metadata
task_categories:
- text-generation
Comma v0.1 Training Dataset (1 Billion Token Sample)
This is a 1 billion token subset of the Comma v0.1 Training Set intended as a convenience for small deep learning experiments. It is similar in spirit to the 1 billion token RedPajama sample which is no longer functioning with HuggingFace transformers due to involving the execution of arbitrary code at load time.
Method
The subset was created using a single item batch version of the following script which I no longer have:
import os
import json
import random
import requests
from datasets import load_dataset
from transformers import AutoTokenizer
from argparse import ArgumentParser
parser = ArgumentParser()
parser.add_argument("--tokens", default=10**9, type=int,
help="The number of tokens to subset.")
args = parser.parse_args()
tokenizer = AutoTokenizer.from_pretrained("common-pile/comma-v0.1-1t")
dataset = load_dataset("common-pile/comma_v0.1_training_dataset")
used = set()
token_count = 0
split = {"train":[]}
if os.path.exists("subset_resume.json"):
with open("subset_resume.json") as infile:
data = json.load(infile)
spans = set(data["used"])
token_count = data["token_count"]
split = data["split"]
milestone = 10 ** 6
while token_count < args.tokens:
choices = set()
for i in range(64):
choice = random.randrange(dataset["train"].num_rows)
while choice in used:
choice = random.randrange(dataset["train"].num_rows)
used.add(choice)
choices.add(choice)
assert len(choices) == 64
items = []
for choice in choices:
items.append(dataset["train"][choice])
texts = [item["text"] for item in items]
token_count += sum([len(i) for i in tokenizer(texts)["input_ids"]])
split["train"].extend(items)
if token_count > milestone:
with open("subset_resume.json", "w") as outfile:
serial_used = list(used)
json.dump({"used":serial_used, "token_count":token_count, "split":split}, outfile)
milestone += 10 ** 6
print(token_count, f"{(token_count / args.tokens) * 100}%")
with open(f"subset_{args.tokens}.json", "w") as outfile:
json.dump(split, outfile)
Feel free to modify and use this script to create subsets of other datasets.
The dataset was sharded using the following script:
import json
import gzip
import math
from pathlib import Path
def shard_dataset(input_file, output_dir, num_shards=4):
"""
Shard a JSON dataset into multiple gzipped JSON lines files.
Args:
input_file (str): Path to the input JSON file
output_dir (str): Directory where shards will be saved
num_shards (int): Number of shards to create
"""
# Create output directory if it doesn't exist
Path(output_dir).mkdir(parents=True, exist_ok=True)
# Load the dataset
print(f"Loading dataset from {input_file}...")
with open(input_file, 'r') as f:
data = json.load(f)
# Extract the training examples
train_examples = data["train"]
total_examples = len(train_examples)
examples_per_shard = math.ceil(total_examples / num_shards)
print(f"Found {total_examples} examples, splitting into {num_shards} shards")
# Create each shard
for shard_idx in range(num_shards):
# Calculate start and end indices for this shard
start_idx = shard_idx * examples_per_shard
end_idx = min((shard_idx + 1) * examples_per_shard, total_examples)
# Format the filename with zero-padding
filename = f"train-{shard_idx:05d}-of-{num_shards:05d}.jsonl.gz"
filepath = Path(output_dir) / filename
print(f"Creating shard {shard_idx+1}/{num_shards}: {filename}")
# Write the shard as gzipped JSON lines
with gzip.open(filepath, 'wt', encoding='utf-8') as f:
for i in range(start_idx, end_idx):
# Write each example as a JSON line
json_line = json.dumps(train_examples[i])
f.write(json_line + '\n')
print(f"Finished creating {num_shards} shards in {output_dir}")
if __name__ == "__main__":
# Configuration - update these paths as needed
input_json_file = "1B_sample/train.json" # Update this path
output_directory = "1B_sample/sharded_dataset" # Update this if needed
# Shard the dataset into 4 parts
shard_dataset(input_json_file, output_directory, num_shards=4)