text
stringlengths 1
93.6k
|
---|
parser.add_argument("--model", type=str) # model path
|
parser.add_argument("--data_file", type=str, default='') # data path
|
parser.add_argument("--start", type=int, default=0) #start index
|
parser.add_argument("--end", type=int, default=MAX_INT) # end index
|
parser.add_argument("--batch_size", type=int, default=400) # batch_size
|
parser.add_argument("--tensor_parallel_size", type=int, default=8) # tensor_parallel_size
|
parser.add_argument("--filepath_output", type=str, default=None)
|
return parser.parse_args()
|
if __name__ == "__main__":
|
args = parse_args()
|
gsm8k_test(
|
model=args.model,
|
data_path=args.data_file,
|
start=args.start,
|
end=args.end,
|
batch_size=args.batch_size,
|
tensor_parallel_size=args.tensor_parallel_size,
|
filepath_output=args.filepath_output
|
)
|
# <FILESEP>
|
import os
|
from PIL import Image
|
import numpy as np
|
import h5py
|
import cv2
|
def load_data(img_path,train = True):
|
img_folder = os.path.dirname(img_path)
|
img_name = os.path.basename(img_path)
|
index = int(img_name.split('.')[0])
|
prev_index = int(max(1,index-5))
|
post_index = int(min(150,index+5))
|
prev_img_path = os.path.join(img_folder,'%03d.jpg'%(prev_index))
|
post_img_path = os.path.join(img_folder,'%03d.jpg'%(post_index))
|
prev_gt_path = prev_img_path.replace('.jpg','_resize.h5')
|
gt_path = img_path.replace('.jpg','_resize.h5')
|
post_gt_path = post_img_path.replace('.jpg','_resize.h5')
|
prev_img = Image.open(prev_img_path).convert('RGB')
|
img = Image.open(img_path).convert('RGB')
|
post_img = Image.open(post_img_path).convert('RGB')
|
prev_img = prev_img.resize((640,360))
|
img = img.resize((640,360))
|
post_img = post_img.resize((640,360))
|
gt_file = h5py.File(gt_path)
|
target = np.asarray(gt_file['density'])
|
gt_file.close()
|
target = cv2.resize(target,(int(target.shape[1]/8),int(target.shape[0]/8)),interpolation = cv2.INTER_CUBIC)*64
|
prev_gt_file = h5py.File(prev_gt_path)
|
prev_target = np.asarray(prev_gt_file['density'])
|
prev_gt_file.close()
|
prev_target = cv2.resize(prev_target,(int(prev_target.shape[1]/8),int(prev_target.shape[0]/8)),interpolation = cv2.INTER_CUBIC)*64
|
post_gt_file = h5py.File(post_gt_path)
|
post_target = np.asarray(post_gt_file['density'])
|
post_gt_file.close()
|
post_target = cv2.resize(post_target,(int(post_target.shape[1]/8),int(post_target.shape[0]/8)),interpolation = cv2.INTER_CUBIC)*64
|
return prev_img,img,post_img,prev_target, target, post_target
|
# <FILESEP>
|
from model import EDSR
|
import scipy.misc
|
import argparse
|
import data
|
import os
|
parser = argparse.ArgumentParser()
|
parser.add_argument("--dataset",default="data/General-100")
|
parser.add_argument("--imgsize",default=100,type=int)
|
parser.add_argument("--scale",default=2,type=int)
|
parser.add_argument("--layers",default=32,type=int)
|
parser.add_argument("--featuresize",default=256,type=int)
|
parser.add_argument("--batchsize",default=10,type=int)
|
parser.add_argument("--savedir",default="saved_models")
|
parser.add_argument("--iterations",default=1000,type=int)
|
parser.add_argument("--numimgs",default=5,type=int)
|
parser.add_argument("--outdir",default="out")
|
parser.add_argument("--image")
|
args = parser.parse_args()
|
if not os.path.exists(args.outdir):
|
os.mkdir(args.outdir)
|
down_size = args.imgsize//args.scale
|
network = EDSR(down_size,args.layers,args.featuresize,scale=args.scale)
|
network.resume(args.savedir)
|
if args.image:
|
x = scipy.misc.imread(args.image)
|
else:
|
print("No image argument given")
|
inputs = x
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.