1294
+ -0.05
1295
+ -0.05
1296
+ -0.05
1297
+ 14 21 28 35 42 49 56
1298
+ 14 21 28 35 42 49 56
1299
+ 14 21 28 35 42 49 56
1300
+ 7
1301
+ Lag (days)
1302
+ Lag (days)
1303
+ Lag (days)
1304
+ 0.40
1305
+ 0.40
1306
+ 0.40
1307
+ France
1308
+ Austria
1309
+ Spain
1310
+ 0.35
1311
+ 0.35
1312
+ 0.35
1313
+ 0.30
1314
+ 0.30
1315
+ 0.30
1316
+ 0.25
1317
+ 0.25
1318
+ 0.25
1319
+ 0.20
1320
+ 0.20
1321
+ 0.20
1322
+ D
1323
+ D
1324
+ D
1325
+
1326
+
1327
+
1328
+ 0.15
1329
+ 0.15
1330
+ 0.15
1331
+ 0.10
1332
+ 0.10
1333
+ 0.10
1334
+ 0.05
1335
+ 0.05
1336
+ 0.05
1337
+ 0.00
1338
+ 0.00
1339
+ 0.00
1340
+ -0.05
1341
+ -0.05
1342
+ -0.05
1343
+ 2
1344
+ 2
1345
+ 3
1346
+ 4
1347
+ 6
1348
+ 4
1349
+ 5
1350
+ 6
1351
+ 7
1352
+ 8
1353
+ 2
1354
+ 4
1355
+ 7
1356
+ 8
1357
+ 3
1358
+ 5
1359
+ 6
1360
+ 8
1361
+ 1
1362
+ 7
1363
+ Lag (weeks)
1364
+ Lag (weeks)
1365
+ Lag (weeks)[7] Caroline O Buckee, Amy Wesolowski, Nathan N Eagle, Elsa Hansen, and Robert W Snow.
1366
+ Mobile phones and malaria: modeling human and parasite travel.
1367
+ Travel medicine and
1368
+ infectious disease, 11(1):15–22, 2013.
1369
+ [8] Vivek Charu, Scott Zeger, Julia Gog, Ottar N Bjørnstad, Stephen Kissler, Lone Simonsen,
1370
+ Bryan T Grenfell, and C´ecile Viboud.
1371
+ Human mobility and the spatial transmission of
1372
+ influenza in the United States. PLoS Computational Biology, 13(2):e1005382, 2017.
1373
+ [9] Michele Tizzoni, Paolo Bajardi, Adeline Decuyper, Guillaume Kon Kam King, Christian M
1374
+ Schneider, Vincent Blondel, Zbigniew Smoreda, Marta C Gonz´alez, and Vittoria Colizza.
1375
+ On the use of human mobility proxies for modeling epidemics. PLoS Computational Biology,
1376
+ 10(7):e1003716, 2014.
1377
+ [10] Corey M Peak, Amy Wesolowski, Elisabeth zu Erbach-Schoenberg, Andrew J Tatem, Erik
1378
+ Wetter, Xin Lu, Daniel Power, Elaine Weidman-Grunewald, Sergio Ramos, Simon Moritz,
1379
+ et al. Population mobility reductions associated with travel restrictions during the Ebola
1380
+ epidemic in Sierra Leone: use of mobile phone data. International journal of epidemiology,
1381
+ 47(5):1562–1570, 2018.
1382
+ [11] Mengxi Zhang, Siqin Wang, Tao Hu, Xiaokang Fu, Xiaoyue Wang, Yaxin Hu, Briana Hal-
1383
+ loran, Zhenlong Li, Yunhe Cui, Haokun Liu, et al. Human mobility and COVID-19 trans-
1384
+ mission: a systematic review and future directions. Annals of GIS, pages 1–14, 2022.
1385
+ [12] Nuria Oliver, Bruno Lepri, Harald Sterly, Renaud Lambiotte, S´ebastien Deletaille, Marco
1386
+ De Nadai, Emmanuel Letouz´e, Albert Ali Salah, Richard Benjamins, Ciro Cattuto, et al.
1387
+ Mobile phone data for informing public health actions across the COVID-19 pandemic life
1388
+ cycle. Science Advances, 6(23):eabc0764, 2020.
1389
+ [13] Caroline O Buckee, Satchit Balsari, Jennifer Chan, Merc`e Crosas, Francesca Dominici, Urs
1390
+ Gasser, Yonatan H Grad, Bryan Grenfell, M Elizabeth Halloran, Moritz UG Kraemer, et al.
1391
+ Aggregated mobility data could help fight COVID-19. Science, 368(6487):145–146, 2020.
1392
+ [14] Marino Gatto, Enrico Bertuzzo, Lorenzo Mari, Stefano Miccoli, Luca Carraro, Renato
1393
+ Casagrandi, and Andrea Rinaldo.
1394
+ Spread and dynamics of the COVID-19 epidemic in
1395
+ Italy: Effects of emergency containment measures. Proceedings of the National Academy of
1396
+ Sciences, 117(19):10484–10491, 2020.
1397
+ [15] Estee Y Cramer, Evan L Ray, Velma K Lopez, Johannes Bracher, Andrea Brennen, Alvaro J
1398
+ Castro Rivadeneira, Aaron Gerding, Tilmann Gneiting, Katie H House, Yuxin Huang, et al.
1399
+ Evaluation of individual and ensemble probabilistic forecasts of COVID-19 mortality in the
1400
+ United States. Proceedings of the National Academy of Sciences, 119(15):e2113561119, 2022.
1401
+ [16] Serina Chang, Emma Pierson, Pang Wei Koh, Jaline Gerardin, Beth Redbird, David Grusky,
1402
+ and Jure Leskovec. Mobility network models of COVID-19 explain inequities and inform
1403
+ reopening. Nature, 589(7840):82–87, 2021.
1404
+ 5
1405
+
1406
+ [17] Lorenzo Lucchini, Simone Centellegher, Luca Pappalardo, Riccardo Gallotti, Filippo Privit-
1407
+ era, Bruno Lepri, and Marco De Nadai. Living in a pandemic: changes in mobility routines,
1408
+ social activity and adherence to COVID-19 protective measures. Scientific reports, 11(1):1–
1409
+ 12, 2021.
1410
+ [18] Philippe Lemey, Andrew Rambaut, Trevor Bedford, Nuno Faria, Filip Bielejec, Guy Baele,
1411
+ Colin A Russell, Derek J Smith, Oliver G Pybus, Dirk Brockmann, et al. Unifying viral
1412
+ genetics and human transportation data to predict the global transmission dynamics of
1413
+ human influenza h3n2. PLoS pathogens, 10(2):e1003932, 2014.
1414
+ [19] Philippe Lemey, Samuel L Hong, Verity Hill, Guy Baele, Chiara Poletto, Vittoria Colizza,
1415
+ ´Aine O’toole, John T McCrone, Kristian G Andersen, Michael Worobey, et al. Accom-
1416
+ modating individual travel history and unsampled diversity in bayesian phylogeographic
1417
+ inference of sars-cov-2. Nature communications, 11(1):1–14, 2020.
1418
+ [20] Moritz UG Kraemer, Verity Hill, Christopher Ruis, Simon Dellicour, Sumali Bajaj, John T
1419
+ McCrone, Guy Baele, Kris V Parag, Anya Lindstr¨om Battle, Bernardo Gutierrez, et al.
1420
+ Spatiotemporal invasion dynamics of SARS-CoV-2 lineage B.1.1.7 emergence.
1421
+ Science,
1422
+ 373(6557):889–895, 2021.
1423
+ [21] Jessica T Davis, Matteo Chinazzi, Nicola Perra, Kunpeng Mu, Ana Pastore y Piontti, Marco
1424
+ Ajelli, Natalie E Dean, Corrado Gioannini, Maria Litvinova, Stefano Merler, et al. Cryptic
1425
+ transmission of SARS-CoV-2 and the first COVID-19 wave. Nature, 600(7887):127–132,
1426
+ 2021.
1427
+ [22] Philippe Lemey, Nick Ruktanonchai, Samuel L Hong, Vittoria Colizza, Chiara Poletto, Fred-
1428
+ erik Van den Broeck, Mandev S Gill, Xiang Ji, Anthony Levasseur, Bas B Oude Munnink,
1429
+ et al. Untangling introductions and persistence in covid-19 resurgence in europe. Nature,
1430
+ 595(7869):713–717, 2021.
1431
+ [23] Matteo Chinazzi, Jessica T Davis, Marco Ajelli, Corrado Gioannini, Maria Litvinova, Ste-
1432
+ fano Merler, Ana Pastore y Piontti, Kunpeng Mu, Luca Rossi, Kaiyuan Sun, et al. The
1433
+ effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) out-
1434
+ break. Science, 368(6489):395–400, 2020.
1435
+ [24] Pedro S Peixoto, Diego Marcondes, Cl´audia Peixoto, and S´ergio M Oliva. Modeling future
1436
+ spread of infections via mobile geolocation data and population dynamics. an application
1437
+ to covid-19 in brazil. PloS one, 15(7):e0235732, 2020.
1438
+ [25] Moritz UG Kraemer, Adam Sadilek, Qian Zhang, Nahema A Marchal, Gaurav Tuli, Emily L
1439
+ Cohn, Yulin Hswen, T Alex Perkins, David L Smith, Robert C Reiner, et al. Mapping global
1440
+ variation in human mobility. Nature Human Behaviour, 4(8):800–810, 2020.
1441
+ 6
1442
+
1443
+ [26] Jayson S Jia, Xin Lu, Yun Yuan, Ge Xu, Jianmin Jia, and Nicholas A Christakis. Population
1444
+ flow drives spatio-temporal distribution of COVID-19 in China. Nature, 582(7812):389–394,
1445
+ 2020.
1446
+ [27] Joel Persson, Jurriaan F Parie, and Stefan Feuerriegel. Monitoring the COVID-19 epidemic
1447
+ with nationwide telecommunication data. Proceedings of the National Academy of Sciences,
1448
+ 118(26):e2100664118, 2021.
1449
+ [28] Stefano Maria Iacus, Carlos Santamaria, Francesco Sermi, Spyros Spyratos, Dario Tarchi,
1450
+ and Michele Vespe. Human mobility and COVID-19 initial dynamics. Nonlinear Dynamics,
1451
+ 101(3):1901–1919, 2020.
1452
+ [29] Nishant Kishore, Aimee R Taylor, Pierre E Jacob, Navin Vembar, Ted Cohen, Caroline O
1453
+ Buckee, and Nicolas A Menzies. Evaluating the reliability of mobility metrics from aggre-
1454
+ gated mobile phone data as proxies for sars-cov-2 transmission in the usa: a population-based
1455
+ study. The Lancet Digital Health, 2021.
1456
+ [30] Sean Jewell, Joseph Futoma, Lauren Hannah, Andrew C Miller, Nicholas J Foti, and Emily B
1457
+ Fox.
1458
+ It’s complicated: Characterizing the time-varying relationship between cell phone
1459
+ mobility and COVID-19 spread in the US. NPJ digital medicine, 4(1):1–11, 2021.
1460
+ [31] Hamada S Badr and Lauren M Gardner. Limitations of using mobile phone data to model
1461
+ COVID-19 transmission in the USA. The Lancet Infectious Diseases, 21(5):e113, 2021.
1462
+ [32] Pierre Nouvellet, Sangeeta Bhatia, Anne Cori, Kylie EC Ainslie, Marc Baguelin, Samir
1463
+ Bhatt, Adhiratha Boonyasiri, Nicholas F Brazeau, Lorenzo Cattarino, Laura V Cooper,
1464
+ et al. Reduction in mobility and covid-19 transmission. Nature communications, 12(1):1–9,
1465
+ 2021.
1466
+ [33] Alberto Aleta, David Martin-Corral, Ana Pastore y Piontti, Marco Ajelli, Maria Litvinova,
1467
+ Matteo Chinazzi, Natalie E Dean, M Elizabeth Halloran, Ira M Longini Jr, Stefano Merler,
1468
+ et al. Modelling the impact of testing, contact tracing and household quarantine on second
1469
+ waves of COVID-19. Nature Human Behaviour, 4(9):964–971, 2020.
1470
+ [34] Alberto Aleta, David Mart´ın-Corral, Michiel A Bakker, Ana Pastore y Piontti, Marco Ajelli,
1471
+ Maria Litvinova, Matteo Chinazzi, Natalie E Dean, M Elizabeth Halloran, Ira M Longini Jr,
1472
+ et al. Quantifying the importance and location of SARS-CoV-2 transmission events in large
1473
+ metropolitan areas. Proceedings of the National Academy of Sciences, 119(26):e2112182119,
1474
+ 2022.
1475
+ [35] Tanjona Ramiadantsoa, C Jessica E Metcalf, Antso Hasina Raherinandrasana, Santatra
1476
+ Randrianarisoa, Benjamin L Rice, Amy Wesolowski, Fidiniaina Mamy Randriatsarafara,
1477
+ and Fidisoa Rasambainarivo. Existing human mobility data sources poorly predicted the
1478
+ spatial spread of SARS-CoV-2 in Madagascar. Epidemics, 38:100534, 2022.
1479
+ 7
1480
+
1481
+ [36] Nishant Kishore. Mobility data as a proxy for epidemic measures. Nature Computational
1482
+ Science, 1(9):567–568, 2021.
1483
+ [37] Roman Levin, Dennis L Chao, Edward A Wenger, and Joshua L Proctor. Insights into
1484
+ population behavior during the COVID-19 pandemic from cell phone mobility data and
1485
+ manifold learning. Nature Computational Science, 1(9):588–597, 2021.
1486
+ [38] Thomas Schreiber. Measuring information transfer. Physical review letters, 85(2):461, 2000.
1487
+ [39] Shankar Iyer, Brian Karrer, Daniel T Citron, Farshad Kooti, Paige Maas, Zeyu Wang,
1488
+ Eugenia Giraudy, P Alex Dow, and Alex Pompe. Large-Scale Measurement of Aggregate
1489
+ Human Colocation Patterns for Epidemiological Modeling. medRxiv, 2020.
1490
+ [40] Eurostat. Eurostat. Your key to European Statistics.
1491
+ [41] Ama¸c
1492
+ Herda˘gdelen,
1493
+ Alex
1494
+ Dow,
1495
+ Bogdan
1496
+ State,
1497
+ Payman
1498
+ Mohassel,
1499
+ and
1500
+ Alex
1501
+ Pompe.
1502
+ Protecting
1503
+ privacy
1504
+ in
1505
+ Facebook
1506
+ mobility
1507
+ data
1508
+ dur-
1509
+ ing
1510
+ the
1511
+ COVID-19
1512
+ response.
1513
+ https://research.fb.com/blog/2020/06/
1514
+ protecting-privacy-in-facebook-mobility-data-during-the-covid-19-response/,
1515
+ 2020. Accessed: 2021-11-06.
1516
+ [42] Facebook Data for Good. Movement range maps. https://data.humdata.org/dataset/
1517
+ movement-range-maps, 2020. Accessed: 2021-11-06.
1518
+ [43] Terry Bossomaier, Lionel Barnett, Michael Harr´e, and Joseph T Lizier. Transfer entropy.
1519
+ In An introduction to transfer entropy, pages 65–95. Springer, 2016.
1520
+ [44] Robert Marschinski and Holger Kantz. Analysing the information flow between financial
1521
+ time series. The European Physical Journal B-Condensed Matter and Complex Systems,
1522
+ 30(2):275–281, 2002.
1523
+ [45] Zefan Zeng, Guang Jin, Chi Xu, Siya Chen, and Lu Zhang. Spacecraft telemetry anomaly de-
1524
+ tection based on parametric causality and double-criteria drift streaming peaks over thresh-
1525
+ old. Applied Sciences, 12(4):1803, 2022.
1526
+ [46] Nick Wilson, Amanda Kvalsvig, Lucy Telfar Barnard, and Michael G Baker. Case-fatality
1527
+ risk estimates for COVID-19 calculated by using a lag time for fatality. Emerging infectious
1528
+ diseases, 26(6):1339, 2020.
1529
+ [47] Manuela Fritz. Wave after wave: determining the temporal lag in Covid-19 infections and
1530
+ deaths using spatial panel data from Germany. Journal of Spatial Econometrics, 3(1):1–30,
1531
+ 2022.
1532
+ [48] Forrest W Crawford, Sydney A Jones, Matthew Cartter, Samantha G Dean, Joshua L
1533
+ Warren, Zehang Richard Li, Jacqueline Barbieri, Jared Campbell, Patrick Kenney, Thomas
1534
+ 8
1535
+
1536
+ Valleau, et al. Impact of close interpersonal contact on covid-19 incidence: Evidence from
1537
+ 1 year of mobile device data. Science Advances, 8(1):eabi5499, 2022.
1538
+ [49] Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions.
1539
+ Advances in neural information processing systems, 30, 2017.
1540
+ [50] Andreas Koher, Frederik Jørgensen, Michael Bang Petersen, and Sune Lehmann. Moni-
1541
+ toring Public Behavior During a Pandemic Using Surveys: Proof-of-Concept Via Epidemic
1542
+ Modelling. arXiv preprint arXiv:2210.01472, 2022.
1543
+ [51] Jack Wardle, Sangeeta Bhatia, Moritz UG Kraemer, Pierre Nouvellet, and Anne Cori. Gaps
1544
+ in mobility data and implications for modelling epidemic spread: a scoping review and
1545
+ simulation study. medRxiv, 2022.
1546
+ [52] Riccardo Gallotti, Davide Maniscalco, Marc Barthelemy, and Manlio De Domenico. The
1547
+ distorting lens of human mobility data. arXiv preprint arXiv:2211.10308, 2022.
1548
+ [53] Giovanni Bonaccorsi, Francesco Pierri, Matteo Cinelli, Andrea Flori, Alessandro Galeazzi,
1549
+ Francesco Porcelli, Ana Lucia Schmidt, Carlo Michele Valensise, Antonio Scala, Walter
1550
+ Quattrociocchi, et al.
1551
+ Economic and social consequences of human mobility restrictions
1552
+ under covid-19.
1553
+ Proceedings of the National Academy of Sciences, 117(27):15530–15535,
1554
+ 2020.
1555
+ [54] Alessandro Galeazzi, Matteo Cinelli, Giovanni Bonaccorsi, Francesco Pierri, Ana Lucia
1556
+ Schmidt, Antonio Scala, Fabio Pammolli, and Walter Quattrociocchi.
1557
+ Human mobility
1558
+ in response to COVID-19 in France, Italy and UK. Scientific reports, 11(1):1–10, 2021.
1559
+ [55] Mattia Mazzoli, Eugenio Valdano, and Vittoria Colizza. Projecting the COVID-19 epidemic
1560
+ risk in France for the summer 2021. Journal of travel medicine, 28(7):taab129, 2021.
1561
+ [56] Alex Smolyak, Giovanni Bonaccorsi, Andrea Flori, Fabio Pammolli, and Shlomo Havlin.
1562
+ Effects of mobility restrictions during COVID19 in Italy.
1563
+ Scientific reports, 11(1):1–15,
1564
+ 2021.
1565
+ [57] Harry ER Shepherd, Florence S Atherden, Ho Man Theophilus Chan, Alexandra Loveridge,
1566
+ and Andrew J Tatem. Domestic and international mobility trends in the united kingdom
1567
+ during the covid-19 pandemic: an analysis of facebook data. International journal of health
1568
+ geographics, 20(1):1–13, 2021.
1569
+ [58] Kyra H Grantz, Hannah R Meredith, Derek AT Cummings, C Jessica E Metcalf, Bryan T
1570
+ Grenfell, John R Giles, Shruti Mehta, Sunil Solomon, Alain Labrique, Nishant Kishore,
1571
+ et al. The use of mobile phone data to inform analysis of COVID-19 pandemic epidemiology.
1572
+ Nature communications, 11(1):1–8, 2020.
1573
+ 9
1574
+
1575
+ [59] Marcello Ienca and Effy Vayena. On the responsible use of digital data to tackle the COVID-
1576
+ 19 pandemic. Nature medicine, 26(4):463–464, 2020.
1577
+ [60] Emanuele Guidotti and David Ardia. COVID-19 Data Hub. Journal of Open Source Soft-
1578
+ ware, 5(51):2376, 2020.
1579
+ [61] David W Scott. Multivariate density estimation: theory, practice, and visualization. John
1580
+ Wiley & Sons, 2015.
1581
+ [62] Juan R Perilla and Thomas B Woolf. Towards the prediction of order parameters from molec-
1582
+ ular dynamics simulations in proteins. The Journal of chemical physics, 136(16):04B619,
1583
+ 2012.
1584
+ [63] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer. SMOTE:
1585
+ synthetic minority over-sampling technique.
1586
+ Journal of artificial intelligence research,
1587
+ 16:321–357, 2002.
1588
+ [64] Scott M Lundberg, Gabriel G Erion, and Su-In Lee.
1589
+ Consistent individualized feature
1590
+ attribution for tree ensembles. arXiv preprint arXiv:1802.03888, 2018.
1591
+ 10
1592
+
1593
+ Figure S2:
1594
+ NETE values from contact rates to deaths in Austria. Only statistically
1595
+ significant values are shown (p-value< 0.01).
1596
+ 11
1597
+
1598
+ Amsteten -
1599
+ 0.025748
1600
+ 0.026068
1601
+ 0.035190
1602
+ Brauneu ami Inn -
1603
+ 0.030781
1604
+ Bregenz -
1605
+ 0.032432
1606
+ 0.063635
1607
+ 0.079792
1608
+ 0.073301
1609
+ 0.051136
1610
+ Bruck-Murzzschlag -
1611
+ 0.048734
1612
+ 0.047809
1613
+ Dornbim -
1614
+ 0.042606
1615
+ 0.048633
1616
+ 0.028192
1617
+ 0.037263
1618
+ 0.055011
1619
+ 0.036085
1620
+ 0.038355
1621
+ 0.036506
1622
+ E998E0'0
1623
+ 0.037540
1624
+ 0.030327
1625
+ 0.028564
1626
+ 0.040716
1627
+ Grez [Stadt] -
1628
+ 0.037779
1629
+ 0.076651
1630
+ 0.097150
1631
+ 0.055744
1632
+ Grez-Urngebung -
1633
+ 0.029600
1634
+ 0.064492
1635
+ 0.077311
1636
+ Innshruck-Land -
1637
+ 0.028612
1638
+ 0.045289
1639
+ 0.052419
1640
+ 0.039591
1641
+ 0.200
1642
+ Jerner'sdorf -
1643
+ 0.035306
1644
+ 0.069850
1645
+ 0.113048
1646
+ 0.068616
1647
+ Kirchdorf an der Krem8-
1648
+ 0.065064
1649
+ 0.080814
1650
+ Kitzbuhel -
1651
+ 0.031631
1652
+ 0.068131
1653
+ 0.175
1654
+ Klagerfurt am Worthersee (Sadi)
1655
+ 0.045755
1656
+ 0.073913
1657
+ 0.069748
1658
+ Korreuburg -
1659
+ 0.048235
1660
+ 0.064034
1661
+ 0.067645
1662
+ 0.080225
1663
+ 0.071908
1664
+ 0.062741
1665
+ Kufstein ,
1666
+ 0.084524
1667
+ 0.078949
1668
+ 0.050947
1669
+ 0.036189
1670
+ 0.028105
1671
+ 0.040762
1672
+ 0.043702
1673
+ Landeck -
1674
+ 0.047941
1675
+ 0.106637
1676
+ 0.088543
1677
+ Leibnibz -
1678
+ 0.026406
1679
+ 0.125
1680
+ Leoben -
1681
+ 0.029500
1682
+ Province
1683
+ Liezen -
1684
+ 0.033578
1685
+ DOL'O -
1686
+ 0.031302
1687
+ 0.030106
1688
+ 0.035957
1689
+ Midling -
1690
+ 0.029218
1691
+ ETEEEO'O
1692
+ 0.026258
1693
+ Neunkirchen -
1694
+ 0.040286
1695
+ 0.075
1696
+ Reutte -
1697
+ 0.045268
1698
+ 0.054860
1699
+ 0.112349
1700
+ Ried in Innkreis -
1701
+ 0.032220
1702
+ 0.041101
1703
+ 0.069890
1704
+ 0.060479
1705
+ 0.041664
1706
+ 0.024491
1707
+ 0.050
1708
+ Rahrbach -
1709
+ 0.041602
1710
+ Sabzburg (Stadt) -
1711
+ 0.043210
1712
+ 0.072274
1713
+ 0.075024
1714
+ 0.073098
1715
+ 0.042898
1716
+ Sazburg-Umgebung -
1717
+ 0.041488
1718
+ 0.032673
1719
+ 0.025
1720
+ Sankt jahann im Pongau -
1721
+ 0.034971
1722
+ 0.068717
1723
+ SchwEz -
1724
+ 0.038691
1725
+ 0.091690
1726
+ 0.184757
1727
+ 0.000
1728
+ Spittal an der Drau -
1729
+ 0.030718
1730
+ 0.035796
1731
+ 0.060162
1732
+ Steyr-Land -
1733
+ 0.056514
1734
+ 0.062967
1735
+ 0.069762
1736
+ 0.067400
1737
+ 0.066843
1738
+ 0.064067
1739
+ 0.055595
1740
+ Urfahr-Umgebung -
1741
+ 0.029842
1742
+ 0.033754
1743
+ 0.041654
1744
+ vbitsberg -
1745
+ 0.042787
1746
+ 0.043992
1747
+ 0.046677
1748
+ vbcklabruck -
1749
+ 0.045316
1750
+ EETEEOO
1751
+ 0.087363
1752
+ 0.054894
1753
+ Weiz -
1754
+ 0.025742
1755
+ Webs (Stadt) -
1756
+ E660E0'0
1757
+ 0.025064
1758
+ Wen -
1759
+ 0.032377
1760
+ 0.046296
1761
+ 0.042533
1762
+ 0.042002
1763
+ -1
1764
+ 2
1765
+ m
1766
+ 4
1767
+ 6
1768
+ 8Figure S3:
1769
+ NETE values from contact rates to deaths in France. Only statistically
1770
+ significant values are shown (p-value¿0.01).
1771
+ 12
1772
+
1773
+ Areyron -
1774
+ 0.040657
1775
+ 0.047058
1776
+ 0.056892
1777
+ Bas- Rhin -
1778
+ 0.033482
1779
+ 0.041585
1780
+ 0.028520
1781
+ BDpBA(E0
1782
+ 0.031260
1783
+ Carital -
1784
+ 0.024933
1785
+ 0.058974
1786
+ 0.043374
1787
+ Charente -
1788
+ 0.025404
1789
+ TZZ8E00
1790
+ 0.040474
1791
+ Creue -
1792
+ 0.044353
1793
+ 0.066560
1794
+ 0.109015
1795
+ 0.097901
1796
+ 0.046231
1797
+ Cite-"or -
1798
+ 0.050804
1799
+ 0.083634
1800
+ 0.101878
1801
+ 0.112566
1802
+ 0.057215
1803
+ Douhs -
1804
+ 0.048890
1805
+ 0.081594
1806
+ 0.061416
1807
+ 0.043711
1808
+ 0.069546
1809
+ 568E00
1810
+ Gard -
1811
+ 0.035540
1812
+ 0.041388
1813
+ 0.028707
1814
+ 0.200
1815
+ Haut-Rhin -
1816
+ 0.029346
1817
+ 0.032140
1818
+ 0.031260
1819
+ 0.059106
1820
+ TZTES00
1821
+ ZLTEEO0
1822
+ Haute-Garonne -
1823
+ 0.029910
1824
+ 0.039255
1825
+ 0.037786
1826
+ 0.036558
1827
+ Haute-Loire -
1828
+ 0.034223
1829
+ EOLTEO'0
1830
+ 0.175
1831
+ Haute-Marne
1832
+ 0.029728
1833
+ EZ9EE00
1834
+ Haute-Sevbie
1835
+ 0.040045
1836
+ 0.077211
1837
+ 0.057614
1838
+ 9698E00
1839
+ 0.023792
1840
+ 0.151
1841
+ Haute-Seonie -
1842
+ Haute-Vienre -
1843
+ 0.029789
1844
+ Hautes Pyrinees -
1845
+ 0.046039
1846
+ 0.052797
1847
+ 0.073291
1848
+ 0.087177
1849
+ 0.118157
1850
+ 0.097759
1851
+ 0.079092
1852
+ 0.125
1853
+ 0.024660
1854
+ 0.027809
1855
+ - 22]
1856
+ 0.055111
1857
+ 660600
1858
+ 0.116728
1859
+ 0.074720
1860
+ 6580E0'0
1861
+ Province
1862
+ - Eunr
1863
+ 0Z60E00
1864
+ EEL6Z00
1865
+ DOL'0
1866
+ Landes -
1867
+ 0.056405
1868
+ 0.091173
1869
+ 0.090549
1870
+ Lair-et-Cher -
1871
+ 0.027844
1872
+ 5E68200
1873
+ Laire -
1874
+ 0.054201
1875
+ 0.085214
1876
+ 0.105839
1877
+ 0.095344
1878
+ 0.069573
1879
+ 0.075
1880
+ Laire- Atlantique -
1881
+ 0.029233
1882
+ 0.029794
1883
+ Lairet -
1884
+ 0.025703
1885
+ 0.031137
1886
+ Lat-et-Garcne -
1887
+ 0.062904
1888
+ 0.070896
1889
+ 0.043991
1890
+ 0.050
1891
+ Maine-et-Loire -
1892
+ 0.034822
1893
+ 0.046020
1894
+ 0.048480
1895
+ Marne -
1896
+ 0.025154
1897
+ Mayenne -
1898
+ 0666E00
1899
+ TES9E00
1900
+ - 0.025
1901
+ 0.025244
1902
+ 0.049144
1903
+ 0.053130
1904
+ 0.042279
1905
+ Moselle -
1906
+ 0.026739
1907
+ 0.034717
1908
+ Nievre -
1909
+ 0.022348
1910
+ 0.00
1911
+ Nard -
1912
+ 0.036407
1913
+ 0.045561
1914
+ 0.040334
1915
+ 0.051478
1916
+ 0.077228
1917
+ 0.063907
1918
+ 0.059029
1919
+ TZOEO0
1920
+ Pyrenees Alantiques -
1921
+ 0.062096
1922
+ 0.092766
1923
+ 0.145174
1924
+ 0.132909
1925
+ 0.102827
1926
+ 0.042085
1927
+ 0.059519
1928
+ 0.055424
1929
+ Savaie -
1930
+ 0.034982
1931
+ 0.060054
1932
+ 0.057195
1933
+ Saane-et-Lnire -
1934
+ 0.031605
1935
+ 0.065657
1936
+ 0.092507
1937
+ EOLO0
1938
+ 0.038865
1939
+ 0.039947
1940
+ arn-et-Garanne -
1941
+ 0.045909
1942
+ 8066L00
1943
+ 0.109730
1944
+ 0.065963
1945
+ vauckuse -
1946
+ 0.026052
1947
+ L9TOE00
1948
+ Wheges -
1949
+ 0.027052
1950
+ 0.059475
1951
+ 0.073040
1952
+ bnne -
1953
+ 0.028840
1954
+ i
1955
+ 2
1956
+ 3
1957
+ 4
1958
+ -5
1959
+ 6
1960
+ 1
1961
+ 80Figure S4: NETE values from contact rates to deaths in Italy. Only statistically signifi-
1962
+ cant values are shown (p-value< 0.01).
1963
+ 13
1964
+
1965
+ Agigento -
1966
+ 9880
1967
+ Alesaandria -
1968
+ EESZO0
1969
+ 0.026729
1970
+ 0.036095
1971
+ EESE00
1972
+ 6006200
1973
+ SSSt00
1974
+ ZE6600
1975
+ E09ZE00
1976
+ Aeti -
1977
+ 9218200
1978
+ 0.037452
1979
+ Beri -
1980
+ 0.024441
1981
+ E6S00
1982
+ 80t9200
1983
+ 81E8Z00
1984
+ 66TZE00
1985
+ SLZOEO0
1986
+ 0.047656
1987
+ 886TS00
1988
+ E8L00
1989
+ 0.047959
1990
+ 0.051687
1991
+ 0.043068
1992
+ 0.032656
1993
+ E0
1994
+ 0.026679
1995
+ Billa -
1996
+ ESE6E00
1997
+ 00
1998
+ 0.058615
1999
+ EES00
2000
+ 0.049609
2001
+ Bolpgne -
2002
+ 0.031410
2003
+ 0.034686
2004
+ 0.025180
2005
+ Brindisi
2006
+ 0.022450
2007
+ 8Tt000
2008
+ 2666200
2009
+ 0.040166
2010
+ 0.060407
2011
+ 0.081030
2012
+ Caserta -
2013
+ S6E00
2014
+ SEtOSO0
2015
+ 0.054700
2016
+ EOESSO0
2017
+ LLE6500
2018
+ 8L85E00
2019
+ Catenia -
2020
+ 60TE00
2021
+ 0.077414
2022
+ 0.112635
2023
+ 0.117515
2024
+ 0107535
2025
+ 0.089910
2026
+ 0.076614
2027
+ Caterzaro -
2028
+ 0.034300
2029
+ E200
2030
+ Cornn -
2031
+ 8TO00
2032
+ 0.047368
2033
+ 0.031005
2034
+ 7 0.200
2035
+ QuneD -
2036
+ 0.042780
2037
+ 8800
2038
+ 0.057480
2039
+ 0.052452
2040
+ 0.043510
2041
+ Ferno -
2042
+ 0.028947
2043
+ 0.074648
2044
+ Femra -
2045
+ 8689200
2046
+ LTS6Z00
2047
+ Firerze -
2048
+ 0.041079
2049
+ 509t900
2050
+ 0.086577
2051
+ 0.08711
2052
+ 0.044845
2053
+ 0.175
2054
+ Fogpia-
2055
+ 0.052670
2056
+ EEt00
2057
+ 0.035560
2058
+ ESS9Z00
2059
+ Genava -
2060
+ 0.046436
2061
+ 00
2062
+ 0.033568
2063
+ E6TTE00
2064
+ 026000
2065
+ SST8500
2066
+ 0.053584
2067
+ 9L8500
2068
+ 00LES00
2069
+ 1t0800
2070
+ 0.037490
2071
+ L6E620~0
2072
+ 0.027724
2073
+ -0.151
2074
+ Isemia -
2075
+ 0.032211
2076
+ 0.048660
2077
+ 0.042584
2078
+ 0.031698
2079
+ L'Aqula -
2080
+ ST69E00
2081
+ EZ8500
2082
+ La Spezia -
2083
+ ZtE00
2084
+ Lece -
2085
+ 0.125
2086
+ Livarnp -
2087
+ 0.033466
2088
+ 0.055616
2089
+ 0.071218
2090
+ 0.048533
2091
+ 0.029651
2092
+ 0.048037
2093
+ Z9E00
2094
+ 0.035697
2095
+ 162600
2096
+ 0.046853
2097
+ zz90500
2098
+ 0.050894
2099
+ 0.044390
2100
+ 0.041952
2101
+ 0.100
2102
+ 0.050407
2103
+ z0800
2104
+ 0106961
2105
+ 0.19485
2106
+ 98 T600
2107
+ 0.035414
2108
+ - ruapon
2109
+ 2618200
2110
+ 0.41629
2111
+ 0.043517
2112
+ TZOt00
2113
+ EtbE00
2114
+ 0.042702
2115
+ - I iden
2116
+ T9Z6E00
2117
+ 0.047751
2118
+ 0.048102
2119
+ ES6SE00
2120
+ Padova -
2121
+ 0.040434
2122
+ 0.044515
2123
+ 0.064084
2124
+ 0.074209
2125
+ 0.075150
2126
+ 0.056965
2127
+ 0.075
2128
+ Palerma -
2129
+ 0.028142
2130
+ Parma -
2131
+ 0.026819
2132
+ 0.025800
2133
+ 0.024981
2134
+ Perugia -
2135
+ 0.042104
2136
+ ESE800
2137
+ T6ESt00
2138
+ 0.044093
2139
+ LL68E00
2140
+ EZOSZO0
2141
+ Pesaro e Uraind -
2142
+ LE00
2143
+ TZ9SE0 0
2144
+ 89E00
2145
+ 0.029094
2146
+ 6ET00
2147
+ 0.050
2148
+ Farcenza -
2149
+ 0.034775
2150
+ L6SS00
2151
+ 0.072717
2152
+ 0.080463
2153
+ 0.048326
2154
+ 0.040556
2155
+ -
2156
+ LL90S00
2157
+ 0.066595
2158
+ 8L8200
2159
+ 0.091416
2160
+ LZ96600
2161
+ 82L600
2162
+ ETT6500
2163
+ Portienane
2164
+ 0.029401
2165
+ 0T0850 0
2166
+ #S690 0
2167
+ 0.056462
2168
+ 88T8E00
2169
+ 0.037469
2170
+ Paternza -
2171
+ 0.038844
2172
+ - 0.025
2173
+ - snled
2174
+ OE00
2175
+ 0.039405
2176
+ 0.026673
2177
+ Reggio di Calabria
2178
+ 0.036117
2179
+ 0.047436
2180
+ 6E00
2181
+ 0589E00
2182
+ SOtTE00
2183
+ T6TZE00
2184
+ 0.046939
2185
+ Regi nleia -
2186
+ E00
2187
+ 0.038054
2188
+ 0.042878
2189
+ 0.037887
2190
+ 0.023446
2191
+ - 0.00
2192
+ - n
2193
+ E08E600
2194
+ 0.102254
2195
+ 0.085088
2196
+ 0.047687
2197
+ Rarma -
2198
+ 0.043376
2199
+ 0.052379
2200
+ 0.044143
2201
+ 6600
2202
+ Sracun -
2203
+ 0.028196
2204
+ 0.041731
2205
+ LS6E00
2206
+ 0.037220
2207
+ Eranto -
2208
+ 0.026919
2209
+ 0.028592
2210
+ 990TE00
2211
+ 81 6200
2212
+ Erni -
2213
+ ETts00
2214
+ 0
2215
+ 0.058842
2216
+ 0.054448
2217
+ 9T95E00
2218
+ - auyg
2219
+ 86E6E00
2220
+ EZ6t00
2221
+ 9STES00
2222
+ 65E00
2223
+ Tapani -
2224
+ 186500
2225
+ 0.069576
2226
+ 0103436
2227
+ 0.106727
2228
+ TEZ900
2229
+ Tentb -
2230
+ Z06SZ00
2231
+ S6S9E00
2232
+ 0.047467
2233
+ 0.040554
2234
+ Teva -
2235
+ T969Z00
2236
+ 606E00
2237
+ 0.047955
2238
+ 0.052642
2239
+ 90ELt00
2240
+ - Bun
2241
+ 8868200
2242
+ Varese.
2243
+ 0.047314
2244
+ 876 800
2245
+ 0.093084
2246
+ TS95600
2247
+ 0.081083
2248
+ EE9EE00
2249
+ vemezi
2250
+ 0.034065
2251
+ LE00
2252
+ OOEZEOO
2253
+ SBZTEO0
2254
+ EGEb00
2255
+ 056t00
2256
+ 0.031813
2257
+ 8060500
2258
+ LEZ600
2259
+ 0.078072
2260
+ 0.104887
2261
+ 0.111805
2262
+ Micenzi -
2263
+ 8680200
2264
+ BELZ00
2265
+ L6TEE00
2266
+ 0.033232
2267
+ Miterbo -
2268
+ TS6E00
2269
+ 0.072240
2270
+ 50L8600
2271
+ E9ETO
2272
+ 0.087438
2273
+ ES6tE00
2274
+ 1
2275
+ 2
2276
+ 3
2277
+ 4
2278
+ 5
2279
+ 6
2280
+ 8Figure S5:
2281
+ NETE values from contact rates to deaths in Spain.
2282
+ Only statistically
2283
+ significant values are shown (p-value< 0.01).
2284
+ 14
2285
+
2286
+ Amerfa -
2287
+ 0.039917
2288
+ Aturias -
2289
+ 0.031993
2290
+ Bertcekang
2291
+ 0.064487
2292
+ 0.049886
2293
+ 0.035688
2294
+ Bizkain -
2295
+ 0.024587
2296
+ 0.022016
2297
+ 0.042866
2298
+ 0.042032
2299
+ Caritabrin -
2300
+ 0.046025
2301
+ 0.068889
2302
+ 0.068396
2303
+ 0.036596
2304
+ Castellon -
2305
+ 0.048737
2306
+ 0.063084
2307
+ 0.051995
2308
+ 0.036042
2309
+ 0.200
2310
+ Ciudad Real -
2311
+ 0.044180
2312
+ 0.054436
2313
+ 0.030186
2314
+ 0.175
2315
+ Cirdaba -
2316
+ 0.032927
2317
+ 0.038618
2318
+ 0.065027
2319
+ 0.036654
2320
+ 0.15
2321
+ GipuzkD8 -
2322
+ 0.031801
2323
+ 0.053539
2324
+ 0.048215
2325
+ 0.026072
2326
+ 0.125
2327
+ Grenada -
2328
+ 0.032374
2329
+ 0.081161
2330
+ 0.103030
2331
+ 0.079209
2332
+ 0.032532
2333
+ Province
2334
+ Huelva -
2335
+ 0.033040
2336
+ 0.100
2337
+ Huesch -
2338
+ 0.046110
2339
+ 0.031084
2340
+ 0.075
2341
+ La Rinja -
2342
+ 0.028844
2343
+ Lerida -
2344
+ 0.033187
2345
+ 0.041296
2346
+ DSIO -
2347
+ Madrid
2348
+ 0.043627
2349
+ 0.037621
2350
+ 0.025
2351
+ Murcia -
2352
+ 0.045269
2353
+ 0.044486
2354
+ Neverre -
2355
+ 0.027031
2356
+ 0.033968
2357
+ 0.027792
2358
+ 0.000
2359
+ Palencia -
2360
+ 0.030504
2361
+ Pontevedra -
2362
+ 6008E0'0
2363
+ Sevill -
2364
+ 0.037439
2365
+ 0.042436
2366
+ Earrapone -
2367
+ 0.045793
2368
+ 0.079908
2369
+ BzaBeJZ
2370
+ 0.046435
2371
+ 1
2372
+ -2
2373
+ -3
2374
+ -4
2375
+ -5
2376
+ 15
2377
+ 00Figure S6:
2378
+ NETE values from movements to deaths in Austria.
2379
+ Only statistically
2380
+ significant values are shown (p-value< 0.01).
2381
+ Figure S7: NETE values from movements to deaths in France. Only statistically signif-
2382
+ icant values are shown (p-value< 0.01).
2383
+ 15
2384
+
2385
+ Bregenz -
2386
+ 0.036345
2387
+ 0.066033
2388
+ Dornbim -
2389
+ 0.043640
2390
+ 0.067243
2391
+ Eferding -
2392
+ 0.035090
2393
+ Feldkirch -
2394
+ 0.037236
2395
+ Freistadt -
2396
+ 0.038373
2397
+ 0.047605
2398
+ 0.048796
2399
+ 0.055328
2400
+ Gmunden -
2401
+ 0.031248
2402
+ Gmind -
2403
+ 0.023410
2404
+ 0.030299
2405
+ 0.027167
2406
+ 0.029017
2407
+ 0.200
2408
+ Hallein -
2409
+ 0.027033
2410
+ 0.034264
2411
+ 0.027311
2412
+ Imst -
2413
+ 0.029552
2414
+ 0.175
2415
+ Innsruck-Stadt -
2416
+ 0.055188
2417
+ 0.080702
2418
+ 0.094913
2419
+ 0.085118
2420
+ 0.151
2421
+ Kitzbthel -
2422
+ 0.042733
2423
+ 0.072762
2424
+ Krema an der Dcnau (Stadty) -
2425
+ 0.036128
2426
+ 0.048300
2427
+ 0.055608
2428
+ 0.125
2429
+ Kufstein -
2430
+ 0.032149
2431
+ 0.043879
2432
+ Province
2433
+ Landeck -
2434
+ 0.029311
2435
+ 0.040050
2436
+ 0.072866
2437
+ 0.061492
2438
+ DOLO-
2439
+ Liezen -
2440
+ 0.025763
2441
+ 0.048718
2442
+ 0.034108
2443
+ 0.D75
2444
+ Linz-Land -
2445
+ Rahrbach -
2446
+ 0.036758
2447
+ 0.044387
2448
+ 0.050
2449
+ Sankt Polten (Stadt) -
2450
+ 0.034767
2451
+ 0.041224
2452
+ 0.042029
2453
+ 0.043476
2454
+ 0.044951
2455
+ 0.038877
2456
+ Schwaz -
2457
+ 0.039763
2458
+ 0.054913
2459
+ 0.D25
2460
+ Scharding -
2461
+ 0.032939
2462
+ 0.034910
2463
+ 0.042464
2464
+ 0.041187
2465
+ 0.000
2466
+ Steyr (Stadt) -
2467
+ Steyr-Land -
2468
+ 0.035290
2469
+ 0.035265
2470
+ 0.039354
2471
+ TEamaweg -
2472
+ 0.060463
2473
+ Urfahr-Umgebung -
2474
+ 0.041795
2475
+ 0.054897
2476
+ Waidhofen an der Ybba (Stadt] -
2477
+ 0.030619
2478
+ 0.037978
2479
+ 0.037335
2480
+ Wien -
2481
+ 0.021074
2482
+ 0.022951
2483
+ Zell em See -
2484
+ 0.034330
2485
+ -
2486
+ 2
2487
+ 1
2488
+ m
2489
+ -+
2490
+ -5
2491
+ -9
2492
+ -1
2493
+ 1
2494
+ -8Haute-Garonne -
2495
+ 0.039198
2496
+ Herault -
2497
+ 0.035912
2498
+ 0.20
2499
+ Landes -
2500
+ 0.024899
2501
+ 0.047341
2502
+ 0.15
2503
+ g Pyrenees Aantiques -
2504
+ 0.040966
2505
+ 0.081955
2506
+ 0.10
2507
+ Pyrenees-Orienbales -
2508
+ 0.039209
2509
+ 0.05
2510
+ - 2S1O.PH9n
2511
+ 0.027723
2512
+ 0.D0
2513
+ var -
2514
+ 0.037235
2515
+ vendee -
2516
+ 0.035500
2517
+ 0.035709
2518
+ 2
2519
+ 1
2520
+ m
2521
+ 4
2522
+ 5
2523
+ 1
2524
+ 1
2525
+ LpFigure S8: NETE values from movements to deaths in Italy. Only statistically significant
2526
+ values are shown (p-value< 0.01).
2527
+ 16
2528
+
2529
+ Agnigento -
2530
+ 0.035274
2531
+ 0.060209
2532
+ 0.067456
2533
+ 0.063766
2534
+ 0.045358
2535
+ Aosta -
2536
+ 0.029482
2537
+ 0.042370
2538
+ 0.072343
2539
+ 0.082323
2540
+ BolpgnB -
2541
+ 0.030139
2542
+ 0.028636
2543
+ Brescin -
2544
+ 0.025976
2545
+ Brindisi -
2546
+ 0.026128
2547
+ Crobne -
2548
+ 0.030466
2549
+ 0.040989
2550
+ 0.058785
2551
+ 0.075694
2552
+ 0.055939
2553
+ Faggia -
2554
+ 0.021785
2555
+ Grsseto -
2556
+ 0.022906
2557
+ 0.038876
2558
+ 0.038155
2559
+ 0.200
2560
+ Isernia -
2561
+ 0.030238
2562
+ 0.032921
2563
+ L Spezia -
2564
+ 0.047417
2565
+ 0.103764
2566
+ 0.175
2567
+ Lecce -
2568
+ 0.036225
2569
+ 0.036709
2570
+ 0.036007
2571
+ Livane -
2572
+ 0.029951
2573
+ 0.029072
2574
+ 0.150
2575
+ Metera -
2576
+ 0.038031
2577
+ 0.043266
2578
+ 0.029986
2579
+ Miland -
2580
+ 0.038485
2581
+ 0.060374
2582
+ 0.090189
2583
+ 0.111951
2584
+ 0.119138
2585
+ 0.076202
2586
+ 0.043542
2587
+ 0.125
2588
+ Napoli -
2589
+ 0.032169
2590
+ 0.053370
2591
+ 0.077585
2592
+ 0.081536
2593
+ 0.069873
2594
+ Province
2595
+ Palerrma -
2596
+ 0.040487
2597
+ 0.055997
2598
+ 0.049803
2599
+ 0.034437
2600
+ 0.100
2601
+ Parmia -
2602
+ 0.020899
2603
+ SEEEEOO
2604
+ 0.045348
2605
+ Pescara -
2606
+ 0.035626
2607
+ 0.053516
2608
+ 0.048144
2609
+ 0.075
2610
+ Fisa -
2611
+ 0.036115
2612
+ 0.046651
2613
+ 0.048108
2614
+ 0.042774
2615
+ Ravenng -
2616
+ 0.032001
2617
+ 0.050158
2618
+ 0.054213
2619
+ 0.044289
2620
+ 0.023382
2621
+ 0.050
2622
+ Reggio nel'Emilia -
2623
+ 0.036432
2624
+ Salermo -
2625
+ 0.027822
2626
+ 0.024835
2627
+ 0.026877
2628
+ - 0.025
2629
+ Saana -
2630
+ 0.021183
2631
+ Sandrio -
2632
+ 0.025698
2633
+ 0.000
2634
+ Earanto -
2635
+ 0.041633
2636
+ 0.042189
2637
+ 0.028624
2638
+ 0.027444
2639
+ 0.033665
2640
+ 0.035389
2641
+ Tevisn -
2642
+ 0.026159
2643
+ 0.020877
2644
+ vercelli -
2645
+ 0.035478
2646
+ Vibo Valentia -
2647
+ 0.028121
2648
+ 0.044249
2649
+ 0.055201
2650
+ 0.037209
2651
+ 0.028612
2652
+ Micerzr -
2653
+ 0.022276
2654
+ 0.022803
2655
+ viterbo -
2656
+ 0.047049
2657
+ -T
2658
+ 2-
2659
+ 4
2660
+ 5
2661
+ -9
2662
+ -L
2663
+ LpFigure S9: NETE values from movements to deaths in Spain. Only statistically significant
2664
+ values are shown (p-value< 0.01).
2665
+ Figure S10:
2666
+ Comparison of NETE values computed on full time series and reduced
2667
+ time series. NM→C computed between time series data collected including the vaccination
2668
+ campaign (full) and not (reduced). The reduced study period ranges from September 1, 2020 to
2669
+ January 31, 2021. The full study period extends up to July 31, 2021. We consider daily time
2670
+ series only to address biases due to small samples.
2671
+ 17
2672
+
2673
+ A Coruia -
2674
+ 0.035725
2675
+ 0.036865
2676
+ Balearea -
2677
+ 0.068768
2678
+ 0.044550
2679
+ Bercekana -
2680
+ 0.039459
2681
+ 0.035079
2682
+ 0.030976
2683
+ Bizkain -
2684
+ 0.027029
2685
+ 0.028069
2686
+ Burgos -
2687
+ 0.029288
2688
+ 0.200
2689
+ Caritabrin -
2690
+ 0.033294
2691
+ 0.047135
2692
+ 0.056197
2693
+ 0.039901
2694
+ Castell6n -
2695
+ 0.037745
2696
+ 0.175
2697
+ 0.030562
2698
+ 0.037700
2699
+ - Bauar
2700
+ 0.043924
2701
+ 0.076964
2702
+ 0.088080
2703
+ 0.037164
2704
+ 0.15
2705
+ Oceres -
2706
+ 0.030211
2707
+ 0.125
2708
+ Province
2709
+ 0.055756
2710
+ DOL'O-
2711
+ Grenada -
2712
+ 0.033007
2713
+ Guadalajara -
2714
+ 0.034102
2715
+ 0.036284
2716
+ 0.075
2717
+ Lein -
2718
+ 0.037108
2719
+ 0.050
2720
+ Lugo -
2721
+ 0.073411
2722
+ 0.049612
2723
+ 0.038789
2724
+ 0.025
2725
+ Lerida -
2726
+ 0.039123
2727
+ 0.056995
2728
+ 0.052213
2729
+ 0.041481
2730
+ 0010 -
2731
+ Palencia -
2732
+ 0.049664
2733
+ 0.033181
2734
+ 0.034299
2735
+ 0.037105
2736
+ Pontevedra
2737
+ 0.052307
2738
+ 0.036459
2739
+ Segpvin -
2740
+ 0.033276
2741
+ 0.054284
2742
+ 0.059599
2743
+ 0.050507
2744
+ 0.035978
2745
+ pa
2746
+ 0.047631
2747
+ 0.040222
2748
+ 0.037340
2749
+ valencia -
2750
+ 0.057275
2751
+ 0.040704
2752
+ -+
2753
+ -5
2754
+ 2
2755
+ -9
2756
+ -8
2757
+ 1
2758
+ LBp0.10
2759
+ 0.08
2760
+ NMr-→c (reduced)
2761
+ 0.06
2762
+ 0.04
2763
+ 0.02
2764
+ Austria
2765
+ France
2766
+ 0.00
2767
+ Spain
2768
+ 0.00
2769
+ 0.02
2770
+ 0.04
2771
+ 0.06
2772
+ 0.08
2773
+ 0.10
2774
+ NMr→c (full)Figure S11: Spatial variations of normalized effective transfer entropy. Maps of NETE
2775
+ values computed for different source time series and weekly COVID-19 deaths, in the provinces
2776
+ of Austria: (a) source is COVID-19 cases at lag l=2 weeks, (b) source is contact rate at lag l=7
2777
+ weeks, (c) source is short-range movement at lag l=7 weeks. (d) source is mid-range movement
2778
+ at lag l=7 weeks. Dark grey indicates provinces with non-significant values of NETE (p > 0.01).
2779
+ Provinces in white are excluded from our sample.
2780
+ 18
2781
+
2782
+ b
2783
+ a
2784
+ 0.00
2785
+ 0.05
2786
+ 0.10
2787
+ 0.15
2788
+ 0.20
2789
+ 0.25
2790
+ 0.30
2791
+ 0.35
2792
+ 0.00
2793
+ 0.05
2794
+ 0.10
2795
+ 0.15
2796
+ 0.20
2797
+ 0.25
2798
+ 0.30
2799
+ 0.35
2800
+ Nc→D
2801
+ NcR→D
2802
+ C
2803
+ 0.25
2804
+ 0.25
2805
+ 0.00
2806
+ 0.05
2807
+ 0.10
2808
+ 0.15
2809
+ 0.20
2810
+ 0.30
2811
+ 0.35
2812
+ 0.00
2813
+ 0.05
2814
+ 0.10
2815
+ 0.15
2816
+ 0.20
2817
+ 0.30
2818
+ 0.35
2819
+ Nms→D
2820
+ NM→DFigure S12: Spatial variations of normalized effective transfer entropy. Maps of NETE
2821
+ values computed for different source time series and weekly COVID-19 deaths, in the provinces
2822
+ of France: (a) source is COVID-19 cases at lag l=2 weeks, (b) source is contact rate at lag l=7
2823
+ weeks, (c) source is short-range movement at lag l=7 weeks. (d) source is mid-range movement
2824
+ at lag l=7 weeks. Dark grey indicates provinces with non-significant values of NETE (p > 0.01).
2825
+ Provinces in white are excluded from our sample.
2826
+ 19
2827
+
2828
+ b
2829
+ a
2830
+ 0.00
2831
+ 0.05
2832
+ 0.10
2833
+ 0.15
2834
+ 0.20
2835
+ 0.25
2836
+ 0.30
2837
+ 0.35
2838
+ 0.00
2839
+ 0.05
2840
+ 0.10
2841
+ 0.15
2842
+ 0.20
2843
+ 0.25
2844
+ 0.30
2845
+ 0.35
2846
+ Nc→D
2847
+ NcR→D
2848
+ d
2849
+ 0.05
2850
+ 0.10
2851
+ 0.15
2852
+ 0.20
2853
+ 0.25
2854
+ 0.30
2855
+ 0.35
2856
+ 0.00
2857
+ 0.05
2858
+ 0.10
2859
+ 0.15
2860
+ 0.20
2861
+ 0.25
2862
+ 0.00
2863
+ 0.30
2864
+ 0.35
2865
+ Nms-D
2866
+ NM→DFigure S13: Spatial variations of normalized effective transfer entropy. Maps of NETE
2867
+ values computed for different source time series and weekly COVID-19 deaths, in the provinces
2868
+ of Italy: (a) source is COVID-19 cases at lag l=2 weeks, (b) source is contact rate at lag l=7
2869
+ weeks, (c) source is short-range movement at lag l=7 weeks. (d) source is mid-range movement
2870
+ at lag l=7 weeks. Dark grey indicates provinces with non-significant values of NETE (p > 0.01).
2871
+ Provinces in white are excluded from our sample.
2872
+ 20
2873
+
2874
+ b
2875
+ a
2876
+ 0.00
2877
+ 0.05
2878
+ 0.10
2879
+ 0.15
2880
+ 0.20
2881
+ 0.25
2882
+ 0.30
2883
+ 0.35
2884
+ 0.00
2885
+ 0.05
2886
+ 0.10
2887
+ 0.15
2888
+ 0.20
2889
+ 0.25
2890
+ 0.30
2891
+ 0.35
2892
+ Nc→D
2893
+ NcR→D
2894
+ d
2895
+ C
2896
+ 0.05
2897
+ 0.10
2898
+ 0.15
2899
+ 0.20
2900
+ 0.25
2901
+ 0.30
2902
+ 0.35
2903
+ 0.00
2904
+ 0.05
2905
+ 0.10
2906
+ 0.15
2907
+ 0.20
2908
+ 0.25
2909
+ 0.00
2910
+ 0.30
2911
+ 0.35
2912
+ Nms-D
2913
+ NM-DFigure S14: Percentage of statistically significant NETE values, disaggregated by
2914
+ country and by mobility metric used as source variable. Target variables are: weekly
2915
+ COVID-19 cases (panel a) and weekly COVID-19 deaths (panel b).
2916
+ 21
2917
+
2918
+ b
2919
+ a
2920
+ 60
2921
+ CR
2922
+ Ms
2923
+ 30
2924
+ M
2925
+ 40
2926
+ 20
2927
+ E 20
2928
+ NETI
2929
+ 10
2930
+ 0
2931
+ 0
2932
+ Austria
2933
+ Italy
2934
+ Austria
2935
+ Italy
2936
+ France
2937
+ Spain
2938
+ France
2939
+ Spain
1dE2T4oBgHgl3EQfigf6/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
1tAzT4oBgHgl3EQf8_4M/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f4254aac0720250dfa77b55e7f0b2516a8e1f47c3af3279fc9037e99afd73f6f
3
+ size 2162733
2tAyT4oBgHgl3EQfb_cv/content/tmp_files/2301.00272v1.pdf.txt ADDED
@@ -0,0 +1,428 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.00272v1 [hep-ph] 31 Dec 2022
2
+ Quark spectral functions from spectra of mesons and vice versa
3
+ V. ˇSauli1, ∗
4
+ 1Department of Theoretical Physics, Institute of Nuclear Physics Rez near Prague, CAS, Czech Republic
5
+ Within the QCD functional formalism, having the approximations controlled by physical masses
6
+ and decays of pseudoscalar mesons, we extract spectral function of quarks from which the meson
7
+ are composed. We choose the pion for the case of light quarks and ηc(N) for the extraction of
8
+ charm quark spectral function.
9
+ For this purpose we solved improved ladder-rainbow truncation
10
+ of the spectral Dyson-Schwinger equations for quarks coupled to Bethe-Salpeter equation for the
11
+ pion and the pseudoscalar charmonia. We begin with indefinite gauge fixing method for class of
12
+ covariant linear gauges and search for its optimal value in given fixed truncation of Dyson-Schwinger
13
+ equations. All kernels are represented self-consistently by known or extrapolated solutions known
14
+ form lattice or QCD DSEs solutions.
15
+ We require the formalism gives us the spectral functions
16
+ with arbitrarily high numerical accuracy, while providing known experimental properties of mesons
17
+ simultaneously. , we found that the ladder rainbow approximation can serve for this purpose when
18
+ the Yennie gauge is employed. Properties of such spectral functions are shown and its connection
19
+ with confinement is discussed.
20
+ PACS numbers: 11.10.St, 11.15.Tk
21
+ I.
22
+ INTRODUCTION
23
+ QCD is a rigid part the Standard Model already for half century and passed many nontrivial tests when compared to
24
+ the experiment. The knowledge of correlation functions at time-like momentum region is crucial for the first principle
25
+ determination of hadronic resonances and understanding of production of hadrons [1, 2]. Lattice theory is formulated
26
+ in the Euclidean space where it is also solved, however the analytical continuation to the timelike Minkowski subspace
27
+ represents is quite often an ill defined numerical problem.
28
+ A complementary and very attractive approach is the spectral functional formalism, where the analytical contin-
29
+ uation is performed at very beginning and the set of Dyson-Schwinger equations is solved for spectral function in
30
+ Minkowski space. Such method is appreciated quite recently [1, 3–7] and includes the topics of spectral renormal-
31
+ ization - primary or secondary subtractions technique performed at the timelike momentum scale. A Yang-Mills
32
+ sector of SU(3) gauge theory was considered in [8, 9] bringing a new insights in the conventional Landau gauge. In
33
+ order to get agreement with lattice data, the importance of transverse vertices in pure gluodynamics was shown [4].
34
+ A meaningful comparison to recent lattice data was missing when the first spectral DSEs study [10] has appeared.
35
+ Nowadays, the transverse QCD vertices are known to be very important in the quark as well as in the gluon sector in
36
+ the Landau gauge and they are responsible for a large enhancement (suppression) of the propagator (proper selfener-
37
+ gies) in infrared domain. How to incorporate transverse vertices in spectral quark sector was only suggested in [1] for
38
+ the case of quark-photon vertex but not yet implemented in practice. The purpose of presented paper is not a jump
39
+ to bandwagon or chasing the train of DSEs scheduled in the Euclidean space [11, 12], but to push theory of spectral
40
+ DSEs in its own direction.
41
+ Since the relativity is less urgent for mutual interaction of heavy quarks Q = c, b inside heavy mesons, nonrelativistic
42
+ quantum mechanic was widely used to describe quarkonia and their transitions ( for a review see [16]) instead. History
43
+ tell us, that in addition to perturbative Coulomb “one gluon exchange” potential, the linear rising potential have been
44
+ proposed to explain spectra of excited quarkonia [17]. If fine tuned and ignoring quark content mixing and ignoring
45
+ resonant character of excited states, such models reasonably describe static spectra of strangeonia [18] as well. In
46
+ lattice QCD, a confining potential for a static quark-antiquark pair are computed with Wilson loops. This technique
47
+ lies aside of quark-antiquark scattering kernel used in the DSE/BSEs heavy quarkonia studies [13–15]). To match
48
+ the two different approaches -the DSEs and Wilsonian static quark potential together, is longstanding desire but
49
+ unfinished story (for attempts see [19]).
50
+ Actually, to the author best knowledge, there is not known truncation of DSES, which naturally offer the interaction
51
+ kernels, which is consistent with string picture of confinement. The string-like interaction is either introduced by hand
52
+ ∗Electronic address: [email protected]
53
+
54
+ 2
55
+ [14, 15] or even completely avoided by the use of auxiliary entire function [13]. In all cases, the approximations made
56
+ turns to be odd from perspective of spectral quark functions.
57
+ Before presenting the details of truncation, which complies with the existence of quark spectral function, let us
58
+ mention here the so called hindered transitions , which were measured at various channels [20–22]. The large discrep-
59
+ ancy between of measured rate with nonrelativistic theory prediction were usually attributed to missing relativistic
60
+ corrections. To explain the quarkonia and their transitions, a very recent treatments based either on BSE/DSEs
61
+ formalism, nonrelativistic quantum mechanic or other techniques [23–32] still represent very different approaches with
62
+ not completely clear connection to QCD. To this point, a systematically improvable truncation of DSEs with a clear
63
+ bridge to analytic properties of S-matrix could be a reliable candidate. Notably the formalism of spectral DSEs we
64
+ present here, leads to the dispersion relation for hadronic form factors (including the hindered transitions as well).
65
+ The main aims of presented work is twofold: we solve the spectral quark DSE and extract thus information on the
66
+ quark spectral function. Simultaneously, within the obtained quark propagators we solve the BSE for mesons and
67
+ check the solution against the experimental data. We employ the calculation scheme, which gives us solution with
68
+ desired analytical properties for physical meson from the very beginning. We expect the ladder-rainbow approximation
69
+ gives the first estimate of spectra for both light and heavy mesons. For this purpose we leave popular Landau gauge
70
+ and extrapolate known spectral solution obtained recently [4] into other linear gauges. Enchantingly, it turns out the
71
+ pion and heavy quarkonium (pseudoscalar charmonia) can be described within the same kernel. A correctly obtained
72
+ meson properties thus control reliability of obtained quark spectral functions. An on shell peak is washout specifically
73
+ and anomalous branch point is generated, which naturally explains a large contribution of seemingly unphysical
74
+ gauge term in considered approximation. We discuss the limitation methods as well as we suggest future prospects
75
+ and directions where the method can provide useful results.
76
+ II.
77
+ TRUNCATION OF SDES SYSTEM FOR THE PION
78
+ For purpose of completeness we write down all necessary equations here. The appropriate quark DSE for the quark
79
+ propagator S can be written in the following way
80
+ S−1(q, µ) = A(µ) ̸ q − Bq(µ) − [ΣR(q) − ΣR(µ)] ,
81
+ ΣR(q) = i4
82
+ 3
83
+
84
+ dDk
85
+ (2π)D γµS(k)ΓνGµν(k − q) ,
86
+ (2.1)
87
+ where for the product of the quark-gluon vertex Γ and the gluon propagator G we take
88
+ ΓνGµν(p) = γνN(ξ)
89
+
90
+ −gµν + pµpν
91
+ p2
92
+ � �
93
+ do
94
+ ρT (o)
95
+ p2 − o + iǫ − ξg2
96
+ p2
97
+ pµpν
98
+ p2
99
+ ,
100
+ (2.2)
101
+ where ρT is the gluon spectral function obtained with Landau gauge in the paper [4].
102
+ We adopt a conventional renormalization condition and we take ℜA(µ) = 1 ℜB(µ) = 300MeV at the timelike
103
+ subtracting point µ2 = 0.5GeV 2, noting that the imaginary parts of functions A, B, which completely characterize
104
+ the quark propagator
105
+ S−1(p) ≠ pA(p) − B(p)
106
+ (2.3)
107
+ do note take arbitrary value at the timelike renormalization point, but they are matter of numerical search. The
108
+ letter R stands for the fact that the quark selfenergy was (or can be) regularized before the secondary subtractive
109
+ renormalization takes its place. Proper regularization is more crucial and unavoidable step in gluon sector of DSEs
110
+ in order to prevent violation of gauge invariance by inappropriate numeric.
111
+ The last term in the Eq. (2.2) is aforementioned gauge term appearing in the product with the gauge coupling
112
+ g2. The prefactor N(ξ) nonlinearly depends on the coupling as well as on the gauge parameter ξ. The lattice data
113
+ for the gluon propagator are known only for ξ gauge parameter ξ being smaller then 0.5 [33, 34] in QCD without
114
+ quark. Solving a Nielsen identities the solution of truncated system of Yang-Mills DSEs has been obtained in [35].
115
+ Both studies show the gluon propagator is suppressed gradually in the infrared domain when ξ is getting larger. We
116
+ exploit this and perform a very simple extrapolation of our DSE kernel into other gauges.
117
+ The overall prefactor N(ξ) the Eq. (2.2) is varied and represents the only change when we extrapolate to nontrivial
118
+ value of the gauge parameter ξ. Gauge term is not getting dressed, due to the unbroken gauge invariance in QCD and
119
+ ξ appears linearly in our LRA employed. The extrapolation to other gauges is implicit since the ratio of the transverse
120
+ and gauge term is adjusted by the solution of Bethe-Salpeter equation for the pion. Hence we can estimate the gauge
121
+ only at the end of (quite nontrivial) search of solution. Nevertheless, for the first time we provide the first naive guess
122
+
123
+ 3
124
+ 0
125
+ 0.5
126
+ 1
127
+ 1.5
128
+ [GeV]
129
+ 0
130
+ 2
131
+ 4
132
+ 6
133
+ σ v,s [GeV
134
+ -2,GeV
135
+ -1]
136
+ u,d - s
137
+ u,d - v
138
+ charm v
139
+ charm s
140
+ u,d
141
+ c
142
+ FIG. 1: Quark spectral functions, solid line stand for the functions σv, , dashed line for σs plotted against the energy . The
143
+ left two blobs are for light quarks, the one on the right for the charm quark.
144
+ ————————————————————————————-
145
+ ξ ≃ 3, which is based on comparison with solutions of Yang-Mills system [35] performed for various gauge parameters.
146
+ Notably, the agreement of both solutions [1] and [35] with lattice data [36] in Landau gauge in the infrared domain
147
+ is enough for our rough estimate of the gauge parameter. Further approximation we describe in the next text could
148
+ not be crucial since the meson physics is not sensitive to UV tails.
149
+ The gluonic spectral function is a continuous function starting to be nonzero at p2 = 0, showing the violation of
150
+ passivity bellow several GeV . Here however, in order to reduce number of numerical integration in our pioneering
151
+ study we use a simplified (UV finite) fit for the gluonic spectral function
152
+ ρT (o) = −δ(o − m2
153
+ g) + δ(o − Λ2)
154
+ (2.4)
155
+ with mg = 0.6GeV and Λ = 2GeV .
156
+ Thus we have estimated the gauge only at the end of (quite nontrivial) search of solution for the pion BSE which
157
+ produces the correct pion mass mπ = 140MeV . The gauge choice for which the pion properties are obtained most
158
+ effectively corresponds numerically with the following rate
159
+ g2ξ
160
+ N(ξ) = 3
161
+ (2.5)
162
+ while for the absolute value we get 4N(ξ)
163
+ 3(4π)2 = 16
164
+ 3 , ( 4g2ξ
165
+ 3(4π)2 = 16).
166
+ It is tentative to identify our gauge with a Yennie gauge. Our guess is certainly naive, since based on comparison
167
+ with different truncation of DSEs for the Yang-Mills system [35] performed for various gauge parameters, including
168
+ the Landau gauge as well.
169
+ The agreement of both solutions [1] and [35] with lattice data [36] in Landau gauge
170
+ in the infrared domain is only approximate, also a further approximation represented by Eq. (2.4) calls for better
171
+ identification of the gauge parameter if needed for any future purpose. As we have checked, the realistic picture can
172
+ be obtained for the other rates (2.5), providing the range of our estimate ξ = 3 ± 1. Let us stress for clarity that
173
+ extreme cases like Landau gauge ξ = 0 or complete neglections of the first term N(ξ) = 0 do not lead to satisfactory
174
+ picture at all.
175
+ As the name indicates, the spectral DSE is nothing else but rewritten original DSE in a way that it can be solved
176
+ for the two quark spectral functions σv(o) and σs(o) , rather then for the propagator in momentum space. The quark
177
+ propagator then can be calculated through its spectral representation:
178
+ S(p) =
179
+ � ∞
180
+ 0
181
+ do̸ pσv(o) + σs(o)
182
+ p2 − o + iǫ
183
+ (2.6)
184
+ in the entire complex plane of square momentum p2 ( real value p2 > 0 correspond with Minkowski space domain in
185
+ our metric choice).
186
+ The solution of spectral DSE is described in details in series of papers [1, 3, 4] and the only change is improved
187
+ numeric for purpose of presented paper. We use two Gaussian integrator, the first is adjusted to fit the dominant peak
188
+
189
+ 4
190
+ 0
191
+ 0.5
192
+ 1
193
+ 1.5
194
+ 2
195
+ 2.5
196
+ o
197
+ 1/2 [GeV]
198
+ 0
199
+ 0.5
200
+ 1
201
+ 1.5
202
+ 2
203
+ DLSF
204
+ charm v
205
+ charm s
206
+ u,d -v
207
+ u,d -s
208
+ FIG. 2: Dimensionless quark spectral functions oσv(o) (solid line) and
209
+
210
+ (o)σs(o) (dashed line) for the light and charm quark.
211
+ At larger (smaller) energy scale the broad peak for the charm flavor (u,d) quark spectral function develops.
212
+ ————————————————————————————-
213
+ in the quark spectral function, the second one has been suitably mapped to the rest of infinite interval of spectral
214
+ variable o. The deviation from assumed analyticity σ2 as established in [3, 4], it can be arbitrarily minimized when
215
+ approaching the correct values of imaginary parts of the functions A(µ) and B(µ) at renormalized point µ. The value
216
+ σ2 = 10−6 can be achieved easily and seems to be limited by numeric rather then systematics.
217
+ The BSE for the pion has been solved for the dominant BS vertex component by eigenvalue method in complex
218
+ momentum space. Such single component approximation is working well not only for the ground state [44] but with
219
+ a slight modification for the excited states as well [15]. The BSE involves product of the scalar functions Sv(k +
220
+ P/2)Sv(k −P/2) and Ss(k +P/2)Ss(k −P/2) evaluated at complex momenta (kE is real Euclidean momentum, while
221
+ the total momentum PE = (im, 0) in rest of the pion), which we evaluate within the use the spectral representation
222
+ 2.6). Since the shape of spectral functions is difficult to control (at least at this stage), we do not use some numerical
223
+ fit and implement additional integration over the spectral representation to determine products SiSi i. As usually,
224
+ numerical codes either for BSE and DSE are available for public [37]. An alternative way to solve BSE in Minkowski
225
+ space are known, till now used simplified systems (e.g. for constituent quark models[38–40]). The method could be
226
+ necessary if one evaluates the resonant hadronic form factor [1], however as the BSE is converted into more dimensional
227
+ integro-differential equations, we prefer to solve BSE defined in the complex Euclidean space for purpose of presented
228
+ paper.
229
+ The resulting spectral functions for the the light quarks are shown in the figure 1. We work in the izospin limit
230
+ and ignore electromagnetic interaction, thus the spectral function for the up quark is identical to the d quark one.
231
+ According to broad shapes of both functions σv,s, they describe confined objects- the light quark excitations. The
232
+ quarks continuously change colors inside hadrons by exchanging of gluons, hence a width of the main peak can be
233
+ interpreted as the inverse of mean time τu,d ≃ 0.2GeV −1, which the quark of given flavor spent with a given color.
234
+ Similarly to quark weak decays, they do not represent observable, we avoid the name “decay width” in this context.
235
+ Attentive reader has surely noticed that the on-shell delta functions are absent in the spectrum. Consequently the
236
+ thresholds vanishes at evaluated form factors, which is in expected accordance with Wilsonian area law. Such behavior
237
+ is intuitively expected, and in fact it has been mimic in [41–43] by the introduction of certain infrared cutoff in the
238
+ Feynman(Schwinger) parameter in various evaluations of hadronic form factors.
239
+ III.
240
+ ηc(N) QUARKONIA
241
+ The same QCD kernel that govern interaction between quark-antiquark in the light meson is used to calculate the
242
+ heavy quarkonia. However as the interaction is not flavor universal- it constitute by the quark-gluon vertex as well,
243
+ a changes, e.g. softening of the interaction is expected.
244
+ It can be done by a change of effective mass parameters which now takes rescaled values by the factor r = 0.721,
245
+ more precisely they take the values
246
+ mc
247
+ g = 0.433 GeV ; mc
248
+ Λ = 1.442 GeV ;
249
+ (3.1)
250
+ while the dimensionless couplings like g; ξ do not change their values. We renormalize such that ℜAc(µ) = 1 and
251
+
252
+ 5
253
+ BSE EXP.
254
+ 2980 2980
255
+ 3442 3638
256
+ 4150 3810
257
+ 4720
258
+
259
+ TABLE I: Comparison with PDG data (second column) and calculated spectrum.
260
+ ReBc(µ) = r1.3GeV . The search gives for the the imaginary parts ℑAc(µ) = 0.113 and ℑBc(µ) = 0.106rGeV at
261
+ renormalization point µ2 = r20.5GeV 2.
262
+ The kernel is not further tuned however as the excited states ranges over the relatively large scale, small further
263
+ change we need is to incorporate the total momentum into the kernel. Elsewhere more important diamond diagrams
264
+ (the diagrams with interupted quark horizontal lines by gluon lines) should contribute to the kernel with substantially
265
+ small effect (note M(ηc) ≃ M(J/ψ) Instead of evaluating these complicated diagrams we mimic their small effect and
266
+ insert the following prefactor
267
+ fη =
268
+ 1
269
+
270
+ 2
271
+
272
+ 1 + M(ηc(2))2
273
+ P 2
274
+ .
275
+ (3.2)
276
+ This formally leaves the BSE for ηc(2) completely identical to the pion case, while the couplings are softened by few
277
+ percentage for higher excited states.
278
+ Thus as expected for charmonium, the two mutually opposite poles of the kernel are getting closer, which suppress
279
+ the metric term when comparing to the pion. Nevertheless, the entire effect on the charm quark spectral function is
280
+ very the same as for the light quark. The resulting charm quark spectral functions are added into the fig. 1. Since
281
+ the spectral function are dimensinfull object, we introduce the dimensionless quantity
282
+
283
+ (o)σs(o) and oσv(o) for a
284
+ better comparison of spectral function of different flavors. These object are compared in the figure 2. The on-shell
285
+ singularity is washout to a broad peak and heavy free quark excitation does not exists at all. A picture of confinement
286
+ that emerge in spectral framework of DSEs is very the same for the light as well for the heavy quarks. A scalar string
287
+ interaction governed by a linear potential is not actually needed at any quark sector.
288
+ The spectra of bottomonia can be obtained by a similar fashion, however our two mutually beating poles turns
289
+ to be cruel approximation at bottomonium scale and slightly more honest approximation is required. We plan to
290
+ perform more comprehensive study of BB system in the future.
291
+ The obtained masses are tabled in the Tab I further predicted and not yet observed states we only list here:
292
+ 5436,6186,7030MeV,... Recal, those above the first excitation all they lie above open charm threshold and they
293
+ become broad resonance and our predicted values ignores coupling to D mesons completely. Interestingly, not the
294
+ sure of mass but the mass itself is linear in principal value N , not supporting the string/Regge trajectory at all.
295
+ Furthermore, the vertex functions are not orthogonal in sense two states with different N can be produced in single
296
+ photon annihilation of e+e− (this is a bit free extension of quantum mechanical orthogonality, it obviously relies on
297
+ the formula for normalization of BSE). We also show our ultimate numerical search for eigenvalue λ and the deviation
298
+ σ2 in the figure 3. A single point shown in this figure costed one day of work of recent single processor. Even working
299
+ with multiprocessor machines the reader can imagine the time consumed before the truncation of DSE/BSE has been
300
+ established.
301
+ IV.
302
+ CONCLUSION
303
+ Using indefinite gauge fixing we have solved coupled set of spectral quark Dyson-Schwinger equations and Bethe-
304
+ Salpeter equation for the pion and we have extended the method to the heavy quarks sector represented by pseudoscalar
305
+ charmonia.
306
+ Facing the resulting spectral functions we get simple picture of confinement of the light as well as the heavy quarks:
307
+ quarks are never on-shell inside the hadrons, the inverse of quark propagator never gets zero for a real momenta. The
308
+ sharp singularity is completely wash out due to the imaginary part which is gradually growing from the anomalous
309
+ thresholds- the zero momenta.
310
+ Notably, the interaction of heavy quarks in quarkonium is far from conventional
311
+ historical wisdom: it does not lead color coulomb plus linear potential in the nonrelativistic limit.
312
+ For the pion case the solution presented here has been already obtained for kindred model, albeit the renormalization
313
+ and the kernels slightly differ numerically. That description of both - the light and heavy meson systems is possible
314
+
315
+ 6
316
+ 3000
317
+ 3500
318
+ 4000
319
+ 4500
320
+ 5000
321
+ M [MeV]
322
+ 1e-06
323
+ 0.0001
324
+ 0.01
325
+ 1
326
+ σ
327
+ 2 :
328
+ λ :
329
+ η c (3)
330
+ η c (2)
331
+ η c (4)
332
+ η c (1)
333
+ FIG. 3: The eigenvalue λ and the numerical error σ from the solution of BSE the solution for the ground state and the the
334
+ first three excited state of pseudoscalar charmonium. The definitions can be find in [15], the bound states are for λ → 1 σ → 0
335
+ when satisfied simultaneously for the meson mass M.
336
+ ————————————————————————————-
337
+ within DSEs/BSEs formalism is not surprising fact [13]. However the use of almost identical kernel used for the
338
+ charmonium and for the pion case is astonishing. Notably, the interaction of heavy quarks in quarkonium is far from
339
+ conventional historical wisdom: it does not lead to static color coulomb plus linear potential in the nonrelativistic
340
+ limit. The gauge term, which is not contribution for on-shell scattering fermions at all, turns to be important part.The
341
+ form of kernels suggest that our gauge choice is very close to the Yennie gauge ξ = 3, known because of cancellation of
342
+ infrared infinities in perturbation theory in this gauge. However here it comes out due to its perspective in truncation
343
+ convergence of QCD gap equations.
344
+ Obviously, using of spectral representation can be seen as heavy hammer tool for calculation of form factor for
345
+ spacelike argument. There, the convenient calculation within the use of Euclidean metric works sufficiently irrespective
346
+ of analytical property of the kernels. We also expect no big improvements when Isgur-Wise functions [45, 46] are
347
+ calculated within the use of presented formalism as well. There are likely other quantities insensitive to the issue of
348
+ confinement especially if vertices and quarks lines lie outside the timelike domain of momenta. On the other side, the
349
+ methodology of calculation of form factor at resonant region is a challenge where spectral DSEs will take their correct
350
+ place. Within the truncation presented here one can get the celebrated dispersion relation form [48] for Vacuum
351
+ Hadron Polarization as well as one can enjoy the resulting dispersion relation for the electromagnetic meson form
352
+ factor [1].
353
+ At last but at not least we could stress again the reasoning and strategy of our indefinite gauge method. Obviously,
354
+ If the quark SR exist in a given gauge, it is natural to expect that it exists in some other gauges as well. However to
355
+ reach the resulting SR with the simultaneous reliable solution for meson spectra requires very different effort when
356
+ one goes from one gauge choice to another one (here we the kernels are QCD vertices itself and they are not crippled
357
+ presence by ad hoc auxiliar functions ). It is well known that LRA -Γµ = gT γµ- with the lattice gluon propagator
358
+ obtained in Landau gauge, does not provide a good starting point for the calculation of mesons.
359
+ That such LRA does not receive a proper strength one can see also from DSE solution alone. It has been checked
360
+ that decreasing the fixing parameters, one gradually observe the growth of the peak in the quark spectral function
361
+ and the dirac delta function is formed after passing through the critical coupling ξg2 with a lattice gluon propagator
362
+ matched to the transverse (or metric tensor) part of interaction. At this critical point one gets non-confining (NC)
363
+ propagator solution of familiar form
364
+ SNC(p) =
365
+ R
366
+ ̸ p − mp
367
+ +
368
+ � ∞
369
+ th
370
+ doσv(o) ̸ p + σs(o)
371
+ (p2 − o + iǫ)
372
+ (4.1)
373
+ with two continuous spectral functions σv,s being nonzero only from the threshold (being identical to the fermion pole
374
+ mass mp, if one allows nontrivial gluon spectral function). Such solution typically arise at non-confining theory like
375
+ QED, being preserved for not large coupling in toy quantum field models [47]. With the value R ≃ 0.75 the authors
376
+
377
+ 7
378
+ of [6] obtained such solution for fermion propagator within LRA and lattice Landau gauge gluon data.
379
+ [1] V. Sauli, Phys. Rev. D 106, 3, 034030 (2022).
380
+ [2] V. Sauli, Phys. Rev. D 1021, 014049 (2020).
381
+ [3] V. Sauli, Few Body Syst. 61 (2020).
382
+ [4] V. Sauli, Phys. Rev.D 106, 9, 094022 (2022).
383
+ [5] E.L. Solis, C.S.R. Costa, V.V. Luiz, G. Krein, Few Body Syst. 60 3, 49 (2019).
384
+ [6] J. Horak, J. M. Pawlowski, N. Wink, arXiv:2210.07597.
385
+ [7] C. Mezrag, G. Salm`e, Eur. Phys. J. C 81 1, 34 (2021).
386
+ [8] J. Horak, J. M. Pawlowski, N. Wink, arXiv:2202.09333
387
+ [9] J. Horak, J. Papavassiliou , J. M. Pawlowski, N. Wink, Phys. Rev. D 104,074017 (2021).
388
+ [10] J.M. Cornwall, Phys. Rev. D 26,1453 (1982).
389
+ [11] C. D. Roberts and A. G. Williams C. Roberts and A.G. Williams, Prog. Part. Nucl. Phys. 33, 477 (1994).
390
+ [12] R. Alkofer, L. von Smekal, Phys. Rept. 353 281 (2001).
391
+ [13] T. Hilger, C. Popovici, M. Gomez-Rocha, A. Krassnigg, Phys. Rev. D 91 3,034013 (2015).
392
+ [14] V. Sauli, Phys. Rev. D 90, 016005 (2014).
393
+ [15] V.Sauli,Phys. Rev. D 86, 096004 (2012).
394
+ [16] E. Eichten, S. Godfrey, H. Mahlke, J. L. Rosner, Rev. Mod. Phys. 80 1161, (2008).
395
+ [17] J. Kogut and L. Susskind, Phys. Rev. D10 3468 (1974).
396
+ [18] Qi Li, Long-Cheng Gui, Ming-Sheng Liu, Qi-Fang L¨u, Xian-Hui Zhong, Chin. Phys. C 45 2, 023116 (2021).
397
+ [19] P.Bicudo, G. Marques, M. Cardoso, N. Cardoso, O. Oliveira, PoS QCD-TNT09 003 (2009); ArXive: 0912.1274.
398
+ [20] R. E. Mitchell et al. [CLEO Collaboration], Phys. Rev. Lett. 102, 011801 (2009).
399
+ [21] M. Ablikim et al. BESIII Collaboration, Phys. Rev. D 106, 112002 (2022).
400
+ [22] BESIII collaboration: M. AblikimBESIII Collaboration et al., Phys. Rev. D 96, 3, 032001 (2017).
401
+ [23] V. Guleria, E. Gebrehana, S. Bhatnagar, Phys. Rev. D 104, 9, 094045 (2021).
402
+ [24] Jun-Kang He, Hua-Zhong, Chao-Jie Fan, Phys. Rev. D 103, 11, 114006 (2021).
403
+ [25] R. Bruschini, P. Gonz´alez, Phys. Rev. D 101,1 014027 (2020).
404
+ [26] S. Bhatnagar, E. Gebrehana, Phys. Rev. D 102, 9, 094024 (2020).
405
+ [27] I. Babiarz, V. P. Goncalves, R. Pasechnik, W. Sch¨afer, A. Szczurek, Phys. Rev. D 100 5, 054018 (2019).
406
+ [28] N.R. Soni, B.R. Joshi, R.P. Shah, H.R. Chauhan, J.N. Pandya, Eur.Phys.J. C 78, 7, 592 (2018).
407
+ [29] Meijian Li, Yang Li, P. Maris, J. P. Vary, Phys. Rev. D 98 3, 034024 (2018).
408
+ [30] Wei-Jun Deng, Hui Liu, Long-Cheng Gui, Xian-Hui Zhong, Phys. Rev. D 95 3, 034026 (2017).
409
+ [31] D. Becirevic, F. Sanfilippo, JHEP 01, 028 (2013).
410
+ [32] Gang Li, Qiang Zhao, Phys. Rev. D 84 074005 (2011).
411
+ [33] P. Bicudo, D. Binosi, N. Cardoso, O. Oliveira, P. J. Silva, Phys. Rev. D 92 11, 114514 (2015).
412
+ [34] P. Bicudo, D. Binosi, N. Cardoso, O. Oliveira, P. J. Silva, talk at Lattice 2015, PoS LATTICE2015 (2016) 317; e-Print:
413
+ 1509.06737.
414
+ [35] M Napetschnig, R. Alkofer, M. Q. Huber, J. M. Pawlowski Phys. Rev. D 104, 054003 (2021).
415
+ [36] A. F. Falc˜ao, O. Oliveira, P. J. Silva, Phys. Rev. D 102, 114518 (2020).
416
+ [37] author web pages at: gemma.ujf.cas.cz
417
+ [38] V. Sauli, J. Phys. G 35, 035005 (2008).
418
+ [39] T. Frederico, G. Salme, M. Viviani, Phys. Rev. D 89, 016010 (2014).
419
+ [40] J. Carbonell, V. A. Karmanov, Eur. Phys. J. A 46,387 (2010).
420
+ [41] T. Branz, A. Faessler, T. Gutsche, M. A. Ivanov, J. G. K¨orner, and V. E. Lyubovitskij, Phys. Rev. D 81, 034010 (2010).
421
+ [42] G. Ganbold, T. Gutsche, M. A. Ivanov, and V. E. Lyubovitskij, Phys. Rev. D 104, 094048 (2021).
422
+ [43] S. Dubnicka, A. Z. Dubnickova, M.A Ivanov , A. Liptaj, Phys. Rev. D 106 033006 (2022).
423
+ [44] C.S. Fischer, D. Nickel, R. Williams, Eur. Phys. J. C60, 49 (2009).
424
+ [45] N. Isgur and M. Wise , Phys. Lett. B232 (1989).
425
+ [46] N. Isgur and M. Wise, Phys. Lett. B237, 527 (1990).
426
+ [47] V. Sauli, JHEP 02,001 (2003).
427
+ [48] N. Cabibbo and R. Gatto, Phys. Rev. 224 , 1577 (1961).
428
+
2tAyT4oBgHgl3EQfb_cv/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,506 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf,len=505
2
+ page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
3
+ page_content='00272v1 [hep-ph] 31 Dec 2022 Quark spectral functions from spectra of mesons and vice versa V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
4
+ page_content=' ˇSauli1, ∗ 1Department of Theoretical Physics, Institute of Nuclear Physics Rez near Prague, CAS, Czech Republic Within the QCD functional formalism, having the approximations controlled by physical masses and decays of pseudoscalar mesons, we extract spectral function of quarks from which the meson are composed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
5
+ page_content=' We choose the pion for the case of light quarks and ηc(N) for the extraction of charm quark spectral function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
6
+ page_content=' For this purpose we solved improved ladder-rainbow truncation of the spectral Dyson-Schwinger equations for quarks coupled to Bethe-Salpeter equation for the pion and the pseudoscalar charmonia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
7
+ page_content=' We begin with indefinite gauge fixing method for class of covariant linear gauges and search for its optimal value in given fixed truncation of Dyson-Schwinger equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
8
+ page_content=' All kernels are represented self-consistently by known or extrapolated solutions known form lattice or QCD DSEs solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
9
+ page_content=' We require the formalism gives us the spectral functions with arbitrarily high numerical accuracy, while providing known experimental properties of mesons simultaneously.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
10
+ page_content=' , we found that the ladder rainbow approximation can serve for this purpose when the Yennie gauge is employed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
11
+ page_content=' Properties of such spectral functions are shown and its connection with confinement is discussed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
12
+ page_content=' PACS numbers: 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
13
+ page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
14
+ page_content='St, 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
15
+ page_content='15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
16
+ page_content='Tk I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
17
+ page_content=' INTRODUCTION QCD is a rigid part the Standard Model already for half century and passed many nontrivial tests when compared to the experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
18
+ page_content=' The knowledge of correlation functions at time-like momentum region is crucial for the first principle determination of hadronic resonances and understanding of production of hadrons [1, 2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
19
+ page_content=' Lattice theory is formulated in the Euclidean space where it is also solved, however the analytical continuation to the timelike Minkowski subspace represents is quite often an ill defined numerical problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
20
+ page_content=' A complementary and very attractive approach is the spectral functional formalism, where the analytical contin- uation is performed at very beginning and the set of Dyson-Schwinger equations is solved for spectral function in Minkowski space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
21
+ page_content=' Such method is appreciated quite recently [1, 3–7] and includes the topics of spectral renormal- ization - primary or secondary subtractions technique performed at the timelike momentum scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
22
+ page_content=' A Yang-Mills sector of SU(3) gauge theory was considered in [8, 9] bringing a new insights in the conventional Landau gauge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
23
+ page_content=' In order to get agreement with lattice data, the importance of transverse vertices in pure gluodynamics was shown [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
24
+ page_content=' A meaningful comparison to recent lattice data was missing when the first spectral DSEs study [10] has appeared.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
25
+ page_content=' Nowadays, the transverse QCD vertices are known to be very important in the quark as well as in the gluon sector in the Landau gauge and they are responsible for a large enhancement (suppression) of the propagator (proper selfener- gies) in infrared domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
26
+ page_content=' How to incorporate transverse vertices in spectral quark sector was only suggested in [1] for the case of quark-photon vertex but not yet implemented in practice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
27
+ page_content=' The purpose of presented paper is not a jump to bandwagon or chasing the train of DSEs scheduled in the Euclidean space [11, 12], but to push theory of spectral DSEs in its own direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
28
+ page_content=' Since the relativity is less urgent for mutual interaction of heavy quarks Q = c, b inside heavy mesons, nonrelativistic quantum mechanic was widely used to describe quarkonia and their transitions ( for a review see [16]) instead.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
29
+ page_content=' History tell us, that in addition to perturbative Coulomb “one gluon exchange” potential, the linear rising potential have been proposed to explain spectra of excited quarkonia [17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
30
+ page_content=' If fine tuned and ignoring quark content mixing and ignoring resonant character of excited states, such models reasonably describe static spectra of strangeonia [18] as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
31
+ page_content=' In lattice QCD, a confining potential for a static quark-antiquark pair are computed with Wilson loops.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
32
+ page_content=' This technique lies aside of quark-antiquark scattering kernel used in the DSE/BSEs heavy quarkonia studies [13–15]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
33
+ page_content=' To match the two different approaches -the DSEs and Wilsonian static quark potential together, is longstanding desire but unfinished story (for attempts see [19]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
34
+ page_content=' Actually, to the author best knowledge, there is not known truncation of DSES, which naturally offer the interaction kernels, which is consistent with string picture of confinement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
35
+ page_content=' The string-like interaction is either introduced by hand ∗Electronic address: sauli@ujf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
36
+ page_content='cas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
37
+ page_content='cz 2 [14, 15] or even completely avoided by the use of auxiliary entire function [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
38
+ page_content=' In all cases, the approximations made turns to be odd from perspective of spectral quark functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
39
+ page_content=' Before presenting the details of truncation, which complies with the existence of quark spectral function, let us mention here the so called hindered transitions , which were measured at various channels [20–22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
40
+ page_content=' The large discrep- ancy between of measured rate with nonrelativistic theory prediction were usually attributed to missing relativistic corrections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
41
+ page_content=' To explain the quarkonia and their transitions, a very recent treatments based either on BSE/DSEs formalism, nonrelativistic quantum mechanic or other techniques [23–32] still represent very different approaches with not completely clear connection to QCD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
42
+ page_content=' To this point, a systematically improvable truncation of DSEs with a clear bridge to analytic properties of S-matrix could be a reliable candidate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
43
+ page_content=' Notably the formalism of spectral DSEs we present here, leads to the dispersion relation for hadronic form factors (including the hindered transitions as well).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
44
+ page_content=' The main aims of presented work is twofold: we solve the spectral quark DSE and extract thus information on the quark spectral function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
45
+ page_content=' Simultaneously, within the obtained quark propagators we solve the BSE for mesons and check the solution against the experimental data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
46
+ page_content=' We employ the calculation scheme, which gives us solution with desired analytical properties for physical meson from the very beginning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
47
+ page_content=' We expect the ladder-rainbow approximation gives the first estimate of spectra for both light and heavy mesons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
48
+ page_content=' For this purpose we leave popular Landau gauge and extrapolate known spectral solution obtained recently [4] into other linear gauges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
49
+ page_content=' Enchantingly, it turns out the pion and heavy quarkonium (pseudoscalar charmonia) can be described within the same kernel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
50
+ page_content=' A correctly obtained meson properties thus control reliability of obtained quark spectral functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
51
+ page_content=' An on shell peak is washout specifically and anomalous branch point is generated, which naturally explains a large contribution of seemingly unphysical gauge term in considered approximation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
52
+ page_content=' We discuss the limitation methods as well as we suggest future prospects and directions where the method can provide useful results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
53
+ page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
54
+ page_content=' TRUNCATION OF SDES SYSTEM FOR THE PION For purpose of completeness we write down all necessary equations here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
55
+ page_content=' The appropriate quark DSE for the quark propagator S can be written in the following way S−1(q, µ) = A(µ) ̸ q − Bq(µ) − [ΣR(q) − ΣR(µ)] , ΣR(q) = i4 3 � dDk (2π)D γµS(k)ΓνGµν(k − q) , (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
56
+ page_content='1) where for the product of the quark-gluon vertex Γ and the gluon propagator G we take ΓνGµν(p) = γνN(ξ) � −gµν + pµpν p2 � � do ρT (o) p2 − o + iǫ − ξg2 p2 pµpν p2 , (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
57
+ page_content='2) where ρT is the gluon spectral function obtained with Landau gauge in the paper [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
58
+ page_content=' We adopt a conventional renormalization condition and we take ℜA(µ) = 1 ℜB(µ) = 300MeV at the timelike subtracting point µ2 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
59
+ page_content='5GeV 2, noting that the imaginary parts of functions A, B, which completely characterize the quark propagator S−1(p) ≠ pA(p) − B(p) (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
60
+ page_content='3) do note take arbitrary value at the timelike renormalization point, but they are matter of numerical search.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
61
+ page_content=' The letter R stands for the fact that the quark selfenergy was (or can be) regularized before the secondary subtractive renormalization takes its place.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
62
+ page_content=' Proper regularization is more crucial and unavoidable step in gluon sector of DSEs in order to prevent violation of gauge invariance by inappropriate numeric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
63
+ page_content=' The last term in the Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
64
+ page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
65
+ page_content='2) is aforementioned gauge term appearing in the product with the gauge coupling g2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
66
+ page_content=' The prefactor N(ξ) nonlinearly depends on the coupling as well as on the gauge parameter ξ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
67
+ page_content=' The lattice data for the gluon propagator are known only for ξ gauge parameter ξ being smaller then 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
68
+ page_content='5 [33, 34] in QCD without quark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
69
+ page_content=' Solving a Nielsen identities the solution of truncated system of Yang-Mills DSEs has been obtained in [35].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
70
+ page_content=' Both studies show the gluon propagator is suppressed gradually in the infrared domain when ξ is getting larger.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
71
+ page_content=' We exploit this and perform a very simple extrapolation of our DSE kernel into other gauges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
72
+ page_content=' The overall prefactor N(ξ) the Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
73
+ page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
74
+ page_content='2) is varied and represents the only change when we extrapolate to nontrivial value of the gauge parameter ξ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
75
+ page_content=' Gauge term is not getting dressed, due to the unbroken gauge invariance in QCD and ξ appears linearly in our LRA employed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
76
+ page_content=' The extrapolation to other gauges is implicit since the ratio of the transverse and gauge term is adjusted by the solution of Bethe-Salpeter equation for the pion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
77
+ page_content=' Hence we can estimate the gauge only at the end of (quite nontrivial) search of solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
78
+ page_content=' Nevertheless, for the first time we provide the first naive guess 3 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
79
+ page_content='5 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
80
+ page_content='5 [GeV] 0 2 4 6 σ v,s [GeV 2,GeV 1] u,d - s u,d - v charm v charm s u,d c FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
81
+ page_content=' 1: Quark spectral functions, solid line stand for the functions σv, , dashed line for σs plotted against the energy .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
82
+ page_content=' The left two blobs are for light quarks, the one on the right for the charm quark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
83
+ page_content=' ————————————————————————————- ξ ≃ 3, which is based on comparison with solutions of Yang-Mills system [35] performed for various gauge parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
84
+ page_content=' Notably, the agreement of both solutions [1] and [35] with lattice data [36] in Landau gauge in the infrared domain is enough for our rough estimate of the gauge parameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
85
+ page_content=' Further approximation we describe in the next text could not be crucial since the meson physics is not sensitive to UV tails.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
86
+ page_content=' The gluonic spectral function is a continuous function starting to be nonzero at p2 = 0, showing the violation of passivity bellow several GeV .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
87
+ page_content=' Here however, in order to reduce number of numerical integration in our pioneering study we use a simplified (UV finite) fit for the gluonic spectral function ρT (o) = −δ(o − m2 g) + δ(o − Λ2) (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
88
+ page_content='4) with mg = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
89
+ page_content='6GeV and Λ = 2GeV .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
90
+ page_content=' Thus we have estimated the gauge only at the end of (quite nontrivial) search of solution for the pion BSE which produces the correct pion mass mπ = 140MeV .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
91
+ page_content=' The gauge choice for which the pion properties are obtained most effectively corresponds numerically with the following rate g2ξ N(ξ) = 3 (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
92
+ page_content='5) while for the absolute value we get 4N(ξ) 3(4π)2 = 16 3 , ( 4g2ξ 3(4π)2 = 16).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
93
+ page_content=' It is tentative to identify our gauge with a Yennie gauge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
94
+ page_content=' Our guess is certainly naive, since based on comparison with different truncation of DSEs for the Yang-Mills system [35] performed for various gauge parameters, including the Landau gauge as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
95
+ page_content=' The agreement of both solutions [1] and [35] with lattice data [36] in Landau gauge in the infrared domain is only approximate, also a further approximation represented by Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
96
+ page_content=' (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
97
+ page_content='4) calls for better identification of the gauge parameter if needed for any future purpose.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
98
+ page_content=' As we have checked, the realistic picture can be obtained for the other rates (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
99
+ page_content='5), providing the range of our estimate ξ = 3 ± 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
100
+ page_content=' Let us stress for clarity that extreme cases like Landau gauge ξ = 0 or complete neglections of the first term N(ξ) = 0 do not lead to satisfactory picture at all.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
101
+ page_content=' As the name indicates, the spectral DSE is nothing else but rewritten original DSE in a way that it can be solved for the two quark spectral functions σv(o) and σs(o) , rather then for the propagator in momentum space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
102
+ page_content=' The quark propagator then can be calculated through its spectral representation: S(p) = � ∞ 0 do̸ pσv(o) + σs(o) p2 − o + iǫ (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
103
+ page_content='6) in the entire complex plane of square momentum p2 ( real value p2 > 0 correspond with Minkowski space domain in our metric choice).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
104
+ page_content=' The solution of spectral DSE is described in details in series of papers [1, 3, 4] and the only change is improved numeric for purpose of presented paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
105
+ page_content=' We use two Gaussian integrator, the first is adjusted to fit the dominant peak 4 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
106
+ page_content='5 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
107
+ page_content='5 2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
108
+ page_content='5 o 1/2 [GeV] 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
109
+ page_content='5 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
110
+ page_content='5 2 DLSF charm v charm s u,d -v u,d -s FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
111
+ page_content=' 2: Dimensionless quark spectral functions oσv(o) (solid line) and � (o)σs(o) (dashed line) for the light and charm quark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
112
+ page_content=' At larger (smaller) energy scale the broad peak for the charm flavor (u,d) quark spectral function develops.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
113
+ page_content=' ————————————————————————————- in the quark spectral function, the second one has been suitably mapped to the rest of infinite interval of spectral variable o.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
114
+ page_content=' The deviation from assumed analyticity σ2 as established in [3, 4], it can be arbitrarily minimized when approaching the correct values of imaginary parts of the functions A(µ) and B(µ) at renormalized point µ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
115
+ page_content=' The value σ2 = 10−6 can be achieved easily and seems to be limited by numeric rather then systematics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
116
+ page_content=' The BSE for the pion has been solved for the dominant BS vertex component by eigenvalue method in complex momentum space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
117
+ page_content=' Such single component approximation is working well not only for the ground state [44] but with a slight modification for the excited states as well [15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
118
+ page_content=' The BSE involves product of the scalar functions Sv(k + P/2)Sv(k −P/2) and Ss(k +P/2)Ss(k −P/2) evaluated at complex momenta (kE is real Euclidean momentum, while the total momentum PE = (im, 0) in rest of the pion), which we evaluate within the use the spectral representation 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
119
+ page_content='6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
120
+ page_content=' Since the shape of spectral functions is difficult to control (at least at this stage), we do not use some numerical fit and implement additional integration over the spectral representation to determine products SiSi i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
121
+ page_content=' As usually, numerical codes either for BSE and DSE are available for public [37].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
122
+ page_content=' An alternative way to solve BSE in Minkowski space are known, till now used simplified systems (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
123
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
124
+ page_content=' for constituent quark models[38–40]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
125
+ page_content=' The method could be necessary if one evaluates the resonant hadronic form factor [1], however as the BSE is converted into more dimensional integro-differential equations, we prefer to solve BSE defined in the complex Euclidean space for purpose of presented paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
126
+ page_content=' The resulting spectral functions for the the light quarks are shown in the figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
127
+ page_content=' We work in the izospin limit and ignore electromagnetic interaction, thus the spectral function for the up quark is identical to the d quark one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
128
+ page_content=' According to broad shapes of both functions σv,s, they describe confined objects- the light quark excitations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
129
+ page_content=' The quarks continuously change colors inside hadrons by exchanging of gluons, hence a width of the main peak can be interpreted as the inverse of mean time τu,d ≃ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
130
+ page_content='2GeV −1, which the quark of given flavor spent with a given color.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
131
+ page_content=' Similarly to quark weak decays, they do not represent observable, we avoid the name “decay width” in this context.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
132
+ page_content=' Attentive reader has surely noticed that the on-shell delta functions are absent in the spectrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
133
+ page_content=' Consequently the thresholds vanishes at evaluated form factors, which is in expected accordance with Wilsonian area law.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
134
+ page_content=' Such behavior is intuitively expected, and in fact it has been mimic in [41–43] by the introduction of certain infrared cutoff in the Feynman(Schwinger) parameter in various evaluations of hadronic form factors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
135
+ page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
136
+ page_content=' ηc(N) QUARKONIA The same QCD kernel that govern interaction between quark-antiquark in the light meson is used to calculate the heavy quarkonia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
137
+ page_content=' However as the interaction is not flavor universal- it constitute by the quark-gluon vertex as well, a changes, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
138
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
139
+ page_content=' softening of the interaction is expected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
140
+ page_content=' It can be done by a change of effective mass parameters which now takes rescaled values by the factor r = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
141
+ page_content='721, more precisely they take the values mc g = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
142
+ page_content='433 GeV ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
143
+ page_content=' mc Λ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
144
+ page_content='442 GeV ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
145
+ page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
146
+ page_content='1) while the dimensionless couplings like g;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
147
+ page_content=' ξ do not change their values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
148
+ page_content=' We renormalize such that ℜAc(µ) = 1 and 5 BSE EXP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
149
+ page_content=' 2980 2980 3442 3638 4150 3810 4720 – TABLE I: Comparison with PDG data (second column) and calculated spectrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
150
+ page_content=' ReBc(µ) = r1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
151
+ page_content='3GeV .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
152
+ page_content=' The search gives for the the imaginary parts ℑAc(µ) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
153
+ page_content='113 and ℑBc(µ) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
154
+ page_content='106rGeV at renormalization point µ2 = r20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
155
+ page_content='5GeV 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
156
+ page_content=' The kernel is not further tuned however as the excited states ranges over the relatively large scale, small further change we need is to incorporate the total momentum into the kernel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
157
+ page_content=' Elsewhere more important diamond diagrams (the diagrams with interupted quark horizontal lines by gluon lines) should contribute to the kernel with substantially small effect (note M(ηc) ≃ M(J/ψ) Instead of evaluating these complicated diagrams we mimic their small effect and insert the following prefactor fη = 1 √ 2 � 1 + M(ηc(2))2 P 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
158
+ page_content=' (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
159
+ page_content='2) This formally leaves the BSE for ηc(2) completely identical to the pion case, while the couplings are softened by few percentage for higher excited states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
160
+ page_content=' Thus as expected for charmonium, the two mutually opposite poles of the kernel are getting closer, which suppress the metric term when comparing to the pion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
161
+ page_content=' Nevertheless, the entire effect on the charm quark spectral function is very the same as for the light quark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
162
+ page_content=' The resulting charm quark spectral functions are added into the fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
163
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
164
+ page_content=' Since the spectral function are dimensinfull object, we introduce the dimensionless quantity � (o)σs(o) and oσv(o) for a better comparison of spectral function of different flavors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
165
+ page_content=' These object are compared in the figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
166
+ page_content=' The on-shell singularity is washout to a broad peak and heavy free quark excitation does not exists at all.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
167
+ page_content=' A picture of confinement that emerge in spectral framework of DSEs is very the same for the light as well for the heavy quarks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
168
+ page_content=' A scalar string interaction governed by a linear potential is not actually needed at any quark sector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
169
+ page_content=' The spectra of bottomonia can be obtained by a similar fashion, however our two mutually beating poles turns to be cruel approximation at bottomonium scale and slightly more honest approximation is required.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
170
+ page_content=' We plan to perform more comprehensive study of BB system in the future.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
171
+ page_content=' The obtained masses are tabled in the Tab I further predicted and not yet observed states we only list here: 5436,6186,7030MeV,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
172
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
173
+ page_content=' Recal, those above the first excitation all they lie above open charm threshold and they become broad resonance and our predicted values ignores coupling to D mesons completely.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
174
+ page_content=' Interestingly, not the sure of mass but the mass itself is linear in principal value N , not supporting the string/Regge trajectory at all.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
175
+ page_content=' Furthermore, the vertex functions are not orthogonal in sense two states with different N can be produced in single photon annihilation of e+e− (this is a bit free extension of quantum mechanical orthogonality, it obviously relies on the formula for normalization of BSE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
176
+ page_content=' We also show our ultimate numerical search for eigenvalue λ and the deviation σ2 in the figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
177
+ page_content=' A single point shown in this figure costed one day of work of recent single processor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
178
+ page_content=' Even working with multiprocessor machines the reader can imagine the time consumed before the truncation of DSE/BSE has been established.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
179
+ page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
180
+ page_content=' CONCLUSION Using indefinite gauge fixing we have solved coupled set of spectral quark Dyson-Schwinger equations and Bethe- Salpeter equation for the pion and we have extended the method to the heavy quarks sector represented by pseudoscalar charmonia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
181
+ page_content=' Facing the resulting spectral functions we get simple picture of confinement of the light as well as the heavy quarks: quarks are never on-shell inside the hadrons, the inverse of quark propagator never gets zero for a real momenta.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
182
+ page_content=' The sharp singularity is completely wash out due to the imaginary part which is gradually growing from the anomalous thresholds- the zero momenta.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
183
+ page_content=' Notably, the interaction of heavy quarks in quarkonium is far from conventional historical wisdom: it does not lead color coulomb plus linear potential in the nonrelativistic limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
184
+ page_content=' For the pion case the solution presented here has been already obtained for kindred model, albeit the renormalization and the kernels slightly differ numerically.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
185
+ page_content=' That description of both - the light and heavy meson systems is possible 6 3000 3500 4000 4500 5000 M [MeV] 1e-06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
186
+ page_content='0001 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
187
+ page_content='01 1 σ 2 : λ : η c (3) η c (2) η c (4) η c (1) FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
188
+ page_content=' 3: The eigenvalue λ and the numerical error σ from the solution of BSE the solution for the ground state and the the first three excited state of pseudoscalar charmonium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
189
+ page_content=' The definitions can be find in [15], the bound states are for λ → 1 σ → 0 when satisfied simultaneously for the meson mass M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
190
+ page_content=' ————————————————————————————- within DSEs/BSEs formalism is not surprising fact [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
191
+ page_content=' However the use of almost identical kernel used for the charmonium and for the pion case is astonishing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
192
+ page_content=' Notably, the interaction of heavy quarks in quarkonium is far from conventional historical wisdom: it does not lead to static color coulomb plus linear potential in the nonrelativistic limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
193
+ page_content=' The gauge term, which is not contribution for on-shell scattering fermions at all, turns to be important part.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
194
+ page_content='The form of kernels suggest that our gauge choice is very close to the Yennie gauge ξ = 3, known because of cancellation of infrared infinities in perturbation theory in this gauge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
195
+ page_content=' However here it comes out due to its perspective in truncation convergence of QCD gap equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
196
+ page_content=' Obviously, using of spectral representation can be seen as heavy hammer tool for calculation of form factor for spacelike argument.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
197
+ page_content=' There, the convenient calculation within the use of Euclidean metric works sufficiently irrespective of analytical property of the kernels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
198
+ page_content=' We also expect no big improvements when Isgur-Wise functions [45, 46] are calculated within the use of presented formalism as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
199
+ page_content=' There are likely other quantities insensitive to the issue of confinement especially if vertices and quarks lines lie outside the timelike domain of momenta.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
200
+ page_content=' On the other side, the methodology of calculation of form factor at resonant region is a challenge where spectral DSEs will take their correct place.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
201
+ page_content=' Within the truncation presented here one can get the celebrated dispersion relation form [48] for Vacuum Hadron Polarization as well as one can enjoy the resulting dispersion relation for the electromagnetic meson form factor [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
202
+ page_content=' At last but at not least we could stress again the reasoning and strategy of our indefinite gauge method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
203
+ page_content=' Obviously, If the quark SR exist in a given gauge, it is natural to expect that it exists in some other gauges as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
204
+ page_content=' However to reach the resulting SR with the simultaneous reliable solution for meson spectra requires very different effort when one goes from one gauge choice to another one (here we the kernels are QCD vertices itself and they are not crippled presence by ad hoc auxiliar functions ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
205
+ page_content=' It is well known that LRA -Γµ = gT γµ- with the lattice gluon propagator obtained in Landau gauge, does not provide a good starting point for the calculation of mesons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
206
+ page_content=' That such LRA does not receive a proper strength one can see also from DSE solution alone.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
207
+ page_content=' It has been checked that decreasing the fixing parameters, one gradually observe the growth of the peak in the quark spectral function and the dirac delta function is formed after passing through the critical coupling ξg2 with a lattice gluon propagator matched to the transverse (or metric tensor) part of interaction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
208
+ page_content=' At this critical point one gets non-confining (NC) propagator solution of familiar form SNC(p) = R ̸ p − mp + � ∞ th doσv(o) ̸ p + σs(o) (p2 − o + iǫ) (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
209
+ page_content='1) with two continuous spectral functions σv,s being nonzero only from the threshold (being identical to the fermion pole mass mp, if one allows nontrivial gluon spectral function).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
210
+ page_content=' Such solution typically arise at non-confining theory like QED, being preserved for not large coupling in toy quantum field models [47].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
211
+ page_content=' With the value R ≃ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
212
+ page_content='75 the authors 7 of [6] obtained such solution for fermion propagator within LRA and lattice Landau gauge gluon data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
213
+ page_content=' [1] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
214
+ page_content=' Sauli, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
215
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
216
+ page_content=' D 106, 3, 034030 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
217
+ page_content=' [2] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
218
+ page_content=' Sauli, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
219
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
220
+ page_content=' D 1021, 014049 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
221
+ page_content=' [3] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
222
+ page_content=' Sauli, Few Body Syst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
223
+ page_content=' 61 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
224
+ page_content=' [4] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
225
+ page_content=' Sauli, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
226
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
227
+ page_content='D 106, 9, 094022 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
228
+ page_content=' [5] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
229
+ page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
230
+ page_content=' Solis, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
231
+ page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
232
+ page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
233
+ page_content=' Costa, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
234
+ page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
235
+ page_content=' Luiz, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
236
+ page_content=' Krein, Few Body Syst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
237
+ page_content=' 60 3, 49 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
238
+ page_content=' [6] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
239
+ page_content=' Horak, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
240
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
241
+ page_content=' Pawlowski, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
242
+ page_content=' Wink, arXiv:2210.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
243
+ page_content='07597.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
244
+ page_content=' [7] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
245
+ page_content=' Mezrag, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
246
+ page_content=' Salm`e, Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
247
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
248
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
249
+ page_content=' C 81 1, 34 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
250
+ page_content=' [8] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
251
+ page_content=' Horak, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
252
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
253
+ page_content=' Pawlowski, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
254
+ page_content=' Wink, arXiv:2202.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
255
+ page_content='09333 [9] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
256
+ page_content=' Horak, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
257
+ page_content=' Papavassiliou , J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
258
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
259
+ page_content=' Pawlowski, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
260
+ page_content=' Wink, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
261
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
262
+ page_content=' D 104,074017 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
263
+ page_content=' [10] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
264
+ page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
265
+ page_content=' Cornwall, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
266
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
267
+ page_content=' D 26,1453 (1982).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
268
+ page_content=' [11] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
269
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
270
+ page_content=' Roberts and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
271
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
272
+ page_content=' Williams C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
273
+ page_content=' Roberts and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
274
+ page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
275
+ page_content=' Williams, Prog.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
276
+ page_content=' Part.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
277
+ page_content=' Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
278
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
279
+ page_content=' 33, 477 (1994).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
280
+ page_content=' [12] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
281
+ page_content=' Alkofer, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
282
+ page_content=' von Smekal, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
283
+ page_content=' Rept.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
284
+ page_content=' 353 281 (2001).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
285
+ page_content=' [13] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
286
+ page_content=' Hilger, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
287
+ page_content=' Popovici, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
288
+ page_content=' Gomez-Rocha, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
289
+ page_content=' Krassnigg, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
290
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
291
+ page_content=' D 91 3,034013 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
292
+ page_content=' [14] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
293
+ page_content=' Sauli, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
294
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
295
+ page_content=' D 90, 016005 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
296
+ page_content=' [15] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
297
+ page_content='Sauli,Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
298
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
299
+ page_content=' D 86, 096004 (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
300
+ page_content=' [16] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
301
+ page_content=' Eichten, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
302
+ page_content=' Godfrey, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
303
+ page_content=' Mahlke, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
304
+ page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
305
+ page_content=' Rosner, Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
306
+ page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
307
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
308
+ page_content=' 80 1161, (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
309
+ page_content=' [17] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
310
+ page_content=' Kogut and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
311
+ page_content=' Susskind, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
312
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
313
+ page_content=' D10 3468 (1974).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
314
+ page_content=' [18] Qi Li, Long-Cheng Gui, Ming-Sheng Liu, Qi-Fang L¨u, Xian-Hui Zhong, Chin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
315
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
316
+ page_content=' C 45 2, 023116 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
317
+ page_content=' [19] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
318
+ page_content='Bicudo, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
319
+ page_content=' Marques, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
320
+ page_content=' Cardoso, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
321
+ page_content=' Cardoso, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
322
+ page_content=' Oliveira, PoS QCD-TNT09 003 (2009);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
323
+ page_content=' ArXive: 0912.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
324
+ page_content='1274.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
325
+ page_content=' [20] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
326
+ page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
327
+ page_content=' Mitchell et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
328
+ page_content=' [CLEO Collaboration], Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
329
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
330
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
331
+ page_content=' 102, 011801 (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
332
+ page_content=' [21] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
333
+ page_content=' Ablikim et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
334
+ page_content=' BESIII Collaboration, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
335
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
336
+ page_content=' D 106, 112002 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
337
+ page_content=' [22] BESIII collaboration: M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
338
+ page_content=' AblikimBESIII Collaboration et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
339
+ page_content=', Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
340
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
341
+ page_content=' D 96, 3, 032001 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
342
+ page_content=' [23] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
343
+ page_content=' Guleria, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
344
+ page_content=' Gebrehana, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
345
+ page_content=' Bhatnagar, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
346
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
347
+ page_content=' D 104, 9, 094045 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
348
+ page_content=' [24] Jun-Kang He, Hua-Zhong, Chao-Jie Fan, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
349
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
350
+ page_content=' D 103, 11, 114006 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
351
+ page_content=' [25] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
352
+ page_content=' Bruschini, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
353
+ page_content=' Gonz´alez, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
354
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
355
+ page_content=' D 101,1 014027 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
356
+ page_content=' [26] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
357
+ page_content=' Bhatnagar, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
358
+ page_content=' Gebrehana, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
359
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
360
+ page_content=' D 102, 9, 094024 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
361
+ page_content=' [27] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
362
+ page_content=' Babiarz, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
363
+ page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
364
+ page_content=' Goncalves, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
365
+ page_content=' Pasechnik, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
366
+ page_content=' Sch¨afer, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
367
+ page_content=' Szczurek, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
368
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
369
+ page_content=' D 100 5, 054018 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
370
+ page_content=' [28] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
371
+ page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
372
+ page_content=' Soni, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
373
+ page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
374
+ page_content=' Joshi, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
375
+ page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
376
+ page_content=' Shah, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
377
+ page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
378
+ page_content=' Chauhan, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
379
+ page_content='N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
380
+ page_content=' Pandya, Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
381
+ page_content='Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
382
+ page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
383
+ page_content=' C 78, 7, 592 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
384
+ page_content=' [29] Meijian Li, Yang Li, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
385
+ page_content=' Maris, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
386
+ page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
387
+ page_content=' Vary, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
388
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
389
+ page_content=' D 98 3, 034024 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
390
+ page_content=' [30] Wei-Jun Deng, Hui Liu, Long-Cheng Gui, Xian-Hui Zhong, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
391
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
392
+ page_content=' D 95 3, 034026 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
393
+ page_content=' [31] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
394
+ page_content=' Becirevic, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
395
+ page_content=' Sanfilippo, JHEP 01, 028 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
396
+ page_content=' [32] Gang Li, Qiang Zhao, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
397
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
398
+ page_content=' D 84 074005 (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
399
+ page_content=' [33] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
400
+ page_content=' Bicudo, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
401
+ page_content=' Binosi, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
402
+ page_content=' Cardoso, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
403
+ page_content=' Oliveira, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
404
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
405
+ page_content=' Silva, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
406
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
407
+ page_content=' D 92 11, 114514 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
408
+ page_content=' [34] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
409
+ page_content=' Bicudo, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
410
+ page_content=' Binosi, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
411
+ page_content=' Cardoso, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
412
+ page_content=' Oliveira, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
413
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
414
+ page_content=' Silva, talk at Lattice 2015, PoS LATTICE2015 (2016) 317;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
415
+ page_content=' e-Print: 1509.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
416
+ page_content='06737.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
417
+ page_content=' [35] M Napetschnig, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
418
+ page_content=' Alkofer, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
419
+ page_content=' Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
420
+ page_content=' Huber, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
421
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
422
+ page_content=' Pawlowski Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
423
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
424
+ page_content=' D 104, 054003 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
425
+ page_content=' [36] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
426
+ page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
427
+ page_content=' Falc˜ao, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
428
+ page_content=' Oliveira, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
429
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
430
+ page_content=' Silva, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
431
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
432
+ page_content=' D 102, 114518 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
433
+ page_content=' [37] author web pages at: gemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
434
+ page_content='ujf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
435
+ page_content='cas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
436
+ page_content='cz [38] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
437
+ page_content=' Sauli, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
438
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
439
+ page_content=' G 35, 035005 (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
440
+ page_content=' [39] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
441
+ page_content=' Frederico, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
442
+ page_content=' Salme, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
443
+ page_content=' Viviani, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
444
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
445
+ page_content=' D 89, 016010 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
446
+ page_content=' [40] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
447
+ page_content=' Carbonell, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
448
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
449
+ page_content=' Karmanov, Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
450
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
451
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
452
+ page_content=' A 46,387 (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
453
+ page_content=' [41] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
454
+ page_content=' Branz, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
455
+ page_content=' Faessler, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
456
+ page_content=' Gutsche, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
457
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
458
+ page_content=' Ivanov, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
459
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
460
+ page_content=' K¨orner, and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
461
+ page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
462
+ page_content=' Lyubovitskij, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
463
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
464
+ page_content=' D 81, 034010 (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
465
+ page_content=' [42] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
466
+ page_content=' Ganbold, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
467
+ page_content=' Gutsche, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
468
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
469
+ page_content=' Ivanov, and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
470
+ page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
471
+ page_content=' Lyubovitskij, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
472
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
473
+ page_content=' D 104, 094048 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
474
+ page_content=' [43] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
475
+ page_content=' Dubnicka, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
476
+ page_content=' Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
477
+ page_content=' Dubnickova, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
478
+ page_content='A Ivanov , A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
479
+ page_content=' Liptaj, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
480
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
481
+ page_content=' D 106 033006 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
482
+ page_content=' [44] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
483
+ page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
484
+ page_content=' Fischer, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
485
+ page_content=' Nickel, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
486
+ page_content=' Williams, Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
487
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
488
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
489
+ page_content=' C60, 49 (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
490
+ page_content=' [45] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
491
+ page_content=' Isgur and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
492
+ page_content=' Wise , Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
493
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
494
+ page_content=' B232 (1989).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
495
+ page_content=' [46] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
496
+ page_content=' Isgur and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
497
+ page_content=' Wise, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
498
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
499
+ page_content=' B237, 527 (1990).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
500
+ page_content=' [47] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
501
+ page_content=' Sauli, JHEP 02,001 (2003).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
502
+ page_content=' [48] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
503
+ page_content=' Cabibbo and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
504
+ page_content=' Gatto, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
505
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
506
+ page_content=' 224 , 1577 (1961).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2tAyT4oBgHgl3EQfb_cv/content/2301.00272v1.pdf'}
2tAzT4oBgHgl3EQfuP3I/content/tmp_files/2301.01689v1.pdf.txt ADDED
@@ -0,0 +1,1910 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+ Process Variation-Aware Compact Model of Strip
3
+ Waveguides for Photonic Circuit Simulation
4
+ Aneek James, Anthony Rizzo, Yuyang Wang, Asher Novick, Songli Wang, Robert Parsons, Kaylx Jang,
5
+ Maarten Hattink, and Keren Bergman
6
+ Abstract—We report a novel process variation-aware compact
7
+ model of strip waveguides that is suitable for circuit-level sim-
8
+ ulation of waveguide-based process design kit (PDK) elements.
9
+ The model is shown to describe both loss and—using a novel
10
+ expression for the thermo-optic effect in high index contrast
11
+ materials—the thermo-optic behavior of strip waveguides. A
12
+ novel group extraction method enables modeling the effective
13
+ index’s (neff) sensitivity to local process variations without the
14
+ presumption of variation source. Use of Euler-bend Mach-
15
+ Zehnder interferometers (MZIs) fabricated in a 300 mm wafer
16
+ run allow model parameter extraction at widths up to 2.5 µm
17
+ (highly multi-mode) with strong suppression of higher-order
18
+ mode excitation. Experimental results prove the reported model
19
+ can self-consistently describe waveguide phase, loss, and thermo-
20
+ optic behavior across all measured devices over an unprecedented
21
+ range of optical bandwidth, waveguide widths, and temperatures.
22
+ Index Terms—Silicon photonics, compact modeling, process
23
+ variation.
24
+ I. INTRODUCTION
25
+ S
26
+ ILICON photonics (SiPh) has seen explosive growth in
27
+ demand as a technology platform, driven by its adoption
28
+ in data centers (DC), high performance computing (HPC) [1]–
29
+ [3], quantum computing [4]–[8], and radio-frequency com-
30
+ munication systems [9]–[11]. SiPh’s rapid rise and matura-
31
+ tion has been enabled by its ability to leverage decades of
32
+ research in the complementary metal–oxide–semiconductor
33
+ (CMOS) industry, drastically reducing the typical research and
34
+ development (R&D) costs associated with new semiconductor
35
+ technologies [12]–[14]. SiPh, however, has not yet been able
36
+ to mimic CMOS yield prediction tools for evaluating photonic
37
+ integrated circuits (PICs). Yield is a ubiquitous metric used
38
+ across semiconductor manufacturing, with improvements in
39
+ yield being strongly correlated with reductions in the time
40
+ and costs associated with PIC design cycles [15]–[17]. The
41
+ need for predictive yield models can be mitigated to some
42
+ This work was supported in part by the U.S. Advanced Research Projects
43
+ Agency–Energy under ENLITENED Grant DE-AR000843 and in part by
44
+ the U.S. Defense Advanced Research Projects Agency under PIPES Grant
45
+ HR00111920014.
46
+ A. James, Y. Wang, A. Novick, S. Wang, R. Parsons, K. Jang, M. Hattink,
47
+ and K. Bergman are with the Department of Electrical Engineering, Columbia
48
+ University, New York, NY 10027, USA. (Corresponding author: Aneek James,
49
+ e-mail: [email protected]).
50
+ A. Rizzo is with the Air Force Research Laboratory Information Directorate,
51
+ Rome, NY 13441, USA.
52
+ © 2023 IEEE. Personal use of this material is permitted. Permission from
53
+ IEEE must be obtained for all other uses, in any current or future media,
54
+ including reprinting/republishing this material for advertising or promotional
55
+ purposes, creating new collective works, for resale or redistribution to servers
56
+ or lists, or reuse of any copyrighted component of this work in other works.
57
+ TABLE I
58
+ FEATURES FOR MODELING STRIP WAVEGUIDE PERFORMANCE. THE
59
+ MODEL IN THIS WORK DESCRIBES PHASE, LOSS AND THERMAL BEHAVIOR
60
+ EFFECTS OVER A BROAD RANGE OF WAVELENGTHS AND WAVEGUIDE
61
+ GEOMETRIES.
62
+ Model Features
63
+ [25]
64
+ [26]
65
+ This Work
66
+ Wavelength [nm]
67
+ 1550
68
+ 1520–1570
69
+ 1450–1650
70
+ Nominal Width Range [nm]
71
+ 480
72
+ 480–500
73
+ 400–2500
74
+ Considered Variation Sources
75
+ w,t
76
+ w,t
77
+ Arbitrary
78
+ Statistical Parameter Variations
79
+ 
80
+ 
81
+ 
82
+ Waveguide Scattering Losses
83
+ 
84
+ 
85
+ 
86
+ Thermo-optic Effect
87
+ 
88
+ 
89
+ 
90
+ w - Waveguide Width Variations
91
+ t - Waveguide Thickness Variations
92
+ degree by designing variation-robust devices [18] or PICs
93
+ such that performance variations can be tolerated or cor-
94
+ rected for post fabrication [19], [20]. In each of these cases,
95
+ however, quantitative yield data cannot be determined prior
96
+ to fabrication—an obstacle that will be exacerbated as the
97
+ number of components per PIC in silicon is projected to
98
+ scale well into the millions within the next decade [21].
99
+ Circuit designers also need tools to optimize system-level
100
+ performance through device-level design choices [22]. To meet
101
+ rising circuit design complexity, commercial foundries must
102
+ develop process design kits (PDKs) that include compact
103
+ models that are both parameterized over a wide range of
104
+ relevant design and environmental variables and describe all
105
+ important device figures of merit [23], [24]. It is essential
106
+ that strip waveguides in particular—a critical component of
107
+ most SiPh circuits—are accurately modeled according to their
108
+ expected fabricated performance.
109
+ Broadly speaking, there are three ways to construct compact
110
+ models: (i) look up table-based models, obtained directly from
111
+ measurements or device simulations, (ii) models based on
112
+ empirical fit functions, and (iii) physics-based models [23].
113
+ Most previously reported work falls under the look-up table-
114
+ based category [25]–[29]. These models can be parameterized
115
+ using look-up tables (LUTs), where interpolation is used to
116
+ predict the performance of designs not explicitly defined in
117
+ the table. Ensuring that LUT models are accurate over a wide
118
+ range of input parameters, however, requires measuring all
119
+ waveguide figures of merit for every combination of input
120
+ parameters; a task that scales exponentially with the number of
121
+ modeled independent variables. Prior demonstrations methods
122
+ also require the explicit connection of the measured effective
123
+ and group index variations to a predefined number of process
124
+ variation sources, introducing the possibility of error if any
125
+ arXiv:2301.01689v1 [physics.optics] 4 Jan 2023
126
+
127
+ 2
128
+ Fig. 1.
129
+ a, Example electric field profile taken from Lumerical MODE. b,
130
+ Simulated (scatter) and modeled (dashed) effective index vs wavelength for
131
+ several waveguide widths. Each waveguide was simulated with a thickness of
132
+ 220 nm.
133
+ systemic deviations exist between the simulation configuration
134
+ and the realities of the fabrication process.
135
+ In this paper, we report to the best of our knowledge, the first
136
+ geometry-parameterized compact model of strip waveguides
137
+ that can capture device performance over a wide range of
138
+ wavelengths and waveguide geometries (see Table I). Using a
139
+ novel derivation of the thermo-optic effect that is accurate for
140
+ high-index contrast waveguides, we demonstrate our model’s
141
+ ability to describe both scattering loss and the thermo-optic
142
+ effect as a function of both design and statistical parameters.
143
+ A novel group-extraction-based method allows the characteri-
144
+ zation of process variations without presumption of a source or
145
+ its associated sensitivity. This extraction methodology is used
146
+ to construct a model from dozens of geometric variations of
147
+ Mach-Zehnder Interferometers (MZIs) fabricated in a 300 mm
148
+ commercial foundry. These use of Euler bends in these MZIs
149
+ permits the characterization of wide waveguide performance
150
+ with minimal higher-order mode excitation. Experimental re-
151
+ sults validate the model’s accuracy in describing the phase,
152
+ loss, and thermo-optic performance across the entire wafer.
153
+ The model is also implemented in Verilog-A to demonstrate
154
+ compatibility with electronic-photonic co-simulation environ-
155
+ ments [30]–[32]. This work represents a key step toward
156
+ the modeling of waveguide-based PDK components, enabling
157
+ true-to-measurement circuit simulation at massive integration
158
+ densities.
159
+ II. PHYSICS-AWARE MODEL DEVELOPMENT
160
+ Because the mode condition of an optical waveguide
161
+ is
162
+ described
163
+ via
164
+ a
165
+ transcendental
166
+ equation,
167
+ completely
168
+ generalized analytical solutions for the effective index (neff)
169
+ are impossible to derive [33]. We therefore propose, as
170
+ discussed in [34], finding a behavioral model that accurately
171
+ captures its dependence on all design parameters over the
172
+ relevant ranges of interest. In this section, we develop
173
+ dependency models for the design parameters available.
174
+ Fig. 2. a-c, Plot of simulated (scatter) and modeled (dashed) neff parameters
175
+
176
+ ∂2neff/∂λ2, ∂neff/∂λ, neff,0
177
+
178
+ vs waveguide width (respectively). These
179
+ values were for a waveguide with a thickness of 220 nm at a wavelength
180
+ of 1550 nm. d, Comparison of the model (dashed) and simulated (scatter)
181
+ neff vs waveguide width for different thicknesses. Simulated at 1550 nm.
182
+ The semi-physical nature of the model is then leveraged
183
+ to describe both the scattering loss and the thermo-optic
184
+ coefficient. Process variations, whether of a design parameter
185
+ or not, will be covered in Section IV.
186
+ A. Wavelength Dependence
187
+ The wavelength dependence of the waveguide neff is first
188
+ considered. The neff of several silicon-on-insulator (SOI)
189
+ waveguide geometries were simulated in Lumerical MODE
190
+ (Fig. 1a). From the results, it is shown that the wavelength
191
+ dependence over the S-, C-, and L-bands for all geometries is
192
+ well-approximated by a second-order Taylor expansion for a
193
+ wide range of waveguide widths sufficiently above the cutoff
194
+ condition (Fig. 1b):
195
+ neff, model(λ) =
196
+ 2
197
+
198
+ i=0
199
+ 1
200
+ i!
201
+ ∂ineff
202
+ ∂λi
203
+ ����
204
+ λ=λ0
205
+ (λ − λ0)i.
206
+ (1)
207
+ B. Geometric Dependence
208
+ As the Taylor expansion only captures the wavelength-
209
+ dependence, it is clear that the fitting parameters ∂2neff/∂λ2,
210
+ ∂neff/∂λ and ∂0neff/∂λ0 (hereafter referred to as neff,0) are
211
+ responsible for capturing the dependence on waveguide geom-
212
+ etry. With respect to width, all three fitting parameters were
213
+ previously found in [35] to be well described by the following
214
+ behavioral model:
215
+ ∂ineff
216
+ ∂λi (w) = pi0 · w2 + pi1w + pi2
217
+ w2 + pi3w + pi4
218
+ ,
219
+ (2)
220
+ for a total of fifteen model parameters. To verify correctness
221
+ of the model, all three parameters were fitted to the simu-
222
+ lation data with (1)-(2) using ordinary least squares (OLS)
223
+
224
+ a
225
+ Thickness
226
+ Width
227
+ 2.8
228
+ 2.6
229
+ neff
230
+ 2.4
231
+ 2.2
232
+ 1450
233
+ 1500
234
+ 1550
235
+ 1600
236
+ 1650
237
+ Wavelength [nm]
238
+ 400 nm
239
+ 580 nm
240
+ 760 nm
241
+ 940 nm215 nm
242
+ 235 nm
243
+ 255 nm
244
+ 275 nm
245
+ 295 nm3
246
+ Fig. 3. Comparison between modeled (dashed) and simulated (scatter) neff
247
+ for higher order modes and the fundamental TM mode. All waveguides were
248
+ simulated with a thickness of 220 nm.
249
+ regression. The model was able to match all three parameters
250
+ over the entire range of the width sweep (Fig. 2a-c). The
251
+ close matching of the modeled and extracted Taylor parameters
252
+ means that our modification of (2) still preserves its ability to
253
+ match the behavior of effective index as a function of wave-
254
+ length. By extension, these three Taylor parameters allow for
255
+ a robust description of neff as a function of waveguide width
256
+ (Fig. 2d). The data also demonstrates this agreement is not
257
+ unique to any particular waveguide thickness, with different
258
+ thicknesses producing different sub-parameter fits. Finally, it
259
+ should be noted that both the numerator and denominator in
260
+ (2) are polynomials of equal order. Our model consequently
261
+ predicts that, for a given wavelength, the effective index will
262
+ asymptotically approach a constant value as w approaches
263
+ infinity. The value that the model approaches as w tends
264
+ towards infinity can be interpreted as the equivalent neff of
265
+ an infinite slab of the same thickness:
266
+ lim
267
+ w→∞ neff(λ, w) = nslab(λ).
268
+ (3)
269
+ In this way, our behavioral model can elegantly capture all
270
+ significant features of effective index for the design parameters
271
+ of interest. The model’s accuracy holds true for higher order
272
+ modes as well, provided that they are sufficiently far away
273
+ from their respective waveguide cutoff condition (Fig. 3).
274
+ C. Scattering Loss
275
+ Scattering loss due to sidewall roughness (SWR) can be a
276
+ significant source of loss in most reported waveguide designs,
277
+ making it critical for designers to accurately model [36]. In this
278
+ section, we demonstrate our model’s ability to capture SWR
279
+ loss as a function of waveguide geometry. It was first noted
280
+ in [37] that the traditional Payne and Lacey model of SWR-
281
+ induced loss [38], [39] was found to be identical in behavior to
282
+ the derivative of the effective index with respect to waveguide
283
+ width:
284
+ αSWR(λ, w) = R ∂
285
+ ∂w [neff(λ, w)] ,
286
+ (4)
287
+ where R is a proportionality constant. As our model can
288
+ describe neff as a function of width, a closed-form repre-
289
+ sentation of ∂neff/∂w can be exactly derived. This equation
290
+ Fig. 4.
291
+ a, Graphical representation of a waveguide simulated with some
292
+ sidewall roughness. The inset is a magnified view of the waveguide to clarify
293
+ the definition of σrms. b, Scattering losses estimated from FDTD compared
294
+ to the fit using our model based on Lumerical MODE data.
295
+ can then be fitted to measured waveguide loss data to extract
296
+ the proportionality constant. We validate this by fitting (4)
297
+ to the scattering loss of a 7 µm long SOI waveguide with
298
+ some SWR wall roughness in Lumerical 3D-FDTD (Fig. 4a).
299
+ The roughness Root Mean Square (RMS) and correlation
300
+ length were arbitrarily chosen to be σrms
301
+ = 5 nm and
302
+ Lcorr = 1 µm respectively. These parameters were then used to
303
+ generate a random, anisotropic SWR on the waveguide walls
304
+ [40]. Propagation losses were simulated for waveguide widths
305
+ ranging from 450 nm to 850 nm. The results of the fitting are
306
+ shown in Fig. 4b, with our model closely matching trend of
307
+ the scattering loss behavior extracted from FDTD simulations.
308
+ D. Thermo-Optic Effect
309
+ Our model can also completely describe the thermo-optic
310
+ coefficient of an arbitrary waveguide geometry without the
311
+ need for any thermal measurements. The thermo-optic co-
312
+ efficient of a waveguide mode most importantly requires
313
+ knowledge of the confinement factor, which is the fraction of
314
+ a mode’s power confined within each constituent waveguide
315
+ material. Kawakami showed in [41] that for a waveguide
316
+ made up of N materials, each with with an index nk and a
317
+ confinement factor Γk:
318
+ N
319
+
320
+ k
321
+ Γkn2
322
+ k = ngneff
323
+ (5a)
324
+
325
+ k
326
+ Γk = 1,
327
+ (5b)
328
+ where (5b) is derived from noting that the sum of all con-
329
+ finement factors must equal unity due to power conservation.
330
+
331
+ 2.5
332
+ n
333
+ 2.0
334
+ TEO
335
+ TE1
336
+ TE2
337
+ TMO
338
+ 0.5
339
+ 1.0
340
+ 1.5
341
+ 2.0
342
+ WG Width [um]20m
343
+ Width
344
+ SOl Waveguide4
345
+ A closed-form of the confinement factor for a two-material
346
+ waveguide (e.g. SOI wires) can then be derived:
347
+ Γcore = ngneff − n2
348
+ clad
349
+ n2
350
+ core − n2
351
+ clad
352
+ (6a)
353
+ Γclad = n2
354
+ core − ngneff
355
+ n2
356
+ core − n2
357
+ clad
358
+ ,
359
+ (6b)
360
+ where Γcore is the power contained in the waveguide core and
361
+ Γclad is the power contained in the cladding.
362
+ Next, we must obtain an expression that describes the
363
+ thermo-optic effect on neff in terms of the confinement factor.
364
+ A common approximation of the thermo-optic coefficient of
365
+ neff is
366
+ ∂neff
367
+ ∂T
368
+ ≈ Γ1
369
+ ∂n1
370
+ ∂T + Γ2
371
+ ∂n2
372
+ ∂T + . . . ,
373
+ (7)
374
+ where δ represents a small perturbation in the values, Γn is
375
+ the confinement of the mode within material n and ∂nn/∂T
376
+ is the thermo-optic coefficient of material n [42]. Though
377
+ this equation is widely used [43]–[45] and may be accurate
378
+ in certain scenarios, to the authors’ knowledge it has never
379
+ been demonstrated to be a generally accurate approximation.
380
+ We therefore start from first principles and consider a general
381
+ perturbation of the wave equation [46]:
382
+ δ
383
+
384
+ β2
385
+ eff
386
+
387
+ = Γcore
388
+ ω2
389
+ c2 δ
390
+
391
+ n2
392
+ core
393
+
394
+ + Γclad
395
+ ω2
396
+ c2 δ
397
+
398
+ n2
399
+ clad
400
+
401
+ ,
402
+ (8)
403
+ where βeff is the effective wavenumber, Γcore is the con-
404
+ finement in the waveguide core, Γclad is the confinement in
405
+ the waveguide cladding, and ncore and nclad are the core and
406
+ cladding indices respectively. Carrying this operation through
407
+ and combining with (1) (see Appendix A for details) yields:
408
+ neff(λ, w, T) ≈ neff,T0(λ, w) + ∂neff
409
+ ∂T (T − T0)
410
+ (9a)
411
+ ∂neff
412
+ ∂T
413
+ = Γcore
414
+ ncore
415
+ neff, T0
416
+ ∂ncore
417
+ ∂T
418
+ + Γclad
419
+ nclad
420
+ neff, T0
421
+ ∂nclad
422
+ ∂T
423
+ ,
424
+ (9b)
425
+ where neff,T0 is the neff at some reference temperature T0. The
426
+ key addition to (9) compared to prior literature is the scaling
427
+ of each thermo-optic term by ratio between the material and
428
+ effective indices. As the index contrast between the core and
429
+ cladding decreases, our model will approach the (7). Thus
430
+ it is clear that our model will outperform (7) in accuracy
431
+ when describing high index contrast materials, such as the
432
+ SOI waveguide geometries prevalent in SiPh.
433
+ With these expressions, our confinement factor and the
434
+ thermo-optic coefficient models can be validated. The simu-
435
+ lated confinement factor is compared to our model prediction
436
+ at 1550 nm in Fig. 5a. The optical properties of silicon and
437
+ silicon dioxide used in our model were taken directly from
438
+ [47]. There was a near perfect agreement between the modeled
439
+ and simulated confinement factor, showing that the general
440
+ behavior of confinement factor is captured by our model
441
+ (Fig. 5a). The modeled thermo-optic coefficient is validated
442
+ by simulating how the neff of a SOI waveguide varies with
443
+ temperature using Lumerical MODE (Fig. 5b). Silicon was
444
+ assumed to have a thermo-optic coefficient of 1.9 × 10−4 K−1
445
+ [48] and SiO2 was assumed to have a thermo-optic coefficient
446
+ of 1 × 10−5 K−1 [49]. The model and simulations show
447
+ Fig. 5.
448
+ a Modeled (dashed) and simulated (scatter) confinement factor vs
449
+ waveguide width for different thicknesses. b, Comparison between simulated
450
+ (scatter), previously reported model (dotted, Eq. (7)) and our work (dashed
451
+ line, Eq. (9)) describing neff vs Temperature of a 480 x 220 nm waveguide.
452
+ exceptional agreement from 300 - 1200 K, despite the fact that
453
+ our model does not require any data from thermal simulations
454
+ or measurements. As predicted, the previously reported model
455
+ of the thermo-optic effect (7) significantly under-predicts the
456
+ expected change in neff. It should be noted that in real devices,
457
+ waveguide geometry itself is a function of T due to thermal
458
+ expansion. This can be accounted for by modeling w as a func-
459
+ tion of T. Experimental results in Section V-C, however, show
460
+ that assuming a constant width geometry provides sufficient
461
+ accuracy.
462
+ Having a model of the thermo-optic effect that is accurate
463
+ over a wide range of conditions like this one holds a great
464
+ deal of potential to enable more robust design exploration,
465
+ such as evaluating photonic waveguide heater designs [50],
466
+ [51], characterizing self-heating in micro-resonators [52], or
467
+ studying the effect of ambient temperature fluctuations in a
468
+ system.
469
+ E. Parameter Extraction
470
+ The practical utility of a compact model is greatly deter-
471
+ mined by the associated parameter extraction procedure to
472
+ connect the model to a given foundry process. This is particu-
473
+ larly important when developing statistical models, as accurate
474
+ parameter extraction is the only way to guarantee that process
475
+ variations are accurately reflected in the model. A popular
476
+ solution is to leverage the phase-sensitivity of interferometric
477
+ optical filters—such as Mach-Zehnder interferometers (MZIs),
478
+ microresonators, or arrayed waveguide gratings (AWGs)—to
479
+ monitor process variations across a wafer. Regardless of the
480
+ chosen device, a shared difficulty lies in accurately guessing
481
+ what particular interference fringe position corresponds to a
482
+ particular fringe order [25], [26], [53]. Our method is based on
483
+
484
+ a
485
+ 0.80
486
+ 0.75
487
+ 210 nm
488
+ 220 nm
489
+ 230 nm
490
+ 215 nm
491
+ 225 nm
492
+ 0.4
493
+ 0.6
494
+ 0.8
495
+ 1.0
496
+ WG Width [um]
497
+ b
498
+ 2.7
499
+ neff
500
+ 2.6
501
+ 400
502
+ 600
503
+ 800
504
+ 1000
505
+ 1200
506
+ Temperature [K]
507
+ This Work - Previous Model
508
+ Simulated5
509
+ the curve-fitting method presented in [25] and [54], with some
510
+ additional steps described to include waveguide dispersion as
511
+ an extracted parameter.
512
+ The first step in parameter extraction is to characterize
513
+ the group index (ng) of a fabricated interferometer from
514
+ a wavelength sweep of the device. To enable this, (1) is
515
+ rearranged into a more suitable form:
516
+ neff(λ) = 1
517
+ 2
518
+ ∂2neff
519
+ ∂λ2 λ2 + Bλ + C
520
+ (10a)
521
+ B = ∂neff
522
+ ∂λ − ∂2neff
523
+ ∂λ2 λ0
524
+ (10b)
525
+ C = 1
526
+ 2
527
+ ∂2neff
528
+ ∂λ2 λ2
529
+ 0 − ∂neff
530
+ ∂λ λ0 + neff,0,
531
+ (10c)
532
+ where B and C are fitting parameters that aggregate the 1st and
533
+ 0th order terms from (1) respectively. Following the procedure
534
+ described in [54], it is first noted that the fringe condition of
535
+ an inteferometric device is described by
536
+ φ = 2π
537
+ λ neff(λ)L = 2πm,
538
+ (11)
539
+ where φ is the phase difference between the interferometry
540
+ arms, L is the path length of the interferometer, λ is a partic-
541
+ ular fringe wavelength, and m is an integer corresponding to
542
+ the particular fringe order. To extract our model parameters,
543
+ a wavelength sweep of the interferometric device is required.
544
+ Once this is performed, a peak finding algorithm can be used
545
+ to detect the wavelength of all detected fringes. A function that
546
+ relates the relative fringe locations to the ng of the waveguide
547
+ is now required. This can be done by defining a continuous
548
+ function that will yield an integer value at each of the detected
549
+ fringe locations. Let m0 represent the particular fringe order
550
+ corresponding to an arbitrarily chosen reference fringe located
551
+ at λ0. The fringe order m of any other fringe can be defined
552
+ relative to this reference as
553
+ m = m0 +
554
+ � λ
555
+ λ0
556
+ dm
557
+ dλ dλ = m0 + ngL ·
558
+ � 1
559
+ λ − 1
560
+ λ0
561
+
562
+ .
563
+ (12)
564
+ This continuous function now allows us to redefine the mea-
565
+ sured fringes into a form suitable for parameter extraction.
566
+ A reference fringe variable n is now defined by letting
567
+ m = (m0 + n). Inserting this back into (12) produces:
568
+ n = ngL ·
569
+ � 1
570
+ λn
571
+ − 1
572
+ λ0
573
+
574
+ ,
575
+ (13)
576
+ where each relative fringe n is located at an associated
577
+ wavelength λn. Using (13), the ng of the measured device
578
+ is now directly related to the measured fringe locations. This
579
+ fitting equation must now be extended to our specific model
580
+ parameters. The ng of a waveguide is defined to be
581
+ ng = neff − λ∂neff
582
+ ∂λ .
583
+ (14)
584
+ Combining with (10a) yields an expression for ng in terms of
585
+ our compact model:
586
+ ng = C − 1
587
+ 2
588
+ ∂2neff
589
+ ∂λ2 λ2.
590
+ (15)
591
+ Fig. 6. a, Captured spectrum of simulated MZI used for parameter extraction.
592
+ The waveguide mode was simulated in Lumerical MODE, and then exported
593
+ to a MZI waveguide simulation block in Lumerical INTERCONNECT. b,
594
+ Linear Regression of fringe wavelengths to extract the ng performed on the
595
+ detected fringes from a. c, Possible neff solutions (black, dashed), along with
596
+ the actual solution (red), determined by the ng extracted in b.
597
+ By inserting (15) back into (13), we can derive an OLS
598
+ regression-compatible expression:
599
+ n = CΛC − ∂2neff
600
+ ∂λ2 ΛS
601
+ (16a)
602
+ ΛC = L ·
603
+ � 1
604
+ λn
605
+ − 1
606
+ λ0
607
+
608
+ (16b)
609
+ ΛS = L
610
+ 2 ·
611
+
612
+ λn − λ2
613
+ n
614
+ λ0
615
+
616
+ ,
617
+ (16c)
618
+ where [ΛC, ΛS] are explanatory variables. Performing an OLS
619
+ regression between n and [ΛC, ΛS] gives us two of our three
620
+ fitting parameters in (10). Finally, B can be calculated by
621
+ combining equations (11) and (10a):
622
+ B = m
623
+ L − 1
624
+ 2
625
+ ∂2neff
626
+ ∂λ2 λm − C
627
+ λm
628
+ ,
629
+ (17)
630
+ where the only uncertainty is what fringe order m corresponds
631
+ to each measured fringe λm. Once B is determined from (17),
632
+ (10b) and (10c) can be used to determine the original fitting
633
+ parameters in (1). It should be noted that each detected fringe
634
+ (m, λm) location will yield very small variations in the B value
635
+ due to resolution-based uncertainty in the exact value for λm.
636
+ For a best guess, all values Bm taken from each measured
637
+ fringe λm should be averaged together.
638
+ To validate this method under ideal conditions, an MZI
639
+ constructed using 480 nm x 220 nm waveguides is simulated in
640
+ Lumerical INTERCONNECT. To ensure accuracy, the wave-
641
+ guide’s neff was first simulated in MODE and then exported
642
+ to a MODE Waveguide element in INTERCONNECT. As the
643
+ full-width half-maximum (FWHM) of the MZI does not affect
644
+ the extracted neff, the waveguides were arbitrarily assumed to
645
+ have a 2.5 dB/cm loss and the coupling coefficient was chosen
646
+ to ensure critical coupling. The spectrum of the simulated MZI
647
+
648
+ a
649
+ Power [dBm]
650
+ 20
651
+ b
652
+ 10
653
+ C
654
+ 2.5
655
+ neff
656
+ 2.4
657
+ 2.3
658
+ 1500
659
+ 1550
660
+ 1600
661
+ 1650
662
+ Wavelength [nm]6
663
+ is shown in Fig. 6a. Fringe locations were extracted using
664
+ a peak finding algorithm. The fringe located closest to the
665
+ center of the sweep was arbitrarily chosen as n = 0. Using
666
+ (16), OLS regression found ∂2neff/∂λ2 = −0.136 µm−2 and
667
+ C = 3.9215 (Fig. 6b). From here, the family of solutions for
668
+ neff is plotted in Fig. 6c. Each particular solution corresponds
669
+ to a different guess on the fringe orders detected, e.g. m0 = 52
670
+ vs. m0 = 53. The separation between each neff solution plotted
671
+ in 6c is determined by the free-spectral range (FSR) of the
672
+ interferometer, with a larger FSR corresponding more widely
673
+ separated solutions.
674
+ To determine the correct fringe order of the reference we
675
+ use the fact that, from the simulations performed in Section
676
+ II, we know the waveguide geometry has an neff of 2.411 at
677
+ the reference fringe location. In Section III we explain how
678
+ to increase the accuracy of this estimation to avoid errors
679
+ introduced by this simulation. From this, the reference fringe
680
+ order is found to be m0 ≈ 114.03. Since fringe orders must
681
+ be integer numbers, the result is rounded to the nearest integer
682
+ 114. By combining (10a)-(10c), the original fitting coefficients
683
+ are found to be ∂neff/∂λ = −1.078 µm−1 and neff,0 = 2.411.
684
+ To evaluate accuracy of our extraction, we define the relative
685
+ error between the extracted and simulated neff’s σerror by:
686
+ σerror =
687
+ ��
688
+ (neff, model − neff, sim)2 dλ
689
+
690
+ n2
691
+ eff, simdλ
692
+ ,
693
+ (18)
694
+ where neff, sim is the effective index from the MODE simula-
695
+ tion, used as a reference to quantify our method’s accuracy,
696
+ and neff, model is the result from applying our extraction method
697
+ to the simulated MZI. Upon evaluation, the total relative error
698
+ was found to be 0.017%. Since the order of the reference
699
+ fringe is correct, the remaining model error is attributed to
700
+ inaccuracies in the initial regression fit using (16a)-(16c).
701
+ III. MORE ROBUST neff EXTRACTION UNDER PROCESS
702
+ VARIABILITY
703
+ The reliability of the extraction is highly sensitive to the
704
+ guessed value of the reference fringe order. For the example
705
+ in Section II-E, we used a priori knowledge of the neff at the
706
+ reference fringe to estimate its order. Therefore, any deviation
707
+ between the assumed and actual waveguide dimensions risks
708
+ introducing error. By noting that the initial order estimate
709
+ rounded to the nearest integer, we can use (11) to define
710
+ a boundary beyond which our fringe order guess will be
711
+ incorrect [25]:
712
+ |∆m| = |neff, actual − neff, guess| ≤ λm0
713
+ 2L .
714
+ (19)
715
+ We can see that, to raise confidence in the guessed fringe order,
716
+ either the accuracy of our neff guess must be increased or the
717
+ interferometric path length must be decreased. As explained in
718
+ Section II-E, our extraction method begins by directly extract-
719
+ ing the ng of a given interferometer via optical sweep. Process
720
+ variations will therefore appear as variations in the extracted
721
+ values for ∂2neff/∂λ2 and C. By measuring several devices
722
+ of the same drawn width across the all measured dies, wafers,
723
+ and lots, the influence of the random width and thickness
724
+ variations can be eliminated by averaging their extracted fitting
725
+ Fig. 7. a, Plot of the ng error function for one sample. The error function
726
+ shows a minimum at roughly 491.5 nm, which closely agrees with the actual
727
+ waveguide width of 490 nm. b, Convergence of the etch bias estimate for
728
+ different numbers of samples averaged.
729
+ parameters. As the sample size becomes sufficiently large—
730
+ with the necessary sample size being a function of the severity
731
+ of the process variations—any remaining deviation between
732
+ the nominal and averaged parameters will be the result of a
733
+ systemic etch biases on the waveguide width. We therefore
734
+ propose estimating this etch bias by creating a preliminary neff
735
+ model based on the results of a photonic mode solver, such as
736
+ Lumerical MODE. Using this model, an equivalent waveguide
737
+ width can be found by minimizing the error function
738
+ min
739
+ w
740
+ ��
741
+ [ng, model(w, λ) − ng, meas(λ)]2 dλ
742
+
743
+ n2g, meas(λ)dλ
744
+ ,
745
+ (20)
746
+ where ng, meas is the extracted model of ng using the averaged
747
+ extracted parameters and ng, model is the simulation-based,
748
+ width-dependent a priori model of neff. The neff of our
749
+ equivalent waveguide width can then be plugged into the a pri-
750
+ ori model to provide a more accurate fringe order estimate.
751
+ In this way, we can increase the accuracy of our guessed
752
+ effective index, regardless of whether the modeled waveguide
753
+ composition is accurate to the virtual device composition.
754
+ We now discuss the robustness of this optimization routine
755
+ in the presence of other systemic non-idealities and its ability
756
+ to perform etch bias correction. To do this, we need a ’ground
757
+ truth’ value for neff, which we obtain by simulating all the
758
+ non-idealities in Lumerical MODE. Subsequently we perform
759
+ the parameter extraction using Lumerical INTERCONNECT.
760
+ By comparing the extracted neff to the known simulated
761
+ value for neff, we can directly evaluate the robustness of our
762
+ methodology.
763
+ A. Statistical Geometric Variation
764
+ To test the extraction procedure’s accuracy under process
765
+ variations, a simulation of 100 random variations on the
766
+
767
+ a
768
+ 2
769
+ Actual
770
+ Guess
771
+ Error Function
772
+ !
773
+ 460
774
+ 480
775
+ 500
776
+ 520
777
+ 540
778
+ Guessed Widths [nm]
779
+ b
780
+ 4 nm
781
+ 26 nm
782
+ Etch Bias [nm]
783
+ Estimated
784
+ 11 nm
785
+ 33 nm
786
+ 15
787
+ 18 nm
788
+ 40 nm
789
+ 10
790
+ 20
791
+ 40
792
+ 60
793
+ 80
794
+ 100
795
+ Number of Samples7
796
+ Fig. 8. Plot of mean error in neff over the simulation bandwidth per simulated
797
+ device. Each FSR was simulated with 100 random deviations from the target
798
+ waveguide geometries. Both width and thickness were assumed to have a
799
+ 3σ = 5 nm.
800
+ waveguide geometry was run. The nominal waveguide di-
801
+ mensions were assumed to be 480 x 220 nm. To simulate
802
+ systemic variations, each waveguide was arbitrarily assumed
803
+ to have an etch bias of +10 nm. Random fluctuations were
804
+ simulated by subjecting each device to a normally distributed
805
+ variation of 3σ = 5 nm on both the waveguide width and
806
+ thickness, as this value is consistent with the worst-case
807
+ reported values for geometric variations [25]–[27]. Each mode
808
+ profile was then exported to INTERCONNECT and simulated
809
+ with interferometer FSRs ranging from 4 - 40 nm to investigate
810
+ the effect this had on the extraction error. The resulting error
811
+ function for one of these samples, with a ground truth width of
812
+ 490nm, is shown in Fig. 7a. We see the convergence behavior
813
+ of the etch bias estimate evolves as a function of device sample
814
+ size increases for several FSR designs in Fig. 7b. It can be seen
815
+ that all FSR designs can yield at least an estimated etch bias
816
+ within 2 nm of the actual value, indicating the utility of our
817
+ etch bias correction.
818
+ Fig. 8 shows the relationship between the average, per sam-
819
+ ple error and the interferometer FSR. The error is measured
820
+ in three scenarios: i.) a ‘na¨ıve’ case, where the fringe order is
821
+ estimated assuming no etch bias; ii.) where the fringe order is
822
+ estimated through our etch bias prediction methodology, based
823
+ on 30 measured samples; and iii.) where the exact neff from
824
+ simulations is used to determine the actual fringe orders. The
825
+ last scenario, that produced an average per sample error of
826
+ roughly 0.017% represents an error floor for the first two.
827
+ This error floor is completely determined by errors in the
828
+ initial ng regression, as well as any fundamental limitations
829
+ in our chosen behavioral model. As the FSR is increased,
830
+ the average per sample error in both cases improves steadily
831
+ until it reaches the aforementioned floor. This is consistent
832
+ with (19), indicating that a larger FSR corresponds to a wider
833
+ margin of error for the fringe order estimate. For both the na¨ıve
834
+ and bias compensation methods, there is a critical FSR value
835
+ beyond which the fringe order is correctly estimated for all
836
+ samples. It is clear, however, that estimating the presence of
837
+ any etch biases drastically improves the fringe order accuracy,
838
+ reaching the error floor for a much smaller FSR than when
839
+ using the na¨ıve method.
840
+ Fig. 9.
841
+ a, ng relative error vs simulated sidewall angle. b, Comparison
842
+ between the simulated (scatter) and estimated (dashed) neff for different
843
+ sidewall angles.
844
+ B. Sidewall Angle
845
+ We now consider how the parameter extraction behaves
846
+ when used for waveguides with some sidewall angle. Up
847
+ to this point, our simulations assumed the waveguides to
848
+ have no sidewall angle. Real waveguides, however, typically
849
+ deviate from this ideal [55]. To study how our bias correction
850
+ behaves under these conditions, a SOI waveguide with the
851
+ same nominal (480 x 220 nm) design as before was simulated
852
+ with a series of sidewall angles from 85 to 90 degrees as
853
+ this is a range typical of foundries [25], [56]. As only the
854
+ aggregate behavior is being studied, width and thickness
855
+ variations were not included. As seen in Fig. 9a, the minimum
856
+ of the error function optimized in the etch bias estimation step
857
+ remain roughly constant for all considered sidewall angles.
858
+ This results in very accurate predictions of the effective index
859
+ from our model, even though the fundamental geometry is
860
+ different. We interpret this as our optimization routine is
861
+ picking an ‘equivalent’ waveguide width that matches the
862
+ extracted ng profile. This equivalent width always seems to
863
+ result in a waveguide design with a similar confinement factor
864
+ and effective index—and therefore behavior—as seen in Fig.
865
+ 9b.
866
+ C. Material Variation
867
+ This method for increasing the accuracy of the guessed neff
868
+ relies on the assumption that the material properties of the
869
+ fabricated waveguides generally match the assumed material
870
+ properties used in the simulation data used to construct the
871
+ model. In practice, however, there can be a great deal of
872
+ deviation between the assumed and actual optical properties of
873
+ the waveguide materials. As a workaround, the authors suggest
874
+ extracting and building a model based around the dispersion
875
+ of the waveguide ∂2neff/∂λ2, as this waveguide parameter
876
+
877
+ Naive
878
+ 0.75
879
+ Bias Correction
880
+ neff Error [%]
881
+ Exact
882
+ 0.50
883
+ 0.25
884
+ 0.00
885
+ 10
886
+ 20
887
+ 30
888
+ 40
889
+ Target FSR [nm]Naive
890
+ Bias Correction
891
+ 0 =90.0
892
+ 0 =87.5
893
+ 0 =85.08
894
+ Fig. 10. a, Illustration of measured reticles on a custom 300 mm wafer, with a blown-up microscopic image of a die with 135 MZIs. b, Nominal neff and
895
+ ng model extracted from device measurements. c, Width-based model extraction for each die tested. d, Total model parameter µm variance σ explained vs
896
+ number of principal components included.e, Plot of the width-independent subparameters for neff,0, ∂neff/∂λ0,and ∂2neff/∂λ2
897
+ 0 vs V .
898
+ can be extracted exactly from measurements. The nominal
899
+ model of ∂2neff/∂λ2 can then replace ng in (20) to estimate
900
+ the width of the measured device. This width can then be
901
+ used in conjunction with simulation data to assign it an neff
902
+ guess. Though the limits of such a technique are unclear to the
903
+ authors, experimental results in Section V demonstrate to be
904
+ effective enough for describing the neff, loss, and thermo-optic
905
+ effect for all measured device performance.
906
+ IV. EXTRACTING LOCAL PARAMETER VARIATIONS
907
+ Process variations (e.g. thickness variation, cladding and
908
+ core index variations) will appear in our model as varia-
909
+ tions in the fifteen model parameters that comprise Eq. (1).
910
+ Capturing these variations requires the ability to extract their
911
+ value locally, which cannot be done just by looking at the
912
+ performance of any individual device. It is commonly assumed
913
+ in prior literature that most process parameters slowly vary
914
+ across the entire wafer [25]. This assumption implies that
915
+ the values of the parameters comprising our model also
916
+ vary slowly across the wafer. The authors therefore propose
917
+ analyzing the performance of several waveguide width designs
918
+ in close proximity to each other to locally extract all of the
919
+ fifteen model parameters. Each local extraction serves as the
920
+ observations of each model parameter that are tracked across
921
+ the entire wafer.
922
+ The simplest way to create a statistical model is to treat each
923
+ of fifteen sub-parameters as independent statistical variables.
924
+ This is not ideal, however, as each additional variable drasti-
925
+ cally increases the number of required iterations for accurate
926
+ Monte Carlo simulations. To minimize model complexity, we
927
+ would like to represent each sub-parameter as a linear function
928
+ of an ensemble of variables:
929
+ pni = pni,avg. + ⃗s · ⃗V .
930
+ (21)
931
+ ⃗V is the vector of variables that represent the process varia-
932
+ tions. Minimizing model complexity would be the equivalent
933
+ of minimizing the size of ⃗V . ⃗s describes the corresponding
934
+ sensitivities of a given parameter to each element in ⃗V . To
935
+ minimize the size of ⃗V , we leverage the fact that each extracted
936
+ model parameter will be strongly correlated to one another.
937
+ This is because the variations in each model parameter share
938
+ common origins such as wafer thickness, annealing time,
939
+ etc. We therefore propose using principal component analysis
940
+ (PCA), a technique for transforming a number of possibly
941
+ correlated variables into a smaller number of uncorrelated
942
+ variables (i.e principal components) [57], to minimize model
943
+ complexity. The chosen principal components are then the
944
+ variables that make up ⃗V . The chosen principal components
945
+ are then the variables that make up ⃗V . The number of
946
+ components in ⃗V is flexible (see Appendix B for details).
947
+ Since our waveguide geometry is primarily a function of two
948
+ process variables—waveguide width and thickness—we use
949
+ only the first principal component to preserve its physical
950
+ interpretation. The result is a model of effective index as a
951
+ function of width and our process variations–∆w, representing
952
+ width variations and an additional variable we will call V ,
953
+ representing an aggregate of other process variations, including
954
+ thickness variation:
955
+ neff,model(w + ∆w, V ).
956
+ (22)
957
+ This full model of neff is then used in the local optimization
958
+ and re-extraction of each measured device. The cost function
959
+
960
+ b
961
+ d
962
+ 2.75
963
+ %1
964
+ 100
965
+ 2
966
+ neff
967
+ 2.50
968
+ Explained [
969
+ 15
970
+ 7
971
+ 17
972
+ 73
973
+ 24
974
+ 26
975
+ 75
976
+ 4.25
977
+ 4.00
978
+ 6
979
+ 3.75
980
+ 357
981
+ 9111315
982
+ 1000
983
+ 2000
984
+ Number of Components
985
+ Width [um]
986
+ c
987
+ e
988
+ 17
989
+ 24
990
+ 26
991
+ 2
992
+ 5
993
+ 13
994
+ 0.25
995
+ re/Heue
996
+ aneff/a2
997
+ -0.75
998
+ .00
999
+ .25
1000
+ neff,0
1001
+ 2.50
1002
+ 2.25
1003
+ 2 0.4
1004
+ 2 0.4
1005
+ -0.5
1006
+ 0.4
1007
+ 2 0.4
1008
+ 2
1009
+ -1.0
1010
+ 0.0
1011
+ 0.5
1012
+ 2 0.4 2 0.4 2 0.4
1013
+ WG Width [um]
1014
+ V9
1015
+ Fig. 11. a, Measured vs modeled optical spectrum of a 480 nm waveguide MZI with ∆L = 100 µm. b, (i) Histogram of extracted V data along with its
1016
+ associated Gaussian distribution (red, dashed) overlaid on top. (ii) Spatial map of the average value for V per measured die across the wafer. c, Mean and
1017
+ standard deviation of ∆w, neff, and ng.
1018
+ is defined as the sum of the relative neff and ng errors to match
1019
+ both the measured fringe locations and FSR respectively.
1020
+ Thus, we can employ a two-stage direct statistical com-
1021
+ pact model extraction procedure [24]. In the first stage, we
1022
+ use group extraction to obtain the complete set of fifteen
1023
+ parameters for a uniform device. In a second step, a subset
1024
+ of model parameters are re-extracted for each member of a
1025
+ large ensemble of devices measurements. This approach will
1026
+ be the most accurate representation of how device performance
1027
+ varies across the wafer without any presumption of variation
1028
+ source, statistical distribution, correlation, and the resulting
1029
+ model sensitivity to the variation. An inherent strength of
1030
+ this approach over others is that it is potentially useful for
1031
+ modeling other waveguide geometries as well. This potential
1032
+ is due to the model designer having the option of picking
1033
+ the number of principal components based on a physical
1034
+ assumption on the key process variables or optimize the
1035
+ percentage of explained parameter variance (see Appendix B).
1036
+ While further investigation would be required to confirm this,
1037
+ the methodology’s flexibility holds a great deal of promise.
1038
+ V. EXPERIMENTAL DEMONSTRATION
1039
+ We measured 7 reticles, each with 135 MZIs consisting
1040
+ of 27 different waveguide widths (w) from 400 nm to 2500
1041
+ nm and 5 different arm length delays (∆L) from 100 nm to
1042
+ 500 nm, fabricated on a custom 300 mm full wafer through
1043
+ AIM Photonics (Fig. 10a). All 135 MZI were measured on
1044
+ reticle 2 while a smaller subset of 30 MZIs were measured
1045
+ on each of the remaining reticles, totaling 315 measured
1046
+ devices. Devices with the same waveguide width are placed
1047
+ adjacently to minimize the impact of local process variations
1048
+ on device performance. All MZIs have a nominal waveguide
1049
+ height of 220 nm, and grating couplers designed for quasi-TE
1050
+ polarization are utilized for optical I/O. The two arms of each
1051
+ MZIs consist of symmetric waveguide bends to mitigate the
1052
+ impact of bending on the ng. For devices with waveguides
1053
+ beyond the single-mode cutoff width, Euler bends are used to
1054
+ maintain single mode operation and high mode isolation [18].
1055
+ A tunable laser was swept from 1450–1610 nm at a 10 pm
1056
+ resolution to characterize the transmission spectrum of each
1057
+ MZI.
1058
+ A. Nominal Extraction
1059
+ A nominal model neff is created by averaging the extracted
1060
+ parameters for all measured devices as shown in Fig. 10b. We
1061
+ apply the extraction method described in Section II-E to every
1062
+ collected transmission spectrum. A preliminary model is built
1063
+ using the simulation data described in Section II to estimate
1064
+ the expected device FSR for each waveguide width variation.
1065
+ This estimated FSR is then fed into a peak finding algorithm
1066
+ to extract the ng parameters, and then estimate fringe orders—
1067
+ and, therefore the neff—of each measured device. As the
1068
+ measured ng deviated a great deal from the simulated values,
1069
+ the technique described in Section III-C is employed where a
1070
+ preliminary model based on ∂2neff/∂λ2 is created and used
1071
+ to estimate waveguide geometry to estimate the fringe order.
1072
+ All three Taylor-expansion parameters are then derived using
1073
+ (10a)-(10c), and then averaged across for each width variation
1074
+ across the entire wafer to create a nominal experimental model.
1075
+ The extraction is then repeated locally for devices that are
1076
+ close in proximity to one another to extract local values for
1077
+ the model’s sub-parameters (Fig. 10c).
1078
+ Fig. 10d shows that using (31) this first principal component
1079
+ can explain 62.7% of all variance in the sub-parameter values
1080
+ across the wafer. The authors determined that due to the clear
1081
+ connection between the V and the three model parameters
1082
+
1083
+ a
1084
+ 0
1085
+ 100
1086
+ (i)
1087
+ (ii)
1088
+ Power [dBm]
1089
+ 100
1090
+ μAw
1091
+ MVo
1092
+ C
1093
+ 50
1094
+ 50
1095
+ -100
1096
+ Measurement
1097
+ Model
1098
+ 0.1
1099
+ (!)
1100
+ (iv)
1101
+ 1500
1102
+ 1550
1103
+ 1600
1104
+ yauo
1105
+ 2.50
1106
+ Wavelength [nm]
1107
+ b
1108
+ 2.25
1109
+ (i)
1110
+ (ii)
1111
+ 0.0
1112
+ -0.38
1113
+ (v)
1114
+ (vi)
1115
+ 4.25
1116
+ 0.010
1117
+ -0.20
1118
+ 0.07
1119
+ Ong
1120
+ 4.00
1121
+ 0.005
1122
+ -1
1123
+ 0.47
1124
+ 3.75
1125
+ 0.30
1126
+ 0.75
1127
+ 2
1128
+ 1
1129
+ 1
1130
+ 2
1131
+ -2
1132
+ 0
1133
+ Width [um]
1134
+ Width [um]
1135
+ V10
1136
+ Fig. 12. a, Measured thermo-optic response of a measured MZI device. b,
1137
+ Extracted value of ∂Tchip/∂Theater vs waveguide width using (9).
1138
+ that determine device behavior as w → ∞, this principal
1139
+ component was likely capturing width-independent sources of
1140
+ variance such as thickness variations (Fig. 10e). The authors
1141
+ will now show that this provides a model robust enough for
1142
+ capturing statistical behavior while preserving the goal for
1143
+ clear physical interpretation.
1144
+ B. Statistical Extraction
1145
+ The sum of the relative neff and ng errors is optimized using
1146
+ the Nelder-Mead algorithm [58]. The drawn waveguide width
1147
+ and the extracted V from the local extraction performed in
1148
+ Fig. 10c are used as the initial guesses for w and V . Despite
1149
+ the limited sample size of collected data, we can already see
1150
+ several notable preliminary statistical trends in ∆w as a result
1151
+ of our model. The model of neff extracted from each local
1152
+ optimization was found to result in a close agreement between
1153
+ the measured and modeled MZI performance. The extracted
1154
+ values for V exhibits the intended physical behavior of process
1155
+ parameter that varies slowly across the wafer (Fig. 11b). Local
1156
+ optimization yielded a total, average intra-die, and average
1157
+ local device standard deviation σV of 0.603, 0.386, and 0.167
1158
+ respectively, showing a correlation between device proximity
1159
+ and their extracted V values. The mean values of V for die
1160
+ both (i) in close proximity to each other and (ii) equidistant
1161
+ from the center of the wafer tend to be similar in value, as
1162
+ shown in the inset of Fig. 11b.
1163
+ Decoupling the process variations of V from the width
1164
+ variations ∆w enables extraction of width-dependent systemic
1165
+ effects, as shown in Fig. 11c(i). Our method estimates that
1166
+ waveguide widths with smaller mean errors also tend to have
1167
+ smaller σ∆w (Fig. 11c(ii)). This carries over as an explanation
1168
+ Fig. 13. a, Microscopic image of a die with waveguide spiral test structures
1169
+ for measuring width-dependent loss. Inset: magnified image showing three of
1170
+ the test structures. b, Propagation loss measurement and fit data for a 440 nm
1171
+ waveguide.
1172
+ for why for w = 2µm, neff varies more than for w = 1.2µm,
1173
+ allowing insight on what waveguide geometry best minimizes
1174
+ both σneff and σng. This sort of process insight for circuit
1175
+ designers is only possible due to the group benchmarking of
1176
+ all device performance within a localized area.
1177
+ C. Thermo-optic Effect Model Validation
1178
+ To validate the thermo-optic effect model developed in
1179
+ Section II-D, we re-characterized the MZI transmission spectra
1180
+ from a single die of the chip shown in Fig. 10a. The thermal
1181
+ characterization was performed by adhering a Thorlabs TLK-
1182
+ H polyimide heater to the side of the chip stage. The heater
1183
+ was controlled by a Thorlabs TC200 Temperature Controller to
1184
+ set the heater temperature. Thermal paste was applied between
1185
+ the chip and the chip stage to minimize thermal resistance
1186
+ between the chip and the heater. The thermal response of one
1187
+ of the tested MZI is shown in Fig. 12. The fringe closest to
1188
+ 1550 nm is tracked at each temperature step and plotted against
1189
+ temperature to extract ∂λ/∂T. This value is then compared to
1190
+ our predicted value for ∂λ/∂T gained by taking the derivative
1191
+ of λ in (11) with respect to temperature
1192
+ ∂λ
1193
+ ∂Tchip
1194
+ =
1195
+ ∆L
1196
+ m
1197
+ ∂neff
1198
+ ∂Tchip
1199
+ ∂Tchip
1200
+ Theater
1201
+ 1 − ∆L
1202
+ m
1203
+ ∂neff,model
1204
+ ∂λ
1205
+ ,
1206
+ (23)
1207
+ where m is the order of the tracked fringe, ∆L is the path
1208
+ length difference between the two arms, and ∂Tchip/∂Theater
1209
+ represents the heat transfer efficiency from the heater to the
1210
+ chip itself. This last term is included as the authors only know
1211
+
1212
+ 0
1213
+ a
1214
+ Power [dBm]
1215
+ 10
1216
+ 31.8 °C
1217
+ 20
1218
+ 36.8 °C
1219
+ 41.7°C
1220
+ 0.073 nm/K
1221
+ -30
1222
+ 44.9 °C
1223
+ 1527
1224
+ 1528
1225
+ 1529
1226
+ 1530
1227
+ 1531
1228
+ 1532
1229
+ Wavelength [nm]
1230
+ b
1231
+ 0.90
1232
+ 0.85
1233
+ 0.80
1234
+ 500
1235
+ 1000
1236
+ 1500
1237
+ 2000
1238
+ Width [nm]a
1239
+ COLUMBIA UNIVERSITY
1240
+ DARPA
1241
+ IN THE CITY OF NEW YORI
1242
+ ch Lightwave Research Laborato
1243
+ 1CM
1244
+ Power [dBm]
1245
+ -10
1246
+ -15
1247
+ α = 1.916 dB/cm
1248
+ 2
1249
+ 4
1250
+ Spiral Length [cm]
1251
+ 400 um11
1252
+ Fig. 14.
1253
+ a, Plot of measured (scatter) and modeled (line) propagation loss
1254
+ vs ∂neff/∂w. Slope of fit represents R in (4), while the intercept represents
1255
+ non-SWR loss. b, Plot of measured (scatter) and modeled (line) propagation
1256
+ loss vs waveguide width.
1257
+ the temperature of the resistive heater rather than the chip
1258
+ temperature itself. We know ∂Tchip/∂Theater ≤ 1 as heater
1259
+ cannot raise the temperature of the chip to a value higher than
1260
+ its own. The extracted parameters for ∆w and V are used in
1261
+ calculating (23).
1262
+ On average, the measured thermo-optic effect was found to
1263
+ be 0.91× our model’s (9) prediction. This value was found to
1264
+ be independent of waveguide geometry with the exception of
1265
+ 400 nm (Fig. 12b). This error for 400 nm is assumed to be be-
1266
+ cause this width is close enough to the cutoff condition for our
1267
+ model to lose accuracy. In contrast, the measured thermo-optic
1268
+ effect was 1.21× the previously reported model’s prediction.
1269
+ This implies that either the chip’s change in temperature is
1270
+ greater than the heater’s or the previously reported model is
1271
+ incorrect. The change in temperature of the PIC can only ever
1272
+ be smaller than the heater’s temperature delta, making the old
1273
+ model’s prediction clearly nonphysical.
1274
+ D. Scattering Loss Model Validation
1275
+ To validate the scattering loss model, we measured a die
1276
+ with 25 spiral loss structures consisting of 5 different wave-
1277
+ guide widths (w) from 400 nm to 500 nm and 5 different spiral
1278
+ lengths (∆L) from 1 cm to 5 cm, fabricated on a custom 300
1279
+ mm full wafer through AIM Photonics (Fig. 13). Again, all
1280
+ spiral structures have a nominal waveguide height of 220 nm,
1281
+ and grating couplers designed for quasi-TE polarization are
1282
+ utilized for optical I/O. The losses of each spiral length were
1283
+ recorded, and then fit to a linear equation. The slope of the
1284
+ this fit was taken to be the propagation loss associated with
1285
+ each waveguide width. The results of our model fit are shown
1286
+ in Fig. 14. The model built in Section V-B was used to build
1287
+ a model of ∂neff/∂w. Fitting our modeled ∂neff/∂w to the
1288
+ measured propagation loss yields proportionality constant of
1289
+ R = 6.206 × 10−8 cm and (Fig. 14a). The intercept of the loss
1290
+ Fig. 15. a, Cadence Virtuoso schematic of the MZI test circuit. All circuit
1291
+ models were written in Verilog-A. The optical stimulus is provided by
1292
+ a continuous-wave (CW) Laser and detected with a photodetector (PD).
1293
+ b, Comparison of measured and simulated performance for an MZI with
1294
+ w = 2 µm and ∆L = 100 µm.
1295
+ fit is interpreted as the aggregate non-SWR loss, with a value
1296
+ of 0.901 dB. Fig. 14b shows the excellent agreement between
1297
+ our model and the data, predicting the similar propagation
1298
+ losses of both the 440 nm and 460 nm waveguides. As
1299
+ mentioned in Section V-B, both 400 and 420 nm waveguide
1300
+ widths are likely near the cutoff condition. Since (4) is only
1301
+ valid sufficiently far away from this condition, those data
1302
+ points are not included in the plot.
1303
+ E. Verilog-A Implementation
1304
+ To demonstrate its compatibility with electronic-photonic
1305
+ co-simulation, the circuit model was implemented in Verilog-
1306
+ A within Cadence Virtuoso (Fig. 15a). As Verilog-A does not
1307
+ inherently support optical signals, some compatibility code as
1308
+ well as a small library of photonic device models were built
1309
+ based upon on previously reported demonstrations [32], [59],
1310
+ [60].
1311
+ VI. CONCLUSION
1312
+ In summary, we have demonstrated a novel compact model
1313
+ that can greatly expand the accuracy of circuit-level simulation
1314
+ capabilities of silicon PICs. In contrast to prior work that
1315
+ focused on providing metrology information that could be use
1316
+ to fabrication engineers [26], [61], [62], we present this PDK
1317
+ model as a tool suitable for true-to-measurement circuit simu-
1318
+ lation and optimization. By leveraging this underlying physical
1319
+ behavior and locally extracting process variations by perform-
1320
+ ing group extraction, we have demonstrated a framework for
1321
+ building a model of neff that is entirely driven by measurement
1322
+ data. This model was shown to accurately describing the phase,
1323
+
1324
+ a
1325
+ Loss [dB/cm]
1326
+ R = 6.206e-08 cm
1327
+ 1.9
1328
+ αnon-SwWR = 0.901 dB
1329
+ 1.8
1330
+ 1.7
1331
+ 2.2
1332
+ 2.3
1333
+ 2.4
1334
+ 2.5
1335
+ 2.6
1336
+ 2.7
1337
+ neff/Ow [um-1]
1338
+ b
1339
+ Loss [dB/cm]
1340
+ 1.9
1341
+ 1.8
1342
+ 1.7
1343
+ 440
1344
+ 450
1345
+ 460
1346
+ 470
1347
+ 480
1348
+ 490
1349
+ 500
1350
+ Width [nm]a
1351
+ ght<0:3
1352
+ 50:50 Coupler
1353
+ 50:50 Coupler
1354
+ Waveguides
1355
+ eftLig1<0:3>
1356
+ rightLig1<0:3>
1357
+ leftLig1<0:3>
1358
+ rightLig1<:3>
1359
+ leftLig2<0:3>
1360
+ coupler
1361
+ coupler
1362
+ rightLig2<0:3>
1363
+ eftLig2<0:3>
1364
+ rightLig2<0:3>
1365
+ inLight<0:3tatic_waveguide_R2_d1outLight<0:3>
1366
+ CW Laser
1367
+ lastightout<0:3
1368
+ PD
1369
+ b
1370
+ Transmission [dB]
1371
+ -20
1372
+ Measured
1373
+ VerilogA
1374
+ 1520
1375
+ 1530
1376
+ 1540
1377
+ 1550
1378
+ 1560
1379
+ Wavelength [nm]12
1380
+ loss, and thermo-optic behavior of the measured integrated
1381
+ waveguides over 4× the optical bandwidth and over 80×
1382
+ the range of waveguides widths reported in prior work. We
1383
+ envision that the advancement over prior demonstrations this
1384
+ work represents can support the development of waveguide-
1385
+ based PDK components and enable the robust optimization of
1386
+ next generation PICs.
1387
+ VII. ACKNOWLEDGEMENTS
1388
+ This work was supported in part by the U.S. Advanced
1389
+ Research Projects Agency–Energy under ENLITENED Grant
1390
+ DE-AR000843 and in part by the U.S. Defense Advanced Re-
1391
+ search Projects Agency under PIPES Grant HR00111920014.
1392
+ The authors thank AIM Photonics for chip fabrication.
1393
+ APPENDIX
1394
+ A. Derivation of Thermo-Optic Model
1395
+ Starting from (8) from [46], the effect of a thermal pertur-
1396
+ bation on the effective index is investigated. Carrying out this
1397
+ perturbation and following the chain rule yields:
1398
+ 2β ∂β
1399
+ ∂T = 2Γcore
1400
+ ω2
1401
+ c2 ncore
1402
+ ∂ncore
1403
+ ∂T
1404
+ + 2Γclad
1405
+ ω2
1406
+ c2 nclad
1407
+ ∂nclad
1408
+ ∂T
1409
+ .
1410
+ (24)
1411
+ Noting that β = ωneff/c and inserting above, the relationship
1412
+ simplifies to (25). Combining with (1) yields:
1413
+ neff = neff, T0 + ∂neff
1414
+ ∂T (T − T0)
1415
+ (25a)
1416
+ ∂neff
1417
+ ∂T
1418
+ = Γcore
1419
+ ncore
1420
+ neff
1421
+ ∂ncore
1422
+ ∂T
1423
+ + Γclad
1424
+ nclad
1425
+ neff
1426
+ ∂nclad
1427
+ ∂T
1428
+ .
1429
+ (25b)
1430
+ It is noted that neff appears on both sides of the equation.
1431
+ Multiplying both sides by effective index yields a quadratic
1432
+ equation whose solution is:
1433
+ neff = neff, T0
1434
+ 2
1435
+ + 1
1436
+ 2
1437
+
1438
+ n2
1439
+ eff, T0 + 4n
1440
+ ′(T − T0)
1441
+ (26a)
1442
+ n
1443
+ ′ = Γcorencore
1444
+ ∂ncore
1445
+ ∂T
1446
+ + Γcladnclad
1447
+ ∂nclad
1448
+ ∂T
1449
+ .
1450
+ (26b)
1451
+ The expression can be simplified by noting that n2
1452
+ eff, T0 ≫ 4n
1453
+
1454
+ for typical values for the thermo-optic coefficients. Under-
1455
+ standing this, it is clear that the behavior of the square root
1456
+ term is approximately linear. The 1st order Taylor expansion
1457
+ of the square root term is:
1458
+ neff, T0 + 1
1459
+ 2
1460
+ 4n
1461
+
1462
+
1463
+ n2
1464
+ eff, T0 + 4n
1465
+ ′(T − T0)
1466
+ (T − T0).
1467
+ (27)
1468
+ Noting again that n2
1469
+ eff, T0 ≫ 4n
1470
+ ′, (27) simplifies to:
1471
+ neff, T0 +
1472
+ 2n
1473
+
1474
+ neff, T0
1475
+ (T − T0).
1476
+ (28)
1477
+ Replacing the square root term in (26) with this expression
1478
+ and simplifying will then yield (9).
1479
+ B. Principal Component Analysis
1480
+ To start, we form a matrix X our of our list of local sub-
1481
+ parameter extractions, where each column represents a model
1482
+ parameter and each row is an observation of said parameter:
1483
+ X =
1484
+
1485
+ ������
1486
+ ∂0neff
1487
+ ∂λ0
1488
+ 0,1
1489
+ ∂0neff
1490
+ ∂λ0
1491
+ 1,1
1492
+ · · ·
1493
+ ∂2neff
1494
+ ∂λ2
1495
+ 4,1
1496
+ ∂0neff
1497
+ ∂λ0
1498
+ 0,2
1499
+ ∂0neff
1500
+ ∂λ0
1501
+ 1,2
1502
+ · · ·
1503
+ ∂2neff
1504
+ ∂λ2
1505
+ 4,2
1506
+ ...
1507
+ ...
1508
+ ...
1509
+ ...
1510
+ ∂0neff
1511
+ ∂λ0
1512
+ 0,n
1513
+ ∂0neff
1514
+ ∂λ0
1515
+ 1,n
1516
+ · · ·
1517
+ ∂2neff
1518
+ ∂λ2
1519
+ 4,n
1520
+
1521
+ ������
1522
+ .
1523
+ (29)
1524
+ A covariance matrix S is then created from X and find its
1525
+ eigenvectors:
1526
+ S =
1527
+
1528
+ ����
1529
+ ⃗v0
1530
+ ⃗v1
1531
+ ...
1532
+ ⃗vn
1533
+
1534
+ ����
1535
+
1536
+ ����
1537
+ λ0
1538
+ 0
1539
+ · · ·
1540
+ 0
1541
+ 0
1542
+ λ1
1543
+ · · ·
1544
+ 0
1545
+ ...
1546
+ ...
1547
+ ...
1548
+ ...
1549
+ 0
1550
+ 0
1551
+ · · ·
1552
+ λn
1553
+
1554
+ ����
1555
+
1556
+ ����
1557
+ ⃗v0
1558
+ ⃗v1
1559
+ ...
1560
+ ⃗vn
1561
+
1562
+ ����
1563
+ −1
1564
+ ,
1565
+ (30)
1566
+ where
1567
+ [v0, v1, · · · , vn]
1568
+ lists
1569
+ the
1570
+ eigenvectors
1571
+ and
1572
+ [λ0, λ1, · · · , λn]
1573
+ are
1574
+ their
1575
+ associated
1576
+ eigenvalues.
1577
+ The
1578
+ eigenvectors of the correlation matrix represent the directions
1579
+ of the axes where there is the most variance (i.e. the most
1580
+ information). Each eigenvalue λi is proportional to how much
1581
+ variance is captured by its associated principal component
1582
+ vi. Picking the eigenvectors with the largest eigenvalues
1583
+ allows us to reduce data dimensionality at the expense of
1584
+ some accuracy. The percentage of variability explained by a
1585
+ principal component is calculated as
1586
+ �M
1587
+ i=0 λi
1588
+ �N
1589
+ i=0 λi
1590
+ ,
1591
+ (31)
1592
+ where λi is the eigenvalue for each eigenvector, M is the
1593
+ number of principal components the designer has chosen
1594
+ to include, and N is the maximum number of principal
1595
+ components.
1596
+ REFERENCES
1597
+ [1] A. Rizzo, S. Daudlin, A. Novick, A. James, V. Gopal, V. Murthy,
1598
+ Q. Cheng, B. Y. Kim, X. Ji, Y. Okawachi, M. van Niekerk, V. Deena-
1599
+ dayalan, G. Leake, M. Fanto, S. Preble, M. Lipson, A. Gaeta, and
1600
+ K. Bergman, “Petabit-scale silicon photonic interconnects with inte-
1601
+ grated kerr frequency combs,” IEEE Journal of Selected Topics in
1602
+ Quantum Electronics, vol. 29, no. 1: Nonlinear Integrated Photonics,
1603
+ pp. 1–20, 2023.
1604
+ [2] Q. Cheng, M. Bahadori, M. Glick, S. Rumley, and K. Bergman, “Recent
1605
+ advances in optical technologies for data centers: a review,” Optica,
1606
+ vol. 5, no. 11, pp. 1354–1370, Nov 2018.
1607
+ [3] M. Wade, E. Anderson, S. Ardalan, P. Bhargava, S. Buchbinder, M. L.
1608
+ Davenport, J. Fini, H. Lu, C. Li, R. Meade et al., “Teraphy: a chiplet
1609
+ technology for low-power, high-bandwidth in-package optical i/o,” IEEE
1610
+ Micro, vol. 40, no. 2, pp. 63–71, 2020.
1611
+ [4] G. Moody, V. J. Sorger, D. J. Blumenthal, P. W. Juodawlkis, W. Loh,
1612
+ C. Sorace-Agaskar, A. E. Jones, K. C. Balram, J. C. Matthews, A. Laing
1613
+ et al., “2022 roadmap on integrated quantum photonics,” Journal of
1614
+ Physics: Photonics, vol. 4, no. 1, p. 012501, 2022.
1615
+ [5] G. R. Steinbrecher, J. P. Olson, D. Englund, and J. Carolan, “Quantum
1616
+ optical neural networks,” npj Quantum Information, vol. 5, no. 1, pp.
1617
+ 1–9, 2019.
1618
+ [6] S. Takeda and A. Furusawa, “Toward large-scale fault-tolerant universal
1619
+ photonic quantum computing,” APL Photonics, vol. 4, no. 6, p. 060902,
1620
+ 2019.
1621
+
1622
+ 13
1623
+ [7] N. C. Harris, D. Bunandar, M. Pant, G. R. Steinbrecher, J. Mower,
1624
+ M. Prabhu, T. Baehr-Jones, M. Hochberg, and D. Englund, “Large-scale
1625
+ quantum photonic circuits in silicon,” Nanophotonics, vol. 5, no. 3, pp.
1626
+ 456–468, 2016.
1627
+ [8] J. E. Bourassa, R. N. Alexander, M. Vasmer, A. Patil, I. Tzitrin,
1628
+ T. Matsuura, D. Su, B. Q. Baragiola, S. Guha, G. Dauphinais et al.,
1629
+ “Blueprint for a scalable photonic fault-tolerant quantum computer,”
1630
+ Quantum, vol. 5, p. 392, 2021.
1631
+ [9] D. Marpaung, J. Yao, and J. Capmany, “Integrated microwave photon-
1632
+ ics,” Nature photonics, vol. 13, no. 2, pp. 80–90, 2019.
1633
+ [10] Y. Yang, Y. Yamagami, X. Yu, P. Pitchappa, J. Webber, B. Zhang,
1634
+ M. Fujita, T. Nagatsuma, and R. Singh, “Terahertz topological photonics
1635
+ for on-chip communication,” Nature Photonics, vol. 14, no. 7, pp. 446–
1636
+ 451, 2020.
1637
+ [11] B. Zong, C. Fan, X. Wang, X. Duan, B. Wang, and J. Wang, “6g
1638
+ technologies: Key drivers, core requirements, system architectures, and
1639
+ enabling technologies,” IEEE Vehicular Technology Magazine, vol. 14,
1640
+ no. 3, pp. 18–27, 2019.
1641
+ [12] W. Shi, Y. Tian, and A. Gervais, “Scaling capacity of fiber-optic
1642
+ transmission systems via silicon photonics,” Nanophotonics, vol. 9,
1643
+ no. 16, pp. 4629–4663, 2020.
1644
+ [13] Z. Zhou, R. Chen, X. Li, and T. Li, “Development trends in silicon
1645
+ photonics for data centers,” Optical Fiber Technology, vol. 44, pp. 13–
1646
+ 23, 2018.
1647
+ [14] R. Sabella, “Silicon photonics for 5g and future networks,” IEEE Journal
1648
+ of Selected Topics in Quantum Electronics, vol. 26, no. 2, pp. 1–11,
1649
+ 2019.
1650
+ [15] R. Gardner, J. Bieker, and S. Elwell, “Solving tough semiconductor man-
1651
+ ufacturing problems using data mining,” in 2000 IEEE/SEMI Advanced
1652
+ Semiconductor Manufacturing Conference and Workshop. ASMC 2000
1653
+ (Cat. No. 00CH37072).
1654
+ IEEE, 2000, pp. 46–55.
1655
+ [16] N. Kumar, K. Kennedy, K. Gildersleeve, R. Abelson, C. Mastrangelo,
1656
+ and D. Montgomery, “A review of yield modelling techniques for
1657
+ semiconductor manufacturing,” International Journal of Production Re-
1658
+ search, vol. 44, no. 23, pp. 5019–5036, 2006.
1659
+ [17] W. Bogaerts and L. Chrostowski, “Silicon photonics circuit design:
1660
+ methods, tools and challenges,” Laser & Photonics Reviews, vol. 12,
1661
+ no. 4, p. 1700237, 2018.
1662
+ [18] A. Rizzo, U. Dave, A. Novick, A. Freitas, S. P. Roberts, A. James,
1663
+ M. Lipson, and K. Bergman, “Fabrication-robust silicon photonic
1664
+ devices in standard sub-micron silicon-on-insulator processes,” Opt.
1665
+ Lett., vol. 48, no. 2, pp. 215–218, Jan 2023. [Online]. Available:
1666
+ https://opg.optica.org/ol/abstract.cfm?URI=ol-48-2-215
1667
+ [19] Y. Wang, P. Sun, J. Hulme, M. A. Seyedi, M. Fiorentino, R. G.
1668
+ Beausoleil, and K.-T. Cheng, “Energy efficiency and yield optimization
1669
+ for optical interconnects via transceiver grouping,” J. Lightwave
1670
+ Technol., vol. 39, no. 6, pp. 1567–1578, Mar 2021. [Online]. Available:
1671
+ http://opg.optica.org/jlt/abstract.cfm?URI=jlt-39-6-1567
1672
+ [20] A. V. Krishnamoorthy, X. Zheng, G. Li, J. Yao, T. Pinguet, A. Mekis,
1673
+ H. Thacker, I. Shubin, Y. Luo, K. Raj et al., “Exploiting cmos man-
1674
+ ufacturing to reduce tuning requirements for resonant optical devices,”
1675
+ IEEE Photonics Journal, vol. 3, no. 3, pp. 567–579, 2011.
1676
+ [21] N. Margalit, C. Xiang, S. M. Bowers, A. Bjorlin, R. Blum, and J. E.
1677
+ Bowers, “Perspective on the future of silicon photonics and electronics,”
1678
+ Applied Physics Letters, vol. 118, no. 22, p. 220501, 2021.
1679
+ [22] Y. Wang, S. Wang, A. Novick, A. James, R. Parsons, A. Rizzo, and
1680
+ K. Bergman, “Dispersion-engineered and fabrication-robust soi waveg-
1681
+ uides for ultra-broadband dwdm,” in 2023 Optical Fiber Communica-
1682
+ tions Conference and Exhibition (OFC) [To appear], 2023, pp. 1–3.
1683
+ [23] R. Woltjer, L. Tiemeijer, and D. Klaassen, “An industrial view on
1684
+ compact modeling,” in 2006 European Solid-State Device Research
1685
+ Conference.
1686
+ IEEE, 2006, pp. 41–48.
1687
+ [24] N. Moezi, “Statistical compact model strategies for nano cmos transis-
1688
+ tors subject of atomic scale variability,” Ph.D. dissertation, University
1689
+ of Glasgow, 2012.
1690
+ [25] Y. Xing, J. Dong, S. Dwivedi, U. Khan, and W. Bogaerts, “Accurate
1691
+ extraction of fabricated geometry using optical measurement,” Photonics
1692
+ Research, vol. 6, no. 11, pp. 1008–1020, 2018.
1693
+ [26] Z. Lu, J. Jhoja, J. Klein, X. Wang, A. Liu, J. Flueckiger, J. Pond, and
1694
+ L. Chrostowski, “Performance prediction for silicon photonics integrated
1695
+ circuits with layout-dependent correlated manufacturing variability,”
1696
+ Optics express, vol. 25, no. 9, pp. 9712–9733, 2017.
1697
+ [27] W. A. Zortman, D. C. Trotter, and M. R. Watts, “Silicon photonics
1698
+ manufacturing,” Optics express, vol. 18, no. 23, pp. 23 598–23 607, 2010.
1699
+ [28] Z. Zhang, S. I. El-Henawy, C. R´ıos, and D. S. Boning, “Inference of
1700
+ process variations in silicon photonics from characterization measure-
1701
+ ments,” in CLEO: Science and Innovations.
1702
+ Optica Publishing Group,
1703
+ 2022, pp. SF3O–5.
1704
+ [29] T. H. Stievater, N. F. Tyndall, M. W. Pruessner, D. A. Kozak, and W. S.
1705
+ Rabinovich, “Optical and geometric parameter extraction for photonic
1706
+ integrated circuits,” Optics Express, vol. 30, no. 9, pp. 14 453–14 460,
1707
+ 2022.
1708
+ [30] M. J. Shawon and V. Saxena, “Rapid simulation of photonic integrated
1709
+ circuits using verilog-a compact models,” IEEE Transactions on Circuits
1710
+ and Systems I: Regular Papers, vol. 67, no. 10, pp. 3331–3341, 2020.
1711
+ [31] Z. Zhang, R. Wu, Y. Wang, C. Zhang, E. J. Stanton, C. L. Schow, K.-
1712
+ T. Cheng, and J. E. Bowers, “Compact modeling for silicon photonic
1713
+ heterogeneously integrated circuits,” Journal of Lightwave Technology,
1714
+ vol. 35, no. 14, pp. 2973–2980, 2017.
1715
+ [32] C. Sorace-Agaskar, J. Leu, M. R. Watts, and V. Stojanovic, “Electro-
1716
+ optical co-simulation for integrated cmos photonic circuits with ver-
1717
+ iloga,” Optics express, vol. 23, no. 21, pp. 27 180–27 203, 2015.
1718
+ [33] B. E. Saleh and M. C. Teich, Fundamentals of photonics.
1719
+ John Wiley
1720
+ & Sons, 2019.
1721
+ [34] A. James, Y. Wang, A. Rizzo, and K. Bergman, “Flexible, process-aware
1722
+ compact model of effective index in silicon waveguides for commercial
1723
+ foundries,” in 2022 International Conference on Numerical Simulation
1724
+ of Optoelectronic Devices (NUSOD).
1725
+ IEEE, 2022, pp. 173–174.
1726
+ [35] A. E. James, A. Wang, S. Wang, and K. Bergman, “Evaluating
1727
+ regression-based techniques for modelling fabrication variations in sili-
1728
+ con photonic waveguides,” in Applications of Machine Learning 2021,
1729
+ vol. 11843.
1730
+ International Society for Optics and Photonics, 2021, p.
1731
+ 1184305.
1732
+ [36] M. J. Heck, J. F. Bauters, M. L. Davenport, D. T. Spencer, and J. E.
1733
+ Bowers, “Ultra-low loss waveguide platform and its integration with
1734
+ silicon photonics,” Laser & Photonics Reviews, vol. 8, no. 5, pp. 667–
1735
+ 686, 2014.
1736
+ [37] D. Melati, A. Melloni, and F. Morichetti, “Real photonic waveguides:
1737
+ guiding light through imperfections,” Advances in Optics and Photonics,
1738
+ vol. 6, no. 2, pp. 156–224, 2014.
1739
+ [38] J. Lacey and F. Payne, “Radiation loss from planar waveguides with
1740
+ random wall imperfections,” IEE Proceedings J-Optoelectronics, vol.
1741
+ 137, no. 4, pp. 282–288, 1990.
1742
+ [39] F. Payne and J. Lacey, “A theoretical analysis of scattering loss from
1743
+ planar optical waveguides,” Optical and Quantum Electronics, vol. 26,
1744
+ no. 10, pp. 977–986, 1994.
1745
+ [40] E. Jaberansary, T. M. B. Masaud, M. Milosevic, M. Nedeljkovic, G. Z.
1746
+ Mashanovich, and H. M. Chong, “Scattering loss estimation using
1747
+ 2-d fourier analysis and modeling of sidewall roughness on optical
1748
+ waveguides,” IEEE Photonics Journal, vol. 5, no. 3, pp. 6 601 010–
1749
+ 6 601 010, 2013.
1750
+ [41] S. Kawakami, “Relation between dispersion and power-flow distribution
1751
+ in a dielectric waveguide,” JOSA, vol. 65, no. 1, pp. 41–45, 1975.
1752
+ [42] N. Y. Winnie, J. Michel, L. C. Kimerling, and L. Eldada, “Polymer-
1753
+ cladded athermal high-index-contrast waveguides,” in Optoelectronic
1754
+ Integrated Circuits X, vol. 6897.
1755
+ International Society for Optics and
1756
+ Photonics, 2008, p. 68970S.
1757
+ [43] P. Jean, A. Douaud, T. Thibault, S. LaRochelle, Y. Messaddeq, and
1758
+ W. Shi, “Sulfur-rich chalcogenide claddings for athermal and high-q
1759
+ silicon microring resonators,” Optical Materials Express, vol. 11, no. 3,
1760
+ pp. 913–925, 2021.
1761
+ [44] H. Zhang, J. Chen, J. Jin, J. Lin, L. Zhao, Z. Bi, A. Huang, and Z. Xiao,
1762
+ “On-chip modulation for rotating sensing of gyroscope based on ring
1763
+ resonator coupled with mach-zehnder interferometer,” Scientific reports,
1764
+ vol. 6, no. 1, pp. 1–9, 2016.
1765
+ [45] Z. Zhou, B. Yin, Q. Deng, X. Li, and J. Cui, “Lowering the energy con-
1766
+ sumption in silicon photonic devices and systems,” Photonics Research,
1767
+ vol. 3, no. 5, pp. B28–B46, 2015.
1768
+ [46] A. Yariv and P. Yeh, Photonics: optical electronics in modern commu-
1769
+ nications.
1770
+ Oxford university press, 2007.
1771
+ [47] E. D. Palik, Handbook of optical constants of solids.
1772
+ Academic press,
1773
+ 1998, vol. 3.
1774
+ [48] B. J. Frey, D. B. Leviton, and T. J. Madison, “Temperature-dependent
1775
+ refractive index of silicon and germanium,” in SPIE Proceedings,
1776
+ E. Atad-Ettedgui, J. Antebi, and D. Lemke, Eds.
1777
+ SPIE, jun 2006.
1778
+ [Online]. Available: https://doi.org/10.1117%2F12.672850
1779
+ [49] A. W. Elshaari, I. E. Zadeh, K. D. J¨ons, and V. Zwiller, “Thermo-
1780
+ optic characterization of silicon nitride resonators for cryogenic photonic
1781
+ circuits,” IEEE Photonics Journal, vol. 8, no. 3, pp. 1–9, 2016.
1782
+ [50] D. Coenen, H. Oprins, Y. Ban, F. Ferraro, M. Pantouvaki, J. Van Camp-
1783
+ enhout, and I. De Wolf, “Thermal modelling of silicon photonic ring
1784
+ modulator with substrate undercut,” Journal of Lightwave Technology,
1785
+ 2022.
1786
+
1787
+ 14
1788
+ [51] M. Jacques, A. Samani, E. El-Fiky, D. Patel, Z. Xing, and D. V. Plant,
1789
+ “Optimization of thermo-optic phase-shifter design and mitigation of
1790
+ thermal crosstalk on the soi platform,” Optics express, vol. 27, no. 8,
1791
+ pp. 10 456–10 471, 2019.
1792
+ [52] M. de Cea, A. H. Atabaki, and R. J. Ram, “Power handling of
1793
+ silicon microring modulators,” Opt. Express, vol. 27, no. 17, pp.
1794
+ 24 274–24 285, Aug 2019. [Online]. Available: https://opg.optica.org/
1795
+ oe/abstract.cfm?URI=oe-27-17-24274
1796
+ [53] C. Oton, C. Manganelli, F. Bontempi, M. Fournier, D. Fowler, and
1797
+ C. Kopp, “Silicon photonic waveguide metrology using mach-zehnder
1798
+ interferometers,” Optics express, vol. 24, no. 6, pp. 6265–6270, 2016.
1799
+ [54] Q. Deng, L. Liu, X. Li, J. Michel, and Z. Zhou, “Linear-regression-
1800
+ based approach for loss extraction from ring resonators,” Opt. Lett.,
1801
+ vol. 41, no. 20, pp. 4747–4750, Oct 2016. [Online]. Available:
1802
+ http://opg.optica.org/ol/abstract.cfm?URI=ol-41-20-4747
1803
+ [55] W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Ku-
1804
+ mar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and
1805
+ R. Baets, “Silicon microring resonators,” Laser & Photonics Reviews,
1806
+ vol. 6, no. 1, pp. 47–73, 2012.
1807
+ [56] W. N. Ye, D.-X. Xu, S. Janz, P. Cheben, M.-J. Picard, B. Lamontagne,
1808
+ and N. G. Tarr, “Birefringence control using stress engineering in
1809
+ silicon-on-insulator (soi) waveguides,” Journal of Lightwave Technology,
1810
+ vol. 23, no. 3, pp. 1308–1318, 2005.
1811
+ [57] H. Abdi and L. J. Williams, “Principal component analysis,” Wiley
1812
+ interdisciplinary reviews: computational statistics, vol. 2, no. 4, pp. 433–
1813
+ 459, 2010.
1814
+ [58] S. Singer and J. Nelder, “Nelder-mead algorithm,” Scholarpedia, vol. 4,
1815
+ no. 7, p. 2928, 2009.
1816
+ [59] E. Kononov, “Modeling photonic links in verilog-a,” Ph.D. dissertation,
1817
+ Massachusetts Institute of Technology, 2013.
1818
+ [60] J. C. Leu, “Integrated silicon photonic circuit simulation,” Ph.D. disser-
1819
+ tation, Massachusetts Institute of Technology, 2018.
1820
+ [61] Y. Xing, M. Wang, A. Ruocco, J. Geessels, U. Khan, and W. Bogaerts,
1821
+ “Compact silicon photonics circuit to extract multiple parameters
1822
+ for process control monitoring,” OSA Continuum, vol. 3, no. 2, pp.
1823
+ 379–390, Feb 2020. [Online]. Available: https://opg.optica.org/osac/
1824
+ abstract.cfm?URI=osac-3-2-379
1825
+ [62] D. S. Boning, S. I. El-Henawy, and Z. Zhang, “Variation-aware methods
1826
+ and models for silicon photonic design-for-manufacturability,” Journal
1827
+ of Lightwave Technology, vol. 40, no. 6, pp. 1776–1783, 2022.
1828
+ Aneek James received his B.S. in Electrical and Electronics Engineering from
1829
+ the University of Georgia, Athens, GA in 2017 and his M.S., and M.Phil., in
1830
+ Electrical Engineering from Columbia University, New York, NY in 2019
1831
+ and 2021, respectively. He is working as a Ph.D. candidate in Electrical
1832
+ Engineering in the Lightwave Research Laboratory under Professor Keren
1833
+ Bergman. His research interests include modeling fabrication variations in
1834
+ silicon photonic devices, as well as the testing and automated control of silicon
1835
+ photonic systems for high-throughput optical interconnects.
1836
+ Anthony Rizzo received his B.S. in Physics from Haverford College,
1837
+ Haverford, PA in 2017 and his M.S., M.Phil., and Ph.D., all in Electrical
1838
+ Engineering, from Columbia University, New York, NY in 2019, 2021, and
1839
+ 2022, respectively. He completed his doctoral research in the Lightwave
1840
+ Research Laboratory at Columbia University under Professor Keren Bergman,
1841
+ where he led the first demonstration of data transmission using an integrated
1842
+ Kerr frequency comb source and silicon photonic transmitter. He is currently a
1843
+ Research Scientist at the Air Force Research Laboratory (AFRL) Information
1844
+ Directorate in Rome, NY, with a focus in large-scale silicon photonic systems
1845
+ for quantum information processing and artificial intelligence.
1846
+ Yuyang Wang received the B.Eng. degree in electronic engineering from
1847
+ Tsinghua University, Beijing, China in 2015, and the M.S. and PhD degrees
1848
+ in computer engineering from the University of California, Santa Barbara
1849
+ (UCSB), CA, USA, in 2018 and 2021 respectively. He is currently a post-
1850
+ doctoral researcher in the Lightwave Research Laboratory under Professor
1851
+ Keren Bergman. He was a Design Engineering Intern at Cadence Design
1852
+ Systems in 2018 and a Visiting Intern at the Hong Kong University of
1853
+ Science and Technology in 2019. His research interests include variation-
1854
+ aware modeling, design, and optimization of silicon photonic interconnects
1855
+ and systems.
1856
+ Asher Novick received his M.Eng. and B.S. degrees in Electrical and
1857
+ Computer Engineering from Cornell University, Ithaca, NY, USA, in 2016 and
1858
+ 2015,respectively. Between 2016 and 2019, he was at Panduit’s Fiber Research
1859
+ Lab, where he researched and developed new patentable technologies for
1860
+ optical fiber-based communication in data center and enterprise applications.
1861
+ He is currently working toward his Ph.D. degree in Electrical Engineering
1862
+ in the Lightwave Research Laboratory at Columbia University in the City
1863
+ of New York. His current research interest is in the modeling, design, and
1864
+ testing of silicon photonic systems and devices for scalable and efficient link
1865
+ architectures.
1866
+ Songli Wang received his B.Eng. in Optoelectronic Information Science and
1867
+ Engineering from Harbin Institute of Technology, Harbin, China, in 2019
1868
+ and his M.S. in Electrical Engineering from Columbia University, New York,
1869
+ NY in 2020. He is currently working towards the Ph.D. degree in Electrical
1870
+ Engineering in the Lightwave Research Laboratory at Columbia University.
1871
+ His current research interests include modeling, design and testing of silicon
1872
+ photonic devices and systems.
1873
+ Robert Parsons received the B.S. degree in biomedical engineering from
1874
+ George Washington University, Washington, D.C., USA, and the M.S. degree
1875
+ in electrical engineering from Columbia University, New York, NY, USA, in
1876
+ 2020 and 2022, respectively. He is currently working toward the Ph.D. degree
1877
+ in electrical engineering with the Lightwave Research Laboratory, Columbia
1878
+ University under Professor Keren Bergman. His research interests include the
1879
+ modeling, testing, and co-optimization of link architectures and constituent
1880
+ silicon photonic devices for high-bandwidth, energy-efficient optical inter-
1881
+ connects.
1882
+ Kaylx Jang received his B.S. in Electrical Engineering from the University
1883
+ of California, Irvine, CA in 2020 and his M.S. in Electrical Engineering from
1884
+ Columbia University in 2022. In 2019 and 2020, he interned in the testing
1885
+ department at Ayar Labs and in 2021 did a co-op in the Silicon Photonics
1886
+ Design team at Nokia (former Elenion). He is working as a Ph.D. student
1887
+ in Electrical Engineering in the Lightwave Research Lab under Professor
1888
+ Keren Bergman. His research interests include modeling, design, and testing
1889
+ of high-performance silicon photonic devices for energy efficient and scalable
1890
+ link architectures.
1891
+ Maarten Hattink is a graduate student with Columbia University, New
1892
+ York, NY, USA. He received the B.S. and M.S. degrees from the Eindhoven
1893
+ University of Technology, The Netherlands, in 2015 and 2017, respectively.
1894
+ While pursuing these degrees, he worked at Prodrive Technologies B.V. as
1895
+ a Software and FPGA Engineer. He is currently working toward the Ph.D.
1896
+ degree and his research interest lies in photonic device integration and thermal
1897
+ control.
1898
+
1899
+ 15
1900
+ Keren Bergman (S’87–M’93–SM’07–F’09) received the B.S. degree from
1901
+ Bucknell University, Lewisburg, PA, in 1988, and the M.S. and Ph.D. degrees
1902
+ from the Massachusetts Institute of Technology, Cambridge, in 1991 and
1903
+ 1994, respectively, all in electrical engineering. Dr. Bergman is currently a
1904
+ Charles Batchelor Professor at Columbia University, New York, NY, where she
1905
+ also directs the Lightwave Research Laboratory. She leads multiple research
1906
+ programs on optical interconnection networks for advanced computing sys-
1907
+ tems, data centers, optical packet switched routers, and chip multiprocessor
1908
+ nanophotonic networks-on-chip. Dr. Bergman is a Fellow of the IEEE and
1909
+ Optica.
1910
+
2tAzT4oBgHgl3EQfuP3I/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
5NAzT4oBgHgl3EQfu_1f/content/tmp_files/2301.01699v1.pdf.txt ADDED
@@ -0,0 +1,1534 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Received:
2
+ Added at production
3
+ Revised:
4
+ Added at production
5
+ Accepted:
6
+ Added at production
7
+ DOI: xxx/xxxx
8
+ RESEARCH ARTICLE
9
+ Data-driven modelling of turbine wake interactions and flow
10
+ resistance in large wind farms
11
+ Andrew Kirby*1 | François-Xavier Briol2 | Thomas D. Dunstan3 | Takafumi Nishino1
12
+ 1Department of Engineering Science,
13
+ University of Oxford, Oxford, UK
14
+ 2Department of Statistical Science,
15
+ University College London, London, UK
16
+ 3Informatics Lab, UK MetOffice, Exeter,
17
+ UK
18
+ Correspondence
19
+ *Andrew Kirby, Department of
20
+ Engineering Science, University of
21
+ Oxford, Oxford, OX1 3PJ, UK. Email:
22
23
+ Abstract
24
+ Turbine wake and local blockage effects are known to alter wind farm power production in
25
+ two different ways: (1) by changing the wind speed locally in front of each turbine; and (2)
26
+ by changing the overall flow resistance in the farm and thus the so-called farm blockage
27
+ effect. To better predict these effects with low computational costs, we develop data-driven
28
+ emulators of the ‘local’ or ‘internal’ turbine thrust coefficient C∗
29
+ T as a function of turbine
30
+ layout. We train the model using a multi-fidelity Gaussian Process (GP) regression with a
31
+ combination of low (engineering wake model) and high-fidelity (Large-Eddy Simulations)
32
+ simulations of farms with different layouts and wind directions. A large set of low-fidelity
33
+ data speeds up the learning process and the high-fidelity data ensures a high accuracy. The
34
+ trained multi-fidelity GP model is shown to give more accurate predictions of C∗
35
+ T compared
36
+ to a standard (single-fidelity) GP regression applied only to a limited set of high-fidelity
37
+ data. We also use the multi-fidelity GP model of C∗
38
+ T with the two-scale momentum theory
39
+ (Nishino & Dunstan 2020, J. Fluid Mech. 894, A2) to demonstrate that the model can be
40
+ used to give fast and accurate predictions of large wind farm performance under various
41
+ mesoscale atmospheric conditions. This new approach could be beneficial for improving
42
+ annual energy production (AEP) calculations and farm optimisation in the future.
43
+ KEYWORDS:
44
+ Class file; LATEX 2ε; Wiley NJD
45
+ 1
46
+ INTRODUCTION
47
+ The installed capacity of wind energy is projected to increase rapidly in the next decades. A major challenge in the optimisation
48
+ of wind farm design is the accurate prediction of wind farm performance 1. Existing wind farm models struggle to make accurate
49
+ predictions of wind farm power production. This is partly because the ‘global blockage effect’ reduces the velocity upstream of large
50
+ farms and hence the energy yield 2. It remains unclear how global blockage should be modelled and this is the subject of a large-scale
51
+ field campaign 3.
52
+ Wind farms are typically modelled using engineering ‘wake’ models. These models predict the velocity deficit in the wakes behind
53
+ turbines 4 5. To account for interactions between multiple turbines, the wake velocity deficits are superposed 6,7. Simple wake models
54
+ can give predictions of wind farm performance with very low computational cost ( 10−3 CPU hours per simulation 1). However, wake
55
+ arXiv:2301.01699v1 [physics.flu-dyn] 4 Jan 2023
56
+
57
+ 2
58
+ KIRBY et al
59
+ models do not account for the response of the atmospheric boundary layer (ABL) to the wind farm which is likely to be important
60
+ for large wind farms 8. It has been found that wake models compare poorly to Large-Eddy Simulations (LES) of large wind farms 9.
61
+ Wind farms are also modelled in numerical weather prediction (NWP) models using farm parameterisation schemes. In these pa-
62
+ rameterisations, farms are often modelled as a momentum sink and a source of turbulent kinetic energy 10. Turbine-wake interactions
63
+ cannot be adequately predicted using these schemes. A new scheme was proposed 11 which uses a correction factor to model turbine
64
+ interactions. More recently, data-driven approaches have been proposed 12 to model these effects in wind farm parameterisations.
65
+ Data-driven modelling of wind farm flows is a promising new approach 13. Data from high-fidelity simulations with complex flow
66
+ physics can be used to make predictions with low computational cost. Recent studies have applied machine learning techniques
67
+ to data from a single turbine or from an existing wind farm. The data for these studies are from measurements 14,15,16,17, LES 18 or
68
+ Reynolds-Averaged Navier-Stokes (RANS) simulations 19,20,21. A limitation of these approaches is that they are not generalisable to
69
+ different turbine layouts unless they rely on wake superposition techniques to model farm flows. Another approach is modelling
70
+ the effect of turbine layout using geometric parameters 17 or using the layout as a graph input to a neural network 22,23. However,
71
+ these alternative approaches may struggle to fully capture the complex two-way interaction with the ABL as it seems impractical to
72
+ prepare a data set that covers the entire range of scales involved in wind farm flows 1.
73
+ The problem of modelling wind farm flows can be split into ‘internal’ turbine-scale and ‘external’ farm-scale problems 24. The
74
+ ‘internal’ problem is to determine a ‘local’ or ‘internal’ turbine thrust coefficient, C∗
75
+ T , which represents the flow resistance inside a
76
+ wind farm, i.e., how the turbine thrust changes with wind speed within the farm. Nishino 25 proposed an analytical model for an upper
77
+ limit of C∗
78
+ T by using an analogy to the classic Betz analysis. This analytical model is a function of turbine-scale induction factor but
79
+ is independent of turbine layout and wind direction. Previous studies 24 25 8 showed that C∗
80
+ T is usually lower than the limit predicted
81
+ by Nishino’s model and can vary significantly with turbine layout due to wake and turbine blockage effects.
82
+ The aim of this study is to develop statistical emulators of C∗
83
+ T as a function of turbine layout and wind direction. The novelty of
84
+ this approach is that we are modelling the effect of turbine-wake interactions on C∗
85
+ T rather than turbine power. Both turbine-scale
86
+ flows (e.g., wake effects) and farm-scale flows (e.g. farm blockage and mesoscale atmospheric response) affect turbine power within
87
+ a farm. Therefore to create an emulator of turbine power, either (1) a very large set of expensive data such as finite-size wind farm
88
+ LES is needed which covers a range of large-scale atmospheric conditions or (2) the model would not be generalisable to different
89
+ mesoscale atmospheric responses. An emulator of C∗
90
+ T is however applicable to different atmospheric responses modelled separately,
91
+ following the concept of the two-scale momentum theory 24 8.
92
+ In section 2 we give the definitions of key wind farm parameters in the two-scale momentum theory 24. Section 3 summarises
93
+ the methodology of the LES and wake model simulations, followed by the machine learning approaches to develop the emulators
94
+ in section 4. In section 5 we present the results from the trained emulators. These results are discussed in section 6 and concluding
95
+ remarks are given in section 7.
96
+ 2
97
+ TWO-SCALE MOMENTUM THEORY
98
+ By considering the conservation of momentum for a control volume with and without a large wind farm over the land or sea surface,
99
+ the following non-dimensional farm momentum (NDFM) equation can be derived 24,
100
+ C∗
101
+ T
102
+ λ
103
+ Cf0
104
+ β2 + βγ = M
105
+ (1)
106
+ where β is the farm wind-speed reduction factor defined as β ≡ UF /UF 0 (with UF defined as the average wind speed in the nominal
107
+ wind farm-layer of height HF , and UF 0 is the farm-layer-averaged speed without the wind farm present); λ is the array density
108
+ defined as λ ≡ nA/SF (where n is the number of turbines in the farm, A is the rotor swept area and SF is the farm footprint area);
109
+
110
+ KIRBY et al
111
+ 3
112
+ C∗
113
+ T is the internal turbine thrust coefficient defined as C∗
114
+ T ≡ �n
115
+ i=1 Ti/ 1
116
+ 2 ρU2
117
+ F nA (where Ti is thrust of turbine i in the farm and ρ
118
+ is the air density); Cf0 is the natural friction coefficient of the surface defined as Cf0 ≡ ⟨τw0⟩/ 1
119
+ 2 ρU2
120
+ F 0 (where τw0 is the bottom
121
+ shear stress without the farm present); γ is the bottom friction exponent defined as γ ≡ logβ(⟨τw⟩/τw0) (where ⟨τw⟩ is the bottom
122
+ shear stress averaged across the farm); M is the momentum availability factor defined as,
123
+ M =
124
+ Momentum supplied by the atmosphere to the farm site with turbines
125
+ Momentum supplied by the atmosphere to the farm site without turbines.
126
+ (2)
127
+ noting that this includes pressure gradient forcing, Coriolis force, net injection of streamwise momentum through top and side
128
+ boundaries and time-dependent changes in streamwise velocity 24. The height of the farm-layer, HF , is used to define the reference
129
+ velocities UF and UF 0. Equation 1 is valid so long as the same of HF is used for both the internal and external problem. HF is typically
130
+ between 2Hhub and 3Hhub 8 (where Hhub is the turbine hub-height) and in this study we use a fixed definition of HF = 2.5Hhub.
131
+ Patel 26 used an NWP model to demonstrate that, for most cases, M varied almost linearly with β (for a realistic range of β
132
+ between 0.8 and 1). Therefore, M can be approximated by
133
+ M = 1 + ζ(1 − β)
134
+ (3)
135
+ where ζ is the ‘momentum response’ factor or ‘wind extractability’ factor. Patel 26 found ζ to be time-dependent and vary between
136
+ 5 and 25 for a typical offshore site (note that ζ = 0 corresponds to the case where momentum available to the farm site is assumed
137
+ to be fixed, i.e., M = 1).
138
+ Nishino 25 proposed an analytical model for C∗
139
+ T given by,
140
+ C∗
141
+ T = 4α(1 − α) =
142
+ 16C′
143
+ T
144
+ (4 + C′
145
+ T )2
146
+ (4)
147
+ where α is the turbine-scale wind speed reduction factor defined as α ≡ UT /UF (UT is the streamwise velocity averaged over the
148
+ rotor swept area) and C′
149
+ T ≡ T/ 1
150
+ 2 ρU2
151
+ T A is a turbine resistance coefficient describing the turbine operating conditions.
152
+ For a given farm configuration at a farm site (i.e., for given set of C∗
153
+ T , λ, Cf0, γ and ζ) the farm wind-speed reduction factor β
154
+ can be calculated using equation 1. The (farm-averaged) power coefficient Cp is defined as Cp ≡ ���n
155
+ i=1 Pi/ 1
156
+ 2 ρU3
157
+ F 0nA (Pi is power
158
+ of turbine i in the farm). Using the calculated value of β, Cp can be calculated by using the expression,
159
+ Cp = β3C∗
160
+ p
161
+ (5)
162
+ where C∗
163
+ p is the (farm-averaged) ‘local’ or ‘internal’ turbine power coefficient defined as C∗
164
+ p ≡ �n
165
+ i=1 Pi/ 1
166
+ 2 ρU3
167
+ F nA.
168
+ 3
169
+ WIND FARM SIMULATIONS
170
+ In this study we model wind farms as arrays of actuator discs (or aerodynamically ideal turbines operating below the rated wind
171
+ speed). This is because, in real wind farms, the effects of turbine wake interactions on the farm performance are most significant
172
+ when they operate below the rated wind speed. The ‘internal’ thrust coefficient C∗
173
+ T is an important wind farm parameter which
174
+ includes the effect of turbine interactions (including both wake and local blockage effects). In this study we will be modelling the
175
+ effect of turbine layout on C∗
176
+ T for aligned turbine layouts with various wind directions and a fixed turbine resistance of C′
177
+ T = 1.33.
178
+ We chose C′
179
+ T = 1.33 because it leads to a turbine induction factor of 1/4 which is close to a typical value for modern large wind
180
+ turbines. As such we will be considering
181
+ C∗
182
+ T = f(Sx, Sy, θ)
183
+ (6)
184
+
185
+ 4
186
+ KIRBY et al
187
+ Figure 1 Design of numerical experiments: a) input parameters, b) maximin design of LES.
188
+ where Sx is the turbine spacing in the x direction, Sy is the turbine spacing in the y direction and θ is the wind direction relative
189
+ to the x direction (see figure 1a). However the true function C∗
190
+ T cannot be easily evaluated so we will instead investigate C∗
191
+ T using
192
+ computer codes. One computer code we will use is LES (see section 3.1) to estimate C∗
193
+ T
194
+ C∗
195
+ T,LES = fLES(Sx, Sy, θ).
196
+ (7)
197
+ We assume that the function fLES is close to the true function f because of the accuracy of LES to model wind farm flows. We will
198
+ also use a wake model (see section 3.2) to provide cheap approximations of C∗
199
+ T according to
200
+ C∗
201
+ T,wake = fwake(Sx, Sy, θ).
202
+ (8)
203
+ Engineering problems are often investigated using complex computer models. Evaluating the output of such computer models
204
+ for a given input can be very computationally expensive. Therefore a common objective is to create a cheap statistical model of
205
+ the expensive computer model; this is commonly known as emulation of computer models 27 28. In this study we aim to develop a
206
+ statistical emulator which can cheaply emulate fLES.
207
+ The emulators will only be valid for aligned layouts of wind turbines and for a given turbine resistance (here we use C′
208
+ T = 1.33).
209
+ We consider the input parameters for a realistic range of turbine spacings 1: Sx ∈ [5D, 10D], Sy ∈ [5D, 10D] and θ ∈ [0o, 45o]
210
+ where D is the diameter of the turbine rotor swept area. In this study D is set as 100m and the turbine hub height is also 100m. We
211
+ only need to consider wind directions of θ ∈ [0o, 45o] because of symmetry in the aligned turbine layouts. If θ is negative than the
212
+ turbine layout given by (Sx, Sy, θ) is exactly the same as (Sx, Sy, −θ). When θ > 45o, then (Sx, Sy, θ) and (Sy, Sx, 90o − θ) give
213
+ identical layouts.
214
+ In this study we build several emulators to predict fLES. The models are trained using data from low-fidelity (wake model)
215
+ and high fidelity (LES) wind farm simulations. One evaluation of C∗
216
+ T,wake takes approximately 130 seconds on a single CPU and
217
+ C∗
218
+ T,LES requires around 400 CPU hours on a supercomputer. We use a space filling maximin design 29 30 to select training points
219
+ in the parameter space. The maximin algorithm selects points which maximises the minimum distance to other points and to the
220
+ boundaries. This provides a good coverage of the domain which ensures that the emulators can give good predictions across the
221
+ whole of the domain 31. Figure 1b shows the LES training points in the parameter space.
222
+
223
+ b)
224
+ a)
225
+ 10
226
+ 40
227
+ 9
228
+ Wind
229
+ 30
230
+ 200
231
+ 10
232
+ 5
233
+ 0
234
+ 6
235
+ 8
236
+ 10
237
+ S/DKIRBY et al
238
+ 5
239
+ Figure 2 LES a) instantaneous and b) time-averaged flow fields over a periodic turbine array (Sx/D = 7.59, Sy/D = 5.47 and
240
+ θ = 37.6o).
241
+ 3.1
242
+ Large-Eddy Simulations
243
+ This study uses the data from 50 high-fidelity (LES) simulations of wind farms published in a previous study 8. Here we give a brief
244
+ summary of the LES methodology. The LES models a neutrally stratified atmospheric boundary layer over a periodic array of actuator
245
+ discs, which face the wind direction θ and exert uniform thrust. The resolution is 24.5m in the horizontal directions (4 points across
246
+ the rotor diameter) and 7.87m in the vertical. This is a coarse horizontal resolution; however using a correction factor for the turbine
247
+ thrust 32 makes the C∗
248
+ T,LES values insensitive to horizontal resolution 8. For all simulations the vertical domain size was fixed at
249
+ 1km and the horizontal extent varied with turbine layout but was at least 3.14km. The horizontal boundary conditions were periodic
250
+ (essentially an infinitely-large wind farm). The bottom boundary used a no-slip condition with the value of eddy viscosity specified
251
+ following the Monin-Obukhov similarity theory for a surface roughness length of z0 = 1 × 10−4m. The top boundary had a slip
252
+ condition with zero vertical velocity. The flow was driven by a pressure gradient forcing which was constant and in the direction θ
253
+ throughout the domain. Figure 2 shows the instantaneous and time-averaged hub height velocities from one wind farm LES. See the
254
+ original paper 8 for further details of the LES.
255
+ 3.2
256
+ Wake model simulations
257
+ Wake models are a cheap low-fidelity approach to modelling wind farm aerodynamics compared to expensive high-fidelity LES
258
+ simulations 1. We use the wake model proposed by Niayafar and Porté-Agel 33 to evaluate C∗
259
+ T,wake as a cheap approximation of C∗
260
+ T .
261
+ We use the Python package PyWake 34 to implement the wake model. The turbine thrust coefficient CT is needed as an input for
262
+ the wake model. We use the value of C∗
263
+ T predicted by equation 4 as the value of CT . For the turbine operating conditions used in
264
+ this study (C′
265
+ T = 1.33) the wake model has CT equal to 0.75 for all turbines. To model actuator discs, we consider a hypothetical
266
+ turbine which has a constant CT for all wind speeds. We calculate C∗
267
+ T,wake for a single turbine at the back of a large farm (marked X
268
+ in figure 3). The farm simulated using the wake model is 10km long in the streamwise direction and 4km long in the cross-streamwise
269
+ direction. The farm size was chosen so that C∗
270
+ T no longer varied with increasing farm size. The wake growth parameter is calculated
271
+ using k∗ = 0.38I +0.004 where I is the local streamwise turbulence velocity. The local streamwise turbulence intensity is estimated
272
+ using the model proposed by Crespo and Hernández 35. The background turbulence intensity (TI) is set as a typical value of 10%.
273
+ The velocity incident to the turbine is calculated by averaging the velocity across the disc area. We use a 4×3 cartesian grid with
274
+ Gaussian quadrature coordinates and weights on the disc to average the velocity. The disc-averaged velocity, UT is then calculated
275
+ by multiplying the averaged incident velocity by (1 − a) where a is the turbine induction factor set by the value of C′
276
+ T (using the
277
+ expression a = C′
278
+ T /(4 + C′
279
+ T )). To calculate the farm-average velocity, UF , we average the velocity across a volume around the
280
+
281
+ b)
282
+ a)
283
+ 0.4
284
+ 30
285
+ 30
286
+ 0.3
287
+ 20
288
+ 20
289
+ D
290
+ D
291
+ n/n
292
+ 9
293
+ 9
294
+ 0.2
295
+ 10
296
+ 10
297
+ 0.1
298
+ 0
299
+ 0
300
+ 20
301
+ 0
302
+ 20
303
+ c/ D
304
+ c/ D6
305
+ KIRBY et al
306
+ Figure 3 Example of wind farm layout for wake model simulations.
307
+ single turbine. The volume has dimensions of Sy in the y direction, Sx in the x direction and 250m in the z direction (the height of
308
+ the nominal farm layer used in the previous LES study 8). To calculate the average velocity, we discretise the volume into 200 points
309
+ in the horizontal directions and 20 points in the vertical. This was sufficient for the calculation of C∗
310
+ T,wake to not vary with further
311
+ discretisation. Figure 3 shows an example of the farm layout for the wake model simulations.
312
+ 4
313
+ MACHINE LEARNING METHODOLOGY
314
+ 4.1
315
+ Gaussian Process regression
316
+ We will use Gaussian process (GP) regression 36 to build statistical emulators of fLES. A Gaussian process is a stochastic process
317
+ g ∼ GP(m, k) described by a mean function m(v) = E[g(v)] and a covariance function k(v, v′) = E[(g(v) − m(v))(g(v′) − m(v′)].
318
+ In our case v = (Sx, Sy, θ). We will use such a stochastic process as a model of fLES, the true mapping from v to C∗
319
+ T,LES. Each
320
+ realisation from this process will therefore be a function which could plausibly represent this mapping. The mean function represents
321
+ the expected output value at an input v = (Sx, Sy, θ). The covariance function gives the covariance between output values at v and
322
+ v′. Examples of covariance functions include squared exponential, rational quadratic and periodic functions 36. Different covariance
323
+ functions will give differently shaped GPs. For example the squared exponential covariance function will give very smooth GPs
324
+ whereas the periodic function will give GPs with a periodic structure. Other types of structure, for example symmetry, can also be
325
+ encoded in the covariance function. Therefore the expected shape (for example smoothness) of the expected relationship and any
326
+ properties (for example discontinuities or symmetries) need to be considered when choosing a covariance function for GP regression.
327
+ Let V = (v1, ..., vn)T be a collection of design points then mV = (m(v1), ..., m(vn))T is the mean vector and kV V = (k(vi, vj))
328
+ is the covariance matrix. We will start by positing a GP model with mean m and covariance k (called the ‘prior GP’), then condition
329
+ this GP on LES observations; the outcome is a new GP (called the ‘posterior GP’). This gives the posterior distribution g|V, C∗
330
+ T,LES ∼
331
+ GP(mσ2, kσ2). mσ2 is the posterior mean function given by mσ2(v) = m(v) + kvV (kV V + σ2In×n)−1(C∗
332
+ T,LES − mV ) where
333
+ kvV = (k(v, v1), ..., k(v, vn)) and In×n is the identity matrix of size n. The posterior mean function mσ2 is used to make predictions
334
+ at v = (Sx, Sy, θ). The posterior covariance function kσ2 quantifies the uncertainty in our prediction at v = (Sx, Sy, θ). The
335
+ posterior covariance function is given by kσ2(v, v′) = k(v, v′) − kvV (kV V + σ2In×n)−1kV v′.
336
+ Often in GP regression a zero prior mean is used. However, using an informative prior mean can improve the accuracy of the
337
+ trained model. By using a prior mean, many of the trends in fLES can be incorporated into our model prior to making expensive
338
+
339
+ Volume for
340
+ UF calculation
341
+ 10 km
342
+ X
343
+ WindKIRBY et al
344
+ 7
345
+ Figure 4 Demonstration of basic GP regression: a) shows the prior mean and covariance function prior to fitting with 3 GPs drawn
346
+ from the distribution shown in colour; b) shows the effect of decreasing the lengthscale hyperparameter; c) the effect of variance
347
+ hyperparameter; and d) the posterior mean and covariance functions.
348
+ evaluations of C∗
349
+ T,LES. Therefore, after training our model will likely better describe the true relationship between Sx, Sy, θ and
350
+ fLES. In this study, we will use both C∗
351
+ T,wake and the analytical model of C∗
352
+ T as the prior mean for the standard GP regression. For
353
+ the wake model prior mean we also vary the specified ambient TI input parameter.
354
+ We expect fLES to be a smooth function of input variables Sx, Sy and θ, and to vary more rapidly with θ than Sx or Sy. Therefore
355
+ we will use an anisotropic squared-exponential covariance function,
356
+ k(v, v′) = σ2
357
+ f exp
358
+
359
+ − (Sx − S′
360
+ x)2
361
+ 2l2
362
+ 1
363
+
364
+ exp
365
+
366
+
367
+ (Sy − S′
368
+ y)2
369
+ 2l2
370
+ 2
371
+
372
+ exp
373
+
374
+ − (θ − θ′)2
375
+ 2l2
376
+ 3
377
+
378
+ (9)
379
+ where σ2
380
+ f > 0 is the signal variance hyperparameter and li > 0 is the lengthscale hyperparameter for each dimension. This is also
381
+ called an ARD (automatic relevance detection) kernel. If we consider v = v′ then we can see that σ2
382
+ f determines the variance of g(v).
383
+ Therefore σ2
384
+ f determines the prior uncertainty the model has about the value of g(v). As the lengthscale hyperparameter li gets
385
+ smaller then k(v, v′) decreases (for v ̸= v′). Equally if li increases then k(v, v′) will also increase. A GP with a small li will therefore
386
+ vary more rapidly across the parameter space in the ith dimension.
387
+ Due to numerical issues associated with the matrix inversion/linear system solve operations in the formulae for the posterior GP,
388
+ it is common to add a nugget σ2 > 0 to the kernel matrix. The hyperparameters σ2
389
+ f and li are selected automatically during the
390
+ fitting process by maximising the log marginal likelihood 36. This approach selects the model which maximises the fit to the data.
391
+ Figure 4 shows the impact of the hyperparameters in an example GP regression setting (using the squared exponential covariance
392
+ function). The mean function and 95% credible interval (+/-1.96 times the standard deviation) prior to fitting are shown in figure
393
+ 4a with 3 GPs drawn from the distribution (coloured lines). The effect of decreasing the lengthscale hyperparameter li is shown in
394
+ figure 4b. The prior mean and 95% credible interval are unchanged however the example GPs drawn vary more rapidly because of
395
+ the shorter lengthscale. Figure 4c shows the same setup as figure 4a but with a smaller value of σ2
396
+ f. The example GPs still vary slowly
397
+ but the magnitude of the variations is now smaller. Figure 4d shows the GPs conditioned on observations with hyperparameters
398
+ selected by maximising the log marginal likelihood.
399
+
400
+ a) α = 1.0, l = 1.0
401
+ b) α² = 1.0, l = 0.5
402
+ 2
403
+ 2
404
+ 9
405
+ 0
406
+ 9
407
+ 0
408
+ -2
409
+ -2
410
+ 0
411
+ 2
412
+ 4
413
+ 6
414
+ 0
415
+ 2
416
+ 4
417
+ 6
418
+ c) ² = 0.5, l = 1.0
419
+ d)o
420
+ = 1.41. = 1.57
421
+ 2
422
+ 2
423
+ 9
424
+ 0
425
+ -2
426
+ -2
427
+ 0
428
+ 6
429
+ 0
430
+ 2
431
+ 2
432
+ 4
433
+ 4
434
+ 6
435
+ Observations
436
+ Mean function
437
+ 95% credible interval8
438
+ KIRBY et al
439
+ Figure 5 Demonstration of a) basic GP regression and b) multi-fidelity GP regression. In this example f(x) = 1 + sin(6x) for the
440
+ high-fidelity data and f(x) = −0.5 + 0.5sin(6x) for the low-fidelity data.
441
+ 4.2
442
+ Non-linear multi-fidelity Gaussian Process regression
443
+ In many applications there are several computational models available. These models can have varying accuracies and computational
444
+ costs. The models which are more computationally expensive typically give more accurate predictions. The GP regression frame-
445
+ work can be extended to combine information from low and high-fidelity models 37. This type of modelling uses the low-fidelity
446
+ observations to speed up the learning process and the high-fidelity observations to ensure accuracy. In our scenario we will com-
447
+ bine evaluations of from a low-fidelity (C∗
448
+ T,wake) and a high-fidelity (C∗
449
+ T,LES) model. Note that for the multi-fidelity models in this
450
+ study we set the ambient TI to 10% for the wake model and use a zero prior mean. We will keep the number of high-fidelity training
451
+ points fixed at 50 and we will vary the number of low-fidelity training points used.
452
+ We combine information from our high and low-fidelity models using a nonlinear information fusion algorithm 38. The framework
453
+ is based on the autoregressive multi-fidelity scheme given by:
454
+ ghigh(v) = ρ(glow(v)) + δ(v)
455
+ (10)
456
+ where glow(v) is a model with a GP denoted fwake and ghigh(v) is a model with a GP denoted fLES. ρ is a model with a GP
457
+ which maps the low-fidelity output to the high-fidelity output and δ(v) is a model with a GP which is a bias term. The non-linear
458
+ multi-fidelity framework can learn non-linear space-dependent correlations between models of different accuracies. To reduce the
459
+ computational cost and complexity of implementation the autoregressive scheme given by equation 10 is simplified. Firstly, the GP
460
+ prior glow(v) is replaced by the GP posterior glow,∗(v) and secondly the GPs ρ and δ are assumed to be independent. Equation 10
461
+ can then be summarised as
462
+ ghigh(v) = hhigh(v, glow,∗(v))
463
+ (11)
464
+ where hhigh is a model with a GP which has both v and glow,∗(v) as inputs. More details of hhigh and the implementation of the
465
+ multi-fidelity framework are given in Perdikaris et. al. 38.
466
+ Figure 5 shows an example of how a multi-fidelity GP can outperform a standard GP regression. We implement the non-linear
467
+ multi-fidelity framework using the ‘emukit’ package 39. We first maximise the log marginal likelihood whilst keeping the Gaussian
468
+ noise variance fixed at a low value of 1 × 10−6. The fitting process is then repeated whilst allowing the Gaussian noise variance to
469
+ be optimised too. This is to prevent a high noise local optima from being selected.
470
+
471
+ a)
472
+ b)
473
+ 3
474
+ 3
475
+ High fidelity
476
+ High fidelity
477
+ 2
478
+ 2
479
+ 1
480
+ 1
481
+ 9
482
+ 9
483
+ 0
484
+ 0
485
+ -1
486
+ -1
487
+ Low fidelity
488
+ 2
489
+ 2
490
+ -0.5
491
+ 0.0
492
+ 0.5
493
+ -1.0
494
+ 1.0
495
+ -1.0
496
+ -0.5
497
+ 0.0
498
+ 0.5
499
+ 1.0
500
+ True function
501
+ Observations
502
+ Posterior mean function
503
+ 95% credible intervalKIRBY et al
504
+ 9
505
+ 5
506
+ RESULTS
507
+ In this study, we build various statistical emulators of fLES using different techniques and compare the performance. A summary
508
+ of the techniques is shown in the list below:
509
+ 1 Standard Gaussian Process regression (see section 4.1)
510
+ a GP-analytical-prior: Gaussian Process using analytical model (equation 4) prior mean
511
+ b GP-wake-TI10-prior: Gaussian Process using wake model (section 3.2) with ambient TI=10% prior mean
512
+ c GP-wake-TI1-prior: Gaussian Process using wake model with ambient TI=1% prior mean
513
+ d GP-wake-TI5-prior: Gaussian Process using wake model with ambient TI=5% prior mean
514
+ e GP-wake-TI15-prior: Gaussian Process using wake model with ambient TI=15% prior mean
515
+ 2 Non-linear multi-fidelity Gaussian Process regression (see section 4.2)
516
+ a MF-GP-nlow500: multi-fidelity Gaussian Process using 500 low-fidelity training points
517
+ b MF-GP-nlow250: multi-fidelity Gaussian Process using 250 low-fidelity training points
518
+ c MF-GP-nlow1000: multi-fidelity Gaussian Process using 1000 low-fidelity training points
519
+ The code used to produce the results in this section is available open-access at the following GitHub repository: https://github.
520
+ com/AndrewKirby2/ctstar_statistical_model.
521
+ 5.1
522
+ Performance of standard GP regression
523
+ We first assessed the accuracy of the standard GP models (section 4.1) by performing leave-one-out cross-validation (LOOCV). This
524
+ is a method of estimating the accuracy of a statistical model when making predictions on data not used to train the model. We trained
525
+ our model on 49 of the 50 training points and then calculated the prediction accuracy for the single high-fidelity data point which is
526
+ excluded from the training set. This is then repeated for all data points in turn, and we took the average accuracy as an estimate of
527
+ the model test accuracy. The standard GP models were implemented using the ‘GPy’ package 40.
528
+ The standard GP gave accurate predictions of fLES with average errors of less than 2%. Table 1 shows the accuracy of the stan-
529
+ dard GP models compared to the analytical and wake models. We calculated the errors by using the expression |mσ2 −C∗
530
+ T,LES|/0.75
531
+ where mσ2 is the posterior mean function of the emulator. The reference value for C∗
532
+ T of 0.75 was chosen because this is the pre-
533
+ diction from the analytical model. Both GP models give similar maximum errors of approximately 6%. Using the wake model as a prior
534
+ mean gave a lower mean absolute error of 1.26%. The GP models reduced the average prediction error and significantly reduced
535
+ the maximum error compared to the wake model and analytical model of C∗
536
+ T .
537
+ Table 1 Accuracy of models for C∗
538
+ T prediction.
539
+ Model
540
+ MAE (%)
541
+ Maximum error (%)
542
+ GP-analytical-prior
543
+ 1.87
544
+ 6.09
545
+ GP-wake-TI10-prior
546
+ 1.26
547
+ 6.11
548
+ Analytical model
549
+ 5.26
550
+ 22.0
551
+ Wake model (TI=10%)
552
+ 4.60
553
+ 9.28
554
+
555
+ 10
556
+ KIRBY et al
557
+ Figure 6 Posterior variance function of GP-wake-TI10-prior model.
558
+ Figure 7 Sensitivity of fitted GP models to the ambient TI chosen for wake model prior means.
559
+ The model GP-wake-TI10-prior has a high degree of confidence when making predictions in regions of the parameter space.
560
+ Figure 6 shows the square root of the posterior covariance function kσ2, which quantities the uncertainty of the emulator. The
561
+ uncertainty is uniform throughout the parameter space with regions of slightly higher uncertainty at θ = 0o and 45o.
562
+ We also assessed the sensitivity of the model accuracy to the ambient TI used in the wake model prior mean. Figure 7 shows
563
+ the impact of ambient TI on the wake model prior mean and the fitted GP model. Increasing the ambient TI increased the value of
564
+ C∗
565
+ T,wake. This is because of the enhanced wake recovery behind wind turbines. Increasing the ambient TI in the wake model results
566
+ in C∗
567
+ T,wake overpredicting C∗
568
+ T,LES. The MAE from the LOOCV procedure for each fitted GP is shown in the bottom right corner.
569
+
570
+ b)=5°
571
+ c)=100
572
+ d) =15°
573
+ a)=00
574
+ e)=200
575
+ 10
576
+ 10
577
+ 10
578
+ 10
579
+ 10
580
+
581
+ 8
582
+ 8
583
+ 8
584
+ 8
585
+ 6
586
+ 6
587
+ 6
588
+ 6
589
+ 6
590
+ 5
591
+ 10
592
+ 5
593
+ 10
594
+ 5
595
+ 10
596
+ 5
597
+ 10
598
+ 5
599
+ 10
600
+ f) =250
601
+ g) =300
602
+ h)=35°
603
+ i)=40°
604
+ j)=45°
605
+ 10
606
+ 10
607
+ 10
608
+ 10
609
+ 10
610
+ D
611
+ 8
612
+ 8
613
+ 8
614
+ 8
615
+ 6
616
+ 6
617
+ 6
618
+ 6
619
+ 6
620
+ 5
621
+ 10
622
+ 5
623
+ 10
624
+ 5
625
+ 10
626
+ 5
627
+ 10
628
+ 5
629
+ 10
630
+ Sα/D
631
+ Sα/D
632
+ Sα/D
633
+ Sα/D
634
+ Sαc/D
635
+ 0.000
636
+ 0.005
637
+ 0.010
638
+ 0.015
639
+ 0.020
640
+ 0.025
641
+ 0.030
642
+ Vk.2a) Ambient TI=1%
643
+ b) Ambient TI=5%
644
+ 0.8
645
+ 0.8
646
+ 0.7
647
+ 0.7
648
+ *
649
+ 山秋
650
+ 0.6
651
+ 0.6
652
+ GP-wake-TI1-prior
653
+
654
+ GP-wake-TI5-prior
655
+ 0.5
656
+ 0.5
657
+ MAE=3.02%
658
+ MAE=2.16%
659
+ 0.55
660
+ 0.60
661
+ 0.65
662
+ 0.70
663
+ 0.75
664
+ 0.80
665
+ 0.55
666
+ 0.60
667
+ 0.65
668
+ 0.70
669
+ 0.75
670
+ 0.80
671
+ CT,LES
672
+ C*,LES
673
+ c) Ambient TI=10%
674
+ d) Ambient TI=15%
675
+ 0.8
676
+ 0.8
677
+ 0.7
678
+ 0.7
679
+ 0.6
680
+ 0.6
681
+ GP-wake-TI10-prior
682
+ GP-wake-TI15-prior
683
+ 0.5
684
+ 0.5
685
+ MAE=1.25%
686
+ MAE=1.04%
687
+ 0.60
688
+ 0.65
689
+ 0.55
690
+ 0.70
691
+ 0.75
692
+ 0.80
693
+ 0.55
694
+ 0.60
695
+ 0.65
696
+ 0.70
697
+ 0.75
698
+ 0.80
699
+ Wake model prior mean
700
+ Standard GP modelKIRBY et al
701
+ 11
702
+ The fitted GPs became more accurate when the wake model ambient TI was increased. Increasing the ambient TI for the wake
703
+ model causes the wakes to recover faster. The wakes become shorter in the streamwise direction and wider in the spanwise direction.
704
+ As such, C∗
705
+ T,wake becomes less sensitive to the turbine layout. When an ambient TI of 1% and 5% is used for the wake model,
706
+ C∗
707
+ T,wake is more sensitive to turbine layout than C∗
708
+ T,LES (figures 7a and 7b). When the ambient TI is increased to 10% and above,
709
+ the relationship between C∗
710
+ T,wake and C∗
711
+ T,LES becomes simpler (figures 7c and 7d). This seems to explain why the fitted GPs
712
+ become more accurate.
713
+ 5.2
714
+ Performance of non-linear multi-fidelity GP regression
715
+ We then assessed the accuracy of the multi-fidelity GP models (section 4.2). All models used the 50 high-fidelity (C∗
716
+ T,LES) training
717
+ points and a varying number of low-fidelity (C∗
718
+ T,wake) training points (using an ambient TI of 10% for C∗
719
+ T,wake). The results from
720
+ LOOCV are shown in table 2. For the LOOCV we train our model on 49 out of the 50 high-fidelity data points and all low-fidelity
721
+ data points. Then we average the error in predicting the high-fidelity data point left of the training set and repeat this in turn for
722
+ data points. Increasing the number of low-fidelity training points from 250 to 500 reduced the mean and maximum error. However,
723
+ increasing this to 1000 low-fidelity training points did not increase accuracy and increased the fitting and prediction time. This is
724
+ because the number of high-fidelity training points is fixed. There is a threshold where the model of the relationship between fLES
725
+ and fwake, denoted ρ, limits the final accuracy of the emulator of fLES.
726
+ The posterior mean mσ2 of glow(v) is an emulator of fwake and ghigh(v) is an emulator of fLES. Figure 8 gives the predictions
727
+ from the posterior mean of ghigh(v) (for MF-GP-nlow500). The lowest mσ2 values were for a wind direction of θ = 0o. mσ2
728
+ Table 2 Performance of the multi-fidelity Gaussian Process models.
729
+ Model
730
+ MAE (%)
731
+ Maximum error (%)
732
+ Training time (s)
733
+ Prediction time (s)
734
+ MF-GP-nlow250
735
+ 1.46
736
+ 7.12
737
+ 6.15
738
+ 0.00157
739
+ MF-GP-nlow500
740
+ 0.828
741
+ 3.75
742
+ 9.73
743
+ 0.00167
744
+ MF-GP-nlow1000
745
+ 0.866
746
+ 3.55
747
+ 26.8
748
+ 0.00236
749
+ Figure 8 Posterior mean function for ghigh(v) of MF-GP-nlow500.
750
+
751
+ b)=50
752
+ d) =15°
753
+ a)=00
754
+ c)=100
755
+ e)=200
756
+ 10
757
+ 10
758
+ 10
759
+ 10
760
+ 10
761
+
762
+ 8
763
+ 8
764
+ 8
765
+ 8
766
+ 6
767
+ 6
768
+ 6
769
+ 6
770
+ 6
771
+ 5
772
+ 10
773
+ 5
774
+ 10
775
+ 5
776
+ 10
777
+ 5
778
+ 10
779
+ 5
780
+ 10
781
+ f) =250
782
+ g) =300
783
+ h) =35°
784
+ i)=40°
785
+ j))θ =45°
786
+ 10
787
+ 10
788
+ 10
789
+ 10
790
+ 10
791
+ D
792
+ 8
793
+ 8
794
+ 8
795
+ 8
796
+ 6
797
+ 6
798
+ 6
799
+ 6
800
+ 6
801
+ 5
802
+ 10
803
+ 10
804
+ 5
805
+ 10
806
+ 5
807
+ 10
808
+ 5
809
+ 5
810
+ 10
811
+ Sα/D
812
+ Sα/D
813
+ Sα/D
814
+ Sα/D
815
+ Sαc/D
816
+ 0.50
817
+ 0.55
818
+ 0.60
819
+ 0.65
820
+ 0.70
821
+ 0.75
822
+ 0.80
823
+ mg212
824
+ KIRBY et al
825
+ Figure 9 Posterior variance function for ghigh(v) of MF-GP-nlow500.
826
+ increased rapidly with θ reaching a maximum of slightly over 0.75 at θ = 10o. For large values of θ (above θ = 25o) there were
827
+ local minima in mσ2 which appear in figure 8 as diagonal strips of low mσ2 values. The main diagonal strip occurs along the line
828
+ of Sy = Sx tan(θ). There are two smaller strips either side of with positions given by Sy = 2 tan(θ) and Sy = 0.5 tan(θ) (this is
829
+ discussed further in section 6).
830
+ The uncertainty the model MF-GP-nlow500 has in predicting fLES is shown in figure 9. The model uncertainty is uni-
831
+ form throughout the parameter space with slightly higher values at θ = 0o and 45o. Compared to the posterior variance of
832
+ GP-wake-TI10-prior (shown in figure 6) the uncertainty is lower. By incorporating information from C∗
833
+ T,wake, the multi-fidelity GP
834
+ model has more confidence about predicting fLES.
835
+ The prediction errors from the LOOCV (for MF-GP-nlow500) are shown in figure 10. The box plot of prediction errors in figure
836
+ 10a shows that this model had no significant bias whereas both the wake and analytical models systemically overestimated C∗
837
+ T,LES.
838
+ Figures 10b-d show that for the statistical model there appears to be no part of the parameter space which had larger errors.
839
+ The multi-fidelity approach used in this study builds a statistical model of both the low-fidelity (fwake) and high-fidelity (fLES)
840
+ model. We can use the posterior means of glow(v) and ghigh(v) to see the differences between the wake model and LES. The
841
+ posterior mean for both models are shown in figure 11. For the wake model the change in mσ2 with θ is greater than for the LES
842
+ (especially between θ = 0o and 10o). For larger values of θ, there is a larger difference in mσ2 between waked and unwaked layouts
843
+ for the low-fidelity model compared to the high-fidelity one. This suggests than the wake model is more sensitive to changes in wind
844
+ directions than the LES.
845
+
846
+ a) =00
847
+ b) =5°
848
+ c)=100
849
+ d)θ=15°
850
+ e)=20°
851
+ 10
852
+ 10
853
+ 10
854
+ 10
855
+ 10
856
+ D∞
857
+ 8
858
+ 8
859
+ 8
860
+ 8
861
+ 6
862
+ 6
863
+ 6
864
+ 6
865
+ 6
866
+ 5
867
+ 10
868
+ 5
869
+ 10
870
+ 5
871
+ 10
872
+ 5
873
+ 10
874
+ 5
875
+ 10
876
+ f)θ =25°
877
+ g) =300
878
+ h) =350
879
+ i)=40°
880
+ j)θ=45°
881
+ 10
882
+ 10
883
+ 10
884
+ 10
885
+ 10
886
+
887
+ 8
888
+ 8
889
+ 8
890
+ 8
891
+ 6
892
+ 6
893
+ 6
894
+ 6
895
+ 6
896
+ 5
897
+ 10
898
+ 5
899
+ 10
900
+ 5
901
+ 10
902
+ 5
903
+ 10
904
+ 5
905
+ 10
906
+ Sα/D
907
+ Sα/D
908
+ Sα/D
909
+ Sα/D
910
+ S/D
911
+ 0.000
912
+ 0.005
913
+ 0.010
914
+ 0.015
915
+ 0.020
916
+ 0.025
917
+ 0.030
918
+ Vkg?KIRBY et al
919
+ 13
920
+ Figure 10 Comparison of LOOCV prediction errors (%) for different models a) and LOOCV prediction error (%) of MF-GP-nlow500
921
+ against input parameters b) Sx/D, c) Sy/D and d) θ(o). Note that for the box plot in a) the orange line is the median LOOCV error
922
+ and the box is the interquartile range of LOOCV error.
923
+ Figure 11 Posterior mean function of MF-GP-nlow500 for different values of θ for a) to e) ghigh(v) and f) to j) glow(v).
924
+ 5.3
925
+ Prediction of wind farm performance
926
+ We use the predicted values of C∗
927
+ T,LES from the emulators to predict the power output of wind farms under various mesoscale
928
+ atmospheric conditions, following the concept of the two-scale momentum theory. We predict the (farm-averaged) turbine power
929
+ coefficient Cp using C∗
930
+ T,LES predictions from MF-GP-nlow500. We call this prediction of farm performance Cp,model. Firstly, we
931
+ use the C∗
932
+ T,LES prediction from the LOOCV procedure as C∗
933
+ T in equation 1 to calculate β for a given value of wind extractability ζ.
934
+ We substitute this value of β into the expression Cp = β3C∗
935
+ T
936
+ 3
937
+ 2 C′
938
+ T
939
+ − 1
940
+ 2 (which is only valid for actuator discs) to calculate Cp,model.
941
+ We compare the value of Cp,model with the turbine power coefficient recorded in the LES, Cp,LES. The effect of the coarse LES
942
+
943
+ a)
944
+ b)
945
+ 5.0
946
+ 20
947
+ (%)
948
+ Overprediction
949
+ Overprediction
950
+ Prediction errors (
951
+ l errors
952
+ 2.5
953
+ 10
954
+ 0.0
955
+ 0
956
+ 2.5
957
+ Underprediction
958
+ Underprediction
959
+ 10
960
+ 5.0
961
+ MF-GP-nlow500
962
+ Wake
963
+ Analytical
964
+ 5
965
+ 6
966
+ 7
967
+ 8
968
+ 9
969
+ 10
970
+ model
971
+ model
972
+ Sα/D
973
+ d)
974
+ c)
975
+ 5.0
976
+ 5.0
977
+ Prediction errors
978
+ 2.5
979
+ errors
980
+ 2.5
981
+ 0.0
982
+ 0.0
983
+ Prediction
984
+ 2.5
985
+ 2.5
986
+ 5.0
987
+ 1
988
+ 5.0
989
+ 5
990
+ 6
991
+ 7
992
+ 8
993
+ 9
994
+ 10
995
+ 10
996
+ 20
997
+ 30
998
+ 40
999
+ 0
1000
+ Sy/D
1001
+ (°)b)=100
1002
+ d) =300
1003
+ a)=00
1004
+ c)=200
1005
+ e)=400
1006
+ 10
1007
+ 10
1008
+ 10
1009
+ 10
1010
+ 10
1011
+
1012
+ 8
1013
+ 8
1014
+ 8
1015
+ 8
1016
+ 6
1017
+ 6
1018
+ 6
1019
+ 6
1020
+ 6
1021
+ 5
1022
+ 10
1023
+ 5
1024
+ 10
1025
+ 5
1026
+ 10
1027
+ 5
1028
+ 10
1029
+ 5
1030
+ 10
1031
+ f)=0°
1032
+ g)=100
1033
+ h)=20°
1034
+ i)=300
1035
+ j)=40°
1036
+ 10
1037
+ 10
1038
+ 10
1039
+ 10
1040
+ 10
1041
+ D
1042
+ 8
1043
+ 8
1044
+ 8
1045
+ 8
1046
+ 6
1047
+ 6
1048
+ 6
1049
+ 6
1050
+ 6
1051
+ 5
1052
+ 10
1053
+ 5
1054
+ 10
1055
+ 5
1056
+ 10
1057
+ 5
1058
+ 10
1059
+ 5
1060
+ 10
1061
+ Sα/D
1062
+ Sα/D
1063
+ Sα/D
1064
+ Sα/D
1065
+ Sαc/D
1066
+ 0.50
1067
+ 0.55
1068
+ 0.60
1069
+ 0.65
1070
+ 0.70
1071
+ 0.75
1072
+ 0.80
1073
+ mg214
1074
+ KIRBY et al
1075
+ Figure 12 Comparison of Cp predictions with LES results for a realistic range of ζ values.
1076
+ resolution on turbine thrust (and hence also ABL response and Cp) has already been corrected 8. The LES was performed with
1077
+ periodic horizontal boundary conditions and a fixed momentum supply, i.e., ζ = 0. However, the Cp,LES has also been adjusted for
1078
+ a given ζ by scaling the velocity fields assuming Reynolds number independence 8.
1079
+ Similarly, the analytical model of C∗
1080
+ T can be used to give a theoretical prediction of wind farm performance called Cp,Nishino 8,
1081
+ which is given by
1082
+ Cp,Nishino =
1083
+ 64C′
1084
+ T
1085
+ (4 + C′
1086
+ T )3
1087
+
1088
+ ���
1089
+ −ζ +
1090
+
1091
+ ζ2 + 4
1092
+
1093
+ 16C′
1094
+ T
1095
+ (4+C′
1096
+ T )2
1097
+ λ
1098
+ Cf0 + 1
1099
+
1100
+ (1 + ζ)
1101
+ 2
1102
+
1103
+ 16C′
1104
+ T
1105
+ (4+C′
1106
+ T )2
1107
+ λ
1108
+ Cf0 + 1
1109
+
1110
+
1111
+ ���
1112
+ 3
1113
+ .
1114
+ (12)
1115
+ We will compare the accuracy of both Cp,model and Cp,Nishino in predicting Cp,LES.
1116
+ Both Cp,model and Cp,LES are shown in figure 12 for a realistic range of wind extractability factors, along with the results from
1117
+ Cp,Nishino (equation 12). Cp,Nishino provides an approximate upper limit of farm-averaged Cp as it predicts very well the effects
1118
+ of array density and large-scale atmospheric response. The statistical model accurately predicts the effect of turbine layout on farm
1119
+ performance which becomes more important with larger ζ values. As ζ increases, there is a larger difference between Cp,LES and
1120
+ Cp,Nishino. Also, Cp,model becomes slightly less accurate when ζ increases.
1121
+ Table 3 shows the average prediction errors of Cp,model and Cp,Nishino. We quantified the mean absolute error using two
1122
+ different reference powers. Using Cp,LES as the reference power, Cp,Nishino had an error of around 5% and the error increases
1123
+
1124
+ a)(=0
1125
+ b)(=5
1126
+ X
1127
+ 0.04
1128
+ A
1129
+ 0.15
1130
+ = 0.03
1131
+ P
1132
+ C
1133
+ C
1134
+ 4
1135
+ 0.02
1136
+ 0.10
1137
+ 0.01
1138
+ 5
1139
+ 10
1140
+ 15
1141
+ 20
1142
+ 5
1143
+ 10
1144
+ 15
1145
+ 20
1146
+ >/Cf0
1147
+ 入/Cf0
1148
+ = 10
1149
+ d)(
1150
+ = 15
1151
+ )(
1152
+ 0.25
1153
+ 0.30
1154
+
1155
+ K
1156
+
1157
+ 0.25
1158
+ 0.20
1159
+ A
1160
+ C
1161
+ A
1162
+ 0.20
1163
+ 0.15
1164
+ 0.15
1165
+ A
1166
+ A
1167
+ 0.10
1168
+ 1
1169
+ 5
1170
+ 10
1171
+ 15
1172
+ 20
1173
+ 5
1174
+ 10
1175
+ 15
1176
+ 20
1177
+ >/Cf0
1178
+ 入/Cfo
1179
+ e)(= 20
1180
+ f)(
1181
+ = 25
1182
+ 0.35
1183
+
1184
+ 0.35
1185
+ X
1186
+ X
1187
+ 0.30
1188
+
1189
+ AA
1190
+
1191
+ ≥ 0.30
1192
+
1193
+ 0.25
1194
+ X
1195
+ 0.25
1196
+
1197
+ 0.20
1198
+ 0.20
1199
+ 5
1200
+ 10
1201
+ 15
1202
+ 20
1203
+ 5
1204
+ 10
1205
+ 15
1206
+ 20
1207
+ >/Cf0
1208
+ 入/Cf0
1209
+ Cp,LES
1210
+ C
1211
+ X
1212
+
1213
+ p,NishinoKIRBY et al
1214
+ 15
1215
+ Table 3 Comparison of models for Cp prediction.
1216
+ 1
1217
+ 50
1218
+ �50
1219
+ i=1 |Cp,i − Cp,LES|/Cp,LES
1220
+ 1
1221
+ 50
1222
+ �50
1223
+ i=1 |Cp,i − Cp,LES|/Cp,Betz
1224
+ ζ
1225
+ Cp,Nishino
1226
+ Cp,model
1227
+ ζ
1228
+ Cp,Nishino
1229
+ Cp,model
1230
+ 0
1231
+ 2.82%
1232
+ 2.15%
1233
+ 0
1234
+ 0.142%
1235
+ 0.108%
1236
+ 5
1237
+ 4.38%
1238
+ 1.48%
1239
+ 5
1240
+ 0.954%
1241
+ 0.338%
1242
+ 10
1243
+ 5.16%
1244
+ 1.35%
1245
+ 10
1246
+ 1.67%
1247
+ 0.459%
1248
+ 15
1249
+ 5.66%
1250
+ 1.30%
1251
+ 15
1252
+ 2.24%
1253
+ 0.542%
1254
+ 20
1255
+ 6.02%
1256
+ 1.26%
1257
+ 20
1258
+ 2.72%
1259
+ 0.601%
1260
+ 25
1261
+ 6.30%
1262
+ 1.24%
1263
+ 25
1264
+ 3.11%
1265
+ 0.648%
1266
+ with ζ. The mean absolute error of Cp,model was typically less than 1.5% and this decreased slightly as ζ increases (due to the
1267
+ reference power Cp,LES increasing). We also use the power of an isolated ideal turbine, Cp,Betz, as a reference power. Cp,Betz is
1268
+ calculated using the actuator disc theory with the expression Cp,Betz = 64C′
1269
+ T /(4 + C′
1270
+ T )3 (note that in this study C′
1271
+ T = 1.33 and
1272
+ hence Cp,Betz = 0.563). In this case the mean absolute error increased with ζ for both Cp,model and Cp,Nishino. However, the
1273
+ average prediction error of Cp,model remained below 0.65%.
1274
+ 6
1275
+ DISCUSSION
1276
+ Data-driven modelling of the internal turbine thrust coefficient C∗
1277
+ T is a novel approach to modelling turbine-wake interactions. Data-
1278
+ driven models of wind farm performance typically focus on predicting the power output, which, however, depends on flow physics
1279
+ across a wide range of scales. Current data-driven approaches are either not generalisable to different atmospheric responses, or
1280
+ would require a very large set of expensive training data, such as finite-size wind farm LES data. Data-driven models of C∗
1281
+ T captures
1282
+ the effects of turbine-wake interactions, whilst also being applicable to different atmospheric responses (following the concept of
1283
+ the two-scale momentum theory).
1284
+ The statistical emulator of C∗
1285
+ T developed in this study was able to predict the farm power Cp of Kirby et. al. 8 with an average error
1286
+ of less than 0.65%. The high accuracy and very low computational cost of this approach shows the potential of this approach for
1287
+ modelling turbine-wake interactions. It has several advantages over traditional approaches using the superposition of wake models.
1288
+ Information from turbulence-resolving LES is included which ensures a high accuracy. It will also be more advantageous as wind
1289
+ farms become larger because wake models struggle to capture the complex multi-scale flows physics which are important for large
1290
+ farms. The statistical model of C∗
1291
+ T may therefore allow fast and accurate predictions of wind farm performance.
1292
+ All emulators developed in this study gave substantially better predictions of C∗
1293
+ T,LES compared to the analytical and wake
1294
+ models. Both the mean and maximum prediction errors were reduced by the emulators. The standard GP regression approach had
1295
+ a mean prediction error of 1.26% and maximum error of approximately 6%. The accuracy depends on the size of the LES data set
1296
+ and could be further decreased with a larger training set. The multi-fidelity GP approach gave more accurate predictions of C∗
1297
+ T,LES
1298
+ compared to the standard GP regression. This is because non-linear information fusion algorithm has incorporated information from
1299
+ many low-fidelity data points to improve the emulator of the high-fidelity (LES) model. This approach has the advantage that, unlike
1300
+ the standard GP regression approach, it is not necessary to evaluate the prior mean before making a prediction. Therefore, to predict
1301
+ C∗
1302
+ T it is only necessary to evaluate the posterior mean of the high-fidelity emulator for a specific turbine layout.
1303
+ The shape of the posterior mean in figure 8 gives insights into the physics of turbine-wake interactions. This is because C∗
1304
+ T,LES
1305
+ is low when a layout has a high degree of turbine-wake interactions. For the turbine operating conditions used, C∗
1306
+ T,LES is close to
1307
+ 0.75 when a layout has a small degree of wake interactions. Figure 8a shows C∗
1308
+ T,LES when the wind direction is perfectly aligned
1309
+
1310
+ 16
1311
+ KIRBY et al
1312
+ Figure 13 Alignment of turbines for different combinations of Sx, Sy and θ.
1313
+ with the rows of turbines (θ = 0). This gives wind farms with a high degree of wake interactions which results in low C∗
1314
+ T,LES values.
1315
+ For θ = 0o, increasing Sx/D increases C∗
1316
+ T because there is a larger streamwise distance between turbines for the wakes to recover.
1317
+ When the cross-streamwise spacing (Sy/D) is increased the degree of wake interactions increases, i.e., C∗
1318
+ T,LES decreases. This is
1319
+ because there is a lower array density which results in a lower turbulence intensity within the farm and hence slower wake recovery.
1320
+ Yang 41 found that increasing the cross-streamwise spacing in infinitely-large wind farms increased the power of individual turbines
1321
+ and concluded that this was due to reduced wake interactions. However, the increase in turbine power found by Yang 41 may be also
1322
+ explained by to a faster farm-averaged wind speed caused by a reduced array density rather than reduced wake interactions.
1323
+ When the wind direction θ increases, C∗
1324
+ T,LES increases to a maximum of just over 0.75 at θ = 10o (figure 8c). This result agrees
1325
+ qualitatively with another study 42 in which it was found that the maximum farm power was produced by an intermediate wind
1326
+ direction. When θ increases above 20o regions of low C∗
1327
+ T,LES appear diagonally (see figures 8f-j). The regions of low C∗
1328
+ T,LES are
1329
+ centred on the surfaces given by Sy = 2Sx tan(θ), Sy = Sx tan(θ) and Sy = 0.5Sx tan(θ). These regions correspond to turbines
1330
+ being aligned along different axes throughout the farm (see figure 13). There are longer streamwise distance between turbines for
1331
+ these arrangements (compared to θ = 0o) and so the C∗
1332
+ T,LES values are higher than for θ = 0o.
1333
+ The accuracy of the statistical emulators could be further improved in future studies. Both the standard and multi-fidelity GP
1334
+ models can be improved by adding more evaluations of C∗
1335
+ T,LES. From table 2, the accuracy of the multi-fidelity GP models did not
1336
+ improve once we used more than 500 C∗
1337
+ T,wake evaluations. This shows that the error in predicting C∗
1338
+ T,LES for MF-GP-nlow500 is
1339
+ not due to the model of fwake. Instead the error arises from the learnt relationship between fwake and fLES.
1340
+ The statistical emulators developed are not applicable to all wind farms because of the limited nature of our data set. A limitation
1341
+ of the developed model is that it is only applicable to farms with perfectly aligned layouts. It should also be noted that our model
1342
+ was trained on data from simulations of a neutrally stratified boundary layer. Therefore a larger LES data set with an extended
1343
+ parameter space would be required to account for the effect of atmospheric stability on wake interactions and the resulting C∗
1344
+ T .
1345
+ Another limitation of our model is that it assumes all turbines have the same resistance coefficient C′
1346
+ T . It is likely that this condition
1347
+ can be strictly satisfied only in the fully developed region of a large farm where the wind speed does not change in the streamwise
1348
+ or cross-streamwise directions.
1349
+ Although we considered only actuator discs in this study for demonstration, the proposed approach using a data-driven model
1350
+ of CT ∗ can be applied to power prediction of real turbines as well in future studies. In this study, we calculate Cp,model using the
1351
+ expression Cp,model = β3C∗
1352
+ T
1353
+ 3
1354
+ 2 C′
1355
+ T
1356
+ − 1
1357
+ 2 . This assumes that the relationship between C∗
1358
+ p and C′
1359
+ T is given by C∗
1360
+ p = C∗
1361
+ T
1362
+ 3
1363
+ 2 C′
1364
+ T
1365
+ − 1
1366
+ 2 , which
1367
+ is only valid for actuator discs. For real turbines, the relationship between C∗
1368
+ p and C′
1369
+ T can be calculated using BEM theory 43 according
1370
+ to the turbine design and operating conditions (noting that the turbine induction factor can still be estimated as a = C′
1371
+ T /(4 + C′
1372
+ T )).
1373
+ Cp,model can then be calculated using equation 5 with β found using equation 1. However, for a data-driven model of C∗
1374
+ T to be
1375
+ applicable to real turbines, it will be necessary to model the impact of a variable C′
1376
+ T rather than assuming a fixed C′
1377
+ T value as in this
1378
+ study.
1379
+
1380
+ b) Su = Sαtan(0)
1381
+ = 2Stan(0KIRBY et al
1382
+ 17
1383
+ 7
1384
+ CONCLUSIONS
1385
+ In this study we proposed a new data-driven approach to modelling turbine wake interactions and resulting flow resistance in large
1386
+ wind farms. We developed statistical emulators of the farm-internal turbine thrust coefficient C∗
1387
+ T,LES as a function of turbine layout
1388
+ and wind direction. C∗
1389
+ T represents the flow resistance within a wind farm and reflects the characteristics of the turbine-scale flows
1390
+ including wake and turbine blockage effects. We developed several emulators using both standard GP regression and multi-fidelity
1391
+ GP regression. The standard GP was trained using data from 50 infinitely-large wind farm LES (and using a low-fidelity wake model
1392
+ as a prior mean). The multi-fidelity GP was trained using data from both LES and wake model simulations. We estimated the test
1393
+ accuracy of the model by performing leave-one-out cross-validation and assessed the error in predicting C∗
1394
+ T,LES. All emulators had
1395
+ a mean test error of less than 2% for predicting C∗
1396
+ T,LES. The multi-fidelity GP gave the best performance with a mean prediction
1397
+ error of 0.849% and maximum prediction error of 3.78% with no bias for under or over-prediction. This is low compared to the mean
1398
+ error of the wake model (4.60%) and analytical C∗
1399
+ T model (5.26%) which both had a bias for overpredicting C∗
1400
+ T,LES.
1401
+ We used an emulator of C∗
1402
+ T,LES to make predictions of wind farm performance under various mesoscale atmospheric conditions
1403
+ (characterised by the wind extractability factor ζ) using the two-scale momentum theory 24. Our predictions of farm power produc-
1404
+ tion had an average error of less than 1.5% under realistic wind extractability scenarios compared to the LES. When the error in
1405
+ power prediction is expressed relative to the power of an isolated ideal turbine the average prediction error is less than 0.7%. We
1406
+ also used a previously proposed analytical model of C∗
1407
+ T
1408
+ 25 to predict farm power output with an average error of less than 3.5% (with
1409
+ the power of an isolated turbine as the reference power). The analytical model correctly predicts the trends in farm performance
1410
+ with array density under different scenarios of large-scale atmospheric response, although it tends to overpredict the power where
1411
+ turbine-wake interactions are important. Using statistical emulators of C∗
1412
+ T is a new approach to modelling turbine-wake interactions
1413
+ and flow resistance within large wind farms. The approach can be extended in future studies by increasing the size of the training
1414
+ data set, for example, to account for the effects of C′
1415
+ T and atmospheric stability conditions on C∗
1416
+ T . The very low computational cost
1417
+ and high accuracy of the model could be beneficial for future wind farm optimisation.
1418
+ ACKNOWLEDGMENTS
1419
+ The first author (AK) acknowledges the NERC-Oxford Doctoral Training Partnership in Environmental Research (NE/S007474/1) for
1420
+ funding and training.
1421
+ Author contributions
1422
+ T.N. derived the theory. A.K. and T.D.D. performed the simulations. F-X.B. provided assistance and guidance for the machine learning
1423
+ methodology. A.K. wrote the paper with corrections from T.N., F-X.B and T.D.D.
1424
+ Financial disclosure
1425
+ None reported.
1426
+ Conflict of interest
1427
+ The authors report no conflict of interest.
1428
+
1429
+ 18
1430
+ KIRBY et al
1431
+ Data availability statement
1432
+ The data and code that support the findings of this study are openly available at https://github.com/AndrewKirby2/ctstar_statistical_
1433
+ model. This includes the results from the wind farm LES and wake model simulations. The repository also includes the code for the
1434
+ results presented in sections 5.1, 5.2 and 5.3.
1435
+ Author ORCID
1436
+ A. Kirby, https://orcid.org/0000-0001-8389-1619; F-X. Briol https://orcid.org/0000-0002-0181-2559; T. Nishino, https://orcid.
1437
+ org/0000-0001-6306-7702.
1438
+ References
1439
+ 1. Porté-Agel F, Bastankhah M, Shamsoddin S. Wind-Turbine and Wind-Farm Flows: A Review. Boundary-Layer Meteorology 2020;
1440
+ 174: 1-59. doi: 10.1007/s10546-019-00473-0
1441
+ 2. Bleeg J, Purcell M, Ruisi R, Traiger E. Wind farm blockage and the consequences of neglecting its impact on energy production.
1442
+ Energies 2018; 11: 1609. doi: 10.3390/en11061609
1443
+ 3. Carbon Trust . Global Blockage Effect in Offshore Wind (GloBE) [accessed 07/11/2022]. https://www.carbontrust.com/
1444
+ our-projects/large-scale-rd-projects-offshore-wind/global-blockage-effect-in-offshore-wind-globe; 2022.
1445
+ 4. Jensen NO. A note on wind generator interaction. Risø-M-2411 Risø National Laboratory Roskilde 1983.
1446
+ 5. Bastankhah M, Porté-Agel F. A new analytical model for wind-turbine wakes. Renewable Energy 2014; 70: 116-123.
1447
+ doi:
1448
+ 10.1016/j.renene.2014.01.002
1449
+ 6. Katic I, Hojstrup J, Jensen NO. A simple model for cluster efficiency. Proceedings of the European wind energy association
1450
+ conference and exhibition, Rome, Italy 1986: 407-409.
1451
+ 7. Zong H, Porté-Agel F. A momentum-conserving wake superposition method for wind farm power prediction. Journal of Fluid
1452
+ Mechanics 2020; 889: A8. doi: 10.1017/jfm.2020.77
1453
+ 8. Kirby A, Nishino T, Dunstan TD. Two-scale interaction of wake and blockage effects in large wind farms. Journal of Fluid Mechanics
1454
+ 2022; 953: A39. doi: 10.1017/jfm.2022.979
1455
+ 9. Stevens RJAM, Gayme DF, Meneveau C. Effects of turbine spacing on the power output of extended wind-farms. Wind Energy
1456
+ 2016; 19: 359-370. doi: 10.1002/we.1835
1457
+ 10. Fitch AC, Olson JB, Lundquist JK, et al. Local and mesoscale impacts of wind farms as parameterized in a mesoscale NWP model.
1458
+ Monthly Weather Review 2012; 140. doi: 10.1175/MWR-D-11-00352.1
1459
+ 11. Abkar M, Porté-Agel F. A new wind-farm parameterization for large-scale atmospheric models. Journal of Renewable and
1460
+ Sustainable Energy 2015; 7. doi: 10.1063/1.4907600
1461
+ 12. Pan Y, Archer CL. A Hybrid Wind-Farm Parametrization for Mesoscale and Climate Models. Boundary-Layer Meteorology 2018;
1462
+ 168: 469-495. doi: 10.1007/s10546-018-0351-9
1463
+
1464
+ KIRBY et al
1465
+ 19
1466
+ 13. Zehtabiyan-Rezaie N, Iosifidis A, Abkar M. Data-driven fluid mechanics of wind farms: A review. Journal of Renewable and
1467
+ Sustainable Energy 2022; 14: 32703. doi: 10.1063/5.0091980
1468
+ 14. Renganathan SA, Maulik R, Letizia S, Iungo GV. Data-driven wind turbine wake modeling via probabilistic machine learning.
1469
+ Neural Computing and Applications 2022; 34: 6171-6186. doi: 10.1007/s00521-021-06799-6
1470
+ 15. Optis M, Perr-Sauer J. The importance of atmospheric turbulence and stability in machine-learning models of wind farm power
1471
+ production. Renewable and Sustainable Energy Reviews 2019; 112: 27-41. doi: 10.1016/j.rser.2019.05.031
1472
+ 16. Japar F, Mathew S, Narayanaswamy B, Lim CM, Hazra J. Estimating the wake losses in large wind farms: A machine learning
1473
+ approach. ISGT 2014 2014: 1-5. doi: 10.1109/ISGT.2014.6816427
1474
+ 17. Yan C, Pan Y, Archer CL. A general method to estimate wind farm power using artificial neural networks. Wind Energy 2019; 22:
1475
+ 1421-1432. doi: 10.1002/we.2379
1476
+ 18. Zhang J, Zhao X. Wind farm wake modeling based on deep convolutional conditional generative adversarial network. Energy
1477
+ 2022; 238: 121747. doi: https://doi.org/10.1016/j.energy.2021.121747
1478
+ 19. Wilson B, Wakes S, Mayo M. Surrogate modeling a computational fluid dynamics-based wind turbine wake simulation using
1479
+ machine learning. 2017 IEEE Symposium Series on Computational Intelligence (SSCI) 2017: 1-8. doi: 10.1109/SSCI.2017.8280844
1480
+ 20. Ti Z, Deng XW, Yang H. Wake modeling of wind turbines using machine learning. Applied Energy 2020; 257: 114025. doi:
1481
+ https://doi.org/10.1016/j.apenergy.2019.114025
1482
+ 21. Ti Z, Deng XW, Zhang M. Artificial Neural Networks based wake model for power prediction of wind farm. Renewable energy
1483
+ 2021; 172: 618-631. doi: https://doi.org/10.1016/j.renene.2021.03.030
1484
+ 22. Park J, Park J. Physics-induced graph neural network: An application to wind-farm power estimation. Energy 2019; 187. doi:
1485
+ 10.1016/j.energy.2019.115883
1486
+ 23. Bleeg J. A Graph Neural Network Surrogate Model for the Prediction of Turbine Interaction Loss. Journal of Physics: Conference
1487
+ Series 2020; 1618. doi: 10.1088/1742-6596/1618/6/062054
1488
+ 24. Nishino T, Dunstan TD. Two-scale momentum theory for time-dependent modelling of large wind farms. Journal of Fluid
1489
+ Mechanics 2020; 894: A2. doi: 10.1017/jfm.2020.252
1490
+ 25. Nishino T. Two-scale momentum theory for very large wind farms. Journal of Physics: Conference Series 2016; 753: 032054. doi:
1491
+ 10.1088/1742-6596/753/3/032054
1492
+ 26. Patel K, Dunstan TD, Nishino T. Time-dependent upper limits to the performance of large wind farms due to mesoscale
1493
+ atmospheric response. Energies 2021; 14: 6437. doi: 10.3390/en14196437
1494
+ 27. Sacks J, Welch WJ, Mitchell TJ, Wynn HP. Design and analysis of computer experiments. Statistical Science 1989; 4: 409-423.
1495
+ doi: 10.1214/ss/1177012413
1496
+ 28. Currin C, Mitchell T, Morris M, Ylvisaker D. Bayesian prediction of deterministic functions, with applications to the de-
1497
+ sign and analysis of computer experiments. Journal of the American Statistical Association 1991; 86: 953-963.
1498
+ doi:
1499
+ 10.1080/01621459.1991.10475138
1500
+
1501
+ 20
1502
+ KIRBY et al
1503
+ 29. Johnson ME, Moore LM, Ylvisaker D. Minimax and maximin distance designs. Journal of Statistical Planning and Inference 1990;
1504
+ 26: 131-148. doi: 10.1016/0378-3758(90)90122-B
1505
+ 30. Santner TJ, Williams BJ, Notz W. The design and analysis of computer experiments. second ed. 2018.
1506
+ 31. Wynne G, Briol FX, Girolami M. Convergence guarantees for gaussian process means with misspecified likelihoods and
1507
+ smoothness. Journal of Machine Learning Research 2021; 22.
1508
+ 32. Shapiro CR, Gayme DF, Meneveau C. Filtered actuator disks: Theory and application to wind turbine models in large eddy
1509
+ simulation. Wind Energy 2019; 22: 1414-1420. doi: 10.1002/we.2376
1510
+ 33. Niayifar A, Porté-Agel F. Analytical modeling of wind farms: A new approach for power prediction. Energies 2016; 9.
1511
+ doi:
1512
+ 10.3390/en9090741
1513
+ 34. Pedersen MM, Laan v. dP, Friis-Møller M, Rinker J, Réthoré PE. DTUWindEnergy/PyWake: PyWake. 2021. doi: 10.5281/zen-
1514
+ odo.2562662
1515
+ 35. Crespo A, Hernández J. Turbulence characteristics in wind-turbine wakes. Journal of Wind Engineering and Industrial Aerodynamics
1516
+ 1996; 61: 71-85. doi: 10.1016/0167-6105(95)00033-X
1517
+ 36. Rasmussen CE, Williams CKI. Gaussian Processes for Machine Learning. the MIT Press . 2018
1518
+ 37. Peherstorfer B, Willcox K, Gunzburger M. Survey of multifidelity methods in uncertainty propagation, inference, and optimiza-
1519
+ tion. SIAM Review 2018; 60. doi: 10.1137/16M1082469
1520
+ 38. Perdikaris P, Raissi M, Damianou A, Lawrence ND, Karniadakis GE. Nonlinear information fusion algorithms for data-efficient
1521
+ multi-fidelity modelling. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 2017; 473.
1522
+ doi:
1523
+ 10.1098/rspa.2016.0751
1524
+ 39. Paleyes A, Pullin M, Mahsereci M, Lawrence N, González J. Emulation of physical processes with Emukit. 2019.
1525
+ 40. GPy . GPy: A Gaussian process framework in python. http://github.com/SheffieldML/GPy; since 2012.
1526
+ 41. Yang X, Kang S, Sotiropoulos F. Computational study and modeling of turbine spacing effects infinite aligned wind farms. Physics
1527
+ of Fluids 2012; 24: 11510. doi: 10.1063/1.4767727
1528
+ 42. Stevens RJAM, Gayme DF, Meneveau C. Large eddy simulation studies of the effects of alignment and wind farm length. Journal
1529
+ of Renewable and Sustainable Energy 2014; 6: 023105. doi: 10.1063/1.4869568
1530
+ 43. Nishino T, Hunter W. Tuning turbine rotor design for very large wind farms. Proceedings of the Royal Society A: Mathematical,
1531
+ Physical and Engineering Sciences 2018; 474(2220): 1–20. doi: 10.1098/rspa.2018.0237
1532
+ How to cite this article: Kirby A., Briol F-X., Dunstan T.D., and Nishino T. (2022), Data-driven modelling of wind turbine wake
1533
+ interactions in large wind farms, Wind Energy, xxxx.
1534
+
5NAzT4oBgHgl3EQfu_1f/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
5dE2T4oBgHgl3EQfOgbi/content/tmp_files/2301.03750v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
5dE2T4oBgHgl3EQfOgbi/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
5dFJT4oBgHgl3EQfkywG/content/2301.11580v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f71e7d19a1ea94702d52076401e51e849e6167c61d3304b19b6f5431a450d6f2
3
+ size 812958
5tAyT4oBgHgl3EQfpfgu/content/2301.00525v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:726323a0ddaad871861054b910439a22ed3e420126c21875feec1a3360e8b299
3
+ size 307035
5tAyT4oBgHgl3EQfpfgu/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:61fbe709ebb45528f07be82453244c64e7a374f026f26086282f83599c1ff3de
3
+ size 3276845
5tAyT4oBgHgl3EQfpfgu/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:79e9f4eefa1b61ae9a6486ace0141aa47a24c9b359e542075871d329395bbe98
3
+ size 128939
6tAzT4oBgHgl3EQfvP3q/content/2301.01705v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:160f03203ad7c7c71fc61cf025a60f44fdc91f0e70f193f6a91d267731b9426b
3
+ size 591703
6tAzT4oBgHgl3EQfvP3q/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37ae8cd303ae81b427a3010feb682474a830905bef2e5ba1c6c9a18a5b6d17f7
3
+ size 3670061
6tAzT4oBgHgl3EQfvP3q/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c2ac4d55cafc7da168f7bad033e95bb78c61fb9134b267e3352378d389e0d311
3
+ size 140693
6tE2T4oBgHgl3EQfPAa1/content/2301.03755v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:31fb937b8f99ea2b64364e95293113fcc75088192b0226bd027f6b5c44813328
3
+ size 681901
6tE2T4oBgHgl3EQfPAa1/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:35bccbb2d84d763082e1422e4528d79976bc7f2fc9818940da8c29791d79d410
3
+ size 2490413
6tE2T4oBgHgl3EQfPAa1/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7556f8f581a1a23c35b66fe2e16d3a491388c653b592179ae05f0d5326595b70
3
+ size 83414
99E2T4oBgHgl3EQfmAd3/content/tmp_files/2301.03994v1.pdf.txt ADDED
@@ -0,0 +1,2680 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Transport Model for the Propagation of Partially-Coherent,
2
+ Polarization-Gradient Vector Beams
3
+ J. M. Nichols and D. V. Nickel
4
+ Naval Research Laboratory
5
+ 4555 Overlook Ave.
6
+ SW.
7
+ Washington D.C. 20375
8
+ F. Bucholtz
9
+ Jacobs Technology, Inc.
10
+ 2551 Dulles View Drive
11
+ Herndon, VA 20171
12
+ G. Rohde
13
+ University of Virginia
14
+ Dept.
15
+ of Electrical and Computer Engineering
16
+ Dept.
17
+ of Biomedical Engineering
18
+ 415 Lane Rd.
19
+ Charlottesville, VA
20
+ In a recent work [20], we predicted and experimentally validated a new physical mechanism for
21
+ altering the propagation path of a monochromatic beam. Specifically, we showed that by properly
22
+ tailoring the spatial distribution of the linear state of polarization transverse to the direction of
23
+ propagation, the beam followed a curved trajectory in free space. Here we extend the model to the
24
+ partially coherent, polychromatic case by redefining the beam amplitude, phase, and polarization
25
+ angle as appropriate statistical quantities.
26
+ In particular, we propose an entirely new definition
27
+ of linear polarization gradient as an average over the third generalized Stokes parameter in the
28
+ spatial frequency domain. In the new model, the beam curvature matches that of our previous work
29
+ in the fully coherent case, but is predicted to gradually vanish as the beam loses coherence and
30
+ becomes depolarized. The model also clearly predicts, however, that there does not exist a natural
31
+ mechanism in free space or due to atmospheric turbulence that will cause significant depolarization.
32
+ Simulated beam trajectories are shown for varying levels of initial partial coherence and for different
33
+ polarization profiles. A new class of non-diffracting beams is also suggested by way of example.
34
+ Lastly, as a byproduct of the derivation we generalize a previously known result concerning the
35
+ free-space propagation of generalized Stokes parameters [13] by showing the result also holds for
36
+ propagation in inhomogeneous media.
37
+ I.
38
+ INTRODUCTION
39
+ Recently we demonstrated that through proper choice of spatial distribution of linear polarization
40
+ angle, a coherent, monochromatic beam follows a curved trajectory in free space [20]. The effect is similar
41
+ in magnitude to that of Airy beam bending (both scale as k−2
42
+ 0
43
+ where k0 is the free-space wavenumber).
44
+ However, in our approach it is the centroid of the beam that experiences a transverse acceleration
45
+ as opposed to the Airy beam case where the main intensity lobe transversely accelerates, but where
46
+ the centroid of the beam does not.
47
+ The physics of the vector beam bending were predicted via a
48
+ transport model, whereby the parameters defining the optical field (intensity and phase) were shown to
49
+ be governed by the transport of intensity equation (TIE) and an eikonal equation, expressing conservation
50
+ of transverse linear momentum. The model was re-formulated in Lagrangian coordinates in order to solve
51
+ for the transverse beam location which, under appropriate choice of polarization gradient, was shown to
52
+ bend in the transverse plane. These predictions were subsequently verified in experiment [20].
53
+ In this work we extend the model to the more general case of partially coherent light, showing that with
54
+ appropriate definitions of optical phase, amplitude, and polarization gradient the model still predicts a
55
+ bending effect. For perfectly coherent light, the governing equations reduce to the previously derived
56
+ coherent case, while for incoherent light, the effect disappears. The resulting model also predicts that the
57
+ state of linear polarization (including the degree of polarization) will remain unchanged on propagation.
58
+ Collectively, these model predictions represent the main contribution of this work.
59
+ A second, but related contribution is to provide a new definition of polarization angle gradient that
60
+ is appropriate for modeling partially coherent vector beams. Our definition is based on the normalized
61
+ integral of the third generalized Stokes parameter and incorporates the degree of polarization directly.
62
+ While this definition falls naturally from the vector transport equations, it is also consistent with recent
63
+ arXiv:2301.03994v1 [physics.optics] 10 Jan 2023
64
+
65
+ work on scalar, partially coherent beams where a similar definition of generalized phase was proposed
66
+ [35]. In what follows, we show that this scalar definition is also easily extended to the vector case and is
67
+ also a natural consequence of the transport model.
68
+ Finally, in the process of deriving this result, we generalize a previously known result from Korotkova
69
+ [13]. In that work, the author showed that the transverse integral of the generalized Stokes parameters
70
+ were conserved under free-space propagation. We confirm this result using an entirely different approach
71
+ and extend it to the case of propagation in an inhomogeneous medium.
72
+ Our approach is as follows.
73
+ 1. We begin with the wave equation in the general case of a weakly-inhomogenous medium.
74
+ We
75
+ make the paraxial assumption via the slowly-varying envelope approximation to obtain Helmholtz
76
+ equations for each field component. In the instance where the medium warrants a probabilistic
77
+ description, we additionally invoke the Markov Approximation [30].
78
+ 2. To accommodate the probabilistic nature of the partially coherent problem, the fields are
79
+ represented in the coherency matrix formalism where each matrix element is an expectation of
80
+ a product of finite-time Fourier transforms [24] of field components at two different transverse
81
+ spatial locations. Importantly, we retain the dependence on spatially-separated points throughout
82
+ the calculation in the form of Wigner Transforms with respect to the transverse spatial coordinate.
83
+ This information is vital in our model as the state of polarization is not uniform in the transverse
84
+ plane.
85
+ 3. We obtain a vector transport equation for the generalized Stokes parameters which is the partially
86
+ coherent, vector counterpart to the transport of intensity equations obtained in our earlier paper
87
+ [20]. It is entirely reasonable to expect that, in the case of partial polarization, individual com-
88
+ ponents of the Stokes 4-vector must obey continuity equations while, in the fully-polarized case,
89
+ continuity of the intensity is sufficient to characterize beam propagation.
90
+ 4. We extend the method of moments developed for the scalar problem [7, 18] to the vector case,
91
+ leading to the coupled transport equations describing the evolution of expected amplitude, phase,
92
+ and polarization angle. Importantly, the model reduces to our monochromatic, coherent model in
93
+ those respective limits.
94
+ The resulting model extends our prior coherent model variables (phase, polarization angle, and intensity)
95
+ to the partially coherent case by taking appropriate averages over the Wigner spatial frequency and with
96
+ these new definitions, predict the expected beam path.
97
+ II.
98
+ TRANSPORT MODELING OF PARTIALLY COHERENT, POLARIZED LIGHT
99
+ A.
100
+ Spectral Coherency Representation
101
+ We start with the vector wave equation for electric-field vector E(x, t)
102
+ ∇2E(x, t) − ϵ(x)
103
+ c2
104
+ 0
105
+ ∂2E(x, t)
106
+ ∂t2
107
+ = 0
108
+ (1)
109
+ which presumes an inhomogeneous, isotropic medium characterized by dimensionless dielectric constant
110
+ ϵ(x) > 1, where x denotes position in three-dimensional Cartesian space, where c0 = 1/√ϵ0µ0 is the
111
+ speed of light in vacuum, and where ϵ0 and µ0 are the permittivity and permeability, respectively, of free
112
+ space. We assume the inhomogeneity is weak and define
113
+ ϵ1(x) = ϵ(x) − ⟨ϵ⟩
114
+ ⟨ϵ⟩
115
+ << 1
116
+ (2)
117
+ where ⟨ϵ⟩ is the average value of ϵ(x) taken over the entire region of interest.
118
+ We assume the wave propagates in the +z-direction and we model the electric field vector as a sta-
119
+ tionary random process, existing for times −T ≤ t ≤ T. Since (1) is linear in E(x, t), we may consider a
120
+ superposition of monochromatic, transverse-wave solutions
121
+ E(x, t) = 1
122
+
123
+ � ∞
124
+ −∞
125
+ {EX(x, ω)T , EY (x, ω)T , 0} e−ik0zeiωtdω,
126
+ −T ≤ t ≤ T
127
+ (3)
128
+ 2
129
+
130
+ represented here by the Fourier integral. Phase accumulation in the direction of propagation is captured
131
+ by the e−ik0z term with wavenumber k0 = (ω/c0) ⟨ϵ⟩1/2 = (2π/λ) ⟨ϵ⟩1/2 at free-space wavelength λ. The
132
+ quantities {EX(x, ω)T , EY (x, ω)T , 0}e−ik0z are therefore the associated Fourier amplitudes at frequency
133
+ ω and possess units of electric field per Hz. Given the above construction, these are given by
134
+ e−ik0zEX,Y (x, ω)T =
135
+ � T
136
+ −T
137
+ EX,Y (x, t)e−iωtdt
138
+ (4)
139
+ as discussed in [24] (sec. 4.7). The explicit dependence of the Fourier amplitudes on T will be retained
140
+ for the moment. The electric field and its Fourier amplitudes are distinguished by their arguments (t
141
+ and ω resp.).
142
+ Substitute (3) into (1) and make the slowly-varying envelope approximation in which it is assumed
143
+ that changes in the amplitude of the field over z−distances of a wavelength are small compared to the
144
+ amplitude itself.
145
+ Then |∂zz(·)| ≪ |k0∂z(·)| and the net result is that spatial gradients in x become
146
+ gradients only in the transverse plane leading to the parabolic equations
147
+
148
+ −i2k0∂z + ∇2
149
+ X + k2
150
+ 0ϵ1(⃗x, z)
151
+
152
+ {EX(⃗x, z, ω)T , EY (⃗x, z, ω)T } = 0
153
+
154
+ i2k0∂z + ∇2
155
+ X + k2
156
+ 0ϵ1(⃗x, z)
157
+
158
+ {E∗
159
+ X(⃗x, z, ω)T , E∗
160
+ Y (⃗x, z, ω)T } = 0
161
+ (5)
162
+ which must be satisfied by each vector component of Fourier amplitudes and their complex conjugates
163
+ (denoted with ∗). Here we have denoted the position in the transverse plane as the vector ⃗x ≡ {x, y} to
164
+ distinguish it from the propagation direction z (x ≡ {⃗x, z}), and have denoted the transverse gradient
165
+ operator ∇X(·) ≡ {∂x(·), ∂y(·)}.
166
+ Note that (5) comprises four separate equations in, respectively, EX, EY , E∗
167
+ X, E∗
168
+ Y which we will call (a-
169
+ d). Now perform the following operations. Multiply (a) and (b) evaluated at ⃗x1 by E∗
170
+ X(⃗x2, z, ω). Multiply
171
+ (a) and (b) evaluated at ⃗x1 by E∗
172
+ Y (⃗x2, z, ω).
173
+ Multiply (c) and (d) evaluated at ⃗x2 by EX(⃗x1, z, ω).
174
+ Multiply (c) and (d) evaluated at ⃗x2 by EY (⃗x1, z, ω). Note that in each of the above operations all four
175
+ multiplications are performed from the right. The results, in order, are eight equations which we denote
176
+ (i)-(viii).
177
+ If we then subtract (v) from (i), (vii) from (ii), (vi) from (iii), and (viii) from (iv) we find (taking into
178
+ account the chain rule for the derivatives in z):
179
+
180
+ i2k0∂z +
181
+
182
+ ∇2
183
+ X2 − ∇2
184
+ X1
185
+
186
+ + k2
187
+ 0 (ϵ1(⃗x2, z) − ϵ1(⃗x1, z))
188
+
189
+ Ei(⃗x1, z, ω)T E∗
190
+ j (⃗x2, z, ω)T =0, i, j ∈ {X, Y }
191
+ (6)
192
+ where the notation ∇2
193
+ Xl indicates that the Laplacian operation is to be performed as a function of the
194
+ transverse variable designated ⃗xl for l = 1, 2. Taking the expected value of (6) over realizations of the
195
+ electric fields and performing the limiting operation
196
+
197
+ Ei(⃗x, z, ω)E∗
198
+ j (⃗x, z, ω)
199
+
200
+ ≡ lim
201
+ T →∞
202
+
203
+ E
204
+ �Ei(⃗x, z, ω)T E∗
205
+ j (⃗x, z, ω)T
206
+ 2T
207
+ ��
208
+ , i, j ∈ {X, Y }
209
+ (7)
210
+ then yields
211
+ i2k∂zWij(⃗x1, ⃗x2, z, ω) +
212
+
213
+ ∇2
214
+ X2 − ∇2
215
+ X1
216
+
217
+ Wij(⃗x1, ⃗x2, z, ω)
218
+ + k2
219
+ 0 [ϵ1(⃗x2, z) − ϵ1(⃗x1, z)] Wij(⃗x1, ⃗x2, z, ω) = 0, i, j ∈ {X, Y }
220
+ (8)
221
+ where each Wij(⃗x1, ⃗x2, z, ω) is an element of the spectral density matrix
222
+ Wij ∈ W(⃗x1, ⃗x2, z, ω) =
223
+ � ⟨EX(⃗x1, z, ω)E∗
224
+ X(⃗x2, z, ω)⟩ ⟨EX(⃗x1, z, ω)E∗
225
+ Y (⃗x2, z, ω)⟩
226
+ ⟨EY (⃗x1, z, ω)E∗
227
+ X(⃗x2, z, ω)⟩ ⟨EY (⃗x1, z, ω)E∗
228
+ Y (⃗x2, z, ω)⟩
229
+
230
+ (9)
231
+ and possesses units of electric field squared per Hz. Note that multiplying (9) by ϵ0/2 gives W(⃗x1, ⃗x2, z, ω)
232
+ in units of power spectral density in Watts/Hz.
233
+ Equation (8) treats the medium properties as deterministic, such as propagation through a medium
234
+ of known refractive index profile, in which case it is common to set ⟨ϵ⟩ = 1 and ϵ1(⃗x, z) = n2(⃗x, z) − 1
235
+ where n(⃗x, z) is the refractive index.
236
+ Alternatively, we can assume the medium is described by its
237
+ statistical properties. Treating ϵ1(⃗x, z) as a zero-mean, Gaussian random variable (e.g., as in a tur-
238
+ bulent atmosphere) requires averaging over both the field amplitudes and the medium properties in
239
+ taking the expectation of Eq.
240
+ (6).
241
+ Define these properties via the covariance ⟨ϵ1(⃗x2, z)ϵ1(⃗x1, z′)⟩ =
242
+
243
+ R3 SNN(⃗ξ, κ)ei⃗ξ·(⃗x2−⃗x1)+iκ(z−z′)d⃗ξdκ , that is, as the inverse Fourier Transform of the three-dimensional
244
+ 3
245
+
246
+ spectral density associated with fluctuations in the dielectric constant.
247
+ We then invoke the well-
248
+ established Markov Approximation (MA) of Tatarskii [30], [9] (see extension to the vector electric field
249
+ case in [5]) which assumes the medium is “delta” correlated in the direction of propagation so that
250
+ ⟨ϵ1(⃗x2, z)ϵ1(⃗x1, z′)⟩ ≈ δ(z − z′)A(⃗x2 − ⃗x1, z′). Under the MA, Tatarskii [30] showed that the required
251
+ average in (6) can be written
252
+
253
+ [ϵ1(⃗x2, z) − ϵ1(⃗x1, z)] Ei(⃗x1, z, ω)T E∗
254
+ j (⃗x2, z, ω)T
255
+
256
+ ≈ ik0
257
+ 2 [A(0, z) − A(⃗x2 − ⃗x1, z)] Wij(⃗x1, ⃗x2, z, ω)
258
+ (10)
259
+ so that Eq. (8) becomes
260
+ i2k∂zWij(⃗x1, ⃗x2, z, ω) +
261
+
262
+ ∇2
263
+ X2 − ∇2
264
+ X1
265
+
266
+ Wij(⃗x1, ⃗x2, z, ω)
267
+ + ik3
268
+ 0
269
+ 2 [A(0, z) − A(⃗x2 − ⃗x1, z)] Wij(⃗x1, ⃗x2, z, ω) = 0
270
+ (11)
271
+ As we will show, the choice of either a deterministic (8) or a stochastic (11) medium can be easily
272
+ accommodated in the transport model. Also note that the last term in both (8) and (11) possess units
273
+ of [m] so that kA(·) is dimensionless, as is ϵ(·). Note that in [5], the approximation ϵ1 ≈ 2η is invoked
274
+ which would have led to the pre-factor in Eq. (10) being written as 2ik0.
275
+ Equation (8) or (11) therefore contain four separate equations, each governing a different element of
276
+ the spectral density matrix (see also Wolf et al. e.g. [25]). Note that at the spatial location ⃗x1 = ⃗x2 ≡ ⃗x
277
+ the expressions ⟨Ei(⃗x1, z, ω)E∗
278
+ j (⃗x2, z, ω)⟩ reduce to the more familiar power spectral density functions
279
+ Sij(⃗x, z, ω) =
280
+
281
+ Ei(⃗x, z, ω)E∗
282
+ j (⃗x, z, ω)
283
+
284
+ , i, j ∈ {X, Y }
285
+ (12)
286
+ that is, Sij(⃗x, z, ω) = Wij(⃗x, ⃗x, z, ω).
287
+ B.
288
+ Generalize Stokes Parameter Representation
289
+ It will be convenient to describe propagation in terms of generalized Stokes parameters [15]. Define
290
+ s0(⃗x1, ⃗x2, z, ω) = ⟨EX(⃗x1, z, ω)E∗
291
+ X(⃗x2, z, ω)⟩ + ⟨EY (⃗x1, z, ω)E∗
292
+ Y (⃗x2, z, ω)⟩
293
+ = WXX(⃗x1, ⃗x2, z, ω) + WY Y (⃗x1, ⃗x2, z, ω)
294
+ s1(⃗x1, ⃗x2, z, ω) = ⟨EX(⃗x1, z, ω)E∗
295
+ X(⃗x2, z, ω)⟩ − ⟨EY (⃗x1, z, ω)E∗
296
+ Y (⃗x2, z, ω)⟩
297
+ = WXX(⃗x1, ⃗x2, z, ω) − WY Y (⃗x1, ⃗x2, z, ω)
298
+ s2(⃗x1, ⃗x2, z, ω) = 2Re{⟨EX(⃗x1, z, ω)E∗
299
+ Y (⃗x2, z, ω)⟩} = ⟨EX(⃗x1, z, ω)E∗
300
+ Y (⃗x2, z, ω)⟩ + ⟨EY (⃗x1, z, ω)E∗
301
+ X(⃗x2, z, ω)⟩
302
+ = WXY (⃗x1, ⃗x2, z, ω) + WY X(⃗x1, ⃗x2, z, ω)
303
+ s3(⃗x1, ⃗x2, z, ω) = −2Im{⟨EX(⃗x1, z, ω)E∗
304
+ Y (⃗x2, z, ω)⟩} = i (⟨EX(⃗x1, z, ω)E∗
305
+ Y (⃗x2, z, ω)⟩ − ⟨EY (⃗x1, z, ω)E∗
306
+ X(⃗x2, z, ω)⟩)
307
+ = i (WXY (⃗x1, ⃗x2, z, ω) − WY X(⃗x1, ⃗x2, z, ω)) .
308
+ (13)
309
+ Unlike conventional Stokes parameters which are evaluated at a single point in space, these generalized
310
+ parameters depend on the field relationships at two points ⃗x1 and ⃗x2. As ⃗x2 → ⃗x1 ≡ ⃗x we recover the
311
+ standard definitions. If the above holds, we can also write
312
+ W(⃗x1, ⃗x2, z, ω) = 1
313
+ 2
314
+ � s0(⃗x1, ⃗x2, z, ω) + s1(⃗x1, ⃗x2, z, ω) s2(⃗x1, ⃗x2, z, ω) − is3(⃗x1, ⃗x2, z, ω)
315
+ s2(⃗x1, ⃗x2, z, ω) + is3(⃗x1, ⃗x2, z, ω) s0(⃗x1, ⃗x2, z, ω) − s1(⃗x1, ⃗x2, z, ω)
316
+
317
+ (14)
318
+ which matches the result of [22] (Eq.
319
+ 3.54) and [26] (Eq.
320
+ 1.5), the only difference being the sign
321
+ convention chosen for exp (iωt).
322
+ C.
323
+ Wigner Representation
324
+ Because (8,11) are linear in Wij(⃗x1, ⃗x2, z, ω) we can consider still other forms. For example, (8) is also
325
+ seen to govern the generalized Stokes parameters,
326
+
327
+ i2k0∂z +
328
+
329
+ ∇2
330
+ X2 − ∇2
331
+ X1
332
+
333
+ + k2
334
+ 0 (ϵ1(⃗x2) − ϵ1(⃗x1))
335
+
336
+ sν = 0,
337
+ ν = 0, · · · , 3
338
+ (15)
339
+ 4
340
+
341
+ where sν = sν (⃗x1, ⃗x2, z, ω) and where we have omitted the arguments for brevity. Applying the coordi-
342
+ nate transformation ⃗x1,2 → ⃗x ∓ ⃗x ′/2 and noting that, in this new system the operator (∇2
343
+ X2 − ∇2
344
+ X1) →
345
+ 2∇X · ∇X′ [23], we have
346
+
347
+ i2k0∂z + 2(∇X · ∇X′) + 2k2
348
+ 0Φ(⃗x, ⃗x ′, z)
349
+
350
+ s′
351
+ ν = 0,
352
+ ν = 0, · · · , 3
353
+ (16)
354
+ where we again use the shorthand notation s′
355
+ ν = s′
356
+ ν(⃗x, ⃗x ′, z, ω) and where
357
+ Φ(⃗x, ⃗x ′, z) = 1
358
+ 2
359
+
360
+ ϵ1(⃗x + ⃗x ′
361
+ 2 , z) − ϵ1(⃗x − ⃗x ′
362
+ 2 , z)
363
+
364
+ (17)
365
+ will be referred to as the Wigner potential function. In free space Φ(⃗x, ⃗x′, z) = 0 while in the case of a
366
+ stochastic medium, the Wigner potential of Eq. (16) becomes
367
+ Φ(⃗x, ⃗x′, z) = ik0
368
+ 4 [A(0, z) − A(⃗x′, z)] .
369
+ (18)
370
+ In these differential coordinates the spectral coherency matrix then becomes
371
+ Wij(⃗x, ⃗x ′, z, ω) ≡
372
+
373
+ Ei
374
+
375
+ ⃗x − ⃗x ′
376
+ 2 , z, ω
377
+
378
+ E∗
379
+ j
380
+
381
+ (⃗x + ⃗x ′
382
+ 2 , z, ω
383
+ ��
384
+ , i, j = X, Y
385
+ (19)
386
+ Equation (16) matches that of Charnotskii [5] (Equation 22 in the cited work) and states that the
387
+ generalized Stokes parameters obey a parabolic equation of the same basic structure as the complex
388
+ electric field amplitude in the deterministic, coherent case (see also, [8]).
389
+ Now consider the spatial Fourier Transform of (19) with respect to the variable ⃗x ′ and the resulting
390
+ Fourier Transform pair
391
+
392
+ Wij(⃗x, ⃗ξ, z, ω) =
393
+
394
+ R2 Wij(⃗x, ⃗x ′, z, ω)e−i⃗ξ·⃗x′d⃗x ′
395
+ Wij(⃗x, ⃗x ′, z, ω) =
396
+ � 1
397
+
398
+ �2 �
399
+ R2
400
+
401
+ Wij(⃗x, ⃗ξ, z, ω)ei⃗ξ·⃗x ′d⃗ξ
402
+ (20)
403
+ where the hat �
404
+ W denotes the spatial Fourier transform, the operator
405
+
406
+ Rn denotes the n−dimensional
407
+ integral over the space of real numbers (e.g.,
408
+
409
+ R2 ≡
410
+ � ∞
411
+ −∞
412
+ � ∞
413
+ −∞), and where the differential element in
414
+ transverse real space and reciprocal 2-space are denoted by, respectively, d⃗x ′ ≡ dx′dy′ and d⃗ξ ≡ dξxdξy.
415
+ Note that, unlike in Eqn. (3), we do not need to restrict the limits of integration in defining the Fourier
416
+ Transform as the beam spatial correlations are assumed to be naturally limited in transverse extent, that
417
+ is |Wij(⃗x, ±∞, z, ω)| → 0. The quantity �
418
+ Wij(⃗x, ⃗ξ, z, ω) is thus the Wigner transform [32] associated with
419
+ complex arguments Ei(⃗x, z, ω), Ej(⃗x, z, ω), i, j ∈ X, Y .
420
+ In the expressions (20), Wij(⃗x, ⃗x′, z, ω) is the spatial covariance between the two field components i, j
421
+ as a function of separation ⃗x ′ in the transverse plane, at transverse position ⃗x and downrange position
422
+ z, and within a small optical spectral range {ω, ω + dω}, while �
423
+ Wij(⃗x, ⃗ξ, z, ω) is the covariance between
424
+ Fourier amplitudes of electric field components i, j associated with transverse spatial frequency ⃗ξ, at
425
+ downrange position z and within a small optical spectral range {ω, ω + dω}. Importantly, this latter
426
+ quantity is proportional to the average phase difference between field components i, j with transverse
427
+ separation ⃗x′ and corresponding spatial frequency ⃗ξ (see Priestly section 9.1 [24]). This point will be
428
+ re-visited in section (III C).
429
+ We replace the spectral density matrix in coordinates ⃗x, ⃗x ′ with its Wigner representation to obtain
430
+ i2k0
431
+ � 1
432
+
433
+ �2
434
+ ∂z
435
+
436
+ R2 �sν
437
+ ′ei⃗ξ·⃗x′d⃗ξ + 2(∇X · ∇X′)
438
+ � 1
439
+
440
+ �2 �
441
+ R2 �sν
442
+ ′ei⃗ξ·⃗x′d⃗ξ + 2k2
443
+ 0Φ(⃗x, ⃗x′, z)sν
444
+ ′ = 0
445
+ � 1
446
+
447
+ �2 �
448
+ R2
449
+
450
+ ∂z�sν
451
+ ′ + 1
452
+ k0
453
+ (⃗ξ · ∇X)�sν
454
+ ′ −
455
+
456
+ R2 ik0Φ(⃗x, ⃗x′, z)sν
457
+ ′e−i⃗ξ·⃗x′d⃗x′
458
+
459
+ ei⃗ξ·⃗x′d⃗ξ = 0, ν = 0, · · · , 3
460
+ (21)
461
+ where now the generalized Stokes parameters sν ′ have been replaced by their respective spatial Fourier
462
+ transforms �sν ′ with respect to the differential coordinate ⃗x ′ and, hence, are written in terms of the
463
+ 5
464
+
465
+ Wigner distribution functions
466
+ �s0
467
+ ′(⃗x, ⃗ξ, z, ω) = �
468
+ WXX(⃗x, ⃗ξ, z, ω) + ��
469
+ WY Y (⃗x, ⃗ξ, z, ω)
470
+ �s1
471
+ ′(⃗x, ⃗ξ, z, ω) = �
472
+ WXX(⃗x, ⃗ξ, z, ω) − �
473
+ WY Y (⃗x, ⃗ξ, z, ω)
474
+ �s2
475
+ ′(⃗x, ⃗ξ, z, ω) = �
476
+ WXY (⃗x, ⃗ξ, z, ω) + �
477
+ WY X(⃗x, ⃗ξ, z, ω)
478
+ �s3
479
+ ′(⃗x, ⃗ξ, z, ω) = i
480
+
481
+
482
+ WXY (⃗x, ⃗ξ, z, ω) − �
483
+ WY X(⃗x, ⃗ξ, z, ω)
484
+
485
+ (22)
486
+ which comprise the same result as Luis’ [16] Eq. (19). Recognizing that the term in square brackets
487
+ must be zero in order to satisfy (21), we obtain the vector transport equations,
488
+ ∂z �
489
+ S(⃗x, ⃗ξ, z, ω) + 1
490
+ k0
491
+ (⃗ξ · ∇X) �
492
+ S(⃗x, ⃗ξ, z, ω) =
493
+
494
+ R2 ik0Φ(⃗x, ⃗x′, z)S(⃗x, ⃗x′, z, ω)e−i⃗ξ·⃗x′d⃗x′
495
+ = − ik0
496
+ (2π)2
497
+
498
+ R4 Φ(⃗x, ⃗x′, z, ω) �
499
+ S(⃗x, ⃗ξ′, z, ω)ei(⃗ξ′−⃗ξ)·⃗x′d⃗ξ′d⃗x′
500
+ = − ik0
501
+ (2π)2
502
+
503
+ R2 Φ(⃗x, ⃗ξ − ⃗ξ′, z, ω) �
504
+ S(⃗x, ⃗ξ′, z, ω)d⃗ξ′
505
+ (23)
506
+ where the 4-vector �
507
+ S ≡ {�s0 ′, �s1 ′, �s2 ′, �s3 ′}T and S is the associated inverse FT with respect to wavevector
508
+ ⃗ξ. Equation (23) thus denotes four separate transport equations, each governing one component �s ′
509
+ ν, ν =
510
+ 0 · · · 3. The term involving the vector potential can be written in several useful forms; the second line
511
+ and matches the results of [33] (Eqn. 2.4) and [12] (Eqn. 1.1), albeit with a different convention for the
512
+ Fourier Transform, while the final convolution form is found in [4] (Eqn. 2).
513
+ Expression (23) is the fundamental vector transport equation that governs the evolution of the gener-
514
+ alized Stokes parameters in the direction of propagation, z. In the scalar case (e.g., analysis of the 1D
515
+ Schr¨odinger equation [33] or scalar optical wave propagation [10], [23]), Eq. (23) is often taken as the
516
+ starting point in predicting the evolution of �
517
+ WXX(⃗x, ⃗ξ, z, ω). Here we have extended these prior works
518
+ to the full vector electric field in order to account for spatially dependent polarization. Related works on
519
+ the full vector transport equations for the Wigner distribution include [26] (Eq. 1.6), and [17]. However
520
+ we believe this work to be the first extension of such analyses to partially polarized optical fields.
521
+ III.
522
+ PARTIALLY-COHERENT, VECTOR TRANSPORT OF INTENSITY
523
+ In this section we extend the transport-of-intensity equations (TIEs) from the partially coherent scalar
524
+ case, as described in [23, 35], to the partially-coherent vector case. To arrive at such a model, we follow
525
+ an approach used in quantum mechanics for obtaining the so-called “hydrodynamic” model, so named
526
+ for the resemblance of the model to the continuity and momentum equations commonly found in fluid
527
+ mechanics. Specifically, we take “moments” of Eq. (23) with respect to the wavevector. The first two
528
+ such moments are obtained by multiplying (23) by unity and ⃗ξ respectively, and then integrating over the
529
+ wavevector. The resulting expressions govern the conservation of mass (intensity), momentum (phase),
530
+ and energy of the system. This approach has been used in analysis of the 1-D Schr¨odinger equation (see
531
+ [4, 7, 12]) and has only very recently been extended to the 2-D Pauli equation [17]. While the dominant
532
+ application area has been quantum mechanics, Marcuvitz [18] has suggested the approach as a general
533
+ technique for studying wave propagation in the scalar case.
534
+ In this work, we extend this “method of moments” to the vector transport equation (23) for partially
535
+ coherent propagation problems in optics. The first such conservation equation is obtained by directly
536
+ integrating (23) (that is, taking the “zeroth” moment) which yields
537
+ ∂z
538
+
539
+ R2
540
+
541
+ S(⃗x, ⃗ξ, z, ω)d⃗ξ + ∇X · 1
542
+ k0
543
+
544
+ R2
545
+ ⃗ξ �
546
+ S(⃗x, ⃗ξ, z, ω)d⃗ξ = 0.
547
+ (24)
548
+ To see that the Wigner potential term integrates to zero, replace the generalized Stokes parameters by
549
+ their inverse spatial Fourier transforms (in frequency variable ⃗ξ′), in which case integrating the right
550
+ 6
551
+
552
+ hand side of (23) over wavevector ⃗ξ can be carried out as
553
+ =
554
+
555
+ R6
556
+ ik0
557
+ (2π)2 �
558
+ S(⃗x, ⃗ξ ′, z, ω)ei⃗ξ ′·⃗x′Φ(⃗x, ⃗x ′, z)e−i⃗ξ·⃗x ′d⃗x ′d⃗ξ ′d⃗ξ
559
+ =
560
+ ik0
561
+ (2π)2
562
+
563
+ R4
564
+
565
+ S(⃗x, ⃗ξ ′, z, ω)ei⃗ξ ′·⃗x ′d⃗ξ ′
566
+
567
+ R2 e−i⃗ξ·⃗x ′d⃗ξΦ(⃗x, ⃗x ′)d⃗x ′
568
+ =
569
+ ik0
570
+ (2π)2
571
+
572
+ R4
573
+
574
+ S(⃗x, ⃗ξ ′, z, ω)ei⃗ξ ′·⃗x ′d⃗ξ ′δ(⃗x ′)Φ(⃗x, ⃗x ′)d⃗x ′
575
+ =
576
+ ik0
577
+ (2π)2 Φ(⃗x, 0)
578
+
579
+ R2
580
+
581
+ S(⃗x, ⃗ξ ′, z, ω)d⃗ξ ′ = 0.
582
+ (25)
583
+ In the last step we have leveraged the definition of Φ(⃗x, ⃗x ′, z) (17,18) which holds that when ⃗x′ = 0, the
584
+ potential vanishes, that is, Φ(⃗x, 0) = 0. This statement is true whether we treat the dielectric constant
585
+ fluctuations as a deterministic or a random process under the Markov approximation (18). Finally, to
586
+ put (24) in the same form as the coherent Transport of Intensity Equation (TIE) [20], we require the
587
+ definitions
588
+ ρ(⃗x, z, ω) ≡
589
+
590
+ R2
591
+
592
+ S(⃗x, ⃗��, z, ω)d⃗ξ
593
+ 1
594
+ k0
595
+
596
+ R2
597
+ ⃗ξ �
598
+ S(⃗x, ⃗ξ, z, ω)d⃗ξ ≡ ρ(⃗x, z, ω) ◦ ⃗v(⃗x, z, ω)
599
+ (26)
600
+ where ◦ denotes the Hadamard product. Equation (26) therefore defines four generalized intensities
601
+ ρν(⃗x, z, ω) ≡
602
+
603
+ R2 �sν ′(⃗x, ⃗ξ, z, ω)d⃗ξ, ν = 0, 1, 2, 3.
604
+ In addition, (26) implicitly defines each element of
605
+ ⃗v(⃗x, z, ω) as
606
+ ⃗vν(⃗x, z, ω) ≡
607
+
608
+ R2 ⃗ξ �sν ′(⃗x, ⃗ξ, z, ω)d⃗ξ
609
+ k0ρν(⃗x, z, ω)
610
+ =
611
+
612
+ R2 ⃗ξ �sν ′(⃗x, ⃗ξ, z, ω)d⃗ξ
613
+ k0
614
+
615
+ R2 �sν ′(⃗x, ⃗ξ, z, ω)d⃗ξ
616
+ , ν = 0, 1, 2, 3
617
+ (27)
618
+ in which case (24) becomes
619
+ ∂zρ(⃗x, z, ω) + ∇X · [ρ(⃗x, z, ω) ◦ ⃗v(⃗x, z, ω)] = 0,
620
+ (28)
621
+ which is the vector TIE for partially coherent light. Note that whereas in our prior analysis [20], the above
622
+ expression was a single scalar equation, in this case both ρ(⃗x, z, ω) and the product ρ(⃗x, z, ω) ◦⃗v(⃗x, z, ω)
623
+ are column vectors each comprising four elements. Thus ρν and vν represent, respectively, the ν−th
624
+ component of the Stokes 4-vector (ν = 0, 1, 2, 3) and, as we will show in section (III C), the rate of
625
+ change with z of the transverse location of the ν−th component of the Stokes 4-vector. Hence, all eight
626
+ components ρν and vν are real, the total beam intensity ρ0 must be non-negative, and the remaining
627
+ seven components can be positive, negative, or zero. Just as for Stokes parameters for monochromatic
628
+ light, the components of the Stokes 3-vector (ρ1, ρ2, ρ3) are proportional to intensity but are not limited
629
+ to non-negative values.
630
+ A.
631
+ Mixture Model for Partially Coherent Stokes Parameters
632
+ Equations (28) are transport equations governing each of the generalized Stokes parameters during
633
+ propagation in a (possibly) inhomogeneous medium. By definition, the Stokes parameters were defined
634
+ as an expectation over realizations of the X, Y components of the electric field Fourier amplitudes,
635
+ EX(⃗x, z, ω), EY (⃗x, z, ω).
636
+ Both the quantity being transported, ρ(⃗x, z, ω) and the “velocity” of that
637
+ transport, ⃗v(⃗x, z, ω) carry simple physical interpretations when placed in the context of a particular
638
+ model for the electric field as will be shown next.
639
+ To aid in this interpretation, recall the electric field “transverse wave” model (3). Until now we have
640
+ imposed no further model structure on the form of EX(⃗x, z, ω), EY (⃗x, z, ω). Leveraging prior work [20]
641
+ for linearly-polarized, coherent beams, let the complex Fourier amplitudes take the form
642
+ EX(⃗x, z, ω) = ρ1/2
643
+ m (⃗x, z, ω)eiφm(⃗x,z,ω) cos(γm(⃗x, z, ω))
644
+ EY (⃗x, z, ω) = ρ1/2
645
+ m (⃗x, z, ω)eiφm(⃗x,z,ω) sin(γm(⃗x, z, ω))
646
+ (29)
647
+ 7
648
+
649
+ where the subscript m denotes “model”. The electric field is therefore described by a magnitude, phase,
650
+ and spatially dependent linear polarization angle γm(⃗x, z, ω) which governs the ratio of Fourier amplitudes
651
+ in the X and Y directions. It must be noted, however, that the model structure (29) presumes a polarized
652
+ beam and should therefore be viewed as conditional on the beam being completely polarized. Such a
653
+ model is clearly not appropriate for unpolarized light.
654
+ While the first Stokes parameter �s0 is independent of the state of polarization, the same cannot be
655
+ said of �sν, ν = 1 · · · 3. For partially polarized light it is therefore appropriate to use the mixture model
656
+ [29]
657
+
658
+
659
+
660
+
661
+ s′
662
+ 0(⃗x, ⃗x′, z, ω)
663
+ s′
664
+ 1(⃗x, ⃗x′, z, ω)
665
+ s′
666
+ 2(⃗x, ⃗x′, z, ω)
667
+ s′
668
+ 3(⃗x, ⃗x′, z, ω)
669
+
670
+
671
+
672
+ � = [1 − P]
673
+
674
+
675
+
676
+
677
+ s′
678
+ 0(⃗x, ⃗x′, z, ω)
679
+ 0
680
+ 0
681
+ 0
682
+
683
+
684
+
685
+ � + P
686
+
687
+
688
+
689
+
690
+ s′
691
+ 0(⃗x, ⃗x′, z, ω)
692
+ s′
693
+ 1(⃗x, ⃗x′, z, ω|P)
694
+ s′
695
+ 2(⃗x, ⃗x′, z, ω|P)
696
+ s′
697
+ 3(⃗x, ⃗x′, z, ω|P)
698
+
699
+
700
+
701
+
702
+ (30)
703
+ where the weighting is given by the Degree Of Polarization (DOP)
704
+ P(⃗x, z, ω) =
705
+
706
+ (s1)2 + (s2)2 + (s3)2
707
+ s0
708
+ ���
709
+ ⃗x1=⃗x2=⃗x =
710
+
711
+ 1 − 4Det [W]
712
+ Tr [W]2
713
+ ���
714
+ ⃗x1=⃗x2=⃗x.
715
+ (31)
716
+ Equation (31) thus defines a positive quantity 0 ≤ P(⃗x, z, ω) ≤ 1 which specifies the fraction of the beam
717
+ intensity at location {⃗x, z} and within an infinitesimal range of optical frequencies {ω, ω + dω} that is
718
+ fully polarized. The degree to which a beam is polarized is therefore directly related to coherence among
719
+ the components of the optical field at a given transverse location. We note also that while P(⃗x, z, ω)
720
+ varies spatially and with frequency, as defined it does not depend on the separation ⃗x ′ between two
721
+ points on the beam face.
722
+ Given the above definitions, we can better understand the quantities in the partially coherent TIE
723
+ (28) as will be described next in sections (III B) and (III C). These definitions will also allow us to define
724
+ a polarization gradient in the partially coherent case as will be shown in section (III D).
725
+ B.
726
+ Interpretation of the Partially Coherent Vector TIE
727
+ To understand the meaning of ρ(⃗x, z, ω) we expand the first component of �
728
+ S(⃗x, ⃗ξ, z, ω) which is just
729
+ �s0 ′(⃗x, ⃗ξ, z, ω) and use the fact that the Wigner distributions can be expressed as Fourier transforms to
730
+ obtain
731
+ ρ0(⃗x, z, ω) =
732
+
733
+ R2 �s0
734
+ ′(⃗x, ⃗ξ, z, ω)d⃗ξ =
735
+
736
+ R4 (WXX(⃗x, ⃗x′, z, ω) + WY Y (⃗x, ⃗x′, z, ω)) e−i⃗ξ·⃗x′d⃗x ′d⃗ξ
737
+ =
738
+
739
+ R2 (WXX(⃗x, ⃗x ′, z, ω) + WY Y (⃗x, ⃗x ′, z, ω)) δ(⃗x ′)d⃗x ′
740
+ = SXX(⃗x, z, ω) + SY Y (⃗x, z, ω)
741
+ (32)
742
+ where we have invoked the definition of the delta function as the Fourier Transform of unity. Recall also
743
+ that by definition, in transformed coordinates, at ⃗x ′ = 0,
744
+ Wij(⃗x, 0, z, ω) = Sij(⃗x, z, ω), i, j = X, Y
745
+ (33)
746
+ so that the first component of ρ(⃗x, z, ω) is by definition the auto-spectral density of the field at transverse
747
+ location ⃗x, z as demonstrated by (32). A similar analysis of the other components of ρ(⃗x, z, ω) shows
748
+ that the full four-component Stokes vector is given by
749
+ ρ(⃗x, z, ω) =
750
+
751
+ R2
752
+
753
+
754
+
755
+
756
+
757
+ �s′
758
+ 0
759
+ P �s′
760
+ 1
761
+ P �s′
762
+ 2
763
+ P �s′
764
+ 3
765
+
766
+
767
+
768
+
769
+ � d⃗ξ =
770
+
771
+
772
+
773
+
774
+ SXX(⃗x, z, ω) + SY Y (⃗x, z, ω)
775
+ P (SXX(⃗x, z, ω) − SY Y (⃗x, z, ω))
776
+ P (SXY (⃗x, z, ω) + SY X(⃗x, z, ω))
777
+ iP (SXY (⃗x, z, ω) − SY X(⃗x, z, ω))
778
+
779
+
780
+
781
+ � =
782
+
783
+
784
+
785
+
786
+ s0
787
+ Ps1
788
+ Ps2
789
+ Ps3
790
+
791
+
792
+
793
+
794
+ ⃗x1=⃗x2≡⃗x
795
+ (34)
796
+ Thus, the quantities being transported can be written simply as sums and differences of the transverse
797
+ spectral densities that is, the generalized Stokes parameters for partially coherent light.
798
+ 8
799
+
800
+ For example, substituting the model (29) for the first Stokes parameter
801
+ s0 = ⟨EX(⃗x, z, ω)E∗
802
+ X(⃗x, z, ω)⟩ + ⟨EY (⃗x, z, ω)E∗
803
+ Y (⃗x, z, ω)⟩
804
+ =
805
+
806
+ ρm(⃗x, z, ω) cos2(γm(⃗x, z, ω) + ρm(⃗x, z, ω) sin2(γm(⃗x, z, ω)
807
+
808
+ = ⟨ρm(⃗x, z, ω)⟩ ≡ ρ0(⃗x, z, ω).
809
+ (35)
810
+ Hence the first generalized Stokes parameter ρ0(⃗x, z, ω) is proportional to the expected beam spectral
811
+ intensity at location {⃗x, z} in our model. Performing the same substitution for the remaining components
812
+ in (34) we have
813
+ ρ(⃗x, z, ω) =
814
+
815
+
816
+
817
+
818
+ ⟨ρm(⃗x, z, ω)⟩
819
+ P(⃗x, z, ω) ⟨ρm(⃗x, z, ω) cos(2γm(⃗x, z, ω))⟩
820
+ P(⃗x, z, ω) ⟨ρm(⃗x, z, ω) sin(2γm(⃗x, z, ω))⟩
821
+ 0
822
+
823
+
824
+
825
+ � .
826
+ (36)
827
+ The model structure (29) suggests a simple and well-known interpretation of the generalized Stokes
828
+ parameters for linearly polarized light.
829
+ However, for unpolarized light only the first component of
830
+ ρ(⃗x, z, ω) is non-zero. The final intensity component is given by ρ3(⃗x, z, ω) = 0 due to the fact that we
831
+ are considering only linear polarization.
832
+ C.
833
+ Interpretation of the Transport Velocity
834
+ The components of ⃗v(⃗x, z, ω) in Eq. (28) are referred to as “velocities” as they were noted in the
835
+ coherent case to govern the change in optical path in the transverse direction per unit change in the
836
+ direction of propagation [11, 20]. We present a basic derivation supporting this interpretation in Appendix
837
+ (A). This terminology is also in keeping with the wave mechanics interpretation of the transport equation,
838
+ where the “transport” of intensity occurs in the transverse plane as the beam progresses in z. The first
839
+ velocity term in this partially coherent case is obtained via (27),
840
+ ⃗v0(⃗x, z, ω) = 1
841
+ k0
842
+
843
+ R2 ⃗ξ �s′
844
+ 0(⃗x, ⃗ξ, z, ω)d⃗ξ
845
+
846
+ R2 �s′
847
+ 0(⃗x, ⃗ξ, z, ω)d⃗ξ
848
+ =
849
+
850
+ R2 ⃗ξ
851
+
852
+
853
+ WXX(⃗x, ⃗ξ, z, ω) + �
854
+ WY Y (⃗x, ⃗ξ, z, ω)
855
+
856
+ d⃗ξ
857
+ k0ρ0(⃗x, z, ω)
858
+ (37)
859
+ The non-negativity of �s′
860
+ 0 allows us to interpret (37) as an average spatial frequency in the transverse
861
+ plane (see e.g., Boashash [2]) normalized by k0. In fact, in [2] it was noted that the generalized definition
862
+ of frequency is an average change in phase per unit change in the independent variable, which in the
863
+ present context corresponds to the transverse distance ⃗x. Thus, (37) implicitly defines a phase gradient
864
+ ∇Xφ(⃗x, z, ω) ≡
865
+
866
+ R2 ⃗ξ �s′
867
+ 0(⃗x, ⃗ξ, z, ω)d⃗ξ
868
+
869
+ R2 �s′
870
+ 0(⃗x, ⃗ξ, z, ω)d⃗ξ
871
+ (38)
872
+ so that ⃗v0(⃗x, z, ω) = k−1
873
+ 0 ∇Xφ(⃗x, z, ω), which is precisely the definition for velocity found in the monochro-
874
+ matic case [20]. This definition of generalized phase was also used in [34] for scalar, partially coherent
875
+ electric fields. Here, we have shown this definition to be appropriate for vector electric fields as well. In-
876
+ deed, we will show momentarily that these definitions are not only appropriate for transport of intensity,
877
+ ρ0(⃗x, z, ω), but for transport of two other generalized Stokes parameters.
878
+ Now consider again the mixture model (30). Substituting these definitions into (37) yields for the
879
+ denominator SXX(⃗x, z, ω)+SY Y (⃗x, z, ω) = ρ0(⃗x, z, ω). For the numerator, considering first the polarized
880
+ 9
881
+
882
+ portion, we can expand using Eqn. (19) to give
883
+
884
+ R2
885
+ ��ξ
886
+
887
+
888
+ WXX(⃗x, ⃗ξ, z, ω) + �
889
+ WY Y (⃗x, ⃗ξ, z, ω)
890
+
891
+ d⃗ξ
892
+ =
893
+
894
+ R4
895
+ ⃗ξ
896
+ ��
897
+ EX(⃗x − ⃗x′/2, z, ω)E∗
898
+ X(⃗x + ⃗x′/2, z, ω)
899
+
900
+ +
901
+
902
+ EY (⃗x − ⃗x′/2, z, ω)E∗
903
+ Y (⃗x + ⃗x′/2, z, ω)
904
+ ��
905
+ e−i⃗ξ·⃗x′d⃗ξd⃗x′
906
+ =
907
+
908
+ R2
909
+ ��
910
+ EX(⃗x − ⃗x′/2, z, ω)E∗
911
+ X(⃗x + ⃗x′/2, z, ω)
912
+
913
+ +
914
+
915
+ EY (⃗x − ⃗x′/2, z, ω)E∗
916
+ Y (⃗x + ⃗x′/2, z, ω)
917
+ �� �
918
+ R2
919
+ ⃗ξe−i⃗ξ·⃗x′d⃗ξd⃗x′
920
+ = i
921
+
922
+ R2
923
+ ��
924
+ EX(⃗x − ⃗x′/2, z, ω)E∗
925
+ X(⃗x + ⃗x′/2, z, ω)
926
+
927
+ +
928
+
929
+ EY (⃗x − ⃗x′/2, z, ω)E∗
930
+ Y (⃗x + ⃗x′/2, z, ω)
931
+ ��
932
+ δ′(⃗x′)d⃗x′
933
+ = i
934
+
935
+ R2 ∇X′
936
+ ��
937
+ EX(⃗x − ⃗x′/2, z, ω)E∗
938
+ X(⃗x + ⃗x′/2, z, ω)
939
+
940
+ +
941
+
942
+ EY (⃗x − ⃗x′/2, z, ω)E∗
943
+ Y (⃗x + ⃗x′/2, z, ω)
944
+ ��
945
+ δ(⃗x′)d⃗x′
946
+ = i∇X′
947
+ ��
948
+ EX(⃗x − ⃗x′/2, z, ω)E∗
949
+ X(⃗x + ⃗x′/2, z, ω)
950
+
951
+ +
952
+
953
+ EY (⃗x − ⃗x′/2, z, ω)E∗
954
+ Y (⃗x + ⃗x′/2, z, ω)
955
+ �� �����
956
+ ⃗x′→0
957
+ = ⟨ρm(⃗x, z)∇Xφm(⃗x, z)⟩ .
958
+ (39)
959
+ where the final line substitutes Eq. (29) for EX, EY and takes the required gradient ∇X′. In the second
960
+ to last line we leveraged the identity in Eq. (7) of [3] concerning integrals over derivatives of the delta
961
+ function. The end result is that under the mixture model, and assuming amplitude and transverse phase
962
+ gradient are statistically independent,
963
+ ⟨∇Xφm(⃗x, z, ω)⟩ = ∇Xφ(⃗x, z, ω)
964
+ 1
965
+ k0
966
+ ⟨∇Xφm(⃗x, z, ω)⟩ = ⃗v0(⃗x, z, ω)
967
+ (40)
968
+ The definition (38) therefore can be interpreted as the expected model phase and the corresponding
969
+ “velocity” as the expected change in optical path in the transverse direction per unit change in the
970
+ direction of propagation. Notably, this result is independent of the DOP. We may perform a similar
971
+ analysis on the remaining components of ⃗v(⃗x, z, ω), finding that
972
+ ⃗v1(⃗x, z, ω) =
973
+
974
+ R2 ⃗ξ �s′
975
+ 1(⃗x, ⃗ξ, z, ω)d⃗ξ
976
+ k0ρ1(⃗x, z, ω)
977
+ = P(⃗x, z, ω) ⟨ρm∇Xφm(⃗x, z, ω) cos(2γm(⃗x, z, ω))⟩
978
+ k0P(⃗x, z, ω) ⟨ρm cos(2γm(⃗x, z, ω))⟩
979
+ = ⃗v0(⃗x, z, ω)
980
+ ⃗v2(⃗x, z, ω) =
981
+
982
+ R2 ⃗ξ �s′
983
+ 2(⃗x, ⃗ξ, z, ω)d⃗ξ
984
+ k0ρ2(⃗x, z, ω)
985
+ = P(⃗x, z, ω) ⟨ρm∇Xφm(⃗x, z, ω) sin(2γm(⃗x, z, ω))⟩
986
+ k0P(⃗x, z, ω) ⟨ρm sin(2γm(⃗x, z, ω))⟩
987
+ = ⃗v0(⃗x, z, ω). (41)
988
+ Thus, in the case of linear polarization, all three non-zero generalized Stokes parameters are transported
989
+ with the same transverse velocity.
990
+ ∂zρν(⃗x, z, ω) + ∇X · [ρν(⃗x, z, ω)v0(⃗x, z, ω)] = 0, ν = 0, 1, 2.
991
+ (42)
992
+ This is sensible as it suggests that, in expectation, both the beam intensity and properties related to the
993
+ state of linear polarization are moving together in the transverse plane during propagation. Importantly,
994
+ this also suggests that while the transport model requires an equation governing ⃗v0 (see section IV), it
995
+ does not require separate equations for ⃗v1, ⃗v2.
996
+ It it worth mentioning the relationship between the velocity vector and the well-known Poynting vector.
997
+ Begin by noting that the numerator in (27) is of the form of the average Poynting vector for partially
998
+ coherent light,
999
+ P(⃗x, z) ≡ 1
1000
+ k0
1001
+
1002
+ R2
1003
+ ⃗ξ �s′
1004
+ 0(⃗x, ⃗ξ, z, ω)d⃗ξ,
1005
+ (43)
1006
+ so that ˜P(⃗x, z) ≡ ⃗v(⃗x, z, ω) is, in fact, the normalized Poynting vector as defined in [21] (Eq. 8 of the
1007
+ cited work). Also in [21] is was suggested that the normalized Poynting vector be decomposed via the
1008
+ Helmholtz decomposition theorem as
1009
+ ⃗v(⃗x, z, ω) ≡ ⃗vS(⃗x, z, ω) + ⃗vV (⃗x, z, ω)
1010
+ = k−1
1011
+ 0 ∇XφS(⃗x, z, ω) + k−1
1012
+ 0 ∇X × ⃗φV (⃗x, z, ω)
1013
+ (44)
1014
+ 10
1015
+
1016
+ where S and V refer to scalar and vector contributions, respectively.
1017
+ If we let the scalar phase be
1018
+ φS(⃗x, z, ω) = φm(⃗x, z, ω) and define
1019
+ φV (⃗x, z, ω) =
1020
+ �dγ(⃗x, ω)
1021
+ dy
1022
+ z, −dγ(⃗x, ω)
1023
+ dx
1024
+ z, 0
1025
+
1026
+ (45)
1027
+ then we have that ⃗Ω(⃗x, z, ω) = [∇ × φV (⃗x, z, ω)]X. The partially coherent vector TIE would then be
1028
+ written
1029
+ ∂zρ(⃗x, z, ω) + ∇X · [ρ(⃗x, z, ω)⃗vS(⃗x, z, ω)] + ∇X · [ρ(⃗x, z, ω)⃗vV (⃗x, z, ω)] = 0
1030
+ (46)
1031
+ which would clearly suggest that ∇X ·
1032
+
1033
+ ρ(⃗x, z, ω)⃗Ω(⃗x, z, ω)
1034
+
1035
+ = 0 given Eq. (28). In fact, we will show in
1036
+ the next section that this relationship indeed holds for linearly polarized light.
1037
+ D.
1038
+ Definition and Interpretation of the Polarization Angle Gradient
1039
+ Since we are considering a linearly polarized vector beam ρ3(⃗x, z, ω) = 0. However, although the first
1040
+ term in (24) is zero, the second term inside the transverse divergence operator is (following the same
1041
+ model interpretation and simplification as in (39))
1042
+ 1
1043
+ k0
1044
+
1045
+ R2
1046
+ ⃗ξ �s′
1047
+ 3(⃗x, ⃗ξ, z, ω)d⃗ξ = −
1048
+
1049
+ ρm(⃗x, z, ω)P(⃗x, z, ω)
1050
+ k0
1051
+ ∇Xγm(⃗x, z, ω)
1052
+
1053
+ = −ρ0(⃗x, z, ω)⃗Ω(⃗x, z, ω)
1054
+ (47)
1055
+ so that by (24) we have the condition
1056
+ ∇X ·
1057
+
1058
+ ρ0(⃗x, z, ω)⃗Ω(⃗x, z, ω)
1059
+
1060
+ = 0
1061
+ (48)
1062
+ as we implied at the end of the previous section. This relationship was also found to hold in the coherent
1063
+ case [20] and will be leveraged later in the derivation. However, also note that in arriving at (48) we have
1064
+ produced a definition for the spatial gradient of the polarization angle that is appropriate for partially
1065
+ coherent light, given by
1066
+ ⃗Ω(⃗x, z, ω) =
1067
+ −iP(⃗x, z, ω)
1068
+
1069
+ R2 ⃗ξ
1070
+
1071
+
1072
+ WXY (⃗x, ⃗ξ, z, ω) − �
1073
+ WY X(⃗x, ⃗ξ, z, ω)
1074
+
1075
+ d⃗ξ
1076
+ k0ρ0(⃗x, z, ω)
1077
+ = P(⃗x, z, ω)
1078
+ k0
1079
+ ⟨∇Xγm(⃗x, z, ω)⟩ .
1080
+ (49)
1081
+ The DOP is appropriately part of the definition (49) as one cannot define ⃗Ω for an unpolarized beam.
1082
+ Note also that in accordance with the works of Salem et al. [28] and Korotkova et al. [14] we allow that
1083
+ the DOP can vary in frequency ω, as well as the transverse location ⃗x, and the direction of propagation
1084
+ z.
1085
+ Just as with the normalized phase gradient, Eqn. (49) is expressed as a suitable average wavevector over
1086
+ the distribution �s′
1087
+ 3. Similarly, it can be interpreted as a transverse, spatial gradient in the angle (phase)
1088
+ between the X and Y components. In the limit of a fully coherent beam we recover our deterministic
1089
+ definition. Importantly, as the beam de-polarizes we will see the terms involving ⃗Ω(⃗x, z, ω) vanish, a
1090
+ point we elaborate on in the next section.
1091
+ We note that a definition of polarization angle for partially coherent beams was proposed previously
1092
+ by Korotkova et al. [25], [13]
1093
+ θ(⃗x, z, ω) ≡ 1
1094
+ 2 arctan
1095
+
1096
+ 2Re {SXY (⃗x, z, ω)}
1097
+ SXX(⃗x, z, ω) − SY Y (⃗x, z, ω)
1098
+
1099
+ .
1100
+ (50)
1101
+ This definition is somewhat consistent with our model structure (29) in the sense that substituting the
1102
+ polarized electric field (29) into (50) gives
1103
+ θ(⃗x, z, ω) ≡ 1
1104
+ 2 arctan
1105
+ �s2(⃗x, z, ω)
1106
+ s1(⃗x, z, ω)
1107
+
1108
+ = 1
1109
+ 2 arctan
1110
+ � ⟨sin(2γm(⃗x, z, ω))⟩
1111
+ ⟨cos(2γm(⃗x, z, ω))⟩
1112
+
1113
+ .
1114
+ (51)
1115
+ However, this definition only yields our model polarization angle in the deterministic case as the ratio of
1116
+ expectations of the sin, cos terms does not equal the mean of the ratio in general. Moreover, the DOP
1117
+ 11
1118
+
1119
+ does not appear explicitly in the expression as it does in (49) and instead must be viewed as a part of
1120
+ the quantity SXY (⃗x, z, ω).
1121
+ More importantly, as we will see in section (IV), the quantity that governs the transverse movement
1122
+ of intensity is the polarization angle gradient as opposed to the angle itself. As we have just shown,
1123
+ the gradient is obtained via the first moment, Eq. (47). The resulting expression (49) accounts for the
1124
+ spatial frequencies ⃗ξ and yields directly the expected value of polarization angle gradient. On the other
1125
+ hand, differentiating (50) with respect to the transverse coordinates yields
1126
+ ∇Xθ(⃗x, z, ω)
1127
+ = [SXX(⃗x, z, ω) − SY Y (⃗x, z, ω)]∇XSXY (⃗x, z, ω) − SXY (⃗x, z, ω)∇X[SXX(⃗x, z, ω) − SY Y (⃗x, z, ω)]
1128
+ 4SXY (⃗x, z, ω)2 + [SXX(⃗x, z, ω) − SY Y (⃗x, z, ω)]2
1129
+ .
1130
+ (52)
1131
+ As with Eq. (51), this definition of phase gradient results in products and sums of expectations of sin, cos
1132
+ functions so that the result equals ⟨∇Xγm(⃗x, z, ω)⟩ only in the deterministic case where no averaging
1133
+ operations are performed.
1134
+ Finally, we note that our definition (49) arose quite naturally as a consequence of 1) the paraxial
1135
+ transport equation for the generalized Stokes parameters, Eq. (24) and 2) the model Eq. (29) governing
1136
+ the expected amplitude, phase, and polarization angle of the electric field at location (⃗x, z) and frequency
1137
+ ω. The definition is also consistent with the definition of partially coherent phase used in the literature
1138
+ (Eqn. 38), and will therefore be used in what follows for the expected polarization angle gradient of our
1139
+ vector beam.
1140
+ E.
1141
+ Conservation of the generalized Stokes parameters
1142
+ To conclude this section, we point out an interesting result concerning the conservation of the gener-
1143
+ alized Stokes parameters during propagation through a (possibly) inhomogeneous medium. Since each
1144
+ of the parameters sν obey the same transport equation (28), the integrals of these quantities in the
1145
+ transverse plane are constant and are therefore conserved during propagation. To see that this is true,
1146
+ expand Eq. (28), recall the definition of the material derivative D(·)/Dz ≡ ∂z(·) + (⃗v · ∇X)(·), and
1147
+ then convert to Lagrangian coordinates whereby the spatial coordinates ⃗x are written as functions of z
1148
+ and the initial value, that is, ⃗x → ⃗xz(⃗x0) (which we will abbreviate as simply ⃗xz and the corresponding
1149
+ gradient ∇Xz). These steps can be written
1150
+ ∂zρν(⃗x, z, ω) + ∇Xρν(⃗x, z, ω) · ⃗vν(⃗x, z, ω) + ρν(⃗x, z, ω) [∇X · ⃗vν(⃗x, z, ω)] = 0
1151
+ Dρν(⃗x, z, ω)
1152
+ Dz
1153
+ + ρν(⃗x, z, ω) [∇X · ⃗vν(⃗x, z, ω)] = 0
1154
+ dρν(⃗xz, ω)
1155
+ dz
1156
+ + ρν(⃗xz, ω) [∇Xz · ⃗vν(⃗xz, ω)] = 0,
1157
+ ν = 0, 1, 2, 3.
1158
+ (53)
1159
+ The resulting ordinary differential equation possesses the solution
1160
+ ρ(⃗xz, ω) = ρ(⃗x0, ω) exp
1161
+
1162
+
1163
+ � z
1164
+ s=0
1165
+ ∇Xs · ⃗v(⃗xs, ω)d⃗xs
1166
+
1167
+ .
1168
+ (54)
1169
+ Therefore, the integral of the generalized Stokes parameters at any point along the propagation path is
1170
+ related to their initial values via the divergence of the velocity field. It can also be shown (see Appendix
1171
+ B, ref. [6]) that the expression (54) can be written alternatively as
1172
+ ρ(⃗xz, ω) = det |J⃗x0(⃗xz)|−1ρ(⃗x0, ω).
1173
+ (55)
1174
+ where the Jacobian J⃗x0(⃗xz) is the derivative of the coordinate functions ⃗xz(⃗x0, z) with respect to the
1175
+ fixed (initial) coordinates ⃗x0. If the Lagrangian coordinate mappings ⃗xz(⃗x0, z) are one-to-one, smooth
1176
+ functions of ⃗x0, this expression can be shown via the change of variables theorem to be equivalent to the
1177
+ integral formulation [1]
1178
+
1179
+ X
1180
+ ρ(⃗xz, ω)d⃗xz =
1181
+
1182
+ X
1183
+ ρ(⃗x0, ω)d⃗x0
1184
+ (56)
1185
+ 12
1186
+
1187
+ (see also Villani Chapter 11 [31]). Thus, it can be stated that the integral of each of the generalized
1188
+ Stokes parameters over the transverse plane is conserved on propagation. Interestingly, this conclusion
1189
+ was reached by an entirely different approach in [13]. However, in that work the claim was made with
1190
+ respect to propagation in free-space whereas here we see the integrals of the Stokes parameters are
1191
+ conserved even in an inhomogeneous medium.
1192
+ IV.
1193
+ MOMENTUM EQUATION FOR PARTIALLY-COHERENT, LINEARLY-POLARIZED
1194
+ LIGHT
1195
+ The above discussion defined both intensity and velocity in the general case of a propagating, linearly
1196
+ polarized, partially coherent optical field. Each of the generalized Stokes parameters were shown to be
1197
+ transported with a single velocity. In this section, we will derive the equation that governs this velocity.
1198
+ As we described in section (II), the process for obtaining the continuity equation can be viewed as
1199
+ taking the zeroth “moment” of the fundamental transport equation with respect to wavenumber, that is,
1200
+ integrating 23; (see again [18], [7], and [12]). Thus, to derive the partially coherent momentum equation
1201
+ we multiply (23) by ⃗ξ and integrate over wavenumber. The result is written
1202
+ ∂z
1203
+
1204
+ R2
1205
+ ⃗ξ �
1206
+ S(⃗x, ⃗ξ, z, ω)d⃗ξ + ∇X · 1
1207
+ k0
1208
+
1209
+ R2(⃗ξ ⊗ ⃗ξ) �
1210
+ S(⃗x, ⃗ξ, z, ω)d⃗ξ =
1211
+
1212
+ R2
1213
+
1214
+ R2 ik0⃗ξ �
1215
+ S(⃗x, ⃗ξ′, z, ω)Φ(⃗x, ⃗ξ − ⃗ξ′, z)d⃗ξ′d⃗ξ.
1216
+ (57)
1217
+ The first challenge associated with (57) is the term on the right-hand-side, integration of Wigner poten-
1218
+ tial. This term can be greatly simplified if we are willing to restrict the model to a weakly inhomogeneous
1219
+ medium where the transverse gradient in dielectric constant is small at a given transverse location ⃗x. In
1220
+ this case, we explore a series solution for the terms inside the potential function, for example,
1221
+ ϵ1(⃗x + ⃗x′
1222
+ 2 , z) − ϵ1(⃗x − ⃗x′
1223
+ 2 , z) ≈ ϵ1(⃗x, z) ± ∇Xϵ1(x, z) · ⃗x′ + · · ·
1224
+ (58)
1225
+ so that the potential functions (17,18) become
1226
+ Φ(⃗x, ⃗x′, z) ≈ ⃗x′ · ∇X
1227
+ �1
1228
+ 2ϵ1(⃗x, z)
1229
+
1230
+ + O(⃗x′3)
1231
+ Φ(⃗x, ⃗x′, z) ≈ ⃗x′ · ∇X
1232
+
1233
+ −ik0
1234
+ 4 A(0, z)
1235
+
1236
+ + O(⃗x′2)
1237
+ (59)
1238
+ Using these expressions, and representing the terms inside the transverse gradient generically as g(⃗x)
1239
+ (to accommodate a deterministic or stochastic medium), we we see that the inner double integral on the
1240
+ right hand side of Eq. (57) can be expanded using the Fourier representation of the potential as
1241
+ � 1
1242
+
1243
+ �2 �
1244
+ R2
1245
+
1246
+ R2 ik0 �
1247
+ S(⃗x, ⃗ξ′, z, ω)
1248
+
1249
+ ei(⃗ξ−⃗ξ′)·⃗x′⃗x′ · ∇Xg(⃗x, z)d⃗x′
1250
+
1251
+ d⃗ξ′
1252
+ = −
1253
+ � 1
1254
+
1255
+ �2 �
1256
+ R2
1257
+
1258
+ R2 k0 �
1259
+ S(⃗x, ⃗ξ′, z, ω)
1260
+
1261
+ ∇ξ′ei(⃗ξ−⃗ξ′)·⃗x′ · ∇Xg(⃗x, z)d⃗x′
1262
+
1263
+ d⃗ξ′
1264
+ = −
1265
+ � 1
1266
+
1267
+ �2 �
1268
+ R2 k0 �
1269
+ S(⃗x, ⃗ξ′, z, ω)∇ξ′
1270
+ ��
1271
+ R2 ei(⃗ξ−⃗ξ′)·⃗x′d⃗x′
1272
+
1273
+ · ∇Xg(⃗x, z)d⃗ξ′
1274
+ = −
1275
+
1276
+ R2 k0∇⃗ξ′ δ(⃗ξ − ⃗ξ′) �
1277
+ S(⃗x, ⃗ξ′, z, ω) · ∇Xg(⃗x, z)d⃗ξ′
1278
+ = −
1279
+
1280
+ R2 k0δ(⃗ξ − ⃗ξ′)∇⃗ξ′ �
1281
+ S(⃗x, ⃗ξ′, z, ω) · ∇Xg(⃗x, z)d⃗ξ′
1282
+ = −k0∇⃗ξ �
1283
+ S(⃗x, ⃗ξ, z, ω) · ∇Xg(⃗x, z)
1284
+ (60)
1285
+ where we have used the trick found in [19]( Eq.
1286
+ 5.29), which is to note that ∇ξ′
1287
+
1288
+ ei(⃗ξ−⃗ξ′)·⃗x′�
1289
+ =
1290
+ −i⃗x′ei(⃗ξ−⃗ξ′)·⃗x′. The expression (60) is the “linearized” Wigner potential (see, for example, [33]) and
1291
+ transforms Eqn. (57) into
1292
+ ∂z
1293
+
1294
+ R2
1295
+ ⃗ξ �
1296
+ S(⃗x, ⃗ξ, z, ω)d⃗ξ + ∇X · 1
1297
+ k0
1298
+
1299
+ R2(⃗ξ ⊗ ⃗ξ) �
1300
+ S(⃗x, ⃗ξ, z, ω)d⃗ξ = −k0∇Xg(⃗x, z)
1301
+
1302
+ R2
1303
+
1304
+ ⃗ξ · ∇⃗ξ �
1305
+ S(⃗x, ⃗ξ, z, ω)
1306
+
1307
+ d⃗ξ.
1308
+ (61)
1309
+ 13
1310
+
1311
+ We have already shown via Eq. (26) that the first term in (61) can be written
1312
+ ∂z
1313
+
1314
+ R2
1315
+ ⃗ξ �s′ν(⃗x, ⃗ξ, z, ω)d⃗ξ = k0∂z [ρν(⃗x, z, ω)⃗v0(⃗x, z, ω)] , ν = 0, · · · , 2
1316
+ (62)
1317
+ while for the third Stokes parameter we showed previously in Eqn. (47) that
1318
+ ∂z
1319
+
1320
+ R2
1321
+ ⃗ξ �s′
1322
+ 3(⃗x, ⃗ξ, z, ω)d⃗ξ = −k0∂z
1323
+
1324
+ ρ0(⃗x, z, ω)⃗Ω(⃗x, z, ω)
1325
+
1326
+ .
1327
+ (63)
1328
+ The integral in the last term can also be simplified via integration by parts. Presuming that the Stokes
1329
+ parameters vanish at the boundaries of integration (as |⃗ξ| → ∞), the result is simply
1330
+
1331
+ R2
1332
+
1333
+ ⃗ξ · ∇⃗ξ �
1334
+ S(⃗x, ⃗ξ, z, ω)
1335
+
1336
+ d⃗ξ = −ρ(⃗x, z, ω)
1337
+ (64)
1338
+ for the first three Stokes parameters (ν = 0, 1, 2), while the integral disappears for the third since, in the
1339
+ absence of ellipticity, ρ3(⃗x, z, ω) = 0. With these simplifications, Eqn. (61) becomes
1340
+ ∂z [ρν(⃗x, z, ω)⃗v0(⃗x, z, ω)] + ∇X · 1
1341
+ k2
1342
+ 0
1343
+
1344
+ R2(⃗ξ ⊗ ⃗ξ) �s′ν(⃗x, ⃗ξ, z, ω)d⃗ξ = ρν(⃗x, z, ω)∇Xg(⃗x, z), ν = 0, 1, 2
1345
+ −∂z
1346
+
1347
+ ρ0(⃗x, z, ω)⃗Ω(⃗x, z, ω)
1348
+
1349
+ + ∇X · 1
1350
+ k2
1351
+ 0
1352
+
1353
+ R2(⃗ξ ⊗ ⃗ξ) �s′
1354
+ 3(⃗x, ⃗ξ, z, ω)d⃗ξ = 0
1355
+ (65)
1356
+ Equation (65) is a vector equation describing the evolution of the “momentum” ρ ◦ ⃗v for each of the
1357
+ generalized Stokes parameters and it allows us to develop expressions for the unknowns ⃗v0 and ⃗Ω. As
1358
+ we noted in section (III C), because there is only a single velocity associated with the first 3 equations,
1359
+ we need only focus on the expression (65) for ν = 0 and the last expression where ν = 3. We also note
1360
+ that the right hand side of the second expression is zero for the linearized potential since ρ3(⃗x, z, ω) = 0.
1361
+ As we will show, this leads to the conclusion that the polarization angle gradient will not change on
1362
+ propagation. Depolarization during propagation would therefore be a consequence of higher-order terms
1363
+ in the expansion of the Wigner potential or retention of the electric field divergence in the starting wave
1364
+ equation (see e.g., [5]).
1365
+ Recall the continuity equation (28) was obtained as the zeroth moment of the wave-vector with respect
1366
+ to the Stokes parameters (Eqn. 23) and contained the “velocity”, which is the first moment of the wave-
1367
+ vector with respect to the Stokes parameters. In turn, (65) contains the second moment of the wave-vector
1368
+ with respect to the Stokes parameters. As might be expected, if we were to construct the expression for
1369
+ the second moment it would contain the integral of third order wave-vector terms and so on. This is the
1370
+ so-called “closure problem” (see [12] Eqs. 3.3-3.5 and surrounding discussion of [17]).
1371
+ Obtaining closure requires an expression for this second moment (the term involving the outer product)
1372
+ in terms of already defined quantities. In our context, this means writing the integral involving the outer
1373
+ product in terms of ρ and ⃗v. This can be accomplished by again leveraging our electric field model (29).
1374
+ Note that using this particular field model as an expression to fix the closure problem was employed in
1375
+ both [17, 18]. To see how this can be done, expand the second term in (65) as was done in [18]. Doing
1376
+ so requires us to expand the Wigner-averaged outer product into its four constituent terms which are of
1377
+ the two basic forms.
1378
+ Using the first of equations (65) as an example, the outer product is seen to produce the following four
1379
+ integrals,
1380
+
1381
+ R2 ξ2
1382
+ ii
1383
+
1384
+
1385
+ WXX(⃗x, ⃗ξ, z, ω) + �
1386
+ WY Y (⃗x, ⃗ξ, z, ω)
1387
+
1388
+ d⃗ξ,
1389
+ i ∈ X, Y
1390
+
1391
+ R2 ξiξj
1392
+
1393
+
1394
+ WXX(⃗x, ⃗ξ, z, ω) + �
1395
+ WY Y (⃗x, ⃗ξ, z, ω)
1396
+
1397
+ d⃗ξ,
1398
+ i, j ∈ X, Y.
1399
+ (66)
1400
+ Both the unpolarized and polarized portions of the mixture model can be simplified in the same manner
1401
+ as was done for the velocity terms, Eq.
1402
+ (39).
1403
+ Substituting in the definition of either the unpolar-
1404
+ ized/polarized Wigner Transforms �
1405
+ WXX(⃗x, ⃗ξ, z, ω) and �
1406
+ WY Y (⃗x, ⃗ξ, z, ω), the first of the needed moments
1407
+ 14
1408
+
1409
+ in (66) can be simplified as
1410
+
1411
+ R2 ξ2
1412
+ XX
1413
+
1414
+
1415
+ WXX(⃗x, ⃗ξ, z, ω) + �
1416
+ WY Y (⃗x, ⃗ξ, z, ω)
1417
+
1418
+ d⃗ξ
1419
+ = − ∂2
1420
+ ∂x′2
1421
+
1422
+ EX
1423
+
1424
+ ⃗x − ⃗x′
1425
+ 2 , z, ω
1426
+
1427
+ E∗
1428
+ X
1429
+
1430
+ ⃗x + ⃗x′
1431
+ 2 , z, ω
1432
+
1433
+ + EY
1434
+
1435
+ ⃗x − ⃗x′
1436
+ 2 , z, ω
1437
+
1438
+ E∗
1439
+ Y
1440
+
1441
+ ⃗x + ⃗x′
1442
+ 2 , z, ω
1443
+ �� ����� x′ → 0
1444
+ y′ → 0
1445
+ .
1446
+ (67)
1447
+ Using our model for the electric field, Eq. (29), substituting into the above and taking the derivative
1448
+ and subsequent limits (and noting the procedure in the “y” direction is the same) yields
1449
+
1450
+ R2 ξ2
1451
+ XX
1452
+
1453
+
1454
+ WXX(⃗x, ⃗ξ, z, ω) + �
1455
+ WY Y (⃗x, ⃗ξ, z, ω)
1456
+
1457
+ d⃗ξ = k2
1458
+ 0ρ0(v2
1459
+ x + Ω2
1460
+ x) + (∂xρ0)2
1461
+ 4ρ0
1462
+ − ∂2
1463
+ xρ0
1464
+ 4
1465
+
1466
+ R2 ξ2
1467
+ Y Y
1468
+
1469
+
1470
+ WXX(⃗x, ⃗ξ, z, ω) + �
1471
+ WY Y (⃗x, ⃗ξ, z, ω)
1472
+
1473
+ d⃗ξ = k2
1474
+ 0ρ0(v2
1475
+ y + Ω2
1476
+ y) + (∂yρ0)2
1477
+ 4ρ0
1478
+ − ∂2
1479
+ yρ0
1480
+ 4
1481
+ (68)
1482
+ where vx,y and Ωx,y are, respectively, the “x” and “y” components of those vectors. In this and several
1483
+ subsequent expressions we omit the arguments (⃗x, z, ω) from the model quanitities for brevity.
1484
+ The
1485
+ “mixed” averages follow a similar procedure and are found to be
1486
+
1487
+ R2ξXξY
1488
+
1489
+
1490
+ WXX(⃗x, ⃗ξ, z, ω) + �
1491
+ WY Y (⃗x, ⃗ξ, z, ω)
1492
+
1493
+ d⃗ξ = k2
1494
+ 0ρ0(vxvy + ΩxΩy) + ∂xρ0∂yρ0
1495
+ 4ρ0
1496
+ − ∂xyρ0
1497
+ 4
1498
+ (69)
1499
+ so that we may finally write
1500
+ 1
1501
+ k2
1502
+ 0
1503
+
1504
+ R2
1505
+
1506
+ ⃗ξ ⊗ ⃗ξ
1507
+ � �
1508
+
1509
+ WXX(⃗x, ⃗ξ, z, ω) + �
1510
+ WY Y (⃗x, ⃗ξ, z, ω)
1511
+
1512
+ d⃗ξ =
1513
+ ρ0⃗v ⊗ ⃗v + ρ0⃗Ω ⊗ ⃗Ω +
1514
+ 1
1515
+ 4k2
1516
+ 0
1517
+
1518
+
1519
+ (∂xρ0)2
1520
+ ρ2
1521
+ 0
1522
+ − ∂2
1523
+ xρ0
1524
+ ρ0
1525
+ ∂xρ0∂yρ0
1526
+ ρ2
1527
+ 0
1528
+ − ∂xyρ0
1529
+ ρ0
1530
+ ∂xρ0∂yρ0
1531
+ ρ2
1532
+ 0
1533
+ − ∂xyρ0
1534
+ ρ0
1535
+ (∂yρ0)2
1536
+ ρ2
1537
+ 0
1538
+
1539
+ ∂2
1540
+ yρ0
1541
+ ρ0
1542
+
1543
+ � ρ0
1544
+ (70)
1545
+ Repeating this same process for the third Stokes parameter (second equation in (65)) yields the equations
1546
+ ∂z
1547
+ � ρ0⃗v
1548
+ −ρ0⃗Ω
1549
+
1550
+ +
1551
+
1552
+ � ∇X ·
1553
+
1554
+ ρ0⃗v ⊗ ⃗v + ρ0R + ρ0⃗Ω ⊗ ⃗Ω
1555
+
1556
+ −∇X ·
1557
+
1558
+ ρ0⃗v ⊗ ⃗Ω + ρ0⃗Ω ⊗ ⃗v
1559
+
1560
+
1561
+ � =
1562
+ � ρ0∇Xg(⃗x, z)
1563
+ 0
1564
+
1565
+ (71)
1566
+ where we have defined the matrix
1567
+ R =
1568
+ 1
1569
+ 4k2
1570
+ 0
1571
+
1572
+
1573
+ (∂xρ0)2
1574
+ ρ2
1575
+ 0
1576
+ − ∂2
1577
+ xρ0
1578
+ ρ0
1579
+ ∂xρ0∂yρ0
1580
+ ρ2
1581
+ 0
1582
+ − ∂xyρ0
1583
+ ρ0
1584
+ ∂xρ0∂yρ0
1585
+ ρ2
1586
+ 0
1587
+ − ∂xyρ0
1588
+ ρ0
1589
+ (∂yρ0)2
1590
+ ρ2
1591
+ 0
1592
+
1593
+ ∂2
1594
+ yρ0
1595
+ ρ0
1596
+
1597
+
1598
+ (72)
1599
+ A convenient simplification occurs upon expansion of the outer product via ∇·( ⃗B ⊗ ⃗A) = ⃗A(∇· ⃗B)+( ⃗B ·
1600
+ ∇) ⃗A. This identity, along with Eqs. (42) and (48), specifically ∂zρ0+∇X ·(ρ0⃗v) = 0 and ∇X ·(ρ0P⃗Ω) = 0,
1601
+ transforms (71) into
1602
+ � ρ0D⃗v/Dz
1603
+ ρ0D⃗Ω/Dz
1604
+
1605
+ +
1606
+
1607
+ � ∇X ·
1608
+
1609
+ ρ0R + ρ0⃗Ω ⊗ ⃗Ω
1610
+
1611
+
1612
+ ρ0⃗Ω · ∇X
1613
+
1614
+ ⃗v
1615
+
1616
+ � =
1617
+ � ρ0∇Xg(⃗x, z)
1618
+ 0
1619
+
1620
+ .
1621
+ (73)
1622
+ where we have again leveraged the material derivative defined earlier in section (III E). The only com-
1623
+ ponents of (73) that are influenced by the DOP are those involving the polarization angle gradient. To
1624
+ simplify further, note that the divergence of ρ0(⃗x, z, ω)R(⃗x, z, ω) is
1625
+ ∇X · [ρ0(⃗x, z, ω)R(⃗x, z, ω)] = − 1
1626
+ 2k2
1627
+ 0
1628
+ ρ0(⃗x, z, ω)∇X
1629
+
1630
+ ∇2
1631
+ Xρ1/2
1632
+ 0
1633
+ (⃗x, z, ω)
1634
+ ρ1/2
1635
+ 0
1636
+ (⃗x, z, ω)
1637
+
1638
+ .
1639
+ (74)
1640
+ 15
1641
+
1642
+ Expanding the outer product and invoking (48), the first of Eqns (73) can be written
1643
+ D⃗v0(⃗x, z, ω)
1644
+ Dz
1645
+ = −
1646
+
1647
+ ⃗Ω(⃗x, z, ω) · ∇X
1648
+
1649
+ ⃗Ω(⃗x, z, ω) + ∇Xg(⃗x, z) +
1650
+ 1
1651
+ 2k2
1652
+ 0
1653
+ ∇X
1654
+
1655
+ ∇2
1656
+ Xρ1/2
1657
+ 0
1658
+ (⃗x, z, ω)
1659
+ ρ1/2
1660
+ 0
1661
+ (⃗x, z, ω)
1662
+
1663
+ .
1664
+ (75)
1665
+ which is of precisely the same form as the coherent momentum equation [20]. In the case of a deterministic
1666
+ medium, the gradient potential forcing term is ∇Xϵ1/2. In [20] the commonly used medium assumptions
1667
+ were used whereby, ⟨ϵ⟩ = 1 and ϵ1 = n2(⃗x, z)−1. In this case Eq. (75) matches exactly that found in [20]
1668
+ for P = 1 (fully polarized light). For a stochastic, homogeneous medium where g(⃗x, z) = −ik0A(⃗x, z)/4
1669
+ we have
1670
+ ∇Xg(⃗x, z) = −ik0
1671
+ 4 ∇XA(0, z)
1672
+ = −ik0
1673
+ 4
1674
+
1675
+ R2 i⃗ξSNN(⃗ξ, 0)ei⃗ξ·⃗0d⃗ξ
1676
+ = k0
1677
+ 4
1678
+
1679
+ R2
1680
+ ⃗ξSNN(⃗ξ, 0)d⃗ξ
1681
+ (76)
1682
+ Taking as a simple model for the refractive index fluctuations as Eqn.
1683
+ (38) of [5], we have that
1684
+ ∇Xg(⃗x, z) = 0, i.e., the gradient of the refractive index covariance is zero. Thus, the time-averaged
1685
+ transverse location is unchanged due to the turbulence. Note, the model (75) can also be used to derive
1686
+ known results for “beam wander” in the coherent case following the approach in [11]. In that case,
1687
+ an expression for the transverse coordinate variance is developed and is seen to be proportional to the
1688
+ variance of the refractive index gradient (as opposed to the gradient of the variance) and one recovers
1689
+ the established result (see [11] for details).
1690
+ As in our prior work, it is advantageous to switch to Lagrangian coordinates ⃗x → ⃗xz(⃗x0) which are
1691
+ functions of propagation distance z and initial value ⃗x0. With this transformation, and noting that the
1692
+ “velocities” are the coordinate derivatives with respect to z, (75) becomes
1693
+ d⃗v0(⃗xz, ω)
1694
+ dz
1695
+ = d2⃗xz(ω)
1696
+ dz2
1697
+ = −
1698
+
1699
+ ⃗Ω(⃗xz, ω) · ∇Xz
1700
+
1701
+ ⃗Ω(⃗xz, ω) + ∇Xzg(⃗xz) +
1702
+ 1
1703
+ 2k2
1704
+ 0
1705
+ ∇Xz
1706
+
1707
+ ∇2
1708
+ Xzρ1/2
1709
+ 0
1710
+ (⃗xz, ω)
1711
+ ρ1/2
1712
+ 0
1713
+ (⃗xz, ω)
1714
+
1715
+ .
1716
+ (77)
1717
+ This is a sensible model as it suggests that a fully depolarized beam will follow a path that is influenced
1718
+ only by diffraction (last term in 77) and refractive index fluctuations. However, if the beam is polarized
1719
+ and if the polarization angle distribution possesses non-zero first and second spatial derivatives, there
1720
+ is an additional effect that must be considered, given by the first term on the right hand side of (75).
1721
+ In the case of diffraction only, the model (77) recovers the known result for the beam path in both the
1722
+ Gaussian beam [11]) and Airy beam [20]) situations.
1723
+ The second equation in (73) governs the evolution of the polarization angle. Following the derivation
1724
+ in Appendix (C), this expression reduces to
1725
+ D⃗Ω
1726
+ Dz +
1727
+
1728
+ ⃗Ω · ∇X
1729
+
1730
+ ⃗v = 0
1731
+ (78)
1732
+ or in Lagrangian coordinates
1733
+ d⃗Ω(⃗xz, ω)
1734
+ dz
1735
+ = 0.
1736
+ (79)
1737
+ Thus, for partially coherent light, the time-average polarization gradient as defined in (49) will remain
1738
+ unchanged during propagation when observed in Lagrangian coordinates. This result is consistent with
1739
+ our prior work which held that in the fully coherent case, the polarization angle remained unchanged on
1740
+ propagation [20]. By definition, depolarization will decrease ⃗Ω, ultimately resulting in ⃗Ω = 0 for P = 0.
1741
+ However, no mechanism exists in (79) to cause this to occur. While it is known that the atmosphere can
1742
+ serve as a depolarizing element, under the MA model such an effect can only be observed by retaining
1743
+ higher-order spatial variations in the refractive index (stemming ultimately from retaining the electric
1744
+ field divergence term in the wave equation) [5, 11]. In both of the cited works retention of such terms
1745
+ has almost no influence on beam propagation but for very long distances.
1746
+ This distance scales as
1747
+ O(k2
1748
+ 0ℓ3
1749
+ 0/σ2
1750
+ ϵ ) ∼ 1010m, even when considering strong turbulence (refractive index variance σ2
1751
+ η ∼ 10−10),
1752
+ 16
1753
+
1754
+ small inhomogeneities (length scale ℓ0 ∼ 10−3m), and 1.55µm wavelength light [5]. Other works have
1755
+ predicted depolarization will arise due to asymmetries in the initial spatial correlations across the beam
1756
+ face [25]. We have not included this effect in our model given that lasers do not naturally possess such
1757
+ asymmetry and creating such a beam would be challenging.
1758
+ In summary, we conclude that whether we are considering coherent, monochromatic, or partially
1759
+ coherent, polychromatic wave propagation, the basic governing equations are the same.
1760
+ ρ0(⃗xz, ω) = | det J⃗x0(⃗xz)|−1ρ0(⃗x0, ω).
1761
+ d2⃗xz
1762
+ dz2 = −
1763
+
1764
+ ⃗Ω(⃗xz, ω) · ∇Xz
1765
+
1766
+ ⃗Ω(⃗xz, ω) + ∇Xzg(⃗xz) +
1767
+ 1
1768
+ 2k2
1769
+ 0
1770
+ ∇Xz
1771
+
1772
+ ∇2
1773
+ Xzρ1/2
1774
+ 0
1775
+ (⃗xz, ω)
1776
+ ρ1/2
1777
+ 0
1778
+ (⃗xz, ω)
1779
+
1780
+ d⃗Ω(⃗xz, ω)
1781
+ dz
1782
+ = 0
1783
+ (80)
1784
+ It is the definition of quantities in the expression that is different in the two cases. These can be
1785
+ summarized as follows:
1786
+ Coherent, monochromatic
1787
+ ρ(⃗x, z) = EX(⃗x, z)E∗
1788
+ X(⃗x, z) + EY (⃗x, z)E∗
1789
+ Y (⃗x, z)
1790
+ ⃗v(⃗x, z) = 1
1791
+ k0
1792
+ ∇Xφ(⃗x, z)
1793
+ ⃗Ω(⃗x, z) = 1
1794
+ k0
1795
+ ∇Xγ(⃗x, z)
1796
+ (81)
1797
+ Partially coherent, polychromatic
1798
+ ρ0(⃗x, z, ω) =
1799
+
1800
+ R2
1801
+
1802
+
1803
+ WXX(⃗x, ξ, z, ω) + �
1804
+ WY Y (⃗x, ξ, z, ω)
1805
+
1806
+ d⃗ξ = SXX(⃗x, z, ω) + SY Y (⃗x, z, ω)
1807
+ ⃗v0(⃗x, z, ω) = 1
1808
+ k0
1809
+ ⟨∇Xφ(⃗x, z, ω)⟩ =
1810
+
1811
+ R2 ⃗ξ
1812
+
1813
+
1814
+ WXX(⃗x, ⃗ξ, z, ω) + �
1815
+ WY Y (⃗x, ⃗ξ, z, ω)
1816
+
1817
+ d⃗ξ
1818
+ k0ρ0(⃗x, z)
1819
+ ⃗Ω(⃗x, z, ω) = P(⃗x, z, ω)
1820
+ k0
1821
+ ⟨∇Xγ(⃗x, z, ω)⟩ =
1822
+ −iP
1823
+
1824
+ R2 ⃗ξ
1825
+
1826
+
1827
+ WXY (⃗x, ⃗ξ, z, ω) − �
1828
+ WY X(⃗x, ⃗ξ, z, ω)
1829
+
1830
+ d⃗ξ
1831
+ k0ρ0(⃗x, z)
1832
+ (82)
1833
+ where we can see that the latter reduce to the former in the coherent limit.
1834
+ V.
1835
+ EXAMPLES
1836
+ In our previous work we showed that for a particular functional form of polarization angle gradient
1837
+ the beam would “accelerate” in the transverse direction following a curved path and we have shown in
1838
+ (80) that this is also true in the partially coherent case. Using a new definition of polarization angle
1839
+ gradient (49), we see the the beam will follow the same coherent path as in [20] for P = 1 but will follow
1840
+ a different path as the DOP decreases P < 1.
1841
+ Consider first the simple case of a beam with Gaussian intensity distribution of equal amplitude in
1842
+ the x and y components. As in [14] (see Eqn. 3.6 in the cited work) we take P(⃗x, z) = P as a constant
1843
+ representing the correlation coefficient between the x and y components of the electric field and obeying
1844
+ 0 ≤ P ≤ 1. In our prior work we set P = 1 and used the polarization profile
1845
+ γ(y0) = π
1846
+ 2
1847
+ (y0 − a)2
1848
+ a2
1849
+ + π
1850
+ 8
1851
+ (83)
1852
+ which varies in y0 only and not in x0. Thus, the polarization gradient terms becomes simply
1853
+ ⃗Ω(y0) =
1854
+
1855
+ 0, P π(y0 − a)
1856
+ a2
1857
+
1858
+ (84)
1859
+ 17
1860
+
1861
+ and the second of Eqs. (80) becomes the ordinary differential equations
1862
+ d2xz
1863
+ dz2 = x0
1864
+ d2yz
1865
+ dz2 = −P2
1866
+ k2
1867
+ 0
1868
+ dγ(y0)
1869
+ dy0
1870
+ d2γ(y0)
1871
+ dy2
1872
+ 0
1873
+ (85)
1874
+ subject to the initial velocity dx0/dz = dy0/dz = 0 and initial displacements x0 and y0. This expression
1875
+ can be solved to give the the partially coherent beam path
1876
+ xz = x0
1877
+ yz = P2π2z2
1878
+ 2k2
1879
+ 0a4 (a − y0) + y0.
1880
+ (86)
1881
+ The prediction is that for fully polarized light, P = 1, the beam will follow the same path obtained in
1882
+ [20] while, for unpolarized light, P = 0, and the beam will simply follow a straight path. Figure (1) shows
1883
+ a family of such curves associated with the beam center, y0 = 0, for different degrees of polarization.
1884
+ Also shown is the polarization angle profile across the beam face, plotted as a function of the transverse
1885
+ coordinates ⃗x0. The result is the expected behavior. As the DOP is reduced, so too is the degree to which
1886
+ FIG. 1: (a) Transverse displacement of the beam center as the DOP is reduced from unity to 0 in
1887
+ increments of 0.2. The model parameters were the same as those used in our prior work [20] and (b)
1888
+ The associated polarization angle profile, Eq. (83)
1889
+ the path of the beam center is altered. We also note that in this example the effects of diffraction could
1890
+ have been included just as they were in our coherent model [20]. The result is the standard Gaussian
1891
+ beam spreading about the path predicted in Eqn. (86).
1892
+ As a second example, we consider the case where both bending and diffraction are retained in the model.
1893
+ Specifically, we tailor the polarization profile so that the polarization-induced bending acts in opposition
1894
+ to the diffractive effect, thereby mitigating the degree to which the beam spreads on propagation. Using
1895
+ the polarization profile
1896
+ γ(y0) = κπ
1897
+ 2
1898
+ y2
1899
+ 0
1900
+ a2 − π
1901
+ 8
1902
+ (87)
1903
+ we solve the coupled system of Equations (80) using an initial Gaussian intensity profile
1904
+ ρ0(⃗x0, ω) = I(ω)e−(x2
1905
+ 0+y2
1906
+ 0)/(2σ2)
1907
+ (88)
1908
+ with width σ. The solution is obtained analytically in this case using the approach outlined in [20] which
1909
+ 18
1910
+
1911
+ (a)
1912
+ X10-3
1913
+ 5
1914
+ Transverse displacement y(z) meters
1915
+ = 0.8
1916
+ 3
1917
+ 2
1918
+ P = 0.6
1919
+ P = 0.4
1920
+ P = 0.2
1921
+ 0
1922
+ P = 0.0
1923
+ .1
1924
+ 0
1925
+ 5
1926
+ 10
1927
+ 15
1928
+ 20
1929
+ 25
1930
+ 30
1931
+ Propagation distance z meters(b)
1932
+ 2
1933
+ (mm)
1934
+ 0
1935
+ 1
1936
+ -2
1937
+ -2
1938
+ -1
1939
+ 0
1940
+ 1
1941
+ 2
1942
+ (uw) °xleads to the transverse path
1943
+ xz = x0
1944
+
1945
+ z2 + σ4k2
1946
+ 0
1947
+ σ2k0
1948
+ yz = −(Pκ)2π2z2
1949
+ 2k2
1950
+ 0a4
1951
+ y0 + y0
1952
+
1953
+ z2 + σ4k2
1954
+ 0
1955
+ σ2k0
1956
+ =
1957
+ ��
1958
+ 1 +
1959
+ z2
1960
+ k2
1961
+ 0σ4
1962
+ �1/2
1963
+ − π2
1964
+ 2
1965
+ (Pκ)2
1966
+ k2
1967
+ 0a4 z2
1968
+
1969
+ y0.
1970
+ (89)
1971
+ The corresponding determinant of the Jacobian is therefore
1972
+ det J⃗x0(⃗xz) = 1 +
1973
+ z2
1974
+ σ4k2
1975
+ 0
1976
+ − (Pκ)2π2z2�
1977
+ z2 + σ4k2
1978
+ 0
1979
+ 2a4σ2k3
1980
+ 0
1981
+ .
1982
+ (90)
1983
+ and the desired intensity profile on propagation is given by the first of Eqs. (80). The polarization profile
1984
+ (87) has the effect of bending the outer edges of the beam, y0 = ±a/2, toward the center thus mitigating
1985
+ the outward spreading caused by the diffractive term. These results can be seen visually in Fig. (2) for
1986
+ a fully polarized beam of wavelength 1.55 µm, width σ = 1.2 mm and extending over transverse spatial
1987
+ dimension a = 4.17 mm. In this fully polarized case we set κ = 1.
1988
+ FIG. 2: (a) Normal beam diffraction profile over the range z = [0, 250] m, (b) diffraction profile
1989
+ associated with the polarization angle distribution given by Eq. (87) and for P = 1. Here the spreading
1990
+ due to diffraction is compensated by the bending due to the polarization angle gradient. These effects
1991
+ cancel each other out at range zc ≈ (2a4k0)/ (Pπσ)2 (obtained by setting yz = 0). Beyond this range
1992
+ the beam super diffracts and the spreading is proportional to (z − zc)2. Plots (c) and (d) use the same
1993
+ polarization profile but with P = 0.75 and P = 0.5 respectively.
1994
+ The normalized beam intensity is plotted for z = [0, 250] m in order to clearly show the effects of the
1995
+ polarization gradient. By altering the polarization of the light across the beam face we can control, to
1996
+ some extent, the degree to which the beam diffracts. Of course, in this example the diffractive effect
1997
+ causes transverse spreading that is linear in z while the bending we show here is quadratic. Thus, at a
1998
+ 19
1999
+
2000
+ (a)
2001
+ 50
2002
+ 4
2003
+ P=0
2004
+ 6'0
2005
+ Transverse Displacement (mm)
2006
+ 0.8
2007
+ ¥2
2008
+ 0.7
2009
+ 0
2010
+ 0.6
2011
+ 0
2012
+ 0.5
2013
+ -10
2014
+ 0.4
2015
+ 0.3
2016
+ -30
2017
+ 0.2
2018
+ -40
2019
+ 0.1
2020
+ -50
2021
+ 0
2022
+ 0
2023
+ 20
2024
+ 40
2025
+ 60
2026
+ 80
2027
+ 100
2028
+ 120
2029
+ 140
2030
+ 160
2031
+ 180
2032
+ 200
2033
+ 220
2034
+ 240
2035
+ Propagation Distance (m)(q)
2036
+ 50
2037
+ P=1
2038
+ 40
2039
+ 0.9
2040
+ Transverse Displacement (mm)
2041
+ 0.8
2042
+ 2
2043
+ 0.7
2044
+ 0
2045
+ 0.6
2046
+ 0
2047
+ 0.5
2048
+ -10
2049
+ 0.4
2050
+ -20
2051
+ 0.3
2052
+ -30
2053
+ 0.2
2054
+ -40
2055
+ 0.1
2056
+ -50
2057
+ 0
2058
+ 0
2059
+ 20
2060
+ 40
2061
+ 60
2062
+ 80
2063
+ 100
2064
+ 120
2065
+ 140
2066
+ 160
2067
+ 180
2068
+ 200
2069
+ 220
2070
+ 240
2071
+ Propagation Distance (m)(c)
2072
+ 50
2073
+ 40
2074
+ P=0.75
2075
+ 0.9
2076
+ Transverse Displacement (mm)
2077
+ 0.8
2078
+ 2
2079
+ 0.7
2080
+ 0
2081
+ 0.6
2082
+ 0
2083
+ 0.5
2084
+ -10
2085
+ 0.4
2086
+ -20
2087
+ 0.3
2088
+ 30
2089
+ 0.2
2090
+ -40
2091
+ 0.1
2092
+ -50
2093
+ 0
2094
+ 0
2095
+ 20
2096
+ 40
2097
+ 60
2098
+ 80
2099
+ 100
2100
+ 120
2101
+ 140
2102
+ 160
2103
+ 180
2104
+ 200
2105
+ 220
2106
+ 240
2107
+ Propagation Distance (m)(d)
2108
+ 50
2109
+ 40
2110
+ P=0.5
2111
+ 0.9
2112
+ Transverse Displacement (mm)
2113
+ 0.8
2114
+ 2
2115
+ 0.7
2116
+ 0
2117
+ 0.6
2118
+ 0
2119
+ 0.5
2120
+ -10
2121
+ 0.4
2122
+ -20
2123
+ 0.3
2124
+ 30
2125
+ 0.2
2126
+ -40
2127
+ 0.1
2128
+ -50
2129
+ 0
2130
+ 0
2131
+ 20
2132
+ 40
2133
+ 60
2134
+ 80
2135
+ 100
2136
+ 120
2137
+ 140
2138
+ 160
2139
+ 180
2140
+ 200
2141
+ 220
2142
+ 240
2143
+ Propagation Distance (m)distance zc, obtained by setting yz = 0 in Eqn. (89), the rays are predicted to come to a focus. Then
2144
+ zc =
2145
+
2146
+ 2
2147
+ π2
2148
+ k0
2149
+ (Pκ)2
2150
+ � a4
2151
+ σ2
2152
+ � �
2153
+ 1 +
2154
+
2155
+ 1 + π4(Pκ)4
2156
+ �σ
2157
+ a
2158
+ �8
2159
+ �1/2
2160
+ (91)
2161
+ and in the limit zc ≫ k0σ2 we find the particularly simple form
2162
+ zc = 2a4k0
2163
+ (Pπσ)2 .
2164
+ (92)
2165
+ (Note also this limit is also obtained when π4(Pκ)4(σ/a)8 << 1, a condition that will always be met
2166
+ when the beam width 2σ is less than the output aperture dimension 2a). Beyond z > zc, however,
2167
+ the beam diverges strongly and the intensity rapidly diminishes. Thus, using this polarization profile
2168
+ diffraction can be mitigated, but only over a prescribed range. As the beam depolarizes the degree
2169
+ to which diffraction is mitigated will change, however, by increasing the constant κ in the polarization
2170
+ gradient such that Pκ = 1, we expect to see the same results as in Fig. (2b). In practice, of course,
2171
+ there will be a limit to how large a polarization gradient can be produced. As the DOP decreases (with
2172
+ κ = 1) we see the expected results in Figs. (2c-d), namely that the beam gradually moves toward the
2173
+ standard diffraction profile associated with an incoherent beam, Fig. (2a).
2174
+ Fig. (3) shows a plot of zc from (91) for fixed polarization gradient (κ = 1) as a function of degree
2175
+ of polarization P in the range 0.01 ≤ P ≤ 1. The zc ∝ P−1 behavior continues indefinitely as P → 0,
2176
+ that is, regardless of the degree of polarization, there exists a z−value for which the effects of diffraction
2177
+ could be completely compensated. Of course in practice, there is a limit to κ as one can not generate
2178
+ a beam with an infinitely sharp polarization gradient. The practical limit will for such a beam will be
2179
+ determined by the resolution of the device used in its creation, e.g., the spatial light modulators used in
2180
+ reference [20].
2181
+ The results in Fig. 3 are consistent with the following interpretation of the mixture model in (30). The
2182
+ term ”mixture” cannot be taken literally to mean that the beam comprises a collection of photons in
2183
+ which a fraction P are fully polarized and fraction (1 − P) are completely unpolarized. If that were true
2184
+ then the polarization gradient could only compensate diffraction for the polarized photons and the beam
2185
+ spread at z = zc would necessarily increase as P decreased. Instead, we found that the beam width at
2186
+ the focus, in the y− direction for this example, is independent of P. Hence, we interpret (30) to mean
2187
+ that every photon in the beam is described by Stokes vector
2188
+
2189
+ S =
2190
+
2191
+
2192
+
2193
+
2194
+ s′
2195
+ 0(⃗x, ⃗x′, z, ω)
2196
+ Ps′
2197
+ 1(⃗x, ⃗x′, z, ω|P)
2198
+ Ps′
2199
+ 2(⃗x, ⃗x′, z, ω|P)
2200
+ Ps′
2201
+ 3(⃗x, ⃗x′, z, ω|P)
2202
+
2203
+
2204
+
2205
+ � .
2206
+ (93)
2207
+ Every photon thus exhibits properties of partial polarization with degree of polarization P.
2208
+ VI.
2209
+ SUMMARY
2210
+ We have generalized our prior, coherent vector beam model to the partially coherent case by introducing
2211
+ a mixture model for the generalized Stokes vector and by subsequently choosing appropriate definitions
2212
+ of amplitude, phase, and polarization angle gradient in describing propagation of the generalized Stokes
2213
+ parameters. The resulting “transport” model predicts the time-averaged optical path of a vector beam
2214
+ propagating through an inhomogeneous medium (e.g., an atmosphere). Importantly, the model reduces
2215
+ to that of our previous work on vector beams in the coherent limit [20] and matches the predictions
2216
+ found in [30] and [5] in the absence of a polarization gradient. Consequently, it predicts the same optical
2217
+ path as in our coherent model in the fully polarized case, while reducing to the standard “unaltered”
2218
+ path in the unpolarized situation.
2219
+ Notably, the model requires a new definition of polarization angle gradient that is consistent with
2220
+ more recent definitions of phase for partially coherent beams. These definitions become important in the
2221
+ governing equations as the movement of intensity during propagation is governed by phase and angle
2222
+ gradients as opposed to the phase and angle variables. As a by-product of the model development we
2223
+ were also able to demonstrate conservation of the generalized Stokes parameters on propagation, even in
2224
+ 20
2225
+
2226
+ FIG. 3: zc as a function of degree of polarization P for λ = 1.55 µm, a = 4.17 mm, and σ = 1.15 mm.
2227
+ For these parameters, zc ∝ P−1 and the trend continues indefinitely as P → 0.
2228
+ the case where the intervening medium possesses refractive index fluctuations. This is a generalization
2229
+ of the result established in [13].
2230
+ An obvious prediction of the model Eqn. (79) is that the state of linear polarization (as captured
2231
+ by ⃗Ω) remains unchanged on propagation from a Lagrangian viewpoint. Because the definition of ⃗Ω
2232
+ includes the DOP, this is also tantamount to the statement that the DOP is unchanged on propagation.
2233
+ The result is consistent with the result of Charnotskii [5] which found that no significant depolarization
2234
+ occurs due to the presence of a turbulent atmosphere. Had we included the higher order refractive index
2235
+ variations (by retaining the electric field divergence in the wave equation) and/or retained the full Wigner
2236
+ potential in forming Eqn. (61) (as opposed to using the linearized potential) this effect may have been
2237
+ observable in our model as well.
2238
+ We considered two such examples, one in which the curved path taken by the beam studied in [20] was
2239
+ slowly altered by changing the degree of polarization. In the coherent case, the path taken is the same as
2240
+ in the cited reference. As the degree of polarization is reduced so too is degree of beam bending, reducing
2241
+ to propagation in a straight line in the fully incoherent case. In the second example, we consider both
2242
+ the bending and diffracting beam. For that example we chose an initial polarization distribution that
2243
+ would mitigate the effects of diffraction over a predictable distance. The result suggests new class of
2244
+ “non-diffracting” beam. The effects of depolarization can be countered in this case by simply increasing
2245
+ the strength of the polarization gradient applied across the transverse dimension of the beam.
2246
+ In short, the model we have developed can be used to predict vector beam trajectories in a variety of
2247
+ propagation scenarios of interest, including through free-space and a potentially turbulent atmosphere.
2248
+ As such it provides a powerful tool in forecasting the utility of the newly discovered vector beam bending
2249
+ effect in application. We note that the model rests on the same two assumptions as were used in the
2250
+ coherent model development [20], namely, the slowly varying envelope approximation and a weakly
2251
+ inhomogeneous medium.
2252
+ VII.
2253
+ ACKNOWLEDGMENTS
2254
+ The authors would like to thank the Office of Naval Research Code 33, for support under
2255
+ PE#0601153N, award #N0001422WX01660
2256
+ Appendix A: Interpretation of Transport Velocity
2257
+ In this section we present a more traditional optics interpretation of the transverse velocity ⃗v =
2258
+ k−1
2259
+ 0 ∇Xφ for coherent light. In particular, we show how this quantity can be related to the familiar
2260
+ concept of “optical path length” (OPL). This allows us to properly view the transverse phase gradient
2261
+ 21
2262
+
2263
+ 107
2264
+ 106
2265
+ 105
2266
+ (w)
2267
+ 104
2268
+ 103
2269
+ 102
2270
+ 10-2
2271
+ 10-1
2272
+ 100
2273
+ DOP (P)of our electric field as the rate at which intensity is moved in the transverse plane. The interpretation
2274
+ will remain valid so long as the paraxial assumption holds.
2275
+ To begin, we note that the OPL in the context of a propagating wave is defined (see, for example,
2276
+ Saleh [27]) as
2277
+ Φ(⃗x, z) = z + φ(⃗x, z)/(2k0)
2278
+ (A1)
2279
+ that is, as the phase argument of the wave normalized by the wavenumber. The quantity φ/(2k0) can
2280
+ be viewed as a perturbation to the optical path resulting from refractive index fluctuations, diffraction,
2281
+ and, in this context, from polarization angle gradients as well.
2282
+ Consider now the expression for total path length L(⃗xz) in Lagrangian coordinates. For a differential
2283
+ length element parameterized by propagation distance, dℓ(z)
2284
+ L(⃗xz) =
2285
+ � z
2286
+ 0
2287
+ dℓ(ζ)
2288
+ =
2289
+ � z
2290
+ 0
2291
+ (dζ2 + dx2
2292
+ ζ + dy2
2293
+ ζ)1/2 =
2294
+ � z
2295
+ 0
2296
+
2297
+ 1 +
2298
+ �dxζ
2299
+
2300
+ �2
2301
+ +
2302
+ �dyζ
2303
+
2304
+ �2�1/2
2305
+
2306
+
2307
+ � z
2308
+ 0
2309
+ dζ + 1
2310
+ 2
2311
+ � z
2312
+ 0
2313
+ �dxζ
2314
+
2315
+ �2
2316
+ dζ + 1
2317
+ 2
2318
+ � z
2319
+ 0
2320
+ �dyζ
2321
+
2322
+ �2
2323
+
2324
+ (A2)
2325
+ where in the final step we have made use of the fact that for ϵ1, ϵ2 ≪ 1, (1 + ϵ1 + ϵ2)1/2 ≈ 1 + 1
2326
+ 2ϵ1 + 1
2327
+ 2ϵ2
2328
+ which is equivalent to the paraxial assumption. Equating this expression to the OPL given in Eqn. (A1)
2329
+ gives
2330
+ L(⃗xz) = z + φ(⃗xz)
2331
+ 2k0
2332
+ =
2333
+ � z
2334
+ 0
2335
+ dζ + 1
2336
+ 2
2337
+ � z
2338
+ 0
2339
+ �dxζ
2340
+
2341
+ �2
2342
+ dζ + 1
2343
+ 2
2344
+ � z
2345
+ 0
2346
+ �dyζ
2347
+
2348
+ �2
2349
+
2350
+ (A3)
2351
+ so that
2352
+ φ(⃗xz)
2353
+ 2k0
2354
+ = 1
2355
+ 2
2356
+ � z
2357
+ 0
2358
+ �dxζ
2359
+
2360
+ �2
2361
+ dζ + 1
2362
+ 2
2363
+ � z
2364
+ 0
2365
+ �dyζ
2366
+
2367
+ �2
2368
+
2369
+ (A4)
2370
+ Differentiating with respect to z yields
2371
+ 1
2372
+ k0
2373
+ �∂φ(⃗xz)
2374
+ ∂xz
2375
+ ∂xz
2376
+ ∂z + ∂φ(⃗xz)
2377
+ ∂yz
2378
+ ∂yz
2379
+ ∂z
2380
+
2381
+ =
2382
+ �dxz
2383
+ dz
2384
+ �2
2385
+ +
2386
+ �dyz
2387
+ dz
2388
+ �2
2389
+ .
2390
+ (A5)
2391
+ which can be written
2392
+ 1
2393
+ k0
2394
+ ∇Xzφ(⃗xz) · ⃗v(⃗xz) = ⃗v(⃗xz) · ⃗v(⃗xz)
2395
+ (A6)
2396
+ thus
2397
+ ⃗v(⃗xz) = 1
2398
+ k0
2399
+ ∇Xzφ(⃗xz).
2400
+ (A7)
2401
+ This demonstrates that the change in optical path length in the transverse plane per unit change in ˆz
2402
+ (i.e. the transverse “velocity”) is equal to the transverse phase gradient normalized by the wavenumber.
2403
+ Eq. (A7) was presented in [23] (Eq. 11 of that work) and is referred to appropriately as the “flow vector
2404
+ of spectral density”. The connection between ⃗v(⃗xz) and transverse coordinate changes was also leveraged
2405
+ in [11] although not explicitly derived as we have here. The key assumption used to arrive at this result
2406
+ is that changes in the transverse direction are much smaller than changes in the direction of propagation
2407
+ and is tantamount to the same paraxial assumption we have used throughout our model development.
2408
+ While the above analysis is performed for the coherent case, we have demonstrated that one can re-
2409
+ define the model quantities (amplitude, phase, and polarization angle) as appropriate averages in the
2410
+ partially coherent case. Thus, the above interpretation still holds and the transverse phase gradient can
2411
+ be interpreted as the average change in optical path in the transverse direction per unit change in the
2412
+ direction of propagation.
2413
+ 22
2414
+
2415
+ Appendix B: Derivation of Equation (55)
2416
+ The identity required of Eqn.
2417
+ (55) requires relating the determinant of the Jacobian of the La-
2418
+ grangian coordinate mappings xz(x0, y0), yz(x0, y0) to the divergence of the associated velocity field
2419
+ uz(xz, yz), vz(xz, yz). Begin with the determinant
2420
+ det(J⃗x0(⃗xz)) = dxz
2421
+ dx0
2422
+ dyz
2423
+ dy0
2424
+ − dyz
2425
+ dx0
2426
+ dxz
2427
+ dy0
2428
+ ,
2429
+ (B1)
2430
+ take the derivative with respect to z and recognize that uz ≡ dxz/dz, vz ≡ dyz/dz. Then
2431
+ d
2432
+ dz det(J⃗x0(⃗xz)) = duz
2433
+ dx0
2434
+ dyz
2435
+ dy0
2436
+ + dvz
2437
+ dy0
2438
+ dxz
2439
+ dx0
2440
+ − dvz
2441
+ dx0
2442
+ dxz
2443
+ dy0
2444
+ − duz
2445
+ dy0
2446
+ dyz
2447
+ dx0
2448
+ (B2)
2449
+ Both uz(xz, yz), vz(xz, yz) are functions of the Lagrangian coordinates, hence we can apply the chain
2450
+ rule to obtain
2451
+ duz
2452
+ dx0
2453
+ = ∂uz
2454
+ ∂xz
2455
+ ∂xz
2456
+ ∂x0
2457
+ + ∂uz
2458
+ ∂yz
2459
+ ∂yz
2460
+ dx0
2461
+ duz
2462
+ dy0
2463
+ = ∂uz
2464
+ ∂xz
2465
+ ∂xz
2466
+ dy0
2467
+ + duz
2468
+ ∂yz
2469
+ ∂yz
2470
+ ∂y0
2471
+ dvz
2472
+ dx0
2473
+ = ∂vz
2474
+ ∂xz
2475
+ ∂xz
2476
+ ∂x0
2477
+ + ∂vz
2478
+ ∂yz
2479
+ ∂yz
2480
+ ∂x0
2481
+ dvz
2482
+ dy0
2483
+ = ∂vz
2484
+ dxz
2485
+ ∂xz
2486
+ ∂y0
2487
+ + ∂vz
2488
+ ∂yz
2489
+ ∂yz
2490
+ ∂y0
2491
+ .
2492
+ (B3)
2493
+ Substituting (B3) into (B2) and simplifying yields the ordinary differential equation
2494
+ d det(J⃗x0(⃗xz))
2495
+ dz
2496
+ = (∇Xs · ⃗v(⃗xs) det(J⃗x0(⃗xz)),
2497
+ (B4)
2498
+ with solution
2499
+ det (J⃗x0(⃗xz)) = exp
2500
+ �� z
2501
+ s=0
2502
+ ∇Xs · ⃗v(⃗xs)ds
2503
+
2504
+ (B5)
2505
+ This relationship allows (54) to be written as (55) thus completing the derivation.
2506
+ Appendix C: Derivation of Equation (79)
2507
+ To derive Equation (79) we begin with Eqn. (71)
2508
+ ∂z
2509
+
2510
+ ρ0⃗Ω
2511
+
2512
+ + ∇X ·
2513
+
2514
+ ρ0⃗v ⊗ ⃗Ω + ρ0⃗Ω ⊗ ⃗v
2515
+
2516
+ = 0
2517
+ (C1)
2518
+ Using two applications of the vector identity ∇X ·
2519
+
2520
+ ⃗B ⊗ ⃗A
2521
+
2522
+ = ⃗A
2523
+
2524
+ ∇X · ⃗B
2525
+
2526
+ +
2527
+
2528
+ ⃗B · ∇X
2529
+
2530
+ ⃗A and grouping
2531
+ terms we have
2532
+ ρ0[∂z⃗Ω + (⃗v · ∇X)⃗Ω] + ⃗Ω
2533
+
2534
+ ((((((((
2535
+ ∂z(ρ0) + ∇X · ρ0⃗v
2536
+
2537
+ + ⃗v
2538
+
2539
+ ∇X · [ρo⃗Ω]
2540
+
2541
+ +
2542
+
2543
+ ρ0⃗Ω · ∇X
2544
+
2545
+ ⃗v = 0
2546
+ (C2)
2547
+ where Eqn. (48) has allowed us to cancel the second to last term while continuity of the first Stokes
2548
+ parameter (i.e., the intensity) cancels the third term.
2549
+ Noting the first term in brackets is the total
2550
+ derivative of ⃗Ω, allows us to write Eqn. (C2) in Eulerian coordinates as
2551
+ D⃗Ω
2552
+ Dz +
2553
+
2554
+ ⃗Ω · ∇X
2555
+
2556
+ ⃗v = 0
2557
+ (C3)
2558
+ However, further simplification is possible by re-writing (C2) as
2559
+ ∂z⃗Ω +
2560
+
2561
+ (⃗v · ∇X) Ω +
2562
+
2563
+ ⃗Ω · ∇X
2564
+
2565
+ ⃗v
2566
+
2567
+ = 0
2568
+ ∂z⃗Ω + ∇X
2569
+
2570
+ ⃗Ω · ⃗v
2571
+
2572
+ = 0.
2573
+ (C4)
2574
+ 23
2575
+
2576
+ where we have leveraged the identity ∇X
2577
+
2578
+ ⃗A · ⃗B
2579
+
2580
+ = ( ⃗A·∇X) ⃗B+( ⃗B·∇X) ⃗A+ ⃗A×(∇X × ⃗B)+ ⃗B×(∇X × ⃗A)
2581
+ and note that both ⃗Ω and ⃗v are expressible as gradients of scalars, hence the cross-product terms vanish.
2582
+ Recalling that ⃗Ω ≡ k−1
2583
+ 0 ∇Xγ we can write
2584
+ k−1
2585
+ 0
2586
+ [∂z(∇Xγ) + ∇X(∇Xγ · ⃗v)] = 0
2587
+ = k−1
2588
+ 0 ∇X [∂zγ + ∇Xγ · ⃗v] = 0
2589
+ = k−1
2590
+ 0 ∇X
2591
+
2592
+ Dz = 0.
2593
+ (C5)
2594
+ If we now make the switch to Lagrangian coordinates, the total derivatives become ordinary derivatives
2595
+ d⃗Ω(⃗xz, ω)
2596
+ dz
2597
+ = 0.
2598
+ (C6)
2599
+ which is Eqn. (79).
2600
+ [1] J.-D. Benamou and Y. Brenier. A computational fluid mechanics solution to the Monge-Kantorovich mass
2601
+ transfer problem. Numerische Mathematik, 84:375–393, 2000.
2602
+ [2] B. Boashash. Estimating and interpreting the instantaneous frequency of a signal – part 1: Fundamentals.
2603
+ In PROCEEDINGS OF THE IEEE, pages 520–538, 1992.
2604
+ [3] T. Boykin. Derivatives of the Dirac delta function by explicit construction of sequences. American Journal
2605
+ of Physics, 71(5):462–468, 2003.
2606
+ [4] Z. Cai, Y. Fan, R. Li, T. Lu, and Y. Wang. Quantum hydrodynamic model by moment closure of Wigner
2607
+ equation. Journal of Mathematical Physics, 53:103503, 2012.
2608
+ [5] M. Charnotskii. Propagation of polarized waves in inhomogeneous media. Journal of the Optical Society of
2609
+ America – A, 33(7):1385–1394, 2016.
2610
+ [6] P. Constantin and G. Iyer. A stochastic lagrangian representation of the three-dimensional incompressible
2611
+ navier-stokes equations. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 61(3):330–
2612
+ 345, 2008.
2613
+ [7] P. Degond and C. Ringhofer.
2614
+ Quantum moment hydrodynamics and the entropy principle.
2615
+ Journal of
2616
+ Statistical Physics, 112(3/4):587–628, 2003.
2617
+ [8] A. C. Fannjiang and K. Solna. Propagation and time reversal of wave beams in atmospheric turbulence.
2618
+ SIAM, 3(3):522–558, 2005.
2619
+ [9] R. L. Fante. Electromagnetic beam propagation in turbulent media. In Proceedings of the IEEE, volume 63,
2620
+ pages 1669–1692, 1975.
2621
+ [10] A. T. Friberg. Energy transport in optical systems with partially coherent light. Applied Optics, 25(24):4547–
2622
+ 4556, 1986.
2623
+ [11] T. H. Emerson J. M. Nichols and G. K. Rohde. A transport model for broadening of a linearly polarized,
2624
+ coherent beam due to inhomogeneities in a turbulent atmosphere. Journal of Modern Optics, 66(8):835–849,
2625
+ 2019.
2626
+ [12] A. J¨ungel, D. Mattes, and J. P. Miliˇsi´c. Derivation of new quantum hydrodynamic equations using entropy
2627
+ minimization. SIAM Journal on Applied Mathematics, 67(1):46–68, 2006.
2628
+ [13] O. Korotkova. Conservation laws for stochastic electromagnetic free fields. Journal of Optics A: Pure and
2629
+ Applied Optics, 10:025003, 2008.
2630
+ [14] O. Korotkova, M. Salem, and E. Wolf. The far-zone behavior of the degree of polarization of electromagnetic
2631
+ beams propagating through atmospheric turbulemce. Optics Communications, 233:225–230, 2004.
2632
+ [15] O. Korotkova and E. Wolf. Generalized Stokes parameters of random electromagnetic beams. Optics Letters,
2633
+ 30(2):198–200, 2005.
2634
+ [16] A. Luis. Polarization and coherence for vectorial electromagnetic waves and the ray picture of light propa-
2635
+ gation. Journal of the European Optical Society - Rapid Publications, 2:07030, 2007.
2636
+ [17] G. Manfredi, P.-A. Herieux, and J. Hurst.
2637
+ Fluid descriptions of quantum plasmas.
2638
+ Reviews of Modern
2639
+ Plasma Physics, 5(7):https://doi.org/10.1007/s41614–021–00056–y, 2021.
2640
+ [18] N. Marcuvitz. Quasiparticle view of wave propagation. Proceedings of the IEEE, 68(11):1380–1395, 1980.
2641
+ [19] M. Nedjalkov, D. Querlioz, P. Dollfus, and H. Kosina. Wigner function approach. In D. Vasileska D and
2642
+ S. Goodnick, editors, Nano-Electronic Devices: Semiclassical and Quantum Transport Modeling. Springer,
2643
+ New York, NY, 2011.
2644
+ [20] J. M. Nichols, D. V. Nickel, and F. Bucholtz. Vector beam bending via a polarization gradient. Optics
2645
+ Express, 30(21):38907–38929, 2022.
2646
+ [21] D. Paganin and K. A. Nugent. Noninterferometric phase imaging with partially coherent light. Physical
2647
+ Review Letters, 80(12):2586–2589, 1998.
2648
+ [22] G. C. Papanicolaou and R. Burridge. Transport equations for the stokes parameters from Maxwell’s equations
2649
+ in a random medium. Journal of Mathematical Physics, 16(10):2074–2085, 1975.
2650
+ 24
2651
+
2652
+ [23] J. C. Petruccelli, L. Tian, and G. Barbastathis. The transport of intensity equation for optical path length
2653
+ recovery using partially coherent illumination. Optics Express, 21(12):14430–14441, 2013.
2654
+ [24] M. B. Priestly. Spectral Analysis and Time Series. Probability and Mathematical Statistics. Elsevier Aca-
2655
+ demic Press, London, 1981.
2656
+ [25] H. Roychowdhury, S. A. Ponomarenko, and E. Wolf. Change in the polarization of partially coherent elec-
2657
+ tromagnetic beams propagating through the turbulent atmosphere. Journal of Modern Optics, 52(11):1611–
2658
+ 1618, 2005.
2659
+ [26] L. Ryzhik, G. Papanicolaou, and J. B. Keller. Transport equations for elastic and other waves in random
2660
+ media. Wave Motion, 24:327–370, 1996.
2661
+ [27] B. E. A. Saleh and M. C. Teich. Fundamentals of Photonics. John Wiley & Sons, Inc., New York, 1991.
2662
+ [28] M. Salem, O. Korotkova, A. Dogariu, and E. Wolf. Polarization changes in partially coherent electromagnetic
2663
+ beams propagating through turbulent atmosphere. Waves in Random Media, 14:513–523, 2004.
2664
+ [29] B. Schaefer, E. Collett, R. Smyth, D. Barrett, and B. Fraher. Measuring the Stokes polarization parameters.
2665
+ American Journal of Physics, 75(2):163–168, 2007.
2666
+ [30] V. I. Tatarskii. Light propagation in a medium with random refractive index inhomogeneities in the Markov
2667
+ random process approximation. Sov. Phys. JETP, 29:1133–1138, 1969.
2668
+ [31] C. Villani. Optimal Transport: Old and New. Springer-Verlag, Berlin, 2008.
2669
+ [32] E. P. Wigner. On the quantum correction for thermodynamic equilibrium. Physical Review, 40:749–759,
2670
+ 1932.
2671
+ [33] D. Yin, M. Tang, and S. Jin.
2672
+ The Gaussian beam method for the Wigner equation with discontinuous
2673
+ potentials. Inverse Problems and Imaging, 7(3):1051–1074, 2013.
2674
+ [34] J. Zhou, Y. Liu, Y. Ke, H. Luo, and S. Wen. Generation of Airy vortex and Airy vector beams based on the
2675
+ modulation of dynamic and geometric phases. Optics Letters, 40(13):3193–3196, 2015.
2676
+ [35] C. Zuo, Q. Chen, L. Tian, L. Waller, and A. Asundi. Transport of intensity phase retrieval and computational
2677
+ imaging for partially coherent fields: The phase space perspective. Optics and Lasers in Engineering, 71:20–
2678
+ 32, 2015.
2679
+ 25
2680
+
99E2T4oBgHgl3EQfmAd3/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
9tE3T4oBgHgl3EQfrArn/content/2301.04657v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cec2e670e4871f0ef46d8aad8804b1c8782a580bb85bb74c4276969844b2a851
3
+ size 4644038
9tE3T4oBgHgl3EQfrArn/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e3d01e70f75835dfaff8d7eb7bdf56c5e8bb8478e2052a8c9a6d0271a89d5703
3
+ size 8388653
9tE3T4oBgHgl3EQfrArn/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7e5ccdd51c7af96dd1d13c0933a52c66cc97a296d82d084263af49bf5c309de6
3
+ size 313166
AdAyT4oBgHgl3EQf3_pa/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c391acff95a622fd0886a4d13d197ab44e7f9311da59a0d1f41a0a95a9160a9a
3
+ size 3407917
AtE1T4oBgHgl3EQfpAWX/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:781985823fb8a2829ce9f759b9b3645f5eb22822abb586b3f0e0d98a4d8f9299
3
+ size 90991
BNE0T4oBgHgl3EQfPwB8/content/tmp_files/2301.02183v1.pdf.txt ADDED
@@ -0,0 +1,2165 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Cold plasma waves in the chiral Maxwell-Carroll-Field-Jackiw electrodynamics
2
+ Filipe S. Ribeiro
3
+ a,∗ Pedro D. S. Silva
4
+ a,† and Manoel M. Ferreira Jr.
5
+ b‡
6
+ aPrograma de P´os-gradua¸c˜ao em F´ısica, Universidade Federal do Maranh˜ao,
7
+ Campus Universit´ario do Bacanga, S˜ao Lu´ıs (MA), 65080-805, Brazil and
8
+ bDepartamento de F´ısica, Universidade Federal do Maranh˜ao,
9
+ Campus Universit´ario do Bacanga, S˜ao Lu´ıs (MA), 65080-805, Brazil
10
+ In this work, we study the propagation and absorption of plasma waves in the chiral Maxwell-
11
+ Carroll-Field-Jackiw electrodynamics (MCJF). The Maxwell equations are rewritten for a cold,
12
+ uniform, and collisionless fluid plasma model, allowing us to determine the new refractive indices and
13
+ propagating modes. The case of transversal propagation is examined considering a purely timelike
14
+ CFJ background that plays the role of the magnetic conductivity chiral parameter. We find four
15
+ distinct refractive indices associated with RCP and LCP waves. For each index, the propagation
16
+ and absorption zones are illustrated for some specific parameter values. The optical behavior is
17
+ investigated by means of the rotatory power (RP) and dichroism coefficient. The existence of a
18
+ negative refraction zone enhances the rotatory power. It is also observed RP sign reversal, a feature
19
+ of rotating plasmas.
20
+ PACS numbers: 11.30.Cp, 41.20.Jb, 41.90.+e, 42.25.Lc
21
+ I.
22
+ INTRODUCTION
23
+ The study of electromagnetic (EM) waves propagation
24
+ [1, 2] in cold magnetized plasma is based on magneto-
25
+ ionic theory [3–8], developed by E. Appleton [9] and D.
26
+ Hartree [10] between 1929 and 1932 to describe the radio
27
+ waves propagation in the ionosphere, in the context of the
28
+ usual electrodynamics [11]. EM waves in plasmas have
29
+ been studied in other scenarios recently, as in logarithmic
30
+ nonlinear electrodynamics [12].
31
+ The chiral magnetic effect (CME) is the macroscopic
32
+ generation of an electric current in the presence of a mag-
33
+ netic field, stemming from an asymmetry between the
34
+ number density of left- and right-handed chiral fermions
35
+ [13–17]. It has been extensively investigated in several
36
+ distinct contexts, such as quark-gluon plasmas [18–20],
37
+ cosmology [21], neutron stars [22, 23], and electroweak
38
+ interactions [24].
39
+ The CME plays a very relevant role
40
+ in Weyl semimetals, where it is usually connected to
41
+ the chiral anomaly associated with Weyl nodal points
42
+ [25], the absence of the Weyl nodes [26], anisotropic ef-
43
+ fects stemming from tilted Weyl cones [27], the CME
44
+ and anomalous transport in Weyl semimetals [28], quan-
45
+ tum oscillations arising from the CME [29], computa-
46
+ tion of the electromagnetic fields produced by an elec-
47
+ tric charge near a topological Weyl semimetal with two
48
+ Weyl nodes [30], renormalization evaluations for Weyl
49
+ semimetals and Dirac materials [31], and solutions of ax-
50
+ ion electrodynamics [32].
51
+ The CME current can be classically described by the
52
+ axion Lagrangian [32–38],
53
+ L = −1
54
+ 4F µνFµν + θ(E · B),
55
+ (1)
56
57
58
59
+ where θ is the axion field. In this context, the Maxwell
60
+ equations are
61
+ ∇ · E = ρ − ∇θ · B,
62
+ (2)
63
+ ∇ × B − ∂tE = j + (∂tθ)B + ∇θ × E,
64
+ (3)
65
+ where the terms involving θ derivatives find association
66
+ with condensed matter effects [38]. Indeed, ∇θ · B repre-
67
+ sents an anomalous charge density, while ∇θ×B appears
68
+ in the anomalous Hall effect, and (∂tθ)B plays the role
69
+ of the chiral magnetic current. In the case the axion field
70
+ does not depend on the space coordinates, ∇θ = 0, the
71
+ Maxwell equations (2) and (3) read
72
+ ∇ · E = ρ,
73
+ ∇ × B − ∂tE = j + (∂tθ)B,
74
+ (4)
75
+ where (∂tθ)B, the chiral magnetic current, may also
76
+ be addressed as a term of Maxwell-Carroll-Field-Jackiw
77
+ (MCFJ) theory. A classical electrodynamics scenario en-
78
+ dowed with a chiral magnetic current has been investi-
79
+ gated considering symmetric and antisymmetric conduc-
80
+ tivity [39]. The latter case has also been addressed in
81
+ Ref. [40].
82
+ The MCFJ model [41] is the CPT-odd part of the U (1)
83
+ gauge sector of the Standard Model Extension (SME)
84
+ [42]. It is described by the Lagrangian density
85
+ L = −1
86
+ 4F µνFµν − 1
87
+ 4ϵµναβ (kAF )µ AνFαβ − AµJµ,
88
+ (5)
89
+ with (kAF )µ being the 4-vector background which con-
90
+ trols the Lorentz violation. This theory has been investi-
91
+ gated in multiple respects [43], encompassing radiative
92
+ evaluations [44, 45], topological defects solutions [46],
93
+ supersymmetric generalizations [47], classical solutions,
94
+ quantum aspects and unitarity analysis [48]. It may also
95
+ be connected with the CME in the sense that it provides
96
+ a modified Amp`ere’s law,
97
+ ∇ × B − ∂E
98
+ ∂t = J + k0
99
+ AF B + kAF × E,
100
+ (6)
101
+ arXiv:2301.02183v1 [physics.plasm-ph] 5 Jan 2023
102
+
103
+ ID2
104
+ containing the magnetic current, JB = k0
105
+ AF B, with the
106
+ component k0
107
+ AF playing the role of the magnetic conduc-
108
+ tivity.
109
+ The SME photon sector is also composed of a CPT-
110
+ even term constituted of a rank 4 Lorentz-violating tensor
111
+ [49], whose components may be properly parametrized in
112
+ terms of dimensionless 3 × 3 matrices, κDE, κDB, κHE,
113
+ and κHB, which allow to write generalized constitutive
114
+ relations between the fields (D, E) and (H, B),
115
+
116
+ D
117
+ H
118
+
119
+ =
120
+
121
+
122
+ ϵ1 + κDE
123
+ κDB
124
+ κHE
125
+ µ−11 + κHB
126
+
127
+
128
+
129
+ E
130
+ B
131
+
132
+ ,
133
+ (7)
134
+ similar to the ones that hold in continuous medium elec-
135
+ trodynamics, see Eqs. (8a) and (8b). Here, D is the elec-
136
+ tric displacement, while H is the magnetic field. This
137
+ CPT-even electrodynamics was investigated in several
138
+ contexts, involving consistency aspects [50], finite tem-
139
+ perature and boundary effects [51].
140
+ Lorentz-violating
141
+ electrodynamics in continuous matter [52, 53] has been
142
+ a topic of interest in the latest years due to its potential
143
+ to describe interesting effects of the phenomenology of
144
+ new materials, such as Weyl semimetals [54]. A classical
145
+ field theory description of wave propagation, refractive
146
+ indices, and optical effects in a continuous medium de-
147
+ scribed by the MCFJ electrodynamics (with usual consti-
148
+ tutive relations), including its Lorentz-violating higher-
149
+ order derivative version [55], was discussed in Ref. [56].
150
+ Chiral media are endowed with parity violation [57–
151
+ 60], being described by parity-odd models, as bi-isotropic
152
+ [61] and bi-anisotropic electrodynamics [62–67], whose
153
+ constitutive relations read
154
+ D = ˆϵ E + ˆα B,
155
+ (8a)
156
+ H = ˆβ E + ˆζ B,
157
+ (8b)
158
+ and ˆϵ = [ϵij], ˆα = [αij], ˆβ = [βij], and ˆζ = [ζij] represent,
159
+ in principle, 3 × 3 complex matrices.
160
+ The bi-isotropic
161
+ relations involve the diagonal isotropic tensors, ϵij = ϵδij,
162
+ αij = αδij, βij = βδij.
163
+ In chiral scenarios, LCP and
164
+ RCP waves travel at distinct phase velocities, implying
165
+ birefringence and optical rotation [68]. This phenomenon
166
+ stems from the natural optical activity of the medium
167
+ or can be induced by the action of external fields (e.
168
+ g., Faraday effect [69–71]), and it is measured in terms
169
+ of the rotation angle per unit length or rotatory power
170
+ (RP) [72]. Magneto-optical effects are used to investigate
171
+ features of new materials, such as topological insulators
172
+ [73–79] and graphene compounds [80].
173
+ The RP is a probe to examine the optical behavior of
174
+ several distinct systems, for instance, crystals [81, 82],
175
+ organic compounds [57, 83], graphene phenomena at ter-
176
+ ahertz band [84], and gas of fast-spinning molecules [85].
177
+ The optical rotation may depend on the frequency (RP
178
+ dispersion) and undergo reversion (anomalous RP dis-
179
+ persion) [86–88]. It also finds interesting applications in
180
+ chiral metamaterials [89–91], chiral semimetals [92, 93],
181
+ in the determination of the rotation direction of pulsars
182
+ [94], and in rotating plasmas, which constitutes a sce-
183
+ nario where RP sign reversal also takes place [95]. Re-
184
+ cently, RP reversal was also reported in a bi-isotropic
185
+ dielectric in the presence of chiral magnetic current [96].
186
+ Furthermore, in the presence of absorption, dichroism
187
+ is another useful tool for the optical characterization of
188
+ matter. It occurs when LCP and RCP light waves are
189
+ absorbed by the medium at different degrees. It has been
190
+ used to distinguish between Dirac and Weyl semimetals
191
+ [97], perform enantiomeric discrimination [98, 99], and
192
+ for developing graphene-based devices at terahertz fre-
193
+ quencies [100].
194
+ Another feature of chiral systems is the possible oc-
195
+ currence of negative refraction and negative refractive
196
+ index, which was first proposed by Veselago in 1968 [101]
197
+ and experimentally observed in 2000 [102, 103]. Later,
198
+ other experiments confirmed the negative refraction by
199
+ using Snell’s law [104, 105].
200
+ This unusual property
201
+ was achieved in constructed metamaterials with both
202
+ negative electric permittivity and magnetic permeability
203
+ [106, 107]. The negative refractive index also appears in
204
+ quark-gluon plasmas [108, 109], magnetoelectric materi-
205
+ als [110], metasurfaces [111], chiral bi-anisotropic meta-
206
+ materials [112, 113], and new materials, such as Dirac
207
+ semimetals [114, 115].
208
+ In chiral plasmas described by
209
+ generalized bi-isotropic constitutive relations [116, 117],
210
+ the negative refractive index can occur within some fre-
211
+ quency band and is not necessarily associated with si-
212
+ multaneously negative electric permittivity and negative
213
+ magnetic permeability, being attributed to the chirality
214
+ parameter introduced in the constitutive relations,
215
+ Di = εijEj + iξcBi,
216
+ Hi = µ−1Bi + iξcEi,
217
+ (9)
218
+ where εij, µ, and ξc are the plasma electric permit-
219
+ tivity tensor, the magnetic permeability, and the con-
220
+ stant chirality parameter. Plasmas metamaterials have
221
+ been investigated as new media endowed with interesting
222
+ properties, such as negative refraction and nonlinearities
223
+ [118, 119].
224
+ In this work, we are interested in examining the
225
+ wave propagation in a magnetized cold plasma ruled
226
+ by the MCFJ model, a chiral route distinct from the
227
+ bi-isotropic/anisotropic electrodynamics of the relations
228
+ (9). We carry out our analysis considering the timelike
229
+ Lorentz-violating background component, which plays
230
+ the role of chiral magnetic conductivity. The refractive
231
+ indices are evaluated and optical effects, such as bire-
232
+ fringence and dichroism, are examined, which could be
233
+ useful to trace analogies with other material properties.
234
+ We also find that the chiral conductivity yields negative
235
+ refraction in specific frequency bands, enhancing the ro-
236
+ tatory power and dichroism signals.
237
+ This paper is outlined as follows. In Sec. II, we briefly
238
+ review some aspects of the MCFJ model. In Sec. III, the
239
+ main properties of propagation in usual cold magnetized
240
+ plasmas are presented. The dispersion relations and re-
241
+ fractive indices for cold plasmas in chiral electrodynamics
242
+
243
+ 3
244
+ are addressed in Sec. IV. The optical effects are examined
245
+ in Sec. V. Finally, we summarize our results in Sec. VI.
246
+ II.
247
+ BASICS ON MCFJ ELECTRODYNAMICS
248
+ The Carroll-Field-Jackiw model was proposed as a
249
+ gauge invariant CPT-odd electrodynamics constrained
250
+ by birefringence data of distant galaxies [41]. It was later
251
+ incorporated as the CPT-odd sector of the SME [42], and
252
+ it has been investigated in several respects [43, 44]. In
253
+ matter, it is described by the following Lagrangian den-
254
+ sity1 [56]:
255
+ L = −1
256
+ 4GµνFµν − 1
257
+ 4ϵµναβ (kAF )µ AνFαβ − AµJµ, (10)
258
+ yielding the MCFJ equation of motion,
259
+ ∂ρGρκ + ϵβκµν (kAF )β Fµν = Jκ .
260
+ (11)
261
+ Here, (kAF )µ =
262
+
263
+ k0
264
+ AF , kAF
265
+
266
+ is a constant 4-vector back-
267
+ ground responsible for the Lorentz violation, and
268
+ Fµν = ∂µAν − ∂νAµ,
269
+ Gµν = 1
270
+ 2χµναβFαβ,
271
+ (12)
272
+ are the usual U(1) vacuum and continuous matter field
273
+ strength, respectively.
274
+ The 4-rank tensor, χµναβ, de-
275
+ scribes the medium constitutive tensor [120], whose com-
276
+ ponents provide the electric and magnetic responses of
277
+ the medium. Indeed, the electric permittivity and mag-
278
+ netic permeability tensor components are written as
279
+ ϵij ≡ χ0ij0 and µ−1
280
+ lk
281
+
282
+ 1
283
+ 4ϵijlχijmnϵmnk, respectively.
284
+ For isotropic polarization and magnetization, it holds
285
+ ϵij = ϵδij and µ−1
286
+ ij = µδij, providing the usual isotropic
287
+ constitutive relations,
288
+ D = ϵE,
289
+ H = µB.
290
+ (13)
291
+ A straightforward calculation from Eq. (11) yields
292
+ ∇ · D = J0 − kAF · B,
293
+ (14)
294
+ ∇ × H − ∂D
295
+ ∂t = J + k0
296
+ AF B + kAF × E,
297
+ (15)
298
+ where Gi0 = Di and Gij = −ϵijkHk. The homogeneous
299
+ Maxwell equations are given by
300
+ ∇ · B = 0,
301
+ ∇ × E + ∂B
302
+ ∂t = 0.
303
+ (16)
304
+ By using a plane-wave ansatz for the electromagnetic
305
+ fields, the MCFJ equations (14)-(16) read:
306
+ 1 We use natural units h = c = 1 and the Minkowski metric sig-
307
+ nature gµν = diag (1, −1, −1, −1).
308
+ ik · D + kAF · B = J0,
309
+ (17a)
310
+ ik × H + iωD − k0
311
+ AF B − kAF × E = J,
312
+ (17b)
313
+ k · B = 0,
314
+ k × E − ωB = 0,
315
+ (17c)
316
+ where k is the wave vector and ω is the (angular) wave
317
+ frequency.
318
+ In the presence of anisotropy, the permittivity and per-
319
+ meability are represented by rank 2 tensors, εij and µij,
320
+ which may also depend on the frequency (for a dispersive
321
+ medium). For an anisotropic medium, the constitutive
322
+ relations (13) are replaced by [1, 2],
323
+ Di = εij(ω)Ej,
324
+ Bi = µij(ω)Hj.
325
+ (18)
326
+ For non-magnetic media with isotropic magnetic perme-
327
+ ability, it holds µij(ω) = µ0, where µ0 is the vacuum
328
+ permeability. Considering the constitutive relations (18),
329
+ the modified Amp`ere-Maxwell’s law, Eq.(17b), and Fara-
330
+ day’s law, Eq.(17c), in the absence of sources, we obtain
331
+ a modified wave equation for the electric field,
332
+ ki �
333
+ kjEj�
334
+ − k2Ei = −ω2µ0¯εij (ω) Ej,
335
+ (19)
336
+ where we define the extended permittivity tensor,
337
+ ¯εij(ω) = εij(ω) − ik0
338
+ AF
339
+ ω2 ϵikjkk − iϵikj
340
+ kk
341
+ AF
342
+ ω .
343
+ (20)
344
+ Using the definition to the refractive index, n = k/ω, the
345
+ modified wave equation becomes
346
+ MijEj = 0,
347
+ (21)
348
+ with Mij given by
349
+ Mij = n2δij −ninj − εij
350
+ ε0
351
+ − i
352
+ ω
353
+
354
+ V0ϵikjnk + ϵikjV k�
355
+ , (22)
356
+ in which ε0 is the vacuum electric permittivity, and
357
+ V0 = k0
358
+ AF /ε0,
359
+ V k = kk
360
+ AF /ε0.
361
+ (23)
362
+ appear as the components of a redefined background,
363
+ V µ =
364
+
365
+ V0, V i�
366
+ .
367
+ The nontrivial solutions for the elec-
368
+ tric field require a vanishing determinant of the matrix
369
+ Mij, det Mij = 0, which provides the dispersion relations
370
+ that describe the wave propagation in the medium.
371
+ In this work, we will study plasma waves propagation
372
+ for a chiral (parity-odd) medium, which means restrain-
373
+ ing our investigation to the case of a purely timelike
374
+ Lorentz-violating background vector, (kAF )µ =
375
+
376
+ k0
377
+ AF , 0
378
+
379
+ .
380
+ The latter also plays the role of chiral magnetic conduc-
381
+ tivity. In this scenario, the wave equation (21) becomes
382
+
383
+ n2δij − ninj − εij
384
+ ε0
385
+ − iV0
386
+ ω ϵikjnk
387
+
388
+ Ej = 0.
389
+ (24)
390
+
391
+ 4
392
+ III.
393
+ THE USUAL MAGNETIZED COLD
394
+ PLASMA
395
+ In this work we will adopt the fluid theory approach
396
+ in the cold plasma limit [3–7]:
397
+ ∂n
398
+ ∂t + ∇ · (nu) = 0,
399
+ (25)
400
+ ∂u
401
+ ∂t + u · ∇u = q
402
+ m (E + u × B0) ,
403
+ (26)
404
+ where n is the electron number density, u is the electron
405
+ fluid velocity field, q and m are the electron charge and
406
+ mass, respectively, and B0 is the equilibrium magnetic
407
+ field. For simplicity, the ions are supposed to be infinitely
408
+ massive, which is appropriate for high-frequency waves.
409
+ Furthermore, thermal and collisional effects are also dis-
410
+ regarded. The linearized version of the magnetized cold
411
+ plasmas [7] consider fluctuations around average quanti-
412
+ ties, n0 and B0, which are constant in time and space.
413
+ Thus, the plasma quantities read
414
+ n = n0 + δn,
415
+ (27a)
416
+ u = δu,
417
+ (27b)
418
+ E = δE
419
+ (27c)
420
+ B = B0 + δB,
421
+ (27d)
422
+ with δn, δu, δE and δB being first order plane wave
423
+ magnitude perturbations. Following the usual procedure
424
+ [3–6], assuming B0 = B0ˆz, we write the corresponding
425
+ dielectric tensor,
426
+ εij(ω) = ε0
427
+
428
+
429
+ S
430
+ −iD 0
431
+ iD
432
+ S
433
+ 0
434
+ 0
435
+ 0
436
+ P
437
+
438
+ � ,
439
+ (28)
440
+ where
441
+ S = 1−
442
+ ω2
443
+ p
444
+ (ω2 − ω2c), D =
445
+ ωcω2
446
+ p
447
+ ω (ω2 − ω2c), P = 1− ω2
448
+ p
449
+ ω2 , (29)
450
+ and
451
+ ωp = n0q2
452
+ mϵ0
453
+ ,
454
+ ωc = |q|B0
455
+ m
456
+ ,
457
+ (30)
458
+ are the plasma and cyclotron frequencies, respectively.
459
+ From the Maxwell theory, two distinct refractive in-
460
+ dices are obtained,
461
+ n± =
462
+
463
+ 1 −
464
+ ω2p
465
+ ω (ω ± ωc),
466
+ (31)
467
+ which provide right-handed circularly polarized (RCP)
468
+ and left-handed circularly polarized (LCP) modes,
469
+ ELCP =
470
+ i
471
+
472
+ 2
473
+
474
+ 1
475
+ i
476
+
477
+ ,
478
+ ERCP =
479
+ i
480
+
481
+ 2
482
+
483
+ 1
484
+ −i
485
+
486
+ ,
487
+ (32)
488
+ for the propagating modes associated to n±, respectively.
489
+ This is the standard result of wave propagation in the
490
+ usual magnetized cold plasma. We recall that a cutoff
491
+ happens whenever the refractive index, n, goes to zero.
492
+ On the other hand, a resonance occurs if n tends to infin-
493
+ ity. From the indices (31), we obtain the following cutoff
494
+ frequencies:
495
+ ω± = 1
496
+ 2
497
+ ��
498
+ ω2c + 4ω2p ∓ ωc
499
+
500
+ ,
501
+ (33)
502
+ where ω± is related to n±, respectively.
503
+ A very usual effect in magnetized plasmas is the circu-
504
+ lar birefringence2, which causes the rotation of the plane
505
+ of polarization of a linearly polarized wave that propa-
506
+ gates within the medium.
507
+ Thus the linearly polarized
508
+ wave emerges from the medium with an electric field
509
+ whose polarization is rotated relative to its initial lin-
510
+ ear configuration. Such a phenomenon can be properly
511
+ explained by decomposing the initial wave into two cir-
512
+ cularly polarized waves (RCP and LCP) that travel with
513
+ different phase velocities. In this case, the rotation an-
514
+ gle of the electric field can be expressed as the difference
515
+ between the refractive indices associated with the RCP
516
+ and LCP waves [68, 72]:
517
+ θ = πL
518
+ λ0
519
+ (Re [nRCP ] − Re [nLCP ]) ,
520
+ (34)
521
+ where λ0 is the vacuum wavelength of the incident wave.
522
+ The rotation power δ = θ/L (phase difference per unit
523
+ length), is given as
524
+ δ = −ω
525
+ 2 (Re [nLCP ] − Re [nRCP ]) .
526
+ (35)
527
+ In a cold magnetized plasma, the refractive indices (31)
528
+ provide the following rotatory power:
529
+ δ = −ω
530
+ 2 Re
531
+
532
+
533
+
534
+ 1 −
535
+ ω2p
536
+ ω (ω + ωc) −
537
+
538
+ 1 −
539
+ ω2p
540
+ ω (ω − ωc)
541
+
542
+ � .
543
+ (36)
544
+ The behavior of the RP (36) in terms of the frequency
545
+ ω is depicted in Fig. 1. One notices that there is a di-
546
+ vergence at ωc, being positive for ω < ωc and negative
547
+ for ω > ωc. It tends to zero at the high-frequency limit
548
+ ω >> (ωp, ωc), where it decays as
549
+ δ ≈ −ω2
550
+ pωc
551
+ 2ω2 .
552
+ (37)
553
+ Associated with the imaginary part of the refractive in-
554
+ dex, one can also examine dichroism, an optical effect
555
+ 2 In plasmas, the birefringence is usually a consequence of the Fara-
556
+ day effect, occurring due to the presence of the external field
557
+ B0, which generates distinct phase velocities for the propagating
558
+ modes [70].
559
+
560
+ 5
561
+ that occurs when circularly polarized waves are absorbed
562
+ by the medium at different degrees [56, 58, 59]. Thus
563
+ dichroism coefficient refers to the difference in absorp-
564
+ tion of LCP and RCP waves, being given by:
565
+ δd = −ω
566
+ 2 (Im[nLCP ] − Im[nRCP ]) .
567
+ (38)
568
+ which, for the refractive indices (31), implies
569
+ δd = −ω
570
+ 2 Im
571
+
572
+
573
+
574
+ 1 −
575
+ ω2p
576
+ ω (ω + ωc) −
577
+
578
+ 1 −
579
+ ω2p
580
+ ω (ω − ωc)
581
+
582
+ � .
583
+ (39)
584
+ ω = ωc
585
+ ω = 2 ωc
586
+ ω = ω-
587
+ ω = ω-
588
+ 0
589
+ 1
590
+ 2
591
+ 3
592
+ 4
593
+ -2
594
+ -1
595
+ 0
596
+ 1
597
+ 2
598
+ ω (rad s-1)
599
+ δ (rad m-1)
600
+ FIG. 1. Rotatory power (36) in terms of ω. Here, ωc = ωp (red
601
+ line) and ωc = 2ωp (blue line), with the choice ωc = 1 rad s−1.
602
+ Such a quantity is plotted in Fig. 2, which shows sin-
603
+ gularity at the cyclotron frequency ωc.
604
+ For ωc = ωp
605
+ (red curve), the dichroism coefficient (39) is negative for
606
+ ω < ωred
607
+ + , positive for 2ωc < ω < ωred
608
+
609
+ and null for other
610
+ frequencies. The case for ωc = ωp/2 (blue curve) differs
611
+ in the fact that ωblue
612
+ +
613
+ is greater than ωc, showing that
614
+ (39) is now negative for ω < ωc.
615
+ ω = ωc
616
+ ω = 2 ωc
617
+ ω = ω-
618
+ ω = ω-
619
+ ω = ω+
620
+ ω = ω+
621
+ 0.0
622
+ 0.5
623
+ 1.0
624
+ 1.5
625
+ 2.0
626
+ -2
627
+ -1
628
+ 0
629
+ 1
630
+ 2
631
+ ω (rad s-1)
632
+ δd (rad m-1)
633
+ FIG. 2. Dichroism coefficient (39) in terms of ω. Here, ωc =
634
+ ωp (red line) and ωc = ωp/2 (blue line), with ωc = 1 rad s−1.
635
+ IV.
636
+ WAVE PROPAGATION IN CHIRAL
637
+ ELECTRODYNAMICS
638
+ Starting from the wave equation (24) and using the ex-
639
+ pression of the cold plasma dielectric permittivity, given
640
+ in Eq. (28), we obtain a linear homogeneous system,
641
+
642
+
643
+ n2 − n2
644
+ x − S
645
+ iD − nxny + i (V0/ω) nz −nxnz − i (V0/ω) ny
646
+ −iD − nxny − i (V0/ω) nz
647
+ n2 − n2
648
+ x − S
649
+ −nynz + i (V0/ω) nx
650
+ −nxnz + i (V0/ω) ny
651
+ −nynz − i (V0/ω) nx
652
+ n2 − n2
653
+ z − P
654
+
655
+
656
+
657
+
658
+ δEx
659
+ δEy
660
+ δEz
661
+
662
+ � = 0.
663
+ (40)
664
+ Let us consider, for simplicity, the case the refractive
665
+ index is parallel to the magnetic field, n = nˆz, such that
666
+ one obtains
667
+
668
+
669
+ n2 − S
670
+ iD + i (V0/ω) n
671
+ 0
672
+ −iD − i (V0/ω) n
673
+ n2 − S
674
+ 0
675
+ 0
676
+ 0
677
+ −P
678
+
679
+
680
+
681
+
682
+ δEx
683
+ δEy
684
+ δEz
685
+
686
+ � = 0,
687
+ (41)
688
+ for which det[Mij] = 0 provides the dispersion relations
689
+ P
690
+
691
+ ω2 �
692
+ n2 − S
693
+ �2 − (ωD + nV0)2�
694
+ = 0.
695
+ (42)
696
+ Longitudinal waves, n ∥ δE or δE = (0, 0, δEz), may
697
+ emerge, when P = 0, with non propagating vibration
698
+ at the plasma frequency, ω = ωp. For transverse waves,
699
+ n ⊥ δE or δE = (δEx, δEy, 0), the dispersion relation
700
+ (42) simplifies as
701
+
702
+ n2 − S
703
+ �2 − (D + n (V0/ω))2 = 0,
704
+ (43)
705
+ also written as a fourth-order equation in n,
706
+ n4 −
707
+
708
+ 2S + (V0/ω)2�
709
+ n2 − 2D (V0/ω) n +
710
+
711
+ S2 − D2�
712
+ = 0.
713
+ (44)
714
+ Taking into account the relations (29), the dispersion re-
715
+ lation (44) provides the following refractive indices:
716
+ nR,M = − V0
717
+ 2ω ±
718
+
719
+ 1 +
720
+ � V0
721
+
722
+ �2
723
+
724
+ ω2p
725
+ ω(ω − ωc),
726
+ (45)
727
+ nL,E = V0
728
+ 2ω ±
729
+
730
+ 1 +
731
+ � V0
732
+
733
+ �2
734
+
735
+ ω2p
736
+ ω(ω + ωc),
737
+ (46)
738
+ In general, the indices nR, nL, nE, nM may be real,
739
+ imaginary, or complex (presenting both pieces) at some
740
+ frequency ranges. As well-known, the real part is asso-
741
+ ciated with propagation, while the complex piece is con-
742
+ cerned with absorption. Furthermore, these indices may
743
+
744
+ 6
745
+ have positive or negative real pieces.
746
+ The indices nL
747
+ and nM are always positive and negative, respectively,
748
+ the latter one being a negative refractive index. On the
749
+ other hand, the indices nR and nE can be positive or
750
+ negative, depending on the frequency zone examined, in
751
+ such a way the associated modes can manifest negative
752
+ refraction behavior (in a suitable frequency band).
753
+ The propagating modes associated with the refractive
754
+ indices in Eq. (45)) and Eq. (46) are obtained by insert-
755
+ ing each one in Eq. (41) and carrying out the correspond-
756
+ ing eigenvector (with a null eigenvalue). The emerging
757
+ electric field are the ELCP and ERCP , given in Eq. (32),
758
+ where nR, nM are associated with the RCP mode, and
759
+ nL, nE are related to the LCP mode,
760
+ nL, nE �→ ELCP =
761
+ i
762
+
763
+ 2
764
+
765
+ 1
766
+ i
767
+
768
+ ,
769
+ (47)
770
+ nR, nM �→ ERCP =
771
+ i
772
+
773
+ 2
774
+
775
+ 1
776
+ −i
777
+
778
+ .
779
+ (48)
780
+ From the indices nR, nE, given by Eqs. (45) and (46),
781
+ we obtain the same cutoff frequencies (33) of the standard
782
+ case: in fact, ω− is related to the refractive index nR,
783
+ and ω+ is associated with the refractive index nE. In
784
+ contrast, the refractive indices nL and nM have no real
785
+ root. The behavior of the refractive indices in Eqs. (45)
786
+ and (46) will be examined in the following.
787
+ A.
788
+ About the index nR
789
+ We initiate discussing some properties of the index nR.
790
+ The behavior of nR in terms of the dimensionless param-
791
+ eter ω/ωc is illustrated in Fig. 3, which displays the real
792
+ imaginary pieces of the refractive index nR. We point
793
+ out:
794
+ (i) It takes on a finite value when ω → 0, given by
795
+ nR (0) = 1
796
+ V0
797
+
798
+ ω2
799
+ p
800
+ ωc
801
+
802
+ ,
803
+ (49)
804
+ differing from the behavior of the usual magnetized
805
+ plasma index n−, which provides n → ∞ near the
806
+ origin.
807
+ (ii) For 0 < ω < ωc, nR is positive since the square root
808
+ in (45) is real, positive, and larger than the negative
809
+ piece before it. Such a positivity also holds for the
810
+ usual index n−. See the black line in this frequency
811
+ zone in Fig. 3.
812
+ (iii) For ω → ωc, nR → ∞, and there occurs a resonance
813
+ at the cyclotron frequency.
814
+ (iv) For ωc < ω < ωr, there appears a negative refrac-
815
+ tive index zone with absorption, where Re[nR] < 0
816
+ and Im[nR] ̸= 0, as shown in Fig. 3. The frequency
817
+ ωr is the root of the radicand in Eq. (45),
818
+ R− (ω) = 1 + V 2
819
+ 0
820
+ 4ω2 −
821
+ ω2
822
+ p
823
+ ω (ω − ωc),
824
+ (50)
825
+ which yields a cubic equation in ω.
826
+ (v) For ωr < ω < ω−, one finds a negative refractive
827
+ index zone without absorption, that is, Re[nR] < 0
828
+ and Im[nR] = 0.
829
+ (vi) For ω > ω−, the quantity nR is always positive,
830
+ corresponding to a propagating zone, with nR → 1
831
+ in the high-frequency limit.
832
+ ω = ω-
833
+ ω = ωr
834
+ ω = ωc
835
+ 0
836
+ 1
837
+ 2
838
+ 3
839
+ 4
840
+ -2
841
+ -1
842
+ 0
843
+ 1
844
+ 2
845
+ 3
846
+ 4
847
+ ω/ωc
848
+ n
849
+ FIG. 3. Index of refraction nR in terms of the frequency ω.
850
+ The dashed blue (black) line corresponds to the imaginary
851
+ piece of nR (n−), while the solid blue (black) line represents
852
+ the real piece of nR (n−).
853
+ Here ωc = ωp, V0 = 2ωp, and
854
+ ωc = 1 rad s−1.
855
+ The frequency zone in which Im[nR] ̸= 0, that is,
856
+ ωc < ω < ωr, corresponds to the absorption zone for
857
+ the metamaterial (negative refractive index) RCP wave,
858
+ as already mentioned before. The frequency ranges in
859
+ which Im[nR] = 0 define the propagation zone for the
860
+ RCP wave.
861
+ B.
862
+ About the index nL
863
+ The index nL, given in Eq.
864
+ (46), has no real root,
865
+ presenting the following features:
866
+ (i) For ω → 0, nL → +∞. Then, the presence of the
867
+ term V0 turns the refractive index real and pos-
868
+ itively divergent at the origin, differing from the
869
+ usual index n+ behavior, see Eq. (31), which is
870
+ complex and divergent, Im[n+] → ∞, at the ori-
871
+ gin.
872
+
873
+ 7
874
+ (ii) For ω > 0, it is necessary to analyze the radicand
875
+ in Eq. (46),
876
+ R+ (ω) = 1 + V 2
877
+ 0
878
+ 4ω2 −
879
+ ω2
880
+ p
881
+ ω (ω + ωc),
882
+ (51)
883
+ since it can be positive or negative, which deter-
884
+ mines the absence or presence of an absorption
885
+ zone, respectively. Note that for ω > ω+ the term
886
+ 1 − ω2
887
+ p/ω (ω + ωc) is greater than zero (ω+ is the
888
+ root of such a term), such that R+ is positive.
889
+ Therefore, the possibility of R+ being negative oc-
890
+ curs only in the range 0 < ω < ω+, for which the
891
+ term 1 − ω2
892
+ p/ω (ω + ωc) is less than zero. Hence,
893
+ this positivity for R+ is stated by the condition,
894
+ V 2
895
+ 0
896
+ 4ω2 >
897
+ �����1 −
898
+ 4ω2
899
+ p
900
+ ω(ω + ωc)
901
+ �����
902
+ ω<ω+
903
+ ,
904
+ (52)
905
+ for which R+ is always positive and the refractive
906
+ index nL is real for any ω > 0. This corresponds
907
+ to a propagating mode for the entire frequency do-
908
+ main. The behavior of nL in terms of the dimen-
909
+ sionless parameter ω/ωc, considering the condition
910
+ (52), that is, R+ > 0, is shown in Fig. 4.
911
+ (iii) On the other hand, for
912
+ V 2
913
+ 0
914
+ 4ω2 <
915
+ �����1 −
916
+ 4ω2
917
+ p
918
+ ω(ω + ωc)
919
+ �����
920
+ ω<ω+
921
+ ,
922
+ (53)
923
+ one has R+
924
+ <
925
+ 0 and nL becomes complex,
926
+ Im[nL] ̸= 0, determining the opening of an absorp-
927
+ tion zone located within the interval ωi < ω < ωf,
928
+ as shown in Fig. 5. The frequencies ωi and ωf are
929
+ positive and real roots of R+, a cubic equation in
930
+ the frequency.
931
+ ω = ω+
932
+ 0
933
+ 1
934
+ 2
935
+ 3
936
+ 4
937
+ -2
938
+ 0
939
+ 2
940
+ 4
941
+ 6
942
+ ω/ωc
943
+ n
944
+ FIG. 4. Refractive index nL (blue lines) for the condition (52),
945
+ R+ > 0. Refractive index n+ (black lines) of Eq. (31). The
946
+ dashed (solid) lines correspond to the imaginary (real) pieces
947
+ of nL and n+. Here ωc = ωp, V0 = 2ωp, and ωc = 1 rad s−1.
948
+ ω = ω+
949
+ ω = ωf
950
+ ω = ωi
951
+ 0.0
952
+ 0.5
953
+ 1.0
954
+ 1.5
955
+ 2.0
956
+ -1
957
+ 0
958
+ 1
959
+ 2
960
+ 3
961
+ 4
962
+ ω/ωc
963
+ n
964
+ FIG. 5. Refractive index nL (blue lines) for the condition (53),
965
+ R+ < 0. Refractive index n+ (black lines) of Eq. (31). The
966
+ dashed (solid) lines correspond to the imaginary (real) pieces
967
+ of nL and n+. Here ωc = ωp, V0 = 0.7ωp, and ωc = 1 rad s−1.
968
+ C.
969
+ About the index nE
970
+ The quantity nE is a refractive index that only exists
971
+ as a positive quantity due to the presence of the chiral
972
+ Lorentz-violating term. In the case we set V0 = 0, the
973
+ second relation in Eq. (46) yields Re[nE] < 0 (negative
974
+ index of refraction). For V0 ̸= 0, the index nE presents a
975
+ small positivity range, Re[nE] > 0, which provides prop-
976
+ agation for the associated LCP wave. We present below
977
+ some aspects of nE:
978
+ (i) For ω → 0, the index nE tends to a finite value at
979
+ origin,
980
+ nE (0) = 1
981
+ V0
982
+
983
+ ω2
984
+ p
985
+ ωc
986
+
987
+ ,
988
+ (54)
989
+ which is inversely proportional to the magnitude of
990
+ the chiral factor, V0.
991
+ (ii) Since the radicand of nE is the same one of nL, see
992
+ Eq. (46), it holds here the same procedure applied
993
+ for nL. For values of V0 that satisfy the condition
994
+ (52), R+ > 0, nE is always real, Im[nE] = 0, being
995
+ positive within the interval 0 < ω < ω+, and nega-
996
+ tive for ω > ω+, since
997
+
998
+ R+ > V0/2ω at this range.
999
+ The real and imaginary parts of nE are represented
1000
+ in Fig. 6.
1001
+ (iii) Considering the condition (53), nE becomes com-
1002
+ plex and exhibits an absorption zone, Im[nE] ̸= 0,
1003
+ in the interval ωi < ω < ωf, with ωi, ωf < ω+, as
1004
+ shown in Fig. 7. Such a figure depicts the real and
1005
+ imaginary pieces of nE (under the condition (53)).
1006
+
1007
+ 8
1008
+ ω = ω+
1009
+ 0.0
1010
+ 0.5
1011
+ 1.0
1012
+ 1.5
1013
+ 2.0
1014
+ -4
1015
+ -3
1016
+ -2
1017
+ -1
1018
+ 0
1019
+ 1
1020
+ 2
1021
+ ω/ωc
1022
+ n
1023
+ FIG. 6.
1024
+ Red line: plot of the index nE for the condition
1025
+ (52), R+ > 0. Black line: plot of the index −n+ of Eq. (31).
1026
+ Dashed (solid) lines represent the imaginary (real) pieces of
1027
+ nE and −n+. Here, we have used ωc = ωp and V0 = 2ωp,
1028
+ with the choice ωc = 1 rad s−1.
1029
+ ω = ω+
1030
+ ω = ωf
1031
+ ω = ωi
1032
+ 0.0
1033
+ 0.5
1034
+ 1.0
1035
+ 1.5
1036
+ 2.0
1037
+ -3
1038
+ -2
1039
+ -1
1040
+ 0
1041
+ 1
1042
+ 2
1043
+ 3
1044
+ ω/ωc
1045
+ n
1046
+ FIG. 7.
1047
+ Red line: plot of the index nE for the condition
1048
+ (53), R+ < 0. Black line: plot of the index −n+ of Eq. (31).
1049
+ Dashed (solid) lines represent the imaginary (real) pieces of
1050
+ nE and −n+. Here, we have set ωc = ωp, V0 = 0.7ωp, and
1051
+ ωc = 1 rad s−1.
1052
+ D.
1053
+ About the index nM
1054
+ The additional index nM, given in Eq. (45), is always
1055
+ negative (negative refraction) and has no real root. The
1056
+ behavior of nM in terms of the dimensionless parameter
1057
+ ω/ωc is shown in Fig. 8. We notice the following features:
1058
+ (i) For 0 < ω < ωc, nM is real and negative since
1059
+ the square root in (45) is real. This is the same
1060
+ behavior of the index −n+. See the black line in
1061
+ Fig. (8).
1062
+ (ii) For ω → ωc, nM → −∞, and there occurs a reso-
1063
+ nance at the cyclotron frequency.
1064
+ (iii) For ωc < ω < ωr, there appears an absorption zone
1065
+ for metamaterial, Re[nM] < 0 and Im[nM] ̸= 0,
1066
+ while the index −n+ is purely imaginary, Re[nM] =
1067
+ 0 and Im[nM] ̸= 0, as shown in Fig. 8. The fre-
1068
+ quency ωr is the root of R−.
1069
+ (iv) For ω > ωr, the quantity nM is always negative,
1070
+ corresponding to a negative propagation zone, with
1071
+ nM → −1 in the high-frequency limit.
1072
+ ω = ωc
1073
+ ω = ω-
1074
+ ω = ωr
1075
+ 0
1076
+ 1
1077
+ 2
1078
+ 3
1079
+ 4
1080
+ -6
1081
+ -4
1082
+ -2
1083
+ 0
1084
+ ω/ωc
1085
+ n
1086
+ FIG. 8. Blue line: plot of the index nM. Black line: plot
1087
+ of the real piece of −n− of Eq. (31).
1088
+ Dashed (solid) lines
1089
+ represent the imaginary (real) pieces of nM and −n−. Here,
1090
+ we have used: ωc = ωp, V0 = 2ωp, and ωc = 1 rad s−1.
1091
+ E.
1092
+ Dispersion relations behavior
1093
+ The wave dispersion associated with each refractive in-
1094
+ dex is usually visualized in plots ω × k. In the following,
1095
+ we work with dimensionless plots, (ω/ωc) × (k/ωc).
1096
+ The dispersion relations associated with nR and nM
1097
+ are depicted in Fig. 9 for ωc = ωp.
1098
+ The propagation
1099
+ occurs for 0 < ω < ωc and ω > ω−, while absorption
1100
+ takes place in ωc < ω < ωr. The range ωr < ω < ω−
1101
+ corresponds to negative refraction propagation zone (k <
1102
+ 0) for nR. The refractive index nM is negative for k < 0
1103
+ and ω > 0.
1104
+ Figure 10 depicts the dispersion relations related to nL
1105
+ and nE. The wave associated with nL propagates for all
1106
+ frequencies. For nE, the conventional propagation zone
1107
+ occurs in 0 < ω < ω+. For ω > ω+, there occurs a prop-
1108
+ agation zone with negative refraction. For the standard
1109
+ indices, ±n+, the absorption zone is 0 < ω < ω+.
1110
+ Furthermore, Fig. 11 shows the dispersion relations for
1111
+ nL and nE in the case there is a modified absorption zone
1112
+ for ωi < ω < ωf, while the free propagation occurs for
1113
+ 0 < ω < ωi and ω > ωf. The frequencies ωi, ωf and
1114
+ ωr define the limits for unusual propagation zones. As
1115
+ already discussed, these frequencies are obtained from
1116
+ the radicands (50) and (51).
1117
+
1118
+ 9
1119
+ Modified absorption
1120
+ Usual absorption zone
1121
+ ω = ω-
1122
+ ω = ωc
1123
+ ω = ωr
1124
+ ω = k
1125
+ -4
1126
+ -2
1127
+ 0
1128
+ 2
1129
+ 4
1130
+ 0
1131
+ 1
1132
+ 2
1133
+ 3
1134
+ 4
1135
+ k/ωc
1136
+ ω
1137
+ ωc
1138
+ FIG. 9. Plot of the dispersion relations related to refractive
1139
+ indices nR (solid red line) and nM (solid blue line).
1140
+ The
1141
+ dashed black line corresponds to the indices of the usual case
1142
+ (±n−). The highlighted area in red (gray) indicates the ab-
1143
+ sorption zone for nR,M (±n−). Here, we have used ωc = ωp
1144
+ and V0 = 2ωp, with ωc = 1 rad s−1.
1145
+ Usual absorption zone
1146
+ ω = ω+
1147
+ ω = k
1148
+ -2
1149
+ -1
1150
+ 0
1151
+ 1
1152
+ 2
1153
+ 0.0
1154
+ 0.5
1155
+ 1.0
1156
+ 1.5
1157
+ 2.0
1158
+ k/ωc
1159
+ ω
1160
+ ωc
1161
+ FIG. 10. Plot of the dispersion relations related to refractive
1162
+ indices nL (solid red line) and nE (solid blue line). The dashed
1163
+ line corresponds to the indices ±n+ of the usual case. The
1164
+ highlighted gray area indicates the absorption zone for ±n+,
1165
+ where now also occurs propagation. Here, we have used ωc =
1166
+ ωp and V0 = ωp, with ωc = 1 rad s−1.
1167
+ Modified absorption zone
1168
+ ω = ω+
1169
+ ω = ωi
1170
+ ω = ωf
1171
+ ω = k
1172
+ -2
1173
+ -1
1174
+ 0
1175
+ 1
1176
+ 2
1177
+ 0.0
1178
+ 0.5
1179
+ 1.0
1180
+ 1.5
1181
+ 2.0
1182
+ k/ωc
1183
+ ω
1184
+ ωc
1185
+ FIG. 11. Plot of the dispersion relations related to refractive
1186
+ indices nL (solid red line) and nE (solid blue line). The dashed
1187
+ line corresponds to the usual case with indices ±n+.
1188
+ The
1189
+ highlighted areas in red (gray) indicate the absorption zone
1190
+ for nL,E (±n+). Here, we have used ωc = ωp and V0 = 0.7ωc,
1191
+ with ωc = 1 rad s−1.
1192
+ V.
1193
+ BIREFRINGENCE, ROTATORY POWER
1194
+ AND DICHROISM
1195
+ The phase velocity in terms of the refractive index n
1196
+ is defined (in natural units) as vphase = 1/n.
1197
+ Hence,
1198
+ the corresponding phase velocities, vR = 1/ (nR), vL =
1199
+ 1/ (nL), vE = 1/ (nE), vM = 1/ (nM), can be defined
1200
+ with the indices nR, nL, nE, nM of Eqs. (45) and (46).
1201
+ Accordingly with the previous analysis of the refractive
1202
+ indices, in general, the RCP and LCP modes propagate
1203
+ at different phase velocities for each frequency value, gen-
1204
+ erating circular birefringence in the propagation band,
1205
+ expressed in terms of the rotatory power (35). On the
1206
+ other hand, in the absorption zones, there occurs dichro-
1207
+ ism, measured in terms of the coefficient of Eq. (38).
1208
+ A.
1209
+ Rotatory power
1210
+ In order to write the rotatory power (RP), we need to
1211
+ consider the refractive indices nL, nE, associated with
1212
+ the LCP wave, and the indices nR, nM, associated to
1213
+ the RCP wave. It allows, in principle, to determine four
1214
+ distinct RPs at the propagation zones, some of which we
1215
+ examine in this section.
1216
+ We start by writing the rotation power defined in terms
1217
+ of real pieces of the refractive indices nL and nR,
1218
+ δLR = −ω
1219
+ 2 (Re[nL] − Re[nR]) ,
1220
+ (55)
1221
+
1222
+ 10
1223
+ or explicitly,
1224
+ δLR = −ω
1225
+ 2 Re
1226
+
1227
+ V0/ω +
1228
+
1229
+ R+ −
1230
+
1231
+ R−
1232
+
1233
+ ,
1234
+ (56)
1235
+ where R+ and R− are given in Eqs. (50) and (51). We
1236
+ find a positive frequency,
1237
+ ˆω =
1238
+
1239
+ ω2c + ω2p/2 − ω2p
1240
+
1241
+ 4ω2c + V 2
1242
+ 0
1243
+ 2V0
1244
+ ,
1245
+ (57)
1246
+ where the RP (56) undergoes a sign reversal.
1247
+ In Fig.
1248
+ 12, we illustrate the behavior of RP for the condition
1249
+ (52). For the interval 0 < ω < ˆω, the RP is negative,
1250
+ and for ˆω < ω < ωc, it is positive. The RP reversion
1251
+ that occurs at ω = ˆω is not usual in cold plasmas theory.
1252
+ However, it is reported in graphene systems [84], rotat-
1253
+ ing plasmas [95], and bi-isotropic dielectrics supporting
1254
+ chiral magnetic current [96].
1255
+ For ω > ωc, the RP is
1256
+ always negative. Nevertheless, it is necessary to pay at-
1257
+ tention to the interval ωc < ω < ωr, where the refractive
1258
+ index nR has an imaginary piece and the RCP wave is
1259
+ absorbed. At ω = ωr, the real piece of nR undergoes a
1260
+ sharp change (see Fig. 3), which also appears in the RP
1261
+ profile of Fig. 12.
1262
+ ω = ω
1263
+ ω = ωc
1264
+ ω = ωr
1265
+ ω = ω-
1266
+ 0.0
1267
+ 0.5
1268
+ 1.0
1269
+ 1.5
1270
+ 2.0
1271
+ 2.5
1272
+ 3.0
1273
+ -2
1274
+ -1
1275
+ 0
1276
+ 1
1277
+ 2
1278
+ ω (rad s-1)
1279
+ δ (rad m-1)
1280
+ FIG. 12. The solid blue line represents the rotatory power
1281
+ (56) defined by the refractive index nL and nR, for the con-
1282
+ dition (52). The dashed black line corresponds to the usual
1283
+ rotatory power (36). Here, we have used ωc = ωp, V0 = ωp,
1284
+ and ωc = 1 rad s−1.
1285
+ We can safely claim that both modes associated with
1286
+ the nL and nR propagate for ω > ω−, range in which
1287
+ the RP magnitude decreases monotonically with ω, ap-
1288
+ proaching to its asymptotic value, −V0/2 (see Fig. 12).
1289
+ Assuming the limit where ω >> (ωp, ωc), we can write
1290
+ nL,R ≈ 1 ± V0
1291
+ 2ω + V 2
1292
+ 0
1293
+ 8ω2 −
1294
+ ω2
1295
+ p
1296
+ 2ω (ω ± ωc),
1297
+ (58)
1298
+ so that the rotatory power is
1299
+ δLR ≈ −V0
1300
+ 2 − ω2
1301
+ pωc
1302
+ 2ω2 .
1303
+ (59)
1304
+ Note that taking the limit V0 → 0, the usual Faraday
1305
+ effect RP (37) is recovered for the high-frequency regime.
1306
+ It is also interesting to point out that the Faraday effect
1307
+ disappears for a null magnetic field, ωc = 0. However,
1308
+ the birefringence still remains, due to the presence of the
1309
+ chiral term, which yields the following RP:
1310
+ δ ≈ −V0/2.
1311
+ (60)
1312
+ For the condition (53), the RP (56) also exhibits a sign
1313
+ reversal and a very similar profile to the one of Fig. 12,
1314
+ in such a way that it will not be depicted here.
1315
+ Considering now the refractive indices nE and nR, the
1316
+ rotatory power is:
1317
+ δER = −ω
1318
+ 2 (Re[nE] − Re[nR]) ,
1319
+ (61)
1320
+ or,
1321
+ δER = −ω
1322
+ 2 Re
1323
+
1324
+ V0/ω −
1325
+
1326
+ R+ −
1327
+
1328
+ R−
1329
+
1330
+ .
1331
+ (62)
1332
+ Recalling that the LCP wave associated with nE has a
1333
+ conventional free propagation for ω < ω+ and propaga-
1334
+ tion with negative refractive index (nE < 0) for ω > ω+
1335
+ (with ω+ < ωc), the RP magnitude is enhanced in the
1336
+ latter zone. This behavior is depicted in Fig. 13, which
1337
+ shows the RP (62) for nE given by the condition (52),
1338
+ R+ > 0. The RP is positive for ω < ωc and negative
1339
+ for ωc < ω < ω′′, becoming positive again for ω > ω′′,
1340
+ where ω′′ is the reversal frequency. For nE given by the
1341
+ condition condition (53), the RP is depicted in Fig. 14,
1342
+ revealing a small reversion at ω′′ < ωc. Note that the
1343
+ increasing RP with ω, depicted in Figs. 13 and 14, is due
1344
+ to the negative behavior of the index nE for ω > ω+.
1345
+ In the asymptotic limit, where ω >> (ωp, ωc), the RP
1346
+ (62) goes as
1347
+ δER ≈ ω − V0
1348
+ 2 ,
1349
+ (63)
1350
+ presentig a predominant linear behavior in ω, as it ap-
1351
+ pears in Figs. 13 and 14. It is also worth mentioning
1352
+ that the limit V0 → 0, implying δ ≈ ω, does not stand
1353
+ for a valid result for usual magnetized plasma, since the
1354
+ RP (62) is not defined for achiral cold plasmas.
1355
+ B.
1356
+ Dichroism coefficients
1357
+ As well known, absorption depends on the magnitude
1358
+ of the imaginary parts of the refractive indices. When
1359
+ one mode is more absorbed than the other, there occurs
1360
+ dichroism. Considering the refractive indices nL and nR,
1361
+ the circular dichroism coefficient is
1362
+ δdLR = −ω
1363
+ 2 (Im[nL] − Im[nR]) .
1364
+ (64)
1365
+ Considering the condition (52), only nR has imaginary
1366
+ part (localized in the interval ωc < ω < ω−), while nL is
1367
+
1368
+ 11
1369
+ -0.1
1370
+ 0
1371
+ 0.1
1372
+ ω
1373
+ δ
1374
+ ω = ω''
1375
+ ω = ω''
1376
+ ω = ωc
1377
+ 0
1378
+ 1
1379
+ 2
1380
+ 3
1381
+ 4
1382
+ -4
1383
+ -2
1384
+ 0
1385
+ 2
1386
+ 4
1387
+ ω (��� �-�)
1388
+ δ (��� �-�)
1389
+ FIG. 13.
1390
+ Solid blue lines: plot of the rotatory power (62)
1391
+ associated to the refractive indices nE and nR for the con-
1392
+ dition (52).
1393
+ The dashed line represents the usual rotatory
1394
+ power (36).
1395
+ Here, we have used ωc = ωp, V0 = ωp, and
1396
+ ωc = 1 rad s−1. The inset plot highlights the behavior of δ
1397
+ around ω = ω′′.
1398
+ - 1
1399
+ 10
1400
+ 0
1401
+ 1
1402
+ 10
1403
+ ω
1404
+ δ
1405
+ ω = ω''
1406
+ ω = ω''
1407
+ ω = ωc
1408
+ 0
1409
+ 1
1410
+ 2
1411
+ 3
1412
+ 4
1413
+ -4
1414
+ -2
1415
+ 0
1416
+ 2
1417
+ 4
1418
+ ω (��� �-�)
1419
+ δ (��� �-�)
1420
+ FIG. 14. Solid red lines: rotatory power (62) associated to
1421
+ the refractive indices nE and nR for the condition (53). The
1422
+ dashed line represents the usual rotatory power (36). Here,
1423
+ we have used ωc = ωp, V0 = 0.7ωp, and ωc = 1 rad s−1. The
1424
+ inset plot highlights the behavior of δ around ω = ω′′.
1425
+ real for ω > 0. In this case, the dichroism coefficient is
1426
+ given by
1427
+ δdLR =
1428
+
1429
+
1430
+
1431
+
1432
+
1433
+ 0,
1434
+ for 0 < ω < ωc,
1435
+
1436
+ R−,
1437
+ for ωc < ω < ωr,
1438
+ 0,
1439
+ for ω > ωr,
1440
+ (65)
1441
+ being non null only in the range ωc < ω < ω−, as prop-
1442
+ erly shown in Fig 15.
1443
+ Considering the condition (53), both nR and nL have
1444
+ non-null imaginary parts in the intervals ωc < ω < ωr
1445
+ and ωi < ω < ωf, respectively. The dichroism coefficient
1446
+ is null for 0 < ω < ωi, ωf < ω < ωc, and ω > ωr, being
1447
+ ω = ω+
1448
+ ω = ω-
1449
+ ωc = ωp
1450
+ ω = ωr
1451
+ 0.0
1452
+ 0.5
1453
+ 1.0
1454
+ 1.5
1455
+ 2.0
1456
+ -0.5
1457
+ 0.0
1458
+ 0.5
1459
+ 1.0
1460
+ 1.5
1461
+ 2.0
1462
+ ω (rad s-1)
1463
+ δd (rad m-1)
1464
+ FIG. 15. Plot of the dichroism coefficient (65)(red solid lines)
1465
+ associated to the refractive indices nL and nR, under the
1466
+ condition (52). The black dashed line represents the usual
1467
+ dichroism coefficient (39). Here ωc = ωp, V0 = (3/2) ωc, and
1468
+ ωc = 1 rad s−1.
1469
+ non-null only for
1470
+ δdLR =
1471
+
1472
+ − ω
1473
+ 2
1474
+
1475
+ R+,
1476
+ for ωi < ω < ωf,
1477
+ + ω
1478
+ 2
1479
+
1480
+ R−,
1481
+ for ωc < ω < ωr,
1482
+ (66)
1483
+ whose general behavior is exhibited in Fig. 16.
1484
+ ω = ωi
1485
+ ω = ωf
1486
+ ω = ω+
1487
+ ω = ω-
1488
+ ωc = ωp
1489
+ ω = ωr
1490
+ 0.0
1491
+ 0.5
1492
+ 1.0
1493
+ 1.5
1494
+ 2.0
1495
+ -0.5
1496
+ 0.0
1497
+ 0.5
1498
+ 1.0
1499
+ 1.5
1500
+ 2.0
1501
+ ω (rad s-1)
1502
+ δd (rad m-1)
1503
+ FIG. 16. Plot of the dichroism coefficient (66)(solid red lines)
1504
+ associated to the refractive indices nL and nR, under the con-
1505
+ dition (53). The dashed line represents the usual dichroism
1506
+ coefficient (39). Here, we have set ωc = ωp, V0 = 0.7ωp, and
1507
+ ωc = 1 rad s−1.
1508
+ For the refractive indices nE and nR, the circular
1509
+ dichroism coefficient is
1510
+ δdER = −ω
1511
+ 2 (Im[nE] − Im[nR]) .
1512
+ (67)
1513
+ If we consider nE under the condition (52), the same
1514
+ behavior of Fig. 15 is obtained, since nE is always real,
1515
+ not contributing to the dichroism. On the other hand,
1516
+ regarding now the condition (53), both nR e nE have
1517
+ non-zero imaginary parts in the intervals ωc < ω < ωr
1518
+
1519
+ 12
1520
+ and ωi < ω < ωf, respectively). In this case, we have
1521
+ δdER =
1522
+
1523
+
1524
+
1525
+
1526
+
1527
+
1528
+
1529
+
1530
+
1531
+
1532
+
1533
+
1534
+
1535
+ 0,
1536
+ for 0 < ω < ωi,
1537
+ + ω
1538
+ 2
1539
+
1540
+ R+,
1541
+ for ωi < ω < ωf,
1542
+ 0,
1543
+ for ωf < ω < ωc,
1544
+ + ω
1545
+ 2
1546
+
1547
+ R−,
1548
+ for ωc < ω < ωr,
1549
+ 0,
1550
+ for ω > ωr.
1551
+ (68)
1552
+ The general behavior of the dichroism coefficient (68)
1553
+ is illustrated in Fig. 17.
1554
+ ω = ωi
1555
+ ω = ωf
1556
+ ω = ω+
1557
+ ω = ω-
1558
+ ωc = ωp
1559
+ ω = ωr
1560
+ 0.0
1561
+ 0.5
1562
+ 1.0
1563
+ 1.5
1564
+ 2.0
1565
+ -0.5
1566
+ 0.0
1567
+ 0.5
1568
+ 1.0
1569
+ 1.5
1570
+ 2.0
1571
+ ω (rad s-1)
1572
+ δd (rad m-1)
1573
+ FIG. 17. Plot of the dichroism coefficients (68) associated to
1574
+ the refractive indices nE and nR (for the condition (53)). The
1575
+ dashed line represents the usual dichroism coefficient (39).
1576
+ Here, we have used ωc = ωp, V0 = 0.7ωp, and ωc = 1 rad s−1.
1577
+ VI.
1578
+ FINAL REMARKS
1579
+ In this work, we have examined the propagation of
1580
+ electromagnetic waves in a cold magnetized plasma in
1581
+ the context of the chiral MCFJ electrodynamics, describ-
1582
+ ing the implied optical effects as well. We have adopted
1583
+ a MCFJ timelike background vector in order to repre-
1584
+ sent the chirality factor that breaks the parity. Starting
1585
+ from the modified Maxwell equations and employing the
1586
+ usual methods, we obtained four modified refractive in-
1587
+ dices given by Eqs. (45) and (46), associated with cir-
1588
+ cularly polarized propagating modes. Such indices were
1589
+ analyzed in detail in the Secs. IV A – IV D, where some
1590
+ of them exhibited significant modifications, as the index
1591
+ nR, see Fig. 3. It presents a negative refraction behavior
1592
+ in the range ωc < ω < ω−, in which it occurs propagation
1593
+ with absorption for ωc < ω < ωr and free (metamaterial)
1594
+ propagation for ωr < ω < ω−. The usual counterpart in-
1595
+ dex presents only pure absorption in this range.
1596
+ Optical effects of this system, involving birefringence
1597
+ and dichroism, were discussed in Sec. V, considering the
1598
+ refractive index nL and nR and nE. In Sec.V A, the RP
1599
+ δLR was introduced, see Eq. (56), exhibiting sign rever-
1600
+ sion at ω = ˆω, for the conditions (52) and (53). The RP
1601
+ δER also exhibits sign change at ω = ω′′ > ωc for the con-
1602
+ dition (52), and ω = ω′′ < ωc under the condition (53),
1603
+ as shown in Figs. 13 and 14, respectively. Such a RP
1604
+ reversal is not usual in cold plasmas, being reported in
1605
+ graphene systems [84], rotating plasmas [95], Weyl met-
1606
+ als and semimetals with low electron density with chi-
1607
+ ral conductivity [92, 93], and bi-isotropic dielectrics with
1608
+ magnetic chiral conductivity [96]. Comparing our results
1609
+ with the rotating plasma scenario of Ref. [95], there ap-
1610
+ pear differences. In the rotating plasma, the RP under-
1611
+ goes reversal and decays as 1/ω2 for high frequencies. In
1612
+ the present case, the rotatory power tends to the asymp-
1613
+ totical value −V0, see Eq. (60), or increases with ω when
1614
+ it involves the negative refraction index, see Eq. (63).
1615
+ These distinct RP properties may provide a channel to
1616
+ optically characterize chiral cold plasmas.
1617
+ Besides the nonconventional effect of reversion, the RP
1618
+ can also be enhanced when it is defined in the negative
1619
+ refraction zone. Such an enhancement occurs for δER,
1620
+ given in Eq. (62), for ω > ω+ (zone in which nE is neg-
1621
+ ative), being a topic of interest in metamaterial plasmas
1622
+ [116–119].
1623
+ Dichroism was examined in Sec.V B, where
1624
+ the coefficients δdLR and δdER have been shown to be
1625
+ non-null only in the range ωc < ω < ωr, for the condi-
1626
+ tion (52) - see Figs. 15, and in the intervals ωc < ω < ωr,
1627
+ ωi < ω < ωf, for the condition (53), in accordance with
1628
+ Figs. 16 and 17.
1629
+ ACKNOWLEDGMENTS
1630
+ The authors express their gratitude to FAPEMA,
1631
+ CNPq, and CAPES (Brazilian research agencies) for
1632
+ their invaluable financial support. M.M.F. is supported
1633
+ by FAPEMA Universal/01187/18, CNPq/Produtividade
1634
+ 311220/2019-3
1635
+ and
1636
+ CNPq/Universal/422527/2021-1.
1637
+ P.D.S.S
1638
+ is
1639
+ supported
1640
+ by
1641
+ FAPEMA
1642
+ BPD-12562/22.
1643
+ Furthermore, we are indebted to CAPES/Finance Code
1644
+ 001 and FAPEMA/POS- GRAD-02575/21.
1645
+ [1] A. Zangwill, Modern Electrodynamics (Cambridge Uni-
1646
+ versity Press, New York, 2012).
1647
+ [2] J.D. Jackson, Classical Electrodynamics, 3rd ed. (John
1648
+ Wiley & Sons, New York, 1999).
1649
+ [3] D.A. Gurnett and A. Bhattacharjee, Introduction to
1650
+ Plasma Physics (Cambridge University Press, Cam-
1651
+ bridge, 2005).
1652
+ [4] P.A. Sturrock, Plasma Physics:
1653
+ An Introduction to
1654
+ the theory of Astrophysical, Geophysical and Laboratory
1655
+ Plasmas, Cambridge, 1994.
1656
+ [5] J. A. Bittencourt, Fundamentals of Plasma Physics, 3rd
1657
+ ed. (Springer, New York, 2004).
1658
+ [6] T. H. Stix, Waves in Plasmas (Springer, New York,
1659
+ 1992).
1660
+
1661
+ 13
1662
+ [7] T.J.M. Boyd and J.J. Sanderson, The Physics of plas-
1663
+ mas (Cambridge University Press, New York, 2003).
1664
+ [8] A. Piel, Plasmas Physics - An Introduction to Labora-
1665
+ tory, Space, and Fusion Plasmas, (Springer, Heidelberg,
1666
+ 2010).
1667
+ [9] E. V. Appleton, and G. Builder, The Ionosphere as a
1668
+ doubly Refracting Medium. Proc. Phys. Soc. 45 208,
1669
+ (1932), E. V. Appleton, Wireless Studies of the Iono-
1670
+ sphere, J. Inst. Electr. Eng. 257, (1932).
1671
+ [10] D. R. Hartree, The propagation of electromagnetic
1672
+ waves in a stratified medium, Mathematical Proceed-
1673
+ ings of the Cambridge Philosophical Society, 25:97–120,
1674
+ 1929.
1675
+ [11] J. A. Ratcliff, The formation of the ionosphere. Ideas
1676
+ of the early years (1925-1955). J. of Atmospheric and
1677
+ Terrestrial Physics, Vol. 36. p 2167-2181, (1974).
1678
+ [12] F. Haas, P. Gaete, L. P. R. Ospedal, and Jos´e Abdalla
1679
+ Helay¨el-Neto, Modified plasma waves described by a
1680
+ logarithmic electrodynamics, Phys. Plasmas 26, 042108
1681
+ (2019).
1682
+ [13] D.E. Kharzeev, The chiral magnetic effect and anomaly-
1683
+ induced transport, Prog. Part. Nucl. Phys. 75, 133
1684
+ (2014); D.E. Kharzeev, J. Liao, S.A. Voloshin, and
1685
+ G. Wang, Chiral magnetic and vortical effects in high-
1686
+ energy nuclear collisions – A status report, Prog. Part.
1687
+ Nucl. Phys. 88, 1 (2016);
1688
+ [14] D. Kharzeev, K. Landsteiner, A. Schmitt and H.U. Yee,
1689
+ Strongly Interacting Matter in Magnetic Fields, Lect.
1690
+ Notes Phys. 871 (Springer-Verlag, Berlin · Heidelberg,
1691
+ 2013).
1692
+ [15] K. Fukushima, D.E. Kharzeev, and H.J. Warringa, Chi-
1693
+ ral magnetic effect, Phys. Rev. D 78, 074033 (2008);
1694
+ D.E. Kharzeev and H. J. Warringa, Chiral magnetic
1695
+ conductivity, Phys. Rev. D 80, 034028 (2009).
1696
+ [16] Q. Li, D.E. Kharzeev, C. Zhang, Y. Huang, I. Pletikosi´c,
1697
+ A.V. Fedorov, R.D. Zhong, J.A. Schneeloch, G.D Gu,
1698
+ and T. Valla, Chiral magnetic effect in ZrTe5, Nature
1699
+ Phys. 12, 550 (2016).
1700
+ [17] A. Vilenkin, Equilibrium parity-violating current in
1701
+ a magnetic field,
1702
+ Phys. Rev. D 22,
1703
+ 3080 (1980);
1704
+ A. Vilenkin and D.A. Leahy, Parity nonconservation
1705
+ and the origin of cosmic magnetic fields, Astrophys. J.
1706
+ 254, 77 (1982).
1707
+ [18] G. Inghirami, M. Mace, Y. Hirono, L. Del Zanna,
1708
+ D.E. Kharzeev, and M. Bleicher, Magnetic fields in
1709
+ heavy ion collisions: flow and charge transport, Eur.
1710
+ Phys. J. C 80, 293 (2020).
1711
+ [19] J. Schober, A. Brandenburg and I. Rogachevskii, Chiral
1712
+ fermion asymmetry in high-energy plasma simulations,
1713
+ Geophys. Astrophys. Fluid Dynamics 114, 106 (2020).
1714
+ [20] Y. Akamatsu and N. Yamamoto, Chiral Plasma Insta-
1715
+ bilities, Phys. Rev. Lett. 111, 052002 (2013); A. Bo-
1716
+ yarsky, O. Ruchayskiy, and M. Shaposhnikov, Long-
1717
+ Range Magnetic Fields in the Ground State of the
1718
+ Standard Model Plasma, Phys. Rev. Lett. 109, 111602
1719
+ (2012).
1720
+ [21] M. Dvornikov and V.B. Semikoz, Influence of the tur-
1721
+ bulent motion on the chiral magnetic effect in the early
1722
+ universe, Phys. Rev. D 95, 043538 (2017).
1723
+ [22] G. Sigl and N. Leite, Chiral magnetic effect in protoneu-
1724
+ tron stars and magnetic field spectral evolution, JCAP
1725
+ 01, 025 (2016).
1726
+ [23] M. Dvornikov and V.B. Semikoz, Magnetic field in-
1727
+ stability in a neutron star driven by the electroweak
1728
+ electron-nucleon interaction versus the chiral magnetic
1729
+ effect, Phys. Rev. D 91, 061301(R) (2015).
1730
+ [24] M. Dvornikov and V.B. Semikoz, Instability of magnetic
1731
+ fields in electroweak plasma driven by neutrino asym-
1732
+ metries, JCAP 05, 002 (2014); M. Dvornikov, Electric
1733
+ current induced by an external magnetic field in the
1734
+ presence of electroweak matter, EPJ Web Conf. 191,
1735
+ 05008 (2018).
1736
+ [25] A.A. Burkov, Chiral anomaly and transport in Weyl
1737
+ metals, J. Phys. Condens. Matter 27, 113201 (2015).
1738
+ [26] M.-C. Chang and M.-F. Yang, Chiral magnetic effect in
1739
+ a two-band lattice model of Weyl semimetal, Phys. Rev.
1740
+ B 91, 115203 (2015).
1741
+ [27] E.C.I van der Wurff and H.T.C. Stoof, Anisotropic chi-
1742
+ ral magnetic effect from tilted Weyl cones, Phys. Rev.
1743
+ B 96, 121116(R) (2017).
1744
+ [28] K. Landsteiner, Anomalous transport of Weyl fermions
1745
+ in Weyl semimetals, Phys. Rev. B 89, 075124 (2014).
1746
+ [29] S. Kaushik and D.E. Kharzeev, Quantum oscillations
1747
+ in the chiral magnetic conductivity, Phys. Rev. B 95,
1748
+ 235136 (2017).
1749
+ [30] A. Mart´ın-Ruiz, M. Cambiaso, and L.F. Urrutia, Elec-
1750
+ tromagnetic fields induced by an electric charge near a
1751
+ Weyl semimetal, Phys. Rev. B 99, 155142 (2019).
1752
+ [31] R. E. Throckmorton, J. Hofmann, E. Barnes, and S. D.
1753
+ Sarma, Many-body effects and ultraviolet renormaliza-
1754
+ tion in three-dimensional Dirac materials, Phys. Rev. B
1755
+ 92, 115101 (2015).
1756
+ [32] K. Deng, J. S. Van Dyke, D. Minic, J. J. Heremans, and
1757
+ E. Barnes, Exploring self-consistency of the equations of
1758
+ axion electrodynamics in Weyl semimetals, Phys. Rev.
1759
+ B 104, 075202 (2021).
1760
+ [33] E. Barnes, J. J. Heremans, and Djordje Minic, Elec-
1761
+ tromagnetic Signatures of the Chiral Anomaly in Weyl
1762
+ Semimetals, Phys. Rev. Lett. 117, 217204 (2016).
1763
+ [34] F. Wilczek, Two Applications of Axion Electrodynam-
1764
+ ics, Phys. Rev. Lett. 58, 1799 (1987).
1765
+ [35] A. Sekine and K. Nomura, Axion electrodynamics
1766
+ in topological materials, J. Appl. Phys. 129, 141101
1767
+ (2021).
1768
+ [36] M. E. Tobar, B. T. McAllister, and M. Goryachev,
1769
+ Modified axion electrodynamics as impressed electro-
1770
+ magnetic sources through oscillating background po-
1771
+ larization and magnetization, Phys. Dark Universe 26,
1772
+ 100339 (2019).
1773
+ [37] J. M. A. Paix˜ao, L. P. R. Ospedal, M. J. Neves, and
1774
+ J. A. Helay¨el-Neto, The axion-photon mixing in non-
1775
+ linear electrodynamic scenarios, J. High Energ. Phys.
1776
+ 2022, 160 (2022).
1777
+ [38] Z. Qiu, G. Cao and X.-G. Huang, Electrodynamics of
1778
+ chiral matter, Phys. Rev. D 95, 036002 (2017).
1779
+ [39] P.D.S. Silva,
1780
+ M.M. Ferreira Jr.,
1781
+ M. Schreck,
1782
+ and
1783
+ L.F. Urrutia, Magnetic-conductivity effects on electro-
1784
+ magnetic propagation in dispersive matter, Phys. Rev.
1785
+ D 102, 076001 (2020).
1786
+ [40] S. Kaushik, D.E. Kharzeev, and E.J. Philip, Transverse
1787
+ chiral magnetic photocurrent induced by linearly polar-
1788
+ ized light in symmetric Weyl semimetals, Phys. Rev.
1789
+ Research 2, 042011(R) (2020).
1790
+ [41] S.M. Carroll, G.B. Field, and R. Jackiw, Limits on a
1791
+ Lorentz- and parity-violating modification of electrody-
1792
+ namics, Phys. Rev. D 41, 1231 (1990).
1793
+ [42] D. Colladay and V.A. Kosteleck´y, CPT violation and
1794
+ the standard model, Phys. Rev. D 55, 6760 (1997);
1795
+
1796
+ 14
1797
+ D. Colladay and V.A. Kosteleck´y, Lorentz-violating ex-
1798
+ tension of the standard model, Phys. Rev. D 58, 116002
1799
+ (1998); S.R. Coleman and S.L. Glashow, High-energy
1800
+ tests of Lorentz invariance, Phys. Rev. D 59, 116008
1801
+ (1999).
1802
+ [43] A.A. Andrianov and R. Soldati, Lorentz symmetry
1803
+ breaking in Abelian vector-field models with Wess-
1804
+ Zumino interaction, Phys. Rev. D 51, 5961 (1995);
1805
+ A.A. Andrianov and R. Soldati, Patterns of Lorentz
1806
+ symmetry breaking in QED by CPT-odd interaction,
1807
+ Phys. Lett. B 435, 449 (1998); A.A. Andrianov, R. Sol-
1808
+ dati,
1809
+ and L. Sorbo,
1810
+ Dynamical Lorentz symmetry
1811
+ breaking from a (3+1)-dimensional axion-Wess-Zumino
1812
+ model, Phys. Rev. D 59, 025002 (1999).
1813
+ [44] J. Alfaro, A.A. Andrianov, M. Cambiaso, P. Giacconi,
1814
+ and R. Soldati, Bare and induced Lorentz and CPT
1815
+ invariance violations in QED, Int. J. Mod. Phys. A
1816
+ 25, 3271 (2010); A.A. Andrianov, D. Espriu, P. Giac-
1817
+ coni, and R. Soldati, Anomalous positron excess from
1818
+ Lorentz-violating QED, JHEP 09, 057 (2009).
1819
+ [45] L. C. T. Brito, J. C. C. Felipe, A. Yu. Petrov, A. P.
1820
+ Baeta Scarpelli, No radiative corrections to the Carroll-
1821
+ Field-Jackiw term beyond one-loop order, Int. J. Mod.
1822
+ Phys. A36, 2150033 (2021); J. F. Assuncao, T. Mariz,
1823
+ A. Yu. Petrov, Nonanalyticity of the induced Carroll-
1824
+ Field-Jackiw term at finite temperature, EPL 116,
1825
+ 31003 (2016); J. C. C. Felipe, A. R. Vieira, A. L. Cher-
1826
+ chiglia, A. P. Baˆeta Scarpelli, M. Sampaio, Arbitrariness
1827
+ in the gravitational Chern-Simons-like term induced ra-
1828
+ diatively, Phys. Rev. D 89, 105034 (2014); T.R.S. San-
1829
+ tos, R.F. Sobreiro, Lorentz-violating Yang–Mills theory:
1830
+ discussing the Chern–Simons-like term generation, Eur.
1831
+ Phys. J. C 77, 903 (2017).
1832
+ [46] R. Casana, M. M. Ferreira Jr., E. da Hora, A. B. F.
1833
+ Neves, Maxwell-Chern-Simons vortices in a CPT-odd
1834
+ Lorentz-violating Higgs Electrodynamics, Eur. Phys. J.
1835
+ C 74, 3064 (2014); R. Casana, L. Sourrouille, Self-
1836
+ dual Maxwell-Chern-Simons solitons from a Lorentz-
1837
+ violating model, Phys. Lett. B 726, 488 (2013).
1838
+ [47] H. Belich, L. D. Bernald, Patricio Gaete, J. A. Helay¨el-
1839
+ Neto, The photino sector and a confining potential in a
1840
+ supersymetric Lorentz-symmetry-violating model, Eur.
1841
+ Phys. J. C 73, 2632 (2013); L. Bonetti, L. R. dos Santos
1842
+ Filho, J A. Helay¨el-Neto, A. D. A. M. Spallicci, Photon
1843
+ sector analysis of Super and Lorentz symmetry break-
1844
+ ing: effective photon mass, bi-refringence and dissipa-
1845
+ tion, Eur. Phys. J. C 78, 811 (2018).
1846
+ [48] L.H. C. Borges,
1847
+ A.F. Ferrari,
1848
+ External sources in
1849
+ a minimal and nonminimal CPT-odd Lorentz vio-
1850
+ lating Maxwell electrodynamics,
1851
+ Mod. Phys. Lett.
1852
+ A 37,
1853
+ 2250021 (2022);
1854
+ Y. M. P. Gomes,
1855
+ P. C.
1856
+ Malta, Lab-based limits on the Carroll-Field-Jackiw
1857
+ Lorentz-violating electrodynamics, Phys. Rev. D 94,
1858
+ 025031 (2016); M.M. Ferreira Jr, J.A. Helay¨el-Neto,
1859
+ C.M. Reyes, M. Schreck, P.D.S. Silva, Unitarity in
1860
+ St¨uckelberg electrodynamics modified by a Carroll-
1861
+ Field-Jackiw term, Phys. Lett. B 804, 135379 (2020);
1862
+ A. Mart´ın-Ruiz and C. A. Escobar, Local effects of the
1863
+ quantum vacuum in Lorentz-violating electrodynamics,
1864
+ Phys. Rev. D 95, 036011 (2017).
1865
+ [49] V.A. Kosteleck´y and M. Mewes, Cosmological Con-
1866
+ straints on Lorentz Violation in Electrodynamics, Phys.
1867
+ Rev. Lett. 87, 251304 (2001); V.A. Kosteleck´y and
1868
+ M. Mewes, Signals for Lorentz violation in electrody-
1869
+ namics, Phys. Rev. D 66, 056005 (2002); V.A. Kost-
1870
+ eleck´y and M. Mewes, Sensitive Polarimetric Search for
1871
+ Relativity Violations in Gamma-Ray Bursts, Phys. Rev.
1872
+ Lett. 97, 140401 (2006).
1873
+ [50] F.R. Klinkhamer, M. Schreck, Consistency of isotropic
1874
+ modified Maxwell theory: Microcausality and unitarity,
1875
+ Nucl. Phys. B 848, 90 (2011); M. Schreck, Analysis of
1876
+ the consistency of parity-odd nonbirefringent modified
1877
+ Maxwell theory, Phys. Rev. D 86, 065038 (2012).
1878
+ [51] C.A. Escobar and M.A.G. Garcia, Full CPT-even pho-
1879
+ ton sector of the standard model extension at finite tem-
1880
+ perature, Phys. Rev. D 92, 025034 (2015); A. Mart´ın-
1881
+ Ruiz and C.A. Escobar, Casimir effect between ponder-
1882
+ able media as modeled by the standard model exten-
1883
+ sion, Phys. Rev. D 94, 076010 (2016); L.H.C. Borges,
1884
+ A.F. Ferrari, Semi-transparent boundaries in CPT-even
1885
+ Lorentz violating electrodynamics, Nucl. Physics B 980,
1886
+ 115829 (2022).
1887
+ [52] Q.G. Bailey and V.A. Kosteleck´y, Lorentz-violating
1888
+ electrostatics and magnetostatics, Phys. Rev. D 70,
1889
+ 076006 (2004).
1890
+ [53] A. Gomez, A. Mart´ın-Ruiz, Luis F. Urrutia, Effective
1891
+ electromagnetic actions for Lorentz violating theories
1892
+ exhibiting the axial anomaly, Phys. Lett. B 829, 137043
1893
+ (2022).
1894
+ [54] A. V. Kostelecky, R. Lehnert, N. McGinnis, M. Schreck,
1895
+ B. Seradjeh,
1896
+ Lorentz violation in Dirac and Weyl
1897
+ semimetals, Phys. Rev. Research 4, 023106 (2022).
1898
+ [55] M.M. Ferreira Jr., L. Lisboa-Santos, R.V. Maluf, and
1899
+ M. Schreck, Maxwell electrodynamics modified by a
1900
+ CPT-odd dimension-five higher-derivative term, Phys.
1901
+ Rev. D 100, 055036 (2019).
1902
+ [56] P. D. S. Silva, L. L. Santos, M. M. Ferreira, Jr., and M.
1903
+ Schreck, Effects of CPT-odd terms of dimensions three
1904
+ and five on electromagnetic propagation in continuous
1905
+ matter, Phy. Rev. D 104, 116023 (2021).
1906
+ [57] L. D. Barron, Molecular Light Scattering and Optical
1907
+ Activity, 2nd ed. (Cambridge University Press, New
1908
+ York, 2004).
1909
+ [58] E. Hecht, Optics, 4nd ed. (Addison Wesley, San Fran-
1910
+ cisco, 2002).
1911
+ [59] G. H. Wagniere, On Chirality and the Universal Asym-
1912
+ metry: Reflections on Image and Mirror Image, (Wiley-
1913
+ Vch, Zurich) (2007).
1914
+ [60] Y. Tang and A. E. Cohen, Optical Chirality and Its
1915
+ Interaction with Matter, Phys. Rev. Lett. 104, 163901
1916
+ (2010).
1917
+ [61] A. H. Sihvola and I. V. Lindell, Bi-isotropic constitutive
1918
+ relations, Microw. Opt. Technol. Lett., 4 (8), 295-297
1919
+ (1991); A. H. Sihvola and I. V. Lindell, Properties of bi-
1920
+ isotropic Fresnel reflection coefficients, Optics Commu-
1921
+ nications 89, 11992); S. Ougier, I. Chenerie, A. Sihvola,
1922
+ and A. Priou, Propagation in bi-isotropic media: ef-
1923
+ fect of different formalisms on the propagation analysis,
1924
+ Progress In Electromagnetics Research 09, 19 (1994).
1925
+ [62] P. Hillion, Manifestly covariant formalism for electro-
1926
+ magnetism in chiral media, Phys. Rev. E 47, 1365
1927
+ (1993); I. Yakov, Dispersion relation for electromag-
1928
+ netic waves in anisotropic media, Phys. Lett. A 374,
1929
+ 1113 (2010); N.J. Damaskos, A.L. Maffett and P.L.E.
1930
+ Uslenghi, Dispersion relation for general anisotropic
1931
+ media, IEEE Trans. Antennas Propagat. AP-30, 991
1932
+ (1982).
1933
+ [63] J. A. Kong, Electromagnetic Wave Theory (Wiley, New
1934
+
1935
+ 15
1936
+ York, 1986).
1937
+ [64] Y. T. Aladadi and M. A. S. Alkanhal, Classification and
1938
+ characterization of electromagnetic materials, Sci. Rep.
1939
+ 10, 11406 (2020).
1940
+ [65] W. Mahmood and Q. Zhao, The Double Jones Birefrin-
1941
+ gence in Magneto-electric Medium, Sci. Rep. 5, 13963
1942
+ (2015).
1943
+ [66] V. A. De Lorenci and G. P. Goulart, Magnetoelectric
1944
+ birefringence revisited, Phys. Rev. D 78, 045015 (2008).
1945
+ [67] P. D. S. Silva, R. Casana, and M. M. Ferreira Jr., Sym-
1946
+ metric and antisymmetric constitutive tensors for bi-
1947
+ isotropic and bi-anisotropic media, Phys. Rev. A 106,
1948
+ 042205 (2022).
1949
+ [68] G. R. Fowles,
1950
+ Introduction to modern optics,
1951
+ 2nd
1952
+ ed. (Dover Publications, INC., New York, 1975); A.
1953
+ K. Bain, Crystal optics:
1954
+ properties and applications
1955
+ (Wiley-VCH Verlag GmbH & Co. KGaA, Germany,
1956
+ 2019).
1957
+ [69] H. S. Bennett, E. A. Stern, Faraday effect in solids.
1958
+ Phys. Rev. 137, A448–A461 (1965); L. M. Roth. Theory
1959
+ of the Faraday effect in solids, Phys. Rev. 133, A542–
1960
+ A553 (1964).
1961
+ [70] W. S. Porter and E. M. Bock Jr., Faraday effect in a
1962
+ plasma, Am. J. Phys. 33, 1070 (1965).
1963
+ [71] J. Shibata, A. Takeuchi, H. Kohno, and G. Tatara,
1964
+ Theory of electromagnetic wave propagation in ferro-
1965
+ magnetic Rashba conductor, J. App. Phy. 123, 063902
1966
+ (2018).
1967
+ [72] E. U. Condon, Theories of Optical Rotatory Power, Rev.
1968
+ Mod. Phys. 9, 432 (1937).
1969
+ [73] Ming-Che Chang and Min-Fong Yang, Optical signa-
1970
+ ture of topological insulators, Phys. Rev. B 80, 113304
1971
+ (2009); L. Ohnoutek et. al., Strong interband Faraday
1972
+ rotation in 3D topological insulator Bi2Se3, Sci. Rep.6,
1973
+ 19087 (2016).
1974
+ [74] A. Mart´ın-Ruiz, M. Cambiaso, and L. F. Urrutia, The
1975
+ magnetoelectric coupling in Electrodynamics. Int. J.
1976
+ Mod. Phys. A 34, 1941002 (2019); A. Mart´ın-Ruiz,
1977
+ M. Cambiaso, and L.F. Urrutia, Electro- and magne-
1978
+ tostatics of topological insulators as modeled by planar,
1979
+ spherical, and cylindrical θ boundaries: ForestGreen’s
1980
+ function approach, Phys. Rev. D 93, 045022 (2016).
1981
+ [75] A. Lakhtakia and T. G. Mackay, Classical electromag-
1982
+ netic model of surface states in topological insulators,
1983
+ J. Nanophoton. 10 (3), 033004 (2016).
1984
+ [76] T. M. Melo, D. R. Viana, W. A. Moura-Melo, J. M.
1985
+ Fonseca, A. R. Pereira, Topological cutoff frequency in
1986
+ a slab waveguide: Penetration length in topological in-
1987
+ sulator walls, Phys, Lett. A 380, 973 (2016).
1988
+ [77] Z.-X. Li, Yunshan Cao, Peng Yan, Topological insula-
1989
+ tors and semimetals in classical magnetic systems, Phys.
1990
+ Report 915, 1 (2021).
1991
+ [78] R. Li, J. Wang, Xiao-Liang Qi and S.-C. Zhang, Dy-
1992
+ namical axion field in topological magnetic insulators,
1993
+ Nature Phys. 6, 284 (2010).
1994
+ [79] W.-K. Tse and A. H. MacDonald, Giant magneto-
1995
+ optical Kerr effect and universal Faraday effect in thin-
1996
+ film topological insulators, Phys. Rev. Lett. 105, 057401
1997
+ (2010); Magneto-optical and magnetoelectric effects of
1998
+ topological insulators in quantizing magnetic fields,
1999
+ Phys. Rev. B 82, 161104 (2010); Magneto-optical Fara-
2000
+ day and Kerr effects in topological insulator films and
2001
+ in other layered quantized Hall systems, Phys. Rev. B
2002
+ 84, 205327 (2011).
2003
+ [80] I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bost-
2004
+ wick, E. Rotenberg, T. Seyller, D. van der Marel, and
2005
+ A. B. Kuzmenko, Giant Faraday rotation in single- and
2006
+ multilayer graphene, Nature Phys. 7, 48 (2011); R. Shi-
2007
+ mano, G. Yumoto, J. Y. Yoo, R. Matsunaga, S. Tanabe,
2008
+ H. Hibino, T. Morimoto and H. Aoki, Quantum Fara-
2009
+ day and Kerr rotations in graphene, Nature Comm. 4,
2010
+ 1841 (2013).
2011
+ [81] D. G. Dimitriu, D. O. Dorohoi, New method to deter-
2012
+ mine the optical rotatory dispersion of inorganic crystals
2013
+ applied to some samples of Carpathian Quartz, Spec-
2014
+ trochimica Acta Part A: Molecular and Biomolecular
2015
+ Spectroscopy 131, 674-677 (2014).
2016
+ [82] L.A. Pajdzik and A.M. Glazer, Three-dimensional bire-
2017
+ fringence imaging with a microscope tilting-stage. I.
2018
+ Uniaxial crystals, J. Appl. Cryst. 39, 326 (2006).
2019
+ [83] X. Liu, J. Yang, Z. Geng, and H. Jia, Simultaneous mea-
2020
+ surement of optical rotation dispersion and absorption
2021
+ spectra for chiral substances, Chirality 8, 32, 1071-1079
2022
+ (2022).
2023
+ [84] J.-M.
2024
+ Poumirol,
2025
+ P.
2026
+ Q.
2027
+ Liu,
2028
+ T.
2029
+ M.
2030
+ Slipchenko,
2031
+ A. Y. Nikitin,
2032
+ L. Martin-Morento,
2033
+ J. Faist,
2034
+ and
2035
+ A.
2036
+ B.
2037
+ Kuzmenko,
2038
+ Electrically
2039
+ controlled
2040
+ terahertz
2041
+ magneto-optical phenomena in continuous and pat-
2042
+ terned graphene, Nat Commun 8, 14626 (2017).
2043
+ [85] I. Tutunnikov, U. Steinitz, E. Gershnabel, J-M. Hart-
2044
+ mann, A. A. Milner, V. Milner, and I. Sh. Averbukh,
2045
+ Rotation of the polarization of light as a tool for inves-
2046
+ tigating the collisional transfer of angular momentum
2047
+ from rotating molecules to macroscopic gas flows, Phys.
2048
+ Rev. Research 4, 013212 (2022); U. Steinitz and I. Sh.
2049
+ Averbukh, Giant polarization drag in a gas of molecular
2050
+ super-rotors, Phys. Rev. A 101, 021404(R) (2020).
2051
+ [86] L. Tschugaeff, Anomalous rotatory dispersion, Trans.
2052
+ Faraday Soc., 10, 70-79 (1914).
2053
+ [87] R. E. Newnham, Properties of Materials - anisotropy,
2054
+ symmetry, structure (Oxford University Press, New
2055
+ York, 2005).
2056
+ [88] N. Tischler, M. Krenn, R. Fickler, X. Vidal, A. Zeilinger,
2057
+ and G. Molina-Terriza, Quantum optical rotatory dis-
2058
+ persion, Sci. Adv. 2, e1601306 (2016).
2059
+ [89] J. H. Woo, B. K. M. Gwon, J. H. Lee, D-W. Kim, W.
2060
+ Jo, D. H. Kim, and J. W. Wu, Time-resolved pump-
2061
+ probe measurement of optical rotatory dispersion in
2062
+ chiral metamaterial, Adv. Optical Mater. 5, 1700141
2063
+ (2017).
2064
+ [90] Q. Zhang, E. Plum, J-Y. Ou, H. Pi, J. Li, K. F. Mac-
2065
+ Donald, and N. I. Zheludev, Electrogyration in metama-
2066
+ terials: chirality and polarization rotatory power that
2067
+ depend on applied electric field, Adv. Optical Mater. 9,
2068
+ 2001826 (2021).
2069
+ [91] J. Mun, et al. Electromagnetic chirality: from funda-
2070
+ mentals to nontraditional chiroptical phenomena. Light
2071
+ Sci. Appl. 9, 139 (2020).
2072
+ [92] J. Ma, and D. A. Pesin, Dynamic chiral magnetic ef-
2073
+ fect and Faraday rotation in macroscopically disordered
2074
+ helical metals, Phys. Rev. Lett. 118, 107401 (2017).
2075
+ [93] U. Dey, S. Nandy, and A. Taraphder, Dynamic chiral
2076
+ magnetic effect and anisotropic natural optical activity
2077
+ of tilted Weyl semimetals, Sci Rep 10, 2699 (2020).
2078
+ [94] R. Gueroult, Y. Shi, J-M. Rax, and N. J. Fisch, Deter-
2079
+ mining the rotation direction in pulsars, Nat. Commun.
2080
+ 10, 3232 (2019).
2081
+ [95] R. Gueroult, J.-M. Rax, and N. J. Fisch, Enhanced
2082
+
2083
+ 16
2084
+ tuneable rotatory power in a rotating plasma, Phys.
2085
+ Rev. E 102, 051202(R) (2020).
2086
+ [96] P. D. S.Silva and M. M. Ferreira Jr., Rotatory power
2087
+ reversal induced by magnetic current in bi-isotropic me-
2088
+ dia, Phys. Rev. B 106, 144430 (2022).
2089
+ [97] P. Hosur, and X-L. Qi, Tunable circular dichroism due
2090
+ to the chiral anomaly in Weyl semimetals, Phys. Rev.
2091
+ B 91, 081106(R) (2015).
2092
+ [98] M. Nieto-Vesperinas, Optical theorem for the conserva-
2093
+ tion of electromagnetic helicity: Significance for molec-
2094
+ ular energy transfer and enantiomeric discrimination by
2095
+ circular dichroism, Phys. Rev. A 92, 023813 (2015).
2096
+ [99] Y. Tang and A. E. Cohen, Enhanced Enantioselectivity
2097
+ in Excitation of Chiral Molecules by Superchiral Light,
2098
+ Science 332, 333 (2011).
2099
+ [100] M. Amin, O. Siddiqui, and M. Farhat, Linear and cir-
2100
+ cular dichroism in graphene-based reflectors for polar-
2101
+ ization control, Phys. Rev. Applied 13, 024046 (2020).
2102
+ [101] V. G. Veselago, The electrodynamics of substances with
2103
+ simultaneously negative values of ϵ and µ, Sov. Phys.
2104
+ Usp. 10, 509 (1968).
2105
+ [102] D. R. Smith, W. J. Padilla, D. C. vier, S. C. Nemat-
2106
+ Nasser, and S. Schultz, Composite medium with simul-
2107
+ taneously negative permeability and permittivity, Phys.
2108
+ Rev. Lett. 84, 4184 (2000).
2109
+ [103] R. A. Shelby, D. R. Smith, and S. Schultz, Experimental
2110
+ verification of a negative index of refraction, Science
2111
+ 292, 77 (2001).
2112
+ [104] C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C.
2113
+ Koltenbah, and M. Tanielian, Experimental verifica-
2114
+ tion and simulation of negative index of refraction using
2115
+ Snells’ law, Phys. Rev. Lett. 90, 107401 (2003).
2116
+ [105] A. A. Houck, J. B. Brock, and I. L. Chuang, Experi-
2117
+ mental observations of a left-handed material that obeys
2118
+ Snell’s law, Phys. Rev. Lett. 90, 137401 (2003).
2119
+ [106] M. Kadic, G. W. Milton, M. van Hecke, and M. We-
2120
+ gener, 3D metamaterials, Nat. Rev. Phys. 1, 198-210
2121
+ (2019).
2122
+ [107] N. Engheta and R. W. Ziolkowski (editors), Metama-
2123
+ terials: Physics and Engineering Explorations (Wiley-
2124
+ Interscience, New Jersey, 2006).
2125
+ [108] J. Liu, M. J. Luo, Q. Wang, and H.-J. Xu, Refrac-
2126
+ tive index of light in the quark-gluon plasma with the
2127
+ hard-thermal-loop perturbation theory, Phys. Rev. D
2128
+ 84, 125027 (2011).
2129
+ [109] M. Y. Jamal, S. Mitra, and V. Chandra, Optical prop-
2130
+ erties of an anisotropic hot QCD medium, J. Phys. G:
2131
+ Nucl. Part. Phys. 47, 035107 (2020).
2132
+ [110] C.-W. Qiu, H.-Y. Yao, L.-W. Li, S. Zouhdi, and T.-S.
2133
+ Yeo, Routes to left-handed materials by magnetoelectric
2134
+ couplings, Phys. Rev. B 75, 245214 (2007).
2135
+ [111] L. Zhang, T. Koschny, and C. M. Soukoulis, Creating
2136
+ double negative index materials using the Babinet prin-
2137
+ ciple with one metasurface, Phys. Rev. B 87, 045101
2138
+ (2013).
2139
+ [112] S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, and X.
2140
+ Zhang, Negative refractive index in chiral metamateri-
2141
+ als, Phys. Rev. Lett. 102, 023901 (2009).
2142
+ [113] J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki
2143
+ and C. M. Soukoulis, Negative refractive index due to
2144
+ chirality Phys. Rev. D 79, 121104 (2009).
2145
+ [114] C.-Y. Chen, M.-C. Hsu, C. D. Hu, and Y. c. Lin, Natu-
2146
+ ral negative-refractive-index materials, Phys. Rev. Lett.
2147
+ 127, 237401 (2021).
2148
+ [115] P. Ball, Bending the rules, naturally, Nat. Mater. 21, 2
2149
+ (2022).
2150
+ [116] B. Guo, Chirality-induced negative refraction in mag-
2151
+ netized plasma, Phys. Plasmas 20, 093596 (2013).
2152
+ [117] M. X. Gao, B. Guo, L. Peng, and X. Cai, Dispersion
2153
+ relations for electromagnetic wave propagation in chiral
2154
+ plasmas, Phys. Plasmas 21, 114501 (2014).
2155
+ [118] O. Sakai and K. Tachibana, Plasmas as metamateri-
2156
+ als: a review, Plasma Sources Sci. Technol. 21, 013001
2157
+ (2012).
2158
+ [119] O. Sakai, A. Iwai, Y. Omura, S. Lio, and T. Naito, Wave
2159
+ propagation in and around negative-dielectric-constant
2160
+ discharge plasma, Phys. Plasmas 25, 03191 (2018).
2161
+ [120] E. J. Post, Formal Structure of Electromagnetics: Gen-
2162
+ eral Covariance and Electromagnetics, (Norht-Holland
2163
+ Publishing Company, Amsterdam, Dover Publications,
2164
+ 1997).
2165
+
BNE0T4oBgHgl3EQfPwB8/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
BtE3T4oBgHgl3EQfUAqQ/content/tmp_files/2301.04447v1.pdf.txt ADDED
@@ -0,0 +1,706 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ VS-Net: Multiscale Spatiotemporal Features for
2
+ Lightweight Video Salient Document Detection
3
+ 1st Hemraj Singh
4
+ Dept. of Computer Sc. & Engg.
5
+ National Institute of Technology
6
+ Warangal, Telangana, India
7
8
+ 2nd Mridula Verma
9
+ Institute for Development and Research
10
+ in Banking Technology
11
+ Hyderabad, Telangana, India
12
13
+ 3rd Ramalingaswamy Cheruku
14
+ Dept. of Computer Sc. & Engg.
15
+ National Institute of Technology
16
+ Warangal, Telangana, India
17
18
+ Abstract—Video Salient Document Detection (VSDD) is an es-
19
+ sential task of practical computer vision, which aims to highlight
20
+ visually salient document regions in video frames. Previous tech-
21
+ niques for VSDD focus on learning features without considering
22
+ the cooperation among and across the appearance and motion
23
+ cues and thus fail to perform in practical scenarios. Moreover,
24
+ most of the previous techniques demand high computational
25
+ resources, which limits the usage of such systems in resource-
26
+ constrained settings. To handle these issues, we propose VS-Net,
27
+ which captures multi-scale spatiotemporal information with the
28
+ help of dilated depth-wise separable convolution and Approxi-
29
+ mation Rank Pooling. VS-Net extracts the key features locally
30
+ from each frame across embedding sub-spaces and forwards
31
+ the features between adjacent and parallel nodes, enhancing
32
+ model performance globally. Our model generates saliency maps
33
+ considering both the background and foreground simultaneously,
34
+ making it perform better in challenging scenarios. The immense
35
+ experiments regulated on the benchmark MIDV-500 dataset show
36
+ that the VS-Net model outperforms state-of-the-art approaches
37
+ in both time and robustness measures.
38
+ Index Terms—Separable convolution, Approximation Rank
39
+ Pooling, Variational Autoencoder, Multi-scale features
40
+ I. INTRODUCTION
41
+ Video Salient Document Detection (VSDD) is an essential
42
+ task in several real-world applications, such as video document
43
+ recognition [1], video document compression [2], video doc-
44
+ ument captioning [3] and many more. In real-life scenarios,
45
+ a number of challenges appear due to an unconstrained envi-
46
+ ronment (as shown in Fig.1). Current state-of-the-art (SOTA)
47
+ models [4], [1] utilize non-selective attentional resources in the
48
+ dynamic scenes. They employ limited static features and thus
49
+ face difficulties in detecting the intended object in multiple
50
+ real-world scenarios.
51
+ Most of the existing VSDD models [6], [7], [8] extract
52
+ the spatial features separately using a computationally costly
53
+ process and then integrate them to generate a spatial saliency
54
+ map. Later, they use a different method to extract the refined
55
+ spatial-temporal features. Segregating these two steps reduces
56
+ the quality of the generated frame. This segregation also fails
57
+ to capture the longer-term motion arrangement, which links
58
+ with some actions.
59
+ Supported by Ministry of Electronics and Information Technology (MeiTy),
60
+ Government of India and IIT Bhilai Innovation and Technology Foundation
61
+ (IBITF) under the project entitled ”Blockchain and Machine Learning Pow-
62
+ ered Unified Video KYC Framework”
63
+ (a) Complex Scene
64
+ (b) Keyboard Scene
65
+ (c) Partial Scene
66
+ (d) Noise
67
+ (e) Motion Blur
68
+ (f) Illumination
69
+ Fig. 1. Challenging scenarios from MIDV-500 [5] dataset.
70
+ One of the most popular model for video analytics is U-
71
+ Net [9], which extends the temporal dimension for substituting
72
+ 2D filters with 3D filters and produces a little benediction of
73
+ annotated videos to help the 3D convolution layers. Sebastian
74
+ et al. [3] proposed DeepDeSRT, an end-to-end system for
75
+ table understanding in document images and detecting PDF
76
+ documents. But it failed in the video datasets due to poor
77
+ handling of temporal features. To solve these problems, Recur-
78
+ rent Neural Networks (RNNs) [7] used memory cells for the
79
+ long-term pattern, which parses the video frames sequentially
80
+ and encodes the information. The LSTMs use convolutional
81
+ neural networks [10] and output in the form of action labels
82
+ or video specifications. The Autoencoder LSTM model [4] is
83
+ proposed to use either an instant or the next frame for accurate
84
+ reconstruction. Tenet model in [11] acquired salient object de-
85
+ tection metrics and performed unsupervised training on CNN.
86
+ Sheshkus et al. [2] proposed HoughEncoder neural network
87
+ architecture and performed Fast Hough Transform to calculate
88
+ low-level features for the image semantic segmentation task,
89
+ however, failed to resolve challenges due to an unconstrained
90
+ environment. In [12] a spatiotemporal conditional random
91
+ field is proposed to establish the relationships between local
92
+ and global context regions, but the method failed to extract
93
+ the high-level features. Wujie Zhou et al. [13] designed a
94
+ convolution residual module to send equally distributed feature
95
+ maps between the encoder and the decoder but failed due to
96
+ long-range skip connections. The recent method [14] proposed
97
+ Vnet to optimize the skip connection but failed to combine
98
+ arXiv:2301.04447v1 [cs.CV] 11 Jan 2023
99
+
100
+ D
101
+ Mustermann
102
+ Erika
103
+ 3
104
+ 12.08.64
105
+ 4a.
106
+ 22.01.15
107
+ MUSTER
108
+ Berlln
109
+ Musterhausen
110
+ 4o,Landratsent
111
+ 21.01.30
112
+ B072RRE2155
113
+ am see%
114
+ 5
115
+ ni
116
+ FUHRERSCHEIN BUNDESRERUBLK DEUTSCHLAND
117
+ D
118
+ Mustermann
119
+ MUSTER
120
+ Erika
121
+ 1.15
122
+ 3.
123
+ 12.08.64
124
+ Berlin
125
+ 4a.22.01.15
126
+ 4c.Landratsamt
127
+ Musterhausen
128
+ am See
129
+ 4b.21.01.30
130
+ B072RRE2155
131
+ A
132
+ 9.CM/B/LP
133
+ D
134
+ C01X0006H
135
+ MUSTERMANN
136
+ ERIKA
137
+ DEUTSCH
138
+ 12.08.1964
139
+ BERLIN
140
+ 01.11.2007
141
+ 31.10.2017
142
+ D6H1D<<6408125F1710319<<<<<<<<<<<<<0FUHRERSCMEINEARE究
143
+ ETIKS
144
+ 12.06.54
145
+ 22.01:15
146
+ Mueterpnuoen
147
+ 21-01.39
148
+ B672RRE2159
149
+ PA/B1Hustermann
150
+ Erlka
151
+ MUSTERmultilevel feature information.
152
+ We propose a novel VS-Net model to overcome these
153
+ problems, which utilizes the separable convolution in the
154
+ combination of the variational encoder to extract the key
155
+ features from each frame across embedding sub-spaces and
156
+ forward the features between adjacent and parallel nodes.
157
+ Our model extracts the spatiotemporal features locally and
158
+ makes better predictions globally. The main contributions of
159
+ our paper are given below: noitemsep, nolistsep
160
+ • We design a novel spatiotemporal-based VS-Net model
161
+ with separable convolutions in variational autoencoder ar-
162
+ chitecture (VAE) [15], which reduces the skip-connection
163
+ between two nodes and generates the generalized latent
164
+ space vector.
165
+ • We utilize the Approximation Rank Pooling (ARP) [16],
166
+ which takes input features from separable convolutions
167
+ intermediate layers to train the VS-Net model. It pro-
168
+ vides low-rank approximation features to preserve their
169
+ temporal locality.
170
+ • We have conducted experiments with MIDV-500 [5]
171
+ dataset and demonstrated that VS-Net performs better in
172
+ terms of both efficiency and time.
173
+ II. PROPOSED METHODOLOGY
174
+ A. VS-Net Architecture
175
+ Based on prior knowledge, spatial and temporal-based
176
+ methods can capture better location information and preserve
177
+ location boundaries than pixel-wise CNN methods. Therefore,
178
+ we design a novel spatial and temporal-based VS-Net model
179
+ with separable convolutions [17] in variational auto-encoder
180
+ architecture (VAE) [15], which reduces the skip-connection
181
+ between two nodes and generates the generalized latent space
182
+ vector (shown in fig.2).
183
+ Given a sequence of input frames (Sn|n = 1, 2, 3, · · ·, N),
184
+ and corresponding ground-truth maps (Gn|n = 1, 2, 3, · · ·, N)
185
+ are first passed into the VS-Net model to extract the spatial and
186
+ temporal features, which uses pretrained weights of ResNet50
187
+ [7]. Our proposed model has two branches with different
188
+ purposes. The first is the down-sampling operation performing
189
+ top to bottom, extracting the spatial and temporal features from
190
+ each node and reducing the feature vectors’ dimension. The
191
+ second is upsampling operation from bottom to top, which
192
+ decodes the spatial-temporal latent space and enhances the
193
+ feature vectors. At last, we combine feature vectors from
194
+ previous nodes and parallel nodes.
195
+ During the down-sampling, we perform separable convolu-
196
+ tion operation with 3 × 3 filters on input frames to extract
197
+ spatial and temporal features, which have rich spatial and
198
+ temporal information. Then max-pooling operation with 2 × 2
199
+ filters succeeded by a ReLU activation operation performs to
200
+ downgrade the dimension of the features vectors and generate
201
+ the latent spatial and temporal map.
202
+ Sd ∼ Down(Sn) = SConv(S1, S2, S3, S4, · · ·, Sn),
203
+ (1)
204
+ where SConv is a separable convolution operation.
205
+ Before the up-sampling, we perform a convolution operation
206
+ using 1 × 1 filters with learnable weight θ and applied the
207
+ ReLU activation function to reduce the dimension of the latent
208
+ features vectors and apply a dropout operation to dropout the
209
+ 50% neurons for generating the latent space of spatial and
210
+ temporal features vectors.
211
+ Sl = Dropout(ReLU(Conv(Sd, θ))).
212
+ (2)
213
+ During the up-sampling operation from bottom to top, we
214
+ decode the latent space vectors using separable convolution
215
+ layers with 3× 3 filters, succeeded by up-sampling layers and
216
+ ReLU activation operation to reconstruct the dimension of the
217
+ features vectors.
218
+ Sup ∼ UP(Sl) = SConv(S1, S2, S3, S4, · · ·, Sn),
219
+ (3)
220
+ where SConv is a separable convolution layers with 3×3 filters.
221
+ We extract the spatial and temporal features from latent space
222
+ during the upsampling. The extracted spatial and temporal
223
+ features of each parallel node and adjacent node both are
224
+ concatenated, i.e.,
225
+ Sc = Conc(Sup, Sd),
226
+ (4)
227
+ where Conc is concatenation operation. Then we perform
228
+ separable convolution layers with 3 × 3 filters succeeded by
229
+ the ReLU activation function to enhance the quality of the
230
+ spatial-temporal feature vectors and reconstruct the original
231
+ dimension of latent features vectors. Further, we apply the
232
+ Sigmoid function using the convolution layer with 1×1 filters
233
+ to simplify the spatial and temporal features, i.e.,
234
+ Sm = Sigmoid(Sc).
235
+ (5)
236
+ The network has approximately 3.5 million trainable pa-
237
+ rameters. We notice that each layer of the VS-Net generates
238
+ a feature map with a spatial structure in places of the video
239
+ frames. Max Pooling layers use to increase the feature’s map
240
+ generation speed, which updates the weight matrix of the
241
+ backbone models during the feature extraction from every
242
+ separable convolution layer. During the bottom-up extraction
243
+ of features from high to low resolution, upsampling operations
244
+ with 2×2 filters are used to distribute the latent feature space
245
+ and combine them with the previous layer and parallel layer’s
246
+ nodes’ features.
247
+ We used Approximation Rank Pooling (ARP) [16], which
248
+ takes input features from the intermediate layers of a VS-
249
+ Net, trains on sub-sequences, and generates the output of
250
+ a subspace. ARP not only gives low-rank approximation
251
+ features, but it also conserves temporal order. The low-rank
252
+ approximation differentiated and captured important character-
253
+ istics of the data, which summarizes the document’s position
254
+ and orientation. Further, a quadratic ranking function captured
255
+ the temporal order, which handles non-linear dependencies of
256
+ the input features. Generally, the temporal order deals with the
257
+ protuberances of the input channels onto the substance.
258
+ Due to the low-rank approximation, the down-sampling
259
+ generates the generalized latent space vector. The sampling of
260
+
261
+ Input Frame
262
+ Saliency Map
263
+ UpSampling
264
+ Down Sampling
265
+ SConv1
266
+ SConv2
267
+ SConv+MaxPool+ReLU
268
+ SConv+MaxPool+ReLU
269
+ SConv+MaxPool+ReLU
270
+ SConv+MaxPool+
271
+ ReLU
272
+ SConv6
273
+ SConv7
274
+ SConv8
275
+ SConv9
276
+ SConv10
277
+ SConv14
278
+ SConv15
279
+ Fig. 2. Architecture of the proposed VS-Net.
280
+ mean and variance gives the efficient latent distribution of the
281
+ VS-Net architecture. Based on the latent Gaussian distribution,
282
+ the latent vector is generalized. The down-sampling and up-
283
+ sampling are performed based on the variational encoder and
284
+ decoder. For handling the over-fitting of the proposed model,
285
+ the latent space of the down-sampling is normalized with the
286
+ help of convolution layers and passed to up-sampling layers.
287
+ After concatenating all the spatial and temporal features, we
288
+ applied a convolution layer with 1×1 filters at the last node to
289
+ generate feature vectors. At last, the previous node and parallel
290
+ node features are aggregated and provide the saliency map.
291
+ TABLE I
292
+ PERFORMANCE COMPARISON OF THE SOTA AND PROPOSED MODEL
293
+ (VS-NET) IN TERMS OF BCE+IOU LOSS(%), AND TESTING SPEED (FPS)
294
+ Input frame
295
+ Model
296
+ Output frame
297
+ Loss (BCE+IoU)
298
+ Testing speed (FPS)
299
+ RNN+LSTM [7]
300
+ 0.032
301
+ 12.34
302
+ U-Net [9]
303
+ 0.028
304
+ 10.45
305
+ FCNN [18]
306
+ 0.038
307
+ 12.36
308
+ HE [2]
309
+ 0.041
310
+ 14.45
311
+ STCRF [12]
312
+ 0.039
313
+ 13.54
314
+ AED [13]
315
+ 0.035
316
+ 12.89
317
+ CNN+LSTM [10]
318
+ 0.036
319
+ 12.63
320
+ RCNN [19]
321
+ 0.025
322
+ 11.54
323
+ VS-Net
324
+ 0.021
325
+ 8.36
326
+ B. Loss function
327
+ During training, we use input frames Sk with the corre-
328
+ sponding ground-truth Gk at frame t. The binary cross-entropy
329
+ loss Lbce [20] is used to calculate the dissimilarity of the
330
+ output and target, which is given as follows,
331
+ lbce(Sk, Gk) = −
332
+
333
+ i,j
334
+ [Gk(i, j)log(Sk(i, j))+
335
+ (1 − Gk(i, j))log(1 − Sk(i, j))]
336
+ (6)
337
+ where (i,j) represents a coordinate of the frames. The IoU
338
+ loss [21] is computed as:
339
+ lIoU(Sk, Gk) = 1 −
340
+ �w
341
+ i=1
342
+ �h
343
+ j=1 Sk(i, j)Gk(i, j)
344
+ �w
345
+ i=1
346
+ �h
347
+ j=1[Sk(i, j) + Gk(i, j) − Sk(i, j)Gk(i, j)]
348
+ (7)
349
+ The total loss function is derived as,
350
+ Totalloss = lbce(Sk, Gk) + αlIoU(Sk, Gk),
351
+ (8)
352
+ where α is the weighting parameter for the IoU. For the final
353
+ saliency map prediction, we utilize Sk and Gk since it shows
354
+ that our experiments better utilized spatial-temporal cues.
355
+ III. EXPERIMENTAL SETUP AND RESULT ANALYSIS
356
+ A. MIDV-500 Dataset
357
+ We have considered the MIDV-500 dataset [5], which con-
358
+ tains video clips of 50 different identity documents (seventeen
359
+ Id cards, fourteen passports, six identity documents, and
360
+ thirteen driving licenses) of various countries. It has eight
361
+ different variations of background and foreground scenes. The
362
+ attributes of the dataset are TS (Table Scene), TA (Table
363
+ Action), KS (Keyboard Scene), KA (Keyboard Action), HS
364
+ (Hand Scene), HA (Hand Action), PS (Partial Scene), PA
365
+ (Partial Action), CS (Complex Scene), CA (Complex Action).
366
+ Thus a total of 500 videos are generated (50 documents× 5
367
+ desperation×2 devices). Each video has a duration of three
368
+ seconds, which is split into ten frames per second and the
369
+ corresponding annotation. The dataset contains examples of
370
+ multiple challenging scenarios, such as complex scenes, small
371
+
372
+ FUHRERSCHEIN BUNDESREPUBLKDEUTSCHLAND
373
+ D
374
+ Mustermann
375
+ Erika
376
+ 12.08.64
377
+ MUSTER
378
+ 4a.22.01.15
379
+ Berlin
380
+ Musterhausen
381
+ 4c.Landratsant
382
+ 21.0:.30
383
+ B072RRE2155
384
+ am See
385
+ M/B/LFUHRERSCHEIN BUNDESREPUBLKDEUTSCHLAND
386
+ D
387
+ Mustermann
388
+ Erika
389
+ 12.08.64
390
+ MUSTER
391
+ 4a.22.01.15
392
+ Berlin
393
+ Musterhausen
394
+ 4c.Landratsant
395
+ 21.0:.30
396
+ B072RRE2155
397
+ am See
398
+ M/B/Lobjects with different variations of frames, appearances of
399
+ background and foreground, cluttered background, etc. (a
400
+ few examples are shown in Fig: 1). The ground truth is
401
+ prepared for each extracted video frame with various document
402
+ locations in JSON format. It has 48 photo patches, 40 signature
403
+ patches, and 546 text patches. The patches convert Cyrillic,
404
+ Greek, Chinese, Japanese, Arabic, and Persian with singular
405
+ Latin characters.
406
+ B. Optimization and Propagation
407
+ For preparing the VS-Net model, the Adaptive Moment Esti-
408
+ mation (ADAM) optimizer is used to facilitate the computation
409
+ of learning rates of each parameter using the first and second
410
+ moment of the gradient. The saliency map optimization is cast
411
+ as a “label propagation” problem, where uncertain labels are
412
+ propagated based on background and foreground seeds. Fur-
413
+ ther, we perform shift and rotation invariance robustly to the
414
+ deformation of gray value variations. These random variations
415
+ of deformation are sampled from the Gaussian distribution.
416
+ Drop-out layers are used at the bottom stop and the previous
417
+ level to normalize the latent space vectors. The proposed VS-
418
+ Net model optimizes the loss of saliency maps from top-to-
419
+ bottom and bottom-to-top and propagative seeds sequentially
420
+ interact. The sequential seeding procedure optimizes feature
421
+ map loss and improves the robustness to construct a saliency
422
+ map.
423
+ C. Evaluation Metrics
424
+ We used Intersection Over Union (IoU) loss as an evaluation
425
+ metric, which is defined as the intersection over the predicted
426
+ boundary box (bbox), and the actual bbox and divided with
427
+ their union. A prediction considers True Positive if Inter-
428
+ section over union (IoU)>threshold, and False Positive If
429
+ IoU<threshold [21].
430
+ IoU = Area
431
+ of
432
+ Overlap
433
+ Area
434
+ of
435
+ Union
436
+ (9)
437
+ The smaller the IoU value, the better the performance. In our
438
+ experiments, the threshold is set as 0.5. The comparison results
439
+ in terms of accuracy are shown in Tab. II).
440
+ TABLE II
441
+ COMPARISON RESULTS WITH SOTA MODELS AND PROPOSED MODEL ON
442
+ MIDV-500 DATASET
443
+ Comparison of document detection accuracy (%)
444
+ Model
445
+ TS,
446
+ KS,
447
+ HS,
448
+ PS,
449
+ CS
450
+ TA
451
+ KA
452
+ HA
453
+ PA
454
+ CA
455
+ U-Net (2019) [9]
456
+ 96.44
457
+ 97.43
458
+ 97.12
459
+ 96.64
460
+ 97.40
461
+ RNN+LSTM (2021) [7]
462
+ 97.12
463
+ 96.33
464
+ 97.56
465
+ 95.56
466
+ 96.59
467
+ FCNN (2017)[18]
468
+ 97.78
469
+ 98.39
470
+ 98.89
471
+ 96.43
472
+ 97.43
473
+ HE (2020) [2]
474
+ 96.86
475
+ 97.58
476
+ 97.54
477
+ 96.32
478
+ 96.45
479
+ STCRF (2018) [12]
480
+ 97.43
481
+ 96.98
482
+ 97.56
483
+ 96.43
484
+ 97.98
485
+ AED (2020)[13]
486
+ 96.97
487
+ 98.54
488
+ 98.74
489
+ 96.78
490
+ 97.69
491
+ CNN+LSTM (2019)[10]
492
+ 97.56
493
+ 98.54
494
+ 98.74
495
+ 96.78
496
+ 97.69
497
+ RCNN (2019)[19]
498
+ 98.43
499
+ 98.69
500
+ 97.78
501
+ 97.19
502
+ 98.56
503
+ VS-Net
504
+ 99.25
505
+ 99.67
506
+ 99.62
507
+ 99.45
508
+ 99.74
509
+ D. Implementation Details
510
+ 1) Training Setup: The experiments are accomplished on
511
+ Intel Xeon(R) CPU E5-2640 v4 @ 2.40GHz X40 processor
512
+ with 32GB RAM. We used Tensorflow-gpu2.0, Keras as the
513
+ backend, and Python3.6 accelerated by NVIDIA RTX Graphic
514
+ card (Quadro P5000 / PCIe /SSE2). Input frames are of size
515
+ 256×256. The ADAM optimizer, weight decay of 0.006, batch
516
+ size of 128, and learning rate of 0.001 are used to train the
517
+ model, and BCE +IoU loss function is used to calculate the
518
+ loss of the VS-Net model. The running time comparison is
519
+ given in Tab. III.
520
+ 2) Testing Setup and Runtime: We resize the frame 256 ×
521
+ 256 to feed into the corresponding branch for testing. The
522
+ distribution of the dataset is in the ratio of 3:7. The average
523
+ testing speed of our model is 9.46 fps which is less than the
524
+ existing models. Additionally, we do not perform any pre-
525
+ /post-processing [19]. For validating purpose, the 5-fold cross-
526
+ validation are used to check the overfitting (see Fig.3).
527
+ Fig. 3.
528
+ 5-fold cross-validation comparison result of VS-Net and SOTA
529
+ models.
530
+ Ablation Study - The qualitative evaluation shows that
531
+ our VS-Net model gives the best results on MIDV-500 [5]
532
+ datasets but is an extremely lightweight setting that has fewer
533
+ parameters and FLOPs (see in Table. IV).
534
+ Speed Comparison The speed performance is calculated
535
+ on a 64-bit Linux Ubuntu-18.04 operating system with Intel
536
+ Core i7-4590 CPU @ 3.3 GHz. It has 32GB RAM and 1 TB
537
+ Hard disk. The average speed is computed on all frame images
538
+ of MIDV-500 datasets and does not include I/O file time. The
539
+ parallel processing of multiple images is not allowed. Priorly,
540
+ SOTA models require high computational powerful GPU sys-
541
+ tem. For a fair comparison, the recent unsupervised models
542
+ compare the speed on a normal CPU and the speed of deep
543
+ learning methods reported on GPU. The speed comparison is
544
+ given in Table III. We show the trade-off between loss and
545
+ testing speed in Table I. Further, the average time cost of
546
+ each step is examined. VS-Net consumes 256 ms and SOTA
547
+ models 270 ms, respectively, while saliency prediction and
548
+ global optimization use 8.36 ms and 10.0 ms.
549
+ IV. CONCLUSION AND FUTURE WORK
550
+ In this paper, we proposed a novel efficient and fast VS-Net
551
+ model that fully leverages the spatiotemporal features to detect
552
+
553
+ 100
554
+ 99
555
+ 98
556
+ Accuracy
557
+ 97
558
+ 96
559
+ 95
560
+ 94
561
+ HE
562
+ AED
563
+ STCRF
564
+ VS-Net
565
+ RNN+LSTM
566
+ CNN+LSTMTABLE III
567
+ RUNTIME COMPARISON OF SOTA MODELS AND VS-NET MODEL
568
+ U-Net[9]
569
+ RNN+LSTM[7]
570
+ FCNN[18]
571
+ HE [2]
572
+ STCRF[12]
573
+ AED[13]
574
+ CNN+LSTM[10]
575
+ RCNN[19]
576
+ VS-Net
577
+ Runtime (s)
578
+ 188
579
+ 191
580
+ 190
581
+ 198
582
+ 200
583
+ 199
584
+ 196
585
+ 189
586
+ 175
587
+ Step (ms)
588
+ 265
589
+ 266
590
+ 273
591
+ 278
592
+ 275
593
+ 268
594
+ 267
595
+ 260
596
+ 256
597
+ TABLE IV
598
+ ABLATION STUDY WITH RESNET-50 AS BACKBONE.
599
+ # Param(M)
600
+ FLOPS(G)
601
+ Runtime (s)
602
+ Steps(ms)
603
+ Accuracy
604
+ 5.42
605
+ 10.2
606
+ 200
607
+ 285
608
+ 97.98
609
+ 3.54
610
+ 7.3
611
+ 185
612
+ 275
613
+ 98.85
614
+ 1.20
615
+ 3.7
616
+ 175
617
+ 265
618
+ 99.75
619
+ 0.95
620
+ 2.5
621
+ 165
622
+ 255
623
+ 96.45
624
+ the video identity document. The proposed model used sep-
625
+ arable convolutions with variational autoencoder architecture,
626
+ which performs downsampling for extracting the features and
627
+ upsampling operation for decoding the latent space features.
628
+ The Approximation Rank Pooling (ARP) is used low-rank
629
+ approximation on frames to preserve the temporal locality. The
630
+ bottom-end the generalized latent space is generated. Further,
631
+ These features are combined to generate in fuse spatial and
632
+ temporal characteristics. We validated each module of the
633
+ proposed model with the help of extensive experiments, which
634
+ can be considered as the unified solution advancing VSDD.
635
+ REFERENCES
636
+ [1] J.-C. Burie, A. Forn´es, K. Santosh, and M. M. Luqman, “Deep learning
637
+ for graphics recognition: document understanding and beyond,” pp. 1–2,
638
+ 2021.
639
+ [2] A. Sheshku, D. Nikolaev, and V. L. Arlazaro, “Houghencoder: neural
640
+ network architecture for document image semantic segmentation,” in
641
+ 2020 IEEE International Conference on Image Processing (ICIP).
642
+ IEEE, 2020, pp. 1946–1950.
643
+ [3] S. Schreiber, S. Agne, I. Wolf, A. Dengel, and S. Ahmed, “Deepdesrt:
644
+ Deep learning for detection and structure recognition of tables in
645
+ document images,” in 2017 14th IAPR international conference on
646
+ document analysis and recognition (ICDAR), vol. 1.
647
+ IEEE, 2017, pp.
648
+ 1162–1167.
649
+ [4] X. Sun, X. Yang, S. Wang, and M. Liu, “Content-aware rate control
650
+ scheme for hevc based on static and dynamic saliency detection,”
651
+ Neurocomputing, vol. 411, pp. 393–405, 2020.
652
+ [5] V. V. Arlazarov, K. B. Bulatov, T. S. Chernov, and V. L. Arlazarov,
653
+ “Midv-500: a dataset for identity document analysis and recognition on
654
+ mobile devices in video stream,” Computer Optics, vol. 43, no. 5, pp.
655
+ 818–824, 2019.
656
+ [6] B. Liu, K. Mu, M. Xu, F. Wang, and L. Feng, “A novel spatiotempo-
657
+ ral attention enhanced discriminative network for video salient object
658
+ detection,” Applied Intelligence, pp. 1–16, 2021.
659
+ [7] A. Kompella and R. V. Kulkarni, “A semi-supervised recurrent neural
660
+ network for video salient object detection,” Neural Computing and
661
+ Applications, vol. 33, no. 6, pp. 2065–2083, 2021.
662
+ [8] H. Huang, C. Liu, L. Tian, J. Mu, and X. Jing, “A novel fcns-convlstm
663
+ network for video salient object detection,” International Journal of
664
+ Circuit Theory and Applications, vol. 49, no. 4, pp. 1050–1060, 2021.
665
+ [9] H. Liu and J. Jiang, “U-net based multi-instance video object segmen-
666
+ tation,” arXiv preprint arXiv:1905.07826, 2019.
667
+ [10] M. Rhanoui, M. Mikram, S. Yousfi, and S. Barzali, “A cnn-bilstm
668
+ model for document-level sentiment analysis,” Machine Learning and
669
+ Knowledge Extraction, vol. 1, no. 3, pp. 832–847, 2019.
670
+ [11] S. Ren, C. Han, X. Yang, G. Han, and S. He, “Tenet: Triple excitation
671
+ network for video salient object detection,” in European Conference on
672
+ Computer Vision.
673
+ Springer, 2020, pp. 212–228.
674
+ [12] T.-N. Le and A. Sugimoto, “Video salient object detection using spa-
675
+ tiotemporal deep features,” IEEE Transactions on Image Processing,
676
+ vol. 27, no. 10, pp. 5002–5015, 2018.
677
+ [13] W. Zhou, J. Wu, J. Lei, J.-N. Hwang, and L. Yu, “Salient object
678
+ detection in stereoscopic 3d images using a deep convolutional residual
679
+ autoencoder,” IEEE Transactions on Multimedia, 2020.
680
+ [14] R. Huang, Y. Zhang, S. Vatankhah, S. Liu, and R. Qi, “Inversion of
681
+ large-scale gravity data with application of vnet,” Geophysical Journal
682
+ International, 2022.
683
+ [15] B. Li, Z. Sun, and Y. Guo, “Supervae: Superpixelwise variational
684
+ autoencoder for salient object detection,” in Proceedings of the AAAI
685
+ Conference on Artificial Intelligence, vol. 33, no. 01, 2019, pp. 8569–
686
+ 8576.
687
+ [16] H. Bilen, B. Fernando, E. Gavves, and A. Vedaldi, “Action recognition
688
+ with dynamic image networks,” IEEE transactions on pattern analysis
689
+ and machine intelligence, vol. 40, no. 12, pp. 2799–2813, 2017.
690
+ [17] Y. Liu, X.-Y. Zhang, J.-W. Bian, L. Zhang, and M.-M. Cheng, “Samnet:
691
+ Stereoscopically attentive multi-scale network for lightweight salient
692
+ object detection,” IEEE Transactions on Image Processing, vol. 30, pp.
693
+ 3804–3814, 2021.
694
+ [18] W. Wang, J. Shen, and L. Shao, “Video salient object detection via
695
+ fully convolutional networks,” IEEE Transactions on Image Processing,
696
+ vol. 27, no. 1, pp. 38–49, 2017.
697
+ [19] V. Sharma and R. N. Mir, “Saliency guided faster-rcnn (sgfr-rcnn) model
698
+ for object detection and recognition,” Journal of King Saud University-
699
+ Computer and Information Sciences, 2019.
700
+ [20] G.-P. Ji, K. Fu, Z. Wu, D.-P. Fan, J. Shen, and L. Shao, “Full-duplex
701
+ strategy for video object segmentation,” in Proceedings of the IEEE/CVF
702
+ International Conference on Computer Vision, 2021, pp. 4922–4933.
703
+ [21] F. Ahmed, D. Tarlow, and D. Batra, “Optimizing expected intersection-
704
+ over-union with candidate-constrained crfs,” in Proceedings of the IEEE
705
+ international conference on computer vision, 2015, pp. 1850–1858.
706
+
BtE3T4oBgHgl3EQfUAqQ/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,506 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf,len=505
2
+ page_content='VS-Net: Multiscale Spatiotemporal Features for Lightweight Video Salient Document Detection 1st Hemraj Singh Dept.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
3
+ page_content=' of Computer Sc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
4
+ page_content=' & Engg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
5
+ page_content=' National Institute of Technology Warangal, Telangana, India hs720079@student.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
6
+ page_content='nitw.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
7
+ page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
8
+ page_content='in 2nd Mridula Verma Institute for Development and Research in Banking Technology Hyderabad, Telangana, India vmridula@idrbt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
9
+ page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
10
+ page_content='in 3rd Ramalingaswamy Cheruku Dept.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
11
+ page_content=' of Computer Sc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
12
+ page_content=' & Engg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
13
+ page_content=' National Institute of Technology Warangal, Telangana, India rmlswamy@nitw.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
14
+ page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
15
+ page_content='in Abstract—Video Salient Document Detection (VSDD) is an es- sential task of practical computer vision, which aims to highlight visually salient document regions in video frames.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
16
+ page_content=' Previous tech- niques for VSDD focus on learning features without considering the cooperation among and across the appearance and motion cues and thus fail to perform in practical scenarios.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
17
+ page_content=' Moreover, most of the previous techniques demand high computational resources, which limits the usage of such systems in resource- constrained settings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
18
+ page_content=' To handle these issues, we propose VS-Net, which captures multi-scale spatiotemporal information with the help of dilated depth-wise separable convolution and Approxi- mation Rank Pooling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
19
+ page_content=' VS-Net extracts the key features locally from each frame across embedding sub-spaces and forwards the features between adjacent and parallel nodes, enhancing model performance globally.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
20
+ page_content=' Our model generates saliency maps considering both the background and foreground simultaneously, making it perform better in challenging scenarios.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
21
+ page_content=' The immense experiments regulated on the benchmark MIDV-500 dataset show that the VS-Net model outperforms state-of-the-art approaches in both time and robustness measures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
22
+ page_content=' Index Terms—Separable convolution, Approximation Rank Pooling, Variational Autoencoder, Multi-scale features I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
23
+ page_content=' INTRODUCTION Video Salient Document Detection (VSDD) is an essential task in several real-world applications, such as video document recognition [1], video document compression [2], video doc- ument captioning [3] and many more.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
24
+ page_content=' In real-life scenarios, a number of challenges appear due to an unconstrained envi- ronment (as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
25
+ page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
26
+ page_content=' Current state-of-the-art (SOTA) models [4], [1] utilize non-selective attentional resources in the dynamic scenes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
27
+ page_content=' They employ limited static features and thus face difficulties in detecting the intended object in multiple real-world scenarios.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
28
+ page_content=' Most of the existing VSDD models [6], [7], [8] extract the spatial features separately using a computationally costly process and then integrate them to generate a spatial saliency map.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
29
+ page_content=' Later, they use a different method to extract the refined spatial-temporal features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
30
+ page_content=' Segregating these two steps reduces the quality of the generated frame.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
31
+ page_content=' This segregation also fails to capture the longer-term motion arrangement, which links with some actions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
32
+ page_content=' Supported by Ministry of Electronics and Information Technology (MeiTy), Government of India and IIT Bhilai Innovation and Technology Foundation (IBITF) under the project entitled ”Blockchain and Machine Learning Pow- ered Unified Video KYC Framework” (a) Complex Scene (b) Keyboard Scene (c) Partial Scene (d) Noise (e) Motion Blur (f) Illumination Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
33
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
34
+ page_content=' Challenging scenarios from MIDV-500 [5] dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
35
+ page_content=' One of the most popular model for video analytics is U- Net [9], which extends the temporal dimension for substituting 2D filters with 3D filters and produces a little benediction of annotated videos to help the 3D convolution layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
36
+ page_content=' Sebastian et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
37
+ page_content=' [3] proposed DeepDeSRT, an end-to-end system for table understanding in document images and detecting PDF documents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
38
+ page_content=' But it failed in the video datasets due to poor handling of temporal features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
39
+ page_content=' To solve these problems, Recur- rent Neural Networks (RNNs) [7] used memory cells for the long-term pattern, which parses the video frames sequentially and encodes the information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
40
+ page_content=' The LSTMs use convolutional neural networks [10] and output in the form of action labels or video specifications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
41
+ page_content=' The Autoencoder LSTM model [4] is proposed to use either an instant or the next frame for accurate reconstruction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
42
+ page_content=' Tenet model in [11] acquired salient object de- tection metrics and performed unsupervised training on CNN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
43
+ page_content=' Sheshkus et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
44
+ page_content=' [2] proposed HoughEncoder neural network architecture and performed Fast Hough Transform to calculate low-level features for the image semantic segmentation task, however, failed to resolve challenges due to an unconstrained environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
45
+ page_content=' In [12] a spatiotemporal conditional random field is proposed to establish the relationships between local and global context regions, but the method failed to extract the high-level features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
46
+ page_content=' Wujie Zhou et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
47
+ page_content=' [13] designed a convolution residual module to send equally distributed feature maps between the encoder and the decoder but failed due to long-range skip connections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
48
+ page_content=' The recent method [14] proposed Vnet to optimize the skip connection but failed to combine arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
49
+ page_content='04447v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
50
+ page_content='CV] 11 Jan 2023 D Mustermann Erika 3 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
51
+ page_content='08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
52
+ page_content='64 4a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
53
+ page_content=' 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
54
+ page_content='01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
55
+ page_content='15 MUSTER Berlln Musterhausen 4o,Landratsent 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
56
+ page_content='01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
57
+ page_content='30 B072RRE2155 am see% 5 ni FUHRERSCHEIN BUNDESRERUBLK DEUTSCHLAND D Mustermann MUSTER Erika 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
58
+ page_content='15 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
59
+ page_content=' 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
60
+ page_content='08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
61
+ page_content='64 Berlin 4a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
62
+ page_content='22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
63
+ page_content='01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
64
+ page_content='15 4c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
65
+ page_content='Landratsamt Musterhausen am See 4b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
66
+ page_content='21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
67
+ page_content='01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
68
+ page_content='30 B072RRE2155 A 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
69
+ page_content='CM/B/LP D C01X0006H MUSTERMANN ERIKA DEUTSCH 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
70
+ page_content='08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
71
+ page_content='1964 BERLIN 01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
72
+ page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
73
+ page_content='2007 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
74
+ page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
75
+ page_content='2017 D6H1D<<6408125F1710319<<<<<<<<<<<<<0FUHRERSCMEINEARE究 ETIKS 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
76
+ page_content='06.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
77
+ page_content='54 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
78
+ page_content='01:15 Mueterpnuoen 21-01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
79
+ page_content='39 B672RRE2159 PA/B1Hustermann Erlka MUSTERmultilevel feature information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
80
+ page_content=' We propose a novel VS-Net model to overcome these problems, which utilizes the separable convolution in the combination of the variational encoder to extract the key features from each frame across embedding sub-spaces and forward the features between adjacent and parallel nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
81
+ page_content=' Our model extracts the spatiotemporal features locally and makes better predictions globally.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
82
+ page_content=' The main contributions of our paper are given below: noitemsep, nolistsep We design a novel spatiotemporal-based VS-Net model with separable convolutions in variational autoencoder ar- chitecture (VAE) [15], which reduces the skip-connection between two nodes and generates the generalized latent space vector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
83
+ page_content=' We utilize the Approximation Rank Pooling (ARP) [16], which takes input features from separable convolutions intermediate layers to train the VS-Net model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
84
+ page_content=' It pro- vides low-rank approximation features to preserve their temporal locality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
85
+ page_content=' We have conducted experiments with MIDV-500 [5] dataset and demonstrated that VS-Net performs better in terms of both efficiency and time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
86
+ page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
87
+ page_content=' PROPOSED METHODOLOGY A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
88
+ page_content=' VS-Net Architecture Based on prior knowledge, spatial and temporal-based methods can capture better location information and preserve location boundaries than pixel-wise CNN methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
89
+ page_content=' Therefore, we design a novel spatial and temporal-based VS-Net model with separable convolutions [17] in variational auto-encoder architecture (VAE) [15], which reduces the skip-connection between two nodes and generates the generalized latent space vector (shown in fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
90
+ page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
91
+ page_content=' Given a sequence of input frames (Sn|n = 1, 2, 3, · · ·, N), and corresponding ground-truth maps (Gn|n = 1, 2, 3, · · ·, N) are first passed into the VS-Net model to extract the spatial and temporal features, which uses pretrained weights of ResNet50 [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
92
+ page_content=' Our proposed model has two branches with different purposes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
93
+ page_content=' The first is the down-sampling operation performing top to bottom, extracting the spatial and temporal features from each node and reducing the feature vectors’ dimension.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
94
+ page_content=' The second is upsampling operation from bottom to top, which decodes the spatial-temporal latent space and enhances the feature vectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
95
+ page_content=' At last, we combine feature vectors from previous nodes and parallel nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
96
+ page_content=' During the down-sampling, we perform separable convolu- tion operation with 3 × 3 filters on input frames to extract spatial and temporal features, which have rich spatial and temporal information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
97
+ page_content=' Then max-pooling operation with 2 × 2 filters succeeded by a ReLU activation operation performs to downgrade the dimension of the features vectors and generate the latent spatial and temporal map.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
98
+ page_content=' Sd ∼ Down(Sn) = SConv(S1, S2, S3, S4, · · ·, Sn), (1) where SConv is a separable convolution operation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
99
+ page_content=' Before the up-sampling, we perform a convolution operation using 1 × 1 filters with learnable weight θ and applied the ReLU activation function to reduce the dimension of the latent features vectors and apply a dropout operation to dropout the 50% neurons for generating the latent space of spatial and temporal features vectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
100
+ page_content=' Sl = Dropout(ReLU(Conv(Sd, θ))).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
101
+ page_content=' (2) During the up-sampling operation from bottom to top, we decode the latent space vectors using separable convolution layers with 3× 3 filters, succeeded by up-sampling layers and ReLU activation operation to reconstruct the dimension of the features vectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
102
+ page_content=' Sup ∼ UP(Sl) = SConv(S1, S2, S3, S4, · · ·, Sn), (3) where SConv is a separable convolution layers with 3×3 filters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
103
+ page_content=' We extract the spatial and temporal features from latent space during the upsampling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
104
+ page_content=' The extracted spatial and temporal features of each parallel node and adjacent node both are concatenated, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
105
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
106
+ page_content=', Sc = Conc(Sup, Sd), (4) where Conc is concatenation operation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
107
+ page_content=' Then we perform separable convolution layers with 3 × 3 filters succeeded by the ReLU activation function to enhance the quality of the spatial-temporal feature vectors and reconstruct the original dimension of latent features vectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
108
+ page_content=' Further, we apply the Sigmoid function using the convolution layer with 1×1 filters to simplify the spatial and temporal features, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
109
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
110
+ page_content=', Sm = Sigmoid(Sc).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
111
+ page_content=' (5) The network has approximately 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
112
+ page_content='5 million trainable pa- rameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
113
+ page_content=' We notice that each layer of the VS-Net generates a feature map with a spatial structure in places of the video frames.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
114
+ page_content=' Max Pooling layers use to increase the feature’s map generation speed, which updates the weight matrix of the backbone models during the feature extraction from every separable convolution layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
115
+ page_content=' During the bottom-up extraction of features from high to low resolution, upsampling operations with 2×2 filters are used to distribute the latent feature space and combine them with the previous layer and parallel layer’s nodes’ features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
116
+ page_content=' We used Approximation Rank Pooling (ARP) [16], which takes input features from the intermediate layers of a VS- Net, trains on sub-sequences, and generates the output of a subspace.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
117
+ page_content=' ARP not only gives low-rank approximation features, but it also conserves temporal order.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
118
+ page_content=' The low-rank approximation differentiated and captured important character- istics of the data, which summarizes the document’s position and orientation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
119
+ page_content=' Further, a quadratic ranking function captured the temporal order, which handles non-linear dependencies of the input features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
120
+ page_content=' Generally, the temporal order deals with the protuberances of the input channels onto the substance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
121
+ page_content=' Due to the low-rank approximation, the down-sampling generates the generalized latent space vector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
122
+ page_content=' The sampling of Input Frame Saliency Map UpSampling Down Sampling SConv1 SConv2 SConv+MaxPool+ReLU SConv+MaxPool+ReLU SConv+MaxPool+ReLU SConv+MaxPool+ ReLU SConv6 SConv7 SConv8 SConv9 SConv10 SConv14 SConv15 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
123
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
124
+ page_content=' Architecture of the proposed VS-Net.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
125
+ page_content=' mean and variance gives the efficient latent distribution of the VS-Net architecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
126
+ page_content=' Based on the latent Gaussian distribution, the latent vector is generalized.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
127
+ page_content=' The down-sampling and up- sampling are performed based on the variational encoder and decoder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
128
+ page_content=' For handling the over-fitting of the proposed model, the latent space of the down-sampling is normalized with the help of convolution layers and passed to up-sampling layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
129
+ page_content=' After concatenating all the spatial and temporal features, we applied a convolution layer with 1×1 filters at the last node to generate feature vectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
130
+ page_content=' At last, the previous node and parallel node features are aggregated and provide the saliency map.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
131
+ page_content=' TABLE I PERFORMANCE COMPARISON OF THE SOTA AND PROPOSED MODEL (VS-NET) IN TERMS OF BCE+IOU LOSS(%), AND TESTING SPEED (FPS) Input frame Model Output frame Loss (BCE+IoU) Testing speed (FPS) RNN+LSTM [7] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
132
+ page_content='032 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
133
+ page_content='34 U-Net [9] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
134
+ page_content='028 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
135
+ page_content='45 FCNN [18] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
136
+ page_content='038 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
137
+ page_content='36 HE [2] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
138
+ page_content='041 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
139
+ page_content='45 STCRF [12] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
140
+ page_content='039 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
141
+ page_content='54 AED [13] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
142
+ page_content='035 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
143
+ page_content='89 CNN+LSTM [10] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
144
+ page_content='036 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
145
+ page_content='63 RCNN [19] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
146
+ page_content='025 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
147
+ page_content='54 VS-Net 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
148
+ page_content='021 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
149
+ page_content='36 B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
150
+ page_content=' Loss function During training, we use input frames Sk with the corre- sponding ground-truth Gk at frame t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
151
+ page_content=' The binary cross-entropy loss Lbce [20] is used to calculate the dissimilarity of the output and target, which is given as follows, lbce(Sk, Gk) = − � i,j [Gk(i, j)log(Sk(i, j))+ (1 − Gk(i, j))log(1 − Sk(i, j))] (6) where (i,j) represents a coordinate of the frames.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
152
+ page_content=' The IoU loss [21] is computed as: lIoU(Sk, Gk) = 1 − �w i=1 �h j=1 Sk(i, j)Gk(i, j) �w i=1 �h j=1[Sk(i, j) + Gk(i, j) − Sk(i, j)Gk(i, j)] (7) The total loss function is derived as, Totalloss = lbce(Sk, Gk) + αlIoU(Sk, Gk), (8) where α is the weighting parameter for the IoU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
153
+ page_content=' For the final saliency map prediction, we utilize Sk and Gk since it shows that our experiments better utilized spatial-temporal cues.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
154
+ page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
155
+ page_content=' EXPERIMENTAL SETUP AND RESULT ANALYSIS A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
156
+ page_content=' MIDV-500 Dataset We have considered the MIDV-500 dataset [5], which con- tains video clips of 50 different identity documents (seventeen Id cards, fourteen passports, six identity documents, and thirteen driving licenses) of various countries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
157
+ page_content=' It has eight different variations of background and foreground scenes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
158
+ page_content=' The attributes of the dataset are TS (Table Scene), TA (Table Action), KS (Keyboard Scene), KA (Keyboard Action), HS (Hand Scene), HA (Hand Action), PS (Partial Scene), PA (Partial Action), CS (Complex Scene), CA (Complex Action).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
159
+ page_content=' Thus a total of 500 videos are generated (50 documents× 5 desperation×2 devices).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
160
+ page_content=' Each video has a duration of three seconds, which is split into ten frames per second and the corresponding annotation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
161
+ page_content=' The dataset contains examples of multiple challenging scenarios, such as complex scenes, small FUHRERSCHEIN BUNDESREPUBLKDEUTSCHLAND D Mustermann Erika 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
162
+ page_content='08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
163
+ page_content='64 MUSTER 4a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
164
+ page_content='22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
165
+ page_content='01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
166
+ page_content='15 Berlin Musterhausen 4c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
167
+ page_content='Landratsant 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
168
+ page_content='0:.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
169
+ page_content='30 B072RRE2155 am See M/B/LFUHRERSCHEIN BUNDESREPUBLKDEUTSCHLAND D Mustermann Erika 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
170
+ page_content='08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
171
+ page_content='64 MUSTER 4a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
172
+ page_content='22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
173
+ page_content='01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
174
+ page_content='15 Berlin Musterhausen 4c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
175
+ page_content='Landratsant 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
176
+ page_content='0:.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
177
+ page_content='30 B072RRE2155 am See M/B/Lobjects with different variations of frames, appearances of background and foreground, cluttered background, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
178
+ page_content=' (a few examples are shown in Fig: 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
179
+ page_content=' The ground truth is prepared for each extracted video frame with various document locations in JSON format.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
180
+ page_content=' It has 48 photo patches, 40 signature patches, and 546 text patches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
181
+ page_content=' The patches convert Cyrillic, Greek, Chinese, Japanese, Arabic, and Persian with singular Latin characters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
182
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
183
+ page_content=' Optimization and Propagation For preparing the VS-Net model, the Adaptive Moment Esti- mation (ADAM) optimizer is used to facilitate the computation of learning rates of each parameter using the first and second moment of the gradient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
184
+ page_content=' The saliency map optimization is cast as a “label propagation” problem, where uncertain labels are propagated based on background and foreground seeds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
185
+ page_content=' Fur- ther, we perform shift and rotation invariance robustly to the deformation of gray value variations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
186
+ page_content=' These random variations of deformation are sampled from the Gaussian distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
187
+ page_content=' Drop-out layers are used at the bottom stop and the previous level to normalize the latent space vectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
188
+ page_content=' The proposed VS- Net model optimizes the loss of saliency maps from top-to- bottom and bottom-to-top and propagative seeds sequentially interact.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
189
+ page_content=' The sequential seeding procedure optimizes feature map loss and improves the robustness to construct a saliency map.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
190
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
191
+ page_content=' Evaluation Metrics We used Intersection Over Union (IoU) loss as an evaluation metric, which is defined as the intersection over the predicted boundary box (bbox), and the actual bbox and divided with their union.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
192
+ page_content=' A prediction considers True Positive if Inter- section over union (IoU)>threshold, and False Positive If IoU<threshold [21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
193
+ page_content=' IoU = Area of Overlap Area of Union (9) The smaller the IoU value, the better the performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
194
+ page_content=' In our experiments, the threshold is set as 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
195
+ page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
196
+ page_content=' The comparison results in terms of accuracy are shown in Tab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
197
+ page_content=' II).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
198
+ page_content=' TABLE II COMPARISON RESULTS WITH SOTA MODELS AND PROPOSED MODEL ON MIDV-500 DATASET Comparison of document detection accuracy (%) Model TS, KS, HS, PS, CS TA KA HA PA CA U-Net (2019) [9] 96.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
199
+ page_content='44 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
200
+ page_content='43 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
201
+ page_content='12 96.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
202
+ page_content='64 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
203
+ page_content='40 RNN+LSTM (2021) [7] 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
204
+ page_content='12 96.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
205
+ page_content='33 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
206
+ page_content='56 95.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
207
+ page_content='56 96.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
208
+ page_content='59 FCNN (2017)[18] 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
209
+ page_content='78 98.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
210
+ page_content='39 98.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
211
+ page_content='89 96.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
212
+ page_content='43 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
213
+ page_content='43 HE (2020) [2] 96.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
214
+ page_content='86 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
215
+ page_content='58 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
216
+ page_content='54 96.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
217
+ page_content='32 96.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
218
+ page_content='45 STCRF (2018) [12] 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
219
+ page_content='43 96.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
220
+ page_content='98 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
221
+ page_content='56 96.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
222
+ page_content='43 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
223
+ page_content='98 AED (2020)[13] 96.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
224
+ page_content='97 98.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
225
+ page_content='54 98.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
226
+ page_content='74 96.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
227
+ page_content='78 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
228
+ page_content='69 CNN+LSTM (2019)[10] 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
229
+ page_content='56 98.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
230
+ page_content='54 98.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
231
+ page_content='74 96.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
232
+ page_content='78 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
233
+ page_content='69 RCNN (2019)[19] 98.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
234
+ page_content='43 98.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
235
+ page_content='69 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
236
+ page_content='78 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
237
+ page_content='19 98.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
238
+ page_content='56 VS-Net 99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
239
+ page_content='25 99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
240
+ page_content='67 99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
241
+ page_content='62 99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
242
+ page_content='45 99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
243
+ page_content='74 D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
244
+ page_content=' Implementation Details 1) Training Setup: The experiments are accomplished on Intel Xeon(R) CPU E5-2640 v4 @ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
245
+ page_content='40GHz X40 processor with 32GB RAM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
246
+ page_content=' We used Tensorflow-gpu2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
247
+ page_content='0, Keras as the backend, and Python3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
248
+ page_content='6 accelerated by NVIDIA RTX Graphic card (Quadro P5000 / PCIe /SSE2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
249
+ page_content=' Input frames are of size 256×256.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
250
+ page_content=' The ADAM optimizer, weight decay of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
251
+ page_content='006, batch size of 128, and learning rate of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
252
+ page_content='001 are used to train the model, and BCE +IoU loss function is used to calculate the loss of the VS-Net model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
253
+ page_content=' The running time comparison is given in Tab.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
254
+ page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
255
+ page_content=' 2) Testing Setup and Runtime: We resize the frame 256 × 256 to feed into the corresponding branch for testing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
256
+ page_content=' The distribution of the dataset is in the ratio of 3:7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
257
+ page_content=' The average testing speed of our model is 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
258
+ page_content='46 fps which is less than the existing models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
259
+ page_content=' Additionally, we do not perform any pre- /post-processing [19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
260
+ page_content=' For validating purpose, the 5-fold cross- validation are used to check the overfitting (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
261
+ page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
262
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
263
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
264
+ page_content=' 5-fold cross-validation comparison result of VS-Net and SOTA models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
265
+ page_content=' Ablation Study - The qualitative evaluation shows that our VS-Net model gives the best results on MIDV-500 [5] datasets but is an extremely lightweight setting that has fewer parameters and FLOPs (see in Table.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
266
+ page_content=' IV).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
267
+ page_content=' Speed Comparison The speed performance is calculated on a 64-bit Linux Ubuntu-18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
268
+ page_content='04 operating system with Intel Core i7-4590 CPU @ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
269
+ page_content='3 GHz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
270
+ page_content=' It has 32GB RAM and 1 TB Hard disk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
271
+ page_content=' The average speed is computed on all frame images of MIDV-500 datasets and does not include I/O file time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
272
+ page_content=' The parallel processing of multiple images is not allowed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
273
+ page_content=' Priorly, SOTA models require high computational powerful GPU sys- tem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
274
+ page_content=' For a fair comparison, the recent unsupervised models compare the speed on a normal CPU and the speed of deep learning methods reported on GPU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
275
+ page_content=' The speed comparison is given in Table III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
276
+ page_content=' We show the trade-off between loss and testing speed in Table I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
277
+ page_content=' Further, the average time cost of each step is examined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
278
+ page_content=' VS-Net consumes 256 ms and SOTA models 270 ms, respectively, while saliency prediction and global optimization use 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
279
+ page_content='36 ms and 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
280
+ page_content='0 ms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
281
+ page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
282
+ page_content=' CONCLUSION AND FUTURE WORK In this paper,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
283
+ page_content=' we proposed a novel efficient and fast VS-Net ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
284
+ page_content='model that fully leverages the spatiotemporal features to detect ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
285
+ page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
286
+ page_content='99 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
287
+ page_content='98 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
288
+ page_content='Accuracy ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
289
+ page_content='97 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
290
+ page_content='96 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
291
+ page_content='95 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
292
+ page_content='94 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
293
+ page_content='HE ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
294
+ page_content='AED ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
295
+ page_content='STCRF ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
296
+ page_content='VS-Net ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
297
+ page_content='RNN+LSTM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
298
+ page_content='CNN+LSTMTABLE III ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
299
+ page_content='RUNTIME COMPARISON OF SOTA MODELS AND VS-NET MODEL ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
300
+ page_content='U-Net[9] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
301
+ page_content='RNN+LSTM[7] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
302
+ page_content='FCNN[18] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
303
+ page_content='HE [2] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
304
+ page_content='STCRF[12] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
305
+ page_content='AED[13] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
306
+ page_content='CNN+LSTM[10] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
307
+ page_content='RCNN[19] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
308
+ page_content='VS-Net ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
309
+ page_content='Runtime (s) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
310
+ page_content='188 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
311
+ page_content='191 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
312
+ page_content='190 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
313
+ page_content='198 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
314
+ page_content='200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
315
+ page_content='199 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
316
+ page_content='196 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
317
+ page_content='189 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
318
+ page_content='175 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
319
+ page_content='Step (ms) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
320
+ page_content='265 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
321
+ page_content='266 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
322
+ page_content='273 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
323
+ page_content='278 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
324
+ page_content='275 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
325
+ page_content='268 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
326
+ page_content='267 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
327
+ page_content='260 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
328
+ page_content='256 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
329
+ page_content='TABLE IV ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
330
+ page_content='ABLATION STUDY WITH RESNET-50 AS BACKBONE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
331
+ page_content=' # Param(M) FLOPS(G) Runtime (s) Steps(ms) Accuracy 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
332
+ page_content='42 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
333
+ page_content='2 200 285 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
334
+ page_content='98 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
335
+ page_content='54 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
336
+ page_content='3 185 275 98.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
337
+ page_content='85 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
338
+ page_content='20 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
339
+ page_content='7 175 265 99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
340
+ page_content='75 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
341
+ page_content='95 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
342
+ page_content='5 165 255 96.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
343
+ page_content='45 the video identity document.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
344
+ page_content=' The proposed model used sep- arable convolutions with variational autoencoder architecture, which performs downsampling for extracting the features and upsampling operation for decoding the latent space features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
345
+ page_content=' The Approximation Rank Pooling (ARP) is used low-rank approximation on frames to preserve the temporal locality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
346
+ page_content=' The bottom-end the generalized latent space is generated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
347
+ page_content=' Further, These features are combined to generate in fuse spatial and temporal characteristics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
348
+ page_content=' We validated each module of the proposed model with the help of extensive experiments, which can be considered as the unified solution advancing VSDD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
349
+ page_content=' REFERENCES [1] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
350
+ page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
351
+ page_content=' Burie, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
352
+ page_content=' Forn´es, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
353
+ page_content=' Santosh, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
354
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
355
+ page_content=' Luqman, “Deep learning for graphics recognition: document understanding and beyond,” pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
356
+ page_content=' 1–2, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
357
+ page_content=' [2] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
358
+ page_content=' Sheshku, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
359
+ page_content=' Nikolaev, and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
360
+ page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
361
+ page_content=' Arlazaro, “Houghencoder: neural network architecture for document image semantic segmentation,” in 2020 IEEE International Conference on Image Processing (ICIP).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
362
+ page_content=' IEEE, 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
363
+ page_content=' 1946–1950.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
364
+ page_content=' [3] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
365
+ page_content=' Schreiber, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
366
+ page_content=' Agne, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
367
+ page_content=' Wolf, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
368
+ page_content=' Dengel, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
369
+ page_content=' Ahmed, “Deepdesrt: Deep learning for detection and structure recognition of tables in document images,” in 2017 14th IAPR international conference on document analysis and recognition (ICDAR), vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
370
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
371
+ page_content=' IEEE, 2017, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
372
+ page_content=' 1162–1167.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
373
+ page_content=' [4] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
374
+ page_content=' Sun, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
375
+ page_content=' Yang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
376
+ page_content=' Wang, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
377
+ page_content=' Liu, “Content-aware rate control scheme for hevc based on static and dynamic saliency detection,” Neurocomputing, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
378
+ page_content=' 411, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
379
+ page_content=' 393–405, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
380
+ page_content=' [5] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
381
+ page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
382
+ page_content=' Arlazarov, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
383
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
384
+ page_content=' Bulatov, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
385
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
386
+ page_content=' Chernov, and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
387
+ page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
388
+ page_content=' Arlazarov, “Midv-500: a dataset for identity document analysis and recognition on mobile devices in video stream,” Computer Optics, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
389
+ page_content=' 43, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
390
+ page_content=' 5, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
391
+ page_content=' 818–824, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
392
+ page_content=' [6] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
393
+ page_content=' Liu, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
394
+ page_content=' Mu, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
395
+ page_content=' Xu, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
396
+ page_content=' Wang, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
397
+ page_content=' Feng, “A novel spatiotempo- ral attention enhanced discriminative network for video salient object detection,” Applied Intelligence, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
398
+ page_content=' 1–16, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
399
+ page_content=' [7] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
400
+ page_content=' Kompella and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
401
+ page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
402
+ page_content=' Kulkarni, “A semi-supervised recurrent neural network for video salient object detection,” Neural Computing and Applications, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
403
+ page_content=' 33, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
404
+ page_content=' 6, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
405
+ page_content=' 2065–2083, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
406
+ page_content=' [8] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
407
+ page_content=' Huang, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
408
+ page_content=' Liu, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
409
+ page_content=' Tian, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
410
+ page_content=' Mu, and X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
411
+ page_content=' Jing, “A novel fcns-convlstm network for video salient object detection,” International Journal of Circuit Theory and Applications, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
412
+ page_content=' 49, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
413
+ page_content=' 4, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
414
+ page_content=' 1050–1060, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
415
+ page_content=' [9] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
416
+ page_content=' Liu and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
417
+ page_content=' Jiang, “U-net based multi-instance video object segmen- tation,” arXiv preprint arXiv:1905.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
418
+ page_content='07826, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
419
+ page_content=' [10] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
420
+ page_content=' Rhanoui, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
421
+ page_content=' Mikram, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
422
+ page_content=' Yousfi, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
423
+ page_content=' Barzali, “A cnn-bilstm model for document-level sentiment analysis,” Machine Learning and Knowledge Extraction, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
424
+ page_content=' 1, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
425
+ page_content=' 3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
426
+ page_content=' 832–847, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
427
+ page_content=' [11] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
428
+ page_content=' Ren, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
429
+ page_content=' Han, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
430
+ page_content=' Yang, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
431
+ page_content=' Han, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
432
+ page_content=' He, “Tenet: Triple excitation network for video salient object detection,” in European Conference on Computer Vision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
433
+ page_content=' Springer, 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
434
+ page_content=' 212–228.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
435
+ page_content=' [12] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
436
+ page_content='-N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
437
+ page_content=' Le and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
438
+ page_content=' Sugimoto, “Video salient object detection using spa- tiotemporal deep features,” IEEE Transactions on Image Processing, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
439
+ page_content=' 27, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
440
+ page_content=' 10, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
441
+ page_content=' 5002–5015, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
442
+ page_content=' [13] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
443
+ page_content=' Zhou, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
444
+ page_content=' Wu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
445
+ page_content=' Lei, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
446
+ page_content='-N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
447
+ page_content=' Hwang, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
448
+ page_content=' Yu, “Salient object detection in stereoscopic 3d images using a deep convolutional residual autoencoder,” IEEE Transactions on Multimedia, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
449
+ page_content=' [14] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
450
+ page_content=' Huang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
451
+ page_content=' Zhang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
452
+ page_content=' Vatankhah, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
453
+ page_content=' Liu, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
454
+ page_content=' Qi, “Inversion of large-scale gravity data with application of vnet,” Geophysical Journal International, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
455
+ page_content=' [15] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
456
+ page_content=' Li, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
457
+ page_content=' Sun, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
458
+ page_content=' Guo, “Supervae: Superpixelwise variational autoencoder for salient object detection,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
459
+ page_content=' 33, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
460
+ page_content=' 01, 2019, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
461
+ page_content=' 8569– 8576.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
462
+ page_content=' [16] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
463
+ page_content=' Bilen, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
464
+ page_content=' Fernando, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
465
+ page_content=' Gavves, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
466
+ page_content=' Vedaldi, “Action recognition with dynamic image networks,” IEEE transactions on pattern analysis and machine intelligence, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
467
+ page_content=' 40, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
468
+ page_content=' 12, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
469
+ page_content=' 2799–2813, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
470
+ page_content=' [17] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
471
+ page_content=' Liu, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
472
+ page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
473
+ page_content=' Zhang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
474
+ page_content='-W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
475
+ page_content=' Bian, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
476
+ page_content=' Zhang, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
477
+ page_content='-M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
478
+ page_content=' Cheng, “Samnet: Stereoscopically attentive multi-scale network for lightweight salient object detection,” IEEE Transactions on Image Processing, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
479
+ page_content=' 30, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
480
+ page_content=' 3804–3814, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
481
+ page_content=' [18] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
482
+ page_content=' Wang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
483
+ page_content=' Shen, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
484
+ page_content=' Shao, “Video salient object detection via fully convolutional networks,” IEEE Transactions on Image Processing, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
485
+ page_content=' 27, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
486
+ page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
487
+ page_content=' 38–49, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
488
+ page_content=' [19] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
489
+ page_content=' Sharma and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
490
+ page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
491
+ page_content=' Mir, “Saliency guided faster-rcnn (sgfr-rcnn) model for object detection and recognition,” Journal of King Saud University- Computer and Information Sciences, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
492
+ page_content=' [20] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
493
+ page_content='-P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
494
+ page_content=' Ji, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
495
+ page_content=' Fu, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
496
+ page_content=' Wu, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
497
+ page_content='-P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
498
+ page_content=' Fan, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
499
+ page_content=' Shen, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
500
+ page_content=' Shao, “Full-duplex strategy for video object segmentation,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
501
+ page_content=' 4922–4933.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
502
+ page_content=' [21] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
503
+ page_content=' Ahmed, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
504
+ page_content=' Tarlow, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
505
+ page_content=' Batra, “Optimizing expected intersection- over-union with candidate-constrained crfs,” in Proceedings of the IEEE international conference on computer vision, 2015, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
506
+ page_content=' 1850–1858.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BtE3T4oBgHgl3EQfUAqQ/content/2301.04447v1.pdf'}
CtFQT4oBgHgl3EQfOzYB/content/2301.13276v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:231d78a1ab9cb9980ec1d78debc943830fa9825d2e0864f620e22e3e5c6f8849
3
+ size 889525
CtFQT4oBgHgl3EQfOzYB/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a85cafbceb7307cf5426507e86b2475c588cab08dd4ccf1d9e58efa73e49054a
3
+ size 720941
CtFQT4oBgHgl3EQfOzYB/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c38aa7417298d388be48038f7d22c2cccffad065a432037583a10e8abf6b7d0
3
+ size 34425
E9E1T4oBgHgl3EQfqgWQ/content/tmp_files/2301.03344v1.pdf.txt ADDED
@@ -0,0 +1,2447 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+ Universal Multimodal Representation for
3
+ Language Understanding
4
+ Zhuosheng Zhang#, Kehai Chen, Rui Wang#, Masao Utiyama, Eiichiro Sumita, Zuchao Li, Hai Zhao*
5
+ Abstract—Representation learning is the foundation of natural language processing (NLP). This work presents new methods to employ
6
+ visual information as assistant signals to general NLP tasks. For each sentence, we first retrieve a flexible number of images either
7
+ from a light topic-image lookup table extracted over the existing sentence-image pairs or a shared cross-modal embedding space that
8
+ is pre-trained on out-of-shelf text-image pairs. Then, the text and images are encoded by a Transformer encoder and convolutional
9
+ neural network, respectively. The two sequences of representations are further fused by an attention layer for the interaction of the two
10
+ modalities. In this study, the retrieval process is controllable and flexible. The universal visual representation overcomes the lack of large-
11
+ scale bilingual sentence-image pairs. Our method can be easily applied to text-only tasks without manually annotated multimodal parallel
12
+ corpora. We apply the proposed method to a wide range of natural language generation and understanding tasks, including neural
13
+ machine translation, natural language inference, and semantic similarity. Experimental results show that our method is generally effective
14
+ for different tasks and languages. Analysis indicates that the visual signals enrich textual representations of content words, provide fine-
15
+ grained grounding information about the relationship between concepts and events, and potentially conduce to disambiguation.
16
+ Index Terms—Artificial Intelligence, Natural Language Understanding, Vision-Language Modeling, Multimodal Machine Translation.
17
+ !
18
+ 1
19
+ INTRODUCTION
20
+ L
21
+ EARNING contextualized representations of human lan-
22
+ guages is one of the major themes in natural language
23
+ processing (NLP), which is also fundamental to training
24
+ machines to understand human languages and handle ad-
25
+ vanced tasks, such as machine translation, question an-
26
+ swering, and human-computer conversations. Text repre-
27
+ sentation learning has evolved from standard distributed
28
+ representations [1, 2] to contextualized language represen-
29
+ tation from deep pre-trained representation models (PRMs)
30
+ [3, 4, 5, 6]. Despite the success of PRMs, NLP models
31
+ commonly model the world knowledge (e.g, commonsense,
32
+ rules, events, assertions extracted from raw texts) solely
33
+ from textual features without grounding of the outside
34
+ world, such as visual conception [7]. Languages are abstract
35
+
36
+ Z. Zhang, R. Wang, Z. Li, H. Zhao are with the Department of
37
+ Computer Science and Engineering, Shanghai Jiao Tong University,
38
+ China and also with Key Laboratory of Shanghai Education Com-
39
+ mission for Intelligent Interaction and Cognitive Engineering, Shang-
40
+ hai Jiao Tong University, China. K. Chen is with the School of
41
+ Computer Science and Technology, Harbin Institute of Technology,
42
+ Shenzhen, China. M. Utiyama and E. Sumita are with the Na-
43
+ tional Institute of Information and Communications Technology (NICT),
44
+ Japan. E-mail: {zhangzs, charlee}@sjtu.edu.cn; [email protected];
45
+ {mutiyama, eiichiro.sumita}@nict.go.jp; [email protected]; zhao-
46
47
+
48
+ H. Zhao is supported by Key Projects of National Natural Science
49
+ Foundation of China (U1836222 and 61733011). R. Wang is supported
50
+ by National Natural Science Foundation of China (No. 6217020129),
51
+ Shanghai Pujiang Program (No. 21PJ1406800), Shanghai Municipal
52
+ Science and Technology Major Project (No. 2021SHZDZX0102), Beijing
53
+ Academy of Artificial Intelligence (BAAI) (No. 4), CCF-Baidu Open
54
+ Fund (No. CCF-BAIDU OF2022018). K. Chen is supported by National
55
+ Natural Science Foundation of China (No. 62276077) and Shenzhen
56
+ College Stability Support Plan (No. GXWD20220811170358002 and
57
+ GXWD20220817123150002).
58
+
59
+ Z. Zhang and R. Wang contribute equally to this work. Part of this work
60
+ was finished when Z. Zhang and Z. Li visited NICT, and R. Wang was
61
+ with NICT. Corresponding author: Hai Zhao.
62
+ and rather difficult for the brain to retain, whereas visuals
63
+ are concrete and, as such, more easily remembered [8, 9].
64
+ Adopting multimodality would be essential for better back-
65
+ ground perception. Therefore, a trend of research has been
66
+ motivated to apply non-linguistic modalities to language
67
+ representations [7, 10, 11, 12, 13, 14].
68
+ Most of previous works focus on joint modeling im-
69
+ ages and texts, involving vision-language (VL) pre-training
70
+ [15, 16, 17, 18, 19, 20] and multimodal (MM) application
71
+ tasks [14, 21, 22, 23, 24]. However, these studies rely on
72
+ large-scale text-image annotations as the paired input and
73
+ thus are confined to VL or MM tasks, such as image cap-
74
+ tioning and visual question answering. It is natural to boost
75
+ the performance on VL and MM tasks as the concerned
76
+ datasets are human-labeled with high quality. However, the
77
+ essential challenge lies with the real-world scenario as there
78
+ is no such high-quality annotated text-image aligned corpus
79
+ for text-only NLP applications. Therefore, it is critical to
80
+ investigate a general method to take advantage of visual
81
+ information in a wide range of mono-modal (e.g., text-only)
82
+ tasks. In addition, it is still not clear the role of images
83
+ in language representation, as well as how to apply the
84
+ multimodality in the standard NLP scenario.
85
+ Taking multimodal machine translation (MMT) as an
86
+ example, the starting point is to leverage visual information
87
+ to improve the quality of the translation from the source
88
+ to the target languages. However, the effectiveness heavily
89
+ relies on the availability of bilingual parallel sentence pairs
90
+ with manual image annotations, which hinders the image
91
+ applicability to neural machine translation (NMT). As a re-
92
+ sult, the visual information is only applied to the translation
93
+ task over specific multimodal datasets [25, 26, 27, 28, 29], in-
94
+ stead of general text-only NMT [30, 31, 32] and low-resource
95
+ text-only NMT [33, 34, 35, 36]. In addition, because of the
96
+ high cost of annotation, the content of one bilingual parallel
97
+ Copyright © 20XX IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
98
+ including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists,
99
+ or reuse of any copyrighted component of this work in other works.
100
+ arXiv:2301.03344v1 [cs.CL] 9 Jan 2023
101
+
102
+ 2
103
+ sentence pair is paired with a single image, which is weak in
104
+ capturing the diversity of visual information. Therefore, the
105
+ current study of introducing visual information falls into a
106
+ bottleneck in the multimodal NMT and is not feasible for
107
+ text-only NMT and low-resource NMT.
108
+ Our previous work [37] finds that using monolingual
109
+ corpora with image annotations can overcome the lack of
110
+ large-scale bilingual sentence-image pairs, thereby extend-
111
+ ing image applicability in NMT, with performance gains.
112
+ The method of using a lookup table is task-agnostic. This
113
+ work stimulates our further thinking, and we are interested
114
+ in answering the three major aspects of questions:
115
+ (i) Global Multimodality: Can we apply the multi-
116
+ modality to standard text-only NLP tasks to enhance the
117
+ language representations (Section 5.4), e.g., natural lan-
118
+ guage generation (Section 5.1.1) and natural language un-
119
+ derstanding (Section 5.1.2)?
120
+ (ii) Interpretability: Why does the universal representa-
121
+ tion method work (Section 6.2)? How does multimodality
122
+ improve language representation, and what is the network
123
+ learned(Section 6.2-6.6)?
124
+ (iii) Quality: How to control the quality of visual-text
125
+ alignment to reduce noise (Section 6.9)?
126
+ In this paper, we present a universal visual represen-
127
+ tation (UVR) method relying only on a seed set of task-
128
+ independent annotations, instead of the existing approach
129
+ that depends on large-scale task-specific image-text anno-
130
+ tation, thus breaking the bottleneck of using visual infor-
131
+ mation in standard text-only NLP tasks. For each sentence,
132
+ we retrieve diverse images from either a light topic-image
133
+ lookup table or pre-trained shared text-visual embedding
134
+ space that is pre-trained on a large-scale of text-image
135
+ pairs, to connect both the mono-modal paths of text and
136
+ image embeddings. The text and images are encoded by
137
+ Transformer language model (LM) and a pre-trained convo-
138
+ lutional neural network (CNN), respectively. A simple and
139
+ effective attention layer is then designed to fuse the two
140
+ sequences of representations.
141
+ Our approach can be easily applied to text-only tasks
142
+ without manually annotated multimodal parallel corpora.
143
+ Therefore, our method is universal in terms of the task re-
144
+ quirements, in contrast to the recent vision-language models
145
+ that require large-scale and expensive annotation datasets
146
+ for each downstream task. The proposed method is eval-
147
+ uated on 14 NLP benchmark datasets involving natural
148
+ language inference (NLI), semantic similarity, text classifica-
149
+ tion, and machine translation. The experiments and analysis
150
+ verify the effectiveness of the proposed method. To summa-
151
+ rize, our contributions are primarily three-fold:
152
+ (i) This work studies the universal visual representa-
153
+ tion for language representation in a broader view of the
154
+ natural language processing scenario. Besides neural ma-
155
+ chine translation, this work leverages visual information
156
+ as assistant signals for general NLP tasks, with the focus
157
+ on investigating the global multimodality for general NLP,
158
+ interpretability of effectiveness, and quality control of using
159
+ universal visual representation.
160
+ (ii) For the technical side, this work proposes new meth-
161
+ ods of semantic sentence-image matching from a shared
162
+ cross-modal space to give more accurately paired images
163
+ as topic information. We also present a new multimodal
164
+ representation framework and systematically study the two
165
+ main instances, including the model with the original TF-
166
+ IDF topic-image lookup table and the newly proposed one
167
+ from the retrieval from cross-modal retrieval.
168
+ (iii) Experiments are extended to 14 representative NLP
169
+ tasks, which show the effectiveness of the proposed method.
170
+ A series of in-depth analyses indicate that the visual signals
171
+ enrich textual representations of content words, provide
172
+ fine-grained grounding information about the relationship
173
+ between concepts and events, and potentially conduce to
174
+ disambiguation.
175
+ 2
176
+ BACKGROUND
177
+ 2.1
178
+ Vision-Language Integration
179
+ This study is related to that of VL methods (VLMs). Re-
180
+ cently, there has been a great deal of interest in integrating
181
+ image presentations in pre-trained Transformer architec-
182
+ tures [15, 16, 17, 18, 19, 20, 38]. The common strategy is
183
+ to take a Transformer model [32], such as BERT, as the back-
184
+ bone and learn aligned representations of visual and lan-
185
+ guage in a pre-training manner inspired by the masked lan-
186
+ guage modeling mechanism in pre-trained language models
187
+ [5]. These studies require the annotation of task-dependent
188
+ sentence-image pairs, which are limited to VL tasks, such as
189
+ image captioning and visual question answering.
190
+ Two studies [22, 37] are closely related to general image-
191
+ enhanced LM. Glyce [22] proposes incorporating glyph
192
+ vectors for Chinese character representations. However, it
193
+ can only be used for Chinese and only involves single
194
+ image enhancement. Regarding the technical part, previous
195
+ methods only benefit from one image per sentence. We
196
+ propose taking advantage of a group of similar images using
197
+ a filtering mechanism to form a more fine-grained visual-
198
+ aware context. Our early version of this work [37] proposes
199
+ using multiple images for NMT, based on a text-image
200
+ lookup table trained over a sentence-image pair corpus.
201
+ However, the number of images is fixed because of the lack
202
+ of similarity measurement in the simple lookup method,
203
+ which possibly makes the resulting model suffer from the
204
+ noise of irrelevant images. This work is improved from the
205
+ perspectives of motivation and technique. It is motivated
206
+ by cross-modal semantic retrieval in the shared embedding
207
+ space. It adopts a neural matching method with a similarity
208
+ threshold to control the expected matching degree flexibly,
209
+ which is generally applicable to a broader range of NLP
210
+ tasks. In addition, we conduct an in-depth analysis to inves-
211
+ tigate how the visual modality helps text representation.
212
+ 2.2
213
+ Visual-Semantic Embeddings
214
+ Another research line is language grounding for images
215
+ whose major topic is multimodality and cross-modality be-
216
+ tween images and text. The major focus is to bridge the gap
217
+ between text and images through building visual-semantic
218
+ embeddings [39, 40, 41, 42, 43].
219
+ Prior studies have verified that representations of images
220
+ and text can be jointly leveraged to build visual-semantic
221
+ embeddings in a shared representation space [39, 40, 41, 44].
222
+ To this end, a popular approach is to connect both the mono-
223
+ modal text and image encoding paths using fully connected
224
+
225
+ 3
226
+ layers [45, 46]. The shared deep embedding can be used
227
+ for cross-modal retrieval; thus, it can associate sentence
228
+ text with associated images. Partly inspired by this line of
229
+ research, we are motivated to incorporate visual awareness
230
+ into sentence modeling by retrieving a group of images for
231
+ a given sentence.
232
+ One of the first techniques to align two views of hetero-
233
+ geneous data is the canonical correlation analysis method
234
+ [47], in which linear projections defined on both sides are
235
+ optimized to maximize the cross-correlation. Recent studies
236
+ have followed the two-path architecture [45, 46], in which
237
+ the encoder consists of a joint embedding of textual and
238
+ image representations extracted from both the images and
239
+ corresponding caption. Notably, Engilberge et al. [46] adopts
240
+ RNN to encode sentence embeddings in the same space
241
+ with extracted image representations from CNN. Portaz
242
+ et al. [48] enhances cross-modal retrieval using multilingual
243
+ text. Inspired by the previous success of visual-semantic
244
+ embeddings, we apply neural image retrieval from the joint
245
+ space to fetch a group of associated images.
246
+ 3
247
+ UNIVERSAL REPRESENTATION FRAMEWORK
248
+ This section overviews our universal representation frame-
249
+ work. Given a sentence, we first fetch a group of matched
250
+ images from our retrieval methods (details of our retrieval
251
+ methods will be given in the next section). The text and
252
+ images are encoded, respectively, by the text feature extrac-
253
+ tor and image feature extractor. Then the two sequences of
254
+ representations are integrated using multi-head attention to
255
+ form a joint representation, which is passed to downstream
256
+ task-specific layers. Figure 1 overviews the whole multi-
257
+ modal representation model.
258
+ 3.1
259
+ Encoding Layer
260
+ 3.1.1
261
+ Text Encoder
262
+ We pair each sentence with the top matched m images
263
+ according to the retrieval method above. Following [5], the
264
+ sentence is fed into the multi-layer Transformer encoder [32]
265
+ to learn the text representation H ∈ Rn×d where n and d are
266
+ the input text length and dimension of hidden states for the
267
+ text representation.
268
+ Let X = {x1, . . . , xn} be the input sentence in length
269
+ n. We feed the sequence to a PRM encoder (e.g., BERT
270
+ [5]). In the encoder, the input sequence is firstly mapped
271
+ to embeddings. Then, the embeddings are passed to multi-
272
+ head attention layers [32] to obtain the contextualized rep-
273
+ resentations, which is defined as
274
+ H = FFN(MultiHead(K, Q, V )),
275
+ (1)
276
+ where K, Q, V are packed from the input sequence repre-
277
+ sentation X. As the common practice, we set K = Q = V
278
+ in the implementation. MultiHead is short for multi-head
279
+ attention.
280
+ 3.1.2
281
+ Image Encoder
282
+ Similar to the standard way of retrieving word embeddings,
283
+ the image embeddings are fetched from a lookup table ∈
284
+ Rnm×dm that contains the image features encoded by a pre-
285
+ trained ResNet [49],1 where nm is the number of the total
286
+ number of unique images +1 and dm is the dimension of the
287
+ image features.2 The first row of the lookup table is filled by
288
+ all-zero vectors, which will be used when no image is paired
289
+ for the sentence.
290
+ After the feature lookup process, we obtain the image
291
+ embeddings E ∈ Rm×dm for the m input images. Then, the
292
+ embeddings are passed to a feedforward layer, to produce
293
+ the image representation M ∈ Rm×d with the same hidden
294
+ dimension as H:
295
+ M = FFN(ResNet(E)).
296
+ (2)
297
+ There may exist cases when no word in the sentence can
298
+ be found in the topic-image lookup table. When there is no
299
+ paired image retrieved, we use the first-row all-zero vectors
300
+ of the image lookup table as the “blank features” in the
301
+ intuition to tell the model to ignore them.
302
+ 3.2
303
+ Multimodal Integration Layer
304
+ We connect the visual and text modalities by calculating the
305
+ attention between image and text features:
306
+ α = softmax(H(WgM + bg)⊤),
307
+ (3)
308
+ H′ = αM,
309
+ (4)
310
+ where Wg and bg are parameters to learn. α ∈ Rn×m
311
+ denotes the weights assigned to the different hidden states
312
+ in the sentence and the image sequences. H′ ∈ Rn×d is the
313
+ weighted sum of all the hidden states and it represents how
314
+ the sentence can be aligned to each hidden state in the image
315
+ representation.
316
+ The retrieval process may possibly introduce noise of
317
+ irrelevant images. To alleviate the influence, we use a neural
318
+ gating mechanism for information filtering. In detail, we
319
+ compute λ ∈ [0, 1]n×d to weight the expected importance
320
+ of image representation for each source word:
321
+ λ = sigmoid(WλH′ + UλH),
322
+ (5)
323
+ where Wλ and Uλ are model parameters. We then fuse
324
+ H and H′ and pass the resulting representation to layer
325
+ normalization and learn an effective source representation:
326
+ ˆH = LayerNorm(H + λH′).
327
+ (6)
328
+ The text and image representations are jointly encoded
329
+ as ˆH, which is fed to the task-specific layers for downstream
330
+ decoding or predictions depending on task settings.
331
+ 3.3
332
+ Task-specific Layer
333
+ In this section, we show how the joint representation ˆH is
334
+ used for downstream tasks by considering NMT and NLU
335
+ tasks as examples, generally following the standard proce-
336
+ dure of the concerned tasks. For NMT, ˆH is directly fed to
337
+ the decoder to learn a dependent-time context vector to pre-
338
+ dict the target translation. For other tasks, ˆH is directly fed
339
+ 1. Note that this is the standard lookup table in embedding imple-
340
+ mentations, which is not our topic-image lookup table.
341
+ 2. We used the maxpooling layer of ResNet, which is in the size of
342
+ Rnm×2400.
343
+
344
+ 4
345
+ Add & Norm
346
+ Feed Forward
347
+ Add & Norm
348
+ Multi-head
349
+ Attention
350
+ Add & Norm
351
+ Multi-head
352
+ Attention
353
+ Feed Forward
354
+ ResNet
355
+ Text
356
+ Embedding
357
+ Sentence
358
+ Text Encoder
359
+ Image
360
+ Corpus
361
+ Image Retrieval
362
+ Pooling
363
+ Linear
364
+ Downstream Adaption
365
+ (NLU, NMT, etc)
366
+ Image Encoder
367
+ Integration
368
+
369
+ Fig. 1. Overview of the universal representation framework. Given a sentence as input, a group of related images will be retrieved by our image
370
+ retrieval methods. The text and images are encoded by the text feature extractor and image feature extractor, respectively. Then the two sequences
371
+ of representations are integrated using multi-head attention to form a joint representation in the same shape as the original text sequence
372
+ representation. Finally, the joint representation is passed to downstream task-specific layers to give predictions.
373
+ to a feed-forward layer to make the prediction, which fol-
374
+ lows the same downstream procedure as the Transformer-
375
+ based LMs, like BERT [5] and RoBERTa [50]. Specifically,
376
+ for sentence-pair tasks, we maintain the pairwise input as
377
+ that in LMs and separate the encoded text representation
378
+ into two individual sentence representations {H1, H2}, ac-
379
+ cording to the positions. The two text representations are
380
+ integrated with the corresponding image representations
381
+ respectively {M 1, M 2}, and then the resulting sequences
382
+ are concatenated for prediction, ˆH = ˆH1 ◦ ˆH2.
383
+ 4
384
+ IMAGE RETRIEVAL METHODS
385
+ In this section, we describe our two visual retrieval models
386
+ used for image retrieval given sentence text:
387
+ (i) UVR-TILT: retrieval by topic-image lookup table;
388
+ (ii) UVR-CMRM: retrieval from cross-modal embed-
389
+ ding.
390
+ 4.1
391
+ Model-I: Retrieval by Topic-Image Lookup Table
392
+ 4.1.1
393
+ Topic-image Lookup Table Conversion
394
+ In this section, we will introduce the proposed universal
395
+ visual representation method. Our basic intuition is to trans-
396
+ form the existing sentence-image pairs into a topic-image
397
+ lookup table,3 which assumes the topic words in a sentence
398
+ should be relevant to the paired image. The procedure can
399
+ be seen as the inverted index where a topic word is mapped
400
+ to a list of images. Consequently, a sentence can possess a
401
+ group of images by retrieving the topic-image lookup table.
402
+ To focus on the major part of the sentence and suppress
403
+ the noise such as stopwords and low-frequency words, we
404
+ design a filtering method to extract the “topic” words of
405
+ the sentence through the term frequency-inverse document
406
+ 3. We use the training set of the Multi30K dataset to build the topic-
407
+ image lookup table.
408
+ Algorithm 1 Topic-image Lookup Table Conversion
409
+ Require: Input sentences, S = {X1, X2, . . . XI} and paired
410
+ images E = {e1, e2, . . . , eI}
411
+ Ensure: Topic-image lookup table Q where each word is asso-
412
+ ciated with a group of images
413
+ 1: Obtain the TF-IDF dictionary F = TF-IDF(S)
414
+ 2: Transform sentence-image pair to topic-image lookup table
415
+ Q = LookUp(S, E, F)
416
+ 3: procedure TF-IDF(S)
417
+ 4:
418
+ for each sentence in S do
419
+ 5:
420
+ Filter stop-words in the sentence
421
+ 6:
422
+ Calculate the TF-IDF weight for each word
423
+ 7:
424
+ end for
425
+ 8:
426
+ return TF-IDF dictionary F
427
+ 9: end procedure
428
+ 10: procedure LOOKUP(S, E, F)
429
+ 11:
430
+ for For each pair {Xi, ei} ∈ zip{S, E} do
431
+ 12:
432
+ Rank and pick out the top-w “topic” words in the
433
+ sentence according to the TF-IDF score in the dictionary F,
434
+ and each sentence is reformed as T = {t1, t2, . . . , tw}
435
+ 13:
436
+ for For each word tjin T do
437
+ 14:
438
+ if ei not in Q[tj] then
439
+ 15:
440
+ Add ej to the corresponding image set Q[tj]
441
+ for word tj
442
+ 16:
443
+ end if
444
+ 17:
445
+ end for
446
+ 18:
447
+ end for
448
+ 19:
449
+ return Topic-image lookup table Q
450
+ 20: end procedure
451
+ frequency (TF-IDF),4 inspired by [51]. Specifically, given an
452
+ original input sentence X = {x1, x2, . . . , xI} of length I
453
+ and its paired image e, X is first filtered by a stopword list,5
454
+ and then the sentence is treated as a document g. We then
455
+ 4. We describe our methods by regarding the processing unit as word
456
+ though this method can also be applied to a subword-based sentence
457
+ for which the subword is considered to be the processing unit.
458
+ 5. https://github.com/stopwords-iso/stopwords-en.
459
+
460
+ UBS
461
+ SOONERS
462
+ MEGA
463
+ OMEGA
464
+ 0
465
+ SOON5
466
+ dog is playing in the snow
467
+ dog (1,512)
468
+ playing (1,531)
469
+ snow (439)
470
+ (a) a black dog and a spotted dog are fighting
471
+ (b) a dog is running in the snow
472
+ (c) a dog is playing with a hose
473
+ (d) a family playing on a tractor on a beautiful day
474
+ (e) two people working on removing snow from a roof
475
+ (f) a black dog and a white dog are standing on snow
476
+ corpus (29,000)
477
+ (a)
478
+ (b)
479
+ (c)
480
+ (d)
481
+ (e)
482
+ (f)
483
+ sentence-image pairs
484
+ topic-image lookup table
485
+ associated images for input sentence
486
+ tokenize, filtering
487
+ word-image transform
488
+ sampling
489
+ ranking
490
+ Fig. 2. Illustration of the TILT method. We first transform the existing sentence-image pairs from seed small-scale sentence-image datasets into a
491
+ topic-image lookup table. For a given sentence, we extract its topic words and the associated images will be retrieved from the lookup table.
492
+ compute TF-IDF TIi,j for each word xi in g,
493
+ TIi,j =
494
+ oi,j
495
+
496
+ k ok,j
497
+ × log
498
+ |G|
499
+ 1 + |j : xi ∈ g|,
500
+ (7)
501
+ where oi,j represents the number of occurrences of the word
502
+ xi in the input sentence g, |G| the total number of source
503
+ language sentences in the training data, and |j : xi ∈ g|
504
+ the number of source sentences including word xi in the
505
+ training data. We then select the top-w high TF-IDF words as
506
+ the new image description T = {t1, t2, . . . , tw} for the input
507
+ sentence. After the preprocessing, each filtered sentence T
508
+ is paired with an image e, and each word ti ∈ T is regarded
509
+ as the topic word for image e. After processing the whole
510
+ corpus (i.e., Multi30K), we form a topic-image lookup table
511
+ Q as described in Algorithm 1, in which each topic word ti
512
+ would be paired with dozens of images.
513
+ 4.1.2
514
+ Image Retrieval
515
+ For the input sentence, we first obtain its topic words
516
+ according to the text preprocessing method described above.
517
+ Then we retrieve the associated images for each topic word
518
+ from the lookup table Q and group all the retrieved images
519
+ together to form an image list G. We observe that an image
520
+ might be associated with multiple topic words so that it
521
+ would occur multiple times in the list G. Thus, we sort the
522
+ images according to the frequency of occurrences in G to
523
+ maintain the same total number of images for each sentence
524
+ at m.
525
+ Figure 2 illustrates the retrieval process. In the left block,
526
+ we show six examples of sentence-image pairs in which the
527
+ topic words are in boldface. Then we process the corpus
528
+ using the topic-image transformation method demonstrated
529
+ above and obtain the topic-image lookup table. For example,
530
+ the word dog is associated with 1,512 images. For an input
531
+ source sentence, we obtain the topic words (in boldface)
532
+ using the same preprocessing. Then we retrieve the corre-
533
+ sponding images from the lookup table for each topic word.
534
+ Now we have a list of images, and some images appear
535
+ multiple times as they have various topics (like the boxed
536
+ image in Figure 2). So we sort the retrieved image list by the
537
+ count of occurrence to pick out the top-m images that cover
538
+ the most topics of the sentence.
539
+ At test time, the process of getting images is done using
540
+ the image lookup table built by the training set, so we do
541
+ not need to use the images from the validation and test sets
542
+ in Multi30K dataset.6 Intuitively, we do not strictly require
543
+ the manual alignment of the word (or concept) and image
544
+ but rely on the co-occurrence of the topic word and image,
545
+ which is simpler and more general. In this way, we call our
546
+ method universal visual retrieval.
547
+ 4.2
548
+ Model-II: Retrieval from Cross-modal Embedding
549
+ Following Engilberge et al. [46], we train a semantic-visual
550
+ embedding on a text-image corpus, which is then used for
551
+ image retrieval. The semantic-visual embedding architec-
552
+ ture comprises two paths to encode the text and images into
553
+ vectors. Based on our preliminary experiments, we maintain
554
+ the same settings in Engilberge et al. [46] by using the simple
555
+ recurrent unit as text encoder, and the fully convolutional
556
+ residual ResNet-152 [52] with Weldon pooling [53] as image
557
+ encoder for our cross-modal retrieval model.
558
+ During training, each text X is paired with (i) a posi-
559
+ tive image Y that is paired with the text and (ii) a hard
560
+ negative Z, which is selected as the image that has the
561
+ 6. The lookup table can be easily adapted to a wide range of other
562
+ NLP tasks even without any paired image, and therefore opens our
563
+ proposed model to generalization.
564
+
565
+ 6
566
+ highest similarity to the text while not being associated
567
+ with it. Triplet loss [54, 55, 56] is used to enable the images
568
+ to converge correctly to improve the performance of the
569
+ proposed method:
570
+ loss(X, Y, Z) = max(0, γ − E(X) · E(Y ) + E(X) · E(Z)),
571
+ (8)
572
+ where E(X), E(Y ), and E(Z) are the embeddings of X, Y ,
573
+ and Z, respectively. γ is the minimum margin between the
574
+ similarity of the correct caption and the unrelated caption.
575
+ The loss function enables the sentence X to be closer to the
576
+ corresponding image Y than the unrelated image Z. During
577
+ the prediction time, the relationship between the text and
578
+ images is calculated using the cosine similarity.
579
+ For general use, it is reasonable that some sentences,
580
+ such as social constructs or metaphorical usage, are not
581
+ paired with images after retrieval and have a low similarity
582
+ score. In these cases, visual information might not be help-
583
+ ful. To measure how similar the retrieved images should be,
584
+ we set a threshold δ to choose the top-ranked images for
585
+ each sentence.
586
+ 5
587
+ EXPERIMENTS
588
+ 5.1
589
+ Task Settings
590
+ Our evaluation is performed on the widely-used natural
591
+ language generation and understanding tasks involving 14
592
+ NLP benchmark datasets that involve machine translation,
593
+ natural language inference (NLI), semantic similarity, and
594
+ text classification. Part of the NLU tasks is available from
595
+ the GLUE benchmark [57], which is a collection of nine NLU
596
+ tasks.
597
+ 5.1.1
598
+ Neural Machine Translation
599
+ Five widely-used translation tasks are used for model eval-
600
+ uation, including WMT’16 English-to-Romanian (En-Ro),
601
+ WMT’14 English-to-German (En-De), WMT’14 English-to-
602
+ French (En-Fr), and Multi30K dataset for WMT’16 and
603
+ WMT’17, which are standard corpora for NMT and MMT
604
+ evaluation.
605
+ (i) For the En-Ro task, we experiment with the officially
606
+ provided parallel corpus: Europarl v7 and SETIMES2 from
607
+ WMT’16 with 0.6M sentence pairs. We use newsdev2016 as
608
+ the validation set and newstest2016 as the test set.
609
+ (ii) The En-De task has 4.43M bilingual sentence pairs
610
+ of the WMT14 dataset used as training data, including
611
+ Common Crawl, News Commentary, and Europarl v7. The
612
+ newstest2013 and newstest2014 datasets are used as the vali-
613
+ dation set and test set, respectively.
614
+ (iii) The En-Fr task has 36M bilingual sentence pairs
615
+ from the WMT14 dataset used as training data. Newstest12
616
+ and newstest13 are combined for validation and newstest14
617
+ is used as the test set, following the setting of [31].
618
+ (iv) Multi30K dataset contains 29K English→{German,
619
+ French} parallel sentence pairs with visual annotations.
620
+ The 1,014 English→{German, French} sentence pairs with
621
+ visual annotations serve as the validation set. For WMT’16
622
+ and WMT’17 tasks, we have two test sets, test2016 and
623
+ test2017, with 1,000 pairs for each.
624
+ 5.1.2
625
+ Natural Language Understanding
626
+ The NLU task involves natural language inference, semantic
627
+ similarity, and classification subtasks.
628
+ Natural Language Inference involves reading a pair of sen-
629
+ tences and assessing the relationship between their mean-
630
+ ings, such as entailment, neutral, and contradiction. We
631
+ evaluate the proposed method on four diverse datasets:
632
+ SNLI [58], MNLI [59], QNLI [60], and RTE [61].
633
+ Semantic Similarity aims to predict whether two sentences
634
+ are semantically equivalent. Three datasets are used: Mi-
635
+ crosoft Paraphrase Corpus (MRPC) [62], Quora Question
636
+ Pairs (QQP) dataset [63], and Semantic Textual Similarity
637
+ benchmark (STS-B) [64].
638
+ Classification CoLA [65] is used to predict whether an
639
+ English sentence is linguistically acceptable. SST-2 [66] pro-
640
+ vides a dataset for sentiment classification that needs to
641
+ determine whether the sentiment of a sentence extracted
642
+ from movie reviews is positive or negative.
643
+ 5.2
644
+ Retrieval Setup
645
+ This part describes the implementation of the image re-
646
+ trieval by the topic-image lookup table (TILT) and cross-
647
+ modal retrieval model (CMRM):
648
+ TILT: We segment the sentences using the same BPE
649
+ vocabulary as that for each source language. We select top-
650
+ 8 (w = 8) high TF-IDF words, and the default number of
651
+ images m is set to 5.7 The detailed case study is shown in
652
+ Section 6.9. Image features are extracted from the averaged
653
+ pooled features of a pre-trained ResNet50 CNN [49]. The
654
+ dimension of the feature maps is V ∈ R2048.
655
+ CMRM: The cross-modal retrieval model is trained on
656
+ the MS-COCO dataset [67], which contains 123,287 images
657
+ with five English captions per image. It is split into 82,783
658
+ training images, 5,000 validation images, and 5,000 test
659
+ images. We use the Karpathy split [40] that forms 113,287
660
+ training, 5,000 validation and 5,000 test images. The model
661
+ is implemented following the same settings as Engilberge
662
+ et al. [46], and produces state-of-the-art results (94.0% R@10)
663
+ for cross-modal retrieval. To ensure that each task can enjoy
664
+ enough images, we set the similarity threshold δ to 0.4 and
665
+ rank the paired images according to the similarity score. The
666
+ maximum number of retrieved images m for each sentence
667
+ is set to eight according to our preliminary experiments.
668
+ Multi30K and COCO datasets are used as the candidate
669
+ seed image retrieval corpus for our downstream tasks.
670
+ 5.3
671
+ Model Implementation
672
+ Since our task involves text generation and understanding,
673
+ we have two kinds of baselines, the NLG model for transla-
674
+ tion and the NLU model for the other tasks.
675
+ 5.3.1
676
+ NLG Model
677
+ Our baseline for NLG is encoder-decoder Transformer [32].
678
+ We use six layers for the encoder and the decoder. The
679
+ number of dimensions of all input and output layers is set to
680
+ 512 and 1024 for base and big models. For MMT experiments
681
+ 7. In some cases when there is no paired image retrieved, we use
682
+ the first-row all-zero vectors of the image lookup table as the “blank
683
+ features”.
684
+
685
+ 7
686
+ TABLE 1
687
+ Results for the NMT tasks. “++/+” after the BLEU score indicates that the proposed method (base: 5-8; large:9-12) was significantly better than the
688
+ corresponding baseline Transformer (base or big) at significance level p <0.01/0.05.
689
+ #
690
+ Model
691
+ En→Ro
692
+ En→De
693
+ En→Fr
694
+ BLEU
695
+ #Param
696
+ BLEU
697
+ #Param
698
+ BLEU
699
+ #Param
700
+ Text-only Transformer
701
+ 1
702
+ Transformer-Base
703
+ 32.66
704
+ 61.54M
705
+ 27.31
706
+ 63.44M
707
+ 38.52
708
+ 63.83M
709
+ 2
710
+ Transformer-Big
711
+ 33.85
712
+ 207.02M
713
+ 28.45
714
+ 210.88M
715
+ 41.10
716
+ 211.66M
717
+ Our MMT systems
718
+ 3
719
+ UVR-TILTMulti30K
720
+ 33.78++
721
+ 63.04M
722
+ 28.14++
723
+ 64.94M
724
+ 39.64++
725
+ 65.33M
726
+ 4
727
+ UVR-TILTCOCO
728
+ 34.08++
729
+ 63.04M
730
+ 27.79+
731
+ 64.94M
732
+ 39.84++
733
+ 65.33M
734
+ 5
735
+ UVR-CMRMMulti30K
736
+ 34.38++
737
+ 63.04M
738
+ 27.82+
739
+ 64.94M
740
+ 39.76++
741
+ 65.33M
742
+ 6
743
+ UVR-CMRMCOCO
744
+ 34.40++
745
+ 63.04M
746
+ 27.86+
747
+ 64.94M
748
+ 40.24++
749
+ 65.33M
750
+ 7
751
+ UVR-TILTMulti30K
752
+ 34.46+
753
+ 211.02M
754
+ 29.14++
755
+ 214.89M
756
+ 41.83+
757
+ 215.66M
758
+ 8
759
+ UVR-TILTCOCO
760
+ 34.51+
761
+ 211.02M
762
+ 29.18++
763
+ 214.89M
764
+ 41.76+
765
+ 215.66M
766
+ 9
767
+ UVR-CMRMMulti30K
768
+ 34.60++
769
+ 211.02M
770
+ 28.96+
771
+ 64.94M
772
+ 41.79+
773
+ 215.66M
774
+ 10
775
+ UVR-CMRMCOCO
776
+ 34.62++
777
+ 211.02M
778
+ 29.21++
779
+ 64.94M
780
+ 41.82+
781
+ 215.66M
782
+ TABLE 2
783
+ Results (BLEU) from the test2016 and test2017 for the MMT task. “++/+” after the BLEU score indicates that the proposed method (base: 5-8;
784
+ large: 9-12) was significantly better than the corresponding baseline Transformer (base or big) at significance level p <0.01/0.05.
785
+ #
786
+ Model
787
+ En-De
788
+ En-Fr
789
+ Test2016
790
+ Test2017
791
+ #Param
792
+ Test2016
793
+ Test2017
794
+ #Param
795
+ Text-only Transformer
796
+ 1
797
+ Transformer-Base
798
+ 35.59
799
+ 26.31
800
+ 49.15M
801
+ 57.88
802
+ 48.55
803
+ 49.07M
804
+ 2
805
+ Transformer-Big
806
+ 36.86
807
+ 27.62
808
+ 186.38M
809
+ 56.97
810
+ 48.17
811
+ 186.23M
812
+ Standard MMT systems
813
+ 3
814
+ MMT-Base
815
+ 35.09
816
+ 27.10
817
+ 50.72M
818
+ 57.40
819
+ 48.02
820
+ 50.65M
821
+ 4
822
+ MMT-Big
823
+ 35.60
824
+ 28.02
825
+ 190.58M
826
+ 57.87
827
+ 49.63
828
+ 190.43M
829
+ Our MMT systems
830
+ 5
831
+ UVR-TILTMulti30K
832
+ 35.72
833
+ 26.87+
834
+ 50.72M
835
+ 58.32+
836
+ 48.69
837
+ 50.65M
838
+ 6
839
+ UVR-TILTCOCO
840
+ 35.67
841
+ 26.89+
842
+ 50.72M
843
+ 58.21+
844
+ 48.73
845
+ 50.65M
846
+ 7
847
+ UVR-CMRMMulti30K
848
+ 36.38+
849
+ 27.34++
850
+ 50.72M
851
+ 58.53+
852
+ 49.28+
853
+ 50.65M
854
+ 8
855
+ UVR-CMRMCOCO
856
+ 35.78
857
+ 26.92+
858
+ 50.72M
859
+ 58.46+
860
+ 48.58
861
+ 50.65M
862
+ 9
863
+ UVR-TILTMulti30K
864
+ 37.02
865
+ 28.63++
866
+ 190.58M
867
+ 57.53+
868
+ 48.46
869
+ 190.43M
870
+ 10
871
+ UVR-TILTCOCO
872
+ 36.94
873
+ 28.69++
874
+ 190.58M
875
+ 57.62+
876
+ 48.39
877
+ 190.43M
878
+ 11
879
+ UVR-CMRMMulti30K
880
+ 37.16
881
+ 28.82++
882
+ 190.58M
883
+ 58.37++
884
+ 48.77+
885
+ 190.43M
886
+ 12
887
+ UVR-CMRMCOCO
888
+ 37.28+
889
+ 28.71++
890
+ 190.58M
891
+ 57.60+
892
+ 48.42
893
+ 190.43M
894
+ on the Multi30K dataset, we also use the tiny setting where
895
+ the dimension of the input and output layer is 128. The inner
896
+ feed-forward neural network layer is set to 2048. The heads
897
+ of all multi-head modules are set to eight in both the encoder
898
+ and decoder layers. For the Multi30K dataset, we further
899
+ evaluate a multimodal baseline (denoted as MMT) where
900
+ each source sentence was paired with an original image.
901
+ The other settings were the same as our proposed model.
902
+ The byte pair encoding algorithm is adopted to segment
903
+ sentences into subword sequences, with the vocabulary size
904
+ set to 40,000. In each training batch, a set of sentence pairs
905
+ contains approximately 4096×4 source tokens and 4096×4
906
+ target tokens. During training, the value of label smoothing
907
+ is set to 0.1, and the attention dropout and residual dropout
908
+ rates are p = 0.1. We used Adam optimizer [74] to tune the
909
+ parameters of the model. The learning rate is varied under
910
+ a warm-up strategy with 8,000 steps. For evaluation, we
911
+ validate the model with an interval of 1,000 batches on the
912
+ validation set. For the Multi30K dataset, we train the model
913
+ up to 10,000 steps, and the training will be early-stopped
914
+ if the validation set BLEU score does not improve for ten
915
+ epochs. For the En-De, En-Ro, and En-Fr tasks, following
916
+ the training of 200,000 batches, the model with the highest
917
+ BLEU score of the validation set is selected to evaluate
918
+ the test sets. During the decoding, the beam size is set to
919
+ five. Multi-bleu.perl is used to compute case-sensitive 4-
920
+ gram BLEU scores for all test sets.8 We follow the model
921
+ configurations of [32] to train big models for WMT En-Ro,
922
+ En-De, and En-Fr translation tasks. The experiments of NLG
923
+ are conducted with fairseq [75].9
924
+ For the statistical tests, we perform the paired bootstrap
925
+ resampling test [76] to measure the reliability of the con-
926
+ clusion that our system is better than the baseline. Our im-
927
+ 8. https://github.com/moses-smt/mosesdecoder/tree/
928
+ RELEASE-4.0/scripts/generic/multi-bleu.perl.
929
+ 9. https://github.com/pytorch/fairseq.
930
+
931
+ 8
932
+ TABLE 3
933
+ Comparison with public methods on the Multi30K MMT dataset. The results of existing methods are from [68]. “++/+” after the BLEU score
934
+ indicates that the proposed method was significantly better than the corresponding baseline Transformer (tiny) at significance level p <0.01/0.05.
935
+ #
936
+ Model
937
+ En-De
938
+ En-Fr
939
+ Test2016
940
+ Test2017
941
+ #Param
942
+ Test2016
943
+ Test2017
944
+ #Param
945
+ Text-only Transformer
946
+ 1
947
+ Transformer-Tiny
948
+ 40.38
949
+ 32.86
950
+ 2.6M
951
+ 61.00
952
+ 52.42
953
+ 2.6M
954
+ Existing MMT systems
955
+ 2
956
+ GMNMT [69]
957
+ 39.8
958
+ 32.2
959
+ 4.0M
960
+ 60.9
961
+ 53.9
962
+ -
963
+ 3
964
+ DCCN [70]
965
+ 39.7
966
+ 31.0
967
+ 17.1M
968
+ 61.2
969
+ 54.3
970
+ 16.9M
971
+ Our MMT systems
972
+ 4
973
+ UVR-TILTTiny
974
+ 41.27++
975
+ 33.62++
976
+ 2.9M
977
+ 61.60+
978
+ 54.83++
979
+ 2.9M
980
+ 5
981
+ UVR-CMRMTiny
982
+ 40.94+
983
+ 33.11+
984
+ 2.9M
985
+ 61.50+
986
+ 53.64++
987
+ 2.9M
988
+ TABLE 4
989
+ Test results on the GLUE benchmark. The best results are marked in boldface.
990
+ #
991
+ Model
992
+ Classification
993
+ Semantic Similarity
994
+ Language Inference
995
+ Average
996
+ CoLA
997
+ SST-2
998
+ MRPC
999
+ STS-B
1000
+ QQP
1001
+ MNLI
1002
+ QNLI
1003
+ RTE
1004
+ SNLI
1005
+ Public Systems
1006
+ 1
1007
+ BERT [5]
1008
+ 60.5
1009
+ 94.9
1010
+ 85.4
1011
+ 87.6
1012
+ 89.3
1013
+ 86.7
1014
+ 92.7
1015
+ 70.1
1016
+ -
1017
+ 83.4
1018
+ 2
1019
+ MT-DNN [71]
1020
+ 62.5
1021
+ 95.6
1022
+ 88.2
1023
+ 89.5
1024
+ 89.6
1025
+ 86.7
1026
+ 93.1
1027
+ 81.4
1028
+ 91.6
1029
+ 86.4
1030
+ 3
1031
+ BERT + Voken-cls [72]
1032
+ -
1033
+ 92.2
1034
+ -
1035
+ -
1036
+ 88.6
1037
+ 82.6
1038
+ 88.6
1039
+ -
1040
+ -
1041
+ -
1042
+ 4
1043
+ UniT [73]
1044
+ -
1045
+ 91.5
1046
+ -
1047
+ -
1048
+ 88.4
1049
+ 79.8
1050
+ 88.0
1051
+ -
1052
+ -
1053
+ -
1054
+ -
1055
+ Our Systems
1056
+ 5
1057
+ Baseline (BERTWWM)
1058
+ 63.6
1059
+ 93.6
1060
+ 87.0
1061
+ 90.2
1062
+ 88.8
1063
+ 87.2
1064
+ 93.9
1065
+ 77.3
1066
+ 91.6
1067
+ 85.9
1068
+ 6
1069
+ UVR-TILTMulti30K
1070
+ 62.5
1071
+ 94.7
1072
+ 87.7
1073
+ 89.8
1074
+ 89.4
1075
+ 87.2
1076
+ 94.1
1077
+ 84.5
1078
+ 91.7
1079
+ 86.8
1080
+ 7
1081
+ UVR-TILTCOCO
1082
+ 62.8
1083
+ 94.9
1084
+ 87.4
1085
+ 90.2
1086
+ 89.7
1087
+ 86.9
1088
+ 94.0
1089
+ 83.6
1090
+ 91.7
1091
+ 86.8
1092
+ 8
1093
+ UVR-CMRMMulti30K
1094
+ 63.0
1095
+ 94.3
1096
+ 87.8
1097
+ 90.2
1098
+ 89.6
1099
+ 87.3
1100
+ 93.8
1101
+ 83.8
1102
+ 91.6
1103
+ 86.8
1104
+ 9
1105
+ UVR-CMRMCOCO
1106
+ 63.2
1107
+ 94.6
1108
+ 87.9
1109
+ 90.3
1110
+ 89.8
1111
+ 87.4
1112
+ 94.2
1113
+ 83.9
1114
+ 91.7
1115
+ 87.0
1116
+ plementation is based on the public toolkit.10 Two thousand
1117
+ bootstrap samples are used for each significance test.
1118
+ 5.3.2
1119
+ NLU Model
1120
+ For the NLU tasks, the baseline is encoder-only BERT [5].11
1121
+ We use the whole-word-mask (WWM) version of the pre-
1122
+ trained weights due to its more stable, reproducible, and
1123
+ slightly better performance than the original large version
1124
+ [5]. The initial learning rate is set in the range {2e-5, 3e-5}
1125
+ with a warm-up rate of 0.1 and L2 weight decay of 0.01.
1126
+ The batch size is selected from {16, 24, 32}. The maximum
1127
+ number of epochs is set in the range [2, 5]. Texts are
1128
+ tokenized using SentencePiece,12 with a maximum length
1129
+ of 128.
1130
+ 5.4
1131
+ Main Results
1132
+ Tables 1-4 show the results for the 14 NMT, MMT, and NLU
1133
+ tasks, respectively. According to the results, we have the
1134
+ following observations:
1135
+ (i) According to the machine translation results in Tables
1136
+ 1-2, the proposed UVR methods significantly outperform
1137
+ the baselines according to the statistical test, demonstrating
1138
+ 10. https://github.com/neubig/util-scripts/blob/master/
1139
+ paired-bootstrap.py
1140
+ 11. https://github.com/huggingface/transformers.
1141
+ 12. https://github.com/google/sentencepiece.
1142
+ the effectiveness of modeling visual information for text-
1143
+ only NMT. In particular, the superiority is observed in
1144
+ the translation tasks of three language pairs with different
1145
+ training data scales, verifying that the proposed approach is
1146
+ a universal method for improving translation performance.
1147
+ (ii) Our method introduces only 1.5M and 4.0M param-
1148
+ eters for the base and big Transformers, respectively. The
1149
+ number is less than 3% of the baseline parameters as we use
1150
+ the fixed image embeddings from the pre-trained ResNet
1151
+ feature extractor. Besides, the training time is basically the
1152
+ same as the baseline model (Section 6.10).
1153
+ (iii) Results in Tables 2-3 show that our model can
1154
+ generally outperform the Transformer baseline in multi-
1155
+ modal settings that could benefit from the gold sentence-
1156
+ image annotations. Compared with the results in text-only
1157
+ NMT, we find that the image enhancement sometimes gives
1158
+ marginal contribution, which is consistent with the findings
1159
+ in previous work [77, 78, 79]. The most plausible reason
1160
+ might be that the sentences in Multi30K are quite simple,
1161
+ short, and repetitive, so that the source text itself is sufficient
1162
+ to perform the translation [10, 79]. We also see that the big
1163
+ models sometimes show inferior results. The possible reason
1164
+ is that the dataset is too small to effectively train such big
1165
+ models, which easily suffer from over-fitting issues. The
1166
+ hypothesis is also supported by our superior results with
1167
+ the tiny model setting in Table 3. The observation verifies
1168
+ our assumption of the current bottleneck of MMT due to
1169
+
1170
+ 9
1171
+ 0.4
1172
+ 0.5
1173
+ Percentage
1174
+ D-value
1175
+ Coverage
1176
+ CoLA
1177
+ SST-2
1178
+ MRPC
1179
+ STS-B
1180
+ QQP
1181
+ MNLI
1182
+ QNLI
1183
+ RTE
1184
+ SNLI
1185
+ 0
1186
+ 5
1187
+ 10
1188
+ Accuracy
1189
+ Fig. 3. Accuracy difference between our method and baseline compared
1190
+ with the coverage percentage of tokens that can be paired with images
1191
+ in each dataset.
1192
+ TABLE 5
1193
+ Validation results on GLUE datasets in different sizes: small datasets
1194
+ with less than 10k examples (RTE and STS-B), and a large dataset
1195
+ with more than 10k examples (QNLI). The MT-DNN results are
1196
+ reproduced using the released weights [71].
1197
+ Model
1198
+ RTE
1199
+ STS-B
1200
+ QNLI
1201
+ MT-DNNbase
1202
+ 78.94±0.83
1203
+ 88.14±0.40
1204
+ 90.32±0.12
1205
+ w/ UVR-TILT
1206
+ 81.59±0.63
1207
+ 90.16±0.07
1208
+ 91.31±0.19
1209
+ MT-DNNlarge
1210
+ 78.70±1.65
1211
+ 90.16±0.17
1212
+ 92.04±0.27
1213
+ w/ UVR-TILT
1214
+ 82.19±1.37
1215
+ 91.32±0.12
1216
+ 92.78±0.12
1217
+ the limitation of Multi30K and shows the necessity of our
1218
+ new methodology of transferring multimodality into more
1219
+ standard and mature text-only NMT tasks.
1220
+ (iv) Table 4 shows our method is generally helpful for a
1221
+ wide range of NLU tasks in the GLUE benchmark, which
1222
+ verifies the effectiveness of modeling visual information
1223
+ for language understanding. We are interested in whether
1224
+ public methods, such as MT-DNN, can be further enhanced
1225
+ by our method, we apply our UVR-TILT method to the MT-
1226
+ DNN model based on the same implementation in BERT.
1227
+ According to the results in Table 5, both the base and
1228
+ large models are enhanced, and we observe consistent gains
1229
+ in different datasets, especially the small datasets. For the
1230
+ results in Tables 4-5, we notice a few inferior or marginally
1231
+ better performances in the CoLA, MNLI, and QNLI tasks.
1232
+ We calculate the accuracy difference (D-value) between our
1233
+ method and baseline compared with the coverage percent-
1234
+ age of tokens that can be paired with images in each dataset
1235
+ using UVR-TILTMulti30K. From Figure 3, we see that those
1236
+ datasets are commonly paired with a relatively small num-
1237
+ ber of images so that the visual signals can enhance only a
1238
+ small proportion of token representations. In addition, some
1239
+ datasets, i.e., ColA, mainly require linguistic knowledge for
1240
+ solving the tasks, so introducing visual modality might not
1241
+ benefit such tasks, which corresponds to the common short-
1242
+ coming of vision injection for language tasks. For MNLI and
1243
+ QNLI, the possible reason for the marginal improvements
1244
+ would be that both of the datasets are quite large. Still, the
1245
+ task is relatively simple, so the model might well solve the
1246
+ tasks directly via the text representations. In this scenario,
1247
+ the visual features might only provide the regularization
1248
+ effect to improve the model robustness [80, 81, 82].
1249
+ 0
1250
+ 5
1251
+ 10
1252
+ 15
1253
+ 20
1254
+ epoch
1255
+ 0.0
1256
+ 0.1
1257
+ 0.2
1258
+ 0.3
1259
+ 0.4
1260
+ 0.5
1261
+ 0.6
1262
+ 0.7
1263
+ 0.8
1264
+ value
1265
+ Fig. 4. Illustration of the gate values λ with the UVR-TILT method on
1266
+ Multi30K En-De Test2016.
1267
+ (v) For the two retrieval methods, we observe that UVR-
1268
+ CMRM is slightly better than UVR-TILT in general, and
1269
+ the results of the two methods are pretty close for the
1270
+ MMT task. We find a performance tradeoff between them:
1271
+ there might be more accurate similarity calculation after
1272
+ cross-modal pre-training than the direct topic extraction.
1273
+ However, controlling the proper similarity threshold would
1274
+ be a heuristic for each dataset. In contrast, the advantage of
1275
+ UVR-TILT is the simple preprocessing, which only requires
1276
+ TF-IDF-based topic extraction and matching.
1277
+ (vi) We also compare the results using different seed cor-
1278
+ pora, i.e., Multi30K and COCO. For the MMT task in Table
1279
+ 2, using Multi30k is basically similar to or slightly better
1280
+ than COCO in general, as the task could enjoy the images
1281
+ in the same domain. For the out-of-domain evaluations in
1282
+ Table 1 and Table 4, we obverse that using COCO generally
1283
+ achieves better results because the size of COCO images
1284
+ is three times that of Multi30K, which could provide more
1285
+ diverse image features.
1286
+ 6
1287
+ ANALYSIS
1288
+ This section presents our exploration on the role of visual
1289
+ contexts, which involves two aspects, when the visual con-
1290
+ text helps and how the visual context helps language repre-
1291
+ sentations. In the following analysis part, we use Multi30K
1292
+ for UVR-TILT and COCO for UVR-CMRM by default.
1293
+ 6.1
1294
+ Dynamics of the visual information
1295
+ To explore the role of visual context in the training process,
1296
+ we illustrate the gate values λ (defined in Eq. 5) in Figure
1297
+ 4 where a larger value indicates more dependence on the
1298
+ visual context in the fusion process. We observe that the
1299
+ model relies on the visual context in the early stages, and
1300
+ the role of visual information changes dynamically across
1301
+ training. When the training starts, the model accommodates
1302
+ the visual information to a large extent (λ ≥ 0.6), indicating
1303
+ that the model tends to trust the visual context, which could
1304
+ provide useful information in the early stages. With more
1305
+ knowledge captured as the training continues, the contribu-
1306
+ tions of the visual contexts appeal to decay. In the following
1307
+ parts, we will further discuss the specific effectiveness of
1308
+ visual representations in language modeling.
1309
+
1310
+ 10
1311
+ A girl in a purple tutu dances in the yard.
1312
+ A little girl is walking over a path of numbers.
1313
+ A girl jumping rope on a sidewalk near a parking garage.
1314
+ A young girl washes an automobile.
1315
+ Fig. 5. Examples of sentences that share the same retrieved images, in which the common topic is about “girl”. Sentences with similar topics tend to
1316
+ be paired with similar or even the same images, and vice versa. This means that images may provide topic information, which benefits the modeling
1317
+ of similar sentences.
1318
+ 6.2
1319
+ Pairwise relationship across modalities
1320
+ The benefits of the universal representation method could
1321
+ be two folds: (i) the content connection of the sentences and
1322
+ images; (ii) the topic-aware co-occurrence of similar images
1323
+ and sentences. According to Distributional Hypothesis [83],
1324
+ which states that words that occur in similar contexts tend to
1325
+ have similar meanings, we are inspired to extend the concept
1326
+ in the multimodal world, the sentences with similar meanings
1327
+ would be likely to pair with similar even the same images. There-
1328
+ fore, the consistent images (with a related topic) could play
1329
+ the role of topic or type hints for similar sentence modeling.
1330
+ After using our image retrieval method, sentences with
1331
+ similar topics tend to be paired with similar or even the
1332
+ same images, and vice versa. Figure 5 shows examples in
1333
+ which the common topic is about “girl”. This means that
1334
+ images may provide topic information, which benefits the
1335
+ modeling of similar sentences. Thus, aside from the image
1336
+ embeddings’ inner meaning (vectors), there is a mapping
1337
+ relationship between the sentence and images after the
1338
+ retrieval process.
1339
+ For the image embeddings, as described in Section 3.1.2,
1340
+ we adopt the embedding lookup to fetch the embedding
1341
+ features for each image, which is very similar to the way of
1342
+ using word embedding by treating each image as a “word”.
1343
+ The weights of the embedding features are derived from
1344
+ the average pooled output of ResNet, where each image is
1345
+ represented as a 2400-d vector. For all the 29,000 images
1346
+ (e.g., using Multi30K), we have an embedding layer with
1347
+ size (29000, 2400). The “content” of the image can be seen
1348
+ as embedding initialization. The pre-initialized embedding
1349
+ weights might yield slight improvement gains. However,
1350
+ the neural network can also be effectively trained with
1351
+ random initialization [84, 85]. In contrast, whether to use
1352
+ the embedded feature is more critical. In other words, the
1353
+ mapping relationship of the sentences and images in image
1354
+ embedding would be essential, i.e., similar sentences (with
1355
+ the same topic words) tend to map the same or similar
1356
+ image after the word-image lookup process.
1357
+ To verify the hypotheses, we conduct the following
1358
+ ablations: we replace the ResNet50 feature extractor in our
1359
+ UVR-TILT model with (1) ResNet101 and (2) ResNet152;
1360
+ additionally, we compare the results with the following
1361
+ operations: (3) Shuffle: shuffle the image features but retain
1362
+ TABLE 6
1363
+ Ablation for the image embedding operation on En-Ro. The scores are
1364
+ reported by means and standard deviations for three random seeds.
1365
+ Method
1366
+ BLEU Score
1367
+ Baseline
1368
+ 32.75±0.10
1369
+ UVR-TILT
1370
+ 33.72±0.08
1371
+ w/ (1) Res101
1372
+ 33.65±0.06
1373
+ w/ (2) Res152
1374
+ 33.82±0.07
1375
+ w/ (3) Shuffle
1376
+ 33.40±0.14
1377
+ w/ (4) Random Init
1378
+ 33.08±0.17
1379
+ w/ (5) Random Mapping
1380
+ 32.05±0.14
1381
+ the lookup table; (4) Random Init: randomly initialize the
1382
+ image embedding but keep the lookup table; (5) Random
1383
+ Mapping: randomly retrieve unrelated images.
1384
+ Table 6 shows the ablation results. The BLEU scores
1385
+ of models 1-4 are close to the proposed UVR method,
1386
+ and those ablated methods still outperform the baseline,
1387
+ indicating that using image features generally yields better
1388
+ performance than the baseline. In addition, either replacing
1389
+ the trained image features (model 4) or disturbing the
1390
+ mapping information (model 5) leads to a performance
1391
+ drop (↓0.64/↓1.67, respectively), which indicates that both
1392
+ the image features and mapping information are contribut-
1393
+ ing factors. Compared with image features, the mapping
1394
+ information has a larger impact, which verifies our prior
1395
+ hypothesis that the consistent images with a related topic
1396
+ could play the role of topic or type hints for similar sentence
1397
+ modeling in the whole training process. With the mapping
1398
+ information, the same images will be assigned to the same
1399
+ context. During training, the image features will be learned
1400
+ just like word embeddings. Therefore, it does not mean that
1401
+ the image features are not very helpful, but the mapping
1402
+ information in the lookup table reduces the dependence on
1403
+ the trained image features.
1404
+ From the view of an individual image, image content
1405
+ (embedding) has an effect. If we maintain the pairwise
1406
+ relationship between the sentence and image, the result is
1407
+ still higher than the baseline, even with shuffled or random
1408
+ image embeddings. This indicates that the pairwise rela-
1409
+ tionship is a vital contributor. From the macro perspective
1410
+ of sentence-image co-occurrence, image information plays
1411
+ the role of topic information, where similar sentences tend
1412
+
1413
+ 11
1414
+ a) baseline method without visual features
1415
+ b) our method with visual features
1416
+ Fig. 6. Visualization of (a) attention weights of the input tokens with regards to the probed token “lock” across different layers (Y-axis) using the
1417
+ BERT baseline; (b) image-to-word attention from our model. The illustration shows that the images provide fine-grained grounding information about
1418
+ the relationship between concepts and events, e.g., “lock”, “door”, “fancy”, “hotel”.
1419
+ TABLE 7
1420
+ Results of MMT with incomplete source texts by removing visually
1421
+ grounded tokens in the Multi30K dataset. The scores are reported by
1422
+ means and standard deviations for three random seeds.
1423
+ Model
1424
+ En-De
1425
+ En-Fr
1426
+ Test2016
1427
+ Test2017
1428
+ Test2016
1429
+ Test2017
1430
+ Baseline
1431
+ 10.94±0.21
1432
+ 7.75±0.24
1433
+ 18.61±0.16
1434
+ 15.01±0.15
1435
+ UVR-TILT
1436
+ 12.80±0.18
1437
+ 9.15±0.19
1438
+ 19.60±0.17
1439
+ 15.77±0.20
1440
+ to pair with similar images. The observation corresponds
1441
+ to the distributional hypothesis. This explains the potential
1442
+ effects of the pairwise relationship.
1443
+ This finding may potentially facilitate future research
1444
+ because most existing studies focus on the content of the
1445
+ individual image itself. We highlight the pairwise relation-
1446
+ ship across modalities as a different research line to bridge
1447
+ the gap between language and image modeling.
1448
+ 6.3
1449
+ Handling incomplete source texts
1450
+ Content words are naturally related to specific content, such
1451
+ as car, room, play. We collect a list of tokens that have
1452
+ more than ten occurrences in the Multi30K training set
1453
+ after removing all stop words following [72]. We remove
1454
+ those tokens in the source sentence, which occupy 42.87%
1455
+ of tokens in the token dictionary. Table 7 shows the results
1456
+ of the baseline model and our model with the incomplete
1457
+ source texts. We observe that our model achieves noticeable
1458
+ gains over the baseline. The results verify that the visual
1459
+ representation can reduce the gap of the missing informa-
1460
+ tion from the content words in the source texts.
1461
+ 6.4
1462
+ Knowledge grounding with the visual context
1463
+ To gain an insight into the process of multimodal integra-
1464
+ tion by our model, we analyze the attention distributions
1465
+ (α in Eq.3) at the multimodal integration layer. Figure 6
1466
+ shows the attention distributions of (a) the baseline and
1467
+ (b) our model 13 for an example randomly selected from
1468
+ 13. Our model is the UVR-TILT trained on the CoLA dataset.
1469
+ TABLE 8
1470
+ Results (BLEU score) of the multimodal disambiguation experiments
1471
+ on WAT’19 English to Hindi dataset. The scores are reported by means
1472
+ and standard deviations for three random seeds.
1473
+ Model
1474
+ Validation
1475
+ Test
1476
+ Challenge
1477
+ Baseline
1478
+ 47.04±0.27
1479
+ 39.33±0.24
1480
+ 20.52±0.14
1481
+ UVR-CMRM
1482
+ 47.49±0.06
1483
+ 39.81±0.12
1484
+ 21.62±0.08
1485
+ our GLUE validation sets, “You should always lock your door,
1486
+ no matter how fancy the hotel might be.” For comparison,
1487
+ the baseline is implemented following Abnar and Zuidema
1488
+ [86]. Concretely, we collect the attention weights of all the
1489
+ input tokens with regards to a targeted token “lock” across
1490
+ different layers (i.e., {2, 4, . . . , 24}). As the baseline uses the
1491
+ representation of the last layer for prediction, we focus on
1492
+ the attention distributions of the last layer.
1493
+ Compared with the baseline that only captures partial
1494
+ relations in the last layer, e.g., with a lack of relationship
1495
+ among {“lock”, “door”, “hotel”}, our model provides more
1496
+ fine-grained connections. In detail, two generic patterns are
1497
+ observed in these examples.
1498
+ (i) the images appear to match the concepts and actions
1499
+ with the texts, in other words, the images tend to provide
1500
+ fine-grained grounding information about the relationship
1501
+ between concepts and events, e.g., {”lock”, ”door”, ”fancy”,
1502
+ ”hotel”}.
1503
+ (ii) our model can resist irrelevant information from
1504
+ noisy images. For example, the second and third images
1505
+ yield low attention scores for the texts.
1506
+ 6.5
1507
+ Disambiguation
1508
+ A natural intuition of using visual clues for text represen-
1509
+ tation is the advantage of alleviating the ambiguation of
1510
+ language. To evaluate the model performance for disam-
1511
+ biguation, we use a dataset from the HVG [88], which serves
1512
+ as a part of the WAT’19 Multimodal Translation Task.14 The
1513
+ dataset consists of a total of 31525 randomly selected images
1514
+ 14. http://lotus.kuee.kyoto-u.ac.jp/WAT/WAT2019/index.html
1515
+
1516
+ 1.0
1517
+ always
1518
+ lock
1519
+ 0.8
1520
+ Joop
1521
+ 0.6
1522
+ 0.4
1523
+ how
1524
+ fancy
1525
+ 0.2
1526
+ might
1527
+ be
1528
+ 0.0Toilet
1529
+ f1忆
1530
+ 2
1531
+ 0.175
1532
+ 0.150
1533
+ 8
1534
+ 0.125
1535
+ 4
1536
+ 0.100
1537
+ 2
1538
+ 0
1539
+ 0.075
1540
+ 8
1541
+ 0.050
1542
+ 9
1543
+ 4
1544
+ 0.025
1545
+ 2
1546
+ 2
1547
+ matt12
1548
+ a) baseline method without visual features
1549
+ b) our method with visual features
1550
+ Fig. 7. Visualization of (a) attention weights of the input tokens with regards to the ambiguous token “apple” across different layers (Y-axis) using the
1551
+ BERT baseline; b) image-to-word attention from our model. The illustration shows that the images bridge the connection between “apple”, “watch”,
1552
+ “time”, helping disambiguate the meaning of “apple”.
1553
+ TABLE 9
1554
+ Selected eight probing tasks [87] to study what syntactic and semantic properties are captured by the encoders.
1555
+ Probing Tasks
1556
+ Content
1557
+ Syntactic
1558
+ TrDep
1559
+ Checking whether an encoder infers the hierarchical structure of sentence
1560
+ ToCo
1561
+ Sentences should be classified in terms of the sequence of top constituents immediately below the
1562
+ sentence node
1563
+ BShif
1564
+ Testing whether two consecutive tokens within the sentence have been inverted
1565
+ Semantic
1566
+ Tense
1567
+ Asking for the tense of the main clause verb
1568
+ SubN
1569
+ Focusing on the number of the main clause’s subject
1570
+ ObjN
1571
+ Testing for the number of the direct object of the main clause
1572
+ SoMo
1573
+ Some sentences are modified by replacing a random noun or verb with another one and the classifier
1574
+ should tell whether a sentence has been modified
1575
+ CoIn
1576
+ Containing sentences made of two coordinate clauses
1577
+ TABLE 10
1578
+ Classification accuracy on eight probing tasks of evaluating linguistics embedded in the encoder outputs.
1579
+ Model
1580
+ Syntactic
1581
+ Semantic
1582
+ TrDep
1583
+ ToCo
1584
+ BShif
1585
+ Tense
1586
+ SubN
1587
+ ObjN
1588
+ SoMo
1589
+ CoIn
1590
+ Baseline
1591
+ 28.34
1592
+ 58.33
1593
+ 76.34
1594
+ 80.66
1595
+ 72.02
1596
+ 68.57
1597
+ 64.42
1598
+ 67.51
1599
+ UVR-CMRM
1600
+ 28.53
1601
+ 58.64
1602
+ 77.72
1603
+ 80.97
1604
+ 73.79
1605
+ 69.66
1606
+ 65.44
1607
+ 67.23
1608
+ from Visual Genome [89] and a parallel image caption
1609
+ corpus in English-Hindi for selected image segments. The
1610
+ training part consists of 29K English and Hindi short cap-
1611
+ tions of rectangular areas in photos of various scenes, and
1612
+ it is complemented by three evaluation subsets: validation,
1613
+ test, and challenge test set (Challenge). The challenge test set
1614
+ is created by searching for (particularly) ambiguous English
1615
+ words based on the embedding similarity and manually
1616
+ selecting those where the image helps to resolve the am-
1617
+ biguity. We do not use the images but follow the same
1618
+ settings as the experiments on Multi30K. As the results
1619
+ shown in Table 8, we observe that our UVR model works
1620
+ effectively on the challenge disambiguation set, indicating
1621
+ that the visual information induced by retrieved images
1622
+ allows disambiguation of translation.
1623
+ Figure 7 shows a heatmap of the attention visualization
1624
+ on an ambiguous sentence, “apple watch keeps telling me
1625
+ the time”. In Figure 7(a), the baseline model fails to capture
1626
+ the relationship between “apple” with “time”. In Figure
1627
+ 7(b), the retrieved images bridge the connection among
1628
+ “apple”, “watch” and “time”, which helps disambiguate the
1629
+ meaning of “apple”.
1630
+ 6.6
1631
+ Linguistic Analysis
1632
+ We are interested in what knowledge is learned in the
1633
+ universal representations. In this section, we select eight
1634
+ widely-used language probing tasks [87] (see Table 9) to
1635
+ study what kind of syntactic and semantic properties are
1636
+ captured by the encoders. Specifically, we use the encoders
1637
+ of the baseline BERT-based SNLI model,15 and our UVR-
1638
+ CMRM visual representation model to generate the sentence
1639
+ representations of input, which are used to carry out the
1640
+ above eight probing tasks. The results are as shown in Table
1641
+ 10.
1642
+ 15. We select the SNLI model because NLI models show good
1643
+ generalization capacity for language representation [90, 91], which is
1644
+ supposed to be a strong test-bed for the evaluation.
1645
+
1646
+ 1.0
1647
+ apple
1648
+ watch
1649
+ 0.8
1650
+ 0.6
1651
+ telling
1652
+ 0.4
1653
+ the
1654
+ 0.2
1655
+ time
1656
+ 0.0AppleWatchEdition
1657
+ WATCHEDITIONWATCHWATCH7AppStore&iTunes忆
1658
+ 0.25
1659
+ 2
1660
+ 0.20
1661
+ 4
1662
+ 0.15
1663
+ 2
1664
+ 0
1665
+ 0.10
1666
+ 8
1667
+ 6
1668
+ 0.05
1669
+ 4
1670
+ 2
1671
+ me
1672
+ the
1673
+ telling13
1674
+ 0
1675
+ 1
1676
+ 3
1677
+ 5
1678
+ 7
1679
+ 9
1680
+ 15 20 30
1681
+ 33
1682
+ 33.5
1683
+ Number of images per sentence
1684
+ BLEU
1685
+ Fig. 8. Influence of the number of images on the BLEU score.
1686
+ TABLE 11
1687
+ Experiments on different source languages using the Multi30K dataset.
1688
+ The baseline is Transformer-Tiny.
1689
+ Model
1690
+ De-En
1691
+ Fr-En
1692
+ Test2016
1693
+ Test2017
1694
+ Test2016
1695
+ Test2017
1696
+ Baseline
1697
+ 42.88
1698
+ 40.57
1699
+ 54.60
1700
+ 48.45
1701
+ UVR-TILT
1702
+ 43.10
1703
+ 40.07
1704
+ 54.92
1705
+ 49.10
1706
+ Concerning semantic properties, our model gains the
1707
+ most significant improvement on the SubN and ObjN tasks.
1708
+ The result indicates that visual information helps NMT to
1709
+ identify and represent the subject and object information,
1710
+ which is consistent with our hypotheses.
1711
+ 6.7
1712
+ Effectiveness across languages
1713
+ Table 11 shows the experiment results on different source
1714
+ languages. We observe that our method is applicable when
1715
+ the source texts are in other languages such as German
1716
+ and French. Our proposed methods are supposed to be
1717
+ independent of languages because the calculation for image
1718
+ retrieval only relies on the light lookup table, which can be
1719
+ extracted from an off-the-shelf seed corpus that is available
1720
+ for many languages.
1721
+ 6.8
1722
+ Joint Training and Fine-tuning
1723
+ Since the multimodal and text-only machine translation
1724
+ tasks can benefit from the visual modality after retrieving
1725
+ images from the seed corpus, it is possible to bridge both
1726
+ tasks to train an even more powerful model. The connec-
1727
+ tions between the texts and images inside the Multi30K
1728
+ datasets could be strong indications to bridge the gap be-
1729
+ tween text and image modalities.
1730
+ Therefore, we train a unified model based on UVR-
1731
+ CMRM by using the joint En-De datasets of Multi30K and
1732
+ WMT’14 (Joint Model), and respectively train the Multi30K
1733
+ (Fine-tuned Multi30K) and WMT’14 (Fine-tuned WMT) mod-
1734
+ els by initializing the trainable model parameters using the
1735
+ joint model. According to the results shown in Table 12, we
1736
+ summarize the following observations:
1737
+ (i) Two-stage training (joint training and fine-tuning) can
1738
+ boost the performance on the two concerned datasets, which
1739
+ indicates that the highly relevant Multi30K dataset can play
1740
+ the role of the seed data for training a text-only NMT model
1741
+ using our topic-image lookup table.
1742
+ 0
1743
+ 50
1744
+ 100
1745
+ Percentage
1746
+ BLEU
1747
+ Data Size
1748
+ 0.0
1749
+ 0.1
1750
+ 0.2
1751
+ 0.3
1752
+ 0.4
1753
+ 0.5
1754
+ 0.6
1755
+ 33.5
1756
+ 34
1757
+ 34.5
1758
+ 35
1759
+ Percentage
1760
+ BLEU
1761
+ Fig. 9. BLEU score for different similarity thresholds.
1762
+ TABLE 12
1763
+ Results of joint training and fine-tuning.
1764
+ Model
1765
+ Multi30K Task
1766
+ WMT Task
1767
+ Joint training baseline
1768
+ 37.28
1769
+ 27.68
1770
+ + Fine-tuned Multi30K
1771
+ -
1772
+ 27.96
1773
+ + Fine-tuned WMT
1774
+ 43.13
1775
+ -
1776
+ (ii) The major gain is achieved by fine-tuning the smaller
1777
+ dataset, showing that the large-scale text-only dataset with
1778
+ our lookup table can also provide valuable complementary
1779
+ information for training a multimodal model on a much
1780
+ smaller dataset. The result further verifies the effectiveness
1781
+ of our method in low-resource settings.
1782
+ 6.9
1783
+ Parameter Sensitivity Analysis
1784
+ In this section, we analyze our model sensitivity against
1785
+ parameter settings, including similarity threshold, number
1786
+ of images, and gating weight.
1787
+ Influence of the similarity threshold. We investigate the
1788
+ influence of the similarity threshold δ that is set to filter the
1789
+ top-ranked images for each sentence in UVR-CMRM. Figure
1790
+ 9 shows the performance for thresholds in [0.0, 0.1, 0.2, 0.3,
1791
+ 0.4, 0.5, 0.6] on the En-Ro test set. We observe that setting
1792
+ the threshold around 0.4 can yield a good balance of data
1793
+ size and BLEU score. It is reasonable that the best thresholds
1794
+ vary for different datasets because of the domain divergence
1795
+ of the image corpus for pre-training.
1796
+ Influence of the number of images. To evaluate the
1797
+ influence of the number of paired images m for UVR-TILT,
1798
+ we constrain m in {0, 1, 3, 5, 7, 9, 15, 20, 30} for experiments
1799
+ on the En-Ro test set, as shown in Figure 8. When m = 0,
1800
+ the model is the baseline NMT model, whose BLEU score
1801
+ is lower than all the models with images. As the number
1802
+ of images increases, the BLEU score also increases at the
1803
+ beginning (from 32.66 to 33.78) and then slightly decreases
1804
+ when m exceeds 5. The reason might be that too many
1805
+ images for a sentence would have a higher chance of noise.
1806
+ Therefore, we set m = 5 in our models.
1807
+ Influence of gating weight λ. In our model, the weight
1808
+ λ of the gated aggregation method is learned automatically
1809
+ to measure the importance of the visual information. We
1810
+ compare by manually setting the weight λ to scalar values
1811
+ in {0.1, 0.3, 0.5, 0.7, 0.9} for experiments of UVR-TILT on the
1812
+ En-Ro test set. Figure 10 shows that all models with manual
1813
+
1814
+ 14
1815
+ 0.1
1816
+ 0.3
1817
+ 0.5
1818
+ 0.7
1819
+ 0.9
1820
+ 33
1821
+ 33.5
1822
+ Weight λ
1823
+ BLEU
1824
+ Manual weight
1825
+ Transformer-Base
1826
+ Ours
1827
+ Fig. 10. Quantitative study of the gating weight λ.
1828
+ λ outperform the baseline Transformer-base, indicating the
1829
+ effectiveness of image information. In contrast, they are in-
1830
+ ferior to the performance of our model. This means that the
1831
+ degree of dependency for image information varies for each
1832
+ source sentence, indicating the necessity of automatically
1833
+ learning the gating weights of image representations.
1834
+ 6.10
1835
+ Computation Efficiency
1836
+ There are mainly two extra computation costs using our
1837
+ method, including (i) obtaining image data for sentences
1838
+ and (ii) learning image representations, which are negligible
1839
+ compared with training an NMT model. The time of retriev-
1840
+ ing image data for MT sentences for the En-Ro dataset is
1841
+ less than 1 minute using GPU. The lookup table is formed
1842
+ as the mapping of the token (only topic words) index to
1843
+ the image id. Then, the retrieval method is applied as the
1844
+ tensor indexing from the sentence token indices (only topic
1845
+ words) to image ids, which is the same as the procedure of
1846
+ word embedding. The retrieved image ids are then sorted
1847
+ by frequency. Learning image representations takes about
1848
+ 2 minutes for all the 29,000 images in Multi30K using 6G
1849
+ GPU memory for feature extraction and eight CPU threads
1850
+ for transforming images. The extracted features are formed
1851
+ as the “image embedding layer” in the size of (29000, 2400)
1852
+ for quick access in the neural network.
1853
+ 7
1854
+ CONCLUSIONS
1855
+ This work investigates a flexible framework to incorporate
1856
+ visual information into sentence modeling by image re-
1857
+ trieval from a light lookup table and learned cross-modal
1858
+ embedding space. Extensive empirical experiments on 14
1859
+ benchmark datasets verify the effectiveness of the proposed
1860
+ method. A series of case studies are conducted to evaluate
1861
+ visual benefits and influence factors. Our method is general
1862
+ and can be easily implemented in existing deep-learning
1863
+ NLP systems for different languages. Through the proposed
1864
+ retrieval methods, we can provide a group of images that
1865
+ disclose a diversity of implicit topics that might be entailed
1866
+ in sentences, yielding better context grounding with fine-
1867
+ grained information. We show that our method enriches
1868
+ the representation of content words, provide fine-grained
1869
+ grounding information about the relationship between con-
1870
+ cepts and events, and potentially enhances the accuracy
1871
+ of disambiguation. Besides incorporating images to build
1872
+ the pairwise relationship across modalities, it is potential
1873
+ to incorporate various extra knowledge as alignment topic
1874
+ information in the future, such as audio, not only images.
1875
+ ACKNOWLEDGEMENT
1876
+ Part of this study has been published as “Neural Machine
1877
+ Translation with Universal Visual Representation” [37] in
1878
+ the Eighth International Conference on Learning Represen-
1879
+ tations (ICLR 2020). The extension includes three sides: (i)
1880
+ general tasks: this work studies the universal visual rep-
1881
+ resentation for language representation in a broader view
1882
+ of the natural language processing scenario, with experi-
1883
+ ments on 14 representative NLP tasks; (ii) new method: this
1884
+ work investigates new methods of semantic sentence-image
1885
+ matching from a shared cross-modal space, to give more
1886
+ accurately paired images as topic information; (iii) in-depth
1887
+ analysis to interpret the benefits from the visual modality.
1888
+ REFERENCES
1889
+ [1]
1890
+ T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and
1891
+ J. Dean, “Distributed representations of words and
1892
+ phrases and their compositionality,” in Advances in
1893
+ Neural Information Processing Systems 26: 27th Annual
1894
+ Conference on Neural Information Processing Systems 2013.
1895
+ Proceedings of a meeting held December 5-8, 2013, Lake
1896
+ Tahoe, Nevada, United States, 2013, pp. 3111–3119.
1897
+ [2]
1898
+ J. Pennington, R. Socher, and C. Manning, “GloVe:
1899
+ Global vectors for word representation,” in Proceedings
1900
+ of the 2014 Conference on Empirical Methods in Natural
1901
+ Language Processing (EMNLP), 2014, pp. 1532–1543.
1902
+ [3]
1903
+ M. E. Peters, M. Neumann, M. Iyyer, M. Gardner,
1904
+ C. Clark, K. Lee, and L. Zettlemoyer, “Deep contextu-
1905
+ alized word representations,” in Proceedings of the 2018
1906
+ Conference of the North American Chapter of the Association
1907
+ for Computational Linguistics: Human Language Technolo-
1908
+ gies, Volume 1 (Long Papers), 2018, pp. 2227–2237.
1909
+ [4]
1910
+ A.
1911
+ Radford,
1912
+ K.
1913
+ Narasimhan,
1914
+ T.
1915
+ Salimans,
1916
+ and
1917
+ I. Sutskever, “Improving language understanding by
1918
+ generative pre-training,” Technical report, 2018.
1919
+ [5]
1920
+ J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova,
1921
+ “BERT: Pre-training of deep bidirectional transformers
1922
+ for language understanding,” in Proceedings of the 2019
1923
+ Conference of the North American Chapter of the Association
1924
+ for Computational Linguistics: Human Language Technolo-
1925
+ gies, Volume 1 (Long and Short Papers), 2019, pp. 4171–
1926
+ 4186.
1927
+ [6]
1928
+ Z. Yang, Z. Dai, Y. Yang, J. G. Carbonell, R. Salakhut-
1929
+ dinov, and Q. V. Le, “Xlnet: Generalized autoregres-
1930
+ sive pretraining for language understanding,” in Ad-
1931
+ vances in Neural Information Processing Systems 32: An-
1932
+ nual Conference on Neural Information Processing Systems
1933
+ 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
1934
+ Canada, 2019, pp. 5754–5764.
1935
+ [7]
1936
+ K. Zhang, G. Lv, L. Wu, E. Chen, Q. Liu, H. Wu, and
1937
+ F. Wu, “Image-enhanced multi-level sentence represen-
1938
+ tation net for natural language inference,” in 2018 IEEE
1939
+ International Conference on Data Mining (ICDM).
1940
+ IEEE,
1941
+ 2018, pp. 747–756.
1942
+
1943
+ 15
1944
+ [8]
1945
+ M. A. McDaniel and G. O. Einstein, “Bizarre imagery
1946
+ as an effective memory aid: The importance of distinc-
1947
+ tiveness.” Journal of experimental psychology: Learning,
1948
+ memory, and cognition, vol. 12, no. 1, p. 54, 1986.
1949
+ [9]
1950
+ D. Meier, The accelerated learning handbook: A creative
1951
+ guide to designing and delivering faster, more effective train-
1952
+ ing programs, 2000.
1953
+ [10] J. Ive, P. Madhyastha, and L. Specia, “Distilling trans-
1954
+ lations with visual awareness,” in Proceedings of the
1955
+ 57th Annual Meeting of the Association for Computational
1956
+ Linguistics, 2019, pp. 6525–6538.
1957
+ [11] H. Shi, J. Mao, K. Gimpel, and K. Livescu, “Visually
1958
+ grounded neural syntax acquisition,” in Proceedings of
1959
+ the 57th Annual Meeting of the Association for Computa-
1960
+ tional Linguistics, 2019, pp. 1842–1861.
1961
+ [12] T. Baltruaitis, C. Ahuja, and L.-P. Morency, “Multi-
1962
+ modal machine learning: A survey and taxonomy,”
1963
+ IEEE Transactions on Pattern Analysis and Machine In-
1964
+ telligence, vol. 41, no. 2, pp. 423–443, 2019.
1965
+ [13] R. Hong, D. Liu, X. Mo, X. He, and H. Zhang, “Learning
1966
+ to compose and reason with language tree structures
1967
+ for visual grounding,” IEEE Transactions on Pattern
1968
+ Analysis and Machine Intelligence, vol. 44, no. 2, pp. 684–
1969
+ 696, 2022.
1970
+ [14] B. A. Plummer, K. J. Shih, Y. Li, K. Xu, S. Lazeb-
1971
+ nik, S. Sclaroff, and K. Saenko, “Revisiting image-
1972
+ language networks for open-ended phrase detection,”
1973
+ IEEE Transactions on Pattern Analysis and Machine Intel-
1974
+ ligence, vol. 44, no. 4, pp. 2155–2167, 2022.
1975
+ [15] W. Su, X. Zhu, Y. Cao, B. Li, L. Lu, F. Wei, and J. Dai,
1976
+ “VL-BERT: pre-training of generic visual-linguistic rep-
1977
+ resentations,” in 8th International Conference on Learning
1978
+ Representations, ICLR 2020, Addis Ababa, Ethiopia, April
1979
+ 26-30, 2020, 2020.
1980
+ [16] J. Lu, D. Batra, D. Parikh, and S. Lee, “Vilbert: Pre-
1981
+ training task-agnostic visiolinguistic representations
1982
+ for vision-and-language tasks,” in Advances in Neural
1983
+ Information Processing Systems 32: Annual Conference
1984
+ on Neural Information Processing Systems 2019, NeurIPS
1985
+ 2019, December 8-14, 2019, Vancouver, BC, Canada, 2019,
1986
+ pp. 13–23.
1987
+ [17] H. Tan and M. Bansal, “LXMERT: Learning cross-
1988
+ modality encoder representations from transformers,”
1989
+ in Proceedings of the 2019 Conference on Empirical Methods
1990
+ in Natural Language Processing and the 9th International
1991
+ Joint Conference on Natural Language Processing (EMNLP-
1992
+ IJCNLP), 2019, pp. 5100–5111.
1993
+ [18] G. Li, N. Duan, Y. Fang, M. Gong, and D. Jiang,
1994
+ “Unicoder-vl: A universal encoder for vision and lan-
1995
+ guage by cross-modal pre-training,” in The Thirty-
1996
+ Fourth AAAI Conference on Artificial Intelligence, AAAI
1997
+ 2020, The Thirty-Second Innovative Applications of Artifi-
1998
+ cial Intelligence Conference, IAAI 2020, The Tenth AAAI
1999
+ Symposium on Educational Advances in Artificial Intelli-
2000
+ gence, EAAI 2020, New York, NY, USA, February 7-12,
2001
+ 2020, 2020, pp. 11 336–11 344.
2002
+ [19] L. Zhou, H. Palangi, L. Zhang, H. Hu, J. Corso, and
2003
+ J. Gao, “Unified vision-language pre-training for image
2004
+ captioning and vqa,” in Proceedings of the AAAI Confer-
2005
+ ence on Artificial Intelligence, vol. 34, no. 07, 2020, pp.
2006
+ 13 041–13 049.
2007
+ [20] C. Sun, A. Myers, C. Vondrick, K. Murphy, and
2008
+ C. Schmid, “Videobert: A joint model for video and
2009
+ language representation learning,” in 2019 IEEE/CVF
2010
+ International Conference on Computer Vision, ICCV 2019,
2011
+ Seoul, Korea (South), October 27 - November 2, 2019, 2019,
2012
+ pp. 7463–7472.
2013
+ [21] E. Zablocki, B. Piwowarski, L. Soulier, and P. Gallinari,
2014
+ “Learning multi-modal word representation grounded
2015
+ in visual context,” in Proceedings of the Thirty-Second
2016
+ AAAI Conference on Artificial Intelligence, (AAAI-18), the
2017
+ 30th innovative Applications of Artificial Intelligence (IAAI-
2018
+ 18), and the 8th AAAI Symposium on Educational Ad-
2019
+ vances in Artificial Intelligence (EAAI-18), New Orleans,
2020
+ Louisiana, USA, February 2-7, 2018, 2018, pp. 5626–5633.
2021
+ [22] Y. Meng, W. Wu, F. Wang, X. Li, P. Nie, F. Yin, M. Li,
2022
+ Q. Han, X. Sun, and J. Li, “Glyce: Glyph-vectors for
2023
+ chinese character representations,” in Advances in Neu-
2024
+ ral Information Processing Systems 32: Annual Conference
2025
+ on Neural Information Processing Systems 2019, NeurIPS
2026
+ 2019, December 8-14, 2019, Vancouver, BC, Canada, 2019,
2027
+ pp. 2742–2753.
2028
+ [23] K. Han, Y. Wang, H. Chen, X. Chen, J. Guo, Z. Liu,
2029
+ Y. Tang, A. Xiao, C. Xu, Y. Xu, Z. Yang, Y. Zhang,
2030
+ and D. Tao, “A survey on vision transformer,” IEEE
2031
+ Transactions on Pattern Analysis and Machine Intelligence,
2032
+ pp. 1–1, 2022.
2033
+ [24] X. Wang, Q. Huang, A. Celikyilmaz, J. Gao, D. Shen,
2034
+ Y.-F. Wang, W. Y. Wang, and L. Zhang, “Vision-
2035
+ language navigation policy learning and adaptation,”
2036
+ IEEE Transactions on Pattern Analysis and Machine Intel-
2037
+ ligence, vol. 43, no. 12, pp. 4205–4216, 2021.
2038
+ [25] D. Elliott, S. Frank, K. Sima’an, and L. Specia,
2039
+ “Multi30K: Multilingual English-German image de-
2040
+ scriptions,” in Proceedings of the 5th Workshop on Vision
2041
+ and Language, 2016, pp. 70–74.
2042
+ [26] X. Li, C. Xu, X. Wang, W. Lan, Z. Jia, G. Yang, and J. Xu,
2043
+ “Coco-cn for cross-lingual image tagging, captioning,
2044
+ and retrieval,” IEEE Transactions on Multimedia, vol. 21,
2045
+ no. 9, pp. 2347–2360, 2019.
2046
+ [27] Y. Yoshikawa, Y. Shigeto, and A. Takeuchi, “STAIR cap-
2047
+ tions: Constructing a large-scale Japanese image cap-
2048
+ tion dataset,” in Proceedings of the 55th Annual Meeting
2049
+ of the Association for Computational Linguistics (Volume 2:
2050
+ Short Papers), 2017, pp. 417–421.
2051
+ [28] T. Miyazaki and N. Shimizu, “Cross-lingual image
2052
+ caption generation,” in Proceedings of the 54th Annual
2053
+ Meeting of the Association for Computational Linguistics
2054
+ (Volume 1: Long Papers), 2016, pp. 1780–1790.
2055
+ [29] J. Hewitt, D. Ippolito, B. Callahan, R. Kriz, D. T. Wijaya,
2056
+ and C. Callison-Burch, “Learning translations via im-
2057
+ ages with a massively multilingual image dataset,” in
2058
+ Proceedings of the 56th Annual Meeting of the Association
2059
+ for Computational Linguistics (Volume 1: Long Papers),
2060
+ 2018, pp. 2566–2576.
2061
+ [30] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine
2062
+ translation by jointly learning to align and translate,” in
2063
+ 3rd International Conference on Learning Representations,
2064
+ ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Confer-
2065
+ ence Track Proceedings, 2015.
2066
+ [31] J. Gehring, M. Auli, D. Grangier, and Y. Dauphin,
2067
+ “A convolutional encoder model for neural machine
2068
+
2069
+ 16
2070
+ translation,” in Proceedings of the 55th Annual Meeting
2071
+ of the Association for Computational Linguistics (Volume 1:
2072
+ Long Papers), 2017, pp. 123–135.
2073
+ [32] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
2074
+ L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin,
2075
+ “Attention is all you need,” in Advances in Neural
2076
+ Information Processing Systems 30: Annual Conference on
2077
+ Neural Information Processing Systems 2017, December 4-
2078
+ 9, 2017, Long Beach, CA, USA, 2017, pp. 5998–6008.
2079
+ [33] M. Fadaee, A. Bisazza, and C. Monz, “Data augmen-
2080
+ tation for low-resource neural machine translation,” in
2081
+ Proceedings of the 55th Annual Meeting of the Association
2082
+ for Computational Linguistics (Volume 2: Short Papers),
2083
+ 2017, pp. 567–573.
2084
+ [34] G. Lample, M. Ott, A. Conneau, L. Denoyer, and
2085
+ M. Ranzato, “Phrase-based & neural unsupervised ma-
2086
+ chine translation,” in Proceedings of the 2018 Conference
2087
+ on Empirical Methods in Natural Language Processing,
2088
+ 2018, pp. 5039–5049.
2089
+ [35] X. Ma, C. Zhou, X. Li, G. Neubig, and E. Hovy,
2090
+ “FlowSeq: Non-autoregressive conditional sequence
2091
+ generation with generative flow,” in Proceedings of the
2092
+ 2019 Conference on Empirical Methods in Natural Lan-
2093
+ guage Processing and the 9th International Joint Conference
2094
+ on Natural Language Processing (EMNLP-IJCNLP), 2019,
2095
+ pp. 4282–4292.
2096
+ [36] C. Zhou, X. Ma, J. Hu, and G. Neubig, “Handling syn-
2097
+ tactic divergence in low-resource machine translation,”
2098
+ in Proceedings of the 2019 Conference on Empirical Methods
2099
+ in Natural Language Processing and the 9th International
2100
+ Joint Conference on Natural Language Processing (EMNLP-
2101
+ IJCNLP), 2019, pp. 1388–1394.
2102
+ [37] Z. Zhang, K. Chen, R. Wang, M. Utiyama, E. Sumita,
2103
+ Z. Li, and H. Zhao, “Neural machine translation with
2104
+ universal visual representation,” in 8th International
2105
+ Conference on Learning Representations, ICLR 2020, Addis
2106
+ Ababa, Ethiopia, April 26-30, 2020, 2020.
2107
+ [38] X. Li, X. Yin, C. Li, P. Zhang, X. Hu, L. Zhang, L. Wang,
2108
+ H. Hu, L. Dong, F. Wei et al., “Oscar: Object-semantics
2109
+ aligned pre-training for vision-language tasks,” in Eu-
2110
+ ropean Conference on Computer Vision.
2111
+ Springer, 2020,
2112
+ pp. 121–137.
2113
+ [39] A. Frome, G. S. Corrado, J. Shlens, S. Bengio, J. Dean,
2114
+ M. Ranzato, and T. Mikolov, “Devise: A deep visual-
2115
+ semantic embedding model,” in Advances in Neural In-
2116
+ formation Processing Systems 26: 27th Annual Conference
2117
+ on Neural Information Processing Systems 2013. Proceed-
2118
+ ings of a meeting held December 5-8, 2013, Lake Tahoe,
2119
+ Nevada, United States, 2013, pp. 2121–2129.
2120
+ [40] A. Karpathy and F. Li, “Deep visual-semantic align-
2121
+ ments for generating image descriptions,” in IEEE Con-
2122
+ ference on Computer Vision and Pattern Recognition, CVPR
2123
+ 2015, Boston, MA, USA, June 7-12, 2015, 2015, pp. 3128–
2124
+ 3137.
2125
+ [41] Z. Ren, H. Jin, Z. L. Lin, C. Fang, and A. L. Yuille, “Joint
2126
+ image-text representation by gaussian visual-semantic
2127
+ embedding,” in Proceedings of the 2016 ACM Conference
2128
+ on Multimedia Conference, MM 2016, Amsterdam, The
2129
+ Netherlands, October 15-19, 2016, 2016, pp. 207–211.
2130
+ [42] A. Karpathy and L. Fei-Fei, “Deep visual-semantic
2131
+ alignments for generating image descriptions,” IEEE
2132
+ Transactions on Pattern Analysis and Machine Intelligence,
2133
+ vol. 39, no. 4, pp. 664–676, 2017.
2134
+ [43] C. Gao, Q. Zhu, P. Wang, H. Li, Y. Liu, A. Van den
2135
+ Hengel, and Q. Wu, “Structured multimodal attentions
2136
+ for textvqa,” IEEE Transactions on Pattern Analysis and
2137
+ Machine Intelligence, 2021.
2138
+ [44] T. Mukherjee and T. Hospedales, “Gaussian visual-
2139
+ linguistic embedding for zero-shot recognition,” in Pro-
2140
+ ceedings of the 2016 Conference on Empirical Methods in
2141
+ Natural Language Processing, 2016, pp. 912–918.
2142
+ [45] L. Wang, Y. Li, J. Huang, and S. Lazebnik, “Learning
2143
+ two-branch neural networks for image-text matching
2144
+ tasks,” IEEE Transactions on Pattern Analysis and Ma-
2145
+ chine Intelligence, vol. 41, no. 2, pp. 394–407, 2018.
2146
+ [46] M. Engilberge, L. Chevallier, P. P´erez, and M. Cord,
2147
+ “Finding beans in burgers: Deep semantic-visual em-
2148
+ bedding with localization,” in 2018 IEEE Conference on
2149
+ Computer Vision and Pattern Recognition, CVPR 2018, Salt
2150
+ Lake City, UT, USA, June 18-22, 2018, 2018, pp. 3984–
2151
+ 3993.
2152
+ [47] H. Hotelling, “Relations between two sets of variates,”
2153
+ in Breakthroughs in statistics, 1992, pp. 162–190.
2154
+ [48] M. Portaz, H. Randrianarivo, A. Nivaggioli, E. Maudet,
2155
+ C. Servan, and S. Peyronnet, “Image search using mul-
2156
+ tilingual texts: a cross-modal learning approach be-
2157
+ tween image and text maxime portaz qwant research,”
2158
+ arXiv preprint arXiv:1903.11299, 2019.
2159
+ [49] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual
2160
+ learning for image recognition,” in 2016 IEEE Confer-
2161
+ ence on Computer Vision and Pattern Recognition, CVPR
2162
+ 2016, Las Vegas, NV, USA, June 27-30, 2016, 2016, pp.
2163
+ 770–778.
2164
+ [50] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen,
2165
+ O. Levy, M. Lewis, L. Zettlemoyer, and V. Stoyanov,
2166
+ “RoBERTa: A robustly optimized bert pretraining ap-
2167
+ proach,” arXiv preprint arXiv:1907.11692, 2019.
2168
+ [51] K. Chen, R. Wang, M. Utiyama, E. Sumita, and T. Zhao,
2169
+ “Neural machine translation with sentence-level topic
2170
+ context,” IEEE/ACM Transactions on Audio, Speech, and
2171
+ Language Processing, 2019.
2172
+ [52] S. Xie, R. B. Girshick, P. Doll´ar, Z. Tu, and K. He,
2173
+ “Aggregated residual transformations for deep neural
2174
+ networks,” in 2017 IEEE Conference on Computer Vision
2175
+ and Pattern Recognition, CVPR 2017, Honolulu, HI, USA,
2176
+ July 21-26, 2017, 2017, pp. 5987–5995.
2177
+ [53] T. Durand, N. Thome, and M. Cord, “WELDON:
2178
+ weakly supervised learning of deep convolutional neu-
2179
+ ral networks,” in 2016 IEEE Conference on Computer
2180
+ Vision and Pattern Recognition, CVPR 2016, Las Vegas,
2181
+ NV, USA, June 27-30, 2016, 2016, pp. 4743–4752.
2182
+ [54] J. Wang, Y. Song, T. Leung, C. Rosenberg, J. Wang,
2183
+ J. Philbin, B. Chen, and Y. Wu, “Learning fine-grained
2184
+ image similarity with deep ranking,” in 2014 IEEE
2185
+ Conference on Computer Vision and Pattern Recognition,
2186
+ CVPR 2014, Columbus, OH, USA, June 23-28, 2014, 2014,
2187
+ pp. 1386–1393.
2188
+ [55] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet:
2189
+ A unified embedding for face recognition and cluster-
2190
+ ing,” in IEEE Conference on Computer Vision and Pattern
2191
+ Recognition, CVPR 2015, Boston, MA, USA, June 7-12,
2192
+ 2015, 2015, pp. 815–823.
2193
+
2194
+ 17
2195
+ [56] A. Gordo, J. Almazan, J. Revaud, and D. Larlus, “End-
2196
+ to-end learning of deep visual representations for im-
2197
+ age retrieval,” International Journal of Computer Vision,
2198
+ vol. 124, no. 2, pp. 237–254, 2017.
2199
+ [57] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R.
2200
+ Bowman, “GLUE: A multi-task benchmark and analy-
2201
+ sis platform for natural language understanding,” in
2202
+ 7th International Conference on Learning Representations,
2203
+ ICLR 2019, New Orleans, LA, USA, May 6-9, 2019, 2019.
2204
+ [58] S. R. Bowman, G. Angeli, C. Potts, and C. D. Manning,
2205
+ “A large annotated corpus for learning natural lan-
2206
+ guage inference,” in Proceedings of the 2015 Conference on
2207
+ Empirical Methods in Natural Language Processing, 2015,
2208
+ pp. 632–642.
2209
+ [59] N. Nangia, A. Williams, A. Lazaridou, and S. Bowman,
2210
+ “The RepEval 2017 shared task: Multi-genre natural
2211
+ language inference with sentence representations,” in
2212
+ Proceedings of the 2nd Workshop on Evaluating Vector
2213
+ Space Representations for NLP, 2017, pp. 1–10.
2214
+ [60] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang,
2215
+ “SQuAD: 100,000+ questions for machine comprehen-
2216
+ sion of text,” in Proceedings of the 2016 Conference on
2217
+ Empirical Methods in Natural Language Processing, 2016,
2218
+ pp. 2383–2392.
2219
+ [61] L. Bentivogli, P. Clark, I. Dagan, and D. Giampiccolo,
2220
+ “The fifth pascal recognizing textual entailment chal-
2221
+ lenge.” in ACL-PASCAL, 2009.
2222
+ [62] W. B. Dolan and C. Brockett, “Automatically construct-
2223
+ ing a corpus of sentential paraphrases,” in Proceed-
2224
+ ings of the Third International Workshop on Paraphrasing
2225
+ (IWP2005), 2005.
2226
+ [63] Z. Chen, H. Zhang, X. Zhang, and L. Zhao, “Quora
2227
+ question pairs,” 2018.
2228
+ [64] D. Cer, M. Diab, E. Agirre, I. Lopez-Gazpio, and L. Spe-
2229
+ cia, “SemEval-2017 task 1: Semantic textual similarity
2230
+ multilingual and crosslingual focused evaluation,” in
2231
+ Proceedings of the 11th International Workshop on Semantic
2232
+ Evaluation (SemEval-2017), 2017, pp. 1–14.
2233
+ [65] A. Warstadt, A. Singh, and S. R. Bowman, “Neural
2234
+ network acceptability judgments,” Transactions of the
2235
+ Association for Computational Linguistics, vol. 7, pp. 625–
2236
+ 641, 2019.
2237
+ [66] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Man-
2238
+ ning, A. Ng, and C. Potts, “Recursive deep models for
2239
+ semantic compositionality over a sentiment treebank,”
2240
+ in Proceedings of the 2013 Conference on Empirical Methods
2241
+ in Natural Language Processing, 2013, pp. 1631–1642.
2242
+ [67] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona,
2243
+ D. Ramanan, P. Doll´ar, and C. L. Zitnick, “Microsoft
2244
+ coco: Common objects in context,” in European confer-
2245
+ ence on computer vision.
2246
+ Springer, 2014, pp. 740–755.
2247
+ [68] Z. Wu, L. Kong, W. Bi, X. Li, and B. Kao, “Good
2248
+ for misconceived reasons: An empirical revisiting on
2249
+ the need for visual context in multimodal machine
2250
+ translation,” in Proceedings of the 59th Annual Meeting
2251
+ of the Association for Computational Linguistics and the
2252
+ 11th International Joint Conference on Natural Language
2253
+ Processing (Volume 1: Long Papers), 2021, pp. 6153–6166.
2254
+ [69] Y. Yin, F. Meng, J. Su, C. Zhou, Z. Yang, J. Zhou,
2255
+ and J. Luo, “A novel graph-based multi-modal fusion
2256
+ encoder for neural machine translation,” in Proceedings
2257
+ of the 58th Annual Meeting of the Association for Compu-
2258
+ tational Linguistics, 2020, pp. 3025–3035.
2259
+ [70] H. Lin, F. Meng, J. Su, Y. Yin, Z. Yang, Y. Ge, J. Zhou,
2260
+ and J. Luo, “Dynamic context-guided capsule network
2261
+ for multimodal machine translation,” in MM ’20: The
2262
+ 28th ACM International Conference on Multimedia, Virtual
2263
+ Event / Seattle, WA, USA, October 12-16, 2020, 2020, pp.
2264
+ 1320–1329.
2265
+ [71] X. Liu, P. He, W. Chen, and J. Gao, “Multi-task deep
2266
+ neural networks for natural language understanding,”
2267
+ in Proceedings of the 57th Annual Meeting of the Associa-
2268
+ tion for Computational Linguistics, 2019, pp. 4487–4496.
2269
+ [72] H. Tan and M. Bansal, “Vokenization: Improving
2270
+ language understanding via contextualized, visually-
2271
+ grounded supervision,” in Proceedings of the 2020 Con-
2272
+ ference on Empirical Methods in Natural Language Process-
2273
+ ing (EMNLP), 2020, pp. 2066–2080.
2274
+ [73] R. Hu and A. Singh, “Unit: Multimodal multitask learn-
2275
+ ing with a unified transformer,” in Proceedings of the
2276
+ IEEE/CVF International Conference on Computer Vision,
2277
+ 2021, pp. 1439–1449.
2278
+ [74] D. P. Kingma and J. Ba, “Adam: A method for stochastic
2279
+ optimization,” in 3rd International Conference on Learn-
2280
+ ing Representations, ICLR 2015, San Diego, CA, USA, May
2281
+ 7-9, 2015, Conference Track Proceedings, 2015.
2282
+ [75] M. Ott, S. Edunov, A. Baevski, A. Fan, S. Gross, N. Ng,
2283
+ D. Grangier, and M. Auli, “fairseq: A fast, extensible
2284
+ toolkit for sequence modeling,” in Proceedings of the
2285
+ 2019 Conference of the North American Chapter of the As-
2286
+ sociation for Computational Linguistics (Demonstrations),
2287
+ 2019, pp. 48–53.
2288
+ [76] P. Koehn, “Statistical significance tests for machine
2289
+ translation evaluation,” in Proceedings of the 2004 confer-
2290
+ ence on empirical methods in natural language processing,
2291
+ 2004, pp. 388–395.
2292
+ [77] J. Zhang, M. Utiyama, E. Sumita, G. Neubig, and
2293
+ S. Nakamura, “NICT-NAIST system for WMT17 mul-
2294
+ timodal translation task,” in Proceedings of the Second
2295
+ Conference on Machine Translation, 2017, pp. 477–482.
2296
+ [78] S.-A. Gr¨onroos, B. Huet, M. Kurimo, J. Laakso-
2297
+ nen, B. Merialdo, P. Pham, M. Sj¨oberg, U. Suluba-
2298
+ cak, J. Tiedemann, R. Troncy, and R. V´azquez, “The
2299
+ MeMAD submission to the WMT18 multimodal trans-
2300
+ lation task,” in Proceedings of the Third Conference on
2301
+ Machine Translation: Shared Task Papers, 2018, pp. 603–
2302
+ 611.
2303
+ [79] O. Caglayan, P. Madhyastha, L. Specia, and L. Barrault,
2304
+ “Probing the need for visual context in multimodal
2305
+ machine translation,” in Proceedings of the 2019 Confer-
2306
+ ence of the North American Chapter of the Association for
2307
+ Computational Linguistics: Human Language Technologies,
2308
+ Volume 1 (Long and Short Papers), 2019, pp. 4159–4170.
2309
+ [80] W. M. Brown, T. D. Gedeon, and D. I. Groves, “Use
2310
+ of noise to augment training data: a neural network
2311
+ method of mineral–potential mapping in regions of
2312
+ limited known deposit examples,” Natural Resources
2313
+ Research, vol. 12, no. 2, pp. 141–152, 2003.
2314
+ [81] H. Noh, T. You, J. Mun, and B. Han, “Regularizing
2315
+ deep neural networks by noise: Its interpretation and
2316
+ optimization,” in Advances in Neural Information Process-
2317
+ ing Systems 30: Annual Conference on Neural Information
2318
+
2319
+ 18
2320
+ Processing Systems 2017, December 4-9, 2017, Long Beach,
2321
+ CA, USA, 2017, pp. 5109–5118.
2322
+ [82] J. Brownlee, “Train neural networks with noise to re-
2323
+ duce overfitting,” Machine Learning Mastery, 2019.
2324
+ [83] Z. S. Harris, “Distributional structure,” Word, vol. 10,
2325
+ no. 2-3, pp. 146–162, 1954.
2326
+ [84] M. Neishi, J. Sakuma, S. Tohda, S. Ishiwatari, N. Yoshi-
2327
+ naga, and M. Toyoda, “A bag of useful tricks for
2328
+ practical neural machine translation: Embedding layer
2329
+ initialization and large batch size,” in Proceedings of the
2330
+ 4th Workshop on Asian Translation (WAT2017), 2017, pp.
2331
+ 99–109.
2332
+ [85] T. Kocmi and O. Bojar, “An exploration of word em-
2333
+ bedding initialization in deep-learning tasks,” in Pro-
2334
+ ceedings of the 14th International Conference on Natural
2335
+ Language Processing (ICON-2017), 2017, pp. 56–64.
2336
+ [86] S. Abnar and W. Zuidema, “Quantifying attention flow
2337
+ in transformers,” in Proceedings of the 58th Annual Meet-
2338
+ ing of the Association for Computational Linguistics, 2020,
2339
+ pp. 4190–4197.
2340
+ [87] A. Conneau, G. Kruszewski, G. Lample, L. Barrault,
2341
+ and M. Baroni, “What you can cram into a single
2342
+ $&!#* vector: Probing sentence embeddings for linguis-
2343
+ tic properties,” in Proceedings of the 56th Annual Meeting
2344
+ of the Association for Computational Linguistics (Volume 1:
2345
+ Long Papers), 2018, pp. 2126–2136.
2346
+ [88] S. Parida, O. Bojar, and S. R. Dash, “Hindi visual
2347
+ genome: A dataset for multimodal english-to-hindi
2348
+ machine translation,” arXiv preprint arXiv:1907.08948,
2349
+ 2019.
2350
+ [89] R. Krishna, Y. Zhu, O. Groth, J. Johnson, K. Hata,
2351
+ J. Kravitz, S. Chen, Y. Kalantidis, L.-J. Li, D. A. Shamma
2352
+ et al., “Visual genome: Connecting language and vision
2353
+ using crowdsourced dense image annotations,” Inter-
2354
+ national Journal of Computer Vision, vol. 123, no. 1, pp.
2355
+ 32–73, 2017.
2356
+ [90] Z. Zhang, Y. Wu, H. Zhao, Z. Li, S. Zhang, X. Zhou,
2357
+ and X. Zhou, “Semantics-aware BERT for language
2358
+ understanding,” in The Thirty-Fourth AAAI Conference
2359
+ on Artificial Intelligence, AAAI 2020, The Thirty-Second
2360
+ Innovative Applications of Artificial Intelligence Conference,
2361
+ IAAI 2020, The Tenth AAAI Symposium on Educational
2362
+ Advances in Artificial Intelligence, EAAI 2020, New York,
2363
+ NY, USA, February 7-12, 2020, 2020, pp. 9628–9635.
2364
+ [91] K. Clark, M. Luong, Q. V. Le, and C. D. Manning,
2365
+ “ELECTRA: pre-training text encoders as discrimina-
2366
+ tors rather than generators,” in 8th International Confer-
2367
+ ence on Learning Representations, ICLR 2020, Addis Ababa,
2368
+ Ethiopia, April 26-30, 2020, 2020.
2369
+ Zhuosheng Zhang received his Bachelor’s de-
2370
+ gree in internet of things from Wuhan University
2371
+ in 2016, his M.S. degree in computer science
2372
+ from Shanghai Jiao Tong University in 2020. He
2373
+ is working towards his Ph.D. degree in computer
2374
+ science with the Center for Brain-like Computing
2375
+ and Machine Intelligence of Shanghai Jiao Tong
2376
+ University. He was an internship research fellow
2377
+ at NICT from 2019-2020. His research interests
2378
+ include natural language processing, machine
2379
+ reading comprehension, dialogue systems, and
2380
+ machine translation.
2381
+ Kehai Chen is an Assistant Professor at Harbin
2382
+ Institute of Technology (Shenzhen) since 2022.
2383
+ Before that, he was a researcher at Japan Na-
2384
+ tional Institute of Information and Communica-
2385
+ tions Technology (NICT) from 2018 to 2021. He
2386
+ received the Ph.D. degree in computer science
2387
+ from Harbin Institute of Technology in 2018. His
2388
+ research interests include machine translation
2389
+ and natural language processing.
2390
+ Rui Wang is an associate professor at Shanghai
2391
+ Jiao Tong University since 2021. Before that, he
2392
+ was a researcher (tenured in 2020) at Japan
2393
+ National Institute of Information and Communi-
2394
+ cations Technology (NICT) from 2016 to 2020.
2395
+ He received his B.S. degree from Harbin Institute
2396
+ of Technology in 2009, his M.S. degree from the
2397
+ Chinese Academy of Sciences in 2012, and his
2398
+ Ph.D. degree from Shanghai Jiao Tong Univer-
2399
+ sity in 2016, all of which are in computer science.
2400
+ He was a joint Ph.D. at Centre Nationnal de
2401
+ la Recherche Scientifique, France in 2014. His research interests are
2402
+ machine translation and natural language processing.
2403
+ Masao Utiyama is a research manager of the
2404
+ National Institute of Information and Communi-
2405
+ cations Technology, Japan. He completed his
2406
+ doctoral dissertation at the University of Tsukuba
2407
+ in 1997. His main research field is machine
2408
+ translation.
2409
+ Eiichiro Sumita received the Bachelor and Mas-
2410
+ ter degree in computer science from The Univer-
2411
+ sity of Electro-Communications, Japan in 1980
2412
+ and 1982 and the Ph.D degree in Engineering
2413
+ from Kyoto University, Japan in 1999. He is cur-
2414
+ rently Director of Multilingual Translation Labora-
2415
+ tory of National Institute of Information and Com-
2416
+ munication Technology from 2006. He worked
2417
+ at Advanced Telecomunications Research Insti-
2418
+ tute International from 1992 to 2009 and IBM
2419
+ Research-Tokyo from 1980 to 1991. His re-
2420
+ search interests include machine translation and e-Learning.
2421
+ Zuchao Li received the B.S. degree from Wuhan
2422
+ University, Wuhan, China, in 2017. Since 2017,
2423
+ he has been a Ph.D. student with the Center for
2424
+ Brain-like Computing and Machine Intelligence
2425
+ of Shanghai Jiao Tong University, Shanghai,
2426
+ China. His research focuses on natural language
2427
+ processing, especially syntactic and semantic
2428
+ parsing.
2429
+ Hai Zhao received the BEng degree in sensor
2430
+ and instrument engineering, and the MPhil de-
2431
+ gree in control theory and engineering from Yan-
2432
+ shan University in 1999 and 2000, respectively,
2433
+ and the PhD degree in computer science from
2434
+ Shanghai Jiao Tong University, China in 2005.
2435
+ He is currently a full professor at department
2436
+ of computer science and engineering, Shanghai
2437
+ Jiao Tong University after he joined the university
2438
+ in 2009. He was a research fellow at the City
2439
+ University of Hong Kong from 2006 to 2009, a
2440
+ visiting scholar in Microsoft Research Asia in 2011, a visiting expert in
2441
+ NICT, Japan in 2012. He is an ACM professional member, and served as
2442
+ area co-chair in ACL 2017 on Tagging, Chunking, Syntax and Parsing,
2443
+ (senior) area chairs in ACL 2018, 2019 on Phonology, Morphology and
2444
+ Word Segmentation. His research interests include natural language
2445
+ processing and related machine learning, data mining and artificial
2446
+ intelligence.
2447
+
E9E1T4oBgHgl3EQfqgWQ/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
ENAyT4oBgHgl3EQfevhN/content/2301.00326v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0605bac8157435b70737daf2f9b949d9348e5ad5d5c7b6ba1583def545a6e4c1
3
+ size 3485787
F9AyT4oBgHgl3EQfrPnq/content/2301.00559v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:40889ba13b4174a9d1fea5418e7dfb522c92038ed9f27ade1d13ee711dc91296
3
+ size 1010136
F9AyT4oBgHgl3EQfrPnq/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ffc978a0fbda5cc71bf4e051ed8c3e0f89bd5b308ad89a6b88189a3ba7a0bc0b
3
+ size 3342381
FdAyT4oBgHgl3EQf4_rs/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:de294585978958b92b11ef359e12050eef43e66576fb1c3404a4fde9b20e6760
3
+ size 1572909
FdE0T4oBgHgl3EQfhAGj/content/2301.02426v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:333ec03a0f1e51419153a0c6bd3a7e7e81e296296e5741e9f194d14033cfa41f
3
+ size 239342
FdE0T4oBgHgl3EQfhAGj/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:07172dcd17ee8e0bc5c95a61ee0598f2850d5a24c691ab362ef72772657576d6
3
+ size 2687021
FdE0T4oBgHgl3EQfhAGj/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6612925d362305fe0fb440905740dc8482a27744e609a2f2a68b49b483a67963
3
+ size 105816
JdAzT4oBgHgl3EQfVPzH/content/tmp_files/2301.01282v1.pdf.txt ADDED
@@ -0,0 +1,388 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.01282v1 [cs.CR] 31 Dec 2022
2
+ RSA+: AN ALGORITHM AT LEAST AS SECURE AS RSA
3
+ KRISHNAN SHANKAR
4
+ Introduction
5
+ The RSA algorithm has been around for nearly five decades ([RSA78]) and remains one
6
+ of the most studied public key cryptosystems. Many attempts have been made to break
7
+ it or improve it and questions remain about the equivalence of the strength of its security
8
+ to well known hard problems in computational number theory. A basic question which has
9
+ received much attention (cf. [AM09], [BV98]1) is: Is breaking RSA equivalent to factoring?
10
+ In this note we propose a modified version which we call RSA+ which is at least as secure as
11
+ RSA and show that breaking RSA+ is probably computationally equivalent to factoring n,
12
+ the public modulus. The motivation came from wanting to obscure the encryption exponent
13
+ in RSA.
14
+ 1. The RSA+ Algorithm
15
+ RSA: Bob wishes to send a message m to Alice whose RSA public key is (n, e) and private
16
+ key is (p, q, d) where n = pq and de ≡ 1 (mod ϕ(n)).
17
+ In the usual implementation of
18
+ RSA Bob computes c ≡ me (mod n) and sends it to Alice. Decryption is straightforward:
19
+ cd ≡ (md)e ≡ mde ≡ m (mod n) since de ≡ 1 (mod ϕ(n)).
20
+ RSA+: We start with the same setup as above namely that Bob has a message m to
21
+ transmit to Alice whose RSA public key is (n, e).
22
+ Encryption:
23
+ 1. Bob finds a random number x (mod n) and computes y ≡ x2 (mod n).
24
+ 2. Bob computes c ≡ mx (mod n) and r ≡ ye (mod n).
25
+ 3. Bob transmits the pair (c, r) to Alice.
26
+ Decryption:
27
+ 1. Alice computes y ≡ (ye)d (mod n). This step is similar to decrypting in RSA.
28
+ 2. Alice then writes down the equation y ≡ x2 (mod n). She uses her knowledge of
29
+ the factorization of n = pq to compute all four square roots of y (see Section 4).
30
+ 3. For each square root, say {x1, x2, x3, x4}, Alice sequentially computes the inverse
31
+ ui ≡ x−1
32
+ i
33
+ (mod ϕ(n)) and evaluates cui (mod n) until she sees an intelligible mes-
34
+ sage m (but see 1.2 below).
35
+ Theorem A. Breaking RSA+ is probably computationally equivalent to factoring n = pq.
36
+ 1In [BV98] there seems to be an issue in the proof of Lemma 3.2, where it is assumed that a cyclotomic
37
+ polynomial Φd(x) is irreducible over Fp, which is not always true.
38
+
39
+ 2
40
+ KRISHNAN SHANKAR
41
+ 1.1.
42
+ Similar to RSA care must be taken in choosing the random integer x in Step 1 of
43
+ encryption. If Bob chooses x < √n, then y = x2 as integers and it is easy to find the square
44
+ root if one knows y. In this case the system is as secure as RSA since y is RSA-encrypted.
45
+ It is also important that gcd(x, ϕ(n)) = 1 since otherwise Alice cannot decrypt the message
46
+ even if she can find x (Euler’s theorem). So, Bob could choose x to be a prime of at least
47
+ 150 digits assuming n is around 300 digits.
48
+ 1.2.
49
+ In Step 3 of decryption as stated Alice must compute all four square roots and then
50
+ try to uncover an intelligible message by sequentially decrypting each mxi (mod n) which is
51
+ onerous in practice. We describe a way around this problem as long as both primes dividing
52
+ n are congruent to 3 mod 4 (this is the workaround suggested by Blum and Williams).
53
+ Consider the setup with y ≡ x2 (mod n), where Bob chooses x, y. Then y has four square
54
+ roots mod n which come from combining the two square roots each mod p and mod q using
55
+ the Chinese Remainder Theorem (CRT). Suppose both primes p, q in the factorization of n
56
+ are chosen (by Alice) to be congruent to 3 mod 4. Now Bob chooses x, y such that x itself
57
+ is a square mod n. Then solving the equation X2 ≡ y (mod n) has solutions (say) X ≡ ±a
58
+ (mod p) and X ≡ ±b (mod q). These are combined using CRT to yield X ≡ xi (mod n),
59
+ for i = 1, 2, 3, 4 and let us suppose x = x1. Note that p, q ≡ 3 (mod 4) so
60
+
61
+ −1
62
+ p
63
+
64
+ = −1 and
65
+
66
+ −1
67
+ q
68
+
69
+ = −1 i.e., −1 is not a quadratic residue mod p nor mod q. This implies that exactly
70
+ one of the roots ± (mod p) and one of the roots ±b (mod q) is a quadratic residue (mod the
71
+ respective primes) and the other is not. Since Bob picked x to be a square mod n, it follows
72
+ that the congruences that yielded x1 must also be squares i.e., suppose X ≡ a (mod p)
73
+ and X ≡ b (mod q) yields X ≡ x1 (mod n), then it follows that
74
+
75
+ a
76
+ p
77
+
78
+ = +1,
79
+
80
+ b
81
+ q
82
+
83
+ = +1 and
84
+
85
+ −a
86
+ p
87
+
88
+ = −1,
89
+
90
+ −b
91
+ q
92
+
93
+ = −1. From this it follows that none of x2, x3, x4 is a square mod n. We
94
+ summarize this via the following
95
+ Proposition 1.1. Suppose n = pq, where p and q are congruent to 3 mod 4. Given x, y
96
+ such that y ≡ x2 (mod n), gcd(x, n) = 1. Then y has four square roots mod n exactly one
97
+ of which is a square mod n.
98
+ This suggests a way to pinpoint x without having to search all square roots, namely, Bob
99
+ picks x to be a square mod n and then computes y ≡ x2 (mod n). By the above Proposition
100
+ this will be the only square root of y mod n. It also follows from the discussion above that:
101
+ (i) If one of the primes is congruent to 1 mod 4, then the number of square roots that are
102
+ themselves perfect squares is either 0 or 2; (ii) If both primes are congruent to 1 mod 4,
103
+ then the number of square roots that are themselves perfect squares is 0 or 4.
104
+ 1.3.
105
+ Decryption is more involved if at least one of the primes dividing n is congruent to 1
106
+ (mod 8). Nevertheless, the overall algorithm’s security is tied to the difficulty of factoring
107
+ and as such lies in class NP, although it is unknown whether it is in P.
108
+
109
+ RSA+: AN ALGORITHM AT LEAST AS SECURE AS RSA
110
+ 3
111
+ 2. RSA+ is at least as secure as RSA
112
+ In this section we show that RSA+ is at least as secure as RSA. We will show this via
113
+ the use of a so-called black box i.e., an unknown machine or method or algorithm that
114
+ takes in a specified input and returns an output that is otherwise currently computationally
115
+ intractable.
116
+ Theorem B. RSA+ is at least as secure as RSA.
117
+ Proof. Suppose we have a black box that is able to decrypt RSA+ messages i.e., this black
118
+ box takes as input (n, e, mx (mod n), ye (mod n)) and returns m. Here y ≡ x2 (mod n).
119
+ Given an RSA ciphertext c ≡ me (mod n) one would then input (n, e, c, (e2)e (mod n))
120
+ which should generate the output of m.
121
+ This shows that any system that can decrypt
122
+ RSA+ ciphertexts can also decrypt RSA ciphertexts.
123
+ Conversely, suppose there is a black box that is able to decrypt RSA messages i.e., this
124
+ black box takes as input (n, e, c ≡ me (mod n)) and returns m. Given an RSA+ ciphertext
125
+ (mx (mod n), ye (mod n)) one can only decrypt y. In order to get to m one would need to
126
+ know the exponent x for input into this black box, i.e., one would now need x in order to
127
+ input (n, x, mx (mod n)) into the black box. This means computing a square root of y. It
128
+ is not known whether this black box which can decrypt RSA ciphertexts can also compute
129
+ square roots (but see Theorem C).
130
+
131
+ 3. Computational Black Boxes
132
+ In this section we explore further computational black boxes which may circumvent known
133
+ methods like factoring. Suppose one is able to decrypt y by ascertaining d. One needs to
134
+ compute the particular square root x used to encrypt m. Is it possible to compute just one
135
+ (pair of) square root(s) without knowledge of the factors? If there exists a computational
136
+ black box that can produce one square root when the input is (y, n), then there are two
137
+ possibilities.
138
+ 3.1.
139
+ Suppose the black box spits out a random square root mod n for the equation y ≡ x2
140
+ mod n. In this case one simply inputs the same pair (y, n) repeatedly until we get two
141
+ distinct square roots that do not add up to zero mod n. By Lemma 4.1 this will yield a
142
+ factorization of n.
143
+ 3.2.
144
+ Suppose the black box spits out a random square root mod n but always the same
145
+ square root for the equation y ≡ x2 mod n i.e., for a given input (y, n), the output is
146
+ always the same x rather than one of the four distinct square roots at random. In this case
147
+ we start with some known x and square it to obtain y ≡ x2 (mod n). Now input (y, n)
148
+ into the black box; if the output is ±x, then discard and try again with a different x. If
149
+ the output, say x′ is different from ±x (mod n), then by Lemma 4.1 we can factor n by
150
+ computing gcd(x − x′, n).
151
+
152
+ 4
153
+ KRISHNAN SHANKAR
154
+ 3.3.
155
+ If the adversary has instead a black box that computes d given the input (n, e),
156
+ then ϕ(n) | (de − 1). Therefore, for any x we have xde−1 ≡ 1 (mod ϕ(n)). Since ϕ(n) =
157
+ (p−1)(q−1) is divisible by 4, we may compute y ≡ x(de−1)/2 (mod n). Then, by construction
158
+ y2 ≡ 1 (mod n) which means n | (y − 1)(y + 1). Then either y ≡ ±1 (mod n) or by Lemma
159
+ 2.1 gcd(y ± 1, n) yields a factor of n. Again, we can repeat this for several different x as
160
+ needed to factor n with high probability.
161
+ Whether RSA+ is computationally equivalent to factoring depends on the following
162
+ thought experiment. Suppose we have a black box like the one in the previous Section
163
+ which takes as input (n, e, mx (mod n), ye (mod n)), where y ≡ x2 (mod n) and produces
164
+ as output m. Does this allow us to factor n?
165
+ Theorem C. A black box with input (n, e, mx (mod n), ye (mod n)) and output m can
166
+ probably factor n.
167
+ Proof. Start with a known pair (x, y), where y ≡ x2 (mod n). Then note that:
168
+ yx ≡ (x2)x ≡ x2x ≡ (xx)2
169
+ (mod n)
170
+ xy ≡ xx2 ≡ xx·x ≡ (xx)x
171
+ (mod n)
172
+ If we were to input (n, e, xy (mod n), ye (mod n)) into the black box, then this is the same
173
+ as the input (n, e, (xx)x (mod n), ye (mod n)). The output should therefore be xx (mod n)
174
+ which is a square root of yx (mod n). From 3.1 and 3.2 above, repeating this procedure for
175
+ several different x should yield a factorization of n.
176
+
177
+ 3.4. Remark. The above proof carries over for RSA as well i.e., if we had a black box for
178
+ RSA, then the same argument above yields a procedure to compute square roots mod n.
179
+ 3.5. Remark. The only caveat in Theorem C above is the nature of the black box. Suppose
180
+ the black box were to always return the distinguished square root xx (mod n) for the square
181
+ yx ≡ (xx)2 (mod n), then this will not allow us to factor n.
182
+ 4. Computing square roots and factoring
183
+ In the absence of a black box an adversary Eve would need y and then a square root
184
+ of y to attempt to decrypt m. Computing y ≡ (ye)d mod n without (p, q, d) is as hard
185
+ as breaking RSA. Even if Eve can deduce d without factoring n, she would next have to
186
+ solve the equation y ≡ x2 (mod n). See Section 3 for a discussion on black boxes that may
187
+ compute square roots.
188
+ Lemma 4.1. Given n = pq if we can solve the (generic) equation y ≡ x2 (mod n) and find
189
+ all four roots ±a, ±b mod n, then we can factor n.
190
+ Conversely, if one can solve the equation y ≡ x2 (mod p) and y ≡ x2 (mod q), then one
191
+ can combine the roots using the Chinese Remainder Theorem to produce (in general) four
192
+ square roots mod pq.
193
+
194
+ RSA+: AN ALGORITHM AT LEAST AS SECURE AS RSA
195
+ 5
196
+ Proof. Since a ̸≡ ±b (mod n) and a2 ≡ b2 mod n implies that n | (a − b)(a + b). Thus,
197
+ computing gcd(a ± b, n) yields a non-trivial factor of n.
198
+
199
+ Lemma 4.2. If p ≡ 3 (mod 4) is prime, then one can solve y ≡ x2 (mod p) by computing
200
+ x ≡ y(p+1)/4 (mod p). Then (±x)2 ≡ y (mod p).
201
+ Lemma 4.3. If p = 8k + 5 is prime, i.e., p ≡ 5 (mod 8), then one can solve y ≡ x2
202
+ (mod p).
203
+ Proof. Since y is a square mod p, we have that y(p−1)/2 ≡ 1 (mod p). Since (p − 1)/4 is an
204
+ integer we can take a square root and we obtain that y(p−1)/4 ≡ ±1 (mod p).
205
+ Case 1: If y(p−1)/4 ≡ 1 (mod p) and p = 8k + 5, then x ≡ yk+1 ≡ y(p+3)/8 (mod p) is a
206
+ desired square root. This is because
207
+ x2 ≡ y(p+3)/4 ≡ y(p−1)/4 · y ≡ y
208
+ (mod p)
209
+ Case 2: If y(p−1)/4 ≡ −1 (mod p), then x ≡ 22k+1yk+1 ≡ 2(p−1)/4y(p+3)/8 (mod p) is a
210
+ desired square root. This is because
211
+ x2 ≡ 2(p−1)/2y(p+3)/4 ≡ (−1) · y(p−1)/4 · y ≡ (−1)(−1)y ≡ y
212
+ (mod p)
213
+ Note that 2(p−1)/2 ≡ −1 (mod p) since p ≡ 5 (mod 8).
214
+
215
+ Lemma 4.4. If p ≡ 1 (mod 8) is prime, then there exists an algorithm terminating in at
216
+ most r steps to compute y ≡ x2 (mod p), where p − 1 = 2rs.
217
+ Proof. This is the most involved case of the Tonelli–Shanks algorithm, which covers all the
218
+ above Lemmas; see [Sh73], [Ton1891]. See [Tur94] for a nice exposition.
219
+
220
+ Now we can prove Theorem A.
221
+ Proof of Theorem A. If an adversary Eve can factor n, then she can certainly decrypt the
222
+ message m: compute ϕ(n) = (p−1)(q −1), find d using the Extended Euclidean Algorithm
223
+ and use this to find y ≡ (ye)d mod n. Now using Lemmas 4.2, 4.3, 4.4, depending on
224
+ whether p, q are congruent to 1 (mod 4) or 3 (mod 4), Eve can find the square roots of y
225
+ mod p and mod q. Then she can combine them to obtain all square roots mod n using the
226
+ Chinese Remainder Theorem. Finally Eve solves for x−1 (mod ϕ(n)) to decrypt m.
227
+ If Eve possesses a black box as described in Theorem C, then Eve can probably factor n
228
+ (with the caveat introduced in Remark 3.5). If Eve has instead a black box or method to
229
+ find square roots mod n, then by Lemma 4.1 she can factor n.
230
+
231
+ 5. Similar cryptosystems
232
+ A search of the literature by the author yielded similar cryptosystems and these are
233
+ described briefly here. Any other omissions are entirely accidental. To the author’s knowl-
234
+ edge this particular protocol has not been described before. For each protocol below the
235
+ description is brief and only intended to serve as a reference or comparison.
236
+
237
+ 6
238
+ KRISHNAN SHANKAR
239
+ 5.1. The Rabin Cryptosystem. This cryptosystem ([Rab79]) is the closest in spirit to
240
+ the method proposed here. Its security is tied to square roots and factoring. Alice finds
241
+ primes p, q both congruent to 3 mod 4 and computes n = pq and exponents e, d with de ≡ 1
242
+ (mod ϕ(n)) same as in RSA.
243
+ Bob encrypts his message m as c ≡ m2 (mod n) and transmits c.
244
+ To decrypt Alice
245
+ computes the square root mod p and mod q by the method outlined in Lemma 4.2. Then
246
+ she combines them using the Chinese Remainder Theorem to obtain all four square roots
247
+ and then examines which of these is intelligible. This latter disambiguation problem was
248
+ addressed by Blum and Williams. The Rabin cryptosystem was shown to be vulnerable
249
+ to a chosen ciphertext attack. This attack can be thwarted by adding redundancies to the
250
+ message.
251
+ 5.2. D–RSA (Dependent RSA). This cryptosystem, described in [Po99], was in re-
252
+ sponse to finding a so-called semantically secure cryptosystem as efficient as RSA. Similar
253
+ to RSA Alice has public key (n, e). Then Bob picks a random k ∈ (Zn)∗ and computes
254
+ A ≡ ke (mod n) and B ≡ m · (k + 1)e (mod n). Decryption is via computing k ≡ (ke)d
255
+ (mod n) and then B · (k + 1)−e (mod n). This is also similar in spirit to what we have
256
+ described in that Bob picks a random number during the encryption process. Among the
257
+ theorems in the paper it is shown that a slight modification of this protocol is semantically
258
+ secure against adaptive chosen ciphertext attacks relative to the Decision D–RSA Problem
259
+ in the random oracle model.
260
+ 5.3. RSA–CRT. This is a variant of RSA ([Vig08]) in which the public key is the same,
261
+ namely (n, e), but the private key is split up as dp ≡ d (mod p − 1), dq ≡ d (mod q − 1),
262
+ qinv ≡ q−1 (mod p). The encrypted message c ≡ me (mod n) is then decrypted as m1 ≡
263
+ mdp (mod p), m2 ≡ mdq (mod q), h ≡ qinv(m1 − m2) (mod p) and finally, m = m2 + hq.
264
+ This variant runs faster than RSA in practice but it was found in 1996 to be vulnerable to
265
+ a differential fault attack by the Bellcore Institute.
266
+ 5.4. Multi-prime RSA. In this variant more than two primes are used in the public
267
+ modulus. The system yields some advantages in efficiency but may be more vulnerable to
268
+ attacks to factor n.
269
+ 5.5. Multi-power RSA. In this variant one considers public moduli of the form n = prqs,
270
+ where gcd(r, s) = 1 (when s = 1 this is also called Takagi’s variant; [Ta98]). The method
271
+ offers advantages in speedier decryption using Hensel’s lemma and the Chinese Remainder
272
+ theorem mod pr and mod qs.
273
+ 5.6. More RSA variants. Several other variants exist: Dual RSA (using two distinct
274
+ moduli that share the same d, e), Batch RSA (encrypting using two different small expo-
275
+ nents; [F89]) etc. Most RSA variants are vulnerable to small private exponent attacks first
276
+ described by Boneh and Durfee; [BD00]. A fairly exhaustive survey of RSA variants and
277
+ their cryptanalysis can be found in the book by Hinek; [Hin09].
278
+
279
+ RSA+: AN ALGORITHM AT LEAST AS SECURE AS RSA
280
+ 7
281
+ 5.7. Hofheinz–Kiltz–Shoup Cryptosystem. This more recent system is described as a
282
+ so-called Key Exchange Mechanism (KEM); [HKS13]. The precise details would take up a
283
+ few pages so an abbreviated version is outlined here. To set up Alice picks two safe primes
284
+ P, Q i.e., Sophie Germain primes, P = 2p + 1, Q = 2q + 1. Moreover, P, Q ≡ 3 (mod 4).
285
+ Then N = PQ is a so-called Blum integer.
286
+ Let QRN ⊆ (ZN)∗ denote the subset of quadratic residues mod N; this has pq elements.
287
+ A signed quadratic residue is an element of QRN which is normalized to lie in the set,
288
+ [− (N−1)
289
+ 2
290
+ , (N−1)
291
+ 2
292
+ ]; this normalized set is denoted QR+
293
+ N. We also a target collision resistant
294
+ function (also known as universal one way hash function), say T. The desired key to be
295
+ transmitted is K and the notation ℓK denotes the number of bits in K. Finally, for u ∈ ZN
296
+ (thought of as an element in [− (N−1)
297
+ 2
298
+ , (N−1)
299
+ 2
300
+ ]) define the function LBSN(u) = u (mod 2) and
301
+ then use this to define bits of the key using the Blum–Blum–Shub pseudorandom number
302
+ generator ([BBS86]):
303
+ BBSN(u) := (LBSN(u), LBSN(u2), . . . , LBSN(u2ℓK −1)) ∈ {0, 1}ℓK
304
+ Public and Private keys: Given N, Alice picks a signed quadratic residue g ∈ QR+
305
+ N
306
+ and an element α ∈ {1, 2, . . . , (N−1)
307
+ 4
308
+ }. Let X ≡ gα2ℓK +ℓT (mod N). Then the public key is
309
+ (N, g, X) and the private key is (N, g, α).
310
+ Encapsulation: Bob chooses r ∈ {1, 2, . . . , (N−1)
311
+ 4
312
+ } and computes
313
+ R ≡ gr2ℓK +ℓT
314
+ (mod N),
315
+ t = T(R),
316
+ S ≡ (gtX)r
317
+ (mod N)
318
+ The ciphertext is C = (R, S) and the key transmitted is K = BBSN(gr·2ℓT ) ∈ {0, 1}ℓK .
319
+ Decapsulation: The receiver computes t = T(R) and verifies whether
320
+ S2ℓK +ℓT
321
+ ?≡ Rt+α2ℓK +ℓT
322
+ (mod N)
323
+ Assuming this equality is satisfied the receiver (Alice) computes integers a, b, c such that
324
+ 2c = gcd(t, 2ℓK+ℓT ) = at + b2ℓK+ℓT . Alice then derives
325
+ U ≡ (SaRb−aα)2ℓT −c (mod N),
326
+ =⇒
327
+ K = BBSN(U)
328
+ We don’t add any more details; the reason for describing this algorithm is to point out
329
+ that the ciphertext has the same flavor of the algorithm presented in this paper. Note that
330
+ decapsulation here does not require knowing the factorization of N.
331
+ 6. Remarks
332
+ 6.1.
333
+ The method proposed is probably computationally equivalent to factoring.
334
+ To be
335
+ certain one would have to solve the following thought exercise: Suppose there is a black box
336
+ which takes in input (c, r, n, e) in the proposed algorithm and returns m. Can one factor n
337
+ given this information? A similar formulation can be made for RSA itself: Suppose there is
338
+ a black box which takes input (c, n, e) and outputs m; can one factor m? This is similar in
339
+ spirit to a chosen plaintext attack on either system. While Theorem C indicates this may
340
+ be true the caveat of Remark 3.4 suggests uncertainty.
341
+
342
+ 8
343
+ KRISHNAN SHANKAR
344
+ Acknowledgments
345
+ The author is grateful to Kimball Martin, Steven Miller and Larry Washington for their
346
+ careful reading of early drafts and for providing valuable comments that helped greatly
347
+ improve this paper.
348
+ References
349
+ [AM09] D. Aggarwal and U. Maurer, Breaking RSA generically is equivalent to factoring, In A. Joux, editor,
350
+ EUROCRYPT 2009, volume 5479 of LNCS, pages 36–53. Springer, Heidelberg, April 2009.
351
+ [BBS86] L. Blum, M. Blum and M. Shub, A simple unpredictable pseudo-random number generator, SIAM
352
+ J. Comput. 15(2), 364–383 (1986).
353
+ [BD00] D. Boneh and G. Durfee, Cryptanalysis of RSA with Private Key d Less than n0.292, IEEE Trans.
354
+ Information Theory, 46(4):1339–1349, July 2000.
355
+ [BDH-G99] D. Boneh, G. Durfee, and N. Howgrave-Graham, Factoring N = prq for Large r, In M. Weiner,
356
+ ed., Proceedings of Crypto ’99, vol. 1666 of LNCS, pp. 326–337. Springer–Verlag, Aug. 1999.
357
+ [BV98] D. Boneh and R. Venkatesan, Breaking RSA may not be equivalent to factoring, In K. Nyberg, editor,
358
+ EUROCRYPT’98, volume 1403 of LNCS, pages 59–71. Springer, Heidelberg, May / June 1998.
359
+ [F89] A. Fiat., Batch RSA, In G. Brassard, ed., Proceedings of Crypto 1989, vol. 435 of LNCS, pp. 175–185.
360
+ Springer–Verlag, Aug. 1989.
361
+ [Hin09] M. J. Hinek, Cryptanalysis of RSA and its variants, Cryptography & Network Security series,
362
+ Chapman and Hall publishers, 2009.
363
+ [HKS13] D. Hofheinz, E. Kiltz and V. Shoup, Practical Chosen Ciphertext Secure Encryption from Factoring,
364
+ J. of Cryptology (2013) vol. 26, 102–118.
365
+ [Po99] D. Pointcheval, New Public Key Cryptosystems based on the Dependent RSA-Problems, EURO-
366
+ CRYPT ’99, Lecture Notes in Computer Science 1592, 239–254.
367
+ [RSA78] R. Rivest, A. Shamir, L. Adleman, A method for obtaining digital signatures and public-key cryp-
368
+ tosystems, Communications of the Association for Computing Machinery, 21(2):120–126.
369
+ [Rab79] M. Rabin, Digital signatures and public key functions as intractable as factorization., Technical
370
+ Report MIT/LCS/TR-212, Massachusetts Institute of Technology, January 1979.
371
+ [Sh73] D. Shanks, Five Number Theoretic Algorithms, Proceedings of the Second Manitoba Conference on
372
+ Numerical Mathematics. Pp. 51–70, 1973.
373
+ [Ta98] T. Takagi, Fast RSA-type Cryptosystem Modulo pkq, In H. Krawczyk, ed., Proceedings of Crypto
374
+ 1998, vol. 1462 of LNCS, pp. 318–326. Springer-Verlag, Aug. 1998
375
+ [Ton1891] A. Tonelli, Bemerkung ¨uber die Aufl¨osung quadratischer Congruenzen, Nachrichten von der
376
+ K¨oniglichen Gesellschaft der Wissenschaften und der Georg-Augusts-Universit¨at zu G¨ottingen, 344–
377
+ 346, 1891.
378
+ [Tur94] S. Turner, Square roots mod p, The American Mathematical Monthly, May 1994, vol. 101, no. 5,
379
+ 443–449.
380
+ [Vig08] D. Vigilant, RSA with CRT: A New Cost-Effective Solution to Thwart Fault Attacks, In: Cryp-
381
+ tographic Hardware and Embedded Systems – CHES 2008. CHES 2008. Lecture Notes in Computer
382
+ Science, vol 5154.
383
+ [Wie90] M. Wiener, Cryptanalysis of Short RSA Secret Exponents, IEEE Trans. Information Theory
384
+ 36(3):553–558. May 1990.
385
+ Department of Mathematics & Statistics, James Madison University, 60 Bluestone Drive,
386
+ Harrisonburg VA 22807.
387
+ Email address: [email protected]
388
+
JdAzT4oBgHgl3EQfVPzH/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,381 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf,len=380
2
+ page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
3
+ page_content='01282v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
4
+ page_content='CR] 31 Dec 2022 RSA+: AN ALGORITHM AT LEAST AS SECURE AS RSA KRISHNAN SHANKAR Introduction The RSA algorithm has been around for nearly five decades ([RSA78]) and remains one of the most studied public key cryptosystems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
5
+ page_content=' Many attempts have been made to break it or improve it and questions remain about the equivalence of the strength of its security to well known hard problems in computational number theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
6
+ page_content=' A basic question which has received much attention (cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
7
+ page_content=' [AM09], [BV98]1) is: Is breaking RSA equivalent to factoring?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
8
+ page_content=' In this note we propose a modified version which we call RSA+ which is at least as secure as RSA and show that breaking RSA+ is probably computationally equivalent to factoring n, the public modulus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
9
+ page_content=' The motivation came from wanting to obscure the encryption exponent in RSA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
10
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
11
+ page_content=' The RSA+ Algorithm RSA: Bob wishes to send a message m to Alice whose RSA public key is (n, e) and private key is (p, q, d) where n = pq and de ≡ 1 (mod ϕ(n)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
12
+ page_content=' In the usual implementation of RSA Bob computes c ≡ me (mod n) and sends it to Alice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
13
+ page_content=' Decryption is straightforward: cd ≡ (md)e ≡ mde ≡ m (mod n) since de ≡ 1 (mod ϕ(n)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
14
+ page_content=' RSA+: We start with the same setup as above namely that Bob has a message m to transmit to Alice whose RSA public key is (n, e).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
15
+ page_content=' Encryption: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
16
+ page_content=' Bob finds a random number x (mod n) and computes y ≡ x2 (mod n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
17
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
18
+ page_content=' Bob computes c ≡ mx (mod n) and r ≡ ye (mod n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
19
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
20
+ page_content=' Bob transmits the pair (c, r) to Alice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
21
+ page_content=' Decryption: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
22
+ page_content=' Alice computes y ≡ (ye)d (mod n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
23
+ page_content=' This step is similar to decrypting in RSA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
24
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
25
+ page_content=' Alice then writes down the equation y ≡ x2 (mod n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
26
+ page_content=' She uses her knowledge of the factorization of n = pq to compute all four square roots of y (see Section 4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
27
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
28
+ page_content=' For each square root, say {x1, x2, x3, x4}, Alice sequentially computes the inverse ui ≡ x−1 i (mod ϕ(n)) and evaluates cui (mod n) until she sees an intelligible mes- sage m (but see 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
29
+ page_content='2 below).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
30
+ page_content=' Theorem A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
31
+ page_content=' Breaking RSA+ is probably computationally equivalent to factoring n = pq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
32
+ page_content=' 1In [BV98] there seems to be an issue in the proof of Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
33
+ page_content='2, where it is assumed that a cyclotomic polynomial Φd(x) is irreducible over Fp, which is not always true.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
34
+ page_content=' 2 KRISHNAN SHANKAR 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
35
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
36
+ page_content=' Similar to RSA care must be taken in choosing the random integer x in Step 1 of encryption.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
37
+ page_content=' If Bob chooses x < √n, then y = x2 as integers and it is easy to find the square root if one knows y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
38
+ page_content=' In this case the system is as secure as RSA since y is RSA-encrypted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
39
+ page_content=' It is also important that gcd(x, ϕ(n)) = 1 since otherwise Alice cannot decrypt the message even if she can find x (Euler’s theorem).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
40
+ page_content=' So, Bob could choose x to be a prime of at least 150 digits assuming n is around 300 digits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
41
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
42
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
43
+ page_content=' In Step 3 of decryption as stated Alice must compute all four square roots and then try to uncover an intelligible message by sequentially decrypting each mxi (mod n) which is onerous in practice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
44
+ page_content=' We describe a way around this problem as long as both primes dividing n are congruent to 3 mod 4 (this is the workaround suggested by Blum and Williams).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
45
+ page_content=' Consider the setup with y ≡ x2 (mod n), where Bob chooses x, y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
46
+ page_content=' Then y has four square roots mod n which come from combining the two square roots each mod p and mod q using the Chinese Remainder Theorem (CRT).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
47
+ page_content=' Suppose both primes p, q in the factorization of n are chosen (by Alice) to be congruent to 3 mod 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
48
+ page_content=' Now Bob chooses x, y such that x itself is a square mod n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
49
+ page_content=' Then solving the equation X2 ≡ y (mod n) has solutions (say) X ≡ ±a (mod p) and X ≡ ±b (mod q).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
50
+ page_content=' These are combined using CRT to yield X ≡ xi (mod n), for i = 1, 2, 3, 4 and let us suppose x = x1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
51
+ page_content=' Note that p, q ≡ 3 (mod 4) so � −1 p � = −1 and � −1 q � = −1 i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
52
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
53
+ page_content=', −1 is not a quadratic residue mod p nor mod q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
54
+ page_content=' This implies that exactly one of the roots ± (mod p) and one of the roots ±b (mod q) is a quadratic residue (mod the respective primes) and the other is not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
55
+ page_content=' Since Bob picked x to be a square mod n, it follows that the congruences that yielded x1 must also be squares i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
56
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
57
+ page_content=', suppose X ≡ a (mod p) and X ≡ b (mod q) yields X ≡ x1 (mod n), then it follows that � a p � = +1, � b q � = +1 and � −a p � = −1, � −b q � = −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
58
+ page_content=' From this it follows that none of x2, x3, x4 is a square mod n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
59
+ page_content=' We summarize this via the following Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
60
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
61
+ page_content=' Suppose n = pq, where p and q are congruent to 3 mod 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
62
+ page_content=' Given x, y such that y ≡ x2 (mod n), gcd(x, n) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
63
+ page_content=' Then y has four square roots mod n exactly one of which is a square mod n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
64
+ page_content=' This suggests a way to pinpoint x without having to search all square roots, namely, Bob picks x to be a square mod n and then computes y ≡ x2 (mod n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
65
+ page_content=' By the above Proposition this will be the only square root of y mod n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
66
+ page_content=' It also follows from the discussion above that: (i) If one of the primes is congruent to 1 mod 4, then the number of square roots that are themselves perfect squares is either 0 or 2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
67
+ page_content=' (ii) If both primes are congruent to 1 mod 4, then the number of square roots that are themselves perfect squares is 0 or 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
68
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
69
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
70
+ page_content=' Decryption is more involved if at least one of the primes dividing n is congruent to 1 (mod 8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
71
+ page_content=' Nevertheless, the overall algorithm’s security is tied to the difficulty of factoring and as such lies in class NP, although it is unknown whether it is in P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
72
+ page_content=' RSA+: AN ALGORITHM AT LEAST AS SECURE AS RSA 3 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
73
+ page_content=' RSA+ is at least as secure as RSA In this section we show that RSA+ is at least as secure as RSA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
74
+ page_content=' We will show this via the use of a so-called black box i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
75
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
76
+ page_content=', an unknown machine or method or algorithm that takes in a specified input and returns an output that is otherwise currently computationally intractable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
77
+ page_content=' Theorem B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
78
+ page_content=' RSA+ is at least as secure as RSA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
79
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
80
+ page_content=' Suppose we have a black box that is able to decrypt RSA+ messages i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
81
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
82
+ page_content=', this black box takes as input (n, e, mx (mod n), ye (mod n)) and returns m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
83
+ page_content=' Here y ≡ x2 (mod n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
84
+ page_content=' Given an RSA ciphertext c ≡ me (mod n) one would then input (n, e, c, (e2)e (mod n)) which should generate the output of m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
85
+ page_content=' This shows that any system that can decrypt RSA+ ciphertexts can also decrypt RSA ciphertexts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
86
+ page_content=' Conversely, suppose there is a black box that is able to decrypt RSA messages i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
87
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
88
+ page_content=', this black box takes as input (n, e, c ≡ me (mod n)) and returns m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
89
+ page_content=' Given an RSA+ ciphertext (mx (mod n), ye (mod n)) one can only decrypt y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
90
+ page_content=' In order to get to m one would need to know the exponent x for input into this black box, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
91
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
92
+ page_content=', one would now need x in order to input (n, x, mx (mod n)) into the black box.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
93
+ page_content=' This means computing a square root of y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
94
+ page_content=' It is not known whether this black box which can decrypt RSA ciphertexts can also compute square roots (but see Theorem C).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
95
+ page_content=' □ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
96
+ page_content=' Computational Black Boxes In this section we explore further computational black boxes which may circumvent known methods like factoring.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
97
+ page_content=' Suppose one is able to decrypt y by ascertaining d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
98
+ page_content=' One needs to compute the particular square root x used to encrypt m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
99
+ page_content=' Is it possible to compute just one (pair of) square root(s) without knowledge of the factors?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
100
+ page_content=' If there exists a computational black box that can produce one square root when the input is (y, n), then there are two possibilities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
101
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
102
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
103
+ page_content=' Suppose the black box spits out a random square root mod n for the equation y ≡ x2 mod n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
104
+ page_content=' In this case one simply inputs the same pair (y, n) repeatedly until we get two distinct square roots that do not add up to zero mod n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
105
+ page_content=' By Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
106
+ page_content='1 this will yield a factorization of n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
107
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
108
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
109
+ page_content=' Suppose the black box spits out a random square root mod n but always the same square root for the equation y ≡ x2 mod n i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
110
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
111
+ page_content=', for a given input (y, n), the output is always the same x rather than one of the four distinct square roots at random.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
112
+ page_content=' In this case we start with some known x and square it to obtain y ≡ x2 (mod n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
113
+ page_content=' Now input (y, n) into the black box;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
114
+ page_content=' if the output is ±x, then discard and try again with a different x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
115
+ page_content=' If the output, say x′ is different from ±x (mod n), then by Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
116
+ page_content='1 we can factor n by computing gcd(x − x′, n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
117
+ page_content=' 4 KRISHNAN SHANKAR 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
118
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
119
+ page_content=' If the adversary has instead a black box that computes d given the input (n, e), then ϕ(n) | (de − 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
120
+ page_content=' Therefore, for any x we have xde−1 ≡ 1 (mod ϕ(n)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
121
+ page_content=' Since ϕ(n) = (p−1)(q−1) is divisible by 4, we may compute y ≡ x(de−1)/2 (mod n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
122
+ page_content=' Then, by construction y2 ≡ 1 (mod n) which means n | (y − 1)(y + 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
123
+ page_content=' Then either y ≡ ±1 (mod n) or by Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
124
+ page_content='1 gcd(y ± 1, n) yields a factor of n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
125
+ page_content=' Again, we can repeat this for several different x as needed to factor n with high probability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
126
+ page_content=' Whether RSA+ is computationally equivalent to factoring depends on the following thought experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
127
+ page_content=' Suppose we have a black box like the one in the previous Section which takes as input (n, e, mx (mod n), ye (mod n)), where y ≡ x2 (mod n) and produces as output m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
128
+ page_content=' Does this allow us to factor n?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
129
+ page_content=' Theorem C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
130
+ page_content=' A black box with input (n, e, mx (mod n), ye (mod n)) and output m can probably factor n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
131
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
132
+ page_content=' Start with a known pair (x, y), where y ≡ x2 (mod n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
133
+ page_content=' Then note that: yx ≡ (x2)x ≡ x2x ≡ (xx)2 (mod n) xy ≡ xx2 ≡ xx·x ≡ (xx)x (mod n) If we were to input (n, e, xy (mod n), ye (mod n)) into the black box, then this is the same as the input (n, e, (xx)x (mod n), ye (mod n)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
134
+ page_content=' The output should therefore be xx (mod n) which is a square root of yx (mod n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
135
+ page_content=' From 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
136
+ page_content='1 and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
137
+ page_content='2 above, repeating this procedure for several different x should yield a factorization of n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
138
+ page_content=' □ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
139
+ page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
140
+ page_content=' Remark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
141
+ page_content=' The above proof carries over for RSA as well i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
142
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
143
+ page_content=', if we had a black box for RSA, then the same argument above yields a procedure to compute square roots mod n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
144
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
145
+ page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
146
+ page_content=' Remark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
147
+ page_content=' The only caveat in Theorem C above is the nature of the black box.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
148
+ page_content=' Suppose the black box were to always return the distinguished square root xx (mod n) for the square yx ≡ (xx)2 (mod n), then this will not allow us to factor n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
149
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
150
+ page_content=' Computing square roots and factoring In the absence of a black box an adversary Eve would need y and then a square root of y to attempt to decrypt m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
151
+ page_content=' Computing y ≡ (ye)d mod n without (p, q, d) is as hard as breaking RSA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
152
+ page_content=' Even if Eve can deduce d without factoring n, she would next have to solve the equation y ≡ x2 (mod n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
153
+ page_content=' See Section 3 for a discussion on black boxes that may compute square roots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
154
+ page_content=' Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
155
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
156
+ page_content=' Given n = pq if we can solve the (generic) equation y ≡ x2 (mod n) and find all four roots ±a, ±b mod n, then we can factor n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
157
+ page_content=' Conversely, if one can solve the equation y ≡ x2 (mod p) and y ≡ x2 (mod q), then one can combine the roots using the Chinese Remainder Theorem to produce (in general) four square roots mod pq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
158
+ page_content=' RSA+: AN ALGORITHM AT LEAST AS SECURE AS RSA 5 Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
159
+ page_content=' Since a ̸≡ ±b (mod n) and a2 ≡ b2 mod n implies that n | (a − b)(a + b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
160
+ page_content=' Thus, computing gcd(a ± b, n) yields a non-trivial factor of n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
161
+ page_content=' □ Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
162
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
163
+ page_content=' If p ≡ 3 (mod 4) is prime, then one can solve y ≡ x2 (mod p) by computing x ≡ y(p+1)/4 (mod p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
164
+ page_content=' Then (±x)2 ≡ y (mod p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
165
+ page_content=' Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
166
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
167
+ page_content=' If p = 8k + 5 is prime, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
168
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
169
+ page_content=', p ≡ 5 (mod 8), then one can solve y ≡ x2 (mod p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
170
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
171
+ page_content=' Since y is a square mod p, we have that y(p−1)/2 ≡ 1 (mod p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
172
+ page_content=' Since (p − 1)/4 is an integer we can take a square root and we obtain that y(p−1)/4 ≡ ±1 (mod p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
173
+ page_content=' Case 1: If y(p−1)/4 ≡ 1 (mod p) and p = 8k + 5, then x ≡ yk+1 ≡ y(p+3)/8 (mod p) is a desired square root.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
174
+ page_content=' This is because x2 ≡ y(p+3)/4 ≡ y(p−1)/4 · y ≡ y (mod p) Case 2: If y(p−1)/4 ≡ −1 (mod p), then x ≡ 22k+1yk+1 ≡ 2(p−1)/4y(p+3)/8 (mod p) is a desired square root.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
175
+ page_content=' This is because x2 ≡ 2(p−1)/2y(p+3)/4 ≡ (−1) · y(p−1)/4 · y ≡ (−1)(−1)y ≡ y (mod p) Note that 2(p−1)/2 ≡ −1 (mod p) since p ≡ 5 (mod 8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
176
+ page_content=' □ Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
177
+ page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
178
+ page_content=' If p ≡ 1 (mod 8) is prime, then there exists an algorithm terminating in at most r steps to compute y ≡ x2 (mod p), where p − 1 = 2rs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
179
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
180
+ page_content=' This is the most involved case of the Tonelli–Shanks algorithm, which covers all the above Lemmas;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
181
+ page_content=' see [Sh73], [Ton1891].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
182
+ page_content=' See [Tur94] for a nice exposition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
183
+ page_content=' □ Now we can prove Theorem A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
184
+ page_content=' Proof of Theorem A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
185
+ page_content=' If an adversary Eve can factor n, then she can certainly decrypt the message m: compute ϕ(n) = (p−1)(q −1), find d using the Extended Euclidean Algorithm and use this to find y ≡ (ye)d mod n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
186
+ page_content=' Now using Lemmas 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
187
+ page_content='2, 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
188
+ page_content='3, 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
189
+ page_content='4, depending on whether p, q are congruent to 1 (mod 4) or 3 (mod 4), Eve can find the square roots of y mod p and mod q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
190
+ page_content=' Then she can combine them to obtain all square roots mod n using the Chinese Remainder Theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
191
+ page_content=' Finally Eve solves for x−1 (mod ϕ(n)) to decrypt m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
192
+ page_content=' If Eve possesses a black box as described in Theorem C, then Eve can probably factor n (with the caveat introduced in Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
193
+ page_content='5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
194
+ page_content=' If Eve has instead a black box or method to find square roots mod n, then by Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
195
+ page_content='1 she can factor n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
196
+ page_content=' □ 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
197
+ page_content=' Similar cryptosystems A search of the literature by the author yielded similar cryptosystems and these are described briefly here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
198
+ page_content=' Any other omissions are entirely accidental.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
199
+ page_content=' To the author’s knowl- edge this particular protocol has not been described before.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
200
+ page_content=' For each protocol below the description is brief and only intended to serve as a reference or comparison.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
201
+ page_content=' 6 KRISHNAN SHANKAR 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
202
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
203
+ page_content=' The Rabin Cryptosystem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
204
+ page_content=' This cryptosystem ([Rab79]) is the closest in spirit to the method proposed here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
205
+ page_content=' Its security is tied to square roots and factoring.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
206
+ page_content=' Alice finds primes p, q both congruent to 3 mod 4 and computes n = pq and exponents e, d with de ≡ 1 (mod ϕ(n)) same as in RSA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
207
+ page_content=' Bob encrypts his message m as c ≡ m2 (mod n) and transmits c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
208
+ page_content=' To decrypt Alice computes the square root mod p and mod q by the method outlined in Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
209
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
210
+ page_content=' Then she combines them using the Chinese Remainder Theorem to obtain all four square roots and then examines which of these is intelligible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
211
+ page_content=' This latter disambiguation problem was addressed by Blum and Williams.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
212
+ page_content=' The Rabin cryptosystem was shown to be vulnerable to a chosen ciphertext attack.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
213
+ page_content=' This attack can be thwarted by adding redundancies to the message.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
214
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
215
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
216
+ page_content=' D–RSA (Dependent RSA).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
217
+ page_content=' This cryptosystem, described in [Po99], was in re- sponse to finding a so-called semantically secure cryptosystem as efficient as RSA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
218
+ page_content=' Similar to RSA Alice has public key (n, e).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
219
+ page_content=' Then Bob picks a random k ∈ (Zn)∗ and computes A ≡ ke (mod n) and B ≡ m · (k + 1)e (mod n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
220
+ page_content=' Decryption is via computing k ≡ (ke)d (mod n) and then B · (k + 1)−e (mod n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
221
+ page_content=' This is also similar in spirit to what we have described in that Bob picks a random number during the encryption process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
222
+ page_content=' Among the theorems in the paper it is shown that a slight modification of this protocol is semantically secure against adaptive chosen ciphertext attacks relative to the Decision D–RSA Problem in the random oracle model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
223
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
224
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
225
+ page_content=' RSA–CRT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
226
+ page_content=' This is a variant of RSA ([Vig08]) in which the public key is the same, namely (n, e), but the private key is split up as dp ≡ d (mod p − 1), dq ≡ d (mod q − 1), qinv ≡ q−1 (mod p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
227
+ page_content=' The encrypted message c ≡ me (mod n) is then decrypted as m1 ≡ mdp (mod p), m2 ≡ mdq (mod q), h ≡ qinv(m1 − m2) (mod p) and finally, m = m2 + hq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
228
+ page_content=' This variant runs faster than RSA in practice but it was found in 1996 to be vulnerable to a differential fault attack by the Bellcore Institute.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
229
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
230
+ page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
231
+ page_content=' Multi-prime RSA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
232
+ page_content=' In this variant more than two primes are used in the public modulus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
233
+ page_content=' The system yields some advantages in efficiency but may be more vulnerable to attacks to factor n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
234
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
235
+ page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
236
+ page_content=' Multi-power RSA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
237
+ page_content=' In this variant one considers public moduli of the form n = prqs, where gcd(r, s) = 1 (when s = 1 this is also called Takagi’s variant;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
238
+ page_content=' [Ta98]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
239
+ page_content=' The method offers advantages in speedier decryption using Hensel’s lemma and the Chinese Remainder theorem mod pr and mod qs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
240
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
241
+ page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
242
+ page_content=' More RSA variants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
243
+ page_content=' Several other variants exist: Dual RSA (using two distinct moduli that share the same d, e), Batch RSA (encrypting using two different small expo- nents;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
244
+ page_content=' [F89]) etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
245
+ page_content=' Most RSA variants are vulnerable to small private exponent attacks first described by Boneh and Durfee;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
246
+ page_content=' [BD00].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
247
+ page_content=' A fairly exhaustive survey of RSA variants and their cryptanalysis can be found in the book by Hinek;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
248
+ page_content=' [Hin09].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
249
+ page_content=' RSA+: AN ALGORITHM AT LEAST AS SECURE AS RSA 7 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
250
+ page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
251
+ page_content=' Hofheinz–Kiltz–Shoup Cryptosystem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
252
+ page_content=' This more recent system is described as a so-called Key Exchange Mechanism (KEM);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
253
+ page_content=' [HKS13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
254
+ page_content=' The precise details would take up a few pages so an abbreviated version is outlined here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
255
+ page_content=' To set up Alice picks two safe primes P, Q i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
256
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
257
+ page_content=', Sophie Germain primes, P = 2p + 1, Q = 2q + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
258
+ page_content=' Moreover, P, Q ≡ 3 (mod 4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
259
+ page_content=' Then N = PQ is a so-called Blum integer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
260
+ page_content=' Let QRN ⊆ (ZN)∗ denote the subset of quadratic residues mod N;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
261
+ page_content=' this has pq elements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
262
+ page_content=' A signed quadratic residue is an element of QRN which is normalized to lie in the set, [− (N−1) 2 , (N−1) 2 ];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
263
+ page_content=' this normalized set is denoted QR+ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
264
+ page_content=' We also a target collision resistant function (also known as universal one way hash function), say T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
265
+ page_content=' The desired key to be transmitted is K and the notation ℓK denotes the number of bits in K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
266
+ page_content=' Finally, for u ∈ ZN (thought of as an element in [− (N−1) 2 , (N−1) 2 ]) define the function LBSN(u) = u (mod 2) and then use this to define bits of the key using the Blum–Blum–Shub pseudorandom number generator ([BBS86]): BBSN(u) := (LBSN(u), LBSN(u2), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
267
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
268
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
269
+ page_content=' , LBSN(u2ℓK −1)) ∈ {0, 1}ℓK Public and Private keys: Given N, Alice picks a signed quadratic residue g ∈ QR+ N and an element α ∈ {1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
270
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
271
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
272
+ page_content=' , (N−1) 4 }.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
273
+ page_content=' Let X ≡ gα2ℓK +ℓT (mod N).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
274
+ page_content=' Then the public key is (N, g, X) and the private key is (N, g, α).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
275
+ page_content=' Encapsulation: Bob chooses r ∈ {1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
276
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
277
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
278
+ page_content=' , (N−1) 4 } and computes R ≡ gr2ℓK +ℓT (mod N), t = T(R), S ≡ (gtX)r (mod N) The ciphertext is C = (R, S) and the key transmitted is K = BBSN(gr·2ℓT ) ∈ {0, 1}ℓK .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
279
+ page_content=' Decapsulation: The receiver computes t = T(R) and verifies whether S2ℓK +ℓT ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
280
+ page_content='≡ Rt+α2ℓK +ℓT (mod N) Assuming this equality is satisfied the receiver (Alice) computes integers a, b, c such that 2c = gcd(t, 2ℓK+ℓT ) = at + b2ℓK+ℓT .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
281
+ page_content=' Alice then derives U ≡ (SaRb−aα)2ℓT −c (mod N), =⇒ K = BBSN(U) We don’t add any more details;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
282
+ page_content=' the reason for describing this algorithm is to point out that the ciphertext has the same flavor of the algorithm presented in this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
283
+ page_content=' Note that decapsulation here does not require knowing the factorization of N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
284
+ page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
285
+ page_content=' Remarks 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
286
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
287
+ page_content=' The method proposed is probably computationally equivalent to factoring.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
288
+ page_content=' To be certain one would have to solve the following thought exercise: Suppose there is a black box which takes in input (c, r, n, e) in the proposed algorithm and returns m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
289
+ page_content=' Can one factor n given this information?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
290
+ page_content=' A similar formulation can be made for RSA itself: Suppose there is a black box which takes input (c, n, e) and outputs m;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
291
+ page_content=' can one factor m?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
292
+ page_content=' This is similar in spirit to a chosen plaintext attack on either system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
293
+ page_content=' While Theorem C indicates this may be true the caveat of Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
294
+ page_content='4 suggests uncertainty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
295
+ page_content=' 8 KRISHNAN SHANKAR Acknowledgments The author is grateful to Kimball Martin, Steven Miller and Larry Washington for their careful reading of early drafts and for providing valuable comments that helped greatly improve this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
296
+ page_content=' References [AM09] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
297
+ page_content=' Aggarwal and U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
298
+ page_content=' Maurer, Breaking RSA generically is equivalent to factoring, In A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
299
+ page_content=' Joux, editor, EUROCRYPT 2009, volume 5479 of LNCS, pages 36–53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
300
+ page_content=' Springer, Heidelberg, April 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
301
+ page_content=' [BBS86] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
302
+ page_content=' Blum, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
303
+ page_content=' Blum and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
304
+ page_content=' Shub, A simple unpredictable pseudo-random number generator, SIAM J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
305
+ page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
306
+ page_content=' 15(2), 364–383 (1986).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
307
+ page_content=' [BD00] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
308
+ page_content=' Boneh and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
309
+ page_content=' Durfee, Cryptanalysis of RSA with Private Key d Less than n0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
310
+ page_content='292, IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
311
+ page_content=' Information Theory, 46(4):1339–1349, July 2000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
312
+ page_content=' [BDH-G99] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
313
+ page_content=' Boneh, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
314
+ page_content=' Durfee, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
315
+ page_content=' Howgrave-Graham, Factoring N = prq for Large r, In M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
316
+ page_content=' Weiner, ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
317
+ page_content=', Proceedings of Crypto ’99, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
318
+ page_content=' 1666 of LNCS, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
319
+ page_content=' 326–337.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
320
+ page_content=' Springer–Verlag, Aug.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
321
+ page_content=' 1999.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
322
+ page_content=' [BV98] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
323
+ page_content=' Boneh and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
324
+ page_content=' Venkatesan, Breaking RSA may not be equivalent to factoring, In K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
325
+ page_content=' Nyberg, editor, EUROCRYPT’98, volume 1403 of LNCS, pages 59–71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
326
+ page_content=' Springer, Heidelberg, May / June 1998.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
327
+ page_content=' [F89] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
328
+ page_content=' Fiat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
329
+ page_content=', Batch RSA, In G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
330
+ page_content=' Brassard, ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
331
+ page_content=', Proceedings of Crypto 1989, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
332
+ page_content=' 435 of LNCS, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
333
+ page_content=' 175–185.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
334
+ page_content=' Springer–Verlag, Aug.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
335
+ page_content=' 1989.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
336
+ page_content=' [Hin09] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
337
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
338
+ page_content=' Hinek, Cryptanalysis of RSA and its variants, Cryptography & Network Security series, Chapman and Hall publishers, 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
339
+ page_content=' [HKS13] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
340
+ page_content=' Hofheinz, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
341
+ page_content=' Kiltz and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
342
+ page_content=' Shoup, Practical Chosen Ciphertext Secure Encryption from Factoring, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
343
+ page_content=' of Cryptology (2013) vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
344
+ page_content=' 26, 102–118.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
345
+ page_content=' [Po99] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
346
+ page_content=' Pointcheval, New Public Key Cryptosystems based on the Dependent RSA-Problems, EURO- CRYPT ’99, Lecture Notes in Computer Science 1592, 239–254.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
347
+ page_content=' [RSA78] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
348
+ page_content=' Rivest, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
349
+ page_content=' Shamir, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
350
+ page_content=' Adleman, A method for obtaining digital signatures and public-key cryp- tosystems, Communications of the Association for Computing Machinery, 21(2):120–126.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
351
+ page_content=' [Rab79] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
352
+ page_content=' Rabin, Digital signatures and public key functions as intractable as factorization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
353
+ page_content=', Technical Report MIT/LCS/TR-212, Massachusetts Institute of Technology, January 1979.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
354
+ page_content=' [Sh73] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
355
+ page_content=' Shanks, Five Number Theoretic Algorithms, Proceedings of the Second Manitoba Conference on Numerical Mathematics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
356
+ page_content=' Pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
357
+ page_content=' 51–70, 1973.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
358
+ page_content=' [Ta98] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
359
+ page_content=' Takagi, Fast RSA-type Cryptosystem Modulo pkq, In H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
360
+ page_content=' Krawczyk, ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
361
+ page_content=', Proceedings of Crypto 1998, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
362
+ page_content=' 1462 of LNCS, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
363
+ page_content=' 318–326.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
364
+ page_content=' Springer-Verlag, Aug.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
365
+ page_content=' 1998 [Ton1891] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
366
+ page_content=' Tonelli, Bemerkung ¨uber die Aufl¨osung quadratischer Congruenzen, Nachrichten von der K¨oniglichen Gesellschaft der Wissenschaften und der Georg-Augusts-Universit¨at zu G¨ottingen, 344– 346, 1891.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
367
+ page_content=' [Tur94] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
368
+ page_content=' Turner, Square roots mod p, The American Mathematical Monthly, May 1994, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
369
+ page_content=' 101, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
370
+ page_content=' 5, 443–449.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
371
+ page_content=' [Vig08] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
372
+ page_content=' Vigilant, RSA with CRT: A New Cost-Effective Solution to Thwart Fault Attacks, In: Cryp- tographic Hardware and Embedded Systems – CHES 2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
373
+ page_content=' CHES 2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
374
+ page_content=' Lecture Notes in Computer Science, vol 5154.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
375
+ page_content=' [Wie90] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
376
+ page_content=' Wiener, Cryptanalysis of Short RSA Secret Exponents, IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
377
+ page_content=' Information Theory 36(3):553–558.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
378
+ page_content=' May 1990.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
379
+ page_content=' Department of Mathematics & Statistics, James Madison University, 60 Bluestone Drive, Harrisonburg VA 22807.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
380
+ page_content=' Email address: shankakx@jmu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
381
+ page_content='edu' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/JdAzT4oBgHgl3EQfVPzH/content/2301.01282v1.pdf'}
JtAzT4oBgHgl3EQfIPso/content/2301.01057v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b6c13737227f35e11fe7f7f6668148c895d902fdf0e128c6d9a254a94549c62e
3
+ size 5189426