max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
verteste/ui/ui_about.py
Chum4k3r/Verteste
0
7200
# -*- coding: utf-8 -*- ################################################################################ ## Form generated from reading UI file 'aboutdialog.ui' ## ## Created by: Qt User Interface Compiler version 6.1.1 ## ## WARNING! All changes made in this file will be lost when recompiling UI file! ################################################################################ from PySide6.QtCore import * # type: ignore from PySide6.QtGui import * # type: ignore from PySide6.QtWidgets import * # type: ignore class Ui_AboutDialog(QDialog): # Caixa de diálogo utilizada para criação ou edição de linhas def __init__(self, parent=None): QDialog.__init__(self, parent=parent) self.setupUi(self) return def setupUi(self, Dialog): if not Dialog.objectName(): Dialog.setObjectName(u"Dialog") Dialog.resize(400, 300) self.verticalLayout = QVBoxLayout(Dialog) self.verticalLayout.setObjectName(u"verticalLayout") self.label = QLabel(Dialog) self.label.setObjectName(u"label") font = QFont() font.setFamilies([u"Sandoval"]) font.setPointSize(18) self.label.setFont(font) self.label.setAlignment(Qt.AlignCenter) self.verticalLayout.addWidget(self.label) self.label_4 = QLabel(Dialog) self.label_4.setObjectName(u"label_4") self.label_4.setTextFormat(Qt.AutoText) self.label_4.setAlignment(Qt.AlignRight|Qt.AlignTrailing|Qt.AlignVCenter) self.verticalLayout.addWidget(self.label_4) self.label_2 = QLabel(Dialog) self.label_2.setObjectName(u"label_2") self.verticalLayout.addWidget(self.label_2) self.label_3 = QLabel(Dialog) self.label_3.setObjectName(u"label_3") self.label_3.setAlignment(Qt.AlignCenter) self.verticalLayout.addWidget(self.label_3) self.label_5 = QLabel(Dialog) self.label_5.setObjectName(u"label_5") self.verticalLayout.addWidget(self.label_5) self.label_6 = QLabel(Dialog) self.label_6.setObjectName(u"label_6") self.label_6.setTextFormat(Qt.MarkdownText) self.label_6.setAlignment(Qt.AlignCenter) self.verticalLayout.addWidget(self.label_6) self.retranslateUi(Dialog) QMetaObject.connectSlotsByName(Dialog) # setupUi def retranslateUi(self, Dialog): Dialog.setWindowTitle(QCoreApplication.translate("Dialog", u"Sobre", None)) self.label.setText(QCoreApplication.translate("Dialog", u"Verteste", None)) self.label_4.setText(QCoreApplication.translate("Dialog", u"Vers\u00e3o 1.0.0", None)) self.label_2.setText(QCoreApplication.translate("Dialog", u"Desenvolvido por:", None)) self.label_3.setText(QCoreApplication.translate("Dialog", u"Jo\u00e3o <NAME>", None)) self.label_5.setText(QCoreApplication.translate("Dialog", u"C\u00f3digo fonte dispon\u00edvel em:", None)) self.label_6.setText(QCoreApplication.translate("Dialog", u"https://github.com/Chum4k3r/Verteste.git", None)) # retranslateUi
2.15625
2
tests/test_base_protocol.py
Qix-/aiohttp
3
7201
import asyncio from contextlib import suppress from unittest import mock import pytest from aiohttp.base_protocol import BaseProtocol async def test_loop() -> None: loop = asyncio.get_event_loop() asyncio.set_event_loop(None) pr = BaseProtocol(loop) assert pr._loop is loop async def test_pause_writing() -> None: loop = asyncio.get_event_loop() pr = BaseProtocol(loop) assert not pr._paused pr.pause_writing() assert pr._paused async def test_resume_writing_no_waiters() -> None: loop = asyncio.get_event_loop() pr = BaseProtocol(loop=loop) pr.pause_writing() assert pr._paused pr.resume_writing() assert not pr._paused async def test_connection_made() -> None: loop = asyncio.get_event_loop() pr = BaseProtocol(loop=loop) tr = mock.Mock() assert pr.transport is None pr.connection_made(tr) assert pr.transport is not None async def test_connection_lost_not_paused() -> None: loop = asyncio.get_event_loop() pr = BaseProtocol(loop=loop) tr = mock.Mock() pr.connection_made(tr) assert not pr._connection_lost pr.connection_lost(None) assert pr.transport is None assert pr._connection_lost async def test_connection_lost_paused_without_waiter() -> None: loop = asyncio.get_event_loop() pr = BaseProtocol(loop=loop) tr = mock.Mock() pr.connection_made(tr) assert not pr._connection_lost pr.pause_writing() pr.connection_lost(None) assert pr.transport is None assert pr._connection_lost async def test_drain_lost() -> None: loop = asyncio.get_event_loop() pr = BaseProtocol(loop=loop) tr = mock.Mock() pr.connection_made(tr) pr.connection_lost(None) with pytest.raises(ConnectionResetError): await pr._drain_helper() async def test_drain_not_paused() -> None: loop = asyncio.get_event_loop() pr = BaseProtocol(loop=loop) tr = mock.Mock() pr.connection_made(tr) assert pr._drain_waiter is None await pr._drain_helper() assert pr._drain_waiter is None async def test_resume_drain_waited() -> None: loop = asyncio.get_event_loop() pr = BaseProtocol(loop=loop) tr = mock.Mock() pr.connection_made(tr) pr.pause_writing() t = loop.create_task(pr._drain_helper()) await asyncio.sleep(0) assert pr._drain_waiter is not None pr.resume_writing() assert (await t) is None assert pr._drain_waiter is None async def test_lost_drain_waited_ok() -> None: loop = asyncio.get_event_loop() pr = BaseProtocol(loop=loop) tr = mock.Mock() pr.connection_made(tr) pr.pause_writing() t = loop.create_task(pr._drain_helper()) await asyncio.sleep(0) assert pr._drain_waiter is not None pr.connection_lost(None) assert (await t) is None assert pr._drain_waiter is None async def test_lost_drain_waited_exception() -> None: loop = asyncio.get_event_loop() pr = BaseProtocol(loop=loop) tr = mock.Mock() pr.connection_made(tr) pr.pause_writing() t = loop.create_task(pr._drain_helper()) await asyncio.sleep(0) assert pr._drain_waiter is not None exc = RuntimeError() pr.connection_lost(exc) with pytest.raises(RuntimeError) as cm: await t assert cm.value is exc assert pr._drain_waiter is None async def test_lost_drain_cancelled() -> None: loop = asyncio.get_event_loop() pr = BaseProtocol(loop=loop) tr = mock.Mock() pr.connection_made(tr) pr.pause_writing() fut = loop.create_future() async def wait(): fut.set_result(None) await pr._drain_helper() t = loop.create_task(wait()) await fut t.cancel() assert pr._drain_waiter is not None pr.connection_lost(None) with suppress(asyncio.CancelledError): await t assert pr._drain_waiter is None async def test_resume_drain_cancelled() -> None: loop = asyncio.get_event_loop() pr = BaseProtocol(loop=loop) tr = mock.Mock() pr.connection_made(tr) pr.pause_writing() fut = loop.create_future() async def wait(): fut.set_result(None) await pr._drain_helper() t = loop.create_task(wait()) await fut t.cancel() assert pr._drain_waiter is not None pr.resume_writing() with suppress(asyncio.CancelledError): await t assert pr._drain_waiter is None
2.203125
2
main.py
marcusviniciusteixeira/RPAPython
1
7202
<gh_stars>1-10 import PySimpleGUI as sg import os import time import pyautogui class TelaPython: def __init__(self): layout = [ [sg.Text('Usuário',size=(10,0)), sg.Input(size=(20,0),key='usuario')], [sg.Text('Senha',size=(10,0)), sg.Input(size=(20,0),key='senha')], [sg.Text('Número',size=(10,0)), sg.Input(size=(20,0),key='num')], [sg.Text('Time1',size=(10,0)), sg.Slider(range=(0,30), default_value=0, orientation='h',size=(10,15),key='time1')], [sg.Text('Time2',size=(10,0)), sg.Slider(range=(0,30), default_value=0, orientation='h',size=(10,15),key='time2')], [sg.Button('Executar')] ] janela = sg.Window("Macro Portal CLARO").layout(layout) self.button, self.values = janela.read() def Iniciar(self): usuario = self.values['usuario'] senha = self.values['senha'] num = self.values['num'] time1 = self.values['time1'] time2 = self.values['time2'] os.startfile('PortalClaro.exe') time.sleep(time1) pyautogui.moveTo(571, 409)#USUÁRIO pyautogui.click() pyautogui.write(usuario) pyautogui.press('tab')#SENHA pyautogui.write(senha)#Pjfa#412 pyautogui.moveTo(672, 530) pyautogui.click() time.sleep(time2) pyautogui.moveTo(556, 472)#NUM pyautogui.click() pyautogui.write(num) pyautogui.moveTo(683, 505) pyautogui.click() time.sleep(1) pyautogui.moveTo(576, 437) pyautogui.click() tela = TelaPython() tela.Iniciar()
2.71875
3
logistic-regression/plot_binary_losses.py
eliben/deep-learning-samples
183
7203
# Helper code to plot binary losses. # # <NAME> (http://eli.thegreenplace.net) # This code is in the public domain from __future__ import print_function import matplotlib.pyplot as plt import numpy as np if __name__ == '__main__': fig, ax = plt.subplots() fig.set_tight_layout(True) xs = np.linspace(-2, 2, 500) # plot L0/1 loss ax.plot(xs, np.where(xs < 0, np.ones_like(xs), np.zeros_like(xs)), color='r', linewidth=2.0, label='$L_{01}$') # plot square loss ax.plot(xs, (xs - 1) ** 2, linestyle='-.', label='$L_2$') # plot hinge loss ax.plot(xs, np.maximum(np.zeros_like(xs), 1 - xs), color='g', linewidth=2.0, label='$L_h$') ax.grid(True) plt.ylim((-1, 4)) ax.legend() fig.savefig('loss.png', dpi=80) plt.show()
2.984375
3
utils/watch-less.py
K-Fitzpatrick/crop_planner
91
7204
#!/usr/bin/env python3 ################################ # Development tool # Auto-compiles style.less to style.css # # Requires lessc and less clean css to be installed: # npm install -g less # npm install -g less-plugin-clean-css ################################ import os, time from os import path from math import floor from _helper import * # Main application class Main: style_less = "style.less" style_css = "style.css" def __init__(self): clear() os.chdir("../") header("Watching style.less for changes\nctrl+c to exit") print() while True: if not os.path.exists(self.style_less): print(self.style_less + " does not exist. Exiting.") return if not os.path.exists(self.style_css): self.compile() elif path.getmtime(self.style_less) > path.getmtime(self.style_css): self.compile() time.sleep(.2) def compile(self): start = time.time() os.system("lessc " + self.style_less + " " + self.style_css + " --clean-css") touch(self.style_css, path.getmtime(self.style_less)) print("Recompiled [" + str(floor((time.time() - start) * 100)) + " ms]") print() # Run application if __name__ == "__main__": try: app = Main() except KeyboardInterrupt: print("Exiting")
2.953125
3
testapp/app/app/tests/test_export_action.py
instituciones-abiertas/django-admin-export-action
5
7205
# -- encoding: UTF-8 -- import json import uuid from admin_export_action import report from admin_export_action.admin import export_selected_objects from admin_export_action.config import default_config, get_config from django.contrib.admin.sites import AdminSite from django.contrib.auth.models import User from django.contrib.contenttypes.models import ContentType from django.test import TestCase, RequestFactory from django.urls import reverse from django.utils.http import urlencode from news.models import Attachment, Category, News, NewsTag, Video from news.admin import NewsAdmin class FakeDict(object): def __getitem__(self, key): return object() class WS(object): def __init__(self): self.rows = [] self.cells = [] self.column_dimensions = FakeDict() def cell(self, row, column): pass def append(self, row): self.rows.append(row) class FakeQueryset(object): def __init__(self, num): self.num = num self.model = News def values_list(self, field, flat=True): return [i for i in range(1, self.num)] class AdminExportActionTest(TestCase): fixtures = ["tests.json"] def test_config(self): self.assertEqual(default_config.get('ENABLE_SITEWIDE'), True) self.assertEqual(get_config('ENABLE_SITEWIDE'), False) with self.settings(ADMIN_EXPORT_ACTION=None): self.assertEqual(get_config('ENABLE_SITEWIDE'), True) def test_export_selected_objects_session(self): factory = RequestFactory() request = factory.get('/news/admin/') request.session = {} modeladmin = NewsAdmin(model=News, admin_site=AdminSite()) qs = FakeQueryset(2000) self.assertEqual(len(request.session), 0) export_selected_objects(modeladmin, request, qs) self.assertEqual(len(request.session), 1) els = list(request.session.items()) self.assertEqual(els[0][1], qs.values_list('id')) def test_get_field_verbose_name(self): res = report.get_field_verbose_name(News.objects, 'tags__name') assert res == 'all tags verbose name' res = report.get_field_verbose_name(News.objects, 'share') assert res == 'share' def test_list_to_method_response_should_return_200_and_correct_values( self): admin = User.objects.get(pk=1) data, messages = report.report_to_list(News.objects.all(), ['id', 'title', 'status'], admin) method = getattr(report, 'list_to_{}_response'.format('html')) res = method(data) assert res.status_code == 200 method = getattr(report, 'list_to_{}_response'.format('csv')) res = method(data) assert res.status_code == 200 assert res.content == b'1,<NAME>,published\r\n2,La mano de Dios,draft\r\n' method = getattr(report, 'list_to_{}_response'.format('xlsx')) res = method(data) assert res.status_code == 200 method = getattr(report, 'list_to_{}_response'.format('json')) res = method(data, header=['id', 'title', 'status']) d = json.loads(res.content) assert d[0]['id'] == 1 assert d[0]['title'] == "<NAME>" assert d[0]['status'] == 'published' assert d[1]['id'] == 2 assert d[1]['title'] == "La mano de Dios" assert d[1]['status'] == 'draft' assert res.status_code == 200 data, messages = report.report_to_list(News.objects.all(), ['id', 'title', 'status'], admin, raw_choices=True) method = getattr(report, 'list_to_{}_response'.format('json')) res = method(data, header=['id', 'title', 'status']) d = json.loads(res.content) assert d[0]['id'] == 1 assert d[0]['title'] == "<NAME>" assert d[0]['status'] == 2 assert d[1]['id'] == 2 assert d[1]['title'] == "La mano de Dios" assert d[1]['status'] == 1 assert res.status_code == 200 def test_list_to_csv_response_should_have_expected_content(self): admin = User.objects.get(pk=1) data, messages = report.report_to_list(News.objects.all(), ['id', 'title'], admin) method = getattr(report, 'list_to_{}_response'.format('csv')) res = method(data) assert res.status_code == 200 assert res.content == b'1,<NAME>\r\n2,La mano de Dios\r\n' def test_list_to_json_response_should_have_expected_content(self): admin = User.objects.get(pk=1) data, messages = report.report_to_list(News.objects.all(), ['id', 'title'], admin) method = getattr(report, 'list_to_{}_response'.format('json')) res = method(data, header=['id', 'title']) d = json.loads(res.content) assert d[0]['id'] == 1 assert d[0]['title'] == "<NAME>" assert d[1]['id'] == 2 assert d[1]['title'] == "La mano de Dios" assert res.status_code == 200 def test_admin_export_post_should_return_200(self): for output_format in ['html', 'csv', 'xslx', 'json']: params = { 'ct': ContentType.objects.get_for_model(News).pk, 'ids': ','.join( repr(pk) for pk in News.objects.values_list('pk', flat=True)) } data = { "title": "on", "__format": output_format, } url = "{}?{}".format(reverse('admin_export_action:export'), urlencode(params)) self.client.login(username='admin', password='<PASSWORD>') response = self.client.post(url, data=data) assert response.status_code == 200 def test_admin_export_get_should_return_200(self): params = { 'ct': ContentType.objects.get_for_model(News).pk, 'ids': ','.join( repr(pk) for pk in News.objects.values_list('pk', flat=True)) } url = "{}?{}".format(reverse('admin_export_action:export'), urlencode(params)) self.client.login(username='admin', password='<PASSWORD>') response = self.client.get(url) assert response.status_code == 200 def test_admin_export_with_related_get_should_return_200(self): params = { 'related': True, 'model_ct': ContentType.objects.get_for_model(News).pk, 'field': 'category', 'path': 'category.name', } url = "{}?{}".format(reverse('admin_export_action:export'), urlencode(params)) self.client.login(username='admin', password='<PASSWORD>') response = self.client.get(url) assert response.status_code == 200 def test_admin_export_with_related_of_indirect_field_get_should_return_200( self): params = { 'related': True, 'model_ct': ContentType.objects.get_for_model(News).pk, 'field': 'newstag', 'path': 'newstag.id', } url = "{}?{}".format(reverse('admin_export_action:export'), urlencode(params)) self.client.login(username='admin', password='<PASSWORD>') response = self.client.get(url) assert response.status_code == 200 def test_admin_export_with_unregistered_model_should_raise_ValueError( self): params = { 'ct': ContentType.objects.get_for_model(NewsTag).pk, 'ids': ','.join( repr(pk) for pk in NewsTag.objects.values_list('pk', flat=True)) } url = "{}?{}".format(reverse('admin_export_action:export'), urlencode(params)) self.client.login(username='admin', password='<PASSWORD>') try: self.client.get(url) self.fail() except ValueError: pass def test_admin_action_should_redirect_to_export_view(self): objects = News.objects.all() ids = [repr(obj.pk) for obj in objects] data = { "action": "export_selected_objects", "_selected_action": ids, } url = reverse('admin:news_news_changelist') self.client.login(username='admin', password='<PASSWORD>') response = self.client.post(url, data=data) expected_url = "{}?ct={ct}&ids={ids}".format( reverse('admin_export_action:export'), ct=ContentType.objects.get_for_model(News).pk, ids=','.join(reversed(ids))) assert response.status_code == 302 assert response.url.endswith(expected_url) def test_export_with_related_should_return_200(self): for output_format in ['html', 'csv', 'xslx', 'json']: news = News.objects.all() params = { 'ct': ContentType.objects.get_for_model(News).pk, 'ids': ','.join( repr(pk) for pk in News.objects.values_list('pk', flat=True)) } data = { 'id': 'on', 'title': 'on', 'status': 'on', 'category__name': 'on', 'tags__name': 'on', 'newstag__created_on': 'on', "__format": output_format, } url = "{}?{}".format(reverse('admin_export_action:export'), urlencode(params)) self.client.login(username='admin', password='<PASSWORD>') response = self.client.post(url, data=data) assert response.status_code == 200 assert response.content def test_build_sheet_convert_function(self): data = [ ['1', 5, 'convert', 9, {"foo": "bar"}, [1, 2], uuid.UUID("12345678123456781234567812345678")], ] ws = WS() report.build_sheet(data, ws, sheet_name='report', header=None, widths=None) self.assertEqual(ws.rows, [['1', 5, 'converted', 9, "{'foo': 'bar'}", '[1, 2]', '12345678-1234-5678-1234-567812345678']])
2.09375
2
shapeshifter/tests/conftest.py
martinogden/django-shapeshifter
164
7206
<filename>shapeshifter/tests/conftest.py from pytest_djangoapp import configure_djangoapp_plugin pytest_plugins = configure_djangoapp_plugin( extend_INSTALLED_APPS=[ 'django.contrib.sessions', 'django.contrib.messages', ], extend_MIDDLEWARE=[ 'django.contrib.sessions.middleware.SessionMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', ] )
1.289063
1
face_attribute_verification.py
seymayucer/FacialPhenotypes
2
7207
<filename>face_attribute_verification.py import argparse import numpy as np from sklearn.model_selection import StratifiedKFold import sklearn import cv2 import datetime import mxnet as mx from mxnet import ndarray as nd import pandas as pd from numpy import linalg as line import logging logging.basicConfig( format="%(asctime)s %(message)s", datefmt="%m/%d/%Y %I:%M:%S %p", level=logging.INFO ) class FaceVerification: def __init__(self, model=None, batch_size=32, data_dir=None): super().__init__() logging.info("Face Verification for RFW.") self.data_dir = data_dir self.image_size = 112 self.batch_size = batch_size self.model = model def load_model(self, model_dir=None): logging.info("Model Loading") ctx = mx.gpu(0) sym, arg_params, aux_params = mx.model.load_checkpoint(model_dir, 1) all_layers = sym.get_internals() sym = all_layers["fc1_output"] self.model = mx.mod.Module(symbol=sym, context=ctx, label_names=None) self.model.bind( data_shapes=[ ("data", (self.batch_size, 3, self.image_size, self.image_size)) ] ) self.model.set_params(arg_params, aux_params) return self.model def load_images(self, inp_csv_file): logging.info("Image Data Loading") issame_list, data_list = [], [] pairs = pd.read_csv(inp_csv_file) # data_list = list( # np.empty((2, pairs.shape[0] * 2, 3, self.image_size, self.image_size)) # ) for flip in [0, 1]: data = nd.empty((pairs.shape[0] * 2, 3, self.image_size, self.image_size)) data_list.append(data) j = 0 for i, row in pairs.iterrows(): if i % 1000 == 0: logging.info("processing {}".format(i)) issame_list.append(row.issame) path1 = "{}/{}/{}_{:04d}.jpg".format( self.data_dir, row.Class_ID_s1, row.Class_ID_s1.split("/")[1], int(row.img_id_s1), ) path2 = "{}/{}/{}_{:04d}.jpg".format( self.data_dir, row.Class_ID_s2, row.Class_ID_s2.split("/")[1], int(row.img_id_s2), ) im1 = cv2.imread(path1) im1 = cv2.cvtColor(im1, cv2.COLOR_BGR2RGB) im1 = np.transpose(im1, (2, 0, 1)) # 3*112*112, RGB im1 = mx.nd.array(im1) im2 = cv2.imread(path2) im2 = cv2.cvtColor(im2, cv2.COLOR_BGR2RGB) im2 = np.transpose(im2, (2, 0, 1)) # 3*112*112, RGB im2 = mx.nd.array(im2) for flip in [0, 1]: if flip == 1: im1 = mx.ndarray.flip(im1, 2) data_list[flip][j][:] = im1 for flip in [0, 1]: if flip == 1: im2 = mx.ndarray.flip(im2, 2) data_list[flip][j + 1][:] = im2 # data_list[flip][i][:] = img j = j + 2 # bins shape should be 2,12000,3,112,112 # data = np.asarray(data_list) self.issame = np.asarray(issame_list) self.data = data_list logging.info("Pairs are loaded, shape: 2x{}.".format(self.data[0].shape)) return self.data, self.issame, pairs.shape def clean_data(self): self.data = None self.issame = None def verify(self, model=None): data_list = self.data embeddings_list = [] time_consumed = 0 _label = nd.ones((self.batch_size,)) for i in range(len(data_list)): data = data_list[i] embeddings = None ba = 0 while ba < data.shape[0]: bb = min(ba + self.batch_size, data.shape[0]) count = bb - ba _data = nd.slice_axis(data, axis=0, begin=bb - self.batch_size, end=bb) time0 = datetime.datetime.now() db = mx.io.DataBatch(data=(_data,), label=(_label,)) self.model.forward(db, is_train=False) net_out = self.model.get_outputs() _embeddings = net_out[0].asnumpy() time_now = datetime.datetime.now() diff = time_now - time0 time_consumed += diff.total_seconds() if embeddings is None: embeddings = np.zeros((data.shape[0], _embeddings.shape[1])) embeddings[ba:bb, :] = _embeddings[(self.batch_size - count) :, :] ba = bb embeddings_list.append(embeddings) _xnorm = 0.0 _xnorm_cnt = 0 for embed in embeddings_list: for i in range(embed.shape[0]): _em = embed[i] _norm = np.linalg.norm(_em) _xnorm += _norm _xnorm_cnt += 1 _xnorm /= _xnorm_cnt acc1 = 0.0 std1 = 0.0 embeddings = embeddings_list[0] + embeddings_list[1] embeddings = sklearn.preprocessing.normalize(embeddings) print(embeddings.shape) print("infer time", time_consumed) tpr, fpr, accuracy, best_thresholds = self.evaluate( embeddings, self.issame, nrof_folds=10 ) acc2, std2 = np.mean(accuracy), np.std(accuracy) logging.info("Accuracy {}".format(acc2)) return tpr, fpr, acc2, std2 def evaluate(self, embeddings, actual_issame, nrof_folds=10): # Calculate evaluation metrics thresholds = np.arange(-1, 1, 0.001) embeddings1 = embeddings[0::2] embeddings2 = embeddings[1::2] tpr, fpr, accuracy, best_thresholds = self.calculate_roc( thresholds, embeddings1, embeddings2, np.asarray(actual_issame), nrof_folds=nrof_folds, ) return tpr, fpr, accuracy, best_thresholds def calculate_roc( self, thresholds, embeddings1, embeddings2, actual_issame, nrof_folds=10 ): assert embeddings1.shape[1] == embeddings2.shape[1] nrof_pairs = min(len(actual_issame), embeddings1.shape[0]) nrof_thresholds = len(thresholds) # k_fold = LFold(n_splits=nrof_folds, shuffle=False) k_fold = StratifiedKFold(n_splits=nrof_folds, shuffle=False) tprs = np.zeros((nrof_folds, nrof_thresholds)) fprs = np.zeros((nrof_folds, nrof_thresholds)) tnrs = np.zeros((nrof_folds, nrof_thresholds)) fnrs = np.zeros((nrof_folds, nrof_thresholds)) f1s = np.zeros((nrof_folds)) accuracy = np.zeros((nrof_folds)) indices = np.arange(nrof_pairs) veclist = np.concatenate((embeddings1, embeddings2), axis=0) meana = np.mean(veclist, axis=0) embeddings1 -= meana embeddings2 -= meana dist = np.sum(embeddings1 * embeddings2, axis=1) dist = dist / line.norm(embeddings1, axis=1) / line.norm(embeddings2, axis=1) for fold_idx, (train_set, test_set) in enumerate( k_fold.split(indices, actual_issame) ): # print(train_set.shape, actual_issame[train_set].sum()) # print(test_set.shape, actual_issame[test_set].sum()) # Find the best threshold for the fold acc_train = np.zeros((nrof_thresholds)) for threshold_idx, threshold in enumerate(thresholds): _, _, _, _, acc_train[threshold_idx], f1 = self.calculate_accuracy( threshold, dist[train_set], actual_issame[train_set] ) best_threshold_index = np.argmax(acc_train) # print('threshold', thresholds[best_threshold_index]) for threshold_idx, threshold in enumerate(thresholds): ( tprs[fold_idx, threshold_idx], fprs[fold_idx, threshold_idx], tnrs[fold_idx, threshold_idx], fnrs[fold_idx, threshold_idx], _, _, ) = self.calculate_accuracy( threshold, dist[test_set], actual_issame[test_set] ) _, _, _, _, accuracy[fold_idx], f1s[fold_idx] = self.calculate_accuracy( thresholds[best_threshold_index], dist[test_set], actual_issame[test_set], ) tpr = np.mean(tprs, 0)[best_threshold_index] fpr = np.mean(fprs, 0)[best_threshold_index] # tnr = np.mean(tnrs, 0)[best_threshold_index] # fnr = np.mean(fnrs, 0)[best_threshold_index] return tpr, fpr, accuracy, thresholds[best_threshold_index] def calculate_accuracy(self, threshold, dist, actual_issame): predict_issame = np.less(dist, threshold) actual_issame = np.less(actual_issame, 0.5) tn, fp, fn, tp = sklearn.metrics.confusion_matrix( actual_issame, predict_issame ).ravel() tpr = 0 if (tp + fn == 0) else float(tp) / float(tp + fn) fpr = 0 if (fp + tn == 0) else float(fp) / float(fp + tn) tnr = 0 if (fp + tn == 0) else float(tn) / float(fp + tn) fnr = 0 if (fn + tp == 0) else float(fn) / float(fn + tp) acc = float(tp + tn) / dist.size f1 = sklearn.metrics.f1_score(predict_issame, actual_issame) return tpr, fpr, tnr, fnr, acc, f1 if __name__ == "__main__": parser = argparse.ArgumentParser(description="Face Verification for RFW") parser.add_argument( "--data_dir", type=str, default="RFW/test/aligned_data", help="dataset root" ) parser.add_argument( "--pair_file", type=str, default="./AttributePairs/eye_narrow_pairs_6000_selected.csv", help="pair file to test", ) parser.add_argument( "--model_dir", type=str, default="/model/", help="pre-trained model directory" ) parser.add_argument("--batch_size", type=int, default="32", help="batch_size") args = parser.parse_args() validation = FaceVerification( batch_size=args.batch_size, model=None, data_dir=args.data_dir ) validation.load_model(model_dir=args.model_dir) _, _, _shape = validation.load_images(args.pair_file) tpr, fpr, acc, std = validation.verify() logging.info( "Testing Accuracy {} for {} in shape {}".format(acc, args.pair_file, _shape[0]) )
2.359375
2
pkgs/applications/virtualization/virt-manager/custom_runner.py
mornfall/nixpkgs
1
7208
#!/usr/bin/python -t # this script was written to use /etc/nixos/nixpkgs/pkgs/development/python-modules/generic/wrap.sh # which already automates python executable wrapping by extending the PATH/pythonPath # from http://docs.python.org/library/subprocess.html # Warning Invoking the system shell with shell=True can be a security hazard if combined with untrusted input. See the warning under Frequently Used Arguments for details. from subprocess import Popen, PIPE, STDOUT cmd = 'PYTHON_EXECUTABLE_PATH -t THE_CUSTOM_PATH/share/virt-manager/THE_CUSTOM_PROGRAM.py' p = Popen(cmd, shell=True, stdin=PIPE, stdout=PIPE, stderr=STDOUT, close_fds=True) output = p.stdout.read() print output
1.882813
2
jsonform/fields.py
Pix-00/jsonform
0
7209
import base64 import datetime from abc import ABC, abstractmethod from .conditions import AnyValue from .errors import FieldError, FormError __all__ = [ 'Field', 'StringField', 'IntegerField', 'FloatField', 'BooleanField', 'DateTimeField', 'DateField', 'TimeField', 'ListField','SetField', 'EnumField', 'BytesField' ] class Field(ABC): _default = None def __new__(cls, *args, **kwargs): if 'init' in kwargs: kwargs.pop('init') return super().__new__(cls) return UnboundField(cls, *args, **kwargs) def __init__(self, condition=AnyValue(), optional: bool = False, default=None, init=False): self.condition = condition self.optional = optional self.default = default or self._default self._data = None self.is_empty = False @property def data(self): return self._data def mark_empty(self): if not self.optional: raise FieldError('cannot be blank') self.is_empty = True if callable(self.default): self._data = self.default() else: self._data = self.default @abstractmethod def process_data(self, value): self.condition.check(self) class UnboundField: def __init__(self, field_cls, *args, **kwargs): self.field_cls = field_cls self.args = args self.kwargs = kwargs self.kwargs['init'] = True def bind(self): return self.field_cls(*self.args, **self.kwargs) class StringField(Field): _default = '' def process_data(self, value): if not isinstance(value, str): raise FieldError('invalid string') self._data = value super().process_data(value) class IntegerField(Field): _default = 0 def process_data(self, value): if not isinstance(value, int): raise FieldError('invalid integer') self._data = value super().process_data(value) class FloatField(Field): _default = 0.0 def process_data(self, value): if not isinstance(value, float): raise FieldError('invalid float') self._data = value super().process_data(value) class BooleanField(Field): def process_data(self, value): if not isinstance(value, bool): raise FieldError('invalid boolean') self._data = value super().process_data(value) class DateTimeField(Field): def __init__(self, pattern='%Y-%m-%dT%H:%M:%S', **kwargs): super().__init__(**kwargs) self.pattern = pattern def process_data(self, value): try: self._data = datetime.datetime.strptime(value, self.pattern) except ValueError: raise FieldError('invalid datetime') super().process_data(value) class DateField(DateTimeField): def __init__(self, pattern='%Y-%m-%d', **kwargs): super().__init__(pattern, **kwargs) def process_data(self, value): try: self._data = datetime.datetime.strptime(value, self.pattern).date() except ValueError: raise FieldError('invalid date') super().process_data(value) class TimeField(DateTimeField): def __init__(self, pattern='%H:%M:%S', **kwargs): super().__init__(pattern, **kwargs) def process_jsondata(self, value): try: self._data = datetime.datetime.strptime(value, self.pattern).time() except ValueError: raise FieldError('invalid time') super().process_data(value) class EnumField(Field): def __init__(self, enum_class, **kwargs): super().__init__(**kwargs) self.enum_class = enum_class def process_data(self, value): try: enum_obj = self.enum_class[value] except KeyError: raise FieldError('invalid enum') self._data = enum_obj super().process_data(value) class BytesField(Field): def __init__(self, length, **kwargs): super().__init__(**kwargs) self.length = length def process_data(self, value): try: self.data = base64.decodebytes(value) except (ValueError, TypeError): raise FieldError('invalid base64 string') if len(self.data) != self.length: raise FieldError('invalid length') super().process_data(value) class ListField(Field): def __init__(self, field, default=list, **kwargs): self.field = field self.data_ = None super().__init__(default=default, **kwargs) @property def data(self): if not self.data_: self.data_ = [field.data for field in self._data] return self.data_ def process_data(self, value): if not isinstance(value, list): raise FieldError('invalid list') self._data = list() e = FieldError() for i, val in enumerate(value): field = self.field.bind() try: field.process_data(val) except FieldError as e_: e[i] = e_.error self._data.append(field) if e: raise e super().process_data(value) class SetField(Field): def __init__(self, field, default=set, **kwargs): self.field = field self.data_ = None super().__init__(default=default, **kwargs) @property def data(self): if not self.data_: self.data_ = {field.data for field in self._data} return self.data_ def process_data(self, value): if not isinstance(value, list): raise FieldError('invalid list') self._data = set() e = FieldError() for i, val in enumerate(set(value)): field = self.field.bind() try: field.process_data(val) except FieldError as e_: e[i] = e_.error self._data.add(field) if e: raise e super().process_data(value) class SubForm(Field): def __init__(self, form, **kwargs): self.form = form kwargs.pop('condition', None) super().__init__(**kwargs) def process_data(self, value): try: self.form.process(jsondata=value) except FormError as e_: e = FieldError() if e_.error: e['error'] = e_.error if e_.f_errors: e['f_errors'] = e_.f_errors raise e self._data = {name: self.form[name] for name in self.form.fields}
2.828125
3
napari/layers/_source.py
napari/napari-gui
7
7210
<gh_stars>1-10 from __future__ import annotations from contextlib import contextmanager from contextvars import ContextVar from typing import Optional, Tuple from magicgui.widgets import FunctionGui from pydantic import BaseModel class Source(BaseModel): """An object to store the provenance of a layer. Parameters ---------- path: str, optional filpath/url associated with layer reader_plugin: str, optional name of reader plugin that loaded the file (if applicable) sample: Tuple[str, str], optional Tuple of (sample_plugin, sample_name), if layer was loaded via `viewer.open_sample`. widget: FunctionGui, optional magicgui widget, if the layer was added via a magicgui widget. """ path: Optional[str] = None reader_plugin: Optional[str] = None sample: Optional[Tuple[str, str]] = None widget: Optional[FunctionGui] = None class Config: arbitrary_types_allowed = True frozen = True def __deepcopy__(self, memo): """Custom deepcopy implementation. this prevents deep copy. `Source` doesn't really need to be copied (i.e. if we deepcopy a layer, it essentially has the same `Source`). Moreover, deepcopying a widget is challenging, and maybe odd anyway. """ return self # layer source context management _LAYER_SOURCE: ContextVar[dict] = ContextVar('_LAYER_SOURCE', default={}) @contextmanager def layer_source(**source_kwargs): """Creates context in which all layers will be given `source_kwargs`. The module-level variable `_LAYER_SOURCE` holds a set of key-value pairs that can be used to create a new `Source` object. Any routine in napari that may result in the creation of a new layer (such as opening a file, using a particular plugin, or calling a magicgui widget) can use this context manager to declare that any layers created within the context result from a specific source. (This applies even if the layer isn't "directly" created in the context, but perhaps in some sub-function within the context). `Layer.__init__` will call :func:`current_source`, to query the current state of the `_LAYER_SOURCE` variable. Contexts may be stacked, meaning a given layer.source can reflect the actions of multiple events (for instance, an `open_sample` call that in turn resulted in a `reader_plugin` opening a file). However, the "deepest" context will "win" in the case where multiple calls to `layer_source` provide conflicting values. Parameters ---------- **source_kwargs keys/values should be valid parameters for :class:`Source`. Examples -------- >>> with layer_source(path='file.ext', reader_plugin='plugin'): # doctest: +SKIP ... points = some_function_that_creates_points() ... >>> assert points.source == Source(path='file.ext', reader_plugin='plugin') # doctest: +SKIP """ token = _LAYER_SOURCE.set({**_LAYER_SOURCE.get(), **source_kwargs}) try: yield finally: _LAYER_SOURCE.reset(token) def current_source(): """Get the current layer :class:`Source` (inferred from context). The main place this function is used is in :meth:`Layer.__init__`. """ return Source(**_LAYER_SOURCE.get())
2.484375
2
tests/unit/test_BaseDirection.py
vpalex999/project-mars
0
7211
<filename>tests/unit/test_BaseDirection.py import pytest import src.constants as cnst from src.directions import BaseDirection @pytest.fixture def base_direction(): return BaseDirection() def test_init_BaseDirection(base_direction): assert isinstance(base_direction, BaseDirection) def test_current_direction_is(base_direction): assert base_direction.current == cnst.NORTH @pytest.mark.parametrize(["turn_func", "expected_direction"], [ # turn_left (lambda f: f.turn_left(), cnst.WEST), (lambda f: f.turn_left().turn_left(), cnst.SOUTH), (lambda f: f.turn_left().turn_left().turn_left(), cnst.EAST), (lambda f: f.turn_left().turn_left().turn_left().turn_left(), cnst.NORTH), (lambda f: f.turn_left().turn_left().turn_left().turn_left().turn_left(), cnst.WEST), # turn_right() (lambda f: f.turn_right(), cnst.EAST), (lambda f: f.turn_right().turn_right(), cnst.SOUTH), (lambda f: f.turn_right().turn_right().turn_right(), cnst.WEST), (lambda f: f.turn_right().turn_right().turn_right().turn_right(), cnst.NORTH), (lambda f: f.turn_right().turn_right().turn_right().turn_right().turn_right(), cnst.EAST), # any combinations (lambda f: f.turn_left().turn_right(), cnst.NORTH), (lambda f: f.turn_left().turn_left().turn_right(), cnst.WEST), (lambda f: f.turn_left().turn_right().turn_left(), cnst.WEST), (lambda f: f.turn_left().turn_right().turn_left().turn_right().turn_right(), cnst.EAST), ] ) def test_turn_direction(base_direction, turn_func, expected_direction): turn_func(base_direction) assert base_direction.current == expected_direction
2.9375
3
OpenCV-Computer-Vision-Examples-with-Python-A-Complete-Guide-for-Dummies-master/Source Code/opencv_operations/draw-circles.py
Payal197bhadra/ComputerVision
6
7212
import numpy as np import cv2 #define a canvas of size 300x300 px, with 3 channels (R,G,B) and data type as 8 bit unsigned integer canvas = np.zeros((300,300,3), dtype ="uint8") #define color #draw a circle #arguments are canvas/image, midpoint, radius, color, thickness(optional) #display in cv2 window green = (0,255,0) cv2.circle(canvas,(100,100), 10, green) cv2.imshow("Single circle", canvas) cv2.waitKey(0) # draw concentric white circles # calculate the center point of canvas # generate circles using for loop # clearning the canvas canvas = np.zeros((300,300,3), dtype ="uint8") white = (255,255,255) (centerX, centerY) = (canvas.shape[1]//2, canvas.shape[0]//2) for r in range(0,175,25): cv2.circle(canvas, (centerX,centerY), r, white) cv2.imshow("concentric circles", canvas) cv2.waitKey(0) # generate random radius, center point, color # draw circles in for loop canvas = np.zeros((300,300,3), dtype ="uint8") for i in range(0, 25): radius = np.random.randint(5, high = 200) color = np.random.randint(0, high = 256, size = (3,)).tolist() pt = np.random.randint(0, high = 300, size = (2,)) cv2.circle(canvas, tuple(pt), radius, color, -1) cv2.imshow("Canvas", canvas) cv2.waitKey(0)
3.46875
3
tmux_cssh/main.py
cscutcher/tmux_cssh
0
7213
<gh_stars>0 # -*- coding: utf-8 -*- """ Main Script """ import logging import argh import sarge import tmuxp DEV_LOGGER = logging.getLogger(__name__) def get_current_session(server=None): ''' Seems to be no easy way to grab current attached session in tmuxp so this provides a simple alternative. ''' server = tmuxp.Server() if server is None else server session_name = sarge.get_stdout('tmux display-message -p "#S"').strip() session = server.findWhere({"session_name": session_name}) return session @argh.arg('commands', nargs='+') def clustered_window(commands): ''' Creates new clustered window on session with commands. A clustered session is one where you operate on all panes/commands at once using the synchronized-panes option. :param commands: Sequence of commands. Each one will run in its own pane. ''' session = get_current_session() window = session.new_window() # Create additional panes while len(window.panes) < len(commands): window.panes[-1].split_window() for pane, command in zip(window.panes, commands): pane.send_keys(command) window.select_layout('tiled') window.set_window_option('synchronize-panes', 'on') return window @argh.arg('hosts', nargs='+') def clustered_ssh(hosts): ''' Creates new cluster window with an ssh connection to each host. A clustered session is one where you operate on all panes/commands at once using the synchronized-panes option. :param hosts: Sequence of hosts to connect to. ''' return clustered_window( ['ssh \'{}\''.format(host) for host in hosts])
2.84375
3
nautobot_capacity_metrics/management/commands/__init__.py
david-kn/nautobot-plugin-capacity-metrics
6
7214
"""Additional Django management commands added by nautobot_capacity_metrics plugin."""
1.078125
1
nptweak/__init__.py
kmedian/nptweak
0
7215
<reponame>kmedian/nptweak<filename>nptweak/__init__.py<gh_stars>0 from .to_2darray import to_2darray
1.0625
1
resources/models/Image.py
sphildreth/roadie-python
0
7216
import io from PIL import Image as PILImage from sqlalchemy import Column, ForeignKey, LargeBinary, Index, Integer, String from resources.models.ModelBase import Base class Image(Base): # If this is used then the image is stored in the database image = Column(LargeBinary(length=16777215), default=None) # If this is used then the image is remote and this is the url url = Column(String(500)) caption = Column(String(100)) # This is a PhotoHash of the image for assistance in deduping signature = Column(String(50)) artistId = Column(Integer, ForeignKey("artist.id"), index=True) releaseId = Column(Integer, ForeignKey("release.id"), index=True) def averageHash(self): try: hash_size = 8 # Open the image, resize it and convert it to black & white. image = PILImage.open(io.BytesIO(self.image)).resize((hash_size, hash_size), PILImage.ANTIALIAS).convert( 'L') pixels = list(image.getdata()) # Compute the hash based on each pixels value compared to the average. avg = sum(pixels) / len(pixels) bits = "".join(map(lambda pixel: '1' if pixel > avg else '0', pixels)) hashformat = "0{hashlength}x".format(hashlength=hash_size ** 2 // 4) return int(bits, 2).__format__(hashformat) except: return None def __unicode__(self): return self.caption def __str__(self): return self.caption or self.signature
2.640625
3
arch2vec/search_methods/reinforce_darts.py
gabrielasuchopar/arch2vec
0
7217
import os import sys import argparse import json import random import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from arch2vec.models.pretraining_nasbench101 import configs from arch2vec.utils import load_json, preprocessing, one_hot_darts from arch2vec.preprocessing.gen_isomorphism_graphs import process from arch2vec.models.model import Model from torch.distributions import MultivariateNormal from arch2vec.darts.cnn.train_search import Train class Env(object): def __init__(self, name, seed, cfg, data_path=None, save=False): self.name = name self.seed = seed self.model = Model(input_dim=args.input_dim, hidden_dim=args.hidden_dim, latent_dim=args.dim, num_hops=args.hops, num_mlp_layers=args.mlps, dropout=args.dropout, **cfg['GAE']).cuda() self.dir_name = 'pretrained/dim-{}'.format(args.dim) if not os.path.exists(os.path.join(self.dir_name, 'model-darts.pt')): exit() self.model.load_state_dict(torch.load(os.path.join(self.dir_name, 'model-darts.pt').format(args.dim))['model_state']) self.visited = {} self.features = [] self.genotype = [] self.embedding = {} self._reset(data_path, save) def _reset(self, data_path, save): if not save: print("extract arch2vec on DARTS search space ...") dataset = load_json(data_path) print("length of the dataset: {}".format(len(dataset))) self.f_path = os.path.join(self.dir_name, 'arch2vec-darts.pt') if os.path.exists(self.f_path): print('{} is already saved'.format(self.f_path)) exit() print('save to {}'.format(self.f_path)) counter = 0 self.model.eval() for k, v in dataset.items(): adj = torch.Tensor(v[0]).unsqueeze(0).cuda() ops = torch.Tensor(one_hot_darts(v[1])).unsqueeze(0).cuda() adj, ops, prep_reverse = preprocessing(adj, ops, **cfg['prep']) with torch.no_grad(): x, _ = self.model._encoder(ops, adj) self.embedding[counter] = {'feature': x.squeeze(0).mean(dim=0).cpu(), 'genotype': process(v[2])} print("{}/{}".format(counter, len(dataset))) counter += 1 torch.save(self.embedding, self.f_path) print("finished arch2vec extraction") exit() else: self.f_path = os.path.join(self.dir_name, 'arch2vec-darts.pt') print("load arch2vec from: {}".format(self.f_path)) self.embedding = torch.load(self.f_path) for ind in range(len(self.embedding)): self.features.append(self.embedding[ind]['feature']) self.genotype.append(self.embedding[ind]['genotype']) self.features = torch.stack(self.features, dim=0) print('loading finished. pretrained embeddings shape: {}'.format(self.features.shape)) def get_init_state(self): """ :return: 1 x dim """ rand_indices = random.randint(0, self.features.shape[0]) self.visited[rand_indices] = True return self.features[rand_indices], self.genotype[rand_indices] def step(self, action): """ action: 1 x dim self.features. N x dim """ dist = torch.norm(self.features - action.cpu(), dim=1) knn = (-1 * dist).topk(dist.shape[0]) min_dist, min_idx = knn.values, knn.indices count = 0 while True: if len(self.visited) == dist.shape[0]: print("CANNOT FIND IN THE DATASET!") exit() if min_idx[count].item() not in self.visited: self.visited[min_idx[count].item()] = True break count += 1 return self.features[min_idx[count].item()], self.genotype[min_idx[count].item()] class Policy(nn.Module): def __init__(self, hidden_dim1, hidden_dim2): super(Policy, self).__init__() self.fc1 = nn.Linear(hidden_dim1, hidden_dim2) self.fc2 = nn.Linear(hidden_dim2, hidden_dim1) self.saved_log_probs = [] self.rewards = [] def forward(self, input): x = F.relu(self.fc1(input)) out = self.fc2(x) return out class Policy_LSTM(nn.Module): def __init__(self, hidden_dim1, hidden_dim2): super(Policy_LSTM, self).__init__() self.lstm = torch.nn.LSTMCell(input_size=hidden_dim1, hidden_size=hidden_dim2) self.fc = nn.Linear(hidden_dim2, hidden_dim1) self.saved_log_probs = [] self.rewards = [] self.hx = None self.cx = None def forward(self, input): if self.hx is None and self.cx is None: self.hx, self.cx = self.lstm(input) else: self.hx, self.cx = self.lstm(input, (self.hx, self.cx)) mean = self.fc(self.hx) return mean def select_action(state, policy): """ MVN based action selection. :param state: 1 x dim :param policy: policy network :return: selected action: 1 x dim """ mean = policy(state.view(1, state.shape[0])) mvn = MultivariateNormal(mean, torch.eye(state.shape[0]).cuda()) action = mvn.sample() policy.saved_log_probs.append(torch.mean(mvn.log_prob(action))) return action def finish_episode(policy, optimizer): R = 0 policy_loss = [] returns = [] for r in policy.rewards: R = r + args.gamma * R returns.append(R) returns = torch.Tensor(policy.rewards) val, indices = torch.sort(returns) print("sorted validation reward:", val) returns = returns - args.objective for log_prob, R in zip(policy.saved_log_probs, returns): policy_loss.append(-log_prob * R) optimizer.zero_grad() policy_loss = torch.mean(torch.stack(policy_loss, dim=0)) print("average reward: {}, policy loss: {}".format(sum(policy.rewards)/len(policy.rewards), policy_loss.item())) policy_loss.backward() optimizer.step() del policy.rewards[:] del policy.saved_log_probs[:] policy.hx = None policy.cx = None def query(counter, seed, genotype, epochs): trainer = Train() rewards, rewards_test = trainer.main(counter, seed, genotype, epochs=epochs, train_portion=args.train_portion, save=args.logging_path) val_sum = 0 for epoch, val_acc in rewards: val_sum += val_acc val_avg = val_sum / len(rewards) return val_avg / 100. , rewards_test[-1][-1] / 100. def reinforce_search(env): """ implementation of arch2vec-RL on DARTS Search Space """ policy = Policy_LSTM(args.dim, 128).cuda() optimizer = optim.Adam(policy.parameters(), lr=1e-2) counter = 0 MAX_BUDGET = args.max_budgets state, genotype = env.get_init_state() CURR_BEST_VALID = 0 CURR_BEST_TEST = 0 CURR_BEST_GENOTYPE = None test_trace = [] valid_trace = [] genotype_trace = [] counter_trace = [] while counter < MAX_BUDGET: for c in range(args.bs): state = state.cuda() action = select_action(state, policy) state, genotype = env.step(action) reward, reward_test = query(counter=counter, seed=args.seed, genotype=genotype, epochs=args.inner_epochs) policy.rewards.append(reward) counter += 1 print('counter: {}, validation reward: {}, test reward: {}, genotype: {}'.format(counter, reward, reward_test, genotype)) if reward > CURR_BEST_VALID: CURR_BEST_VALID = reward CURR_BEST_TEST = reward_test CURR_BEST_GENOTYPE = genotype valid_trace.append(float(CURR_BEST_VALID)) test_trace.append(float(CURR_BEST_TEST)) genotype_trace.append(CURR_BEST_GENOTYPE) counter_trace.append(counter) if counter >= MAX_BUDGET: break finish_episode(policy, optimizer) res = dict() res['validation_acc'] = valid_trace res['test_acc'] = test_trace res['genotype'] = genotype_trace res['counter'] = counter_trace save_path = os.path.join(args.output_path, 'dim{}'.format(args.dim)) if not os.path.exists(save_path): os.mkdir(save_path) print('save to {}'.format(save_path)) fh = open(os.path.join(save_path, 'run_{}_arch2vec_model_darts.json'.format(args.seed)), 'w') json.dump(res, fh) fh.close() if __name__ == '__main__': parser = argparse.ArgumentParser(description="arch2vec-REINFORCE") parser.add_argument("--gamma", type=float, default=0.8, help="discount factor (default 0.99)") parser.add_argument("--seed", type=int, default=3, help="random seed") parser.add_argument('--cfg', type=int, default=4, help='configuration (default: 4)') parser.add_argument('--bs', type=int, default=16, help='batch size') parser.add_argument('--objective', type=float, default=0.95, help='rl baseline') parser.add_argument('--max_budgets', type=int, default=100, help='number of queries') parser.add_argument('--inner_epochs', type=int, default=50, help='inner loop epochs') parser.add_argument('--train_portion', type=float, default=0.9, help='train/validation split portion') parser.add_argument('--output_path', type=str, default='rl', help='rl/bo (default: rl)') parser.add_argument('--logging_path', type=str, default='', help='search logging path') parser.add_argument('--saved_arch2vec', action="store_true", default=False) parser.add_argument('--input_dim', type=int, default=11) parser.add_argument('--hidden_dim', type=int, default=128) parser.add_argument('--dim', type=int, default=16, help='feature dimension (default: 16)') parser.add_argument('--hops', type=int, default=5) parser.add_argument('--mlps', type=int, default=2) parser.add_argument('--dropout', type=float, default=0.3) args = parser.parse_args() cfg = configs[args.cfg] env = Env('REINFORCE', args.seed, cfg, data_path='data/data_darts_counter600000.json', save=args.saved_arch2vec) torch.manual_seed(args.seed) reinforce_search(env)
2.34375
2
setup.py
mentaal/r_map
0
7218
<reponame>mentaal/r_map """A setuptools based setup module. See: https://packaging.python.org/en/latest/distributing.html https://github.com/pypa/sampleproject """ # Always prefer setuptools over distutils from setuptools import setup, find_packages # To use a consistent encoding from codecs import open from os import path here = path.abspath(path.dirname(__file__)) # Get the long description from the README file with open(path.join(here, 'README.md'), encoding='utf-8') as f: long_description = f.read() # Arguments marked as "Required" below must be included for upload to PyPI. # Fields marked as "Optional" may be commented out. setup( name='r_map', # Required version='0.9.0', # Required description='A data structure for working with register map information', # Required long_description=long_description, # Optional long_description_content_type='text/markdown', # Optional (see note above) url='https://github.com/mentaal/r_map', # Optional # This should be your name or the name of the organization which owns the # project. author='<NAME>', # Optional # This should be a valid email address corresponding to the author listed # above. author_email='<EMAIL>', # Optional # Classifiers help users find your project by categorizing it. # # For a list of valid classifiers, see https://pypi.org/classifiers/ classifiers=[ # Optional # How mature is this project? Common values are # 3 - Alpha # 4 - Beta # 5 - Production/Stable 'Development Status :: 4 - Beta', # Indicate who your project is intended for 'Intended Audience :: Developers', 'Topic :: Software Development :: Build Tools', # Pick your license as you wish 'License :: OSI Approved :: MIT License', # Specify the Python versions you support here. In particular, ensure # that you indicate whether you support Python 2, Python 3 or both. 'Programming Language :: Python :: 3.6', ], keywords='register bitfield registermap', # Optional packages=['r_map'], python_requires='>=3.6', project_urls={ # Optional 'Bug Reports': 'https://github.com/mentaal/r_map/issues', 'Source': 'https://github.com/mentaal/r_map', }, )
1.546875
2
dont_worry.py
karianjahi/fahrer_minijob
0
7219
class Hey: def __init__(jose, name="mours"): jose.name = name def get_name(jose): return jose.name class Person(object): def __init__(self, name, phone): self.name = name self.phone = phone class Teenager(Person): def __init__(self, *args, **kwargs): self.website = kwargs.pop("website") super(Teenager, self).__init__(*args, **kwargs) if __name__ == "__main__": #print(Hey().get_name()) teen = Teenager("<NAME>", 924, "www.fowr.gd") print(teen.website)
3.5
4
tests/zoo/tree.py
dynalz/odmantic
486
7220
<reponame>dynalz/odmantic import enum from typing import Dict, List from odmantic.field import Field from odmantic.model import Model class TreeKind(str, enum.Enum): BIG = "big" SMALL = "small" class TreeModel(Model): name: str = Field(primary_key=True, default="<NAME> montagnes") average_size: float = Field(mongo_name="size") discovery_year: int kind: TreeKind genesis_continents: List[str] per_continent_density: Dict[str, float]
2.78125
3
adanet/core/estimator_test.py
eustomaqua/adanet
0
7221
"""Test AdaNet estimator single graph implementation. Copyright 2018 The AdaNet Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at https://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import json import os import time from absl import logging from absl.testing import parameterized from adanet import replay from adanet import tf_compat from adanet.core import testing_utils as tu from adanet.core.estimator import Estimator from adanet.core.evaluator import Evaluator from adanet.core.report_materializer import ReportMaterializer from adanet.distributed.placement import RoundRobinStrategy from adanet.ensemble import AllStrategy from adanet.ensemble import ComplexityRegularizedEnsembler from adanet.ensemble import GrowStrategy from adanet.ensemble import MixtureWeightType from adanet.ensemble import SoloStrategy from adanet.subnetwork import Builder from adanet.subnetwork import Generator from adanet.subnetwork import MaterializedReport from adanet.subnetwork import Report from adanet.subnetwork import SimpleGenerator from adanet.subnetwork import Subnetwork from adanet.subnetwork import TrainOpSpec import numpy as np import tensorflow as tf # pylint: disable=g-direct-tensorflow-import from tensorflow.python.eager import context from tensorflow.python.framework import test_util from tensorflow.python.tools import saved_model_utils # pylint: enable=g-direct-tensorflow-import from tensorflow_estimator.python.estimator.canned.head import _binary_logistic_head_with_sigmoid_cross_entropy_loss as binary_class_head_v1 from tensorflow_estimator.python.estimator.export import export from tensorflow_estimator.python.estimator.head import binary_class_head from tensorflow_estimator.python.estimator.head import multi_head as multi_head_lib from tensorflow_estimator.python.estimator.head import regression_head logging.set_verbosity(logging.INFO) XOR_FEATURES = [[1., 0.], [0., 0], [0., 1.], [1., 1.]] XOR_LABELS = [[1.], [0.], [1.], [0.]] class _DNNBuilder(Builder): """A simple DNN subnetwork builder.""" def __init__(self, name, learning_rate=.001, mixture_weight_learning_rate=.001, return_penultimate_layer=True, layer_size=1, subnetwork_chief_hooks=None, subnetwork_hooks=None, mixture_weight_chief_hooks=None, mixture_weight_hooks=None, seed=13): self._name = name self._learning_rate = learning_rate self._mixture_weight_learning_rate = mixture_weight_learning_rate self._return_penultimate_layer = return_penultimate_layer self._layer_size = layer_size self._subnetwork_chief_hooks = subnetwork_chief_hooks self._subnetwork_hooks = subnetwork_hooks self._mixture_weight_chief_hooks = mixture_weight_chief_hooks self._mixture_weight_hooks = mixture_weight_hooks self._seed = seed @property def name(self): return self._name def build_subnetwork(self, features, logits_dimension, training, iteration_step, summary, previous_ensemble=None): seed = self._seed if previous_ensemble: # Increment seed so different iterations don't learn the exact same thing. seed += 1 with tf_compat.v1.variable_scope("dnn"): persisted_tensors = {} with tf_compat.v1.variable_scope("hidden_layer"): w = tf_compat.v1.get_variable( shape=[2, self._layer_size], initializer=tf_compat.v1.glorot_uniform_initializer(seed=seed), name="weight") disjoint_op = tf.constant([1], name="disjoint_op") with tf_compat.v1.colocate_with(disjoint_op): # tests b/118865235 hidden_layer = tf.matmul(features["x"], w) if previous_ensemble: other_hidden_layer = previous_ensemble.weighted_subnetworks[ -1].subnetwork.persisted_tensors["hidden_layer"] hidden_layer = tf.concat([hidden_layer, other_hidden_layer], axis=1) # Use a leaky-relu activation so that gradients can flow even when # outputs are negative. Leaky relu has a non-zero slope when x < 0. # Otherwise success at learning is completely dependent on random seed. hidden_layer = tf.nn.leaky_relu(hidden_layer, alpha=.2) persisted_tensors["hidden_layer"] = hidden_layer if training: # This change will only be in the next iteration if # `freeze_training_graph` is `True`. persisted_tensors["hidden_layer"] = 2 * hidden_layer last_layer = hidden_layer with tf_compat.v1.variable_scope("logits"): logits = tf_compat.v1.layers.dense( hidden_layer, logits_dimension, kernel_initializer=tf_compat.v1.glorot_uniform_initializer(seed=seed)) summary.scalar("scalar", 3) batch_size = features["x"].get_shape().as_list()[0] summary.image("image", tf.ones([batch_size, 3, 3, 1])) with tf_compat.v1.variable_scope("nested"): summary.scalar("scalar", 5) return Subnetwork( last_layer=last_layer if self._return_penultimate_layer else logits, logits=logits, complexity=3, persisted_tensors=persisted_tensors, shared=persisted_tensors) def build_subnetwork_train_op(self, subnetwork, loss, var_list, labels, iteration_step, summary, previous_ensemble): optimizer = tf_compat.v1.train.GradientDescentOptimizer( learning_rate=self._learning_rate) train_op = optimizer.minimize(loss, var_list=var_list) if not self._subnetwork_hooks: return train_op return TrainOpSpec(train_op, self._subnetwork_chief_hooks, self._subnetwork_hooks) def build_mixture_weights_train_op(self, loss, var_list, logits, labels, iteration_step, summary): optimizer = tf_compat.v1.train.GradientDescentOptimizer( learning_rate=self._mixture_weight_learning_rate) train_op = optimizer.minimize(loss, var_list=var_list) if not self._mixture_weight_hooks: return train_op return TrainOpSpec(train_op, self._mixture_weight_chief_hooks, self._mixture_weight_hooks) def build_subnetwork_report(self): return Report( hparams={"layer_size": self._layer_size}, attributes={"complexity": tf.constant(3, dtype=tf.int32)}, metrics={ "moo": (tf.constant(3, dtype=tf.int32), tf.constant(3, dtype=tf.int32)) }) class _SimpleBuilder(Builder): """A simple subnetwork builder that takes feature_columns.""" def __init__(self, name, feature_columns, seed=42): self._name = name self._feature_columns = feature_columns self._seed = seed @property def name(self): return self._name def build_subnetwork(self, features, logits_dimension, training, iteration_step, summary, previous_ensemble=None): seed = self._seed if previous_ensemble: # Increment seed so different iterations don't learn the exact same thing. seed += 1 with tf_compat.v1.variable_scope("simple"): input_layer = tf_compat.v1.feature_column.input_layer( features=features, feature_columns=self._feature_columns) last_layer = input_layer with tf_compat.v1.variable_scope("logits"): logits = tf_compat.v1.layers.dense( last_layer, logits_dimension, kernel_initializer=tf_compat.v1.glorot_uniform_initializer(seed=seed)) return Subnetwork( last_layer=last_layer, logits=logits, complexity=1, persisted_tensors={}, ) def build_subnetwork_train_op(self, subnetwork, loss, var_list, labels, iteration_step, summary, previous_ensemble): optimizer = tf_compat.v1.train.GradientDescentOptimizer(learning_rate=.001) return optimizer.minimize(loss, var_list=var_list) def build_mixture_weights_train_op(self, loss, var_list, logits, labels, iteration_step, summary): optimizer = tf_compat.v1.train.GradientDescentOptimizer(learning_rate=.001) return optimizer.minimize(loss, var_list=var_list) class _NanLossBuilder(Builder): """A subnetwork builder always produces a NaN loss.""" @property def name(self): return "nan" def build_subnetwork(self, features, logits_dimension, training, iteration_step, summary, previous_ensemble=None): logits = tf_compat.v1.layers.dense( features["x"], logits_dimension, kernel_initializer=tf_compat.v1.glorot_uniform_initializer( seed=42)) * np.nan return Subnetwork(last_layer=logits, logits=logits, complexity=0) def build_subnetwork_train_op(self, subnetwork, loss, var_list, labels, iteration_step, summary, previous_ensemble): return tf.no_op() class _LinearBuilder(Builder): """A simple linear subnetwork builder.""" def __init__(self, name, mixture_weight_learning_rate=.001, seed=42): self._name = name self._mixture_weight_learning_rate = mixture_weight_learning_rate self._seed = seed @property def name(self): return self._name def build_subnetwork(self, features, logits_dimension, training, iteration_step, summary, previous_ensemble=None): logits = tf_compat.v1.layers.dense( features["x"], logits_dimension, kernel_initializer=tf_compat.v1.glorot_uniform_initializer( seed=self._seed)) return Subnetwork( last_layer=features["x"], logits=logits, complexity=1, persisted_tensors={}, ) def build_subnetwork_train_op(self, subnetwork, loss, var_list, labels, iteration_step, summary, previous_ensemble): optimizer = tf_compat.v1.train.GradientDescentOptimizer(learning_rate=.001) return optimizer.minimize(loss, var_list=var_list) def build_mixture_weights_train_op(self, loss, var_list, logits, labels, iteration_step, summary): optimizer = tf_compat.v1.train.GradientDescentOptimizer( learning_rate=self._mixture_weight_learning_rate) return optimizer.minimize(loss, var_list=var_list) class _FakeGenerator(Generator): """Generator that exposed generate_candidates' arguments.""" def __init__(self, spy_fn, subnetwork_builders): """Checks the arguments passed to generate_candidates. Args: spy_fn: (iteration_number, previous_ensemble_reports, all_reports) -> (). Spies on the arguments passed to generate_candidates whenever it is called. subnetwork_builders: List of `Builder`s to return in every call to generate_candidates. """ self._spy_fn = spy_fn self._subnetwork_builders = subnetwork_builders def generate_candidates(self, previous_ensemble, iteration_number, previous_ensemble_reports, all_reports): """Spys on arguments passed in, then returns a fixed list of candidates.""" del previous_ensemble # unused self._spy_fn(iteration_number, previous_ensemble_reports, all_reports) return self._subnetwork_builders class _WidthLimitingDNNBuilder(_DNNBuilder): """Limits the width of the previous_ensemble.""" def __init__(self, name, learning_rate=.001, mixture_weight_learning_rate=.001, return_penultimate_layer=True, layer_size=1, width_limit=None, seed=13): if width_limit is not None and width_limit == 0: raise ValueError("width_limit must be at least 1 or None.") super(_WidthLimitingDNNBuilder, self).__init__(name, learning_rate, mixture_weight_learning_rate, return_penultimate_layer, layer_size, seed) self._width_limit = width_limit def prune_previous_ensemble(self, previous_ensemble): indices = range(len(previous_ensemble.weighted_subnetworks)) if self._width_limit is None: return indices if self._width_limit == 1: return [] return indices[-self._width_limit + 1:] # pylint: disable=invalid-unary-operand-type class _FakeEvaluator(object): """Fakes an `adanet.Evaluator`.""" def __init__(self, input_fn): self._input_fn = input_fn @property def input_fn(self): """Return the input_fn.""" return self._input_fn @property def steps(self): """Return the number of evaluation steps.""" return 1 @property def metric_name(self): """Returns the name of the metric being optimized.""" return "adanet_loss" @property def objective_fn(self): """Always returns the minimize objective.""" return np.nanargmin def evaluate(self, sess, ensemble_metrics): """Abstract method to be overridden in subclasses.""" del sess, ensemble_metrics # Unused. raise NotImplementedError class _AlwaysLastEvaluator(_FakeEvaluator): def evaluate(self, sess, ensemble_metrics): """Always makes the last loss the smallest.""" del sess # Unused. losses = [np.inf] * len(ensemble_metrics) losses[-1] = 0. return losses class _AlwaysSecondToLastEvaluator(_FakeEvaluator): def evaluate(self, sess, ensemble_metrics): """Always makes the second to last loss the smallest.""" del sess # Unused. losses = [np.inf] * len(ensemble_metrics) losses[-2] = 0. return losses class _EarlyStoppingHook(tf_compat.SessionRunHook): """Hook that immediately requests training to stop.""" def after_run(self, run_context, run_values): run_context.request_stop() class EstimatorTest(tu.AdanetTestCase): @parameterized.named_parameters( { "testcase_name": "one_step", "subnetwork_generator": SimpleGenerator([_DNNBuilder("dnn")]), "max_iteration_steps": 1, "steps": 1, "max_steps": None, "want_loss": 0.49899703, "want_iteration": 0, "want_global_step": 1, }, { "testcase_name": "none_max_iteration_steps", "subnetwork_generator": SimpleGenerator([_DNNBuilder("dnn")]), "max_iteration_steps": None, "steps": 300, "max_steps": None, "want_loss": 0.32487726, "want_iteration": 0, "want_global_step": 300, }, { "testcase_name": "single_builder_max_steps", "subnetwork_generator": SimpleGenerator([_DNNBuilder("dnn")]), "max_iteration_steps": 200, "max_steps": 300, "want_loss": 0.32420248, "want_iteration": 1, "want_global_step": 300, }, { "testcase_name": "single_builder_steps", "subnetwork_generator": SimpleGenerator([_DNNBuilder("dnn")]), "max_iteration_steps": 200, "steps": 300, "max_steps": None, "want_loss": 0.32420248, "want_iteration": 1, "want_global_step": 300, }, { "testcase_name": "single_builder_two_max_iteration_fewer_max_steps", "subnetwork_generator": SimpleGenerator([_DNNBuilder("dnn")]), "max_iteration_steps": 200, "max_iterations": 2, "max_steps": 300, "want_loss": 0.32420248, "want_iteration": 1, "want_global_step": 300, }, { "testcase_name": "single_builder_no_bias", "subnetwork_generator": SimpleGenerator([_DNNBuilder("dnn")]), "max_iteration_steps": 200, "use_bias": False, "want_loss": 0.496736, "want_iteration": 1, "want_global_step": 300, }, { "testcase_name": "single_builder_subnetwork_hooks", "subnetwork_generator": SimpleGenerator([ _DNNBuilder( "dnn", subnetwork_chief_hooks=[ tu.ModifierSessionRunHook("chief_hook_var") ], subnetwork_hooks=[tu.ModifierSessionRunHook("hook_var")]) ]), "max_iteration_steps": 200, "use_bias": False, "want_loss": 0.496736, "want_iteration": 1, "want_global_step": 300, }, { "testcase_name": "single_builder_mixture_weight_hooks", "subnetwork_generator": SimpleGenerator([ _DNNBuilder( "dnn", mixture_weight_chief_hooks=[ tu.ModifierSessionRunHook("chief_hook_var") ], mixture_weight_hooks=[ tu.ModifierSessionRunHook("hook_var") ]) ]), "max_iteration_steps": 200, "use_bias": False, "want_loss": 0.496736, "want_iteration": 1, "want_global_step": 300, }, { "testcase_name": "single_builder_scalar_mixture_weight", "subnetwork_generator": SimpleGenerator( [_DNNBuilder("dnn", return_penultimate_layer=False)]), "max_iteration_steps": 200, "mixture_weight_type": MixtureWeightType.SCALAR, "want_loss": 0.32317898, "want_iteration": 1, "want_global_step": 300, }, { "testcase_name": "single_builder_vector_mixture_weight", "subnetwork_generator": SimpleGenerator( [_DNNBuilder("dnn", return_penultimate_layer=False)]), "max_iteration_steps": 200, "mixture_weight_type": MixtureWeightType.VECTOR, "want_loss": 0.32317898, "want_iteration": 1, "want_global_step": 300, }, { "testcase_name": "single_builder_replicate_ensemble_in_training", "subnetwork_generator": SimpleGenerator([_DNNBuilder("dnn")]), "replicate_ensemble_in_training": True, "max_iteration_steps": 200, "max_steps": 300, "want_loss": 0.32420215, "want_iteration": 1, "want_global_step": 300, }, { "testcase_name": "single_builder_with_hook", "subnetwork_generator": SimpleGenerator([_DNNBuilder("dnn")]), "max_iteration_steps": 200, "hooks": [tu.ModifierSessionRunHook()], "want_loss": 0.32420248, "want_iteration": 1, "want_global_step": 300, }, { "testcase_name": "high_max_iteration_steps", "subnetwork_generator": SimpleGenerator([_DNNBuilder("dnn")]), "max_iteration_steps": 500, "want_loss": 0.32487726, "want_iteration": 0, "want_global_step": 300, }, { "testcase_name": "two_builders", "subnetwork_generator": SimpleGenerator( [_DNNBuilder("dnn"), _DNNBuilder("dnn2", seed=99)]), "max_iteration_steps": 200, "want_loss": 0.27713922, "want_iteration": 1, "want_global_step": 300, }, { "testcase_name": "two_builders_different_layer_sizes", "subnetwork_generator": SimpleGenerator( [_DNNBuilder("dnn"), _DNNBuilder("dnn2", layer_size=3)]), "max_iteration_steps": 200, "want_loss": 0.29696745, "want_iteration": 1, "want_global_step": 300, }, { "testcase_name": "two_builders_one_max_iteration_none_steps_and_none_max_steps", "subnetwork_generator": SimpleGenerator( [_DNNBuilder("dnn"), _DNNBuilder("dnn2", layer_size=3)]), "max_iteration_steps": 200, "max_iterations": 1, "steps": None, "max_steps": None, "want_loss": 0.35249719, "want_iteration": 0, "want_global_step": 200, }, { "testcase_name": "two_builders_one_max_iteration_two_hundred_steps", "subnetwork_generator": SimpleGenerator( [_DNNBuilder("dnn"), _DNNBuilder("dnn2", layer_size=3)]), "max_iteration_steps": 200, "max_iterations": 1, "steps": 300, "max_steps": None, "want_loss": 0.35249719, "want_iteration": 0, "want_global_step": 200, }, { "testcase_name": "two_builders_two_max_iteration_none_steps_and_none_max_steps", "subnetwork_generator": SimpleGenerator( [_DNNBuilder("dnn"), _DNNBuilder("dnn2", layer_size=3)]), "max_iteration_steps": 200, "max_iterations": 2, "steps": None, "max_steps": None, "want_loss": 0.26503286, "want_iteration": 1, "want_global_step": 400, }, { "testcase_name": "two_builders_different_layer_sizes_three_iterations", "subnetwork_generator": SimpleGenerator( [_DNNBuilder("dnn"), _DNNBuilder("dnn2", layer_size=3)]), "max_iteration_steps": 100, "want_loss": 0.26433355, "want_iteration": 2, "want_global_step": 300, }, { "testcase_name": "two_dnn_export_subnetworks", "subnetwork_generator": SimpleGenerator( [_DNNBuilder("dnn"), _DNNBuilder("dnn2", layer_size=3)]), "max_iteration_steps": 100, "want_loss": 0.26433355, "want_iteration": 2, "want_global_step": 300, "export_subnetworks": True, }, { "testcase_name": "width_limiting_builder_no_pruning", "subnetwork_generator": SimpleGenerator([_WidthLimitingDNNBuilder("no_pruning")]), "max_iteration_steps": 75, "want_loss": 0.32001898, "want_iteration": 3, "want_global_step": 300, }, { "testcase_name": "width_limiting_builder_some_pruning", "subnetwork_generator": SimpleGenerator( [_WidthLimitingDNNBuilder("some_pruning", width_limit=2)]), "max_iteration_steps": 75, "want_loss": 0.38592532, "want_iteration": 3, "want_global_step": 300, }, { "testcase_name": "width_limiting_builder_prune_all", "subnetwork_generator": SimpleGenerator( [_WidthLimitingDNNBuilder("prune_all", width_limit=1)]), "max_iteration_steps": 75, "want_loss": 0.43492866, "want_iteration": 3, "want_global_step": 300, }, { "testcase_name": "width_limiting_builder_mixed", "subnetwork_generator": SimpleGenerator([ _WidthLimitingDNNBuilder("no_pruning"), _WidthLimitingDNNBuilder("some_pruning", width_limit=2), _WidthLimitingDNNBuilder("prune_all", width_limit=1) ]), "max_iteration_steps": 75, "want_loss": 0.32001898, "want_iteration": 3, "want_global_step": 300, }, { "testcase_name": "evaluator_good_input", "subnetwork_generator": SimpleGenerator( [_DNNBuilder("dnn"), _DNNBuilder("dnn2", layer_size=3)]), "evaluator": Evaluator( input_fn=tu.dummy_input_fn([[1., 1.]], [[0.]]), steps=3), "max_iteration_steps": 200, "want_loss": 0.36189985, "want_iteration": 1, "want_global_step": 300, }, { "testcase_name": "evaluator_bad_input", "subnetwork_generator": SimpleGenerator( [_DNNBuilder("dnn"), _DNNBuilder("dnn2", layer_size=3)]), "evaluator": Evaluator( input_fn=tu.dummy_input_fn([[1., 1.]], [[1.]]), steps=3), "max_iteration_steps": 200, "want_loss": 0.29696745, "want_iteration": 1, "want_global_step": 300, }, { "testcase_name": "evaluator_always_last", "subnetwork_generator": SimpleGenerator([ _DNNBuilder("dnn"), _DNNBuilder("dnn2", layer_size=3), ]), "evaluator": _AlwaysLastEvaluator( input_fn=tu.dummy_input_fn([[1., 1.]], [[0.]])), "max_iteration_steps": None, "want_loss": 0.31389591, "want_iteration": 0, "want_global_step": 300, }, { "testcase_name": "evaluator_always_second_to_last", "subnetwork_generator": SimpleGenerator([ _DNNBuilder("dnn"), _DNNBuilder("dnn2", layer_size=3), ]), "evaluator": _AlwaysSecondToLastEvaluator( input_fn=tu.dummy_input_fn([[1., 1.]], [[0.]])), "max_iteration_steps": None, "want_loss": 0.32487726, "want_iteration": 0, "want_global_step": 300, }, { "testcase_name": "report_materializer", "subnetwork_generator": SimpleGenerator( [_DNNBuilder("dnn"), _DNNBuilder("dnn2", layer_size=3)]), "report_materializer": ReportMaterializer( input_fn=tu.dummy_input_fn([[1., 1.]], [[0.]]), steps=1), "max_iteration_steps": 200, "want_loss": 0.29696745, "want_iteration": 1, "want_global_step": 300, }, { "testcase_name": "all_strategy", "subnetwork_generator": SimpleGenerator( [_DNNBuilder("dnn"), _DNNBuilder("dnn2", layer_size=3)]), "ensemble_strategies": [AllStrategy()], "max_iteration_steps": 200, "want_loss": 0.29196805, "want_iteration": 1, "want_global_step": 300, }, { "testcase_name": "all_strategy_multiple_ensemblers", "subnetwork_generator": SimpleGenerator( [_DNNBuilder("dnn"), _DNNBuilder("dnn2", layer_size=3)]), "ensemble_strategies": [AllStrategy()], "ensemblers": [ ComplexityRegularizedEnsembler(), ComplexityRegularizedEnsembler(use_bias=True, name="with_bias") ], "max_iteration_steps": 200, "want_loss": 0.23053232, "want_iteration": 1, "want_global_step": 300, }, { "testcase_name": "solo_strategy", "subnetwork_generator": SimpleGenerator( [_DNNBuilder("dnn"), _DNNBuilder("dnn2", layer_size=3)]), "ensemble_strategies": [SoloStrategy()], "max_iteration_steps": 200, "want_loss": 0.35249719, "want_iteration": 1, "want_global_step": 300, }, { "testcase_name": "solo_strategy_three_iterations", "subnetwork_generator": SimpleGenerator( [_DNNBuilder("dnn"), _DNNBuilder("dnn2", layer_size=3)]), "ensemble_strategies": [SoloStrategy()], "max_iteration_steps": 100, "want_loss": 0.36163166, "want_iteration": 2, "want_global_step": 300, }, { "testcase_name": "multi_ensemble_strategy", "subnetwork_generator": SimpleGenerator( [_DNNBuilder("dnn"), _DNNBuilder("dnn2", layer_size=3)]), "ensemble_strategies": [AllStrategy(), GrowStrategy(), SoloStrategy()], "max_iteration_steps": 100, "want_loss": 0.24838975, "want_iteration": 2, "want_global_step": 300, }, { "testcase_name": "dataset_train_input_fn", "subnetwork_generator": SimpleGenerator([_DNNBuilder("dnn")]), # pylint: disable=g-long-lambda "train_input_fn": lambda: tf.data.Dataset.from_tensors(({ "x": XOR_FEATURES }, XOR_LABELS)).repeat(), # pylint: enable=g-long-lambda "max_iteration_steps": 100, "want_loss": 0.32219219, "want_iteration": 2, "want_global_step": 300, }, { "testcase_name": "early_stopping_subnetwork", "subnetwork_generator": SimpleGenerator([ _DNNBuilder("dnn"), _DNNBuilder("dnn2", subnetwork_hooks=[_EarlyStoppingHook()]) ]), "max_iteration_steps": 100, "max_steps": 200, "want_loss": 0.2958503, # Since one subnetwork stops after 1 step and global step is the # mean of iteration steps, global step will be incremented at half # the rate. "want_iteration": 3, "want_global_step": 200, }) def test_lifecycle(self, subnetwork_generator, want_loss, want_iteration, want_global_step, max_iteration_steps, mixture_weight_type=MixtureWeightType.MATRIX, evaluator=None, use_bias=True, replicate_ensemble_in_training=False, hooks=None, ensemblers=None, ensemble_strategies=None, max_steps=300, steps=None, report_materializer=None, train_input_fn=None, max_iterations=None, export_subnetworks=False): """Train entire estimator lifecycle using XOR dataset.""" run_config = tf.estimator.RunConfig(tf_random_seed=42) def _metric_fn(predictions): mean = tf.keras.metrics.Mean() mean.update_state(predictions["predictions"]) return {"keras_mean": mean} default_ensembler_kwargs = { "mixture_weight_type": mixture_weight_type, "mixture_weight_initializer": tf_compat.v1.zeros_initializer(), "warm_start_mixture_weights": True, "use_bias": use_bias, } if ensemblers: default_ensembler_kwargs = {} estimator = Estimator( head=tu.head(), subnetwork_generator=subnetwork_generator, max_iteration_steps=max_iteration_steps, evaluator=evaluator, ensemblers=ensemblers, ensemble_strategies=ensemble_strategies, report_materializer=report_materializer, replicate_ensemble_in_training=replicate_ensemble_in_training, metric_fn=_metric_fn, model_dir=self.test_subdirectory, config=run_config, max_iterations=max_iterations, export_subnetwork_logits=export_subnetworks, export_subnetwork_last_layer=export_subnetworks, **default_ensembler_kwargs) if not train_input_fn: train_input_fn = tu.dummy_input_fn(XOR_FEATURES, XOR_LABELS) # Train. estimator.train( input_fn=train_input_fn, steps=steps, max_steps=max_steps, hooks=hooks) # Evaluate. eval_results = estimator.evaluate( input_fn=train_input_fn, steps=10, hooks=hooks) logging.info("%s", eval_results) self.assertAlmostEqual(want_loss, eval_results["loss"], places=3) self.assertEqual(want_global_step, eval_results["global_step"]) self.assertEqual(want_iteration, eval_results["iteration"]) # Predict. predictions = estimator.predict( input_fn=tu.dataset_input_fn(features=[0., 0.], labels=None)) for prediction in predictions: self.assertIsNotNone(prediction["predictions"]) # Export SavedModel. def serving_input_fn(): """Input fn for serving export, starting from serialized example.""" serialized_example = tf_compat.v1.placeholder( dtype=tf.string, shape=(None), name="serialized_example") return tf.estimator.export.ServingInputReceiver( features={"x": tf.constant([[0., 0.]], name="serving_x")}, receiver_tensors=serialized_example) export_saved_model_fn = getattr(estimator, "export_saved_model", None) if not callable(export_saved_model_fn): export_saved_model_fn = estimator.export_savedmodel export_dir_base = os.path.join(self.test_subdirectory, "export") export_saved_model_fn( export_dir_base=export_dir_base, serving_input_receiver_fn=serving_input_fn) if export_subnetworks: saved_model = saved_model_utils.read_saved_model( os.path.join(export_dir_base, tf.io.gfile.listdir(export_dir_base)[0])) export_signature_def = saved_model.meta_graphs[0].signature_def self.assertIn("subnetwork_logits", export_signature_def.keys()) self.assertIn("subnetwork_last_layer", export_signature_def.keys()) @parameterized.named_parameters( { "testcase_name": "hash_bucket_with_one_hot", "feature_column": (tf.feature_column.indicator_column( categorical_column=( tf.feature_column.categorical_column_with_hash_bucket( key="human_names", hash_bucket_size=4, dtype=tf.string))) ), }, { "testcase_name": "vocab_list_with_one_hot", "feature_column": (tf.feature_column.indicator_column( categorical_column=( tf.feature_column.categorical_column_with_vocabulary_list( key="human_names", vocabulary_list=["alice", "bob"], dtype=tf.string)))), }, { "testcase_name": "hash_bucket_with_embedding", "feature_column": (tf.feature_column.embedding_column( categorical_column=( tf.feature_column.categorical_column_with_hash_bucket( key="human_names", hash_bucket_size=4, dtype=tf.string)), dimension=2)), }, { "testcase_name": "vocab_list_with_embedding", "feature_column": (tf.feature_column.embedding_column( categorical_column=( tf.feature_column.categorical_column_with_vocabulary_list( key="human_names", vocabulary_list=["alice", "bob"], dtype=tf.string)), dimension=2)), }) def test_categorical_columns(self, feature_column): def train_input_fn(): input_features = { "human_names": tf.constant([["alice"], ["bob"]], name="human_names") } input_labels = tf.constant([[1.], [0.]], name="starts_with_a") return input_features, input_labels report_materializer = ReportMaterializer(input_fn=train_input_fn, steps=1) estimator = Estimator( head=regression_head.RegressionHead(), subnetwork_generator=SimpleGenerator( [_SimpleBuilder(name="simple", feature_columns=[feature_column])]), report_materializer=report_materializer, mixture_weight_type=MixtureWeightType.MATRIX, mixture_weight_initializer=tf_compat.v1.zeros_initializer(), warm_start_mixture_weights=True, max_iteration_steps=1, use_bias=True, model_dir=self.test_subdirectory) estimator.train(input_fn=train_input_fn, max_steps=3) @parameterized.named_parameters( { "testcase_name": "no_subnetwork_generator", "subnetwork_generator": None, "max_iteration_steps": 100, "want_error": ValueError, }, { "testcase_name": "negative_max_iteration_steps", "subnetwork_generator": SimpleGenerator([_DNNBuilder("dnn")]), "max_iteration_steps": -1, "want_error": ValueError, }, { "testcase_name": "zero_max_iteration_steps", "subnetwork_generator": SimpleGenerator([_DNNBuilder("dnn")]), "max_iteration_steps": 0, "want_error": ValueError, }, { "testcase_name": "negative_max_iterations", "subnetwork_generator": SimpleGenerator([_DNNBuilder("dnn")]), "max_iteration_steps": 1, "max_iterations": -1, "want_error": ValueError, }, { "testcase_name": "zero_max_iterations", "subnetwork_generator": SimpleGenerator([_DNNBuilder("dnn")]), "max_iteration_steps": 1, "max_iterations": 0, "want_error": ValueError, }, { "testcase_name": "steps_and_max_steps", "subnetwork_generator": SimpleGenerator([_DNNBuilder("dnn")]), "max_iteration_steps": 1, "steps": 1, "max_steps": 1, "want_error": ValueError, }, { "testcase_name": "zero_steps", "subnetwork_generator": SimpleGenerator([_DNNBuilder("dnn")]), "max_iteration_steps": 1, "steps": 0, "max_steps": None, "want_error": ValueError, }, { "testcase_name": "nan_loss_builder", "subnetwork_generator": SimpleGenerator([_NanLossBuilder()]), "max_iteration_steps": 1, "max_steps": None, "want_error": tf_compat.v1.estimator.NanLossDuringTrainingError, }, { "testcase_name": "nan_loss_builder_first", "subnetwork_generator": SimpleGenerator([ _NanLossBuilder(), _DNNBuilder("dnn"), ]), "max_iteration_steps": 1, "max_steps": None, "want_error": tf_compat.v1.estimator.NanLossDuringTrainingError, }, { "testcase_name": "nan_loss_builder_last", "subnetwork_generator": SimpleGenerator([ _DNNBuilder("dnn"), _NanLossBuilder(), ]), "max_iteration_steps": 1, "max_steps": None, "want_error": tf_compat.v1.estimator.NanLossDuringTrainingError, }, ) def test_train_error(self, subnetwork_generator, max_iteration_steps, want_error, steps=None, max_steps=10, max_iterations=None): report_materializer = ReportMaterializer( input_fn=tu.dummy_input_fn([[1., 1.]], [[0.]]), steps=1) with self.assertRaises(want_error): estimator = Estimator( head=tu.head(), subnetwork_generator=subnetwork_generator, report_materializer=report_materializer, mixture_weight_type=MixtureWeightType.MATRIX, mixture_weight_initializer=tf_compat.v1.zeros_initializer(), warm_start_mixture_weights=True, max_iteration_steps=max_iteration_steps, use_bias=True, max_iterations=max_iterations, model_dir=self.test_subdirectory) train_input_fn = tu.dummy_input_fn([[1., 0.]], [[1.]]) estimator.train(input_fn=train_input_fn, steps=steps, max_steps=max_steps) def test_binary_head_asserts_are_disabled(self): """Tests b/140267630.""" subnetwork_generator = SimpleGenerator([ _DNNBuilder("dnn"), _NanLossBuilder(), ]) estimator = Estimator( head=binary_class_head_v1(), subnetwork_generator=subnetwork_generator, max_iteration_steps=10, model_dir=self.test_subdirectory) eval_input_fn = tu.dummy_input_fn([[1., 0.]], [[1.]]) estimator.evaluate(input_fn=eval_input_fn, steps=1) class KerasCNNBuilder(Builder): """Builds a CNN subnetwork for AdaNet.""" def __init__(self, learning_rate, seed=42): """Initializes a `SimpleCNNBuilder`. Args: learning_rate: The float learning rate to use. seed: The random seed. Returns: An instance of `SimpleCNNBuilder`. """ self._learning_rate = learning_rate self._seed = seed def build_subnetwork(self, features, logits_dimension, training, iteration_step, summary, previous_ensemble=None): """See `adanet.subnetwork.Builder`.""" seed = self._seed if previous_ensemble: seed += len(previous_ensemble.weighted_subnetworks) images = list(features.values())[0] images = tf.reshape(images, [-1, 2, 2, 1]) kernel_initializer = tf_compat.v1.keras.initializers.he_normal(seed=seed) x = tf.keras.layers.Conv2D( filters=3, kernel_size=1, padding="same", activation="relu", kernel_initializer=kernel_initializer)( images) x = tf.keras.layers.MaxPool2D(pool_size=2, strides=1)(x) x = tf.keras.layers.Flatten()(x) x = tf.keras.layers.Dense( units=3, activation="relu", kernel_initializer=kernel_initializer)( x) logits = tf_compat.v1.layers.Dense( units=1, activation=None, kernel_initializer=kernel_initializer)( x) complexity = tf.constant(1) return Subnetwork( last_layer=x, logits=logits, complexity=complexity, persisted_tensors={}) def build_subnetwork_train_op(self, subnetwork, loss, var_list, labels, iteration_step, summary, previous_ensemble=None): optimizer = tf_compat.v1.train.GradientDescentOptimizer(self._learning_rate) return optimizer.minimize(loss=loss, var_list=var_list) def build_mixture_weights_train_op(self, loss, var_list, logits, labels, iteration_step, summary): return tf.no_op() @property def name(self): return "simple_cnn" class EstimatorKerasLayersTest(tu.AdanetTestCase): def test_lifecycle(self): """Train entire estimator lifecycle using XOR dataset.""" run_config = tf.estimator.RunConfig(tf_random_seed=42) estimator = Estimator( head=tu.head(), subnetwork_generator=SimpleGenerator( [KerasCNNBuilder(learning_rate=.001)]), max_iteration_steps=3, evaluator=Evaluator( input_fn=tu.dummy_input_fn([[1., 1., .1, .1]], [[0.]]), steps=3), model_dir=self.test_subdirectory, config=run_config) xor_features = [[1., 0., 1., 0.], [0., 0., 0., 0.], [0., 1., 0., 1.], [1., 1., 1., 1.]] xor_labels = [[1.], [0.], [1.], [0.]] train_input_fn = tu.dummy_input_fn(xor_features, xor_labels) # Train. estimator.train(input_fn=train_input_fn, max_steps=9) # Evaluate. eval_results = estimator.evaluate(input_fn=train_input_fn, steps=3) logging.info("%s", eval_results) want_loss = 0.16915826 if tf_compat.version_greater_or_equal("1.10.0"): # After TF v1.10.0 the loss computed from a neural network using Keras # layers changed, however it is not clear why. want_loss = 0.26195815 self.assertAlmostEqual(want_loss, eval_results["loss"], places=3) # Predict. predictions = estimator.predict( input_fn=tu.dataset_input_fn(features=[0., 0., 0., 0.], labels=None)) for prediction in predictions: self.assertIsNotNone(prediction["predictions"]) # Export SavedModel. def serving_input_fn(): """Input fn for serving export, starting from serialized example.""" serialized_example = tf_compat.v1.placeholder( dtype=tf.string, shape=(None), name="serialized_example") return tf.estimator.export.ServingInputReceiver( features={"x": tf.constant([[0., 0., 0., 0.]], name="serving_x")}, receiver_tensors=serialized_example) export_saved_model_fn = getattr(estimator, "export_saved_model", None) if not callable(export_saved_model_fn): export_saved_model_fn = estimator.export_savedmodel export_saved_model_fn( export_dir_base=self.test_subdirectory, serving_input_receiver_fn=serving_input_fn) class MultiHeadBuilder(Builder): """Builds a subnetwork for AdaNet that uses dict labels.""" def __init__(self, learning_rate=.001, split_logits=False, seed=42): """Initializes a `LabelsDictBuilder`. Args: learning_rate: The float learning rate to use. split_logits: Whether to return a dict of logits or a single concatenated logits `Tensor`. seed: The random seed. Returns: An instance of `MultiHeadBuilder`. """ self._learning_rate = learning_rate self._split_logits = split_logits self._seed = seed def build_subnetwork(self, features, logits_dimension, training, iteration_step, summary, previous_ensemble=None): """See `adanet.subnetwork.Builder`.""" seed = self._seed if previous_ensemble: seed += len(previous_ensemble.weighted_subnetworks) kernel_initializer = tf_compat.v1.keras.initializers.he_normal(seed=seed) x = features["x"] logits = tf_compat.v1.layers.dense( x, units=logits_dimension, activation=None, kernel_initializer=kernel_initializer) if self._split_logits: # Return different logits, one for each head. logits1, logits2 = tf.split(logits, [1, 1], 1) logits = { "head1": logits1, "head2": logits2, } complexity = tf.constant(1) return Subnetwork( last_layer=logits, logits=logits, complexity=complexity, persisted_tensors={}) def build_subnetwork_train_op(self, subnetwork, loss, var_list, labels, iteration_step, summary, previous_ensemble=None): optimizer = tf_compat.v1.train.GradientDescentOptimizer(self._learning_rate) return optimizer.minimize(loss=loss, var_list=var_list) def build_mixture_weights_train_op(self, loss, var_list, logits, labels, iteration_step, summary): optimizer = tf_compat.v1.train.GradientDescentOptimizer(self._learning_rate) return optimizer.minimize(loss=loss, var_list=var_list) @property def name(self): return "multi_head" class EstimatorMultiHeadTest(tu.AdanetTestCase): @parameterized.named_parameters( { "testcase_name": "concatenated_logits", "builders": [MultiHeadBuilder()], "want_loss": 3.218, }, { "testcase_name": "split_logits_with_export_subnetworks", "builders": [MultiHeadBuilder(split_logits=True)], "want_loss": 3.224, "export_subnetworks": True, }, { "testcase_name": "split_logits", "builders": [MultiHeadBuilder(split_logits=True)], "want_loss": 3.224, }) def test_lifecycle(self, builders, want_loss, export_subnetworks=False): """Train entire estimator lifecycle using XOR dataset.""" run_config = tf.estimator.RunConfig(tf_random_seed=42) xor_features = [[1., 0., 1., 0.], [0., 0., 0., 0.], [0., 1., 0., 1.], [1., 1., 1., 1.]] xor_labels = [[1.], [0.], [1.], [0.]] def train_input_fn(): return { "x": tf.constant(xor_features) }, { "head1": tf.constant(xor_labels), "head2": tf.constant(xor_labels) } estimator = Estimator( head=multi_head_lib.MultiHead(heads=[ regression_head.RegressionHead( name="head1", loss_reduction=tf_compat.SUM_OVER_BATCH_SIZE), regression_head.RegressionHead( name="head2", loss_reduction=tf_compat.SUM_OVER_BATCH_SIZE), ]), subnetwork_generator=SimpleGenerator(builders), max_iteration_steps=3, evaluator=Evaluator(input_fn=train_input_fn, steps=1), model_dir=self.test_subdirectory, config=run_config, export_subnetwork_logits=export_subnetworks, export_subnetwork_last_layer=export_subnetworks) # Train. estimator.train(input_fn=train_input_fn, max_steps=9) # Evaluate. eval_results = estimator.evaluate(input_fn=train_input_fn, steps=3) self.assertAlmostEqual(want_loss, eval_results["loss"], places=3) # Predict. predictions = estimator.predict( input_fn=tu.dataset_input_fn(features=[0., 0., 0., 0.], labels=None)) for prediction in predictions: self.assertIsNotNone(prediction[("head1", "predictions")]) self.assertIsNotNone(prediction[("head2", "predictions")]) # Export SavedModel. def serving_input_fn(): """Input fn for serving export, starting from serialized example.""" serialized_example = tf_compat.v1.placeholder( dtype=tf.string, shape=(None), name="serialized_example") return tf.estimator.export.ServingInputReceiver( features={"x": tf.constant([[0., 0., 0., 0.]], name="serving_x")}, receiver_tensors=serialized_example) export_saved_model_fn = getattr(estimator, "export_saved_model", None) if not callable(export_saved_model_fn): export_saved_model_fn = estimator.export_savedmodel export_dir_base = os.path.join(self.test_subdirectory, "export") export_saved_model_fn( export_dir_base=export_dir_base, serving_input_receiver_fn=serving_input_fn) if export_subnetworks: saved_model = saved_model_utils.read_saved_model( os.path.join(export_dir_base, tf.io.gfile.listdir(export_dir_base)[0])) export_signature_def = saved_model.meta_graphs[0].signature_def self.assertIn("subnetwork_logits_head1", export_signature_def.keys()) self.assertIn("subnetwork_logits_head2", export_signature_def.keys()) self.assertIn("subnetwork_last_layer_head1", export_signature_def.keys()) self.assertIn("subnetwork_last_layer_head2", export_signature_def.keys()) class EstimatorCallingModelFnDirectlyTest(tu.AdanetTestCase): """Tests b/112108745. Warn users not to call model_fn directly.""" def test_calling_model_fn_directly(self): subnetwork_generator = SimpleGenerator([_DNNBuilder("dnn")]) report_materializer = ReportMaterializer( input_fn=tu.dummy_input_fn([[1., 1.]], [[0.]]), steps=1) estimator = Estimator( head=tu.head(), subnetwork_generator=subnetwork_generator, report_materializer=report_materializer, max_iteration_steps=3, use_bias=True, model_dir=self.test_subdirectory) model_fn = estimator.model_fn train_input_fn = tu.dummy_input_fn([[1., 0.]], [[1.]]) tf_compat.v1.train.create_global_step() features, labels = train_input_fn() with self.assertRaises(UserWarning): model_fn( features=features, mode=tf.estimator.ModeKeys.TRAIN, labels=labels, config={}) def test_calling_model_fn_directly_for_predict(self): with context.graph_mode(): subnetwork_generator = SimpleGenerator([_DNNBuilder("dnn")]) report_materializer = ReportMaterializer( input_fn=tu.dummy_input_fn([[1., 1.]], [[0.]]), steps=1) estimator = Estimator( head=tu.head(), subnetwork_generator=subnetwork_generator, report_materializer=report_materializer, max_iteration_steps=3, use_bias=True, model_dir=self.test_subdirectory) model_fn = estimator.model_fn train_input_fn = tu.dummy_input_fn([[1., 0.]], [[1.]]) tf_compat.v1.train.create_global_step() features, labels = train_input_fn() model_fn( features=features, mode=tf.estimator.ModeKeys.PREDICT, labels=labels, config=tf.estimator.RunConfig( save_checkpoints_steps=1, keep_checkpoint_max=3, model_dir=self.test_subdirectory, )) class EstimatorCheckpointTest(tu.AdanetTestCase): """Tests estimator checkpoints.""" @parameterized.named_parameters( { "testcase_name": "single_iteration", "max_iteration_steps": 3, "keep_checkpoint_max": 3, "want_num_checkpoints": 3, }, { "testcase_name": "single_iteration_keep_one", "max_iteration_steps": 3, "keep_checkpoint_max": 1, "want_num_checkpoints": 1, }, { "testcase_name": "three_iterations", "max_iteration_steps": 1, "keep_checkpoint_max": 3, "want_num_checkpoints": 3, }, { "testcase_name": "three_iterations_keep_one", "max_iteration_steps": 1, "keep_checkpoint_max": 1, "want_num_checkpoints": 1, }) def test_checkpoints(self, max_iteration_steps, keep_checkpoint_max, want_num_checkpoints, max_steps=3): config = tf.estimator.RunConfig( save_checkpoints_steps=1, keep_checkpoint_max=keep_checkpoint_max, ) subnetwork_generator = SimpleGenerator([_DNNBuilder("dnn")]) report_materializer = ReportMaterializer( input_fn=tu.dummy_input_fn([[1., 1.]], [[0.]]), steps=1) estimator = Estimator( head=tu.head(), subnetwork_generator=subnetwork_generator, report_materializer=report_materializer, mixture_weight_type=MixtureWeightType.MATRIX, mixture_weight_initializer=tf_compat.v1.zeros_initializer(), warm_start_mixture_weights=True, max_iteration_steps=max_iteration_steps, use_bias=True, config=config, model_dir=self.test_subdirectory) train_input_fn = tu.dummy_input_fn([[1., 0.]], [[1.]]) estimator.train(input_fn=train_input_fn, max_steps=max_steps) checkpoints = tf.io.gfile.glob( os.path.join(self.test_subdirectory, "*.meta")) self.assertEqual(want_num_checkpoints, len(checkpoints)) def _check_eventfile_for_keyword(keyword, dir_): """Checks event files for the keyword.""" tf_compat.v1.summary.FileWriterCache.clear() if not tf.io.gfile.exists(dir_): raise ValueError("Directory '{}' not found.".format(dir_)) # Get last `Event` written. filenames = os.path.join(dir_, "events*") event_paths = tf.io.gfile.glob(filenames) if not event_paths: raise ValueError("Path '{}' not found.".format(filenames)) for last_event in tf_compat.v1.train.summary_iterator(event_paths[-1]): if last_event.summary is not None: for value in last_event.summary.value: if keyword == value.tag: if value.HasField("simple_value"): return value.simple_value if value.HasField("image"): return (value.image.height, value.image.width, value.image.colorspace) if value.HasField("tensor"): return value.tensor.string_val raise ValueError("Keyword '{}' not found in path '{}'.".format( keyword, filenames)) class _FakeMetric(object): """A fake metric.""" def __init__(self, value, dtype): self._value = value self._dtype = dtype def to_metric(self): tensor = tf.convert_to_tensor(value=self._value, dtype=self._dtype) return (tensor, tensor) class _EvalMetricsHead(object): """A fake head with the given evaluation metrics.""" def __init__(self, fake_metrics): self._fake_metrics = fake_metrics @property def logits_dimension(self): return 1 def create_estimator_spec(self, features, mode, logits, labels=None, train_op_fn=None): del features # Unused metric_ops = None if self._fake_metrics: metric_ops = {} for k, fake_metric in self._fake_metrics.items(): metric_ops[k] = fake_metric.to_metric() return tf.estimator.EstimatorSpec( mode=mode, predictions=logits, loss=tf.reduce_mean(input_tensor=labels - logits), eval_metric_ops=metric_ops, train_op=train_op_fn(1)) def _mean_keras_metric(value): """Returns the mean of given value as a Keras metric.""" mean = tf.keras.metrics.Mean() mean.update_state(value) return mean class EstimatorSummaryWriterTest(tu.AdanetTestCase): """Test that Tensorboard summaries get written correctly.""" @tf_compat.skip_for_tf2 def test_summaries(self): """Tests that summaries are written to candidate directory.""" run_config = tf.estimator.RunConfig( tf_random_seed=42, log_step_count_steps=2, save_summary_steps=2) subnetwork_generator = SimpleGenerator( [_DNNBuilder("dnn", mixture_weight_learning_rate=.001)]) report_materializer = ReportMaterializer( input_fn=tu.dummy_input_fn([[1., 1.]], [[0.]]), steps=1) estimator = Estimator( head=tu.head(), subnetwork_generator=subnetwork_generator, report_materializer=report_materializer, mixture_weight_type=MixtureWeightType.MATRIX, mixture_weight_initializer=tf_compat.v1.zeros_initializer(), warm_start_mixture_weights=True, max_iteration_steps=10, use_bias=True, config=run_config, model_dir=self.test_subdirectory) train_input_fn = tu.dummy_input_fn([[1., 0.]], [[1.]]) estimator.train(input_fn=train_input_fn, max_steps=3) ensemble_loss = 1. self.assertAlmostEqual( ensemble_loss, _check_eventfile_for_keyword("loss", self.test_subdirectory), places=3) self.assertIsNotNone( _check_eventfile_for_keyword("global_step/sec", self.test_subdirectory)) self.assertEqual( 0., _check_eventfile_for_keyword("iteration/adanet/iteration", self.test_subdirectory)) subnetwork_subdir = os.path.join(self.test_subdirectory, "subnetwork/t0_dnn") self.assertAlmostEqual( 3., _check_eventfile_for_keyword("scalar", subnetwork_subdir), places=3) self.assertEqual((3, 3, 1), _check_eventfile_for_keyword("image/image/0", subnetwork_subdir)) self.assertAlmostEqual( 5., _check_eventfile_for_keyword("nested/scalar", subnetwork_subdir), places=3) ensemble_subdir = os.path.join( self.test_subdirectory, "ensemble/t0_dnn_grow_complexity_regularized") self.assertAlmostEqual( ensemble_loss, _check_eventfile_for_keyword( "adanet_loss/adanet/adanet_weighted_ensemble", ensemble_subdir), places=3) self.assertAlmostEqual( 0., _check_eventfile_for_keyword( "complexity_regularization/adanet/adanet_weighted_ensemble", ensemble_subdir), places=3) self.assertAlmostEqual( 0., _check_eventfile_for_keyword( "mixture_weight_norms/adanet/" "adanet_weighted_ensemble/subnetwork_0", ensemble_subdir), places=3) @tf_compat.skip_for_tf2 def test_disable_summaries(self): """Tests that summaries can be disabled for ensembles and subnetworks.""" run_config = tf.estimator.RunConfig( tf_random_seed=42, log_step_count_steps=2, save_summary_steps=2) subnetwork_generator = SimpleGenerator( [_DNNBuilder("dnn", mixture_weight_learning_rate=.001)]) report_materializer = ReportMaterializer( input_fn=tu.dummy_input_fn([[1., 1.]], [[0.]]), steps=1) estimator = Estimator( head=tu.head(), subnetwork_generator=subnetwork_generator, report_materializer=report_materializer, mixture_weight_type=MixtureWeightType.MATRIX, mixture_weight_initializer=tf_compat.v1.zeros_initializer(), warm_start_mixture_weights=True, max_iteration_steps=10, use_bias=True, config=run_config, model_dir=self.test_subdirectory, enable_ensemble_summaries=False, enable_subnetwork_summaries=False, ) train_input_fn = tu.dummy_input_fn([[1., 0.]], [[1.]]) estimator.train(input_fn=train_input_fn, max_steps=3) ensemble_loss = 1. self.assertAlmostEqual( ensemble_loss, _check_eventfile_for_keyword("loss", self.test_subdirectory), places=3) self.assertIsNotNone( _check_eventfile_for_keyword("global_step/sec", self.test_subdirectory)) self.assertEqual( 0., _check_eventfile_for_keyword("iteration/adanet/iteration", self.test_subdirectory)) subnetwork_subdir = os.path.join(self.test_subdirectory, "subnetwork/t0_dnn") with self.assertRaises(ValueError): _check_eventfile_for_keyword("scalar", subnetwork_subdir) with self.assertRaises(ValueError): _check_eventfile_for_keyword("image/image/0", subnetwork_subdir) with self.assertRaises(ValueError): _check_eventfile_for_keyword("nested/scalar", subnetwork_subdir) ensemble_subdir = os.path.join( self.test_subdirectory, "ensemble/t0_dnn_grow_complexity_regularized") with self.assertRaises(ValueError): _check_eventfile_for_keyword( "adanet_loss/adanet/adanet_weighted_ensemble", ensemble_subdir) with self.assertRaises(ValueError): _check_eventfile_for_keyword( "complexity_regularization/adanet/adanet_weighted_ensemble", ensemble_subdir) with self.assertRaises(ValueError): _check_eventfile_for_keyword( "mixture_weight_norms/adanet/" "adanet_weighted_ensemble/subnetwork_0", ensemble_subdir) # pylint: disable=g-long-lambda @parameterized.named_parameters( { "testcase_name": "none_metrics", "head": _EvalMetricsHead(None), "want_summaries": [], "want_loss": -1.791, }, { "testcase_name": "metrics_fn", "head": _EvalMetricsHead(None), "metric_fn": lambda predictions: { "avg": tf_compat.v1.metrics.mean(predictions) }, "want_summaries": ["avg"], "want_loss": -1.791, }, { "testcase_name": "keras_metrics_fn", "head": _EvalMetricsHead(None), "metric_fn": lambda predictions: { "avg": _mean_keras_metric(predictions) }, "want_summaries": ["avg"], "want_loss": -1.791, }, { "testcase_name": "empty_metrics", "head": _EvalMetricsHead({}), "want_summaries": [], "want_loss": -1.791, }, { "testcase_name": "evaluation_name", "head": _EvalMetricsHead({}), "evaluation_name": "continuous", "want_summaries": [], "want_loss": -1.791, "global_subdir": "eval_continuous", "subnetwork_subdir": "subnetwork/t0_dnn/eval_continuous", "ensemble_subdir": "ensemble/t0_dnn_grow_complexity_regularized/eval_continuous", }, { "testcase_name": "regression_head", "head": regression_head.RegressionHead( loss_reduction=tf_compat.SUM_OVER_BATCH_SIZE), "want_summaries": ["average_loss"], "want_loss": .256, }, { "testcase_name": "binary_classification_head", "head": binary_class_head.BinaryClassHead( loss_reduction=tf_compat.SUM_OVER_BATCH_SIZE), "learning_rate": .6, "want_summaries": ["average_loss", "accuracy", "recall"], "want_loss": 0.122, }, { "testcase_name": "all_metrics", "head": _EvalMetricsHead({ "float32": _FakeMetric(1., tf.float32), "float64": _FakeMetric(1., tf.float64), "serialized_summary": _FakeMetric( tf_compat.v1.Summary(value=[ tf_compat.v1.Summary.Value( tag="summary_tag", simple_value=1.) ]).SerializeToString(), tf.string), }), "want_summaries": [ "float32", "float64", "serialized_summary/0", ], "want_loss": -1.791, }) # pylint: enable=g-long-lambda def test_eval_metrics( self, head, want_loss, want_summaries, evaluation_name=None, metric_fn=None, learning_rate=.01, global_subdir="eval", subnetwork_subdir="subnetwork/t0_dnn/eval", ensemble_subdir="ensemble/t0_dnn_grow_complexity_regularized/eval"): """Test that AdaNet evaluation metrics get persisted correctly.""" seed = 42 run_config = tf.estimator.RunConfig(tf_random_seed=seed) subnetwork_generator = SimpleGenerator([ _DNNBuilder( "dnn", learning_rate=learning_rate, mixture_weight_learning_rate=0., layer_size=8, seed=seed) ]) estimator = Estimator( head=head, subnetwork_generator=subnetwork_generator, max_iteration_steps=100, metric_fn=metric_fn, config=run_config, model_dir=self.test_subdirectory) train_input_fn = tu.dummy_input_fn(XOR_FEATURES, XOR_LABELS) estimator.train(input_fn=train_input_fn, max_steps=100) metrics = estimator.evaluate( input_fn=train_input_fn, steps=1, name=evaluation_name) self.assertAlmostEqual(want_loss, metrics["loss"], places=3) global_subdir = os.path.join(self.test_subdirectory, global_subdir) subnetwork_subdir = os.path.join(self.test_subdirectory, subnetwork_subdir) ensemble_subdir = os.path.join(self.test_subdirectory, ensemble_subdir) self.assertAlmostEqual( want_loss, _check_eventfile_for_keyword("loss", subnetwork_subdir), places=3) for metric in want_summaries: self.assertIsNotNone( _check_eventfile_for_keyword(metric, subnetwork_subdir), msg="{} should be under 'eval'.".format(metric)) for dir_ in [global_subdir, ensemble_subdir]: self.assertAlmostEqual(metrics["loss"], _check_eventfile_for_keyword("loss", dir_)) self.assertEqual([b"| dnn |"], _check_eventfile_for_keyword( "architecture/adanet/ensembles/0", dir_)) for metric in want_summaries: self.assertTrue( _check_eventfile_for_keyword(metric, dir_) > 0., msg="{} should be under 'eval'.".format(metric)) class EstimatorMembersOverrideTest(tu.AdanetTestCase): """Tests b/77494544 fix.""" def test_assert_members_are_not_overridden(self): """Assert that AdaNet estimator does not break other estimators.""" config = tf.estimator.RunConfig() subnetwork_generator = SimpleGenerator([_DNNBuilder("dnn")]) report_materializer = ReportMaterializer( input_fn=tu.dummy_input_fn([[1., 1.]], [[0.]]), steps=1) adanet = Estimator( head=tu.head(), subnetwork_generator=subnetwork_generator, report_materializer=report_materializer, mixture_weight_type=MixtureWeightType.MATRIX, mixture_weight_initializer=tf_compat.v1.zeros_initializer(), warm_start_mixture_weights=True, max_iteration_steps=10, use_bias=True, config=config) self.assertIsNotNone(adanet) if hasattr(tf.estimator, "LinearEstimator"): estimator_fn = tf.estimator.LinearEstimator else: estimator_fn = tf.contrib.estimator.LinearEstimator linear = estimator_fn( head=tu.head(), feature_columns=[tf.feature_column.numeric_column("x")]) self.assertIsNotNone(linear) def _dummy_feature_dict_input_fn(features, labels): """Returns an input_fn that returns feature and labels `Tensors`.""" def _input_fn(): input_features = {} for key, feature in features.items(): input_features[key] = tf.constant(feature, name=key) input_labels = tf.constant(labels, name="labels") return input_features, input_labels return _input_fn class EstimatorDifferentFeaturesPerModeTest(tu.AdanetTestCase): """Tests b/109751254.""" @parameterized.named_parameters( { "testcase_name": "extra_train_features", "train_features": { "x": [[1., 0.]], "extra": [[1., 0.]], }, "eval_features": { "x": [[1., 0.]], }, "predict_features": { "x": [[1., 0.]], }, }, { "testcase_name": "extra_eval_features", "train_features": { "x": [[1., 0.]], }, "eval_features": { "x": [[1., 0.]], "extra": [[1., 0.]], }, "predict_features": { "x": [[1., 0.]], }, }, { "testcase_name": "extra_predict_features", "train_features": { "x": [[1., 0.]], }, "eval_features": { "x": [[1., 0.]], }, "predict_features": { "x": [[1., 0.]], "extra": [[1., 0.]], }, }) def test_different_features_per_mode(self, train_features, eval_features, predict_features): """Tests tests different numbers of features per mode.""" run_config = tf.estimator.RunConfig(tf_random_seed=42) subnetwork_generator = SimpleGenerator([_DNNBuilder("dnn")]) report_materializer = ReportMaterializer( input_fn=tu.dummy_input_fn([[1., 1.]], [[0.]]), steps=1) estimator = Estimator( head=tu.head(), subnetwork_generator=subnetwork_generator, report_materializer=report_materializer, mixture_weight_type=MixtureWeightType.MATRIX, mixture_weight_initializer=tf_compat.v1.zeros_initializer(), warm_start_mixture_weights=True, max_iteration_steps=1, use_bias=True, model_dir=self.test_subdirectory, config=run_config) labels = [[1.]] train_input_fn = _dummy_feature_dict_input_fn(train_features, labels) # Train. estimator.train(input_fn=train_input_fn, max_steps=2) # Evaluate. eval_input_fn = _dummy_feature_dict_input_fn(eval_features, labels) estimator.evaluate(input_fn=eval_input_fn, steps=1) # Predict. predict_input_fn = _dummy_feature_dict_input_fn(predict_features, None) estimator.predict(input_fn=predict_input_fn) # Export SavedModel. def serving_input_fn(): """Input fn for serving export, starting from serialized example.""" serialized_example = tf_compat.v1.placeholder( dtype=tf.string, shape=(None), name="serialized_example") features = {} for key, value in predict_features.items(): features[key] = tf.constant(value) return tf.estimator.export.ServingInputReceiver( features=features, receiver_tensors=serialized_example) export_saved_model_fn = getattr(estimator, "export_saved_model", None) if not callable(export_saved_model_fn): export_saved_model_fn = estimator.export_savedmodel export_saved_model_fn( export_dir_base=self.test_subdirectory, serving_input_receiver_fn=serving_input_fn) class EstimatorExportSavedModelTest(tu.AdanetTestCase): def test_export_saved_model_for_predict(self): """Tests SavedModel exporting functionality for predict (b/110435640).""" run_config = tf.estimator.RunConfig(tf_random_seed=42) subnetwork_generator = SimpleGenerator([_DNNBuilder("dnn")]) report_materializer = ReportMaterializer( input_fn=tu.dummy_input_fn([[1., 1.]], [[0.]]), steps=1) estimator = Estimator( head=tu.head(), subnetwork_generator=subnetwork_generator, report_materializer=report_materializer, mixture_weight_type=MixtureWeightType.MATRIX, mixture_weight_initializer=tf_compat.v1.zeros_initializer(), warm_start_mixture_weights=True, max_iteration_steps=1, use_bias=True, model_dir=self.test_subdirectory, config=run_config) features = {"x": [[1., 0.]]} labels = [[1.]] train_input_fn = _dummy_feature_dict_input_fn(features, labels) # Train. estimator.train(input_fn=train_input_fn, max_steps=2) # Export SavedModel. def serving_input_fn(): """Input fn for serving export, starting from serialized example.""" serialized_example = tf_compat.v1.placeholder( dtype=tf.string, shape=(None), name="serialized_example") for key, value in features.items(): features[key] = tf.constant(value) return tf.estimator.export.ServingInputReceiver( features=features, receiver_tensors=serialized_example) estimator.export_saved_model( export_dir_base=self.test_subdirectory, serving_input_receiver_fn=serving_input_fn, experimental_mode=tf.estimator.ModeKeys.PREDICT) @test_util.run_in_graph_and_eager_modes def test_export_saved_model_for_eval(self): """Tests SavedModel exporting functionality for eval (b/110991908).""" run_config = tf.estimator.RunConfig(tf_random_seed=42) subnetwork_generator = SimpleGenerator( [_DNNBuilder("dnn", layer_size=8, learning_rate=1.)]) estimator = Estimator( head=binary_class_head.BinaryClassHead(), subnetwork_generator=subnetwork_generator, max_iteration_steps=100, model_dir=self.test_subdirectory, config=run_config) train_input_fn = tu.dummy_input_fn(XOR_FEATURES, XOR_LABELS) # Train. estimator.train(input_fn=train_input_fn, max_steps=300) metrics = estimator.evaluate(input_fn=train_input_fn, steps=1) self.assertAlmostEqual(.067, metrics["average_loss"], places=3) self.assertAlmostEqual(1., metrics["recall"], places=3) self.assertAlmostEqual(1., metrics["accuracy"], places=3) # Export SavedModel. def serving_input_fn(): """Input fn for serving export, starting from serialized example.""" serialized_example = tf_compat.v1.placeholder( dtype=tf.string, shape=(None), name="serialized_example") return export.SupervisedInputReceiver( features={"x": tf.constant(XOR_FEATURES)}, labels=tf.constant(XOR_LABELS), receiver_tensors=serialized_example) export_dir_base = os.path.join(self.test_subdirectory, "export") try: estimator.export_saved_model( export_dir_base=export_dir_base, serving_input_receiver_fn=serving_input_fn, experimental_mode=tf.estimator.ModeKeys.EVAL) except AttributeError: pass try: tf.contrib.estimator.export_saved_model_for_mode( estimator, export_dir_base=export_dir_base, input_receiver_fn=serving_input_fn, mode=tf.estimator.ModeKeys.EVAL) except AttributeError: pass subdir = tf.io.gfile.listdir(export_dir_base)[0] with context.graph_mode(), self.test_session() as sess: meta_graph_def = tf_compat.v1.saved_model.loader.load( sess, ["eval"], os.path.join(export_dir_base, subdir)) signature_def = meta_graph_def.signature_def.get("eval") # Read zero metric. self.assertAlmostEqual( 0., sess.run( tf_compat.v1.saved_model.utils.get_tensor_from_tensor_info( signature_def.outputs["metrics/average_loss/value"])), places=3) # Run metric update op. sess.run((tf_compat.v1.saved_model.utils.get_tensor_from_tensor_info( signature_def.outputs["metrics/average_loss/update_op"]), tf_compat.v1.saved_model.utils.get_tensor_from_tensor_info( signature_def.outputs["metrics/accuracy/update_op"]), tf_compat.v1.saved_model.utils.get_tensor_from_tensor_info( signature_def.outputs["metrics/recall/update_op"]))) # Read metric again; it should no longer be zero. self.assertAlmostEqual( 0.067, sess.run( tf_compat.v1.saved_model.utils.get_tensor_from_tensor_info( signature_def.outputs["metrics/average_loss/value"])), places=3) self.assertAlmostEqual( 1., sess.run( tf_compat.v1.saved_model.utils.get_tensor_from_tensor_info( signature_def.outputs["metrics/recall/value"])), places=3) self.assertAlmostEqual( 1., sess.run( tf_compat.v1.saved_model.utils.get_tensor_from_tensor_info( signature_def.outputs["metrics/accuracy/value"])), places=3) def test_export_saved_model_always_uses_replication_placement(self): """Tests b/137675014.""" run_config = tf.estimator.RunConfig(tf_random_seed=42) subnetwork_generator = SimpleGenerator( [_DNNBuilder("dnn1"), _DNNBuilder("dnn2")]) estimator = Estimator( head=tu.head(), subnetwork_generator=subnetwork_generator, max_iteration_steps=1, model_dir=self.test_subdirectory, config=run_config, experimental_placement_strategy=RoundRobinStrategy()) features = {"x": [[1., 0.]]} labels = [[1.]] train_input_fn = _dummy_feature_dict_input_fn(features, labels) # Train. estimator.train(input_fn=train_input_fn, max_steps=2) # Export SavedModel. def serving_input_fn(): """Input fn for serving export, starting from serialized example.""" serialized_example = tf_compat.v1.placeholder( dtype=tf.string, shape=(None), name="serialized_example") tensor_features = {} for key, value in features.items(): tensor_features[key] = tf.constant(value) return tf.estimator.export.ServingInputReceiver( features=tensor_features, receiver_tensors=serialized_example) # Fake the number of PS replicas so RoundRobinStrategy will be used. estimator._config._num_ps_replicas = 2 # If we're still using RoundRobinStrategy, this call will fail by trying # to place ops on non-existent devices. # Check all three export methods. estimator.export_saved_model( export_dir_base=self.test_subdirectory, serving_input_receiver_fn=serving_input_fn, experimental_mode=tf.estimator.ModeKeys.PREDICT) try: estimator.export_savedmodel( export_dir_base=self.test_subdirectory, serving_input_receiver_fn=serving_input_fn) except AttributeError as error: # Log deprecation errors. logging.warning("Testing estimator#export_savedmodel: %s", error) estimator.experimental_export_all_saved_models( export_dir_base=self.test_subdirectory, input_receiver_fn_map={ tf.estimator.ModeKeys.PREDICT: serving_input_fn, }) class EstimatorReportTest(tu.AdanetTestCase): """Tests report generation and usage.""" def compare_report_lists(self, report_list1, report_list2): # Essentially assertEqual(report_list1, report_list2), but ignoring # the "metrics" attribute. def make_qualified_name(iteration_number, name): return "iteration_{}/{}".format(iteration_number, name) report_dict_1 = { make_qualified_name(report.iteration_number, report.name): report for report in report_list1 } report_dict_2 = { make_qualified_name(report.iteration_number, report.name): report for report in report_list2 } self.assertEqual(len(report_list1), len(report_list2)) for qualified_name in report_dict_1.keys(): report_1 = report_dict_1[qualified_name] report_2 = report_dict_2[qualified_name] self.assertEqual( report_1.hparams, report_2.hparams, msg="{} vs. {}".format(report_1, report_2)) self.assertEqual( report_1.attributes, report_2.attributes, msg="{} vs. {}".format(report_1, report_2)) self.assertEqual( report_1.included_in_final_ensemble, report_2.included_in_final_ensemble, msg="{} vs. {}".format(report_1, report_2)) for metric_key, metric_value in report_1.metrics.items(): self.assertEqual( metric_value, report_2.metrics[metric_key], msg="{} vs. {}".format(report_1, report_2)) @parameterized.named_parameters( { "testcase_name": "one_iteration_one_subnetwork", "subnetwork_builders": [_DNNBuilder("dnn", layer_size=1),], "num_iterations": 1, "want_materialized_iteration_reports": [[ MaterializedReport( iteration_number=0, name="dnn", hparams={"layer_size": 1}, attributes={ "complexity": 3, }, metrics={ "moo": 3, }, included_in_final_ensemble=True, ), ]], "want_previous_ensemble_reports": [], "want_all_reports": [], }, { "testcase_name": "one_iteration_three_subnetworks", "subnetwork_builders": [ # learning_rate is set to 0 for all but one Builder # to make sure that only one of them can learn. _DNNBuilder( "dnn_1", layer_size=1, learning_rate=0., mixture_weight_learning_rate=0.), _DNNBuilder( "dnn_2", layer_size=2, learning_rate=0., mixture_weight_learning_rate=0.), # fixing the match for dnn_3 to win. _DNNBuilder("dnn_3", layer_size=3), ], "num_iterations": 1, "want_materialized_iteration_reports": [[ MaterializedReport( iteration_number=0, name="dnn_1", hparams={"layer_size": 1}, attributes={ "complexity": 3, }, metrics={ "moo": 3, }, included_in_final_ensemble=False, ), MaterializedReport( iteration_number=0, name="dnn_2", hparams={"layer_size": 2}, attributes={ "complexity": 3, }, metrics={ "moo": 3, }, included_in_final_ensemble=False, ), MaterializedReport( iteration_number=0, name="dnn_3", hparams={"layer_size": 3}, attributes={ "complexity": 3, }, metrics={ "moo": 3, }, included_in_final_ensemble=True, ), ]], "want_previous_ensemble_reports": [], "want_all_reports": [], }, { "testcase_name": "three_iterations_one_subnetwork", "subnetwork_builders": [_DNNBuilder("dnn", layer_size=1),], "num_iterations": 3, "want_materialized_iteration_reports": [ [ MaterializedReport( iteration_number=0, name="dnn", hparams={"layer_size": 1}, attributes={ "complexity": 3, }, metrics={ "moo": 3, }, included_in_final_ensemble=True, ) ], [ MaterializedReport( iteration_number=1, name="previous_ensemble", hparams={}, attributes={}, metrics={}, included_in_final_ensemble=False, ), MaterializedReport( iteration_number=1, name="dnn", hparams={"layer_size": 1}, attributes={ "complexity": 3, }, metrics={ "moo": 3, }, included_in_final_ensemble=True, ), ], [ MaterializedReport( iteration_number=2, name="previous_ensemble", hparams={}, attributes={}, metrics={}, included_in_final_ensemble=False, ), MaterializedReport( iteration_number=2, name="dnn", hparams={"layer_size": 1}, attributes={ "complexity": 3, }, metrics={ "moo": 3, }, included_in_final_ensemble=True, ), ], ], "want_previous_ensemble_reports": [ MaterializedReport( iteration_number=0, name="dnn", hparams={"layer_size": 1}, attributes={ "complexity": 3, }, metrics={ "moo": 3, }, included_in_final_ensemble=True, ), MaterializedReport( iteration_number=1, name="dnn", hparams={"layer_size": 1}, attributes={ "complexity": 3, }, metrics={ "moo": 3, }, included_in_final_ensemble=True, ), ], "want_all_reports": [ MaterializedReport( iteration_number=0, name="dnn", hparams={"layer_size": 1}, attributes={ "complexity": 3, }, metrics={ "moo": 3, }, included_in_final_ensemble=True, ), MaterializedReport( iteration_number=1, name="previous_ensemble", hparams={}, attributes={}, metrics={}, included_in_final_ensemble=False, ), MaterializedReport( iteration_number=1, name="dnn", hparams={"layer_size": 1}, attributes={ "complexity": 3, }, metrics={ "moo": 3, }, included_in_final_ensemble=True, ), ], }, { "testcase_name": "three_iterations_three_subnetworks", "subnetwork_builders": [ # learning_rate is set to 0 for all but one Builder # to make sure that only one of them can learn. _DNNBuilder( "dnn_1", layer_size=1, learning_rate=0., mixture_weight_learning_rate=0.), _DNNBuilder( "dnn_2", layer_size=2, learning_rate=0., mixture_weight_learning_rate=0.), # fixing the match for dnn_3 to win in every iteration. _DNNBuilder("dnn_3", layer_size=3), ], "num_iterations": 3, "want_materialized_iteration_reports": [ [ MaterializedReport( iteration_number=0, name="dnn_1", hparams={"layer_size": 1}, attributes={ "complexity": 3, }, metrics={ "moo": 3, }, included_in_final_ensemble=False, ), MaterializedReport( iteration_number=0, name="dnn_2", hparams={"layer_size": 2}, attributes={ "complexity": 3, }, metrics={ "moo": 3, }, included_in_final_ensemble=False, ), MaterializedReport( iteration_number=0, name="dnn_3", hparams={"layer_size": 3}, attributes={ "complexity": 3, }, metrics={ "moo": 3, }, included_in_final_ensemble=True, ), ], [ MaterializedReport( iteration_number=1, name="previous_ensemble", hparams={}, attributes={}, metrics={}, included_in_final_ensemble=False, ), MaterializedReport( iteration_number=1, name="dnn_1", hparams={"layer_size": 1}, attributes={ "complexity": 3, }, metrics={ "moo": 3, }, included_in_final_ensemble=False, ), MaterializedReport( iteration_number=1, name="dnn_2", hparams={"layer_size": 2}, attributes={ "complexity": 3, }, metrics={ "moo": 3, }, included_in_final_ensemble=False, ), MaterializedReport( iteration_number=1, name="dnn_3", hparams={"layer_size": 3}, attributes={ "complexity": 3, }, metrics={ "moo": 3, }, included_in_final_ensemble=True, ), ], [ MaterializedReport( iteration_number=2, name="previous_ensemble", hparams={}, attributes={}, metrics={}, included_in_final_ensemble=False, ), MaterializedReport( iteration_number=2, name="dnn_1", hparams={"layer_size": 1}, attributes={ "complexity": 3, }, metrics={ "moo": 3, }, included_in_final_ensemble=False, ), MaterializedReport( iteration_number=2, name="dnn_2", hparams={"layer_size": 2}, attributes={ "complexity": 3, }, metrics={ "moo": 3, }, included_in_final_ensemble=False, ), MaterializedReport( iteration_number=2, name="dnn_3", hparams={"layer_size": 3}, attributes={ "complexity": 3, }, metrics={ "moo": 3, }, included_in_final_ensemble=True, ), ], ], "want_previous_ensemble_reports": [ MaterializedReport( iteration_number=0, name="dnn_3", hparams={"layer_size": 3}, attributes={ "complexity": 3, }, metrics={ "moo": 3, }, included_in_final_ensemble=True, ), MaterializedReport( iteration_number=1, name="dnn_3", hparams={"layer_size": 3}, attributes={ "complexity": 3, }, metrics={ "moo": 3, }, included_in_final_ensemble=True, ), ], "want_all_reports": [ MaterializedReport( iteration_number=0, name="dnn_1", hparams={"layer_size": 1}, attributes={ "complexity": 3, }, metrics={ "moo": 3, }, included_in_final_ensemble=False, ), MaterializedReport( iteration_number=0, name="dnn_2", hparams={"layer_size": 2}, attributes={ "complexity": 3, }, metrics={ "moo": 3, }, included_in_final_ensemble=False, ), MaterializedReport( iteration_number=0, name="dnn_3", hparams={"layer_size": 3}, attributes={ "complexity": 3, }, metrics={ "moo": 3, }, included_in_final_ensemble=True, ), MaterializedReport( iteration_number=1, name="previous_ensemble", hparams={}, attributes={}, metrics={}, included_in_final_ensemble=False, ), MaterializedReport( iteration_number=1, name="dnn_1", hparams={"layer_size": 1}, attributes={ "complexity": 3, }, metrics={ "moo": 3, }, included_in_final_ensemble=False, ), MaterializedReport( iteration_number=1, name="dnn_2", hparams={"layer_size": 2}, attributes={ "complexity": 3, }, metrics={ "moo": 3, }, included_in_final_ensemble=False, ), MaterializedReport( iteration_number=1, name="dnn_3", hparams={"layer_size": 3}, attributes={ "complexity": 3, }, metrics={ "moo": 3, }, included_in_final_ensemble=True, ), ], }, ) def test_report_generation_and_usage(self, subnetwork_builders, num_iterations, want_materialized_iteration_reports, want_previous_ensemble_reports, want_all_reports): # Stores the iteration_number, previous_ensemble_reports and all_reports # arguments in the self._iteration_reports dictionary, overwriting what # was seen in previous iterations. spied_iteration_reports = {} def _spy_fn(iteration_number, previous_ensemble_reports, all_reports): spied_iteration_reports[iteration_number] = { "previous_ensemble_reports": previous_ensemble_reports, "all_reports": all_reports, } subnetwork_generator = _FakeGenerator( spy_fn=_spy_fn, subnetwork_builders=subnetwork_builders) max_iteration_steps = 5 max_steps = max_iteration_steps * num_iterations + 1 train_input_fn = tu.dummy_input_fn([[1., 0.]], [[1.]]) estimator = Estimator( head=tu.head(), subnetwork_generator=subnetwork_generator, mixture_weight_type=MixtureWeightType.MATRIX, mixture_weight_initializer=tf_compat.v1.zeros_initializer(), warm_start_mixture_weights=True, max_iteration_steps=max_iteration_steps, use_bias=True, report_materializer=ReportMaterializer( input_fn=train_input_fn, steps=1), model_dir=self.test_subdirectory) report_accessor = estimator._report_accessor estimator.train(input_fn=train_input_fn, max_steps=max_steps) materialized_iteration_reports = list( report_accessor.read_iteration_reports()) self.assertEqual(num_iterations, len(materialized_iteration_reports)) for i in range(num_iterations): want_materialized_reports = (want_materialized_iteration_reports[i]) materialized_reports = materialized_iteration_reports[i] self.compare_report_lists(want_materialized_reports, materialized_reports) # Compute argmin adanet loss. argmin_adanet_loss = 0 smallest_known_adanet_loss = float("inf") for j, materialized_subnetwork_report in enumerate(materialized_reports): if (smallest_known_adanet_loss > materialized_subnetwork_report.metrics["adanet_loss"]): smallest_known_adanet_loss = ( materialized_subnetwork_report.metrics["adanet_loss"]) argmin_adanet_loss = j # Check that the subnetwork with the lowest adanet loss is the one # that is included in the final ensemble. for j, materialized_reports in enumerate(materialized_reports): self.assertEqual(j == argmin_adanet_loss, materialized_reports.included_in_final_ensemble) # Check the arguments passed into the generate_candidates method of the # Generator. iteration_report = spied_iteration_reports[num_iterations - 1] self.compare_report_lists(want_previous_ensemble_reports, iteration_report["previous_ensemble_reports"]) self.compare_report_lists(want_all_reports, iteration_report["all_reports"]) class EstimatorForceGrowTest(tu.AdanetTestCase): """Tests the force_grow override. Uses linear subnetworks with the same seed. They will produce identical outputs, so unless the `force_grow` override is set, none of the new subnetworks will improve the AdaNet objective, and AdaNet will not add them to the ensemble. """ @parameterized.named_parameters( { "testcase_name": "one_builder_no_force_grow", "builders": [_LinearBuilder("linear", mixture_weight_learning_rate=0.)], "force_grow": False, "want_subnetworks": 1, }, { "testcase_name": "one_builder", "builders": [_LinearBuilder("linear", mixture_weight_learning_rate=0.)], "force_grow": True, "want_subnetworks": 2, }, { "testcase_name": "two_builders", "builders": [ _LinearBuilder("linear", mixture_weight_learning_rate=0.), _LinearBuilder("linear2", mixture_weight_learning_rate=0.) ], "force_grow": True, "want_subnetworks": 2, }, { "testcase_name": "two_builders_with_evaluator", "builders": [ _LinearBuilder("linear", mixture_weight_learning_rate=0.), _LinearBuilder("linear2", mixture_weight_learning_rate=0.) ], "force_grow": True, "evaluator": Evaluator( input_fn=tu.dummy_input_fn([[1., 1.]], [[0.]]), steps=1), "want_subnetworks": 3, }) def test_force_grow(self, builders, force_grow, want_subnetworks, evaluator=None): """Train entire estimator lifecycle using XOR dataset.""" run_config = tf.estimator.RunConfig(tf_random_seed=42) subnetwork_generator = SimpleGenerator(builders) estimator = Estimator( head=tu.head(), subnetwork_generator=subnetwork_generator, max_iteration_steps=1, evaluator=evaluator, force_grow=force_grow, model_dir=self.test_subdirectory, config=run_config) train_input_fn = tu.dummy_input_fn(XOR_FEATURES, XOR_LABELS) # Train for four iterations. estimator.train(input_fn=train_input_fn, max_steps=3) # Evaluate. eval_results = estimator.evaluate(input_fn=train_input_fn, steps=1) self.assertEqual( want_subnetworks, str(eval_results["architecture/adanet/ensembles"]).count(" linear ")) class EstimatorDebugTest(tu.AdanetTestCase): """Tests b/125483534. Detect NaNs in input_fns.""" # pylint: disable=g-long-lambda @parameterized.named_parameters( { "testcase_name": "nan_features", "head": regression_head.RegressionHead( name="y", loss_reduction=tf_compat.SUM_OVER_BATCH_SIZE), "input_fn": lambda: ({ "x": tf.math.log([[1., 0.]]) }, tf.zeros([1, 1])) }, { "testcase_name": "nan_label", "head": regression_head.RegressionHead( name="y", loss_reduction=tf_compat.SUM_OVER_BATCH_SIZE), "input_fn": lambda: ({ "x": tf.ones([1, 2]) }, tf.math.log([[0.]])) }, { "testcase_name": "nan_labels_dict", "head": multi_head_lib.MultiHead(heads=[ regression_head.RegressionHead( name="y", loss_reduction=tf_compat.SUM_OVER_BATCH_SIZE), ]), "input_fn": lambda: ({ "x": tf.ones([1, 2]) }, { "y": tf.math.log([[0.]]) }) }) # pylint: enable=g-long-lambda def test_nans_from_input_fn(self, head, input_fn): subnetwork_generator = SimpleGenerator([_DNNBuilder("dnn")]) estimator = Estimator( head=head, subnetwork_generator=subnetwork_generator, max_iteration_steps=3, model_dir=self.test_subdirectory, debug=True) with self.assertRaises(tf.errors.InvalidArgumentError): estimator.train(input_fn=input_fn, max_steps=3) class EstimatorEvaluateDuringTrainHookTest(tu.AdanetTestCase): """Tests b/129000842 with a hook that calls estimator.evaluate().""" def test_train(self): run_config = tf.estimator.RunConfig(tf_random_seed=42) subnetwork_generator = SimpleGenerator([_DNNBuilder("dnn")]) estimator = Estimator( head=tu.head(), subnetwork_generator=subnetwork_generator, max_iteration_steps=1, model_dir=self.test_subdirectory, config=run_config) train_input_fn = tu.dummy_input_fn(XOR_FEATURES, XOR_LABELS) class EvalTrainHook(tf.estimator.SessionRunHook): def end(self, session): estimator.evaluate(input_fn=train_input_fn, steps=1) # This should not infinite loop. estimator.train( input_fn=train_input_fn, max_steps=3, hooks=[EvalTrainHook()]) class CheckpointSaverHookDuringTrainingTest(tu.AdanetTestCase): """Tests b/139057887.""" def test_checkpoint_saver_hooks_not_decorated_during_training(self): run_config = tf.estimator.RunConfig(tf_random_seed=42) subnetwork_generator = SimpleGenerator([_DNNBuilder("dnn")]) estimator = Estimator( head=tu.head(), subnetwork_generator=subnetwork_generator, max_iteration_steps=1, model_dir=self.test_subdirectory, config=run_config) train_input_fn = tu.dummy_input_fn(XOR_FEATURES, XOR_LABELS) saver_hook = tf_compat.v1.train.CheckpointSaverHook( checkpoint_dir=self.test_subdirectory, save_steps=10) listener = tf_compat.v1.train.CheckpointSaverListener() estimator.train( input_fn=train_input_fn, max_steps=3, hooks=[saver_hook], saving_listeners=[listener]) # If CheckpointSaverHook was not recognized during training then all # saving_listeners would be attached to a default CheckpointSaverHook that # Estimator creates. self.assertLen(saver_hook._listeners, 1) self.assertIs(saver_hook._listeners[0], listener) class EstimatorTFLearnRunConfigTest(tu.AdanetTestCase): """Tests b/129483642 for tf.contrib.learn.RunConfig. Checks that TF_CONFIG is overwritten correctly when no cluster is specified in the RunConfig and the only task is of type chief. """ def test_train(self): try: run_config = tf.contrib.learn.RunConfig(tf_random_seed=42) # Removed in TF 1.15 (nightly). See # https://travis-ci.org/tensorflow/adanet/jobs/583471908 _ = run_config._session_creation_timeout_secs except AttributeError: self.skipTest("There is no tf.contrib in TF 2.0.") try: tf_config = { "task": { "type": "chief", "index": 0 }, } os.environ["TF_CONFIG"] = json.dumps(tf_config) run_config = tf.contrib.learn.RunConfig(tf_random_seed=42) run_config._is_chief = True # pylint: disable=protected-access subnetwork_generator = SimpleGenerator([_DNNBuilder("dnn")]) estimator = Estimator( head=tu.head(), subnetwork_generator=subnetwork_generator, max_iteration_steps=1, model_dir=self.test_subdirectory, config=run_config) train_input_fn = tu.dummy_input_fn(XOR_FEATURES, XOR_LABELS) # Will fail if TF_CONFIG is not overwritten correctly in # Estimator#prepare_next_iteration. estimator.train(input_fn=train_input_fn, max_steps=3) finally: # Revert TF_CONFIG environment variable in order to not break other tests. del os.environ["TF_CONFIG"] class EstimatorReplayTest(tu.AdanetTestCase): @parameterized.named_parameters( { "testcase_name": "no_evaluator", "evaluator": None, "replay_evaluator": None, "want_architecture": " dnn3 | dnn3 | dnn ", }, { "testcase_name": "evaluator", "evaluator": Evaluator( input_fn=tu.dummy_input_fn(XOR_FEATURES, XOR_LABELS), steps=1), "replay_evaluator": Evaluator( input_fn=tu.dummy_input_fn([[0., 0.], [0., 0], [0., 0.], [0., 0.]], [[0], [0], [0], [0]]), steps=1), "want_architecture": " dnn3 | dnn3 | dnn ", }) def test_replay(self, evaluator, replay_evaluator, want_architecture): """Train entire estimator lifecycle using Replay.""" original_model_dir = os.path.join(self.test_subdirectory, "original") run_config = tf.estimator.RunConfig( tf_random_seed=42, model_dir=original_model_dir) subnetwork_generator = SimpleGenerator([ _DNNBuilder("dnn"), _DNNBuilder("dnn2", layer_size=3), _DNNBuilder("dnn3", layer_size=5), ]) estimator = Estimator( head=tu.head(), subnetwork_generator=subnetwork_generator, max_iteration_steps=10, evaluator=evaluator, config=run_config) train_input_fn = tu.dummy_input_fn(XOR_FEATURES, XOR_LABELS) # Train for three iterations. estimator.train(input_fn=train_input_fn, max_steps=30) # Evaluate. eval_results = estimator.evaluate(input_fn=train_input_fn, steps=1) self.assertIn(want_architecture, str(eval_results["architecture/adanet/ensembles"])) replay_run_config = tf.estimator.RunConfig( tf_random_seed=42, model_dir=os.path.join(self.test_subdirectory, "replayed")) # Use different features and labels to represent a shift in the data # distribution. different_features = [[0., 0.], [0., 0], [0., 0.], [0., 0.]] different_labels = [[0], [0], [0], [0]] replay_estimator = Estimator( head=tu.head(), subnetwork_generator=subnetwork_generator, max_iteration_steps=10, evaluator=replay_evaluator, config=replay_run_config, replay_config=replay.Config(best_ensemble_indices=[2, 3, 1])) train_input_fn = tu.dummy_input_fn(different_features, different_labels) # Train for three iterations. replay_estimator.train(input_fn=train_input_fn, max_steps=30) # Evaluate. eval_results = replay_estimator.evaluate(input_fn=train_input_fn, steps=1) self.assertIn(want_architecture, str(eval_results["architecture/adanet/ensembles"])) if __name__ == "__main__": tf.test.main()
1.421875
1
ua_roomseeker/uploader.py
nyg1/classroom-finder
1
7222
<gh_stars>1-10 from seeker.models import Building, Classroom, Time import json import os os.chdir('../data') fileList = os.listdir() #loops through each json file for jsonfile in fileList: #opens the jsonfile and loads the data f = open(jsonfile, 'r') data = f.read() jsondata = json.loads(data) #create the building building = Building(BuildingName=os.path.splitext(jsonfile)[0]) building.save() for day in jsondata: for room in jsondata[day].keys(): #creates each classroom, adding one only if one doesn't exist classroom = Classroom.objects.get_or_create(building = Building.objects.get(BuildingName = os.path.splitext(jsonfile)[0]), ClassroomName = os.path.splitext(jsonfile)[0] + ' - ' + room) for time in jsondata[day][room]: #creates each time time = Time(building=Building.objects.get(BuildingName = os.path.splitext(jsonfile)[0]), classroom=Classroom.objects.get(ClassroomName = os.path.splitext(jsonfile)[0] + ' - ' + room), DayofWeek=day, TimeValue=time) time.save() #IMPORTANT!!!!!!! # This program must be run inside a python manage.py shell for it to work, in the future a fix may be found, # but for the time being, follow these steps: # 1. open powershell and navigate to the folder that contains this file # 2. type in "python manage.py shell" # 3. copy and paste the code into the shell and press enter # 4. wait time is around 5 minutes
2.828125
3
dash_daq/Slider.py
luiztauffer/dash-daq
0
7223
# AUTO GENERATED FILE - DO NOT EDIT from dash.development.base_component import Component, _explicitize_args class Slider(Component): """A Slider component. A slider component with support for a target value. Keyword arguments: - id (string; optional): The ID used to identify this component in Dash callbacks. - className (string; optional): Additional CSS class for the root DOM node. - color (dict; default colors.DARKER_PRIMARY): Color configuration for the slider's track. `color` is a string | dict with keys: - default (string; optional): Fallback color to use when color.ranges has gaps. - gradient (boolean; optional): Display ranges as a gradient between given colors. Requires color.ranges to be contiguous along the entirety of the gauge's range of values. - ranges (dict; optional): Define multiple color ranges on the slider's track. The key determines the color of the range and the value is the start,end of the range itself. `ranges` is a dict with keys: - color (list of numbers; optional) - disabled (boolean; optional): If True, the handles can't be moved. - dots (boolean; optional): When the step value is greater than 1, you can set the dots to True if you want to render the slider with dots. Note: dots are disabled automatically when using color.ranges. - handleLabel (dict; optional): Configuration of the slider handle's label. Passing falsy value will disable the label. `handleLabel` is a string | dict with keys: - color (string; optional) - label (string; optional) - showCurrentValue (boolean; optional) - style (dict; optional) - included (boolean; optional): If the value is True, it means a continuous value is included. Otherwise, it is an independent value. - labelPosition (a value equal to: 'top', 'bottom'; default 'bottom'): Where the component label is positioned. - marks (dict; optional): Marks on the slider. The key determines the position, and the value determines what will show. If you want to set the style of a specific mark point, the value should be an object which contains style and label properties. `marks` is a dict with keys: - number (dict; optional) `number` is a string Or dict with keys: - label (string; optional) - style (dict; optional) - max (number; optional): Maximum allowed value of the slider. - min (number; default 0): Minimum allowed value of the slider. - persisted_props (list of a value equal to: 'value's; default ['value']): Properties whose user interactions will persist after refreshing the component or the page. Since only `value` is allowed this prop can normally be ignored. - persistence (boolean | string | number; optional): Used to allow user interactions in this component to be persisted when the component - or the page - is refreshed. If `persisted` is truthy and hasn't changed from its previous value, a `value` that the user has changed while using the app will keep that change, as long as the new `value` also matches what was given originally. Used in conjunction with `persistence_type`. - persistence_type (a value equal to: 'local', 'session', 'memory'; default 'local'): Where persisted user changes will be stored: memory: only kept in memory, reset on page refresh. local: window.localStorage, data is kept after the browser quit. session: window.sessionStorage, data is cleared once the browser quit. - size (number; default 265): Size of the slider in pixels. - step (number; optional): Value by which increments or decrements are made. - targets (dict; optional): Targets on the slider. The key determines the position, and the value determines what will show. If you want to set the style of a specific target point, the value should be an object which contains style and label properties. `targets` is a dict with keys: - number (dict; optional) `number` is a string Or dict with keys: - color (string; optional) - label (string; optional) - showCurrentValue (boolean; optional) - style (dict; optional) - theme (dict; default light): Theme configuration to be set by a ThemeProvider. - updatemode (a value equal to: 'mouseup', 'drag'; default 'mouseup'): Determines when the component should update its value. If `mouseup`, then the slider will only trigger its value when the user has finished dragging the slider. If `drag`, then the slider will update its value continuously as it is being dragged. Only use `drag` if your updates are fast. - value (number; optional): The value of the input. - vertical (boolean; optional): If True, the slider will be vertical.""" @_explicitize_args def __init__(self, id=Component.UNDEFINED, marks=Component.UNDEFINED, color=Component.UNDEFINED, value=Component.UNDEFINED, className=Component.UNDEFINED, labelPosition=Component.UNDEFINED, disabled=Component.UNDEFINED, dots=Component.UNDEFINED, included=Component.UNDEFINED, min=Component.UNDEFINED, max=Component.UNDEFINED, step=Component.UNDEFINED, vertical=Component.UNDEFINED, size=Component.UNDEFINED, targets=Component.UNDEFINED, theme=Component.UNDEFINED, handleLabel=Component.UNDEFINED, updatemode=Component.UNDEFINED, persistence=Component.UNDEFINED, persisted_props=Component.UNDEFINED, persistence_type=Component.UNDEFINED, **kwargs): self._prop_names = ['id', 'className', 'color', 'disabled', 'dots', 'handleLabel', 'included', 'labelPosition', 'marks', 'max', 'min', 'persisted_props', 'persistence', 'persistence_type', 'size', 'step', 'targets', 'theme', 'updatemode', 'value', 'vertical'] self._type = 'Slider' self._namespace = 'dash_daq' self._valid_wildcard_attributes = [] self.available_properties = ['id', 'className', 'color', 'disabled', 'dots', 'handleLabel', 'included', 'labelPosition', 'marks', 'max', 'min', 'persisted_props', 'persistence', 'persistence_type', 'size', 'step', 'targets', 'theme', 'updatemode', 'value', 'vertical'] self.available_wildcard_properties = [] _explicit_args = kwargs.pop('_explicit_args') _locals = locals() _locals.update(kwargs) # For wildcard attrs args = {k: _locals[k] for k in _explicit_args if k != 'children'} for k in []: if k not in args: raise TypeError( 'Required argument `' + k + '` was not specified.') super(Slider, self).__init__(**args)
2.578125
3
src/util/__init__.py
ooshyun/filterdesign
1
7224
<reponame>ooshyun/filterdesign """Utility function for process to raw data """ from .util import ( cvt_pcm2wav, cvt_float2fixed, cvt_char2num, plot_frequency_response, plot_pole_zero_analysis, ) from .fi import fi __all__ = [ "fi", "cvt_pcm2wav", "cvt_float2fixed", "cvt_char2num", "plot_frequency_response", "plot_pole_zero_analysis", ]
1.101563
1
infra/apps/catalog/tests/views/distribution_upload_tests.py
datosgobar/infra.datos.gob.ar
1
7225
<gh_stars>1-10 import pytest from django.core.files import File from django.urls import reverse from freezegun import freeze_time from infra.apps.catalog.tests.helpers.open_catalog import open_catalog pytestmark = pytest.mark.django_db @pytest.fixture(autouse=True) def give_user_edit_rights(user, node): node.admins.add(user) def _call(client, distribution): return client.get(reverse('catalog:distribution_uploads', kwargs={'node_id': distribution.catalog.id, 'identifier': distribution.identifier})) def test_older_versions_listed(logged_client, distribution_upload): distribution = distribution_upload.distribution with freeze_time('2019-01-01'): with open_catalog('test_data.csv') as fd: other = distribution.distributionupload_set \ .create(file=File(fd)) response = _call(logged_client, distribution) assert str(other.uploaded_at) in response.content.decode('utf-8') def test_catalog_identifier_in_page(logged_client, distribution): response = _call(logged_client, distribution) assert distribution.catalog.identifier in response.content.decode('utf-8')
2.15625
2
examples/model_zoo/build_binaries.py
Embracing/unrealcv
1,617
7226
import subprocess, os ue4_win = r"C:\Program Files\Epic Games\UE_4.16" ue4_linux = "/home/qiuwch/workspace/UE416" ue4_mac = '/Users/Shared/Epic Games/UE_4.16' win_uprojects = [ r'C:\qiuwch\workspace\uprojects\UE4RealisticRendering\RealisticRendering.uproject', r'C:\qiuwch\workspace\uprojects\UE4ArchinteriorsVol2Scene1\ArchinteriorsVol2Scene1.uproject', r'C:\qiuwch\workspace\uprojects\UE4ArchinteriorsVol2Scene2\ArchinteriorsVol2Scene2.uproject', r'C:\qiuwch\workspace\uprojects\UE4ArchinteriorsVol2Scene3\ArchinteriorsVol2Scene3.uproject', r'C:\qiuwch\workspace\uprojects\UE4UrbanCity\UrbanCity.uproject', r'D:\workspace\uprojects\Matinee\Matinee.uproject', r'D:\workspace\uprojects\PhotorealisticCharacter\PhotorealisticCharacter2.uproject', ] linux_uprojects = [ os.path.expanduser('~/workspace/uprojects/UE4RealisticRendering/RealisticRendering.uproject'), os.path.expanduser('~/workspace/uprojects/UE4ArchinteriorsVol2Scene1/ArchinteriorsVol2Scene1.uproject'), os.path.expanduser('~/workspace/uprojects/UE4ArchinteriorsVol2Scene2/ArchinteriorsVol2Scene2.uproject'), os.path.expanduser('~/workspace/uprojects/UE4ArchinteriorsVol2Scene3/ArchinteriorsVol2Scene3.uproject'), os.path.expanduser("~/workspace/uprojects/UE4UrbanCity/UrbanCity.uproject"), ] mac_uprojects = [ os.path.expanduser('~/workspace/UnrealEngine/Templates/FP_FirstPerson/FP_FirstPerson.uproject'), os.path.expanduser('~/uprojects/RealisticRendering/RealisticRendering.uproject'), os.path.expanduser('~/uprojects/UE4ArchinteriorsVol2Scene1/ArchinteriorsVol2Scene1.uproject'), os.path.expanduser('~/uprojects/UE4ArchinteriorsVol2Scene2/ArchinteriorsVol2Scene2.uproject'), os.path.expanduser('~/uprojects/UE4ArchinteriorsVol2Scene3/ArchinteriorsVol2Scene3.uproject'), os.path.expanduser('~/uprojects/UE4UrbanCity/UrbanCity.uproject'), ] uprojects = [] for uproject_path in win_uprojects: uproject_name = os.path.basename(uproject_path).split('.')[0] uprojects.append( dict( uproject_path = uproject_path, ue4_path = ue4_win, log_file = 'log/win_%s.log' % uproject_name ), ) for uproject_path in linux_uprojects: uproject_name = os.path.basename(uproject_path).split('.')[0] uprojects.append( dict( uproject_path = uproject_path, ue4_path = ue4_linux, log_file = 'log/linux_%s.log' % uproject_name ), ) for uproject_path in mac_uprojects: uproject_name = os.path.basename(uproject_path).split('.')[0] uprojects.append( dict( uproject_path = uproject_path, ue4_path = ue4_mac, log_file = 'log/mac_%s.log' % uproject_name ), ) if __name__ == '__main__': for uproject in uprojects: uproject_path = uproject['uproject_path'] if not os.path.isfile(uproject_path): print("Can not find uproject file %s, skip this project" % uproject_path) continue cmd = [ 'python', 'build.py', '--UE4', uproject['ue4_path'], # '--output', uproject['output_folder'], uproject['uproject_path'] ] print(cmd) subprocess.call(cmd, stdout = open(uproject['log_file'], 'w')) with open(uproject['log_file']) as f: lines = f.readlines() print(''.join(lines[-10:])) # Print the last few lines
1.476563
1
__init__.py
NeonJarbas/skill-ddg
0
7227
<gh_stars>0 # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from ovos_utils.gui import can_use_gui from adapt.intent import IntentBuilder from mycroft.skills.common_query_skill import CommonQuerySkill, CQSMatchLevel from mycroft.skills.core import intent_handler from neon_solver_ddg_plugin import DDGSolver class DuckDuckGoSkill(CommonQuerySkill): def __init__(self): super().__init__() self.duck = DDGSolver() # for usage in tell me more / follow up questions self.idx = 0 self.results = [] self.image = None # intents @intent_handler("search_duck.intent") def handle_search(self, message): query = message.data["query"] summary = self.ask_the_duck(query) if summary: self.speak_result() else: self.speak_dialog("no_answer") @intent_handler(IntentBuilder("DuckMore").require("More"). require("DuckKnows")) def handle_tell_more(self, message): """ Follow up query handler, "tell me more".""" # query = message.data["DuckKnows"] # data, related_queries = self.duck.get_infobox(query) # TODO maybe do something with the infobox data ? self.speak_result() # common query def CQS_match_query_phrase(self, utt): summary = self.ask_the_duck(utt) if summary: self.idx += 1 # spoken by common query return (utt, CQSMatchLevel.GENERAL, summary, {'query': utt, 'image': self.image, 'answer': summary}) def CQS_action(self, phrase, data): """ If selected show gui """ self.display_ddg(data["answer"], data["image"]) # duck duck go api def ask_the_duck(self, query): # context for follow up questions self.set_context("DuckKnows", query) self.idx = 0 self.results = self.duck.long_answer(query, lang=self.lang) self.image = self.duck.get_image(query) if self.results: return self.results[0]["summary"] def display_ddg(self, summary=None, image=None): if not can_use_gui(self.bus): return image = image or \ self.image or \ "https://github.com/JarbasSkills/skill-ddg/raw/master/ui/logo.png" if image.startswith("/"): image = "https://duckduckgo.com" + image self.gui['summary'] = summary or "" self.gui['imgLink'] = image self.gui.show_page("DuckDelegate.qml", override_idle=60) def speak_result(self): if self.idx + 1 > len(self.results): self.speak_dialog("thats all") self.remove_context("DuckKnows") self.idx = 0 else: self.display_ddg(self.results[self.idx]["summary"], self.results[self.idx]["img"]) self.speak(self.results[self.idx]["summary"]) self.idx += 1 def create_skill(): return DuckDuckGoSkill()
2.15625
2
openstack_lease_it/openstack_lease_it/settings.py
LAL/openstack-lease-it
0
7228
""" Django settings for openstack_lease_it project. Generated by 'django-admin startproject' using Django 1.8.7. For more information on this file, see https://docs.djangoproject.com/en/1.8/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.8/ref/settings/ """ # Build paths inside the project like this: os.path.join(BASE_DIR, ...) import os import ast import logging from openstack_lease_it.config import GLOBAL_CONFIG, load_config BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Load configuration load_config() # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = GLOBAL_CONFIG['DJANGO_SECRET_KEY'] # SECURITY WARNING: don't run with debug turned on in production! DEBUG = ast.literal_eval(GLOBAL_CONFIG['DJANGO_DEBUG']) # ALLOWED_HOSTS secure django app access ALLOWED_HOSTS = [] # A email as format must match this regular expression # If you not understand, please EMAIL_REGEXP = r"^[A-Za-z0-9\.\+_-]+@[A-Za-z0-9\.-]+\.[A-Za-z]*$" # Application definition INSTALLED_APPS = ( 'openstack_auth', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'openstack_lease_it', 'lease_it', ) MIDDLEWARE_CLASSES = ( 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.locale.LocaleMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.auth.middleware.SessionAuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', 'django.middleware.security.SecurityMiddleware', ) ROOT_URLCONF = 'openstack_lease_it.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'openstack_lease_it.wsgi.application' # Database # https://docs.djangoproject.com/en/1.8/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Internationalization # https://docs.djangoproject.com/en/1.8/topics/i18n/ LANGUAGE_CODE = 'en' TIME_ZONE = 'Europe/Paris' USE_I18N = True USE_L10N = True USE_TZ = True DEFAULT_CHARSET = 'utf-8' # We use memcached as cache backend SESSION_ENGINE = 'django.contrib.sessions.backends.cache' CACHES = { 'default': { 'BACKEND': 'django.core.cache.backends.memcached.MemcachedCache', 'LOCATION': '{MEMCACHED_HOST}:{MEMCACHED_PORT}'.format(**GLOBAL_CONFIG), } } SESSION_COOKIE_SECURE = False SESSION_TIMEOUT = 1800 # A token can be near the end of validity when a page starts loading, and # invalid during the rendering which can cause errors when a page load. # TOKEN_TIMEOUT_MARGIN defines a time in seconds we retrieve from token # validity to avoid this issue. You can adjust this time depending on the # performance of the infrastructure. TOKEN_TIMEOUT_MARGIN = 100 # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.8/howto/static-files/ STATIC_URL = '/static/' LOGIN_URL = 'login' LOGOUT_URL = 'logout' LOGIN_REDIRECT_URL = '/' SESSION_SERIALIZER = 'django.contrib.sessions.serializers.PickleSerializer' if GLOBAL_CONFIG['BACKEND_PLUGIN'] == 'Openstack': # UserId on django-openstack_auth need specific User model AUTH_USER_MODEL = 'openstack_auth.User' # Define keystone URL for authentification OPENSTACK_KEYSTONE_URL = GLOBAL_CONFIG['OS_AUTH_URL'] # We use keystone v3 API OPENSTACK_API_VERSIONS = { "identity": GLOBAL_CONFIG['OS_IDENTITY_API_VERSION'], } # We use multidomain OPENSTACK_KEYSTONE_MULTIDOMAIN_SUPPORT = True # We load Openstack_auth backend AUTHENTICATION_BACKENDS = ( 'openstack_auth.backend.KeystoneBackend', 'django.contrib.auth.backends.ModelBackend', ) else: AUTHENTICATION_BACKENDS = ( 'django.contrib.auth.backends.ModelBackend', ) # Configure logging LOGGING = { 'version': 1, 'disable_existing_loggers': False, 'formatters': { 'simple': { 'format': '%(levelname)s %(asctime)s: %(message)s' }, }, 'handlers': { 'django': { 'level': GLOBAL_CONFIG['DJANGO_LOGLEVEL'], 'class': 'logging.FileHandler', 'filename': os.path.join(GLOBAL_CONFIG['DJANGO_LOGDIR'], 'django.log'), 'formatter': 'simple' }, 'main': { 'level': GLOBAL_CONFIG['DJANGO_LOGLEVEL'], 'class': 'logging.FileHandler', 'filename': os.path.join(GLOBAL_CONFIG['DJANGO_LOGDIR'], 'main.log'), 'formatter': 'simple' }, 'notification': { 'level': GLOBAL_CONFIG['DJANGO_LOGLEVEL'], 'class': 'logging.FileHandler', 'filename': os.path.join(GLOBAL_CONFIG['DJANGO_LOGDIR'], 'notification.log'), 'formatter': 'simple' }, 'instances': { 'level': GLOBAL_CONFIG['DJANGO_LOGLEVEL'], 'class': 'logging.FileHandler', 'filename': os.path.join(GLOBAL_CONFIG['DJANGO_LOGDIR'], 'instances.log'), 'formatter': 'simple' }, }, 'loggers': { 'django': { 'handlers': ['django'], 'level': GLOBAL_CONFIG['DJANGO_LOGLEVEL'], 'propagate': True, }, 'main': { 'handlers': ['main'], 'level': GLOBAL_CONFIG['DJANGO_LOGLEVEL'], 'propagate': True, }, 'notification': { 'handlers': ['notification'], 'level': GLOBAL_CONFIG['DJANGO_LOGLEVEL'], 'propagate': True, }, 'instances': { 'handlers': ['instances'], 'level': GLOBAL_CONFIG['DJANGO_LOGLEVEL'], 'propagate': True, }, }, } LOGGER = logging.getLogger('main') LOGGER_NOTIFICATION = logging.getLogger('notification') LOGGER_INSTANCES = logging.getLogger('instances')
1.765625
2
rigl/experimental/jax/pruning/pruning.py
vishalbelsare/rigl
276
7229
<filename>rigl/experimental/jax/pruning/pruning.py # coding=utf-8 # Copyright 2021 RigL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Functions for pruning FLAX masked models.""" import collections from typing import Any, Callable, Mapping, Optional, Union import flax import jax.numpy as jnp from rigl.experimental.jax.pruning import masked def weight_magnitude(weights): """Creates weight magnitude-based saliencies, given a weight matrix.""" return jnp.absolute(weights) def prune( model, pruning_rate, saliency_fn = weight_magnitude, mask = None, compare_fn = jnp.greater): """Returns a mask for a model where the params in each layer are pruned using a saliency function. Args: model: The model to create a pruning mask for. pruning_rate: The fraction of lowest magnitude saliency weights that are pruned. If a float, the same rate is used for all layers, otherwise if it is a mapping, it must contain a rate for all masked layers in the model. saliency_fn: A function that returns a float number used to rank the importance of individual weights in the layer. mask: If the model has an existing mask, the mask will be applied before pruning the model. compare_fn: A pairwise operator to compare saliency with threshold, and return True if the saliency indicates the value should not be masked. Returns: A pruned mask for the given model. """ if not mask: mask = masked.simple_mask(model, jnp.ones, masked.WEIGHT_PARAM_NAMES) if not isinstance(pruning_rate, collections.Mapping): pruning_rate_dict = {} for param_name, _ in masked.iterate_mask(mask): # Get the layer name from the parameter's full name/path. layer_name = param_name.split('/')[-2] pruning_rate_dict[layer_name] = pruning_rate pruning_rate = pruning_rate_dict for param_path, param_mask in masked.iterate_mask(mask): split_param_path = param_path.split('/') layer_name = split_param_path[-2] param_name = split_param_path[-1] # If we don't have a pruning rate for the given layer, don't mask it. if layer_name in pruning_rate and mask[layer_name][param_name] is not None: param_value = model.params[layer_name][ masked.MaskedModule.UNMASKED][param_name] # Here any existing mask is first applied to weight matrix. # Note: need to check explicitly is not None for np array. if param_mask is not None: saliencies = saliency_fn(param_mask * param_value) else: saliencies = saliency_fn(param_value) # TODO: Use partition here (partial sort) instead of sort, # since it's O(N), not O(N log N), however JAX doesn't support it. sorted_param = jnp.sort(jnp.abs(saliencies.flatten())) # Figure out the weight magnitude threshold. threshold_index = jnp.round(pruning_rate[layer_name] * sorted_param.size).astype(jnp.int32) threshold = sorted_param[threshold_index] mask[layer_name][param_name] = jnp.array( compare_fn(saliencies, threshold), dtype=jnp.int32) return mask
2.25
2
venv/Lib/site-packages/dash_bootstrap_components/_components/CardLink.py
hanzzhu/chadle
0
7230
# AUTO GENERATED FILE - DO NOT EDIT from dash.development.base_component import Component, _explicitize_args class CardLink(Component): """A CardLink component. Use card link to add consistently styled links to your cards. Links can be used like buttons, external links, or internal Dash style links. Keyword arguments: - children (a list of or a singular dash component, string or number; optional): The children of this component. - id (string; optional): The ID of this component, used to identify dash components in callbacks. The ID needs to be unique across all of the components in an app. - className (string; optional): Often used with CSS to style elements with common properties. - external_link (boolean; optional): If True, the browser will treat this as an external link, forcing a page refresh at the new location. If False, this just changes the location without triggering a page refresh. Use this if you are observing dcc.Location, for instance. Defaults to True for absolute URLs and False otherwise. - href (string; optional): URL of the resource to link to. - key (string; optional): A unique identifier for the component, used to improve performance by React.js while rendering components See https://reactjs.org/docs/lists-and-keys.html for more info. - loading_state (dict; optional): Object that holds the loading state object coming from dash-renderer. `loading_state` is a dict with keys: - component_name (string; optional): Holds the name of the component that is loading. - is_loading (boolean; optional): Determines if the component is loading or not. - prop_name (string; optional): Holds which property is loading. - n_clicks (number; default 0): An integer that represents the number of times that this element has been clicked on. - n_clicks_timestamp (number; default -1): An integer that represents the time (in ms since 1970) at which n_clicks changed. This can be used to tell which button was changed most recently. - style (dict; optional): Defines CSS styles which will override styles previously set. - target (string; optional): Target attribute to pass on to the link. Only applies to external links.""" @_explicitize_args def __init__(self, children=None, id=Component.UNDEFINED, style=Component.UNDEFINED, className=Component.UNDEFINED, key=Component.UNDEFINED, href=Component.UNDEFINED, external_link=Component.UNDEFINED, n_clicks=Component.UNDEFINED, n_clicks_timestamp=Component.UNDEFINED, loading_state=Component.UNDEFINED, target=Component.UNDEFINED, **kwargs): self._prop_names = ['children', 'id', 'className', 'external_link', 'href', 'key', 'loading_state', 'n_clicks', 'n_clicks_timestamp', 'style', 'target'] self._type = 'CardLink' self._namespace = 'dash_bootstrap_components' self._valid_wildcard_attributes = [] self.available_properties = ['children', 'id', 'className', 'external_link', 'href', 'key', 'loading_state', 'n_clicks', 'n_clicks_timestamp', 'style', 'target'] self.available_wildcard_properties = [] _explicit_args = kwargs.pop('_explicit_args') _locals = locals() _locals.update(kwargs) # For wildcard attrs args = {k: _locals[k] for k in _explicit_args if k != 'children'} for k in []: if k not in args: raise TypeError( 'Required argument `' + k + '` was not specified.') super(CardLink, self).__init__(children=children, **args)
2.84375
3
plugins/hanlp_demo/hanlp_demo/zh/tf/train/train_ctb9_pos_electra.py
antfootAlex/HanLP
3
7231
<reponame>antfootAlex/HanLP<filename>plugins/hanlp_demo/hanlp_demo/zh/tf/train/train_ctb9_pos_electra.py # -*- coding:utf-8 -*- # Author: hankcs # Date: 2019-12-28 23:15 from hanlp.components.taggers.transformers.transformer_tagger_tf import TransformerTaggerTF from tests import cdroot cdroot() tagger = TransformerTaggerTF() save_dir = 'data/model/pos/ctb9_electra_small_zh_epoch_20' tagger.fit('data/pos/ctb9/train.tsv', 'data/pos/ctb9/test.tsv', save_dir, transformer='hfl/chinese-electra-small-discriminator', max_seq_length=130, warmup_steps_ratio=0.1, epochs=20, learning_rate=5e-5) tagger.load(save_dir) print(tagger(['我', '的', '希望', '是', '希望', '和平'])) tagger.evaluate('data/pos/ctb9/test.tsv', save_dir=save_dir) print(f'Model saved in {save_dir}')
1.765625
2
src/app/main.py
Wedding-APIs-System/Backend-APi
0
7232
<filename>src/app/main.py from fastapi import FastAPI from fastapi.middleware.cors import CORSMiddleware from app.api import landing, login, attendance_confirmation from sql_app.database import orm_connection app = FastAPI(title="Sergio's wedding backend API", description="REST API which serves login, attendance confirmation and other features", version="1.0",) origins = [ "*" # "http://172.16.17.32:5500", # "192.168.3.11" ] app.add_middleware( CORSMiddleware, allow_origins=origins, allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) app.include_router(landing.router) app.include_router(login.router) app.include_router(attendance_confirmation.router) @app.get("/ping") async def pong(): return {"ping": "pong!"}
2.4375
2
tests/test_pydora/test_utils.py
NextGenTechBar/twandora
0
7233
from unittest import TestCase from pandora.client import APIClient from pandora.errors import InvalidAuthToken, ParameterMissing from pandora.models.pandora import Station, AdItem, PlaylistItem from pandora.py2compat import Mock, patch from pydora.utils import iterate_forever class TestIterateForever(TestCase): def setUp(self): self.transport = Mock(side_effect=[InvalidAuthToken(), None]) self.client = APIClient(self.transport, None, None, None, None) self.client._authenticate = Mock() def test_handle_missing_params_exception_due_to_missing_ad_tokens(self): with patch.object(APIClient, 'get_playlist') as get_playlist_mock: with patch.object(APIClient, 'register_ad', side_effect=ParameterMissing("ParameterMissing")): station = Station.from_json(self.client, {'stationToken': 'token_mock'}) ad_mock = AdItem.from_json(self.client, {'station_id': 'id_mock'}) get_playlist_mock.return_value=iter([ad_mock]) station_iter = iterate_forever(station.get_playlist) next_track = next(station_iter) self.assertEqual(ad_mock, next_track) def test_reraise_missing_params_exception(self): with patch.object(APIClient, 'get_playlist', side_effect=ParameterMissing("ParameterMissing")) as get_playlist_mock: with self.assertRaises(ParameterMissing): station = Station.from_json(self.client, {'stationToken': 'token_mock'}) track_mock = PlaylistItem.from_json(self.client, {'token': 'token_mock'}) get_playlist_mock.return_value=iter([track_mock]) station_iter = iterate_forever(station.get_playlist) next(station_iter)
2.375
2
PyDSTool/PyCont/BifPoint.py
mdlama/pydstool
2
7234
""" Bifurcation point classes. Each class locates and processes bifurcation points. * _BranchPointFold is a version based on BranchPoint location algorithms * BranchPoint: Branch process is broken (can't find alternate branch -- see MATCONT notes) <NAME>, March 2006 """ from __future__ import absolute_import, print_function from .misc import * from PyDSTool.common import args from .TestFunc import DiscreteMap, FixedPointMap from numpy import Inf, NaN, isfinite, r_, c_, sign, mod, \ subtract, divide, transpose, eye, real, imag, \ conjugate, average from scipy import optimize, linalg from numpy import dot as matrixmultiply from numpy import array, float, complex, int, float64, complex64, int32, \ zeros, divide, subtract, reshape, argsort, nonzero ##### _classes = ['BifPoint', 'BPoint', 'BranchPoint', 'FoldPoint', 'HopfPoint', 'BTPoint', 'ZHPoint', 'CPPoint', 'BranchPointFold', '_BranchPointFold', 'DHPoint', 'GHPoint', 'LPCPoint', 'PDPoint', 'NSPoint', 'SPoint'] __all__ = _classes ##### class BifPoint(object): def __init__(self, testfuncs, flagfuncs, label='Bifurcation', stop=False): self.testfuncs = [] self.flagfuncs = [] self.found = [] self.label = label self.stop = stop self.data = args() if not isinstance(testfuncs, list): testfuncs = [testfuncs] if not isinstance(flagfuncs, list): flagfuncs = [flagfuncs] self.testfuncs.extend(testfuncs) self.flagfuncs.extend(flagfuncs) self.tflen = len(self.testfuncs) def locate(self, P1, P2, C): pointlist = [] for i, testfunc in enumerate(self.testfuncs): if self.flagfuncs[i] == iszero: for ind in range(testfunc.m): X, V = testfunc.findzero(P1, P2, ind) pointlist.append((X,V)) X = average([point[0] for point in pointlist], axis=0) V = average([point[1] for point in pointlist], axis=0) C.Corrector(X,V) return X, V def process(self, X, V, C): data = args() data.X = todict(C, X) data.V = todict(C, V) self.found.append(data) def info(self, C, ind=None, strlist=None): if ind is None: ind = list(range(len(self.found))) elif isinstance(ind, int): ind = [ind] if C.verbosity >= 1: print(self.label + ' Point found ') if C.verbosity >= 2: print('========================== ') for n, i in enumerate(ind): print(n, ': ') Xd = self.found[i].X for k, j in Xd.items(): print(k, ' = ', j) print('') if hasattr(self.found[i], 'eigs'): print('Eigenvalues = \n') for x in self.found[i].eigs: print(' (%f,%f)' % (x.real, x.imag)) print('\n') if strlist is not None: for string in strlist: print(string) print('') class SPoint(BifPoint): """Special point that represents user-selected free parameter values.""" def __init__(self, testfuncs, flagfuncs, stop=False): BifPoint.__init__(self, testfuncs, flagfuncs, 'S', stop=stop) def process(self, X, V, C): BifPoint.process(self, X, V, C) self.info(C, -1) return True class BPoint(BifPoint): """Special point that represents boundary of computational domain.""" def __init__(self, testfuncs, flagfuncs, stop=False): BifPoint.__init__(self, testfuncs, flagfuncs, 'B', stop=stop) def locate(self, P1, P2, C): # Find location that triggered testfunc and initialize testfunc to that index val1 = (P1[0]-self.testfuncs[0].lower)*(self.testfuncs[0].upper-P1[0]) val2 = (P2[0]-self.testfuncs[0].lower)*(self.testfuncs[0].upper-P2[0]) ind = nonzero(val1*val2 < 0) self.testfuncs[0].ind = ind self.testfuncs[0].func = self.testfuncs[0].one X, V = BifPoint.locate(self, P1, P2, C) # Set testfunc back to monitoring all self.testfuncs[0].ind = None self.testfuncs[0].func = self.testfuncs[0].all return X, V def process(self, X, V, C): BifPoint.process(self, X, V, C) self.info(C, -1) return True def info(self, C, ind=None): if ind is None: ind = list(range(len(self.found))) elif isinstance(ind, int): ind = [ind] BifPoint.info(self, C, ind) class BranchPoint(BifPoint): """May only work for EquilibriumCurve ... (needs fixing)""" def __init__(self, testfuncs, flagfuncs, stop=False): BifPoint.__init__(self, testfuncs, flagfuncs, 'BP', stop=stop) def __locate_newton(self, X, C): """x[0:self.dim] = (x,alpha) x[self.dim] = beta x[self.dim+1:2*self.dim] = p """ J_coords = C.CorrFunc.jac(X[0:C.dim], C.coords) J_params = C.CorrFunc.jac(X[0:C.dim], C.params) return r_[C.CorrFunc(X[0:C.dim]) + X[C.dim]*X[C.dim+1:], \ matrixmultiply(transpose(J_coords),X[C.dim+1:]), \ matrixmultiply(transpose(X[C.dim+1:]),J_params), \ matrixmultiply(transpose(X[C.dim+1:]),X[C.dim+1:]) - 1] def locate(self, P1, P2, C): # Initiliaze p vector to eigenvector with smallest eigenvalue X, V = P1 X2, V2 = P2 J_coords = C.CorrFunc.jac(X, C.coords) W, VL = linalg.eig(J_coords, left=1, right=0) ind = argsort([abs(eig) for eig in W])[0] p = real(VL[:,ind]) initpoint = zeros(2*C.dim, float) initpoint[0:C.dim] = X initpoint[C.dim+1:] = p X = optimize.fsolve(self.__locate_newton, initpoint, C) self.data.psi = X[C.dim+1:] X = X[0:C.dim] V = 0.5*(V+V2) return X, V def process(self, X, V, C): BifPoint.process(self, X, V, C) # Finds the new branch J_coords = C.CorrFunc.jac(X, C.coords) J_params = C.CorrFunc.jac(X, C.params) singular = True perpvec = r_[1,zeros(C.dim-1)] d = 1 while singular and d <= C.dim: try: v0 = linalg.solve(r_[c_[J_coords, J_params], [perpvec]], \ r_[zeros(C.dim-1),1]) except: perpvec = r_[0., perpvec[0:(C.dim-1)]] d += 1 else: singular = False if singular: raise PyDSTool_ExistError("Problem in _compute: Failed to compute tangent vector.") v0 /= linalg.norm(v0) V = sign([x for x in v0 if abs(x) > 1e-8][0])*v0 A = r_[c_[J_coords, J_params], [V]] W, VR = linalg.eig(A) W0 = [ind for ind, eig in enumerate(W) if abs(eig) < 5e-5] V1 = real(VR[:,W0[0]]) H = C.CorrFunc.hess(X, C.coords+C.params, C.coords+C.params) c11 = matrixmultiply(self.data.psi,[bilinearform(H[i,:,:], V, V) for i in range(H.shape[0])]) c12 = matrixmultiply(self.data.psi,[bilinearform(H[i,:,:], V, V1) for i in range(H.shape[0])]) c22 = matrixmultiply(self.data.psi,[bilinearform(H[i,:,:], V1, V1) for i in range(H.shape[0])]) beta = 1 alpha = -1*c22/(2*c12) V1 = alpha*V + beta*V1 V1 /= linalg.norm(V1) self.found[-1].eigs = W self.found[-1].branch = todict(C, V1) self.info(C, -1) return True def info(self, C, ind=None): if ind is None: ind = list(range(len(self.found))) elif isinstance(ind, int): ind = [ind] strlist = [] for n, i in enumerate(ind): strlist.append('branch angle = ' + repr(matrixmultiply(tocoords(C, self.found[i].V), \ tocoords(C, self.found[i].branch)))) X = tocoords(C, self.found[-1].X) V = tocoords(C, self.found[-1].V) C._preTestFunc(X, V) strlist.append('Test function #1: ' + repr(self.testfuncs[0](X,V)[0])) BifPoint.info(self, C, ind, strlist) class FoldPoint(BifPoint): def __init__(self, testfuncs, flagfuncs, stop=False): BifPoint.__init__(self, testfuncs, flagfuncs, 'LP', stop=stop) def process(self, X, V, C): BifPoint.process(self, X, V, C) # Compute normal form coefficient # NOTE: These are for free when using bordering technique!) # NOTE: Does not agree with MATCONT output! (if |p| = |q| = 1, then it does) J_coords = C.CorrFunc.jac(X, C.coords) W, VL, VR = linalg.eig(J_coords, left=1, right=1) minW = min(abs(W)) ind = [(abs(eig) < minW+1e-8) and (abs(eig) > minW-1e-8) for eig in W].index(True) p, q = real(VL[:,ind]), real(VR[:,ind]) p /= matrixmultiply(p,q) B = C.CorrFunc.hess(X, C.coords, C.coords) self.found[-1].a = abs(0.5*matrixmultiply(p,[bilinearform(B[i,:,:], q, q) for i in range(B.shape[0])])) self.found[-1].eigs = W numzero = len([eig for eig in W if abs(eig) < 1e-4]) if numzero > 1: if C.verbosity >= 2: print('Fold-Fold!\n') del self.found[-1] return False elif numzero == 0: if C.verbosity >= 2: print('False positive!\n') del self.found[-1] return False if C.verbosity >= 2: print('\nChecking...') print(' |q| = %f' % linalg.norm(q)) print(' <p,q> = %f' % matrixmultiply(p,q)) print(' |Aq| = %f' % linalg.norm(matrixmultiply(J_coords,q))) print(' |transpose(A)p| = %f\n' % linalg.norm(matrixmultiply(transpose(J_coords),p))) self.info(C, -1) return True def info(self, C, ind=None): if ind is None: ind = list(range(len(self.found))) elif isinstance(ind, int): ind = [ind] strlist = [] for n, i in enumerate(ind): strlist.append('a = ' + repr(self.found[i].a)) BifPoint.info(self, C, ind, strlist) class HopfPoint(BifPoint): def __init__(self, testfuncs, flagfuncs, stop=False): BifPoint.__init__(self, testfuncs, flagfuncs, 'H', stop=stop) def process(self, X, V, C): """Tolerance for eigenvalues a possible problem when checking for neutral saddles.""" BifPoint.process(self, X, V, C) J_coords = C.CorrFunc.jac(X, C.coords) eigs, LV, RV = linalg.eig(J_coords,left=1,right=1) # Check for neutral saddles found = False for i in range(len(eigs)): if abs(imag(eigs[i])) < 1e-5: for j in range(i+1,len(eigs)): if C.verbosity >= 2: if abs(eigs[i]) < 1e-5 and abs(eigs[j]) < 1e-5: print('Fold-Fold point found in Hopf!\n') elif abs(imag(eigs[j])) < 1e-5 and abs(real(eigs[i]) + real(eigs[j])) < 1e-5: print('Neutral saddle found!\n') elif abs(real(eigs[i])) < 1e-5: for j in range(i+1, len(eigs)): if abs(real(eigs[j])) < 1e-5 and abs(real(eigs[i]) - real(eigs[j])) < 1e-5: found = True w = abs(imag(eigs[i])) if imag(eigs[i]) > 0: p = conjugate(LV[:,j])/linalg.norm(LV[:,j]) q = RV[:,i]/linalg.norm(RV[:,i]) else: p = conjugate(LV[:,i])/linalg.norm(LV[:,i]) q = RV[:,j]/linalg.norm(RV[:,j]) if not found: del self.found[-1] return False direc = conjugate(1/matrixmultiply(conjugate(p),q)) p = direc*p # Alternate way to compute 1st lyapunov coefficient (from Kuznetsov [4]) #print (1./(w*w))*real(1j*matrixmultiply(conjugate(p),b1)*matrixmultiply(conjugate(p),b3) + \ # w*matrixmultiply(conjugate(p),trilinearform(D,q,q,conjugate(q)))) self.found[-1].w = w self.found[-1].l1 = firstlyapunov(X, C.CorrFunc, w, J_coords=J_coords, p=p, q=q, check=(C.verbosity==2)) self.found[-1].eigs = eigs self.info(C, -1) return True def info(self, C, ind=None): if ind is None: ind = list(range(len(self.found))) elif isinstance(ind, int): ind = [ind] strlist = [] for n, i in enumerate(ind): strlist.append('w = ' + repr(self.found[i].w)) strlist.append('l1 = ' + repr(self.found[i].l1)) BifPoint.info(self, C, ind, strlist) # Codimension-2 bifurcations class BTPoint(BifPoint): def __init__(self, testfuncs, flagfuncs, stop=False): BifPoint.__init__(self, testfuncs, flagfuncs, 'BT', stop=stop) def process(self, X, V, C): BifPoint.process(self, X, V, C) J_coords = C.CorrFunc.sysfunc.jac(X, C.coords) W, VL, VR = linalg.eig(J_coords, left=1, right=1) self.found[-1].eigs = W if C.verbosity >= 2: if C.CorrFunc.testfunc.data.B.shape[1] == 2: b = matrixmultiply(transpose(J_coords), C.CorrFunc.testfunc.data.w[:,0]) c = matrixmultiply(J_coords, C.CorrFunc.testfunc.data.v[:,0]) else: b = C.CorrFunc.testfunc.data.w[:,0] c = C.CorrFunc.testfunc.data.v[:,0] print('\nChecking...') print(' <b,c> = %f' % matrixmultiply(transpose(b), c)) print('\n') self.info(C, -1) return True def info(self, C, ind=None): if ind is None: ind = list(range(len(self.found))) elif isinstance(ind, int): ind = [ind] BifPoint.info(self, C, ind) class ZHPoint(BifPoint): def __init__(self, testfuncs, flagfuncs, stop=False): BifPoint.__init__(self, testfuncs, flagfuncs, 'ZH', stop=stop) def process(self, X, V, C): BifPoint.process(self, X, V, C) J_coords = C.CorrFunc.sysfunc.jac(X, C.coords) W, VL, VR = linalg.eig(J_coords, left=1, right=1) self.found[-1].eigs = W self.info(C, -1) return True def info(self, C, ind=None): if ind is None: ind = list(range(len(self.found))) elif isinstance(ind, int): ind = [ind] BifPoint.info(self, C, ind) class CPPoint(BifPoint): def __init__(self, testfuncs, flagfuncs, stop=False): BifPoint.__init__(self, testfuncs, flagfuncs, 'CP', stop=stop) def process(self, X, V, C): BifPoint.process(self, X, V, C) J_coords = C.CorrFunc.sysfunc.jac(X, C.coords) B = C.CorrFunc.sysfunc.hess(X, C.coords, C.coords) W, VL, VR = linalg.eig(J_coords, left=1, right=1) q = C.CorrFunc.testfunc.data.C/linalg.norm(C.CorrFunc.testfunc.data.C) p = C.CorrFunc.testfunc.data.B/matrixmultiply(transpose(C.CorrFunc.testfunc.data.B),q) self.found[-1].eigs = W a = 0.5*matrixmultiply(transpose(p), reshape([bilinearform(B[i,:,:], q, q) \ for i in range(B.shape[0])],(B.shape[0],1)))[0][0] if C.verbosity >= 2: print('\nChecking...') print(' |a| = %f' % a) print('\n') self.info(C, -1) return True def info(self, C, ind=None): if ind is None: ind = list(range(len(self.found))) elif isinstance(ind, int): ind = [ind] BifPoint.info(self, C, ind) class BranchPointFold(BifPoint): """Check Equilibrium.m in MATCONT""" def __init__(self, testfuncs, flagfuncs, stop=False): BifPoint.__init__(self, testfuncs, flagfuncs, 'BP', stop=stop) def process(self, X, V, C): BifPoint.process(self, X, V, C) pind = self.testfuncs[0].pind # Finds the new branch J_coords = C.CorrFunc.jac(X, C.coords) J_params = C.CorrFunc.jac(X, C.params) A = r_[c_[J_coords, J_params[:,pind]]] #A = r_[c_[J_coords, J_params], [V]] W, VR = linalg.eig(A) W0 = [ind for ind, eig in enumerate(W) if abs(eig) < 5e-5] tmp = real(VR[:,W0[0]]) V1 = r_[tmp[:-1], 0, 0] V1[len(tmp)-1+pind] = tmp[-1] """NEED TO FIX THIS!""" H = C.CorrFunc.hess(X, C.coords+C.params, C.coords+C.params) # c11 = matrixmultiply(self.data.psi,[bilinearform(H[i,:,:], V, V) for i in range(H.shape[0])]) # c12 = matrixmultiply(self.data.psi,[bilinearform(H[i,:,:], V, V1) for i in range(H.shape[0])]) # c22 = matrixmultiply(self.data.psi,[bilinearform(H[i,:,:], V1, V1) for i in range(H.shape[0])]) # beta = 1 # alpha = -1*c22/(2*c12) # V1 = alpha*V + beta*V1 # V1 /= linalg.norm(V1) self.found[-1].eigs = W self.found[-1].branch = None self.found[-1].par = C.freepars[self.testfuncs[0].pind] # self.found[-1].branch = todict(C, V1) self.info(C, -1) return True def info(self, C, ind=None): if ind is None: ind = list(range(len(self.found))) elif isinstance(ind, int): ind = [ind] strlist = [] #for n, i in enumerate(ind): # strlist.append('branch angle = ' + repr(matrixmultiply(tocoords(C, self.found[i].V), \ # tocoords(C, self.found[i].branch)))) X = tocoords(C, self.found[-1].X) V = tocoords(C, self.found[-1].V) C._preTestFunc(X, V) strlist.append('Test function #1: ' + repr(self.testfuncs[0](X,V)[0])) BifPoint.info(self, C, ind, strlist) class _BranchPointFold(BifPoint): """Check Equilibrium.m in MATCONT""" def __init__(self, testfuncs, flagfuncs, stop=False): BifPoint.__init__(self, testfuncs, flagfuncs, 'BP', stop=stop) def __locate_newton(self, X, C): """Note: This is redundant!! B is a column of A!!! Works for now, though...""" pind = self.testfuncs[0].pind J_coords = C.CorrFunc.jac(X[0:C.dim], C.coords) J_params = C.CorrFunc.jac(X[0:C.dim], C.params) A = c_[J_coords, J_params[:,pind]] B = J_params[:,pind] return r_[C.CorrFunc(X[0:C.dim]) + X[C.dim]*X[C.dim+1:], \ matrixmultiply(transpose(A),X[C.dim+1:]), \ matrixmultiply(transpose(X[C.dim+1:]),B), \ matrixmultiply(transpose(X[C.dim+1:]),X[C.dim+1:]) - 1] def locate(self, P1, P2, C): # Initiliaze p vector to eigenvector with smallest eigenvalue X, V = P1 pind = self.testfuncs[0].pind J_coords = C.CorrFunc.jac(X, C.coords) J_params = C.CorrFunc.jac(X, C.params) A = r_[c_[J_coords, J_params[:,pind]]] W, VL = linalg.eig(A, left=1, right=0) ind = argsort([abs(eig) for eig in W])[0] p = real(VL[:,ind]) initpoint = zeros(2*C.dim, float) initpoint[0:C.dim] = X initpoint[C.dim+1:] = p X = optimize.fsolve(self.__locate_newton, initpoint, C) self.data.psi = X[C.dim+1:] X = X[0:C.dim] return X, V def process(self, X, V, C): BifPoint.process(self, X, V, C) pind = self.testfuncs[0].pind # Finds the new branch J_coords = C.CorrFunc.jac(X, C.coords) J_params = C.CorrFunc.jac(X, C.params) A = r_[c_[J_coords, J_params[:,pind]]] #A = r_[c_[J_coords, J_params], [V]] W, VR = linalg.eig(A) W0 = [ind for ind, eig in enumerate(W) if abs(eig) < 5e-5] tmp = real(VR[:,W0[0]]) V1 = r_[tmp[:-1], 0, 0] V1[len(tmp)-1+pind] = tmp[-1] """NEED TO FIX THIS!""" H = C.CorrFunc.hess(X, C.coords+C.params, C.coords+C.params) c11 = matrixmultiply(self.data.psi,[bilinearform(H[i,:,:], V, V) for i in range(H.shape[0])]) c12 = matrixmultiply(self.data.psi,[bilinearform(H[i,:,:], V, V1) for i in range(H.shape[0])]) c22 = matrixmultiply(self.data.psi,[bilinearform(H[i,:,:], V1, V1) for i in range(H.shape[0])]) beta = 1 alpha = -1*c22/(2*c12) V1 = alpha*V + beta*V1 V1 /= linalg.norm(V1) self.found[-1].eigs = W self.found[-1].branch = None self.found[-1].par = C.freepars[self.testfuncs[0].pind] self.found[-1].branch = todict(C, V1) self.info(C, -1) return True def info(self, C, ind=None): if ind is None: ind = list(range(len(self.found))) elif isinstance(ind, int): ind = [ind] strlist = [] #for n, i in enumerate(ind): # strlist.append('branch angle = ' + repr(matrixmultiply(tocoords(C, self.found[i].V), \ # tocoords(C, self.found[i].branch)))) X = tocoords(C, self.found[-1].X) V = tocoords(C, self.found[-1].V) C._preTestFunc(X, V) strlist.append('Test function #1: ' + repr(self.testfuncs[0](X,V)[0])) BifPoint.info(self, C, ind, strlist) class DHPoint(BifPoint): def __init__(self, testfuncs, flagfuncs, stop=False): BifPoint.__init__(self, testfuncs, flagfuncs, 'DH', stop=stop) def process(self, X, V, C): BifPoint.process(self, X, V, C) J_coords = C.CorrFunc.sysfunc.jac(X, C.coords) eigs, LV, RV = linalg.eig(J_coords,left=1,right=1) self.found[-1].eigs = eigs self.info(C, -1) return True def info(self, C, ind=None): if ind is None: ind = list(range(len(self.found))) elif isinstance(ind, int): ind = [ind] BifPoint.info(self, C, ind) class GHPoint(BifPoint): def __init__(self, testfuncs, flagfuncs, stop=False): BifPoint.__init__(self, testfuncs, flagfuncs, 'GH', stop=stop) def process(self, X, V, C): BifPoint.process(self, X, V, C) J_coords = C.CorrFunc.sysfunc.jac(X, C.coords) eigs, LV, RV = linalg.eig(J_coords,left=1,right=1) # Check for neutral saddles found = False for i in range(len(eigs)): if abs(imag(eigs[i])) < 1e-5: for j in range(i+1,len(eigs)): if C.verbosity >= 2: if abs(eigs[i]) < 1e-5 and abs(eigs[j]) < 1e-5: print('Fold-Fold point found in Hopf!\n') elif abs(imag(eigs[j])) < 1e-5 and abs(real(eigs[i]) + real(eigs[j])) < 1e-5: print('Neutral saddle found!\n') elif abs(real(eigs[i])) < 1e-5: for j in range(i+1, len(eigs)): if abs(real(eigs[j])) < 1e-5 and abs(real(eigs[i]) - real(eigs[j])) < 1e-5: found = True w = abs(imag(eigs[i])) if imag(eigs[i]) > 0: p = conjugate(LV[:,j]/linalg.norm(LV[:,j])) q = RV[:,i]/linalg.norm(RV[:,i]) else: p = conjugate(LV[:,i]/linalg.norm(LV[:,i])) q = RV[:,j]/linalg.norm(RV[:,j]) if not found: del self.found[-1] return False direc = conjugate(1/matrixmultiply(conjugate(p),q)) p = direc*p # Alternate way to compute 1st lyapunov coefficient (from Kuznetsov [4]) #print (1./(w*w))*real(1j*matrixmultiply(conjugate(p),b1)*matrixmultiply(conjugate(p),b3) + \ # w*matrixmultiply(conjugate(p),trilinearform(D,q,q,conjugate(q)))) self.found[-1].w = w self.found[-1].l1 = firstlyapunov(X, C.CorrFunc.sysfunc, w, J_coords=J_coords, p=p, q=q, check=(C.verbosity==2)) self.found[-1].eigs = eigs self.info(C, -1) return True def info(self, C, ind=None): if ind is None: ind = list(range(len(self.found))) elif isinstance(ind, int): ind = [ind] strlist = [] for n, i in enumerate(ind): strlist.append('w = ' + repr(self.found[i].w)) strlist.append('l1 = ' + repr(self.found[i].l1)) BifPoint.info(self, C, ind, strlist) # Discrete maps class LPCPoint(BifPoint): def __init__(self, testfuncs, flagfuncs, stop=False): BifPoint.__init__(self, testfuncs, flagfuncs, 'LPC', stop=stop) def process(self, X, V, C): BifPoint.process(self, X, V, C) J_coords = C.sysfunc.jac(X, C.coords) W, VL, VR = linalg.eig(J_coords, left=1, right=1) self.found[-1].eigs = W self.info(C, -1) return True def info(self, C, ind=None): if ind is None: ind = list(range(len(self.found))) elif isinstance(ind, int): ind = [ind] strlist = [] X = tocoords(C, self.found[-1].X) V = tocoords(C, self.found[-1].V) C._preTestFunc(X, V) strlist.append('Test function #1: ' + repr(self.testfuncs[0](X,V)[0])) strlist.append('Test function #2: ' + repr(self.testfuncs[1](X,V)[0])) BifPoint.info(self, C, ind, strlist) class PDPoint(BifPoint): def __init__(self, testfuncs, flagfuncs, stop=False): BifPoint.__init__(self, testfuncs, flagfuncs, 'PD', stop=stop) def process(self, X, V, C): """Do I need to compute the branch, or will it always be in the direction of freepar = constant?""" BifPoint.process(self, X, V, C) F = DiscreteMap(C.sysfunc, period=2*C.sysfunc.period) FP = FixedPointMap(F) J_coords = FP.jac(X, C.coords) J_params = FP.jac(X, C.params) # Locate branch of double period map W, VL = linalg.eig(J_coords, left=1, right=0) ind = argsort([abs(eig) for eig in W])[0] psi = real(VL[:,ind]) A = r_[c_[J_coords, J_params], [V]] W, VR = linalg.eig(A) W0 = argsort([abs(eig) for eig in W])[0] V1 = real(VR[:,W0]) H = FP.hess(X, C.coords+C.params, C.coords+C.params) c11 = matrixmultiply(psi,[bilinearform(H[i,:,:], V, V) for i in range(H.shape[0])]) c12 = matrixmultiply(psi,[bilinearform(H[i,:,:], V, V1) for i in range(H.shape[0])]) c22 = matrixmultiply(psi,[bilinearform(H[i,:,:], V1, V1) for i in range(H.shape[0])]) beta = 1 alpha = -1*c22/(2*c12) V1 = alpha*V + beta*V1 V1 /= linalg.norm(V1) J_coords = C.sysfunc.jac(X, C.coords) W = linalg.eig(J_coords, right=0) self.found[-1].eigs = W self.found[-1].branch_period = 2*C.sysfunc.period self.found[-1].branch = todict(C, V1) self.info(C, -1) return True def info(self, C, ind=None): if ind is None: ind = list(range(len(self.found))) elif isinstance(ind, int): ind = [ind] strlist = [] for n, i in enumerate(ind): strlist.append('Period doubling branch angle = ' + repr(matrixmultiply(tocoords(C, self.found[i].V), \ tocoords(C, self.found[i].branch)))) BifPoint.info(self, C, ind, strlist) class NSPoint(BifPoint): def __init__(self, testfuncs, flagfuncs, stop=False): BifPoint.__init__(self, testfuncs, flagfuncs, 'NS', stop=stop) def process(self, X, V, C): BifPoint.process(self, X, V, C) J_coords = C.sysfunc.jac(X, C.coords) eigs, VL, VR = linalg.eig(J_coords, left=1, right=1) # Check for nonreal multipliers found = False for i in range(len(eigs)): for j in range(i+1,len(eigs)): if abs(imag(eigs[i])) > 1e-10 and \ abs(imag(eigs[j])) > 1e-10 and \ abs(eigs[i]*eigs[j] - 1) < 1e-5: found = True if not found: del self.found[-1] return False self.found[-1].eigs = eigs self.info(C, -1) return True def info(self, C, ind=None): if ind is None: ind = list(range(len(self.found))) elif isinstance(ind, int): ind = [ind] BifPoint.info(self, C, ind)
2.5
2
src/marion/marion/urls/__init__.py
OmenApps/marion
7
7235
<filename>src/marion/marion/urls/__init__.py """Urls for the marion application""" from django.urls import include, path from rest_framework import routers from .. import views router = routers.DefaultRouter() router.register(r"requests", views.DocumentRequestViewSet) urlpatterns = [ path("", include(router.urls)), ]
1.9375
2
setup.py
TanKingsley/pyxll-jupyter
1
7236
""" PyXLL-Jupyter This package integrated Jupyter notebooks into Microsoft Excel. To install it, first install PyXLL (see https://www.pyxll.com). Briefly, to install PyXLL do the following:: pip install pyxll pyxll install Once PyXLL is installed then installing this package will add a button to the PyXLL ribbon toolbar that will start a Jupyter notebook browser as a custom task pane in Excel. To install this package use:: pip install pyxll_jupyter """ from setuptools import setup, find_packages from os import path this_directory = path.abspath(path.dirname(__file__)) with open(path.join(this_directory, 'README.md'), encoding='utf-8') as f: long_description = f.read() setup( name="pyxll_jupyter", description="Adds Jupyter notebooks to Microsoft Excel using PyXLL.", long_description=long_description, long_description_content_type='text/markdown', version="0.1.11", packages=find_packages(), include_package_data=True, package_data={ "pyxll_jupyter": [ "pyxll_jupyter/resources/ribbon.xml", "pyxll_jupyter/resources/jupyter.png", ] }, project_urls={ "Source": "https://github.com/pyxll/pyxll-jupyter", "Tracker": "https://github.com/pyxll/pyxll-jupyter/issues", }, classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: Microsoft :: Windows" ], entry_points={ "pyxll": [ "modules = pyxll_jupyter.pyxll:modules", "ribbon = pyxll_jupyter.pyxll:ribbon" ] }, install_requires=[ "pyxll >= 5.0.0", "jupyter >= 1.0.0", "PySide2" ] )
3.125
3
board/views.py
albi23/Pyra
0
7237
from typing import List from django.contrib.auth.decorators import login_required from django.contrib.auth.models import User from django.http import JsonResponse from django.shortcuts import render from django.urls import reverse_lazy from django.views import generic, View from board.forms import SignUpForm from .const import BOARD_VIEW_COLUMN_COUNT from .models import Board, Priority, Membership, Contribution from .models import Task @login_required def index(request): board_col, row_count = Board.objects.get_user_split_boards(request.user, BOARD_VIEW_COLUMN_COUNT) context = { 'board_col': board_col, 'row_count': row_count } return render(request, 'index.html', context) @login_required def board(request, board_id): _board = Board.objects.get(id=board_id) todo_tasks: List[Task] = Task.objects.filter(board=_board, status='TODO') doing_tasks = Task.objects.filter(board=_board, status='DOING') done_tasks = Task.objects.filter(board=_board, status='DONE') context = { 'board': _board, 'todo_tasks': todo_tasks, 'doing_tasks': doing_tasks, 'done_tasks': done_tasks, 'user': request.user, } return render(request, 'board.html', context) @login_required def update_task_state(request): if request.method == "POST": task_id = request.POST['task_id'] new_state = request.POST['new_state'] this_task = Task.objects.get(id=task_id) this_task.status = new_state this_task.save() return JsonResponse({"success": True}) class SignUp(generic.CreateView): form_class = SignUpForm success_url = reverse_lazy('login') template_name = 'signup.html' class CreateBoard(View): def post(self, request): name = request.POST['name'] description = request.POST['description'] if name: new_board = Board.objects.create( name=name, description=description, ) Membership.objects.create( board=new_board, user=request.user, role=Membership.Role.SUPER_USER ) return JsonResponse({"success": True}) return JsonResponse({"success": False}) class CreateTask(View): def post(self, request): title = request.POST['title'] description = request.POST['description'] status = request.POST['status'] priority = int(request.POST['priority']) board_id = int(request.POST['board_id']) if title and request.user in Board.objects.get(id=board_id).members.all(): Task.objects.create( title=title, description=description, status=status, priority=Priority.choices[-int(priority) - 1][0], created_by=request.user, board_id=board_id ) return JsonResponse({"success": True}) return JsonResponse({"success": False}) class CreateBoardMembership(View): def post(self, request): username = request.POST['username'] board_id = int(request.POST['board_id']) if username and board_id: try: user = User.objects.get(username=username) except User.DoesNotExist: return JsonResponse( status=404, data={'message': 'User doesn\'t exist'} ) try: membership = Membership.objects.get(board=board_id, user=user.id) except Membership.DoesNotExist: membership = None if membership is not None: return JsonResponse( status=400, data={'message': 'user already added'} ) Membership.objects.create( user=user, board_id=board_id ) return JsonResponse({'message': 'success'}) return JsonResponse( status=400, data={'message': 'username or board_id can\'t be empty'} ) def parse_priority(value: str): choices = Priority.choices for i in range(0, len(choices)): if value == choices[i][1].lower(): return choices[i][0] @login_required def update_task(request): this_task = Task.objects.get(id=request.POST['id']) this_task.title = request.POST['title'] this_task.description = request.POST['description'] this_task.status = request.POST['status'] this_task.priority = parse_priority(request.POST['priority'].lower()) this_task.save() assigned_user_id = request.POST['user'] if assigned_user_id: Contribution.objects.create( task=this_task, user_id=assigned_user_id, ) return JsonResponse({"success": True}) @login_required def get_available_users(request): users = User.objects.filter( membership__board_id=request.GET['board'] ).exclude( contribution__task_id=request.GET['task'] ) response_users = list(map( lambda user: { 'id': user.id, 'username': user.username }, users )) return JsonResponse({'users': response_users}) @login_required def delete_task(request): if request.method.POST['task']: task = Task.objects.get(id=request.method.GET['task']) if request.user in task.board.members.all(): task.delete() return JsonResponse({"success": True}) return JsonResponse({"success": False})
2.046875
2
setup.py
lazmond3/pylib-instagram-type
0
7238
<reponame>lazmond3/pylib-instagram-type # -*- coding: utf-8 -*- # Learn more: https://github.com/kennethreitz/setup.py from setuptools import setup, find_packages import os with open('README.md') as f: readme = f.read() with open('LICENSE') as f: license = f.read() def take_package_name(name): if name.startswith("-e"): return name[name.find("=")+1:name.rfind("-")] else: return name.strip() def load_requires_from_file(filepath): with open(filepath) as fp: return [take_package_name(pkg_name) for pkg_name in fp.readlines()] setup( name='lazmond3-pylib-instagram-type', version='1.0.8', description='update from 1.0.8: hasattr: 1.0.7: medias 複数, str get multiple + init.py', long_description=readme, author='lazmond3', author_email='<EMAIL>', url='https://github.com/lazmond3/pylib-instagram-type.git', install_requires=["lazmond3-pylib-debug"], license=license, packages=find_packages(exclude=('tests', 'docs')), test_suite='tests' )
1.578125
2
tbx/core/migrations/0111_move_sign_up_form_into_new_app.py
arush15june/wagtail-torchbox
0
7239
# -*- coding: utf-8 -*- # Generated by Django 1.11.16 on 2019-01-15 22:49 from __future__ import unicode_literals from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('wagtailsearchpromotions', '0002_capitalizeverbose'), ('wagtailcore', '0040_page_draft_title'), ('wagtailredirects', '0006_redirect_increase_max_length'), ('wagtailforms', '0003_capitalizeverbose'), ('torchbox', '0110_rename_blogpagetaglist_to_tag'), ] database_operations = [ migrations.AlterModelTable('SignUpFormPageResponse', 'sign_up_form_signupformpageresponse'), migrations.AlterModelTable('SignUpFormPage', 'sign_up_form_signupformpage'), migrations.AlterModelTable('SignUpFormPageBullet', 'sign_up_form_signupformpagebullet'), migrations.AlterModelTable('SignUpFormPageLogo', 'sign_up_form_signupformpagelogo'), migrations.AlterModelTable('SignUpFormPageQuote', 'sign_up_form_signupformpagequote'), ] state_operations = [ migrations.RemoveField( model_name='signupformpage', name='call_to_action_image', ), migrations.RemoveField( model_name='signupformpage', name='email_attachment', ), migrations.RemoveField( model_name='signupformpage', name='page_ptr', ), migrations.RemoveField( model_name='signupformpagebullet', name='page', ), migrations.RemoveField( model_name='signupformpagelogo', name='logo', ), migrations.RemoveField( model_name='signupformpagelogo', name='page', ), migrations.RemoveField( model_name='signupformpagequote', name='page', ), migrations.DeleteModel( name='SignUpFormPageResponse', ), migrations.DeleteModel( name='SignUpFormPage', ), migrations.DeleteModel( name='SignUpFormPageBullet', ), migrations.DeleteModel( name='SignUpFormPageLogo', ), migrations.DeleteModel( name='SignUpFormPageQuote', ), ] operations = [ migrations.SeparateDatabaseAndState( database_operations=database_operations, state_operations=state_operations, ) ]
1.59375
2
tests/test_webframe.py
zsolt-beringer/osm-gimmisn
0
7240
#!/usr/bin/env python3 # # Copyright (c) 2019 <NAME> and contributors. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """The test_webframe module covers the webframe module.""" from typing import List from typing import TYPE_CHECKING from typing import Tuple from typing import cast import configparser import datetime import os import unittest import unittest.mock import time # pylint: disable=unused-import import yattag import webframe if TYPE_CHECKING: # pylint: disable=no-name-in-module,import-error,unused-import from wsgiref.types import StartResponse # noqa: F401 class TestHandleStatic(unittest.TestCase): """Tests handle_static().""" def test_happy(self) -> None: """Tests the happy path: css case.""" content, content_type = webframe.handle_static("/osm/static/osm.css") self.assertTrue(len(content)) self.assertEqual(content_type, "text/css") def test_javascript(self) -> None: """Tests the javascript case.""" content, content_type = webframe.handle_static("/osm/static/sorttable.js") self.assertTrue(len(content)) self.assertEqual(content_type, "application/x-javascript") def test_else(self) -> None: """Tests the case when the content type is not recognized.""" content, content_type = webframe.handle_static("/osm/static/test.xyz") self.assertFalse(len(content)) self.assertFalse(len(content_type)) class TestHandleException(unittest.TestCase): """Tests handle_exception().""" def test_happy(self) -> None: """Tests the happy path.""" environ = { "PATH_INFO": "/" } def start_response(status: str, response_headers: List[Tuple[str, str]]) -> None: self.assertTrue(status.startswith("500")) header_dict = dict(response_headers) self.assertEqual(header_dict["Content-type"], "text/html; charset=utf-8") try: int("a") # pylint: disable=broad-except except Exception: callback = cast('StartResponse', start_response) output_iterable = webframe.handle_exception(environ, callback) output_list = cast(List[bytes], output_iterable) self.assertTrue(output_list) output = output_list[0].decode('utf-8') self.assertIn("ValueError", output) return self.fail() class TestLocalToUiTz(unittest.TestCase): """Tests local_to_ui_tz().""" def test_happy(self) -> None: """Tests the happy path.""" def get_abspath(path: str) -> str: if os.path.isabs(path): return path return os.path.join(os.path.dirname(__file__), path) def get_config() -> configparser.ConfigParser: config = configparser.ConfigParser() config.read_dict({"wsgi": {"timezone": "Europe/Budapest"}}) return config with unittest.mock.patch('util.get_abspath', get_abspath): with unittest.mock.patch('webframe.get_config', get_config): local_dt = datetime.datetime.fromtimestamp(0) ui_dt = webframe.local_to_ui_tz(local_dt) if time.strftime('%Z%z') == "CET+0100": self.assertEqual(ui_dt.timestamp(), 0) class TestFillMissingHeaderItems(unittest.TestCase): """Tests fill_missing_header_items().""" def test_happy(self) -> None: """Tests the happy path.""" streets = "no" relation_name = "gazdagret" items: List[yattag.doc.Doc] = [] webframe.fill_missing_header_items(streets, relation_name, items) html = items[0].getvalue() self.assertIn("Missing house numbers", html) self.assertNotIn("Missing streets", html) if __name__ == '__main__': unittest.main()
2.15625
2
spotify.py
nimatest1234/telegram_spotify_downloader_bot
0
7241
from __future__ import unicode_literals import spotipy from spotipy.oauth2 import SpotifyClientCredentials import requests from youtube_search import YoutubeSearch import youtube_dl import eyed3.id3 import eyed3 import lyricsgenius import telepot spotifyy = spotipy.Spotify( client_credentials_manager=SpotifyClientCredentials(client_id='a145db3dcd564b9592dacf10649e4ed5', client_secret='<KEY>')) genius = lyricsgenius.Genius('<KEY>') token = '<PASSWORD>' bot = telepot.Bot(token) def DOWNLOADMP3(link,chat_id): #Get MetaData results = spotifyy.track(link) song = results['name'] print('[Spotify]MetaData Found!') artist = results['artists'][0]['name'] YTSEARCH = str(song + " " + artist) artistfinder = results['artists'] tracknum = results['track_number'] album = results['album']['name'] realese_date = int(results['album']['release_date'][:4]) if len(artistfinder) > 1: fetures = "( Ft." for lomi in range(0, len(artistfinder)): try: if lomi < len(artistfinder) - 2: artistft = artistfinder[lomi + 1]['name'] + ", " fetures += artistft else: artistft = artistfinder[lomi + 1]['name'] + ")" fetures += artistft except: pass else: fetures = "" time_duration = "" time_duration1 = "" time_duration2 = "" time_duration3 = "" millis = results['duration_ms'] millis = int(millis) seconds = (millis / 1000) % 60 minutes = (millis / (1000 * 60)) % 60 seconds = int(seconds) minutes = int(minutes) if seconds >= 10: if seconds < 59: time_duration = "{0}:{1}".format(minutes, seconds) time_duration1 = "{0}:{1}".format(minutes, seconds + 1) time_duration2 = "{0}:{1}".format(minutes, seconds - 1) if seconds == 10: time_duration2 = "{0}:0{1}".format(minutes, seconds - 1) time_duration3 = "{0}:{1}".format(minutes, seconds + 2) elif seconds < 58: time_duration3 = "{0}:{1}".format(minutes, seconds + 2) time_duration2 = "{0}:{1}".format(minutes, seconds - 1) elif seconds == 58: time_duration3 = "{0}:0{1}".format(minutes + 1, seconds - 58) time_duration2 = "{0}:{1}".format(minutes, seconds - 1) else: time_duration2 = "{0}:{1}".format(minutes, seconds - 1) else: time_duration1 = "{0}:0{1}".format(minutes + 1, seconds - 59) if seconds == 59: time_duration3 = "{0}:0{1}".format(minutes + 1, seconds - 58) else: time_duration = "{0}:0{1}".format(minutes, seconds) time_duration1 = "{0}:0{1}".format(minutes, seconds + 1) if seconds < 8: time_duration3 = "{0}:0{1}".format(minutes, seconds + 2) time_duration2 = "{0}:0{1}".format(minutes, seconds - 1) elif seconds == 9 or seconds == 8: time_duration3 = "{0}:{1}".format(minutes, seconds + 2) elif seconds == 0: time_duration2 = "{0}:{1}".format(minutes - 1, seconds + 59) time_duration3 = "{0}:0{1}".format(minutes, seconds + 2) else: time_duration2 = "{0}:0{1}".format(minutes, seconds - 1) time_duration3 = "{0}:0{1}".format(minutes, seconds + 2) trackname = song + fetures #Download Cover response = requests.get(results['album']['images'][0]['url']) DIRCOVER = "songpicts//" + trackname + ".png" file = open(DIRCOVER, "wb") file.write(response.content) file.close() #search for music on youtube results = list(YoutubeSearch(str(YTSEARCH)).to_dict()) LINKASLI = '' for URLSSS in results: timeyt = URLSSS["duration"] print(URLSSS['title']) if timeyt == time_duration or timeyt == time_duration1: LINKASLI = URLSSS['url_suffix'] break elif timeyt == time_duration2 or timeyt == time_duration3: LINKASLI = URLSSS['url_suffix'] break YTLINK = str("https://www.youtube.com/" + LINKASLI) print('[Youtube]song found!') print(f'[Youtube]Link song on youtube : {YTLINK}') #Donwload Music from youtube options = { # PERMANENT options 'format': 'bestaudio/best', 'keepvideo': False, 'outtmpl': f'song//{trackname}.*', 'postprocessors': [{ 'key': 'FFmpegExtractAudio', 'preferredcodec': 'mp3', 'preferredquality': '320' }] } with youtube_dl.YoutubeDL(options) as mp3: mp3.download([YTLINK]) aud = eyed3.load(f"song//{trackname}.mp3") print('[Youtube]Song Downloaded!') aud.tag.artist = artist aud.tag.album = album aud.tag.album_artist = artist aud.tag.title = trackname aud.tag.track_num = tracknum aud.tag.year = realese_date try: songok = genius.search_song(song, artist) aud.tag.lyrics.set(songok.lyrics) print('[Genius]Song lyric Found!') except: print('[Genius]Song lyric NOT Found!') aud.tag.images.set(3, open("songpicts//" + trackname + ".png", 'rb').read(), 'image/png') aud.tag.save() bot.sendAudio(chat_id, open(f'song//{trackname}.mp3', 'rb'), title=trackname) print('[Telegram]Song sent!') def album(link): results = spotifyy.album_tracks(link) albums = results['items'] while results['next']: results = spotifyy.next(results) albums.extend(results['items']) print('[Spotify]Album Found!') return albums def artist(link): results = spotifyy.artist_top_tracks(link) albums = results['tracks'] print('[Spotify]Artist Found!') return albums def searchalbum(track): results = spotifyy.search(track) return results['tracks']['items'][0]['album']['external_urls']['spotify'] def playlist(link): results = spotifyy.playlist_tracks(link) print('[Spotify]Playlist Found!') return results['items'] def searchsingle(track): results = spotifyy.search(track) return results['tracks']['items'][0]['href'] def searchartist(searchstr): results = spotifyy.search(searchstr) return results['tracks']['items'][0]['artists'][0]["external_urls"]['spotify']
2.625
3
tests/test_atomdict.py
Tillsten/atom
0
7242
#------------------------------------------------------------------------------ # Copyright (c) 2018-2019, Nucleic Development Team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file LICENSE, distributed with this software. #------------------------------------------------------------------------------ """Test the typed dictionary. """ import sys import pytest from atom.api import Atom, Dict, Int, atomdict @pytest.fixture def atom_dict(): """Atom with different Dict members. """ class DictAtom(Atom): untyped = Dict() keytyped = Dict(Int()) valuetyped = Dict(value=Int()) fullytyped = Dict(Int(), Int()) untyped_default = Dict(default={1: 1}) keytyped_default = Dict(Int(), default={1: 1}) valuetyped_default = Dict(value=Int(), default={1: 1}) fullytyped_default = Dict(Int(), Int(), default={1: 1}) return DictAtom() MEMBERS = ['untyped', 'keytyped', 'valuetyped', 'fullytyped', 'untyped_default', 'keytyped_default', 'valuetyped_default', 'fullytyped_default'] @pytest.mark.parametrize('member', MEMBERS) def test_instance(atom_dict, member): """Test the repr. """ assert isinstance(getattr(atom_dict, member), atomdict) @pytest.mark.parametrize('member', MEMBERS) def test_repr(atom_dict, member): """Test the repr. """ d = getattr(atom_dict.__class__, member).default_value_mode[1] if not d: d = {i: i**2 for i in range(10)} setattr(atom_dict, member, d) assert repr(getattr(atom_dict, member)) == repr(d) @pytest.mark.parametrize('member', MEMBERS) def test_len(atom_dict, member): """Test the len. """ d = getattr(atom_dict.__class__, member).default_value_mode[1] if not d: d = {i: i**2 for i in range(10)} setattr(atom_dict, member, d) assert len(getattr(atom_dict, member)) == len(d) @pytest.mark.parametrize('member', MEMBERS) def test_contains(atom_dict, member): """Test __contains__. """ d = {i: i**2 for i in range(10)} setattr(atom_dict, member, d) assert 5 in getattr(atom_dict, member) del getattr(atom_dict, member)[5] assert 5 not in getattr(atom_dict, member) @pytest.mark.parametrize('member', MEMBERS) def test_keys(atom_dict, member): """Test the keys. """ d = getattr(atom_dict.__class__, member).default_value_mode[1] if not d: d = {i: i**2 for i in range(10)} setattr(atom_dict, member, d) assert getattr(atom_dict, member).keys() == d.keys() @pytest.mark.parametrize('member', MEMBERS) def test_copy(atom_dict, member): """Test copy. """ d = getattr(atom_dict.__class__, member).default_value_mode[1] if not d: d = {i: i**2 for i in range(10)} setattr(atom_dict, member, d) assert getattr(atom_dict, member).copy() == d def test_setitem(atom_dict): """Test setting items. """ atom_dict.untyped[''] = 1 assert atom_dict.untyped[''] == 1 atom_dict.keytyped[1] = '' assert atom_dict.keytyped[1] == '' with pytest.raises(TypeError): atom_dict.keytyped[''] = 1 atom_dict.valuetyped[1] = 1 assert atom_dict.valuetyped[1] == 1 with pytest.raises(TypeError): atom_dict.valuetyped[''] = '' atom_dict.fullytyped[1] = 1 assert atom_dict.fullytyped[1] == 1 with pytest.raises(TypeError): atom_dict.fullytyped[''] = 1 with pytest.raises(TypeError): atom_dict.fullytyped[1] = '' def test_setdefault(atom_dict): """Test using setdefault. """ assert atom_dict.untyped.setdefault('', 1) == 1 assert atom_dict.untyped.setdefault('', 2) == 1 assert atom_dict.untyped[''] == 1 assert atom_dict.keytyped.setdefault(1, '') == '' assert atom_dict.keytyped[1] == '' with pytest.raises(TypeError): atom_dict.keytyped.setdefault('', 1) assert atom_dict.valuetyped.setdefault(1, 1) == 1 assert atom_dict.valuetyped.setdefault(1, '') == 1 assert atom_dict.valuetyped[1] == 1 with pytest.raises(TypeError): atom_dict.valuetyped.setdefault(2, '') assert atom_dict.fullytyped.setdefault(1, 1) == 1 assert atom_dict.fullytyped.setdefault(1, '') == 1 assert atom_dict.fullytyped[1] == 1 with pytest.raises(TypeError): atom_dict.fullytyped.setdefault('', 1) with pytest.raises(TypeError): atom_dict.fullytyped.setdefault(2, '') def test_update(atom_dict): """Test update a dict. """ atom_dict.untyped.update({'': 1}) assert atom_dict.untyped[''] == 1 atom_dict.untyped.update([('1', 1)]) assert atom_dict.untyped['1'] == 1 atom_dict.keytyped.update({1: 1}) assert atom_dict.keytyped[1] == 1 atom_dict.keytyped.update([(2, 1)]) assert atom_dict.keytyped[1] == 1 with pytest.raises(TypeError): atom_dict.keytyped.update({'': 1}) atom_dict.valuetyped.update({1: 1}) assert atom_dict.valuetyped[1] == 1 atom_dict.valuetyped.update([(2, 1)]) assert atom_dict.valuetyped[1] == 1 with pytest.raises(TypeError): atom_dict.valuetyped.update({'': ''}) atom_dict.fullytyped.update({1: 1}) assert atom_dict.fullytyped[1] == 1 atom_dict.fullytyped.update([(2, 1)]) assert atom_dict.fullytyped[1] == 1 with pytest.raises(TypeError): atom_dict.fullytyped.update({'': 1}) with pytest.raises(TypeError): atom_dict.fullytyped.update({'': ''})
2.453125
2
dippy/core/timestamp.py
eggveloper/dippy.core
4
7243
<gh_stars>1-10 from datetime import datetime class Timestamp(float): def __new__(cls, value=None): return super().__new__( cls, datetime.utcnow().timestamp() if value is None else value ) def to_date(self) -> datetime: return datetime.utcfromtimestamp(self) def __repr__(self): return f"<{type(self).__name__} {self}>" def __str__(self): return self.to_date().isoformat(" ")
3.046875
3
bible/admin.py
tushortz/biblelover
0
7244
from django.contrib import admin from bible.models import Bible, VerseOfTheDay @admin.register(Bible) class BibleAdmin(admin.ModelAdmin): list_display = ['__str__', 'text'] readonly_fields = ['book', 'chapter', 'verse', 'text', 'category'] search_fields = ['text', 'book', 'chapter'] list_filter = ['category', 'book'] def has_add_permission(self, request): return False def has_delete_permission(self, request, obj=None): return False def has_change_permission(self, request, obj=None): return False @admin.register(VerseOfTheDay) class VerseOfTheDayAdmin(admin.ModelAdmin): autocomplete_fields = ['verse'] raw_id_fields = ['verse']
2.21875
2
typy/nodes.py
Procrat/typy
3
7245
<reponame>Procrat/typy<filename>typy/nodes.py """ Our own implementation of an abstract syntax tree (AST). The convert function recursively converts a Python AST (from the module `ast`) to our own AST (of the class `Node`). """ import ast from logging import debug from typy.builtin import data_types from typy.exceptions import NotYetSupported, NoSuchAttribute, NotIterable from typy import types class Node: def __init__(self, type_map, ast_node): self.type_map = type_map self._ast_fields = ast_node._fields def check(self): """Must be overriden in subtype.""" raise NotYetSupported('check call to', self) def iter_fields(self): for field in self._ast_fields: try: yield field, getattr(self, field) except AttributeError: pass def iter_child_nodes(self): for _name, field in self.iter_fields(): if isinstance(field, Node): yield field elif isinstance(field, list): for item in field: if isinstance(item, Node): yield item class FunctionDef(Node): def __init__(self, type_map, ast_node): if (ast_node.args.vararg is not None or len(ast_node.args.kwonlyargs) > 0 or len(ast_node.args.kw_defaults) > 0 or ast_node.args.kwarg is not None or len(ast_node.args.defaults) > 0): raise NotYetSupported('default arguments and keyword arguments') super().__init__(type_map, ast_node) self.name = ast_node.name self.params = [arg.arg for arg in ast_node.args.args] self.body = [convert(type_map, stmt) for stmt in ast_node.body] self._ast_fields = ('name', 'params', 'body') def check(self): debug('checking func def %s', self.name) function = types.Function(self, self.type_map) self.type_map.add_variable(self.name, function) return data_types.None_() def __repr__(self): return 'def ' + self.name + '()' class ClassDef(Node): def __init__(self, type_map, ast_node): super().__init__(type_map, ast_node) self.name = ast_node.name self.body = [convert(type_map, stmt) for stmt in ast_node.body] def check(self): debug('checking class def %s', self.name) class_namespace = self.type_map.enter_namespace(self.name) for stmt in self.body: stmt.check() self.type_map.exit_namespace() class_ = types.Class(self, self.type_map, class_namespace) self.type_map.add_variable(self.name, class_) return data_types.None_() def __repr__(self): return 'def ' + self.name class Attribute(Node): def __init__(self, type_map, ast_node): super().__init__(type_map, ast_node) self.value = convert(type_map, ast_node.value) self.attr = ast_node.attr self.ctx = ast_node.ctx def check(self): debug('checking attr %s', self) value_type = self.value.check() debug('attr %r = %r', self, value_type) if isinstance(self.ctx, ast.Load): return value_type.get_attribute(self.attr) elif isinstance(self.ctx, ast.Store): return (value_type, self.attr) else: # TODO implement for Del, AugLoad, AugStore, Param raise NotYetSupported('name context', self.ctx) def __repr__(self): return repr(self.value) + '.' + self.attr class Name(Node): def __init__(self, type_map, ast_node): super().__init__(type_map, ast_node) self.id = ast_node.id self.ctx = ast_node.ctx def check(self): debug('checking name %s', self.id) if isinstance(self.ctx, ast.Load): return self.type_map.find(self.id) elif isinstance(self.ctx, ast.Store): return self else: # TODO implement for Del, AugLoad, AugStore, Param raise NotYetSupported('name context', self.ctx) def __repr__(self): return self.id class Call(Node): def __init__(self, type_map, ast_node): if (len(ast_node.keywords) > 0 or ast_node.starargs is not None or ast_node.kwargs is not None): raise NotYetSupported('keyword arguments and star arguments') super().__init__(type_map, ast_node) self.func = convert(type_map, ast_node.func) self.args = [convert(type_map, expr) for expr in ast_node.args] def check(self): debug('checking call') func = self.func.check() args = [arg.check() for arg in self.args] return func.check_call(args) def __repr__(self): return repr(self.func) + \ '(' + ', '.join(repr(x) for x in self.args) + ')' class Expr(Node): def __init__(self, type_map, ast_node): super().__init__(type_map, ast_node) self.value = convert(type_map, ast_node.value) def check(self): debug('checking expr') self.value.check() return data_types.None_() def __repr__(self): return repr(self.value) class Return(Node): def __init__(self, type_map, ast_node): super().__init__(type_map, ast_node) self.value = convert(type_map, ast_node.value) def check(self): debug('checking return') return self.value.check() def __repr__(self): return 'return ' + repr(self.value) class Module(Node, types.Type): def __init__(self, type_map, ast_node): Node.__init__(self, type_map, ast_node) types.Type.__init__(self, type_map) self.body = [convert(type_map, stmt) for stmt in ast_node.body] def check(self): debug('checking module') self.module_namespace = self.type_map.enter_namespace('__main__') debug('entering %r', self.type_map.current_namespace) for stmt in self.body: debug('still in %r', self.type_map.current_namespace) stmt.check() debug('leaving %r', self.type_map.current_namespace) self.type_map.exit_namespace() def get_attribute(self, name): try: return self.module_namespace[name] except KeyError: types.Type.get_attribute(self, name) class Assign(Node): def __init__(self, type_map, ast_node): # TODO handle multiple targets if len(ast_node.targets) > 1: raise NotYetSupported('assignment with multiple targets') super().__init__(type_map, ast_node) self.target = convert(type_map, ast_node.targets[0]) self.value = convert(type_map, ast_node.value) self._ast_fields = ('target', 'value') def check(self): debug('checking assign %r', self.target) _assign(self.target, self.value, self.type_map) return data_types.None_() def __repr__(self): return repr(self.target) + ' = ' + repr(self.value) class Pass(Node): def check(self): debug('checking pass') return data_types.None_() def __repr__(self): return 'pass' class Not(Node): def __init__(self, type_map, ast_node): super().__init__(type_map, ast_node) self.value = convert(type_map, ast_node.value) def check(self): debug('checking not') self.value.check() return data_types.Bool() def __repr__(self): return 'not ' + repr(self.value) class BoolOp(Node): def __init__(self, type_map, ast_node): super().__init__(type_map, ast_node) self.op = ast_node.op self.values = [convert(type_map, value) for value in ast_node.values] def check(self): debug('checking boolop') for value in self.values: value.check() # TODO return intersection van types? return data_types.Bool() def __repr__(self): op_name = ' {} '.format(self.op) return '(' + op_name.join(repr(val) for val in self.values) + ')' class In(Node): def __init__(self, type_map, ast_node): super().__init__(type_map, ast_node) self.element = convert(type_map, ast_node.element) self.container = convert(type_map, ast_node.container) def check(self): debug('checking in') element = self.element.check() container = self.container.check() try: container.call_magic_method('__contains__', element) except NoSuchAttribute: if not container.is_iterable(): raise NotIterable(container) return data_types.Bool() def __repr__(self): return '{!r} in {!r}'.format(self.element, self.container) class For(Node): def __init__(self, type_map, ast_node): super().__init__(type_map, ast_node) self.target = convert(type_map, ast_node.target) self.iter = convert(type_map, ast_node.iter) self.body = [convert(type_map, stmt) for stmt in ast_node.body] self.orelse = [convert(type_map, clause) for clause in ast_node.orelse] def check(self): debug('checking for') iterator = self.iter.check() enclosed_type = iterator.get_enclosed_type() _assign(self.target, enclosed_type, self.type_map) for stmt in self.body: stmt.check() for stmt in self.orelse: stmt.check() # TODO return intersection of values of both branches return data_types.None_() def __repr__(self): s = 'for {!r} in {!r}:\n '.format(self.target, self.iter) s += '\n '.join(repr(stmt) for stmt in self.body) if self.orelse: s += 'else:\n ' s += '\n '.join(repr(stmt) for stmt in self.orelse) return s class If(Node): def __init__(self, type_map, ast_node): super().__init__(type_map, ast_node) self.test = convert(type_map, ast_node.test) self.body = [convert(type_map, stmt) for stmt in ast_node.body] self.orelse = [convert(type_map, stmt) for stmt in ast_node.orelse] def check(self): debug('checking if') # TODO take isinstance into account (?) # TODO real branching? self.test.check() for stmt in self.body: stmt.check() for stmt in self.orelse: stmt.check() # TODO return intersection of values of both branches return data_types.None_() def __repr__(self): s = 'if {!r}:\n '.format(self.test) s += '\n '.join(repr(stmt) for stmt in self.body) if self.orelse: s += 'else:\n ' s += '\n '.join(repr(stmt) for stmt in self.orelse) return s class IfExp(Node): def __init__(self, type_map, ast_node): super().__init__(type_map, ast_node) self.test = convert(type_map, ast_node.test) self.body = convert(type_map, ast_node.body) self.orelse = convert(type_map, ast_node.orelse) def check(self): debug('checking ifexp') # TODO take isinstance into account (?) self.test.check() value1 = self.body.check() value2 = self.orelse.check() return types.Intersection(value1, value2) def __repr__(self): template = '{!r} if {!r} else {!r}' return template.format(self.test, self.body, self.orelse) class NameConstant(Node): def __init__(self, type_map, ast_node): super().__init__(type_map, ast_node) self.value = ast_node.value def check(self): debug('checking name constant %r', self.value) if self.value is None: return data_types.None_() elif self.value is True or self.value is False: return data_types.Bool() else: raise NotYetSupported('name constant', self.value) def __repr__(self): return repr(self.value) class While(Node): def __init__(self, type_map, ast_node): super().__init__(type_map, ast_node) self.test = convert(type_map, ast_node.test) self.body = [convert(type_map, stmt) for stmt in ast_node.body] self.orelse = [convert(type_map, stmt) for stmt in ast_node.orelse] def check(self): debug('checking while') # TODO take isinstance into account (?) # TODO real branching? self.test.check() for stmt in self.body: stmt.check() for stmt in self.orelse: stmt.check() # TODO return intersection of values of both branches return data_types.None_() def __repr__(self): s = 'while {!r}:\n '.format(self.test) s += '\n '.join(repr(stmt) for stmt in self.body) if self.orelse: s += 'else:\n ' s += '\n '.join(repr(stmt) for stmt in self.orelse) return s class Break(Node): def check(self): debug('checking break') return data_types.None_() def __repr__(self): return 'break' class Continue(Node): def check(self): debug('checking continue') return data_types.None_() def __repr__(self): return 'continue' class Num(Node): def __init__(self, type_map, ast_node): super().__init__(type_map, ast_node) self.number_type = { int: data_types.Int, # float: data_types.Float, # complex: data_types.Complex, }[type(ast_node.n)] def check(self): debug('checking num') return self.number_type() class Tuple(Node): def __init__(self, type_map, ast_node): super().__init__(type_map, ast_node) self.elts = [convert(type_map, el) for el in ast_node.elts] self.ctx = ast_node.ctx def check(self): debug('checking tuple %r', self) if isinstance(self.ctx, ast.Load): el_types = (el.check() for el in self.elts) return types.Tuple(self.type_map, *el_types) elif isinstance(self.ctx, ast.Store): return self else: # TODO implement for Del, AugLoad, AugStore, Param raise NotYetSupported('name context', self.ctx) def __repr__(self): return '(' + ', '.join(repr(el) for el in self.elts) + ')' def _assign(target, value, type_map): value_type = value.check() if isinstance(target, Name): target_type = target.check() type_map.add_variable(target_type.id, value_type) elif isinstance(target, Attribute): target_type, attr = target.check() target_type.set_attribute(attr, value_type) else: raise NotYetSupported('assignment to', target) def convert(type_map, node): class_name = node.__class__.__name__ try: # Try to convert to a node class_ = globals()[class_name] return class_(type_map, node) except KeyError: try: # Try to convert to a builtin type class_ = getattr(data_types, class_name) return class_() except AttributeError: raise NotYetSupported('node', node)
2.390625
2
anonlink-entity-service/backend/entityservice/integrationtests/objectstoretests/test_objectstore.py
Sam-Gresh/linkage-agent-tools
1
7246
<reponame>Sam-Gresh/linkage-agent-tools """ Testing: - uploading over existing files - using deleted credentials - using expired credentials """ import io import minio from minio import Minio import pytest from minio.credentials import AssumeRoleProvider, Credentials from entityservice.object_store import connect_to_object_store, connect_to_upload_object_store from entityservice.settings import Config restricted_upload_policy = """{ "Version": "2012-10-17", "Statement": [ { "Action": [ "s3:PutObject" ], "Effect": "Allow", "Resource": [ "arn:aws:s3:::uploads/2020/*" ], "Sid": "Upload-access-to-specific-bucket-only" } ] } """ class TestAssumeRole: def test_temp_credentials_minio(self): upload_endpoint = Config.UPLOAD_OBJECT_STORE_SERVER bucket_name = "uploads" root_mc_client = connect_to_object_store() upload_restricted_minio_client = connect_to_upload_object_store() if not root_mc_client.bucket_exists(bucket_name): root_mc_client.make_bucket(bucket_name) with pytest.raises(minio.error.AccessDenied): upload_restricted_minio_client.list_buckets() # Should be able to put an object though upload_restricted_minio_client.put_object(bucket_name, 'testobject', io.BytesIO(b'data'), length=4) credentials_provider = AssumeRoleProvider(upload_restricted_minio_client, Policy=restricted_upload_policy ) temp_creds = Credentials(provider=credentials_provider) newly_restricted_mc_client = Minio(upload_endpoint, credentials=temp_creds, region='us-east-1', secure=False) with pytest.raises(minio.error.AccessDenied): newly_restricted_mc_client.list_buckets() # Note this put object worked with the earlier credentials # But should fail if we have applied the more restrictive policy with pytest.raises(minio.error.AccessDenied): newly_restricted_mc_client.put_object(bucket_name, 'testobject2', io.BytesIO(b'data'), length=4) # this path is allowed in the policy however newly_restricted_mc_client.put_object(bucket_name, '2020/testobject', io.BytesIO(b'data'), length=4)
1.929688
2
soil/build/lib/soil/db/sqlalchemy/api.py
JackDan9/soil
1
7247
# Copyright 2020 Soil, Inc. # Copyright (c) 2011 X.commerce, a business unit of eBay Inc. # Copyright 2010 United States Government as represented by the # Administrator of the National Aeronautics and Space Administration. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Implementation of SQLAlchemy backend.""" import collections import copy import datetime import functools import inspect import sys import threading from oslo_db.sqlalchemy import session as db_session from oslo_log import log as logging import soil.conf from soil.i18n import _ CONF = soil.conf.CONF LOG = logging.getLogger(__name__) _LOCK = threading.Lock() _FACADE = None def _create_facade_lazily(): global _LOCK with _LOCK: global _FACADE if _FACADE is None: _FACADE = db_session.EngineFacade( CONF.database.connection, **dict(CONF.database) ) return _FACADE def get_engine(): facade = _create_facade_lazily() return facade.get_engine() def get_session(**kwargs): facade = _create_facade_lazily() return facade.get_session(**kwargs) def dispose_engine(): get_engine().dispose()
1.796875
2
tests/test_models.py
kykrueger/redash
1
7248
<reponame>kykrueger/redash import calendar import datetime from unittest import TestCase import pytz from dateutil.parser import parse as date_parse from tests import BaseTestCase from redash import models, redis_connection from redash.models import db, types from redash.utils import gen_query_hash, utcnow class DashboardTest(BaseTestCase): def test_appends_suffix_to_slug_when_duplicate(self): d1 = self.factory.create_dashboard() db.session.flush() self.assertEqual(d1.slug, 'test') d2 = self.factory.create_dashboard(user=d1.user) db.session.flush() self.assertNotEqual(d1.slug, d2.slug) d3 = self.factory.create_dashboard(user=d1.user) db.session.flush() self.assertNotEqual(d1.slug, d3.slug) self.assertNotEqual(d2.slug, d3.slug) class ShouldScheduleNextTest(TestCase): def test_interval_schedule_that_needs_reschedule(self): now = utcnow() two_hours_ago = now - datetime.timedelta(hours=2) self.assertTrue(models.should_schedule_next(two_hours_ago, now, "3600")) def test_interval_schedule_that_doesnt_need_reschedule(self): now = utcnow() half_an_hour_ago = now - datetime.timedelta(minutes=30) self.assertFalse(models.should_schedule_next(half_an_hour_ago, now, "3600")) def test_exact_time_that_needs_reschedule(self): now = utcnow() yesterday = now - datetime.timedelta(days=1) scheduled_datetime = now - datetime.timedelta(hours=3) scheduled_time = "{:02d}:00".format(scheduled_datetime.hour) self.assertTrue(models.should_schedule_next(yesterday, now, "86400", scheduled_time)) def test_exact_time_that_doesnt_need_reschedule(self): now = date_parse("2015-10-16 20:10") yesterday = date_parse("2015-10-15 23:07") schedule = "23:00" self.assertFalse(models.should_schedule_next(yesterday, now, "86400", schedule)) def test_exact_time_with_day_change(self): now = utcnow().replace(hour=0, minute=1) previous = (now - datetime.timedelta(days=2)).replace(hour=23, minute=59) schedule = "23:59".format(now.hour + 3) self.assertTrue(models.should_schedule_next(previous, now, "86400", schedule)) def test_exact_time_every_x_days_that_needs_reschedule(self): now = utcnow() four_days_ago = now - datetime.timedelta(days=4) three_day_interval = "259200" scheduled_datetime = now - datetime.timedelta(hours=3) scheduled_time = "{:02d}:00".format(scheduled_datetime.hour) self.assertTrue(models.should_schedule_next(four_days_ago, now, three_day_interval, scheduled_time)) def test_exact_time_every_x_days_that_doesnt_need_reschedule(self): now = utcnow() four_days_ago = now - datetime.timedelta(days=2) three_day_interval = "259200" scheduled_datetime = now - datetime.timedelta(hours=3) scheduled_time = "{:02d}:00".format(scheduled_datetime.hour) self.assertFalse(models.should_schedule_next(four_days_ago, now, three_day_interval, scheduled_time)) def test_exact_time_every_x_days_with_day_change(self): now = utcnow().replace(hour=23, minute=59) previous = (now - datetime.timedelta(days=2)).replace(hour=0, minute=1) schedule = "23:58" three_day_interval = "259200" self.assertTrue(models.should_schedule_next(previous, now, three_day_interval, schedule)) def test_exact_time_every_x_weeks_that_needs_reschedule(self): # Setup: # # 1) The query should run every 3 weeks on Tuesday # 2) The last time it ran was 3 weeks ago from this week's Thursday # 3) It is now Wednesday of this week # # Expectation: Even though less than 3 weeks have passed since the # last run 3 weeks ago on Thursday, it's overdue since # it should be running on Tuesdays. this_thursday = utcnow() + datetime.timedelta(days=list(calendar.day_name).index("Thursday") - utcnow().weekday()) three_weeks_ago = this_thursday - datetime.timedelta(weeks=3) now = this_thursday - datetime.timedelta(days=1) three_week_interval = "1814400" scheduled_datetime = now - datetime.timedelta(hours=3) scheduled_time = "{:02d}:00".format(scheduled_datetime.hour) self.assertTrue(models.should_schedule_next(three_weeks_ago, now, three_week_interval, scheduled_time, "Tuesday")) def test_exact_time_every_x_weeks_that_doesnt_need_reschedule(self): # Setup: # # 1) The query should run every 3 weeks on Thurday # 2) The last time it ran was 3 weeks ago from this week's Tuesday # 3) It is now Wednesday of this week # # Expectation: Even though more than 3 weeks have passed since the # last run 3 weeks ago on Tuesday, it's not overdue since # it should be running on Thursdays. this_tuesday = utcnow() + datetime.timedelta(days=list(calendar.day_name).index("Tuesday") - utcnow().weekday()) three_weeks_ago = this_tuesday - datetime.timedelta(weeks=3) now = this_tuesday + datetime.timedelta(days=1) three_week_interval = "1814400" scheduled_datetime = now - datetime.timedelta(hours=3) scheduled_time = "{:02d}:00".format(scheduled_datetime.hour) self.assertFalse(models.should_schedule_next(three_weeks_ago, now, three_week_interval, scheduled_time, "Thursday")) def test_backoff(self): now = utcnow() two_hours_ago = now - datetime.timedelta(hours=2) self.assertTrue(models.should_schedule_next(two_hours_ago, now, "3600", failures=5)) self.assertFalse(models.should_schedule_next(two_hours_ago, now, "3600", failures=10)) def test_next_iteration_overflow(self): now = utcnow() two_hours_ago = now - datetime.timedelta(hours=2) self.assertFalse(models.should_schedule_next(two_hours_ago, now, "3600", failures=32)) class QueryOutdatedQueriesTest(BaseTestCase): # TODO: this test can be refactored to use mock version of should_schedule_next to simplify it. def test_outdated_queries_skips_unscheduled_queries(self): query = self.factory.create_query(schedule={'interval':None, 'time': None, 'until':None, 'day_of_week':None}) query_with_none = self.factory.create_query(schedule=None) queries = models.Query.outdated_queries() self.assertNotIn(query, queries) self.assertNotIn(query_with_none, queries) def test_outdated_queries_works_with_ttl_based_schedule(self): two_hours_ago = utcnow() - datetime.timedelta(hours=2) query = self.factory.create_query(schedule={'interval':'3600', 'time': None, 'until':None, 'day_of_week':None}) query_result = self.factory.create_query_result(query=query.query_text, retrieved_at=two_hours_ago) query.latest_query_data = query_result queries = models.Query.outdated_queries() self.assertIn(query, queries) def test_outdated_queries_works_scheduled_queries_tracker(self): two_hours_ago = utcnow() - datetime.timedelta(hours=2) query = self.factory.create_query(schedule={'interval':'3600', 'time': None, 'until':None, 'day_of_week':None}) query_result = self.factory.create_query_result(query=query, retrieved_at=two_hours_ago) query.latest_query_data = query_result models.scheduled_queries_executions.update(query.id) queries = models.Query.outdated_queries() self.assertNotIn(query, queries) def test_skips_fresh_queries(self): half_an_hour_ago = utcnow() - datetime.timedelta(minutes=30) query = self.factory.create_query(schedule={'interval':'3600', 'time': None, 'until':None, 'day_of_week':None}) query_result = self.factory.create_query_result(query=query.query_text, retrieved_at=half_an_hour_ago) query.latest_query_data = query_result queries = models.Query.outdated_queries() self.assertNotIn(query, queries) def test_outdated_queries_works_with_specific_time_schedule(self): half_an_hour_ago = utcnow() - datetime.timedelta(minutes=30) query = self.factory.create_query(schedule={'interval':'86400', 'time':half_an_hour_ago.strftime('%H:%M'), 'until':None, 'day_of_week':None}) query_result = self.factory.create_query_result(query=query.query_text, retrieved_at=half_an_hour_ago - datetime.timedelta(days=1)) query.latest_query_data = query_result queries = models.Query.outdated_queries() self.assertIn(query, queries) def test_enqueues_query_only_once(self): """ Only one query per data source with the same text will be reported by Query.outdated_queries(). """ query = self.factory.create_query(schedule={'interval':'60', 'until':None, 'time': None, 'day_of_week':None}) query2 = self.factory.create_query( schedule={'interval':'60', 'until':None, 'time': None, 'day_of_week':None}, query_text=query.query_text, query_hash=query.query_hash) retrieved_at = utcnow() - datetime.timedelta(minutes=10) query_result = self.factory.create_query_result( retrieved_at=retrieved_at, query_text=query.query_text, query_hash=query.query_hash) query.latest_query_data = query_result query2.latest_query_data = query_result self.assertEqual(list(models.Query.outdated_queries()), [query2]) def test_enqueues_query_with_correct_data_source(self): """ Queries from different data sources will be reported by Query.outdated_queries() even if they have the same query text. """ query = self.factory.create_query( schedule={'interval':'60', 'until':None, 'time': None, 'day_of_week':None}, data_source=self.factory.create_data_source()) query2 = self.factory.create_query( schedule={'interval':'60', 'until':None, 'time': None, 'day_of_week':None}, query_text=query.query_text, query_hash=query.query_hash) retrieved_at = utcnow() - datetime.timedelta(minutes=10) query_result = self.factory.create_query_result( retrieved_at=retrieved_at, query_text=query.query_text, query_hash=query.query_hash) query.latest_query_data = query_result query2.latest_query_data = query_result outdated_queries = models.Query.outdated_queries() self.assertEqual(len(outdated_queries), 2) self.assertIn(query, outdated_queries) self.assertIn(query2, outdated_queries) def test_enqueues_only_for_relevant_data_source(self): """ If multiple queries with the same text exist, only ones that are scheduled to be refreshed are reported by Query.outdated_queries(). """ query = self.factory.create_query(schedule={'interval':'60', 'until':None, 'time': None, 'day_of_week':None}) query2 = self.factory.create_query( schedule={'interval':'3600', 'until':None, 'time': None, 'day_of_week':None}, query_text=query.query_text, query_hash=query.query_hash) retrieved_at = utcnow() - datetime.timedelta(minutes=10) query_result = self.factory.create_query_result( retrieved_at=retrieved_at, query_text=query.query_text, query_hash=query.query_hash) query.latest_query_data = query_result query2.latest_query_data = query_result self.assertEqual(list(models.Query.outdated_queries()), [query]) def test_failure_extends_schedule(self): """ Execution failures recorded for a query result in exponential backoff for scheduling future execution. """ query = self.factory.create_query(schedule={'interval':'60', 'until':None, 'time': None, 'day_of_week':None}, schedule_failures=4) retrieved_at = utcnow() - datetime.timedelta(minutes=16) query_result = self.factory.create_query_result( retrieved_at=retrieved_at, query_text=query.query_text, query_hash=query.query_hash) query.latest_query_data = query_result self.assertEqual(list(models.Query.outdated_queries()), []) query_result.retrieved_at = utcnow() - datetime.timedelta(minutes=17) self.assertEqual(list(models.Query.outdated_queries()), [query]) def test_schedule_until_after(self): """ Queries with non-null ``schedule['until']`` are not reported by Query.outdated_queries() after the given time is past. """ one_day_ago = (utcnow() - datetime.timedelta(days=1)).strftime("%Y-%m-%d") two_hours_ago = utcnow() - datetime.timedelta(hours=2) query = self.factory.create_query(schedule={'interval':'3600', 'until':one_day_ago, 'time':None, 'day_of_week':None}) query_result = self.factory.create_query_result(query=query.query_text, retrieved_at=two_hours_ago) query.latest_query_data = query_result queries = models.Query.outdated_queries() self.assertNotIn(query, queries) def test_schedule_until_before(self): """ Queries with non-null ``schedule['until']`` are reported by Query.outdated_queries() before the given time is past. """ one_day_from_now = (utcnow() + datetime.timedelta(days=1)).strftime("%Y-%m-%d") two_hours_ago = utcnow() - datetime.timedelta(hours=2) query = self.factory.create_query(schedule={'interval':'3600', 'until':one_day_from_now, 'time': None, 'day_of_week':None}) query_result = self.factory.create_query_result(query=query.query_text, retrieved_at=two_hours_ago) query.latest_query_data = query_result queries = models.Query.outdated_queries() self.assertIn(query, queries) class QueryArchiveTest(BaseTestCase): def test_archive_query_sets_flag(self): query = self.factory.create_query() db.session.flush() query.archive() self.assertEqual(query.is_archived, True) def test_archived_query_doesnt_return_in_all(self): query = self.factory.create_query(schedule={'interval':'1', 'until':None, 'time': None, 'day_of_week':None}) yesterday = utcnow() - datetime.timedelta(days=1) query_result = models.QueryResult.store_result( query.org_id, query.data_source, query.query_hash, query.query_text, "1", 123, yesterday) query.latest_query_data = query_result groups = list(models.Group.query.filter(models.Group.id.in_(query.groups))) self.assertIn(query, list(models.Query.all_queries([g.id for g in groups]))) self.assertIn(query, models.Query.outdated_queries()) db.session.flush() query.archive() self.assertNotIn(query, list(models.Query.all_queries([g.id for g in groups]))) self.assertNotIn(query, models.Query.outdated_queries()) def test_removes_associated_widgets_from_dashboards(self): widget = self.factory.create_widget() query = widget.visualization.query_rel db.session.commit() query.archive() db.session.flush() self.assertEqual(models.Widget.query.get(widget.id), None) def test_removes_scheduling(self): query = self.factory.create_query(schedule={'interval':'1', 'until':None, 'time': None, 'day_of_week':None}) query.archive() self.assertIsNone(query.schedule) def test_deletes_alerts(self): subscription = self.factory.create_alert_subscription() query = subscription.alert.query_rel db.session.commit() query.archive() db.session.flush() self.assertEqual(models.Alert.query.get(subscription.alert.id), None) self.assertEqual(models.AlertSubscription.query.get(subscription.id), None) class TestUnusedQueryResults(BaseTestCase): def test_returns_only_unused_query_results(self): two_weeks_ago = utcnow() - datetime.timedelta(days=14) qr = self.factory.create_query_result() self.factory.create_query(latest_query_data=qr) db.session.flush() unused_qr = self.factory.create_query_result(retrieved_at=two_weeks_ago) self.assertIn(unused_qr, list(models.QueryResult.unused())) self.assertNotIn(qr, list(models.QueryResult.unused())) def test_returns_only_over_a_week_old_results(self): two_weeks_ago = utcnow() - datetime.timedelta(days=14) unused_qr = self.factory.create_query_result(retrieved_at=two_weeks_ago) db.session.flush() new_unused_qr = self.factory.create_query_result() self.assertIn(unused_qr, list(models.QueryResult.unused())) self.assertNotIn(new_unused_qr, list(models.QueryResult.unused())) class TestQueryAll(BaseTestCase): def test_returns_only_queries_in_given_groups(self): ds1 = self.factory.create_data_source() ds2 = self.factory.create_data_source() group1 = models.Group(name="g1", org=ds1.org, permissions=['create', 'view']) group2 = models.Group(name="g2", org=ds1.org, permissions=['create', 'view']) q1 = self.factory.create_query(data_source=ds1) q2 = self.factory.create_query(data_source=ds2) db.session.add_all([ ds1, ds2, group1, group2, q1, q2, models.DataSourceGroup( group=group1, data_source=ds1), models.DataSourceGroup(group=group2, data_source=ds2) ]) db.session.flush() self.assertIn(q1, list(models.Query.all_queries([group1.id]))) self.assertNotIn(q2, list(models.Query.all_queries([group1.id]))) self.assertIn(q1, list(models.Query.all_queries([group1.id, group2.id]))) self.assertIn(q2, list(models.Query.all_queries([group1.id, group2.id]))) def test_skips_drafts(self): q = self.factory.create_query(is_draft=True) self.assertNotIn(q, models.Query.all_queries([self.factory.default_group.id])) def test_includes_drafts_of_given_user(self): q = self.factory.create_query(is_draft=True) self.assertIn(q, models.Query.all_queries([self.factory.default_group.id], user_id=q.user_id)) def test_order_by_relationship(self): u1 = self.factory.create_user(name='alice') u2 = self.factory.create_user(name='bob') self.factory.create_query(user=u1) self.factory.create_query(user=u2) db.session.commit() # have to reset the order here with None since all_queries orders by # created_at by default base = models.Query.all_queries([self.factory.default_group.id]).order_by(None) qs1 = base.order_by(models.User.name) self.assertEqual(['alice', 'bob'], [q.user.name for q in qs1]) qs2 = base.order_by(models.User.name.desc()) self.assertEqual(['bob', 'alice'], [q.user.name for q in qs2]) class TestGroup(BaseTestCase): def test_returns_groups_with_specified_names(self): org1 = self.factory.create_org() org2 = self.factory.create_org() matching_group1 = models.Group(id=999, name="g1", org=org1) matching_group2 = models.Group(id=888, name="g2", org=org1) non_matching_group = models.Group(id=777, name="g1", org=org2) groups = models.Group.find_by_name(org1, ["g1", "g2"]) self.assertIn(matching_group1, groups) self.assertIn(matching_group2, groups) self.assertNotIn(non_matching_group, groups) def test_returns_no_groups(self): org1 = self.factory.create_org() models.Group(id=999, name="g1", org=org1) self.assertEqual([], models.Group.find_by_name(org1, ["non-existing"])) class TestQueryResultStoreResult(BaseTestCase): def setUp(self): super(TestQueryResultStoreResult, self).setUp() self.data_source = self.factory.data_source self.query = "SELECT 1" self.query_hash = gen_query_hash(self.query) self.runtime = 123 self.utcnow = utcnow() self.data = '{"a": 1}' def test_stores_the_result(self): query_result = models.QueryResult.store_result( self.data_source.org_id, self.data_source, self.query_hash, self.query, self.data, self.runtime, self.utcnow) self.assertEqual(query_result._data, self.data) self.assertEqual(query_result.runtime, self.runtime) self.assertEqual(query_result.retrieved_at, self.utcnow) self.assertEqual(query_result.query_text, self.query) self.assertEqual(query_result.query_hash, self.query_hash) self.assertEqual(query_result.data_source, self.data_source) class TestEvents(BaseTestCase): def raw_event(self): timestamp = 1411778709.791 user = self.factory.user created_at = datetime.datetime.utcfromtimestamp(timestamp) db.session.flush() raw_event = {"action": "view", "timestamp": timestamp, "object_type": "dashboard", "user_id": user.id, "object_id": 1, "org_id": 1} return raw_event, user, created_at def test_records_event(self): raw_event, user, created_at = self.raw_event() event = models.Event.record(raw_event) db.session.flush() self.assertEqual(event.user, user) self.assertEqual(event.action, "view") self.assertEqual(event.object_type, "dashboard") self.assertEqual(event.object_id, 1) self.assertEqual(event.created_at, created_at) def test_records_additional_properties(self): raw_event, _, _ = self.raw_event() additional_properties = {'test': 1, 'test2': 2, 'whatever': "abc"} raw_event.update(additional_properties) event = models.Event.record(raw_event) self.assertDictEqual(event.additional_properties, additional_properties) def _set_up_dashboard_test(d): d.g1 = d.factory.create_group(name='First', permissions=['create', 'view']) d.g2 = d.factory.create_group(name='Second', permissions=['create', 'view']) d.ds1 = d.factory.create_data_source() d.ds2 = d.factory.create_data_source() db.session.flush() d.u1 = d.factory.create_user(group_ids=[d.g1.id]) d.u2 = d.factory.create_user(group_ids=[d.g2.id]) db.session.add_all([ models.DataSourceGroup(group=d.g1, data_source=d.ds1), models.DataSourceGroup(group=d.g2, data_source=d.ds2) ]) d.q1 = d.factory.create_query(data_source=d.ds1) d.q2 = d.factory.create_query(data_source=d.ds2) d.v1 = d.factory.create_visualization(query_rel=d.q1) d.v2 = d.factory.create_visualization(query_rel=d.q2) d.w1 = d.factory.create_widget(visualization=d.v1) d.w2 = d.factory.create_widget(visualization=d.v2) d.w3 = d.factory.create_widget(visualization=d.v2, dashboard=d.w2.dashboard) d.w4 = d.factory.create_widget(visualization=d.v2) d.w5 = d.factory.create_widget(visualization=d.v1, dashboard=d.w4.dashboard) d.w1.dashboard.is_draft = False d.w2.dashboard.is_draft = False d.w4.dashboard.is_draft = False class TestDashboardAll(BaseTestCase): def setUp(self): super(TestDashboardAll, self).setUp() _set_up_dashboard_test(self) def test_requires_group_or_user_id(self): d1 = self.factory.create_dashboard() self.assertNotIn(d1, list(models.Dashboard.all( d1.user.org, d1.user.group_ids, None))) l2 = list(models.Dashboard.all( d1.user.org, [0], d1.user.id)) self.assertIn(d1, l2) def test_returns_dashboards_based_on_groups(self): self.assertIn(self.w1.dashboard, list(models.Dashboard.all( self.u1.org, self.u1.group_ids, None))) self.assertIn(self.w2.dashboard, list(models.Dashboard.all( self.u2.org, self.u2.group_ids, None))) self.assertNotIn(self.w1.dashboard, list(models.Dashboard.all( self.u2.org, self.u2.group_ids, None))) self.assertNotIn(self.w2.dashboard, list(models.Dashboard.all( self.u1.org, self.u1.group_ids, None))) def test_returns_each_dashboard_once(self): dashboards = list(models.Dashboard.all(self.u2.org, self.u2.group_ids, None)) self.assertEqual(len(dashboards), 2) def test_returns_dashboard_you_have_partial_access_to(self): self.assertIn(self.w5.dashboard, models.Dashboard.all(self.u1.org, self.u1.group_ids, None)) def test_returns_dashboards_created_by_user(self): d1 = self.factory.create_dashboard(user=self.u1) db.session.flush() self.assertIn(d1, list(models.Dashboard.all(self.u1.org, self.u1.group_ids, self.u1.id))) self.assertIn(d1, list(models.Dashboard.all(self.u1.org, [0], self.u1.id))) self.assertNotIn(d1, list(models.Dashboard.all(self.u2.org, self.u2.group_ids, self.u2.id))) def test_returns_dashboards_with_text_widgets(self): w1 = self.factory.create_widget(visualization=None) self.assertIn(w1.dashboard, models.Dashboard.all(self.u1.org, self.u1.group_ids, None)) self.assertIn(w1.dashboard, models.Dashboard.all(self.u2.org, self.u2.group_ids, None)) def test_returns_dashboards_from_current_org_only(self): w1 = self.factory.create_widget(visualization=None) user = self.factory.create_user(org=self.factory.create_org()) self.assertIn(w1.dashboard, models.Dashboard.all(self.u1.org, self.u1.group_ids, None)) self.assertNotIn(w1.dashboard, models.Dashboard.all(user.org, user.group_ids, None))
2.515625
3
.history/List of Capstone Projects/FibonacciSequence_20200516134123.py
EvanthiosPapadopoulos/Python3
1
7249
''' Fibonacci Sequence ''' import HeaderOfFiles def fibonacciSeq(number): ''' Generate Fibonacci Sequence to the given number. ''' a = 1 b = 1 for i in range(number): yield a a,b = b,a+b while True: try: f = int(input("Enter a number for Fibonacci: ")) break except: print("Give me a number please!") fibonacciSeq(f)
4.5
4
composer/algorithms/mixup/__init__.py
jacobfulano/composer
2
7250
<reponame>jacobfulano/composer # Copyright 2021 MosaicML. All Rights Reserved. from composer.algorithms.mixup.mixup import MixUp as MixUp from composer.algorithms.mixup.mixup import MixUpHparams as MixUpHparams from composer.algorithms.mixup.mixup import mixup_batch as mixup_batch _name = 'MixUp' _class_name = 'MixUp' _functional = 'mixup_batch' _tldr = 'Blends pairs of examples and labels' _attribution = '(Zhang et al, 2017)' _link = 'https://arxiv.org/abs/1710.09412' _method_card = ''
0.890625
1
tests/simple_gan_test.py
alanpeixinho/NiftyNet
0
7251
from __future__ import absolute_import, print_function import unittest import os import tensorflow as tf from tensorflow.keras import regularizers from niftynet.network.simple_gan import SimpleGAN from tests.niftynet_testcase import NiftyNetTestCase class SimpleGANTest(NiftyNetTestCase): def test_3d_reg_shape(self): input_shape = (2, 32, 32, 32, 1) noise_shape = (2, 512) x = tf.ones(input_shape) r = tf.ones(noise_shape) simple_gan_instance = SimpleGAN() out = simple_gan_instance(r, x, is_training=True) with self.cached_session() as sess: sess.run(tf.compat.v1.global_variables_initializer()) out = sess.run(out) self.assertAllClose(input_shape, out[0].shape) self.assertAllClose((2, 1), out[1].shape) self.assertAllClose((2, 1), out[2].shape) def test_2d_reg_shape(self): input_shape = (2, 64, 64, 1) noise_shape = (2, 512) x = tf.ones(input_shape) r = tf.ones(noise_shape) simple_gan_instance = SimpleGAN() out = simple_gan_instance(r, x, is_training=True) with self.cached_session() as sess: sess.run(tf.compat.v1.global_variables_initializer()) out = sess.run(out) self.assertAllClose(input_shape, out[0].shape) self.assertAllClose((2, 1), out[1].shape) self.assertAllClose((2, 1), out[2].shape) if __name__ == "__main__": tf.test.main()
2.4375
2
tests/test.py
N4S4/thingspeak_wrapper
0
7252
import time import thingspeak_wrapper as tsw # Initiate the class ThingWrapper with (CHANNEL_ID, WRITE_API__KEY, READ_API_KEY) # if is a public channel just pass the CHANNEL_ID argument, api_key defaults are None my_channel = tsw.wrapper.ThingWrapper(501309, '6TQDNWJQ44FA0GAQ', '10EVD2N6YIHI5O7Z') # all set of functions are: # my_channel.sender() # my_channel.multiple_sender() # my_channel.get_json_feeds() # my_channel.get_json_feeds_from() # my_channel.get_xml_feeds() # my_channel.get_xml_feeds_from() # my_channel.get_csv_feeds() # my_channel.get_csv_feeds_from() # --------------------------- # Now you can use all the possible functions # Send a value to a single field my_channel.sender(1, 4) # this delay is due to limitation of thingspeak free account which allow you to post data every 15 sec minimum time.sleep(15) # --------------------------- # Send data to multiple field # It take 2 input as lists ([..], [..]) # Create lists of fields and values fields = [1, 2, 3] values = [22.0, 1029, 700] # pass them to the function my_channel.multiple_sender(fields, values) # --------------------------- # Get data functions returns data as json, xml, csv # optionally csv can be returned as Pandas Data frame # pass arguments to the function (field, data_quantity) # default values are ( fields='feeds', results_quantity=None) # you will get all fields and all values (max 8000) json_field1 = my_channel.get_json_feeds(1, 300) print(json_field1) # get xml data pass same values as previous function xml_field1 = my_channel.get_xml_feeds(1, 300) print(xml_field1) # get csv data # this function requires to specify (field, pandas_format=True, result_quantity=None) # defaults are (fields='feeds', pandas_format=True, result_quantity=None) csv_field1 = my_channel.get_csv_feeds(1, pandas_format=True, results_quantity=300) print(csv_field1) # data without pandas_format csv_no_pandas = my_channel.get_csv_feeds(1, pandas_format=False, results_quantity=300) print(csv_no_pandas) # there is the possibility to request data from and to specific dates # set date and time as strings YYYY-MM-DD HH:NN:SS start_date, start_time = '2018-05-21', '12:00:00' stop_date, stop_time = '2018-05-21', '23:59:59' # pass values to the function # defaults are (start_date, start_time, stop_date=None, stop_time=None, fields='feeds') values_from_date = my_channel.get_json_feeds_from(stop_date, start_time, stop_date, stop_time, 1) print(values_from_date)
2.84375
3
neptunecontrib/monitoring/skopt.py
neptune-ai/neptune-contrib
22
7253
# # Copyright (c) 2019, Neptune Labs Sp. z o.o. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import warnings import matplotlib.pyplot as plt import neptune import numpy as np import skopt.plots as sk_plots from skopt.utils import dump from neptunecontrib.monitoring.utils import axes2fig, expect_not_a_run class NeptuneCallback: """Logs hyperparameter optimization process to Neptune. Specifically using NeptuneCallback will log: run metrics and run parameters, best run metrics so far, and the current results checkpoint. Examples: Initialize NeptuneCallback:: import neptune import neptunecontrib.monitoring.skopt as sk_utils neptune.init(api_token='<PASSWORD>', project_qualified_name='shared/showroom') neptune.create_experiment(name='optuna sweep') neptune_callback = sk_utils.NeptuneCallback() Run skopt training passing neptune_callback as a callback:: ... results = skopt.forest_minimize(objective, space, callback=[neptune_callback], base_estimator='ET', n_calls=100, n_random_starts=10) You can explore an example experiment in Neptune: https://ui.neptune.ai/o/shared/org/showroom/e/SHOW-1065/logs """ def __init__(self, experiment=None, log_checkpoint=True): self._exp = experiment if experiment else neptune expect_not_a_run(self._exp) self.log_checkpoint = log_checkpoint self._iteration = 0 def __call__(self, res): self._exp.log_metric('run_score', x=self._iteration, y=res.func_vals[-1]) self._exp.log_metric('best_so_far_run_score', x=self._iteration, y=np.min(res.func_vals)) self._exp.log_text('run_parameters', x=self._iteration, y=NeptuneCallback._get_last_params(res)) if self.log_checkpoint: self._exp.log_artifact(_export_results_object(res), 'results.pkl') self._iteration += 1 @staticmethod def _get_last_params(res): param_vals = res.x_iters[-1] named_params = _format_to_named_params(param_vals, res) return str(named_params) def log_results(results, experiment=None, log_plots=True, log_pickle=True): """Logs runs results and parameters to neptune. Logs all hyperparameter optimization results to Neptune. Those include best score ('best_score' metric), best parameters ('best_parameters' property), convergence plot ('diagnostics' log), evaluations plot ('diagnostics' log), and objective plot ('diagnostics' log). Args: results('scipy.optimize.OptimizeResult'): Results object that is typically an output | of the function like `skopt.forest_minimize(...)` experiment(`neptune.experiments.Experiment`): Neptune experiment. Default is None. log_plots: ('bool'): If True skopt plots will be logged to Neptune. log_pickle: ('bool'): if True pickled skopt results object will be logged to Neptune. Examples: Run skopt training:: ... results = skopt.forest_minimize(objective, space, base_estimator='ET', n_calls=100, n_random_starts=10) Initialize Neptune:: import neptune neptune.init(api_token='<PASSWORD>', project_qualified_name='shared/showroom') neptune.create_experiment(name='optuna sweep') Send best parameters to Neptune:: import neptunecontrib.monitoring.skopt as sk_utils sk_utils.log_results(results) You can explore an example experiment in Neptune: https://ui.neptune.ai/o/shared/org/showroom/e/SHOW-1065/logs """ _exp = experiment if experiment else neptune expect_not_a_run(_exp) _log_best_score(results, _exp) _log_best_parameters(results, _exp) if log_plots: _log_plot_convergence(results, _exp) _log_plot_evaluations(results, _exp) _log_plot_regret(results, _exp) _log_plot_objective(results, _exp) if log_pickle: _log_results_object(results, _exp) def NeptuneMonitor(*args, **kwargs): message = """NeptuneMonitor was renamed to NeptuneCallback and will be removed in future releases. """ warnings.warn(message) return NeptuneCallback(*args, **kwargs) def _log_best_parameters(results, experiment): expect_not_a_run(experiment) named_params = ([(dimension.name, param) for dimension, param in zip(results.space, results.x)]) experiment.set_property('best_parameters', str(named_params)) def _log_best_score(results, experiment): experiment.log_metric('best_score', results.fun) def _log_plot_convergence(results, experiment, name='diagnostics'): expect_not_a_run(experiment) fig, ax = plt.subplots() sk_plots.plot_convergence(results, ax=ax) experiment.log_image(name, fig) def _log_plot_regret(results, experiment, name='diagnostics'): expect_not_a_run(experiment) fig, ax = plt.subplots() sk_plots.plot_regret(results, ax=ax) experiment.log_image(name, fig) def _log_plot_evaluations(results, experiment, name='diagnostics'): expect_not_a_run(experiment) fig = plt.figure(figsize=(16, 12)) fig = axes2fig(sk_plots.plot_evaluations(results, bins=10), fig=fig) experiment.log_image(name, fig) def _log_plot_objective(results, experiment, name='diagnostics'): try: expect_not_a_run(experiment) fig = plt.figure(figsize=(16, 12)) fig = axes2fig(sk_plots.plot_objective(results), fig=fig) experiment.log_image(name, fig) except Exception as e: print('Could not create the objective chart due to error: {}'.format(e)) def _log_results_object(results, experiment=None): expect_not_a_run(experiment) experiment.log_artifact(_export_results_object(results), 'results.pkl') def _export_results_object(results): from io import BytesIO results.specs['args'].pop('callback', None) buffer = BytesIO() dump(results, buffer, store_objective=False) buffer.seek(0) return buffer def _format_to_named_params(params, result): return [(dimension.name, param) for dimension, param in zip(result.space, params)]
2.25
2
snoopy/server/transforms/Maltego.py
aiddenkeli/Snoopy
432
7254
#!/usr/bin/python # # This might be horrible code... # ...but it works # Feel free to re-write in a better way # And if you want to - send it to us, we'll update ;) # <EMAIL> (2010/10/18) # import sys from xml.dom import minidom class MaltegoEntity(object): value = ""; weight = 100; displayInformation = ""; additionalFields = []; iconURL = ""; entityType = "Phrase" def __init__(self,eT=None,v=None): if (eT is not None): self.entityType = eT; if (v is not None): self.value = v; self.additionalFields = None; self.additionalFields = []; self.weight = 100; self.displayInformation = ""; self.iconURL = ""; def setType(self,eT=None): if (eT is not None): self.entityType = eT; def setValue(self,eV=None): if (eV is not None): self.value = eV; def setWeight(self,w=None): if (w is not None): self.weight = w; def setDisplayInformation(self,di=None): if (di is not None): self.displayInformation = di; def addAdditionalFields(self,fieldName=None,displayName=None,matchingRule=False,value=None): self.additionalFields.append([fieldName,displayName,matchingRule,value]); def setIconURL(self,iU=None): if (iU is not None): self.iconURL = iU; def returnEntity(self): print "<Entity Type=\"" + str(self.entityType) + "\">"; print "<Value>" + str(self.value) + "</Value>"; print "<Weight>" + str(self.weight) + "</Weight>"; if (self.displayInformation is not None): print "<DisplayInformation><Label Name=\"\" Type=\"text/html\"><![CDATA[" + str(self.displayInformation) + "]]></Label></DisplayInformation>"; if (len(self.additionalFields) > 0): print "<AdditionalFields>"; for i in range(len(self.additionalFields)): if (str(self.additionalFields[i][2]) <> "strict"): print "<Field Name=\"" + str(self.additionalFields[i][0]) + "\" DisplayName=\"" + str(self.additionalFields[i][1]) + "\">" + str(self.additionalFields[i][3]) + "</Field>"; else: print "<Field MatchingRule=\"" + str(self.additionalFields[i][2]) + "\" Name=\"" + str(self.additionalFields[i][0]) + "\" DisplayName=\"" + str(self.additionalFields[i][1]) + "\">" + str(self.additionalFields[i][3]) + "</Field>"; print "</AdditionalFields>"; if (len(self.iconURL) > 0): print "<IconURL>" + self.iconURL + "</IconURL>"; print "</Entity>"; class MaltegoTransform(object): entities = [] exceptions = [] UIMessages = [] #def __init__(self): #empty. def addEntity(self,enType,enValue): me = MaltegoEntity(enType,enValue); self.addEntityToMessage(me); return self.entities[len(self.entities)-1]; def addEntityToMessage(self,maltegoEntity): self.entities.append(maltegoEntity); def addUIMessage(self,message,messageType="Inform"): self.UIMessages.append([messageType,message]); def addException(self,exceptionString): self.exceptions.append(exceptionString); def throwExceptions(self): print "<MaltegoMessage>"; print "<MaltegoTransformExceptionMessage>"; print "<Exceptions>" for i in range(len(self.exceptions)): print "<Exception>" + self.exceptions[i] + "</Exceptions>"; print "</Exceptions>" print "</MaltegoTransformExceptionMessage>"; print "</MaltegoMessage>"; def returnOutput(self): print "<MaltegoMessage>"; print "<MaltegoTransformResponseMessage>"; print "<Entities>" for i in range(len(self.entities)): self.entities[i].returnEntity(); print "</Entities>" print "<UIMessages>" for i in range(len(self.UIMessages)): print "<UIMessage MessageType=\"" + self.UIMessages[i][0] + "\">" + self.UIMessages[i][1] + "</UIMessage>"; print "</UIMessages>" print "</MaltegoTransformResponseMessage>"; print "</MaltegoMessage>"; def writeSTDERR(self,msg): sys.stderr.write(str(msg)); def heartbeat(self): self.writeSTDERR("+"); def progress(self,percent): self.writeSTDERR("%" + str(percent)); def debug(self,msg): self.writeSTDERR("D:" + str(msg)); class MaltegoMsg: def __init__(self,MaltegoXML=""): xmldoc = minidom.parseString(MaltegoXML) #read the easy stuff like value, limits etc self.Value = self.i_getNodeValue(xmldoc,"Value") self.Weight = self.i_getNodeValue(xmldoc,"Weight") self.Slider = self.i_getNodeAttributeValue(xmldoc,"Limits","SoftLimit") self.Type = self.i_getNodeAttributeValue(xmldoc,"Entity","Type") #read additional fields AdditionalFields = {} try: AFNodes= xmldoc.getElementsByTagName("AdditionalFields")[0] Settings = AFNodes.getElementsByTagName("Field") for node in Settings: AFName = node.attributes["Name"].value; AFValue = self.i_getText(node.childNodes); AdditionalFields[AFName] = AFValue except: #sure this is not the right way...;) dontcare=1 #parse transform settings TransformSettings = {} try: TSNodes= xmldoc.getElementsByTagName("TransformFields")[0] Settings = TSNodes.getElementsByTagName("Field") for node in Settings: TSName = node.attributes["Name"].value; TSValue = self.i_getText(node.childNodes); TransformSettings[TSName] = TSValue except: dontcare=1 #load back into object self.AdditionalFields = AdditionalFields self.TransformSettings = TransformSettings def i_getText(self,nodelist): rc = [] for node in nodelist: if node.nodeType == node.TEXT_NODE: rc.append(node.data) return ''.join(rc) def i_getNodeValue(self,node,Tag): return self.i_getText(node.getElementsByTagName(Tag)[0].childNodes) def i_getNodeAttributeValue(self,node,Tag,Attribute): return node.getElementsByTagName(Tag)[0].attributes[Attribute].value;
2.25
2
metadeploy/api/migrations/0050_add_clickthrough_agreement.py
sfdc-qbranch/MetaDeploy
33
7255
# Generated by Django 2.1.5 on 2019-02-12 21:18 import django.db.models.deletion from django.db import migrations, models class Migration(migrations.Migration): dependencies = [("api", "0049_add_all_other_translations")] operations = [ migrations.CreateModel( name="ClickThroughAgreement", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ("text", models.TextField()), ], ), migrations.AddField( model_name="job", name="click_through_agreement", field=models.ForeignKey( null=True, on_delete=django.db.models.deletion.PROTECT, to="api.ClickThroughAgreement", ), ), ]
1.648438
2
invenio_iiif/config.py
dfdan/invenio-iiif
3
7256
# -*- coding: utf-8 -*- # # This file is part of Invenio. # Copyright (C) 2018 CERN. # # Invenio is free software; you can redistribute it and/or modify it # under the terms of the MIT License; see LICENSE file for more details. """IIIF API for Invenio.""" IIIF_API_PREFIX = '/iiif/' """URL prefix to IIIF API.""" IIIF_UI_URL = '/api{}'.format(IIIF_API_PREFIX) """URL to IIIF API endpoint (allow hostname).""" IIIF_PREVIEWER_PARAMS = { 'size': '750,' } """Parameters for IIIF image previewer extension.""" IIIF_PREVIEW_TEMPLATE = 'invenio_iiif/preview.html' """Template for IIIF image preview.""" IIIF_API_DECORATOR_HANDLER = 'invenio_iiif.handlers:protect_api' """Image opener handler decorator.""" IIIF_IMAGE_OPENER_HANDLER = 'invenio_iiif.handlers:image_opener' """Image opener handler function."""
1.34375
1
pub_ingest.py
mconlon17/vivo-pub-ingest
0
7257
#!/user/bin/env/python """ pub_ingest.py -- Read a bibtex file and make VIVO RDF The following objects will be made as needed: -- publisher -- journal -- information resource -- timestamp for the information resource -- people -- authorships -- concepts The resulting ADD and SUB RDF file can then be read into VIVO To Do -- Complete refactor as an update process. Create resuable parts so that a publication can be created from bibtex, doi or pmid -- Improve DateTimeValue accuracy. Currently all publications are entered as yearMonth precision. Sometimes we have more information, sometimes we have less. We should use the information as presented by the publisher, not overstate (yearMonth when there is only year) and not understate (yearMonth when we know the day). -- Reuse date objects -- only create dates when the appropriate date entity is not already in VIVO -- Update for VIVO-ISF -- Update or vivofoundation and vivopubs """ __author__ = "<NAME>" __copyright__ = "Copyright 2014, University of Florida" __license__ = "BSD 3-Clause license" __version__ = "1.3" import sys from datetime import datetime, date from pybtex.database.input import bibtex import tempita import vivotools MAX_AUTHORS = 50 publisher_report = {} journal_report = {} title_report = {} author_report = {} disambiguation_report = {} dictionaries = [] journal_dictionary = {} publisher_dictionary = {} title_dictionary = {} def open_files(bibtex_file_name): """ Give the name of the bibitex file to be used as input, generate the file names for rdf, rpt and lst. Return the open file handles """ base = bibtex_file_name[:bibtex_file_name.find('.')] rpt_file = open(base+'.rpt', 'w') lst_file = open(base+'.lst', 'w') rdf_file = open(base+'.rdf', 'w') return [rdf_file, rpt_file, lst_file] def update_disambiguation_report(authors, publication_uri): """ Given the authors structure and thte publication_uri, add to the report if any of the authors need to be disambiguated """ for value in authors.values(): if value[8] == "Disambig": if publication_uri in disambiguation_report: result = disambiguation_report[publication_uri] result[len(result.keys())+1] = value disambiguation_report[publication_uri] = result else: disambiguation_report[publication_uri] = {1:value} return # start here. Create a parser for bibtex and use it to read the file of # bibtex entries. open the output files print datetime.now(), "Read the BibTex" bibtex_file_name = sys.argv[1] [rdf_file, rpt_file, lst_file] = open_files(bibtex_file_name) parser = bibtex.Parser() bib_data = parser.parse_file(bibtex_file_name) bib_sorted = sorted(bib_data.entries.items(), key=lambda x: x[1].fields['title']) print >>rdf_file, "<!--", len(bib_data.entries.keys()),\ "publications to be processed -->" print datetime.now(), len(bib_data.entries.keys()),\ "publications to be processed." # make dictionaries for people, papers, publishers, journals, concepts print datetime.now(), "Creating the dictionaries" print datetime.now(), "Publishers" publisher_dictionary = vivotools.make_publisher_dictionary() print datetime.now(), "Journals" journal_dictionary = vivotools.make_journal_dictionary() print datetime.now(), "People" dictionaries = make_people_dictionaries() print datetime.now(), "Titles" title_dictionary = vivotools.make_title_dictionary() print datetime.now(), "Concepts" vivotools.make_concept_dictionary() # process the papers print >>rdf_file, vivotools.rdf_header() for key, value in bib_sorted: try: title = value.fields['title'].title() + " " except: title_report["No title"] = ["No Title", None, 1] print >>rdf_file, "<!-- No title found. No RDF necessary -->" continue title = abbrev_to_words(title) title = title[0:-1] if title in title_report: print >>rdf_file, "<!-- Title", title,\ "handled previously. No RDF necessary -->" title_report[title][2] = title_report[title][2] + 1 continue else: print >>rdf_file, "<!-- Begin RDF for " + title + " -->" print datetime.now(), "<!-- Begin RDF for " + title + " -->" document = {} document['title'] = title title_report[title] = ["Start", None, 1] [found, uri] = vivotools.find_title(title, title_dictionary) if not found: title_report[title][0] = "Create" # Create # Authors [author_rdf, authors] = make_author_rdf(value) document['authors'] = make_document_authors(authors) if count_uf_authors(authors) == 0: print >>rdf_file, "<!-- End RDF. No UF authors for " +\ title + " No RDF necessary -->" title_report[title][0] = "No UF Auth" continue update_author_report(authors) # Datetime [datetime_rdf, datetime_uri] = make_datetime_rdf(value, title) # Publisher [journal_create, journal_name, journal_uri] =\ make_journal_uri(value) [publisher_create, publisher, publisher_uri, publisher_rdf] =\ make_publisher_rdf(value) # Journal [journal_rdf, journal_uri] = make_journal_rdf(value,\ journal_create, journal_name, journal_uri) # Publisher/Journal bi-directional links publisher_journal_rdf = "" if journal_uri != "" and publisher_uri != "" and\ (journal_create or publisher_create): publisher_journal_rdf = \ make_publisher_journal_rdf(publisher_uri, journal_uri) # Authorships publication_uri = vivotools.get_vivo_uri() title_report[title][1] = publication_uri [authorship_rdf, authorship_uris] = make_authorship_rdf(authors,\ publication_uri) # AuthorInAuthorships author_in_authorship_rdf = make_author_in_authorship_rdf(authors,\ authorship_uris) # Journal/Publication bi-directional links if journal_uri != "" and publication_uri != "": journal_publication_rdf = \ make_journal_publication_rdf(journal_uri, publication_uri) # PubMed values pubmed_rdf = "" if 'doi' in value.fields: [pubmed_rdf, sub] = vivotools.update_pubmed(publication_uri,\ value.fields['doi']) if sub != "": raise Exception("Non empty subtraction RDF"+\ "for Update PubMed") # Publication publication_rdf = make_publication_rdf(value,\ title,publication_uri,datetime_uri,authorship_uris) print >>rdf_file, datetime_rdf, publisher_rdf, journal_rdf,\ publisher_journal_rdf, author_rdf, authorship_rdf,\ author_in_authorship_rdf, journal_publication_rdf,\ publication_rdf, pubmed_rdf print >>rdf_file, "<!-- End RDF for " + title + " -->" print >>lst_file, vivotools.string_from_document(document),\ 'VIVO uri', publication_uri, '\n' update_disambiguation_report(authors, publication_uri) else: title_report[title][0] = "Found" title_report[title][1] = uri print >>rdf_file, "<!-- Found: " + title + " No RDF necessary -->" print >>rdf_file, vivotools.rdf_footer() # # Reports # print >>rpt_file,""" Publisher Report Lists the publishers that appear in the bibtex file in alphabetical order. For each publisher, show the improved name, the number of papers in journals of this publisher, the action to be taken for the publisher and the VIVO URI -- the URI is the new URI to be created if Action is Create, otherwise it is the URI of the found publisher in VIVO. Publisher Papers Action VIVO URI ---------------------------------------------------------------------------------""" publisher_count = 0 actions = {} for publisher in sorted(publisher_report.keys()): publisher_count = publisher_count + 1 [create,uri,count] = publisher_report[publisher] if create: result = "Create" else: result = "Found " actions[result] = actions.get(result,0) + 1 print >>rpt_file, "{0:40}".format(publisher[0:40]),"{0:>3}".format(count),result,uri print >>rpt_file,"" print >>rpt_file, "Publisher count by action" print >>rpt_file, "" for action in sorted(actions): print >>rpt_file, action,actions[action] print >>rpt_file, publisher_count,"publisher(s)" print >>rpt_file, """ Journal Report Lists the journals that appear in the bibtex file in alphabetical order. For each journal, show the improved name, the number of papers t be linked to the journal, the action to be taken for the journal and the VIVO URI -- the URI is the new URI to be created if Action is Create, otherwise it is the URI of the found journal in VIVO. Journal Papers Action VIVO URI ---------------------------------------------------------------------------------""" journal_count = 0 actions = {} for journal in sorted(journal_report.keys()): journal_count = journal_count + 1 [create,uri,count] = journal_report[journal] if create: result = "Create" else: result = "Found " actions[result] = actions.get(result,0) + 1 print >>rpt_file, "{0:40}".format(journal[0:40]),"{0:>3}".format(count),result,uri print >>rpt_file, "" print >>rpt_file, "Journal count by action" print >>rpt_file, "" for action in sorted(actions): print >>rpt_file, action,actions[action] print >>rpt_file, journal_count,"journal(s)" print >>rpt_file, """ Title Report Lists the titles that appear in the bibtex file in alphabetical order. For each title, show the action to be taken, the number of times the title appears in the bibtex, the improved title and the VIVO URI of the publication -- the URI is the new URI to be created if action is Create, otherwise it is the URI of the found publication in VIVO. Action # Title and VIVO URI ---------------------------------------------------------------------------------""" title_count = 0 actions = {} for title in sorted(title_report.keys()): title_count = title_count +1 [action,uri,count] = title_report[title] actions[action] = actions.get(action,0) + 1 print >>rpt_file, "{0:>10}".format(action),title,uri print >>rpt_file, "" print >>rpt_file, "Title count by action" print >>rpt_file, "" for action in sorted(actions): print >>rpt_file, action,actions[action] print >>rpt_file, title_count,"title(s)" print >>rpt_file, """ Author Report For each author found in the bibtex file, show the author's name followed by the number of papers for the author in the bibtex to be entered, followed by a pair of results for each time the author appears on a paper in the bibtex. The result pair contains an action and a URI. The action is "non UF" if a non-UF author stub will be be created, the URI is the URI of the new author stub. Action "Make UF" if a new UF author stub will be created with the URI of the new author stub. "Found UF" indicate the author was found at the URI. "Disambig" if multiple UF people were found with the given name. The URI is the URI of one of the found people. Follow-up is needed to determine if correct and reassign author if not correct. Author Action URI Action URI ----------------------------------------------------------------------------------------------""" author_count = 0 actions = {} for author in sorted(author_report.keys()): author_count = author_count + 1 results = "" papers = len(author_report[author]) action = author_report[author][1][8] # 1st report, 8th value is action actions[action] = actions.get(action,0) + 1 for key in author_report[author].keys(): value = author_report[author][key] results = results + value[8] + " " + "{0:45}".format(value[9]) print >>rpt_file, "{0:25}".format(author),"{0:>3}".format(papers),results print >>rpt_file, "" print >>rpt_file, "Author count by action" print >>rpt_file, "" for action in sorted(actions): print >>rpt_file, action,actions[action] print >>rpt_file, author_count,"authors(s)" print >>rpt_file, """ Disambiguation Report For each publication with one or more authors to disambiguate, list the paper, and then the authors in question with each of the possible URIs to be disambiguated, show the URI of the paper, and then for each author that needs to be disambiguated on the paper, show the last name, first name and middle initial and the all the URIs in VIVO for UF persons with the same names. """ for uri in disambiguation_report.keys(): print >>rpt_file,"The publication at",uri,"has one or more authors in question" for key,value in disambiguation_report[uri].items(): uris = value[9].split(";") print >>rpt_file," ",value[4],value[5],value[6],":" for u in uris: person = vivotools.get_person(u) if 'last_name' not in person: person['last_name'] = "No last name" if 'middle_name' not in person: person['middle_name'] = "No middle name" if 'first_name' not in person: person['first_name'] = "No first name" if 'home_department_name' not in person: person['home_department_name'] = "No home department" npubs = len(person['authorship_uris']) print >>rpt_file," ",u,person['last_name'], \ person['first_name'],person['middle_name'], \ person['home_department_name'],"Number of pubs = ",npubs print >>rpt_file print >>rpt_file # # Close the files, we're done # rpt_file.close() rdf_file.close() lst_file.close()
2.734375
3
port/platform/common/automation/u_utils.py
u-blox/ubxlib
91
7258
#!/usr/bin/env python '''Generally useful bits and bobs.''' import queue # For PrintThread and exe_run from time import sleep, time, gmtime, strftime # For lock timeout, exe_run timeout and logging from multiprocessing import RLock from copy import copy import threading # For PrintThread import sys import os # For ChangeDir, has_admin import stat # To help deltree out from collections import deque # For storing a window of debug from telnetlib import Telnet # For talking to JLink server import socket import shutil # To delete a directory tree import signal # For CTRL_C_EVENT import subprocess import platform # Figure out current OS import re # Regular Expression import serial # Pyserial (make sure to do pip install pyserial) import psutil # For killing things (make sure to do pip install psutil) import requests # For HTTP comms with a KMTronic box (do pip install requests) import u_settings # Since this function is used by the global variables below it needs # to be placed here. def is_linux(): '''Returns True when system is Linux''' return platform.system() == 'Linux' # Since this function is used by the global variables below it needs # to be placed here. def pick_by_os(linux=None, other=None): ''' This is a convenience function for selecting a value based on platform. As an example the line below will print out "Linux" when running on a Linux platform and "Not Linux" when running on some other platform: print( u_utils.pick_by_os(linux="Linux", other="Not Linux") ) ''' if is_linux(): return linux return other # The port that this agent service runs on # Deliberately NOT a setting, we need to be sure # everyone uses the same value AGENT_SERVICE_PORT = 17003 # The maximum number of characters that an agent will # use from controller_name when constructing a directory # name for a ubxlib branch to be checked out into AGENT_WORKING_SUBDIR_CONTROLLER_NAME_MAX_LENGTH = 4 # How long to wait for an install lock in seconds INSTALL_LOCK_WAIT_SECONDS = u_settings.INSTALL_LOCK_WAIT_SECONDS #(60 * 60) # The URL for Unity, the unit test framework UNITY_URL = u_settings.UNITY_URL #"https://github.com/ThrowTheSwitch/Unity" # The sub-directory that Unity is usually put in # (off the working directory) UNITY_SUBDIR = u_settings.UNITY_SUBDIR #"Unity" # The path to DevCon, a Windows tool that allows # USB devices to be reset, amongst other things DEVCON_PATH = u_settings.DEVCON_PATH #"devcon.exe" # The path to jlink.exe (or just the name 'cos it's on the path) JLINK_PATH = u_settings.JLINK_PATH #"jlink.exe" # The port number for SWO trace capture out of JLink JLINK_SWO_PORT = u_settings.JLINK_SWO_PORT #19021 # The port number for GDB control of ST-LINK GDB server STLINK_GDB_PORT = u_settings.STLINK_GDB_PORT #61200 # The port number for SWO trace capture out of ST-LINK GDB server STLINK_SWO_PORT = u_settings.STLINK_SWO_PORT #61300 # The format string passed to strftime() # for logging prints TIME_FORMAT = u_settings.TIME_FORMAT #"%Y-%m-%d_%H:%M:%S" # The default guard time waiting for a platform lock in seconds PLATFORM_LOCK_GUARD_TIME_SECONDS = u_settings.PLATFORM_LOCK_GUARD_TIME_SECONDS #60 * 60 # The default guard time for downloading to a target in seconds DOWNLOAD_GUARD_TIME_SECONDS = u_settings.DOWNLOAD_GUARD_TIME_SECONDS #60 # The default guard time for running tests in seconds RUN_GUARD_TIME_SECONDS = u_settings.RUN_GUARD_TIME_SECONDS #60 * 60 # The default inactivity timer for running tests in seconds RUN_INACTIVITY_TIME_SECONDS = u_settings.RUN_INACTIVITY_TIME_SECONDS #60 * 5 # The name of the #define that forms the filter string # for which tests to run FILTER_MACRO_NAME = u_settings.FILTER_MACRO_NAME #"U_CFG_APP_FILTER" # The name of the environment variable that indicates we're running under automation ENV_UBXLIB_AUTO = "U_UBXLIB_AUTO" # The time for which to wait for something from the # queue in exe_run(). If this is too short, in a # multiprocessing world or on a slow machine, it is # possible to miss things as the task putting things # on the queue may be blocked from doing so until # we've decided the queue has been completely emptied # and moved on EXE_RUN_QUEUE_WAIT_SECONDS = u_settings.EXE_RUN_QUEUE_WAIT_SECONDS #1 # The number of seconds a USB cutter and the bit positions of # a KMTronic box are switched off for HW_RESET_DURATION_SECONDS = u_settings.HW_RESET_DURATION_SECONDS # e.g. 5 # Executable file extension. This will be "" for Linux # and ".exe" for Windows EXE_EXT = pick_by_os(linux="", other=".exe") def keep_going(flag, printer=None, prompt=None): '''Check a keep_going flag''' do_not_stop = True if flag is not None and not flag.is_set(): do_not_stop = False if printer and prompt: printer.string("{}aborting as requested.".format(prompt)) return do_not_stop # subprocess arguments behaves a little differently on Linux and Windows # depending if a shell is used or not, which can be read here: # https://stackoverflow.com/a/15109975 # This function will compensate for these deviations def subprocess_osify(cmd, shell=True): ''' expects an array of strings being [command, param, ...] ''' if is_linux() and shell: line = '' for item in cmd: # Put everything in a single string and quote args containing spaces if ' ' in item: line += '\"{}\" '.format(item) else: line += '{} '.format(item) cmd = line return cmd def split_command_line_args(cmd_line): ''' Will split a command line string into a list of arguments. Quoted arguments will be preserved as one argument ''' return [p for p in re.split("( |\\\".*?\\\"|'.*?')", cmd_line) if p.strip()] def get_actual_path(path): '''Given a drive number return real path if it is a subst''' actual_path = path if is_linux(): return actual_path if os.name == 'nt': # Get a list of substs text = subprocess.check_output("subst", stderr=subprocess.STDOUT, shell=True) # Jenkins hangs without this for line in text.splitlines(): # Lines should look like this: # Z:\: => C:\projects\ubxlib_priv # So, in this example, if we were given z:\blah # then the actual path should be C:\projects\ubxlib_priv\blah text = line.decode() bits = text.rsplit(": => ") if (len(bits) > 1) and (len(path) > 1) and \ (bits[0].lower()[0:2] == path[0:2].lower()): actual_path = bits[1] + path[2:] break return actual_path def get_instance_text(instance): '''Return the instance as a text string''' instance_text = "" for idx, item in enumerate(instance): if idx == 0: instance_text += str(item) else: instance_text += "." + str(item) return instance_text # Get a list of instances as a text string separated # by spaces. def get_instances_text(instances): '''Return the instances as a text string''' instances_text = "" for instance in instances: if instance: instances_text += " {}".format(get_instance_text(instance)) return instances_text def remove_readonly(func, path, exec_info): '''Help deltree out''' del exec_info os.chmod(path, stat.S_IWRITE) func(path) def deltree(directory, printer, prompt): '''Remove an entire directory tree''' tries = 3 success = False if os.path.isdir(directory): # Retry this as sometimes Windows complains # that the directory is not empty when it # it really should be, some sort of internal # Windows race condition while not success and (tries > 0): try: # Need the onerror bit on Winders, see # this Stack Overflow post: # https://stackoverflow.com/questions/1889597/deleting-directory-in-python shutil.rmtree(directory, onerror=remove_readonly) success = True except OSError as ex: if printer and prompt: printer.string("{}ERROR unable to delete \"{}\" {}: \"{}\"". format(prompt, directory, ex.errno, ex.strerror)) sleep(1) tries -= 1 else: success = True return success # Some list types aren't quite list types: for instance, # the lists returned by RPyC look like lists but they # aren't of type list and so "in", for instance, will fail. # This converts an instance list (i.e. a list-like object # containing items that are each another list-like object) # into a plain-old two-level list. def copy_two_level_list(instances_in): '''Convert instances_in into a true list''' instances_out = [] if instances_in: for item1 in instances_in: instances_out1 = [] for item2 in item1: instances_out1.append(item2) instances_out.append(copy(instances_out1)) return instances_out # Check if admin privileges are available, from: # https://stackoverflow.com/questions/2946746/python-checking-if-a-user-has-administrator-privileges def has_admin(): '''Check for administrator privileges''' admin = False if os.name == 'nt': try: # only Windows users with admin privileges can read the C:\windows\temp if os.listdir(os.sep.join([os.environ.get("SystemRoot", "C:\\windows"), "temp"])): admin = True except PermissionError: pass else: # Pylint will complain about the following line but # that's OK, it is only executed if we're NOT on Windows # and there the geteuid() method will exist if "SUDO_USER" in os.environ and os.geteuid() == 0: admin = True return admin # Reset a USB port with the given Device Description def usb_reset(device_description, printer, prompt): ''' Reset a device''' instance_id = None found = False success = False try: # Run devcon and parse the output to find the given device printer.string("{}running {} to look for \"{}\"...". \ format(prompt, DEVCON_PATH, device_description)) cmd = [DEVCON_PATH, "hwids", "=ports"] text = subprocess.check_output(subprocess_osify(cmd), stderr=subprocess.STDOUT, shell=True) # Jenkins hangs without this for line in text.splitlines(): # The format of a devcon entry is this: # # USB\VID_1366&PID_1015&MI_00\6&38E81674&0&0000 # Name: JLink CDC UART Port (COM45) # Hardware IDs: # USB\VID_1366&PID_1015&REV_0100&MI_00 # USB\VID_1366&PID_1015&MI_00 # Compatible IDs: # USB\Class_02&SubClass_02&Prot_00 # USB\Class_02&SubClass_02 # USB\Class_02 # # Grab what we hope is the instance ID line = line.decode() if line.startswith("USB"): instance_id = line else: # If the next line is the Name we want then we're done if instance_id and ("Name: " + device_description in line): found = True printer.string("{}\"{}\" found with instance ID \"{}\"". \ format(prompt, device_description, instance_id)) break instance_id = None if found: # Now run devcon to reset the device printer.string("{}running {} to reset device \"{}\"...". \ format(prompt, DEVCON_PATH, instance_id)) cmd = [DEVCON_PATH, "restart", "@" + instance_id] text = subprocess.check_output(subprocess_osify(cmd), stderr=subprocess.STDOUT, shell=False) # Has to be False or devcon won't work for line in text.splitlines(): printer.string("{}{}".format(prompt, line.decode())) success = True else: printer.string("{}device with description \"{}\" not found.". \ format(prompt, device_description)) except subprocess.CalledProcessError: printer.string("{} unable to find and reset device.".format(prompt)) return success # Open the required serial port. def open_serial(serial_name, speed, printer, prompt): '''Open serial port''' serial_handle = None text = "{}: trying to open \"{}\" as a serial port...". \ format(prompt, serial_name) try: return_value = serial.Serial(serial_name, speed, timeout=0.05) serial_handle = return_value printer.string("{} opened.".format(text)) except (ValueError, serial.SerialException) as ex: printer.string("{}{} while accessing port {}: {}.". format(prompt, type(ex).__name__, serial_handle.name, str(ex))) return serial_handle def open_telnet(port_number, printer, prompt): '''Open telnet port on localhost''' telnet_handle = None text = "{}trying to open \"{}\" as a telnet port on localhost...". \ format(prompt, port_number) try: telnet_handle = Telnet("localhost", int(port_number), timeout=5) if telnet_handle is not None: printer.string("{} opened.".format(text)) else: printer.string("{} failed.".format(text)) except (socket.error, socket.timeout, ValueError) as ex: printer.string("{}{} failed to open telnet {}: {}.". format(prompt, type(ex).__name__, port_number, str(ex))) return telnet_handle def install_lock_acquire(install_lock, printer, prompt, keep_going_flag=None): '''Attempt to acquire install lock''' timeout_seconds = INSTALL_LOCK_WAIT_SECONDS success = False if install_lock: printer.string("{}waiting for install lock...".format(prompt)) while not install_lock.acquire(False) and (timeout_seconds > 0) and \ keep_going(keep_going_flag, printer, prompt): sleep(1) timeout_seconds -= 1 if timeout_seconds > 0: printer.string("{}got install lock.".format(prompt)) success = True else: printer.string("{}failed to aquire install lock.".format(prompt)) else: printer.string("{}warning, there is no install lock.".format(prompt)) return success def install_lock_release(install_lock, printer, prompt): '''Release install lock''' if install_lock: install_lock.release() printer.string("{}install lock released.".format(prompt)) def fetch_repo(url, directory, branch, printer, prompt, submodule_init=True, force=False): '''Fetch a repo: directory can be relative or absolute, branch can be a hash''' got_code = False success = False dir_text = directory if dir_text == ".": dir_text = "this directory" if printer and prompt: printer.string("{}in directory {}, fetching" " {} to {}.".format(prompt, os.getcwd(), url, dir_text)) if not branch: branch = "master" if os.path.isdir(directory): # Update existing code with ChangeDir(directory): if printer and prompt: printer.string("{}updating code in {}...". format(prompt, dir_text)) target = branch if branch.startswith("#"): # Actually been given a branch, lose the # preceding # target = branch[1:len(branch)] # Try this once and, if it fails and force is set, # do a git reset --hard and try again tries = 1 if force: tries += 1 while tries > 0: try: call_list = [] call_list.append("git") call_list.append("fetch") call_list.append("origin") call_list.append(target) if printer and prompt: text = "" for item in call_list: if text: text += " " text += item printer.string("{}in {} calling {}...". format(prompt, os.getcwd(), text)) # Try to pull the code text = subprocess.check_output(subprocess_osify(call_list), stderr=subprocess.STDOUT, shell=True) # Jenkins hangs without this for line in text.splitlines(): if printer and prompt: printer.string("{}{}".format(prompt, line.decode())) got_code = True except subprocess.CalledProcessError as error: if printer and prompt: printer.string("{}git returned error {}: \"{}\"". format(prompt, error.returncode, error.output)) if got_code: tries = 0 else: if force: # git reset --hard printer.string("{}in directory {} calling git reset --hard...". \ format(prompt, os.getcwd())) try: text = subprocess.check_output(subprocess_osify(["git", "reset", "--hard"]), stderr=subprocess.STDOUT, shell=True) # Jenkins hangs without this for line in text.splitlines(): if printer and prompt: printer.string("{}{}".format(prompt, line.decode())) except subprocess.CalledProcessError as error: if printer and prompt: printer.string("{}git returned error {}: \"{}\"". format(prompt, error.returncode, error.output)) force = False tries -= 1 if not got_code: # If we still haven't got the code, delete the # directory for a true clean start deltree(directory, printer, prompt) if not os.path.isdir(directory): # Clone the repo if printer and prompt: printer.string("{}cloning from {} into {}...". format(prompt, url, dir_text)) try: text = subprocess.check_output(subprocess_osify(["git", "clone", "-q", url, directory]), stderr=subprocess.STDOUT, shell=True) # Jenkins hangs without this for line in text.splitlines(): if printer and prompt: printer.string("{}{}".format(prompt, line.decode())) got_code = True except subprocess.CalledProcessError as error: if printer and prompt: printer.string("{}git returned error {}: \"{}\"". format(prompt, error.returncode, error.output)) if got_code and os.path.isdir(directory): # Check out the correct branch and recurse submodules with ChangeDir(directory): target = "origin/" + branch if branch.startswith("#"): # Actually been given a branch, so lose the # "origin/" and the preceding # target = branch[1:len(branch)] if printer and prompt: printer.string("{}checking out {}...". format(prompt, target)) try: call_list = ["git", "-c", "advice.detachedHead=false", "checkout", "--no-progress"] if submodule_init: call_list.append("--recurse-submodules") printer.string("{}also recursing sub-modules (can take some time" \ " and gives no feedback).".format(prompt)) call_list.append(target) if printer and prompt: text = "" for item in call_list: if text: text += " " text += item printer.string("{}in {} calling {}...". format(prompt, os.getcwd(), text)) text = subprocess.check_output(subprocess_osify(call_list), stderr=subprocess.STDOUT, shell=True) # Jenkins hangs without this for line in text.splitlines(): if printer and prompt: printer.string("{}{}".format(prompt, line.decode())) success = True except subprocess.CalledProcessError as error: if printer and prompt: printer.string("{}git returned error {}: \"{}\"". format(prompt, error.returncode, error.output)) return success def exe_where(exe_name, help_text, printer, prompt): '''Find an executable using where.exe or which on linux''' success = False try: printer.string("{}looking for \"{}\"...". \ format(prompt, exe_name)) # See here: # https://stackoverflow.com/questions/14928860/passing-double-quote-shell-commands-in-python-to-subprocess-popen # ...for why the construction "".join() is necessary when # passing things which might have spaces in them. # It is the only thing that works. if is_linux(): cmd = ["which {}".format(exe_name.replace(":", "/"))] printer.string("{}detected linux, calling \"{}\"...".format(prompt, cmd)) else: cmd = ["where", "".join(exe_name)] printer.string("{}detected nonlinux, calling \"{}\"...".format(prompt, cmd)) text = subprocess.check_output(cmd, stderr=subprocess.STDOUT, shell=True) # Jenkins hangs without this for line in text.splitlines(): printer.string("{}{} found in {}".format(prompt, exe_name, line.decode())) success = True except subprocess.CalledProcessError: if help_text: printer.string("{}ERROR {} not found: {}". \ format(prompt, exe_name, help_text)) else: printer.string("{}ERROR {} not found". \ format(prompt, exe_name)) return success def exe_version(exe_name, version_switch, printer, prompt): '''Print the version of a given executable''' success = False if not version_switch: version_switch = "--version" try: text = subprocess.check_output(subprocess_osify(["".join(exe_name), version_switch]), stderr=subprocess.STDOUT, shell=True) # Jenkins hangs without this for line in text.splitlines(): printer.string("{}{}".format(prompt, line.decode())) success = True except subprocess.CalledProcessError: printer.string("{}ERROR {} either not found or didn't like {}". \ format(prompt, exe_name, version_switch)) return success def exe_terminate(process_pid): '''Jonathan's killer''' process = psutil.Process(process_pid) for proc in process.children(recursive=True): proc.terminate() process.terminate() def read_from_process_and_queue(process, read_queue): '''Read from a process, non-blocking''' while process.poll() is None: string = process.stdout.readline().decode() if string and string != "": read_queue.put(string) else: sleep(0.1) def queue_get_no_exception(the_queue, block=True, timeout=None): '''A version of queue.get() that doesn't throw an Empty exception''' thing = None try: thing = the_queue.get(block=block, timeout=timeout) except queue.Empty: pass return thing def capture_env_var(line, env, printer, prompt): '''A bit of exe_run that needs to be called from two places''' # Find a KEY=VALUE bit in the line, # parse it out and put it in the dictionary # we were given pair = line.split('=', 1) if len(pair) == 2: env[pair[0]] = pair[1].rstrip() else: printer.string("{}WARNING: not an environment variable: \"{}\"". format(prompt, line)) # Note: if returned_env is given then "set" # will be executed after the exe and the environment # variables will be returned in it. The down-side # of this is that the return value of the exe is, # of course, lost. def exe_run(call_list, guard_time_seconds=None, printer=None, prompt=None, shell_cmd=False, set_env=None, returned_env=None, bash_cmd=False, keep_going_flag=None): '''Call an executable, printing out what it does''' success = False start_time = time() flibbling = False kill_time = None read_time = start_time if returned_env is not None: # The caller wants the environment after the # command has run, so, from this post: # https://stackoverflow.com/questions/1214496/how-to-get-environment-from-a-subprocess # append a tag that we can detect # to the command and then call set, # from which we can parse the environment call_list.append("&&") call_list.append("echo") call_list.append("flibble") call_list.append("&&") if is_linux(): call_list.append("env") bash_cmd = True else: call_list.append("set") # I've seen output from set get lost, # possibly because the process ending # is asynchronous with stdout, # so add a delay here as well call_list.append("&&") call_list.append("sleep") call_list.append("2") try: popen_keywords = { 'stdout': subprocess.PIPE, 'stderr': subprocess.STDOUT, 'shell': shell_cmd, 'env': set_env, 'executable': "bin/bash" if bash_cmd else None } # Call the thang # Note: used to have bufsize=1 here but it turns out # that is ignored 'cos the output is considered # binary. Seems to work in any case, I guess # Winders, at least, is in any case line-buffered. process = subprocess.Popen(subprocess_osify(call_list, shell=shell_cmd), **popen_keywords) if printer: printer.string("{}{}, pid {} started with guard time {} second(s)". \ format(prompt, call_list[0], process.pid, guard_time_seconds)) # This is over complex but, unfortunately, necessary. # At least one thing that we try to run, nrfjprog, can # crash silently: just hangs and sends no output. However # it also doesn't flush and close stdout and so read(1) # will hang, meaning we can't read its output as a means # to check that it has hung. # So, here we poll for the return value, which is normally # how things will end, and we start another thread which # reads from the process's stdout. If the thread sees # nothing for guard_time_seconds then we terminate the # process. read_queue = queue.Queue() read_thread = threading.Thread(target=read_from_process_and_queue, args=(process, read_queue)) read_thread.start() while process.poll() is None: if keep_going_flag is None or keep_going(keep_going_flag, printer, prompt): if guard_time_seconds and (kill_time is None) and \ ((time() - start_time > guard_time_seconds) or (time() - read_time > guard_time_seconds)): kill_time = time() if printer: printer.string("{}guard time of {} second(s)." \ " expired, stopping {}...". format(prompt, guard_time_seconds, call_list[0])) exe_terminate(process.pid) else: exe_terminate(process.pid) line = queue_get_no_exception(read_queue, True, EXE_RUN_QUEUE_WAIT_SECONDS) read_time = time() while line is not None: line = line.rstrip() if flibbling: capture_env_var(line, returned_env, printer, prompt) else: if returned_env is not None and "flibble" in line: flibbling = True else: printer.string("{}{}".format(prompt, line)) line = queue_get_no_exception(read_queue, True, EXE_RUN_QUEUE_WAIT_SECONDS) read_time = time() sleep(0.1) # Can't join() read_thread here as it might have # blocked on a read() (if nrfjprog has anything to # do with it). It will be tidied up when this process # exits. # There may still be stuff on the queue, read it out here line = queue_get_no_exception(read_queue, True, EXE_RUN_QUEUE_WAIT_SECONDS) while line is not None: line = line.rstrip() if flibbling: capture_env_var(line, returned_env, printer, prompt) else: if returned_env is not None and "flibble" in line: flibbling = True else: printer.string("{}{}".format(prompt, line)) line = queue_get_no_exception(read_queue, True, EXE_RUN_QUEUE_WAIT_SECONDS) # There may still be stuff in the buffer after # the application has finished running so flush that # out here line = process.stdout.readline().decode() while line: line = line.rstrip() if flibbling: capture_env_var(line, returned_env, printer, prompt) else: if returned_env is not None and "flibble" in line: flibbling = True else: printer.string("{}{}".format(prompt, line)) line = process.stdout.readline().decode() if (process.poll() == 0) and kill_time is None: success = True if printer: printer.string("{}{}, pid {} ended with return value {}.". \ format(prompt, call_list[0], process.pid, process.poll())) except ValueError as ex: if printer: printer.string("{}failed: {} while trying to execute {}.". \ format(prompt, type(ex).__name__, str(ex))) except KeyboardInterrupt as ex: process.kill() raise KeyboardInterrupt from ex return success def set_process_prio_high(): '''Set the priority of the current process to high''' if is_linux(): print("Setting process priority currently not supported for Linux") # It should be possible to set prio with: # psutil.Process().nice(-10) # However we get "[Errno 13] Permission denied" even when run as root else: psutil.Process().nice(psutil.HIGH_PRIORITY_CLASS) def set_process_prio_normal(): '''Set the priority of the current process to normal''' if is_linux(): print("Setting process priority currently not supported for Linux") # It should be possible to set prio with: # psutil.Process().nice(0) # However we get "[Errno 13] Permission denied" even when run as root else: psutil.Process().nice(psutil.NORMAL_PRIORITY_CLASS) class ExeRun(): '''Run an executable as a "with:"''' def __init__(self, call_list, printer=None, prompt=None, shell_cmd=False, with_stdin=False): self._call_list = call_list self._printer = printer self._prompt = prompt self._shell_cmd = shell_cmd self._with_stdin=with_stdin self._process = None def __enter__(self): if self._printer: text = "" for idx, item in enumerate(self._call_list): if idx == 0: text = item else: text += " {}".format(item) self._printer.string("{}starting {}...".format(self._prompt, text)) try: # Start exe popen_keywords = { 'stdout': subprocess.PIPE, 'stderr': subprocess.STDOUT, 'shell': self._shell_cmd } if not is_linux(): popen_keywords['creationflags'] = subprocess.CREATE_NEW_PROCESS_GROUP if self._with_stdin: popen_keywords['stdin'] = subprocess.PIPE self._process = subprocess.Popen(self._call_list, **popen_keywords) if self._printer: self._printer.string("{}{} pid {} started".format(self._prompt, self._call_list[0], self._process.pid)) except (OSError, subprocess.CalledProcessError, ValueError) as ex: if self._printer: self._printer.string("{}failed: {} to start {}.". \ format(self._prompt, type(ex).__name__, str(ex))) except KeyboardInterrupt as ex: self._process.kill() raise KeyboardInterrupt from ex return self._process def __exit__(self, _type, value, traceback): del _type del value del traceback # Stop exe if self._printer: self._printer.string("{}stopping {}...". \ format(self._prompt, self._call_list[0])) return_value = self._process.poll() if not return_value: retry = 5 while (self._process.poll() is None) and (retry > 0): # Try to stop with CTRL-C if is_linux(): sig = signal.SIGINT else: sig = signal.CTRL_BREAK_EVENT self._process.send_signal(sig) sleep(1) retry -= 1 return_value = self._process.poll() if not return_value: # Terminate with a vengeance self._process.terminate() while self._process.poll() is None: sleep(0.1) if self._printer: self._printer.string("{}{} pid {} terminated".format(self._prompt, self._call_list[0], self._process.pid)) else: if self._printer: self._printer.string("{}{} pid {} CTRL-C'd".format(self._prompt, self._call_list[0], self._process.pid)) else: if self._printer: self._printer.string("{}{} pid {} already ended".format(self._prompt, self._call_list[0], self._process.pid)) return return_value # Simple SWO decoder: only handles single bytes of application # data at a time, i.e. what ITM_SendChar() sends. class SwoDecoder(): '''Take the contents of a byte_array and decode it as SWO''' def __init__(self, address, replaceLfWithCrLf=False): self._address = address self._replace_lf_with_crlf = replaceLfWithCrLf self._expecting_swit = True def decode(self, swo_byte_array): '''Do the decode''' decoded_byte_array = bytearray() if swo_byte_array: for data_byte in swo_byte_array: # We're looking only for "address" and we also know # that CMSIS only offers ITM_SendChar(), so packet length # is always 1, and we only send ASCII characters, # so the top bit of the data byte must be 0. # # For the SWO protocol, see: # # https://developer.arm.com/documentation/ddi0314/h/ # instrumentation-trace-macrocell/ # about-the-instrumentation-trace-macrocell/trace-packet-format # # When we see SWIT (SoftWare Instrumentation Trace # I think, anyway, the bit that carries our prints # off the target) which is 0bBBBBB0SS, where BBBBB is # address and SS is the size of payload to follow, # in our case 0x01, we know that the next # byte is probably data and if it is ASCII then # it is data. Anything else is ignored. # The reason for doing it this way is that the # ARM ITM only sends out sync packets under # special circumstances so it is not a recovery # mechanism for simply losing a byte in the # transfer, which does happen occasionally. if self._expecting_swit: if ((data_byte & 0x03) == 0x01) and ((data_byte & 0xf8) >> 3 == self._address): # Trace packet type is SWIT, i.e. our # application logging self._expecting_swit = False else: if data_byte & 0x80 == 0: if (data_byte == 10) and self._replace_lf_with_crlf: decoded_byte_array.append(13) decoded_byte_array.append(data_byte) self._expecting_swit = True return decoded_byte_array class PrintThread(threading.Thread): '''Print thread to organise prints nicely''' def __init__(self, print_queue, file_handle=None, window_file_handle=None, window_size=10000, window_update_period_seconds=1): self._queue = print_queue self._lock = RLock() self._queue_forwards = [] self._running = False self._file_handle = file_handle self._window = None self._window_file_handle = window_file_handle if self._window_file_handle: self._window = deque(self._window_file_handle, maxlen=window_size) self._window_update_pending = False self._window_update_period_seconds = window_update_period_seconds self._window_next_update_time = time() threading.Thread.__init__(self) def _send_forward(self, flush=False): # Send from any forwarding buffers # self._lock should be acquired before this is called queue_idxes_to_remove = [] for idx, queue_forward in enumerate(self._queue_forwards): if flush or time() > queue_forward["last_send"] + queue_forward["buffer_time"]: string_forward = "" len_queue_forward = len(queue_forward["buffer"]) count = 0 for item in queue_forward["buffer"]: count += 1 if count < len_queue_forward: item += "\n" if queue_forward["prefix_string"]: item = queue_forward["prefix_string"] + item string_forward += item queue_forward["buffer"] = [] if string_forward: try: queue_forward["queue"].put(string_forward) except TimeoutError: pass except (OSError, EOFError, BrokenPipeError): queue_idxes_to_remove.append(idx) queue_forward["last_send"] = time() for idx in queue_idxes_to_remove: self._queue_forwards.pop(idx) def add_forward_queue(self, queue_forward, prefix_string=None, buffer_time=0): '''Forward things received on the print queue to another queue''' self._lock.acquire() already_done = False for item in self._queue_forwards: if item["queue"] == queue_forward: already_done = True break if not already_done: item = {} item["queue"] = queue_forward item["prefix_string"] = prefix_string item["buffer"] = [] item["buffer_time"] = buffer_time item["last_send"] = time() self._queue_forwards.append(item) self._lock.release() def remove_forward_queue(self, queue_forward): '''Stop forwarding things received on the print queue to another queue''' self._lock.acquire() queues = [] self._send_forward(flush=True) for item in self._queue_forwards: if item["queue"] != queue_forward: queues.append(item) self._queue_forwards = queues self._lock.release() def stop_thread(self): '''Helper function to stop the thread''' self._lock.acquire() self._running = False # Write anything remaining to the window file if self._window_update_pending: self._window_file_handle.seek(0) for item in self._window: self._window_file_handle.write(item) self._window_file_handle.flush() self._window_update_pending = False self._window_next_update_time = time() + self._window_update_period_seconds self._lock.release() def run(self): '''Worker thread''' self._running = True while self._running: # Print locally and store in any forwarding buffers try: my_string = self._queue.get(block=False, timeout=0.5) print(my_string) if self._file_handle: self._file_handle.write(my_string + "\n") self._lock.acquire() if self._window is not None: # Note that my_string can contain multiple lines, # hence the need to split it here to maintain the # window for line in my_string.splitlines(): self._window.append(line + "\n") self._window_update_pending = True for queue_forward in self._queue_forwards: queue_forward["buffer"].append(my_string) self._lock.release() except queue.Empty: sleep(0.1) except (OSError, EOFError, BrokenPipeError): # Try to restore stdout sleep(0.1) sys.stdout = sys.__stdout__ self._lock.acquire() # Send from any forwarding buffers self._send_forward() # Write the window to file if required if self._window_update_pending and time() > self._window_next_update_time: # If you don't do this you can end up with garbage # at the end of the file self._window_file_handle.truncate() self._window_file_handle.seek(0) for item in self._window: self._window_file_handle.write(item) self._window_update_pending = False self._window_next_update_time = time() + self._window_update_period_seconds self._lock.release() class PrintToQueue(): '''Print to a queue, if there is one''' def __init__(self, print_queue, file_handle, include_timestamp=False): self._queues = [] self._lock = RLock() if print_queue: self._queues.append(print_queue) self._file_handle = file_handle self._include_timestamp = include_timestamp def add_queue(self, print_queue): '''Add a queue to the list of places to print to''' self._lock.acquire() already_done = False for item in self._queues: if item == print_queue: already_done = True break if not already_done: self._queues.append(print_queue) self._lock.release() def remove_queue(self, print_queue): '''Remove a queue from the list of places to print to''' self._lock.acquire() queues = [] for item in self._queues: if item != print_queue: queues.append(item) self._queues = queues self._lock.release() def string(self, string, file_only=False): '''Print a string to the queue(s)''' if self._include_timestamp: string = strftime(TIME_FORMAT, gmtime()) + " " + string if not file_only: self._lock.acquire() queue_idxes_to_remove = [] if self._queues: for idx, print_queue in enumerate(self._queues): try: print_queue.put(string) except (EOFError, BrokenPipeError): queue_idxes_to_remove.append(idx) for idx in queue_idxes_to_remove: self._queues.pop(idx) else: print(string) self._lock.release() if self._file_handle: self._file_handle.write(string + "\n") self._file_handle.flush() # This stolen from here: # https://stackoverflow.com/questions/431684/how-do-i-change-the-working-directory-in-python class ChangeDir(): '''Context manager for changing the current working directory''' def __init__(self, new_path): self._new_path = os.path.expanduser(new_path) self._saved_path = None def __enter__(self): '''CD to new_path''' self._saved_path = os.getcwd() os.chdir(self._new_path) def __exit__(self, etype, value, traceback): '''CD back to saved_path''' os.chdir(self._saved_path) class Lock(): '''Hold a lock as a "with:"''' def __init__(self, lock, guard_time_seconds, lock_type, printer, prompt, keep_going_flag=None): self._lock = lock self._guard_time_seconds = guard_time_seconds self._lock_type = lock_type self._printer = printer self._prompt = prompt self._keep_going_flag = keep_going_flag self._locked = False def __enter__(self): if not self._lock: return True # Wait on the lock if not self._locked: timeout_seconds = self._guard_time_seconds self._printer.string("{}waiting up to {} second(s)" \ " for a {} lock...". \ format(self._prompt, self._guard_time_seconds, self._lock_type)) count = 0 while not self._lock.acquire(False) and \ ((self._guard_time_seconds == 0) or (timeout_seconds > 0)) and \ keep_going(self._keep_going_flag, self._printer, self._prompt): sleep(1) timeout_seconds -= 1 count += 1 if count == 30: self._printer.string("{}still waiting {} second(s)" \ " for a {} lock (locker is" \ " currently {}).". \ format(self._prompt, timeout_seconds, self._lock_type, self._lock)) count = 0 if (self._guard_time_seconds == 0) or (timeout_seconds > 0): self._locked = True self._printer.string("{}{} lock acquired ({}).". \ format(self._prompt, self._lock_type, self._lock)) return self._locked def __exit__(self, _type, value, traceback): del _type del value del traceback if self._lock and self._locked: try: self._lock.release() self._locked = False self._printer.string("{}released a {} lock.".format(self._prompt, self._lock_type)) except RuntimeError: self._locked = False self._printer.string("{}{} lock was already released.". \ format(self._prompt, self._lock_type)) def wait_for_completion(_list, purpose, guard_time_seconds, printer, prompt, keep_going_flag): '''Wait for a completion list to empty''' completed = False if len(_list) > 0: timeout_seconds = guard_time_seconds printer.string("{}waiting up to {} second(s)" \ " for {} completion...". \ format(prompt, guard_time_seconds, purpose)) count = 0 while (len(_list) > 0) and \ ((guard_time_seconds == 0) or (timeout_seconds > 0)) and \ keep_going(keep_going_flag, printer, prompt): sleep(1) timeout_seconds -= 1 count += 1 if count == 30: list_text = "" for item in _list: if list_text: list_text += ", " list_text += str(item) printer.string("{}still waiting {} second(s)" \ " for {} to complete (waiting" \ " for {}).". \ format(prompt, timeout_seconds, purpose, list_text)) count = 0 if len(_list) == 0: completed = True printer.string("{}{} completed.".format(prompt, purpose)) return completed def reset_nrf_target(connection, printer, prompt): '''Reset a Nordic NRFxxx target''' call_list = [] printer.string("{}resetting target...".format(prompt)) # Assemble the call list call_list.append("nrfjprog") call_list.append("--reset") if connection and "debugger" in connection and connection["debugger"]: call_list.append("-s") call_list.append(connection["debugger"]) # Print what we're gonna do tmp = "" for item in call_list: tmp += " " + item printer.string("{}in directory {} calling{}". \ format(prompt, os.getcwd(), tmp)) # Call it return exe_run(call_list, 60, printer, prompt) def usb_cutter_reset(usb_cutter_id_strs, printer, prompt): '''Cut and then un-cut USB cables using Cleware USB cutters''' # First switch the USB cutters off action = "1" count = 0 call_list_root = ["usbswitchcmd"] call_list_root.append("-s") call_list_root.append("-n") while count < 2: for usb_cutter_id_str in usb_cutter_id_strs: call_list = call_list_root.copy() call_list.append(usb_cutter_id_str) call_list.append(action) # Print what we're gonna do tmp = "" for item in call_list: tmp += " " + item if printer: printer.string("{}in directory {} calling{}". \ format(prompt, os.getcwd(), tmp)) # Set shell to keep Jenkins happy exe_run(call_list, 0, printer, prompt, shell_cmd=True) # Wait 5ish seconds if printer: printer.string("{}waiting {} second(s)...". \ format(prompt, HW_RESET_DURATION_SECONDS)) sleep(HW_RESET_DURATION_SECONDS) # "0" to switch the USB cutters on again action = "0" count += 1 def kmtronic_reset(ip_address, hex_bitmap, printer, prompt): '''Cut and then un-cut power using a KMTronic box''' # KMTronic is a web relay box which will be controlling # power to, for instance, EVKs The last byte of the URL # is a hex bitmap of the outputs where 0 sets off and 1 # sets on # Take only the last two digits of the hex bitmap hex_bitmap_len = len(hex_bitmap) hex_bitmap = hex_bitmap[hex_bitmap_len - 2:hex_bitmap_len] kmtronic_off = "http://" + ip_address + "FFE0" + hex_bitmap kmtronic_on = "http://" + ip_address + "FFE0" + "{0:x}".format(int(hex_bitmap, 16) ^ 0xFF) try: # First switch the given bit positions off if printer: printer.string("{}sending {}". \ format(prompt, kmtronic_off)) response = requests.get(kmtronic_off) # Wait 5ish seconds if printer: printer.string("{}...received response {}, waiting {} second(s)...". \ format(prompt, response.status_code, HW_RESET_DURATION_SECONDS)) sleep(HW_RESET_DURATION_SECONDS) # Switch the given bit positions on if printer: printer.string("{}sending {}".format(prompt, kmtronic_on)) response = requests.get(kmtronic_on) if printer: printer.string("{}...received response {}.". \ format(prompt, response.status_code)) except requests.ConnectionError: if printer: printer.string("{}unable to connect to KMTronic box at {}.". \ format(prompt, ip_address)) # Look for a single line anywhere in message # beginning with "test: ". This must be followed by # "x.y.z a.b.c m.n.o" (i.e. instance IDs space separated) # and then an optional "blah" filter string, or just "*" # and an optional "blah" filter string or "None". # Valid examples are: # # test: 1 # test: 1 3 7 # test: 1.0.3 3 7.0 # test: 1 2 example # test: 1.1 8 portInit # test: * # test: * port # test: none # # Filter strings must NOT begin with a digit. # There cannot be more than one * or a * with any other instance. # There can only be one filter string. # Only whitespace is expected after this on the line. # Anything else is ignored. # Populates instances with the "0 4.5 13.5.1" bit as instance # entries [[0], [4, 5], [13, 5, 1]] and returns the filter # string, if any. def commit_message_parse(message, instances, printer=None, prompt=None): '''Find stuff in a commit message''' instances_all = False instances_local = [] filter_string_local = None found = False if message: # Search through message for a line beginning # with "test:" if printer: printer.string("{}### parsing message to see if it contains a test directive...". \ format(prompt)) lines = message.split("\\n") for idx1, line in enumerate(lines): if printer: printer.string("{}text line {}: \"{}\"".format(prompt, idx1 + 1, line)) if line.lower().startswith("test:"): found = True instances_all = False # Pick through what follows parts = line[5:].split() for part in parts: if instances_all and (part[0].isdigit() or part == "*" or part.lower() == "none"): # If we've had a "*" and this is another one # or it begins with a digit then this is # obviously not a "test:" line, # leave the loop and try again. instances_local = [] filter_string_local = None if printer: printer.string("{}...badly formed test directive, ignoring.". \ format(prompt)) found = False break if filter_string_local: # If we've had a filter string then nothing # must follow so this is not a "test:" line, # leave the loop and try again. instances_local = [] filter_string_local = None if printer: printer.string("{}...extraneous characters after test directive," \ " ignoring.".format(prompt)) found = False break if part[0].isdigit(): # If this part begins with a digit it could # be an instance containing numbers instance = [] bad = False for item in part.split("."): try: instance.append(int(item)) except ValueError: # Some rubbish, not a test line so # leave the loop and try the next # line bad = True break if bad: instances_local = [] filter_string_local = None if printer: printer.string("{}...badly formed test directive, ignoring.". \ format(prompt)) found = False break if instance: instances_local.append(instance[:]) elif part == "*": if instances_local: # If we've already had any instances # this is obviously not a test line, # leave the loop and try again instances_local = [] filter_string_local = None if printer: printer.string("{}...badly formed test directive, ignoring.". \ format(prompt)) found = False break # If we haven't had any instances and # this is a * then it means "all" instances_local.append(part) instances_all = True elif part.lower() == "none": if instances_local: # If we've already had any instances # this is obviously not a test line, # leave the loop and try again if printer: printer.string("{}...badly formed test directive, ignoring.". \ format(prompt)) found = False instances_local = [] filter_string_local = None break elif instances_local and not part == "*": # If we've had an instance and this # is not a "*" then this must be a # filter string filter_string_local = part else: # Found some rubbish, not a "test:" # line after all, leave the loop # and try the next line instances_local = [] filter_string_local = None if printer: printer.string("{}...badly formed test directive, ignoring.". \ format(prompt)) found = False break if found: text = "found test directive with" if instances_local: text += " instance(s)" + get_instances_text(instances_local) if filter_string_local: text += " and filter \"" + filter_string_local + "\"" else: text += " instances \"None\"" if printer: printer.string("{}{}.".format(prompt, text)) break if printer: printer.string("{}no test directive found".format(prompt)) if found and instances_local: instances.extend(instances_local[:]) return found, filter_string_local
2.46875
2
faigler_mazeh.py
tcjansen/beer
0
7259
import numpy as np import astropy.modeling.blackbody as bb import astropy.constants as const from astropy.io import fits from scipy.interpolate import interp2d class FaiglerMazehFit(): def __init__(self, P_orb, inc, R_star, M_star, T_star, A_ellip=False, A_beam=False, R_p=False, a=False, u=False, g=0.65, logg=None, tele='TESS', M_p=False, K=False): self.P_orb = P_orb # orbital period in days self.inc = inc * np.pi / 180 # inclination converted to radians self.R_star = R_star # radius of the star in solar units self.M_star = M_star # mass of the star in solar units self.T_star = T_star # temperature of the star [K] self.A_ellip = A_ellip # ellipsoidal amplitude in ppm self.A_beam = A_beam # beaming amplitude in ppm self.g = g # gravity-darkening coefficient, expected range is 0.3-1.0 self.logg = logg # log surface gravity of the star [cm s^-2] self.tele = tele.lower() # observation instrument used, default is TESS. Only other # other option (for now) is Kepler. self.R_p = R_p # radius of the planet in jupiter radii self.a = a self.u = u # the limb-darkening coefficient, range is 0-1 self.g = g self.M_p = M_p self.K = K # get the mass from the ellipsoidal amplitude, if given. # u is the limb-darkening coefficient, range is 0-1 if not M_p and not not A_ellip and not not logg: self.u = self.LDC() self.M_p = self.m_from_ellip() # star-planet separation [au] assuming a circular orbit if not a and not not M_p: self.a = get_a(self.P_orb * 86400, self.M_star * const.M_sun.value, \ self.M_p * const.M_jup.value) / const.au.value def alpha_ellip(self): if not self.u: self.u = self.LDC() if not self.g: self.g = self.GDC() a = 15 + self.u b = 1 + self.g c = 3 - self.u return 0.15 * a * b / c def RV_amp(self): """ Returns the radial velocity amplitude [m/s] of the star given a companion mass. """ return 27 / 40 * const.c.value \ * self.M_star ** (-2/3) \ * self.P_orb ** (-1/3) \ * self.M_p * np.sin(self.inc) def doppler_shift(self, K): """ Returns the shift in wavelength for a given radial velocity amplitude. """ return K / const.c.value def response_convolution(self, lambdas, response): return response * bb.blackbody_lambda(lambdas, self.T_star).value def alpha_beam(self, K): """ Returns the factor that accounts for the flux lost when a star gets Doppler shifted in and out of the observer's bandpass. """ print(K) rest_lambdas, response = response_func(self.tele) flux_rest = np.trapz(self.response_convolution(rest_lambdas, response), \ x=rest_lambdas) blueshifted_lambdas = rest_lambdas - self.doppler_shift(K=K) flux_blueshift = np.trapz(self.response_convolution(blueshifted_lambdas, response), \ x=rest_lambdas) redshifted_lambdas = rest_lambdas + self.doppler_shift(K=K) flux_redshift = np.trapz(self.response_convolution(redshifted_lambdas, response), \ x=rest_lambdas) alpha_blue = abs( (flux_rest - flux_blueshift) / flux_rest ) alpha_red = abs( (flux_rest - flux_redshift) / flux_rest ) return 1 - np.mean([alpha_red, alpha_blue]) def m_from_ellip(self): return self.A_ellip \ * self.R_star ** (-3) \ * self.M_star ** 2 \ * self.P_orb ** 2 \ / (12.8 * self.alpha_ellip() * np.sin(self.inc) ** 2) def ellip_from_m(self): return self.M_p * 12.8 * self.alpha_ellip() * np.sin(self.inc) ** 2 \ * self.R_star ** 3 \ * self.M_star ** (-2) \ * self.P_orb ** (-2) def m_from_beam(self, K=False, alpha_beam=False): if not alpha_beam and not K and not not self.M_p: alpha_beam = self.alpha_beam(K=self.RV_amp()) elif not alpha_beam and not not K: alpha_beam = self.alpha_beam(K=K) elif not not K and not not alpha_beam: raise ValueError("Please only specify either K or alpha_beam, not both.") elif not K and not alpha_beam: raise ValueError("Please specify a radial velocity (K) or alpha_beam parameter") return self.A_beam \ * self.M_star ** (2/3) \ * self.P_orb ** (1/3) \ / (alpha_beam * np.sin(self.inc) * 2.7) def beam_from_m(self): """ Returns the expected Doppler beaming amplitude [ppm] for a given mass. """ if not self.M_p: raise ValueError("Argument 'M_p' must be specified if you're trying to " + "derive a beaming amplitude from a mass.") if not self.K: K=self.RV_amp() return 2.7 * self.alpha_beam(K=self.K) \ * self.M_star ** (-2/3) \ * self.P_orb ** (-1/3) \ * self.M_p * np.sin(self.inc) def Ag_from_thermref(self, A_thermref): """ Return the geometric albedo derived from the thermal + ref amplitude. """ return A_thermref * (self.R_p / self.a) ** -2 * (const.au / const.R_jup) ** 2 def mass(self, derived_from=None, K=False, alpha_beam=False): if derived_from == "ellip": return self.m_from_ellip() elif derived_from == "beam": return self.m_from_beam(K=K, alpha_beam=alpha_beam) else: raise ValueError("derived_from must equal either 'ellip' or 'beam'") def nearest_neighbors(self, value, array, max_difference): """ Returns a set of nearest neighbor indices of the given array. """ return set(list((np.where(abs(array - value) < max_difference))[0])) def correct_maxdiff(self, value, array, guess): while len(self.nearest_neighbors(value, array, guess)) > 0: guess -= 0.01 * guess return guess def shared_neighbor(self, value1, array1, max_diff1, value2, array2, max_diff2): set1 = self.nearest_neighbors(value1, array1, max_diff1) set2 = self.nearest_neighbors(value2, array2, max_diff2) nearest = list(set1.intersection(set2)) # if len(nearest) > 1: # newmax_diff1 = self.correct_maxdiff(value1, array1, max_diff1) # newmax_diff2 = self.correct_maxdiff(value2, array2, max_diff2) # print(newmax_diff1, newmax_diff2) # if newmax_diff2 > newmax_diff1: # max_diff2 = newmax_diff2 # else: # max_diff1 = newmax_diff1 # set1 = self.nearest_neighbors(value1, array1, max_diff1) # set2 = self.nearest_neighbors(value2, array2, max_diff2) # nearest = list(set1.intersection(set2)) # print(nearest) # # if len(nearest) > 1: # # raise ValueError("Multiple shared nearest neighbors, indices = ", nearest) # # else: # # return nearest[0] return nearest[0] def tess_warning(self): if self.tele != 'tess': raise ValueError("This function is only appropriate for observations done with " + "the TESS satellite") def claret_LDC(self): """ Returns the mu coefficient and the four-parameters used in the Claret four-parameter limb-darkening law (Claret 2000). These are obtained by finding the nearest neighbor in the model limb-darkening of TESS from Claret 2018. """ # print("claret_LDC is still garbage, sorry. Quitting now...") # exit() self.tess_warning() logg, Teff, a1, a2, a3, a4, mu, mod = np.genfromtxt('../claret_ldc.dat', usecols=(0,1,4,5,6,7,8,10), unpack=True) mod = np.genfromtxt('../claret_ldc.dat', usecols=(10,), dtype='str') if self.T_star <= 3000: # the PC model is meant for cool stars, and if we break it up this way we can do an # easier 2D interpolation. mask = mod == 'PD' else: mask = mod == 'PC' logg = logg[mask] Teff = Teff[mask] a1 = a1[mask] a2 = a2[mask] a3 = a3[mask] a4 = a4[mask] mu = mu[mask] nearest = self.shared_neighbor(self.T_star, Teff, 100, self.logg, logg, 0.25) mu = mu[nearest] a_coeffs = [a1[nearest], a2[nearest], a3[nearest], a4[nearest]] return mu, a_coeffs def GDC(self): """ Returns the gravity-darkening coefficient from the Claret 2017 model """ self.tess_warning() logg, log_Teff, g = np.genfromtxt('../claret_gdc.dat', usecols=(2,3,4), unpack=True) nearest = self.shared_neighbor(np.log10(self.T_star), log_Teff, .01, self.logg, logg, 0.25) return g[nearest] def LDC(self): """ Returns the limb-darkening coefficient of the host star. """ mu, a_coeffs = self.claret_LDC() return 1 - sum([a_coeffs[k] * (1 - mu ** ((k+1) / 2)) for k in range(4)]) def get_response_specs(tele): if tele=="tess": return "../tess-response-function-v1.0.csv", ',', 1e1 elif tele=="kepler": return "../kepler_hires.dat", '\t', 1e4 def response_func(tele): file, delimiter, to_AA = get_response_specs(tele) lambdas, response = np.genfromtxt(file, delimiter=delimiter, usecols=(0,1), unpack=True) return lambdas * to_AA, response def get_a(P, M_star, M_p): """ Use Kepler's third law to derive the star-planet separation. """ return (P ** 2 * const.G.value * (M_star + M_p) / (4 * np.pi ** 2)) ** (1/3)
2.46875
2
src/vanilla_pytorch/prune_model.py
f2010126/LTH_Master
0
7260
<gh_stars>0 import torch.nn.utils.prune as prune import torch from src.vanilla_pytorch.utils import count_rem_weights from src.vanilla_pytorch.models.linearnets import LeNet, init_weights from src.vanilla_pytorch.models.resnets import Resnets def remove_pruning(model): for i, (name, module) in enumerate(model.named_modules()): # name and val if any([isinstance(module, cl) for cl in [torch.nn.Conv2d, torch.nn.Linear]]): prune.remove(module, 'weight') def get_masks(model, prune_amts=None): """ prune the lowest p% weights by magnitude per layer :param model: model to prune :param p_rate: prune rate = 0.2 as per paper :param prune_amts: dictionary :return: the created mask. model has served it's purpose. """ # TODO: Adjust pruning with output layer if prune_amts is None: # ie dict is empty, use the default prune rate = 0.2 prune_amts = {"linear": 0.2, "conv": 0.2, "last": 0.2} for i, (name, module) in enumerate(model.named_modules()): # prune 20% of connections in all 2D-conv layers if isinstance(module, torch.nn.Conv2d): module = prune.l1_unstructured(module, name='weight', amount=prune_amts['conv']) # prune 20% of connections in all linear layers elif isinstance(module, torch.nn.Linear): module = prune.l1_unstructured(module, name='weight', amount=prune_amts['linear']) masks = list(model.named_buffers()) remove_pruning(model) return masks def update_apply_masks(model, masks): # doesn't seem to be needed. # for key, val in masks.items(): # print(f"key {key}") # layer = getattr(model, key.split('.')[0]) # layer.weight_mask = val for name, module in model.named_modules(): if any([isinstance(module, cl) for cl in [torch.nn.Conv2d, torch.nn.Linear]]): module = prune.custom_from_mask(module, name='weight', mask=masks[name + ".weight_mask"]) # remove_pruning(model) return model def prune_random(model, prune_amts=None): if prune_amts is None: # ie dict is empty, use the default prune rate =0.2 prune_amts = {"linear": 0.2, "conv": 0.2, "last": 0.2} for name, module in model.named_modules(): # prune 20% of connections in all 2D-conv layers if isinstance(module, torch.nn.Conv2d): module = prune.random_unstructured(module, name='weight', amount=prune_amts['conv']) # prune 20% of connections in all linear layers elif isinstance(module, torch.nn.Linear): module = prune.random_unstructured(module, name='weight', amount=prune_amts['linear']) remove_pruning(model) if __name__ == '__main__': net = Resnets(in_channels=3) net.apply(init_weights) prune_rate = 0.8 prune_custom = {"linear": 0.2, "conv": 0.2, "last": 0.1} for i in range(3): masks = get_masks(net, prune_amts=prune_custom) print(f"Count zero : {count_rem_weights(net)}")
2.359375
2
Grid-neighbor-search/GNS/read_instance_2layer_2LMM_L.py
CitrusAqua/mol-infer
0
7261
<reponame>CitrusAqua/mol-infer<filename>Grid-neighbor-search/GNS/read_instance_2layer_2LMM_L.py """ read_instance_BH-cyclic.py """ ''' [seed graph] V_C : "V_C" E_C : "E_C" [core specification] ell_LB : "\ell_{\rm LB}" ell_UB : "\ell_{\rm UB}" cs_LB : "\textsc{cs}_{\rm LB}" cs_UB : "\textsc{cs}_{\rm UB}" ''' import sys def read_pmax_file(filename): with open(filename,'r') as f: F = [line.rstrip('\n') for line in f if line[0]!='#'] p_max = int(F.pop(0)) s = F.pop(0) delta = list(map(float, s.split(' '))) s = F.pop(0) r = list(map(int, s.split(' '))) return p_max, delta, r def read_seed_graph(filename): with open(filename,'r') as f: F = [line.rstrip('\n') for line in f if line[0]!='#'] ### read V_C ### num_V_C = int(F.pop(0)) V_C = tuple(range(1,num_V_C+1)) ### read E_C ### num_E_C = int(F.pop(0)) E_C = {} for e in range(num_E_C): s = F.pop(0) arr = list(map(int, s.split(' '))) E_C[arr[0]] = (arr[0], arr[1], arr[2]) # Add arr[0] to distinguish two edges with same starting and ending vertices, by Zhu ### read ell_LB and ell_UB ### ell_LB = {} ell_UB = {} for e in range(num_E_C): s = F.pop(0) arr = list(map(int, s.split(' '))) ell_LB[arr[0]] = arr[1] ell_UB[arr[0]] = arr[2] ### compute E_ge_two, E_ge_one, E_zero_one, E_equal_one ### E_ge_two = [] E_ge_one = [] E_zero_one = [] E_equal_one = [] I_ge_two = [] I_ge_one = [] I_zero_one = [] I_equal_one = [] for e in E_C: if ell_LB[e] >= 2: E_ge_two.append(E_C[e]) I_ge_two.append(e) elif ell_LB[e] == 1 and ell_UB[e] >= 2: E_ge_one.append(E_C[e]) I_ge_one.append(e) elif ell_LB[e] == 0 and ell_UB[e] == 1: E_zero_one.append(E_C[e]) I_zero_one.append(e) elif ell_LB[e] == 1 and ell_UB[e] == 1: E_equal_one.append(E_C[e]) I_equal_one.append(e) else: sys.stderr.write('error: a strange edge is found.\n') sys.exit(1) ### read n_LB_int and n_UB_int ### n_LB_int = int(F.pop(0)) n_UB_int = int(F.pop(0)) # read n_LB and n_star n_LB = int(F.pop(0)) n_star = int(F.pop(0)) # read rho rho = int(F.pop(0)) ### read ch_LB and ch_UB ### ch_LB = {} ch_UB = {} for v in range(num_V_C): s = F.pop(0) arr = list(map(int, s.split(' '))) ch_LB[arr[0]] = arr[1] ch_UB[arr[0]] = arr[2] for e in range(len(E_ge_two + E_ge_one)): s = F.pop(0) arr = list(map(int, s.split(' '))) ch_LB[E_C[arr[0]]] = arr[1] ch_UB[E_C[arr[0]]] = arr[2] ### read bl_LB and bl_UB ### bl_LB = {} bl_UB = {} for v in range(num_V_C): s = F.pop(0) arr = list(map(int, s.split(' '))) bl_LB[arr[0]] = arr[1] bl_UB[arr[0]] = arr[2] for e in range(len(E_ge_two + E_ge_one)): s = F.pop(0) arr = list(map(int, s.split(' '))) bl_LB[E_C[arr[0]]] = arr[1] bl_UB[E_C[arr[0]]] = arr[2] # read Lambda s = F.pop(0) Lambda = list(s.split(' ')) # read Lambda_dg_int s = F.pop(0) num = int(s) Lambda_dg_int = list() for i in range(num): s = F.pop(0) arr = list(s.split(' ')) Lambda_dg_int.append((arr[0], int(arr[1]))) # read Gamma_int_ac s = F.pop(0) num = int(s) Gamma_int_ac = list() nu_int = list() for i in range(num): s = F.pop(0) arr = list(s.split(' ')) tmp_1 = (arr[0], arr[1], int(arr[2])) tmp_2 = (arr[1], arr[0], int(arr[2])) nu_int.append(tmp_1) if tmp_1 not in Gamma_int_ac: Gamma_int_ac.append(tmp_1) if tmp_2 not in Gamma_int_ac: Gamma_int_ac.append(tmp_2) # read Gamma_int s = F.pop(0) num = int(s) Gamma_int = list() gam_int = list() for i in range(num): s = F.pop(0) arr = list(s.split(' ')) tmp_1 = ((arr[0], int(arr[1])), (arr[2], int(arr[3])), int(arr[4])) tmp_2 = ((arr[2], int(arr[3])), (arr[0], int(arr[1])), int(arr[4])) gam_int.append(tmp_1) if tmp_1 not in Gamma_int: Gamma_int.append(tmp_1) if tmp_2 not in Gamma_int: Gamma_int.append(tmp_2) # read Lambda_star Lambda_star = {i: set() for i in range(1, num_V_C + 1)} for i in range(1, num_V_C + 1): s = F.pop(0) arr = list(s.split(' ')) ind = int(arr[0]) arr.pop(0) for a in arr: Lambda_star[ind].add(a) Lambda_int = list() # read na_LB and na_UB s = F.pop(0) num = int(s) na_LB = {} na_UB = {} for i in range(num): s = F.pop(0) arr = list(s.split(' ')) na_LB[arr[0]] = int(arr[1]) na_UB[arr[0]] = int(arr[2]) # read na_LB_int and na_UB_int s = F.pop(0) num = int(s) na_LB_int = {} na_UB_int = {} for i in range(num): s = F.pop(0) arr = list(s.split(' ')) na_LB_int[arr[0]] = int(arr[1]) na_UB_int[arr[0]] = int(arr[2]) Lambda_int.append(arr[0]) # read ns_LB_int and ns_UB_int s = F.pop(0) num = int(s) ns_LB_int = {} ns_UB_int = {} for i in range(num): s = F.pop(0) arr = list(s.split(' ')) ns_LB_int[(arr[0], int(arr[1]))] = int(arr[2]) ns_UB_int[(arr[0], int(arr[1]))] = int(arr[3]) # read ac_LB_int and ac_UB_int s = F.pop(0) num = int(s) ac_LB_int = {} ac_UB_int = {} for i in range(num): s = F.pop(0) arr = list(s.split(' ')) a1, a2, m = nu_int[int(arr[0]) - 1] ac_LB_int[(a1, a2, m)] = int(arr[1]) ac_LB_int[(a2, a1, m)] = int(arr[1]) ac_UB_int[(a1, a2, m)] = int(arr[2]) ac_UB_int[(a2, a1, m)] = int(arr[2]) # read ec_LB_int and ec_UB_int s = F.pop(0) num = int(s) ec_LB_int = {} ec_UB_int = {} for i in range(num): s = F.pop(0) arr = list(s.split(' ')) a1, a2, m = gam_int[int(arr[0]) - 1] ec_LB_int[(a1, a2, m)] = int(arr[1]) ec_LB_int[(a2, a1, m)] = int(arr[1]) ec_UB_int[(a1, a2, m)] = int(arr[2]) ec_UB_int[(a2, a1, m)] = int(arr[2]) # read bd2_LB and bd2_UB bd2_LB = {} bd2_UB = {} for e in range(len(E_C)): s = F.pop(0) arr = list(map(int, s.split(' '))) bd2_LB[E_C[arr[0]]] = arr[1] bd2_UB[E_C[arr[0]]] = arr[2] # read bd3_LB and bd3_UB bd3_LB = {} bd3_UB = {} for e in range(len(E_C)): s = F.pop(0) arr = list(map(int, s.split(' '))) bd3_LB[E_C[arr[0]]] = arr[1] bd3_UB[E_C[arr[0]]] = arr[2] # read ac_LB_lf and ac_UB_lf s = F.pop(0) num = int(s) ac_LB_lf = dict() ac_UB_lf = dict() for e in range(num): s = F.pop(0) arr = list(s.split(' ')) ac_LB_lf[(arr[0], arr[1], int(arr[2]))] = int(arr[3]) ac_UB_lf[(arr[0], arr[1], int(arr[2]))] = int(arr[4]) s = F.pop(0) arr = list(map(int, s.split(' '))) ac_LB_lf_common = arr[0] ac_UB_lf_common = arr[1] #################################### # # Undefined constants for instances but used in MILP r_GC = num_E_C - (num_V_C - 1) dg_LB = [0,0,0,0,0] dg_UB = [n_star,n_star,n_star,n_star,n_star] return V_C, E_C, \ E_ge_two, E_ge_one, E_zero_one, E_equal_one, \ I_ge_two, I_ge_one, I_zero_one, I_equal_one, \ ell_LB, ell_UB, n_LB_int, n_UB_int, \ n_LB, n_star, rho, \ ch_LB, ch_UB, bl_LB, bl_UB, \ Lambda, Lambda_dg_int, Gamma_int_ac, Gamma_int, \ Lambda_star, na_LB, na_UB, Lambda_int, \ na_LB_int, na_UB_int, ns_LB_int, ns_UB_int, \ ac_LB_int, ac_UB_int, ec_LB_int, ec_UB_int, \ bd2_LB, bd2_UB, bd3_LB, bd3_UB, \ dg_LB, dg_UB, ac_LB_lf, ac_UB_lf, ac_LB_lf_common, ac_UB_lf_common, r_GC def get_value(filename): y_min = 0 y_max = 0 ind = 0 with open(filename, 'r') as f: lines = f.readlines() for line in lines: if len(line.split(",")) < 2: continue if line.split(",")[0] == "CID": continue if ind == 0: y_min = float(line.split(",")[1]) y_max = float(line.split(",")[1]) ind = 1 else: y_tmp = float(line.split(",")[1]) if y_tmp > y_max: y_max = y_tmp if y_tmp < y_min: y_min = y_tmp return y_min, y_max # prepare a set of chemical rooted tree class chemicalRootedTree(): def __init__(self): self.root = ("e", 0) self.index = 0 self.vertex = [] self.adj = [] self.alpha = [] self.beta = [] self.height = 0 self.chg = [] def prepare_fringe_trees(fringe_filename, Lambda): # modified for 2LMM, 0527 set_F = list() strF = dict() fc_LB = dict() fc_UB = dict() with open(fringe_filename,'r') as f: lines = f.readlines() for line in lines: if len(line.split(",")) < 4: continue ind = int(line.split(",")[0]) str1 = line.split(",")[1] str2 = line.split(",")[2] str3 = line.split(",")[3].replace('\n', '') if len(line.split(",")) > 4: LB_tmp = line.split(",")[4].replace('\n', '') LB_tmp = LB_tmp.replace(' ', '') fc_LB[ind] = int(LB_tmp) UB_tmp = line.split(",")[5].replace('\n', '') UB_tmp = UB_tmp.replace(' ', '') fc_UB[ind] = int(UB_tmp) else: fc_LB[ind] = 0 fc_UB[ind] = 10 psi = chemicalRootedTree() seq1 = str1.split() seq2 = [int(mul) for mul in line.split(",")[2].split()] seq3 = [int(chg) for chg in line.split(",")[3].split()] psi.index = ind psi.vertex = [(seq1[j], int(seq1[j + 1])) for j in range(0, len(seq1), 2)] psi.root = psi.vertex[0] psi.height = max(psi.vertex[v][1] for v in range(len(psi.vertex)) if psi.vertex[v][0] != "H1") psi.adj = [set() for _ in range(len(psi.vertex))] psi.beta = [[0 for _ in range(len(psi.vertex))] for _ in range(len(psi.vertex))] psi.chg = [chg for chg in seq3] for j in range(len(seq2)): cld = j + 1 prt = max(v for v in range(j + 1) if psi.vertex[v][1] == psi.vertex[cld][1] - 1) psi.adj[prt].add(cld) psi.adj[cld].add(prt) psi.beta[prt][cld] = seq2[j] psi.beta[cld][prt] = seq2[j] # print(str(prt) + " " + str(cld) + " " + str(j) + " " + str(seq2[j])) flag = True for (a, d) in psi.vertex: if a not in Lambda: flag = False break if flag: strF[ind] = (str1, str2, str3) set_F.append(psi) Lambda_ex = list() for psi in set_F: for (a, d) in psi.vertex[1:]: if a not in Lambda_ex and a in Lambda: Lambda_ex.append(a) return set_F, Lambda_ex, strF, fc_LB, fc_UB if __name__=="__main__": V_C, E_C, \ E_ge_two, E_ge_one, E_zero_one, E_equal_one, \ I_ge_two, I_ge_one, I_zero_one, I_equal_one, \ ell_LB, ell_UB, n_LB_int, n_UB_int, \ n_LB, n_star, rho, \ ch_LB, ch_UB, bl_LB, bl_UB, \ Lambda, Lambda_dg_int, Gamma_int_ac, Gamma_int, \ Lambda_star, na_LB, na_UB, Lambda_int, \ na_LB_int, na_UB_int, ns_LB_int, ns_UB_int, \ ac_LB_int, ac_UB_int, ec_LB_int, ec_UB_int, \ bd2_LB, bd2_UB, bd3_LB, bd3_UB, dg_LB, dg_UB = read_seed_graph(sys.argv[1]) set_F, psi_epsilon, Code_F, n_psi, deg_r, \ beta_r, atom_r, ht, Lambda_ex = prepare_fringe_trees(sys.argv[2]) # print(V_C) # print(E_C) # print(E_ge_two) # print(E_ge_one) # print(E_zero_one) # print(E_equal_one) # print(ell_LB) # print(ell_UB) # print(bl_UB) for psi in (set_F + [psi_epsilon]): print(str(Code_F[psi]) + " " + str(n_psi[Code_F[psi]]) + " " + \ str(ht[Code_F[psi]]) + " " + str(atom_r[Code_F[psi]]) + " " + \ str(deg_r[Code_F[psi]]) + " " + str(beta_r[Code_F[psi]])) # print(Lambda_ex) # set_F_v = {v : set_F for v in V_C} # set_F_E = set_F # n_C = max(psi.numVertex - 1 for v in V_C for psi in set_F_v[v]) # n_T = max(psi.numVertex - 1 for psi in set_F_E) # n_F = max(psi.numVertex - 1 for psi in set_F_E) # print(str(n_C) + " " + str(n_T) + " " + str(n_F)) MAX_VAL = 4 val = {"C": 4, "O": 2, "N": 3} n_H = dict() na_alpha_ex = {ele : {i + 1 : 0} for i in range(len(set_F)) for ele in Lambda_ex} for i, psi in enumerate(set_F): n_H_tmp = {d : 0 for d in range(MAX_VAL)} na_ex_tmp = {ele : 0 for ele in Lambda_ex} for u, (ele, dep) in enumerate(psi.vertex[1:]): beta_tmp = 0 na_ex_tmp[ele] += 1 for v in psi.adj[u + 1]: beta_tmp += psi.beta[u + 1][v] d_tmp = val[ele] - beta_tmp n_H_tmp[d_tmp] += 1 for ele, d in na_alpha_ex.items(): d[i + 1] = na_ex_tmp[ele] n_H[i + 1] = n_H_tmp print(n_H) print(na_alpha_ex)
2.171875
2
gamma/system_input.py
ArtBIT/gamma
15
7262
from .system import * from .colours import * class InputSystem(System): def init(self): self.key = 'input' def setRequirements(self): self.requiredComponents = ['input'] def updateEntity(self, entity, scene): # don't allow input during a cutscene if scene.cutscene is not None: return # run the stored input context if entity.getComponent('input').inputContext is not None: entity.getComponent('input').inputContext(entity)
2.6875
3
tensorflow_federated/python/research/utils/checkpoint_utils_test.py
mcognetta/federated
0
7263
# Lint as: python3 # Copyright 2019, The TensorFlow Federated Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for ServerState save.""" import functools import os import attr import tensorflow as tf import tensorflow_federated as tff from tensorflow_federated.python.examples.mnist import models from tensorflow_federated.python.research.utils import checkpoint_utils @attr.s(cmp=False, frozen=False) class Obj(object): """Container for all state that need to be stored in the checkpoint. Attributes: model: A ModelWeights structure, containing Tensors or Variables. optimizer_state: A list of Tensors or Variables, in the order returned by optimizer.variables(). round_num: Training round_num. """ model = attr.ib() optimizer_state = attr.ib() round_num = attr.ib() @classmethod def from_anon_tuple(cls, anon_tuple, round_num): # TODO(b/130724878): These conversions should not be needed. return cls( model=anon_tuple.model._asdict(recursive=True), optimizer_state=list(anon_tuple.optimizer_state), round_num=round_num) class SavedStateTest(tf.test.TestCase): def test_save_and_load(self): server_optimizer_fn = functools.partial( tf.keras.optimizers.SGD, learning_rate=0.1, momentum=0.9) iterative_process = tff.learning.build_federated_averaging_process( models.model_fn, server_optimizer_fn=server_optimizer_fn) server_state = iterative_process.initialize() # TODO(b/130724878): These conversions should not be needed. obj = Obj.from_anon_tuple(server_state, 1) export_dir = os.path.join(self.get_temp_dir(), 'ckpt_1') checkpoint_utils.save(obj, export_dir) loaded_obj = checkpoint_utils.load(export_dir, obj) self.assertAllClose(tf.nest.flatten(obj), tf.nest.flatten(loaded_obj)) def test_load_latest_state(self): server_optimizer_fn = functools.partial( tf.keras.optimizers.SGD, learning_rate=0.1, momentum=0.9) iterative_process = tff.learning.build_federated_averaging_process( models.model_fn, server_optimizer_fn=server_optimizer_fn) server_state = iterative_process.initialize() # TODO(b/130724878): These conversions should not be needed. obj_1 = Obj.from_anon_tuple(server_state, 1) export_dir = os.path.join(self.get_temp_dir(), 'ckpt_1') checkpoint_utils.save(obj_1, export_dir) # TODO(b/130724878): These conversions should not be needed. obj_2 = Obj.from_anon_tuple(server_state, 2) export_dir = os.path.join(self.get_temp_dir(), 'ckpt_2') checkpoint_utils.save(obj_2, export_dir) export_dir = checkpoint_utils.latest_checkpoint(self.get_temp_dir()) loaded_obj = checkpoint_utils.load(export_dir, obj_1) self.assertEqual(os.path.join(self.get_temp_dir(), 'ckpt_2'), export_dir) self.assertAllClose(tf.nest.flatten(obj_2), tf.nest.flatten(loaded_obj)) if __name__ == '__main__': tf.compat.v1.enable_v2_behavior() tf.test.main()
1.96875
2
website/models/user.py
alexli0707/pyforum
4
7264
#!/usr/bin/env python # -*- coding: utf-8 -*- import peewee from flask import current_app,abort from flask.ext.login import AnonymousUserMixin, UserMixin from itsdangerous import TimedJSONWebSignatureSerializer as Serializer from peewee import Model, IntegerField, CharField,PrimaryKeyField from website.app import db_wrapper, login_manager from website.http.main_exception import MainException from werkzeug.security import check_password_hash,generate_password_hash class User(UserMixin, db_wrapper.Model): id = PrimaryKeyField() email = CharField(index=True) username = CharField(index=True) password_hash = CharField() role_id = IntegerField() confirmed = IntegerField() class Meta: db_table = 'users' def register(self,email,password,username): user = User(email=email, username=username, password_hash=generate_password_hash(password)) try: user.save() except peewee.IntegrityError as err: print(err.args) if err.args[0] == 1062: if 'ix_users_email' in err.args[1]: raise MainException.DUPLICATE_EMAIL if 'ix_users_username' in err.args[1]: raise MainException.DUPLICATE_USERNAME return user def verify_password(self, password): return check_password_hash(self.password_hash, password) def generate_confirmation_token(self, expiration=3600): """生成验证邮箱的token""" s = Serializer(current_app.config['SECRET_KEY'], expiration) return s.dumps({'confirm': self.id}) def confirm(self, token): """验证邮箱""" s = Serializer(current_app.config['SECRET_KEY']) try: data = s.loads(token) print(data) except: return False if data.get('confirm') != self.id: return False # 验证成功,写入数据库 self.confirmed = True self.save() return True def generate_reset_token(self, expiration=3600): """生成重置密码的token""" s = Serializer(current_app.config['SECRET_KEY'], expiration) return s.dumps({'reset': self.id}) def reset_password(self, token, new_password): """重置密码""" s = Serializer(current_app.config['SECRET_KEY']) try: data = s.loads(token) except: return False if data.get('reset') != self.id: return False # 验证成功,写入数据库 self.password = <PASSWORD> self.save() return True """ 匿名用户 """ class AnonymousUser(AnonymousUserMixin): def can(self, permissions): return False def is_administrator(self): return False login_manager.anonymous_user = AnonymousUser @login_manager.user_loader def load_user(user_id): user = User.get(User.id == int(user_id)) if not user: abort(404) else: return user
2.515625
3
FlaskApp/__init__.py
robertavram/project5
7
7265
# application import application
1.101563
1
sim2net/speed/constant.py
harikuts/dsr_optimization
12
7266
<reponame>harikuts/dsr_optimization #!/usr/bin/env python # -*- coding: utf-8 -*- # (c) 2012 <NAME> <mkalewski at cs.put.poznan.pl> # # This file is a part of the Simple Network Simulator (sim2net) project. # USE, MODIFICATION, COPYING AND DISTRIBUTION OF THIS SOFTWARE IS SUBJECT TO # THE TERMS AND CONDITIONS OF THE MIT LICENSE. YOU SHOULD HAVE RECEIVED A COPY # OF THE MIT LICENSE ALONG WITH THIS SOFTWARE; IF NOT, YOU CAN DOWNLOAD A COPY # FROM HTTP://WWW.OPENSOURCE.ORG/. # # For bug reports, feature and support requests please visit # <https://github.com/mkalewski/sim2net/issues>. """ Provides an implementation of a constant node speed. In this case a speed of a node is constant at a given value. """ from math import fabs from sim2net.speed._speed import Speed from sim2net.utility.validation import check_argument_type __docformat__ = 'reStructuredText' class Constant(Speed): """ This class implements a constant node speed fixed at a given value. """ def __init__(self, speed): """ *Parameters*: - **speed** (`float`): a value of the node speed. *Example*: .. testsetup:: from sim2net.speed.constant import Constant .. doctest:: >>> speed = Constant(5.0) >>> speed.current 5.0 >>> speed.get_new() 5.0 >>> speed = Constant(-5.0) >>> speed.current 5.0 >>> speed.get_new() 5.0 """ super(Constant, self).__init__(Constant.__name__) check_argument_type(Constant.__name__, 'speed', float, speed, self.logger) self.__current_speed = fabs(float(speed)) @property def current(self): """ (*Property*) The absolute value of the current speed of type `float`. """ return self.__current_speed def get_new(self): """ Returns the absolute value of the given node speed of type `float`. """ return self.current
2.90625
3
nexula/nexula_utility/utility_extract_func.py
haryoa/nexula
3
7267
<reponame>haryoa/nexula from nexula.nexula_utility.utility_import_var import import_class class NexusFunctionModuleExtractor(): """ Used for constructing pipeline data preporcessing and feature representer """ def __init__(self, module_class_list, args_dict, **kwargs): """ Instantiate class(es) object in pipeline Parameters ---------- module_class_list args_dict kwargs """ # self.list_of_cls = self._search_module_function(module_class_list) self.list_of_cls = module_class_list if 'logger' in kwargs: self.logger = kwargs['logger'] self.logger.debug(args_dict) if 'logger' in self.__dict__ else None self.args_init = [arg['init'] for arg in args_dict] self.args_call = [arg['call'] for arg in args_dict] self._construct_object() # Extract call def _construct_object(self): """ Instantiate object of all pipeline """ import logging logger = logging.getLogger('nexula') logger.debug(self.list_of_cls) new_list_of_cls = [] for i, cls in enumerate(self.list_of_cls): # REFACTOR logger.debug(cls) new_list_of_cls.append(cls(**self.args_init[i])) self.list_of_cls = new_list_of_cls def _search_module_function(self, module_function_list): """ Search the module in the library Parameters ---------- module_function_list Returns ------- """ list_of_cls = [] for module, function in module_function_list: # TODO Raise exception if empty list_of_cls.append(import_class(function, module)) return list_of_cls def __call__(self, x, y, *args, **kwargs): """ Call the object by evoking __call__ function Returns ------- """ for i,cls in enumerate(self.list_of_cls): current_args = self.args_call[i] x, y = cls(x, y, **kwargs, **current_args) return x, y
2.40625
2
marbas/preprocessing.py
MJ-Jang/Marbas
0
7268
<filename>marbas/preprocessing.py import os from configparser import ConfigParser cfg = ConfigParser() #PATH_CUR = os.getcwd() + '/pynori' PATH_CUR = os.path.dirname(__file__) cfg.read(PATH_CUR+'/config.ini') # PREPROCESSING ENG_LOWER = cfg.getboolean('PREPROCESSING', 'ENG_LOWER') class Preprocessing(object): """Preprocessing modules before tokenizing It doesn't need to be initialized. """ def __init__(self): pass def pipeline(self, input_str): if ENG_LOWER: input_str = self.lower(input_str) return input_str def lower(self, input_str): return input_str.lower() def typo(self, input_str): """To correct typing errors""" pass def spacing(self, input_str): """To correct spacing errors""" pass
2.8125
3
pravash/servicenowplugin/xlr-servicenow-plugin-master/src/main/resources/servicenow/ServiceNowQueryTile.py
amvasudeva/rapidata
0
7269
# # THIS CODE AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS # FOR A PARTICULAR PURPOSE. THIS CODE AND INFORMATION ARE NOT SUPPORTED BY XEBIALABS. # import com.xhaus.jyson.JysonCodec as json if not servicenowServer: raise Exception("ServiceNow server ID must be provided") if not username: username = servicenowServer["username"] if not password: password = servicenowServer["password"] servicenowUrl = servicenowServer['url'] credentials = CredentialsFallback(servicenowServer, username, password).getCredentials() content = None RESPONSE_OK_STATUS = 200 print "Sending content %s" % content def get_row_data(item): row_map = {} for column in detailsViewColumns: if detailsViewColumns[column] and "." in detailsViewColumns[column]: json_col = detailsViewColumns[column].split('.') if item[json_col[0]]: row_map[column] = item[json_col[0]][json_col[1]] else: row_map[column] = item[column] row_map['link'] = servicenowUrl + "nav_to.do?uri=%s.do?sys_id=%s" % (tableName, item['sys_id']) return row_map servicenowAPIUrl = servicenowUrl + '/api/now/v1/table/%s?sysparm_display_value=true&sysparm_limit=1000&sysparm_query=%s' % (tableName, query) servicenowResponse = XLRequest(servicenowAPIUrl, 'GET', content, credentials['username'], credentials['password'], 'application/json').send() if servicenowResponse.status == RESPONSE_OK_STATUS: json_data = json.loads(servicenowResponse.read()) rows = {} for item in json_data['result']: row = item['number'] rows[row] = get_row_data(item) data = rows else: error = json.loads(servicenowResponse.read()) if 'Invalid table' in error['error']['message']: print "Invalid Table Name" data = {"Invalid table name"} servicenowResponse.errorDump() else: print "Failed to run query in Service Now" servicenowResponse.errorDump() sys.exit(1)
2.0625
2
bc/recruitment/migrations/0022_merge_20200331_1633.py
Buckinghamshire-Digital-Service/buckinghamshire-council
1
7270
<reponame>Buckinghamshire-Digital-Service/buckinghamshire-council<filename>bc/recruitment/migrations/0022_merge_20200331_1633.py # Generated by Django 2.2.10 on 2020-03-31 15:33 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ("recruitment", "0021_merge_20200331_1503"), ("recruitment", "0013_button_block"), ] operations = []
1.304688
1
Stage_3/Task11_Graph/depth_first_search.py
Pyabecedarian/Algorithms-and-Data-Structures-using-Python
0
7271
""" The Depth First Search (DFS) The goal of a dfs is to search as deeply as possible, connecting as many nodes in the graph as possible and branching where necessary. Think of the BFS that builds a search tree one level at a time, whereas the DFS creates a search tree by exploring one branch of the tree as deeply as possible. As with bfs the dfs makes use of `predecessor` links to construct the tree. In addition, the dfs will make use of two additional instance variables in the Vertex class, `discovery` and `finish_time`. predecessor : same as bfs discovery : tracks the number of steps in the algorithm before a vertex is first encountered; finish_time : is the number of steps before a vertex is colored black """ from datastruct.graph import Vertex, Graph class DFSGraph(Graph): def __init__(self): super(DFSGraph, self).__init__() self.time = 0 def reset(self): self.time = 0 for v in self: v.color = 'white' v.predecessor = None def dfs(self): self.reset() for v in self: if v.color == 'white': self._dfs_visit(v) def _dfs_visit(self, vert: Vertex): vert.color = 'gray' self.time += 1 vert.discovery = self.time for nextv in vert.get_connections(): if nextv.color == 'white': nextv.predecessor = vert self._dfs_visit(nextv) vert.color = 'black' self.time += 1 vert.finish_time = self.time
4.125
4
salt/_modules/freebsd_common.py
rbtcollins/rusty_rail
16
7272
def sysrc(value): """Call sysrc. CLI Example: .. code-block:: bash salt '*' freebsd_common.sysrc sshd_enable=YES salt '*' freebsd_common.sysrc static_routes """ return __salt__['cmd.run_all']("sysrc %s" % value)
1.789063
2
auth0/v3/management/blacklists.py
jhunken/auth0-python
0
7273
from .rest import RestClient class Blacklists(object): """Auth0 blacklists endpoints Args: domain (str): Your Auth0 domain, e.g: 'username.auth0.com' token (str): Management API v2 Token telemetry (bool, optional): Enable or disable Telemetry (defaults to True) """ def __init__(self, domain, token, telemetry=True): self.url = 'https://{}/api/v2/blacklists/tokens'.format(domain) self.client = RestClient(jwt=token, telemetry=telemetry) def get(self, aud=None): """Retrieves the jti and aud of all tokens in the blacklist. Args: aud (str, optional): The JWT's aud claim. The client_id of the application for which it was issued. See: https://auth0.com/docs/api/management/v2#!/Blacklists/get_tokens """ params = { 'aud': aud } return self.client.get(self.url, params=params) def create(self, jti, aud=''): """Adds a token to the blacklist. Args: jti (str): the jti of the JWT to blacklist. aud (str, optional): The JWT's aud claim. The client_id of the application for which it was issued. body (dict): See: https://auth0.com/docs/api/management/v2#!/Blacklists/post_tokens """ return self.client.post(self.url, data={'jti': jti, 'aud': aud})
2.734375
3
test_backtest/simplebacktest.py
qzm/QUANTAXIS
1
7274
<gh_stars>1-10 # coding=utf-8 # # The MIT License (MIT) # # Copyright (c) 2016-2018 yutiansut/QUANTAXIS # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import QUANTAXIS as QA import random """ 该代码旨在给出一个极其容易实现的小回测 高效 无事件驱动 """ B = QA.QA_BacktestBroker() AC = QA.QA_Account() """ # 账户设置初始资金 AC.reset_assets(assets) # 发送订单 Order=AC.send_order(code='000001',amount=1000,time='2018-03-21',towards=QA.ORDER_DIRECTION.BUY,price=0,order_model=QA.ORDER_MODEL.MARKET,amount_model=QA.AMOUNT_MODEL.BY_AMOUNT) # 撮合订单 dealmes=B.receive_order(QA.QA_Event(order=Order,market_data=data)) # 更新账户 AC.receive_deal(dealmes) # 分析结果 risk=QA.QA_Risk(AC) """ AC.reset_assets(20000000) #设置初始资金 def simple_backtest(AC, code, start, end): DATA = QA.QA_fetch_stock_day_adv(code, start, end).to_qfq() for items in DATA.panel_gen: # 一天过去了 for item in items.security_gen: if random.random()>0.5:# 加入一个随机 模拟买卖的 if AC.sell_available.get(item.code[0], 0) == 0: order=AC.send_order( code=item.data.code[0], time=item.data.date[0], amount=1000, towards=QA.ORDER_DIRECTION.BUY, price=0, order_model=QA.ORDER_MODEL.MARKET, amount_model=QA.AMOUNT_MODEL.BY_AMOUNT ) AC.receive_deal(B.receive_order(QA.QA_Event(order=order,market_data=item))) else: AC.receive_deal(B.receive_order(QA.QA_Event(order=AC.send_order( code=item.data.code[0], time=item.data.date[0], amount=1000, towards=QA.ORDER_DIRECTION.SELL, price=0, order_model=QA.ORDER_MODEL.MARKET, amount_model=QA.AMOUNT_MODEL.BY_AMOUNT ),market_data=item))) AC.settle() simple_backtest(AC, QA.QA_fetch_stock_block_adv( ).code[0:10], '2017-01-01', '2018-01-31') print(AC.message) AC.save() risk = QA.QA_Risk(AC) print(risk.message) risk.save()
1.554688
2
artview/components/field.py
jjhelmus/artview
0
7275
""" field.py Class instance used for modifying field via Display window. """ # Load the needed packages from functools import partial from ..core import Variable, Component, QtGui, QtCore class FieldButtonWindow(Component): '''Class to display a Window with Field name radio buttons.''' Vradar = None #: see :ref:`shared_variable` Vfield = None #: see :ref:`shared_variable` def __init__(self, Vradar=None, Vfield=None, name="FieldButtons", parent=None): ''' Initialize the class to create the interface. Parameters ---------- [Optional] Vradar : :py:class:`~artview.core.core.Variable` instance Radar signal variable. If None start new one with None Vfield : :py:class:`~artview.core.core.Variable` instance Field signal variable. If None start new one empty string name : string Field Radiobutton window name. parent : PyQt instance Parent instance to associate to FieldButtonWindow. If None, then Qt owns, otherwise associated with parent PyQt instance. Notes ----- This class records the selected button and passes the change value back to variable. ''' super(FieldButtonWindow, self).__init__(name=name, parent=parent) # Set up signal, so that DISPLAY can react to external # (or internal) changes in field (Core.Variable instances expected) # The change is sent through Vfield if Vradar is None: self.Vradar = Variable(None) else: self.Vradar = Vradar if Vfield is None: self.Vfield = Variable('') else: self.Vfield = Vfield self.sharedVariables = {"Vradar": self.NewRadar, "Vfield": self.NewField} self.connectAllVariables() self.CreateFieldWidget() self.SetFieldRadioButtons() self.show() ######################## # Button methods # ######################## def FieldSelectCmd(self, field): '''Captures a selection and updates field variable.''' self.Vfield.change(field) def CreateFieldWidget(self): '''Create a widget to store radio buttons to control field adjust.''' self.radioBox = QtGui.QGroupBox("Field Selection", parent=self) self.rBox_layout = QtGui.QVBoxLayout(self.radioBox) self.radioBox.setLayout(self.rBox_layout) self.setCentralWidget(self.radioBox) def SetFieldRadioButtons(self): '''Set a field selection using radio buttons.''' # Instantiate the buttons into a list for future use self.fieldbutton = {} if self.Vradar.value is None: return # Loop through and create each field button and # connect a value when selected for field in self.Vradar.value.fields.keys(): button = QtGui.QRadioButton(field, self.radioBox) self.fieldbutton[field] = button QtCore.QObject.connect(button, QtCore.SIGNAL("clicked()"), partial(self.FieldSelectCmd, field)) self.rBox_layout.addWidget(button) # set Checked the current field self.NewField(self.Vfield, self.Vfield.value, True) def NewField(self, variable, value, strong): '''Slot for 'ValueChanged' signal of :py:class:`Vfield <artview.core.core.Variable>`. This will: * Update radio check ''' if (self.Vradar.value is not None and value in self.Vradar.value.fields): self.fieldbutton[value].setChecked(True) def NewRadar(self, variable, value, strong): '''Slot for 'ValueChanged' signal of :py:class:`Vradar <artview.core.core.Variable>`. This will: * Recreate radio items ''' self.CreateFieldWidget() self.SetFieldRadioButtons()
2.96875
3
rest_framework_mongoengine/fields.py
Careerleaf/django-rest-framework-mongoengine
0
7276
from bson.errors import InvalidId from django.core.exceptions import ValidationError from django.utils.encoding import smart_str from mongoengine import dereference from mongoengine.base.document import BaseDocument from mongoengine.document import Document from rest_framework import serializers from mongoengine.fields import ObjectId import sys if sys.version_info[0] >= 3: def unicode(val): return str(val) class MongoDocumentField(serializers.WritableField): MAX_RECURSION_DEPTH = 5 # default value of depth def __init__(self, *args, **kwargs): try: self.model_field = kwargs.pop('model_field') self.depth = kwargs.pop('depth', self.MAX_RECURSION_DEPTH) except KeyError: raise ValueError("%s requires 'model_field' kwarg" % self.type_label) super(MongoDocumentField, self).__init__(*args, **kwargs) def transform_document(self, document, depth): data = {} # serialize each required field for field in document._fields: if hasattr(document, smart_str(field)): # finally check for an attribute 'field' on the instance obj = getattr(document, field) else: continue val = self.transform_object(obj, depth-1) if val is not None: data[field] = val return data def transform_dict(self, obj, depth): return dict([(key, self.transform_object(val, depth-1)) for key, val in obj.items()]) def transform_object(self, obj, depth): """ Models to natives Recursion for (embedded) objects """ if depth == 0: # Return primary key if exists, else return default text return str(getattr(obj, 'pk', "Max recursion depth exceeded")) elif isinstance(obj, BaseDocument): # Document, EmbeddedDocument return self.transform_document(obj, depth-1) elif isinstance(obj, dict): # Dictionaries return self.transform_dict(obj, depth-1) elif isinstance(obj, list): # List return [self.transform_object(value, depth-1) for value in obj] elif obj is None: return None else: return unicode(obj) if isinstance(obj, ObjectId) else obj class ReferenceField(MongoDocumentField): type_label = 'ReferenceField' def from_native(self, value): try: dbref = self.model_field.to_python(value) except InvalidId: raise ValidationError(self.error_messages['invalid']) instance = dereference.DeReference().__call__([dbref])[0] # Check if dereference was successful if not isinstance(instance, Document): msg = self.error_messages['invalid'] raise ValidationError(msg) return instance def to_native(self, obj): return self.transform_object(obj, self.depth) class ListField(MongoDocumentField): type_label = 'ListField' def from_native(self, value): return self.model_field.to_python(value) def to_native(self, obj): return self.transform_object(obj, self.depth) class EmbeddedDocumentField(MongoDocumentField): type_label = 'EmbeddedDocumentField' def __init__(self, *args, **kwargs): try: self.document_type = kwargs.pop('document_type') except KeyError: raise ValueError("EmbeddedDocumentField requires 'document_type' kwarg") super(EmbeddedDocumentField, self).__init__(*args, **kwargs) def get_default_value(self): return self.to_native(self.default()) def to_native(self, obj): if obj is None: return None else: return self.model_field.to_mongo(obj) def from_native(self, value): return self.model_field.to_python(value) class DynamicField(MongoDocumentField): type_label = 'DynamicField' def to_native(self, obj): return self.model_field.to_python(obj)
2.125
2
tests/conftest.py
bbhunter/fuzz-lightyear
169
7277
import pytest from fuzz_lightyear.datastore import _ALL_POST_FUZZ_HOOKS_BY_OPERATION from fuzz_lightyear.datastore import _ALL_POST_FUZZ_HOOKS_BY_TAG from fuzz_lightyear.datastore import _RERUN_POST_FUZZ_HOOKS_BY_OPERATION from fuzz_lightyear.datastore import _RERUN_POST_FUZZ_HOOKS_BY_TAG from fuzz_lightyear.datastore import get_excluded_operations from fuzz_lightyear.datastore import get_included_tags from fuzz_lightyear.datastore import get_non_vulnerable_operations from fuzz_lightyear.datastore import get_user_defined_mapping from fuzz_lightyear.plugins import get_enabled_plugins from fuzz_lightyear.request import get_victim_session_factory from fuzz_lightyear.supplements.abstraction import get_abstraction @pytest.fixture(autouse=True) def clear_caches(): get_abstraction.cache_clear() get_user_defined_mapping.cache_clear() get_enabled_plugins.cache_clear() get_victim_session_factory.cache_clear() get_excluded_operations.cache_clear() get_non_vulnerable_operations.cache_clear() get_included_tags.cache_clear() _ALL_POST_FUZZ_HOOKS_BY_OPERATION.clear() _ALL_POST_FUZZ_HOOKS_BY_TAG.clear() _RERUN_POST_FUZZ_HOOKS_BY_OPERATION.clear() _RERUN_POST_FUZZ_HOOKS_BY_TAG.clear() @pytest.fixture(autouse=True) def ignore_hypothesis_non_interactive_example_warning(): """In theory we're not supposed to use hypothesis' strategy.example(), but fuzz-lightyear isn't using hypothesis in a normal way. """ import warnings from hypothesis.errors import NonInteractiveExampleWarning warnings.filterwarnings( 'ignore', category=NonInteractiveExampleWarning, )
1.796875
2
src/diepvries/field.py
michael-the1/diepvries
67
7278
"""Module for a Data Vault field.""" from typing import Optional from . import ( FIELD_PREFIX, FIELD_SUFFIX, METADATA_FIELDS, TABLE_PREFIXES, UNKNOWN, FieldDataType, FieldRole, TableType, ) class Field: """A field in a Data Vault model.""" def __init__( self, parent_table_name: str, name: str, data_type: FieldDataType, position: int, is_mandatory: bool, precision: int = None, scale: int = None, length: int = None, ): """Instantiate a Field. Convert both name and parent_table_name to lower case. Args: parent_table_name: Name of parent table in the database. name: Column name in the database. data_type: Column data type in the database. position: Column position in the database. is_mandatory: Column is mandatory in the database. precision: Numeric precision (maximum number of digits before the decimal separator). Only applicable when `self.data_type==FieldDataType.NUMBER`. scale: Numeric scale (maximum number of digits after the decimal separator). Only applicable when `self.data_type==FieldDataType.NUMBER`. length: Character length (maximum number of characters allowed). Only applicable when `self.data_type==FieldDataType.TEXT`. """ self.parent_table_name = parent_table_name.lower() self.name = name.lower() self.data_type = data_type self.position = position self.is_mandatory = is_mandatory self.precision = precision self.scale = scale self.length = length def __hash__(self): """Hash of a Data Vault field.""" return hash(self.name_in_staging) def __eq__(self, other): """Equality of a Data Vault field.""" return self.name_in_staging == other.name_in_staging def __str__(self) -> str: """Representation of a Field object as a string. This helps the tracking of logging events per entity. Returns: String representation for the `Field` object. """ return f"{type(self).__name__}: {self.name}" @property def data_type_sql(self) -> str: """Build SQL expression to represent the field data type.""" if self.data_type == FieldDataType.NUMBER: return f"{self.data_type.value} ({self.precision}, {self.scale})" if self.data_type == FieldDataType.TEXT and self.length: return f"{self.data_type.value} ({self.length})" return f"{self.data_type.name}" @property def hash_concatenation_sql(self) -> str: """Build SQL expression to deterministically represent the field as a string. This expression is needed to produce hashes (hashkey/hashdiff) that are consistent, independently on the data type used to store the field in the extraction table. The SQL expression does the following steps: 1. Cast field to its data type in the DV model. 2. Produce a consistent string representation of the result of step 1, depending on the field data type. 3. Ensure the result of step 2 never returns NULL. Returns: SQL expression to deterministically represent the field as a string. """ hash_concatenation_sql = "" date_format = "yyyy-mm-dd" time_format = "hh24:mi:ss.ff9" timezone_format = "tzhtzm" cast_expression = ( f"CAST({self.name} AS {self.data_type_sql})" if self.data_type != FieldDataType.GEOGRAPHY else f"TO_GEOGRAPHY({self.name})" ) if self.data_type in (FieldDataType.TIMESTAMP_LTZ, FieldDataType.TIMESTAMP_TZ): hash_concatenation_sql = ( f"TO_CHAR({cast_expression}, " f"'{date_format} {time_format} {timezone_format}')" ) elif self.data_type == FieldDataType.TIMESTAMP_NTZ: hash_concatenation_sql = ( f"TO_CHAR({cast_expression}, '{date_format} {time_format}')" ) elif self.data_type == FieldDataType.DATE: hash_concatenation_sql = f"TO_CHAR({cast_expression}, '{date_format}')" elif self.data_type == FieldDataType.TIME: hash_concatenation_sql = f"TO_CHAR({cast_expression}, '{time_format}')" elif self.data_type == FieldDataType.TEXT: hash_concatenation_sql = cast_expression elif self.data_type == FieldDataType.GEOGRAPHY: hash_concatenation_sql = f"ST_ASTEXT({cast_expression})" else: hash_concatenation_sql = f"CAST({cast_expression} AS TEXT)" default_value = UNKNOWN if self.role == FieldRole.BUSINESS_KEY else "" return f"COALESCE({hash_concatenation_sql}, '{default_value}')" @property def suffix(self) -> str: """Get field suffix. Returns: Field suffix. """ return self.name.split("_").pop() @property def prefix(self) -> str: """Get field prefix. Returns: Field prefix. """ return next(split_part for split_part in self.name.split("_")) @property def parent_table_type(self) -> TableType: """Get parent table type, based on table prefix. Returns: Table type (HUB, LINK or SATELLITE). """ table_prefix = next( split_part for split_part in self.parent_table_name.split("_") ) if table_prefix in TABLE_PREFIXES[TableType.LINK]: return TableType.LINK if table_prefix in TABLE_PREFIXES[TableType.SATELLITE]: return TableType.SATELLITE return TableType.HUB @property def name_in_staging(self) -> str: """Get the name that this field should have, when created in a staging table. In most cases this function will return `self.name`, but for hashdiffs the name is <parent_table_name>_hashdiff (every Satellite has one hashdiff field, named s_hashdiff). Returns: Name of the field in staging. """ if self.role == FieldRole.HASHDIFF: return f"{self.parent_table_name}_{FIELD_SUFFIX[FieldRole.HASHDIFF]}" return self.name @property def ddl_in_staging(self) -> str: """Get DDL expression to create this field in the staging table. Returns: The DDL expression for this field. """ return ( f"{self.name_in_staging} {self.data_type_sql}" f"{' NOT NULL' if self.is_mandatory else ''}" ) @property def role(self) -> FieldRole: """Get the role of the field in a Data Vault model. See `FieldRole` enum for more information. Returns: Field role in a Data Vault model. Raises: RuntimeError: When no field role can be attributed. """ found_role: Optional[FieldRole] = None if self.name in METADATA_FIELDS.values(): found_role = FieldRole.METADATA elif ( self.name == f"{self.parent_table_name}_{self.suffix}" and self.suffix == FIELD_SUFFIX[FieldRole.HASHKEY] ): found_role = FieldRole.HASHKEY elif self.suffix == FIELD_SUFFIX[FieldRole.HASHKEY]: found_role = FieldRole.HASHKEY_PARENT elif self.prefix == FIELD_PREFIX[FieldRole.CHILD_KEY]: found_role = FieldRole.CHILD_KEY elif ( self.parent_table_type != TableType.SATELLITE and self.prefix not in FIELD_PREFIX.values() and self.position != 1 ): found_role = FieldRole.BUSINESS_KEY elif self.suffix == FIELD_SUFFIX[FieldRole.HASHDIFF]: found_role = FieldRole.HASHDIFF elif self.parent_table_type == TableType.SATELLITE: found_role = FieldRole.DESCRIPTIVE if found_role is not None: return found_role raise RuntimeError( ( f"{self.name}: It was not possible to assign a valid field role " f" (validate FieldRole and FIELD_PREFIXES configuration)" ) )
3.0625
3
mmdet/datasets/deepscoresV2.py
tuggeluk/mmdetection
1
7279
<reponame>tuggeluk/mmdetection """DEEPSCORESV2 Provides access to the DEEPSCORESV2 database with a COCO-like interface. The only changes made compared to the coco.py file are the class labels. Author: <NAME> <<EMAIL>> <NAME> <<EMAIL>> Created on: November 23, 2019 """ from .coco import * import os import json from obb_anns import OBBAnns @DATASETS.register_module class DeepScoresV2Dataset(CocoDataset): def load_annotations(self, ann_file): self.obb = OBBAnns(ann_file) self.obb.load_annotations() self.obb.set_annotation_set_filter(['deepscores']) self.obb.set_class_blacklist(["staff"]) self.cat_ids = list(self.obb.get_cats().keys()) self.cat2label = { cat_id: i for i, cat_id in enumerate(self.cat_ids) } self.label2cat = {v: k for k, v in self.cat2label.items()} self.CLASSES = tuple([v["name"] for (k, v) in self.obb.get_cats().items()]) self.img_ids = [id['id'] for id in self.obb.img_info] return self.obb.img_info def get_ann_info(self, idx): return self._parse_ann_info(*self.obb.get_img_ann_pair(idxs=[idx])) def _filter_imgs(self, min_size=32): valid_inds = [] for i, img_info in enumerate(self.obb.img_info): if self.filter_empty_gt and len(img_info['ann_ids']) == 0: continue if min(img_info['width'], img_info['height']) >= min_size: valid_inds.append(i) return valid_inds def _parse_ann_info(self, img_info, ann_info): img_info, ann_info = img_info[0], ann_info[0] gt_bboxes = [] gt_labels = [] gt_bboxes_ignore = np.zeros((0, 4), dtype=np.float32) for i, ann in ann_info.iterrows(): # we have no ignore feature if ann['area'] <= 0: continue bbox = ann['a_bbox'] gt_bboxes.append(bbox) gt_labels.append(self.cat2label[ann['cat_id'][0]]) gt_bboxes = np.array(gt_bboxes, dtype=np.float32) gt_labels = np.array(gt_labels, dtype=np.int64) ann = dict( bboxes=gt_bboxes, labels=gt_labels, bboxes_ignore=gt_bboxes_ignore, masks=None, seg_map=None) return ann def prepare_json_dict(self, results): json_results = {"annotation_set": "deepscores", "proposals": []} for idx in range(len(self)): img_id = self.img_ids[idx] result = results[idx] for label in range(len(result)): bboxes = result[label] for i in range(bboxes.shape[0]): data = dict() data['img_id'] = img_id data['bbox'] = [str(nr) for nr in bboxes[i][0:-1]] data['score'] = str(bboxes[i][-1]) data['cat_id'] = self.label2cat[label] json_results["proposals"].append(data) return json_results def write_results_json(self, results, filename=None): if filename is None: filename = "deepscores_results.json" json_results = self.prepare_json_dict(results) with open(filename, "w") as fo: json.dump(json_results, fo) return filename def evaluate(self, results, metric='bbox', logger=None, jsonfile_prefix=None, classwise=True, proposal_nums=(100, 300, 1000), iou_thrs=np.arange(0.5, 0.96, 0.05), average_thrs=False): """Evaluation in COCO protocol. Args: results (list): Testing results of the dataset. metric (str | list[str]): Metrics to be evaluated. logger (logging.Logger | str | None): Logger used for printing related information during evaluation. Default: None. jsonfile_prefix (str | None): The prefix of json files. It includes the file path and the prefix of filename, e.g., "a/b/prefix". If not specified, a temp file will be created. Default: None. classwise (bool): Whether to evaluating the AP for each class. proposal_nums (Sequence[int]): Proposal number used for evaluating recalls, such as recall@100, recall@1000. Default: (100, 300, 1000). iou_thrs (Sequence[float]): IoU threshold used for evaluating recalls. If set to a list, the average recall of all IoUs will also be computed. Default: 0.5. Returns: dict[str: float] """ metrics = metric if isinstance(metric, list) else [metric] allowed_metrics = ['bbox'] for metric in metrics: if metric not in allowed_metrics: raise KeyError(f'metric {metric} is not supported') filename = self.write_results_json(results) self.obb.load_proposals(filename) metric_results = self.obb.calculate_metrics(iou_thrs=iou_thrs, classwise=classwise, average_thrs=average_thrs) metric_results = {self.CLASSES[self.cat2label[key]]: value for (key, value) in metric_results.items()} # add occurences occurences_by_class = self.obb.get_class_occurences() for (key, value) in metric_results.items(): value.update(no_occurences=occurences_by_class[key]) if True: import pickle pickle.dump(metric_results, open('evaluation_renamed_rcnn.pickle', 'wb')) print(metric_results) return metric_results
2.296875
2
tests/go_cd_configurator_test.py
agsmorodin/gomatic
0
7280
#!/usr/bin/env python import unittest from xml.dom.minidom import parseString import xml.etree.ElementTree as ET from decimal import Decimal from gomatic import GoCdConfigurator, FetchArtifactDir, RakeTask, ExecTask, ScriptExecutorTask, FetchArtifactTask, \ FetchArtifactFile, Tab, GitMaterial, PipelineMaterial, Pipeline from gomatic.fake import FakeHostRestClient, empty_config_xml, config, empty_config from gomatic.gocd.pipelines import DEFAULT_LABEL_TEMPLATE from gomatic.gocd.artifacts import Artifact from gomatic.xml_operations import prettify def find_with_matching_name(things, name): return [thing for thing in things if thing.name == name] def standard_pipeline_group(): return GoCdConfigurator(config('config-with-typical-pipeline')).ensure_pipeline_group('P.Group') def typical_pipeline(): return standard_pipeline_group().find_pipeline('typical') def more_options_pipeline(): return GoCdConfigurator(config('config-with-more-options-pipeline')).ensure_pipeline_group('P.Group').find_pipeline('more-options') def empty_pipeline(): return GoCdConfigurator(empty_config()).ensure_pipeline_group("pg").ensure_pipeline("pl").set_git_url("gurl") def empty_stage(): return empty_pipeline().ensure_stage("deploy-to-dev") class TestAgents(unittest.TestCase): def _agents_from_config(self): return GoCdConfigurator(config('config-with-just-agents')).agents def test_could_have_no_agents(self): agents = GoCdConfigurator(empty_config()).agents self.assertEquals(0, len(agents)) def test_agents_have_resources(self): agents = self._agents_from_config() self.assertEquals(2, len(agents)) self.assertEquals({'a-resource', 'b-resource'}, agents[0].resources) def test_agents_have_names(self): agents = self._agents_from_config() self.assertEquals('go-agent-1', agents[0].hostname) self.assertEquals('go-agent-2', agents[1].hostname) def test_agent_could_have_no_resources(self): agents = self._agents_from_config() self.assertEquals(0, len(agents[1].resources)) def test_can_add_resource_to_agent_with_no_resources(self): agent = self._agents_from_config()[1] agent.ensure_resource('a-resource-that-it-does-not-already-have') self.assertEquals(1, len(agent.resources)) def test_can_add_resource_to_agent(self): agent = self._agents_from_config()[0] self.assertEquals(2, len(agent.resources)) agent.ensure_resource('a-resource-that-it-does-not-already-have') self.assertEquals(3, len(agent.resources)) class TestJobs(unittest.TestCase): def test_jobs_have_resources(self): stages = typical_pipeline().stages job = stages[0].jobs[0] resources = job.resources self.assertEquals(1, len(resources)) self.assertEquals({'a-resource'}, resources) def test_job_has_nice_tostring(self): job = typical_pipeline().stages[0].jobs[0] self.assertEquals("Job('compile', [ExecTask(['make', 'options', 'source code'])])", str(job)) def test_jobs_can_have_timeout(self): job = typical_pipeline().ensure_stage("deploy").ensure_job("upload") self.assertEquals(True, job.has_timeout) self.assertEquals('20', job.timeout) def test_can_set_timeout(self): job = empty_stage().ensure_job("j") j = job.set_timeout("42") self.assertEquals(j, job) self.assertEquals(True, job.has_timeout) self.assertEquals('42', job.timeout) def test_jobs_do_not_have_to_have_timeout(self): stages = typical_pipeline().stages job = stages[0].jobs[0] self.assertEquals(False, job.has_timeout) try: timeout = job.timeout self.fail("should have thrown exception") except RuntimeError: pass def test_jobs_can_run_on_all_agents(self): job = more_options_pipeline().ensure_stage("earlyStage").ensure_job("earlyWorm") self.assertEquals(True, job.runs_on_all_agents) def test_jobs_do_not_have_to_run_on_all_agents(self): job = typical_pipeline().ensure_stage("build").ensure_job("compile") self.assertEquals(False, job.runs_on_all_agents) def test_jobs_can_be_made_to_run_on_all_agents(self): job = typical_pipeline().ensure_stage("build").ensure_job("compile") j = job.set_runs_on_all_agents() self.assertEquals(j, job) self.assertEquals(True, job.runs_on_all_agents) def test_jobs_can_be_made_to_not_run_on_all_agents(self): job = typical_pipeline().ensure_stage("build").ensure_job("compile") j = job.set_runs_on_all_agents(False) self.assertEquals(j, job) self.assertEquals(False, job.runs_on_all_agents) def test_can_ensure_job_has_resource(self): stages = typical_pipeline().stages job = stages[0].jobs[0] j = job.ensure_resource('moo') self.assertEquals(j, job) self.assertEquals(2, len(job.resources)) self.assertEquals({'a-resource', 'moo'}, job.resources) def test_jobs_have_artifacts(self): job = more_options_pipeline().ensure_stage("earlyStage").ensure_job("earlyWorm") artifacts = job.artifacts self.assertEquals({ Artifact.get_build_artifact("target/universal/myapp*.zip", "artifacts"), Artifact.get_build_artifact("scripts/*", "files"), Artifact.get_test_artifact("from", "to")}, artifacts) def test_job_that_has_no_artifacts_has_no_artifacts_element_to_reduce_thrash(self): go_cd_configurator = GoCdConfigurator(empty_config()) job = go_cd_configurator.ensure_pipeline_group("g").ensure_pipeline("p").ensure_stage("s").ensure_job("j") job.ensure_artifacts(set()) self.assertEquals(set(), job.artifacts) xml = parseString(go_cd_configurator.config) self.assertEquals(0, len(xml.getElementsByTagName('artifacts'))) def test_artifacts_might_have_no_dest(self): job = more_options_pipeline().ensure_stage("s1").ensure_job("rake-job") artifacts = job.artifacts self.assertEquals(1, len(artifacts)) self.assertEquals({Artifact.get_build_artifact("things/*")}, artifacts) def test_can_add_build_artifacts_to_job(self): job = more_options_pipeline().ensure_stage("earlyStage").ensure_job("earlyWorm") job_with_artifacts = job.ensure_artifacts({ Artifact.get_build_artifact("a1", "artifacts"), Artifact.get_build_artifact("a2", "others")}) self.assertEquals(job, job_with_artifacts) artifacts = job.artifacts self.assertEquals(5, len(artifacts)) self.assertTrue({Artifact.get_build_artifact("a1", "artifacts"), Artifact.get_build_artifact("a2", "others")}.issubset(artifacts)) def test_can_add_test_artifacts_to_job(self): job = more_options_pipeline().ensure_stage("earlyStage").ensure_job("earlyWorm") job_with_artifacts = job.ensure_artifacts({ Artifact.get_test_artifact("a1"), Artifact.get_test_artifact("a2")}) self.assertEquals(job, job_with_artifacts) artifacts = job.artifacts self.assertEquals(5, len(artifacts)) self.assertTrue({Artifact.get_test_artifact("a1"), Artifact.get_test_artifact("a2")}.issubset(artifacts)) def test_can_ensure_artifacts(self): job = more_options_pipeline().ensure_stage("earlyStage").ensure_job("earlyWorm") job.ensure_artifacts({ Artifact.get_test_artifact("from", "to"), Artifact.get_build_artifact("target/universal/myapp*.zip", "somewhereElse"), Artifact.get_test_artifact("another", "with dest"), Artifact.get_build_artifact("target/universal/myapp*.zip", "artifacts")}) self.assertEquals({ Artifact.get_build_artifact("target/universal/myapp*.zip", "artifacts"), Artifact.get_build_artifact("scripts/*", "files"), Artifact.get_test_artifact("from", "to"), Artifact.get_build_artifact("target/universal/myapp*.zip", "somewhereElse"), Artifact.get_test_artifact("another", "with dest") }, job.artifacts) def test_jobs_have_tasks(self): job = more_options_pipeline().ensure_stage("s1").jobs[2] tasks = job.tasks self.assertEquals(4, len(tasks)) self.assertEquals('rake', tasks[0].type) self.assertEquals('sometarget', tasks[0].target) self.assertEquals('passed', tasks[0].runif) self.assertEquals('fetchartifact', tasks[1].type) self.assertEquals('more-options', tasks[1].pipeline) self.assertEquals('earlyStage', tasks[1].stage) self.assertEquals('earlyWorm', tasks[1].job) self.assertEquals(FetchArtifactDir('sourceDir'), tasks[1].src) self.assertEquals('destDir', tasks[1].dest) self.assertEquals('passed', tasks[1].runif) def test_runif_defaults_to_passed(self): pipeline = typical_pipeline() tasks = pipeline.ensure_stage("build").ensure_job("compile").tasks self.assertEquals("passed", tasks[0].runif) def test_jobs_can_have_rake_tasks(self): job = more_options_pipeline().ensure_stage("s1").jobs[0] tasks = job.tasks self.assertEquals(1, len(tasks)) self.assertEquals('rake', tasks[0].type) self.assertEquals("boo", tasks[0].target) def test_can_ensure_rake_task(self): job = more_options_pipeline().ensure_stage("s1").jobs[0] job.ensure_task(RakeTask("boo")) self.assertEquals(1, len(job.tasks)) def test_can_add_rake_task(self): job = more_options_pipeline().ensure_stage("s1").jobs[0] job.ensure_task(RakeTask("another")) self.assertEquals(2, len(job.tasks)) self.assertEquals("another", job.tasks[1].target) def test_script_executor_task(self): script = ''' echo This is script echo 'This is a string in single quotes' echo "This is a string in double quotes" ''' job = more_options_pipeline().ensure_stage("script-executor").\ ensure_job('test-script-executor') job.ensure_task(ScriptExecutorTask(script, runif='any')) self.assertEquals(1, len(job.tasks)) self.assertEquals('script', job.tasks[0].type) self.assertEquals(script, job.tasks[0].script) self.assertEquals('any', job.tasks[0].runif) job.ensure_task(ScriptExecutorTask(script, runif='failed')) self.assertEquals(2, len(job.tasks)) self.assertEquals('script', job.tasks[1].type) self.assertEquals(script, job.tasks[1].script) self.assertEquals('failed', job.tasks[1].runif) job.ensure_task(ScriptExecutorTask(script)) self.assertEquals(3, len(job.tasks)) self.assertEquals('script', job.tasks[2].type) self.assertEquals(script, job.tasks[2].script) self.assertEquals('passed', job.tasks[2].runif) def test_can_add_exec_task_with_runif(self): stages = typical_pipeline().stages job = stages[0].jobs[0] added_task = job.add_task(ExecTask(['ls', '-la'], 'some/dir', "failed")) self.assertEquals(2, len(job.tasks)) task = job.tasks[1] self.assertEquals(task, added_task) self.assertEquals(['ls', '-la'], task.command_and_args) self.assertEquals('some/dir', task.working_dir) self.assertEquals('failed', task.runif) def test_can_add_exec_task(self): stages = typical_pipeline().stages job = stages[0].jobs[0] added_task = job.add_task(ExecTask(['ls', '-la'], 'some/dir')) self.assertEquals(2, len(job.tasks)) task = job.tasks[1] self.assertEquals(task, added_task) self.assertEquals(['ls', '-la'], task.command_and_args) self.assertEquals('some/dir', task.working_dir) def test_can_ensure_exec_task(self): stages = typical_pipeline().stages job = stages[0].jobs[0] t1 = job.ensure_task(ExecTask(['ls', '-la'], 'some/dir')) t2 = job.ensure_task(ExecTask(['make', 'options', 'source code'])) job.ensure_task(ExecTask(['ls', '-la'], 'some/otherdir')) job.ensure_task(ExecTask(['ls', '-la'], 'some/dir')) self.assertEquals(3, len(job.tasks)) self.assertEquals(t2, job.tasks[0]) self.assertEquals(['make', 'options', 'source code'], (job.tasks[0]).command_and_args) self.assertEquals(t1, job.tasks[1]) self.assertEquals(['ls', '-la'], (job.tasks[1]).command_and_args) self.assertEquals('some/dir', (job.tasks[1]).working_dir) self.assertEquals(['ls', '-la'], (job.tasks[2]).command_and_args) self.assertEquals('some/otherdir', (job.tasks[2]).working_dir) def test_exec_task_args_are_unescaped_as_appropriate(self): job = more_options_pipeline().ensure_stage("earlyStage").ensure_job("earlyWorm") task = job.tasks[1] self.assertEquals(["bash", "-c", 'curl "http://domain.com/service/check?target=one+two+three&key=2714_beta%40domain.com"'], task.command_and_args) def test_exec_task_args_are_escaped_as_appropriate(self): job = empty_stage().ensure_job("j") task = job.add_task(ExecTask(["bash", "-c", 'curl "http://domain.com/service/check?target=one+two+three&key=2714_beta%40domain.com"'])) self.assertEquals(["bash", "-c", 'curl "http://domain.com/service/check?target=one+two+three&key=2714_beta%40domain.com"'], task.command_and_args) def test_can_have_no_tasks(self): self.assertEquals(0, len(empty_stage().ensure_job("empty_job").tasks)) def test_can_add_fetch_artifact_task_to_job(self): stages = typical_pipeline().stages job = stages[0].jobs[0] added_task = job.add_task(FetchArtifactTask('p', 's', 'j', FetchArtifactDir('d'), runif="any")) self.assertEquals(2, len(job.tasks)) task = job.tasks[1] self.assertEquals(added_task, task) self.assertEquals('p', task.pipeline) self.assertEquals('s', task.stage) self.assertEquals('j', task.job) self.assertEquals(FetchArtifactDir('d'), task.src) self.assertEquals('any', task.runif) def test_fetch_artifact_task_can_have_src_file_rather_than_src_dir(self): job = more_options_pipeline().ensure_stage("s1").ensure_job("variety-of-tasks") tasks = job.tasks self.assertEquals(4, len(tasks)) self.assertEquals('more-options', tasks[1].pipeline) self.assertEquals('earlyStage', tasks[1].stage) self.assertEquals('earlyWorm', tasks[1].job) self.assertEquals(FetchArtifactFile('someFile'), tasks[2].src) self.assertEquals('passed', tasks[1].runif) self.assertEquals(['true'], tasks[3].command_and_args) def test_fetch_artifact_task_can_have_dest(self): pipeline = more_options_pipeline() job = pipeline.ensure_stage("s1").ensure_job("variety-of-tasks") tasks = job.tasks self.assertEquals(FetchArtifactTask("more-options", "earlyStage", "earlyWorm", FetchArtifactDir("sourceDir"), dest="destDir"), tasks[1]) def test_can_ensure_fetch_artifact_tasks(self): job = more_options_pipeline().ensure_stage("s1").ensure_job("variety-of-tasks") job.ensure_task(FetchArtifactTask("more-options", "middleStage", "middleJob", FetchArtifactFile("someFile"))) first_added_task = job.ensure_task(FetchArtifactTask('p', 's', 'j', FetchArtifactDir('dir'))) self.assertEquals(5, len(job.tasks)) self.assertEquals(first_added_task, job.tasks[4]) self.assertEquals('p', (job.tasks[4]).pipeline) self.assertEquals('s', (job.tasks[4]).stage) self.assertEquals('j', (job.tasks[4]).job) self.assertEquals(FetchArtifactDir('dir'), (job.tasks[4]).src) self.assertEquals('passed', (job.tasks[4]).runif) job.ensure_task(FetchArtifactTask('p', 's', 'j', FetchArtifactFile('f'))) self.assertEquals(FetchArtifactFile('f'), (job.tasks[5]).src) job.ensure_task(FetchArtifactTask('p', 's', 'j', FetchArtifactDir('dir'), dest="somedest")) self.assertEquals("somedest", (job.tasks[6]).dest) job.ensure_task(FetchArtifactTask('p', 's', 'j', FetchArtifactDir('dir'), runif="failed")) self.assertEquals('failed', (job.tasks[7]).runif) def test_tasks_run_if_defaults_to_passed(self): job = empty_stage().ensure_job("j") job.add_task(ExecTask(['ls', '-la'], 'some/dir')) job.add_task(FetchArtifactTask('p', 's', 'j', FetchArtifactDir('dir'))) job.add_task(RakeTask('x')) self.assertEquals('passed', (job.tasks[0]).runif) self.assertEquals('passed', (job.tasks[1]).runif) self.assertEquals('passed', (job.tasks[2]).runif) def test_tasks_run_if_variants(self): job = more_options_pipeline().ensure_stage("s1").ensure_job("run-if-variants") tasks = job.tasks self.assertEquals('t-passed', tasks[0].command_and_args[0]) self.assertEquals('passed', tasks[0].runif) self.assertEquals('t-none', tasks[1].command_and_args[0]) self.assertEquals('passed', tasks[1].runif) self.assertEquals('t-failed', tasks[2].command_and_args[0]) self.assertEquals('failed', tasks[2].runif) self.assertEquals('t-any', tasks[3].command_and_args[0]) self.assertEquals('any', tasks[3].runif) self.assertEquals('t-both', tasks[4].command_and_args[0]) self.assertEquals('any', tasks[4].runif) def test_cannot_set_runif_to_random_things(self): try: ExecTask(['x'], runif='whatever') self.fail("should have thrown exception") except RuntimeError as e: self.assertTrue(e.message.count("whatever") > 0) def test_can_set_runif_to_particular_values(self): self.assertEquals('passed', ExecTask(['x'], runif='passed').runif) self.assertEquals('failed', ExecTask(['x'], runif='failed').runif) self.assertEquals('any', ExecTask(['x'], runif='any').runif) def test_tasks_dest_defaults_to_none(self): # TODO: maybe None could be avoided job = empty_stage().ensure_job("j") job.add_task(FetchArtifactTask('p', 's', 'j', FetchArtifactDir('dir'))) self.assertEquals(None, (job.tasks[0]).dest) def test_can_add_exec_task_to_empty_job(self): job = empty_stage().ensure_job("j") added_task = job.add_task(ExecTask(['ls', '-la'], 'some/dir', "any")) self.assertEquals(1, len(job.tasks)) task = job.tasks[0] self.assertEquals(task, added_task) self.assertEquals(['ls', '-la'], task.command_and_args) self.assertEquals('some/dir', task.working_dir) self.assertEquals('any', task.runif) def test_can_remove_all_tasks(self): stages = typical_pipeline().stages job = stages[0].jobs[0] self.assertEquals(1, len(job.tasks)) j = job.without_any_tasks() self.assertEquals(j, job) self.assertEquals(0, len(job.tasks)) def test_can_have_encrypted_environment_variables(self): pipeline = GoCdConfigurator(config('config-with-encrypted-variable')).ensure_pipeline_group("defaultGroup").find_pipeline("example") job = pipeline.ensure_stage('defaultStage').ensure_job('defaultJob') self.assertEquals({"MY_JOB_PASSWORD": "<PASSWORD>=="}, job.encrypted_environment_variables) def test_can_set_encrypted_environment_variables(self): job = empty_stage().ensure_job("j") job.ensure_encrypted_environment_variables({'one': 'blah=='}) self.assertEquals({"one": "blah=="}, job.encrypted_environment_variables) def test_can_add_environment_variables(self): job = typical_pipeline() \ .ensure_stage("build") \ .ensure_job("compile") j = job.ensure_environment_variables({"new": "one"}) self.assertEquals(j, job) self.assertEquals({"CF_COLOR": "false", "new": "one"}, job.environment_variables) def test_environment_variables_get_added_in_sorted_order_to_reduce_config_thrash(self): go_cd_configurator = GoCdConfigurator(empty_config()) job = go_cd_configurator\ .ensure_pipeline_group('P.Group')\ .ensure_pipeline('P.Name') \ .ensure_stage("build") \ .ensure_job("compile") job.ensure_environment_variables({"ant": "a", "badger": "a", "zebra": "a"}) xml = parseString(go_cd_configurator.config) names = [e.getAttribute('name') for e in xml.getElementsByTagName('variable')] self.assertEquals([u'ant', u'badger', u'zebra'], names) def test_can_remove_all_environment_variables(self): job = typical_pipeline() \ .ensure_stage("build") \ .ensure_job("compile") j = job.without_any_environment_variables() self.assertEquals(j, job) self.assertEquals({}, job.environment_variables) def test_job_can_haveTabs(self): job = typical_pipeline() \ .ensure_stage("build") \ .ensure_job("compile") self.assertEquals([Tab("Time_Taken", "artifacts/test-run-times.html")], job.tabs) def test_can_addTab(self): job = typical_pipeline() \ .ensure_stage("build") \ .ensure_job("compile") j = job.ensure_tab(Tab("n", "p")) self.assertEquals(j, job) self.assertEquals([Tab("Time_Taken", "artifacts/test-run-times.html"), Tab("n", "p")], job.tabs) def test_can_ensure_tab(self): job = typical_pipeline() \ .ensure_stage("build") \ .ensure_job("compile") job.ensure_tab(Tab("Time_Taken", "artifacts/test-run-times.html")) self.assertEquals([Tab("Time_Taken", "artifacts/test-run-times.html")], job.tabs) class TestStages(unittest.TestCase): def test_pipelines_have_stages(self): self.assertEquals(2, len(typical_pipeline().stages)) def test_stages_have_names(self): stages = typical_pipeline().stages self.assertEquals('build', stages[0].name) self.assertEquals('deploy', stages[1].name) def test_stages_can_have_manual_approval(self): self.assertEquals(False, typical_pipeline().stages[0].has_manual_approval) self.assertEquals(True, typical_pipeline().stages[1].has_manual_approval) def test_can_set_manual_approval(self): stage = typical_pipeline().stages[0] s = stage.set_has_manual_approval() self.assertEquals(s, stage) self.assertEquals(True, stage.has_manual_approval) def test_stages_have_fetch_materials_flag(self): stage = typical_pipeline().ensure_stage("build") self.assertEquals(True, stage.fetch_materials) stage = more_options_pipeline().ensure_stage("s1") self.assertEquals(False, stage.fetch_materials) def test_can_set_fetch_materials_flag(self): stage = typical_pipeline().ensure_stage("build") s = stage.set_fetch_materials(False) self.assertEquals(s, stage) self.assertEquals(False, stage.fetch_materials) stage = more_options_pipeline().ensure_stage("s1") stage.set_fetch_materials(True) self.assertEquals(True, stage.fetch_materials) def test_stages_have_jobs(self): stages = typical_pipeline().stages jobs = stages[0].jobs self.assertEquals(1, len(jobs)) self.assertEquals('compile', jobs[0].name) def test_can_add_job(self): stage = typical_pipeline().ensure_stage("deploy") self.assertEquals(1, len(stage.jobs)) ensured_job = stage.ensure_job("new-job") self.assertEquals(2, len(stage.jobs)) self.assertEquals(ensured_job, stage.jobs[1]) self.assertEquals("new-job", stage.jobs[1].name) def test_can_add_job_to_empty_stage(self): stage = empty_stage() self.assertEquals(0, len(stage.jobs)) ensured_job = stage.ensure_job("new-job") self.assertEquals(1, len(stage.jobs)) self.assertEquals(ensured_job, stage.jobs[0]) self.assertEquals("new-job", stage.jobs[0].name) def test_can_ensure_job_exists(self): stage = typical_pipeline().ensure_stage("deploy") self.assertEquals(1, len(stage.jobs)) ensured_job = stage.ensure_job("upload") self.assertEquals(1, len(stage.jobs)) self.assertEquals("upload", ensured_job.name) def test_can_have_encrypted_environment_variables(self): pipeline = GoCdConfigurator(config('config-with-encrypted-variable')).ensure_pipeline_group("defaultGroup").find_pipeline("example") stage = pipeline.ensure_stage('defaultStage') self.assertEquals({"MY_STAGE_PASSWORD": "<PASSWORD>/s=="}, stage.encrypted_environment_variables) def test_can_set_encrypted_environment_variables(self): stage = typical_pipeline().ensure_stage("deploy") stage.ensure_encrypted_environment_variables({'one': 'blah=='}) self.assertEquals({"one": "blah=="}, stage.encrypted_environment_variables) def test_can_set_environment_variables(self): stage = typical_pipeline().ensure_stage("deploy") s = stage.ensure_environment_variables({"new": "one"}) self.assertEquals(s, stage) self.assertEquals({"BASE_URL": "http://myurl", "new": "one"}, stage.environment_variables) def test_can_remove_all_environment_variables(self): stage = typical_pipeline().ensure_stage("deploy") s = stage.without_any_environment_variables() self.assertEquals(s, stage) self.assertEquals({}, stage.environment_variables) class TestPipeline(unittest.TestCase): def test_pipelines_have_names(self): pipeline = typical_pipeline() self.assertEquals('typical', pipeline.name) def test_can_add_stage(self): pipeline = empty_pipeline() self.assertEquals(0, len(pipeline.stages)) new_stage = pipeline.ensure_stage("some_stage") self.assertEquals(1, len(pipeline.stages)) self.assertEquals(new_stage, pipeline.stages[0]) self.assertEquals("some_stage", new_stage.name) def test_can_ensure_stage(self): pipeline = typical_pipeline() self.assertEquals(2, len(pipeline.stages)) ensured_stage = pipeline.ensure_stage("deploy") self.assertEquals(2, len(pipeline.stages)) self.assertEquals("deploy", ensured_stage.name) def test_can_remove_stage(self): pipeline = typical_pipeline() self.assertEquals(2, len(pipeline.stages)) p = pipeline.ensure_removal_of_stage("deploy") self.assertEquals(p, pipeline) self.assertEquals(1, len(pipeline.stages)) self.assertEquals(0, len([s for s in pipeline.stages if s.name == "deploy"])) def test_can_ensure_removal_of_stage(self): pipeline = typical_pipeline() self.assertEquals(2, len(pipeline.stages)) pipeline.ensure_removal_of_stage("stage-that-has-already-been-deleted") self.assertEquals(2, len(pipeline.stages)) def test_can_ensure_initial_stage(self): pipeline = typical_pipeline() stage = pipeline.ensure_initial_stage("first") self.assertEquals(stage, pipeline.stages[0]) self.assertEquals(3, len(pipeline.stages)) def test_can_ensure_initial_stage_if_already_exists_as_initial(self): pipeline = typical_pipeline() stage = pipeline.ensure_initial_stage("build") self.assertEquals(stage, pipeline.stages[0]) self.assertEquals(2, len(pipeline.stages)) def test_can_ensure_initial_stage_if_already_exists(self): pipeline = typical_pipeline() stage = pipeline.ensure_initial_stage("deploy") self.assertEquals(stage, pipeline.stages[0]) self.assertEquals("build", pipeline.stages[1].name) self.assertEquals(2, len(pipeline.stages)) def test_can_set_stage_clean_policy(self): pipeline = empty_pipeline() stage1 = pipeline.ensure_stage("some_stage1").set_clean_working_dir() stage2 = pipeline.ensure_stage("some_stage2") self.assertEquals(True, pipeline.stages[0].clean_working_dir) self.assertEquals(True, stage1.clean_working_dir) self.assertEquals(False, pipeline.stages[1].clean_working_dir) self.assertEquals(False, stage2.clean_working_dir) def test_pipelines_can_have_git_urls(self): pipeline = typical_pipeline() self.assertEquals("<EMAIL>:springersbm/gomatic.git", pipeline.git_url) def test_git_is_polled_by_default(self): pipeline = GoCdConfigurator(empty_config()).ensure_pipeline_group("g").ensure_pipeline("p") pipeline.set_git_url("some git url") self.assertEquals(True, pipeline.git_material.polling) def test_pipelines_can_have_git_material_with_material_name(self): pipeline = more_options_pipeline() self.assertEquals("<EMAIL>:springersbm/gomatic.git", pipeline.git_url) self.assertEquals("some-material-name", pipeline.git_material.material_name) def test_git_material_can_ignore_sources(self): pipeline = GoCdConfigurator(config('config-with-source-exclusions')).ensure_pipeline_group("P.Group").find_pipeline("with-exclusions") self.assertEquals({"excluded-folder", "another-excluded-folder"}, pipeline.git_material.ignore_patterns) def test_can_set_pipeline_git_url(self): pipeline = typical_pipeline() p = pipeline.set_git_url("<EMAIL>:springersbm/changed.git") self.assertEquals(p, pipeline) self.assertEquals("<EMAIL>:springersbm/changed.git", pipeline.git_url) self.assertEquals('master', pipeline.git_branch) def test_can_set_pipeline_git_url_with_options(self): pipeline = typical_pipeline() p = pipeline.set_git_material(GitMaterial( "<EMAIL>:springersbm/changed.git", branch="branch", destination_directory="foo", material_name="material-name", ignore_patterns={"ignoreMe", "ignoreThisToo"}, polling=False)) self.assertEquals(p, pipeline) self.assertEquals("branch", pipeline.git_branch) self.assertEquals("foo", pipeline.git_material.destination_directory) self.assertEquals("material-name", pipeline.git_material.material_name) self.assertEquals({"ignoreMe", "ignoreThisToo"}, pipeline.git_material.ignore_patterns) self.assertFalse(pipeline.git_material.polling, "git polling") def test_throws_exception_if_no_git_url(self): pipeline = GoCdConfigurator(empty_config()).ensure_pipeline_group("g").ensure_pipeline("p") self.assertEquals(False, pipeline.has_single_git_material) try: url = pipeline.git_url self.fail("should have thrown exception") except RuntimeError: pass def test_git_url_throws_exception_if_multiple_git_materials(self): pipeline = GoCdConfigurator(empty_config()).ensure_pipeline_group("g").ensure_pipeline("p") pipeline.ensure_material(GitMaterial("<EMAIL>:springersbm/one.git")) pipeline.ensure_material(GitMaterial("<EMAIL>:springersbm/two.git")) self.assertEquals(False, pipeline.has_single_git_material) try: url = pipeline.git_url self.fail("should have thrown exception") except RuntimeError: pass def test_set_git_url_throws_exception_if_multiple_git_materials(self): pipeline = GoCdConfigurator(empty_config()).ensure_pipeline_group("g").ensure_pipeline("p") pipeline.ensure_material(GitMaterial("<EMAIL>:springersbm/one.git")) pipeline.ensure_material(GitMaterial("<EMAIL>:springersbm/two.git")) try: pipeline.set_git_url("<EMAIL>:springersbm/three.git") self.fail("should have thrown exception") except RuntimeError: pass def test_can_add_git_material(self): pipeline = GoCdConfigurator(empty_config()).ensure_pipeline_group("g").ensure_pipeline("p") p = pipeline.ensure_material(GitMaterial("<EMAIL>:springersbm/changed.git")) self.assertEquals(p, pipeline) self.assertEquals("<EMAIL>:springersbm/changed.git", pipeline.git_url) def test_can_ensure_git_material(self): pipeline = typical_pipeline() pipeline.ensure_material(GitMaterial("<EMAIL>:springersbm/gomatic.git")) self.assertEquals("<EMAIL>:springersbm/gomatic.git", pipeline.git_url) self.assertEquals([GitMaterial("<EMAIL>:springersbm/gomatic.git")], pipeline.materials) def test_can_have_multiple_git_materials(self): pipeline = typical_pipeline() pipeline.ensure_material(GitMaterial("<EMAIL>:springersbm/changed.git")) self.assertEquals([GitMaterial("<EMAIL>:springersbm/gomatic.git"), GitMaterial("<EMAIL>:springersbm/changed.git")], pipeline.materials) def test_pipelines_can_have_pipeline_materials(self): pipeline = more_options_pipeline() self.assertEquals(2, len(pipeline.materials)) self.assertEquals(GitMaterial('<EMAIL>:springersbm/gomatic.git', branch="a-branch", material_name="some-material-name", polling=False), pipeline.materials[0]) def test_pipelines_can_have_more_complicated_pipeline_materials(self): pipeline = more_options_pipeline() self.assertEquals(2, len(pipeline.materials)) self.assertEquals(True, pipeline.materials[0].is_git) self.assertEquals(PipelineMaterial('pipeline2', 'build'), pipeline.materials[1]) def test_pipelines_can_have_no_materials(self): pipeline = GoCdConfigurator(empty_config()).ensure_pipeline_group("g").ensure_pipeline("p") self.assertEquals(0, len(pipeline.materials)) def test_can_add_pipeline_material(self): pipeline = GoCdConfigurator(empty_config()).ensure_pipeline_group("g").ensure_pipeline("p") p = pipeline.ensure_material(PipelineMaterial('deploy-qa', 'baseline-user-data')) self.assertEquals(p, pipeline) self.assertEquals(PipelineMaterial('deploy-qa', 'baseline-user-data'), pipeline.materials[0]) def test_can_add_more_complicated_pipeline_material(self): pipeline = GoCdConfigurator(empty_config()).ensure_pipeline_group("g").ensure_pipeline("p") p = pipeline.ensure_material(PipelineMaterial('p', 's', 'm')) self.assertEquals(p, pipeline) self.assertEquals(PipelineMaterial('p', 's', 'm'), pipeline.materials[0]) def test_can_ensure_pipeline_material(self): pipeline = more_options_pipeline() self.assertEquals(2, len(pipeline.materials)) pipeline.ensure_material(PipelineMaterial('pipeline2', 'build')) self.assertEquals(2, len(pipeline.materials)) def test_can_remove_all_pipeline_materials(self): pipeline = more_options_pipeline() pipeline.remove_materials() self.assertEquals(0, len(pipeline.materials)) def test_materials_are_sorted(self): go_cd_configurator = GoCdConfigurator(empty_config()) pipeline = go_cd_configurator.ensure_pipeline_group("g").ensure_pipeline("p") pipeline.ensure_material(PipelineMaterial('zeta', 'build')) pipeline.ensure_material(GitMaterial('<EMAIL>:springersbm/zebra.git')) pipeline.ensure_material(PipelineMaterial('alpha', 'build')) pipeline.ensure_material(GitMaterial('<EMAIL>:springersbm/art.git')) pipeline.ensure_material(PipelineMaterial('theta', 'build')) pipeline.ensure_material(GitMaterial('<EMAIL>:springersbm/this.git')) xml = parseString(go_cd_configurator.config) materials = xml.getElementsByTagName('materials')[0].childNodes self.assertEquals('git', materials[0].tagName) self.assertEquals('git', materials[1].tagName) self.assertEquals('git', materials[2].tagName) self.assertEquals('pipeline', materials[3].tagName) self.assertEquals('pipeline', materials[4].tagName) self.assertEquals('pipeline', materials[5].tagName) self.assertEquals('<EMAIL>:springersbm/art.git', materials[0].attributes['url'].value) self.assertEquals('<EMAIL>:springersbm/this.git', materials[1].attributes['url'].value) self.assertEquals('<EMAIL>:springersbm/zebra.git', materials[2].attributes['url'].value) self.assertEquals('alpha', materials[3].attributes['pipelineName'].value) self.assertEquals('theta', materials[4].attributes['pipelineName'].value) self.assertEquals('zeta', materials[5].attributes['pipelineName'].value) def test_can_set_pipeline_git_url_for_new_pipeline(self): pipeline_group = standard_pipeline_group() new_pipeline = pipeline_group.ensure_pipeline("some_name") new_pipeline.set_git_url("<EMAIL>:springersbm/changed.git") self.assertEquals("<EMAIL>:springersbm/changed.git", new_pipeline.git_url) def test_pipelines_do_not_have_to_be_based_on_template(self): pipeline = more_options_pipeline() self.assertFalse(pipeline.is_based_on_template) def test_pipelines_can_be_based_on_template(self): pipeline = GoCdConfigurator(config('pipeline-based-on-template')).ensure_pipeline_group('defaultGroup').find_pipeline('siberian') assert isinstance(pipeline, Pipeline) self.assertTrue(pipeline.is_based_on_template) template = GoCdConfigurator(config('pipeline-based-on-template')).templates[0] self.assertEquals(template, pipeline.template) def test_pipelines_can_be_created_based_on_template(self): configurator = GoCdConfigurator(empty_config()) configurator.ensure_template('temple').ensure_stage('s').ensure_job('j') pipeline = configurator.ensure_pipeline_group("g").ensure_pipeline('p').set_template_name('temple') self.assertEquals('temple', pipeline.template.name) def test_pipelines_have_environment_variables(self): pipeline = typical_pipeline() self.assertEquals({"JAVA_HOME": "/opt/java/jdk-1.8"}, pipeline.environment_variables) def test_pipelines_have_encrypted_environment_variables(self): pipeline = GoCdConfigurator(config('config-with-encrypted-variable')).ensure_pipeline_group("defaultGroup").find_pipeline("example") self.assertEquals({"MY_SECURE_PASSWORD": "<PASSWORD>=="}, pipeline.encrypted_environment_variables) def test_pipelines_have_unencrypted_secure_environment_variables(self): pipeline = GoCdConfigurator(config('config-with-unencrypted-secure-variable')).ensure_pipeline_group("defaultGroup").find_pipeline("example") self.assertEquals({"MY_SECURE_PASSWORD": "<PASSWORD>"}, pipeline.unencrypted_secure_environment_variables) def test_can_add_environment_variables_to_pipeline(self): pipeline = empty_pipeline() p = pipeline.ensure_environment_variables({"new": "one", "again": "two"}) self.assertEquals(p, pipeline) self.assertEquals({"new": "one", "again": "two"}, pipeline.environment_variables) def test_can_add_encrypted_secure_environment_variables_to_pipeline(self): pipeline = empty_pipeline() pipeline.ensure_encrypted_environment_variables({"new": "one", "again": "two"}) self.assertEquals({"new": "one", "again": "two"}, pipeline.encrypted_environment_variables) def test_can_add_unencrypted_secure_environment_variables_to_pipeline(self): pipeline = empty_pipeline() pipeline.ensure_unencrypted_secure_environment_variables({"new": "one", "again": "two"}) self.assertEquals({"new": "one", "again": "two"}, pipeline.unencrypted_secure_environment_variables) def test_can_add_environment_variables_to_new_pipeline(self): pipeline = typical_pipeline() pipeline.ensure_environment_variables({"new": "one"}) self.assertEquals({"JAVA_HOME": "/opt/java/jdk-1.8", "new": "one"}, pipeline.environment_variables) def test_can_modify_environment_variables_of_pipeline(self): pipeline = typical_pipeline() pipeline.ensure_environment_variables({"new": "one", "JAVA_HOME": "/opt/java/jdk-1.1"}) self.assertEquals({"JAVA_HOME": "/opt/java/jdk-1.1", "new": "one"}, pipeline.environment_variables) def test_can_remove_all_environment_variables(self): pipeline = typical_pipeline() p = pipeline.without_any_environment_variables() self.assertEquals(p, pipeline) self.assertEquals({}, pipeline.environment_variables) def test_can_remove_specific_environment_variable(self): pipeline = empty_pipeline() pipeline.ensure_encrypted_environment_variables({'a': 's'}) pipeline.ensure_environment_variables({'c': 'v', 'd': 'f'}) pipeline.remove_environment_variable('d') p = pipeline.remove_environment_variable('unknown') self.assertEquals(p, pipeline) self.assertEquals({'a': 's'}, pipeline.encrypted_environment_variables) self.assertEquals({'c': 'v'}, pipeline.environment_variables) def test_environment_variables_get_added_in_sorted_order_to_reduce_config_thrash(self): go_cd_configurator = GoCdConfigurator(empty_config()) pipeline = go_cd_configurator \ .ensure_pipeline_group('P.Group') \ .ensure_pipeline('P.Name') pipeline.ensure_environment_variables({"badger": "a", "xray": "a"}) pipeline.ensure_environment_variables({"ant": "a2", "zebra": "a"}) xml = parseString(go_cd_configurator.config) names = [e.getAttribute('name') for e in xml.getElementsByTagName('variable')] self.assertEquals([u'ant', u'badger', u'xray', u'zebra'], names) def test_encrypted_environment_variables_get_added_in_sorted_order_to_reduce_config_thrash(self): go_cd_configurator = GoCdConfigurator(empty_config()) pipeline = go_cd_configurator \ .ensure_pipeline_group('P.Group') \ .ensure_pipeline('P.Name') pipeline.ensure_encrypted_environment_variables({"badger": "a", "xray": "a"}) pipeline.ensure_encrypted_environment_variables({"ant": "a2", "zebra": "a"}) xml = parseString(go_cd_configurator.config) names = [e.getAttribute('name') for e in xml.getElementsByTagName('variable')] self.assertEquals([u'ant', u'badger', u'xray', u'zebra'], names) def test_unencrypted_environment_variables_do_not_have_secure_attribute_in_order_to_reduce_config_thrash(self): go_cd_configurator = GoCdConfigurator(empty_config()) pipeline = go_cd_configurator \ .ensure_pipeline_group('P.Group') \ .ensure_pipeline('P.Name') pipeline.ensure_environment_variables({"ant": "a"}) xml = parseString(go_cd_configurator.config) secure_attributes = [e.getAttribute('secure') for e in xml.getElementsByTagName('variable')] # attributes that are missing are returned as empty self.assertEquals([''], secure_attributes, "should not have any 'secure' attributes") def test_cannot_have_environment_variable_which_is_both_secure_and_insecure(self): go_cd_configurator = GoCdConfigurator(empty_config()) pipeline = go_cd_configurator \ .ensure_pipeline_group('P.Group') \ .ensure_pipeline('P.Name') pipeline.ensure_unencrypted_secure_environment_variables({"ant": "a"}) pipeline.ensure_environment_variables({"ant": "b"}) # not secure self.assertEquals({"ant": "b"}, pipeline.environment_variables) self.assertEquals({}, pipeline.unencrypted_secure_environment_variables) def test_can_change_environment_variable_from_secure_to_insecure(self): go_cd_configurator = GoCdConfigurator(empty_config()) pipeline = go_cd_configurator \ .ensure_pipeline_group('P.Group') \ .ensure_pipeline('P.Name') pipeline.ensure_unencrypted_secure_environment_variables({"ant": "a", "badger": "b"}) pipeline.ensure_environment_variables({"ant": "b"}) self.assertEquals({"ant": "b"}, pipeline.environment_variables) self.assertEquals({"badger": "b"}, pipeline.unencrypted_secure_environment_variables) def test_pipelines_have_parameters(self): pipeline = more_options_pipeline() self.assertEquals({"environment": "qa"}, pipeline.parameters) def test_pipelines_have_no_parameters(self): pipeline = typical_pipeline() self.assertEquals({}, pipeline.parameters) def test_can_add_params_to_pipeline(self): pipeline = typical_pipeline() p = pipeline.ensure_parameters({"new": "one", "again": "two"}) self.assertEquals(p, pipeline) self.assertEquals({"new": "one", "again": "two"}, pipeline.parameters) def test_can_modify_parameters_of_pipeline(self): pipeline = more_options_pipeline() pipeline.ensure_parameters({"new": "one", "environment": "qa55"}) self.assertEquals({"environment": "qa55", "new": "one"}, pipeline.parameters) def test_can_remove_all_parameters(self): pipeline = more_options_pipeline() p = pipeline.without_any_parameters() self.assertEquals(p, pipeline) self.assertEquals({}, pipeline.parameters) def test_can_have_timer(self): pipeline = more_options_pipeline() self.assertEquals(True, pipeline.has_timer) self.assertEquals("0 15 22 * * ?", pipeline.timer) self.assertEquals(False, pipeline.timer_triggers_only_on_changes) def test_can_have_timer_with_onlyOnChanges_option(self): pipeline = GoCdConfigurator(config('config-with-more-options-pipeline')).ensure_pipeline_group('P.Group').find_pipeline('pipeline2') self.assertEquals(True, pipeline.has_timer) self.assertEquals("0 0 22 ? * MON-FRI", pipeline.timer) self.assertEquals(True, pipeline.timer_triggers_only_on_changes) def test_need_not_have_timer(self): pipeline = GoCdConfigurator(empty_config()).ensure_pipeline_group('Group').ensure_pipeline('Pipeline') self.assertEquals(False, pipeline.has_timer) try: timer = pipeline.timer self.fail('should have thrown an exception') except RuntimeError: pass def test_can_set_timer(self): pipeline = GoCdConfigurator(empty_config()).ensure_pipeline_group('Group').ensure_pipeline('Pipeline') p = pipeline.set_timer("one two three") self.assertEquals(p, pipeline) self.assertEquals("one two three", pipeline.timer) def test_can_set_timer_with_only_on_changes_flag_off(self): pipeline = GoCdConfigurator(empty_config()).ensure_pipeline_group('Group').ensure_pipeline('Pipeline') p = pipeline.set_timer("one two three", only_on_changes=False) self.assertEquals(p, pipeline) self.assertEquals("one two three", pipeline.timer) self.assertEquals(False, pipeline.timer_triggers_only_on_changes) def test_can_set_timer_with_only_on_changes_flag(self): pipeline = GoCdConfigurator(empty_config()).ensure_pipeline_group('Group').ensure_pipeline('Pipeline') p = pipeline.set_timer("one two three", only_on_changes=True) self.assertEquals(p, pipeline) self.assertEquals("one two three", pipeline.timer) self.assertEquals(True, pipeline.timer_triggers_only_on_changes) def test_can_remove_timer(self): pipeline = GoCdConfigurator(empty_config()).ensure_pipeline_group('Group').ensure_pipeline('Pipeline') pipeline.set_timer("one two three") p = pipeline.remove_timer() self.assertEquals(p, pipeline) self.assertFalse(pipeline.has_timer) def test_can_have_label_template(self): pipeline = typical_pipeline() self.assertEquals("something-${COUNT}", pipeline.label_template) self.assertEquals(True, pipeline.has_label_template) def test_might_not_have_label_template(self): pipeline = more_options_pipeline() # TODO swap label with typical self.assertEquals(False, pipeline.has_label_template) try: label_template = pipeline.label_template self.fail('should have thrown an exception') except RuntimeError: pass def test_can_set_label_template(self): pipeline = GoCdConfigurator(empty_config()).ensure_pipeline_group('Group').ensure_pipeline('Pipeline') p = pipeline.set_label_template("some label") self.assertEquals(p, pipeline) self.assertEquals("some label", pipeline.label_template) def test_can_set_default_label_template(self): pipeline = GoCdConfigurator(empty_config()).ensure_pipeline_group('Group').ensure_pipeline('Pipeline') p = pipeline.set_default_label_template() self.assertEquals(p, pipeline) self.assertEquals(DEFAULT_LABEL_TEMPLATE, pipeline.label_template) def test_can_set_automatic_pipeline_locking(self): configurator = GoCdConfigurator(empty_config()) pipeline = configurator.ensure_pipeline_group("new_group").ensure_pipeline("some_name") p = pipeline.set_automatic_pipeline_locking() self.assertEquals(p, pipeline) self.assertEquals(True, pipeline.has_automatic_pipeline_locking) def test_pipelines_to_dict(self): pipeline = typical_pipeline() pp_dict = pipeline.to_dict("P.Group") self.assertEquals('typical', pp_dict['name']) self.assertEquals({'JAVA_HOME': '/opt/java/jdk-1.8'}, pp_dict['environment_variables']) self.assertEquals({}, pp_dict['encrypted_environment_variables']) self.assertEquals({}, pp_dict['parameters']) self.assertEquals(2, len(pp_dict['stages'])) self.assertEquals(1, len(pp_dict['materials'])) self.assertFalse(pp_dict.has_key('template')) self.assertTrue(pp_dict['cron_timer_spec'] is None) self.assertFalse(pp_dict['automatic_pipeline_locking']) class TestPipelineGroup(unittest.TestCase): def _pipeline_group_from_config(self): return GoCdConfigurator(config('config-with-two-pipelines')).ensure_pipeline_group('P.Group') def test_pipeline_groups_have_names(self): pipeline_group = standard_pipeline_group() self.assertEquals("P.Group", pipeline_group.name) def test_pipeline_groups_have_pipelines(self): pipeline_group = self._pipeline_group_from_config() self.assertEquals(2, len(pipeline_group.pipelines)) def test_can_add_pipeline(self): configurator = GoCdConfigurator(empty_config()) pipeline_group = configurator.ensure_pipeline_group("new_group") new_pipeline = pipeline_group.ensure_pipeline("some_name") self.assertEquals(1, len(pipeline_group.pipelines)) self.assertEquals(new_pipeline, pipeline_group.pipelines[0]) self.assertEquals("some_name", new_pipeline.name) self.assertEquals(False, new_pipeline.has_single_git_material) self.assertEquals(False, new_pipeline.has_label_template) self.assertEquals(False, new_pipeline.has_automatic_pipeline_locking) def test_can_find_pipeline(self): found_pipeline = self._pipeline_group_from_config().find_pipeline("pipeline2") self.assertEquals("pipeline2", found_pipeline.name) self.assertTrue(self._pipeline_group_from_config().has_pipeline("pipeline2")) def test_does_not_find_missing_pipeline(self): self.assertFalse(self._pipeline_group_from_config().has_pipeline("unknown-pipeline")) try: self._pipeline_group_from_config().find_pipeline("unknown-pipeline") self.fail("should have thrown exception") except RuntimeError as e: self.assertTrue(e.message.count("unknown-pipeline")) def test_can_remove_pipeline(self): pipeline_group = self._pipeline_group_from_config() pipeline_group.ensure_removal_of_pipeline("pipeline1") self.assertEquals(1, len(pipeline_group.pipelines)) try: pipeline_group.find_pipeline("pipeline1") self.fail("should have thrown exception") except RuntimeError: pass def test_ensuring_replacement_of_pipeline_leaves_it_empty_but_in_same_place(self): pipeline_group = self._pipeline_group_from_config() self.assertEquals("pipeline1", pipeline_group.pipelines[0].name) pipeline = pipeline_group.find_pipeline("pipeline1") pipeline.set_label_template("something") self.assertEquals(True, pipeline.has_label_template) p = pipeline_group.ensure_replacement_of_pipeline("pipeline1") self.assertEquals(p, pipeline_group.pipelines[0]) self.assertEquals("pipeline1", p.name) self.assertEquals(False, p.has_label_template) def test_can_ensure_pipeline_removal(self): pipeline_group = self._pipeline_group_from_config() pg = pipeline_group.ensure_removal_of_pipeline("already-removed-pipeline") self.assertEquals(pg, pipeline_group) self.assertEquals(2, len(pipeline_group.pipelines)) try: pipeline_group.find_pipeline("already-removed-pipeline") self.fail("should have thrown exception") except RuntimeError: pass class TestGoCdConfigurator(unittest.TestCase): def test_can_tell_if_there_is_no_change_to_save(self): configurator = GoCdConfigurator(config('config-with-two-pipeline-groups')) p = configurator.ensure_pipeline_group('Second.Group').ensure_replacement_of_pipeline('smoke-tests') p.set_git_url('<EMAIL>:springersbm/gomatic.git') p.ensure_stage('build').ensure_job('compile').ensure_task(ExecTask(['make', 'source code'])) self.assertFalse(configurator.has_changes) def test_can_tell_if_there_is_a_change_to_save(self): configurator = GoCdConfigurator(config('config-with-two-pipeline-groups')) p = configurator.ensure_pipeline_group('Second.Group').ensure_replacement_of_pipeline('smoke-tests') p.set_git_url('<EMAIL>:springersbm/gomatic.git') p.ensure_stage('moo').ensure_job('bar') self.assertTrue(configurator.has_changes) def test_keeps_schema_version(self): empty_config = FakeHostRestClient(empty_config_xml.replace('schemaVersion="72"', 'schemaVersion="73"'), "empty_config()") configurator = GoCdConfigurator(empty_config) self.assertEquals(1, configurator.config.count('schemaVersion="73"')) def test_can_find_out_server_settings(self): configurator = GoCdConfigurator(config('config-with-server-settings')) self.assertEquals("/some/dir", configurator.artifacts_dir) self.assertEquals("http://10.20.30.40/", configurator.site_url) self.assertEquals("my_ci_server", configurator.agent_auto_register_key) self.assertEquals(Decimal("55.0"), configurator.purge_start) self.assertEquals(Decimal("75.0"), configurator.purge_upto) def test_can_find_out_server_settings_when_not_set(self): configurator = GoCdConfigurator(config('config-with-no-server-settings')) self.assertEquals(None, configurator.artifacts_dir) self.assertEquals(None, configurator.site_url) self.assertEquals(None, configurator.agent_auto_register_key) self.assertEquals(None, configurator.purge_start) self.assertEquals(None, configurator.purge_upto) def test_can_set_server_settings(self): configurator = GoCdConfigurator(config('config-with-no-server-settings')) configurator.artifacts_dir = "/a/dir" configurator.site_url = "http://192.168.127.12/" configurator.agent_auto_register_key = "a_ci_server" configurator.purge_start = Decimal("44.0") configurator.purge_upto = Decimal("88.0") self.assertEquals("/a/dir", configurator.artifacts_dir) self.assertEquals("http://1.2.3.4/", configurator.site_url) self.assertEquals("a_ci_server", configurator.agent_auto_register_key) self.assertEquals(Decimal("44.0"), configurator.purge_start) self.assertEquals(Decimal("88.0"), configurator.purge_upto) def test_can_have_no_pipeline_groups(self): self.assertEquals(0, len(GoCdConfigurator(empty_config()).pipeline_groups)) def test_gets_all_pipeline_groups(self): self.assertEquals(2, len(GoCdConfigurator(config('config-with-two-pipeline-groups')).pipeline_groups)) def test_can_get_initial_config_md5(self): configurator = GoCdConfigurator(empty_config()) self.assertEquals("42", configurator._initial_md5) def test_config_is_updated_as_result_of_updating_part_of_it(self): configurator = GoCdConfigurator(config('config-with-just-agents')) agent = configurator.agents[0] self.assertEquals(2, len(agent.resources)) agent.ensure_resource('a-resource-that-it-does-not-already-have') configurator_based_on_new_config = GoCdConfigurator(FakeHostRestClient(configurator.config)) self.assertEquals(3, len(configurator_based_on_new_config.agents[0].resources)) def test_can_remove_agent(self): configurator = GoCdConfigurator(config('config-with-just-agents')) self.assertEquals(2, len(configurator.agents)) configurator.ensure_removal_of_agent('go-agent-1') self.assertEquals(1, len(configurator.agents)) self.assertEquals('go-agent-2', configurator.agents[0].hostname) def test_can_add_pipeline_group(self): configurator = GoCdConfigurator(empty_config()) self.assertEquals(0, len(configurator.pipeline_groups)) new_pipeline_group = configurator.ensure_pipeline_group("a_new_group") self.assertEquals(1, len(configurator.pipeline_groups)) self.assertEquals(new_pipeline_group, configurator.pipeline_groups[-1]) self.assertEquals("a_new_group", new_pipeline_group.name) def test_can_ensure_pipeline_group_exists(self): configurator = GoCdConfigurator(config('config-with-two-pipeline-groups')) self.assertEquals(2, len(configurator.pipeline_groups)) pre_existing_pipeline_group = configurator.ensure_pipeline_group('Second.Group') self.assertEquals(2, len(configurator.pipeline_groups)) self.assertEquals('Second.Group', pre_existing_pipeline_group.name) def test_can_remove_all_pipeline_groups(self): configurator = GoCdConfigurator(config('config-with-two-pipeline-groups')) s = configurator.remove_all_pipeline_groups() self.assertEquals(s, configurator) self.assertEquals(0, len(configurator.pipeline_groups)) def test_can_remove_pipeline_group(self): configurator = GoCdConfigurator(config('config-with-two-pipeline-groups')) s = configurator.ensure_removal_of_pipeline_group('P.Group') self.assertEquals(s, configurator) self.assertEquals(1, len(configurator.pipeline_groups)) def test_can_ensure_removal_of_pipeline_group(self): configurator = GoCdConfigurator(config('config-with-two-pipeline-groups')) configurator.ensure_removal_of_pipeline_group('pipeline-group-that-has-already-been-removed') self.assertEquals(2, len(configurator.pipeline_groups)) def test_can_have_templates(self): templates = GoCdConfigurator(config('config-with-just-templates')).templates self.assertEquals(2, len(templates)) self.assertEquals('api-component', templates[0].name) self.assertEquals('deploy-stack', templates[1].name) self.assertEquals('deploy-components', templates[1].stages[0].name) def test_can_have_no_templates(self): self.assertEquals(0, len(GoCdConfigurator(empty_config()).templates)) def test_can_add_template(self): configurator = GoCdConfigurator(empty_config()) template = configurator.ensure_template('foo') self.assertEquals(1, len(configurator.templates)) self.assertEquals(template, configurator.templates[0]) self.assertTrue(isinstance(configurator.templates[0], Pipeline), "so all methods that use to configure pipeline don't need to be tested for template") def test_can_ensure_template(self): configurator = GoCdConfigurator(config('config-with-just-templates')) template = configurator.ensure_template('deploy-stack') self.assertEquals('deploy-components', template.stages[0].name) def test_can_ensure_replacement_of_template(self): configurator = GoCdConfigurator(config('config-with-just-templates')) template = configurator.ensure_replacement_of_template('deploy-stack') self.assertEquals(0, len(template.stages)) def test_can_remove_template(self): configurator = GoCdConfigurator(config('config-with-just-templates')) self.assertEquals(2, len(configurator.templates)) configurator.ensure_removal_of_template('deploy-stack') self.assertEquals(1, len(configurator.templates)) def test_if_remove_all_templates_also_remove_templates_element(self): configurator = GoCdConfigurator(config('config-with-just-templates')) self.assertEquals(2, len(configurator.templates)) configurator.ensure_removal_of_template('api-component') configurator.ensure_removal_of_template('deploy-stack') self.assertEquals(0, len(configurator.templates)) xml = configurator.config root = ET.fromstring(xml) self.assertEqual(['server'], [element.tag for element in root]) def test_top_level_elements_get_reordered_to_please_go(self): configurator = GoCdConfigurator(config('config-with-agents-and-templates-but-without-pipelines')) configurator.ensure_pipeline_group("some_group").ensure_pipeline("some_pipeline") xml = configurator.config root = ET.fromstring(xml) self.assertEquals("pipelines", root[0].tag) self.assertEquals("templates", root[1].tag) self.assertEquals("agents", root[2].tag) def test_top_level_elements_with_environment_get_reordered_to_please_go(self): configurator = GoCdConfigurator(config('config-with-pipelines-environments-and-agents')) configurator.ensure_pipeline_group("P.Group").ensure_pipeline("some_pipeline") xml = configurator.config root = ET.fromstring(xml) self.assertEqual(['server', 'pipelines', 'environments', 'agents'], [element.tag for element in root]) def test_top_level_elements_that_cannot_be_created_get_reordered_to_please_go(self): configurator = GoCdConfigurator(config('config-with-many-of-the-top-level-elements-that-cannot-be-added')) configurator.ensure_pipeline_group("P.Group").ensure_pipeline("some_pipeline") xml = configurator.config root = ET.fromstring(xml) self.assertEqual(['server', 'repositories', 'scms', 'pipelines', 'environments', 'agents'], [element.tag for element in root]) def test_elements_can_be_created_in_order_to_please_go(self): configurator = GoCdConfigurator(empty_config()) pipeline = configurator.ensure_pipeline_group("some_group").ensure_pipeline("some_pipeline") pipeline.ensure_parameters({'p': 'p'}) pipeline.set_timer("some timer") pipeline.ensure_environment_variables({'pe': 'pe'}) pipeline.set_git_url("gurl") stage = pipeline.ensure_stage("s") stage.ensure_environment_variables({'s': 's'}) job = stage.ensure_job("j") job.ensure_environment_variables({'j': 'j'}) job.ensure_task(ExecTask(['ls'])) job.ensure_tab(Tab("n", "p")) job.ensure_resource("r") job.ensure_artifacts({Artifact.get_build_artifact('s', 'd')}) xml = configurator.config pipeline_root = ET.fromstring(xml).find('pipelines').find('pipeline') self.assertEquals("params", pipeline_root[0].tag) self.assertEquals("timer", pipeline_root[1].tag) self.assertEquals("environmentvariables", pipeline_root[2].tag) self.assertEquals("materials", pipeline_root[3].tag) self.assertEquals("stage", pipeline_root[4].tag) self.__check_stage(pipeline_root) def test_elements_are_reordered_in_order_to_please_go(self): configurator = GoCdConfigurator(empty_config()) pipeline = configurator.ensure_pipeline_group("some_group").ensure_pipeline("some_pipeline") pipeline.set_git_url("gurl") pipeline.ensure_environment_variables({'pe': 'pe'}) pipeline.set_timer("some timer") pipeline.ensure_parameters({'p': 'p'}) self.__configure_stage(pipeline) self.__configure_stage(configurator.ensure_template('templ')) xml = configurator.config pipeline_root = ET.fromstring(xml).find('pipelines').find('pipeline') self.assertEquals("params", pipeline_root[0].tag) self.assertEquals("timer", pipeline_root[1].tag) self.assertEquals("environmentvariables", pipeline_root[2].tag) self.assertEquals("materials", pipeline_root[3].tag) self.assertEquals("stage", pipeline_root[4].tag) self.__check_stage(pipeline_root) template_root = ET.fromstring(xml).find('templates').find('pipeline') self.assertEquals("stage", template_root[0].tag) self.__check_stage(template_root) def __check_stage(self, pipeline_root): stage_root = pipeline_root.find('stage') self.assertEquals("environmentvariables", stage_root[0].tag) self.assertEquals("jobs", stage_root[1].tag) job_root = stage_root.find('jobs').find('job') self.assertEquals("environmentvariables", job_root[0].tag) self.assertEquals("tasks", job_root[1].tag) self.assertEquals("tabs", job_root[2].tag) self.assertEquals("resources", job_root[3].tag) self.assertEquals("artifacts", job_root[4].tag) def __configure_stage(self, pipeline): stage = pipeline.ensure_stage("s") job = stage.ensure_job("j") stage.ensure_environment_variables({'s': 's'}) job.ensure_tab(Tab("n", "p")) job.ensure_artifacts({Artifact.get_build_artifact('s', 'd')}) job.ensure_task(ExecTask(['ls'])) job.ensure_resource("r") job.ensure_environment_variables({'j': 'j'}) def simplified(s): return s.strip().replace("\t", "").replace("\n", "").replace("\\", "").replace(" ", "") def sneakily_converted_to_xml(pipeline): if pipeline.is_template: return ET.tostring(pipeline.element) else: return ET.tostring(pipeline.parent.element) class TestReverseEngineering(unittest.TestCase): def check_round_trip_pipeline(self, configurator, before, show=False): reverse_engineered_python = configurator.as_python(before, with_save=False) if show: print('r' * 88) print(reverse_engineered_python) pipeline = "evaluation failed" template = "evaluation failed" exec reverse_engineered_python # exec reverse_engineered_python.replace("from gomatic import *", "from gomatic.go_cd_configurator import *") xml_before = sneakily_converted_to_xml(before) # noinspection PyTypeChecker xml_after = sneakily_converted_to_xml(pipeline) if show: print('b' * 88) print(prettify(xml_before)) print('a' * 88) print(prettify(xml_after)) self.assertEquals(xml_before, xml_after) if before.is_based_on_template: # noinspection PyTypeChecker self.assertEquals(sneakily_converted_to_xml(before.template), sneakily_converted_to_xml(template)) def test_can_round_trip_simplest_pipeline(self): configurator = GoCdConfigurator(empty_config()) before = configurator.ensure_pipeline_group("group").ensure_pipeline("line") self.check_round_trip_pipeline(configurator, before) def test_can_round_trip_standard_label(self): configurator = GoCdConfigurator(empty_config()) before = configurator.ensure_pipeline_group("group").ensure_pipeline("line").set_default_label_template() self.check_round_trip_pipeline(configurator, before) def test_can_round_trip_non_standard_label(self): configurator = GoCdConfigurator(empty_config()) before = configurator.ensure_pipeline_group("group").ensure_pipeline("line").set_label_template("non standard") self.check_round_trip_pipeline(configurator, before) def test_can_round_trip_automatic_pipeline_locking(self): configurator = GoCdConfigurator(empty_config()) before = configurator.ensure_pipeline_group("group").ensure_pipeline("line").set_automatic_pipeline_locking() self.check_round_trip_pipeline(configurator, before) def test_can_round_trip_pipeline_material(self): configurator = GoCdConfigurator(empty_config()) before = configurator.ensure_pipeline_group("group").ensure_pipeline("line").ensure_material(PipelineMaterial("p", "s", "m")) self.check_round_trip_pipeline(configurator, before) def test_can_round_trip_multiple_git_materials(self): configurator = GoCdConfigurator(empty_config()) before = configurator.ensure_pipeline_group("group").ensure_pipeline("line") before.ensure_material(GitMaterial("giturl1", "b", "m1")) before.ensure_material(GitMaterial("giturl2")) self.check_round_trip_pipeline(configurator, before) def test_can_round_trip_git_url(self): configurator = GoCdConfigurator(empty_config()) before = configurator.ensure_pipeline_group("group").ensure_pipeline("line").set_git_url("some git url") self.check_round_trip_pipeline(configurator, before) def test_can_round_trip_git_extras(self): configurator = GoCdConfigurator(empty_config()) before = configurator.ensure_pipeline_group("group").ensure_pipeline("line").set_git_material( GitMaterial("some git url", branch="some branch", material_name="some material name", polling=False, ignore_patterns={"excluded", "things"}, destination_directory='foo/bar')) self.check_round_trip_pipeline(configurator, before) def test_can_round_trip_git_branch_only(self): configurator = GoCdConfigurator(empty_config()) before = configurator.ensure_pipeline_group("group").ensure_pipeline("line").set_git_material(GitMaterial("some git url", branch="some branch")) self.check_round_trip_pipeline(configurator, before) def test_can_round_trip_git_material_only(self): configurator = GoCdConfigurator(empty_config()) before = configurator.ensure_pipeline_group("group").ensure_pipeline("line").set_git_material(GitMaterial("some git url", material_name="m name")) self.check_round_trip_pipeline(configurator, before) def test_can_round_trip_git_polling_only(self): configurator = GoCdConfigurator(empty_config()) before = configurator.ensure_pipeline_group("group").ensure_pipeline("line").set_git_material(GitMaterial("some git url", polling=False)) self.check_round_trip_pipeline(configurator, before) def test_can_round_trip_git_ignore_patterns_only_ISSUE_4(self): configurator = GoCdConfigurator(empty_config()) before = configurator.ensure_pipeline_group("group").ensure_pipeline("line").set_git_material(GitMaterial("git url", ignore_patterns={"ex", "cluded"})) self.check_round_trip_pipeline(configurator, before) def test_can_round_trip_git_destination_directory_only(self): configurator = GoCdConfigurator(empty_config()) before = configurator.ensure_pipeline_group("group").ensure_pipeline("line").set_git_material(GitMaterial("git url", destination_directory='foo/bar')) self.check_round_trip_pipeline(configurator, before) def test_can_round_trip_pipeline_parameters(self): configurator = GoCdConfigurator(empty_config()) before = configurator.ensure_pipeline_group("group").ensure_pipeline("line").ensure_parameters({"p": "v"}) self.check_round_trip_pipeline(configurator, before) def test_can_round_trip_pipeline_environment_variables(self): configurator = GoCdConfigurator(empty_config()) before = configurator.ensure_pipeline_group("group").ensure_pipeline("line").ensure_environment_variables({"p": "v"}) self.check_round_trip_pipeline(configurator, before) def test_can_round_trip_pipeline_encrypted_environment_variables(self): configurator = GoCdConfigurator(empty_config()) before = configurator.ensure_pipeline_group("group").ensure_pipeline("line").ensure_encrypted_environment_variables({"p": "v"}) self.check_round_trip_pipeline(configurator, before) def test_can_round_trip_pipeline_unencrypted_secure_environment_variables(self): configurator = GoCdConfigurator(empty_config()) before = configurator.ensure_pipeline_group("group").ensure_pipeline("line").ensure_unencrypted_secure_environment_variables({"p": "v"}) self.check_round_trip_pipeline(configurator, before) def test_can_round_trip_timer(self): configurator = GoCdConfigurator(empty_config()) before = configurator.ensure_pipeline_group("group").ensure_pipeline("line").set_timer("some timer") self.check_round_trip_pipeline(configurator, before) def test_can_round_trip_timer_only_on_changes(self): configurator = GoCdConfigurator(empty_config()) before = configurator.ensure_pipeline_group("group").ensure_pipeline("line").set_timer("some timer", only_on_changes=True) self.check_round_trip_pipeline(configurator, before) def test_can_round_trip_stage_bits(self): configurator = GoCdConfigurator(empty_config()) before = configurator.ensure_pipeline_group("group").ensure_pipeline("line") before.ensure_stage("stage1").ensure_environment_variables({"k": "v"}).set_clean_working_dir().set_has_manual_approval().set_fetch_materials(False) self.check_round_trip_pipeline(configurator, before) def test_can_round_trip_stages(self): configurator = GoCdConfigurator(empty_config()) before = configurator.ensure_pipeline_group("group").ensure_pipeline("line") before.ensure_stage("stage1") before.ensure_stage("stage2") self.check_round_trip_pipeline(configurator, before) def test_can_round_trip_job(self): configurator = GoCdConfigurator(empty_config()) before = configurator.ensure_pipeline_group("group").ensure_pipeline("line") before.ensure_stage("stage").ensure_job("job") self.check_round_trip_pipeline(configurator, before) def test_can_round_trip_job_bits(self): configurator = GoCdConfigurator(empty_config()) before = configurator.ensure_pipeline_group("group").ensure_pipeline("line") before.ensure_stage("stage").ensure_job("job") \ .ensure_artifacts({Artifact.get_build_artifact("s", "d"), Artifact.get_test_artifact("sauce")}) \ .ensure_environment_variables({"k": "v"}) \ .ensure_resource("r") \ .ensure_tab(Tab("n", "p")) \ .set_timeout("23") \ .set_runs_on_all_agents() self.check_round_trip_pipeline(configurator, before) def test_can_round_trip_jobs(self): configurator = GoCdConfigurator(empty_config()) before = configurator.ensure_pipeline_group("group").ensure_pipeline("line") stage = before.ensure_stage("stage") stage.ensure_job("job1") stage.ensure_job("job2") self.check_round_trip_pipeline(configurator, before) def test_can_round_trip_tasks(self): configurator = GoCdConfigurator(empty_config()) before = configurator.ensure_pipeline_group("group").ensure_pipeline("line") job = before.ensure_stage("stage").ensure_job("job") job.add_task(ExecTask(["one", "two"], working_dir="somewhere", runif="failed")) job.add_task(ExecTask(["one", "two"], working_dir="somewhere", runif="failed")) job.ensure_task(ExecTask(["one"], working_dir="somewhere else")) job.ensure_task(ExecTask(["two"], runif="any")) job.ensure_task(FetchArtifactTask('p', 's', 'j', FetchArtifactFile('f'), runif="any")) job.ensure_task(FetchArtifactTask('p', 's', 'j', FetchArtifactDir('d'))) job.ensure_task(FetchArtifactTask('p', 's', 'j', FetchArtifactDir('d'), dest="somewhere-else")) job.ensure_task(FetchArtifactTask('p', 's', 'j', FetchArtifactDir('d'), dest="somewhere-else", runif="any")) job.ensure_task(RakeTask('t1', runif="any")) job.ensure_task(RakeTask('t2')) self.check_round_trip_pipeline(configurator, before) def test_can_round_trip_pipeline_base_on_template(self): configurator = GoCdConfigurator(empty_config()) before = configurator.ensure_pipeline_group("group").ensure_pipeline("line").set_template_name("temple") configurator.ensure_template("temple").ensure_stage("stage").ensure_job("job") self.check_round_trip_pipeline(configurator, before) def test_can_reverse_engineer_pipeline(self): configurator = GoCdConfigurator(config('config-with-more-options-pipeline')) actual = configurator.as_python(more_options_pipeline(), with_save=False) expected = """#!/usr/bin/env python from gomatic import * configurator = GoCdConfigurator(FakeConfig(whatever)) pipeline = configurator\ .ensure_pipeline_group("P.Group")\ .ensure_replacement_of_pipeline("more-options")\ .set_timer("0 15 22 * * ?")\ .set_git_material(GitMaterial("<EMAIL>:springersbm/gomatic.git", branch="a-branch", material_name="some-material-name", polling=False))\ .ensure_material(PipelineMaterial("pipeline2", "build")).ensure_environment_variables({'JAVA_HOME': '/opt/java/jdk-1.7'})\ .ensure_parameters({'environment': 'qa'}) stage = pipeline.ensure_stage("earlyStage") job = stage.ensure_job("earlyWorm").ensure_artifacts(set([BuildArtifact("scripts/*", "files"), BuildArtifact("target/universal/myapp*.zip", "artifacts"), TestArtifact("from", "to")])).set_runs_on_all_agents() job.add_task(ExecTask(['ls'])) job.add_task(ExecTask(['bash', '-c', 'curl "http://domain.com/service/check?target=one+two+three&key=2714_beta%40domain.com"'])) stage = pipeline.ensure_stage("middleStage") job = stage.ensure_job("middleJob") stage = pipeline.ensure_stage("s1").set_fetch_materials(False) job = stage.ensure_job("rake-job").ensure_artifacts({BuildArtifact("things/*")}) job.add_task(RakeTask("boo", "passed")) job = stage.ensure_job("run-if-variants") job.add_task(ExecTask(['t-passed'])) job.add_task(ExecTask(['t-none'])) job.add_task(ExecTask(['t-failed'], runif="failed")) job.add_task(ExecTask(['t-any'], runif="any")) job.add_task(ExecTask(['t-both'], runif="any")) job = stage.ensure_job("variety-of-tasks") job.add_task(RakeTask("sometarget", "passed")) job.add_task(FetchArtifactTask("more-options", "earlyStage", "earlyWorm", FetchArtifactDir("sourceDir"), dest="destDir")) job.add_task(FetchArtifactTask("more-options", "middleStage", "middleJob", FetchArtifactFile("someFile"))) job.add_task(ExecTask(['true'])) """ self.assertEquals(simplified(expected), simplified(actual)) class TestXmlFormatting(unittest.TestCase): def test_can_format_simple_xml(self): expected = '<?xml version="1.0" ?>\n<top>\n\t<middle>stuff</middle>\n</top>' non_formatted = "<top><middle>stuff</middle></top>" formatted = prettify(non_formatted) self.assertEquals(expected, formatted) def test_can_format_more_complicated_xml(self): expected = '<?xml version="1.0" ?>\n<top>\n\t<middle>\n\t\t<innermost>stuff</innermost>\n\t</middle>\n</top>' non_formatted = "<top><middle><innermost>stuff</innermost></middle></top>" formatted = prettify(non_formatted) self.assertEquals(expected, formatted) def test_can_format_actual_config(self): formatted = prettify(open("test-data/config-unformatted.xml").read()) expected = open("test-data/config-formatted.xml").read() def head(s): return "\n".join(s.split('\n')[:10]) self.assertEquals(expected, formatted, "expected=\n%s\n%s\nactual=\n%s" % (head(expected), "=" * 88, head(formatted)))
2.03125
2
gui/wellplot/settings/style/wellplotstylehandler.py
adriangrepo/qreservoir
2
7281
import logging from qrutilities.imageutils import ImageUtils from PyQt4.QtGui import QColor logger = logging.getLogger('console') class WellPlotStyleHandler(object): ''' classdocs ''' def saveDataState(self, wellPlotData, wellPlotStyleWidget): if wellPlotStyleWidget.plotTitleOnCheckBox.isChecked(): wellPlotData.title_on = True else: wellPlotData.title_on = False wellPlotData.title = wellPlotStyleWidget.plotTitleLineEdit.text() r,g,b,a = QColor(wellPlotStyleWidget.trackBackgroundColorPushButton.color()).getRgb() rgbString = ImageUtils.rgbToString(r,g,b) wellPlotData.plot_background_rgb = rgbString wellPlotData.plot_background_alpha = wellPlotStyleWidget.trackBackgroundOpacitySpinBox.value() r,g,b,a = QColor(wellPlotStyleWidget.labelBackgroundColorPushButton.color()).getRgb() rgbString = ImageUtils.rgbToString(r,g,b) wellPlotData.label_background_rgb = rgbString wellPlotData.label_background_alpha = wellPlotStyleWidget.labelBackgroundOpacitySpinBox.value() r,g,b,a = QColor(wellPlotStyleWidget.labelForegroundColorPushButton.color()).getRgb() rgbString = ImageUtils.rgbToString(r,g,b) wellPlotData.label_foreground_rgb = rgbString wellPlotData.label_foreground_alpha = wellPlotStyleWidget.labelForegroundOpacitySpinBox.value() if wellPlotStyleWidget.singleRowLabelsCheckBox.isChecked(): wellPlotData.single_row_header_labels = True else: wellPlotData.single_row_header_labels = False
2.3125
2
utm_messages/urls.py
geoffreynyaga/ANGA-UTM
7
7282
from django.conf.urls import url from . import views app_name = "messages" urlpatterns = [ url(r'^$', views.InboxListView.as_view(), name='inbox'), url(r'^sent/$', views.SentMessagesListView.as_view(), name='sent'), url(r'^compose/$', views.MessagesCreateView.as_view(), name='compose'), # url(r'^compose-all/$', views.SendToAll.as_view(), name='compose_to_all'), url(r'^(?P<pk>\d+)/$', views.MessageDetailView.as_view(), name='message_detail'), url(r'^calendar/$', views.CalendarView.as_view(), name='calendar'), ]
1.828125
2
server/apps/datablock/tests/test_create_worker.py
iotile/iotile_cloud
0
7283
import datetime import json import dateutil.parser from django.contrib.auth import get_user_model from django.test import Client, TestCase from django.utils import timezone from apps.devicelocation.models import DeviceLocation from apps.physicaldevice.models import Device from apps.property.models import GenericProperty from apps.report.models import GeneratedUserReport from apps.sqsworker.exceptions import WorkerActionHardError from apps.stream.models import StreamId, StreamVariable from apps.streamdata.models import StreamData from apps.streamevent.models import StreamEventData from apps.streamfilter.models import * from apps.streamnote.models import StreamNote from apps.utils.data_mask.mask_utils import get_data_mask_event, set_data_mask from apps.utils.gid.convert import * from apps.utils.test_util import TestMixin from ..models import * from ..worker.archive_device_data import ArchiveDeviceDataAction user_model = get_user_model() class DataBlockCreateWorkerTests(TestMixin, TestCase): def setUp(self): self.usersTestSetup() self.orgTestSetup() self.deviceTemplateTestSetup() self.v1 = StreamVariable.objects.create_variable( name='Var A', project=self.p1, created_by=self.u2, lid=1, ) self.v2 = StreamVariable.objects.create_variable( name='Var B', project=self.p1, created_by=self.u3, lid=2, ) self.pd1 = Device.objects.create_device(project=self.p1, label='d1', template=self.dt1, created_by=self.u2) self.pd2 = Device.objects.create_device(project=self.p1, label='d2', template=self.dt1, created_by=self.u2) StreamId.objects.create_after_new_device(self.pd1) StreamId.objects.create_after_new_device(self.pd2) self.s1 = StreamId.objects.filter(variable=self.v1).first() self.s2 = StreamId.objects.filter(variable=self.v2).first() def tearDown(self): StreamFilterAction.objects.all().delete() StreamFilterTrigger.objects.all().delete() StreamFilter.objects.all().delete() StreamId.objects.all().delete() StreamVariable.objects.all().delete() GenericProperty.objects.all().delete() Device.objects.all().delete() StreamData.objects.all().delete() StreamEventData.objects.all().delete() self.deviceTemplateTestTearDown() self.orgTestTearDown() self.userTestTearDown() def testDataBlockActionBadArguments(self): with self.assertRaises(WorkerActionHardError): ArchiveDeviceDataAction.schedule(args={}) with self.assertRaises(WorkerActionHardError): ArchiveDeviceDataAction.schedule(args={'foobar': 5}) with self.assertRaises(WorkerActionHardError): ArchiveDeviceDataAction.schedule(args={'data_block_slug': 'b--0000-0000-0000-0001', 'extra-bad-arg': 'foo'}) self.assertTrue(ArchiveDeviceDataAction._arguments_ok({'data_block_slug': 'b--0000-0000-0000-0001'})) action = ArchiveDeviceDataAction() self.assertIsNotNone(action) with self.assertRaises(WorkerActionHardError): action.execute(arguments={'foobar': 5}) def testDataBlockActionNoDataBlock(self): action = ArchiveDeviceDataAction() self.assertIsNotNone(action) with self.assertRaises(WorkerActionHardError): action.execute({'data_block_slug': 'b--0000-0000-0000-0001'}) def testDataBlockActionMigrateProperties(self): db1 = DataBlock.objects.create(org=self.o1, title='test', device=self.pd1, block=1, created_by=self.u1) GenericProperty.objects.create_int_property(slug=self.pd1.slug, created_by=self.u1, name='prop1', value=4) GenericProperty.objects.create_str_property(slug=self.pd1.slug, created_by=self.u1, name='prop2', value='4') GenericProperty.objects.create_bool_property(slug=self.pd1.slug, created_by=self.u1, is_system=True, name='@prop3', value=True) self.assertEqual(GenericProperty.objects.object_properties_qs(self.pd1).count(), 3) self.assertEqual(GenericProperty.objects.object_properties_qs(db1).count(), 0) action = ArchiveDeviceDataAction() action._block = db1 action._device = self.pd1 action._migrate_properties() self.assertEqual(GenericProperty.objects.object_properties_qs(self.pd1).count(), 1) self.assertEqual(GenericProperty.objects.object_properties_qs(db1).count(), 3) def testDataBlockActionMigrateStreams(self): device = Device.objects.create_device(project=self.p1, label='d3', template=self.dt1, created_by=self.u2) block = DataBlock.objects.create(org=self.o1, title='test', device=device, block=1, created_by=self.u1) stream1 = StreamId.objects.create_stream( project=self.p1, variable=self.v1, device=device, created_by=self.u2 ) stream2 = StreamId.objects.create_stream( project=self.p1, variable=self.v2, device=device, created_by=self.u2 ) var3 = StreamVariable.objects.create_variable( name='Var C', project=self.p1, created_by=self.u2, lid=3, ) stream3 = StreamId.objects.create_stream( project=self.p1, variable=var3, device=device, created_by=self.u2 ) self.assertEqual(self.p1.variables.count(), 3) count0 = StreamId.objects.count() self.assertEqual(device.streamids.count(), 3) action = ArchiveDeviceDataAction() action._block = block action._device = device action._clone_streams() self.assertEqual(StreamId.objects.count(), count0 + 3) def testDataBlockActionMigrateStreamData(self): device = Device.objects.create_device(project=self.p1, label='d3', template=self.dt1, created_by=self.u2) block = DataBlock.objects.create(org=self.o1, title='test', device=device, block=1, created_by=self.u1) stream1 = StreamId.objects.create_stream( project=self.p1, variable=self.v1, device=device, created_by=self.u2 ) stream2 = StreamId.objects.create_stream( project=self.p1, variable=self.v2, device=device, created_by=self.u2 ) StreamData.objects.create( stream_slug=stream1.slug, type='ITR', timestamp=timezone.now(), streamer_local_id=5, int_value=5 ) StreamData.objects.create( stream_slug=stream1.slug, type='ITR', timestamp=timezone.now(), streamer_local_id=6, int_value=6 ) StreamData.objects.create( stream_slug=stream2.slug, type='ITR', timestamp=timezone.now(), streamer_local_id=7, int_value=7 ) StreamData.objects.create( stream_slug=stream1.slug, type='ITR', timestamp=timezone.now(), streamer_local_id=8, int_value=8 ) StreamData.objects.create( stream_slug=stream2.slug, type='ITR', timestamp=timezone.now(), streamer_local_id=9, int_value=9 ) action = ArchiveDeviceDataAction() action._block = block action._device = device action._clone_streams() self.assertEqual(StreamData.objects.filter(stream_slug=stream1.slug).count(), 3) self.assertEqual(StreamData.objects.filter(stream_slug=stream2.slug).count(), 2) action._migrate_stream_data() self.assertEqual(StreamData.objects.filter(stream_slug=stream1.slug).count(), 0) self.assertEqual(StreamData.objects.filter(stream_slug=stream2.slug).count(), 0) new_stream1 = block.get_stream_slug_for(self.v1.formatted_lid) self.assertEqual(StreamData.objects.filter(stream_slug=new_stream1).count(), 3) new_stream2 = block.get_stream_slug_for(self.v2.formatted_lid) self.assertEqual(StreamData.objects.filter(stream_slug=new_stream2).count(), 2) self.assertEqual(StreamData.objects.filter(stream_slug=new_stream1).first().project_slug, '') def testDataBlockActionMigrateStreamEvents(self): device = Device.objects.create_device(project=self.p1, label='d3', template=self.dt1, created_by=self.u2) block = DataBlock.objects.create(org=self.o1, title='test', device=device, block=1, created_by=self.u1) stream1 = StreamId.objects.create_stream( project=self.p1, variable=self.v1, device=device, created_by=self.u2 ) stream2 = StreamId.objects.create_stream( project=self.p1, variable=self.v2, device=device, created_by=self.u2 ) StreamEventData.objects.create( timestamp=timezone.now(), device_timestamp=10, stream_slug=stream1.slug, streamer_local_id=2 ) StreamEventData.objects.create( timestamp=timezone.now(), device_timestamp=10, stream_slug=stream1.slug, streamer_local_id=3 ) StreamEventData.objects.create( timestamp=timezone.now(), device_timestamp=10, stream_slug=stream2.slug, streamer_local_id=4 ) action = ArchiveDeviceDataAction() action._block = block action._device = device action._clone_streams() self.assertEqual(StreamEventData.objects.filter(stream_slug=stream1.slug).count(), 2) self.assertEqual(StreamEventData.objects.filter(stream_slug=stream2.slug).count(), 1) action._migrate_stream_events() self.assertEqual(StreamEventData.objects.filter(stream_slug=stream1.slug).count(), 0) self.assertEqual(StreamEventData.objects.filter(stream_slug=stream2.slug).count(), 0) new_stream1 = block.get_stream_slug_for(self.v1.formatted_lid) self.assertEqual(StreamEventData.objects.filter(stream_slug=new_stream1).count(), 2) new_stream2 = block.get_stream_slug_for(self.v2.formatted_lid) self.assertEqual(StreamEventData.objects.filter(stream_slug=new_stream2).count(), 1) def testDataBlockActionMigrateStreamNote(self): device = Device.objects.create_device(project=self.p1, label='d3', template=self.dt1, created_by=self.u2) block = DataBlock.objects.create(org=self.o1, title='test', device=device, block=1, created_by=self.u1) stream1 = StreamId.objects.create_stream( project=self.p1, variable=self.v1, device=device, created_by=self.u2 ) StreamId.objects.create_stream( project=self.p1, variable=self.v2, device=device, created_by=self.u2 ) StreamNote.objects.create( target_slug=device.slug, timestamp=timezone.now(), created_by=self.u2, note='System 1', type='sc' ) StreamNote.objects.create( target_slug=stream1.slug, timestamp=timezone.now(), created_by=self.u2, note='Note 2' ) StreamNote.objects.create( target_slug=stream1.slug, timestamp=timezone.now(), created_by=self.u1, note='Note 3' ) StreamNote.objects.create( target_slug=device.slug, timestamp=timezone.now(), created_by=self.u2, note='Note 4' ) self.assertEqual(StreamNote.objects.count(), 4) action = ArchiveDeviceDataAction() action._block = block action._device = device action._clone_streams() self.assertEqual(StreamNote.objects.filter(target_slug=stream1.slug).count(), 2) self.assertEqual(StreamNote.objects.filter(target_slug=device.slug).count(), 2) action._migrate_stream_notes() self.assertEqual(StreamNote.objects.filter(target_slug=stream1.slug).count(), 0) self.assertEqual(StreamNote.objects.filter(target_slug=device.slug).count(), 1) new_stream1 = block.get_stream_slug_for(self.v1.formatted_lid) self.assertEqual(StreamNote.objects.count(), 4) self.assertEqual(StreamNote.objects.filter(target_slug=new_stream1).count(), 2) self.assertEqual(StreamNote.objects.filter(target_slug=block.slug).count(), 1) def testDataBlockActionMigrateDeviceLocations(self): device = Device.objects.create_device(project=self.p1, label='d3', template=self.dt1, created_by=self.u2) block = DataBlock.objects.create(org=self.o1, title='test', device=device, block=1, created_by=self.u1) DeviceLocation.objects.create( timestamp=timezone.now(), target_slug=device.slug, lat=12.1234, lon=10.000, user=self.u2 ) DeviceLocation.objects.create( timestamp=timezone.now(), target_slug=device.slug, lat=12.1234, lon=11.000, user=self.u2 ) DeviceLocation.objects.create( timestamp=timezone.now(), target_slug=device.slug, lat=12.1234, lon=12.000, user=self.u2 ) self.assertEqual(DeviceLocation.objects.count(), 3) action = ArchiveDeviceDataAction() action._block = block action._device = device self.assertEqual(DeviceLocation.objects.filter(target_slug=device.slug).count(), 3) action._migrate_device_locations() self.assertEqual(DeviceLocation.objects.filter(target_slug=device.slug).count(), 0) self.assertEqual(DeviceLocation.objects.filter(target_slug=block.slug).count(), 3) def testDataBlockActionMigrateReports(self): db1 = DataBlock.objects.create(org=self.pd1.org, title='test', device=self.pd1, block=1, created_by=self.u2) GeneratedUserReport.objects.create( org=self.pd1.org, label='My report 1', source_ref=self.pd1.slug, created_by=self.u2 ) GeneratedUserReport.objects.create( org=self.pd1.org, label='My report 2', source_ref=self.pd1.slug, created_by=self.u2 ) self.assertEqual(GeneratedUserReport.objects.filter(source_ref=self.pd1.slug).count(), 2) self.assertEqual(GeneratedUserReport.objects.filter(source_ref=db1.slug).count(), 0) action = ArchiveDeviceDataAction() action._block = db1 action._device = self.pd1 action._migrate_reports() self.assertEqual(GeneratedUserReport.objects.filter(source_ref=self.pd1.slug).count(), 0) self.assertEqual(GeneratedUserReport.objects.filter(source_ref=db1.slug).count(), 2) def testDataBlockActionTestAll(self): sg = SensorGraph.objects.create(name='SG 1', major_version=1, created_by=self.u1, org=self.o1) device = Device.objects.create_device(project=self.p1, label='d3', template=self.dt1, sg=sg, created_by=self.u2) block = DataBlock.objects.create(org=self.o1, title='test', device=device, block=1, created_by=self.u1) stream1 = StreamId.objects.create_stream( project=self.p1, variable=self.v1, device=device, created_by=self.u2 ) stream2 = StreamId.objects.create_stream( project=self.p1, variable=self.v2, device=device, created_by=self.u2 ) GenericProperty.objects.create_int_property(slug=device.slug, created_by=self.u1, name='prop1', value=4) GenericProperty.objects.create_str_property(slug=device.slug, created_by=self.u1, name='prop2', value='4') GenericProperty.objects.create_bool_property(slug=device.slug, created_by=self.u1, name='prop3', value=True) StreamEventData.objects.create( timestamp=timezone.now(), device_timestamp=10, stream_slug=stream1.slug, streamer_local_id=2 ) StreamEventData.objects.create( timestamp=timezone.now(), device_timestamp=10, stream_slug=stream1.slug, streamer_local_id=3 ) StreamEventData.objects.create( timestamp=timezone.now(), device_timestamp=10, stream_slug=stream2.slug, streamer_local_id=4 ) StreamData.objects.create( stream_slug=stream1.slug, type='ITR', timestamp=timezone.now(), streamer_local_id=5, int_value=5 ) StreamData.objects.create( stream_slug=stream1.slug, type='ITR', timestamp=timezone.now(), streamer_local_id=6, int_value=6 ) StreamData.objects.create( stream_slug=stream2.slug, type='ITR', timestamp=timezone.now(), streamer_local_id=7, int_value=7 ) StreamData.objects.create( stream_slug=stream1.slug, type='ITR', timestamp=timezone.now(), streamer_local_id=8, int_value=8 ) StreamData.objects.create( stream_slug=stream2.slug, type='ITR', timestamp=timezone.now(), streamer_local_id=9, int_value=9 ) StreamNote.objects.create( target_slug=stream1.slug, timestamp=timezone.now(), created_by=self.u2, note='Note 1' ) StreamNote.objects.create( target_slug=stream1.slug, timestamp=timezone.now(), created_by=self.u2, note='Note 2' ) StreamNote.objects.create( target_slug=stream1.slug, timestamp=timezone.now(), created_by=self.u2, note='Note 3' ) StreamNote.objects.create( target_slug=device.slug, timestamp=timezone.now(), created_by=self.u1, note='Note 4' ) self.assertEqual(GenericProperty.objects.object_properties_qs(device).count(), 3) self.assertEqual(GenericProperty.objects.object_properties_qs(block).count(), 0) self.assertEqual(device.streamids.count(), 2) self.assertEqual(StreamData.objects.filter(stream_slug=stream1.slug).count(), 3) self.assertEqual(StreamData.objects.filter(stream_slug=stream2.slug).count(), 2) self.assertEqual(StreamEventData.objects.filter(stream_slug=stream1.slug).count(), 2) self.assertEqual(StreamEventData.objects.filter(stream_slug=stream2.slug).count(), 1) self.assertEqual(StreamNote.objects.filter(target_slug=stream1.slug).count(), 3) self.assertEqual(StreamNote.objects.filter(target_slug=device.slug).count(), 1) action = ArchiveDeviceDataAction() action._block = block action._device = device action.execute(arguments={'data_block_slug': block.slug}) self.assertEqual(GenericProperty.objects.object_properties_qs(device).count(), 0) self.assertEqual(GenericProperty.objects.object_properties_qs(block).count(), 3) self.assertEqual(device.streamids.count(), 4) self.assertEqual(StreamData.objects.filter(stream_slug=stream1.slug).count(), 0) self.assertEqual(StreamData.objects.filter(stream_slug=stream2.slug).count(), 0) self.assertEqual(StreamEventData.objects.filter(stream_slug=stream1.slug).count(), 0) self.assertEqual(StreamEventData.objects.filter(stream_slug=stream2.slug).count(), 0) self.assertEqual(StreamNote.objects.filter(target_slug=stream1.slug).count(), 0) self.assertEqual(StreamNote.objects.filter(target_slug=device.slug).count(), 1) new_stream1 = block.get_stream_slug_for(self.v1.formatted_lid) self.assertEqual(StreamId.objects.filter(slug=new_stream1).count(), 1) new_stream2 = block.get_stream_slug_for(self.v2.formatted_lid) self.assertEqual(StreamId.objects.filter(slug=new_stream2).count(), 1) self.assertEqual(StreamData.objects.filter(stream_slug=new_stream1).count(), 3) self.assertEqual(StreamEventData.objects.filter(stream_slug=new_stream1).count(), 2) self.assertEqual(StreamNote.objects.filter(target_slug=new_stream1).count(), 3) self.assertEqual(StreamData.objects.filter(stream_slug=new_stream2).count(), 2) self.assertEqual(StreamEventData.objects.filter(stream_slug=new_stream2).count(), 1) block = DataBlock.objects.first() self.assertIsNotNone(block.completed_on) self.assertIsNotNone(block.sg) self.assertEqual(block.sg, sg) def testDataBlockActionTestDataMask(self): sg = SensorGraph.objects.create(name='SG 1', major_version=1, created_by=self.u1, org=self.o1) device = Device.objects.create_device(project=self.p1, label='d3', template=self.dt1, sg=sg, created_by=self.u2) block = DataBlock.objects.create(org=self.o1, title='test', device=device, block=1, created_by=self.u1) stream1 = StreamId.objects.create_stream( project=self.p1, variable=self.v1, device=device, created_by=self.u2 ) dt1 = dateutil.parser.parse('2017-09-28T10:00:00Z') dt2 = dateutil.parser.parse('2017-09-28T11:00:00Z') dt3 = dateutil.parser.parse('2017-09-30T10:00:00Z') dt4 = dateutil.parser.parse('2017-09-30T10:10:00Z') dt5 = dateutil.parser.parse('2017-09-30T10:20:00Z') set_data_mask(device, '2017-09-28T10:30:00Z', '2017-09-30T10:15:00Z', [], [], self.u1) StreamData.objects.create( stream_slug=stream1.slug, type='Num', timestamp=dt1, int_value=5 ) StreamData.objects.create( stream_slug=stream1.slug, type='Num', timestamp=dt2, int_value=6 ) StreamData.objects.create( stream_slug=stream1.slug, type='Num', timestamp=dt3, int_value=7 ) StreamData.objects.create( stream_slug=stream1.slug, type='Num', timestamp=dt4, int_value=8 ) StreamData.objects.create( stream_slug=stream1.slug, type='Num', timestamp=dt5, int_value=9 ) self.assertEqual(device.streamids.count(), 1) data_mask_event = get_data_mask_event(device) mask_slug = data_mask_event.stream_slug self.assertEqual(StreamData.objects.filter(stream_slug=stream1.slug).count(), 5) self.assertEqual(StreamEventData.objects.filter(stream_slug=mask_slug).count(), 1) action = ArchiveDeviceDataAction() action._block = block action._device = device action.execute(arguments={'data_block_slug': block.slug}) self.assertEqual(device.streamids.count(), 2) self.assertEqual(StreamData.objects.filter(stream_slug=stream1.slug).count(), 0) self.assertEqual(StreamEventData.objects.filter(stream_slug=mask_slug).count(), 0) data_mask_event = get_data_mask_event(block) self.assertEqual(StreamEventData.objects.filter(stream_slug=data_mask_event.stream_slug).count(), 1)
1.914063
2
nova/policies/servers.py
maya2250/nova
0
7284
<reponame>maya2250/nova<gh_stars>0 # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from oslo_policy import policy from nova.policies import base RULE_AOO = base.RULE_ADMIN_OR_OWNER SERVERS = 'os_compute_api:servers:%s' NETWORK_ATTACH_EXTERNAL = 'network:attach_external_network' ZERO_DISK_FLAVOR = SERVERS % 'create:zero_disk_flavor' REQUESTED_DESTINATION = 'compute:servers:create:requested_destination' CROSS_CELL_RESIZE = 'compute:servers:resize:cross_cell' rules = [ policy.DocumentedRuleDefault( SERVERS % 'index', RULE_AOO, "List all servers", [ { 'method': 'GET', 'path': '/servers' } ]), policy.DocumentedRuleDefault( SERVERS % 'detail', RULE_AOO, "List all servers with detailed information", [ { 'method': 'GET', 'path': '/servers/detail' } ]), policy.DocumentedRuleDefault( SERVERS % 'index:get_all_tenants', base.RULE_ADMIN_API, "List all servers for all projects", [ { 'method': 'GET', 'path': '/servers' } ]), policy.DocumentedRuleDefault( SERVERS % 'detail:get_all_tenants', base.RULE_ADMIN_API, "List all servers with detailed information for all projects", [ { 'method': 'GET', 'path': '/servers/detail' } ]), policy.DocumentedRuleDefault( SERVERS % 'allow_all_filters', base.RULE_ADMIN_API, "Allow all filters when listing servers", [ { 'method': 'GET', 'path': '/servers' }, { 'method': 'GET', 'path': '/servers/detail' } ]), policy.DocumentedRuleDefault( SERVERS % 'show', RULE_AOO, "Show a server", [ { 'method': 'GET', 'path': '/servers/{server_id}' } ]), # the details in host_status are pretty sensitive, only admins # should do that by default. policy.DocumentedRuleDefault( SERVERS % 'show:host_status', base.RULE_ADMIN_API, """ Show a server with additional host status information. This means host_status will be shown irrespective of status value. If showing only host_status UNKNOWN is desired, use the ``os_compute_api:servers:show:host_status:unknown-only`` policy rule. Microvision 2.75 added the ``host_status`` attribute in the ``PUT /servers/{server_id}`` and ``POST /servers/{server_id}/action (rebuild)`` API responses which are also controlled by this policy rule, like the ``GET /servers*`` APIs. """, [ { 'method': 'GET', 'path': '/servers/{server_id}' }, { 'method': 'GET', 'path': '/servers/detail' }, { 'method': 'PUT', 'path': '/servers/{server_id}' }, { 'method': 'POST', 'path': '/servers/{server_id}/action (rebuild)' } ]), policy.DocumentedRuleDefault( SERVERS % 'show:host_status:unknown-only', base.RULE_ADMIN_API, """ Show a server with additional host status information, only if host status is UNKNOWN. This policy rule will only be enforced when the ``os_compute_api:servers:show:host_status`` policy rule does not pass for the request. An example policy configuration could be where the ``os_compute_api:servers:show:host_status`` rule is set to allow admin-only and the ``os_compute_api:servers:show:host_status:unknown-only`` rule is set to allow everyone. """, [ { 'method': 'GET', 'path': '/servers/{server_id}' }, { 'method': 'GET', 'path': '/servers/detail' } ]), policy.DocumentedRuleDefault( SERVERS % 'create', RULE_AOO, "Create a server", [ { 'method': 'POST', 'path': '/servers' } ]), policy.DocumentedRuleDefault( SERVERS % 'create:forced_host', base.RULE_ADMIN_API, """ Create a server on the specified host and/or node. In this case, the server is forced to launch on the specified host and/or node by bypassing the scheduler filters unlike the ``compute:servers:create:requested_destination`` rule. """, [ { 'method': 'POST', 'path': '/servers' } ]), policy.DocumentedRuleDefault( REQUESTED_DESTINATION, base.RULE_ADMIN_API, """ Create a server on the requested compute service host and/or hypervisor_hostname. In this case, the requested host and/or hypervisor_hostname is validated by the scheduler filters unlike the ``os_compute_api:servers:create:forced_host`` rule. """, [ { 'method': 'POST', 'path': '/servers' } ]), policy.DocumentedRuleDefault( SERVERS % 'create:attach_volume', RULE_AOO, "Create a server with the requested volume attached to it", [ { 'method': 'POST', 'path': '/servers' } ]), policy.DocumentedRuleDefault( SERVERS % 'create:attach_network', RULE_AOO, "Create a server with the requested network attached to it", [ { 'method': 'POST', 'path': '/servers' } ]), policy.DocumentedRuleDefault( SERVERS % 'create:trusted_certs', RULE_AOO, "Create a server with trusted image certificate IDs", [ { 'method': 'POST', 'path': '/servers' } ]), policy.DocumentedRuleDefault( ZERO_DISK_FLAVOR, base.RULE_ADMIN_API, """ This rule controls the compute API validation behavior of creating a server with a flavor that has 0 disk, indicating the server should be volume-backed. For a flavor with disk=0, the root disk will be set to exactly the size of the image used to deploy the instance. However, in this case the filter_scheduler cannot select the compute host based on the virtual image size. Therefore, 0 should only be used for volume booted instances or for testing purposes. WARNING: It is a potential security exposure to enable this policy rule if users can upload their own images since repeated attempts to create a disk=0 flavor instance with a large image can exhaust the local disk of the compute (or shared storage cluster). See bug https://bugs.launchpad.net/nova/+bug/1739646 for details. """, [ { 'method': 'POST', 'path': '/servers' } ]), policy.DocumentedRuleDefault( NETWORK_ATTACH_EXTERNAL, 'is_admin:True', "Attach an unshared external network to a server", [ # Create a server with a requested network or port. { 'method': 'POST', 'path': '/servers' }, # Attach a network or port to an existing server. { 'method': 'POST', 'path': '/servers/{server_id}/os-interface' } ]), policy.DocumentedRuleDefault( SERVERS % 'delete', RULE_AOO, "Delete a server", [ { 'method': 'DELETE', 'path': '/servers/{server_id}' } ]), policy.DocumentedRuleDefault( SERVERS % 'update', RULE_AOO, "Update a server", [ { 'method': 'PUT', 'path': '/servers/{server_id}' } ]), policy.DocumentedRuleDefault( SERVERS % 'confirm_resize', RULE_AOO, "Confirm a server resize", [ { 'method': 'POST', 'path': '/servers/{server_id}/action (confirmResize)' } ]), policy.DocumentedRuleDefault( SERVERS % 'revert_resize', RULE_AOO, "Revert a server resize", [ { 'method': 'POST', 'path': '/servers/{server_id}/action (revertResize)' } ]), policy.DocumentedRuleDefault( SERVERS % 'reboot', RULE_AOO, "Reboot a server", [ { 'method': 'POST', 'path': '/servers/{server_id}/action (reboot)' } ]), policy.DocumentedRuleDefault( SERVERS % 'resize', RULE_AOO, "Resize a server", [ { 'method': 'POST', 'path': '/servers/{server_id}/action (resize)' } ]), policy.DocumentedRuleDefault( CROSS_CELL_RESIZE, base.RULE_NOBODY, "Resize a server across cells. By default, this is disabled for all " "users and recommended to be tested in a deployment for admin users " "before opening it up to non-admin users. Resizing within a cell is " "the default preferred behavior even if this is enabled. ", [ { 'method': 'POST', 'path': '/servers/{server_id}/action (resize)' } ]), policy.DocumentedRuleDefault( SERVERS % 'rebuild', RULE_AOO, "Rebuild a server", [ { 'method': 'POST', 'path': '/servers/{server_id}/action (rebuild)' } ]), policy.DocumentedRuleDefault( SERVERS % 'rebuild:trusted_certs', RULE_AOO, "Rebuild a server with trusted image certificate IDs", [ { 'method': 'POST', 'path': '/servers/{server_id}/action (rebuild)' } ]), policy.DocumentedRuleDefault( SERVERS % 'create_image', RULE_AOO, "Create an image from a server", [ { 'method': 'POST', 'path': '/servers/{server_id}/action (createImage)' } ]), policy.DocumentedRuleDefault( SERVERS % 'create_image:allow_volume_backed', RULE_AOO, "Create an image from a volume backed server", [ { 'method': 'POST', 'path': '/servers/{server_id}/action (createImage)' } ]), policy.DocumentedRuleDefault( SERVERS % 'start', RULE_AOO, "Start a server", [ { 'method': 'POST', 'path': '/servers/{server_id}/action (os-start)' } ]), policy.DocumentedRuleDefault( SERVERS % 'stop', RULE_AOO, "Stop a server", [ { 'method': 'POST', 'path': '/servers/{server_id}/action (os-stop)' } ]), policy.DocumentedRuleDefault( SERVERS % 'trigger_crash_dump', RULE_AOO, "Trigger crash dump in a server", [ { 'method': 'POST', 'path': '/servers/{server_id}/action (trigger_crash_dump)' } ]), ] def list_rules(): return rules
1.585938
2
set-env.py
sajaldebnath/vrops-custom-group-creation
1
7285
<gh_stars>1-10 # !/usr/bin python """ # # set-env - a small python program to setup the configuration environment for data-push.py # data-push.py contains the python program to push attribute values to vROps # Author <NAME> <<EMAIL>> # """ # Importing the required modules import json import base64 import os,sys # Getting the absolute path from where the script is being run def get_script_path(): return os.path.dirname(os.path.realpath(sys.argv[0])) # Getting the inputs from user def get_the_inputs(): adapterkind = raw_input("Please enter Adapter Kind: ") resourceKind = raw_input("Please enter Resource Kind: ") servername = raw_input("Enter enter Server IP/FQDN: ") serveruid = raw_input("Please enter user id: ") serverpasswd = raw_input("Please enter vRops password: ") encryptedvar = base64.b64encode(serverpasswd) data = {} data["adapterKind"] = adapterkind data["resourceKind"] = resourceKind serverdetails = {} serverdetails["name"] = servername serverdetails["userid"] = serveruid serverdetails["password"] = encrypted<PASSWORD> data["server"] = serverdetails return data # Getting the path where env.json file should be kept path = get_script_path() fullpath = path+"/"+"env.json" # Getting the data for the env.json file final_data = get_the_inputs() # Saving the data to env.json file with open(fullpath, 'w') as outfile: json.dump(final_data, outfile, sort_keys = True, indent = 2, separators=(',', ':'), ensure_ascii=False)
2.578125
3
week02/day08.py
gtadeus/LeetCodeChallenge2009
0
7286
<filename>week02/day08.py import unittest # Definition for a binary tree node. class TreeNode: def __init__(self, val=0, left=None, right=None): self.val = val self.left = left self.right = right class Solution: def sumRootToLeaf(self, root: TreeNode) -> int: m = self.c(root) r=0 for n in m: if n != 0: if n== 1: r+=1 else: r+=int(n,2) return r def c(self, l): if l.left is None and l.right is None: return [l.val] else: p, p2 = [], [] if not l.left is None: p=self.c(l.left) if not l.right is None: p2=self.c(l.right) v=f'{l.val}' #v = l.val << 1 for i, x in enumerate(p): if not l.left is None: p[i]=f'{v}{x}' for i, x in enumerate(p2): if not l.right is None: p2[i]=f'{v}{x}' return p+p2 class TestDay08(unittest.TestCase): S = Solution() input_ = [ TreeNode(1, TreeNode(0, TreeNode(0,None,None), TreeNode(1,None,None)), TreeNode(1, TreeNode(0,None,None), TreeNode(1,None,None))) ] solutions = [22] def testSumRoot(self): for indx, val in enumerate(self.input_): self.assertEqual(self.solutions[indx], self.S.sumRootToLeaf(val)) if __name__ == "__main__": unittest.main()
3.828125
4
config.py
tiuD/cross-prom
0
7287
<filename>config.py TOKEN = "<KEY>" CHAT_ID = [957539786] # e.g. [1234567, 2233445, 3466123...]
1.109375
1
buchschloss/gui2/__init__.py
mik2k2/buchschloss
1
7288
"""entry point""" from . import main start = main.app.launch
1.101563
1
src/tests/test_stop_at_task.py
francesco-p/FACIL
243
7289
<filename>src/tests/test_stop_at_task.py from tests import run_main_and_assert FAST_LOCAL_TEST_ARGS = "--exp-name local_test --datasets mnist" \ " --network LeNet --num-tasks 5 --seed 1 --batch-size 32" \ " --nepochs 2 --num-workers 0 --stop-at-task 3" def test_finetuning_stop_at_task(): args_line = FAST_LOCAL_TEST_ARGS args_line += " --approach finetuning" run_main_and_assert(args_line)
1.953125
2
Python/contains-duplicate.py
shreyventure/LeetCode-Solutions
388
7290
<gh_stars>100-1000 # Autor: <NAME> (@optider) # Github Profile: https://github.com/Optider/ # Problem Link: https://leetcode.com/problems/contains-duplicate/ class Solution: def containsDuplicate(self, nums: List[int]) -> bool: count = {} for n in nums : if count.get(n) != None : return True count[n] = 1 return False
2.796875
3
build/android/gyp/dex.py
google-ar/chromium
2,151
7291
#!/usr/bin/env python # # Copyright 2013 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import json import logging import optparse import os import sys import tempfile import zipfile from util import build_utils def _CheckFilePathEndsWithJar(parser, file_path): if not file_path.endswith(".jar"): # dx ignores non .jar files. parser.error("%s does not end in .jar" % file_path) def _CheckFilePathsEndWithJar(parser, file_paths): for file_path in file_paths: _CheckFilePathEndsWithJar(parser, file_path) def _RemoveUnwantedFilesFromZip(dex_path): iz = zipfile.ZipFile(dex_path, 'r') tmp_dex_path = '%s.tmp.zip' % dex_path oz = zipfile.ZipFile(tmp_dex_path, 'w', zipfile.ZIP_DEFLATED) for i in iz.namelist(): if i.endswith('.dex'): oz.writestr(i, iz.read(i)) os.remove(dex_path) os.rename(tmp_dex_path, dex_path) def _ParseArgs(args): args = build_utils.ExpandFileArgs(args) parser = optparse.OptionParser() build_utils.AddDepfileOption(parser) parser.add_option('--android-sdk-tools', help='Android sdk build tools directory.') parser.add_option('--output-directory', default=os.getcwd(), help='Path to the output build directory.') parser.add_option('--dex-path', help='Dex output path.') parser.add_option('--configuration-name', help='The build CONFIGURATION_NAME.') parser.add_option('--proguard-enabled', help='"true" if proguard is enabled.') parser.add_option('--debug-build-proguard-enabled', help='"true" if proguard is enabled for debug build.') parser.add_option('--proguard-enabled-input-path', help=('Path to dex in Release mode when proguard ' 'is enabled.')) parser.add_option('--no-locals', default='0', help='Exclude locals list from the dex file.') parser.add_option('--incremental', action='store_true', help='Enable incremental builds when possible.') parser.add_option('--inputs', help='A list of additional input paths.') parser.add_option('--excluded-paths', help='A list of paths to exclude from the dex file.') parser.add_option('--main-dex-list-path', help='A file containing a list of the classes to ' 'include in the main dex.') parser.add_option('--multidex-configuration-path', help='A JSON file containing multidex build configuration.') parser.add_option('--multi-dex', default=False, action='store_true', help='Generate multiple dex files.') options, paths = parser.parse_args(args) required_options = ('android_sdk_tools',) build_utils.CheckOptions(options, parser, required=required_options) if options.multidex_configuration_path: with open(options.multidex_configuration_path) as multidex_config_file: multidex_config = json.loads(multidex_config_file.read()) options.multi_dex = multidex_config.get('enabled', False) if options.multi_dex and not options.main_dex_list_path: logging.warning('multidex cannot be enabled without --main-dex-list-path') options.multi_dex = False elif options.main_dex_list_path and not options.multi_dex: logging.warning('--main-dex-list-path is unused if multidex is not enabled') if options.inputs: options.inputs = build_utils.ParseGnList(options.inputs) _CheckFilePathsEndWithJar(parser, options.inputs) if options.excluded_paths: options.excluded_paths = build_utils.ParseGnList(options.excluded_paths) if options.proguard_enabled_input_path: _CheckFilePathEndsWithJar(parser, options.proguard_enabled_input_path) _CheckFilePathsEndWithJar(parser, paths) return options, paths def _AllSubpathsAreClassFiles(paths, changes): for path in paths: if any(not p.endswith('.class') for p in changes.IterChangedSubpaths(path)): return False return True def _DexWasEmpty(paths, changes): for path in paths: if any(p.endswith('.class') for p in changes.old_metadata.IterSubpaths(path)): return False return True def _IterAllClassFiles(changes): for path in changes.IterAllPaths(): for subpath in changes.IterAllSubpaths(path): if subpath.endswith('.class'): yield path def _MightHitDxBug(changes): # We've seen dx --incremental fail for small libraries. It's unlikely a # speed-up anyways in this case. num_classes = sum(1 for x in _IterAllClassFiles(changes)) if num_classes < 10: return True # We've also been able to consistently produce a failure by adding an empty # line to the top of the first .java file of a library. # https://crbug.com/617935 first_file = next(_IterAllClassFiles(changes)) for path in changes.IterChangedPaths(): for subpath in changes.IterChangedSubpaths(path): if first_file == subpath: return True return False def _RunDx(changes, options, dex_cmd, paths): with build_utils.TempDir() as classes_temp_dir: # --multi-dex is incompatible with --incremental. if options.multi_dex: dex_cmd.append('--main-dex-list=%s' % options.main_dex_list_path) else: # --incremental tells dx to merge all newly dex'ed .class files with # what that already exist in the output dex file (existing classes are # replaced). # Use --incremental when .class files are added or modified, but not when # any are removed (since it won't know to remove them). if (options.incremental and not _MightHitDxBug(changes) and changes.AddedOrModifiedOnly()): changed_inputs = set(changes.IterChangedPaths()) changed_paths = [p for p in paths if p in changed_inputs] if not changed_paths: return # When merging in other dex files, there's no easy way to know if # classes were removed from them. if (_AllSubpathsAreClassFiles(changed_paths, changes) and not _DexWasEmpty(changed_paths, changes)): dex_cmd.append('--incremental') for path in changed_paths: changed_subpaths = set(changes.IterChangedSubpaths(path)) # Note: |changed_subpaths| may be empty if nothing changed. if changed_subpaths: build_utils.ExtractAll(path, path=classes_temp_dir, predicate=lambda p: p in changed_subpaths) paths = [classes_temp_dir] dex_cmd += paths build_utils.CheckOutput(dex_cmd, print_stderr=False) if options.dex_path.endswith('.zip'): _RemoveUnwantedFilesFromZip(options.dex_path) def _OnStaleMd5(changes, options, dex_cmd, paths): _RunDx(changes, options, dex_cmd, paths) build_utils.WriteJson( [os.path.relpath(p, options.output_directory) for p in paths], options.dex_path + '.inputs') def main(args): options, paths = _ParseArgs(args) if ((options.proguard_enabled == 'true' and options.configuration_name == 'Release') or (options.debug_build_proguard_enabled == 'true' and options.configuration_name == 'Debug')): paths = [options.proguard_enabled_input_path] if options.inputs: paths += options.inputs if options.excluded_paths: # Excluded paths are relative to the output directory. exclude_paths = options.excluded_paths paths = [p for p in paths if not os.path.relpath(p, options.output_directory) in exclude_paths] input_paths = list(paths) dx_binary = os.path.join(options.android_sdk_tools, 'dx') # See http://crbug.com/272064 for context on --force-jumbo. # See https://github.com/android/platform_dalvik/commit/dd140a22d for # --num-threads. # See http://crbug.com/658782 for why -JXmx2G was added. dex_cmd = [dx_binary, '-JXmx2G', '--num-threads=8', '--dex', '--force-jumbo', '--output', options.dex_path] if options.no_locals != '0': dex_cmd.append('--no-locals') if options.multi_dex: input_paths.append(options.main_dex_list_path) dex_cmd += [ '--multi-dex', '--minimal-main-dex', ] output_paths = [ options.dex_path, options.dex_path + '.inputs', ] # An escape hatch to be able to check if incremental dexing is causing # problems. force = int(os.environ.get('DISABLE_INCREMENTAL_DX', 0)) build_utils.CallAndWriteDepfileIfStale( lambda changes: _OnStaleMd5(changes, options, dex_cmd, paths), options, input_paths=input_paths, input_strings=dex_cmd, output_paths=output_paths, force=force, pass_changes=True) if __name__ == '__main__': sys.exit(main(sys.argv[1:]))
2.140625
2
apps/views.py
Edwardhgj/meiduo
0
7292
<reponame>Edwardhgj/meiduo from django.shortcuts import render from django.http import HttpResponse from django.contrib.auth.hashers import check_password, make_password from django.views import View from utils.response_code import RET, error_map from rest_framework.views import APIView from rest_framework.response import Response from apps.serializers import * from datetime import datetime # Create your views here. # 展示登陆页 def login(request): return render(request, 'admin/login.html') # 提交登陆 import json class SubmitLogin(View): def post(self, request): #反射 mes = {} name = request.POST.get('name') passwd = request.POST.get('passwd') # print(name,passwd) if not all([name, passwd]): mes['code'] = RET.DATAERR mes['message'] = error_map[RET.DATAERR] else: # 查询name admin = Sadmin.objects.filter(username=name).first() print(admin.username) if admin: # 比较密码 if check_password(passwd, admin.password): # 登陆成功 request.session['admin_id'] = admin.id mes['code'] = RET.OK mes['message'] = error_map[RET.OK] else: mes['code'] = RET.PWDERR mes['message'] = error_map[RET.PWDERR] else: mes['code'] = RET.USERERR mes['message'] = error_map[RET.USERERR] print('sdfsdfssdf') return HttpResponse(json.dumps(mes)) # 注册 def reg(request): password = <PASSWORD>_password('<PASSWORD>') admin = Sadmin(username='admin', password=password, is_admin=True) admin.save() return HttpResponse('ok') # 展示首页 def index(request): admin_id = request.session.get('admin_id') if admin_id: admin = Sadmin.objects.get(id=admin_id) return render(request, 'admin/index.html', locals()) # 展示分类页面 def showCate(request): return render(request, "admin/cate_list.html") # 展示新闻页面 def showNews(request): return render(request, "admin/news_list.html") #展示焦点图页面 def bannersCate(request): return render(request, "admin/point_list.html") #展示标签页面 def tagCate(request): return render(request, "admin/tag_list.html") #展示商品页面 def goodsCate(request): return render(request, "admin/goods_list.html") #展示商品页面 def newsCate(request): return render(request, "admin/news_list.html") #展示焦点图页面 def bannersCate(request): return render(request, "admin/point_list.html") # 分类列表 class CateList(APIView): def get(self, request): cate = Cate.objects.all() c = CateModelSerializer(cate, many=True) mes = {} mes['code'] = RET.OK mes['cateList'] = c.data return Response(mes) #标签列表 class TagList(APIView): def get(self, request): tags = Tags.objects.all() c = TagModelSerializer(tags, many=True) mes = {} mes['code'] = RET.OK mes['tagList'] = c.data return Response(mes) # 商品列表 class GoodsList(APIView): def get(self, request): goods = Goods.objects.all() g = GoodsModelSerializer(goods, many=True) mes = {} mes['code'] = RET.OK mes['goodsList'] = g.data return Response(mes) #新闻列表 class NewsList(APIView): def get(self, request): news = News.objects.all() n=NewsModelSerializer(news,many=True) mes = {} mes['code'] = RET.OK mes['newsList'] = n.data return Response(mes) #焦点图列表 class BannersList(APIView): def get(self, request): banners = Banners.objects.all() n=BannersModelSerializer(banners,many=True) mes = {} mes['code'] = RET.OK mes['bannersList'] = n.data return Response(mes) # 添加分类页面 def addCate(request): # 获取一级分类 cate = Cate.objects.filter(pid=0).all() id=request.GET.get('id') try: #修改 one_cate=Cate.objects.get(id=id) print(one_cate) except: id="" return render(request, "admin/add_cate.html", locals()) # 添加标签页面 def addTag(request): # print('sdf') cate_list = Cate.objects.all() id=request.GET.get('id') try: #修改 one_tag=Tags.objects.get(id=id) except: id="" return render(request, "admin/add_tag.html", locals()) # 添加商品页面 def addGoods(request): # print('ceshi') # 获取所有商品 goods = Goods.objects.all() cates = Cate.objects.all() tag_list=Tags.objects.all() id=request.GET.get('id') print(id) try: one_goods=Goods.objects.get(id=id) # print(one_goods) except: id="" return render(request, "admin/add_goods.html", locals()) # 添加商品页面 def addNews(request): # print('ceshi') # 获取所有商品 news = News.objects.all() #修改时需要传id id=request.GET.get('id') print(id) try: one_news=News.objects.get(id=id) # print(one_goods) except: id="" return render(request, "admin/add_news.html", locals()) # 添加焦点图页面 def addBanners(request): # print('ceshi') # 获取所有商品 banners = Banners.objects.all() #修改时需要传id id=request.GET.get('id') print(id) try: one_banner=Banners.objects.get(id=id) # print(one_goods) except: id="" return render(request, "admin/add_banners.html", locals()) from day01.settings import UPLOADFILES import os # 上传图片方法 def upload_img(img): if img: f = open(os.path.join(UPLOADFILES, '', img.name),'wb') for chunk in img.chunks(): f.write(chunk) f.close() img=datetime.now().strftime("%Y-%m-%d-%H-%M-%S")+img.name return 'http://127.0.0.1:8000/static/upload/'+img return ' ' #富文本上传图片 def addnews_upload(request): files = request.FILES.get('file') path = upload_img(files) mes = { 'path': path, 'error': False } return HttpResponse(json.dumps(mes)) # 增加分类接口 class SubmitAddCate(APIView): def post(self, request): content = request.data print(content) # 上传图片 img = request.FILES.get('img') path=upload_img(img) content['picture']=path try: pid=int(content['pid']) except: pid=0 # 通过pic构造top_id,type if pid == 0: type = 1 top_id = 0 else: cate = Cate.objects.get(id=pid) type = cate.type + 1 if cate.top_id==0: top_id = cate.id else: top_id = cate.top_id print(top_id,pid,type) content['type'] = type content['top_id'] = top_id try: id=int(content['id']) except: id=0 if id>0: cc=Cate.objects.get(id=id) c=CateSerializer(cc,data=content) #修改 else: c = CateSerializer(data=content) mes={} if c.is_valid(): try: c.save() mes['code'] = RET.OK except: mes['code'] = RET.DATAERR else: print(c.errors) mes['code'] = RET.DATAERR return Response(mes) #删除分类 def deleteCate(request): id=request.GET.get('id') Cate.objects.get(id=id).delete() return render(request, "admin/cate_list.html") # 增加标签接口 class SubmitAddTag(APIView): def post(self, request): content = request.data print(content) try: id = int(content['id']) # 取出id print(id) print('di 到这了') except: id = 0 if id > 0: dd = Tags.objects.get(id=id) d = TagSerializer(dd, data=content) # 修改 else: d = TagSerializer(data=content) mes = {} if d.is_valid(): try: d.save() mes['code'] = RET.OK except: mes['code'] = RET.DATAERR else: mes['code'] = RET.DATAERR return Response(mes) #删除标签 def deleteTag(request): id=request.GET.get('id') Cate.objects.get(id=id).delete() return render(request, "admin/tag_list.html") # 增加商品接口 class SubmitAddGoods(APIView): def post(self, request): # print('eerw') content = request.data print(content) print(content['id']) print(content['cid_id']) # 上传图片 img = request.FILES.get('img') path=upload_img(img) content['picture']=path one_cate=Cate.objects.get(id=int(content['cid_id'])) print(one_cate) content['top_id'] = one_cate.top_id try: print('测试代码') id=int(content['id']) print(id) except: id=0 if id>0: # 修改商品 instance = Goods.objects.get(id=id) c = GoodsSerializer(instance, data=content) else: c = GoodsSerializer(data=content) mes={} if c.is_valid(): c.save() mes['code'] = RET.OK else: print(c.errors) mes['code'] = RET.DATAERR return Response(mes) #删除商品 def deleteGoods(request): id=request.GET.get('id') Goods.objects.get(id=id).delete() return render(request, "admin/goods_list.html") #添加新闻接口 class SubmitAddNews(APIView): def post(self,request): content=request.data print(content) try: id = int(content['id']) # 取出id except: id = 0 if id > 0: print(id) nn = News.objects.get(id=id) d = NewsSerializer(nn, data=content) # 修改 else: d = NewsSerializer(data=content) mes = {} if d.is_valid(): try: d.save() mes['code'] = RET.OK except: mes['code'] = RET.DATAERR else: mes['code'] = RET.DATAERR return Response(mes) #删除新闻 def deleteNews(request): id=request.GET.get('id') News.objects.get(id=id).delete() return render(request,"admin/news_list.html") #删除焦点图 def deleteBanners(request): id=request.GET.get('id') Banners.objects.get(id=id).delete() return render(request,"admin/point_list.html") #添加焦点图接口 class SubmitAddBanner(APIView): def post(self,request): content=request.data print(content) try: id = int(content['id']) # 取出id except: id = 0 if id > 0: print(id) nn = Banners.objects.get(id=id) d = BannersSerializer(nn, data=content) # 修改 else: d = BannersSerializer(data=content) mes = {} if d.is_valid(): try: d.save() mes['code'] = RET.OK except: mes['code'] = RET.DATAERR else: mes['code'] = RET.DATAERR return Response(mes) def user_count(request): return render(request,'admin/user_count.html')
2.1875
2
learnedevolution/targets/covariance/amalgam_covariance.py
realtwister/LearnedEvolution
0
7293
<filename>learnedevolution/targets/covariance/amalgam_covariance.py import numpy as np; from .covariance_target import CovarianceTarget; class AMaLGaMCovariance(CovarianceTarget): _API=2. def __init__(self, theta_SDR = 1., eta_DEC = 0.9, alpha_Sigma = [-1.1,1.2,1.6], NIS_MAX = 25, tau = 0.35, epsilon = 1e-30, condition_number_epsilon = 1e6): self.epsilon = epsilon; self.theta_SDR = theta_SDR; self.eta_DEC = eta_DEC; self.eta_INC = 1./eta_DEC; self.NIS_MAX = NIS_MAX; self.alpha_Sigma = alpha_Sigma; self.tau = tau; self.condition_number_epsilon = condition_number_epsilon; def _reset(self, initial_mean, initial_covariance): self.mean = initial_mean; self.old_mean = initial_mean; self.covariance = initial_covariance; self.d = len(initial_mean); self.Sigma = initial_covariance; self.c_multiplier = 1.; self.NIS = 0; self.t = 0; self.best_f = -float('inf'); def _update_mean(self, mean): self.old_mean = self.mean; self.mean = mean; def _calculate(self, population): self.update_matrix(population); self.update_multiplier(population); self.t += 1; self.best_f = max(self.best_f, np.max(population.fitness)); new_covariance = self.Sigma*self.c_multiplier; u,s,_ = np.linalg.svd(new_covariance); s_max = np.max(s) s_max = np.clip(s_max, self.epsilon*self.condition_number_epsilon, 1e3); s = np.clip(s, s_max/self.condition_number_epsilon, s_max); new_covariance = u*[email protected] self.covariance = new_covariance return self.covariance; def update_matrix(self, population): F = population.fitness; sel_idx = F.argsort()[-np.ceil(self.tau*len(population)).astype(int):][::-1] alpha = self.alpha_Sigma; eta_Sigma = 1.-np.exp(alpha[0]*len(sel_idx)**alpha[1]/self.d**alpha[2]); current_update = np.zeros((self.d,self.d)); selection = population.population[sel_idx]; for individual in selection: delta = individual-self.old_mean; current_update += np.outer(delta,delta) current_update /= (selection.shape[0]); self.Sigma *= (1-eta_Sigma); self.Sigma += eta_Sigma*current_update; # We need to ensure the condition number is OK to avoid singular matrix. u,s,_ = np.linalg.svd(self.Sigma); s_max = np.max(s) s_max = np.clip(s_max, self.epsilon*self.condition_number_epsilon, None); s = np.clip(s, s_max/self.condition_number_epsilon, s_max); self.Sigma = u*[email protected] def update_multiplier(self, population): if np.any(population.fitness>self.best_f): self.NIS = 0; self.c_multiplier = max(1., self.c_multiplier); self.SDR(population); else: if self.c_multiplier <= 1: self.NIS += 1; if self.c_multiplier > 1 or self.NIS >= self.NIS_MAX: self.c_multiplier *= self.eta_DEC; if self.c_multiplier < 1 and self.NIS < self.NIS_MAX: self.c_multiplier = 1; def SDR(self, population): x_avg = np.mean(population.population[population.fitness>self.best_f], axis=0); delta = np.abs(self.mean-x_avg); variances = np.abs(np.diag(self.covariance)); if np.any(delta/np.sqrt(variances)>self.theta_SDR): self.c_multiplier *= self.eta_INC; def _calculate_deterministic(self,population): return self._calculate(population); def _terminating(self, population): pass; @classmethod def _get_kwargs(cls, config, key = ""): cls._config_required( 'theta_SDR', 'eta_DEC', 'alpha_Sigma', 'NIS_MAX', 'tau', 'epsilon', 'condition_number_epsilon' ) cls._config_defaults( theta_SDR = 1., eta_DEC = 0.9, alpha_Sigma = [-1.1,1.2,1.6], NIS_MAX = 25, tau = 0.35, epsilon = 1e-30, condition_number_epsilon = 1e6 ) return super()._get_kwargs(config, key = key);
2.3125
2
binding.gyp
terrorizer1980/fs-admin
25
7294
<reponame>terrorizer1980/fs-admin { 'target_defaults': { 'win_delay_load_hook': 'false', 'conditions': [ ['OS=="win"', { 'msvs_disabled_warnings': [ 4530, # C++ exception handler used, but unwind semantics are not enabled 4506, # no definition for inline function ], }], ], }, 'targets': [ { 'target_name': 'fs_admin', 'defines': [ "NAPI_VERSION=<(napi_build_version)", ], 'cflags!': [ '-fno-exceptions' ], 'cflags_cc!': [ '-fno-exceptions' ], 'xcode_settings': { 'GCC_ENABLE_CPP_EXCEPTIONS': 'YES', 'CLANG_CXX_LIBRARY': 'libc++', 'MACOSX_DEPLOYMENT_TARGET': '10.7', }, 'msvs_settings': { 'VCCLCompilerTool': { 'ExceptionHandling': 1 }, }, 'sources': [ 'src/main.cc', ], 'include_dirs': [ '<!(node -p "require(\'node-addon-api\').include_dir")', ], 'conditions': [ ['OS=="win"', { 'sources': [ 'src/fs-admin-win.cc', ], 'libraries': [ '-lole32.lib', '-lshell32.lib', ], }], ['OS=="mac"', { 'sources': [ 'src/fs-admin-darwin.cc', ], 'libraries': [ '$(SDKROOT)/System/Library/Frameworks/Security.framework', ], }], ['OS=="linux"', { 'sources': [ 'src/fs-admin-linux.cc', ], }], ], } ] }
1.320313
1
src/botwtracker/settings.py
emoritzx/botw-tracker
7
7295
"""Django settings for botwtracker project. Copyright (c) 2017, <NAME>. botw-tracker is an open source software project released under the MIT License. See the accompanying LICENSE file for terms. """ import os from .config_local import * # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) DATA_DIR = os.path.join(BASE_DIR, '..', 'data') # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'quests.apps.QuestsConfig', 'user.apps.UserConfig', ] if USE_SIGNUP: INSTALLED_APPS.append('signup.apps.SignupConfig') MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'botwtracker.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [ os.path.join(BASE_DIR, 'templates') ], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'botwtracker.wsgi.application' # Database # https://docs.djangoproject.com/en/1.10/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(DATA_DIR, 'sqlite3.db'), } } # Password validation # https://docs.djangoproject.com/en/1.10/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.10/topics/i18n/ USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.10/howto/static-files/ STATIC_URL = '/static/' STATICFILES_DIRS = [ os.path.join(BASE_DIR, "..", "static") ]
1.554688
2
app/domains/users/views.py
Geo-Gabriel/eccomerce_nestle_mongodb
3
7296
<gh_stars>1-10 from flask import Blueprint, request, jsonify from app.domains.users.actions import get_all_users, insert_user, get_user_by_id, update_user, delete_user app_users = Blueprint('app.users', __name__) @app_users.route('/users', methods=['GET']) def get_users(): return jsonify([user.serialize() for user in get_all_users()]), 200 @app_users.route('/users/<id>', methods=["GET"]) def get_by_id(id: str): user = get_user_by_id(id_user=id) return jsonify(user.serialize()), 200 @app_users.route('/users', methods=["POST"]) def post_user(): payload = request.get_json() user = insert_user(payload) return jsonify(user.serialize()), 201 @app_users.route('/users/<id>', methods=["PUT"]) def update(id: str): payload = request.get_json() user = update_user(id_user=id, data=payload) return jsonify(user.serialize()), 200 @app_users.route('/users/<id>', methods=["DELETE"]) def delete(id: str): delete_user(id_user=id) return jsonify({"message": "user deleted"}), 200
2.609375
3
legacy_code/tf_cnn_siamese/model.py
PerryXDeng/project_punyslayer
2
7297
import legacy_code.tf_cnn_siamese.configurations as conf import tensorflow as tf import numpy as np def construct_cnn(x, conv_weights, conv_biases, fc_weights, fc_biases, dropout = False): """ constructs the convolution graph for one image :param x: input node :param conv_weights: convolution weights :param conv_biases: relu biases for each convolution :param fc_weights: fully connected weights, only one set should be used here :param fc_biases: fully connected biases, only one set should be used here :param dropout: whether to add a dropout layer for the fully connected layer :return: output node """ k = conf.NUM_POOL for i in range(conf.NUM_CONVS): x = tf.nn.conv2d(x, conv_weights[i], strides=[1, 1, 1, 1], padding='SAME', data_format=conf.DATA_FORMAT) x = tf.nn.relu(tf.nn.bias_add(x, conv_biases[i], data_format=conf.DATA_FORMAT)) if k > 0: x = tf.nn.max_pool(x, ksize=conf.POOL_KDIM,strides=conf.POOL_KDIM, padding='VALID', data_format=conf.DATA_FORMAT) k -= 1 # Reshape the feature map cuboids into vectors for fc layers features_shape = x.get_shape().as_list() n = features_shape[0] m = features_shape[1] * features_shape[2] * features_shape[3] features = tf.reshape(x, [n, m]) # last fc_weights determine output dimensions fc = tf.nn.sigmoid(tf.matmul(features, fc_weights[0]) + fc_biases[0]) # for actual training if dropout: fc = tf.nn.dropout(fc, conf.DROP_RATE) return fc def construct_logits_model(x_1, x_2, conv_weights, conv_biases, fc_weights, fc_biases, dropout=False): """ constructs the logit node before the final sigmoid activation :param x_1: input image node 1 :param x_2: input image node 2 :param conv_weights: nodes for convolution weights :param conv_biases: nodes for convolution relu biases :param fc_weights: nodes for fully connected weights :param fc_biases: nodes for fully connected biases :param dropout: whether to include dropout layers :return: logit node """ with tf.name_scope("twin_1"): twin_1 = construct_cnn(x_1, conv_weights, conv_biases, fc_weights, fc_biases, dropout) with tf.name_scope("twin_2"): twin_2 = construct_cnn(x_2, conv_weights, conv_biases, fc_weights, fc_biases, dropout) # logits on squared difference sq_diff = tf.squared_difference(twin_1, twin_2) logits = tf.matmul(sq_diff, fc_weights[1]) + fc_biases[1] return logits def construct_full_model(x_1, x_2, conv_weights, conv_biases,fc_weights, fc_biases): """ constructs the graph for the neural network without loss node or optimizer :param x_1: input image node 1 :param x_2: input image node 2 :param conv_weights: nodes for convolution weights :param conv_biases: nodes for convolution relu biases :param fc_weights: nodes for fully connected weights :param fc_biases: nodes for fully connected biases :return: sigmoid output node """ logits = construct_logits_model(x_1, x_2, conv_weights, conv_biases, fc_weights, fc_biases, dropout=False) return tf.nn.sigmoid(logits) def construct_loss_optimizer(x_1, x_2, labels, conv_weights, conv_biases, fc_weights, fc_biases, dropout=False, lagrange=False): """ constructs the neural network graph with the loss and optimizer node :param x_1: input image node 1 :param x_2: input image node 2 :param labels: expected output :param conv_weights: nodes for convolution weights :param conv_biases: nodes for convolution relu biases :param fc_weights: nodes for fully connected weights :param fc_biases: nodes for fully connected biases :param dropout: whether to use dropout :param lagrange: whether to apply constraints :return: the node for the optimizer as well as the loss """ logits = construct_logits_model(x_1, x_2, conv_weights, conv_biases, fc_weights, fc_biases, dropout) # cross entropy loss on sigmoids of joined output and labels loss_vec = tf.nn.sigmoid_cross_entropy_with_logits(labels=labels, logits=logits) loss = tf.reduce_mean(loss_vec) if lagrange: # constraints on sigmoid layers regularizers = (tf.nn.l2_loss(fc_weights[0]) + tf.nn.l2_loss(fc_biases[0]) + tf.nn.l2_loss(fc_weights[1]) + tf.nn.l2_loss(fc_biases[1])) loss += conf.LAMBDA * regularizers # setting up the optimization batch = tf.Variable(0, dtype=conf.DTYPE) # vanilla momentum optimizer # accumulation = momentum * accumulation + gradient # every epoch: variable -= learning_rate * accumulation # batch_total = labels.shape[0] # learning_rate = tf.train.exponential_decay( # conf.BASE_LEARNING_RATE, # batch * conf.BATCH_SIZE, # Current index into the dataset. # batch_total, # conf.DECAY_RATE, # Decay rate. # staircase=True) # trainer = tf.train.MomentumOptimizer(learning_rate, conf.MOMENTUM)\ # .minimize(loss, global_step=batch) # adaptive momentum estimation optimizer # default params: learning_rate=0.001, beta1=0.9, beta2=0.999, epsilon=1e-08 trainer = tf.train.AdamOptimizer().minimize(loss, global_step=batch) return trainer, loss def construct_joined_model(twin_1, twin_2, fc_weights, fc_biases): """ constructs joined model for two sets of extracted features :param twin_1: features node extracted from first image :param twin_2: features node extracted from second image :param fc_weights: nodes for fully connected weights :param fc_biases: nodes for fully connected biases :return: logit node """ # logits on squared difference sq_diff = tf.squared_difference(twin_1, twin_2) logits = tf.matmul(sq_diff, fc_weights[1]) + fc_biases[1] return tf.nn.sigmoid(logits) def initialize_weights(): """ initializes the variable tensors to be trained in the neural network, decides network dimensions :return: nodes for the variables """ # twin network convolution and pooling variables conv_weights = [] conv_biases = [] fc_weights = [] fc_biases = [] for i in range(conf.NUM_CONVS): if i == 0: inp = conf.NUM_CHANNELS else: inp = conf.NUM_FILTERS[i - 1] out = conf.NUM_FILTERS[i] conv_dim = [conf.FILTER_LEN, conf.FILTER_LEN, inp, out] weight_name = "twin_conv" + str(i + 1) + "_weights" bias_name = "twin_conv" + str(i + 1) + "_biases" conv_weights.append(tf.Variable(tf.truncated_normal(conv_dim, stddev=0.1, seed=conf.SEED, dtype=conf.DTYPE), name=weight_name)) conv_biases.append(tf.Variable(tf.zeros([out], dtype=conf.DTYPE), name=bias_name)) # twin network fullly connected variables inp = conf.FEATURE_MAP_SIZE out = conf.NUM_FC_NEURONS fc_weights.append(tf.Variable(tf.truncated_normal([inp, out], stddev=0.1, seed=conf.SEED, dtype=conf.DTYPE), name="twin_fc_weights")) fc_biases.append(tf.Variable(tf.constant(0.1, shape=[out], dtype=conf.DTYPE), name="twin_fc_biases")) # joined network fully connected variables inp = conf.NUM_FC_NEURONS out = 1 fc_weights.append(tf.Variable(tf.truncated_normal([inp, out], stddev=0.1, seed=conf.SEED, dtype=conf.DTYPE), name="joined_fc_weights")) fc_biases.append(tf.Variable(tf.constant(0.1, shape=[out], dtype=conf.DTYPE), name="joined_fc_biases")) return conv_weights, conv_biases, fc_weights, fc_biases def num_params(): """ calculates the number of parameters in the model :return: m, number of parameters """ m = 0 for i in range(conf.NUM_CONVS): if i == 0: inp = conf.NUM_CHANNELS else: inp = conf.NUM_FILTERS[i - 1] out = conf.NUM_FILTERS[i] conv_dim = [conf.FILTER_LEN, conf.FILTER_LEN, inp, out] m += np.prod(conv_dim) + np.prod(out) inp = conf.FEATURE_MAP_SIZE out = conf.NUM_FC_NEURONS m += inp * out + out inp = conf.NUM_FC_NEURONS out = 1 m += inp * out + out return m if __name__ == "__main__": print("Number of Parameters: " + str(num_params()))
3.0625
3
tests/test_utils_log.py
FingerCrunch/scrapy
41,267
7298
import sys import logging import unittest from testfixtures import LogCapture from twisted.python.failure import Failure from scrapy.utils.log import (failure_to_exc_info, TopLevelFormatter, LogCounterHandler, StreamLogger) from scrapy.utils.test import get_crawler from scrapy.extensions import telnet class FailureToExcInfoTest(unittest.TestCase): def test_failure(self): try: 0 / 0 except ZeroDivisionError: exc_info = sys.exc_info() failure = Failure() self.assertTupleEqual(exc_info, failure_to_exc_info(failure)) def test_non_failure(self): self.assertIsNone(failure_to_exc_info('test')) class TopLevelFormatterTest(unittest.TestCase): def setUp(self): self.handler = LogCapture() self.handler.addFilter(TopLevelFormatter(['test'])) def test_top_level_logger(self): logger = logging.getLogger('test') with self.handler as log: logger.warning('test log msg') log.check(('test', 'WARNING', 'test log msg')) def test_children_logger(self): logger = logging.getLogger('test.test1') with self.handler as log: logger.warning('test log msg') log.check(('test', 'WARNING', 'test log msg')) def test_overlapping_name_logger(self): logger = logging.getLogger('test2') with self.handler as log: logger.warning('test log msg') log.check(('test2', 'WARNING', 'test log msg')) def test_different_name_logger(self): logger = logging.getLogger('different') with self.handler as log: logger.warning('test log msg') log.check(('different', 'WARNING', 'test log msg')) class LogCounterHandlerTest(unittest.TestCase): def setUp(self): settings = {'LOG_LEVEL': 'WARNING'} if not telnet.TWISTED_CONCH_AVAILABLE: # disable it to avoid the extra warning settings['TELNETCONSOLE_ENABLED'] = False self.logger = logging.getLogger('test') self.logger.setLevel(logging.NOTSET) self.logger.propagate = False self.crawler = get_crawler(settings_dict=settings) self.handler = LogCounterHandler(self.crawler) self.logger.addHandler(self.handler) def tearDown(self): self.logger.propagate = True self.logger.removeHandler(self.handler) def test_init(self): self.assertIsNone(self.crawler.stats.get_value('log_count/DEBUG')) self.assertIsNone(self.crawler.stats.get_value('log_count/INFO')) self.assertIsNone(self.crawler.stats.get_value('log_count/WARNING')) self.assertIsNone(self.crawler.stats.get_value('log_count/ERROR')) self.assertIsNone(self.crawler.stats.get_value('log_count/CRITICAL')) def test_accepted_level(self): self.logger.error('test log msg') self.assertEqual(self.crawler.stats.get_value('log_count/ERROR'), 1) def test_filtered_out_level(self): self.logger.debug('test log msg') self.assertIsNone(self.crawler.stats.get_value('log_count/INFO')) class StreamLoggerTest(unittest.TestCase): def setUp(self): self.stdout = sys.stdout logger = logging.getLogger('test') logger.setLevel(logging.WARNING) sys.stdout = StreamLogger(logger, logging.ERROR) def tearDown(self): sys.stdout = self.stdout def test_redirect(self): with LogCapture() as log: print('test log msg') log.check(('test', 'ERROR', 'test log msg'))
2.390625
2
astar.py
jeff012345/clue-part-duo
0
7299
<reponame>jeff012345/clue-part-duo import heapq from typing import List from definitions import RoomPosition, Position import random import sys class PriorityQueue: def __init__(self): self.elements: Array = [] def empty(self) -> bool: return len(self.elements) == 0 def put(self, item, priority: float): heapq.heappush(self.elements, (priority, random.randint(1, 9999999999999999), item)) def get(self): return heapq.heappop(self.elements)[2] def heuristic(a: Position, b: Position) -> float: if a == b: return 0 if isinstance(a, RoomPosition): if isinstance(b, RoomPosition): raise Exception("Cannot calculate heuristic between two rooms") return 1 # (1^2 + 0^2) if isinstance(b, RoomPosition): return 1 # (1^2 + 0^2) # both are Space return (a.col - b.col) ** 2 + (a.row - b.row) ** 2 def a_star_search(start: Position, goal: Position) -> List[Position]: if start is None: raise Exception("Start is None") if goal is None: raise Exception("goal is None") if start == goal: raise Exception('Start and goal are the same') frontier = PriorityQueue() frontier.put(start, 0) came_from: Dict[Position, Optional[Position]] = {} cost_so_far: Dict[Position, float] = {} came_from[start] = None cost_so_far[start] = 0 while not frontier.empty(): current: Position = frontier.get() if current == goal: break for next in current.connections: if isinstance(next, RoomPosition) and next != goal: # once you enter a room, it's a dead end continue new_cost = cost_so_far[current] + 1 if next not in cost_so_far or new_cost < cost_so_far[next]: cost_so_far[next] = new_cost priority = new_cost + heuristic(goal, next) frontier.put(next, priority) came_from[next] = current if frontier.empty(): print(str(start) + " to " + str(goal)) raise Exception('no path found') shortest_path = [] prev = goal while prev is not None: shortest_path.append(prev) prev = came_from[prev] shortest_path.reverse() return shortest_path
3.5625
4