|
--- |
|
task_categories: |
|
- text-generation |
|
--- |
|
|
|
# Comma v0.1 Training Dataset (10 Billion Token Sample) |
|
|
|
This is a 10 billion token subset of the [Comma v0.1 Training Set](https://huggingface.co/datasets/common-pile/comma_v0.1_training_dataset) intended |
|
as a convenience for small deep learning experiments. It is similar in spirit to the [1 billion token RedPajama sample](https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T-Sample) |
|
which is no longer functioning with HuggingFace transformers due to involving the execution of arbitrary code at load time. |
|
|
|
## Method |
|
|
|
The data was subsetted using the following script: |
|
|
|
```python |
|
import os |
|
import json |
|
import gzip |
|
import math |
|
import random |
|
import requests |
|
from pathlib import Path |
|
from tqdm import tqdm |
|
from datasets import load_dataset |
|
from transformers import AutoTokenizer |
|
from argparse import ArgumentParser |
|
|
|
parser = ArgumentParser() |
|
parser.add_argument("--output-dir", type=Path, default="shards") |
|
parser.add_argument("--tokens", default=10**9, type=int, |
|
help="The number of tokens to subset.") |
|
parser.add_argument("--shard-size", type=int, default=(250 * (10 ** 6))) |
|
args = parser.parse_args() |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("common-pile/comma-v0.1-1t") |
|
dataset = load_dataset("common-pile/comma_v0.1_training_dataset") |
|
|
|
if not os.path.exists("shards"): |
|
os.mkdir("shards") |
|
|
|
used = set() |
|
token_count = 0 |
|
shard_index = 0 |
|
if os.path.exists("subset_resume.json"): |
|
with open("subset_resume.json") as infile: |
|
data = json.load(infile) |
|
spans = set(data["used"]) |
|
token_count = data["token_count"] |
|
shard_index = data["shard_index"] |
|
|
|
num_shards = math.ceil(args.tokens / args.shard_size) |
|
milestone = args.shard_size |
|
progress = tqdm(total=args.tokens) |
|
while token_count < args.tokens: |
|
progress.set_description(f"Tokens Processed (Shard {shard_index})") |
|
filename = f"train-{shard_index:05d}-of-{num_shards:05d}.jsonl.gz" |
|
filepath = Path(args.output_dir) / filename |
|
with gzip.open(filepath, 'wt', encoding='utf-8') as outfile: |
|
while token_count < milestone: |
|
choices = set() |
|
for i in range(64): |
|
choice = random.randrange(dataset["train"].num_rows) |
|
while choice in used: |
|
choice = random.randrange(dataset["train"].num_rows) |
|
used.add(choice) |
|
choices.add(choice) |
|
assert len(choices) == 64 |
|
items = [] |
|
for choice in choices: |
|
items.append(dataset["train"][choice]) |
|
texts = [item["text"] for item in items] |
|
new_tokens = sum([len(i) for i in tokenizer(texts)["input_ids"]]) |
|
token_count += new_tokens |
|
progress.update(new_tokens) |
|
for item in items: |
|
json_line = json.dumps(item) |
|
outfile.write(json_line + "\n") |
|
if token_count > milestone: |
|
with open("subset_resume.json", "w") as outfile: |
|
serial_used = list(used) |
|
json.dump({"used":serial_used, "token_count":token_count, "shard_index":shard_index}, outfile) |
|
milestone += args.shard_size |
|
shard_index += 1 |
|
``` |
|
|
|
Feel free to adapt and use this script to make other subsets. |