max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
examples/source/benchmarks/googlenet_model.py
ably77/dcos-tensorflow-tools
7
7800
<reponame>ably77/dcos-tensorflow-tools # Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Googlenet model configuration. References: Szegedy, Christian, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, and <NAME> Going deeper with convolutions arXiv preprint arXiv:1409.4842 (2014) """ import model class GooglenetModel(model.Model): def __init__(self): super(GooglenetModel, self).__init__('googlenet', 224, 32, 0.005) def add_inference(self, cnn): def inception_v1(cnn, k, l, m, n, p, q): cols = [[('conv', k, 1, 1)], [('conv', l, 1, 1), ('conv', m, 3, 3)], [('conv', n, 1, 1), ('conv', p, 5, 5)], [('mpool', 3, 3, 1, 1, 'SAME'), ('conv', q, 1, 1)]] cnn.inception_module('incept_v1', cols) cnn.conv(64, 7, 7, 2, 2) cnn.mpool(3, 3, 2, 2, mode='SAME') cnn.conv(64, 1, 1) cnn.conv(192, 3, 3) cnn.mpool(3, 3, 2, 2, mode='SAME') inception_v1(cnn, 64, 96, 128, 16, 32, 32) inception_v1(cnn, 128, 128, 192, 32, 96, 64) cnn.mpool(3, 3, 2, 2, mode='SAME') inception_v1(cnn, 192, 96, 208, 16, 48, 64) inception_v1(cnn, 160, 112, 224, 24, 64, 64) inception_v1(cnn, 128, 128, 256, 24, 64, 64) inception_v1(cnn, 112, 144, 288, 32, 64, 64) inception_v1(cnn, 256, 160, 320, 32, 128, 128) cnn.mpool(3, 3, 2, 2, mode='SAME') inception_v1(cnn, 256, 160, 320, 32, 128, 128) inception_v1(cnn, 384, 192, 384, 48, 128, 128) cnn.apool(7, 7, 1, 1, mode='VALID') cnn.reshape([-1, 1024])
1.890625
2
demos/prey-predator/prey_predator_abm/sim_params.py
neo-empresarial/covid-19
3
7801
""" Simulation parameters. """ SIMULATION_TIME_STEPS = 300
0.964844
1
process_ops.py
gcosne/generative_inpainting
11
7802
<reponame>gcosne/generative_inpainting import cv2 import numpy as np try: import scipy # scipy.ndimage cannot be accessed until explicitly imported from scipy import ndimage except ImportError: scipy = None def flip_axis(x, axis): x = np.asarray(x).swapaxes(axis, 0) x = x[::-1, ...] x = x.swapaxes(0, axis) return x def random_rotation(x, rg, row_axis=0, col_axis=1, channel_axis=2, fill_mode='nearest', cval=0., interpolation_order=1): """Performs a random rotation of a Numpy image tensor. # Arguments x: Input tensor. Must be 3D. rg: Rotation range, in degrees. row_axis: Index of axis for rows in the input tensor. col_axis: Index of axis for columns in the input tensor. channel_axis: Index of axis for channels in the input tensor. fill_mode: Points outside the boundaries of the input are filled according to the given mode (one of `{'constant', 'nearest', 'reflect', 'wrap'}`). cval: Value used for points outside the boundaries of the input if `mode='constant'`. interpolation_order int: order of spline interpolation. see `ndimage.interpolation.affine_transform` # Returns Rotated Numpy image tensor. """ theta = np.random.uniform(-rg, rg) x = apply_affine_transform(x, theta=theta, channel_axis=channel_axis, fill_mode=fill_mode, cval=cval, order=interpolation_order) return x def random_shift(x, wrg, hrg, row_axis=0, col_axis=1, channel_axis=2, fill_mode='nearest', cval=0., interpolation_order=1): """Performs a random spatial shift of a Numpy image tensor. # Arguments x: Input tensor. Must be 3D. wrg: Width shift range, as a float fraction of the width. hrg: Height shift range, as a float fraction of the height. row_axis: Index of axis for rows in the input tensor. col_axis: Index of axis for columns in the input tensor. channel_axis: Index of axis for channels in the input tensor. fill_mode: Points outside the boundaries of the input are filled according to the given mode (one of `{'constant', 'nearest', 'reflect', 'wrap'}`). cval: Value used for points outside the boundaries of the input if `mode='constant'`. interpolation_order int: order of spline interpolation. see `ndimage.interpolation.affine_transform` # Returns Shifted Numpy image tensor. """ h, w = x.shape[row_axis], x.shape[col_axis] tx = np.random.uniform(-hrg, hrg) * h ty = np.random.uniform(-wrg, wrg) * w x = apply_affine_transform(x, tx=tx, ty=ty, channel_axis=channel_axis, fill_mode=fill_mode, cval=cval, order=interpolation_order) return x def random_shear(x, intensity, row_axis=0, col_axis=1, channel_axis=2, fill_mode='nearest', cval=0., interpolation_order=1): """Performs a random spatial shear of a Numpy image tensor. # Arguments x: Input tensor. Must be 3D. intensity: Transformation intensity in degrees. row_axis: Index of axis for rows in the input tensor. col_axis: Index of axis for columns in the input tensor. channel_axis: Index of axis for channels in the input tensor. fill_mode: Points outside the boundaries of the input are filled according to the given mode (one of `{'constant', 'nearest', 'reflect', 'wrap'}`). cval: Value used for points outside the boundaries of the input if `mode='constant'`. interpolation_order int: order of spline interpolation. see `ndimage.interpolation.affine_transform` # Returns Sheared Numpy image tensor. """ shear = np.random.uniform(-intensity, intensity) x = apply_affine_transform(x, shear=shear, channel_axis=channel_axis, fill_mode=fill_mode, cval=cval, order=interpolation_order) return x def random_zoom(x, zoom_range, row_axis=0, col_axis=1, channel_axis=2, fill_mode='nearest', cval=0., interpolation_order=1): """Performs a random spatial zoom of a Numpy image tensor. # Arguments x: Input tensor. Must be 3D. zoom_range: Tuple of floats; zoom range for width and height. row_axis: Index of axis for rows in the input tensor. col_axis: Index of axis for columns in the input tensor. channel_axis: Index of axis for channels in the input tensor. fill_mode: Points outside the boundaries of the input are filled according to the given mode (one of `{'constant', 'nearest', 'reflect', 'wrap'}`). cval: Value used for points outside the boundaries of the input if `mode='constant'`. interpolation_order int: order of spline interpolation. see `ndimage.interpolation.affine_transform` # Returns Zoomed Numpy image tensor. # Raises ValueError: if `zoom_range` isn't a tuple. """ if len(zoom_range) != 2: raise ValueError('`zoom_range` should be a tuple or list of two' ' floats. Received: %s' % (zoom_range,)) if zoom_range[0] == 1 and zoom_range[1] == 1: zx, zy = 1, 1 else: zx, zy = np.random.uniform(zoom_range[0], zoom_range[1], 2) x = apply_affine_transform(x, zx=zx, zy=zy, channel_axis=channel_axis, fill_mode=fill_mode, cval=cval, order=interpolation_order) return x def random_channel_shift(x, intensity, channel_axis=0): x = np.rollaxis(x, channel_axis, 0) min_x, max_x = np.min(x), np.max(x) channel_images = [np.clip(x_channel + np.random.uniform(-intensity, intensity), min_x, max_x) for x_channel in x] x = np.stack(channel_images, axis=0) x = np.rollaxis(x, 0, channel_axis + 1) return x # For curving soybean pods. L.C.Uzal def random_curves_transform(x, strength=0.1, range=(0.,255.)): low, high = range delta = (high - low) * strength / 2. xp = np.random.uniform(low=low + delta, high=high - delta) yp = np.random.uniform(low=xp-delta, high=xp+delta) xp = np.asarray([low, xp, high]) yp = np.asarray([low, yp, high]) return np.interp(x,xp,yp) def transform_matrix_offset_center(matrix, x, y): o_x = float(x) / 2 + 0.5 o_y = float(y) / 2 + 0.5 offset_matrix = np.array([[1, 0, o_x], [0, 1, o_y], [0, 0, 1]]) reset_matrix = np.array([[1, 0, -o_x], [0, 1, -o_y], [0, 0, 1]]) transform_matrix = np.dot(np.dot(offset_matrix, matrix), reset_matrix) return transform_matrix def apply_affine_transform(x, theta=0, tx=0, ty=0, shear=0, zx=1, zy=1, row_axis=0, col_axis=1, channel_axis=2, fill_mode='nearest', cval=0., order=1): """Applies an affine transformation specified by the parameters given. # Arguments x: 2D numpy array, single image. theta: Rotation angle in degrees. tx: Width shift. ty: Heigh shift. shear: Shear angle in degrees. zx: Zoom in x direction. zy: Zoom in y direction row_axis: Index of axis for rows in the input image. col_axis: Index of axis for columns in the input image. channel_axis: Index of axis for channels in the input image. fill_mode: Points outside the boundaries of the input are filled according to the given mode (one of `{'constant', 'nearest', 'reflect', 'wrap'}`). cval: Value used for points outside the boundaries of the input if `mode='constant'`. order int: order of interpolation # Returns The transformed version of the input. """ if scipy is None: raise ImportError('Image transformations require SciPy. ' 'Install SciPy.') transform_matrix = None if theta != 0: theta = np.deg2rad(theta) rotation_matrix = np.array([[np.cos(theta), -np.sin(theta), 0], [np.sin(theta), np.cos(theta), 0], [0, 0, 1]]) transform_matrix = rotation_matrix if tx != 0 or ty != 0: shift_matrix = np.array([[1, 0, tx], [0, 1, ty], [0, 0, 1]]) if transform_matrix is None: transform_matrix = shift_matrix else: transform_matrix = np.dot(transform_matrix, shift_matrix) if shear != 0: shear = np.deg2rad(shear) shear_matrix = np.array([[1, -np.sin(shear), 0], [0, np.cos(shear), 0], [0, 0, 1]]) if transform_matrix is None: transform_matrix = shear_matrix else: transform_matrix = np.dot(transform_matrix, shear_matrix) if zx != 1 or zy != 1: zoom_matrix = np.array([[zx, 0, 0], [0, zy, 0], [0, 0, 1]]) if transform_matrix is None: transform_matrix = zoom_matrix else: transform_matrix = np.dot(transform_matrix, zoom_matrix) if transform_matrix is not None: h, w = x.shape[row_axis], x.shape[col_axis] transform_matrix = transform_matrix_offset_center( transform_matrix, h, w) x = np.rollaxis(x, channel_axis, 0) final_affine_matrix = transform_matrix[:2, :2] final_offset = transform_matrix[:2, 2] channel_images = [ndimage.interpolation.affine_transform( x_channel, final_affine_matrix, final_offset, order=order, mode=fill_mode, cval=cval) for x_channel in x] x = np.stack(channel_images, axis=0) x = np.rollaxis(x, 0, channel_axis + 1) return x def random_transform(x, rotation_range=0, width_shift_range=0., height_shift_range=0., shear_range=0., zoom_range=0., channel_shift_range=0., horizontal_flip=False, vertical_flip=False, random_curves_strength=0.): # Generate params if rotation_range: theta = np.random.uniform(-rotation_range, rotation_range) else: theta = 0 h, w = x.shape[0], x.shape[1] if height_shift_range: tx = np.random.uniform(-height_shift_range, height_shift_range) * h else: tx = 0 if width_shift_range: ty = np.random.uniform(-width_shift_range, width_shift_range) * w else: ty = 0 if shear_range: shear = np.random.uniform(-shear_range, shear_range) else: shear = 0 if np.isscalar(zoom_range): zoom_range = [1 - zoom_range, 1 + zoom_range] elif len(zoom_range) == 2: zoom_range = [zoom_range[0], zoom_range[1]] else: raise ValueError('`zoom_range` should be a float or ' 'a tuple or list of two floats. ' 'Received arg: ', zoom_range) if zoom_range[0] == 1 and zoom_range[1] == 1: zx, zy = 1, 1 else: zx, zy = np.random.uniform(zoom_range[0], zoom_range[1], 2) # Apply transforms x = apply_affine_transform(x, theta, tx, ty, shear, zx, zy) if channel_shift_range != 0: x = random_channel_shift(x, channel_shift_range, 2) if horizontal_flip: if np.random.random() < 0.5: x = flip_axis(x, 1) if vertical_flip: if np.random.random() < 0.5: x = flip_axis(x, 0) if random_curves_strength > 0.: x = random_curves_transform(x, random_curves_strength) return x if __name__ == "__main__": import argparse from PIL import Image parser = argparse.ArgumentParser() parser.add_argument('--image', default='', type=str) parser.add_argument('--imageOut', default='result.png', type=str) args = parser.parse_args() im = np.array(Image.open(args.image)) img = random_transform(im, rotation_range=10, shear_range=.5, zoom_range=.2, channel_shift_range=10., horizontal_flip=True) Image.fromarray(np.uint8(img)).save(args.imageOut)
2.59375
3
keystone/tests/unit/token/test_provider.py
maestro-hybrid-cloud/keystone
0
7803
<filename>keystone/tests/unit/token/test_provider.py # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import six from six.moves import urllib from keystone.tests import unit from keystone.token import provider class TestRandomStrings(unit.BaseTestCase): def test_strings_are_url_safe(self): s = provider.random_urlsafe_str() self.assertEqual(s, urllib.parse.quote_plus(s)) def test_strings_can_be_converted_to_bytes(self): s = provider.random_urlsafe_str() self.assertTrue(isinstance(s, six.string_types)) b = provider.random_urlsafe_str_to_bytes(s) self.assertTrue(isinstance(b, bytes))
2.046875
2
fasm2bels/database/connection_db_utils.py
mithro/symbiflow-xc-fasm2bels
0
7804
import functools def create_maybe_get_wire(conn): c = conn.cursor() @functools.lru_cache(maxsize=None) def get_tile_type_pkey(tile): c.execute('SELECT pkey, tile_type_pkey FROM phy_tile WHERE name = ?', (tile, )) return c.fetchone() @functools.lru_cache(maxsize=None) def maybe_get_wire(tile, wire): phy_tile_pkey, tile_type_pkey = get_tile_type_pkey(tile) c.execute( 'SELECT pkey FROM wire_in_tile WHERE phy_tile_type_pkey = ? and name = ?', (tile_type_pkey, wire)) result = c.fetchone() if result is None: return None wire_in_tile_pkey = result[0] c.execute( 'SELECT pkey FROM wire WHERE phy_tile_pkey = ? AND wire_in_tile_pkey = ?', (phy_tile_pkey, wire_in_tile_pkey)) return c.fetchone()[0] return maybe_get_wire def maybe_add_pip(top, maybe_get_wire, feature): if feature.value != 1: return parts = feature.feature.split('.') assert len(parts) == 3 sink_wire = maybe_get_wire(parts[0], parts[2]) if sink_wire is None: return src_wire = maybe_get_wire(parts[0], parts[1]) if src_wire is None: return top.active_pips.add((sink_wire, src_wire)) def get_node_pkey(conn, wire_pkey): c = conn.cursor() c.execute("SELECT node_pkey FROM wire WHERE pkey = ?", (wire_pkey, )) return c.fetchone()[0] def get_wires_in_node(conn, node_pkey): c = conn.cursor() c.execute("SELECT pkey FROM wire WHERE node_pkey = ?", (node_pkey, )) for row in c.fetchall(): yield row[0] def get_wire(conn, phy_tile_pkey, wire_in_tile_pkey): c = conn.cursor() c.execute( "SELECT pkey FROM wire WHERE wire_in_tile_pkey = ? AND phy_tile_pkey = ?;", ( wire_in_tile_pkey, phy_tile_pkey, )) return c.fetchone()[0] def get_tile_type(conn, tile_name): c = conn.cursor() c.execute( """ SELECT name FROM tile_type WHERE pkey = ( SELECT tile_type_pkey FROM phy_tile WHERE name = ?);""", (tile_name, )) return c.fetchone()[0] def get_wire_pkey(conn, tile_name, wire): c = conn.cursor() c.execute( """ WITH selected_tile(phy_tile_pkey, tile_type_pkey) AS ( SELECT pkey, tile_type_pkey FROM phy_tile WHERE name = ? ) SELECT wire.pkey FROM wire WHERE wire.phy_tile_pkey = ( SELECT selected_tile.phy_tile_pkey FROM selected_tile ) AND wire.wire_in_tile_pkey = ( SELECT wire_in_tile.pkey FROM wire_in_tile WHERE wire_in_tile.name = ? AND wire_in_tile.phy_tile_type_pkey = ( SELECT tile_type_pkey FROM selected_tile ) ); """, (tile_name, wire)) results = c.fetchone() assert results is not None, (tile_name, wire) return results[0]
2.28125
2
ppr-api/src/services/payment_service.py
bcgov/ppr-deprecated
1
7805
"""A module that provides functionality for accessing the Payments API.""" import enum import http import logging import requests from fastapi import Depends, Header, HTTPException from fastapi.security.http import HTTPAuthorizationCredentials import auth.authentication import config import schemas.payment logger = logging.getLogger(__name__) CORP_TYPE = 'PPR' class FilingCode(enum.Enum): """An enumeration of the filing codes available to PPR.""" SEARCH = 'SERCH' YEARLY_REGISTRATION = 'FSREG' INFINITE_REGISTRATION = 'INFRG' class PaymentService: """A service used for interacting with the Payments API.""" auth_header: HTTPAuthorizationCredentials account_id: str def __init__(self, auth_header: HTTPAuthorizationCredentials = Depends(auth.authentication.bearer_scheme), account_id: str = Header(None)): """Initialize the repository with the Authorization and Account-Id headers provided in the request.""" self.auth_header = auth_header self.account_id = account_id def create_payment(self, filing_code: FilingCode): """Submit a payment request and provide the details to the caller.""" request = { 'businessInfo': {'corpType': CORP_TYPE}, 'filingInfo': {'filingTypes': [{'filingTypeCode': filing_code.value}]} } pay_response = requests.post( '{}/payment-requests'.format(config.PAY_API_URL), json=request, headers={ 'Authorization': '{} {}'.format(self.auth_header.scheme, self.auth_header.credentials), 'Account-Id': self.account_id } ) try: auth.authentication.check_auth_response(pay_response) except HTTPException as auth_ex: logger.error('Create Payment call failed auth with status {}. Response body: {}'.format( pay_response.status_code, pay_response.text)) raise auth_ex if not pay_response: # status_code is unsuccessful logger.error('Create Payment call failed unexpectedly with status {}. Response body: {}'.format( pay_response.status_code, pay_response.text)) raise HTTPException(status_code=http.HTTPStatus.INTERNAL_SERVER_ERROR) body = pay_response.json() return schemas.payment.Payment(id=body['id'], status=body['statusCode'], method=body['paymentMethod'])
3.125
3
SmerekaRoman/HW_6/HW 6.3.py
kolyasalubov/Lv-639.pythonCore
0
7806
<reponame>kolyasalubov/Lv-639.pythonCore def numb_of_char(a): d = {} for char in set(a): d[char] = a.count(char) return d a = numb_of_char(str(input("Input the word please: "))) print(a)
3.5625
4
0201-0300/0251-Flatten 2D Vector/0251-Flatten 2D Vector.py
jiadaizhao/LeetCode
49
7807
<reponame>jiadaizhao/LeetCode class Vector2D: def __init__(self, v: List[List[int]]): def getIt(): for row in v: for val in row: yield val self.it = iter(getIt()) self.val = next(self.it, None) def next(self) -> int: result = self.val self.val = next(self.it, None) return result def hasNext(self) -> bool: return self.val is not None # Your Vector2D object will be instantiated and called as such: # obj = Vector2D(v) # param_1 = obj.next() # param_2 = obj.hasNext()
3.40625
3
logger_decorator.py
jbhayback/reconciliation-manager
0
7808
from datetime import datetime import inspect def log_time(msg=None): def decorator(f): nonlocal msg if msg is None: msg = '{} time spent: '.format(f.__name__) def inner(*args, **kwargs): # check if the object has a logger global logger if args and hasattr(args[0], 'logger'): logger = args[0].logger start = datetime.now() result = f(*args, **kwargs) logger.info( msg + ' {} seconds'.format((datetime.now() - start).total_seconds()) ) return result return inner return decorator def log_params(f): arg_spec = inspect.getargspec(f).args has_self = arg_spec and arg_spec[0] == 'self' def decorator(*args, **kwargs): logger.info( 'calling {} with args: {}, and kwargs: {}'.format( f.__name__, args if not has_self else args[1:], kwargs ) ) return f(*args, **kwargs) return decorator
2.9375
3
lf3py/di/__init__.py
rog-works/lf3py
0
7809
<gh_stars>0 from lf3py.di.di import DI # noqa F401
1.109375
1
critical/tasks.py
lenarother/django-critical-css
2
7810
<reponame>lenarother/django-critical-css import logging from django.utils.safestring import mark_safe from django_rq import job from inline_static.css import transform_css_urls logger = logging.getLogger(__name__) @job def calculate_critical_css(critical_id, original_path): from .exceptions import CriticalException from .models import Critical from .services import calculate_critical_css as service_calculate logger.info('Task: critical css with id {0} requested.'.format(critical_id)) critical = Critical.objects.filter(id=critical_id).first() if not critical: raise CriticalException('There is no Critical object with id {0}'.format(critical_id)) logger.info('Task: {0}, {1}'.format(critical.url, critical.path)) critical.is_pending = True critical.save(update_fields=['is_pending']) logger.info('Task: critical css with id {0} pending.'.format(critical_id)) try: critical_css_raw = service_calculate(critical.url, critical.path) critical_css = transform_css_urls(original_path, critical.path, critical_css_raw) except Exception as exc: critical.is_pending = False critical.save(update_fields=['is_pending']) raise CriticalException('Could not calculate critical css') from exc critical.css = mark_safe(critical_css) critical.is_pending = False critical.save() logger.info('Task: critical css with id {0} saved.'.format(critical_id))
1.921875
2
test.py
wei2912/bce-simulation
0
7811
<filename>test.py<gh_stars>0 #!/usr/bin/env python # coding=utf-8 """ This script tests the simulations of the experiments. """ import math from utils import coin_var, needle_var def main(): needle_var_vals = [ (1.1, 1.0), (1.4, 1.0), (2.0, 1.0), (2.9, 1.0), (3.3, 1.0), (5.0, 1.0) ] print("needle_var:") for L, D in needle_var_vals: trials = 1000000 pred_prob = needle_var.predict_prob(length=L, gap_width=D) pred_hits = pred_prob * trials hits = needle_var.run_trials(length=L, gap_width=D, trials=trials) if pred_hits == 0 or pred_hits == trials: stat = float('nan') else: stat = sum([ (hits - pred_hits) ** 2 / pred_hits, ((trials - hits) - (trials - pred_hits)) ** 2 / (trials-pred_hits) ]) print("L = {}, D = {}, expected = {}, observed = {}, stat = {}".format(L, D, pred_hits, hits, stat)) print("coin_var:") coin_var_vals = [ (1.0, 1.0), (1.0, 1.2), (1.0, math.sqrt(2)), (1.0, 1.5), (1.0, 1.8), (1.0, 1.9), (1.0, 2.0), (1.0, 3.0), (1.0, 5.0) ] for R, D in coin_var_vals: trials = 100000 pred_prob = coin_var.predict_prob(diameter=2*R, gap_width=D) pred_hits = pred_prob * trials hits = coin_var.run_trials(diameter=2*R, gap_width=D, trials=trials) if pred_hits == 0 or pred_hits == trials: stat = float('nan') else: stat = sum([ (hits - pred_hits) ** 2 / pred_hits, ((trials - hits) - (trials - pred_hits)) ** 2 / (trials-pred_hits) ]) print("R = {}, D = {}, expected = {}, observed = {}, stat = {}".format(R, D, pred_hits, hits, stat)) main()
2.75
3
instructions/instructions.py
fernandozanutto/PyNES
0
7812
<reponame>fernandozanutto/PyNES from addressing import * from instructions.base_instructions import SetBit, ClearBit from instructions.generic_instructions import Instruction from status import Status # set status instructions class Sec(SetBit): identifier_byte = bytes([0x38]) bit = Status.StatusTypes.carry class Sei(SetBit): identifier_byte = bytes([0x78]) bit = Status.StatusTypes.interrupt class Sed(SetBit): identifier_byte = bytes([0xF8]) bit = Status.StatusTypes.decimal # clear status instructions class Cld(ClearBit): identifier_byte = bytes([0xD8]) bit = Status.StatusTypes.decimal class Clc(ClearBit): identifier_byte = bytes([0x18]) bit = Status.StatusTypes.carry class Clv(ClearBit): identifier_byte = bytes([0xB8]) bit = Status.StatusTypes.overflow class Cli(ClearBit): identifier_byte = bytes([0x58]) bit = Status.StatusTypes.interrupt class Bit(Instruction): @classmethod def get_data(cls, cpu, memory_address, data_bytes) -> Optional[int]: return cpu.bus.read_memory(memory_address) @classmethod def apply_side_effects(cls, cpu, memory_address, value): and_result = cpu.a_reg & value cpu.status_reg.bits[Status.StatusTypes.zero] = not and_result cpu.status_reg.bits[Status.StatusTypes.overflow] = ( value & (1 << 6)) > 0 cpu.status_reg.bits[Status.StatusTypes.negative] = ( value & (1 << 7)) > 0 class BitZeroPage(ZeroPageAddressing, Bit): identifier_byte = bytes([0x24]) class BitAbsolute(AbsoluteAddressing, Bit): identifier_byte = bytes([0x2C]) class Brk(ImplicitAddressing, Instruction): identifier_byte = bytes([0x00]) @classmethod def get_data(cls, cpu, memory_address, data_bytes) -> Optional[int]: return super().get_data(cpu, memory_address, data_bytes) @classmethod def write(cls, cpu, memory_address, value): cpu.push_to_stack(cpu.pc_reg + 1, 2) cpu.push_to_stack(cpu.status_reg.to_int() | (1 << 4), 1) @classmethod def apply_side_effects(cls, cpu, memory_address, value): cpu.status_reg.bits[Status.StatusTypes.interrupt] = 1 cpu.running = False @classmethod def get_cycles(cls): return 7
2.71875
3
python/530.minimum-absolute-difference-in-bst.py
vermouth1992/Leetcode
0
7813
# # @lc app=leetcode id=530 lang=python3 # # [530] Minimum Absolute Difference in BST # # https://leetcode.com/problems/minimum-absolute-difference-in-bst/description/ # # algorithms # Easy (55.23%) # Total Accepted: 115.5K # Total Submissions: 209K # Testcase Example: '[4,2,6,1,3]' # # Given the root of a Binary Search Tree (BST), return the minimum absolute # difference between the values of any two different nodes in the tree. # # # Example 1: # # # Input: root = [4,2,6,1,3] # Output: 1 # # # Example 2: # # # Input: root = [1,0,48,null,null,12,49] # Output: 1 # # # # Constraints: # # # The number of nodes in the tree is in the range [2, 10^4]. # 0 <= Node.val <= 10^5 # # # # Note: This question is the same as 783: # https://leetcode.com/problems/minimum-distance-between-bst-nodes/ # # # Definition for a binary tree node. from typing import List class TreeNode: def __init__(self, val=0, left=None, right=None): self.val = val self.left = left self.right = right class Solution: def getNodeValues(self, root: TreeNode) -> List[int]: value = [] self.getNodeValuesHelper(root, value) return value def getNodeValuesHelper(self, root: TreeNode, value: List[int]): if root is None: return value.append(root.val) self.getNodeValuesHelper(root.left, value) self.getNodeValuesHelper(root.right, value) def getMinimumDifference(self, root: TreeNode) -> int: # get all the values and put into a list O(n) value = self.getNodeValues(root) # sort the list O(nlogn) value = sorted(value) # find the minimum difference between ajacent values O(n) min_abs_diff = abs(value[0] - value[1]) for i in range(1, len(value) - 1): diff = abs(value[i] - value[i + 1]) if diff < min_abs_diff: min_abs_diff = diff return min_abs_diff
3.796875
4
tensorflow/python/eager/remote_cloud_tpu_test.py
abhaikollara/tensorflow
26
7814
<reponame>abhaikollara/tensorflow<filename>tensorflow/python/eager/remote_cloud_tpu_test.py<gh_stars>10-100 # Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Test that we can connect to a real Cloud TPU.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl import flags from absl.testing import absltest from tensorflow.python.distribute.cluster_resolver import tpu_cluster_resolver from tensorflow.python.eager import context from tensorflow.python.eager import remote from tensorflow.python.tpu import tpu_strategy_util FLAGS = flags.FLAGS flags.DEFINE_string('tpu', '', 'Name of TPU to connect to.') flags.DEFINE_string('project', None, 'Name of GCP project with TPU.') flags.DEFINE_string('zone', None, 'Name of GCP zone with TPU.') EXPECTED_DEVICES_PRE_CONNECT = [ '/job:localhost/replica:0/task:0/device:CPU:0', '/job:localhost/replica:0/task:0/device:XLA_CPU:0' ] EXPECTED_DEVICES_AFTER_CONNECT = [ '/job:localhost/replica:0/task:0/device:CPU:0', '/job:localhost/replica:0/task:0/device:XLA_CPU:0', '/job:worker/replica:0/task:0/device:CPU:0', '/job:worker/replica:0/task:0/device:XLA_CPU:0', '/job:worker/replica:0/task:0/device:TPU_SYSTEM:0', '/job:worker/replica:0/task:0/device:TPU:0', '/job:worker/replica:0/task:0/device:TPU:1', '/job:worker/replica:0/task:0/device:TPU:2', '/job:worker/replica:0/task:0/device:TPU:3', '/job:worker/replica:0/task:0/device:TPU:4', '/job:worker/replica:0/task:0/device:TPU:5', '/job:worker/replica:0/task:0/device:TPU:6', '/job:worker/replica:0/task:0/device:TPU:7', ] class RemoteCloudTPUTest(absltest.TestCase): """Test that we can connect to a real Cloud TPU.""" def test_connect(self): self.assertCountEqual( EXPECTED_DEVICES_PRE_CONNECT, context.list_devices()) resolver = tpu_cluster_resolver.TPUClusterResolver( tpu=FLAGS.tpu, zone=FLAGS.zone, project=FLAGS.project ) remote.connect_to_cluster(resolver) self.assertCountEqual( EXPECTED_DEVICES_AFTER_CONNECT, context.list_devices()) tpu_strategy_util.initialize_tpu_system(resolver) if __name__ == '__main__': absltest.main()
1.820313
2
test/functional/bsv-blocksize-params.py
gbtn/bitcoin-sv-gbtn
3
7815
#!/usr/bin/env python3 # Copyright (c) 2015-2016 The Bitcoin Core developers # Copyright (c) 2017 The Bitcoin developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """ Test that the blockmaxsize and excessiveblocksize parameters are also settable via the bitcoin.conf file. """ from test_framework.test_framework import BitcoinTestFramework from test_framework.util import assert_equal, assert_raises_rpc_error from test_framework.cdefs import (ONE_MEGABYTE) import os class BSVBlockSizeParams(BitcoinTestFramework): def set_test_params(self): self.num_nodes = 1 self.maxminedblocksize = 4 * ONE_MEGABYTE self.maxblocksize = 16 * ONE_MEGABYTE def setup_chain(self): super().setup_chain() with open(os.path.join(self.options.tmpdir + "/node0", "bitcoin.conf"), 'a', encoding='utf8') as f: f.write("blockmaxsize=" + str(self.maxminedblocksize) + "\n") f.write("excessiveblocksize=" + str(self.maxblocksize) + "\n") def add_options(self, parser): super().add_options(parser) def run_test(self): gires = self.nodes[0].getinfo() assert_equal(gires["maxblocksize"], self.maxblocksize) assert_equal(gires["maxminedblocksize"], self.maxminedblocksize) if __name__ == '__main__': BSVBlockSizeParams().main()
2.21875
2
yotta/test/cli/outdated.py
headlessme/yotta
0
7816
<reponame>headlessme/yotta #!/usr/bin/env python # Copyright 2015 ARM Limited # # Licensed under the Apache License, Version 2.0 # See LICENSE file for details. # standard library modules, , , import unittest # internal modules: from . import util from . import cli Test_Outdated = { 'module.json':'''{ "name": "test-outdated", "version": "0.0.0", "description": "Test yotta outdated", "author": "<NAME> <<EMAIL>>", "license": "Apache-2.0", "dependencies":{ "test-testing-dummy": "*" } }''', 'source/foo.c':'''#include "stdio.h" int foo(){ printf("foo!\\n"); return 7; }''', # test-testing-dummy v0.0.1 (a newer version is available from the registry, # and will be installed by yt up) 'yotta_modules/test-testing-dummy/module.json':'''{ "name": "test-testing-dummy", "version": "0.0.1", "description": "Test yotta's compilation of tests.", "author": "<NAME> <<EMAIL>>", "license": "Apache-2.0" } ''' } class TestCLIOutdated(unittest.TestCase): def test_outdated(self): path = util.writeTestFiles(Test_Outdated, True) stdout, stderr, statuscode = cli.run(['-t', 'x86-linux-native', 'outdated'], cwd=path) self.assertNotEqual(statuscode, 0) self.assertIn('test-testing-dummy', stdout + stderr) util.rmRf(path) def test_notOutdated(self): path = util.writeTestFiles(Test_Outdated, True) stdout, stderr, statuscode = cli.run(['-t', 'x86-linux-native', 'up'], cwd=path) self.assertEqual(statuscode, 0) stdout, stderr, statuscode = cli.run(['-t', 'x86-linux-native', 'outdated'], cwd=path) self.assertEqual(statuscode, 0) self.assertNotIn('test-testing-dummy', stdout + stderr) util.rmRf(path)
2.046875
2
geoposition/tests/urls.py
Starcross/django-geoposition
0
7817
<filename>geoposition/tests/urls.py from django.urls import path, include from django.contrib import admin from example.views import poi_list admin.autodiscover() urlpatterns = [ path('', poi_list), path('admin/', admin.site.urls), ]
1.835938
2
A_Stocker/Stocker.py
Allen1218/Python_Project_Interesting
1
7818
<reponame>Allen1218/Python_Project_Interesting<filename>A_Stocker/Stocker.py import threading import tushare as ts import pandas as pd import datetime STOCK = {#'002594':[1,170.15], ## 比亚迪 / 几手,成本价 '601012':[11,99.9], ## 隆基股份 '002340':[12,8.72], ## 格林美 '603259':[1,141.7], ## 药明康德 '002346':[10,10.68], ## 柘中股份 #'600438':[9,42.96], ## 通威股份 #'002475':[3,59.51], ## 立讯精密 #'603308':[1,33.49], ## 应流股份 #'002415': [3, 66.40], ## 海康威视 # '600559':[3,35.3], ## 老白干 # '601100':[1, 114.5], ## 恒立液压 # '603466':[6, 22.40] ## 风语筑 } TimerNum = 20.0 # s Total = 0 # #rodo def get_all_price(): '''process all stock''' stockCode = list(STOCK.keys()) df = ts.get_realtime_quotes(stockCode) lp = list(STOCK.values()) stockNum = [] stockCostPrice = [] for i in range(len(lp)): stockNum.append(lp[i][0]) stockCostPrice.append(lp[i][1]) df['num'] = stockNum df['stockCostPrice'] = stockCostPrice # 处理 # profit and lost ratio 盈亏率 plRatio = round((df['price'].astype(float) / df['stockCostPrice'] - 1)*100,2) # profit and lost 盈亏 df['plRatio'] = plRatio df['stockNum'] = stockNum pl = round(df['plRatio'].astype(float) * df['stockNum'] * df['stockCostPrice'].astype(float),2) df['pl'] = pl # 当日涨幅 Rise and fall currentRF = round((df['price'].astype(float) / df['pre_close'].astype(float) - 1)*100,2) df['currentRF'] = currentRF df1 = df[[ 'open', 'price', 'stockCostPrice', 'plRatio', 'num','pl', 'currentRF','name']] pd.set_option('display.unicode.ambiguous_as_wide', True) pd.set_option('display.unicode.east_asian_width', True) pd.set_option('display.width', 180) # 设置打印宽度(**重要**) pd.set_option('display.max_columns', 1000) pd.set_option('display.width', 1000) pd.set_option('display.max_colwidth', 1000) sss = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S.%f)")[:-4] print('\n') print("----------------" + sss +"------------------") print(df1) sum_int = round(df['pl'].sum(),2) print("total profit and lost is " + sum_int.astype(str)) print('\n') # df.to_csv('stock_data.csv', encoding='utf_8_sig', index=None) global timer timer = threading.Timer(TimerNum, get_all_price, []) timer.start() if __name__ == '__main__': print(STOCK) get_all_price() timer = threading.Timer(TimerNum, get_all_price, []) timer.start()
2.671875
3
tests/extractors/test_etrade.py
mkazin/StatementRenamer
0
7819
<filename>tests/extractors/test_etrade.py from datetime import datetime from statement_renamer.extractors.etrade import ETradeDateExtractor as EXTRACTOR_UNDER_TEST from statement_renamer.extractors.factory import ExtractorFactory TESTDATA = ( """ PAGE 1 OF 6 February 1, 2019 - March 31, 2019AccountNumber:####-####AccountType:ROTH IRA PAGE 5 OF 6Account Number: ####-####Statement Period : February 1, 2019 - March 31, 2019Account Type TolearnmoreabouttheRSDAProgram,pleasereviewyourRSDAProgramCustomerAgreement,visitwww.etrade.com,orcallusat1-800-387-2331 """ ) def test_monthly_statement(): extractor = EXTRACTOR_UNDER_TEST() data = extractor.extract(TESTDATA) new_name = extractor.rename(data) assert data.get_start_date() == datetime(2019, 2, 1) assert data.get_end_date() == datetime(2019, 3, 31) assert new_name == '2019-03 E-Trade Statement.pdf' def test_factory(): extractor = ExtractorFactory.get_matching_extractor(TESTDATA) assert isinstance(extractor, EXTRACTOR_UNDER_TEST)
2.75
3
Estrutura_Decisao/who.py
M3nin0/supreme-broccoli
0
7820
<reponame>M3nin0/supreme-broccoli<gh_stars>0 prod1 = float(input("Insira o valor do produto A: ")) prod2 = float(input("Insira o valor do produto B: ")) prod3 = float(input("Insira o valor do produto C: ")) if prod1 < prod2 and prod1 < prod3: print ("Escolha o produto A é o mais barato") elif prod2 < prod1 and prod2 < prod3: print ("Escolha o produto B é o mais barato") elif prod3 < prod1 and prod3 < prod2: print ("Escolha o produto C é o mais barato")
3.828125
4
ProgettoLube/WebInspector/venv/Lib/site-packages/tensorflow/_api/v2/compat/v2/train/experimental/__init__.py
Lube-Project/ProgettoLube
2
7821
<reponame>Lube-Project/ProgettoLube # This file is MACHINE GENERATED! Do not edit. # Generated by: tensorflow/python/tools/api/generator/create_python_api.py script. """Public API for tf.train.experimental namespace. """ from __future__ import print_function as _print_function import sys as _sys from tensorflow.python.training.experimental.loss_scale import DynamicLossScale from tensorflow.python.training.experimental.loss_scale import FixedLossScale from tensorflow.python.training.experimental.loss_scale import LossScale from tensorflow.python.training.experimental.mixed_precision import disable_mixed_precision_graph_rewrite from tensorflow.python.training.experimental.mixed_precision import enable_mixed_precision_graph_rewrite from tensorflow.python.training.tracking.python_state import PythonState del _print_function
1.28125
1
SciDataTool/Methods/VectorField/plot_3D_Data.py
BenjaminGabet/SciDataTool
0
7822
<gh_stars>0 def plot_3D_Data( self, *arg_list, is_norm=False, unit="SI", component_list=None, save_path=None, x_min=None, x_max=None, y_min=None, y_max=None, z_min=None, z_max=None, z_range=None, is_auto_ticks=True, is_auto_range=False, is_2D_view=False, is_same_size=False, N_stem=100, fig=None, ax=None, is_show_fig=None, is_logscale_x=False, is_logscale_y=False, is_logscale_z=False, thresh=0.02, is_switch_axes=False, colormap="RdBu_r", win_title=None, font_name="arial", font_size_title=12, font_size_label=10, font_size_legend=8, ): """Plots a field as a function of time Parameters ---------- self : Output an Output object Data_str : str name of the Data Object to plot (e.g. "mag.Br") *arg_list : list of str arguments to specify which axes to plot is_norm : bool boolean indicating if the field must be normalized unit : str unit in which to plot the field save_path : str full path including folder, name and extension of the file to save if save_path is not None x_min : float minimum value for the x-axis x_max : float maximum value for the x-axis y_min : float minimum value for the y-axis y_max : float maximum value for the y-axis z_min : float minimum value for the z-axis z_max : float maximum value for the z-axis is_auto_ticks : bool in fft, adjust ticks to freqs (deactivate if too close) is_auto_range : bool in fft, display up to 1% of max is_2D_view : bool True to plot Data in xy plane and put z as colormap is_same_size : bool True to have all color blocks with same size in 2D view N_stem : int number of harmonics to plot (only for stem plots) fig : Matplotlib.figure.Figure existing figure to use if None create a new one ax : Matplotlib.axes.Axes object ax on which to plot the data is_show_fig : bool True to show figure after plot is_logscale_x : bool boolean indicating if the x-axis must be set in logarithmic scale is_logscale_y : bool boolean indicating if the y-axis must be set in logarithmic scale is_logscale_z : bool boolean indicating if the z-axis must be set in logarithmic scale thresh : float threshold for automatic fft ticks is_switch_axes : bool to switch x and y axes """ # Call the plot on each component if component_list is None: # default: extract all components component_list = self.components.keys() for i, comp in enumerate(component_list): if save_path is not None and len(component_list) > 1: save_path_comp = ( save_path.split(".")[0] + "_" + comp + "." + save_path.split(".")[1] ) else: save_path_comp = save_path self.components[comp].plot_3D_Data( arg_list, is_norm=is_norm, unit=unit, save_path=save_path_comp, x_min=x_min, x_max=x_max, y_min=y_min, y_max=y_max, z_min=z_min, z_max=z_max, colormap=colormap, is_auto_ticks=is_auto_ticks, is_auto_range=is_auto_range, is_2D_view=is_2D_view, is_same_size=is_same_size, N_stem=N_stem, fig=fig, ax=ax, is_show_fig=is_show_fig, is_logscale_x=is_logscale_x, is_logscale_y=is_logscale_y, is_logscale_z=is_logscale_z, thresh=thresh, is_switch_axes=is_switch_axes, win_title=win_title, font_name=font_name, font_size_title=font_size_title, font_size_label=font_size_label, font_size_legend=font_size_legend, )
2.609375
3
tests/unittests/plotting/test_plotly_backend.py
obilaniu/orion
1
7823
<reponame>obilaniu/orion<filename>tests/unittests/plotting/test_plotly_backend.py """Collection of tests for :mod:`orion.plotting.backend_plotly`.""" import copy import numpy import pandas import plotly import pytest import orion.client from orion.analysis.partial_dependency_utils import partial_dependency_grid from orion.core.worker.experiment import Experiment from orion.plotting.base import ( lpi, parallel_coordinates, partial_dependencies, rankings, regret, regrets, ) from orion.testing import create_experiment from orion.testing.plotting import ( assert_lpi_plot, assert_parallel_coordinates_plot, assert_partial_dependencies_plot, assert_rankings_plot, assert_regret_plot, assert_regrets_plot, ) config = dict( name="experiment-name", space={"x": "uniform(0, 200)"}, metadata={ "user": "test-user", "orion_version": "XYZ", "VCS": { "type": "git", "is_dirty": False, "HEAD_sha": "test", "active_branch": None, "diff_sha": "diff", }, }, version=1, pool_size=1, max_trials=10, working_dir="", algorithms={"random": {"seed": 1}}, producer={"strategy": "NoParallelStrategy"}, ) trial_config = { "experiment": 0, "status": "completed", "worker": None, "start_time": None, "end_time": None, "heartbeat": None, "results": [], "params": [], } def mock_space(x="uniform(0, 6)", y="uniform(0, 3)", **kwargs): """Build a mocked space""" mocked_config = copy.deepcopy(config) mocked_config["space"] = {"x": x} if y is not None: mocked_config["space"]["y"] = y mocked_config["space"].update(kwargs) return mocked_config def mock_experiment( monkeypatch, ids=None, x=None, y=None, z=None, objectives=None, status=None ): """Mock experiment to_pandas to return given data (or default one)""" if ids is None: ids = ["a", "b", "c", "d"] if x is None: x = [0, 1, 2, 4] if y is None: y = [3, 2, 0, 1] if objectives is None: objectives = [0.1, 0.2, 0.3, 0.5] if status is None: status = ["completed", "completed", "completed", "completed"] data = { "id": ids, "x": x, "objective": objectives, "status": status, "suggested": ids, } if not isinstance(y, str): data["y"] = y if z is not None: data["z"] = z def to_pandas(self, with_evc_tree=False): return pandas.DataFrame(data=data) monkeypatch.setattr(Experiment, "to_pandas", to_pandas) def mock_experiment_with_random_to_pandas(monkeypatch, status=None, unbalanced=False): def to_pandas(self, with_evc_tree=False): if unbalanced: N = numpy.random.randint(5, 15) elif status is not None: N = len(status) else: N = 10 ids = numpy.arange(N) x = numpy.random.normal(0, 0.1, size=N) y = numpy.random.normal(0, 0.1, size=N) objectives = numpy.random.normal(0, 0.1, size=N) if status is None: exp_status = ["completed"] * N else: exp_status = status data = pandas.DataFrame( data={ "id": ids, "x": x, "y": y, "objective": objectives, "status": exp_status, "suggested": ids, } ) return data monkeypatch.setattr(Experiment, "to_pandas", to_pandas) def mock_model(): """Return a mocked regressor which just predict iterated integers""" class Model: """Mocked Regressor""" def __init__(self): self.i = 0 def predict(self, data): """Returns counting of predictions requested.""" data = numpy.arange(data.shape[0]) + self.i self.i += data.shape[0] return data # + numpy.random.normal(0, self.i, size=data.shape[0]) return Model() def mock_train_regressor(monkeypatch, assert_model=None, assert_model_kwargs=None): """Mock the train_regressor to return the mocked regressor instead""" def train_regressor(model, data, **kwargs): """Return the mocked model, and then model argument if requested""" if assert_model: assert model == assert_model if assert_model_kwargs: assert kwargs == assert_model_kwargs return mock_model() monkeypatch.setattr( "orion.analysis.partial_dependency_utils.train_regressor", train_regressor ) @pytest.mark.usefixtures("version_XYZ") class TestLPI: """Tests the ``lpi()`` method provided by the plotly backend""" def test_requires_argument(self): """Tests that the experiment data are required.""" with pytest.raises(ValueError): lpi(None) def test_returns_plotly_object(self): """Tests that the plotly backend returns a plotly object""" with create_experiment(config, trial_config, ["completed"]) as ( _, _, experiment, ): plot = lpi(experiment, model_kwargs=dict(random_state=1)) assert type(plot) is plotly.graph_objects.Figure def test_graph_layout(self, monkeypatch): """Tests the layout of the plot""" config = mock_space() mock_experiment(monkeypatch) with create_experiment(config, trial_config, ["completed"]) as ( _, _, experiment, ): plot = lpi(experiment, model_kwargs=dict(random_state=1)) df = experiment.to_pandas() assert df["x"].tolist() == [0, 1, 2, 4] assert df["y"].tolist() == [3, 2, 0, 1] assert df["objective"].tolist() == [0.1, 0.2, 0.3, 0.5] assert_lpi_plot(plot, dims=["x", "y"]) def test_experiment_worker_as_parameter(self, monkeypatch): """Tests that ``Experiment`` is a valid parameter""" config = mock_space() mock_experiment(monkeypatch) with create_experiment(config, trial_config, ["completed"]) as ( _, experiment, _, ): plot = lpi(experiment, model_kwargs=dict(random_state=1)) assert_lpi_plot(plot, dims=["x", "y"]) def test_ignore_uncompleted_statuses(self, monkeypatch): """Tests that uncompleted statuses are ignored""" config = mock_space() mock_experiment( monkeypatch, ids="abcdefgh", x=[0, 0, 0, 1, 0, 2, 0, 3], y=[1, 0, 0, 2, 0, 0, 0, 3], objectives=[0.1, None, None, 0.2, None, 0.3, None, 0.5], status=[ "completed", "new", "reserved", "completed", "broken", "completed", "interrupted", "completed", ], ) with create_experiment(config, trial_config) as (_, _, experiment): plot = lpi(experiment) assert_lpi_plot(plot, dims=["x", "y"]) def test_multidim(self, monkeypatch): """Tests that dimensions with shape > 1 are flattened properly""" config = mock_space(y="uniform(0, 3, shape=2)") mock_experiment(monkeypatch, y=[[3, 3], [2, 3], [1, 2], [0, 3]]) with create_experiment(config, trial_config) as (_, _, experiment): plot = lpi(experiment, model_kwargs=dict(random_state=1)) assert_lpi_plot(plot, dims=["x", "y[0]", "y[1]"]) def test_fidelity(self, monkeypatch): """Tests that fidelity is supported""" config = mock_space(y="fidelity(1, 200, base=3)") mock_experiment(monkeypatch, y=[1, 3 ** 2, 1, 3 ** 4]) with create_experiment(config, trial_config) as (_, _, experiment): plot = lpi(experiment, model_kwargs=dict(random_state=1)) assert_lpi_plot(plot, dims=["x", "y"]) def test_categorical(self, monkeypatch): """Tests that categorical is supported""" config = mock_space(y='choices(["a", "b", "c"])') mock_experiment(monkeypatch, y=["c", "c", "a", "b"]) with create_experiment(config, trial_config) as (_, _, experiment): plot = lpi(experiment, model_kwargs=dict(random_state=1)) assert_lpi_plot(plot, dims=["x", "y"]) def test_categorical_multidim(self, monkeypatch): """Tests that multidim categorical is supported""" config = mock_space(y='choices(["a", "b", "c"], shape=3)') mock_experiment( monkeypatch, y=[["c", "b", "a"], ["c", "a", "c"], ["a", "b", "a"], ["c", "b", "b"]], ) with create_experiment(config, trial_config) as (_, _, experiment): plot = lpi(experiment, model_kwargs=dict(random_state=1)) assert_lpi_plot(plot, dims=["x", "y[0]", "y[1]", "y[2]"]) @pytest.mark.usefixtures("version_XYZ") class TestParallelCoordinates: """Tests the ``parallel_coordinates()`` method provided by the plotly backend""" def test_requires_argument(self): """Tests that the experiment data are required.""" with pytest.raises(ValueError): parallel_coordinates(None) def test_returns_plotly_object(self): """Tests that the plotly backend returns a plotly object""" with create_experiment(config, trial_config, ["completed"]) as ( _, _, experiment, ): plot = parallel_coordinates(experiment) assert type(plot) is plotly.graph_objects.Figure def test_graph_layout(self): """Tests the layout of the plot""" with create_experiment(config, trial_config, ["completed"]) as ( _, _, experiment, ): plot = parallel_coordinates(experiment) assert_parallel_coordinates_plot(plot, order=["x", "loss"]) def test_experiment_worker_as_parameter(self): """Tests that ``Experiment`` is a valid parameter""" with create_experiment(config, trial_config, ["completed"]) as ( _, experiment, _, ): plot = parallel_coordinates(experiment) assert_parallel_coordinates_plot(plot, order=["x", "loss"]) def test_ignore_uncompleted_statuses(self): """Tests that uncompleted statuses are ignored""" with create_experiment(config, trial_config) as (_, _, experiment): plot = parallel_coordinates(experiment) assert_parallel_coordinates_plot(plot, order=["x", "loss"]) def test_unsupported_order_key(self): """Tests that unsupported order keys are rejected""" with create_experiment(config, trial_config) as (_, _, experiment): with pytest.raises(ValueError): parallel_coordinates(experiment, order=["unsupported"]) def test_order_columns(self): """Tests that columns are sorted according to ``order``""" multidim_config = copy.deepcopy(config) for k in "yzutv": multidim_config["space"][k] = "uniform(0, 200)" with create_experiment(multidim_config, trial_config) as (_, _, experiment): plot = parallel_coordinates(experiment, order="vzyx") assert_parallel_coordinates_plot(plot, order=["v", "z", "y", "x", "loss"]) def test_multidim(self): """Tests that dimensions with shape > 1 are flattened properly""" multidim_config = copy.deepcopy(config) multidim_config["space"]["y"] = "uniform(0, 200, shape=4)" with create_experiment(multidim_config, trial_config) as (_, _, experiment): plot = parallel_coordinates(experiment) assert_parallel_coordinates_plot( plot, order=["x", "y[0]", "y[1]", "y[2]", "y[3]", "loss"] ) def test_fidelity(self): """Tests that fidelity is set to first column by default""" fidelity_config = copy.deepcopy(config) fidelity_config["space"]["z"] = "fidelity(1, 200, base=3)" with create_experiment(fidelity_config, trial_config) as (_, _, experiment): plot = parallel_coordinates(experiment) assert_parallel_coordinates_plot(plot, order=["z", "x", "loss"]) def test_categorical(self): """Tests that categorical is supported""" categorical_config = copy.deepcopy(config) categorical_config["space"]["z"] = 'choices(["a", "b", "c"])' with create_experiment(categorical_config, trial_config) as (_, _, experiment): plot = parallel_coordinates(experiment) assert_parallel_coordinates_plot(plot, order=["x", "z", "loss"]) def test_categorical_multidim(self): """Tests that multidim categorical is supported""" categorical_config = copy.deepcopy(config) categorical_config["space"]["z"] = 'choices(["a", "b", "c"], shape=3)' with create_experiment(categorical_config, trial_config) as (_, _, experiment): plot = parallel_coordinates(experiment) assert_parallel_coordinates_plot( plot, order=["x", "z[0]", "z[1]", "z[2]", "loss"] ) @pytest.mark.usefixtures("version_XYZ") class TestPartialDependencies: """Tests the ``partial_dependencies()`` method provided by the plotly backend""" def test_returns_plotly_object(self, monkeypatch): """Tests that the plotly backend returns a plotly object""" mock_train_regressor(monkeypatch) with create_experiment(config, trial_config, ["completed"]) as ( _, _, experiment, ): plot = partial_dependencies( experiment, n_grid_points=5, model_kwargs=dict(random_state=1) ) assert type(plot) is plotly.graph_objects.Figure def test_graph_layout(self, monkeypatch): """Tests the layout of the plot""" mock_train_regressor(monkeypatch) config = mock_space() mock_experiment(monkeypatch) with create_experiment(config, trial_config, ["completed"]) as ( _, _, experiment, ): plot = partial_dependencies( experiment, n_grid_points=5, model_kwargs=dict(random_state=1) ) df = experiment.to_pandas() assert df["x"].tolist() == [0, 1, 2, 4] assert df["y"].tolist() == [3, 2, 0, 1] assert df["objective"].tolist() == [0.1, 0.2, 0.3, 0.5] assert_partial_dependencies_plot(plot, dims=["x", "y"]) def test_ignore_uncompleted_statuses(self, monkeypatch): """Tests that uncompleted statuses are ignored""" mock_train_regressor(monkeypatch) config = mock_space() mock_experiment( monkeypatch, ids="abcdefgh", x=[0, 0, 0, 1, 0, 2, 0, 3], y=[1, 0, 0, 2, 0, 0, 0, 3], objectives=[0.1, None, None, 0.2, None, 0.3, None, 0.5], status=[ "completed", "new", "reserved", "completed", "broken", "completed", "interrupted", "completed", ], ) with create_experiment(config, trial_config) as (_, _, experiment): plot = partial_dependencies(experiment, n_grid_points=5) assert_partial_dependencies_plot(plot, dims=["x", "y"]) def test_multidim(self, monkeypatch): """Tests that dimensions with shape > 1 are flattened properly""" mock_train_regressor(monkeypatch) config = mock_space(y="uniform(0, 3, shape=2)") mock_experiment(monkeypatch, y=[[3, 3], [2, 3], [1, 2], [0, 3]]) with create_experiment(config, trial_config) as (_, _, experiment): plot = partial_dependencies( experiment, n_grid_points=5, model_kwargs=dict(random_state=1) ) assert_partial_dependencies_plot(plot, dims=["x", "y[0]", "y[1]"]) def test_fidelity(self, monkeypatch): """Tests that fidelity is supported""" mock_train_regressor(monkeypatch) config = mock_space(y="fidelity(1, 200, base=3)") mock_experiment(monkeypatch, y=[1, 3 ** 2, 1, 3 ** 4]) with create_experiment(config, trial_config) as (_, _, experiment): plot = partial_dependencies( experiment, n_grid_points=5, model_kwargs=dict(random_state=1) ) assert_partial_dependencies_plot(plot, dims=["x", "y"], log_dims=["y"]) def test_categorical(self, monkeypatch): """Tests that categorical is supported""" mock_train_regressor(monkeypatch) config = mock_space(y='choices(["a", "b", "c"])') mock_experiment(monkeypatch, y=["c", "c", "a", "b"]) with create_experiment(config, trial_config) as (_, _, experiment): plot = partial_dependencies( experiment, n_grid_points=5, model_kwargs=dict(random_state=1) ) # There is only 3 categories, so test must be adjusted accordingly. assert_partial_dependencies_plot( plot, dims=["x", "y"], n_grid_points={"x": 5, "y": 3} ) def test_categorical_multidim(self, monkeypatch): """Tests that multidim categorical is supported""" mock_train_regressor(monkeypatch) config = mock_space(y='choices(["a", "b", "c"], shape=3)') mock_experiment( monkeypatch, y=[["c", "b", "a"], ["c", "a", "c"], ["a", "b", "a"], ["c", "b", "b"]], ) with create_experiment(config, trial_config) as (_, _, experiment): plot = partial_dependencies( experiment, n_grid_points=5, model_kwargs=dict(random_state=1) ) assert_partial_dependencies_plot( plot, dims=["x", "y[0]", "y[1]", "y[2]"], n_grid_points={"x": 5, "y[0]": 3, "y[1]": 3, "y[2]": 3}, ) def test_logarithmic_scales_first(self, monkeypatch): """Test that log dims are turn to log scale Test first dim specifically because special xaxis name for first dim. """ mock_train_regressor(monkeypatch) config = mock_space(x="loguniform(0.001, 1)", z="uniform(0, 1)") mock_experiment(monkeypatch, x=[0.001, 0.1, 0.01, 1], z=[0, 0.1, 0.2, 0.5]) with create_experiment(config, trial_config) as (_, _, experiment): plot = partial_dependencies( experiment, n_grid_points=5, model_kwargs=dict(random_state=1) ) assert_partial_dependencies_plot( plot, dims=["x", "y", "z"], n_grid_points=5, log_dims=["x"] ) def test_logarithmic_scales_any_dim(self, monkeypatch): """Test that log dims are turn to log scale""" mock_train_regressor(monkeypatch) config = mock_space(y="loguniform(0.001, 1)", z="uniform(0, 1)") mock_experiment(monkeypatch, y=[0.001, 0.1, 0.01, 1], z=[0, 0.1, 0.2, 0.5]) with create_experiment(config, trial_config) as (_, _, experiment): plot = partial_dependencies( experiment, n_grid_points=5, model_kwargs=dict(random_state=1) ) assert_partial_dependencies_plot( plot, dims=["x", "y", "z"], n_grid_points=5, log_dims=["y"] ) def test_int_logarithmic_scales(self, monkeypatch): """Test that int log dims are turn to log scale""" mock_train_regressor(monkeypatch) config = mock_space(y="loguniform(1, 1000, discrete=True)", z="uniform(0, 1)") mock_experiment(monkeypatch, y=[1, 10, 100, 1000], z=[0, 0.1, 0.2, 0.5]) with create_experiment(config, trial_config) as (_, _, experiment): plot = partial_dependencies( experiment, n_grid_points=5, model_kwargs=dict(random_state=1) ) assert_partial_dependencies_plot( plot, dims=["x", "y", "z"], n_grid_points=5, log_dims=["y"] ) def test_one_param(self, monkeypatch): """Test ploting a space with only 1 dim""" mock_train_regressor(monkeypatch) config = mock_space(y=None) mock_experiment(monkeypatch, y="drop") with create_experiment(config, trial_config) as (_, _, experiment): plot = partial_dependencies( experiment, n_grid_points=5, model_kwargs=dict(random_state=1) ) assert_partial_dependencies_plot(plot, dims=["x"], n_grid_points=5) def test_select_params(self, monkeypatch): """Test selecting subset""" mock_train_regressor(monkeypatch) config = mock_space(z="uniform(0, 1)") mock_experiment(monkeypatch, z=[0, 0.1, 0.2, 0.5]) for params in [["x"], ["x", "y"], ["y", "z"]]: with create_experiment(config, trial_config) as (_, _, experiment): plot = partial_dependencies( experiment, params=params, n_grid_points=5, model_kwargs=dict(random_state=1), ) assert_partial_dependencies_plot(plot, dims=params, n_grid_points=5) def test_custom_smoothing(self, monkeypatch): """Test changing smoothing value""" mock_train_regressor(monkeypatch) config = mock_space() mock_experiment(monkeypatch) with create_experiment(config, trial_config) as (_, _, experiment): plot = partial_dependencies( experiment, n_grid_points=5, model_kwargs=dict(random_state=1), smoothing=1.2, ) with pytest.raises(AssertionError): assert_partial_dependencies_plot(plot, dims=["x", "y"], n_grid_points=5) assert_partial_dependencies_plot( plot, dims=["x", "y"], n_grid_points=5, smoothing=1.2 ) def test_custom_n_grid_points(self, monkeypatch): """Test changing n_grid_points value""" mock_train_regressor(monkeypatch) config = mock_space() mock_experiment(monkeypatch) with create_experiment(config, trial_config) as (_, _, experiment): plot = partial_dependencies( experiment, n_grid_points=10, model_kwargs=dict(random_state=1), ) with pytest.raises(AssertionError): assert_partial_dependencies_plot(plot, dims=["x", "y"], n_grid_points=5) assert_partial_dependencies_plot(plot, dims=["x", "y"], n_grid_points=10) def test_custom_n_samples(self, monkeypatch): """Test changing n_samples value""" mock_train_regressor(monkeypatch) config = mock_space() mock_experiment(monkeypatch) PARAMS = ["x", "y"] N_SAMPLES = numpy.random.randint(20, 50) def mock_partial_dependency_grid(space, model, params, samples, n_points): print(samples) assert samples.shape == (N_SAMPLES, len(PARAMS)) return partial_dependency_grid(space, model, params, samples, n_points) monkeypatch.setattr( "orion.analysis.partial_dependency_utils.partial_dependency_grid", mock_partial_dependency_grid, ) with create_experiment(config, trial_config) as (_, _, experiment): plot = partial_dependencies( experiment, n_grid_points=10, model_kwargs=dict(random_state=1), n_samples=N_SAMPLES, ) def test_custom_colorscale(self, monkeypatch): """Test changing colorscale""" mock_train_regressor(monkeypatch) config = mock_space() mock_experiment(monkeypatch) with create_experiment(config, trial_config) as (_, _, experiment): plot = partial_dependencies( experiment, n_grid_points=5, colorscale="Viridis", model_kwargs=dict(random_state=1), ) with pytest.raises(AssertionError): assert_partial_dependencies_plot( plot, dims=["x", "y"], n_grid_points=5, custom_colorscale=False ) assert_partial_dependencies_plot( plot, dims=["x", "y"], n_grid_points=5, custom_colorscale=True ) def test_custom_model(self, monkeypatch): """Test changing type of regression model""" mock_train_regressor(monkeypatch, assert_model="BaggingRegressor") config = mock_space() mock_experiment(monkeypatch) with create_experiment(config, trial_config) as (_, _, experiment): plot = partial_dependencies( experiment, n_grid_points=5, model="BaggingRegressor", model_kwargs=dict(random_state=1), ) def test_custom_model_kwargs(self, monkeypatch): """Test changing arguments of regression model""" mock_train_regressor(monkeypatch, assert_model_kwargs=dict(random_state=1)) config = mock_space() mock_experiment(monkeypatch) with create_experiment(config, trial_config) as (_, _, experiment): plot = partial_dependencies( experiment, n_grid_points=5, model_kwargs=dict(random_state=1), ) @pytest.mark.usefixtures("version_XYZ") class TestRankings: """Tests the ``rankings()`` method provided by the plotly backend""" def test_requires_argument(self): """Tests that the experiment data are required.""" with pytest.raises(ValueError): rankings(None) def test_returns_plotly_object(self, monkeypatch): """Tests that the plotly backend returns a plotly object""" mock_experiment_with_random_to_pandas(monkeypatch) with create_experiment(config, trial_config, ["completed"]) as ( _, _, experiment, ): plot = rankings([experiment, experiment]) assert type(plot) is plotly.graph_objects.Figure def test_graph_layout(self, monkeypatch): """Tests the layout of the plot""" mock_experiment_with_random_to_pandas(monkeypatch) with create_experiment(config, trial_config, ["completed"]) as ( _, _, experiment, ): plot = rankings([experiment]) assert_rankings_plot(plot, [f"{experiment.name}-v{experiment.version}"]) def test_list_of_experiments(self, monkeypatch): """Tests the rankings with list of experiments""" mock_experiment_with_random_to_pandas(monkeypatch) with create_experiment(config, trial_config, ["completed"]) as ( _, _, experiment, ): child = orion.client.create_experiment( experiment.name, branching={"branch_to": "child"} ) plot = rankings([experiment, child]) # Exps are sorted alphabetically by names. assert_rankings_plot( plot, [f"{exp.name}-v{exp.version}" for exp in [child, experiment]] ) def test_list_of_experiments_name_conflict(self, monkeypatch): """Tests the rankings with list of experiments with the same name""" mock_experiment_with_random_to_pandas(monkeypatch) with create_experiment(config, trial_config, ["completed"]) as ( _, _, experiment, ): child = orion.client.create_experiment( experiment.name, branching={"branch_to": experiment.name} ) assert child.name == experiment.name assert child.version == experiment.version + 1 plot = rankings([experiment, child]) # Exps are sorted alphabetically by names. assert_rankings_plot( plot, [f"{exp.name}-v{exp.version}" for exp in [experiment, child]] ) def test_dict_of_experiments(self, monkeypatch): """Tests the rankings with renamed experiments""" mock_experiment_with_random_to_pandas(monkeypatch) with create_experiment(config, trial_config, ["completed"]) as ( _, _, experiment, ): plot = rankings({"exp-1": experiment, "exp-2": experiment}) assert_rankings_plot(plot, ["exp-1", "exp-2"]) def test_list_of_dict_of_experiments(self, monkeypatch): """Tests the rankings with avg of competitions""" mock_experiment_with_random_to_pandas(monkeypatch) with create_experiment(config, trial_config, ["completed"]) as ( _, _, experiment, ): plot = rankings( [{"exp-1": experiment, "exp-2": experiment} for _ in range(10)] ) assert_rankings_plot(plot, ["exp-1", "exp-2"], with_avg=True) def test_dict_of_list_of_experiments(self, monkeypatch): """Tests the rankings with avg of experiments separated in lists""" mock_experiment_with_random_to_pandas(monkeypatch) with create_experiment(config, trial_config, ["completed"]) as ( _, _, experiment, ): plot = rankings({"exp-1": [experiment] * 10, "exp-2": [experiment] * 10}) assert_rankings_plot(plot, ["exp-1", "exp-2"], with_avg=True) def test_unbalanced_experiments(self, monkeypatch): """Tests the regrets with avg of unbalanced experiments""" mock_experiment_with_random_to_pandas(monkeypatch, unbalanced=True) with create_experiment(config, trial_config, ["completed"]) as ( _, _, experiment, ): plot = rankings({"exp-1": [experiment] * 10, "exp-2": [experiment] * 10}) assert_rankings_plot(plot, ["exp-1", "exp-2"], with_avg=True, balanced=0) def test_ignore_uncompleted_statuses(self, monkeypatch): """Tests that uncompleted statuses are ignored""" mock_experiment_with_random_to_pandas( monkeypatch, status=[ "completed", "new", "reserved", "completed", "broken", "completed", "interrupted", "completed", ], ) with create_experiment(config, trial_config) as (_, _, experiment): plot = rankings([experiment]) assert_rankings_plot( plot, [f"{experiment.name}-v{experiment.version}"], balanced=4 ) def test_unsupported_order_key(self): """Tests that unsupported order keys are rejected""" with create_experiment(config, trial_config) as (_, _, experiment): with pytest.raises(ValueError): rankings([experiment], order_by="unsupported") @pytest.mark.usefixtures("version_XYZ") class TestRegret: """Tests the ``regret()`` method provided by the plotly backend""" def test_requires_argument(self): """Tests that the experiment data are required.""" with pytest.raises(ValueError): regret(None) def test_returns_plotly_object(self): """Tests that the plotly backend returns a plotly object""" with create_experiment(config, trial_config, ["completed"]) as ( _, _, experiment, ): plot = regret(experiment) assert type(plot) is plotly.graph_objects.Figure def test_graph_layout(self): """Tests the layout of the plot""" with create_experiment(config, trial_config, ["completed"]) as ( _, _, experiment, ): plot = regret(experiment) assert_regret_plot(plot) def test_experiment_worker_as_parameter(self): """Tests that ``Experiment`` is a valid parameter""" with create_experiment(config, trial_config, ["completed"]) as ( _, experiment, _, ): plot = regret(experiment) assert_regret_plot(plot) def test_ignore_uncompleted_statuses(self): """Tests that uncompleted statuses are ignored""" with create_experiment(config, trial_config) as (_, _, experiment): plot = regret(experiment) assert_regret_plot(plot) def test_unsupported_order_key(self): """Tests that unsupported order keys are rejected""" with create_experiment(config, trial_config) as (_, _, experiment): with pytest.raises(ValueError): regret(experiment, order_by="unsupported") @pytest.mark.usefixtures("version_XYZ") class TestRegrets: """Tests the ``regrets()`` method provided by the plotly backend""" def test_requires_argument(self): """Tests that the experiment data are required.""" with pytest.raises(ValueError): regrets(None) def test_returns_plotly_object(self, monkeypatch): """Tests that the plotly backend returns a plotly object""" mock_experiment_with_random_to_pandas(monkeypatch) with create_experiment(config, trial_config, ["completed"]) as ( _, _, experiment, ): plot = regrets([experiment]) assert type(plot) is plotly.graph_objects.Figure def test_graph_layout(self, monkeypatch): """Tests the layout of the plot""" mock_experiment_with_random_to_pandas(monkeypatch) with create_experiment(config, trial_config, ["completed"]) as ( _, _, experiment, ): plot = regrets([experiment]) assert_regrets_plot(plot, [f"{experiment.name}-v{experiment.version}"]) def test_list_of_experiments(self, monkeypatch): """Tests the regrets with list of experiments""" mock_experiment_with_random_to_pandas(monkeypatch) with create_experiment(config, trial_config, ["completed"]) as ( _, _, experiment, ): child = orion.client.create_experiment( experiment.name, branching={"branch_to": "child"} ) plot = regrets([experiment, child]) # Exps are sorted alphabetically by names. assert_regrets_plot( plot, [f"{exp.name}-v{exp.version}" for exp in [child, experiment]] ) def test_list_of_experiments_name_conflict(self, monkeypatch): """Tests the regrets with list of experiments with the same name""" mock_experiment_with_random_to_pandas(monkeypatch) with create_experiment(config, trial_config, ["completed"]) as ( _, _, experiment, ): child = orion.client.create_experiment( experiment.name, branching={"branch_to": experiment.name} ) assert child.name == experiment.name assert child.version == experiment.version + 1 plot = regrets([experiment, child]) # Exps are sorted alphabetically by names. assert_regrets_plot( plot, [f"{exp.name}-v{exp.version}" for exp in [experiment, child]] ) def test_dict_of_experiments(self, monkeypatch): """Tests the regrets with renamed experiments""" mock_experiment_with_random_to_pandas(monkeypatch) with create_experiment(config, trial_config, ["completed"]) as ( _, _, experiment, ): plot = regrets({"exp-1": experiment, "exp-2": experiment}) assert_regrets_plot(plot, ["exp-1", "exp-2"]) def test_dict_of_list_of_experiments(self, monkeypatch): """Tests the regrets with avg of experiments""" mock_experiment_with_random_to_pandas(monkeypatch) with create_experiment(config, trial_config, ["completed"]) as ( _, _, experiment, ): plot = regrets({"exp-1": [experiment] * 10, "exp-2": [experiment] * 10}) assert_regrets_plot(plot, ["exp-1", "exp-2"], with_avg=True) def test_unbalanced_experiments(self, monkeypatch): """Tests the regrets with avg of unbalanced experiments""" mock_experiment_with_random_to_pandas(monkeypatch, unbalanced=True) with create_experiment(config, trial_config, ["completed"]) as ( _, _, experiment, ): plot = regrets({"exp-1": [experiment] * 10, "exp-2": [experiment] * 10}) assert_regrets_plot(plot, ["exp-1", "exp-2"], with_avg=True, balanced=0) def test_ignore_uncompleted_statuses(self, monkeypatch): """Tests that uncompleted statuses are ignored""" mock_experiment_with_random_to_pandas( monkeypatch, status=[ "completed", "new", "reserved", "completed", "broken", "completed", "interrupted", "completed", ], ) with create_experiment(config, trial_config) as (_, _, experiment): plot = regrets([experiment]) assert_regrets_plot( plot, [f"{experiment.name}-v{experiment.version}"], balanced=4 ) def test_unsupported_order_key(self): """Tests that unsupported order keys are rejected""" with create_experiment(config, trial_config) as (_, _, experiment): with pytest.raises(ValueError): regrets([experiment], order_by="unsupported")
2.0625
2
autodiff/debug_vjp.py
Jakob-Unfried/msc-legacy
1
7824
import pdb import warnings from jax import custom_vjp @custom_vjp def debug_identity(x): """ acts as identity, but inserts a pdb trace on the backwards pass """ warnings.warn('Using a module intended for debugging') return x def _debug_fwd(x): warnings.warn('Using a module intended for debugging') return x, x # noinspection PyUnusedLocal def _debug_bwd(x, g): pdb.set_trace() return g debug_identity.defvjp(_debug_fwd, _debug_bwd)
2.28125
2
mileage.py
vwfinley/mileage
0
7825
#!/usr/bin/env python # Some helpful links # https://docs.python.org/3/library/tkinter.html # https://www.python-course.eu/tkinter_entry_widgets.php import tkinter as tk class Application(tk.Frame): def __init__(self, root=None): super().__init__(root) self.root = root self.root.title("Mileage") self.root.geometry("250x125") self.pack() self.miles = tk.Entry(self); self.gallons = tk.Entry(self); self.mpg = tk.Label(self) self.init_widgets() def init_widgets(self): self.miles.grid(row=0) tk.Label(self, text="Miles").grid(row=0, column=1) self.gallons.grid(row=1) tk.Label(self, text="Gallons").grid(row=1, column=1) self.mpg.grid(row=2) tk.Label(self, text="MPG").grid(row=2, column=1) tk.Button(self, text="Calculate", command = self.calculate).grid(row=3, column=1) tk.Button(self, text="Quit", command=self.root.destroy).grid(row=4, column=1) def calculate(self): self.mpg['text'] = float(self.miles.get()) / float(self.gallons.get()) app = Application(root=tk.Tk()) app.mainloop()
4.0625
4
rankings/elo.py
ulternate/table_tennis_league
0
7826
def elo(winner_rank, loser_rank, weighting): """ :param winner: The Player that won the match. :param loser: The Player that lost the match. :param weighting: The weighting factor to suit your comp. :return: (winner_new_rank, loser_new_rank) Tuple. This follows the ELO ranking method. """ winner_rank_transformed = 10 ** (winner_rank / 400) opponent_rank_transformed = 10 ** (loser_rank / 400) transformed_sum = winner_rank_transformed + opponent_rank_transformed winner_score = winner_rank_transformed / transformed_sum loser_score = opponent_rank_transformed / transformed_sum winner_rank = winner_rank + weighting * ( 1 - winner_score) loser_rank = loser_rank - weighting * loser_score # Set a floor of 100 for the rankings. winner_rank = 100 if winner_rank < 100 else winner_rank loser_rank = 100 if loser_rank < 100 else loser_rank winner_rank = float('{result:.2f}'.format(result=winner_rank)) loser_rank = float('{result:.2f}'.format(result=loser_rank)) return winner_rank, loser_rank
3.75
4
src/samplics/regression/glm.py
samplics-org/samplics
14
7827
<gh_stars>10-100 from __future__ import annotations from typing import Any, Callable, Optional, Union import numpy as np # import pandas as pd import statsmodels.api as sm from samplics.estimation.expansion import TaylorEstimator from samplics.utils.formats import dict_to_dataframe, fpc_as_dict, numpy_array, remove_nans from samplics.utils.types import Array, Number, Series, StringNumber class SurveyGLM: """General linear models under complex survey sampling""" def __init__(self): self.beta: np.ndarray @staticmethod def _residuals(e: np.ndarray, psu: np.ndarray, nb_vars: Number) -> tuple(np.ndarray, Number): psus = np.unique(psu) if psus.shape[0] == 1 and e.shape[0] == 1: raise AssertionError("Only one observation in the stratum") if psus.shape[0] == 1: psu = np.arange(e.shape[0]) psus = np.unique(psu) e_values = np.zeros((psus.shape[0], nb_vars)) for i, p in enumerate(np.unique(psus)): e_values[i, :] += np.sum(e[psu == p, :], axis=0) e_means = np.sum(e_values, axis=0) / psus.shape[0] return np.transpose(e_values - e_means) @ (e_values - e_means), psus.shape[0] def _calculate_g( self, samp_weight: np.ndarray, resid: np.ndarray, x: np.ndarray, stratum: Optional[np.ndarray], psu: Optional[np.ndarray], fpc: Union[dict[StringNumber, Number], Number], glm_scale=Number, ) -> np.ndarray: e = (samp_weight * resid)[:, None] * x / glm_scale if psu is None: psu = np.arange(e.shape[0]) if stratum is None: e_h, n_h = self._residuals(e=e, psu=psu, nb_vars=x.shape[1]) return fpc * (n_h / (n_h - 1)) * e_h else: g_h = np.zeros((x.shape[1], x.shape[1])) for s in np.unique(stratum): e_s = e[stratum == s, :] psu_s = psu[stratum == s] e_h, n_h = self._residuals(e=e_s, psu=psu_s, nb_vars=x.shape[1]) g_h += fpc[s] * (n_h / (n_h - 1)) * e_h return g_h def estimate( self, y: Array, x: Optional[Array] = None, samp_weight: Optional[Array] = None, stratum: Optional[Series] = None, psu: Optional[Series] = None, fpc: Union[dict[StringNumber, Number], Series, Number] = 1.0, remove_nan: bool = False, ) -> None: y = numpy_array(y) y_temp = y.copy() x = numpy_array(x) if x is not None else None psu = numpy_array(psu) if psu is not None else None if samp_weight is None: weight_temp = np.ones(y.shape[0]) elif isinstance(samp_weight, (float, int)): weight_temp = samp_weight * np.ones(y_temp.shape[0]) elif isinstance(samp_weight, np.ndarray): weight_temp = samp_weight.copy() else: weight_temp = np.asarray(samp_weight) if not isinstance(fpc, dict): self.fpc = fpc_as_dict(stratum, fpc) else: if list(np.unique(stratum)) != list(fpc.keys()): raise AssertionError("fpc dictionary keys must be the same as the strata!") else: self.fpc = fpc glm_model = sm.GLM(endog=y_temp, exog=x, var_weights=weight_temp) glm_results = glm_model.fit() g = self._calculate_g( samp_weight=samp_weight, resid=glm_results.resid_response, x=x, stratum=stratum, psu=psu, fpc=self.fpc, glm_scale=glm_results.scale, ) d = glm_results.cov_params() self.beta = glm_results.params self.cov_beta = (d @ g) @ d
2.125
2
tests/test_scopes.py
leg100/scopes
0
7828
<filename>tests/test_scopes.py #!/usr/bin/env python # -*- coding: utf-8 -*- """Tests for `scopes` package.""" import os print(os.getenv('PYTHONPATH')) import pytest from click.testing import CliRunner from scopes.tasks import tasks, bolt, spout, builder from scopes.graph import G, build, topological_sort, traverse from scopes import cli @pytest.fixture def response(): """Sample pytest fixture. See more at: http://doc.pytest.org/en/latest/fixture.html """ # import requests # return requests.get('https://github.com/audreyr/cookiecutter-pypackage') def test_content(response): """Sample pytest test function with the pytest fixture as an argument.""" # from bs4 import BeautifulSoup # assert 'GitHub' in BeautifulSoup(response.content).title.string def test_command_line_interface(): """Test the CLI.""" runner = CliRunner() result = runner.invoke(cli.main) assert result.exit_code == 0 assert 'scopes.cli.main' in result.output help_result = runner.invoke(cli.main, ['--help']) assert help_result.exit_code == 0 assert '--help Show this message and exit.' in help_result.output # t1--- # | | # v v # t2 t3 # \ / t4 # v | # t5<----/ @pytest.fixture def example(): tasks.clear() G.clear() @spout({'x': None}) def t1(): yield {'x': 'east'} yield {'x': 'west'} @bolt({'y': None}, lambda d: 'x' in d) def t2(dep): return {'y': 1, **dep} @bolt({'z': None}, lambda d: d == {'x': None}) def t3(dep): return {'z': 1, **dep} @spout({'c': None}) def t4(): yield {'c': 4, 'x': 'east'} yield {'c': 5, 'x': 'west'} @builder({'a': 2}, lambda _: True, 'x') def t5(obj, dep): obj.update(dep) def test_task_decorator(example): assert len(tasks) == 5 assert callable(tasks[0].func) assert tasks[0].obj == {'x': None} def test_task_dag(example): build(tasks) assert len(G) == 5 assert len(G.edges) == 6 def test_task_traversal(example): build(tasks) nodes = topological_sort() results = traverse(nodes) assert results == { 't1': [{'x': 'east'}, {'x': 'west'}], 't2': [{'x': 'east', 'y': 1}, {'x': 'west', 'y': 1}], 't3': [{'x': 'east', 'z': 1}, {'x': 'west', 'z': 1}], 't4': [{'x': 'east', 'c': 4}, {'x': 'west', 'c': 5}], 't5': [ {'a': 2, 'x': 'east', 'y': 1, 'z': 1, 'c': 4}, {'a': 2, 'x': 'west', 'y': 1, 'z': 1, 'c': 5} ] }
2.328125
2
timeparse/LunarSolarConverter/__init__.py
tornadoyi/timeparse
0
7829
# -*- coding: utf-8 -*- __author__ = 'isee15' import LunarSolarConverter converter = LunarSolarConverter.LunarSolarConverter() def LunarToSolar(year, month, day, isleap = False): lunar = LunarSolarConverter.Lunar(year, month, day, isleap) solar = converter.LunarToSolar(lunar) return (solar.solarYear, solar.solarMonth, solar.solarDay) def SolarToLunar(year, month, day): solar = LunarSolarConverter.Solar(year, month, day) lunar = converter.SolarToLunar(solar) return (lunar.lunarYear, lunar.lunarMonth, lunar.lunarDay) def LunarMonthDays(year, month, isleap = False): converter = LunarSolarConverter.LunarSolarConverter days = converter.lunar_month_days[year - converter.lunar_month_days[0]] leap = LunarSolarConverter.GetBitInt(days, 4, 13) offset = 0 loopend = leap if not isleap: if month <= leap or leap == 0: loopend = month - 1 else: loopend = month days = LunarSolarConverter.GetBitInt(days, 1, 12 - loopend) == 1 and 30 or 29 return days
3.21875
3
examples/hello-pt/custom/cifar10validator.py
ArnovanHilten/NVFlare
155
7830
# Copyright (c) 2021, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from torch.utils.data import DataLoader from torchvision.datasets import CIFAR10 from torchvision.transforms import Compose, ToTensor, Normalize from nvflare.apis.dxo import from_shareable, DataKind, DXO from nvflare.apis.executor import Executor from nvflare.apis.fl_constant import ReturnCode from nvflare.apis.fl_context import FLContext from nvflare.apis.shareable import Shareable, make_reply from nvflare.apis.signal import Signal from nvflare.app_common.app_constant import AppConstants from simple_network import SimpleNetwork class Cifar10Validator(Executor): def __init__(self, validate_task_name=AppConstants.TASK_VALIDATION): super(Cifar10Validator, self).__init__() self._validate_task_name = validate_task_name # Setup the model self.model = SimpleNetwork() self.device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") self.model.to(self.device) # Preparing the dataset for testing. transforms = Compose([ ToTensor(), Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ]) self.test_data = CIFAR10(root='~/data', train=False, transform=transforms) self.test_loader = DataLoader(self.test_data, batch_size=4, shuffle=False) def execute(self, task_name: str, shareable: Shareable, fl_ctx: FLContext, abort_signal: Signal) -> Shareable: if task_name == self._validate_task_name: model_owner = "?" try: try: dxo = from_shareable(shareable) except: self.log_error(fl_ctx, "Error in extracting dxo from shareable.") return make_reply(ReturnCode.BAD_TASK_DATA) # Ensure data_kind is weights. if not dxo.data_kind == DataKind.WEIGHTS: self.log_exception(fl_ctx, f"DXO is of type {dxo.data_kind} but expected type WEIGHTS.") return make_reply(ReturnCode.BAD_TASK_DATA) # Extract weights and ensure they are tensor. model_owner = shareable.get_header(AppConstants.MODEL_OWNER, "?") weights = {k: torch.as_tensor(v, device=self.device) for k, v in dxo.data.items()} # Get validation accuracy val_accuracy = self.do_validation(weights, abort_signal) if abort_signal.triggered: return make_reply(ReturnCode.TASK_ABORTED) self.log_info(fl_ctx, f"Accuracy when validating {model_owner}'s model on" f" {fl_ctx.get_identity_name()}"f's data: {val_accuracy}') dxo = DXO(data_kind=DataKind.METRICS, data={'val_acc': val_accuracy}) return dxo.to_shareable() except: self.log_exception(fl_ctx, f"Exception in validating model from {model_owner}") return make_reply(ReturnCode.EXECUTION_EXCEPTION) else: return make_reply(ReturnCode.TASK_UNKNOWN) def do_validation(self, weights, abort_signal): self.model.load_state_dict(weights) self.model.eval() correct = 0 total = 0 with torch.no_grad(): for i, (images, labels) in enumerate(self.test_loader): if abort_signal.triggered: return 0 images, labels = images.to(self.device), labels.to(self.device) output = self.model(images) _, pred_label = torch.max(output, 1) correct += (pred_label == labels).sum().item() total += images.size()[0] metric = correct/float(total) return metric
1.859375
2
lambda/enable-traffic-mirroring.py
wrharding/aws-infra
1
7831
# MIT License # Copyright (c) 2020-2021 <NAME> (https://www.chrisfarris.com) # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import boto3 from botocore.exceptions import ClientError import json import os import logging logger = logging.getLogger() logger.setLevel(getattr(logging, os.getenv('LOG_LEVEL', default='INFO'))) logging.getLogger('botocore').setLevel(logging.WARNING) logging.getLogger('boto3').setLevel(logging.WARNING) logging.getLogger('urllib3').setLevel(logging.WARNING) TAG_KEY=os.getenv('TAG_KEY', default='WireShark') def handler(event, context): logger.debug("Received event: " + json.dumps(event, sort_keys=True)) ec2_client = boto3.client('ec2') mirror_sessions = ec2_client.describe_traffic_mirror_sessions()['TrafficMirrorSessions'] enabled_enis = [] max_session_id = 0 for s in mirror_sessions: enabled_enis.append(s['NetworkInterfaceId']) if s['SessionNumber'] > max_session_id: max_session_id = s['SessionNumber'] response = ec2_client.describe_instances( Filters=[ {'Name': 'instance-state-name', 'Values': ['running']}, ], MaxResults=1000 # I should never need to paginate. ) for r in response['Reservations']: for i in r['Instances']: if not i['InstanceType'].startswith("t3"): logger.debug(f"Instance {i['InstanceId']} is not a t3 and does not support Traffic Mirroring") continue for tag in i['Tags']: if tag['Key'] == TAG_KEY: # See if a mirror session is setup for eni in i['NetworkInterfaces']: if eni['NetworkInterfaceId'] not in enabled_enis: logger.info(f"ENI {eni['NetworkInterfaceId']} on Instance {i['InstanceId']} needs Mirroring Enabled") max_session_id += 1 enable_traffic_mirroring(ec2_client, eni['NetworkInterfaceId'], i['InstanceId'], max_session_id) else: logger.debug(f"ENI {eni['NetworkInterfaceId']} on Instance {i['InstanceId']} is already Enabled") def enable_traffic_mirroring(ec2_client, eni, instance_id, session_id): response = ec2_client.create_traffic_mirror_session( NetworkInterfaceId=eni, TrafficMirrorTargetId=os.environ['TARGET_ID'], TrafficMirrorFilterId=os.environ['FILTER_ID'], SessionNumber=session_id, Description=f"Enabled by Lambda for {instance_id}" ) ## END OF FUNCTION ## if __name__ == '__main__': # Logging idea stolen from: https://docs.python.org/3/howto/logging.html#configuring-logging # create console handler and set level to debug ch = logging.StreamHandler() logger.setLevel(logging.DEBUG) # create formatter # formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') formatter = logging.Formatter('%(levelname)s - %(message)s') # add formatter to ch ch.setFormatter(formatter) # add ch to logger logger.addHandler(ch) try: handler(None, None) except KeyboardInterrupt: exit(1)
1.554688
2
src/value_function.py
wu6u3/async_trpo
6
7832
<reponame>wu6u3/async_trpo """ State-Value Function Written by <NAME> (pat-coady.github.io) Modified by <NAME> (wu6u3) into asynchronous version """ import tensorflow as tf import numpy as np from sklearn.utils import shuffle #import os class NNValueFunction(object): """ NN-based state-value function """ def __init__(self, obs_dim, hid1_mult, thread_idx, shared_nn): """ Args: obs_dim: number of dimensions in observation vector (int) hid1_mult: size of first hidden layer, multiplier of obs_dim """ self.replay_buffer_x = None self.replay_buffer_y = None self.obs_dim = obs_dim self.hid1_mult = hid1_mult self.epochs = 10 self.lr = None # learning rate set in _build_graph() self._thread_idx=thread_idx # -1 for global self._scope_name = "nn_net_"+str(self._thread_idx) self._build_graph() #self.sess = tf.Session(graph=self.g) #self.sess.run(self.init) var_refs = [v._ref() for v in self.get_vars()] self.gradients = tf.gradients( self.loss, var_refs, gate_gradients=False, aggregation_method=None, colocate_gradients_with_ops=False) self.apply_gradients=None self.sync = self.sync_from(shared_nn) #self. global_fit = self.fit_for_global(x=None, y=None, logger=None) def _build_graph(self): """ Construct TensorFlow graph, including loss function, init op and train op """ with tf.variable_scope(self._scope_name) as scope: self.obs_ph = tf.placeholder(tf.float32, (None, self.obs_dim), 'obs_valfunc') self.val_ph = tf.placeholder(tf.float32, (None,), 'val_valfunc') # hid1 layer size is 10x obs_dim, hid3 size is 10, and hid2 is geometric mean hid1_size = self.obs_dim * self.hid1_mult # default multipler 10 chosen empirically on 'Hopper-v1' hid3_size = 5 # 5 chosen empirically on 'Hopper-v1' hid2_size = int(np.sqrt(hid1_size * hid3_size)) # heuristic to set learning rate based on NN size (tuned on 'Hopper-v1') self.lr = 1e-2 / np.sqrt(hid2_size) # 1e-3 empirically determined print('Value Params -- h1: {}, h2: {}, h3: {}, lr: {:.3g}' .format(hid1_size, hid2_size, hid3_size, self.lr)) # 3 hidden layers with tanh activations out = tf.layers.dense(self.obs_ph, hid1_size, tf.tanh, kernel_initializer=tf.random_normal_initializer( stddev=np.sqrt(1 / self.obs_dim)), name="h1") out = tf.layers.dense(out, hid2_size, tf.tanh, kernel_initializer=tf.random_normal_initializer( stddev=np.sqrt(1 / hid1_size)), name="h2") out = tf.layers.dense(out, hid3_size, tf.tanh, kernel_initializer=tf.random_normal_initializer( stddev=np.sqrt(1 / hid2_size)), name="h3") out = tf.layers.dense(out, 1, kernel_initializer=tf.random_normal_initializer( stddev=np.sqrt(1 / hid3_size)), name='output') self.out = tf.squeeze(out) self.loss = tf.reduce_mean(tf.square(self.out - self.val_ph)) # squared loss optimizer = tf.train.AdamOptimizer(self.lr) self.train_op = optimizer.minimize(self.loss) #self.init = tf.global_variables_initializer() self.h1_w, self.h1_b = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, self._scope_name+'/h1') self.h2_w, self.h2_b = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, self._scope_name+'/h2') self.h3_w, self.h3_b = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, self._scope_name+'/h3') self.output_w, self.output_b =tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, self._scope_name+'/output') scope.reuse_variables() #self.sess = tf.Session(graph=self.g) #self.sess.run(self.init) def fit_for_global(self, x, y, logger): """ Fit model to current data batch + previous data batch Args: x: features y: target logger: logger to save training loss and % explained variance """ num_batches = max(x.shape[0] // 256, 1) batch_size = x.shape[0] // num_batches y_hat = self.predict(sess, x) # check explained variance prior to update old_exp_var = 1 - np.var(y - y_hat)/np.var(y) if self.replay_buffer_x is None: x_train, y_train = x, y else: x_train = np.concatenate([x, self.replay_buffer_x]) y_train = np.concatenate([y, self.replay_buffer_y]) self.replay_buffer_x = x self.replay_buffer_y = y for e in range(self.epochs): x_train, y_train = shuffle(x_train, y_train) for j in range(num_batches): start = j * batch_size end = (j + 1) * batch_size feed_dict = {self.obs_ph: x_train[start:end, :], self.val_ph: y_train[start:end]} _, l = sess.run([self.train_op, self.loss], feed_dict=feed_dict) y_hat = self.predict(sess, x) loss = np.mean(np.square(y_hat - y)) # explained variance after update exp_var = 1 - np.var(y - y_hat) / np.var(y) # diagnose over-fitting of val func logger.log({'ValFuncLoss': loss, 'ExplainedVarNew': exp_var, 'ExplainedVarOld': old_exp_var}) def fit(self, sess, x, y, logger): """ Fit model to current data batch + previous data batch Args: x: features y: target logger: logger to save training loss and % explained variance """ num_batches = max(x.shape[0] // 256, 1) batch_size = x.shape[0] // num_batches y_hat = self.predict(sess, x) # check explained variance prior to update old_exp_var = 1 - np.var(y - y_hat)/np.var(y) if self.replay_buffer_x is None: x_train, y_train = x, y else: x_train = np.concatenate([x, self.replay_buffer_x]) y_train = np.concatenate([y, self.replay_buffer_y]) self.replay_buffer_x = x self.replay_buffer_y = y for e in range(self.epochs): x_train, y_train = shuffle(x_train, y_train) for j in range(num_batches): start = j * batch_size end = (j + 1) * batch_size feed_dict = {self.obs_ph: x_train[start:end, :], self.val_ph: y_train[start:end]} _, l = sess.run([self.train_op, self.loss], feed_dict=feed_dict) y_hat = self.predict(sess, x) loss = np.mean(np.square(y_hat - y)) # explained variance after update exp_var = 1 - np.var(y - y_hat) / np.var(y) # diagnose over-fitting of val func logger.log({'ValFuncLoss': loss, 'ExplainedVarNew': exp_var, 'ExplainedVarOld': old_exp_var}) def predict(self, sess, x): """ Predict method """ feed_dict = {self.obs_ph: x} y_hat = sess.run(self.out, feed_dict=feed_dict) return np.squeeze(y_hat) #def close_sess(self): # """ Close TensorFlow session """ # sess.close() def get_vars(self): return [self.h1_w, self.h1_b, self.h2_w, self.h2_b, self.h3_w, self.h3_b, self.output_w, self.output_b ] # weights = [] #name = [] #for tensor in self.g.as_graph_def().node: # name.append(tensor.name) #print(name) #with self.g.as_default() as g: # with tf.variable_scope(self._scope_name) as scope: # weights.extend(tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope)) # weights.append(g.get_tensor_by_name('h1/kernel:0')) # weights.append(g.get_tensor_by_name('h1/bias:0')) # weights.append(g.get_tensor_by_name('h2/kernel:0')) # weights.append(g.get_tensor_by_name('h2/bias:0')) # weights.append(g.get_tensor_by_name('h3/kernel:0')) # weights.append(g.get_tensor_by_name('h3/bias:0')) # return weights def sync_from(self, shared_nn, name=None): if shared_nn != None: src_vars = shared_nn.get_vars() dst_vars = self.get_vars() sync_ops = [] with tf.name_scope(name, self._scope_name, []) as name: for(src_var, dst_var) in zip(src_vars, dst_vars): sync_op = tf.assign(dst_var, src_var) sync_ops.append(sync_op) return tf.group(*sync_ops, name=name) else: return None
2.21875
2
mdepub/actions/__init__.py
bkidwell/mdepub
35
7833
<reponame>bkidwell/mdepub """mdepub actions -- these modules do the actual work.""" import archive import clean import create import epub import extract import html import newid import version
0.84375
1
gbe/views/make_bid_view.py
bethlakshmi/gbe-divio-djangocms-python2.7
1
7834
from django.views.generic import View from django.utils.decorators import method_decorator from django.contrib.auth.decorators import login_required from django.views.decorators.cache import never_cache from django.contrib import messages from django.http import HttpResponseRedirect from django.urls import reverse from django.shortcuts import ( get_object_or_404, render, ) from gbe.models import ( Conference, UserMessage, ) from gbe_logging import log_func from gbe.functions import ( validate_profile, ) from gbe.email.functions import notify_reviewers_on_bid_change from gbetext import ( no_login_msg, fee_instructions, full_login_msg, payment_needed_msg, payment_details_error, ) from gbe_utils.text import no_profile_msg from gbe.ticketing_idd_interface import ( get_payment_details, get_ticket_form, fee_paid, ) class MakeBidView(View): form = None has_draft = True instructions = '' payment_form = None coordinated = False def groundwork(self, request, args, kwargs): self.owner = validate_profile(request, require=False) if not self.owner or not self.owner.complete: user_message = UserMessage.objects.get_or_create( view=self.__class__.__name__, code="PROFILE_INCOMPLETE", defaults={ 'summary': "Profile Incomplete", 'description': no_profile_msg}) messages.warning(request, user_message[0].description) return '%s?next=%s' % ( reverse('profile_update', urlconf='gbe.urls'), reverse('%s_create' % self.bid_type.lower(), urlconf='gbe.urls')) self.bid_object = None if "bid_id" in kwargs: bid_id = kwargs.get("bid_id") self.bid_object = get_object_or_404(self.bid_class, pk=bid_id) self.conference = self.bid_object.b_conference else: self.conference = Conference.objects.filter( accepting_bids=True).first() def make_post_forms(self, request, the_form): if self.bid_object: self.form = the_form( request.POST, instance=self.bid_object, initial=self.get_initial(), prefix=self.prefix) else: self.form = the_form( request.POST, initial=self.get_initial(), prefix=self.prefix) self.set_up_form() def set_up_post(self, request): the_form = None if 'submit' in list(request.POST.keys()) or not self.has_draft: the_form = self.submit_form user_message = UserMessage.objects.get_or_create( view=self.__class__.__name__, code="SUBMIT_SUCCESS", defaults={ 'summary': "%s Submit Success" % self.bid_type, 'description': self.submit_msg}) else: the_form = self.draft_form user_message = UserMessage.objects.get_or_create( view=self.__class__.__name__, code="DRAFT_SUCCESS", defaults={ 'summary': "%s Save Draft Success" % self.bid_type, 'description': self.draft_msg}) self.make_post_forms(request, the_form) return user_message def make_context(self, request): paid = fee_paid( self.bid_type, self.owner.user_object.username, self.conference) instructions = UserMessage.objects.get_or_create( view=self.__class__.__name__, code="BID_INSTRUCTIONS", defaults={ 'summary': "%s Bid Instructions" % self.bid_type, 'description': self.instructions}) context = { 'conference': self.conference, 'forms': [self.form], 'page_title': self.page_title, 'view_title': self.view_title, 'draft_fields': self.draft_fields, 'submit_fields': self.submit_fields, 'fee_paid': paid, 'view_header_text': instructions[0].description, } if not paid and not self.coordinated: user_message = UserMessage.objects.get_or_create( view=self.__class__.__name__, code="FEE_MESSAGE", defaults={ 'summary': "%s Pre-submit Message" % self.bid_type, 'description': fee_instructions}) messages.info( request, user_message[0].description) if self.payment_form: context['forms'] += [self.payment_form] else: context['forms'] += [get_ticket_form(self.bid_class.__name__, self.conference)] return context def get_create_form(self, request): if self.bid_object: self.form = self.submit_form( prefix=self.prefix, instance=self.bid_object, initial=self.get_initial()) else: self.form = self.submit_form( prefix=self.prefix, initial=self.get_initial()) self.set_up_form() return render( request, 'gbe/bid.tmpl', self.make_context(request) ) def check_validity(self, request): return self.form.is_valid() def set_up_form(self): pass def get_invalid_response(self, request): self.set_up_form() context = self.make_context(request) return render( request, 'gbe/bid.tmpl', context) def submit_bid(self, request): self.bid_object.submitted = True self.bid_object.save() notify_reviewers_on_bid_change( self.owner, self.bid_object, self.bid_type, "Submission", self.conference, '%s Reviewers' % self.bid_type, reverse('%s_review' % self.bid_type.lower(), urlconf='gbe.urls')) @never_cache @log_func def get(self, request, *args, **kwargs): if not request.user.is_authenticated: follow_on = '?next=%s' % reverse( '%s_create' % self.bid_type.lower(), urlconf='gbe.urls') user_message = UserMessage.objects.get_or_create( view=self.__class__.__name__, code="USER_NOT_LOGGED_IN", defaults={ 'summary': "Need Login - %s Bid", 'description': no_login_msg}) full_msg = full_login_msg % ( user_message[0].description, reverse('login', urlconf='gbe.urls') + follow_on) messages.warning(request, full_msg) return HttpResponseRedirect( reverse('register', urlconf='gbe.urls') + follow_on) redirect = self.groundwork(request, args, kwargs) if redirect: return HttpResponseRedirect(redirect) return self.get_create_form(request) @never_cache @log_func @method_decorator(login_required) def post(self, request, *args, **kwargs): cart_items = [] paypal_button = None total = None redirect = None redirect = self.groundwork(request, args, kwargs) if redirect: return HttpResponseRedirect(redirect) user_message = self.set_up_post(request) # check bid validity if not self.check_validity(request): return self.get_invalid_response(request) if not self.coordinated and not fee_paid( self.bid_type, self.owner.user_object.username, self.conference) and "draft" not in list(request.POST.keys()): self.payment_form = get_ticket_form(self.bid_class.__name__, self.conference, request.POST) if not self.payment_form.is_valid(): error_message = UserMessage.objects.get_or_create( view=self.__class__.__name__, code="PAYMENT_CHOICE_INVALID", defaults={ 'summary': "User Made Invalid Ticket Choice", 'description': payment_details_error}) messages.error(request, error_message[0].description) return self.get_invalid_response(request) # save bid if not self.bid_object: self.bid_object = self.form.save(commit=False) self.set_valid_form(request) # if this isn't a draft, move forward through process, setting up # payment review if payment is needed if "submit" in list(request.POST.keys()): if self.payment_form: cart_items, paypal_button, total = get_payment_details( request, self.payment_form, self.bid_type, self.bid_object.pk, self.owner.user_object.pk) dynamic_message = UserMessage.objects.get_or_create( view=self.__class__.__name__, code="NOT_PAID_INSTRUCTIONS", defaults={ 'summary': "%s Not Paid" % self.bid_type, 'description': payment_needed_msg}) page_title = '%s Payment' % self.bid_type return render( request, 'gbe/confirm_pay.tmpl', {'dynamic_message': dynamic_message[0].description, 'page_title': page_title, 'cart_items': cart_items, 'total': total, 'paypal_button': paypal_button}) else: redirect = self.submit_bid(request) messages.success(request, user_message[0].description) return HttpResponseRedirect( redirect or reverse('home', urlconf='gbe.urls')) def dispatch(self, *args, **kwargs): return super(MakeBidView, self).dispatch(*args, **kwargs)
1.90625
2
epicteller/core/dao/character.py
KawashiroNitori/epicteller
0
7835
<reponame>KawashiroNitori/epicteller<filename>epicteller/core/dao/character.py #!/usr/bin/env python # -*- coding: utf-8 -*- import time from collections import defaultdict from typing import List, Optional, Iterable, Dict import base62 from sqlalchemy import select, and_ from sqlalchemy.dialects.mysql import insert as mysql_insert from epicteller.core.model.character import Character from epicteller.core.tables import table from epicteller.core.util import ObjectDict from epicteller.core.util.enum import ExternalType from epicteller.core.util.seq import get_id def _format_character(result) -> Optional[Character]: if not result: return character = Character( id=result.id, url_token=result.url_token, member_id=result.member_id, name=result.name, avatar=result.avatar, description=result.description, is_removed=bool(result.is_removed), raw_data=result.data, created=result.created, updated=result.updated, ) return character class CharacterDAO: t = table.character select_clause = select([ t.c.id, t.c.url_token, t.c.name, t.c.member_id, t.c.avatar, t.c.description, t.c.is_removed, t.c.data, t.c.created, t.c.updated, ]) @classmethod async def batch_get_character_by_id(cls, character_ids: Iterable[int]) -> Dict[int, Character]: query = cls.select_clause.where(cls.t.c.id.in_(character_ids)) result = await table.execute(query) rows = await result.fetchall() return {row.id: _format_character(row) for row in rows} @classmethod async def batch_get_character_by_url_token(cls, url_tokens: Iterable[str]) -> Dict[str, Character]: query = cls.select_clause.where(cls.t.c.url_token.in_(url_tokens)) result = await table.execute(query) rows = await result.fetchall() return {row.url_token: _format_character(result) for row in rows} @classmethod async def get_characters_by_owner(cls, member_id: int) -> List[Character]: query = cls.select_clause.where(cls.t.c.member_id == member_id) results = await table.execute(query) characters = [_format_character(room) for room in await results.fetchall()] return characters @classmethod async def update_character(cls, character_id: int, **kwargs) -> None: if 'updated' not in kwargs: kwargs['updated'] = int(time.time()) query = cls.t.update().values(kwargs).where(cls.t.c.id == character_id) await table.execute(query) @classmethod async def create_character(cls, member_id: int, name: str, avatar: str, description: str, raw_data: dict) -> Character: created = int(time.time()) url_token = base62.encode(get_id()) values = ObjectDict( url_token=url_token, member_id=member_id, name=name, avatar=avatar, description=description, is_removed=0, data=raw_data, created=created, updated=created, ) query = cls.t.insert().values(values) result = await table.execute(query) values.id = result.lastrowid character = _format_character(values) return character class CharacterCampaignDAO: t = table.character_campaign_index @classmethod async def get_character_id_by_campaign_name(cls, campaign_id: int, name: str) -> Optional[int]: query = select([cls.t.c.character_id]).where(and_(cls.t.c.campaign_id == campaign_id, cls.t.c.name == name)) result = await table.execute(query) row = await result.fetchone() if not row: return return int(row.character_id) @classmethod async def get_character_ids_by_campaign_id(cls, campaign_id: int) -> List[int]: query = select([cls.t.c.character_id]).where(cls.t.c.campaign_id == campaign_id) results = await table.execute(query) character_ids = [int(row.character_id) for row in await results.fetchall()] return character_ids @classmethod async def get_campaign_ids_by_character_ids(cls, character_ids: List[int]) -> Dict[int, List[int]]: query = select([ cls.t.c.character_id, cls.t.c.campaign_id, ]).where(cls.t.c.character_id.in_(character_ids)) results = await table.execute(query) rows = await results.fetchall() campaign_map = defaultdict(list) for r in rows: campaign_map[r.character_id].append(r.campaign_id) return dict(campaign_map) @classmethod async def bind_character_to_campaign(cls, character_id: int, name: str, campaign_id: int): query = mysql_insert(cls.t).values( character_id=character_id, name=name, campaign_id=campaign_id, ).on_duplicate_key_update( name=name, ) await table.execute(query) @classmethod async def unbind_character_to_campaign(cls, character_id: int, campaign_id: int): query = cls.t.delete().where(and_(cls.t.c.character_id == character_id, cls.t.c.campaign_id == campaign_id)) await table.execute(query) class CharacterExternalDAO: t = table.character_external_id @classmethod async def get_external_ids_by_character(cls, character_id: int) -> Dict[ExternalType, str]: query = select([ cls.t.c.type, cls.t.c.external_id, ]).where(cls.t.c.character_id == character_id) result = await table.execute(query) rows = await result.fetchall() externals = {ExternalType(row.type): row.external_id for row in rows} return externals @classmethod async def get_character_ids_by_external(cls, external_type: ExternalType, external_id: str) -> List[int]: query = select([cls.t.c.character_id]).where(and_(cls.t.c.type == int(external_type), cls.t.c.external_id == external_id)) result = await table.execute(query) rows = await result.fetchall() character_ids = [r.character_id for r in rows] return character_ids @classmethod async def bind_character_external_id(cls, character_id: int, external_type: ExternalType, external_id: str): query = mysql_insert(cls.t).values( character_id=character_id, type=int(external_type), external_id=external_id, ).on_duplicate_key_update( external_id=external_id, ) await table.execute(query) @classmethod async def unbind_character_external_id(cls, character_id: int, external_type: ExternalType): query = cls.t.delete().where(and_(cls.t.c.character_id == character_id, cls.t.c.type == int(external_type))) await table.execute(query)
2.140625
2
examples/sentence_classfication/task_sentiment_classification_roformer_v2.py
Tongjilibo/bert4torch
49
7836
<gh_stars>10-100 #! -*- coding:utf-8 -*- # 情感分类例子,RoPE相对位置编码 # 官方项目:https://github.com/ZhuiyiTechnology/roformer-v2 # pytorch参考项目:https://github.com/JunnYu/RoFormer_pytorch from bert4torch.tokenizers import Tokenizer from bert4torch.models import build_transformer_model, BaseModel from bert4torch.snippets import sequence_padding, Callback, text_segmentate, ListDataset import torch.nn as nn import torch import torch.optim as optim from torch.utils.data import DataLoader maxlen = 128 batch_size = 16 config_path = 'F:/Projects/pretrain_ckpt/roformer/[sushen_torch_base]--roformer_v2_char_base/config.json' checkpoint_path = 'F:/Projects/pretrain_ckpt/roformer/[sushen_torch_base]--roformer_v2_char_base/pytorch_model.bin' dict_path = 'F:/Projects/pretrain_ckpt/roformer/[sushen_torch_base]--roformer_v2_char_base/vocab.txt' device = 'cuda' if torch.cuda.is_available() else 'cpu' # 建立分词器 tokenizer = Tokenizer(dict_path, do_lower_case=True) # 加载数据集 class MyDataset(ListDataset): @staticmethod def load_data(filenames): """加载数据,并尽量划分为不超过maxlen的句子 """ D = [] seps, strips = u'\n。!?!?;;,, ', u';;,, ' for filename in filenames: with open(filename, encoding='utf-8') as f: for l in f: text, label = l.strip().split('\t') for t in text_segmentate(text, maxlen - 2, seps, strips): D.append((t, int(label))) return D def collate_fn(batch): batch_token_ids, batch_segment_ids, batch_labels = [], [], [] for text, label in batch: token_ids, segment_ids = tokenizer.encode(text, maxlen=maxlen) batch_token_ids.append(token_ids) batch_segment_ids.append(segment_ids) batch_labels.append([label]) batch_token_ids = torch.tensor(sequence_padding(batch_token_ids), dtype=torch.long, device=device) batch_segment_ids = torch.tensor(sequence_padding(batch_segment_ids), dtype=torch.long, device=device) batch_labels = torch.tensor(batch_labels, dtype=torch.long, device=device) return [batch_token_ids, batch_segment_ids], batch_labels.flatten() # 加载数据集 train_dataloader = DataLoader(MyDataset(['E:/Github/bert4torch/examples/datasets/sentiment/sentiment.train.data']), batch_size=batch_size, shuffle=True, collate_fn=collate_fn) valid_dataloader = DataLoader(MyDataset(['E:/Github/bert4torch/examples/datasets/sentiment/sentiment.valid.data']), batch_size=batch_size, collate_fn=collate_fn) test_dataloader = DataLoader(MyDataset(['E:/Github/bert4torch/examples/datasets/sentiment/sentiment.test.data']), batch_size=batch_size, collate_fn=collate_fn) # 定义bert上的模型结构 class Model(BaseModel): def __init__(self) -> None: super().__init__() # 指定好model和对应的ckpt地址 self.bert, self.config = build_transformer_model(config_path=config_path, checkpoint_path=checkpoint_path, model='roformer_v2', return_model_config=True) self.dropout = nn.Dropout(0.1) self.dense = nn.Linear(self.config['hidden_size'], 2) def forward(self, token_ids, segment_ids): last_hidden_state = self.bert([token_ids, segment_ids]) output = self.dropout(last_hidden_state[:, 0, :]) output = self.dense(output) return output model = Model().to(device) # 定义使用的loss和optimizer,这里支持自定义 model.compile( loss=nn.CrossEntropyLoss(), optimizer=optim.Adam(model.parameters(), lr=2e-5), # 用足够小的学习率 metrics=['accuracy'] ) # 定义评价函数 def evaluate(data): total, right = 0., 0. for x_true, y_true in data: y_pred = model.predict(x_true).argmax(axis=1) total += len(y_true) right += (y_true == y_pred).sum().item() return right / total class Evaluator(Callback): """评估与保存 """ def __init__(self): self.best_val_acc = 0. def on_epoch_end(self, global_step, epoch, logs=None): val_acc = evaluate(valid_dataloader) if val_acc > self.best_val_acc: self.best_val_acc = val_acc # model.save_weights('best_model.pt') print(f'val_acc: {val_acc:.5f}, best_val_acc: {self.best_val_acc:.5f}\n') if __name__ == '__main__': evaluator = Evaluator() model.fit(train_dataloader, epochs=20, steps_per_epoch=500, callbacks=[evaluator]) else: model.load_weights('best_model.pt')
2.453125
2
pyscf/nao/test/test_0037_aos.py
fdmalone/pyscf
1
7837
# Copyright 2014-2018 The PySCF Developers. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function, division import os,unittest,numpy as np class KnowValues(unittest.TestCase): def test_aos_libnao(self): """ Computing of the atomic orbitals """ from pyscf.nao import system_vars_c from pyscf.tools.cubegen import Cube sv = system_vars_c().init_siesta_xml(label='water', cd=os.path.dirname(os.path.abspath(__file__))) cc = Cube(sv, nx=20, ny=20, nz=20) aos = sv.comp_aos_den(cc.get_coords()) self.assertEqual(aos.shape[0], cc.nx*cc.ny*cc.nz) self.assertEqual(aos.shape[1], sv.norbs) if __name__ == "__main__": unittest.main()
1.984375
2
code_week12_713_719/is_graph_bipartite_hard.py
dylanlee101/leetcode
0
7838
''' 给定一个无向图graph,当这个图为二分图时返回true。 如果我们能将一个图的节点集合分割成两个独立的子集A和B,并使图中的每一条边的两个节点一个来自A集合,一个来自B集合,我们就将这个图称为二分图。 graph将会以邻接表方式给出,graph[i]表示图中与节点i相连的所有节点。每个节点都是一个在0到graph.length-1之间的整数。这图中没有自环和平行边: graph[i] 中不存在i,并且graph[i]中没有重复的值。 示例 1: 输入: [[1,3], [0,2], [1,3], [0,2]] 输出: true 解释: 无向图如下: 0----1 | | | | 3----2 我们可以将节点分成两组: {0, 2} 和 {1, 3}。 示例 2: 输入: [[1,2,3], [0,2], [0,1,3], [0,2]] 输出: false 解释: 无向图如下: 0----1 | \ | | \ | 3----2 我们不能将节点分割成两个独立的子集。 来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/is-graph-bipartite ''' class Solution: def isBipartite(self, graph: List[List[int]]) -> bool: n = len(graph) uncolored, red, green = 0, 1, 2 color = [uncolored] * n valid = True def dfs(node, c): nonlocal valid color[node] = c cNei = (green if c == red else red) for neighbor in graph[node]: if color[neighbor] == uncolored: dfs(neighbor, cNei) if not valid: return elif color[neighbor] != cNei: valid = False return for i in range(n): if color[i] == uncolored: dfs(i, red) if not valid: break return valid
3.90625
4
data_preprocessing/decision_tree_regression.py
Frost199/Machine_Learning
0
7839
# -*- coding: utf-8 -*- """ Created on Tue Apr 17 06:44:47 2018 @author: <NAME> """ import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.tree import DecisionTreeRegressor # importing the dataset dataset = pd.read_csv('Position_Salaries.csv') # take all the columns but leave the last one(-1) # always make sure our independent variable is a matrix not a vector and # dependent variable can be a vector X = dataset.iloc[:, 1:-1].values Y = dataset.iloc[:, 2].values # splitting the dataset into a training set and a test set # x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state=0) # feature scaling """sc_X = StandardScaler() x_train = sc_X.fit_transform(x_train) x_test = sc_X.transform(x_test) sc_Y = StandardScaler() x_train = sc_X.fit_transform(x_train)""" # fitting the Decision Tree regression Model to the dataset regressor = DecisionTreeRegressor(random_state=0) regressor.fit(X, Y) # predicting a new result y_pred = regressor.predict(6.5) # Visualizing the Decision tree regression result (for higher resolution and smoother curve) X_grid = np.arange(min(X), max(X), 0.01) X_grid = X_grid.reshape(len(X_grid), 1) plt.scatter(X, Y, color='red') plt.plot(X_grid, regressor.predict(X_grid), color='blue') plt.title("Truth or Bluff (Regression Model)") plt.xlabel("Position Level") plt.ylabel("Salary") plt.show()
3.265625
3
user_messages/apps.py
everaccountable/django-user-messages
0
7840
<filename>user_messages/apps.py from django.apps import AppConfig from django.conf import settings from django.core import checks from django.template import engines from django.template.backends.django import DjangoTemplates from django.utils.text import capfirst from django.utils.translation import gettext_lazy as _ @checks.register() def check_context_processors(app_configs, **kwargs): errors = [] for engine in engines.all(): if isinstance(engine, DjangoTemplates): django_templates_instance = engine.engine break else: django_templates_instance = None if django_templates_instance: if ( "django.contrib.messages.context_processors.messages" not in django_templates_instance.context_processors and "admin.E404" not in settings.SILENCED_SYSTEM_CHECKS ): errors.append( checks.Error( "If using 'user_messages.context_processors.messages'" " instead of the official messages context processor" " you have to add 'admin.E404' to SILENCED_SYSTEM_CHECKS.", id="user_messages.E001", ) ) if ("admin.E406" not in settings.SILENCED_SYSTEM_CHECKS and "django.contrib.messages" not in settings.INSTALLED_APPS): errors.append( checks.Error( "If using 'user_messages' instead of django.contrib.messages" " you have to add 'admin.E406' to SILENCED_SYSTEM_CHECKS.", id="user_messages.E002", ) ) return errors class UserMessagesConfig(AppConfig): default_auto_field = "django.db.models.AutoField" name = "user_messages" verbose_name = capfirst(_("user messages"))
1.976563
2
evalml/tests/objective_tests/test_standard_metrics.py
sharshofski/evalml
0
7841
from itertools import product import numpy as np import pandas as pd import pytest from sklearn.metrics import matthews_corrcoef as sk_matthews_corrcoef from evalml.objectives import ( F1, MAPE, MSE, AccuracyBinary, AccuracyMulticlass, BalancedAccuracyBinary, BalancedAccuracyMulticlass, BinaryClassificationObjective, CostBenefitMatrix, ExpVariance, F1Macro, F1Micro, F1Weighted, LogLossBinary, MCCBinary, MCCMulticlass, MeanSquaredLogError, Precision, PrecisionMacro, PrecisionMicro, PrecisionWeighted, Recall, RecallMacro, RecallMicro, RecallWeighted, RootMeanSquaredError, RootMeanSquaredLogError ) from evalml.objectives.utils import ( _all_objectives_dict, get_non_core_objectives ) EPS = 1e-5 all_automl_objectives = _all_objectives_dict() all_automl_objectives = {name: class_() for name, class_ in all_automl_objectives.items() if class_ not in get_non_core_objectives()} def test_input_contains_nan(): y_predicted = np.array([np.nan, 0, 0]) y_true = np.array([1, 2, 1]) for objective in all_automl_objectives.values(): with pytest.raises(ValueError, match="y_predicted contains NaN or infinity"): objective.score(y_true, y_predicted) y_true = np.array([np.nan, 0, 0]) y_predicted = np.array([1, 2, 0]) for objective in all_automl_objectives.values(): with pytest.raises(ValueError, match="y_true contains NaN or infinity"): objective.score(y_true, y_predicted) y_true = np.array([1, 0]) y_predicted_proba = np.array([[1, np.nan], [0.1, 0]]) for objective in all_automl_objectives.values(): if objective.score_needs_proba: with pytest.raises(ValueError, match="y_predicted contains NaN or infinity"): objective.score(y_true, y_predicted_proba) def test_input_contains_inf(): y_predicted = np.array([np.inf, 0, 0]) y_true = np.array([1, 0, 0]) for objective in all_automl_objectives.values(): with pytest.raises(ValueError, match="y_predicted contains NaN or infinity"): objective.score(y_true, y_predicted) y_true = np.array([np.inf, 0, 0]) y_predicted = np.array([1, 0, 0]) for objective in all_automl_objectives.values(): with pytest.raises(ValueError, match="y_true contains NaN or infinity"): objective.score(y_true, y_predicted) y_true = np.array([1, 0]) y_predicted_proba = np.array([[1, np.inf], [0.1, 0]]) for objective in all_automl_objectives.values(): if objective.score_needs_proba: with pytest.raises(ValueError, match="y_predicted contains NaN or infinity"): objective.score(y_true, y_predicted_proba) def test_different_input_lengths(): y_predicted = np.array([0, 0]) y_true = np.array([1]) for objective in all_automl_objectives.values(): with pytest.raises(ValueError, match="Inputs have mismatched dimensions"): objective.score(y_true, y_predicted) y_true = np.array([0, 0]) y_predicted = np.array([1, 2, 0]) for objective in all_automl_objectives.values(): with pytest.raises(ValueError, match="Inputs have mismatched dimensions"): objective.score(y_true, y_predicted) def test_zero_input_lengths(): y_predicted = np.array([]) y_true = np.array([]) for objective in all_automl_objectives.values(): with pytest.raises(ValueError, match="Length of inputs is 0"): objective.score(y_true, y_predicted) def test_probabilities_not_in_0_1_range(): y_predicted = np.array([0.3, 1.001, 0.3]) y_true = np.array([1, 0, 1]) for objective in all_automl_objectives.values(): if objective.score_needs_proba: with pytest.raises(ValueError, match="y_predicted contains probability estimates"): objective.score(y_true, y_predicted) y_predicted = np.array([0.3, -0.001, 0.3]) y_true = np.array([1, 0, 1]) for objective in all_automl_objectives.values(): if objective.score_needs_proba: with pytest.raises(ValueError, match="y_predicted contains probability estimates"): objective.score(y_true, y_predicted) y_true = np.array([1, 0]) y_predicted_proba = np.array([[1, 3], [0.1, 0]]) for objective in all_automl_objectives.values(): if objective.score_needs_proba: with pytest.raises(ValueError, match="y_predicted contains probability estimates"): objective.score(y_true, y_predicted_proba) def test_negative_with_log(): y_predicted = np.array([-1, 10, 30]) y_true = np.array([-1, 0, 1]) for objective in [MeanSquaredLogError(), RootMeanSquaredLogError()]: with pytest.raises(ValueError, match="Mean Squared Logarithmic Error cannot be used when targets contain negative values."): objective.score(y_true, y_predicted) def test_binary_more_than_two_unique_values(): y_predicted = np.array([0, 1, 2]) y_true = np.array([1, 0, 1]) for objective in all_automl_objectives.values(): if isinstance(objective, BinaryClassificationObjective) and not objective.score_needs_proba: with pytest.raises(ValueError, match="y_predicted contains more than two unique values"): objective.score(y_true, y_predicted) y_true = np.array([0, 1, 2]) y_predicted = np.array([1, 0, 1]) for objective in all_automl_objectives.values(): if isinstance(objective, BinaryClassificationObjective) and not objective.score_needs_proba: with pytest.raises(ValueError, match="y_true contains more than two unique values"): objective.score(y_true, y_predicted) def test_accuracy_binary(): obj = AccuracyBinary() assert obj.score(np.array([0, 0, 1, 1]), np.array([1, 1, 0, 0])) == pytest.approx(0.0, EPS) assert obj.score(np.array([0, 0, 1, 1]), np.array([0, 1, 0, 1])) == pytest.approx(0.5, EPS) assert obj.score(np.array([0, 0, 1, 1]), np.array([0, 0, 1, 1])) == pytest.approx(1.0, EPS) def test_accuracy_multi(): obj = AccuracyMulticlass() assert obj.score(np.array([0, 0, 1, 1]), np.array([1, 1, 0, 0])) == pytest.approx(0.0, EPS) assert obj.score(np.array([0, 0, 1, 1]), np.array([0, 1, 0, 1])) == pytest.approx(0.5, EPS) assert obj.score(np.array([0, 0, 1, 1]), np.array([0, 0, 1, 1])) == pytest.approx(1.0, EPS) assert obj.score(np.array([0, 0, 1, 1, 2, 2]), np.array([0, 0, 0, 0, 0, 0])) == pytest.approx(1 / 3.0, EPS) assert obj.score(np.array([0, 0, 0, 0, 0, 0]), np.array([0, 0, 1, 1, 2, 2])) == pytest.approx(1 / 3.0, EPS) def test_balanced_accuracy_binary(): obj = BalancedAccuracyBinary() assert obj.score(np.array([0, 1, 0, 0, 1, 0]), np.array([0, 1, 0, 0, 0, 1])) == pytest.approx(0.625, EPS) assert obj.score(np.array([0, 1, 0, 0, 1, 0]), np.array([0, 1, 0, 0, 1, 0])) == pytest.approx(1.0, EPS) assert obj.score(np.array([0, 1, 0, 0, 1, 0]), np.array([1, 0, 1, 1, 0, 1])) == pytest.approx(0.0, EPS) def test_balanced_accuracy_multi(): obj = BalancedAccuracyMulticlass() assert obj.score(np.array([0, 1, 2, 0, 1, 2, 3]), np.array([0, 0, 2, 0, 0, 2, 3])) == pytest.approx(0.75, EPS) assert obj.score(np.array([0, 1, 2, 0, 1, 2, 3]), np.array([0, 1, 2, 0, 1, 2, 3])) == pytest.approx(1.0, EPS) assert obj.score(np.array([0, 1, 2, 0, 1, 2, 3]), np.array([1, 0, 3, 1, 2, 1, 0])) == pytest.approx(0.0, EPS) def test_f1_binary(): obj = F1() assert obj.score(np.array([0, 1, 0, 0, 1, 0]), np.array([0, 1, 0, 0, 0, 1])) == pytest.approx(0.5, EPS) assert obj.score(np.array([0, 1, 0, 0, 1, 1]), np.array([0, 1, 0, 0, 1, 1])) == pytest.approx(1.0, EPS) assert obj.score(np.array([0, 0, 0, 0, 1, 0]), np.array([0, 1, 0, 0, 0, 1])) == pytest.approx(0.0, EPS) assert obj.score(np.array([0, 0]), np.array([0, 0])) == pytest.approx(0.0, EPS) def test_f1_micro_multi(): obj = F1Micro() assert obj.score(np.array([0, 0, 0, 0, 0, 0, 0, 0, 0]), np.array([0, 0, 0, 1, 1, 1, 2, 2, 2])) == pytest.approx(1 / 3.0, EPS) assert obj.score(np.array([0, 0, 0, 1, 1, 1, 2, 2, 2]), np.array([0, 0, 0, 1, 1, 1, 2, 2, 2])) == pytest.approx(1.0, EPS) assert obj.score(np.array([2, 2, 2, 0, 0, 0, 1, 1, 1]), np.array([0, 0, 0, 1, 1, 1, 2, 2, 2])) == pytest.approx(0.0, EPS) assert obj.score(np.array([1, 2]), np.array([0, 0])) == pytest.approx(0.0, EPS) def test_f1_macro_multi(): obj = F1Macro() assert obj.score(np.array([0, 0, 0, 0, 0, 0, 0, 0, 0]), np.array([0, 0, 0, 1, 1, 1, 2, 2, 2])) \ == pytest.approx(2 * (1 / 3.0) * (1 / 9.0) / (1 / 3.0 + 1 / 9.0), EPS) assert obj.score(np.array([0, 0, 0, 1, 1, 1, 2, 2, 2]), np.array([0, 0, 0, 1, 1, 1, 2, 2, 2])) == pytest.approx(1.0, EPS) assert obj.score(np.array([2, 2, 2, 0, 0, 0, 1, 1, 1]), np.array([0, 0, 0, 1, 1, 1, 2, 2, 2])) == pytest.approx(0.0, EPS) assert obj.score(np.array([1, 2]), np.array([0, 0])) == pytest.approx(0.0, EPS) def test_f1_weighted_multi(): obj = F1Weighted() assert obj.score(np.array([0, 0, 0, 1, 1, 1, 2, 2, 2]), np.array([0, 0, 0, 0, 0, 0, 0, 0, 0])) \ == pytest.approx(2 * (1 / 3.0) * (1 / 9.0) / (1 / 3.0 + 1 / 9.0), EPS) assert obj.score(np.array([0, 0, 0, 1, 1, 1, 2, 2, 2]), np.array([0, 0, 0, 1, 1, 1, 2, 2, 2])) == pytest.approx(1.0, EPS) assert obj.score(np.array([0, 0, 0, 1, 1, 1, 2, 2, 2]), np.array([2, 2, 2, 0, 0, 0, 1, 1, 1])) == pytest.approx(0.0, EPS) assert obj.score(np.array([0, 0]), np.array([1, 2])) == pytest.approx(0.0, EPS) def test_precision_binary(): obj = Precision() assert obj.score(np.array([1, 1, 1, 1, 1, 1]), np.array([0, 0, 0, 1, 1, 1])) == pytest.approx(1.0, EPS) assert obj.score(np.array([0, 0, 0, 1, 1, 1]), np.array([1, 1, 1, 1, 1, 1])) == pytest.approx(0.5, EPS) assert obj.score(np.array([0, 0, 0, 0, 0, 0]), np.array([1, 1, 1, 1, 1, 1])) == pytest.approx(0.0, EPS) assert obj.score(np.array([0, 0, 0, 0, 0, 0]), np.array([0, 0, 0, 0, 0, 0])) == pytest.approx(0.0, EPS) def test_precision_micro_multi(): obj = PrecisionMicro() assert obj.score(np.array([0, 0, 0, 1, 1, 1, 2, 2, 2]), np.array([0, 0, 0, 0, 0, 0, 0, 0, 0])) == pytest.approx(1 / 3.0, EPS) assert obj.score(np.array([0, 0, 0, 1, 1, 1, 2, 2, 2]), np.array([0, 0, 0, 1, 1, 1, 2, 2, 2])) == pytest.approx(1.0, EPS) assert obj.score(np.array([0, 0, 0, 1, 1, 1, 2, 2, 2]), np.array([2, 2, 2, 0, 0, 0, 1, 1, 1])) == pytest.approx(0.0, EPS) assert obj.score(np.array([0, 0]), np.array([1, 2])) == pytest.approx(0.0, EPS) def test_precision_macro_multi(): obj = PrecisionMacro() assert obj.score(np.array([0, 0, 0, 1, 1, 1, 2, 2, 2]), np.array([0, 0, 0, 0, 0, 0, 0, 0, 0])) == pytest.approx(1 / 9.0, EPS) assert obj.score(np.array([0, 0, 0, 1, 1, 1, 2, 2, 2]), np.array([0, 0, 0, 1, 1, 1, 2, 2, 2])) == pytest.approx(1.0, EPS) assert obj.score(np.array([0, 0, 0, 1, 1, 1, 2, 2, 2]), np.array([2, 2, 2, 0, 0, 0, 1, 1, 1])) == pytest.approx(0.0, EPS) assert obj.score(np.array([0, 0]), np.array([1, 2])) == pytest.approx(0.0, EPS) def test_precision_weighted_multi(): obj = PrecisionWeighted() assert obj.score(np.array([0, 0, 0, 1, 1, 1, 2, 2, 2]), np.array([0, 0, 0, 0, 0, 0, 0, 0, 0])) == pytest.approx(1 / 9.0, EPS) assert obj.score(np.array([0, 0, 0, 1, 1, 1, 2, 2, 2]), np.array([0, 0, 0, 1, 1, 1, 2, 2, 2])) == pytest.approx(1.0, EPS) assert obj.score(np.array([0, 0, 0, 1, 1, 1, 2, 2, 2]), np.array([2, 2, 2, 0, 0, 0, 1, 1, 1])) == pytest.approx(0.0, EPS) assert obj.score(np.array([0, 0]), np.array([1, 2])) == pytest.approx(0.0, EPS) def test_recall_binary(): obj = Recall() assert obj.score(np.array([0, 0, 0, 1, 1, 1]), np.array([1, 1, 1, 1, 1, 1])) == pytest.approx(1.0, EPS) assert obj.score(np.array([0, 0, 0, 1, 1, 1]), np.array([0, 0, 0, 0, 0, 0])) == pytest.approx(0.0, EPS) assert obj.score(np.array([1, 1, 1, 1, 1, 1]), np.array([0, 0, 0, 1, 1, 1])) == pytest.approx(0.5, EPS) def test_recall_micro_multi(): obj = RecallMicro() assert obj.score(np.array([0, 0, 0, 1, 1, 1, 2, 2, 2]), np.array([0, 0, 0, 0, 0, 0, 0, 0, 0])) == pytest.approx(1 / 3.0, EPS) assert obj.score(np.array([0, 0, 0, 1, 1, 1, 2, 2, 2]), np.array([0, 0, 0, 1, 1, 1, 2, 2, 2])) == pytest.approx(1.0, EPS) assert obj.score(np.array([0, 0, 0, 1, 1, 1, 2, 2, 2]), np.array([2, 2, 2, 0, 0, 0, 1, 1, 1])) == pytest.approx(0.0, EPS) assert obj.score(np.array([0, 0]), np.array([1, 2])) == pytest.approx(0.0, EPS) def test_recall_macro_multi(): obj = RecallMacro() assert obj.score(np.array([0, 0, 0, 1, 1, 1, 2, 2, 2]), np.array([0, 0, 0, 0, 0, 0, 0, 0, 0])) == pytest.approx(1 / 3.0, EPS) assert obj.score(np.array([0, 0, 0, 1, 1, 1, 2, 2, 2]), np.array([0, 0, 0, 1, 1, 1, 2, 2, 2])) == pytest.approx(1.0, EPS) assert obj.score(np.array([0, 0, 0, 1, 1, 1, 2, 2, 2]), np.array([2, 2, 2, 0, 0, 0, 1, 1, 1])) == pytest.approx(0.0, EPS) assert obj.score(np.array([0, 0]), np.array([1, 2])) == pytest.approx(0.0, EPS) def test_recall_weighted_multi(): obj = RecallWeighted() assert obj.score(np.array([0, 0, 0, 1, 1, 1, 2, 2, 2]), np.array([0, 0, 0, 0, 0, 0, 0, 0, 0])) == pytest.approx(1 / 3.0, EPS) assert obj.score(np.array([0, 0, 0, 1, 1, 1, 2, 2, 2]), np.array([0, 0, 0, 1, 1, 1, 2, 2, 2])) == pytest.approx(1.0, EPS) assert obj.score(np.array([0, 0, 0, 1, 1, 1, 2, 2, 2]), np.array([2, 2, 2, 0, 0, 0, 1, 1, 1])) == pytest.approx(0.0, EPS) assert obj.score(np.array([0, 0]), np.array([1, 2])) == pytest.approx(0.0, EPS) def test_log_linear_model(): obj = MeanSquaredLogError() root_obj = RootMeanSquaredLogError() s1_predicted = np.array([0, 0, 0, 1, 1, 1, 2, 2, 2]) s1_actual = np.array([0, 0, 0, 0, 0, 0, 0, 0, 0]) s2_predicted = np.array([0, 0, 0, 1, 1, 1, 2, 2, 2]) s2_actual = np.array([0, 0, 0, 1, 1, 1, 2, 2, 2]) s3_predicted = np.array([0, 0, 0, 1, 1, 1, 2, 2, 2]) s3_actual = np.array([2, 2, 2, 0, 0, 0, 1, 1, 1]) assert obj.score(s1_predicted, s1_actual) == pytest.approx(0.562467324910) assert obj.score(s2_predicted, s2_actual) == pytest.approx(0) assert obj.score(s3_predicted, s3_actual) == pytest.approx(0.617267976207983) assert root_obj.score(s1_predicted, s1_actual) == pytest.approx(np.sqrt(0.562467324910)) assert root_obj.score(s2_predicted, s2_actual) == pytest.approx(0) assert root_obj.score(s3_predicted, s3_actual) == pytest.approx(np.sqrt(0.617267976207983)) def test_mse_linear_model(): obj = MSE() root_obj = RootMeanSquaredError() s1_predicted = np.array([0, 0, 0, 1, 1, 1, 2, 2, 2]) s1_actual = np.array([0, 0, 0, 0, 0, 0, 0, 0, 0]) s2_predicted = np.array([0, 0, 0, 1, 1, 1, 2, 2, 2]) s2_actual = np.array([0, 0, 0, 1, 1, 1, 2, 2, 2]) s3_predicted = np.array([0, 0, 0, 1, 1, 1, 2, 2, 2]) s3_actual = np.array([2, 2, 2, 0, 0, 0, 1, 1, 1]) assert obj.score(s1_predicted, s1_actual) == pytest.approx(5. / 3.) assert obj.score(s2_predicted, s2_actual) == pytest.approx(0) assert obj.score(s3_predicted, s3_actual) == pytest.approx(2.) assert root_obj.score(s1_predicted, s1_actual) == pytest.approx(np.sqrt(5. / 3.)) assert root_obj.score(s2_predicted, s2_actual) == pytest.approx(0) assert root_obj.score(s3_predicted, s3_actual) == pytest.approx(np.sqrt(2.)) def test_mcc_catches_warnings(): y_true = [1, 0, 1, 1] y_predicted = [0, 0, 0, 0] with pytest.warns(RuntimeWarning) as record: sk_matthews_corrcoef(y_true, y_predicted) assert "invalid value" in str(record[-1].message) with pytest.warns(None) as record: MCCBinary().objective_function(y_true, y_predicted) MCCMulticlass().objective_function(y_true, y_predicted) assert len(record) == 0 def test_mape_time_series_model(): obj = MAPE() s1_actual = np.array([0, 0, 1, 1, 1, 1, 2, 0, 2]) s1_predicted = np.array([0, 1, 0, 1, 1, 2, 1, 2, 0]) s2_actual = np.array([-1, -2, 1, 3]) s2_predicted = np.array([1, 2, -1, -3]) s3_actual = np.array([1, 2, 4, 2, 1, 2]) s3_predicted = np.array([0, 2, 2, 1, 3, 2]) with pytest.raises(ValueError, match="Mean Absolute Percentage Error cannot be used when targets contain the value 0."): obj.score(s1_actual, s1_predicted) assert obj.score(s2_actual, s2_predicted) == pytest.approx(8 / 4 * 100) assert obj.score(s3_actual, s3_predicted) == pytest.approx(4 / 6 * 100) assert obj.score(pd.Series(s3_actual, index=range(-12, -6)), s3_predicted) == pytest.approx(4 / 6 * 100) assert obj.score(pd.Series(s2_actual, index=range(10, 14)), pd.Series(s2_predicted, index=range(20, 24))) == pytest.approx(8 / 4 * 100) @pytest.mark.parametrize("objective_class", _all_objectives_dict().values()) def test_calculate_percent_difference(objective_class): score = 5 reference_score = 10 change = ((-1) ** (not objective_class.greater_is_better) * (score - reference_score)) / reference_score answer = 100 * change assert objective_class.calculate_percent_difference(score, reference_score) == answer assert objective_class.perfect_score is not None @pytest.mark.parametrize("objective_class,nan_value", product(_all_objectives_dict().values(), [None, np.nan])) def test_calculate_percent_difference_with_nan(objective_class, nan_value): assert pd.isna(objective_class.calculate_percent_difference(nan_value, 2)) assert pd.isna(objective_class.calculate_percent_difference(-1, nan_value)) assert pd.isna(objective_class.calculate_percent_difference(nan_value, nan_value)) assert pd.isna(objective_class.calculate_percent_difference(2, 0)) def test_calculate_percent_difference_negative_and_equal_numbers(): assert CostBenefitMatrix.calculate_percent_difference(score=5, baseline_score=5) == 0 assert CostBenefitMatrix.calculate_percent_difference(score=-5, baseline_score=-10) == 50 assert CostBenefitMatrix.calculate_percent_difference(score=-10, baseline_score=-5) == -100 assert CostBenefitMatrix.calculate_percent_difference(score=-5, baseline_score=10) == -150 assert CostBenefitMatrix.calculate_percent_difference(score=10, baseline_score=-5) == 300 # These values are not possible for LogLossBinary but we need them for 100% coverage # We might add an objective where lower is better that can take negative values in the future assert LogLossBinary.calculate_percent_difference(score=-5, baseline_score=-10) == -50 assert LogLossBinary.calculate_percent_difference(score=-10, baseline_score=-5) == 100 assert LogLossBinary.calculate_percent_difference(score=-5, baseline_score=10) == 150 assert LogLossBinary.calculate_percent_difference(score=10, baseline_score=-5) == -300 def test_calculate_percent_difference_small(): expected_value = 100 * -1 * np.abs(1e-9 / (1e-9)) assert np.isclose(ExpVariance.calculate_percent_difference(score=0, baseline_score=1e-9), expected_value, atol=1e-8) assert pd.isna(ExpVariance.calculate_percent_difference(score=0, baseline_score=1e-10)) assert pd.isna(ExpVariance.calculate_percent_difference(score=1e-9, baseline_score=0)) assert pd.isna(ExpVariance.calculate_percent_difference(score=0, baseline_score=0))
2.28125
2
server-python3/server.py
Aaron-Ming/websocket_terminal
40
7842
<reponame>Aaron-Ming/websocket_terminal<filename>server-python3/server.py<gh_stars>10-100 import os import urllib.parse import eventlet import eventlet.green.socket # eventlet.monkey_patch() import eventlet.websocket import eventlet.wsgi import wspty.pipe from flask import Flask, request, redirect from wspty.EchoTerminal import EchoTerminal from wspty.EncodedTerminal import EncodedTerminal from wspty.WebsocketBinding import WebsocketBinding import config def make_app(): app = Flask(__name__) app.static_folder = get_static_folder() print("Serving static files from: " + app.static_folder) @app.route('/') def index(): newurl = b'/static/index.html' if request.query_string: newurl = newurl + b'?' + request.query_string return redirect(newurl) return app def parse_query(qstr): return {k: v[0] for k, v in urllib.parse.parse_qs(qstr).items()} def debug(s): app.logger.debug(s) class TerminalFactory: def __init__(self, args_dict, allow_unsafe=False): self.kind = args_dict['kind'] self.hostname = args_dict.get('hostname', 'localhost') self.port = int(args_dict.get('port', '22')) self.username = args_dict.get('username') self.password = args_dict.get('password') self.term = args_dict.get('term') self.encoding = args_dict.get('encoding', 'utf8') self.allow_unsafe = allow_unsafe def create_binary(self): if self.kind == 'ssh': from wspty.SshTerminal import SshTerminal return SshTerminal( self.hostname, self.port, self.username, self.password, self.term ) if self.kind == 'raw': from wspty.SocketTerminal import SocketTerminal sock = eventlet.green.socket.socket() ip = eventlet.green.socket.gethostbyname(self.hostname) sock.connect((ip, self.port)) return SocketTerminal(sock) if self.kind == 'echo': return EchoTerminal() if self.kind == 'prompt': if not self.allow_unsafe: raise Exception("kind {} is disabled".format(self.kind)) from wspty import PromptTerminal return PromptTerminal.os_terminal() raise NotImplemented('kind: {}'.format(self.kind)) def create(self): return EncodedTerminal(self.create_binary(), self.encoding) class DefaultRootApp: def __init__(self): self._app_handle_wssh = eventlet.websocket.WebSocketWSGI(self.handle_wssh) self.allow_unsafe = False def handle_wssh(self, ws): debug('Creating terminal with remote {remote}'.format( remote=ws.environ.get('REMOTE_ADDR'), )) ws_binding = WebsocketBinding(ws) query = parse_query(ws.environ.get('QUERY_STRING', '')) terminal = None try: kind, terminal = self.create_terminal(query) ws_binding.send('Connected to %s\r\n' % (kind,)) wspty.pipe.pipe(ws_binding, terminal) except BaseException as e: ws_binding.send_error(e) raise finally: if terminal: terminal.close() debug('Closing terminal normally with remote {remote}'.format( remote=ws.environ.get('REMOTE_ADDR'), )) return '' def create_terminal(self, obj): factory = TerminalFactory(obj, self.allow_unsafe) return factory.kind, factory.create() def handler(self, env, *args): route = env["PATH_INFO"] if route == '/wssh': return self._app_handle_wssh(env, *args) else: return app(env, *args) def make_parser(): import argparse parser = argparse.ArgumentParser(description='Websocket Terminal server') parser.add_argument('-l', '--listen', default='', help='Listen on interface (default all)') parser.add_argument('-p', '--port', default=5002, type=int, help='Listen on port') parser.add_argument('--unsafe', action='store_true', help='Allow unauthenticated connections to local machine') return parser def start(interface, port, root_app_handler): conn = (interface, port) listener = eventlet.listen(conn) print('listening on {0}:{1}'.format(*conn)) try: eventlet.wsgi.server(listener, root_app_handler) except KeyboardInterrupt: pass def start_default(interface, port, allow_unsafe=False, root_app_cls=DefaultRootApp): root_app = root_app_cls() root_app.allow_unsafe = allow_unsafe start(interface, port, root_app.handler) def main(): args = make_parser().parse_args() start_default(args.listen, args.port, args.unsafe) def get_static_folder(): path_root = os.path.join(os.path.dirname(os.path.realpath(__file__)), '../client') path_root = os.path.join(path_root, config.CLIENT_DIR) return os.path.abspath(path_root) app = make_app() if __name__ == '__main__': main()
2.4375
2
tests/unit/test_roger_promote.py
seomoz/roger-mesos-tools
0
7843
# -*- encoding: utf-8 -*- """ Unit test for roger_promote.py """ import tests.helper import unittest import os import os.path import pytest import requests from mockito import mock, Mock, when from cli.roger_promote import RogerPromote from cli.appconfig import AppConfig from cli.settings import Settings from cli.framework import Framework from cli.frameworkUtils import FrameworkUtils from cli.marathon import Marathon from cli.chronos import Chronos class TestRogerPromote(unittest.TestCase): def setUp(self): self.marathon = mock(Marathon) self.settings = mock(Settings) self.app_config = mock(AppConfig) self.framework = self.marathon self.framework_utils = mock(FrameworkUtils) self.config_file = "test.yml" self.roger_env = {} os.environ['ROGER_CONFIG_DIR'] = '/vagrant/config' @property def config_dir(self): return os.environ['ROGER_CONFIG_DIR'] def test_config_dir(self): rp = RogerPromote() assert rp.config_dir == '/vagrant/config' def test_roger_env(self): fake_config = tests.helper.fake_config() settings = mock(Settings) when(self.app_config).getRogerEnv( self.config_dir ).thenReturn(fake_config) rp = RogerPromote(app_config=self.app_config) assert rp.roger_env == fake_config def test_set_framework(self): app_data = {'test_app': {'name': 'test_app'}} when(self.app_config).getAppData( self.config_dir, self.config_file, 'test_app' ).thenReturn(app_data) rp = RogerPromote(app_config=self.app_config) rp._set_framework(self.config_file, 'test_app') assert rp._framework.getName() == 'Marathon' def test_image_name(self): os.environ['ROGER_USER'] = "first.last" os.environ['ROGER_USER_PASS_DEV'] = "password" os.environ['ROGER_USER_PASS_STAGE'] = "password" os.environ['ROGER_USER_PASS_PROD'] = "password" framework = mock(Marathon) when(framework).getName().thenReturn("Marathon") when(framework).get_app_id( "test_path/test_app.json", "Marathon" ).thenReturn("app_id") when(framework).get_image_name( 'first.last', "password", "dev", "app_id", self.config_dir, self.config_file ).thenReturn("test_image") rp = RogerPromote(framework=framework) assert rp._image_name( 'dev', self.config_file, "test_path/test_app.json") == 'test_image' def test_config_resolver(self): framework = mock(Framework) settings = mock(Settings) app_config = mock(AppConfig) config_dir = '/vagrant/config' fake_team_config = tests.helper.fake_team_config() when(settings).getConfigDir().thenReturn(config_dir) when(app_config).getConfig( config_dir, 'roger.json' ).thenReturn(fake_team_config) rp = RogerPromote(settings=settings, app_config=app_config) val = rp._config_resolver('template_path', 'test_app', 'roger.json') assert val == 'framework_template_path' def test_roger_push_script(self): path = RogerPromote()._roger_push_script() assert 'roger-mesos-tools/cli/roger_push.py' in path
2.21875
2
data/collectors.py
papb/COVID-19
6
7844
<filename>data/collectors.py import json import pandas as pd import requests def load_dump_covid_19_data(): COVID_19_BY_CITY_URL='https://raw.githubusercontent.com/wcota/covid19br/master/cases-brazil-cities-time.csv' by_city=(pd.read_csv(COVID_19_BY_CITY_URL) .query('country == "Brazil"') .drop(columns=['country']) .pipe(lambda df: df[df.state!='TOTAL']) .assign(city=lambda df: df.city.apply(lambda x: x.split('/')[0])) .rename(columns={'totalCases': 'cases', 'newCases': 'new_cases', 'state': 'uf'}) .sort_values(by=['city', 'date']) ) by_uf = (by_city .groupby(['date', 'uf']) ['new_cases', 'cases'] .sum() .reset_index()) dfs = [by_uf, by_city] filenames = ['by_uf', 'by_city'] for df, filename in zip(dfs, filenames): output_path = f'data/csv/covid_19/{filename}/{filename}.csv' df.to_csv(output_path, index=False) print(f'{filename} data exported to {output_path}') def load_dump_uf_pop(): IBGE_POPULATION_EXCEL_URL = 'ftp://ftp.ibge.gov.br/Estimativas_de_Populacao/Estimativas_2019/estimativa_dou_2019.xls' def _load_uf_codes(): print('Scraping UF codes') return ( pd.read_html( 'https://www.oobj.com.br/bc/article/' 'quais-os-c%C3%B3digos-de-cada-uf-no-brasil-465.html' ) [0] .replace('\s\(\*\)', '', regex=True) .rename(columns={'UF': 'uf'}) [['Unidade da Federação', 'uf']] ) def _load_uf_capitals(): print('Scraping UF capital names') return ( pd.read_html( 'https://www.estadosecapitaisdobrasil.com/' ) [0] .rename(columns={'Sigla': 'uf', 'Capital': 'city'}) [['uf', 'city']] ) # TODO: download excel file only once def _download_ibge_excel_file(url): pass def _load_city_pop(): print('Scraping city population') return ( pd.read_excel(IBGE_POPULATION_EXCEL_URL, sheet_name='Municípios', header=1) .rename(columns={ 'COD. UF': 'UF_code', 'COD. MUNIC': 'city_code', 'NOME DO MUNICÍPIO': 'city', 'POPULAÇÃO ESTIMADA': 'estimated_population' }) .dropna(how='any') .assign(estimated_population=lambda df: df.estimated_population .replace('\.', '', regex=True) .replace('\-', ' ', regex=True) .replace('\(\d+\)', '', regex=True) .astype('int') ) .assign( UF_code=lambda df: df.UF_code.astype(int)) .assign(city_code=lambda df: df.city_code.astype(int)) .rename(columns={'UF': 'uf'}) [['uf', 'city', 'estimated_population']] ) def _load_uf_pop(): print('Scraping UF population') uf_codes = _load_uf_codes() return ( pd.read_excel(IBGE_POPULATION_EXCEL_URL, header=1) .drop(columns=['Unnamed: 1']) .rename(columns={'POPULAÇÃO ESTIMADA': 'estimated_population'}) .dropna(how='any') .assign(estimated_population=lambda df: df.estimated_population .replace('\.', '', regex=True) .replace('\-', ' ', regex=True) .replace('\(\d\)', '', regex=True) .astype('int') ) .pipe(lambda df: pd.merge(df, uf_codes, left_on='BRASIL E UNIDADES DA FEDERAÇÃO', right_on='Unidade da Federação', how='inner')) [['uf', 'estimated_population']] ) uf_pop, city_pop, uf_capitals = (_load_uf_pop(), _load_city_pop(), _load_uf_capitals()) print('Combining uf and city data') uf_pop = ( uf_pop # Add capital city name .merge( uf_capitals, how='left', on='uf' ) # Add capital population .merge( city_pop, how='left', on=['uf', 'city'] ) .rename( columns={ 'estimated_population_x': 'estimated_population', 'estimated_population_y': 'capital_estimated_population' } ) ) dfs = [uf_pop, city_pop] filenames = ['by_uf', 'by_city'] for df, filename in zip(dfs, filenames): output_path = f'data/csv/population/{filename}/{filename}.csv' df.to_csv(output_path, index=False) print(f'{filename} data exported to {output_path}') def load_jh_df(csv): ''' Loads a CSV file from JH repository and make some transforms ''' jh_data_path = ( 'https://raw.githubusercontent.com/' 'CSSEGISandData/COVID-19/master/' 'csse_covid_19_data/csse_covid_19_time_series/' ) return ( pd.read_csv( jh_data_path + csv[1] ) .drop(['Lat', 'Long'], axis=1) .groupby('Country/Region') .sum() .reset_index() .rename( columns={'Country/Region':'country'} ) .melt( id_vars=['country'], var_name='date', value_name=csv[0] ) .assign( date=lambda x: pd.to_datetime( x['date'], format='%m/%d/%y' ) ) ) def load_jh_data(): ''' Loads the latest COVID-19 global data from Johns Hopkins University repository ''' cases_csv = ('cases', 'time_series_19-covid-Confirmed.csv') deaths_csv = ('deaths', 'time_series_19-covid-Deaths.csv') recovered_csv = ('recoveries', 'time_series_19-covid-Recovered.csv') return ( pd.merge( pd.merge( load_jh_df(cases_csv), load_jh_df(deaths_csv) ), load_jh_df(recovered_csv) ) .reindex( columns = ['date', 'cases', 'deaths', 'recoveries', 'country'] ) ) if __name__ == '__main__': try: load_dump_covid_19_data() except Exception as e: print(f'Error when collecting COVID-19 cases data: {repr(e)}') try: load_dump_uf_pop() except Exception as e: print(f'Error when collecting population data: {repr(e)}')
3.109375
3
testsuite/testsuite_helpers.py
freingruber/JavaScript-Raider
91
7845
<gh_stars>10-100 import config as cfg import utils import native_code.executor as executor number_performed_tests = 0 expectations_correct = 0 expectations_wrong = 0 def reset_stats(): global number_performed_tests, expectations_correct, expectations_wrong number_performed_tests = 0 expectations_correct = 0 expectations_wrong = 0 def get_number_performed_tests(): global number_performed_tests return number_performed_tests def get_expectations_correct(): global expectations_correct return expectations_correct def get_expectations_wrong(): global expectations_wrong return expectations_wrong def assert_success(result): global number_performed_tests number_performed_tests += 1 if result.status != executor.Execution_Status.SUCCESS: utils.msg("[-] ERROR: Returned status was not SUCCESS") raise Exception() def assert_crash(result): global number_performed_tests number_performed_tests += 1 if result.status != executor.Execution_Status.CRASH: utils.msg("[-] ERROR: Returned status was not CRASH") raise Exception() def assert_exception(result): global number_performed_tests number_performed_tests += 1 if result.status != executor.Execution_Status.EXCEPTION_THROWN and result.status != executor.Execution_Status.EXCEPTION_CRASH: utils.msg("[-] ERROR: Returned status was not EXCEPTION") raise Exception() def assert_timeout(result): global number_performed_tests number_performed_tests += 1 if result.status != executor.Execution_Status.TIMEOUT: utils.msg("[-] ERROR: Returned status was not TIMEOUT") raise Exception() def assert_output_equals(result, expected_output): global number_performed_tests number_performed_tests += 1 if result.output.strip() != expected_output.strip(): utils.msg("[-] ERROR: Returned output (%s) was not correct (%s)" % (result.output.strip(), expected_output)) raise Exception() def execute_program(code_to_execute): cfg.exec_engine.restart_engine() result = cfg.exec_engine.execute_safe(code_to_execute) return result def restart_exec_engine(): cfg.exec_engine.restart_engine() def execute_program_from_restarted_engine(code_to_execute): restart_exec_engine() return execute_program(code_to_execute) def assert_int_value_equals(value_real, value_expected, error_msg): global number_performed_tests number_performed_tests += 1 if value_real == value_expected: return # Test PASSED utils.msg("[-] ERROR: %s (expected: %d ,real: %d)" % (error_msg, value_expected, value_real)) # In this case I throw an exception to stop execution because speed optimized functions must always be correct raise Exception() # Raising an exception shows the stacktrace which contains the line number where a check failed def assert_string_value_equals(string_real, string_expected, error_msg): global number_performed_tests number_performed_tests += 1 if string_real == string_expected: return # Test PASSED print("[-] ERROR: %s (expected: %s ,real: %s)" % (error_msg, string_expected, string_real)) # In this case I throw an exception to stop execution because speed optimized functions must always be correct raise Exception() # Raising an exception shows the stacktrace which contains the line number where a check failed def assert_no_new_coverage(result): global number_performed_tests number_performed_tests += 1 if result.status != executor.Execution_Status.SUCCESS: utils.msg("[-] ERROR: Returned status was not SUCCESS") # but the result must always be SUCCESS raise Exception() if result.num_new_edges == 0: return # test PASSED print("[-] ERROR: Found new coverage (%d) but expected that there is no new coverage!" % result.num_new_edges) # In this case I throw an exception to stop execution because speed optimized functions must always be correct raise Exception() # Raising an exception shows the stacktrace which contains the line number where a check failed def assert_new_coverage(result): global number_performed_tests number_performed_tests += 1 if result.status != executor.Execution_Status.SUCCESS: utils.msg("[-] ERROR: Returned status was not SUCCESS") # but the result must always be SUCCESS raise Exception() if result.num_new_edges != 0: return # test PASSED print("[-] ERROR: Found no new coverage but there should be one!") # In this case I throw an exception to stop execution because speed optimized functions must always be correct raise Exception() # Raising an exception shows the stacktrace which contains the line number where a check failed # The expect functions don't throw an exception like the assert_* functions # Instead, they just count how often the expected result was true def expect_no_new_coverage(result): global expectations_correct, expectations_wrong, number_performed_tests number_performed_tests += 1 if result.status != executor.Execution_Status.SUCCESS: utils.msg("[-] ERROR: Returned status was not SUCCESS") # but the result must always be SUCCESS raise Exception() if result.num_new_edges == 0: expectations_correct += 1 else: expectations_wrong += 1 # The expect functions don't throw an exception like the assert_* functions # Instead, they just count how often the expected result was true def expect_new_coverage(result): global expectations_correct, expectations_wrong, number_performed_tests number_performed_tests += 1 if result.status != executor.Execution_Status.SUCCESS: utils.msg("[-] ERROR: Returned status was not SUCCESS") # but the result must always be SUCCESS raise Exception() if result.num_new_edges != 0: expectations_correct += 1 else: expectations_wrong += 1
2.40625
2
examples/my_configs/two.py
davidhyman/override
0
7846
<filename>examples/my_configs/two.py from .one import * fruit = 'banana' colour = 'orange' sam['eggs'] = 'plenty' sam.pop('ham')
1.742188
2
students/K33402/Komarov_Georgy/LAB2/elevennote/src/api/urls.py
aglaya-pill/ITMO_ICT_WebDevelopment_2021-2022
0
7847
<filename>students/K33402/Komarov_Georgy/LAB2/elevennote/src/api/urls.py from django.urls import path, include from rest_framework_jwt.views import obtain_jwt_token from rest_framework.routers import DefaultRouter from .views import NoteViewSet app_name = 'api' router = DefaultRouter(trailing_slash=False) router.register('notes', NoteViewSet) urlpatterns = [ path('jwt-auth/', obtain_jwt_token), path('', include(router.urls)), ]
1.78125
2
PathPlanning/run.py
CandleStein/VAlg
0
7848
from planning_framework import path import cv2 as cv import numpy as np import argparse import matplotlib.pyplot as plt parser = argparse.ArgumentParser(description="Path Planning Visualisation") parser.add_argument( "-n", "--n_heuristic", default=2, help="Heuristic for A* Algorithm (default = 2). 0 for Dijkstra's Algorithm", ) args = parser.parse_args() N_H = int(args.n_heuristic) drawing = False # true if mouse is pressed mode = "obs" # if True, draw rectangle. Press 'm' to toggle to curve ix, iy = -1, -1 sx, sy = 0, 0 dx, dy = 50, 50 # mouse callback function def draw(event, x, y, flags, param): global mode, sx, sy, dx, dy, drawing if event == cv.EVENT_LBUTTONDOWN: drawing = True elif event == cv.EVENT_MOUSEMOVE: if drawing == True: if mode == "obs": cv.rectangle(img, (x - 5, y - 5), (x + 5, y + 5), (255, 255, 255), -1) elif event == cv.EVENT_LBUTTONUP: drawing = False if mode == "obs": cv.rectangle(img, (x - 5, y - 5), (x + 5, y + 5), (255, 255, 255), -1) elif mode == "src": cv.circle(img, (x, y), 5, (255, 0, 0), -1) sx, sy = x, y elif mode == "dst": cv.circle(img, (x, y), 5, (0, 255, 0), -1) dx, dy = x, y img = np.zeros((512, 512, 3), np.uint8) inv_im = np.ones(img.shape) * 255 cv.namedWindow("Draw the Occupancy Map") cv.setMouseCallback("Draw the Occupancy Map", draw) while 1: cv.imshow("Draw the Occupancy Map", inv_im - img) if cv.waitKey(20) & 0xFF == 27: break cv.destroyAllWindows() mode = "src" img_ = img cv.namedWindow("Set the Starting Point") cv.setMouseCallback("Set the Starting Point", draw) while 1: cv.imshow("Set the Starting Point", inv_im - img) if cv.waitKey(20) & 0xFF == 27: break # cv.waitKey(20) cv.destroyAllWindows() mode = "dst" end = "Set the End Point" cv.namedWindow(end) cv.setMouseCallback(end, draw) while cv.getWindowProperty(end, 0) >= 0: cv.imshow(end, inv_im - img) if cv.waitKey(20) & 0xFF == 27: break cv.destroyAllWindows() img = cv.resize(img_, (50, 50), interpolation=cv.INTER_AREA) inv_img = np.ones(img.shape) np.savetxt("map.txt", np.array(img[:, :, 0])) plt.imshow(inv_img - img) start = np.array([sx, sy]) * 50 // 512 end = np.array([dx, dy]) * 50 // 512 path(start, end, N_H)
2.984375
3
Codeforces/problems/0136/A/136A.py
object-oriented-human/competitive
2
7849
<gh_stars>1-10 n = int(input()) line = list(map(int, input().split())) l = {} res = "" for i, j in enumerate(line): l[j] = i+1 for k in range(n): res += str(l[k+1]) + " " print(res.rstrip())
2.875
3
generatey.py
YiLisa/DSCI560-hw2
0
7850
<filename>generatey.py import pandas as pd def main(): input = pd.read_csv('random_x.csv', header=None) x=input[0].tolist() y = [] for n in x: y.append(3*int(n)+6) df = pd.DataFrame(y) df.to_csv('output_y.csv', index=False, header=False) if __name__ == '__main__': main() print('generating y = 3x+6...')
3.453125
3
setup.py
burn874/mtg
0
7851
import re from pkg_resources import parse_requirements import pathlib from setuptools import find_packages, setup README_FILE = 'README.md' REQUIREMENTS_FILE = 'requirements.txt' VERSION_FILE = 'mtg/_version.py' VERSION_REGEXP = r'^__version__ = \'(\d+\.\d+\.\d+)\'' r = re.search(VERSION_REGEXP, open(VERSION_FILE).read(), re.M) if r is None: raise RuntimeError(f'Unable to find version string in {VERSION_FILE}.') version = r.group(1) long_description = open(README_FILE, encoding='utf-8').read() install_requires = [str(r) for r in parse_requirements(open(REQUIREMENTS_FILE, 'rt'))] setup( name='mtg', version=version, description='mtg is a collection of data science and ml projects for Magic:the Gathering', long_description=long_description, long_description_content_type='text/markdown', author='<NAME>', author_email='<EMAIL>', url='https://github.com/RyanSaxe/mtg', packages=find_packages(), install_requires=install_requires, )
1.984375
2
avilla/core/resource/interface.py
RF-Tar-Railt/Avilla
0
7852
<filename>avilla/core/resource/interface.py from __future__ import annotations from dataclasses import dataclass from avilla.core.platform import Base from avilla.core.resource import Resource, ResourceProvider @dataclass class ResourceMatchPrefix: resource_type: type[Resource] keypath: str | None = None platform: Base | None = None class ResourceInterface: providers: dict[ResourceMatchPrefix, ResourceProvider] def __init__(self): self.providers = {} def register( self, resource_type: type[Resource], provider: ResourceProvider, *, mainline_keypath: str | None = None, platform: Base | None = None, ): self.providers[ResourceMatchPrefix(resource_type, mainline_keypath, platform)] = provider def get_provider( self, resource: Resource | type[Resource], *, mainline_keypath: str | None = None, platform: Base | None = None, ) -> ResourceProvider | None: resource_type = resource if isinstance(resource, type) else type(resource) for prefix in self.providers: if all(( prefix.resource_type is resource_type, prefix.keypath == mainline_keypath if prefix.keypath is not None else True, prefix.platform == platform if prefix.platform is not None else True )): return self.providers[prefix]
2.3125
2
viewer_examples/plugins/median_filter.py
atemysemicolon/scikit-image
0
7853
<filename>viewer_examples/plugins/median_filter.py from skimage import data from skimage.filter.rank import median from skimage.morphology import disk from skimage.viewer import ImageViewer from skimage.viewer.widgets import Slider, OKCancelButtons, SaveButtons from skimage.viewer.plugins.base import Plugin def median_filter(image, radius): return median(image, selem=disk(radius)) image = data.coins() viewer = ImageViewer(image) plugin = Plugin(image_filter=median_filter) plugin += Slider('radius', 2, 10, value_type='int') plugin += SaveButtons() plugin += OKCancelButtons() viewer += plugin viewer.show()
2.3125
2
autotest/test_gwf_buy_lak01.py
scharlton2/modflow6
3
7854
<gh_stars>1-10 # Test the buoyancy package and the variable density flows between the lake # and the gwf model. This model has 4 layers and a lake incised within it. # The model is transient and has heads in the aquifer higher than the initial # stage in the lake. As the model runs, the lake and aquifer equalize and # should end up at the same level. The test ensures that the initial and # final water volumes in the entire system are the same. There are three # different cases: # 1. No buoyancy package # 2. Buoyancy package with lake and aquifer density = 1000. # 3. Buoyancy package with lake and aquifer density = 1024.5 import os import pytest import sys import numpy as np try: import flopy except: msg = "Error. FloPy package is not available.\n" msg += "Try installing using the following command:\n" msg += " pip install flopy" raise Exception(msg) from framework import testing_framework from simulation import Simulation ex = ["buy_lak_01a"] # , 'buy_lak_01b', 'buy_lak_01c'] buy_on_list = [False] # , True, True] concbuylist = [0.0] # , 0., 35.] exdirs = [] for s in ex: exdirs.append(os.path.join("temp", s)) def build_model(idx, dir): lx = 7.0 lz = 4.0 nlay = 4 nrow = 1 ncol = 7 nper = 1 delc = 1.0 delr = lx / ncol delz = lz / nlay top = 4.0 botm = [3.0, 2.0, 1.0, 0.0] perlen = [10.0] nstp = [50] tsmult = [1.0] Kh = 1.0 Kv = 1.0 tdis_rc = [] for i in range(nper): tdis_rc.append((perlen[i], nstp[i], tsmult[i])) nouter, ninner = 700, 300 hclose, rclose, relax = 1e-8, 1e-6, 0.97 name = ex[idx] # build MODFLOW 6 files ws = dir sim = flopy.mf6.MFSimulation( sim_name=name, version="mf6", exe_name="mf6", sim_ws=ws ) # create tdis package tdis = flopy.mf6.ModflowTdis( sim, time_units="DAYS", nper=nper, perioddata=tdis_rc ) # create gwf model gwfname = "gwf_" + name gwf = flopy.mf6.ModflowGwf(sim, modelname=gwfname, newtonoptions="NEWTON") imsgwf = flopy.mf6.ModflowIms( sim, print_option="ALL", outer_dvclose=hclose, outer_maximum=nouter, under_relaxation="NONE", inner_maximum=ninner, inner_dvclose=hclose, rcloserecord=rclose, linear_acceleration="BICGSTAB", scaling_method="NONE", reordering_method="NONE", relaxation_factor=relax, filename="{}.ims".format(gwfname), ) idomain = np.full((nlay, nrow, ncol), 1) idomain[0, 0, 1:6] = 0 idomain[1, 0, 2:5] = 0 idomain[2, 0, 3:4] = 0 dis = flopy.mf6.ModflowGwfdis( gwf, nlay=nlay, nrow=nrow, ncol=ncol, delr=delr, delc=delc, top=top, botm=botm, idomain=idomain, ) # initial conditions strt = np.zeros((nlay, nrow, ncol), dtype=float) strt[0, 0, :] = 3.5 strt[1, 0, :] = 3.0 strt[1, 0, 1:6] = 2.5 strt[2, 0, :] = 2.0 strt[3, 0, :] = 1.0 ic = flopy.mf6.ModflowGwfic(gwf, strt=strt) # node property flow npf = flopy.mf6.ModflowGwfnpf( gwf, xt3doptions=False, save_flows=True, save_specific_discharge=True, icelltype=1, k=Kh, k33=Kv, ) sto = flopy.mf6.ModflowGwfsto(gwf, sy=0.3, ss=0.0, iconvert=1) c = concbuylist[idx] lake_dense = 1000.0 + 0.7 * c buy_on = buy_on_list[idx] if buy_on: pd = [(0, 0.7, 0.0, "none", "none")] buy = flopy.mf6.ModflowGwfbuy( gwf, packagedata=pd, denseref=1000.0, concentration=c ) nlakeconn = 11 # note: number of connections for this lake # pak_data = [lakeno, strt, nlakeconn, dense, boundname] pak_data = [(0, 2.25, nlakeconn, lake_dense)] connlen = delr / 2.0 connwidth = delc bedleak = "None" con_data = [ # con_data=(lakeno,iconn,(cellid),claktype,bedleak,belev,telev,connlen,connwidth ) (0, 0, (0, 0, 0), "HORIZONTAL", bedleak, 10, 10, connlen, connwidth), (0, 1, (1, 0, 1), "VERTICAL", bedleak, 10, 10, connlen, connwidth), (0, 2, (1, 0, 1), "HORIZONTAL", bedleak, 10, 10, connlen, connwidth), (0, 3, (2, 0, 2), "VERTICAL", bedleak, 10, 10, connlen, connwidth), (0, 4, (2, 0, 2), "HORIZONTAL", bedleak, 10, 10, connlen, connwidth), (0, 5, (3, 0, 3), "VERTICAL", bedleak, 10, 10, connlen, connwidth), (0, 6, (2, 0, 4), "HORIZONTAL", bedleak, 10, 10, connlen, connwidth), (0, 7, (2, 0, 4), "VERTICAL", bedleak, 10, 10, connlen, connwidth), (0, 8, (1, 0, 5), "HORIZONTAL", bedleak, 10, 10, connlen, connwidth), (0, 9, (1, 0, 5), "VERTICAL", bedleak, 10, 10, connlen, connwidth), (0, 10, (0, 0, 6), "HORIZONTAL", bedleak, 10, 10, connlen, connwidth), ] # period data p_data = [ (0, "STATUS", "ACTIVE"), ] # note: for specifying lake number, use fortran indexing! fname = "{}.lak.obs.csv".format(gwfname) lak_obs = { fname: [ ("lakestage", "stage", 1), ("lakevolume", "volume", 1), ("lak1", "lak", 1, 1), ("lak2", "lak", 1, 2), ("lak3", "lak", 1, 3), ("lak4", "lak", 1, 4), ("lak5", "lak", 1, 5), ("lak6", "lak", 1, 6), ("lak7", "lak", 1, 7), ("lak8", "lak", 1, 8), ("lak9", "lak", 1, 9), ("lak10", "lak", 1, 10), ("lak11", "lak", 1, 11), ], # "digits": 10, } lak = flopy.mf6.modflow.ModflowGwflak( gwf, save_flows=True, print_input=True, print_flows=True, print_stage=True, stage_filerecord="{}.lak.bin".format(gwfname), budget_filerecord="{}.lak.bud".format(gwfname), nlakes=len(pak_data), ntables=0, packagedata=pak_data, pname="LAK-1", connectiondata=con_data, perioddata=p_data, observations=lak_obs, auxiliary=["DENSITY"], ) # output control oc = flopy.mf6.ModflowGwfoc( gwf, budget_filerecord="{}.cbc".format(gwfname), head_filerecord="{}.hds".format(gwfname), headprintrecord=[("COLUMNS", 10, "WIDTH", 15, "DIGITS", 6, "GENERAL")], saverecord=[("HEAD", "ALL"), ("BUDGET", "ALL")], printrecord=[("HEAD", "LAST"), ("BUDGET", "LAST")], ) return sim, None def eval_results(sim): print("evaluating results...") # calculate volume of water and make sure it is conserved name = ex[sim.idxsim] gwfname = "gwf_" + name fname = gwfname + ".lak.bin" fname = os.path.join(sim.simpath, fname) assert os.path.isfile(fname) bobj = flopy.utils.HeadFile(fname, text="STAGE") stage = bobj.get_alldata().flatten() # print(stage) fname = gwfname + ".hds" fname = os.path.join(sim.simpath, fname) assert os.path.isfile(fname) hobj = flopy.utils.HeadFile(fname) head = hobj.get_data() # print(head) # calculate initial water volume v0 = 3.5 * 2 # outermost columns v0 += 2.5 * 2 # next innermost columns v0 += 2.0 * 2 # next innermost columns v0 += 1.0 * 1 # middle column v0 = v0 * 0.3 # specific yield v0 = v0 + (2.25 - 2.0) * 2 + (2.25 - 1.0) print("initial volume of water in model = {}".format(v0)) # calculate ending water volume in model h = head[0, 0, 0] s = stage[-1] v = h * 4 + 2.0 * 2 + 1.0 * 1 v = v * 0.3 # specific yield v = v + (s - 2.0) * 2 + (s - 1.0) print("final volume of water in model = {}".format(v)) # check to make sure starting water volume same as equalized final volume errmsg = "initial and final water volume not equal: {} {}".format(v0, v) assert np.allclose(v0, v) # todo: add a better check of the lake concentrations # assert False # - No need to change any code below @pytest.mark.parametrize( "idx, dir", list(enumerate(exdirs)), ) def test_mf6model(idx, dir): # initialize testing framework test = testing_framework() # build the model test.build_mf6_models(build_model, idx, dir) # run the test model test.run_mf6(Simulation(dir, exfunc=eval_results, idxsim=idx)) def main(): # initialize testing framework test = testing_framework() # run the test model for idx, dir in enumerate(exdirs): test.build_mf6_models(build_model, idx, dir) sim = Simulation(dir, exfunc=eval_results, idxsim=idx) test.run_mf6(sim) if __name__ == "__main__": # print message print("standalone run of {}".format(os.path.basename(__file__))) # run main routine main()
2.484375
2
lesson-08/roll_dice_v1.0.py
hemiaoio/pylearning
1
7855
""" 功能:模拟掷骰子 版本:1.0 """ import random def roll_dice(): roll = random.randint(1, 6) return roll def main(): total_times = 100000 result_list = [0] * 6 for i in range(total_times): roll = roll_dice() result_list[roll-1] += 1 for i, x in enumerate(result_list): print('点数{}的次数:{},频率:{}'.format(i+1, x, x/total_times)) print(result_list) if __name__ == '__main__': main()
3.703125
4
composer/dataflow-python3/main.py
gxercavins/gcp-snippets
2
7856
<filename>composer/dataflow-python3/main.py import argparse import logging import apache_beam as beam from apache_beam.options.pipeline_options import PipelineOptions from apache_beam.options.pipeline_options import SetupOptions def run(argv=None, save_main_session=True): """Dummy pipeline to test Python3 operator.""" parser = argparse.ArgumentParser() known_args, pipeline_args = parser.parse_known_args(argv) pipeline_options = PipelineOptions(pipeline_args) pipeline_options.view_as(SetupOptions).save_main_session = save_main_session p = beam.Pipeline(options=pipeline_options) # Just a simple test p | 'Create Events' >> beam.Create([1, 2, 3]) result = p.run() result.wait_until_finish() if __name__ == '__main__': logging.getLogger().setLevel(logging.INFO) run()
2.09375
2
dingtalk/message/conversation.py
kangour/dingtalk-python
88
7857
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2017/11/30 下午3:02 # @Author : Matrix # @Github : https://github.com/blackmatrix7/ # @Blog : http://www.cnblogs.com/blackmatrix/ # @File : messages.py # @Software: PyCharm import json from ..foundation import * from json import JSONDecodeError __author__ = 'blackmatrix' __all__ = ['async_send_msg', 'get_msg_send_result', 'get_msg_send_progress'] @dingtalk_resp def async_send_msg(access_token, msgtype, agent_id, msgcontent, userid_list=None, dept_id_list=None, to_all_user=False): try: msgcontent = json.dumps(msgcontent) except JSONDecodeError: # 如果传入的msgcontent不能转换为json格式,依旧传给钉钉,由钉钉处理 pass if not isinstance(userid_list, str): userid_list = ','.join(userid_list) args = locals().copy() payload = {} # 请求参数整理 for k, v in args.items(): if k in ('msgtype', 'agent_id', 'msgcontent', 'userid_list', 'dept_id_list'): if v is not None: payload.update({k: v}) resp = call_dingtalk_webapi(access_token, 'dingtalk.corp.message.corpconversation.asyncsend', **payload) return resp @dingtalk_resp def get_msg_send_result(access_token, agent_id, task_id): url = get_request_url(access_token, 'dingtalk.corp.message.corpconversation.getsendresult') payload = {'task_id': task_id, 'agent_id': agent_id} return requests.get(url, params=payload) @dingtalk_resp def get_msg_send_progress(access_token, agent_id, task_id): url = get_request_url(access_token, 'dingtalk.corp.message.corpconversation.getsendprogress') payload = {'task_id': task_id, 'agent_id': agent_id} return requests.get(url, params=payload) if __name__ == '__main__': pass
1.84375
2
backend/garpix_page/setup.py
griviala/garpix_page
0
7858
<reponame>griviala/garpix_page<filename>backend/garpix_page/setup.py from setuptools import setup, find_packages from os import path here = path.join(path.abspath(path.dirname(__file__)), 'garpix_page') with open(path.join(here, 'README.rst'), encoding='utf-8') as f: long_description = f.read() setup( name='garpix_page', version='2.23.0', description='', long_description=long_description, url='https://github.com/garpixcms/garpix_page', author='Garpix LTD', author_email='<EMAIL>', license='MIT', packages=find_packages(exclude=['testproject', 'testproject.*']), classifiers=[ 'Development Status :: 4 - Beta', 'Environment :: Web Environment', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Framework :: Django', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', ], include_package_data=True, zip_safe=False, install_requires=[ 'Django >= 1.11', 'django-polymorphic-tree-for-garpix-page >= 2.1.1', 'django-modeltranslation >= 0.16.2', 'django-multiurl >= 1.4.0', 'djangorestframework >= 3.12.4', 'garpix_utils >= 1.4.0', 'django-tabbed-admin >= 1.0.4', 'model-bakery >= 1.4.0' ], )
1.328125
1
.kodi/addons/plugin.video.p2p-streams/resources/core/livestreams.py
C6SUMMER/allinclusive-kodi-pi
0
7859
# -*- coding: utf-8 -*- """ p2p-streams (c) 2014 enen92 fightnight This file contains the livestream addon engine. It is mostly based on divingmule work on livestreams addon! Functions: xml_lists_menu() -> main menu for the xml list category addlista() -> add a new list. It'll ask for local or remote and processes the given input remove_list(name) -> Remove a list get_groups(url) -> First regex function to parse a given list. Sopcast type list get_channels(name,url) -> Second regex function to parse a given list. Used to general livestreams xml type lists getData(url,fanart) -> Get the item data such as iconimage, fanart, etc getChannelItems(name,url,fanart) -> Function to grab the channel items getItems(items,fanart) -> Function to grab the items from the xml removeNonAscii(s) -> Function to remove non-ascii characters from the list getSoup(url) -> uses beautifulsoup to parse a remote xml addon_log(string) -> Simple log/print function getRegexParsed(regexs, url) -> parse the regex expression list_type(url) -> Checks if the list is xml or m3u parse_m3u(url) -> Parses a m3u type list """ import urllib,urllib2,re,xbmcplugin,xbmcgui,xbmc,xbmcaddon,HTMLParser,time,datetime,os,xbmcvfs,sys from BeautifulSoup import BeautifulStoneSoup, BeautifulSoup, BeautifulSOAP from peertopeerutils.pluginxbmc import * from peertopeerutils.webutils import * from peertopeerutils.directoryhandle import * from peertopeerutils.iofile import * """ Main Menu """ def xml_lists_menu(): if settings.getSetting('sopcast-oficial') == "true": addDir(translate(40116),"http://sopcast.org/chlist.xml",101,addonpath + art + 'xml_list_sopcast.png',2,True) try: if os.path.exists(os.path.join(pastaperfil,"Lists")): dirs, files = xbmcvfs.listdir(os.path.join(pastaperfil,"Lists")) for file in files: f = open(os.path.join(pastaperfil,"Lists",file), "r") string = f.read() if xbmcvfs.exists(os.path.join(pastaperfil,"Lists-fanart",file.replace('.txt','.jpg'))):addDir("[B][COLOR orange]" + file.replace(".txt","") + "[/B][/COLOR]",string,101,addonpath + art + 'xml_lists.png',2,True,fan_art=os.path.join(pastaperfil,"Lists-fanart",file.replace('.txt','.jpg'))) else: addDir("[B][COLOR orange]" + file.replace(".txt","") + "[/B][/COLOR]",string,101,addonpath + art + 'xml_lists.png',2,True) except: pass addDir(translate(40121),MainURL,107,addonpath + art + 'plus-menu.png',2,False) #xbmc.executebuiltin("Container.SetViewMode(51)") """ Add a new list function """ def addlista(): opcao= xbmcgui.Dialog().yesno(translate(40000), translate(40123),"","",translate(40124),translate(40125)) if opcao: dialog = xbmcgui.Dialog() lista_xml = dialog.browse(int(1), translate(40186), 'myprograms','.xml|.m3u') keybdois = xbmc.Keyboard("", translate(40130)) keybdois.doModal() if (keybdois.isConfirmed()): searchname = keybdois.getText() if searchname=='': sys.exit(0) encode=urllib.quote(searchname) if xbmcvfs.exists(os.path.join(pastaperfil,"Lists")): pass else: xbmcvfs.mkdir(os.path.join(pastaperfil,"Lists")) txt_name = searchname + ".txt" save(os.path.join(pastaperfil,"Lists",txt_name),lista_xml) mensagemok(translate(40000),translate(40129)) xbmc.executebuiltin("XBMC.Container.Refresh") else: keyb = xbmc.Keyboard("", translate(40127)) keyb.doModal() if (keyb.isConfirmed()): search = keyb.getText() if search=='': sys.exit(0) if "dropbox" in search and not "?dl=1" in search: search = search + '?dl=1' if "xml" not in search.split(".")[-1] and "m3u" not in search.split(".")[-1]: mensagemok(translate(40000),translate(40128)); sys.exit(0) else: try: code = get_page_source(search) except: mensagemok(translate(40000),translate(40128)) sys.exit(0) keybdois = xbmc.Keyboard("", translate(40130)) keybdois.doModal() if (keybdois.isConfirmed()): searchname = keybdois.getText() if searchname=='': sys.exit(0) encode=urllib.quote(searchname) if os.path.exists(os.path.join(pastaperfil,"Lists")): pass else: xbmcvfs.mkdir(os.path.join(pastaperfil,"Lists")) txt_name = searchname + ".txt" save(os.path.join(pastaperfil,"Lists",txt_name),search) mensagemok(translate(40000),translate(40129)) xbmc.executebuiltin("XBMC.Container.Refresh") """ Remove a List """ def remove_list(name): xbmcvfs.delete(name) xbmc.executebuiltin("Notification(%s,%s,%i,%s)" % (translate(40000), translate(40150), 1,addonpath+"/icon.png")) xbmc.executebuiltin("Container.Refresh") """ Parsing functions """ def list_type(url): ltype = url.split('.')[-1] if 'xml' in ltype: get_groups(url) elif 'm3u' in ltype: parse_m3u(url) else: pass def parse_m3u(url): if "http" in url: content = get_page_source(url) else: content = readfile(url) match = re.compile('#EXTINF:.+?,(.*?)\n(.*?)(?:\r|\n)').findall(content) for channel_name,stream_url in match: if 'plugin://' in stream_url: stream_url = 'XBMC.RunPlugin('+stream_url+')' addDir(channel_name,stream_url,106,'',1,False) elif 'sop://' in stream_url: addDir(channel_name,stream_url,2,'',1,False) elif ('acestream://' in stream_url) or ('.acelive' in stream_url) or ('.torrent' in stream_url): addDir(channel_name,stream_url,1,'',1,False) else: addLink(channel_name,stream_url,'') def get_groups(url): from xml.etree import ElementTree try: print("Sopcast xml-type list detected") if "http" in url: source = get_page_source(url) save(os.path.join(pastaperfil,"working.xml"),source) workingxml = os.path.join(pastaperfil,"working.xml") else: workingxml = url groups = ElementTree.parse(workingxml).findall('.//group') unname_group_index = 1 LANGUAGE = "en" for group in groups: if group.attrib[LANGUAGE] == "": group.attrib[LANGUAGE] = str(unname_group_index) unname_group_index = unname_group_index + 1 if re.sub('c','e',LANGUAGE) == LANGUAGE: OTHER_LANG = re.sub('e','c',LANGUAGE) else: OTHER_LANG = re.sub('c','e',LANGUAGE) if LANGUAGE == "cn": try: if len(group.attrib[OTHER_LANG]) > 0: group.attrib[LANGUAGE] = group.attrib[OTHER_LANG] unname_group_index = unname_group_index - 1 except: pass if (group.find('.//channel')==None): continue group_name=group.attrib[LANGUAGE] try: addDir_livestreams_common(group_name,url,102,addonpath + art + 'xml_list_sopcast.png',True) except: pass #xbmc.executebuiltin("Container.SetViewMode(51)") except: print("Other type of xml list") getData(url,"") def get_channels(name,url): from xml.etree import ElementTree if url.startswith('http://'): source = get_page_source(url) else: source = readfile(url) save(os.path.join(pastaperfil,"working.xml"),source) chlist_tree = ElementTree.parse(os.path.join(pastaperfil,"working.xml")) LANGUAGE = "en" groups = ElementTree.parse(os.path.join(pastaperfil,"working.xml")).findall('.//group') for group in groups: if group.attrib[LANGUAGE].encode('utf-8') == name: channels = group.findall('.//channel') for channel in channels: try: try: title = channel.find('.//name').attrib['en'].encode('utf-8') except: title = '' if not title: try: title = channel.find('.//name').attrib['cn'].encode('utf-8') except: title = '' if not title: try: title = channel.find('.//name').text except: title = '' tipo = channel.find('.//stream_type').text sop_address = channel.find('.//item').text if not tipo: tipo = "N/A" if not title: title = "N/A" thumbnail = "" try: thumbnail = channel.find('.//thumbnail').text except: pass if sop_address: if thumbnail == "": thumbnail = addonpath + art + 'sopcast_link.png' try: addDir_livestreams_common('[B][COLOR orange]' + title + ' [/B][/COLOR](' + tipo +')',sop_address,2,thumbnail,False) except:pass else: pass except: pass else: pass def getData(url,fanart): soup = getSoup(url) if len(soup('channels')) > 0: channels = soup('channel') for channel in channels: name = channel('name')[0].string thumbnail = channel('thumbnail')[0].string if thumbnail == None: thumbnail = '' try: if not channel('fanart'): if addon.getSetting('use_thumb') == "true": fanArt = thumbnail else: fanArt = fanart else: fanArt = channel('fanart')[0].string if fanArt == None: raise except: fanArt = fanart try: desc = channel('info')[0].string if desc == None: raise except: desc = '' try: genre = channel('genre')[0].string if genre == None: raise except: genre = '' try: date = channel('date')[0].string if date == None: raise except: date = '' try: credits = channel('credits')[0].string if credits == None: raise except: credits = '' try: addDir_livestreams(name.encode('utf-8', 'ignore'),url.encode('utf-8'),103,thumbnail,fanArt,desc,genre,date,credits,True) except: addon_log('There was a problem adding directory from getData(): '+name.encode('utf-8', 'ignore')) else: addon_log('No Channels: getItems') getItems(soup('item'),fanart) def getChannelItems(name,url,fanart): soup = getSoup(url) channel_list = soup.find('channel', attrs={'name' : name.decode('utf-8')}) items = channel_list('item') try: fanArt = channel_list('fanart')[0].string if fanArt == None: raise except: fanArt = fanart for channel in channel_list('subchannel'): name = channel('name')[0].string try: thumbnail = channel('thumbnail')[0].string if thumbnail == None: raise except: thumbnail = '' try: if not channel('fanart'): if addon.getSetting('use_thumb') == "true": fanArt = thumbnail else: fanArt = channel('fanart')[0].string if fanArt == None: raise except: pass try: desc = channel('info')[0].string if desc == None: raise except: desc = '' try: genre = channel('genre')[0].string if genre == None: raise except: genre = '' try: date = channel('date')[0].string if date == None: raise except: date = '' try: credits = channel('credits')[0].string if credits == None: raise except: credits = '' try: addDir_livestreams(name.encode('utf-8', 'ignore'),url.encode('utf-8'),3,thumbnail,fanArt,desc,genre,credits,date) except: addon_log('There was a problem adding directory - '+name.encode('utf-8', 'ignore')) getItems(items,fanArt) def getItems(items,fanart): total = len(items) addon_log('Total Items: %s' %total) for item in items: try: name = item('title')[0].string if name is None: name = 'unknown?' except: addon_log('Name Error') name = '' try: if item('epg'): if item.epg_url: addon_log('Get EPG Regex') epg_url = item.epg_url.string epg_regex = item.epg_regex.string epg_name = get_epg(epg_url, epg_regex) if epg_name: name += ' - ' + epg_name elif item('epg')[0].string > 1: name += getepg(item('epg')[0].string) else: pass except: addon_log('EPG Error') try: url = [] for i in item('link'): if not i.string == None: url.append(i.string) if len(url) < 1: raise except: addon_log('Error <link> element, Passing:'+name.encode('utf-8', 'ignore')) continue try: thumbnail = item('thumbnail')[0].string if thumbnail == None: raise except: thumbnail = '' try: if not item('fanart'): if addon.getSetting('use_thumb') == "true": fanArt = thumbnail else: fanArt = fanart else: fanArt = item('fanart')[0].string if fanArt == None: raise except: fanArt = fanart try: desc = item('info')[0].string if desc == None: raise except: desc = '' try: genre = item('genre')[0].string if genre == None: raise except: genre = '' try: date = item('date')[0].string if date == None: raise except: date = '' regexs = None if item('regex'): try: regexs = {} for i in item('regex'): regexs[i('name')[0].string] = {} regexs[i('name')[0].string]['expre'] = i('expres')[0].string regexs[i('name')[0].string]['page'] = i('page')[0].string try: regexs[i('name')[0].string]['refer'] = i('referer')[0].string except: addon_log("Regex: -- No Referer --") try: regexs[i('name')[0].string]['agent'] = i('agent')[0].string except: addon_log("Regex: -- No User Agent --") regexs = urllib.quote(repr(regexs)) except: regexs = None addon_log('regex Error: '+name.encode('utf-8', 'ignore')) try: if "RunPlugin" in url[0]: try: addDir_livestreams(name.encode('utf-8', 'ignore'),url[0],106,thumbnail,fanArt,desc,genre,"credits",date) except: match = re.compile("&name=(.+?)\)").findall(url[0].replace(";","")) if match: try: addDir_livestreams(name.encode('utf-8', 'ignore'),removeNonAscii(url[0]),106,thumbnail,fanArt,desc,genre,credits,date) except: try: addDir_livestreams(removeNonAscii(name.encode('utf-8', 'ignore')),removeNonAscii(url[0].replace(";","")),106,thumbnail,fanArt,desc,genre,credits,date) except: addon_log('There was a problem adding item - '+name.encode('utf-8', 'ignore')) else: addon_log('There was a problem adding item - '+name.encode('utf-8', 'ignore')) else: if ('acestream://' in url[0]) or ('.acelive' in url[0]) or ('.torrent' in url[0]): if 'plugin://' not in url[0]: addDir_livestreams(name.encode('utf-8', 'ignore'),url[0],1,thumbnail,fanArt,desc,genre,"credits",date) else: addLink_livestreams(url[0].replace(';',''),name.encode('utf-8', 'ignore'),thumbnail,fanArt,desc,genre,date,True,None,regexs,total) elif 'sop://' in url[0]: if 'plugin://' not in url[0]: addDir_livestreams(name.encode('utf-8', 'ignore'),url[0],2,thumbnail,fanArt,desc,genre,"credits",date) else: addLink_livestreams(url[0].replace(';',''),name.encode('utf-8', 'ignore'),thumbnail,fanArt,desc,genre,date,True,None,regexs,total) else: addLink_livestreams(url[0].replace(';',''),name.encode('utf-8', 'ignore'),thumbnail,fanArt,desc,genre,date,True,None,regexs,total) except: addon_log('There was a problem adding item - '+name.encode('utf-8', 'ignore')) def removeNonAscii(s): return "".join(filter(lambda x: ord(x)<128, s)) def getSoup(url): if url.startswith('http://'): data = makeRequest(url) else: if xbmcvfs.exists(url): if url.startswith("smb://") or url.startswith("nfs://"): copy = xbmcvfs.copy(url, os.path.join(profile, 'temp', 'sorce_temp.txt')) if copy: data = open(os.path.join(profile, 'temp', 'sorce_temp.txt'), "r").read() xbmcvfs.delete(os.path.join(profile, 'temp', 'sorce_temp.txt')) else: addon_log("failed to copy from smb:") else: data = open(url, 'r').read() else: addon_log("Soup Data not found!") return return BeautifulSOAP(data, convertEntities=BeautifulStoneSoup.XML_ENTITIES) def addon_log(string): print(string) def getRegexParsed(regexs, url): regexs = eval(urllib.unquote(regexs)) cachedPages = {} doRegexs = re.compile('\$doregex\[([^\]]*)\]').findall(url) for k in doRegexs: if k in regexs: m = regexs[k] if m['page'] in cachedPages: link = cachedPages[m['page']] else: req = urllib2.Request(m['page']) req.add_header('User-Agent', 'Mozilla/5.0 (Windows NT 6.1; rv:14.0) Gecko/20100101 Firefox/14.0.1') if 'refer' in m: req.add_header('Referer', m['refer']) if 'agent' in m: req.add_header('User-agent', m['agent']) response = urllib2.urlopen(req) link = response.read() response.close() cachedPages[m['page']] = link reg = re.compile(m['expre']).search(link) url = url.replace("$doregex[" + k + "]", reg.group(1).strip()) item = xbmcgui.ListItem(path=url) xbmcplugin.setResolvedUrl(int(sys.argv[1]), True, item)
2.203125
2
RainIt/rain_it/ric/Procedure.py
luisgepeto/RainItPi
0
7860
<gh_stars>0 from ric.RainItComposite import RainItComposite class Procedure(RainItComposite): def __init__(self): super().__init__() def get_pickle_form(self): return self
2.015625
2
1067.py
FahimFBA/URI-Problem-Solve
3
7861
<gh_stars>1-10 valor = int(input()) for i in range(valor+1): if(i%2 != 0): print(i)
2.9375
3
api-reference-examples/python/te-tag-query/api-example-update.py
b-bold/ThreatExchange
997
7862
#!/usr/bin/env python # ================================================================ # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # ================================================================ import sys import json import TE TE.Net.setAppTokenFromEnvName("TX_ACCESS_TOKEN") postParams = { "descriptor_id": "4036655176350945", # ID of the descriptor to be updated "reactions": "INGESTED,IN_REVIEW", } showURLs = False dryRun = False validationErrorMessage, serverSideError, responseBody = TE.Net.updateThreatDescriptor( postParams, showURLs, dryRun ) if validationErrorMessage != None: sys.stderr.write(validationErrorMessage + "\n") sys.exit(1) if serverSideError != None: sys.stderr.write(str(serverSideError) + "\n") sys.stderr.write(json.dumps(responseBody) + "\n") sys.exit(1) print(json.dumps(responseBody))
1.882813
2
loaner/web_app/backend/api/shelf_api_test.py
Bottom-Feeders/GrabNGO
0
7863
# Copyright 2018 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for backend.api.shelf_api.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl.testing import parameterized import mock from protorpc import message_types from google.appengine.api import search import endpoints from loaner.web_app.backend.api import root_api # pylint: disable=unused-import from loaner.web_app.backend.api import shelf_api from loaner.web_app.backend.api.messages import shared_messages from loaner.web_app.backend.api.messages import shelf_messages from loaner.web_app.backend.models import device_model from loaner.web_app.backend.models import shelf_model # pylint: disable=unused-import from loaner.web_app.backend.testing import loanertest class ShelfApiTest(parameterized.TestCase, loanertest.EndpointsTestCase): """Test for the Shelf API.""" def setUp(self): super(ShelfApiTest, self).setUp() self.patcher_directory = mock.patch( '__main__.device_model.directory.DirectoryApiClient') self.mock_directoryclass = self.patcher_directory.start() self.addCleanup(self.patcher_directory.stop) self.service = shelf_api.ShelfApi() self.login_admin_endpoints_user() self.patcher_xsrf = mock.patch( '__main__.shelf_api.root_api.Service.check_xsrf_token') self.shelf = shelf_model.Shelf.enroll( user_email=loanertest.USER_EMAIL, location='NYC', capacity=10, friendly_name='GnG', latitude=40.6892534, longitude=-74.0466891, altitude=1.0) shelf1 = shelf_model.Shelf.enroll( user_email=loanertest.USER_EMAIL, location='MTV', capacity=20) shelf2 = shelf_model.Shelf.enroll( user_email=loanertest.USER_EMAIL, location='SAO', capacity=10) self.disabled_shelf = shelf_model.Shelf.enroll( user_email=loanertest.USER_EMAIL, location='SVL', capacity=10, friendly_name='Bay') self.disabled_shelf.disable(loanertest.USER_EMAIL) self.shelf_locations = [ self.shelf.location, shelf1.location, shelf2.location, self.disabled_shelf.location] self.device1_key = device_model.Device( serial_number='12345', enrolled=True, device_model='HP Chromebook 13 G1', current_ou='/', chrome_device_id='unique_id_1', damaged=False, ).put() self.device2_key = device_model.Device( serial_number='54321', enrolled=True, device_model='HP Chromebook 13 G1', current_ou='/', chrome_device_id='unique_id_2', damaged=False, ).put() self.device3_key = device_model.Device( serial_number='67890', enrolled=True, shelf=self.shelf.key, device_model='HP Chromebook 13 G1', current_ou='/', chrome_device_id='unique_id_3', damaged=False, ).put() self.device4_key = device_model.Device( serial_number='ABC123', enrolled=True, shelf=self.shelf.key, device_model='HP Chromebook 13 G1', current_ou='/', chrome_device_id='unique_id_4', damaged=False, ).put() self.device_identifiers = [ self.device1_key.get().serial_number, self.device2_key.get().serial_number, self.device3_key.get().serial_number] def tearDown(self): super(ShelfApiTest, self).tearDown() self.service = None @mock.patch('__main__.root_api.Service.check_xsrf_token') @mock.patch('__main__.shelf_model.Shelf.enroll') def test_enroll(self, mock_enroll, mock_xsrf_token): """Test Enroll with mock methods.""" request = shelf_messages.EnrollShelfRequest( location='nyc', capacity=100, friendly_name='test', latitude=12.5, longitude=12.5, altitude=2.0, responsible_for_audit='precise', audit_interval_override=33, audit_notification_enabled=True) response = self.service.enroll(request) self.assertEqual(mock_xsrf_token.call_count, 1) self.assertIsInstance(response, message_types.VoidMessage) def test_enroll_bad_request(self): request = shelf_messages.EnrollShelfRequest(capacity=10) with self.assertRaisesRegexp( shelf_api.endpoints.BadRequestException, 'Entity has uninitialized properties'): self.service.enroll(request) request = shelf_messages.EnrollShelfRequest( location='nyc', capacity=10, latitude=12.5) with self.assertRaisesRegexp( shelf_api.endpoints.BadRequestException, shelf_model._LAT_LONG_MSG): self.service.enroll(request) @mock.patch('__main__.root_api.Service.check_xsrf_token') def test_get_by_location(self, mock_xsrf_token): request = shelf_messages.ShelfRequest(location='NYC') response = self.service.get(request) self.assertEqual(mock_xsrf_token.call_count, 1) self.assertEqual(self.shelf.location, response.location) self.assertEqual(self.shelf.friendly_name, response.friendly_name) def test_disable_by_location(self): request = shelf_messages.ShelfRequest(location='NYC') self.assertTrue(self.shelf.enabled) response = self.service.disable(request) self.assertFalse(self.shelf.enabled) self.assertIsInstance(response, message_types.VoidMessage) @mock.patch('__main__.root_api.Service.check_xsrf_token') def test_update_using_location(self, mock_xsrf_token): request = shelf_messages.UpdateShelfRequest( shelf_request=shelf_messages.ShelfRequest(location='NYC'), location='NYC-9th') response = self.service.update(request) self.assertEqual(mock_xsrf_token.call_count, 1) self.assertEqual(self.shelf.location, 'NYC-9th') shelf = shelf_model.Shelf.get(friendly_name='GnG') self.assertEqual(shelf.location, 'NYC-9th') self.assertIsInstance(response, message_types.VoidMessage) @parameterized.parameters( (shelf_messages.Shelf(capacity=10), 2,), (shelf_messages.Shelf(enabled=False), 1,), (shelf_messages.Shelf( query=shared_messages.SearchRequest( query_string='enabled:True capacity:10')), 2,), (shelf_messages.Shelf( query=shared_messages.SearchRequest( query_string='enabled:False')), 1,)) @mock.patch('__main__.root_api.Service.check_xsrf_token') def test_list_shelves(self, request, response_length, mock_xsrf_token): response = self.service.list_shelves(request) self.assertEqual(mock_xsrf_token.call_count, 1) self.assertEqual(response_length, len(response.shelves)) def test_list_shelves_invalid_page_size(self): with self.assertRaises(endpoints.BadRequestException): request = shelf_messages.Shelf(page_size=0) self.service.list_shelves(request) def test_list_shelves_with_search_constraints(self): expressions = shared_messages.SearchExpression(expression='location') expected_response = shelf_messages.ListShelfResponse( shelves=[shelf_messages.Shelf( location=self.shelf.location, shelf_request=shelf_messages.ShelfRequest( location=self.shelf.location, urlsafe_key=self.shelf.key.urlsafe()))], total_results=1, total_pages=1) request = shelf_messages.Shelf( query=shared_messages.SearchRequest( query_string='location:NYC', expressions=[expressions], returned_fields=['location'])) response = self.service.list_shelves(request) self.assertEqual(response, expected_response) def test_list_shelves_with_offset(self): previouse_shelf_locations = [] request = shelf_messages.Shelf(enabled=True, page_size=1, page_number=1) response = self.service.list_shelves(request) self.assertEqual(len(response.shelves), 1) previouse_shelf_locations.append(response.shelves[0].location) # Get next page results and make sure it's not the same as last. request = shelf_messages.Shelf(enabled=True, page_size=1, page_number=2) response = self.service.list_shelves(request) self.assertEqual(len(response.shelves), 1) self.assertNotIn(response.shelves[0], previouse_shelf_locations) previouse_shelf_locations.append(response.shelves[0].location) # Get next page results and make sure it's not the same as last 2. request = shelf_messages.Shelf(enabled=True, page_size=1, page_number=3) response = self.service.list_shelves(request) self.assertEqual(len(response.shelves), 1) self.assertNotIn(response.shelves[0], previouse_shelf_locations) previouse_shelf_locations.append(response.shelves[0].location) @mock.patch('__main__.root_api.Service.check_xsrf_token') @mock.patch('__main__.shelf_api.logging.info') def test_audit_using_shelf_location(self, mock_logging, mock_xsrf_token): request = shelf_messages.ShelfAuditRequest( shelf_request=shelf_messages.ShelfRequest(location='NYC'), device_identifiers=self.device_identifiers) response = self.service.audit(request) self.assertEqual(mock_xsrf_token.call_count, 1) mock_logging.assert_called() for identifier in self.device_identifiers: datastore_device = device_model.Device.get(serial_number=identifier) self.assertEqual(datastore_device.shelf.get().location, 'NYC') self.assertFalse(self.shelf.audit_requested) self.assertEqual(self.shelf.last_audit_by, loanertest.SUPER_ADMIN_EMAIL) self.assertIsInstance(response, message_types.VoidMessage) def test_audit_invalid_device(self): request = shelf_messages.ShelfAuditRequest( shelf_request=shelf_messages.ShelfRequest(location='NYC'), device_identifiers=['Invalid']) with self.assertRaisesRegexp( endpoints.NotFoundException, shelf_api._DEVICE_DOES_NOT_EXIST_MSG % 'Invalid'): self.service.audit(request) @mock.patch.object(device_model.Device, 'search') @mock.patch.object(shelf_api, 'get_shelf', autospec=True) def test_audit_remove_devices( self, mock_get_shelf, mock_model_device_search): shelf = self.device2_key.get() shelf.shelf = self.shelf.key shelf.put() mock_model_device_search.return_value = ( search.SearchResults( results=[ search.ScoredDocument( doc_id=self.device2_key.urlsafe()), search.ScoredDocument( doc_id=self.device3_key.urlsafe()), search.ScoredDocument( doc_id=self.device4_key.urlsafe())], number_found=3)) mock_get_shelf.return_value = self.shelf request = shelf_messages.ShelfAuditRequest( shelf_request=shelf_messages.ShelfRequest(location=self.shelf.location), device_identifiers=[self.device3_key.get().serial_number]) self.service.audit(request) self.assertEqual(self.device3_key.get().shelf, self.shelf.key) self.assertIsNone(self.device2_key.get().shelf) self.assertIsNone(self.device4_key.get().shelf) def test_get_shelf_urlsafe_key(self): """Test getting a shelf using the urlsafe key.""" request = shelf_messages.ShelfRequest(urlsafe_key=self.shelf.key.urlsafe()) shelf = shelf_api.get_shelf(request) self.assertEqual(shelf, self.shelf) def test_get_shelf_using_location(self): """Test getting a shelf using the location.""" request = shelf_messages.ShelfRequest(location=self.shelf.location) shelf = shelf_api.get_shelf(request) self.assertEqual(shelf, self.shelf) def test_get_shelf_using_location_error(self): """Test getting a shelf with an invalid location.""" request = shelf_messages.ShelfRequest(location='Not_Valid') with self.assertRaisesRegexp( endpoints.NotFoundException, shelf_api._SHELF_DOES_NOT_EXIST_MSG % request.location): shelf_api.get_shelf(request) if __name__ == '__main__': loanertest.main()
1.679688
2
app/views/main.py
ArmandDS/ai_bert_resumes
1
7864
from flask import render_template, jsonify, Flask, redirect, url_for, request from app import app import random import os # import tensorflow as tf # import numpy as np # import sys # import spacy # nlp = spacy.load('en') # sys.path.insert(0, "/content/bert_experimental") # from bert_experimental.finetuning.text_preprocessing import build_preprocessor # from bert_experimental.finetuning.graph_ops import load_graph # restored_graph = load_graph("models/frozen_graph.pb") # graph_ops = restored_graph.get_operations() # input_op, output_op = graph_ops[0].name, graph_ops[-1].name # x = restored_graph.get_tensor_by_name(input_op + ':0') # y = restored_graph.get_tensor_by_name(output_op + ':0') # preprocessor = build_preprocessor("./uncased_L-12_H-768_A-12/vocab.txt", 256) # py_func = tf.numpy_function(preprocessor, [x], [tf.int32, tf.int32, tf.int32], name='preprocessor') # py_func = tf.numpy_function(preprocessor, [x], [tf.int32, tf.int32, tf.int32]) # sess = tf.Session(graph=restored_graph) # delimiter = " ||| " @app.route('/') def index1(): return render_template('index.html', title='Home') @app.route('/predict', methods = ['GET', 'POST']) def upload_file(): if request.method == 'POST': exp_st = request.form.get('exp') job_st = request.form.get('job') # y_out = sess.run(y, feed_dict={ # x: pd.DataFrame([delimiter.join((exp_st, job_st ))], columns=['name']) # }) # doc1 = nlp(exp_st) # doc2 = nlp(job_st ) # y_out2 = doc1.similarity(doc2) return render_template('index.html', title='Success', predictions=80, predictions_sp =75, exp=exp_st, job= job_st) @app.route('/index') def index(): return render_template('index.html', title='Home') @app.route('/map') def map(): return render_template('map.html', title='Map') @app.route('/map/refresh', methods=['POST']) def map_refresh(): points = [(random.uniform(48.8434100, 48.8634100), random.uniform(2.3388000, 2.3588000)) for _ in range(random.randint(2, 9))] return jsonify({'points': points}) @app.route('/contact') def contact(): return render_template('contact.html', title='Contact')
2.21875
2
ahrs/filters/complementary.py
jaluebbe/ahrs
0
7865
# -*- coding: utf-8 -*- """ Complementary Filter ==================== Attitude quaternion obtained with gyroscope and accelerometer-magnetometer measurements, via complementary filter. First, the current orientation is estimated at time :math:`t`, from a previous orientation at time :math:`t-1`, and a given angular velocity, :math:`\\omega`, in rad/s. This orientation is computed by numerically integrating the angular velocity and adding it to the previous orientation, which is known as an **attitude propagation**. .. math:: \\begin{array}{rcl} \\mathbf{q}_\\omega &=& \\Big(\\mathbf{I}_4 + \\frac{\\Delta t}{2}\\boldsymbol\\Omega_t\\Big)\\mathbf{q}_{t-1} \\\\ &=& \\begin{bmatrix} 1 & -\\frac{\\Delta t}{2}\\omega_x & -\\frac{\\Delta t}{2}\\omega_y & -\\frac{\\Delta t}{2}\\omega_z \\\\ \\frac{\\Delta t}{2}\\omega_x & 1 & \\frac{\\Delta t}{2}\\omega_z & -\\frac{\\Delta t}{2}\\omega_y \\\\ \\frac{\\Delta t}{2}\\omega_y & -\\frac{\\Delta t}{2}\\omega_z & 1 & \\frac{\\Delta t}{2}\\omega_x \\\\ \\frac{\\Delta t}{2}\\omega_z & \\frac{\\Delta t}{2}\\omega_y & -\\frac{\\Delta t}{2}\\omega_x & 1 \\end{bmatrix} \\begin{bmatrix}q_w \\\\ q_x \\\\ q_y \\\\ q_z \\end{bmatrix} \\\\ &=& \\begin{bmatrix} q_w - \\frac{\\Delta t}{2} \\omega_x q_x - \\frac{\\Delta t}{2} \\omega_y q_y - \\frac{\\Delta t}{2} \\omega_z q_z\\\\ q_x + \\frac{\\Delta t}{2} \\omega_x q_w - \\frac{\\Delta t}{2} \\omega_y q_z + \\frac{\\Delta t}{2} \\omega_z q_y\\\\ q_y + \\frac{\\Delta t}{2} \\omega_x q_z + \\frac{\\Delta t}{2} \\omega_y q_w - \\frac{\\Delta t}{2} \\omega_z q_x\\\\ q_z - \\frac{\\Delta t}{2} \\omega_x q_y + \\frac{\\Delta t}{2} \\omega_y q_x + \\frac{\\Delta t}{2} \\omega_z q_w \\end{bmatrix} \\end{array} Secondly, the *tilt* is computed from the accelerometer measurements as: .. math:: \\begin{array}{rcl} \\theta &=& \\mathrm{arctan2}(a_y, a_z) \\\\ \\phi &=& \\mathrm{arctan2}\\big(-a_x, \\sqrt{a_y^2+a_z^2}\\big) \\end{array} Only the pitch, :math:`\\phi`, and roll, :math:`\\theta`, angles are computed, leaving the yaw angle, :math:`\\psi` equal to zero. If a magnetometer sample is available, the yaw angle can be computed. First compensate the measurement using the *tilt*: .. math:: \\begin{array}{rcl} \\mathbf{b} &=& \\begin{bmatrix} \\cos\\theta & \\sin\\theta\\sin\\phi & \\sin\\theta\\cos\\phi \\\\ 0 & \\cos\\phi & -\\sin\\phi \\\\ -\\sin\\theta & \\cos\\theta\\sin\\phi & \\cos\\theta\\cos\\phi \\end{bmatrix} \\begin{bmatrix}m_x \\\\ m_y \\\\ m_z\\end{bmatrix} \\\\ \\begin{bmatrix}b_x \\\\ b_y \\\\ b_z\\end{bmatrix} &=& \\begin{bmatrix} m_x\\cos\\theta + m_y\\sin\\theta\\sin\\phi + m_z\\sin\\theta\\cos\\phi \\\\ m_y\\cos\\phi - m_z\\sin\\phi \\\\ -m_x\\sin\\theta + m_y\\cos\\theta\\sin\\phi + m_z\\cos\\theta\\cos\\phi \\end{bmatrix} \\end{array} Then, the yaw angle, :math:`\\psi`, is obtained as: .. math:: \\begin{array}{rcl} \\psi &=& \\mathrm{arctan2}(-b_y, b_x) \\\\ &=& \\mathrm{arctan2}\\big(m_z\\sin\\phi - m_y\\cos\\phi, \\; m_x\\cos\\theta + \\sin\\theta(m_y\\sin\\phi + m_z\\cos\\phi)\\big) \\end{array} We transform the roll-pitch-yaw angles to a quaternion representation: .. math:: \\mathbf{q}_{am} = \\begin{pmatrix}q_w\\\\q_x\\\\q_y\\\\q_z\\end{pmatrix} = \\begin{pmatrix} \\cos\\Big(\\frac{\\phi}{2}\\Big)\\cos\\Big(\\frac{\\theta}{2}\\Big)\\cos\\Big(\\frac{\\psi}{2}\\Big) + \\sin\\Big(\\frac{\\phi}{2}\\Big)\\sin\\Big(\\frac{\\theta}{2}\\Big)\\sin\\Big(\\frac{\\psi}{2}\\Big) \\\\ \\sin\\Big(\\frac{\\phi}{2}\\Big)\\cos\\Big(\\frac{\\theta}{2}\\Big)\\cos\\Big(\\frac{\\psi}{2}\\Big) - \\cos\\Big(\\frac{\\phi}{2}\\Big)\\sin\\Big(\\frac{\\theta}{2}\\Big)\\sin\\Big(\\frac{\\psi}{2}\\Big) \\\\ \\cos\\Big(\\frac{\\phi}{2}\\Big)\\sin\\Big(\\frac{\\theta}{2}\\Big)\\cos\\Big(\\frac{\\psi}{2}\\Big) + \\sin\\Big(\\frac{\\phi}{2}\\Big)\\cos\\Big(\\frac{\\theta}{2}\\Big)\\sin\\Big(\\frac{\\psi}{2}\\Big) \\\\ \\cos\\Big(\\frac{\\phi}{2}\\Big)\\cos\\Big(\\frac{\\theta}{2}\\Big)\\sin\\Big(\\frac{\\psi}{2}\\Big) - \\sin\\Big(\\frac{\\phi}{2}\\Big)\\sin\\Big(\\frac{\\theta}{2}\\Big)\\cos\\Big(\\frac{\\psi}{2}\\Big) \\end{pmatrix} Finally, after each orientation is estimated independently, they are fused with the complementary filter. .. math:: \\mathbf{q} = (1 - \\alpha) \\mathbf{q}_\\omega + \\alpha\\mathbf{q}_{am} where :math:`\\mathbf{q}_\\omega` is the attitude estimated from the gyroscope, :math:`\\mathbf{q}_{am}` is the attitude estimated from the accelerometer and the magnetometer, and :math:`\\alpha` is the gain of the filter. The filter gain must be a floating value within the range :math:`[0.0, 1.0]`. It can be seen that when :math:`\\alpha=1`, the attitude is estimated entirely with the accelerometer and the magnetometer. When :math:`\\alpha=0`, it is estimated solely with the gyroscope. The values within the range decide how much of each estimation is "blended" into the quaternion. This is actually a simple implementation of `LERP <https://en.wikipedia.org/wiki/Linear_interpolation>`_ commonly used to linearly interpolate quaternions with small differences between them. """ import numpy as np from ..common.orientation import ecompass class Complementary: """ Complementary filter for attitude estimation as quaternion. Parameters ---------- gyr : numpy.ndarray, default: None N-by-3 array with measurements of angular velocity, in rad/s. acc : numpy.ndarray, default: None N-by-3 array with measurements of acceleration, in m/s^2. mag : numpy.ndarray, default: None N-by-3 array with measurements of magnetic field, in mT. frequency : float, default: 100.0 Sampling frequency in Herz. Dt : float, default: 0.01 Sampling step in seconds. Inverse of sampling frequency. Not required if ``frequency`` value is given. gain : float, default: 0.1 Filter gain. q0 : numpy.ndarray, default: None Initial orientation, as a versor (normalized quaternion). Raises ------ ValueError When dimension of input arrays ``acc``, ``gyr``, or ``mag`` are not equal. """ def __init__(self, gyr: np.ndarray = None, acc: np.ndarray = None, mag: np.ndarray = None, frequency: float = 100.0, gain = 0.9, **kwargs): self.gyr: np.ndarray = gyr self.acc: np.ndarray = acc self.mag: np.ndarray = mag self.frequency: float = frequency self.gain: float = gain if not(0.0 <= self.gain <= 1.0): raise ValueError(f"Filter gain must be in the range [0, 1]. Got {self.gain}") self.Dt: float = kwargs.get('Dt', 1.0/self.frequency) self.q0: np.ndarray = kwargs.get('q0') # Process of given data if self.gyr is not None and self.acc is not None: self.Q = self._compute_all() def _compute_all(self) -> np.ndarray: """ Estimate the quaternions given all data Attributes ``gyr``, ``acc`` and, optionally, ``mag`` must contain data. Returns ------- Q : numpy.ndarray M-by-4 Array with all estimated quaternions, where M is the number of samples. """ if self.acc.shape != self.gyr.shape: raise ValueError("acc and gyr are not the same size") num_samples = len(self.acc) Q = np.zeros((num_samples, 4)) if self.mag is None: self.mag = [None]*num_samples else: if self.mag.shape != self.gyr.shape: raise ValueError("mag and gyr are not the same size") Q[0] = self.am_estimation(self.acc[0], self.mag[0]) if self.q0 is None else self.q0.copy() for t in range(1, num_samples): Q[t] = self.update(Q[t-1], self.gyr[t], self.acc[t], self.mag[t]) return Q def attitude_propagation(self, q: np.ndarray, omega: np.ndarray, dt: float) -> np.ndarray: """ Attitude propagation of the orientation. Estimate the current orientation at time :math:`t`, from a given orientation at time :math:`t-1` and a given angular velocity, :math:`\\omega`, in rad/s. It is computed by numerically integrating the angular velocity and adding it to the previous orientation. Parameters ---------- q : numpy.ndarray A-priori quaternion. omega : numpy.ndarray Tri-axial angular velocity, in rad/s. dt : float Time step, in seconds, between consecutive Quaternions. Returns ------- q_omega : numpy.ndarray Estimated orientation, as quaternion. """ w = -0.5*dt*omega A = np.array([ [1.0, -w[0], -w[1], -w[2]], [w[0], 1.0, w[2], -w[1]], [w[1], -w[2], 1.0, w[0]], [w[2], w[1], -w[0], 1.0]]) q_omega = A @ q return q_omega / np.linalg.norm(q_omega) def am_estimation(self, acc: np.ndarray, mag: np.ndarray = None) -> np.ndarray: """ Attitude estimation from an Accelerometer-Magnetometer architecture. Parameters ---------- acc : numpy.ndarray Tri-axial sample of the accelerometer. mag : numpy.ndarray, default: None Tri-axial sample of the magnetometer. Returns ------- q_am : numpy.ndarray Estimated attitude. """ return ecompass(acc, mag, frame='NED', representation='quaternion') def update(self, q: np.ndarray, gyr: np.ndarray, acc: np.ndarray, mag: np.ndarray = None, dt: float = None) -> np.ndarray: """ Attitude Estimation from given measurements and previous orientation. The new orientation is first estimated with the angular velocity, then another orientation is computed using the accelerometers and magnetometers. The magnetometer is optional. Each orientation is estimated independently and fused with a complementary filter. .. math:: \\mathbf{q} = (1 - \\alpha) \\mathbf{q}_\\omega + \\alpha\\mathbf{q}_{am} Parameters ---------- q : numpy.ndarray A-priori quaternion. gyr : numpy.ndarray Sample of tri-axial Gyroscope in rad/s. acc : numpy.ndarray Sample of tri-axial Accelerometer in m/s^2. mag : numpy.ndarray, default: None Sample of tri-axial Magnetometer in uT. dt : float, default: None Time step, in seconds, between consecutive Quaternions. Returns ------- q : numpy.ndarray Estimated quaternion. """ dt = self.Dt if dt is None else dt if gyr is None or not np.linalg.norm(gyr) > 0: return q q_omega = self.attitude_propagation(q, gyr, dt) q_am = self.am_estimation(acc, mag) # Complementary Estimation if np.linalg.norm(q_omega + q_am) < np.sqrt(2): q = (1.0 - self.gain)*q_omega - self.gain*q_am else: q = (1.0 - self.gain)*q_omega + self.gain*q_am return q/np.linalg.norm(q)
2.515625
3
aliyun-python-sdk-ehpc/aliyunsdkehpc/request/v20180412/EditJobTemplateRequest.py
yndu13/aliyun-openapi-python-sdk
1,001
7866
<gh_stars>1000+ # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # # http://www.apache.org/licenses/LICENSE-2.0 # # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from aliyunsdkcore.request import RpcRequest from aliyunsdkehpc.endpoint import endpoint_data class EditJobTemplateRequest(RpcRequest): def __init__(self): RpcRequest.__init__(self, 'EHPC', '2018-04-12', 'EditJobTemplate') self.set_method('GET') if hasattr(self, "endpoint_map"): setattr(self, "endpoint_map", endpoint_data.getEndpointMap()) if hasattr(self, "endpoint_regional"): setattr(self, "endpoint_regional", endpoint_data.getEndpointRegional()) def get_StderrRedirectPath(self): return self.get_query_params().get('StderrRedirectPath') def set_StderrRedirectPath(self,StderrRedirectPath): self.add_query_param('StderrRedirectPath',StderrRedirectPath) def get_ClockTime(self): return self.get_query_params().get('ClockTime') def set_ClockTime(self,ClockTime): self.add_query_param('ClockTime',ClockTime) def get_CommandLine(self): return self.get_query_params().get('CommandLine') def set_CommandLine(self,CommandLine): self.add_query_param('CommandLine',CommandLine) def get_ArrayRequest(self): return self.get_query_params().get('ArrayRequest') def set_ArrayRequest(self,ArrayRequest): self.add_query_param('ArrayRequest',ArrayRequest) def get_PackagePath(self): return self.get_query_params().get('PackagePath') def set_PackagePath(self,PackagePath): self.add_query_param('PackagePath',PackagePath) def get_Mem(self): return self.get_query_params().get('Mem') def set_Mem(self,Mem): self.add_query_param('Mem',Mem) def get_StdoutRedirectPath(self): return self.get_query_params().get('StdoutRedirectPath') def set_StdoutRedirectPath(self,StdoutRedirectPath): self.add_query_param('StdoutRedirectPath',StdoutRedirectPath) def get_Variables(self): return self.get_query_params().get('Variables') def set_Variables(self,Variables): self.add_query_param('Variables',Variables) def get_RunasUser(self): return self.get_query_params().get('RunasUser') def set_RunasUser(self,RunasUser): self.add_query_param('RunasUser',RunasUser) def get_ReRunable(self): return self.get_query_params().get('ReRunable') def set_ReRunable(self,ReRunable): self.add_query_param('ReRunable',ReRunable) def get_Thread(self): return self.get_query_params().get('Thread') def set_Thread(self,Thread): self.add_query_param('Thread',Thread) def get_TemplateId(self): return self.get_query_params().get('TemplateId') def set_TemplateId(self,TemplateId): self.add_query_param('TemplateId',TemplateId) def get_Priority(self): return self.get_query_params().get('Priority') def set_Priority(self,Priority): self.add_query_param('Priority',Priority) def get_Gpu(self): return self.get_query_params().get('Gpu') def set_Gpu(self,Gpu): self.add_query_param('Gpu',Gpu) def get_Node(self): return self.get_query_params().get('Node') def set_Node(self,Node): self.add_query_param('Node',Node) def get_Task(self): return self.get_query_params().get('Task') def set_Task(self,Task): self.add_query_param('Task',Task) def get_Name(self): return self.get_query_params().get('Name') def set_Name(self,Name): self.add_query_param('Name',Name) def get_Queue(self): return self.get_query_params().get('Queue') def set_Queue(self,Queue): self.add_query_param('Queue',Queue)
1.632813
2
tests/common/models/test_execution.py
angry-tony/ceph-lcm-decapod
41
7867
# -*- coding: utf-8 -*- # Copyright (c) 2016 Mirantis Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for decapod_common.models.execution.""" import pytest from decapod_common.models import execution def test_create(new_execution, new_pcmodel, pymongo_connection): db_model = pymongo_connection.db.execution.find_one( {"_id": new_execution._id} ) assert db_model assert new_execution.model_id == db_model["model_id"] assert new_execution.version == db_model["version"] assert new_execution.time_created == db_model["time_created"] assert new_execution.time_deleted == db_model["time_deleted"] assert new_execution.initiator_id == db_model["initiator_id"] assert new_execution.playbook_configuration_model_id == \ db_model["pc_model_id"] assert new_execution.playbook_configuration_version == \ db_model["pc_version"] assert new_execution.state.name == db_model["state"] assert new_execution.state == execution.ExecutionState.created assert new_execution.playbook_configuration_model_id == \ new_pcmodel.model_id assert new_execution.playbook_configuration_version == \ new_pcmodel.version @pytest.mark.parametrize("state", execution.ExecutionState) def test_change_state_ok(state, new_execution): new_execution.state = state new_execution.save() assert new_execution.state == state @pytest.mark.parametrize("state", ( "", "changed", "started", 0, None, -1.0, [], {}, object(), set() )) def test_change_state_fail(state, new_execution): with pytest.raises(ValueError): new_execution.state = state @pytest.mark.parametrize("state", execution.ExecutionState) def test_api_response(state, new_pcmodel, new_execution): new_execution.state = state new_execution.save() assert new_execution.make_api_structure() == { "id": new_execution.model_id, "initiator_id": new_execution.initiator_id, "time_deleted": new_execution.time_deleted, "time_updated": new_execution.time_created, "model": execution.ExecutionModel.MODEL_NAME, "version": 2, "data": { "playbook_configuration": { "id": new_pcmodel.model_id, "version": new_pcmodel.version, "playbook_name": new_pcmodel.playbook_id }, "state": state.name } } def test_getting_logfile(new_execution, execution_log_storage): new_execution.logfile execution_log_storage.get.assert_called_once_with(new_execution.model_id) def test_create_logfile(new_execution, execution_log_storage): new_execution.new_logfile.write("1") execution_log_storage.delete.assert_called_once_with( new_execution.model_id ) execution_log_storage.new_file.assert_called_once_with( new_execution.model_id, filename="{0}.log".format(new_execution.model_id), content_type="text/plain" ) execution_log_storage.new_file().write.assert_called_once_with("1")
1.882813
2
board/models.py
Fahreeve/TaskManager
0
7868
from django.contrib.auth.models import User from django.core.validators import MaxValueValidator, MinValueValidator from django.db import models from django.utils.translation import ugettext_lazy as _ class Task(models.Model): CLOSE = 'cl' CANCEL = 'ca' LATER = 'la' UNDEFINED = 'un' CHOICES = ( (UNDEFINED, _("Неизвестно")), (CLOSE, _("Завершить")), (CANCEL, _("Отменить")), (LATER, _("Отложить")), ) title = models.CharField(_("Заголовок"), max_length=50) description = models.TextField(_("Описание")) executor = models.ForeignKey(User, verbose_name=_("Исполнитель"), on_delete=models.CASCADE) status = models.CharField(_("Статус"), choices=CHOICES, default=UNDEFINED, max_length=2) deadline = models.DateTimeField(_("Дедлайн")) priority = models.IntegerField(_("Приоритет"), default=1, validators=[MinValueValidator(1), MaxValueValidator(3)]) changed = models.DateTimeField(_("Дата последнего изменения"), auto_now=True) created = models.DateTimeField(_("Дата создания"), auto_now_add=True) @property def text_status(self): choices = dict(self.CHOICES) return choices[self.status] @property def text_deadline(self): return self.deadline.strftime("%d.%m.%Y %H:%M") class Comment(models.Model): task = models.ForeignKey(Task, related_name="comments", on_delete=models.CASCADE) creator = models.ForeignKey(User, on_delete=models.SET_NULL, null=True) text = models.TextField(_('Комментарий')) created = models.DateTimeField(_("Дата создания"), auto_now_add=True)
2.0625
2
test/test_hex_line.py
bicobus/Hexy
72
7869
import numpy as np import hexy as hx def test_get_hex_line(): expected = [ [-3, 3, 0], [-2, 2, 0], [-1, 2, -1], [0, 2, -2], [1, 1, -2], ] start = np.array([-3, 3, 0]) end = np.array([1, 1, -2]) print(hx.get_hex_line(start, end)) print(expected); assert(np.array_equal( hx.get_hex_line(start, end), expected)); if __name__ == "__main__": test_get_hex_line()
2.984375
3
wofry/propagator/propagators2D/integral.py
PaNOSC-ViNYL/wofry
0
7870
<reponame>PaNOSC-ViNYL/wofry<filename>wofry/propagator/propagators2D/integral.py # propagate_2D_integral: Simplification of the Kirchhoff-Fresnel integral. TODO: Very slow and give some problems import numpy from wofry.propagator.wavefront2D.generic_wavefront import GenericWavefront2D from wofry.propagator.propagator import Propagator2D # TODO: check resulting amplitude normalization (fft and srw likely agree, convolution gives too high amplitudes, so needs normalization) class Integral2D(Propagator2D): HANDLER_NAME = "INTEGRAL_2D" def get_handler_name(self): return self.HANDLER_NAME def do_specific_progation_after(self, wavefront, propagation_distance, parameters, element_index=None): return self.do_specific_progation(wavefront, propagation_distance, parameters, element_index=element_index) def do_specific_progation_before(self, wavefront, propagation_distance, parameters, element_index=None): return self.do_specific_progation( wavefront, propagation_distance, parameters, element_index=element_index) """ 2D Fresnel-Kirchhoff propagator via simplified integral NOTE: this propagator is experimental and much less performant than the ones using Fourier Optics Therefore, it is not recommended to use. :param wavefront: :param propagation_distance: propagation distance :param shuffle_interval: it is known that this method replicates the central diffraction spot The distace of the replica is proportional to 1/pixelsize To avoid that, it is possible to change a bit (randomly) the coordinates of the wavefront. shuffle_interval controls this shift: 0=No shift. A typical value can be 1e5. The result shows a diffraction pattern without replica but with much noise. :param calculate_grid_only: if set, it calculates only the horizontal and vertical profiles, but returns the full image with the other pixels to zero. This is useful when calculating large arrays, so it is set as the default. :return: a new 2D wavefront object with propagated wavefront """ def do_specific_progation(self, wavefront, propagation_distance, parameters, element_index=None): shuffle_interval = self.get_additional_parameter("shuffle_interval",False,parameters,element_index=element_index) calculate_grid_only = self.get_additional_parameter("calculate_grid_only",True,parameters,element_index=element_index) return self.propagate_wavefront(wavefront,propagation_distance,shuffle_interval=shuffle_interval, calculate_grid_only=calculate_grid_only) @classmethod def propagate_wavefront(cls,wavefront,propagation_distance,shuffle_interval=False,calculate_grid_only=True): # # Fresnel-Kirchhoff integral (neglecting inclination factor) # if not calculate_grid_only: # # calculation over the whole detector area # p_x = wavefront.get_coordinate_x() p_y = wavefront.get_coordinate_y() wavelength = wavefront.get_wavelength() amplitude = wavefront.get_complex_amplitude() det_x = p_x.copy() det_y = p_y.copy() p_X = wavefront.get_mesh_x() p_Y = wavefront.get_mesh_y() det_X = p_X det_Y = p_Y amplitude_propagated = numpy.zeros_like(amplitude,dtype='complex') wavenumber = 2 * numpy.pi / wavelength for i in range(det_x.size): for j in range(det_y.size): if not shuffle_interval: rd_x = 0.0 rd_y = 0.0 else: rd_x = (numpy.random.rand(p_x.size,p_y.size)-0.5)*shuffle_interval rd_y = (numpy.random.rand(p_x.size,p_y.size)-0.5)*shuffle_interval r = numpy.sqrt( numpy.power(p_X + rd_x - det_X[i,j],2) + numpy.power(p_Y + rd_y - det_Y[i,j],2) + numpy.power(propagation_distance,2) ) amplitude_propagated[i,j] = (amplitude / r * numpy.exp(1.j * wavenumber * r)).sum() output_wavefront = GenericWavefront2D.initialize_wavefront_from_arrays(det_x,det_y,amplitude_propagated) else: x = wavefront.get_coordinate_x() y = wavefront.get_coordinate_y() X = wavefront.get_mesh_x() Y = wavefront.get_mesh_y() wavenumber = 2 * numpy.pi / wavefront.get_wavelength() amplitude = wavefront.get_complex_amplitude() used_indices = wavefront.get_mask_grid(width_in_pixels=(1,1),number_of_lines=(1,1)) indices_x = wavefront.get_mesh_indices_x() indices_y = wavefront.get_mesh_indices_y() indices_x_flatten = indices_x[numpy.where(used_indices == 1)].flatten() indices_y_flatten = indices_y[numpy.where(used_indices == 1)].flatten() X_flatten = X[numpy.where(used_indices == 1)].flatten() Y_flatten = Y[numpy.where(used_indices == 1)].flatten() complex_amplitude_propagated = amplitude*0 print("propagate_2D_integral: Calculating %d points from a total of %d x %d = %d"%( X_flatten.size,amplitude.shape[0],amplitude.shape[1],amplitude.shape[0]*amplitude.shape[1])) for i in range(X_flatten.size): r = numpy.sqrt( numpy.power(wavefront.get_mesh_x() - X_flatten[i],2) + numpy.power(wavefront.get_mesh_y() - Y_flatten[i],2) + numpy.power(propagation_distance,2) ) complex_amplitude_propagated[int(indices_x_flatten[i]),int(indices_y_flatten[i])] = (amplitude / r * numpy.exp(1.j * wavenumber * r)).sum() output_wavefront = GenericWavefront2D.initialize_wavefront_from_arrays(x_array=x, y_array=y, z_array=complex_amplitude_propagated, wavelength=wavefront.get_wavelength()) # added <EMAIL> 2018-03-23 to conserve energy - TODO: review method! output_wavefront.rescale_amplitude( numpy.sqrt(wavefront.get_intensity().sum() / output_wavefront.get_intensity().sum())) return output_wavefront
2.875
3
Problems/Study Plans/Dynamic Programming/Dynamic Programming I/07_delete_and_earn.py
andor2718/LeetCode
1
7871
<filename>Problems/Study Plans/Dynamic Programming/Dynamic Programming I/07_delete_and_earn.py # https://leetcode.com/problems/delete-and-earn/ class Solution: def deleteAndEarn(self, nums: list[int]) -> int: num_profits = dict() for num in nums: num_profits[num] = num_profits.get(num, 0) + num sorted_nums = sorted(num_profits.keys()) second_last_profit = 0 last_profit = num_profits[sorted_nums[0]] for idx in range(1, len(sorted_nums)): profit_with_curr_num = num_profits[sorted_nums[idx]] if sorted_nums[idx - 1] == sorted_nums[idx] - 1: curr_profit = max(last_profit, second_last_profit + profit_with_curr_num) else: curr_profit = last_profit + profit_with_curr_num second_last_profit, last_profit = last_profit, curr_profit return last_profit
3.375
3
Desafio051.py
GabrielSanchesRosa/Python
0
7872
<gh_stars>0 # Desenvolva um programa que leia o primeiro termo e a razão de uma PA. No final mostre, os 10 primeiros termos dessa prograssão. primeiro = int(input("Primeiro Termo: ")) razao = int(input("Razão: ")) decimo = primeiro + (10 - 1) * razao for c in range(primeiro, decimo + razao, razao): print(f"{c}", end=" -> ") print("Acabou")
3.953125
4
tiddlyweb/filters/limit.py
tiddlyweb/tiddlyweb
57
7873
""" A :py:mod:`filter <tiddlyweb.filters>` type to limit a group of entities using a syntax similar to SQL Limit:: limit=<index>,<count> limit=<count> """ import itertools def limit_parse(count='0'): """ Parse the argument of a ``limit`` :py:mod:`filter <tiddlyweb.filters>` for a count and index argument, return a function which does the limiting. Exceptions while parsing are passed up the stack. """ index = '0' if ',' in count: index, count = count.split(',', 1) index = int(index) count = int(count) def limiter(entities, indexable=False, environ=None): return limit(entities, index=index, count=count) return limiter def limit(entities, count=0, index=0): """ Make a slice of a list of entities based on a count and index. """ return itertools.islice(entities, index, index + count)
3.328125
3
pytorch_keras_converter/API.py
sonibla/pytorch_keras_converter
17
7874
""" Simple API to convert models between PyTorch and Keras (Conversions from Keras to PyTorch aren't implemented) """ from . import utility from . import tests from . import io_utils as utils import tensorflow def convert(model, input_shape, weights=True, quiet=True, ignore_tests=False, input_range=None, save=None, filename=None, directory=None): """ Conversion between PyTorch and Keras (Conversions from Keras to PyTorch aren't implemented) Arguments: -model: A Keras or PyTorch model or layer to convert -input_shape: Input shape (list, tuple or int), without batchsize. -weights (bool): Also convert weights. If set to false, only convert model architecture -quiet (bool): If a progress bar and some messages should appear -ignore_tests (bool): If tests should be ignored. If set to True, converted model will still be tested by security. If models are not identical, it will only print a warning. If set to False, and models are not identical, RuntimeWarning will be raised If weights is False, tests are automatically ignored -input_range: Optionnal. A list of 2 elements containing max and min values to give as input to the model when performing the tests. If None, models will be tested on samples from the "standard normal" distribution. -save: If model should be exported to a hdf5 file. -filename: Filename to give to model's hdf5 file. If filename is not None and save is not False, then save will automatically be set to True -directory: Where to save model's hdf5 file. If directory is not None and save is not False, then save will automatically be set to True Raises: -RuntimeWarning: If converted and original model aren't identical, and ignore_tests is False Returns: If model has been exported to a file, it will return the name of the file Else, it returns the converted model """ if (filename is not None or directory is not None) and save is None: save = True if save is None: save = False if weights == False: ignore_tests = True if not quiet: print('\nConversion...') # Converting: newModel = utility.convert(model=utility.LayerRepresentation(model), input_size=input_shape, weights=weights, quiet=quiet) # Actually, newModel is a LayerRepresentation object # Equivalents: torchModel = newModel.equivalent['torch'] kerasModel = newModel.equivalent['keras'] if not quiet: print('Automatically testing converted model reliability...\n') # Checking converted model reliability tested = False try: meanSquaredError = tests.comparison(model1=torchModel, model2=kerasModel, input_shape=input_shape, input_range=input_range, quiet=quiet) tested = True except tensorflow.errors.InvalidArgumentError: print("Warning: tests unavailable!") if tested and meanSquaredError > 0.0001: if ignore_tests: print("Warning: converted and original models aren't identical !\ (mean squared error: {})".format(meanSquaredError)) else: raise RuntimeWarning("Original and converted model do not match !\ \nOn random input data, outputs showed a mean squared error of {} (if should \ be below 1e-10)".format(meanSquaredError)) elif not quiet and tested: print('\n Original and converted models match !\nMean squared err\ or : {}'.format(meanSquaredError)) if save: if not quiet: print('Saving model...') defaultName = 'conversion_{}'.format(newModel.name) if filename is None: filename = defaultName # Formatting filename so that we don't overwrite any existing file file = utils.formatFilename(filename, directory) # Freezing Keras model (trainable = False everywhere) utils.freeze(kerasModel) # Save the entire model kerasModel.save(file + '.h5') if not quiet: print('Done !') return file + '.h5' if not quiet: print('Done !') return kerasModel def convert_and_save(model, input_shape, weights=True, quiet=True, ignore_tests=False, input_range=None, filename=None, directory=None): """ Conversion between PyTorch and Keras, and automatic save (Conversions from Keras to PyTorch aren't implemented) Arguments: -model: A Keras or PyTorch model or layer to convert -input_shape: Input shape (list, tuple or int), without batchsize. -weights (bool): Also convert weights. If set to false, only convert model architecture -quiet (bool): If a progress bar and some messages should appear -ignore_tests (bool): If tests should be ignored. If set to True, converted model will still be tested by security. If models are not identical, it will only print a warning. If set to False, and models are not identical, RuntimeWarning will be raised If weights is False, tests are automatically ignored -input_range: Optionnal. A list of 2 elements containing max and min values to give as input to the model when performing the tests. If None, models will be tested on samples from the "standard normal" distribution. -filename: Filename to give to model's hdf5 file. If filename is not None and save is not False, then save will automatically be set to True -directory: Where to save model's hdf5 file. If directory is not None and save is not False, then save will automatically be set to True Returns: Name of created hdf5 file """ return convert(model=model, input_shape=input_shape, weights=weights, quiet=quiet, ignore_tests=ignore_tests, input_range=input_range, save=True, filename=filename, directory=directory)
3.53125
4
examples/enable_notifications.py
kjwill/bleak
0
7875
# -*- coding: utf-8 -*- """ Notifications ------------- Example showing how to add notifications to a characteristic and handle the responses. Updated on 2019-07-03 by hbldh <<EMAIL>> """ import sys import logging import asyncio import platform from bleak import BleakClient from bleak import _logger as logger CHARACTERISTIC_UUID = "f000aa65-0451-4000-b000-000000000000" # <--- Change to the characteristic you want to enable notifications from. ADDRESS = ( "24:71:89:cc:09:05" # <--- Change to your device's address here if you are using Windows or Linux if platform.system() != "Darwin" else "B9EA5233-37EF-4DD6-87A8-2A875E821C46" # <--- Change to your device's address here if you are using macOS ) if len(sys.argv) == 3: ADDRESS = sys.argv[1] CHARACTERISTIC_UUID = sys.argv[2] def notification_handler(sender, data): """Simple notification handler which prints the data received.""" print("{0}: {1}".format(sender, data)) async def run(address, debug=False): if debug: import sys l = logging.getLogger("asyncio") l.setLevel(logging.DEBUG) h = logging.StreamHandler(sys.stdout) h.setLevel(logging.DEBUG) l.addHandler(h) logger.addHandler(h) async with BleakClient(address) as client: logger.info(f"Connected: {client.is_connected}") await client.start_notify(CHARACTERISTIC_UUID, notification_handler) await asyncio.sleep(5.0) await client.stop_notify(CHARACTERISTIC_UUID) if __name__ == "__main__": import os os.environ["PYTHONASYNCIODEBUG"] = str(1) loop = asyncio.get_event_loop() # loop.set_debug(True) loop.run_until_complete(run(ADDRESS, True))
2.90625
3
pyrules/storages/base.py
miraculixx/pyrules
17
7876
<reponame>miraculixx/pyrules<gh_stars>10-100 class BaseStorage(object): def get_rule(self, name): raise NotImplementedError() def get_ruleset(self, name): raise NotImplementedError()
1.8125
2
src/15 listener_and_backdoor/listener_2.py
raminjafary/ethical-hacking
0
7877
<filename>src/15 listener_and_backdoor/listener_2.py<gh_stars>0 #!/usr/bin/python import socket class Listener: def __init__(self,ip,port): listener = socket.socket(socket.AF_INET,socket.SOCK_STREAM) listener.setsockopt(socket.SOL_SOCKET,socket.SO_REUSEADDR,1) #options to reuse sockets #listener.bind(("localhost",1234)) listener.bind((ip,port)) listener.listen(0) print "[+] Waiting for Incoming Connection" #listen for connecion backlog is set to 0 don't need to wory about 0 self.connection,address = listener.accept() print "[+] Got a Connection from " + str(address) def execute_remotely(self,command): self.connection.send(command) return self.connection.recv(1024) def run(self): while True: command = raw_input(">> ") result = self.execute_remotely(command) print result my_listener = Listener("localhost",1234) my_listener.run()
2.953125
3
dialogflow/history2xls.py
ray-hrst/temi-tools
1
7878
<filename>dialogflow/history2xls.py #!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Convert Dialogflow history to spreadsheet User must manually copy the history from the browser and save this in a text file. This reads the textfile, parses the data, and saves it to a spreadsheet. Example training sample: USER サワディカ Nov 4, 11:19 PM AGENT No matched intent Nov 4, 11:19 PM more_vert """ import argparse import os from simple_report import SimpleReport # constants FIELDS = ["Date", "User", "Agent"] if __name__ == "__main__": # collect arguments PARSER = argparse.ArgumentParser( description=__doc__, formatter_class=argparse.RawDescriptionHelpFormatter ) PARSER.add_argument("filename", help="History text file") ARGS = PARSER.parse_args() # generate report filename, file_extension = os.path.splitext(ARGS.filename) REPORT = SimpleReport(filename, FIELDS) # step each line of history text file with open(ARGS.filename, 'r') as fp: num_lines = sum(1 for line in open(ARGS.filename)) rows = int(num_lines / 7) print("Reading {} lines of text.".format(num_lines)) print("Writing {} rows.".format(rows)) for row in range(1, rows): user_utterance = fp.readline().strip() # USER UTTERANCE date = fp.readline().strip() # DATE agent_intent = fp.readline().strip() # AGENT INTENT date = fp.readline().strip() # DATE _ = fp.readline().strip() # 'more_vert' utterance = user_utterance.split("USER", 1)[1] intent = agent_intent.split("AGENT", 1)[1] if not intent: intent = "Intent found" print("[{}] {} {} {}".format(row, date, utterance, intent)) # add row to report REPORT.add("Date", row, date, date) REPORT.add("User", row, utterance) REPORT.add("Agent", row, intent) REPORT.close()
3.515625
4
recognition/views.py
usathe71-u/Attendance-System-Face-Recognition
3
7879
from django.shortcuts import render,redirect from .forms import usernameForm,DateForm,UsernameAndDateForm, DateForm_2 from django.contrib import messages from django.contrib.auth.models import User import cv2 import dlib import imutils from imutils import face_utils from imutils.video import VideoStream from imutils.face_utils import rect_to_bb from imutils.face_utils import FaceAligner import time from attendance_system_facial_recognition.settings import BASE_DIR import os import face_recognition from face_recognition.face_recognition_cli import image_files_in_folder import pickle from sklearn.preprocessing import LabelEncoder from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC import numpy as np from django.contrib.auth.decorators import login_required import matplotlib as mpl import matplotlib.pyplot as plt from sklearn.manifold import TSNE import datetime from django_pandas.io import read_frame from users.models import Present, Time import seaborn as sns import pandas as pd from django.db.models import Count #import mpld3 import matplotlib.pyplot as plt from pandas.plotting import register_matplotlib_converters from matplotlib import rcParams import math mpl.use('Agg') #utility functions: def username_present(username): if User.objects.filter(username=username).exists(): return True return False def create_dataset(username): id = username if(os.path.exists('face_recognition_data/training_dataset/{}/'.format(id))==False): os.makedirs('face_recognition_data/training_dataset/{}/'.format(id)) directory='face_recognition_data/training_dataset/{}/'.format(id) # Detect face #Loading the HOG face detector and the shape predictpr for allignment print("[INFO] Loading the facial detector") detector = dlib.get_frontal_face_detector() predictor = dlib.shape_predictor('face_recognition_data/shape_predictor_68_face_landmarks.dat') #Add path to the shape predictor ######CHANGE TO RELATIVE PATH LATER fa = FaceAligner(predictor , desiredFaceWidth = 96) #capture images from the webcam and process and detect the face # Initialize the video stream print("[INFO] Initializing Video stream") vs = VideoStream(src=0).start() #time.sleep(2.0) ####CHECK###### # Our identifier # We will put the id here and we will store the id with a face, so that later we can identify whose face it is # Our dataset naming counter sampleNum = 0 # Capturing the faces one by one and detect the faces and showing it on the window while(True): # Capturing the image #vs.read each frame frame = vs.read() #Resize each image frame = imutils.resize(frame ,width = 800) #the returned img is a colored image but for the classifier to work we need a greyscale image #to convert gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) #To store the faces #This will detect all the images in the current frame, and it will return the coordinates of the faces #Takes in image and some other parameter for accurate result faces = detector(gray_frame,0) #In above 'faces' variable there can be multiple faces so we have to get each and every face and draw a rectangle around it. for face in faces: print("inside for loop") (x,y,w,h) = face_utils.rect_to_bb(face) face_aligned = fa.align(frame,gray_frame,face) # Whenever the program captures the face, we will write that is a folder # Before capturing the face, we need to tell the script whose face it is # For that we will need an identifier, here we call it id # So now we captured a face, we need to write it in a file sampleNum = sampleNum+1 # Saving the image dataset, but only the face part, cropping the rest if face is None: print("face is none") continue cv2.imwrite(directory+'/'+str(sampleNum)+'.jpg' , face_aligned) face_aligned = imutils.resize(face_aligned ,width = 400) #cv2.imshow("Image Captured",face_aligned) # @params the initial point of the rectangle will be x,y and # @params end point will be x+width and y+height # @params along with color of the rectangle # @params thickness of the rectangle cv2.rectangle(frame,(x,y),(x+w,y+h),(0,255,0),1) # Before continuing to the next loop, I want to give it a little pause # waitKey of 100 millisecond cv2.waitKey(50) #Showing the image in another window #Creates a window with window name "Face" and with the image img cv2.imshow("Add Images",frame) #Before closing it we need to give a wait command, otherwise the open cv wont work # @params with the millisecond of delay 1 cv2.waitKey(1) #To get out of the loop if(sampleNum>300): break #Stoping the videostream vs.stop() # destroying all the windows cv2.destroyAllWindows() def predict(face_aligned,svc,threshold=0.7): face_encodings=np.zeros((1,128)) try: x_face_locations=face_recognition.face_locations(face_aligned) faces_encodings=face_recognition.face_encodings(face_aligned,known_face_locations=x_face_locations) if(len(faces_encodings)==0): return ([-1],[0]) except: return ([-1],[0]) prob=svc.predict_proba(faces_encodings) result=np.where(prob[0]==np.amax(prob[0])) if(prob[0][result[0]]<=threshold): return ([-1],prob[0][result[0]]) return (result[0],prob[0][result[0]]) def vizualize_Data(embedded, targets,): X_embedded = TSNE(n_components=2).fit_transform(embedded) for i, t in enumerate(set(targets)): idx = targets == t plt.scatter(X_embedded[idx, 0], X_embedded[idx, 1], label=t) plt.legend(bbox_to_anchor=(1, 1)); rcParams.update({'figure.autolayout': True}) plt.tight_layout() plt.savefig('./recognition/static/recognition/img/training_visualisation.png') plt.close() def update_attendance_in_db_in(present): today=datetime.date.today() time=datetime.datetime.now() for person in present: user=User.objects.get(username=person) try: qs=Present.objects.get(user=user,date=today) except : qs= None if qs is None: if present[person]==True: a=Present(user=user,date=today,present=True) a.save() else: a=Present(user=user,date=today,present=False) a.save() else: if present[person]==True: qs.present=True qs.save(update_fields=['present']) if present[person]==True: a=Time(user=user,date=today,time=time, out=False) a.save() def update_attendance_in_db_out(present): today=datetime.date.today() time=datetime.datetime.now() for person in present: user=User.objects.get(username=person) if present[person]==True: a=Time(user=user,date=today,time=time, out=True) a.save() def check_validity_times(times_all): if(len(times_all)>0): sign=times_all.first().out else: sign=True times_in=times_all.filter(out=False) times_out=times_all.filter(out=True) if(len(times_in)!=len(times_out)): sign=True break_hourss=0 if(sign==True): check=False break_hourss=0 return (check,break_hourss) prev=True prev_time=times_all.first().time for obj in times_all: curr=obj.out if(curr==prev): check=False break_hourss=0 return (check,break_hourss) if(curr==False): curr_time=obj.time to=curr_time ti=prev_time break_time=((to-ti).total_seconds())/3600 break_hourss+=break_time else: prev_time=obj.time prev=curr return (True,break_hourss) def convert_hours_to_hours_mins(hours): h=int(hours) hours-=h m=hours*60 m=math.ceil(m) return str(str(h)+ " hrs " + str(m) + " mins") #used def hours_vs_date_given_employee(present_qs,time_qs,admin=True): register_matplotlib_converters() df_hours=[] df_break_hours=[] qs=present_qs for obj in qs: date=obj.date times_in=time_qs.filter(date=date).filter(out=False).order_by('time') times_out=time_qs.filter(date=date).filter(out=True).order_by('time') times_all=time_qs.filter(date=date).order_by('time') obj.time_in=None obj.time_out=None obj.hours=0 obj.break_hours=0 if (len(times_in)>0): obj.time_in=times_in.first().time if (len(times_out)>0): obj.time_out=times_out.last().time if(obj.time_in is not None and obj.time_out is not None): ti=obj.time_in to=obj.time_out hours=((to-ti).total_seconds())/3600 obj.hours=hours else: obj.hours=0 (check,break_hourss)= check_validity_times(times_all) if check: obj.break_hours=break_hourss else: obj.break_hours=0 df_hours.append(obj.hours) df_break_hours.append(obj.break_hours) obj.hours=convert_hours_to_hours_mins(obj.hours) obj.break_hours=convert_hours_to_hours_mins(obj.break_hours) df = read_frame(qs) df["hours"]=df_hours df["break_hours"]=df_break_hours print(df) sns.barplot(data=df,x='date',y='hours') plt.xticks(rotation='vertical') rcParams.update({'figure.autolayout': True}) plt.tight_layout() if(admin): plt.savefig('./recognition/static/recognition/img/attendance_graphs/hours_vs_date/1.png') plt.close() else: plt.savefig('./recognition/static/recognition/img/attendance_graphs/employee_login/1.png') plt.close() return qs #used def hours_vs_employee_given_date(present_qs,time_qs): register_matplotlib_converters() df_hours=[] df_break_hours=[] df_username=[] qs=present_qs for obj in qs: user=obj.user times_in=time_qs.filter(user=user).filter(out=False) times_out=time_qs.filter(user=user).filter(out=True) times_all=time_qs.filter(user=user) obj.time_in=None obj.time_out=None obj.hours=0 obj.hours=0 if (len(times_in)>0): obj.time_in=times_in.first().time if (len(times_out)>0): obj.time_out=times_out.last().time if(obj.time_in is not None and obj.time_out is not None): ti=obj.time_in to=obj.time_out hours=((to-ti).total_seconds())/3600 obj.hours=hours else: obj.hours=0 (check,break_hourss)= check_validity_times(times_all) if check: obj.break_hours=break_hourss else: obj.break_hours=0 df_hours.append(obj.hours) df_username.append(user.username) df_break_hours.append(obj.break_hours) obj.hours=convert_hours_to_hours_mins(obj.hours) obj.break_hours=convert_hours_to_hours_mins(obj.break_hours) df = read_frame(qs) df['hours']=df_hours df['username']=df_username df["break_hours"]=df_break_hours sns.barplot(data=df,x='username',y='hours') plt.xticks(rotation='vertical') rcParams.update({'figure.autolayout': True}) plt.tight_layout() plt.savefig('./recognition/static/recognition/img/attendance_graphs/hours_vs_employee/1.png') plt.close() return qs def total_number_employees(): qs=User.objects.all() return (len(qs) -1) # -1 to account for admin def employees_present_today(): today=datetime.date.today() qs=Present.objects.filter(date=today).filter(present=True) return len(qs) #used def this_week_emp_count_vs_date(): today=datetime.date.today() some_day_last_week=today-datetime.timedelta(days=7) monday_of_last_week=some_day_last_week- datetime.timedelta(days=(some_day_last_week.isocalendar()[2] - 1)) monday_of_this_week = monday_of_last_week + datetime.timedelta(days=7) qs=Present.objects.filter(date__gte=monday_of_this_week).filter(date__lte=today) str_dates=[] emp_count=[] str_dates_all=[] emp_cnt_all=[] cnt=0 for obj in qs: date=obj.date str_dates.append(str(date)) qs=Present.objects.filter(date=date).filter(present=True) emp_count.append(len(qs)) while(cnt<5): date=str(monday_of_this_week+datetime.timedelta(days=cnt)) cnt+=1 str_dates_all.append(date) if(str_dates.count(date))>0: idx=str_dates.index(date) emp_cnt_all.append(emp_count[idx]) else: emp_cnt_all.append(0) df=pd.DataFrame() df["date"]=str_dates_all df["Number of employees"]=emp_cnt_all sns.lineplot(data=df,x='date',y='Number of employees') plt.savefig('./recognition/static/recognition/img/attendance_graphs/this_week/1.png') plt.close() #used def last_week_emp_count_vs_date(): today=datetime.date.today() some_day_last_week=today-datetime.timedelta(days=7) monday_of_last_week=some_day_last_week- datetime.timedelta(days=(some_day_last_week.isocalendar()[2] - 1)) monday_of_this_week = monday_of_last_week + datetime.timedelta(days=7) qs=Present.objects.filter(date__gte=monday_of_last_week).filter(date__lt=monday_of_this_week) str_dates=[] emp_count=[] str_dates_all=[] emp_cnt_all=[] cnt=0 for obj in qs: date=obj.date str_dates.append(str(date)) qs=Present.objects.filter(date=date).filter(present=True) emp_count.append(len(qs)) while(cnt<5): date=str(monday_of_last_week+datetime.timedelta(days=cnt)) cnt+=1 str_dates_all.append(date) if(str_dates.count(date))>0: idx=str_dates.index(date) emp_cnt_all.append(emp_count[idx]) else: emp_cnt_all.append(0) df=pd.DataFrame() df["date"]=str_dates_all df["emp_count"]=emp_cnt_all sns.lineplot(data=df,x='date',y='emp_count') plt.savefig('./recognition/static/recognition/img/attendance_graphs/last_week/1.png') plt.close() # Create your views here. def home(request): return render(request, 'recognition/home.html') @login_required def dashboard(request): if(request.user.username=='admin'): print("admin") return render(request, 'recognition/admin_dashboard.html') else: print("not admin") return render(request,'recognition/employee_dashboard.html') @login_required def add_photos(request): if request.user.username!='admin': return redirect('not-authorised') if request.method=='POST': form=usernameForm(request.POST) data = request.POST.copy() username=data.get('username') if username_present(username): create_dataset(username) messages.success(request, f'Dataset Created') return redirect('add-photos') else: messages.warning(request, f'No such username found. Please register employee first.') return redirect('dashboard') else: form=usernameForm() return render(request,'recognition/add_photos.html', {'form' : form}) def mark_your_attendance(request): detector = dlib.get_frontal_face_detector() predictor = dlib.shape_predictor('face_recognition_data/shape_predictor_68_face_landmarks.dat') #Add path to the shape predictor ######CHANGE TO RELATIVE PATH LATER svc_save_path="face_recognition_data/svc.sav" with open(svc_save_path, 'rb') as f: svc = pickle.load(f) fa = FaceAligner(predictor , desiredFaceWidth = 96) encoder=LabelEncoder() encoder.classes_ = np.load('face_recognition_data/classes.npy') faces_encodings = np.zeros((1,128)) no_of_faces = len(svc.predict_proba(faces_encodings)[0]) count = dict() present = dict() log_time = dict() start = dict() for i in range(no_of_faces): count[encoder.inverse_transform([i])[0]] = 0 present[encoder.inverse_transform([i])[0]] = False vs = VideoStream(src=0).start() sampleNum = 0 while(True): frame = vs.read() frame = imutils.resize(frame ,width = 800) gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) faces = detector(gray_frame,0) for face in faces: print("INFO : inside for loop") (x,y,w,h) = face_utils.rect_to_bb(face) face_aligned = fa.align(frame,gray_frame,face) cv2.rectangle(frame,(x,y),(x+w,y+h),(0,255,0),1) (pred,prob)=predict(face_aligned,svc) if(pred!=[-1]): person_name=encoder.inverse_transform(np.ravel([pred]))[0] pred=person_name if count[pred] == 0: start[pred] = time.time() count[pred] = count.get(pred,0) + 1 if count[pred] == 4 and (time.time()-start[pred]) > 1.2: count[pred] = 0 else: #if count[pred] == 4 and (time.time()-start) <= 1.5: present[pred] = True log_time[pred] = datetime.datetime.now() count[pred] = count.get(pred,0) + 1 print(pred, present[pred], count[pred]) cv2.putText(frame, str(person_name)+ str(prob), (x+6,y+h-6), cv2.FONT_HERSHEY_SIMPLEX,0.5,(0,255,0),1) else: person_name="unknown" cv2.putText(frame, str(person_name), (x+6,y+h-6), cv2.FONT_HERSHEY_SIMPLEX,0.5,(0,255,0),1) #cv2.putText() # Before continuing to the next loop, I want to give it a little pause # waitKey of 100 millisecond #cv2.waitKey(50) #Showing the image in another window #Creates a window with window name "Face" and with the image img cv2.imshow("Mark Attendance - In - Press q to exit",frame) #Before closing it we need to give a wait command, otherwise the open cv wont work # @params with the millisecond of delay 1 #cv2.waitKey(1) #To get out of the loop key=cv2.waitKey(50) & 0xFF if(key==ord("q")): break #Stoping the videostream vs.stop() # destroying all the windows cv2.destroyAllWindows() update_attendance_in_db_in(present) return redirect('home') def mark_your_attendance_out(request): detector = dlib.get_frontal_face_detector() predictor = dlib.shape_predictor('face_recognition_data/shape_predictor_68_face_landmarks.dat') #Add path to the shape predictor ######CHANGE TO RELATIVE PATH LATER svc_save_path="face_recognition_data/svc.sav" with open(svc_save_path, 'rb') as f: svc = pickle.load(f) fa = FaceAligner(predictor , desiredFaceWidth = 96) encoder=LabelEncoder() encoder.classes_ = np.load('face_recognition_data/classes.npy') faces_encodings = np.zeros((1,128)) no_of_faces = len(svc.predict_proba(faces_encodings)[0]) count = dict() present = dict() log_time = dict() start = dict() for i in range(no_of_faces): count[encoder.inverse_transform([i])[0]] = 0 present[encoder.inverse_transform([i])[0]] = False vs = VideoStream(src=0).start() sampleNum = 0 while(True): frame = vs.read() frame = imutils.resize(frame ,width = 800) gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) faces = detector(gray_frame,0) for face in faces: print("INFO : inside for loop") (x,y,w,h) = face_utils.rect_to_bb(face) face_aligned = fa.align(frame,gray_frame,face) cv2.rectangle(frame,(x,y),(x+w,y+h),(0,255,0),1) (pred,prob)=predict(face_aligned,svc) if(pred!=[-1]): person_name=encoder.inverse_transform(np.ravel([pred]))[0] pred=person_name if count[pred] == 0: start[pred] = time.time() count[pred] = count.get(pred,0) + 1 if count[pred] == 4 and (time.time()-start[pred]) > 1.5: count[pred] = 0 else: #if count[pred] == 4 and (time.time()-start) <= 1.5: present[pred] = True log_time[pred] = datetime.datetime.now() count[pred] = count.get(pred,0) + 1 print(pred, present[pred], count[pred]) cv2.putText(frame, str(person_name)+ str(prob), (x+6,y+h-6), cv2.FONT_HERSHEY_SIMPLEX,0.5,(0,255,0),1) else: person_name="unknown" cv2.putText(frame, str(person_name), (x+6,y+h-6), cv2.FONT_HERSHEY_SIMPLEX,0.5,(0,255,0),1) #cv2.putText() # Before continuing to the next loop, I want to give it a little pause # waitKey of 100 millisecond #cv2.waitKey(50) #Showing the image in another window #Creates a window with window name "Face" and with the image img cv2.imshow("Mark Attendance- Out - Press q to exit",frame) #Before closing it we need to give a wait command, otherwise the open cv wont work # @params with the millisecond of delay 1 #cv2.waitKey(1) #To get out of the loop key=cv2.waitKey(50) & 0xFF if(key==ord("q")): break #Stoping the videostream vs.stop() # destroying all the windows cv2.destroyAllWindows() update_attendance_in_db_out(present) return redirect('home') @login_required def train(request): if request.user.username!='admin': return redirect('not-authorised') training_dir='face_recognition_data/training_dataset' count=0 for person_name in os.listdir(training_dir): curr_directory=os.path.join(training_dir,person_name) if not os.path.isdir(curr_directory): continue for imagefile in image_files_in_folder(curr_directory): count+=1 X=[] y=[] i=0 for person_name in os.listdir(training_dir): print(str(person_name)) curr_directory=os.path.join(training_dir,person_name) if not os.path.isdir(curr_directory): continue for imagefile in image_files_in_folder(curr_directory): print(str(imagefile)) image=cv2.imread(imagefile) try: X.append((face_recognition.face_encodings(image)[0]).tolist()) y.append(person_name) i+=1 except: print("removed") os.remove(imagefile) targets=np.array(y) encoder = LabelEncoder() encoder.fit(y) y=encoder.transform(y) X1=np.array(X) print("shape: "+ str(X1.shape)) np.save('face_recognition_data/classes.npy', encoder.classes_) svc = SVC(kernel='linear',probability=True) svc.fit(X1,y) svc_save_path="face_recognition_data/svc.sav" with open(svc_save_path, 'wb') as f: pickle.dump(svc,f) vizualize_Data(X1,targets) messages.success(request, f'Training Complete.') return render(request,"recognition/train.html") @login_required def not_authorised(request): return render(request,'recognition/not_authorised.html') @login_required def view_attendance_home(request): total_num_of_emp=total_number_employees() emp_present_today=employees_present_today() this_week_emp_count_vs_date() last_week_emp_count_vs_date() return render(request,"recognition/view_attendance_home.html", {'total_num_of_emp' : total_num_of_emp, 'emp_present_today': emp_present_today}) @login_required def view_attendance_date(request): if request.user.username!='admin': return redirect('not-authorised') qs=None time_qs=None present_qs=None if request.method=='POST': form=DateForm(request.POST) if form.is_valid(): date=form.cleaned_data.get('date') print("date:"+ str(date)) time_qs=Time.objects.filter(date=date) present_qs=Present.objects.filter(date=date) if(len(time_qs)>0 or len(present_qs)>0): qs=hours_vs_employee_given_date(present_qs,time_qs) return render(request,'recognition/view_attendance_date.html', {'form' : form,'qs' : qs }) else: messages.warning(request, f'No records for selected date.') return redirect('view-attendance-date') else: form=DateForm() return render(request,'recognition/view_attendance_date.html', {'form' : form, 'qs' : qs}) @login_required def view_attendance_employee(request): if request.user.username!='admin': return redirect('not-authorised') time_qs=None present_qs=None qs=None if request.method=='POST': form=UsernameAndDateForm(request.POST) if form.is_valid(): username=form.cleaned_data.get('username') if username_present(username): u=User.objects.get(username=username) time_qs=Time.objects.filter(user=u) present_qs=Present.objects.filter(user=u) date_from=form.cleaned_data.get('date_from') date_to=form.cleaned_data.get('date_to') if date_to < date_from: messages.warning(request, f'Invalid date selection.') return redirect('view-attendance-employee') else: time_qs=time_qs.filter(date__gte=date_from).filter(date__lte=date_to).order_by('-date') present_qs=present_qs.filter(date__gte=date_from).filter(date__lte=date_to).order_by('-date') if (len(time_qs)>0 or len(present_qs)>0): qs=hours_vs_date_given_employee(present_qs,time_qs,admin=True) return render(request,'recognition/view_attendance_employee.html', {'form' : form, 'qs' :qs}) else: #print("inside qs is None") messages.warning(request, f'No records for selected duration.') return redirect('view-attendance-employee') else: print("invalid username") messages.warning(request, f'No such username found.') return redirect('view-attendance-employee') else: form=UsernameAndDateForm() return render(request,'recognition/view_attendance_employee.html', {'form' : form, 'qs' :qs}) @login_required def view_my_attendance_employee_login(request): if request.user.username=='admin': return redirect('not-authorised') qs=None time_qs=None present_qs=None if request.method=='POST': form=DateForm_2(request.POST) if form.is_valid(): u=request.user time_qs=Time.objects.filter(user=u) present_qs=Present.objects.filter(user=u) date_from=form.cleaned_data.get('date_from') date_to=form.cleaned_data.get('date_to') if date_to < date_from: messages.warning(request, f'Invalid date selection.') return redirect('view-my-attendance-employee-login') else: time_qs=time_qs.filter(date__gte=date_from).filter(date__lte=date_to).order_by('-date') present_qs=present_qs.filter(date__gte=date_from).filter(date__lte=date_to).order_by('-date') if (len(time_qs)>0 or len(present_qs)>0): qs=hours_vs_date_given_employee(present_qs,time_qs,admin=False) return render(request,'recognition/view_my_attendance_employee_login.html', {'form' : form, 'qs' :qs}) else: messages.warning(request, f'No records for selected duration.') return redirect('view-my-attendance-employee-login') else: form=DateForm_2() return render(request,'recognition/view_my_attendance_employee_login.html', {'form' : form, 'qs' :qs})
2.171875
2
2018/05.py
GillesArcas/Advent_of_Code
0
7880
import re import string DATA = '05.txt' def react(polymer): pairs = '|'.join([a + b + '|' + b + a for a, b in zip(string.ascii_lowercase, string.ascii_uppercase)]) length = len(polymer) while 1: polymer = re.sub(pairs, '', polymer) if len(polymer) == length: return(length) else: length = len(polymer) def code1(): with open(DATA) as f: polymer = f.readline().strip() print('1>', react(polymer)) def code2(): with open(DATA) as f: polymer = f.readline().strip() minlength = len(polymer) for c in string.ascii_lowercase: polymer2 = re.sub(c, '', polymer, flags=re.I) length = react(polymer2) if length < minlength: minlength = length print('2>', minlength) code1() code2()
3.265625
3
lib/fbuild/builders/__init__.py
felix-lang/fbuild
40
7881
<reponame>felix-lang/fbuild import abc import contextlib import os import sys from functools import partial from itertools import chain import fbuild import fbuild.db import fbuild.path import fbuild.temp from . import platform # ------------------------------------------------------------------------------ class MissingProgram(fbuild.ConfigFailed): def __init__(self, programs=None): self.programs = programs def __str__(self): if self.programs is None: return 'cannot find program' else: return 'cannot find any of the programs %s' % \ ' '.join(repr(str(p)) for p in self.programs) # ------------------------------------------------------------------------------ @fbuild.db.caches def find_program(ctx, names, paths=None, *, quieter=0): """L{find_program} is a test that searches the paths for one of the programs in I{name}. If one is found, it is returned. If not, the next name in the list is searched for.""" if paths is None: paths = os.environ['PATH'].split(os.pathsep) # If we're running on windows, we need to append '.exe' to the filenames # that we're searching for. if sys.platform == 'win32': new_names = [] for name in names: if \ not name.endswith('.exe') or \ not name.endswith('.cmd') or \ not name.endswith('.bat'): new_names.append(name + '.exe') new_names.append(name + '.cmd') new_names.append(name + '.bat') new_names.append(name) names = new_names for name in names: filename = fbuild.path.Path(name) ctx.logger.check('looking for ' + filename.name, verbose=quieter) if filename.exists() and filename.isfile(): ctx.logger.passed('ok %s' % filename, verbose=quieter) return fbuild.path.Path(name) else: for path in paths: filename = fbuild.path.Path(path, name) if filename.exists() and filename.isfile(): ctx.logger.passed('ok %s' % filename, verbose=quieter) return fbuild.path.Path(filename) ctx.logger.failed(verbose=quieter) raise MissingProgram(names) # ------------------------------------------------------------------------------ def check_version(ctx, builder, version_function, *, requires_version=None, requires_at_least_version=None, requires_at_most_version=None): """Helper function to simplify checking the version of a builder.""" if any(v is not None for v in ( requires_version, requires_at_least_version, requires_at_most_version)): ctx.logger.check('checking %s version' % builder) version_str = version_function() # Convert the version into a tuple version = [] for i in version_str.split('.'): try: version.append(int(i)) except ValueError: # The subversion isn't a number, so just convert it to a # string. version.append(i) version = tuple(version) if requires_version is not None and requires_version != version: msg = 'version %s required; found %s' % ( '.'.join(str(i) for i in requires_version), version_str) ctx.logger.failed(msg) raise fbuild.ConfigFailed(msg) if requires_at_least_version is not None and \ requires_at_least_version > version: msg = 'at least version %s required; found %s' % ( '.'.join(str(i) for i in requires_at_least_version), version_str) ctx.logger.failed(msg) raise fbuild.ConfigFailed(msg) if requires_at_most_version is not None and \ requires_at_most_version < version: msg = 'at most version %s required; found %s' % ( '.'.join(str(i) for i in requires_at_most_version), version_str) ctx.logger.failed(msg) raise fbuild.ConfigFailed(msg) ctx.logger.passed(version_str) # ------------------------------------------------------------------------------ class AbstractCompiler(fbuild.db.PersistentObject): def __init__(self, *args, src_suffix, **kwargs): super().__init__(*args, **kwargs) self.src_suffix = src_suffix @fbuild.db.cachemethod def compile(self, src:fbuild.db.SRC, *args, **kwargs) -> fbuild.db.DST: return self.uncached_compile(src, *args, **kwargs) @abc.abstractmethod def uncached_compile(self, src, *args, **kwargs): pass @fbuild.db.cachemethod @platform.auto_platform_options() def build_objects(self, srcs:fbuild.db.SRCS, *args, **kwargs) -> \ fbuild.db.DSTS: """Compile all of the passed in L{srcs} in parallel.""" # When a object has extra external dependencies, such as .c files # depending on .h changes, depending on library changes, we need to add # the dependencies in build_objects. Unfortunately, the db doesn't # know about these new files and so it can't tell when a function # really needs to be rerun. So, we'll just not cache this function. # We need to add extra dependencies to our call. objs = [] src_deps = [] dst_deps = [] for o, s, d in self.ctx.scheduler.map( partial(self.compile.call, *args, **kwargs), srcs): objs.append(o) src_deps.extend(s) dst_deps.extend(d) self.ctx.db.add_external_dependencies_to_call( srcs=src_deps, dsts=dst_deps) return objs # -------------------------------------------------------------------------- def tempfile(self, code): return fbuild.temp.tempfile(code, self.src_suffix) @contextlib.contextmanager def tempfile_compile(self, code='', *, quieter=1, **kwargs): with self.tempfile(code) as src: yield self.uncached_compile(src, quieter=quieter, **kwargs) @platform.auto_platform_options() def try_compile(self, *args, **kwargs): try: with self.tempfile_compile(*args, **kwargs): return True except fbuild.ExecutionError: return False @platform.auto_platform_options() def check_compile(self, code, msg, *args, **kwargs): self.ctx.logger.check(msg) if self.try_compile(code, *args, **kwargs): self.ctx.logger.passed() return True else: self.ctx.logger.failed() return False # ------------------------------------------------------------------------------ class AbstractLibLinker(AbstractCompiler): @fbuild.db.cachemethod @platform.auto_platform_options() def link_lib(self, dst, srcs:fbuild.db.SRCS, *args, libs:fbuild.db.SRCS=(), **kwargs) -> fbuild.db.DST: """Link compiled files into a library and caches the results.""" return self.uncached_link_lib(dst, srcs, *args, libs=libs, **kwargs) @abc.abstractmethod def uncached_link_lib(self, *args, **kwargs): pass @platform.auto_platform_options() def build_lib(self, dst, srcs, *, objs=(), libs=(), ckwargs={}, lkwargs={}): """Compile all of the passed in L{srcs} in parallel, then link them into a library.""" objs = tuple(chain(objs, self.build_objects(srcs, **ckwargs))) return self.link_lib(dst, objs, libs=libs, **lkwargs) # -------------------------------------------------------------------------- @contextlib.contextmanager @platform.auto_platform_options() def tempfile_link_lib(self, code='', *, quieter=1, ckwargs={}, **kwargs): with self.tempfile(code) as src: dst = src.parent / 'temp' obj = self.uncached_compile(src, quieter=quieter, **ckwargs) yield self.uncached_link_lib(dst, [obj], quieter=quieter, **kwargs) def try_link_lib(self, *args, **kwargs): try: with self.tempfile_link_lib(*args, **kwargs): return True except fbuild.ExecutionError: return False def check_link_lib(self, code, msg, *args, **kwargs): self.ctx.logger.check(msg) if self.try_link_lib(code, *args, **kwargs): self.ctx.logger.passed() return True else: self.ctx.logger.failed() return False # ------------------------------------------------------------------------------ class AbstractRunner(fbuild.db.PersistentObject): @abc.abstractmethod def tempfile_run(self, *args, **kwargs): pass def try_run(self, code='', quieter=1, **kwargs): try: self.tempfile_run(code, quieter=quieter, **kwargs) except fbuild.ExecutionError: return False else: return True def check_run(self, code, msg, *args, **kwargs): self.ctx.logger.check(msg) if self.try_run(code, *args, **kwargs): self.ctx.logger.passed() return True else: self.ctx.logger.failed() return False # ------------------------------------------------------------------------------ class AbstractExeLinker(AbstractCompiler, AbstractRunner): @fbuild.db.cachemethod @platform.auto_platform_options() def link_exe(self, dst, srcs:fbuild.db.SRCS, *args, libs:fbuild.db.SRCS=(), **kwargs) -> fbuild.db.DST: """Link compiled files into an executable.""" return self.uncached_link_exe(dst, srcs, *args, libs=libs, **kwargs) @abc.abstractmethod def uncached_link_exe(self, *args, **kwargs): pass @platform.auto_platform_options() def build_exe(self, dst, srcs, *, objs=(), libs=(), ckwargs={}, lkwargs={}): """Compile all of the passed in L{srcs} in parallel, then link them into an executable.""" objs = tuple(chain(objs, self.build_objects(srcs, **ckwargs))) return self.link_exe(dst, objs, libs=libs, **lkwargs) # -------------------------------------------------------------------------- @contextlib.contextmanager @platform.auto_platform_options() def tempfile_link_exe(self, code='', *, quieter=1, ckwargs={}, **kwargs): with self.tempfile(code) as src: dst = src.parent / 'temp' obj = self.uncached_compile(src, quieter=quieter, **ckwargs) yield self.uncached_link_exe(dst, [obj], quieter=quieter, **kwargs) @platform.auto_platform_options() def try_link_exe(self, *args, **kwargs): try: with self.tempfile_link_exe(*args, **kwargs): return True except fbuild.ExecutionError: return False @platform.auto_platform_options() def check_link_exe(self, code, msg, *args, **kwargs): self.ctx.logger.check(msg) if self.try_link_exe(code, *args, **kwargs): self.ctx.logger.passed() return True else: self.ctx.logger.failed() return False @platform.auto_platform_options() def tempfile_run(self, *args, quieter=1, ckwargs={}, lkwargs={}, **kwargs): with self.tempfile_link_exe(*args, quieter=quieter, ckwargs=ckwargs, **lkwargs) as exe: return self.ctx.execute([exe], quieter=quieter, cwd=exe.parent, **kwargs) # ------------------------------------------------------------------------------ class AbstractCompilerBuilder(AbstractLibLinker, AbstractExeLinker): pass
2.46875
2
WebServer.py
i3uex/CompareML
0
7882
import json import cherrypy import engine class WebServer(object): @cherrypy.expose def index(self): return open('public/index.html', encoding='utf-8') @cherrypy.expose class GetOptionsService(object): @cherrypy.tools.accept(media='text/plain') def GET(self): return json.dumps({ 'providers': engine.get_providers(), 'algorithms': engine.get_algorithms(), 'default_datasets': engine.get_all_default_datasets() }) @cherrypy.expose class SetOptionsService(object): @cherrypy.tools.accept(media='text/plain') def POST(self, options): """ Use the options selected by the user to execute all algorithms :param options: { is_default_dataset: bool, dataset: str, providers: [] algorithms: [] target: str } if is_default_dataset is true, dataset will contain the name of the default_dataset""" options_dic = json.loads(options) try: result = engine.execute(options_dic['is_default_dataset'], options_dic['dataset'], options_dic['providers'], options_dic['algorithms'], options_dic['target']) except Exception as exception: message = f"{str(exception)}" raise cherrypy.HTTPError(500, message=message) return result @cherrypy.expose @cherrypy.tools.json_out() class GetDefaultDatasetHeadersService(object): @cherrypy.tools.accept(media='text/plain') def GET(self, default_dataset_name): return {'headers': engine.get_default_dataset_headers(default_dataset_name)}
2.609375
3
tuprolog/solve/exception/error/existence/__init__.py
DavideEva/2ppy
1
7883
from typing import Union from tuprolog import logger # noinspection PyUnresolvedReferences import jpype.imports # noinspection PyUnresolvedReferences import it.unibo.tuprolog.solve.exception.error as errors from tuprolog.core import Term, Atom from tuprolog.solve import ExecutionContext, Signature ExistenceError = errors.ExistenceError ObjectType = ExistenceError.ObjectType OBJECT_PROCEDURE = ObjectType.PROCEDURE OBJECT_SOURCE_SINK = ObjectType.SOURCE_SINK OBJECT_RESOURCE = ObjectType.RESOURCE OBJECT_STREAM = ObjectType.STREAM OBJECT_OOP_ALIAS = ObjectType.OOP_ALIAS OBJECT_OOP_METHOD = ObjectType.OOP_METHOD OBJECT_OOP_CONSTRUCTOR = ObjectType.OOP_CONSTRUCTOR OBJECT_OOP_PROPERTY = ObjectType.OOP_PROPERTY def existence_error( context: ExecutionContext, type: ObjectType, culprit: Term, message: str ) -> ExistenceError: return ExistenceError.of(context, type, culprit, message) def existence_error_for_source_sink( context: ExecutionContext, alias: Union[Atom, str] ) -> ExistenceError: return ExistenceError.forSourceSink(context, alias) def existence_error_for_procedure( context: ExecutionContext, procedure: Signature ) -> ExistenceError: return ExistenceError.forProcedure(context, procedure) def existence_error_for_stream( context: ExecutionContext, stream: Term ) -> ExistenceError: return ExistenceError.forStream(context, stream) def existence_error_for_resource( context: ExecutionContext, name: str ) -> ExistenceError: return ExistenceError.forResource(context, name) def object_type(name: Union[str, Term]) -> ObjectType: if isinstance(name, str): return ObjectType.of(name) else: return ObjectType.fromTerm(name) logger.debug("Loaded JVM classes from it.unibo.tuprolog.solve.exception.error.ExistenceError.*")
2.046875
2
cptk/core/fetcher.py
RealA10N/cptk
5
7884
<filename>cptk/core/fetcher.py from __future__ import annotations from typing import TYPE_CHECKING import pkg_resources from bs4 import BeautifulSoup from requests import session from cptk.scrape import PageInfo from cptk.scrape import Website from cptk.utils import cptkException if TYPE_CHECKING: from cptk.scrape import Problem class InvalidClone(cptkException): """ Raised when the clone command is called with a 'PageInfo' instance that doesn't describe anything that can be cloned. """ def __init__(self, info: PageInfo) -> None: self.info = info super().__init__(f"We don't know how to handle data from {info.url!r}") class UnknownWebsite(cptkException): """ Raised when trying to fetch information from a website that is not registed and can't be handled by cptk. """ def __init__(self, domain: str) -> None: self.domain = domain super().__init__(f"We don't know how to handle data from {domain!r}") class Fetcher: def __init__(self) -> None: self.session = session() self._load_websites() def _load_websites(self) -> list[type[Website]]: self._websites = [ point.load()() for point in pkg_resources.iter_entry_points('cptk_sites') ] self._domain_to_website = dict() for website in self._websites: domain = website.domain if isinstance(domain, str): self._domain_to_website[domain] = website else: for cur in domain: self._domain_to_website[cur] = website def page_to_problem(self, info: PageInfo) -> Problem: """ Recives an arbitrary page info instance and tries to match it with a Website class that knows how to handle this specific website. If cptk doesn't find a way to parse the given webpage, it raises the 'InvalidClone' exception. """ for website in self._websites: if website.is_problem(info): return website.to_problem(info) raise InvalidClone(info) def to_page(self, url: str) -> PageInfo: """ Makes an get http/s request to the given URL and returns the result as a PageInfo instance. """ if not url.startswith('http'): url = f'http://{url}' res = self.session.get(url) data = BeautifulSoup(res.content, 'lxml') return PageInfo(url, data)
2.75
3
machine_learning/deep_reinforcement_learning_grasping/drlgrasp/drlgrasp/pybullet_envs/kuka_reach_with_visual.py
Hinson-A/guyueclass
227
7885
import pybullet as p import pybullet_data import gym from gym import spaces from gym.utils import seeding import numpy as np from math import sqrt import random import time import math import cv2 import torch import os def random_crop(imgs, out): """ args: imgs: shape (B,C,H,W) out: output size (e.g. 84) """ n, c, h, w = imgs.shape crop_max = h - out + 1 w1 = np.random.randint(0, crop_max, n) h1 = np.random.randint(0, crop_max, n) cropped = np.empty((n, c, out, out), dtype=imgs.dtype) for i, (img, w11, h11) in enumerate(zip(imgs, w1, h1)): cropped[i] = img[:, h11:h11 + out, w11:w11 + out] return cropped class KukaReachVisualEnv(gym.Env): metadata = { 'render.modes': ['human', 'rgb_array'], 'video.frames_per_second': 50 } kMaxEpisodeSteps = 700 kImageSize = {'width': 96, 'height': 96} kFinalImageSize = {'width': 84, 'height': 84} def __init__(self, is_render=False, is_good_view=False): self.is_render = is_render self.is_good_view = is_good_view if self.is_render: p.connect(p.GUI) else: p.connect(p.DIRECT) self.x_low_obs = 0.2 self.x_high_obs = 0.7 self.y_low_obs = -0.3 self.y_high_obs = 0.3 self.z_low_obs = 0 self.z_high_obs = 0.55 self.x_low_action = -0.4 self.x_high_action = 0.4 self.y_low_action = -0.4 self.y_high_action = 0.4 self.z_low_action = -0.6 self.z_high_action = 0.3 self.step_counter = 0 self.urdf_root_path = pybullet_data.getDataPath() # lower limits for null space self.lower_limits = [-.967, -2, -2.96, 0.19, -2.96, -2.09, -3.05] # upper limits for null space self.upper_limits = [.967, 2, 2.96, 2.29, 2.96, 2.09, 3.05] # joint ranges for null space self.joint_ranges = [5.8, 4, 5.8, 4, 5.8, 4, 6] # restposes for null space self.rest_poses = [0, 0, 0, 0.5 * math.pi, 0, -math.pi * 0.5 * 0.66, 0] # joint damping coefficents self.joint_damping = [ 0.00001, 0.00001, 0.00001, 0.00001, 0.00001, 0.00001, 0.00001 ] self.init_joint_positions = [ 0.006418, 0.413184, -0.011401, -1.589317, 0.005379, 1.137684, -0.006539 ] self.orientation = p.getQuaternionFromEuler( [0., -math.pi, math.pi / 2.]) self.camera_parameters = { 'width': 960., 'height': 720, 'fov': 60, 'near': 0.1, 'far': 100., 'eye_position': [0.59, 0, 0.8], 'target_position': [0.55, 0, 0.05], 'camera_up_vector': [1, 0, 0], # I really do not know the parameter's effect. 'light_direction': [ 0.5, 0, 1 ], # the direction is from the light source position to the origin of the world frame. } self.view_matrix = p.computeViewMatrixFromYawPitchRoll( cameraTargetPosition=[0.55, 0, 0.05], distance=.7, yaw=90, pitch=-70, roll=0, upAxisIndex=2) self.projection_matrix = p.computeProjectionMatrixFOV( fov=self.camera_parameters['fov'], aspect=self.camera_parameters['width'] / self.camera_parameters['height'], nearVal=self.camera_parameters['near'], farVal=self.camera_parameters['far']) p.configureDebugVisualizer(lightPosition=[5, 0, 5]) p.resetDebugVisualizerCamera(cameraDistance=1.5, cameraYaw=0, cameraPitch=-40, cameraTargetPosition=[0.55, -0.35, 0.2]) self.action_space = spaces.Box(low=np.array( [self.x_low_action, self.y_low_action, self.z_low_action]), high=np.array([ self.x_high_action, self.y_high_action, self.z_high_action ]), dtype=np.float32) self.observation_space = spaces.Box(low=0, high=1, shape=(1, self.kFinalImageSize['width'], self.kFinalImageSize['height'])) self.seed() self.reset() def seed(self, seed=None): self.np_random, seed = seeding.np_random(seed) return [seed] def reset(self): self.step_counter = 0 p.resetSimulation() # p.configureDebugVisualizer(p.COV_ENABLE_RENDERING, 0) self.terminated = False p.setGravity(0, 0, -10) # 这些是周围那些白线,用来观察是否超过了obs的边界 p.addUserDebugLine( lineFromXYZ=[self.x_low_obs, self.y_low_obs, 0], lineToXYZ=[self.x_low_obs, self.y_low_obs, self.z_high_obs]) p.addUserDebugLine( lineFromXYZ=[self.x_low_obs, self.y_high_obs, 0], lineToXYZ=[self.x_low_obs, self.y_high_obs, self.z_high_obs]) p.addUserDebugLine( lineFromXYZ=[self.x_high_obs, self.y_low_obs, 0], lineToXYZ=[self.x_high_obs, self.y_low_obs, self.z_high_obs]) p.addUserDebugLine( lineFromXYZ=[self.x_high_obs, self.y_high_obs, 0], lineToXYZ=[self.x_high_obs, self.y_high_obs, self.z_high_obs]) p.addUserDebugLine( lineFromXYZ=[self.x_low_obs, self.y_low_obs, self.z_high_obs], lineToXYZ=[self.x_high_obs, self.y_low_obs, self.z_high_obs]) p.addUserDebugLine( lineFromXYZ=[self.x_low_obs, self.y_high_obs, self.z_high_obs], lineToXYZ=[self.x_high_obs, self.y_high_obs, self.z_high_obs]) p.addUserDebugLine( lineFromXYZ=[self.x_low_obs, self.y_low_obs, self.z_high_obs], lineToXYZ=[self.x_low_obs, self.y_high_obs, self.z_high_obs]) p.addUserDebugLine( lineFromXYZ=[self.x_high_obs, self.y_low_obs, self.z_high_obs], lineToXYZ=[self.x_high_obs, self.y_high_obs, self.z_high_obs]) p.loadURDF(os.path.join(self.urdf_root_path, "plane.urdf"), basePosition=[0, 0, -0.65]) self.kuka_id = p.loadURDF(os.path.join(self.urdf_root_path, "kuka_iiwa/model.urdf"), useFixedBase=True) table_uid = p.loadURDF(os.path.join(self.urdf_root_path, "table/table.urdf"), basePosition=[0.5, 0, -0.65]) p.changeVisualShape(table_uid, -1, rgbaColor=[1, 1, 1, 1]) self.object_id = p.loadURDF(os.path.join(self.urdf_root_path, "random_urdfs/000/000.urdf"), basePosition=[ random.uniform(self.x_low_obs, self.x_high_obs), random.uniform(self.y_low_obs, self.y_high_obs), 0.01 ]) self.num_joints = p.getNumJoints(self.kuka_id) for i in range(self.num_joints): p.resetJointState( bodyUniqueId=self.kuka_id, jointIndex=i, targetValue=self.init_joint_positions[i], ) self.robot_pos_obs = p.getLinkState(self.kuka_id, self.num_joints - 1)[4] p.stepSimulation() (_, _, px, _, _) = p.getCameraImage(width=960, height=960, viewMatrix=self.view_matrix, projectionMatrix=self.projection_matrix, renderer=p.ER_BULLET_HARDWARE_OPENGL) self.images = px p.enableJointForceTorqueSensor(bodyUniqueId=self.kuka_id, jointIndex=self.num_joints - 1, enableSensor=True) self.object_pos = p.getBasePositionAndOrientation(self.object_id)[0] self.images = self.images[:, :, : 3] # the 4th channel is alpha channel, we do not need it. return self._process_image(self.images) def _process_image(self, image): """Convert the RGB pic to gray pic and add a channel 1 Args: image ([type]): [description] """ if image is not None: image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) image = cv2.resize(image, (self.kImageSize['width'], self.kImageSize['height']))[None, :, :] / 255. return image else: return np.zeros((1, self.kImageSize['width'], self.kImageSize['height'])) def step(self, action): dv = 0.005 dx = action[0] * dv dy = action[1] * dv dz = action[2] * dv self.current_pos = p.getLinkState(self.kuka_id, self.num_joints - 1)[4] self.new_robot_pos = [ self.current_pos[0] + dx, self.current_pos[1] + dy, self.current_pos[2] + dz ] self.robot_joint_positions = p.calculateInverseKinematics( bodyUniqueId=self.kuka_id, endEffectorLinkIndex=self.num_joints - 1, targetPosition=[ self.new_robot_pos[0], self.new_robot_pos[1], self.new_robot_pos[2] ], targetOrientation=self.orientation, jointDamping=self.joint_damping, ) for i in range(self.num_joints): p.resetJointState( bodyUniqueId=self.kuka_id, jointIndex=i, targetValue=self.robot_joint_positions[i], ) p.stepSimulation() # 在代码开始部分,如果定义了is_good_view,那么机械臂的动作会变慢,方便观察 if self.is_good_view: time.sleep(0.05) self.step_counter += 1 return self._reward() def _reward(self): # 一定注意是取第4个值,请参考pybullet手册的这个函数返回值的说明 self.robot_state = p.getLinkState(self.kuka_id, self.num_joints - 1)[4] self.object_state = np.array( p.getBasePositionAndOrientation(self.object_id)[0]).astype( np.float32) square_dx = (self.robot_state[0] - self.object_state[0]) ** 2 square_dy = (self.robot_state[1] - self.object_state[1]) ** 2 square_dz = (self.robot_state[2] - self.object_state[2]) ** 2 # 用机械臂末端和物体的距离作为奖励函数的依据 self.distance = sqrt(square_dx + square_dy + square_dz) # print(self.distance) x = self.robot_state[0] y = self.robot_state[1] z = self.robot_state[2] # 如果机械比末端超过了obs的空间,也视为done,而且会给予一定的惩罚 terminated = bool(x < self.x_low_obs or x > self.x_high_obs or y < self.y_low_obs or y > self.y_high_obs or z < self.z_low_obs or z > self.z_high_obs) if terminated: reward = -0.1 self.terminated = True # 如果机械臂一直无所事事,在最大步数还不能接触到物体,也需要给一定的惩罚 elif self.step_counter > self.kMaxEpisodeSteps: reward = -0.1 self.terminated = True elif self.distance < 0.1: reward = 1 self.terminated = True else: reward = 0 self.terminated = False info = {'distance:', self.distance} (_, _, px, _, _) = p.getCameraImage(width=960, height=960, viewMatrix=self.view_matrix, projectionMatrix=self.projection_matrix, renderer=p.ER_BULLET_HARDWARE_OPENGL) self.images = px self.processed_image = self._process_image(self.images) # self.observation=self.robot_state self.observation = self.object_state return self.processed_image, reward, self.terminated, info def close(self): p.disconnect() def _get_force_sensor_value(self): force_sensor_value = p.getJointState(bodyUniqueId=self.kuka_id, jointIndex=self.num_joints - 1)[2][2] # the first 2 stands for jointReactionForces, the second 2 stands for Fz, # the pybullet methods' return is a tuple,so can not # index it with str like dict. I think it can be improved # that return value is a dict rather than tuple. return force_sensor_value class CustomSkipFrame(gym.Wrapper): """ Make a 4 frame skip, so the observation space will change to (4,84,84) from (1,84,84) Args: gym ([type]): [description] """ def __init__(self, env, skip=4): super(CustomSkipFrame, self).__init__(env) self.observation_space = spaces.Box(low=0, high=1, shape=(skip, self.kFinalImageSize['width'], self.kFinalImageSize['height'])) self.skip = skip def step(self, action): total_reward = 0 states = [] state, reward, done, info = self.env.step(action) for i in range(self.skip): if not done: state, reward, done, info = self.env.step(action) total_reward += reward states.append(state) else: states.append(state) states = np.concatenate(states, 0)[None, :, :, :] return random_crop(states.astype(np.float32), self.kFinalImageSize['width']), reward, done, info def reset(self): state = self.env.reset() states = np.concatenate([state for _ in range(self.skip)], 0)[None, :, :, :] return random_crop(states.astype(np.float32), self.kFinalImageSize['width']) if __name__ == '__main__': # 这一部分是做baseline,即让机械臂随机选择动作,看看能够得到的分数 import matplotlib.pyplot as plt env = KukaReachVisualEnv(is_render=False) env = CustomSkipFrame(env) print(env.observation_space.shape) print(env.action_space.shape) print(env.action_space.n) # for _ in range(20): # action=env.action_space.sample() # print(action) # env.step(action) # # state = env.reset() # print(state.shape) # img = state[0][0] # plt.imshow(img, cmap='gray') # plt.show()
2.328125
2
bucket_4C/python-Pillow/patches/patch-setup.py
jrmarino/ravensource
17
7886
<reponame>jrmarino/ravensource --- setup.py.orig 2019-07-02 19:13:39 UTC +++ setup.py @@ -465,9 +465,7 @@ class pil_build_ext(build_ext): _add_directory(include_dirs, "/usr/X11/include") elif ( - sys.platform.startswith("linux") - or sys.platform.startswith("gnu") - or sys.platform.startswith("freebsd") + sys.platform.startswith("nothing") ): for dirname in _find_library_dirs_ldconfig(): _add_directory(library_dirs, dirname)
1.382813
1
tests/ut/cpp/python_input/gtest_input/pre_activate/ir_fusion_test.py
GeekHee/mindspore
0
7887
<reponame>GeekHee/mindspore # Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ from mindspore.ops import Primitive from mindspore.ops import operations as P from mindspore.ops.operations import _grad_ops as G from mindspore.ops import _constants as Constants # pylint: disable=unused-variable tuple_getitem = Primitive(Constants.kTupleGetItem) add = P.Add() allreduce = P.AllReduce() allreduce.add_prim_attr('fusion', 1) make_tuple = Primitive("make_tuple") conv = P.Conv2D(out_channel=64, kernel_size=7, mode=1, pad_mode="valid", pad=0, stride=1, dilation=1, group=1) bn = P.FusedBatchNorm() relu = P.ReLU() conv_bn1 = Primitive('ConvBN1') bn2_add_relu = Primitive('BN2AddRelu') bn2_relu = Primitive('BN2Relu') fused_bn1 = Primitive('FusedBN1') fused_bn2 = Primitive('FusedBN2') fused_bn3 = Primitive('FusedBN3') bn_grad = G.FusedBatchNormGrad() bn_grad1 = Primitive('BNGrad1') bn_grad2 = Primitive('BNGrad2') bn_grad3 = Primitive('BNGrad3') class FnDict: def __init__(self): self.fnDict = {} def __call__(self, fn): self.fnDict[fn.__name__] = fn def __getitem__(self, name): return self.fnDict[name] def test_bn_split(tag): """ test_split_bn_fusion """ fns = FnDict() @fns def before(x, scale, b, mean, variance): bn_output = bn(x, scale, b, mean, variance) item0 = tuple_getitem(bn_output, 0) return item0 @fns def after(x, scale, b, mean, variance): fused_bn1_output = fused_bn1(x) fused_bn2_input0 = tuple_getitem(fused_bn1_output, 0) fused_bn2_input1 = tuple_getitem(fused_bn1_output, 1) fused_bn2_output = fused_bn2(fused_bn2_input0, fused_bn2_input1, mean, variance) fused_bn3_input1 = tuple_getitem(fused_bn2_output, 0) fused_bn3_input2 = tuple_getitem(fused_bn2_output, 1) fused_bn3_output = fused_bn3(x, fused_bn3_input1, fused_bn3_input2, scale, b) output1 = tuple_getitem(fused_bn2_output, 2) output2 = tuple_getitem(fused_bn2_output, 3) output3 = tuple_getitem(fused_bn2_output, 0) output4 = tuple_getitem(fused_bn2_output, 1) output = make_tuple(fused_bn3_output, output1, output2, output3, output4) item0 = tuple_getitem(output, 0) return make_tuple(item0) return fns[tag] def test_bn_grad_split(tag): """ test_bn_grad_split """ fns = FnDict() @fns def before(dy, x, scale, save_mean, save_inv_variance): bn_grad_output = bn_grad(dy, x, scale, save_mean, save_inv_variance) item0 = tuple_getitem(bn_grad_output, 0) item1 = tuple_getitem(bn_grad_output, 1) item2 = tuple_getitem(bn_grad_output, 2) output = make_tuple(item0, item1, item2) res = tuple_getitem(output, 0) return res @fns def after(i0, i1, i2, i3, i4): bn_grad1_output = bn_grad1(i0, i1, i3) bn_grad1_item0 = tuple_getitem(bn_grad1_output, 0) bn_grad1_item1 = tuple_getitem(bn_grad1_output, 1) bn_grad1_item2 = tuple_getitem(bn_grad1_output, 2) bn_grad2_output = bn_grad2(bn_grad1_item0, bn_grad1_item1, i4, i2) bn_grad2_item0 = tuple_getitem(bn_grad2_output, 0) bn_grad2_item1 = tuple_getitem(bn_grad2_output, 1) bn_grad2_item2 = tuple_getitem(bn_grad2_output, 2) bn_grad2_item3 = tuple_getitem(bn_grad2_output, 3) bn_grad2_item4 = tuple_getitem(bn_grad2_output, 4) bn_grad3_output = bn_grad3(i0, bn_grad2_item2, bn_grad2_item3, bn_grad2_item4, bn_grad1_item2) bn_grad_make_tuple = make_tuple(bn_grad3_output, bn_grad2_item0, bn_grad2_item1) item0 = tuple_getitem(bn_grad_make_tuple, 0) item1 = tuple_getitem(bn_grad_make_tuple, 1) item2 = tuple_getitem(bn_grad_make_tuple, 2) output = make_tuple(item0, item1, item2) return make_tuple(tuple_getitem(output, 0)) return fns[tag] def test_all_reduce_fusion_all(tag): """ test_all_reduce_fusion_all """ fns = FnDict() @fns def before(x1, x2, x3, x4, x5): y1 = allreduce(x1) y2 = allreduce(x2) y3 = allreduce(x3) y4 = allreduce(x4) y5 = allreduce(x5) return make_tuple(y1, y2, y3, y4, y5) @fns def after(x1, x2, x3, x4, x5): ar = allreduce(x5, x4, x3, x2, x1) y5 = tuple_getitem(ar, 0) y4 = tuple_getitem(ar, 1) y3 = tuple_getitem(ar, 2) y2 = tuple_getitem(ar, 3) y1 = tuple_getitem(ar, 4) res = make_tuple(y1, y2, y3, y4, y5) return make_tuple(res) @fns def after1(x1, x2, x3, x4, x5): ar = allreduce(x1, x2, x3, x4, x5) y1 = tuple_getitem(ar, 0) y2 = tuple_getitem(ar, 1) y3 = tuple_getitem(ar, 2) y4 = tuple_getitem(ar, 3) y5 = tuple_getitem(ar, 4) res = make_tuple(y1, y2, y3, y4, y5) return make_tuple(res) return fns[tag] def test_all_reduce_fusion_group(tag): """ test_all_reduce_fusion_group """ fns = FnDict() @fns def before(x1, x2, x3, x4, x5): y1 = allreduce(x1) y2 = allreduce(x2) y3 = allreduce(x3) y4 = allreduce(x4) y5 = allreduce(x5) return make_tuple(y1, y2, y3, y4, y5) @fns def after1(x1, x2, x3, x4, x5): ar1 = allreduce(x5, x4) ar2 = allreduce(x3, x2, x1) y4 = tuple_getitem(ar1, 1) y5 = tuple_getitem(ar1, 0) y1 = tuple_getitem(ar2, 2) y2 = tuple_getitem(ar2, 1) y3 = tuple_getitem(ar2, 0) res = make_tuple(y1, y2, y3, y4, y5) return make_tuple(res) @fns def after2(x1, x2, x3, x4, x5): ar1 = allreduce(x1, x3, x5) ar2 = allreduce(x2, x4) y1 = tuple_getitem(ar1, 2) y3 = tuple_getitem(ar1, 1) y5 = tuple_getitem(ar1, 0) y2 = tuple_getitem(ar2, 1) y4 = tuple_getitem(ar2, 0) output = make_tuple(y1, y2, y3, y4, y5) return make_tuple(output) return fns[tag]
1.703125
2
tdx/abc.py
TrainerDex/DiscordBot
2
7888
<reponame>TrainerDex/DiscordBot from abc import ABC from typing import Dict from redbot.core import Config from redbot.core.bot import Red from trainerdex.client import Client class MixinMeta(ABC): """ Base class for well behaved type hint detection with composite class. Basically, to keep developers sane when not all attributes are defined in each mixin. """ def __init__(self, *_args): self.bot: Red self.config: Config self.client: Client self.emoji: Dict
2.546875
3
app.py
PolinaRomanchenko/Victorious_Secret_DSCI_532
0
7889
import dash import dash_core_components as dcc import dash_html_components as html import dash_bootstrap_components as dbc import pandas as pd import numpy as np import altair as alt import vega_datasets alt.data_transformers.enable('default') alt.data_transformers.disable_max_rows() app = dash.Dash(__name__, assets_folder='assets', external_stylesheets=[dbc.themes.BOOTSTRAP]) # Boostrap CSS. app.css.append_css({'external_url': 'https://codepen.io/amyoshino/pen/jzXypZ.css'}) # noqa: E501 server = app.server app.title = 'Dash app with pure Altair HTML' df = pd.read_csv('data/Police_Department_Incidents_-_Previous_Year__2016_.csv') # df = pd.read_csv("https://raw.github.ubc.ca/MDS-2019-20/DSCI_531_lab4_anas017/master/data/Police_Department_Incidents_-_Previous_Year__2016_.csv?token=<PASSWORD>%3D") df['datetime'] = pd.to_datetime(df[["Date","Time"]].apply(lambda x: x[0].split()[0] +" "+x[1], axis=1), format="%m/%d/%Y %H:%M") df['hour'] = df['datetime'].dt.hour df.dropna(inplace=True) top_4_crimes = df['Category'].value_counts()[:6].index.to_list() top_4_crimes top_4_crimes.remove("NON-CRIMINAL") top_4_crimes.remove("OTHER OFFENSES") # top 4 crimes df subset df_t4 = df[df["Category"].isin(top_4_crimes)].copy() def make_plot_top(df_new=df_t4): # Create a plot of the Displacement and the Horsepower of the cars dataset # making the slider slider = alt.binding_range(min = 0, max = 23, step = 1) select_hour = alt.selection_single(name='select', fields = ['hour'], bind = slider, init={'hour': 0}) #begin of my code # typeDict = {'ASSAULT':'quantitative', # 'VANDALISM':'quantitative', # 'LARCENY/THEFT':'quantitative', # 'VEHICLE THEFT':'quantitative' # } # end chart = alt.Chart(df_new).mark_bar(size=30).encode( x=alt.X('Category',type='nominal', title='Category'), y=alt.Y('count()', title = "Count" , scale = alt.Scale(domain = (0,3300))), tooltip='count()' ).properties( title = "Per hour crime occurrences for the top 4 crimes", width=500, height = 315 ).add_selection( select_hour ).transform_filter( select_hour ) return chart def make_plot_bot(data=df_t4): chart_1 = alt.Chart(data).mark_circle(size=3, opacity = 0.8).encode( longitude='X:Q', latitude='Y:Q', color = alt.Color('PdDistrict:N', legend = alt.Legend(title = "District")), tooltip = 'PdDistrict' ).project( type='albersUsa' ).properties( width=450, height=350 ) chart_2 = alt.Chart(data).mark_bar().encode( x=alt.X('PdDistrict:N', axis=None, title="District"), y=alt.Y('count()', title="Count of reports"), color=alt.Color('PdDistrict:N', legend=alt.Legend(title="District")), tooltip=['PdDistrict', 'count()'] ).properties( width=450, height=350 ) # A dropdown filter crimes_dropdown = alt.binding_select(options=list(data['Category'].unique())) crimes_select = alt.selection_single(fields=['Category'], bind=crimes_dropdown, name="Pick\ Crime") combine_chart = (chart_2 | chart_1) filter_crimes = combine_chart.add_selection( crimes_select ).transform_filter( crimes_select ) return filter_crimes body = dbc.Container( [ dbc.Row( [ dbc.Col( [ html.H2("San Francisco Crime"), html.P( """\ When looking for a place to live or visit, one important factor that people will consider is the safety of the neighborhood. Searching that information district by district could be time consuming and exhausting. It is even more difficult to compare specific crime statistics across districts such as the crime rate at a certain time of day. It would be useful if people can look up crime related information across district on one application. Our app aims to help people make decisions when considering their next trip or move to San Francisco, California via visually exploring a dataset of crime statistics. The app provides an overview of the crime rate across neighborhoods and allows users to focus on more specific information through filtering of geological location, crime rate, crime type or time of the crime. Use the box below to choose crimes of interest. """ ), dcc.Dropdown( id = 'drop_selection_crime', options=[{'label': i, 'value': i} for i in df_t4['Category'].unique() ], style={'height': '20px', 'width': '400px'}, value=df_t4['Category'].unique(), multi=True) ], md=5, ), dbc.Col( [ dbc.Row( [ html.Iframe( sandbox = "allow-scripts", id = "plot_top", height = "500", width = "650", style = {"border-width": "0px"}, srcDoc = make_plot_top().to_html() ) ] ) ] ), ] ), dbc.Row( html.Iframe( sandbox='allow-scripts', id='plot_bot', height='500', width='1200', style={'border-width': '0px'}, srcDoc= make_plot_bot().to_html() ) ) ], className="mt-4", ) app.layout = html.Div(body) @app.callback([dash.dependencies.Output('plot_top', 'srcDoc'), dash.dependencies.Output('plot_bot', 'srcDoc')], [dash.dependencies.Input('drop_selection_crime', 'value')] ) def update_df(chosen): new_df = df_t4[(df_t4["Category"].isin(chosen))] updated_plot_top = make_plot_top(new_df).to_html() updated_plot_bottom = make_plot_bot(new_df).to_html() return updated_plot_top, updated_plot_bottom if __name__ == '__main__': app.run_server(debug=False)
2.4375
2
catkin_ws/src:/opt/ros/kinetic/lib/python2.7/dist-packages:/home/bala/duckietown/catkin_ws/src:/home/bala/duckietown/catkin_ws/src/lib/python2.7/site-packages/geometry/subspaces/__init__.py
johnson880319/Software
0
7890
<reponame>johnson880319/Software # coding=utf-8 from .subspaces import *
0.898438
1
detection/contor.py
chika626/chainer_rep
0
7891
<reponame>chika626/chainer_rep import json import math from PIL import Image,ImageDraw import pandas as pd import glob import argparse import copy import numpy as np import matplotlib.pyplot as plt import pickle import cv2 from PIL import ImageEnhance import chainer from chainer.datasets import ConcatenatedDataset from chainer.datasets import TransformDataset from chainer.optimizer_hooks import WeightDecay from chainer import serializers from chainer import training from chainer.training import extensions from chainer.training import triggers from chainercv.datasets import voc_bbox_label_names from chainercv.datasets import VOCBboxDataset from chainercv.extensions import DetectionVOCEvaluator from chainercv.links.model.ssd import GradientScaling from chainercv.links.model.ssd import multibox_loss from chainercv.links import SSD300 from chainercv.links import SSD512 from chainercv import transforms from chainercv.utils import read_image from chainercv.links.model.ssd import random_crop_with_bbox_constraints from chainercv.links.model.ssd import random_distort from chainercv.links.model.ssd import resize_with_random_interpolation import queue def run(img): # c , H , W = img.shape H,W = img.size img = np.asarray(img) # 変換後データ配列 transed = Image.new('RGB',(H,W)) for x in range(H): for y in range(W): transed.putpixel((x,y),(255,255,255)) for x in range(H): for y in range(W): if x + 1 == H or y + 1 == W: break if img[y][x][0] != img[y][x+1][0]: transed.putpixel((x,y),(0,0,0)) for y in range(W): for x in range(H): if x + 1 == H or y + 1 == W: break if img[y][x][0] != img[y+1][x][0]: transed.putpixel((x,y),(0,0,0)) return transed def main(): # # 単一の場合のコード # img = Image.open('cont/transed/X.jpg') # img=img.convert('L') # img=np.asarray(img) # ret2, img = cv2.threshold(img, 0, 255, cv2.THRESH_OTSU) # img=Image.fromarray(img) # img=img.convert('RGB') # transed = run(img) # transed.save('transec_0.png') # return # 大量変換機 img_path=glob.glob("cont/crop/*") counter=0 for path in img_path: img = Image.open(path) transed = run(img) transed.save('transec_{}.png'.format(counter)) counter+=1 if __name__ == '__main__': main()
2.140625
2
train.py
hjl-yul154/autodeeplab
1
7892
import os import pdb import warnings import numpy as np import torch import torch.nn as nn import torch.utils.data import torch.backends.cudnn import torch.optim as optim import dataloaders from utils.utils import AverageMeter from utils.loss import build_criterion from utils.metrics import Evaluator from utils.step_lr_scheduler import Iter_LR_Scheduler from retrain_model.build_autodeeplab import Retrain_Autodeeplab from config_utils.re_train_autodeeplab import obtain_retrain_autodeeplab_args def main(): warnings.filterwarnings('ignore') assert torch.cuda.is_available() torch.backends.cudnn.benchmark = True args = obtain_retrain_autodeeplab_args() save_dir = os.path.join('./data/', args.save_path) if not os.path.isdir(save_dir): os.mkdir(save_dir) model_fname = os.path.join(save_dir, 'deeplab_{0}_{1}_v3_{2}_epoch%d.pth'.format(args.backbone, args.dataset, args.exp)) record_name = os.path.join(save_dir, 'training_record.txt') if args.dataset == 'pascal': raise NotImplementedError elif args.dataset == 'cityscapes': kwargs = {'num_workers': args.workers, 'pin_memory': True, 'drop_last': True} dataset_loader, num_classes, val_loader = dataloaders.make_data_loader(args, **kwargs) args.num_classes = num_classes else: raise ValueError('Unknown dataset: {}'.format(args.dataset)) if args.backbone == 'autodeeplab': model = Retrain_Autodeeplab(args) else: raise ValueError('Unknown backbone: {}'.format(args.backbone)) if args.criterion == 'Ohem': args.thresh = 0.7 args.crop_size = [args.crop_size, args.crop_size] if isinstance(args.crop_size, int) else args.crop_size args.n_min = int((args.batch_size / len(args.gpu) * args.crop_size[0] * args.crop_size[1]) // 16) criterion = build_criterion(args) model = nn.DataParallel(model).cuda() model.train() if args.freeze_bn: for m in model.modules(): if isinstance(m, nn.BatchNorm2d): m.eval() m.weight.requires_grad = False m.bias.requires_grad = False optimizer = optim.SGD(model.module.parameters(), lr=args.base_lr, momentum=0.9, weight_decay=0.0001) max_iteration = len(dataset_loader) * args.epochs scheduler = Iter_LR_Scheduler(args, max_iteration, len(dataset_loader)) start_epoch = 0 evaluator=Evaluator(num_classes) if args.resume: if os.path.isfile(args.resume): print('=> loading checkpoint {0}'.format(args.resume)) checkpoint = torch.load(args.resume) start_epoch = checkpoint['epoch'] model.load_state_dict(checkpoint['state_dict']) optimizer.load_state_dict(checkpoint['optimizer']) print('=> loaded checkpoint {0} (epoch {1})'.format(args.resume, checkpoint['epoch'])) else: raise ValueError('=> no checkpoint found at {0}'.format(args.resume)) for epoch in range(start_epoch, args.epochs): losses = AverageMeter() print('Training epoch {}'.format(epoch)) model.train() for i, sample in enumerate(dataset_loader): cur_iter = epoch * len(dataset_loader) + i scheduler(optimizer, cur_iter) inputs = sample['image'].cuda() target = sample['label'].cuda() outputs = model(inputs) loss = criterion(outputs, target) if np.isnan(loss.item()) or np.isinf(loss.item()): pdb.set_trace() losses.update(loss.item(), args.batch_size) loss.backward() optimizer.step() optimizer.zero_grad() if (i + 1) % 200 == 0: print('epoch: {0}\t''iter: {1}/{2}\t''lr: {3:.6f}\t''loss: {loss.val:.4f} ({loss.ema:.4f})'.format( epoch + 1, i + 1, len(dataset_loader), scheduler.get_lr(optimizer), loss=losses)) if epoch < args.epochs: if (epoch+1) % 5 == 0: torch.save({ 'epoch': epoch + 1, 'state_dict': model.state_dict(), 'optimizer': optimizer.state_dict(), }, model_fname % (epoch + 1)) else: torch.save({ 'epoch': epoch + 1, 'state_dict': model.state_dict(), 'optimizer': optimizer.state_dict(), }, model_fname % (epoch + 1)) line0 = 'epoch: {0}\t''loss: {loss.val:.4f} ({loss.ema:.4f})'.format( epoch, loss=losses) with open(record_name, 'a') as f: f.write(line0) if line0[-1] != '\n': f.write('\n') if epoch%3!=0 and epoch <args.epochs-20: continue print('Validate epoch {}'.format(epoch)) model.eval() evaluator.reset() test_loss=0.0 for i,sample in enumerate(val_loader): inputs = sample['image'].cuda() target = sample['label'].cuda() with torch.no_grad(): outputs = model(inputs) # loss = criterion(outputs, target) # test_loss+=loss.item() pred=outputs.data.cpu().numpy() target=target.cpu().numpy() pred = np.argmax(pred, axis=1) evaluator.add_batch(target,pred) Acc = evaluator.Pixel_Accuracy() Acc_class = evaluator.Pixel_Accuracy_Class() mIoU = evaluator.Mean_Intersection_over_Union() FWIoU = evaluator.Frequency_Weighted_Intersection_over_Union() print("epoch: {}\t Acc:{:.3f}, Acc_class:{:.3f}, mIoU:{:.3f}, fwIoU: {:.3f}".format(epoch,Acc, Acc_class, mIoU, FWIoU)) line1='epoch: {}\t''mIoU: {:.3f}'.format(epoch,mIoU) with open(record_name, 'a') as f: f.write(line1) if line1[-1] != '\n': f.write('\n') if __name__ == "__main__": main()
2
2
test.py
xxaxdxcxx/miscellaneous-code
0
7893
class Solution: # dictionary keys are tuples, storing results # structure of the tuple: # (level, prev_sum, val_to_include) # value is number of successful tuples def fourSumCount(self, A, B, C, D, prev_sum=0, level=0, sums={}): """ :type A: List[int] :type B: List[int] :type C: List[int] :type D: List[int] :rtype: int """ # handle clearing dictionary between tests sums = {} if level == 3 else sums # base case: if level == 3: total = 0 for num in D: if prev_sum + num == 0: print("At level 3, 0 total found using entry w/ value {0}". format(num)) total += 1 return total total = 0 lists = [A, B, C] for num in lists[level]: if level == 0: print(str(sums)) if (level, prev_sum, num) in sums: total += sums[(level, prev_sum, num)] print("Used dictionary entry {0}, making total {1}". format((level, prev_sum, num), total)) else: print("Call from level {0} to level {1}; current sum is {2}". format(level, level + 1, prev_sum + num)) result = self.fourSumCount(A, B, C, D, prev_sum + num, level + 1, sums) sums[(level, prev_sum, num)] = result total += result if level == 0: sums = {} print(sums) return total sol = Solution() A = [1] B = [-1] C = [0] D = [1] result = sol.fourSumCount(A, B, C, D) print("Test 1: {0}".format(result)) A = [1, 2] B = [-2, -1] C = [-1, 2] D = [0, 2] result = sol.fourSumCount(A, B, C, D) print("Test 2: {0}".format(result))
3.46875
3
src/boot.py
johngtrs/krux
0
7894
# The MIT License (MIT) # Copyright (c) 2021 <NAME> # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. import machine from pmu import axp192 from context import Context from login import Login from home import Home import settings pmu = axp192() # Enable power management so that if power button is held down 6 secs, # it shuts off as expected pmu.enablePMICSleepMode(True) ctx = Context() ctx.display.flash_text(settings.load('splash', ( 'Krux' ), strip=False)) while True: if not Login(ctx).run(): break if not Home(ctx).run(): break ctx.display.flash_text(( 'Shutting down..' )) ctx.clear() pmu.setEnterSleepMode() machine.reset()
2.15625
2
smartfields/processors/video.py
suhaibroomy/django-smartfields
0
7895
<reponame>suhaibroomy/django-smartfields<filename>smartfields/processors/video.py import re import six from smartfields.processors.base import ExternalFileProcessor from smartfields.utils import ProcessingError __all__ = [ 'FFMPEGProcessor' ] class FFMPEGProcessor(ExternalFileProcessor): duration_re = re.compile(r'Duration: (?P<hours>\d+):(?P<minutes>\d+):(?P<seconds>\d+)') progress_re = re.compile(r'time=(?P<hours>\d+):(?P<minutes>\d+):(?P<seconds>\d+)') error_re = re.compile(r'Invalid data found when processing input') cmd_template = "ffmpeg -i {input} -y -codec:v {vcodec} -b:v {vbitrate} " \ "-maxrate {maxrate} -bufsize {bufsize} -vf " \ "scale={width}:{height} -threads {threads} -c:a {acodec} {output}" def stdout_handler(self, line, duration=None): if duration is None: duration_time = self.duration_re.search(line) if duration_time: duration = self.timedict_to_seconds(duration_time.groupdict()) elif duration != 0: current_time = self.progress_re.search(line) if current_time: seconds = self.timedict_to_seconds(current_time.groupdict()) progress = float(seconds)/duration progress = progress if progress < 1 else 0.99 self.set_progress(progress) elif self.error_re.search(line): raise ProcessingError("Invalid video file or unknown video format.") return (duration,) def timedict_to_seconds(self, timedict): seconds = 0 for key, t in six.iteritems(timedict): if key == 'seconds': seconds+= int(t) elif key == 'minutes': seconds+= int(t)*60 elif key == 'hours': seconds+= int(t)*3600 return seconds
2.453125
2
tests/test_vmtkScripts/test_vmtksurfaceconnectivity.py
ramtingh/vmtk
0
7896
## Program: VMTK ## Language: Python ## Date: January 12, 2018 ## Version: 1.4 ## Copyright (c) <NAME>, <NAME>, All rights reserved. ## See LICENSE file for details. ## This software is distributed WITHOUT ANY WARRANTY; without even ## the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR ## PURPOSE. See the above copyright notices for more information. ## Note: this code was contributed by ## <NAME> (Github @rlizzo) ## University at Buffalo import pytest import vmtk.vmtksurfaceconnectivity as connectivity import os @pytest.fixture(scope='module') def aorta_surface_two_segments(input_datadir): import vmtk.vmtksurfacereader as surfacereader reader = surfacereader.vmtkSurfaceReader() reader.InputFileName = os.path.join(input_datadir, 'aorta-surface-two-segments.vtp') reader.Execute() return reader.Surface def test_extract_largest_surface(aorta_surface_two_segments, compare_surfaces): name = __name__ + '_test_extract_largest_surface.vtp' connectiv = connectivity.vmtkSurfaceConnectivity() connectiv.Surface = aorta_surface_two_segments connectiv.Method = 'largest' connectiv.CleanOutput = 1 connectiv.Execute() assert compare_surfaces(connectiv.Surface, name) == True def test_extract_closest_to_reference_surface(aorta_surface_two_segments, aorta_surface_reference, compare_surfaces): name = __name__ + '_test_extract_closest_to_reference_surface.vtp' connectiv = connectivity.vmtkSurfaceConnectivity() connectiv.Surface = aorta_surface_two_segments connectiv.Method = 'closest' connectiv.ReferenceSurface = aorta_surface_reference connectiv.Execute() assert compare_surfaces(connectiv.Surface, name) == True def test_extract_closest_to_point(aorta_surface_two_segments, compare_surfaces): name = __name__ + '_test_extract_closest_to_point.vtp' connectiv = connectivity.vmtkSurfaceConnectivity() connectiv.Surface = aorta_surface_two_segments connectiv.Method = 'closest' connectiv.ClosestPoint = [0.0, 0.0, 0.0] connectiv.Execute() assert compare_surfaces(connectiv.Surface, name) == True
2.265625
2
sssoon/forms.py
Kingpin-Apps/django-sssoon
2
7897
<gh_stars>1-10 from django import forms from nocaptcha_recaptcha.fields import NoReCaptchaField class NewsletterForm(forms.Form): email = forms.EmailField(label='Email', required=True, widget=forms.TextInput(attrs={ 'id': 'newsletter-email', 'type': 'email', 'title': 'Email', 'name': 'email', 'class': 'form-control transparent', 'placeholder': '<EMAIL>' })) captcha = NoReCaptchaField()
2.375
2
simple_run_menu.py
william01110111/simple_run_menu
0
7898
<reponame>william01110111/simple_run_menu #! /bin/python3 # simple run menu import os import stat def is_file_executable(path): executable = stat.S_IEXEC | stat.S_IXGRP | stat.S_IXOTH if not os.path.isfile(path): return False st = os.stat(path) mode = st.st_mode if not mode & executable: return False return True def get_files_in_dir(directory): if directory == '': directory = '.' if directory[-1] != '/': directory += '/' return [directory + i for i in os.listdir(directory)] def command_to_name(command): filename_with_ext = os.path.basename(command) filename = filename_with_ext.rsplit('.', 1)[0] name = filename.replace('_', ' ') capitalized = ' '.join([i[0].upper() + i[1:] for i in name.split()]) return capitalized class Option: options = {} @staticmethod def add(command): options['a'] = Option(command, command, 'a') def __init__(self, name, command, trigger): self.name = name self.command = command self.trigger = trigger if __name__ == "__main__": print([command_to_name(i) for i in get_files_in_dir('') if is_file_executable(i)])
2.90625
3
mne/io/cnt/tests/test_cnt.py
stevemats/mne-python
1,953
7899
# Author: <NAME> <<EMAIL>> # <NAME> <<EMAIL>> # # License: BSD-3-Clause import os.path as op import numpy as np from numpy.testing import assert_array_equal import pytest from mne import pick_types from mne.datasets import testing from mne.io.tests.test_raw import _test_raw_reader from mne.io.cnt import read_raw_cnt from mne.annotations import read_annotations data_path = testing.data_path(download=False) fname = op.join(data_path, 'CNT', 'scan41_short.cnt') @testing.requires_testing_data def test_data(): """Test reading raw cnt files.""" with pytest.warns(RuntimeWarning, match='number of bytes'): raw = _test_raw_reader(read_raw_cnt, input_fname=fname, eog='auto', misc=['NA1', 'LEFT_EAR']) # make sure we use annotations event if we synthesized stim assert len(raw.annotations) == 6 eog_chs = pick_types(raw.info, eog=True, exclude=[]) assert len(eog_chs) == 2 # test eog='auto' assert raw.info['bads'] == ['LEFT_EAR', 'VEOGR'] # test bads # the data has "05/10/200 17:35:31" so it is set to None assert raw.info['meas_date'] is None @testing.requires_testing_data def test_compare_events_and_annotations(): """Test comparing annotations and events.""" with pytest.warns(RuntimeWarning, match='Could not parse meas date'): raw = read_raw_cnt(fname) events = np.array([[333, 0, 7], [1010, 0, 7], [1664, 0, 109], [2324, 0, 7], [2984, 0, 109]]) annot = read_annotations(fname) assert len(annot) == 6 assert_array_equal(annot.onset[:-1], events[:, 0] / raw.info['sfreq']) assert 'STI 014' not in raw.info['ch_names']
2.125
2