kernel_id
int64
24.2k
23.3M
prompt
stringlengths
8
1.85M
completetion
stringlengths
1
182k
comp_name
stringlengths
5
57
6,942,227
train['Faregroup'] = np.where(train['Fare']<15,0,1) test['Faregroup'] = np.where(test['Fare']<15,0,1 )<feature_engineering>
df2 = pd.DataFrame([round2] ).transpose() df2.columns = ['Round2_Days'] df2
Santa's Workshop Tour 2019
6,942,227
train['Famgroup'] = np.where(train['Family']<2,0,(np.where(( train['Family']>1)&(train['Family']<5),1,2))) test['Famgroup'] = np.where(test['Age']<2,0,(np.where(( test['Family']>1)&(test['Family']<5),1,2)) )<drop_column>
df3 = pd.DataFrame([round3] ).transpose() df3.columns = ['Round3_Days'] df3
Santa's Workshop Tour 2019
6,942,227
traina = train.drop(columns=['Name','Ticket','Cabin','Fare','Age','Family','SibSp','Parch']) testa = test.drop(columns=['Name','Ticket','Cabin','Fare','Age','Family','SibSp','Parch'] )<categorify>
df4 = pd.DataFrame([round4] ).transpose() df4.columns = ['Round4_Days'] df4
Santa's Workshop Tour 2019
6,942,227
TestId=testa['PassengerId'] total_features=pd.concat(( traina.drop(['PassengerId','Survived'], axis=1), testa.drop(['PassengerId'], axis=1))) total_features=pd.get_dummies(total_features, drop_first=True) train_features=total_features[0:traina.shape[0]] test_features=total_features[traina.shape[0]:]<split>
df5 = pd.DataFrame([round5] ).transpose() df5.columns = ['Round5_Days'] df5
Santa's Workshop Tour 2019
6,942,227
X = train_features y = traina['Survived'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=101 )<train_on_grid>
df6 = pd.DataFrame([final] ).transpose() df6.columns = ['Final_Days'] df6
Santa's Workshop Tour 2019
6,942,227
ran = RandomForestClassifier(random_state=1) knn = KNeighborsClassifier() log = LogisticRegression() xgb = XGBClassifier() gbc = GradientBoostingClassifier() svc = SVC(probability=True) ext = ExtraTreesClassifier() ada = AdaBoostClassifier() gnb = GaussianNB() gpc = GaussianProcessClassifier() bag = BaggingClassifier() models = [ran, knn, log, xgb, gbc, svc, ext, ada, gnb, gpc, bag] scores = [] for mod in models: mod.fit(X_train, y_train) acc = cross_val_score(mod, X_train, y_train, scoring = "accuracy", cv = 10) scores.append(acc.mean() )<create_dataframe>
df = pd.concat([df0,df1,df2,df3,df4,df5,df6], axis=1) df
Santa's Workshop Tour 2019
6,942,227
<create_dataframe><EOS>
pivot0 = df.groupby(['choice_0'])['n_people'].agg(['sum']) pivot0 = pd.DataFrame(pivot0) pivot0.columns = ['First Choice'] pivot1 = df.groupby(['Prediction'])['n_people'].agg(['sum']) pivot1 = pd.DataFrame(pivot1) pivot1.columns = ['Prediction'] pivot2 = df.groupby(['Round2_Days'])['n_people'].agg(['sum']) pivot2 = pd.DataFrame(pivot2) pivot2.columns = ['Round 2'] pivot3 = df.groupby(['Round3_Days'])['n_people'].agg(['sum']) pivot3 = pd.DataFrame(pivot3) pivot3.columns = ['Round 3'] pivot4 = df.groupby(['Round4_Days'])['n_people'].agg(['sum']) pivot4 = pd.DataFrame(pivot4) pivot4.columns = ['Round 4'] pivot5 = df.groupby(['Round5_Days'])['n_people'].agg(['sum']) pivot5 = pd.DataFrame(pivot5) pivot5.columns = ['Round 5'] pivot6 = df.groupby(['Final_Days'])['n_people'].agg(['sum']) pivot6 = pd.DataFrame(pivot6) pivot6.columns = ['Final']
Santa's Workshop Tour 2019
6,915,535
<SOS> metric: SantaWorkshopSchedule2019 Kaggle data source: santas-workshop-tour-2019<drop_column>
import numpy as np import pandas as pd from numba import njit from itertools import product from ortools.linear_solver import pywraplp
Santa's Workshop Tour 2019
6,915,535
columns = importances[importances['Average']<.03]['Feature'].values train_features.drop(columns = columns, inplace = True) test_features.drop(columns = columns, inplace = True )<split>
def get_penalty(n, choice): penalty = None if choice == 0: penalty = 0 elif choice == 1: penalty = 50 elif choice == 2: penalty = 50 + 9 * n elif choice == 3: penalty = 100 + 9 * n elif choice == 4: penalty = 200 + 9 * n elif choice == 5: penalty = 200 + 18 * n elif choice == 6: penalty = 300 + 18 * n elif choice == 7: penalty = 300 + 36 * n elif choice == 8: penalty = 400 + 36 * n elif choice == 9: penalty = 500 + 36 * n + 199 * n else: penalty = 500 + 36 * n + 398 * n return penalty def GetPreferenceCostMatrix(data): cost_matrix = np.zeros(( N_FAMILIES, N_DAYS), dtype=np.int64) for i in range(N_FAMILIES): desired = data.values[i, :-1] cost_matrix[i, :] = get_penalty(FAMILY_SIZE[i], 10) for j, day in enumerate(desired): cost_matrix[i, day-1] = get_penalty(FAMILY_SIZE[i], j) return cost_matrix def GetAccountingCostMatrix() : ac = np.zeros(( 1000, 1000), dtype=np.float64) for n in range(ac.shape[0]): for n_p1 in range(ac.shape[1]): diff = abs(n - n_p1) ac[n, n_p1] = max(0,(n - 125)/ 400 * n**(0.5 + diff / 50.0)) return ac @njit(fastmath=True) def pcost(prediction): daily_occupancy = np.zeros(N_DAYS+1, dtype=np.int64) penalty = 0 for(i, p)in enumerate(prediction): n = FAMILY_SIZE[i] penalty += PCOSTM[i, p] daily_occupancy[p] += n return penalty, daily_occupancy @njit(fastmath=True) def acost(daily_occupancy): accounting_cost = 0 n_out_of_range = 0 daily_occupancy[-1] = daily_occupancy[-2] for day in range(N_DAYS): n_p1 = daily_occupancy[day + 1] n = daily_occupancy[day] n_out_of_range +=(n > MAX_OCCUPANCY)or(n < MIN_OCCUPANCY) accounting_cost += ACOSTM[n, n_p1] return accounting_cost, n_out_of_range @njit(fastmath=True) def cost_function(prediction): penalty, daily_occupancy = pcost(prediction) accounting_cost, n_out_of_range = acost(daily_occupancy) return penalty + accounting_cost + n_out_of_range*100000000
Santa's Workshop Tour 2019
6,915,535
X = train_features y = traina['Survived'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=101 )<train_on_grid>
def findBetterDay4Family(pred): fobs = np.argsort(FAMILY_SIZE) score = cost_function(pred) original_score = np.inf while original_score>score: original_score = score for family_id in fobs: for pick in range(10): day = DESIRED[family_id, pick] oldvalue = pred[family_id] pred[family_id] = day new_score = cost_function(pred) if new_score<score: score = new_score else: pred[family_id] = oldvalue print(score, end='\r') print(score) def stochastic_product_search(top_k, fam_size, original, verbose=1000, verbose2=50000, n_iter=500, random_state=2019): best = original.copy() best_score = cost_function(best) np.random.seed(random_state) for i in range(n_iter): fam_indices = np.random.choice(range(DESIRED.shape[0]), size=fam_size) changes = np.array(list(product(*DESIRED[fam_indices, :top_k].tolist()))) for change in changes: new = best.copy() new[fam_indices] = change new_score = cost_function(new) if new_score < best_score: best_score = new_score best = new if verbose and i % verbose == 0: print(f"Iteration if verbose2 and i % verbose2 == 0: print(f"Iteration print(f"Final best score is {best_score:.2f}") return best
Santa's Workshop Tour 2019
6,915,535
ran = RandomForestClassifier(random_state=1) knn = KNeighborsClassifier() log = LogisticRegression() xgb = XGBClassifier(random_state=1) gbc = GradientBoostingClassifier(random_state=1) svc = SVC(probability=True) ext = ExtraTreesClassifier(random_state=1) ada = AdaBoostClassifier(random_state=1) gnb = GaussianNB() gpc = GaussianProcessClassifier() bag = BaggingClassifier(random_state=1) models = [ran, knn, log, xgb, gbc, svc, ext, ada, gnb, gpc, bag] scores_v2 = [] for mod in models: mod.fit(X_train, y_train) acc = cross_val_score(mod, X_train, y_train, scoring = "accuracy", cv = 10) scores_v2.append(acc.mean() )<create_dataframe>
def seed_finding(seed, prediction_input): prediction = prediction_input.copy() np.random.seed(seed) best_score = cost_function(prediction) original_score = best_score best_pred = prediction.copy() print("SEED: {} ORIGINAL SCORE: {}".format(seed, original_score)) for t in range(100): for i in range(5000): for j in range(10): di = prediction[i] prediction[i] = DESIRED[i, j] cur_score = cost_function(prediction) KT = 1 if t < 5: KT = 1.5 elif t < 10: KT = 4.5 else: if cur_score > best_score + 100: KT = 3 elif cur_score > best_score + 50 : KT = 2.75 elif cur_score > best_score + 20: KT = 2.5 elif cur_score > best_score + 10: KT = 2 elif cur_score > best_score: KT = 1.5 else: KT = 1 prob = np.exp(-(cur_score - best_score)/ KT) if np.random.rand() < prob: best_score = cur_score else: prediction[i] = di if best_score < original_score: print("NEW BEST SCORE on seed {}: {}".format(seed, best_score)) original_score = best_score best_pred = prediction.copy() return prediction
Santa's Workshop Tour 2019
6,915,535
results = pd.DataFrame({ 'Model': ['Random Forest', 'K Nearest Neighbour', 'Logistic Regression', 'XGBoost', 'Gradient Boosting', 'SVC', 'Extra Trees', 'AdaBoost', 'Gaussian Naive Bayes', 'Gaussian Process', 'Bagging Classifier'], 'Score': scores, 'Score w/Feature Selection': scores_v2}) result_df = results.sort_values(by='Score w/Feature Selection', ascending=False ).reset_index(drop=True) result_df<train_on_grid>
def solveSantaLP() : S = pywraplp.Solver('SolveAssignmentProblem', pywraplp.Solver.GLOP_LINEAR_PROGRAMMING) x = {} candidates = [[] for _ in range(N_DAYS)] for i in range(N_FAMILIES): for j in DESIRED[i, :]: candidates[j].append(i) x[i, j] = S.BoolVar('x[%i,%i]' %(i, j)) daily_occupancy = [S.Sum([x[i, j] * FAMILY_SIZE[i] for i in candidates[j]]) for j in range(N_DAYS)] family_presence = [S.Sum([x[i, j] for j in DESIRED[i, :]]) for i in range(N_FAMILIES)] preference_cost = S.Sum([PCOSTM[i, j] * x[i,j] for i in range(N_FAMILIES) for j in DESIRED[i, :] ]) S.Minimize(preference_cost) for j in range(N_DAYS-1): S.Add(daily_occupancy[j] - daily_occupancy[j+1] <= 23) S.Add(daily_occupancy[j+1] - daily_occupancy[j] <= 23) for i in range(N_FAMILIES): S.Add(family_presence[i] == 1) for j in range(N_DAYS): S.Add(daily_occupancy[j] >= MIN_OCCUPANCY) S.Add(daily_occupancy[j] <= MAX_OCCUPANCY) res = S.Solve() resdict = {0:'OPTIMAL', 1:'FEASIBLE', 2:'INFEASIBLE', 3:'UNBOUNDED', 4:'ABNORMAL', 5:'MODEL_INVALID', 6:'NOT_SOLVED'} print('LP solver result:', resdict[res]) l = [(i, j, x[i, j].solution_value())for i in range(N_FAMILIES) for j in DESIRED[i, :] if x[i, j].solution_value() >0] df = pd.DataFrame(l, columns=['family_id', 'day', 'n']) return df
Santa's Workshop Tour 2019
6,915,535
penalty = ['l1', 'l2'] C = np.logspace(0, 4, 10) hyperparams = {'penalty': penalty, 'C': C} lrgd=GridSearchCV(estimator = LogisticRegression() , param_grid = hyperparams, verbose=True, cv=5, scoring = "accuracy", n_jobs =-1) lrgd.fit(X_train, y_train) print(lrgd.best_score_) print(lrgd.best_estimator_ )<train_on_grid>
def solveSantaIP(families, min_occupancy, max_occupancy): S = pywraplp.Solver('SolveAssignmentProblem', pywraplp.Solver.CBC_MIXED_INTEGER_PROGRAMMING) n_families = len(families) x = {} candidates = [[] for _ in range(N_DAYS)] for i in families: for j in DESIRED[i, :]: candidates[j].append(i) x[i, j] = S.BoolVar('x[%i,%i]' %(i, j)) daily_occupancy = [S.Sum([x[i, j] * FAMILY_SIZE[i] for i in candidates[j]]) for j in range(N_DAYS)] family_presence = [S.Sum([x[i, j] for j in DESIRED[i, :]]) for i in families] preference_cost = S.Sum([PCOSTM[i, j] * x[i,j] for i in families for j in DESIRED[i, :] ]) S.Minimize(preference_cost) for i in range(n_families): S.Add(family_presence[i] == 1) for j in range(N_DAYS): S.Add(daily_occupancy[j] >= min_occupancy[j]) S.Add(daily_occupancy[j] <= max_occupancy[j]) res = S.Solve() resdict = {0:'OPTIMAL', 1:'FEASIBLE', 2:'INFEASIBLE', 3:'UNBOUNDED', 4:'ABNORMAL', 5:'MODEL_INVALID', 6:'NOT_SOLVED'} print('MIP solver result:', resdict[res]) l = [(i, j)for i in families for j in DESIRED[i, :] if x[i, j].solution_value() >0] df = pd.DataFrame(l, columns=['family_id', 'day']) return df
Santa's Workshop Tour 2019
6,915,535
n_neighbors = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20] algorithm = ['auto'] weights = ['uniform', 'distance'] leaf_size = [1, 2, 3, 4, 5, 10, 15, 20, 25, 30] hyperparams = {'algorithm': algorithm, 'weights': weights, 'leaf_size': leaf_size, 'n_neighbors': n_neighbors} kngd=GridSearchCV(estimator = KNeighborsClassifier() , param_grid = hyperparams, verbose=True, cv=5, scoring = "accuracy", n_jobs =-1) kngd.fit(X_train, y_train) print(kngd.best_score_) print(kngd.best_estimator_ )<train_on_grid>
def solveSanta() : df = solveSantaLP() THRS = 0.999 assigned_df = df[df.n>THRS].copy() unassigned_df = df[(df.n<=THRS)&(df.n>1-THRS)] unassigned = unassigned_df.family_id.unique() print('{} unassigned families'.format(len(unassigned))) assigned_df['family_size'] = FAMILY_SIZE[assigned_df.family_id] occupancy = assigned_df.groupby('day' ).family_size.sum().values min_occupancy = np.array([max(0, MIN_OCCUPANCY-o)for o in occupancy]) max_occupancy = np.array([MAX_OCCUPANCY - o for o in occupancy]) rdf = solveSantaIP(unassigned, min_occupancy, max_occupancy) df = pd.concat(( assigned_df[['family_id', 'day']], rdf)).sort_values('family_id') return df.day.values
Santa's Workshop Tour 2019
6,915,535
n_estimators = [10, 25, 50, 75, 100] max_depth = [3, None] max_features = [1, 3, 5, 7] min_samples_split = [2, 4, 6, 8, 10] min_samples_leaf = [2, 4, 6, 8, 10] hyperparams = {'n_estimators': n_estimators, 'max_depth': max_depth, 'max_features': max_features, 'min_samples_split': min_samples_split, 'min_samples_leaf': min_samples_leaf} rfgd=GridSearchCV(estimator = RandomForestClassifier() , param_grid = hyperparams, verbose=True, cv=5, scoring = "accuracy", n_jobs =-1) rfgd.fit(X_train, y_train) print(rfgd.best_score_) print(rfgd.best_estimator_ )<train_on_grid>
N_DAYS = 100 N_FAMILIES = 5000 MAX_OCCUPANCY = 300 MIN_OCCUPANCY = 125 data = pd.read_csv('/kaggle/input/santa-workshop-tour-2019/family_data.csv', index_col='family_id') FAMILY_SIZE = data.n_people.values DESIRED = data.values[:, :-1] - 1 PCOSTM = GetPreferenceCostMatrix(data) ACOSTM = GetAccountingCostMatrix()
Santa's Workshop Tour 2019
6,915,535
Cs = [0.001, 0.01, 0.1, 1, 5, 10, 15, 20, 50, 100] gammas = [0.001, 0.01, 0.1, 1] hyperparams = {'C': Cs, 'gamma' : gammas} svgd=GridSearchCV(estimator = SVC(probability=True), param_grid = hyperparams, verbose=True, cv=5, scoring = "accuracy", n_jobs =-1) svgd.fit(X_train, y_train) print(svgd.best_score_) print(svgd.best_estimator_ )<train_on_grid>
%%time prediction = solveSanta() pc, occ = pcost(prediction) ac, _ = acost(occ) print('{}, {:.2f},({}, {})'.format(pc, ac, occ.min() , occ.max()))
Santa's Workshop Tour 2019
6,915,535
n_restarts_optimizer = [0, 1, 2, 3] max_iter_predict = [1, 2, 5, 10, 20, 35, 50, 100] warm_start = [True, False] hyperparams = {'n_restarts_optimizer': n_restarts_optimizer, 'max_iter_predict': max_iter_predict, 'warm_start': warm_start} gpgd=GridSearchCV(estimator = GaussianProcessClassifier() , param_grid = hyperparams, verbose=True, cv=5, scoring = "accuracy", n_jobs =-1) gpgd.fit(X_train, y_train) print(gpgd.best_score_) print(gpgd.best_estimator_ )<train_on_grid>
new = prediction.copy() findBetterDay4Family(new )
Santa's Workshop Tour 2019
6,915,535
n_estimators = [10, 25, 50, 75, 100, 125, 150, 200] learning_rate = [0.001, 0.01, 0.1, 0.5, 1, 1.5, 2] hyperparams = {'n_estimators': n_estimators, 'learning_rate': learning_rate} adgd=GridSearchCV(estimator = AdaBoostClassifier() , param_grid = hyperparams, verbose=True, cv=5, scoring = "accuracy", n_jobs =-1) adgd.fit(X_train, y_train) print(adgd.best_score_) print(adgd.best_estimator_ )<train_on_grid>
final = stochastic_product_search( top_k=2, fam_size=8, original=new, n_iter=500000, verbose=1000, verbose2=50000, random_state=2019 )
Santa's Workshop Tour 2019
6,915,535
learning_rate = [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.2] n_estimators = [100, 250, 500, 750, 1000, 1250, 1500] hyperparams = {'learning_rate': learning_rate, 'n_estimators': n_estimators} gbgd=GridSearchCV(estimator = GradientBoostingClassifier() , param_grid = hyperparams, verbose=True, cv=5, scoring = "accuracy", n_jobs =-1) gbgd.fit(X_train, y_train) print(gbgd.best_score_) print(gbgd.best_estimator_ )<choose_model_class>
final = seed_finding(2019, final )
Santa's Workshop Tour 2019
6,915,535
n_estimators = [10, 25, 50, 75, 100] max_depth = [3, None] max_features = [1, 3, 5, 7] min_samples_split = [2, 4, 6, 8, 10] min_samples_leaf = [2, 4, 6, 8, 10] hyperparams = {'n_estimators': n_estimators, 'max_depth': max_depth, 'max_features': max_features, 'min_samples_split': min_samples_split, 'min_samples_leaf': min_samples_leaf} etgd=GridSearchCV(estimator = ExtraTreesClassifier() , param_grid = hyperparams, verbose=True, cv=5, scoring = "accuracy", n_jobs =-1) etgd.fit(X_train, y_train) print(etgd.best_score_) print(etgd.best_estimator_ )<train_on_grid>
sub = pd.DataFrame(range(N_FAMILIES), columns=['family_id']) sub['assigned_day'] = final+1 sub.to_csv('submission.csv', index=False )
Santa's Workshop Tour 2019
7,163,909
n_estimators = [10, 15, 20, 25, 50, 75, 100, 150] max_samples = [1, 2, 3, 5, 7, 10, 15, 20, 25, 30, 50] max_features = [1, 3, 5, 7] hyperparams = {'n_estimators': n_estimators, 'max_samples': max_samples, 'max_features': max_features} bcgd=GridSearchCV(estimator = BaggingClassifier() , param_grid = hyperparams, verbose=True, cv=5, scoring = "accuracy", n_jobs =-1) bcgd.fit(X_train, y_train) print(bcgd.best_score_) print(bcgd.best_estimator_ )<train_on_grid>
%%writefile main.cpp using namespace std; using namespace std::chrono; int N_JOBS = 4; int END_TIME = 10;//in minutes auto START_TIME = high_resolution_clock::now() ; constexpr array<uint8_t, 15> DISTRIBUTION{2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 5}; // You can setup how many families you need for swaps and what best choice use for each family // {2, 5} it's mean the first random family will brute force for choices 1-2 and the second random family will brute force for choices 1-5 constexpr int MAX_OCCUPANCY = 300; constexpr int MIN_OCCUPANCY = 125; constexpr int BEST_N = 10; array<uint8_t, 5000> n_people; array<array<uint8_t, 10>, 5000> choices; array<array<uint16_t, 10>, 5000> PCOSTM; array<array<double, 176>, 176> ACOSTM; struct Index { Index(array<uint8_t, 5000> assigned_days_): assigned_days(assigned_days_){ setup() ; } array<uint8_t, 5000> assigned_days; array<uint16_t, 100> daily_occupancy_{}; int preference_cost_ = 0; void setup() { preference_cost_ = 0; daily_occupancy_.fill(0); for(int j = 0; j < assigned_days.size() ; ++j){ daily_occupancy_[choices[j][assigned_days[j]]] += n_people[j]; preference_cost_ += PCOSTM[j][assigned_days[j]]; } } double calc(const array<uint16_t, 5000>& indices, const array<uint8_t, DISTRIBUTION.size() >& change){ double accounting_penalty = 0.0; auto daily_occupancy = daily_occupancy_; int preference_cost = preference_cost_; for(int i = 0; i < DISTRIBUTION.size() ; ++i){ int j = indices[i]; daily_occupancy[choices[j][assigned_days[j]]] -= n_people[j]; daily_occupancy[choices[j][ change[i]]] += n_people[j]; preference_cost += PCOSTM[j][change[i]] - PCOSTM[j][assigned_days[j]]; } for(auto occupancy : daily_occupancy) if(occupancy < MIN_OCCUPANCY) return 1e12*(MIN_OCCUPANCY-occupancy); else if(occupancy > MAX_OCCUPANCY) return 1e12*(occupancy - MAX_OCCUPANCY); for(int day = 0; day < 99; ++day) accounting_penalty += ACOSTM[daily_occupancy[day]-125][daily_occupancy[day+1]-125]; accounting_penalty += ACOSTM[daily_occupancy[99]-125][daily_occupancy[99]-125]; return preference_cost + accounting_penalty; } void reindex(const array<uint16_t, DISTRIBUTION.size() >& indices, const array<uint8_t, DISTRIBUTION.size() >& change){ for(int i = 0; i < DISTRIBUTION.size() ; ++i){ assigned_days[indices[i]] = change[i]; } setup() ; } }; static std::atomic<bool> flag(false); static Index global_index({}); bool time_exit_fn() { return duration_cast<minutes>(high_resolution_clock::now() -START_TIME ).count() < END_TIME; } void init_data() { ifstream in(".. /input/santa-workshop-tour-2019/family_data.csv"); assert(in && "family_data.csv"); string header; int n,x; char comma; getline(in, header); for(int j = 0; j < choices.size() ; ++j){ in >> x >> comma; for(int i = 0; i < 10; ++i){ in >> x >> comma; choices[j][i] = x-1; } in >> n; n_people[j] = n; } array<int, 10> pc{0, 50, 50, 100, 200, 200, 300, 300, 400, 500}; array<int, 10> pn{0, 0, 9, 9, 9, 18, 18, 36, 36, 235}; for(int j = 0; j < PCOSTM.size() ; ++j) for(int i = 0; i < 10; ++i) PCOSTM[j][i] = pc[i] + pn[i] * n_people[j]; for(int i = 0; i < 176; ++i) for(int j = 0; j < 176; ++j) ACOSTM[i][j] = i * pow(i+125, 0.5 + abs(i-j)/ 50.0)/ 400.0; } array<uint8_t, 5000> read_submission(string filename){ ifstream in(filename); assert(in && "submission.csv"); array<uint8_t, 5000> assigned_day{}; string header; int id, x; char comma; getline(in, header); for(int j = 0; j < choices.size() ; ++j){ in >> id >> comma >> x; assigned_day[j] = x-1; auto it = find(begin(choices[j]), end(choices[j]), assigned_day[j]); if(it != end(choices[j])) assigned_day[j] = distance(begin(choices[j]), it); } return assigned_day; } double calc(const array<uint8_t, 5000>& assigned_days, bool print=false){ int preference_cost = 0; double accounting_penalty = 0.0; array<uint16_t, 100> daily_occupancy{}; for(int j = 0; j < assigned_days.size() ; ++j){ preference_cost += PCOSTM[j][assigned_days[j]]; daily_occupancy[choices[j][assigned_days[j]]] += n_people[j]; } for(auto occupancy : daily_occupancy) if(occupancy < MIN_OCCUPANCY) return 1e12*(MIN_OCCUPANCY-occupancy); else if(occupancy > MAX_OCCUPANCY) return 1e12*(occupancy - MAX_OCCUPANCY); for(int day = 0; day < 99; ++day) accounting_penalty += ACOSTM[daily_occupancy[day]-125][daily_occupancy[day+1]-125]; accounting_penalty += ACOSTM[daily_occupancy[99]-125][daily_occupancy[99]-125]; if(print){ cout << preference_cost << " " << accounting_penalty << " " << preference_cost+accounting_penalty << endl; } return preference_cost + accounting_penalty; } void save_sub(const array<uint8_t, 5000>& assigned_day){ ofstream out("submission.csv"); out << "family_id,assigned_day" << endl; for(int i = 0; i < assigned_day.size() ; ++i) out << i << "," << choices[i][assigned_day[i]]+1 << endl; } const vector<array<uint8_t, DISTRIBUTION.size() >> changes = []() { vector<array<uint8_t, DISTRIBUTION.size() >> arr; array<uint8_t, DISTRIBUTION.size() > tmp{}; for(int i = 0; true; ++i){ arr.push_back(tmp); tmp[0] += 1; for(int j = 0; j < DISTRIBUTION.size() ; ++j) if(tmp[j] >= DISTRIBUTION[j]){ if(j >= DISTRIBUTION.size() -1) return arr; tmp[j] = 0; ++tmp[j+1]; } } return arr; }() ; //template<class ExitFunction> void stochastic_product_search(Index index){ // 15'360'000it/s 65ns/it 0.065µs/it double best_local_score = calc(index.assigned_days); thread_local std::mt19937 gen(std::random_device{}()); uniform_int_distribution<> dis(0, 4999); array<uint16_t, 5000> indices; iota(begin(indices), end(indices), 0); array<uint16_t, DISTRIBUTION.size() > best_indices{}; array<uint8_t, DISTRIBUTION.size() > best_change{}; for(;time_exit_fn() ;){ bool found_better = false; for(int k = 0; k < BEST_N; ++k){ for(int i = 0; i < DISTRIBUTION.size() ; ++i)//random swap swap(indices[i], indices[dis(gen)]); for(const auto& change : changes){ auto score = index.calc(indices, change); if(score < best_local_score){ found_better = true; best_local_score = score; best_change = change; copy_n(begin(indices), DISTRIBUTION.size() , begin(best_indices)) ; } } } if(flag.load() == true){ return; } if(found_better && flag.load() == false){ // reindex from N best if found better flag = true; index.reindex(best_indices, best_change); global_index = index; return; } } } int main() { init_data() ; auto assigned_day = read_submission(".. /input/submission-710934/submission.csv"); Index index(assigned_day); global_index = index; calc(index.assigned_days, true); for(;time_exit_fn() ;){ std::thread threads[N_JOBS]; for(int i = 0; i < N_JOBS; i++){ threads[i] = std::thread(stochastic_product_search, index); } for(int i = 0; i < N_JOBS; i++){ threads[i].join() ; } auto best_score = calc(global_index.assigned_days, true); save_sub(global_index.assigned_days); flag = false; index = global_index; } return 0; }
Santa's Workshop Tour 2019
7,163,909
<train_on_grid><EOS>
!g++ -pthread -lpthread -O3 -std=c++17 -o main main.cpp
Santa's Workshop Tour 2019
6,942,765
<train_on_grid><EOS>
NMB_DAYS = 100 NMB_FAMILIES = 5000 MAX_PEOPLE_PERDAY = 300 MIN_PEOPLE_PERDAY = 125 MAX_PREF_ALLOWED = 4 cost_ = 0 assignment_ = [-1 for i in range(NMB_FAMILIES)] nmb_people_assigned_to_day_ = [0 for i in range(NMB_DAYS)] families_assigned_to_day_ = [] for i in range(NMB_DAYS): families_assigned_to_day_.append([]) def get_penalty(n, choice): penalty = None if choice == 0: penalty = 0 elif choice == 1: penalty = 50 elif choice == 2: penalty = 50 + 9 * n elif choice == 3: penalty = 100 + 9 * n elif choice == 4: penalty = 200 + 9 * n elif choice == 5: penalty = 200 + 18 * n elif choice == 6: penalty = 300 + 18 * n elif choice == 7: penalty = 300 + 36 * n elif choice == 8: penalty = 400 + 36 * n elif choice == 9: penalty = 500 + 36 * n + 199 * n else: penalty = 500 + 36 * n + 398 * n return penalty def GetAssignmentCostMatrix(data): cost_matrix = np.zeros(( NMB_FAMILIES, NMB_DAYS), dtype=np.int64) for i in range(NMB_FAMILIES): desired = data.values[i, :-1] cost_matrix[i, :] = get_penalty(FAMILY_SIZE[i], 10) for j, day in enumerate(desired): cost_matrix[i, day-1] = get_penalty(FAMILY_SIZE[i], j) return cost_matrix def GetAccountingCostMatrix() : ac = np.zeros(( 1000, 1000), dtype=np.float64) for n in range(ac.shape[0]): for n_p1 in range(ac.shape[1]): diff = abs(n - n_p1) ac[n, n_p1] = max(0,(n - 125)/ 400.0 * n**(0.5 + diff / 50.0)) return ac def GetPreferenceMatrix(data): pref_matrix = np.zeros(( NMB_FAMILIES, NMB_DAYS), dtype=np.int64) for i in range(NMB_FAMILIES): desired = data.values[i, :-1] pref_matrix[i, :] = 10 for j, day in enumerate(desired): pref_matrix[i, day-1] = j return pref_matrix def GetPreferenceForFamiliesMatrix(data): pref_matrix = np.zeros(( NMB_FAMILIES, NMB_DAYS), dtype=np.int64) pref_matrix2 = np.zeros(( NMB_FAMILIES, 10), dtype=np.int64) for i in range(NMB_FAMILIES): desired = data.values[i, :-1] pref_matrix[i, :] = 10 for j, day in enumerate(desired): pref_matrix[i, day-1] = j for i in range(NMB_FAMILIES): for j in range(NMB_DAYS): if(pref_matrix[i][j] < 10): pref_matrix2[i][pref_matrix[i][j]] = j return pref_matrix2 swap_candidates_ = [] for i in range(NMB_DAYS): swap_candidates_.append([]) for j in range(NMB_DAYS): swap_candidates_[i].append([]) def preprocessing() : nbTopForBinN = {} for i in range(10): for j in range(NMB_DAYS): nbTopForBinN[i, j] = 0 for F in range(NMB_FAMILIES): for i in range(MAX_PREF_ALLOWED + 1): D = PREFERENCES_FOR_FAMILY[F][i] for p in range(i, MAX_PREF_ALLOWED + 1): nbTopForBinN[p, D] += FAMILY_SIZE[F] nmbVarsDROPPED = 0 for i in range(NMB_DAYS): if nbTopForBinN[0, i] < 100: for F in range(NMB_FAMILIES): if PREFERENCES_FOR_FAMILY[F][0] == i: for P in range(1, MAX_PREF_ALLOWED + 1): if PREFERENCE_MATRIX[F, PREFERENCES_FOR_FAMILY[F][P]] < 10: nmbVarsDROPPED += 1 PREFERENCE_MATRIX[F, PREFERENCES_FOR_FAMILY[F][P]] = 10 for D in range(NMB_DAYS): if nbTopForBinN[0, D] >= 300: for F in range(NMB_FAMILIES): for P in range(2, MAX_PREF_ALLOWED + 1): if PREFERENCES_FOR_FAMILY[F][P] == D: if PREFERENCE_MATRIX[F, PREFERENCES_FOR_FAMILY[F][P]] < 10: nmbVarsDROPPED += 1 PREFERENCE_MATRIX[F, PREFERENCES_FOR_FAMILY[F][P]] = 10 for D in range(NMB_DAYS): if nbTopForBinN[1, D] >= 300 and nbTopForBinN[0, D] < 300: for F in range(NMB_FAMILIES): for P in range(3, MAX_PREF_ALLOWED + 1): if PREFERENCES_FOR_FAMILY[F][P] == D: if PREFERENCE_MATRIX[F, PREFERENCES_FOR_FAMILY[F][P]] < 10: nmbVarsDROPPED += 1 PREFERENCE_MATRIX[F, PREFERENCES_FOR_FAMILY[F][P]] = 10 for D in range(NMB_DAYS): if nbTopForBinN[2, D] >= 300 and nbTopForBinN[0, D] < 300 and nbTopForBinN[1, D] < 300: for F in range(NMB_FAMILIES): for P in range(4, MAX_PREF_ALLOWED + 1): if PREFERENCES_FOR_FAMILY[F][P] == D: if PREFERENCE_MATRIX[F, PREFERENCES_FOR_FAMILY[F][P]] < 10: nmbVarsDROPPED += 1 PREFERENCE_MATRIX[F, PREFERENCES_FOR_FAMILY[F][P]] = 10 def calculate_solution_cost() : global cost_ cost_ = 0 assign_cost = 0 account_cost = 0 for i in range(NMB_FAMILIES): cost_ += ASSIGNMENT_COST_MATRIX[i][assignment_[i]] assign_cost = cost_ for d in range(NMB_DAYS): today_count = nmb_people_assigned_to_day_[d] yesterday_count = today_count if(d < NMB_DAYS - 1): yesterday_count = nmb_people_assigned_to_day_[d + 1] cost_ += ACCOUNTING_COST_MATRIX[today_count][yesterday_count] account_cost += ACCOUNTING_COST_MATRIX[today_count][yesterday_count] return cost_, assign_cost, account_cost def update_solution(assign): global cost_ global nmb_people_assigned_to_day_ global assignment_ for i in range(NMB_DAYS): nmb_people_assigned_to_day_[i] = 0 families_assigned_to_day_[i] = [] for j in range(NMB_DAYS): swap_candidates_[i][j] = [] for F in range(NMB_FAMILIES): day = assign[F] assignment_[F] = day nmb_people_assigned_to_day_[day] += FAMILY_SIZE[F] families_assigned_to_day_[day].append(F) for k in range(MAX_PREF_ALLOWED + 1): DD = PREFERENCES_FOR_FAMILY[F][k] if(PREFERENCE_MATRIX[F][DD] <= MAX_PREF_ALLOWED): swap_candidates_[day][DD].append(F); calculate_solution_cost() def calculate_accounting_cost(nmb_people_assigned_to_day_, days_to_calc): accounting_cost = 0 for d in days_to_calc: today_count = nmb_people_assigned_to_day_[d] yesterday_count = nmb_people_assigned_to_day_[d] if(d < NMB_DAYS - 1): yesterday_count = nmb_people_assigned_to_day_[d + 1] accounting_cost += ACCOUNTING_COST_MATRIX[today_count][yesterday_count] return accounting_cost def check_move(F1, F2, D2): global cost_ global nmb_people_assigned_to_day_ global assignment_ D1 = assignment_[F1] N1 = FAMILY_SIZE[F1] N2 = 0 if(F2 >= 0): N2 = FAMILY_SIZE[F2] if(nmb_people_assigned_to_day_[D1] - N1 + N2 < MIN_PEOPLE_PERDAY): return False if(nmb_people_assigned_to_day_[D1] - N1 + N2 > MAX_PEOPLE_PERDAY): return False if(nmb_people_assigned_to_day_[D2] - N2 + N1 < MIN_PEOPLE_PERDAY): return False if(nmb_people_assigned_to_day_[D2] - N2 + N1 > MAX_PEOPLE_PERDAY): return False return True def calculate_assignment_cost_diff_with_move(F1, F2, D2): D1 = assignment_[F1] cost_diff = 0 cost_diff +=(ASSIGNMENT_COST_MATRIX[F1][D2] - ASSIGNMENT_COST_MATRIX[F1][D1]) if(F2 >= 0): cost_diff +=(ASSIGNMENT_COST_MATRIX[F2][D1] - ASSIGNMENT_COST_MATRIX[F2][D2]) return cost_diff def calculate_accounting_cost_diff_with_move(F1, F2, D2): D1 = assignment_[F1] N1 = FAMILY_SIZE[F1] N2 = 0 if(F2 >= 0): N2 = FAMILY_SIZE[F2] accounting_cost_diff = 0 accounting_cost_old = 0 accounting_cost_new = 0 days_to_calc = {D1, D2} if(D1 > 0): days_to_calc.add(D1 - 1) if(D2 > 0): days_to_calc.add(D2 - 1) accounting_cost_old = calculate_accounting_cost(nmb_people_assigned_to_day_, days_to_calc) nmb_people_assigned_to_day_new_ = list(nmb_people_assigned_to_day_) nmb_people_assigned_to_day_new_[D1] +=(N2 - N1) nmb_people_assigned_to_day_new_[D2] +=(N1 - N2) accounting_cost_new = calculate_accounting_cost(nmb_people_assigned_to_day_new_, days_to_calc) accounting_cost_diff = accounting_cost_new - accounting_cost_old return accounting_cost_diff def perform_move(F1, F2, D2): global cost_ global nmb_people_assigned_to_day_ global assignment_ D1 = assignment_[F1] N1 = FAMILY_SIZE[F1] N2 = 0 if(F2 >= 0): N2 = FAMILY_SIZE[F2] assignment_[F1] = D2 families_assigned_to_day_[D2].append(F1) families_assigned_to_day_[D1].remove(F1) for k in range(MAX_PREF_ALLOWED + 1): DD = PREFERENCES_FOR_FAMILY[F1][k] if(PREFERENCE_MATRIX[F1][DD] <= MAX_PREF_ALLOWED): swap_candidates_[D2][DD].append(F1); swap_candidates_[D1][DD].remove(F1); if(F2 >= 0): assignment_[F2] = D1 families_assigned_to_day_[D1].append(F2) families_assigned_to_day_[D2].remove(F2) for k in range(MAX_PREF_ALLOWED + 1): DD = PREFERENCES_FOR_FAMILY[F2][k] if(PREFERENCE_MATRIX[F2][DD] <= MAX_PREF_ALLOWED): swap_candidates_[D1][DD].append(F2); swap_candidates_[D2][DD].remove(F2); nmb_people_assigned_to_day_[D1] +=(N2 - N1) nmb_people_assigned_to_day_[D2] +=(N1 - N2) calculate_solution_cost() TOLRAND = 1000 TOL = 50 assCostDiffTOL = 10000000 def local_search_shift_and_swap(nmbIters): iter = 0 while iter < nmbIters: iter+=1 F1 = random.randint(0, NMB_FAMILIES - 1) D1 = assignment_[F1] r = random.randint(0, MAX_PREF_ALLOWED) D2 = PREFERENCES_FOR_FAMILY[F1][r] if(D1 == D2): continue if(PREFERENCE_MATRIX[F1][D2] > MAX_PREF_ALLOWED): continue F2 = -1 if(random.randint(0, 100)< 10): if len(swap_candidates_[D2][D1])== 0: continue r = random.randint(0, len(swap_candidates_[D2][D1])- 1) F2 = swap_candidates_[D2][D1][r] if(PREFERENCE_MATRIX[F2][D1] > MAX_PREF_ALLOWED): continue if(check_move(F1, F2, D2)== False): continue ass_cost_diff = calculate_assignment_cost_diff_with_move(F1, F2, D2) if(ass_cost_diff > assCostDiffTOL): continue acc_cost_diff = calculate_accounting_cost_diff_with_move(F1, F2, D2) cost_diff = ass_cost_diff + acc_cost_diff tol = 0 if(random.randint(0, TOLRAND)== 1): tol = TOL if(cost_diff <= tol and ass_cost_diff <= assCostDiffTOL): perform_move(F1, F2, D2) def LocalSearch(timeLimit, maxIters): startTime = time.time() iter = 0 global assCostDiffTOL assCostDiffTOL = 0 best_assignment = {} for i in range(NMB_FAMILIES): best_assignment[i] = assignment_[i] bestCost = cost_ while(iter < maxIters): if(time.time() - startTime >= timeLimit): break iter+=1 if(iter % 5 == 0): update_solution(best_assignment) local_search_shift_and_swap(20000) if(cost_ < bestCost): bestCost = cost_ print(iter, bestCost, int(time.time() - startTime)) for i in range(NMB_FAMILIES): best_assignment[i] = assignment_[i] assCostDiffTOL += 1 update_solution(best_assignment) def reg_m(y, x): ones = np.ones(len(x[0])) X = sm.add_constant(np.column_stack(( x[0], ones))) for ele in x[1:]: X = sm.add_constant(np.column_stack(( ele, X))) results = sm.OLS(y, X ).fit() return results DELTA = 1 LINEARIZE = False def linearize() : resultABC = [] for d in range(NMB_DAYS): resultABC.append([]) for D in range(NMB_DAYS): x = [] x.append([]) x.append([]) y = [] LB = max(MIN_PEOPLE_PERDAY, nmb_people_assigned_to_day_[D] - DELTA) UB = min(MAX_PEOPLE_PERDAY, nmb_people_assigned_to_day_[D] + DELTA) dom1 = {LB} for i in range(LB + 1, UB + 1): dom1.add(i) if D < NMB_DAYS - 1: LB = max(MIN_PEOPLE_PERDAY, nmb_people_assigned_to_day_[D + 1] - DELTA) UB = min(MAX_PEOPLE_PERDAY, nmb_people_assigned_to_day_[D + 1] + DELTA) dom2 = {LB} for i in range(LB + 1, UB + 1): dom2.add(i) for i in dom1: for j in dom2: x[0].append(i) x[1].append(j) y.append(ACCOUNTING_COST_MATRIX[i, j]) else: for i in dom1: x[0].append(i) x[1].append(i) y.append(ACCOUNTING_COST_MATRIX[i, i]) result = reg_m(y,x) if(nmb_people_assigned_to_day_[D] == 125): result.params[0] = 0 result.params[1] = 10000 result.params[2] = -125 * 10000 resultABC[D] = result.params p = resultABC[D][0] resultABC[D][0] = resultABC[D][1] resultABC[D][1] = p return resultABC def MIP(timeLimit): solver = pywraplp.Solver('simple_mip_program', pywraplp.Solver.CBC_MIXED_INTEGER_PROGRAMMING) x = {} C = {} key = {} K = 0 for i in range(NMB_FAMILIES): for j in range(NMB_DAYS): if PREFERENCE_MATRIX[i, j] <= MAX_PREF_ALLOWED: key[i, j] = K x[K] = solver.BoolVar('x[%i,%i]' %(i, j)) C[K] = ASSIGNMENT_COST_MATRIX[i, j] K = K + 1 else: key[i, j] = -1 nmbvar = solver.NumVariables() print('Number of variables =', solver.NumVariables()) for i in range(NMB_FAMILIES): expr = 0 for j in range(NMB_DAYS): if key[i, j] >= 0: expr = expr + x[key[i, j]] solver.Add(expr == 1) occ = {} for i in range(NMB_DAYS): occ[i] = solver.IntVar(0.0, 1000.0, 'occ[%i,%i]' %(i, 0)) for i in range(NMB_DAYS): expr = 0 for j in range(NMB_FAMILIES): if key[j, i] >= 0: expr +=(x[key[j, i]] * FAMILY_SIZE[j]) LB = MIN_PEOPLE_PERDAY UB = MAX_PEOPLE_PERDAY if LINEARIZE: LB = max(nmb_people_assigned_to_day_[i] - DELTA, MIN_PEOPLE_PERDAY) UB = min(nmb_people_assigned_to_day_[i] + DELTA, MAX_PEOPLE_PERDAY) solver.Add(expr >= LB) solver.Add(expr <= UB) solver.Add(occ[i] == expr) print('Number of constraints =', solver.NumConstraints()) obj = solver.Sum([C[i] * x[i] for i in range(nmbvar)]) if LINEARIZE == True: obj2 = 0 ABC = linearize() for D in range(NMB_DAYS - 1): a = ABC[D][0] b = ABC[D][1] c = ABC[D][2] if D < NMB_DAYS - 1: obj2 = obj2 +(a * occ[D] + b * occ[D + 1] + c) else: obj2 = obj2 +(a * occ[D] + b * occ[D] + c) obj = obj + 1 * obj2 solver.Minimize(obj) solver.SetTimeLimit(1000 * timeLimit) status = solver.Solve() print('MIP Objective value =', solver.Objective().Value()) print('Problem solved in %f milliseconds' % solver.wall_time()) assign = {} for i in range(NMB_FAMILIES): for j in range(NMB_DAYS): if key[i, j] >= 0: if x[key[i, j]].solution_value() > 0.99: assign[i] = j update_solution(assign) random.seed(52) data = pd.read_csv('/kaggle/input/santa-workshop-tour-2019/family_data.csv', index_col='family_id') FAMILY_SIZE = data.n_people.values ASSIGNMENT_COST_MATRIX = GetAssignmentCostMatrix(data) ACCOUNTING_COST_MATRIX = GetAccountingCostMatrix() PREFERENCE_MATRIX = GetPreferenceMatrix(data) PREFERENCES_FOR_FAMILY = GetPreferenceForFamiliesMatrix(data) preprocessing() startTime = time.time() MIP(60) print(calculate_solution_cost()) LocalSearch(3600, 2000) print(calculate_solution_cost()) DELTA = 1 LINEARIZE = True MIP(5 * 60) print(calculate_solution_cost()) LocalSearch(10 * 3600, 500) best_assignment = {} for i in range(NMB_FAMILIES): best_assignment[i] = assignment_[i] bestCost = cost_ for i in range(5): MIP(5 * 60) print(calculate_solution_cost()) LocalSearch(3600, 100) print(calculate_solution_cost()) if(cost_ < bestCost): bestCost = cost_ print("bestCost: ", bestCost, " time: ", time.time() - startTime) for i in range(NMB_FAMILIES): best_assignment[i] = assignment_[i] update_solution(best_assignment) print("Best Solution: ", bestCost) print("LocalSearch...") LocalSearch(3600, 1000) print("Final Solution: ", cost_) with open('submission.csv', mode='w')as csv_file: fieldnames = ['family_id', 'assigned_day'] writer = csv.DictWriter(csv_file, fieldnames=fieldnames) writer.writeheader() for i in range(NMB_FAMILIES): writer.writerow({'family_id': i, 'assigned_day': assignment_[i] + 1} )
Santa's Workshop Tour 2019
7,238,572
<SOS> metric: SantaWorkshopSchedule2019 Kaggle data source: santas-workshop-tour-2019<train_on_grid>
%matplotlib inline NUMBER_DAYS = 100 NUMBER_FAMILIES = 5000 data = pd.read_csv('/kaggle/input/santa-workshop-tour-2019/family_data.csv') submission = pd.read_csv('/kaggle/input/c-stochastic-product-search-65ns/submission.csv') assigned_days = submission['assigned_day'].values columns = data.columns[1:11] DESIRED = data[columns].values COST_PER_FAMILY = [0,50,50,100,200,200,300,300,400,500] COST_PER_FAMILY_MEMBER = [0, 0, 9, 9, 9, 18, 18, 36, 36,235] N_PEOPLE = data['n_people'].values def get_daily_occupancy(assigned_days): daily_occupancy = np.zeros(100, int) for fid, assigned_day in enumerate(assigned_days): daily_occupancy[assigned_day-1] += N_PEOPLE[fid] return daily_occupancy def cost_function(prediction): N_DAYS = 100 MAX_OCCUPANCY = 300 MIN_OCCUPANCY = 125 penalty = 0 days = list(range(N_DAYS,0,-1)) tmp = pd.read_csv('/kaggle/input/santa-workshop-tour-2019/family_data.csv', index_col='family_id') family_size_dict = tmp[['n_people']].to_dict() ['n_people'] cols = [f'choice_{i}' for i in range(10)] choice_dict = tmp[cols].to_dict() daily_occupancy = {k:0 for k in days} for f, d in enumerate(prediction): n = family_size_dict[f] choice_0 = choice_dict['choice_0'][f] choice_1 = choice_dict['choice_1'][f] choice_2 = choice_dict['choice_2'][f] choice_3 = choice_dict['choice_3'][f] choice_4 = choice_dict['choice_4'][f] choice_5 = choice_dict['choice_5'][f] choice_6 = choice_dict['choice_6'][f] choice_7 = choice_dict['choice_7'][f] choice_8 = choice_dict['choice_8'][f] choice_9 = choice_dict['choice_9'][f] daily_occupancy[d] += n if d == choice_0: penalty += 0 elif d == choice_1: penalty += 50 elif d == choice_2: penalty += 50 + 9 * n elif d == choice_3: penalty += 100 + 9 * n elif d == choice_4: penalty += 200 + 9 * n elif d == choice_5: penalty += 200 + 18 * n elif d == choice_6: penalty += 300 + 18 * n elif d == choice_7: penalty += 300 + 36 * n elif d == choice_8: penalty += 400 + 36 * n elif d == choice_9: penalty += 500 + 36 * n + 199 * n else: penalty += 500 + 36 * n + 398 * n for _, v in daily_occupancy.items() : if(v < MIN_OCCUPANCY): penalty += 100000000 accounting_cost =(daily_occupancy[days[0]]-125.0)/ 400.0 * daily_occupancy[days[0]]**(0.5) accounting_costs = [max(0, accounting_cost)] diffs = [0] yesterday_count = daily_occupancy[days[0]] for day in days[1:]: today_count = daily_occupancy[day] diff = abs(today_count - yesterday_count) accounting_costs.append(max(0,(today_count-125.0)/ 400.0 * today_count**(0.5 + diff / 50.0))) yesterday_count = today_count return penalty, sum(accounting_costs), penalty + sum(accounting_costs )
Santa's Workshop Tour 2019
7,238,572
<train_on_grid><EOS>
MAX_BEST_CHOICE = 5 NUM_SWAP = 2500 NUM_SECONDS = 1800 NUM_THREADS = 4 for _ in range(40): solver = pywraplp.Solver('Optimization preference cost', pywraplp.Solver.CBC_MIXED_INTEGER_PROGRAMMING) daily_occupancy = get_daily_occupancy(assigned_days ).astype(float) fids = np.random.choice(range(NUMBER_FAMILIES), NUM_SWAP, replace=False) PCOSTM, B = {}, {} for fid in range(NUMBER_FAMILIES): if fid in fids: for i in range(MAX_BEST_CHOICE): PCOSTM[fid, DESIRED[fid][i]-1] = COST_PER_FAMILY[i] + N_PEOPLE[fid] * COST_PER_FAMILY_MEMBER[i] B[ fid, DESIRED[fid][i]-1] = solver.BoolVar('') else: daily_occupancy[assigned_days[fid]-1] -= N_PEOPLE[fid] solver.set_time_limit(NUM_SECONDS*NUM_THREADS*1000) solver.SetNumThreads(NUM_THREADS) for day in range(NUMBER_DAYS): if daily_occupancy[day]: solver.Add(solver.Sum([N_PEOPLE[fid] * B[fid, day] for fid in range(NUMBER_FAMILIES)if(fid,day)in B])== daily_occupancy[day]) for fid in fids: solver.Add(solver.Sum(B[fid, day] for day in range(NUMBER_DAYS)if(fid, day)in B)== 1) solver.Minimize(solver.Sum(PCOSTM[fid, day] * B[fid, day] for fid, day in B)) sol = solver.Solve() status = ['OPTIMAL', 'FEASIBLE', 'INFEASIBLE', 'UNBOUNDED', 'ABNORMAL', 'MODEL_INVALID', 'NOT_SOLVED'] if status[sol] in ['OPTIMAL', 'FEASIBLE']: tmp = assigned_days.copy() for fid, day in B: if B[fid, day].solution_value() > 0.5: tmp[fid] = day+1 if cost_function(tmp)[2] < cost_function(assigned_days)[2]: assigned_days = tmp submission['assigned_day'] = assigned_days submission.to_csv('submission.csv', index=False) print('Result:', status[sol], cost_function(tmp)) else: print('Result:', status[sol] )
Santa's Workshop Tour 2019
7,078,845
<SOS> metric: SantaWorkshopSchedule2019 Kaggle data source: santas-workshop-tour-2019<train_model>
import os import ctypes from numpy.ctypeslib import ndpointer import pandas as pd import numpy as np from tqdm.notebook import tqdm from numba import njit, prange
Santa's Workshop Tour 2019
7,078,845
ran = rfgd.best_estimator_ knn = kngd.best_estimator_ log = lrgd.best_estimator_ xgb = xggd.best_estimator_ gbc = gbgd.best_estimator_ svc = svgd.best_estimator_ ext = etgd.best_estimator_ ada = adgd.best_estimator_ gpc = gpgd.best_estimator_ bag = bcgd.best_estimator_ models = [ran, knn, log, xgb, gbc, svc, ext, ada, gnb, gpc, bag] scores_v3 = [] for mod in models: mod.fit(X_train, y_train) acc = cross_val_score(mod, X_train, y_train, scoring = "accuracy", cv = 10) scores_v3.append(acc.mean() )<create_dataframe>
%%writefile score.c int cost[NF][101]; int fs[NF]; int cf[NF][10]; int loaded=0; float acc[301][301]; void precompute_acc() { for(int i=125;i<=300;i++) for(int j=125;j<=300;j++) acc[i][j] =(i-125.0)/400.0 * pow(i , 0.5 + fabs(i-j)/ 50); } void read_fam() { FILE *f; char s[1000]; int d[101],fid,n; int *c; f=fopen(".. /input/santa-workshop-tour-2019/family_data.csv","r"); if(fgets(s,1000,f)==NULL) exit(-1); for(int i=0;i<5000;i++){ c = &cf[i][0]; if(fscanf(f,"%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d", &fid,&c[0],&c[1],&c[2],&c[3],&c[4],&c[5],&c[6],&c[7],&c[8],&c[9],&fs[i])!=12) exit(-1); // printf("%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d ", //fid,c[0],c[1],c[2],c[3],c[4],c[5],c[6],c[7],c[8],c[9],fs[i]); n = fs[i]; for(int j=1;j<=100;j++){ if(j==c[0])cost[i][j]=0; else if(j==c[1])cost[i][j]=50; else if(j==c[2])cost[i][j]=50 + 9 * n; else if(j==c[3])cost[i][j]=100 + 9 * n; else if(j==c[4])cost[i][j]=200 + 9 * n; else if(j==c[5])cost[i][j]=200 + 18 * n; else if(j==c[6])cost[i][j]=300 + 18 * n; else if(j==c[7])cost[i][j]=300 + 36 * n; else if(j==c[8])cost[i][j]=400 + 36 * n; else if(j==c[9])cost[i][j]=500 + 36 * n + 199 * n; else cost[i][j]=500 + 36 * n + 398 * n; } } } float max_cost=1000000000; int day_occ[102]; static inline int day_occ_ok(int d){ return !(d <125 || d>300); } float score(int *pred){ float r=0; if(!loaded){ read_fam() ; precompute_acc() ; loaded = 1; } // validate day occupancy memset(day_occ,0,101*sizeof(int)) ; for(int i=0;i<NF;i++){ day_occ[pred[i]]+=fs[i]; r+=cost[i][pred[i]]; } day_occ[101]=day_occ[100]; for(int d=1;d<=100;d++){ if(day_occ[d]<125) r += 100000 *(125 - day_occ[d]); else if(day_occ[d] > 300) r += 100000 *(day_occ[d] - 300); r += acc[day_occ[d]][day_occ[d+1]]; } return r; }
Santa's Workshop Tour 2019
7,078,845
results = pd.DataFrame({ 'Model': ['Random Forest', 'K Nearest Neighbour', 'Logistic Regression', 'XGBoost', 'Gradient Boosting', 'SVC', 'Extra Trees', 'AdaBoost', 'Gaussian Naive Bayes', 'Gaussian Process', 'Bagging Classifier'], 'Original Score': scores, 'Score with feature selection': scores_v2, 'Score with tuned parameters': scores_v3}) result_df = results.sort_values(by='Score with tuned parameters', ascending=False ).reset_index(drop=True) result_df<train_model>
lib = ctypes.CDLL('./score.so') cost_function = lib.score cost_function.restype = ctypes.c_float cost_function.argtypes = [ndpointer(ctypes.c_int)]
Santa's Workshop Tour 2019
7,078,845
ran = rfgd.best_estimator_ knn = kngd.best_estimator_ log = lrgd.best_estimator_ xgb = xggd.best_estimator_ gbc = gbgd.best_estimator_ svc = svgd.best_estimator_ ext = etgd.best_estimator_ ada = adgd.best_estimator_ gpc = gpgd.best_estimator_ bag = bcgd.best_estimator_ models = [ran, knn, log, xgb, gbc, svc, ext, ada, gnb, gpc, bag] scores_v4 = [] for mod in models: mod.fit(X_train, y_train) predict = mod.predict(X_test) acc = accuracy_score(y_test, predict) scores_v4.append(acc )<create_dataframe>
score = [] sub = [] name = os.listdir('/kaggle/input/santa-public') for item in name: score.append(int(item.split('_')[1].split('.')[0])) sub.append(pd.read_csv('.. /input/santa-public/'+item, index_col='family_id')) print(np.min(score)) print(len(sub))
Santa's Workshop Tour 2019
7,078,845
results = pd.DataFrame({ 'Model': ['Random Forest', 'K Nearest Neighbour', 'Logistic Regression', 'XGBoost', 'Gradient Boosting', 'SVC', 'Extra Trees', 'AdaBoost', 'Gaussian Naive Bayes', 'Gaussian Process', 'Bagging Classifier'], 'Original Score': scores, 'Score with feature selection': scores_v2, 'Score with tuned parameters': scores_v3, 'Score with full accuracy': scores_v4}) result_df = results.sort_values(by='Score with full accuracy', ascending=False ).reset_index(drop=True) result_df<predict_on_test>
top_k = 3 base_path = '/kaggle/input/santa-workshop-tour-2019/' sub_path = '/kaggle/input/greedy-dual-and-tripple-shuffle-with-fast-scoring/' data = pd.read_csv(base_path + 'family_data.csv', index_col='family_id') submission = pd.read_csv(f'.. /input/santa-public/submission_{np.min(score)}.csv', index_col='family_id') original = submission['assigned_day'].values original_score = cost_function(np.int32(original)) choice_matrix = data.loc[:, 'choice_0': 'choice_9'].values print(cost_function(np.int32(original)) )
Santa's Workshop Tour 2019
7,078,845
predictions = ext.predict(test_features )<save_to_csv>
fam_weight = [] for i, s in enumerate(submission.iterrows()): for c in range(choice_matrix.shape[1]): if s[1].values==choice_matrix[i, c]: fam_weight.append(c+1) fam_weight = np.array(fam_weight) fam_weight = fam_weight / sum(fam_weight) print(fam_weight )
Santa's Workshop Tour 2019
7,078,845
submission=pd.DataFrame() submission['PassengerId']=TestId submission['Survived']=predictions submission.to_csv('submission.csv', index=False )<load_from_csv>
redundancy = 5 choice_weight = np.zeros(( 5000, top_k)) for i in tqdm(range(5000)) : for j in range(top_k): for s in sub: if choice_matrix[i, j] == s.loc[i, 'assigned_day']: choice_weight[i, j] += 1 choice_weight += redundancy for j in range(choice_weight.shape[0]): choice_weight[j] /= sum(choice_weight[j]) print(choice_weight )
Santa's Workshop Tour 2019
7,078,845
print('reading input files.. ') data = pd.read_csv('.. /input/train.csv') sampl = pd.read_csv('.. /input/gender_submission.csv' )<load_from_csv>
def random_choice_prob_index(a, axis=1): r = np.expand_dims(np.random.rand(a.shape[1-axis]), axis=axis) return(a.cumsum(axis=axis)> r ).argmax(axis=axis )
Santa's Workshop Tour 2019
7,078,845
test = pd.read_csv('.. /input/test.csv' )<concatenate>
def lucky_choice_search(top_k, fam_size, original, choice_matrix, disable_tqdm=False, n_iter=100000000, verbose=10000, random_state=2019): best = original.copy() best_score = cost_function(np.int32(best)) if random_state is not None: np.random.seed(random_state) fam_indices = np.random.choice(range(choice_matrix.shape[0]), size=fam_size, p=fam_weight) for i in tqdm(range(n_iter), disable=disable_tqdm): new = best.copy() new[fam_indices] = choice_matrix[fam_indices, random_choice_prob_index(choice_weight[fam_indices])] new_score = cost_function(np.int32(new)) if new_score < best_score: best_score = new_score best = new print(f'{i} NEW BEST SCORE: ', best_score) submission['assigned_day'] = best submission.to_csv(f'submission_{best_score}.csv') if verbose and i % verbose == 0: print(f"Iteration return best, best_score
Santa's Workshop Tour 2019
7,078,845
df = data.append(test, sort = False )<merge>
best, best_score = lucky_choice_search( choice_matrix=choice_matrix, top_k=top_k, fam_size=20, original=original, n_iter=250000000, disable_tqdm=False, random_state=20191217, verbose=None )
Santa's Workshop Tour 2019
7,078,845
<feature_engineering><EOS>
submission['assigned_day'] = best submission.to_csv(f'submission_{best_score}.csv' )
Santa's Workshop Tour 2019
6,920,137
<SOS> metric: SantaWorkshopSchedule2019 Kaggle data source: santas-workshop-tour-2019<feature_engineering>
import numpy as np import pandas as pd from numba import njit, prange
Santa's Workshop Tour 2019
6,920,137
df['FamilySurv'] = 0.5 for _, grup in df.groupby(['FamilyName','Fare']): if len(grup)!= 1: for index, row in grup.iterrows() : smax = grup.drop(index ).Survived.max() smin = grup.drop(index ).Survived.min() pid = row.PassengerId if smax == 1: df.loc[df.PassengerId == pid, 'FamilySurv'] = 1.0 elif smin == 0: df.loc[df.PassengerId == pid, 'FamilySurv'] = 0.0 for _, grup in df.groupby(['Ticket']): if len(grup)!= 1: for index, row in grup.iterrows() : if(row.FamilySurv == 0.0 or row.FamilySurv == 0.5): smax = grup.drop(index ).Survived.max() smin = grup.drop(index ).Survived.min() pid = row.PassengerId if smax == 1: df.loc[df.PassengerId == pid, 'FamilySurv'] = 1.0 elif smin == 0: df.loc[df.PassengerId == pid, 'FamilySurv'] = 0.0 df.FamilySurv.value_counts()<feature_engineering>
data = pd.read_csv('/kaggle/input/santa-workshop-tour-2019/family_data.csv', index_col='family_id') family_size = data.n_people.values.astype(np.int8) penalties = np.asarray([ [ 0, 50, 50 + 9 * n, 100 + 9 * n, 200 + 9 * n, 200 + 18 * n, 300 + 18 * n, 300 + 36 * n, 400 + 36 * n, 500 + 36 * n + 199 * n, 500 + 36 * n + 398 * n ] for n in range(family_size.max() + 1) ]) family_cost_matrix = np.concatenate(data.n_people.apply(lambda n: np.repeat(penalties[n, 10], 100 ).reshape(1, 100))) for fam in data.index: for choice_order, day in enumerate(data.loc[fam].drop("n_people")) : family_cost_matrix[fam, day - 1] = penalties[data.loc[fam, "n_people"], choice_order] accounting_cost_matrix = np.zeros(( 500, 500)) for n in range(accounting_cost_matrix.shape[0]): for diff in range(accounting_cost_matrix.shape[1]): accounting_cost_matrix[n, diff] = max(0,(n - 125.0)/ 400.0 * n**(0.5 + diff / 50.0)) @njit(fastmath=True) def cost_function(prediction, family_size, family_cost_matrix, accounting_cost_matrix): N_DAYS = family_cost_matrix.shape[1] MAX_OCCUPANCY = 300 MIN_OCCUPANCY = 125 penalty = 0 daily_occupancy = np.zeros(N_DAYS + 1, dtype=np.int16) for i,(pred, n)in enumerate(zip(prediction, family_size)) : daily_occupancy[pred - 1] += n penalty += family_cost_matrix[i, pred - 1] accounting_cost = 0 n_low = 0 n_high = 0 daily_occupancy[-1] = daily_occupancy[-2] for day in range(N_DAYS): n_next = daily_occupancy[day + 1] n = daily_occupancy[day] n_high +=(n > MAX_OCCUPANCY) n_low +=(n < MIN_OCCUPANCY) diff = abs(n - n_next) accounting_cost += accounting_cost_matrix[n, diff] return np.asarray([penalty, accounting_cost, n_low, n_high]) def score(prediction): fc, ac, l, h = cost_function(prediction, family_size, family_cost_matrix, accounting_cost_matrix) return(fc + ac)+(l + h)* 1000000 fam = pd.read_csv("/kaggle/input/santa-workshop-tour-2019/family_data.csv") pref = fam.values[:,1:-1]
Santa's Workshop Tour 2019
6,920,137
def CabinNum(data): data.Cabin = data.Cabin.fillna('0') regex = re.compile('\s*(\w+)\s*') data['CabinNum'] = data.Cabin.apply(lambda x : len(regex.findall(x))) CabinNum(df )<count_values>
pred = pd.read_csv('/kaggle/input/santa-ip/submission.csv', index_col='family_id' ).assigned_day.values init_score = score(pred) print(init_score )
Santa's Workshop Tour 2019
6,920,137
df.CabinNum.value_counts()<filter>
sub = pd.read_csv('/kaggle/input/santa-ip/submission.csv') !cp /kaggle/input/santa-ip/submission.csv./submission_72398.91780918743.csv
Santa's Workshop Tour 2019
6,920,137
df.loc[df['Fare'].isnull() ]<filter>
def seed_finding(seed, prediction_input): prediction = prediction_input.copy() np.random.seed(seed) best_score = score(prediction) original_score = best_score print("SEED: {} ORIGINAL SCORE: {}".format(seed, original_score)) for t in range(100): for i in range(5000): for j in range(10): di = prediction[i] prediction[i] = pref[i, j] cur_score = score(prediction) KT = 1 if t < 5: KT = 1.5 elif t < 10: KT = 4.5 else: if cur_score > best_score + 100: KT = 3 elif cur_score > best_score + 50 : KT = 2.75 elif cur_score > best_score + 20: KT = 2.5 elif cur_score > best_score + 10: KT = 2 elif cur_score > best_score: KT = 1.5 else: KT = 1 prob = np.exp(-(cur_score - best_score)/ KT) if np.random.rand() < prob: best_score = cur_score else: prediction[i] = di if best_score < original_score: print("NEW BEST SCORE on seed {}: {}".format(seed, best_score)) sub.assigned_day = prediction sub.to_csv(f'submission_{best_score}.csv', index=False) break if best_score >= original_score: print("UNLUCKY on seed {} for 100 runs, no impovement.".format(seed)) return prediction, best_score
Santa's Workshop Tour 2019
6,920,137
<feature_engineering><EOS>
best_score = init_score for seed in range(1201, 1225): pred, best_score = seed_finding(seed, pred) if best_score < init_score: init_score = best_score else: best_score = init_score pred = pd.read_csv(f'submission_{best_score}.csv', index_col='family_id' ).assigned_day.values
Santa's Workshop Tour 2019
7,263,353
<SOS> metric: SantaWorkshopSchedule2019 Kaggle data source: santas-workshop-tour-2019<feature_engineering>
NUMBER_DAYS = 100 NUMBER_FAMILIES = 5000 MAX_BEST_CHOICE = 5 data = pd.read_csv('/kaggle/input/santa-workshop-tour-2019/family_data.csv') submission = pd.read_csv('/kaggle/input/c-stochastic-product-search-65ns/submission.csv') assigned_days = submission['assigned_day'].values columns = data.columns[1:11] DESIRED = data[columns].values COST_PER_FAMILY = [0,50,50,100,200,200,300,300,400,500] COST_PER_FAMILY_MEMBER = [0, 0, 9, 9, 9, 18, 18, 36, 36,235] N_PEOPLE = data['n_people'].astype(int ).values def get_daily_occupancy(assigned_days): daily_occupancy = np.zeros(100, np.int32) for i, r in enumerate(assigned_days): daily_occupancy[r-1] += N_PEOPLE[i] return daily_occupancy def cost_function(prediction): N_DAYS = 100 MAX_OCCUPANCY = 300 MIN_OCCUPANCY = 125 penalty = 0 days = list(range(N_DAYS,0,-1)) tmp = pd.read_csv('/kaggle/input/santa-workshop-tour-2019/family_data.csv', index_col='family_id') family_size_dict = tmp[['n_people']].to_dict() ['n_people'] cols = [f'choice_{i}' for i in range(10)] choice_dict = tmp[cols].to_dict() daily_occupancy = {k:0 for k in days} for f, d in enumerate(prediction): n = family_size_dict[f] choice_0 = choice_dict['choice_0'][f] choice_1 = choice_dict['choice_1'][f] choice_2 = choice_dict['choice_2'][f] choice_3 = choice_dict['choice_3'][f] choice_4 = choice_dict['choice_4'][f] choice_5 = choice_dict['choice_5'][f] choice_6 = choice_dict['choice_6'][f] choice_7 = choice_dict['choice_7'][f] choice_8 = choice_dict['choice_8'][f] choice_9 = choice_dict['choice_9'][f] daily_occupancy[d] += n if d == choice_0: penalty += 0 elif d == choice_1: penalty += 50 elif d == choice_2: penalty += 50 + 9 * n elif d == choice_3: penalty += 100 + 9 * n elif d == choice_4: penalty += 200 + 9 * n elif d == choice_5: penalty += 200 + 18 * n elif d == choice_6: penalty += 300 + 18 * n elif d == choice_7: penalty += 300 + 36 * n elif d == choice_8: penalty += 400 + 36 * n elif d == choice_9: penalty += 500 + 36 * n + 199 * n else: penalty += 500 + 36 * n + 398 * n for _, v in daily_occupancy.items() : if v > MAX_OCCUPANCY or v < MIN_OCCUPANCY: penalty += 100000000 accounting_cost = max(0,(daily_occupancy[days[0]]-125.0)/ 400.0 * daily_occupancy[days[0]]**(0.5)) yesterday_count = daily_occupancy[days[0]] for day in days[1:]: today_count = daily_occupancy[day] diff = abs(today_count - yesterday_count) accounting_cost += max(0,(today_count-125.0)/ 400.0 * today_count**(0.5 + diff / 50.0)) yesterday_count = today_count return penalty, accounting_cost, penalty + accounting_cost
Santa's Workshop Tour 2019
7,263,353
def FamlSize(data): data['FamlSize'] = 0 data['FamlSize'] = data['SibSp'] + data['Parch'] + 1 def IsAlone(data): data['IsAlone'] = 0 data.loc[(data['FamlSize'] == 1), 'IsAlone'] = 0 data.loc[(data['FamlSize'] > 1), 'IsAlone'] = 1 FamlSize(df) IsAlone(df )<categorify>
%%time for num_members in range(2, 9): daily_occupancy = get_daily_occupancy(assigned_days) fids = np.where(N_PEOPLE == num_members)[0] PCOSTM = {} for fid in range(NUMBER_FAMILIES): if fid in fids: for i in range(MAX_BEST_CHOICE): PCOSTM[fid, DESIRED[fid][i]-1] = COST_PER_FAMILY[i] + N_PEOPLE[fid] * COST_PER_FAMILY_MEMBER[i] else: daily_occupancy[assigned_days[fid]-1] -= N_PEOPLE[fid] offset = fids.shape[0] solver = pywrapgraph.SimpleMinCostFlow() for day in range(NUMBER_DAYS): solver.SetNodeSupply(offset+day, int(daily_occupancy[day]//num_members)) for i in range(offset): fid = fids[i] solver.SetNodeSupply(i, -1) for j in range(MAX_BEST_CHOICE): day = DESIRED[fid][j]-1 solver.AddArcWithCapacityAndUnitCost(int(offset+day), i, 1, int(PCOSTM[fid, day])) solver.SolveMaxFlowWithMinCost() for i in range(solver.NumArcs()): if solver.Flow(i)> 0: assigned_days[fids[solver.Head(i)]] = solver.Tail(i)- offset + 1 print(cost_function(assigned_days))
Santa's Workshop Tour 2019
7,263,353
<find_best_model_class><EOS>
submission['assigned_day'] = assigned_days submission.to_csv('submission.csv', index=False )
Santa's Workshop Tour 2019
7,548,781
<SOS> metric: SantaWorkshopSchedule2019 Kaggle data source: santas-workshop-tour-2019<feature_engineering>
%%bash git clone git://github.com/yyuu/pyenv.git ~/.pyenv echo 'export PYENV_ROOT="$HOME/.pyenv"' >> ~/.bash_profile echo 'export PATH="$PYENV_ROOT/bin:$PATH"' >> ~/.bash_profile echo 'eval "$(pyenv init -)"' >> ~/.bash_profile source ~/.bash_profile apt-get install -y libssl-dev libreadline-dev pyenv install 2.7.17 pyenv local 2.7.17 pip install pandas numpy wget https://mipcl-cpp.appspot.com/static/download/mipcl-py-2.6.1.linux-x86_64.tar.gz tar --exclude='*docs' -xzvf mipcl-py-2.6.1.linux-x86_64.tar.gz rm -f./mipcl_py/mipshell/mipcl.so ln -s mipcl-py2.so./mipcl_py/mipshell/mipcl.so
Santa's Workshop Tour 2019
7,548,781
def AgeCat(data): data['AgeCat'] = 0 data.loc[(data['Age'] <= 5), 'AgeCat'] = 0 data.loc[(data['Age'] <= 12)&(data['Age'] > 5), 'AgeCat'] = 1 data.loc[(data['Age'] <= 18)&(data['Age'] > 12), 'AgeCat'] = 2 data.loc[(data['Age'] <= 22)&(data['Age'] > 18), 'AgeCat'] = 3 data.loc[(data['Age'] <= 32)&(data['Age'] > 22), 'AgeCat'] = 4 data.loc[(data['Age'] <= 45)&(data['Age'] > 32), 'AgeCat'] = 5 data.loc[(data['Age'] <= 60)&(data['Age'] > 45), 'AgeCat'] = 6 data.loc[(data['Age'] <= 70)&(data['Age'] > 60), 'AgeCat'] = 7 data.loc[(data['Age'] > 70), 'AgeCat'] = 8 AgeCat(df )<feature_engineering>
%%bash source ~/.bash_profile python <<__EOF__ def get_days(assigned_days, n_people): days = np.zeros(assigned_days.max() , int) for i, r in enumerate(assigned_days): days[r-1] += n_people[i] return days def example_mipcl(desired, n_people): def accounting_penalty(day, next_day): return(day - 125.0)*(day**(0.5 + abs(day - next_day)/ 50.0)) / 400.0 FAMILY_COST = np.asarray([0,50,50,100,200,200,300,300,400,500]) MEMBER_COST = np.asarray([0, 0, 9, 9, 9, 18, 18, 36, 36,235]) num_days = desired.max() num_families = desired.shape[0] solver = mipshell.Problem(name='Santa2019 only preference') C, B, I = {}, {}, {} for fid, choices in enumerate(desired): for cid in range(10): B[fid, choices[cid]-1] = mipshell.Var(type=mipshell.BIN, lb=0.0, ub=1.0) C[fid, choices[cid]-1] = FAMILY_COST[cid] + n_people[fid] * MEMBER_COST[cid] for day in range(num_days): I[day] = mipshell.Var(type=mipshell.INT, lb=125, ub=300) mipshell.sum_(n_people[fid]*B[fid, day] for fid in range(num_families)if(fid,day)in B)== I[day] for fid in range(num_families): mipshell.sum_(B[fid, day] for day in range(num_days)if(fid,day)in B)== 1 objective = mipshell.sum_(C[fid, day]*B[fid, day] for fid, day in B) solver.minimize(objective) solver.optimize(silent=False, gap=0.0) if solver.is_solution: print("Result: ", solver.getObjVal()) assigned_days = np.zeros(num_families, int) for fid, day in B: if B[fid, day].val > 0.5: assigned_days[fid] = day + 1 return assigned_days else: print("Failed", solver.is_solution, solver.is_infeasible, solver.isPureLP) return None def save(assigned_days): with open("submission_init.csv", "w")as f: f.write("family_id,assigned_day ") for fid, v in enumerate(assigned_days): f.write("{},{} ".format(fid, v)) if __name__ == "__main__": ds = pd.read_csv('.. /input/santa-workshop-tour-2019/family_data.csv') t = time.time() ret = example_mipcl(ds.values[:,1:11], ds.values[:,11]) if ret is not None: save(ret) print("Elapsed time", time.time() - t) __EOF__
Santa's Workshop Tour 2019
7,548,781
def AgeCatTitle(data): data['AgeCatTitle'] = data['Title'].map(str)+ data['AgeCat'].map(str) <filter>
Stochastic optimalization: https://www.kaggle.com/golubev/c-stochastic-product-search-65ns
Santa's Workshop Tour 2019
7,548,781
df.loc[df['Embarked'].isnull() ]<feature_engineering>
%%writefile main.cpp using namespace std; using namespace std::chrono; constexpr array<uint8_t, 14> DISTRIBUTION{2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 5}; // You can setup how many families you need for swaps and what best choice use for each family // {2, 5} it's mean the first random family will brute force for choices 1-2 and the second random family will brute force for choices 1-5 constexpr int MAX_OCCUPANCY = 300; constexpr int MIN_OCCUPANCY = 125; constexpr int BEST_N = 1000; array<uint8_t, 5000> n_people; array<array<uint8_t, 10>, 5000> choices; array<array<uint16_t, 10>, 5000> PCOSTM; array<array<double, 176>, 176> ACOSTM; void init_data() { ifstream in(".. /input/santa-workshop-tour-2019/family_data.csv"); assert(in && "family_data.csv"); string header; int n,x; char comma; getline(in, header); for(int j = 0; j < choices.size() ; ++j){ in >> x >> comma; for(int i = 0; i < 10; ++i){ in >> x >> comma; choices[j][i] = x-1; } in >> n; n_people[j] = n; } array<int, 10> pc{0, 50, 50, 100, 200, 200, 300, 300, 400, 500}; array<int, 10> pn{0, 0, 9, 9, 9, 18, 18, 36, 36, 235}; for(int j = 0; j < PCOSTM.size() ; ++j) for(int i = 0; i < 10; ++i) PCOSTM[j][i] = pc[i] + pn[i] * n_people[j]; for(int i = 0; i < 176; ++i) for(int j = 0; j < 176; ++j) ACOSTM[i][j] = i * pow(i+125, 0.5 + abs(i-j)/ 50.0)/ 400.0; } array<uint8_t, 5000> read_submission(string filename){ ifstream in(filename); assert(in && "submission_init.csv"); array<uint8_t, 5000> assigned_day{}; string header; int id, x; char comma; getline(in, header); for(int j = 0; j < choices.size() ; ++j){ in >> id >> comma >> x; assigned_day[j] = x-1; auto it = find(begin(choices[j]), end(choices[j]), assigned_day[j]); if(it != end(choices[j])) assigned_day[j] = distance(begin(choices[j]), it); } return assigned_day; } struct Index { Index(array<uint8_t, 5000> assigned_days_): assigned_days(assigned_days_){ setup() ; } array<uint8_t, 5000> assigned_days; array<uint16_t, 100> daily_occupancy_{}; int preference_cost_ = 0; void setup() { preference_cost_ = 0; daily_occupancy_.fill(0); for(int j = 0; j < assigned_days.size() ; ++j){ daily_occupancy_[choices[j][assigned_days[j]]] += n_people[j]; preference_cost_ += PCOSTM[j][assigned_days[j]]; } } double calc(const array<uint16_t, 5000>& indices, const array<uint8_t, DISTRIBUTION.size() >& change){ double accounting_penalty = 0.0; auto daily_occupancy = daily_occupancy_; int preference_cost = preference_cost_; for(int i = 0; i < DISTRIBUTION.size() ; ++i){ int j = indices[i]; daily_occupancy[choices[j][assigned_days[j]]] -= n_people[j]; daily_occupancy[choices[j][ change[i]]] += n_people[j]; preference_cost += PCOSTM[j][change[i]] - PCOSTM[j][assigned_days[j]]; } for(auto occupancy : daily_occupancy) if(occupancy < MIN_OCCUPANCY) return 1e12*(MIN_OCCUPANCY-occupancy); else if(occupancy > MAX_OCCUPANCY) return 1e12*(occupancy - MAX_OCCUPANCY); for(int day = 0; day < 99; ++day) accounting_penalty += ACOSTM[daily_occupancy[day]-125][daily_occupancy[day+1]-125]; accounting_penalty += ACOSTM[daily_occupancy[99]-125][daily_occupancy[99]-125]; return preference_cost + accounting_penalty; } void reindex(const array<uint16_t, DISTRIBUTION.size() >& indices, const array<uint8_t, DISTRIBUTION.size() >& change){ for(int i = 0; i < DISTRIBUTION.size() ; ++i){ assigned_days[indices[i]] = change[i]; } setup() ; } }; double calc(const array<uint8_t, 5000>& assigned_days, bool print=false){ int preference_cost = 0; double accounting_penalty = 0.0; array<uint16_t, 100> daily_occupancy{}; for(int j = 0; j < assigned_days.size() ; ++j){ preference_cost += PCOSTM[j][assigned_days[j]]; daily_occupancy[choices[j][assigned_days[j]]] += n_people[j]; } for(auto occupancy : daily_occupancy) if(occupancy < MIN_OCCUPANCY) return 1e12*(MIN_OCCUPANCY-occupancy); else if(occupancy > MAX_OCCUPANCY) return 1e12*(occupancy - MAX_OCCUPANCY); for(int day = 0; day < 99; ++day) accounting_penalty += ACOSTM[daily_occupancy[day]-125][daily_occupancy[day+1]-125]; accounting_penalty += ACOSTM[daily_occupancy[99]-125][daily_occupancy[99]-125]; if(print){ cout << preference_cost << " " << accounting_penalty << " " << preference_cost+accounting_penalty << endl; } return preference_cost + accounting_penalty; } void save_sub(const array<uint8_t, 5000>& assigned_day){ ofstream out("submission_init2.csv"); out << "family_id,assigned_day" << endl; for(int i = 0; i < assigned_day.size() ; ++i) out << i << "," << choices[i][assigned_day[i]]+1 << endl; } const vector<array<uint8_t, DISTRIBUTION.size() >> changes = []() { vector<array<uint8_t, DISTRIBUTION.size() >> arr; array<uint8_t, DISTRIBUTION.size() > tmp{}; for(int i = 0; true; ++i){ arr.push_back(tmp); tmp[0] += 1; for(int j = 0; j < DISTRIBUTION.size() ; ++j) if(tmp[j] >= DISTRIBUTION[j]){ if(j >= DISTRIBUTION.size() -1) return arr; tmp[j] = 0; ++tmp[j+1]; } } return arr; }() ; template<class ExitFunction> void stochastic_product_search(Index index, ExitFunction fn){ // 15'360'000it/s 65ns/it 0.065µs/it double best_local_score = calc(index.assigned_days); thread_local std::mt19937 gen(std::random_device{}()); gen.seed(1); uniform_int_distribution<> dis(0, 4999); array<uint16_t, 5000> indices; iota(begin(indices), end(indices), 0); array<uint16_t, DISTRIBUTION.size() > best_indices{}; array<uint8_t, DISTRIBUTION.size() > best_change{}; for(; fn() ;){ bool found_better = false; for(int k = 0; k < BEST_N; ++k){ for(int i = 0; i < DISTRIBUTION.size() ; ++i)//random swap swap(indices[i], indices[dis(gen)]); for(const auto& change : changes){ auto score = index.calc(indices, change); if(score < best_local_score){ found_better = true; best_local_score = score; best_change = change; copy_n(begin(indices), DISTRIBUTION.size() , begin(best_indices)) ; } } } if(found_better){ // reindex from N best if found better index.reindex(best_indices, best_change); // save_sub(index.assigned_days); calc(index.assigned_days, true); } } save_sub(index.assigned_days); } int main() { init_data() ; auto assigned_day = read_submission("/kaggle/working/submission_init.csv"); Index index(assigned_day); calc(index.assigned_days, true); // auto forever = []() { return true; }; // auto count_exit = [start = 0]() mutable { return(++start <= 1000); }; auto time_exit = [start = high_resolution_clock::now() ]() { return duration_cast<minutes>(high_resolution_clock::now() -start ).count() < 120; //2h }; stochastic_product_search(index, time_exit); return 0; }
Santa's Workshop Tour 2019
7,548,781
def FillEmbk(data): var = 'Embarked' data.loc[(data.Embarked.isnull()),'Embarked']= 'C' FillEmbk(df )<categorify>
!g++ -pthread -lpthread -O3 -std=c++17 -o main main.cpp
Santa's Workshop Tour 2019
7,548,781
<normalization><EOS>
%%time NUMBER_DAYS = 100 NUMBER_FAMILIES = 5000 MAX_BEST_CHOICE = 5 data = pd.read_csv('/kaggle/input/santa-workshop-tour-2019/family_data.csv') submission = pd.read_csv('/kaggle/working/submission_init2.csv') assigned_days = submission['assigned_day'].values columns = data.columns[1:11] DESIRED = data[columns].values COST_PER_FAMILY = [0,50,50,100,200,200,300,300,400,500] COST_PER_FAMILY_MEMBER = [0, 0, 9, 9, 9, 18, 18, 36, 36,235] N_PEOPLE = data['n_people'].values def get_daily_occupancy(assigned_days): daily_occupancy = np.zeros(100, int) for fid, assigned_day in enumerate(assigned_days): daily_occupancy[assigned_day-1] += N_PEOPLE[fid] return daily_occupancy def cost_function(prediction): N_DAYS = 100 MAX_OCCUPANCY = 300 MIN_OCCUPANCY = 125 penalty = 0 days = list(range(N_DAYS,0,-1)) tmp = pd.read_csv('/kaggle/input/santa-workshop-tour-2019/family_data.csv', index_col='family_id') family_size_dict = tmp[['n_people']].to_dict() ['n_people'] cols = [f'choice_{i}' for i in range(10)] choice_dict = tmp[cols].to_dict() daily_occupancy = {k:0 for k in days} for f, d in enumerate(prediction): n = family_size_dict[f] choice_0 = choice_dict['choice_0'][f] choice_1 = choice_dict['choice_1'][f] choice_2 = choice_dict['choice_2'][f] choice_3 = choice_dict['choice_3'][f] choice_4 = choice_dict['choice_4'][f] choice_5 = choice_dict['choice_5'][f] choice_6 = choice_dict['choice_6'][f] choice_7 = choice_dict['choice_7'][f] choice_8 = choice_dict['choice_8'][f] choice_9 = choice_dict['choice_9'][f] daily_occupancy[d] += n if d == choice_0: penalty += 0 elif d == choice_1: penalty += 50 elif d == choice_2: penalty += 50 + 9 * n elif d == choice_3: penalty += 100 + 9 * n elif d == choice_4: penalty += 200 + 9 * n elif d == choice_5: penalty += 200 + 18 * n elif d == choice_6: penalty += 300 + 18 * n elif d == choice_7: penalty += 300 + 36 * n elif d == choice_8: penalty += 400 + 36 * n elif d == choice_9: penalty += 500 + 36 * n + 199 * n else: penalty += 500 + 36 * n + 398 * n for _, v in daily_occupancy.items() : if(v < MIN_OCCUPANCY): penalty += 100000000 accounting_cost =(daily_occupancy[days[0]]-125.0)/ 400.0 * daily_occupancy[days[0]]**(0.5) accounting_costs = [max(0, accounting_cost)] diffs = [0] yesterday_count = daily_occupancy[days[0]] for day in days[1:]: today_count = daily_occupancy[day] diff = abs(today_count - yesterday_count) accounting_costs.append(max(0,(today_count-125.0)/ 400.0 * today_count**(0.5 + diff / 50.0))) yesterday_count = today_count return penalty, sum(accounting_costs), penalty + sum(accounting_costs) seed(2) for f in range(100): ad = assigned_days.copy() days_for_fix = np.array(sample(range(1,101),50)) daily_occupancy = get_daily_occupancy(ad) fids = np.where(np.isin(ad, days_for_fix)) [0] solver = pywraplp.Solver('Setup occupation of days', pywraplp.Solver.CBC_MIXED_INTEGER_PROGRAMMING) PCOSTM, B = {}, {} for fid in fids: for i in range(MAX_BEST_CHOICE): B[fid, DESIRED[fid][i]-1] = solver.BoolVar(f'b{fid, i}') PCOSTM[fid, DESIRED[fid][i]-1] = COST_PER_FAMILY[i] + N_PEOPLE[fid] * COST_PER_FAMILY_MEMBER[i] lower_bounds = np.zeros(100) upper_bounds = np.zeros(100) delta = 8 for fi in days_for_fix: lower_bounds[fi-1] = max(daily_occupancy[fi-1]-delta,125) upper_bounds[fi-1] = min(daily_occupancy[fi-1]+delta,300) D = {} for j in range(NUMBER_DAYS): I = solver.IntVar(lower_bounds[j], upper_bounds[j], f'I{j}') solver.Add(solver.Sum([N_PEOPLE[i] * B[i, j] for i in range(NUMBER_FAMILIES)if(i,j)in B])== I) if upper_bounds[j]>124: rj = range(int(lower_bounds[j]),int(upper_bounds[j])+1) for i in rj: D[j, i] = solver.BoolVar(f'd{j, i}') solver.Add(solver.Sum([D[j, i]*i for i in rj])== I) for i in fids: solver.Add(solver.Sum(B[i, j] for j in range(NUMBER_DAYS)if(i,j)in B)== 1) sM =solver.Sum(PCOSTM[i, j] * B[i, j] for i, j in B) for i in range(NUMBER_DAYS): if np.isin(i,days_for_fix-1): ri = range(int(lower_bounds[i]),int(upper_bounds[i])+1) if i<99: sM += solver.Sum(D[i,j]*(j-125)/400*j**(0.5+abs(j-daily_occupancy[i+1])/50)for j in ri) if i>0: sM += solver.Sum(D[i,j]*(daily_occupancy[i-1]-125)/400*daily_occupancy[i-1]**(0.5+abs(j-daily_occupancy[i-1])/50)for j in ri) solver.Minimize(sM) sol = solver.Solve() status = ['OPTIMAL', 'FEASIBLE', 'INFEASIBLE', 'UNBOUNDED', 'ABNORMAL', 'MODEL_INVALID', 'NOT_SOLVED'] if status[sol] == 'OPTIMAL': for i, j in B: if B[i, j].solution_value() > 0.5: ad[i] = j+1 if cost_function(ad)[2]<cost_function(assigned_days)[2]: submission['assigned_day'] = ad assigned_days = ad print(cost_function(ad)) score = cost_function(assigned_days)[2] submission.to_csv(f'submission_{score}.csv', index=False)
Santa's Workshop Tour 2019
7,022,143
<SOS> metric: SantaWorkshopSchedule2019 Kaggle data source: santas-workshop-tour-2019<train_model>
!pip install pulp
Santa's Workshop Tour 2019
7,022,143
selector = SelectKBest(f_classif, len(select_features)) selector.fit(train, target) scores = -np.log10(selector.pvalues_) indices = np.argsort(scores)[::-1] print('Features importance:') for i in range(len(scores)) : print('%.2f %s' %(scores[indices[i]], select_features[indices[i]]))<choose_model_class>
data = pd.read_csv('/kaggle/input/santa-workshop-tour-2019/family_data.csv', index_col='family_id' )
Santa's Workshop Tour 2019
7,022,143
numpy.random.seed(7) model = models.Sequential() model.add(Dense(30,input_dim=15,activation='relu')) model.add(Dropout(0.5)) model.add(Dense(15,activation='relu')) model.add(Dropout(0.5)) model.add(Dense(5,activation='relu')) model.add(Dropout(0.5)) model.add(Dense(1,activation='sigmoid')) model.compile(loss='binary_crossentropy',optimizer='adam',metrics=['accuracy']) model.fit(train,target,epochs=150, batch_size=20, verbose=1 )<predict_on_test>
N_FAM = len(data) N_DAY = 100 MAX_OCC = 300 MIN_OCC = 125 cost_dict = {0: [ 0, 0], 1: [ 50, 0], 2: [ 50, 9], 3: [100, 9], 4: [200, 9], 5: [200, 18], 6: [300, 18], 7: [300, 36], 8: [400, 36], 9: [500, 36 + 199], 10: [500, 36 + 398], } def cost(choice, members, cost_dict): x = cost_dict[choice] return x[0] + members * x[1] all_costs = {k: pd.Series([cost(k, x, cost_dict)for x in range(2,9)], index=range(2,9)) for k in cost_dict.keys() } family_sizes = data.n_people.values.astype(np.int8) family_cost_matrix = np.zeros(( N_DAY,N_FAM)) for i, el in enumerate(family_sizes): family_cost_matrix[:, i] += all_costs[10][el] for j, choice in enumerate(data.drop("n_people",axis=1 ).values[i,:]): family_cost_matrix[choice-1, i] = all_costs[j][el] def accounting_penalty_day(occupancy_day, occupancy_next_day): return max(0,(( occupancy_day-MIN_OCC)/400)*occupancy_day**(0.5 +(abs(occupancy_day-occupancy_next_day)) /50)) accounting_matrix = np.zeros([MAX_OCC-MIN_OCC+1,MAX_OCC-MIN_OCC+1]) for i, x in enumerate(range(MIN_OCC,MAX_OCC+1)) : for j, y in enumerate(range(MIN_OCC,MAX_OCC+1)) : accounting_matrix[i,j] = accounting_penalty_day(x,y )
Santa's Workshop Tour 2019
7,022,143
prc = model.predict(train) prc = [round(x[0])for x in prc] accuracy_score(target,prc )<predict_on_test>
def calculate_penalty(assignments, fam_sizes=family_sizes, fam_cost_matrix=family_cost_matrix, account_matrix=accounting_matrix): penalty = 0 daily_occupancy = np.zeros(N_DAY+1, dtype=np.int16) for index,(day, fam_size)in enumerate(zip(assignments, fam_sizes)) : day_index = day-1 daily_occupancy[day_index] += fam_size penalty += fam_cost_matrix[day_index,index] daily_occupancy[-1] = daily_occupancy[-2] for day in range(N_DAY): n = daily_occupancy[day] n_next = daily_occupancy[day+1] violation = n < MIN_OCC or n > MAX_OCC if violation: penalty += 1e11 elif MIN_OCC <= n_next <= MAX_OCC: penalty += account_matrix[n-MIN_OCC, n_next-MIN_OCC] return penalty
Santa's Workshop Tour 2019
7,022,143
snum = 0 enum = len(test) prdt2 = model.predict(test) prdt2 = [round(x[0])for x in prdt2] prdt2 = list(map(int,prdt2)) print('Predicted result: ', prdt2 )<save_to_csv>
def retrieve_indices(day_or_fam_value, value_is_fam_bool): indices = [] for index, v in enumerate(x): var_name = v.name var_name_split = var_name.split('_') if value_is_fam_bool: value = int(var_name_split[1]) else: value = int(var_name_split[2])- 1 if value == day_or_fam_value: indices.append(index) return indices santa_prob = LpProblem("SantaWorkshopTour",LpMinimize) x = [] match_fam_sizes = [] cost_dict = {} for fam in range(N_FAM): day_index_array = np.argsort(family_cost_matrix[:,fam]) for day in day_index_array[0:4]: x.append(LpVariable(f'x_{fam}_{day+1}',0,1,LpInteger)) match_fam_sizes.append(family_sizes[fam]) cost_dict[x[-1]] = family_cost_matrix[day,fam] z = [] for day in range(N_DAY): z.append(LpVariable(f'z_{day+1}',0,1,LpInteger)) santa_prob += lpSum([cost_dict[value]*x[index] for index, value in enumerate(x)]) M = MAX_OCC-MIN_OCC for day in range(N_DAY): fam_indices = retrieve_indices(day, False) santa_prob += lpSum([match_fam_sizes[fam_index]*x[fam_index] for fam_index in fam_indices])>= MIN_OCC santa_prob += lpSum([match_fam_sizes[fam_index]*x[fam_index] for fam_index in fam_indices])- M*z[day] <= MIN_OCC for fam in range(N_FAM): day_indices = retrieve_indices(fam, True) santa_prob += lpSum([x[day_index] for day_index in day_indices])== 1 max_diff = 175 correction = 120 alpha = 0.2 rhs = max_diff + alpha*MIN_OCC for day in range(N_DAY-1): fam_indices = retrieve_indices(day, False) fam_indices_plus = retrieve_indices(day+1, False) santa_prob +=(lpSum([match_fam_sizes[fam_index]*(1+alpha)*x[fam_index] for fam_index in fam_indices]) -lpSum([match_fam_sizes[fam_index]*x[fam_index] for fam_index in fam_indices_plus]) + correction*z[day] <= rhs) santa_prob +=(lpSum([match_fam_sizes[fam_index]*x[fam_index] for fam_index in fam_indices_plus]) -lpSum([match_fam_sizes[fam_index]*(1-alpha)*x[fam_index] for fam_index in fam_indices]) + correction*z[day] <= rhs )
Santa's Workshop Tour 2019
7,022,143
sampl['Survived'] = pd.DataFrame(prdt2) sampl.to_csv('submission.csv', index=False )<set_options>
time_lim = 10000 messaging = 1 gap = 0 santa_prob.solve(pulp.PULP_CBC_CMD(maxSeconds=time_lim, msg=messaging, fracGap=gap)) print('Status: ' + str(LpStatus[santa_prob.status])+ ', Value: ' + str(value(santa_prob.objective))) solution_df = pd.DataFrame(np.zeros(N_FAM), columns = ['assigned_day'], dtype=np.int8) for index, v in enumerate(santa_prob.variables()): var_name = v.name if v.varValue == 1 and 'x' in var_name: var_name_split = var_name.split('_') fam = int(var_name_split[1]) day = int(var_name_split[2]) solution_df.iat[fam,0] = day solution = solution_df['assigned_day'] solution_penalty = calculate_penalty(solution) solution_df.to_csv(f'SantaPuLP_{int(solution_penalty)}.csv', index_label='family_id' )
Santa's Workshop Tour 2019
7,022,143
%matplotlib inline<load_from_csv>
def local_search(best_solution, best_penalty, time_limit): start = timer() time_since_start = 0 current_solution = best_solution.copy() current_penalty = best_penalty new_solution = best_solution.copy() new_penalty = best_penalty choice_index = 0 while time_since_start < time_limit: improvement = False random_permutation = np.random.permutation(N_FAM) for fam in random_permutation: time_since_start = round(( timer() -start)) if time_since_start > time_limit: break if current_solution[fam] == data.iat[fam,choice_index]: continue new_solution = current_solution.copy() new_solution[fam] = data.iat[fam,choice_index] new_penalty = calculate_penalty(new_solution) if new_penalty < current_penalty: current_solution = new_solution.copy() current_penalty = new_penalty if new_penalty < best_penalty: best_solution = new_solution.copy() best_penalty = new_penalty improvement = True if improvement: choice_index = 0 else: choice_index += 1 if choice_index == 10: return best_solution return best_solution
Santa's Workshop Tour 2019
7,022,143
<count_missing_values><EOS>
ls_time_limit = 900 final_solution = local_search(solution, solution_penalty, ls_time_limit) final_solution_penalty = calculate_penalty(final_solution) final_solution_df = pd.DataFrame(final_solution, columns=['assigned_day']) final_solution_df.to_csv(f'SantaPuLP_{int(final_solution_penalty)}.csv', index_label='family_id' )
Santa's Workshop Tour 2019
7,389,628
<SOS> metric: SantaWorkshopSchedule2019 Kaggle data source: santas-workshop-tour-2019<feature_engineering>
%matplotlib inline NUMBER_DAYS = 100 NUMBER_FAMILIES = 5000 data = pd.read_csv('/kaggle/input/santa-workshop-tour-2019/family_data.csv') submission = pd.read_csv(".. /input/santa-submission-69818/submission_69818.csv") assigned_days = submission['assigned_day'].values columns = data.columns[1:11] DESIRED = data[columns].values COST_PER_FAMILY = [0,50,50,100,200,200,300,300,400,500] COST_PER_FAMILY_MEMBER = [0, 0, 9, 9, 9, 18, 18, 36, 36,235] N_PEOPLE = data['n_people'].values def get_daily_occupancy(assigned_days): daily_occupancy = np.zeros(100, int) for fid, assigned_day in enumerate(assigned_days): daily_occupancy[assigned_day-1] += N_PEOPLE[fid] return daily_occupancy def cost_function(prediction): N_DAYS = 100 MAX_OCCUPANCY = 300 MIN_OCCUPANCY = 125 penalty = 0 days = list(range(N_DAYS,0,-1)) tmp = pd.read_csv('/kaggle/input/santa-workshop-tour-2019/family_data.csv', index_col='family_id') family_size_dict = tmp[['n_people']].to_dict() ['n_people'] cols = [f'choice_{i}' for i in range(10)] choice_dict = tmp[cols].to_dict() daily_occupancy = {k:0 for k in days} for f, d in enumerate(prediction): n = family_size_dict[f] choice_0 = choice_dict['choice_0'][f] choice_1 = choice_dict['choice_1'][f] choice_2 = choice_dict['choice_2'][f] choice_3 = choice_dict['choice_3'][f] choice_4 = choice_dict['choice_4'][f] choice_5 = choice_dict['choice_5'][f] choice_6 = choice_dict['choice_6'][f] choice_7 = choice_dict['choice_7'][f] choice_8 = choice_dict['choice_8'][f] choice_9 = choice_dict['choice_9'][f] daily_occupancy[d] += n if d == choice_0: penalty += 0 elif d == choice_1: penalty += 50 elif d == choice_2: penalty += 50 + 9 * n elif d == choice_3: penalty += 100 + 9 * n elif d == choice_4: penalty += 200 + 9 * n elif d == choice_5: penalty += 200 + 18 * n elif d == choice_6: penalty += 300 + 18 * n elif d == choice_7: penalty += 300 + 36 * n elif d == choice_8: penalty += 400 + 36 * n elif d == choice_9: penalty += 500 + 36 * n + 199 * n else: penalty += 500 + 36 * n + 398 * n for _, v in daily_occupancy.items() : if(v < MIN_OCCUPANCY): penalty += 100000000 accounting_cost =(daily_occupancy[days[0]]-125.0)/ 400.0 * daily_occupancy[days[0]]**(0.5) accounting_costs = [max(0, accounting_cost)] diffs = [0] yesterday_count = daily_occupancy[days[0]] for day in days[1:]: today_count = daily_occupancy[day] diff = abs(today_count - yesterday_count) accounting_costs.append(max(0,(today_count-125.0)/ 400.0 * today_count**(0.5 + diff / 50.0))) yesterday_count = today_count return penalty, sum(accounting_costs), penalty + sum(accounting_costs )
Santa's Workshop Tour 2019
7,389,628
<groupby><EOS>
MAX_BEST_CHOICE = 6 NUM_SWAP = 3000 NUM_SECONDS = 3600 NUM_THREADS = 4 for _ in range(40): solver = pywraplp.Solver('Optimization preference cost', pywraplp.Solver.CBC_MIXED_INTEGER_PROGRAMMING) daily_occupancy = get_daily_occupancy(assigned_days ).astype(float) fids = np.random.choice(range(NUMBER_FAMILIES), NUM_SWAP, replace=False) PCOSTM, B = {}, {} for fid in range(NUMBER_FAMILIES): if fid in fids: for i in range(MAX_BEST_CHOICE): PCOSTM[fid, DESIRED[fid][i]-1] = COST_PER_FAMILY[i] + N_PEOPLE[fid] * COST_PER_FAMILY_MEMBER[i] B[ fid, DESIRED[fid][i]-1] = solver.BoolVar('') else: daily_occupancy[assigned_days[fid]-1] -= N_PEOPLE[fid] solver.set_time_limit(NUM_SECONDS*NUM_THREADS*1000) solver.SetNumThreads(NUM_THREADS) for day in range(NUMBER_DAYS): if daily_occupancy[day]: solver.Add(solver.Sum([N_PEOPLE[fid] * B[fid, day] for fid in range(NUMBER_FAMILIES)if(fid,day)in B])== daily_occupancy[day]) for fid in fids: solver.Add(solver.Sum(B[fid, day] for day in range(NUMBER_DAYS)if(fid, day)in B)== 1) solver.Minimize(solver.Sum(PCOSTM[fid, day] * B[fid, day] for fid, day in B)) sol = solver.Solve() status = ['OPTIMAL', 'FEASIBLE', 'INFEASIBLE', 'UNBOUNDED', 'ABNORMAL', 'MODEL_INVALID', 'NOT_SOLVED'] if status[sol] in ['OPTIMAL', 'FEASIBLE']: tmp = assigned_days.copy() for fid, day in B: if B[fid, day].solution_value() > 0.48: tmp[fid] = day+1 if cost_function(tmp)[2] < cost_function(assigned_days)[2]: assigned_days = tmp submission['assigned_day'] = assigned_days submission.to_csv('submission.csv', index=False) print('Result:', status[sol], cost_function(tmp)) else: print('Result:', status[sol] )
Santa's Workshop Tour 2019
13,184,958
<SOS> metric: PostProcessorKernel Kaggle data source: conways-reverse-game-of-life-2020<concatenate>
import time import pandas as pd import torch
Conway's Reverse Game of Life 2020
13,184,958
useful.append('Fare' )<feature_engineering>
torch.backends.cudnn.benchmark = True torch.backends.cudnn.deterministic = False
Conway's Reverse Game of Life 2020
13,184,958
df['small_family'] = df['family_size'].apply(lambda size: 1 if size<=4 else 0) df['big_family'] = df['family_size'].apply(lambda size: 1 if size>=7 else 0) df['no_family'] = df['family_size'].apply(lambda s: 1 if s==1 else 0) useful.extend(['SibSp', 'Parch', 'family_size', 'small_family', 'big_family', 'no_family'] )<categorify>
N = 25 device = 'cuda' TEST_CSV = '.. /input/conways-reverse-game-of-life-2020/test.csv' OUTPUT_CSV = 'submission.csv'
Conway's Reverse Game of Life 2020
13,184,958
df['male'] = df['Sex'].map({'male': 1, 'female': 0}) useful.append('male' )<categorify>
cv = torch.nn.Conv2d(1, 1, kernel_size=3, padding=1, padding_mode='circular', bias=False) cv.requires_grad=False cv.weight = torch.nn.Parameter( torch.tensor( [[[[ 1., 1., 1.], [ 1., 0., 1.], [ 1., 1., 1.]]]], device=device, dtype=torch.float16 ), requires_grad=False, ) @torch.jit.script def forward(grid, delta: int): N=25 g = grid.reshape(-1, 1, N, N) for _ in torch.arange(delta): g = g.to(torch.float16) neighbor_sum = cv(g) g =(( neighbor_sum == 3)|(( g == 1)&(neighbor_sum == 2))) return g.reshape(-1, N, N )
Conway's Reverse Game of Life 2020
13,184,958
df = pd.concat([df, pd.get_dummies(df['Embarked'], prefix='embarked')], axis=1) useful.extend(['embarked_{}'.format(x)for x in ['C', 'S', 'Q']]) df.sample(5 )<concatenate>
@torch.jit.script def random_parents(n_parents: int, device: str): N = 25 RANDOM_ALIVE =.2 return torch.rand(( n_parents, N, N), device=device)>(1-RANDOM_ALIVE )
Conway's Reverse Game of Life 2020
13,184,958
useful.append('Pclass' )<categorify>
@torch.jit.script def loss(input, target): return torch.sum(input ^ target, dim=(-1,-2))
Conway's Reverse Game of Life 2020
13,184,958
df = pd.concat([df, pd.get_dummies(df['cabin_letter'], prefix='deck')], axis=1) letters = df['cabin_letter'].unique() useful.extend(['deck_{}'.format(x)for x in letters] )<sort_values>
@torch.jit.script def select_best(parents, delta: int, target, n_best: int): scores = loss(forward(parents, delta), target) best_values, best_indices = torch.topk(scores, n_best, dim=0, largest=False, sorted=True) new_parents = parents[best_indices,...] return new_parents, best_values[0], new_parents[0,...]
Conway's Reverse Game of Life 2020
13,184,958
ticket_count = df[['Ticket', 'Name']].groupby('Ticket' ).count().rename(columns={'Name':'count'} ).sort_values(by='count', ascending=False) ticket_count.head()<filter>
@torch.jit.script def random_combine(parents, n_offsprings: int, device: str, pre_masks): N = 25 dads = torch.randint(low=0, high=parents.shape[0], size=(n_offsprings,), device=device, dtype=torch.long) dads = parents[dads,...] moms = torch.randint(low=0, high=parents.shape[0], size=(n_offsprings,), device=device, dtype=torch.long) moms = parents[moms,...] masks = pre_masks[torch.randint(low=0, high=pre_masks.shape[0], size=(n_offsprings,), device=device, dtype=torch.long)] return torch.where(masks, dads, moms )
Conway's Reverse Game of Life 2020
13,184,958
df[df['Ticket']=='CA.2343']<filter>
def precomputes_masks() : N = 25 BLOCK_SIZE = 17 block = torch.nn.Conv2d(1, 1, kernel_size=BLOCK_SIZE, padding=BLOCK_SIZE//2, padding_mode='circular', bias=False) block.requires_grad=False block.weight = torch.nn.Parameter( torch.ones(( 1, 1, BLOCK_SIZE, BLOCK_SIZE), device=device, dtype=torch.float16 ), requires_grad=False, ) masks = torch.zeros(( N * N, 1, N, N), device=device, dtype=torch.float16) for x in range(N): for y in range(N): masks[x * N + y, 0, x, y] = 1. masks = block(masks) return masks[:, 0,...] >.5
Conway's Reverse Game of Life 2020
13,184,958
df[df['Ticket']=='1601']<feature_engineering>
@torch.jit.script def mutate(parents, device: str): MUTATION =.0016 mutations = torch.rand(parents.shape, device=device)< MUTATION return parents ^ mutations
Conway's Reverse Game of Life 2020
13,184,958
df['ticket_owners'] = df['Ticket'].apply(lambda x: ticket_count.loc[x]) df['shared_fare'] = df['Fare'] / df['ticket_owners'] df['alone'] = df[['ticket_owners','no_family']].apply(lambda row: 1 if row.ticket_owners==1 and row.no_family==1 else 0 , axis=1) useful.extend(['ticket_owners', 'shared_fare', 'alone'] )<feature_engineering>
@torch.jit.script def optimize_one_puzzle(delta: int, data, device: str, pre_masks): N = 25 N_GENERATION = 30 P = 4_500 N_BEST = P // 30 N_ELITES = 8 best_score = torch.tensor([N*N], device=device) best = torch.zeros(( N,N), device=device ).to(torch.bool) parents = random_parents(P, device) elites = torch.empty(( 1, N, N), dtype=torch.bool, device=device) elites[0,...] = data for i in range(N_GENERATION): parents = random_combine(parents, P, device, pre_masks) parents = mutate(parents, device) parents[:N_ELITES,...] = elites parents, best_score, best = select_best(parents, delta, data, N_BEST) elites = parents[:N_ELITES,...] if best_score == 0: break return best_score, best
Conway's Reverse Game of Life 2020
13,184,958
older_age = df[['Ticket', 'Age']].groupby('Ticket' ).max() df['older_relative_age'] = df['Ticket'].apply(lambda ticket: older_age.loc[ticket]) useful.extend(['older_relative_age'] )<feature_engineering>
@torch.jit.script def optimize_all_puzzles(deltas, df, device: str, pre_masks): sub = df.clone() for n in torch.arange(df.shape[0]): delta = deltas[n] data = df[n,...] _, sub[n,...] = optimize_one_puzzle(delta, data, device, pre_masks) return sub
Conway's Reverse Game of Life 2020
13,184,958
def ticket_type(t): if re.match('^\d+$', t): return 'len' + str(len(t)) else: return re.sub('[^A-Z]', '', t) df['ticket_type'] = df['Ticket'].apply(ticket_type) df[['ticket_type', 'Survived']].groupby( 'ticket_type' ).agg({'Survived': ['mean', 'std','count']} ).sort_values(( 'Survived','count'), ascending=False )<categorify>
df = pd.read_csv(TEST_CSV, index_col='id' )
Conway's Reverse Game of Life 2020
13,184,958
def useful_ticket_type(ticket_type): useful_types = ['A', 'SOTONOQ', 'WC'] if ticket_type in useful_types: return ticket_type else: return 'other' df['useful_ticket_type'] = df['ticket_type'].apply(useful_ticket_type) df = pd.concat( [df, pd.get_dummies(df['useful_ticket_type'], prefix='ticket_type')], axis=1) letters = df['useful_ticket_type'].unique() useful.extend(['ticket_type_{}'.format(x)for x in letters]) df.sample(10 )<feature_engineering>
submission = df.copy() submission.drop(['delta'], inplace=True, axis=1 )
Conway's Reverse Game of Life 2020
13,184,958
df['name_length_short'] = df['name_length'].apply(lambda s: 1 if s <= 35 else 0) df['name_length_mid'] = df['name_length'].apply(lambda s: 1 if 35 < s <=58 else 0) df['name_length_long'] = df['name_length'].apply(lambda s: 1 if s > 58 else 0) useful.extend(['name_length', 'name_length_short', 'name_length_mid', 'name_length_long'] )<feature_engineering>
indexes = df.index deltas = torch.from_numpy(df.delta.values ).to(device) df = torch.BoolTensor(df.values[:, 1:].reshape(( -1, N, N)) ).to(device )
Conway's Reverse Game of Life 2020
13,184,958
df['lang'] = df['Name'].apply(lambda n: langid.classify(n)[0]) df[['Name','lang']].sample(10 )<groupby>
start_time = time.time() pre_masks = precomputes_masks() sub = optimize_all_puzzles(deltas, df, device, pre_masks) print(f'Processed {sub.shape[0]:,} puzzles in {time.time() - start_time:.2f} seconds 🔥🔥🔥' )
Conway's Reverse Game of Life 2020
13,184,958
lang_count = df[['lang','Name']].groupby('lang' ).count().rename(columns={'Name':'count'}) lang_class = df[['lang','Pclass']].groupby('lang' ).mean() lang_survived = df[['lang','Survived']].groupby('lang' ).mean() pd.concat([lang_count, lang_class, lang_survived], axis=1 ).sort_values(by='count', ascending=False ).head(15 )<feature_engineering>
submission.rename(columns={f'stop_{x}': f'start_{x}' for x in range(N*N)}, inplace=True) submission.iloc[:sub.shape[0], :] = sub.reshape(( -1, N*N)).cpu().numpy().astype(int) submission.to_csv(OUTPUT_CSV )
Conway's Reverse Game of Life 2020
13,184,958
language_groups = { 'uk':('cy', 'en'), 'germanic':('da', 'de', 'nl'), 'latin':('es', 'fr', 'it', 'la', 'pt', 'br', 'ro'), 'african':('af', 'rw', 'xh'), 'asian':('id', 'tl', 'tr') } language_map = { y:x for x in language_groups for y in language_groups[x]} df['lang_group'] = df['lang'].apply(lambda l: language_map[l] if l in language_map else 'other') survived_avg_per_group = df[['lang_group','Survived']].groupby('lang_group' ).mean() survived_std_per_group = df[['lang_group','Survived']].groupby('lang_group' ).std().rename(columns={'Survived':'std'}) pd.concat([survived_avg_per_group, survived_std_per_group], axis=1 )<categorify>
def leaderboard_score(deltas, df, sub, device: str): result = torch.empty(sub.shape[0], device=device, dtype=torch.long) for delta in range(1, 6): start = sub[deltas == delta] end = df[deltas == delta] result[deltas == delta] = loss(forward(start, delta), end) print('Leaderboard score:', torch.sum(result ).item() /(result.shape[0]*N*N))
Conway's Reverse Game of Life 2020
13,184,958
df = pd.concat([df, pd.get_dummies(df['lang_group'], prefix='lang_group')], axis=1) langs = df['lang_group'].unique() useful.extend(['lang_group_{}'.format(x)for x in langs] )<feature_engineering>
leaderboard_score(deltas, df, sub, device )
Conway's Reverse Game of Life 2020
13,173,972
surnames = df[['surname', 'Name']].groupby('surname' ).count().rename(columns={'Name':'count'}) df['surname_count'] = df['surname'].apply(lambda x: surnames.loc[x]) useful.append('surname_count' )<sort_values>
%%writefile main-RT.cpp extern "C" { }; using namespace std; constexpr int n = 25; constexpr int N = n * n; using CW = vector<uint8_t>; using TStamp = std::chrono::time_point<std::chrono::system_clock>; struct task { string id; CW field; int steps; }; random_device rd; mt19937 g(rd()); static atomic<bool> is_stopped; static atomic<bool> is_timeouted; double total_timeout = 8.5 * 60 * 60; TStamp app_started = std::chrono::system_clock::now() ; void terminate(int code){ is_stopped = true; is_timeouted = true; exit(code); } vector<string> split(std::string s, char delimiter){ s += delimiter; vector<string> result; size_t start = 0; for(size_t i = start; i < s.size() ; ++i){ while(s[i] != delimiter){ ++i; } result.push_back(s.substr(start, i - start)) ; start = i + 1; } return result; } CW s2vec(const std::string& s){ CW v(N); if(static_cast<int>(s.size())!= N + N - 1){ cerr << "wtf s2vec format len" << s.size() << endl; terminate(1); } for(int i = 0; i < N; ++i){ v[i] = s[i + i] == '1'; } return v; } string vec2s(const CW& v){ string res; for(int i = 0; i < N; ++i){ if(v[i]){ res += "1,"; } else { res += "0,"; } } res.resize(res.size() - 1); return res; } int weight(const task& t){ int count = 0; for(auto k : t.field){ if(k)++count; } return count; } vector<int> init_nums(int N){ vector<int> values; for(int i = 0; i < N; ++i){ values.push_back(i); } return values; } const vector<int> n_nums = init_nums(N); bool calc(const CW& field, int pos, int x, int y)noexcept { static const int dx8[] = {-1, -1, -1, 0, 0, 1, 1, 1}; static const int dy8[] = {-1, 0, 1, -1, 1, -1, 0, 1}; int count = 0; for(int i = 0; i < 8; ++i){ int a = x + dx8[i]; int b = y + dy8[i]; if(a < 0)a += n; else if(a >= n)a -= n; if(b < 0)b += n; else if(b >= n)b -= n; if(field[b * n + a]){ ++count; } } return(count | field[pos])== 3; } bool calc_left_line(const CW& field, size_t pos)noexcept { static const size_t d_left8[] = { -1ULL, -25ULL, -24ULL, +24, +1, +25 + 24, +25, +26}; uint8_t count = 0; for(int i = 0; i < 8; ++i){ count += field[pos + d_left8[i]]; } return(count | field[pos])== 3; } bool calc_right_line(const CW& field, size_t pos)noexcept { static const size_t d_right8[] = { -26ULL, -25ULL, - 49ULL, -1ULL, -24ULL, +24, +25, +1}; uint8_t count = 0; for(int i = 0; i < 8; ++i){ count += field[pos + d_right8[i]]; } return(count | field[pos])== 3; } bool calc_bottom_line(const CW& field, size_t pos)noexcept { static const size_t d_bottom8[] = { -26ULL, -25ULL, -24ULL, -1ULL, 1, -599ULL, -600ULL, -601ULL}; uint8_t count = 0; for(int i = 0; i < 8; ++i){ count += field[pos + d_bottom8[i]]; } return(count | field[pos])== 3; } bool calc_top_line(const CW& field, size_t pos)noexcept { static const size_t d_top8[] = { +599, +600, +601, -1ULL, 1, +24, +25, +26}; uint8_t count = 0; for(int i = 0; i < 8; ++i){ count += field[pos + d_top8[i]]; } return(count | field[pos])== 3; } bool calc_no_checks(const CW& field, size_t pos)noexcept { static const size_t di8[] = {0, 1, 2, 25, 27, +50, +51, +52}; uint8_t count = 0; for(int i = 0; i < 8; ++i){ count += field[pos + di8[i]]; } return(count | field[pos + 26])== 3; } CW run_step(CW start)noexcept { thread_local CW next(N); for(int x = 1; x < n - 1; ++x){ next[x] = calc_top_line(start, x); next[600 + x] = calc_bottom_line(start, 600 + x); next[x * 25] = calc_left_line(start, x * 25); next[x * 25 + 24] = calc_right_line(start, x * 25 + 24); } size_t pos = 0; for(int y = 1; y < n - 1; ++y){ for(int x = 1; x < n - 1; ++x){ next[pos + 26] = calc_no_checks(start, pos); ++pos; } pos += 2; } for(auto i : {0, n-1, N - n, N - 1}){ next[i] = calc(start, i, i % n, i / n); } return next; } void run_step_partial(CW* steps, int x, int y, int step, vector<pair<int, int>>& changelog){ int range = step + 1; for(int b = y - range; b <= y + range; ++b){ int q = b; if(q < 0)q += n; else if(q >= n)q -= n; for(int a = x - range; a <= x + range; ++a){ int p = a; if(p < 0)p += n; else if(p >= n)p -= n; size_t i = q * n + p; bool not_vert_side = p > 0 && p + 1 < n; bool not_hori_side = q > 0 && q + 1 < n; bool value; if(not_vert_side && not_hori_side){ value = calc_no_checks(steps[step], i - 26); } else { bool not_vert_side = p > 0 && p + 1 < n; bool not_hori_side = q > 0 && q + 1 < n; if(not_vert_side && q + 1 == n){ value = calc_bottom_line(steps[step], i); } else if(not_vert_side && q == 0){ value = calc_top_line(steps[step], i); } else if(not_hori_side && p == 0){ value = calc_left_line(steps[step], i); } else if(not_hori_side && p + 1 == n){ value = calc_right_line(steps[step], i); } else { value = calc(steps[step], i, p, q); } } bool previous = steps[step + 1][i]; if(value != previous){ changelog.push_back({step + 1, i}); steps[step + 1][i] = value; } } } } int run_step_partial_last(CW* steps, int x, int y, int step, vector<pair<int, int>>& changelog, const CW& original){ int range = step + 1; int diff = 0; for(int b = y - range; b <= y + range; ++b){ int q = b; if(q < 0)q += n; else if(q >= n)q -= n; for(int a = x - range; a <= x + range; ++a){ int p = a; if(p < 0)p += n; else if(p >= n)p -= n; size_t i = q * n + p; bool not_vert_side = p > 0 && p + 1 < n; bool not_hori_side = q > 0 && q + 1 < n; bool value; if(not_vert_side && not_hori_side){ value = calc_no_checks(steps[step], i - 26); } else { if(not_vert_side && q + 1 == n){ value = calc_bottom_line(steps[step], i); } else if(not_vert_side && q == 0){ value = calc_top_line(steps[step], i); } else if(not_hori_side && p == 0){ value = calc_left_line(steps[step], i); } else if(not_hori_side && p + 1 == n){ value = calc_right_line(steps[step], i); } else { value = calc(steps[step], i, p, q); } } bool previous = steps[step + 1][i]; if(value != previous){ if(value == original[i]){ ++diff; } else { --diff; } changelog.push_back({step + 1, i}); steps[step + 1][i] = value; } } } return diff; } void revert_changes(CW* steps, const vector<pair<int, int>>& changelog){ for(auto i : changelog){ steps[i.first][i.second] = !steps[i.first][i.second]; } } void print(const CW& field){ for(int pos = 0; pos < N; ++pos){ cout <<(field[pos] ? '*' : '.'); //static_cast<int>(field[pos]); if(pos % n == n - 1){ cout << endl; } } cout << endl; } int validate(CW start, const task& t){ for(int i = 0; i < t.steps; ++i){ start = run_step(start); } int count = 0; for(int i = 0; i < N; ++i){ if(start[i] == t.field[i]) ++count; } return count; } int validate_partial(const task& t, CW* steps, int x, int y, vector<pair<int, int>>& changelog){ changelog.clear() ; for(int i = 0; i < t.steps - 1; ++i){ run_step_partial(steps, x, y, i, changelog); } int diff = run_step_partial_last(steps, x, y, t.steps - 1, changelog, t.field); return diff; } static class Cache : private boost::noncopyable { private: map<string, pair<int, string>> cache; mutex m; public: Cache() { } auto get(const std::string& id){ lock_guard<mutex> g(m); return cache[id]; } bool set(const pair<int, CW>& value, const task& t){ const std::string& id = t.id; { lock_guard<mutex> g(m); if(cache.find(id)!= cache.end() && cache[id].first >= value.first){ return false; } } int score = validate(value.second, t); if(score != value.first){ cerr << "wtf score for " << id << ": " << score << ' ' << value.first << endl; for(auto i : value.second){ cerr <<(int)i << ' '; } cerr << endl; throw std::runtime_error("wtf score"); } string s = vec2s(value.second); { lock_guard<mutex> g(m); cache[id] = {value.first, s}; ofstream cache_file("processed/cache-real-time", std::ofstream::app); cache_file << id << ' ' << value.first << ' ' << s << endl; return true; } } } global_cache; CW prepare_mask(CW solution, const task& t){ for(int i = 0; i < t.steps; ++i){ solution = run_step(solution); } vector<int> diff; for(int i = 0; i < N; ++i){ if(t.field[i] != solution[i]){ diff.push_back(i); } } for(int i = 0; i < t.steps; ++i){ vector<int> next_diff; for(auto pos : diff){ next_diff.push_back(i); int x = pos % n; int y = pos / n; static const int dx8[] = {-1, -1, -1, 0, 0, 1, 1, 1}; static const int dy8[] = {-1, 0, 1, -1, 1, -1, 0, 1}; for(int i = 0; i < 8; ++i){ int a = x + dx8[i]; int b = y + dy8[i]; if(a < 0)a += n; else if(a >= n)a -= n; if(b < 0)b += n; else if(b >= n)b -= n; next_diff.push_back(b * n + a); } } diff = next_diff; sort(diff.begin() , diff.end()); { auto last = std::unique(diff.begin() , diff.end()); diff.erase(last, diff.end()); } } CW result(N); for(auto i : diff){ result[i] = true; } // cerr << diff.size() << " for " << global_cache.get(t.id ).first << endl; return result; } CW shake_single_if_equal(CW _field, const task& t, bool fast = false){ CW steps[t.steps + 1]; steps[0] = _field; CW& field = steps[0]; vector<pair<int, int>> changelog; int best_score = validate(field, t); auto best_pos = field; int score = best_score; int current_score = best_score; for(int i = 0; i < t.steps; ++i){ steps[i + 1] = run_step(steps[i]); } CW mask_to_shake = prepare_mask(best_pos, t); int default_tries = fast ? 39 : 99; int default_range = fast ? 2 : 3; int tries = default_tries; int range = default_range; do { if(score != best_score){ tries = default_tries; score = best_score; range = default_range; } if(tries % 50 == 0)range -= 1; int shift = rand() % N; bool dir = rand() % 2; int i = shift; int x = i % n; int y = i / n; for(int index = 0; index < N; ++index){ if(dir){ ++i; ++x; if(x == n){ x = 0; ++y; if(y == n)y = 0; } if(i == N)i = 0; } else { --i; --x; if(x == -1){ x = n - 1; --y; if(y == -1)y = n - 1; } if(i == N)i = 0; if(i < 0)i = N - 1; } if(!mask_to_shake[i] && tries % 5 != 0)continue; /// _---------- RT_ADJ bool value = field[i]; field[i] = !field[i]; int new_score = current_score + validate_partial(t, steps, x, y, changelog); if(new_score > best_score){ best_score = new_score; best_pos = field; global_cache.set({best_score, best_pos}, t); } else if(new_score < best_score - range){ field[i] = !field[i]; } else { if(rand() % 4 == 0){ field[i] = !field[i]; } } if(value == field[i]){ revert_changes(steps, changelog); } else { current_score = new_score; } } } while(best_score != score || tries-- > 0); return best_pos; } CW shake_k_and_single(const task &t, CW start, int tries, bool fast = false){ auto next_start = start; vector<int> indexes = n_nums; shuffle(indexes.begin() , indexes.end() , g); for(int i = 0; i < tries; ++i){ next_start[indexes[i]] = !next_start[indexes[i]]; } next_start = shake_single_if_equal(next_start, t, true); return shake_single_if_equal(next_start, t, fast); } CW make_random() { CW c(N); auto indexes = n_nums; shuffle(indexes.begin() , indexes.end() , g); indexes.resize(N / 2); for(auto i : indexes){ c[i] = 1; } return c; } CW make_checked() { CW c(N); for(size_t i = 0; i < N; i += 2){ c[i] = true; } return c; } namespace CNF_solver { using CNF = std::vector<std::vector<int>>; bool alive(const CW& field, int pos, int x, int y){ static const int dx8[] = {-1, -1, -1, 0, 0, 1, 1, 1}; static const int dy8[] = {-1, 0, 1, -1, 1, -1, 0, 1}; int count = 0; for(int i = 0; i < 8; ++i){ int a = x + dx8[i]; int b = y + dy8[i]; if(a < 0)a += n; else if(a >= n)a -= n; if(b < 0)b += n; else if(b >= n)b -= n; if(field[b * n + a]){ ++count; } } return(count | field[pos])== 3; } vector<int> generate_positions(int x, int y){ static const int dx8[] = {-1, -1, -1, 0, 0, 1, 1, 1}; static const int dy8[] = {-1, 0, 1, -1, 1, -1, 0, 1}; vector<int> result; result.push_back(-9999); // place holder for(int i = 0; i < 8; ++i){ int a = x + dx8[i]; int b = y + dy8[i]; if(a < 0)a += n; else if(a >= n)a -= n; if(b < 0)b += n; else if(b >= n)b -= n; result.push_back(b * n + a); } return result; } // CNF: all values false: through negative bool geti(uint32_t value, int index){ return(value &(1 << index)) ; } CNF universal_cnf() { CNF result_cnf; uint32_t mask = 0; while(!geti(mask, 10)) { int count = 0; for(int i = 0; i < 8; ++i){ if(geti(mask, i)) { ++count; } } bool alive =(count | geti(mask, 8)) == 3; bool is_true =(alive == geti(mask, 9)) ; if(!is_true){ vector<int> next; for(int i = 0; i <= 9; ++i){ if(geti(mask, i)) { next.push_back(-i - 1); } else { next.push_back(i + 1); } } result_cnf.push_back(next); } sort(result_cnf.begin() , result_cnf.end()); ++mask; } // 325065 CNF -> 160k CNF // speed increased 1.6 ; 30 -> // optimize_cnf(result_cnf); // Optimized much better externally by python tool sympy: // $ python3 // >>> // >>> x, y, z = symbols('x y z') // >>> simplify_logic(( x & y & ~z)|(x & ~y & z), form="cnf") // x &(y | z)&(~y | ~z) result_cnf = {{1, 2, 3, 4, 5, 6, 7, -10}, {1, 2, 3, 4, 5, 6, 8, -10}, {1, 2, 3, 4, 5, 6, 9, -10}, {1, 2, 3, 4, 5, 7, 8, -10}, {1, 2, 3, 4, 5, 7, 9, -10}, {1, 2, 3, 4, 5, 8, 9, -10}, {1, 2, 3, 4, 6, 7, 8, -10}, {1, 2, 3, 4, 6, 7, 9, -10}, {1, 2, 3, 4, 6, 8, 9, -10}, {1, 2, 3, 4, 7, 8, 9, -10}, {1, 2, 3, 5, 6, 7, 8, -10}, {1, 2, 3, 5, 6, 7, 9, -10}, {1, 2, 3, 5, 6, 8, 9, -10}, {1, 2, 3, 5, 7, 8, 9, -10}, {1, 2, 3, 6, 7, 8, 9, -10}, {1, 2, 4, 5, 6, 7, 8, -10}, {1, 2, 4, 5, 6, 7, 9, -10}, {1, 2, 4, 5, 6, 8, 9, -10}, {1, 2, 4, 5, 7, 8, 9, -10}, {1, 2, 4, 6, 7, 8, 9, -10}, {1, 2, 5, 6, 7, 8, 9, -10}, {1, 3, 4, 5, 6, 7, 8, -10}, {1, 3, 4, 5, 6, 7, 9, -10}, {1, 3, 4, 5, 6, 8, 9, -10}, {1, 3, 4, 5, 7, 8, 9, -10}, {1, 3, 4, 6, 7, 8, 9, -10}, {1, 3, 5, 6, 7, 8, 9, -10}, {1, 4, 5, 6, 7, 8, 9, -10}, {2, 3, 4, 5, 6, 7, 8, -10}, {2, 3, 4, 5, 6, 7, 9, -10}, {2, 3, 4, 5, 6, 8, 9, -10}, {2, 3, 4, 5, 7, 8, 9, -10}, {2, 3, 4, 6, 7, 8, 9, -10}, {2, 3, 5, 6, 7, 8, 9, -10}, {2, 4, 5, 6, 7, 8, 9, -10}, {3, 4, 5, 6, 7, 8, 9, -10}, {-1, -10, -2, -3, -4}, {-1, -10, -2, -3, -5}, {-1, -10, -2, -3, -6}, {-1, -10, -2, -3, -7}, {-1, -10, -2, -3, -8}, {-1, -10, -2, -4, -5}, {-1, -10, -2, -4, -6}, {-1, -10, -2, -4, -7}, {-1, -10, -2, -4, -8}, {-1, -10, -2, -5, -6}, {-1, -10, -2, -5, -7}, {-1, -10, -2, -5, -8}, {-1, -10, -2, -6, -7}, {-1, -10, -2, -6, -8}, {-1, -10, -2, -7, -8}, {-1, -10, -3, -4, -5}, {-1, -10, -3, -4, -6}, {-1, -10, -3, -4, -7}, {-1, -10, -3, -4, -8}, {-1, -10, -3, -5, -6}, {-1, -10, -3, -5, -7}, {-1, -10, -3, -5, -8}, {-1, -10, -3, -6, -7}, {-1, -10, -3, -6, -8}, {-1, -10, -3, -7, -8}, {-1, -10, -4, -5, -6}, {-1, -10, -4, -5, -7}, {-1, -10, -4, -5, -8}, {-1, -10, -4, -6, -7}, {-1, -10, -4, -6, -8}, {-1, -10, -4, -7, -8}, {-1, -10, -5, -6, -7}, {-1, -10, -5, -6, -8}, {-1, -10, -5, -7, -8}, {-1, -10, -6, -7, -8}, {-10, -2, -3, -4, -5}, {-10, -2, -3, -4, -6}, {-10, -2, -3, -4, -7}, {-10, -2, -3, -4, -8}, {-10, -2, -3, -5, -6}, {-10, -2, -3, -5, -7}, {-10, -2, -3, -5, -8}, {-10, -2, -3, -6, -7}, {-10, -2, -3, -6, -8}, {-10, -2, -3, -7, -8}, {-10, -2, -4, -5, -6}, {-10, -2, -4, -5, -7}, {-10, -2, -4, -5, -8}, {-10, -2, -4, -6, -7}, {-10, -2, -4, -6, -8}, {-10, -2, -4, -7, -8}, {-10, -2, -5, -6, -7}, {-10, -2, -5, -6, -8}, {-10, -2, -5, -7, -8}, {-10, -2, -6, -7, -8}, {-10, -3, -4, -5, -6}, {-10, -3, -4, -5, -7}, {-10, -3, -4, -5, -8}, {-10, -3, -4, -6, -7}, {-10, -3, -4, -6, -8}, {-10, -3, -4, -7, -8}, {-10, -3, -5, -6, -7}, {-10, -3, -5, -6, -8}, {-10, -3, -5, -7, -8}, {-10, -3, -6, -7, -8}, {-10, -4, -5, -6, -7}, {-10, -4, -5, -6, -8}, {-10, -4, -5, -7, -8}, {-10, -4, -6, -7, -8}, {-10, -5, -6, -7, -8}, {1, 10, 2, 3, 4, 5, -6, -7, -8}, {1, 10, 2, 3, 4, 6, -5, -7, -8}, {1, 10, 2, 3, 4, 7, -5, -6, -8}, {1, 10, 2, 3, 4, 8, -5, -6, -7}, {1, 10, 2, 3, 5, 6, -4, -7, -8}, {1, 10, 2, 3, 5, 6, -4, -7, -9}, {1, 10, 2, 3, 5, 6, -7, -8, -9}, {1, 10, 2, 3, 5, 7, -4, -6, -8}, {1, 10, 2, 3, 5, 7, -4, -6, -9}, {1, 10, 2, 3, 5, 7, -4, -8, -9}, {1, 10, 2, 3, 5, 7, -6, -8, -9}, {1, 10, 2, 3, 5, 8, -4, -6, -7}, {1, 10, 2, 3, 5, 8, -6, -7, -9}, {1, 10, 2, 3, 6, 7, -4, -5, -8}, {1, 10, 2, 3, 6, 7, -4, -5, -9}, {1, 10, 2, 3, 6, 7, -5, -8, -9}, {1, 10, 2, 3, 6, 8, -4, -5, -7}, {1, 10, 2, 3, 6, 8, -5, -7, -9}, {1, 10, 2, 3, 7, 8, -4, -5, -6}, {1, 10, 2, 3, 7, 8, -5, -6, -9}, {1, 10, 2, 4, 5, 6, -3, -7, -8}, {1, 10, 2, 4, 5, 7, -3, -6, -8}, {1, 10, 2, 4, 5, 8, -3, -6, -7}, {1, 10, 2, 4, 6, 7, -3, -5, -8}, {1, 10, 2, 4, 6, 8, -3, -5, -7}, {1, 10, 2, 4, 7, 8, -3, -5, -6}, {1, 10, 2, 5, 6, 7, -3, -4, -8}, {1, 10, 2, 5, 6, 7, -3, -4, -9}, {1, 10, 2, 5, 6, 7, -3, -8, -9}, {1, 10, 2, 5, 6, 8, -3, -4, -7}, {1, 10, 2, 5, 6, 8, -3, -7, -9}, {1, 10, 2, 5, 7, 8, -3, -4, -6}, {1, 10, 2, 5, 7, 8, -3, -6, -9}, {1, 10, 2, 6, 7, 8, -3, -4, -5}, {1, 10, 2, 6, 7, 8, -3, -5, -9}, {1, 10, 3, 4, 5, 6, -2, -7, -8}, {1, 10, 3, 4, 5, 7, -2, -6, -8}, {1, 10, 3, 4, 5, 8, -2, -6, -7}, {1, 10, 3, 4, 6, 7, -2, -5, -8}, {1, 10, 3, 4, 6, 8, -2, -5, -7}, {1, 10, 3, 4, 7, 8, -2, -5, -6}, {1, 10, 3, 5, 6, 7, -2, -4, -8}, {1, 10, 3, 5, 6, 7, -2, -4, -9}, {1, 10, 3, 5, 6, 7, -2, -8, -9}, {1, 10, 3, 5, 6, 8, -2, -4, -7}, {1, 10, 3, 5, 6, 8, -2, -7, -9}, {1, 10, 3, 5, 7, 8, -2, -4, -6}, {1, 10, 3, 5, 7, 8, -2, -6, -9}, {1, 10, 3, 6, 7, 8, -2, -4, -5}, {1, 10, 3, 6, 7, 8, -2, -5, -9}, {1, 10, 4, 5, 6, 7, -2, -3, -8}, {1, 10, 4, 5, 6, 8, -2, -3, -7}, {1, 10, 4, 5, 7, 8, -2, -3, -6}, {1, 10, 4, 6, 7, 8, -2, -3, -5}, {1, 10, 5, 6, 7, 8, -2, -3, -4}, {1, 10, 5, 6, 7, 8, -2, -3, -9}, {10, 2, 3, 4, 5, 6, -1, -7, -8}, {10, 2, 3, 4, 5, 7, -1, -6, -8}, {10, 2, 3, 4, 5, 8, -1, -6, -7}, {10, 2, 3, 4, 6, 7, -1, -5, -8}, {10, 2, 3, 4, 6, 8, -1, -5, -7}, {10, 2, 3, 4, 7, 8, -1, -5, -6}, {10, 2, 3, 5, 6, 7, -1, -4, -8}, {10, 2, 3, 5, 6, 7, -1, -4, -9}, {10, 2, 3, 5, 6, 7, -1, -8, -9}, {10, 2, 3, 5, 6, 8, -1, -4, -7}, {10, 2, 3, 5, 6, 8, -1, -7, -9}, {10, 2, 3, 5, 7, 8, -1, -4, -6}, {10, 2, 3, 5, 7, 8, -1, -6, -9}, {10, 2, 3, 6, 7, 8, -1, -4, -5}, {10, 2, 3, 6, 7, 8, -1, -5, -9}, {10, 2, 4, 5, 6, 7, -1, -3, -8}, {10, 2, 4, 5, 6, 8, -1, -3, -7}, {10, 2, 4, 5, 7, 8, -1, -3, -6}, {10, 2, 4, 6, 7, 8, -1, -3, -5}, {10, 2, 5, 6, 7, 8, -1, -3, -4}, {10, 2, 5, 6, 7, 8, -1, -3, -9}, {10, 3, 4, 5, 6, 7, -1, -2, -8}, {10, 3, 4, 5, 6, 8, -1, -2, -7}, {10, 3, 4, 5, 7, 8, -1, -2, -6}, {10, 3, 4, 6, 7, 8, -1, -2, -5}, {10, 3, 5, 6, 7, 8, -1, -2, -4}, {10, 3, 5, 6, 7, 8, -1, -2, -9}, {10, 4, 5, 6, 7, 8, -1, -2, -3}}; return result_cnf; } // 0...N-1: previous position // N...2N - 1: current position vector<std::vector<int>> cnf_universal() { // universal "conways rules" CNF CNF cnf; CNF cnf_conway_cell = universal_cnf() ; for(int y = 0; y < n; ++y){ for(int x = 0; x < n; ++x){ int pos_previous = y * n + x; int pos_current = y * n + x + N; vector<int> positions = generate_positions(x, y); positions.push_back(pos_previous); positions.push_back(pos_current); for(auto& c : cnf_conway_cell){ vector<int> next; for(auto& p : c){ if(p < 0){ next.push_back(-positions[-p] - 1); } else { next.push_back(positions[p] + 1); } } cnf.push_back(next); } } } cout << "CNF size: " << cnf.size() << endl; return cnf; } const static CNF cnf_conway_rules = cnf_universal() ; CNF get_cnf(const task& t, const std::pair<int, int>& ignore_range = {0, 0}){ int k = t.steps; if(k == 1){ int k = t.steps; CNF cnf = cnf_conway_rules; for(int iter = 1; iter < k; ++iter){ CNF cnf_i = cnf_conway_rules; for(auto& i : cnf_i){ for(auto& j : i){ if(j > 0)j += N * iter; else j -= N * iter; } cnf.push_back(i); } } // fulfill CNF for current field for(int i = 0; i < N; ++i){ int var = i + k * N + 1; if(t.field[i]){ cnf.push_back({var}); } else { cnf.push_back({-var}); } } return cnf; } // First level CNF cnf = cnf_conway_rules; // Middle levels: not first, not last for(int iter = 1; iter + 1 < k; ++iter){ CNF cnf_i = cnf_conway_rules; for(auto& i : cnf_i){ for(auto& j : i){ if(j > 0)j += N * iter; else j -= N * iter; } cnf.push_back(i); } } // fulfill CNF for current field CNF cnf_last = cnf_conway_rules; for(auto& i : cnf_last){ int to_ignore = 0; for(auto& j : i){ for(int l = N + 1; l <= N + N; ++l){ if(j == l || j == -l){ to_ignore = j; } } } int pos = -1; if(to_ignore > 0){ pos = to_ignore - N - 1; if(t.field[pos])continue; } if(to_ignore < 0){ pos = -to_ignore - N - 1; if(!t.field[-to_ignore - N - 1])continue; } if(pos >= ignore_range.first && pos < ignore_range.second){ continue; } std::vector<int> c; for(auto& j : i){ if(j == to_ignore)continue; if(j > 0) c.push_back(j + N *(k - 1)) ; else c.push_back(j - N *(k - 1)) ; } cnf.push_back(c); } return cnf; } } // namespace CNF_solver struct KissatSolver { KissatSolver(double timeout = 2.1) : timeout(timeout) , cleaner([this]() -> void { cleanup() ; }) { } ~KissatSolver() { cleaner.join() ; } kissat* add(string id){ kissat* solver = kissat_init() ; { lock_guard<mutex> g(m); if(all.find(id)!= all.end())throw std::runtime_error("Kissat solver already contains" + id); all[id] = {solver, std::chrono::system_clock::now() }; } return solver; } void notify_done(string id){ lock_guard<mutex> g(m); to_free.insert(id); } void cleanup() { while(!is_stopped){ this_thread::sleep_for(300ms); lock_guard<mutex> g(m); int to_clean = 0; for(const auto& id : to_free){ auto& item = all[id]; kissat* solver = item.first; kissat_release(solver); all.erase(id); ++to_clean; } to_free.clear() ; int to_terminate = 0; TStamp now = std::chrono::system_clock::now() ; for(const auto& i : all){ auto item = i.second; double running = std::chrono::duration_cast<std::chrono::seconds>(now - item.second ).count() ; if(running > timeout){ kissat_terminate(item.first); ++to_terminate; } } if(to_terminate || to_clean){ cout << "terminated " << to_terminate << " cleaned " << to_clean << endl; } } } private: double timeout; map<string, std::pair<kissat*, TStamp>> all; thread cleaner; set<string> to_free; mutex m; } kissat_solver; void sat_solver_k(const task& t){ int k = t.steps; CNF_solver::CNF cnf = CNF_solver::get_cnf(t); kissat* solver = kissat_solver.add(t.id); kissat_set_option(solver, "quiet", 1); kissat_set_configuration(solver, "sat"); kissat_reserve(solver, N * k); for(auto c : cnf){ for(auto i : c){ kissat_add(solver, i); } kissat_add(solver, 0); } int result = kissat_solve(solver); switch(result){ case 20: cerr << "wtf solver failed for " << t.id << endl; break; } CW solution; bool at_least_one_true = 0; for(int i = 1; i <= N; ++i){ int next = kissat_value(solver, i); if(next > 0){ solution.push_back(1); at_least_one_true = true; } else { solution.push_back(0); } } kissat_solver.notify_done(t.id); int score = validate(solution, t); global_cache.set({score, solution}, t); if(score != N && at_least_one_true){ shake_single_if_equal(solution, t); } } bool solve_sat(const task& t){ auto it = global_cache.get(t.id); if(is_timeouted)return false; if(it.first == N){ return true; } if(t.steps == 1){ sat_solver_k(t); } else if(t.steps == 2 && weight(t)< 100){ /// ------------ RT_ADJ sat_solver_k(t); } return global_cache.get(t.id ).first == N; } bool solve_fast(const task& t){ if(is_timeouted)return false; auto it = global_cache.get(t.id); if(it.first == N){ return true; } { if(weight(t)< 200){ shake_single_if_equal(CW(N), t, true); } else { // shake_single_if_equal(make_random() , t, true); } shake_single_if_equal(make_checked() , t, true); if(t.steps % 2 == 0) shake_single_if_equal(t.field, t, true); else shake_single_if_equal(run_step(t.field), t, true); } // enabled this only as efficient int score = it.first; size_t iters = 5; CW next = s2vec(it.second); while(iters--){ CW next2 = shake_single_if_equal(next, t, true); if(validate(next2, t)>= validate(next, t)) { next = next2; } it = global_cache.get(t.id); int new_score = it.first; if(new_score == N)break; if(new_score != score){ score = new_score; next = s2vec(it.second); iters = 11; } } return global_cache.get(t.id ).first == N; } bool solve_slower(const task& t){ if(is_timeouted)return false; auto it = global_cache.get(t.id); if(it.first == N){ return true; } // enabled this only as efficient int score = it.first; size_t iters = 4; CW next = s2vec(it.second); while(iters--){ CW next2 = shake_single_if_equal(next, t); CW next3 = shake_k_and_single(t, next2, 8); if(validate(next3, t)>= validate(next, t)) { next = next3; } if(validate(next2, t)>= validate(next, t)) { next = next2; } it = global_cache.get(t.id); int new_score = it.first; if(new_score == N)break; if(new_score != score){ score = new_score; next = s2vec(it.second); iters = 6; } } /* for(int i = 0; i < 4; ++i){ CW next = make_random() ; for(int j = 0; j < 5; ++j){ next = shake_k_and_single(t, next, 30); } } */ // trying to run upfront far // run_upfront(id, end, steps); return global_cache.get(t.id ).first == N; } void validate_training(const std::string& file){ ifstream input(file); string line; input >> line; while(input >> line){ vector<string> v = split(line, ','); if(v.size() != static_cast<size_t>(N + N + 2)) { cerr << "incorrect input within line within validate: " << line << endl; terminate(1); } string id = v[0]; int steps = stoi(v[1]); CW start(N); CW end(N); for(int i = 0; i < N; ++i){ start[i] =(v[i + 2] == "1"); end[i] =(v[N + i + 2] == "1"); } if(validate(start, {id, end, steps})!= N){ cerr << "validate failed at: " << id << endl; terminate(1); } } } pair<int, int> calc_stats(const std::vector<task>& tasks){ int count = 0; int count_solved = 0; int total_score = 0; for(const task & t : tasks){ ++count; int score = global_cache.get(t.id ).first; total_score += score; if(score == N)++count_solved; } int max_score = count * N; cout << "Solved: " << count_solved << "/" << count ; cout << " :<>: " << total_score << "/" << max_score << " = " << static_cast<double>(total_score)/ max_score << endl;; return {count_solved, total_score}; } void print_stats(const vector<task>& tasks){ auto started = std::chrono::system_clock::now() ; auto first_stats = calc_stats(tasks); while(!is_stopped){ sleep(9); { // time-out for application ? TStamp now = std::chrono::system_clock::now() ; double total_running = std::chrono::duration_cast<std::chrono::seconds>(now - app_started ).count() ; if(total_running > total_timeout){ is_timeouted = true; } } double running =(std::chrono::system_clock::now() - started ).count() ; auto current = calc_stats(tasks); double speed1 =(current.first - first_stats.first)/ running * 1e9; double speed2 =(current.second - first_stats.second)/ running * 1e9; cout << "speed " << std::fixed << std::setprecision(6)<< speed1 << ' ' << speed2 << ' '; } calc_stats(tasks); } int main(int argc, char *argv[]){ validate_training("train.csv"); if(argc > 1 && strcmp(argv[1], "--only-validate")== 0){ cerr << "Validated train!" << endl; terminate(0); } if(argc > 1 && strcmp(argv[1], "--timeout")== 0){ total_timeout = stoi(argv[2]); } ifstream input("test.csv"); string line; // header input >> line; std::vector<task> all_tasks; while(input >> line){ vector<string> v = split(line, ','); if(v.size() != static_cast<size_t>(N + 2)) { cerr << "incorrect input within line: " << line << endl; terminate(1); } string id = v[0]; int steps = stoi(v[1]); // if(id >= "51000")continue; // if(steps != 3)continue; CW field(N); for(int i = 0; i < N; ++i){ field[i] = v[i + 2] == "1"; } task t{id, field, steps}; CW empty(N); global_cache.set({validate(empty, t), empty}, t); all_tasks.push_back(t); } if(argc > 1 && strcmp(argv[1], "--shuffle")== 0){ cout << "shuffle tasks randomly" << endl; shuffle(all_tasks.begin() , all_tasks.end() , g); } if(argc > 1 && strcmp(argv[1], "--sort-score")== 0){ cout << "sort by score" << endl; sort(all_tasks.begin() , all_tasks.end() , [](const auto& i, const auto& j){ int score_a = global_cache.get(i.id ).first; int score_b = global_cache.get(j.id ).first; return score_a < score_b; }); } if(argc > 1 && strcmp(argv[1], "--sort-score-reverse")== 0){ cout << "sort by score(reverse" << endl; sort(all_tasks.begin() , all_tasks.end() , [](const auto& i, const auto& j){ int score_a = global_cache.get(i.id ).first; int score_b = global_cache.get(j.id ).first; return score_a > score_b; }); } if(argc > 1 && strcmp(argv[1], "--sort-weight")== 0){ cout << "sort by weight" << endl; sort(all_tasks.begin() , all_tasks.end() , [](const auto& i, const auto& j){ return(weight(i)< weight(j)) ; }); } cout << "solve SAT" << endl; { boost::asio::thread_pool pool(std::thread::hardware_concurrency()); for(const auto& t : all_tasks){ if(global_cache.get(t.id ).first == N)continue; boost::asio::post(pool, [t]() { solve_sat(t); } ); } thread stats([all_tasks]() {print_stats(all_tasks); }); pool.join() ; is_stopped = true; stats.join() ; } cout << "solve fast" << endl; { is_stopped = false; boost::asio::thread_pool pool(std::thread::hardware_concurrency()); for(const auto& t : all_tasks){ if(global_cache.get(t.id ).first == N)continue; boost::asio::post(pool, [t]() { solve_fast(t); } ); } thread stats([all_tasks]() {print_stats(all_tasks); }); pool.join() ; is_stopped = true; stats.join() ; } while(!is_timeouted){ cout << "solve slow" << endl; sort(all_tasks.begin() , all_tasks.end() , [](const auto& i, const auto& j){ return(weight(i)> weight(j)) ; }); is_stopped = false; boost::asio::thread_pool pool(std::thread::hardware_concurrency()); for(const auto& t : all_tasks){ if(global_cache.get(t.id ).first == N)continue; boost::asio::post(pool, [t]() { solve_slower(t); } ); } thread stats([all_tasks]() {print_stats(all_tasks); }); pool.join() ; is_stopped = true; stats.join() ; } }
Conway's Reverse Game of Life 2020
13,173,972
df['title'] = df['Name'].apply(lambda n: n.split(',')[1].split('.')[0].strip()) df[['title', 'Survived']].groupby('title' ).agg({'Survived': [ 'mean', 'std', 'count']} ).sort_values(( 'Survived', 'count'), ascending=False )<categorify>
!apt-get install libboost-all-dev -y
Conway's Reverse Game of Life 2020
13,173,972
title_groups = { "Capt": "sacrifies", "Col": "army", "Rev": "sacrifies", "Major": "army", "Mr" : "Mr", "Master": "Master", "Miss": "Miss", "Mrs": "Mrs", "Mme": "Mrs", "Ms": "Mrs", "Mlle": "Miss" } df['title_group'] = df['title'].apply(lambda t: title_groups[t] if t in title_groups else 'other') df = pd.concat([df, pd.get_dummies(df['title_group'], prefix='title_group')], axis=1) t_g = df['title_group'].unique() useful.extend(['title_group_{}'.format(x)for x in t_g] )<sort_values>
if KAGGLE: pass else: !g++ -o main-RT main-RT.cpp -std=c++17 -g -O3 -lpthread -Wall -Wextra -march=native -funroll-loops -fno-omit-frame-pointer kissat/build/libkissat.a kissat/build/handle.o
Conway's Reverse Game of Life 2020
13,173,972
<prepare_x_and_y><EOS>
%%writefile dump.cpp using namespace std; int N = 625; int main() { map<string, pair<int, string>> cache; { ifstream cache_file("processed/cache"); string id; int score; string field; while(cache_file >> id >> score >> field){ auto it = cache[id]; if(it.first < score){ cache[id] = {score, field}; } } } string time_suffix = to_string(time(nullptr)) ; ofstream dump_file("processed/dump-" + time_suffix + ".csv"); ofstream shrink_cache("processed/shrink-cache-" + time_suffix); dump_file << "id"; for(int i = 0; i < N; ++i){ dump_file << ",start_" << i; } dump_file << ' '; for(auto i : cache){ dump_file << i.first << "," << i.second.second << ' '; shrink_cache << i.first << ' ' << i.second.first << ' ' << i.second.second << ' '; } }
Conway's Reverse Game of Life 2020
12,266,838
<SOS> metric: PostProcessorKernel Kaggle data source: conways-reverse-game-of-life-2020<train_model>
import numpy as np import matplotlib.pyplot as plt from IPython.display import clear_output import pandas as pd from PIL import Image import time import math from tqdm.auto import tqdm
Conway's Reverse Game of Life 2020
12,266,838
clf = RandomForestClassifier(n_estimators=100, random_state=1) clf = clf.fit(train_X, train_y )<drop_column>
print(sys.version )
Conway's Reverse Game of Life 2020
12,266,838
useful = importances.tail(33 ).index.tolist() useful.remove('title_group_Mr') useful.remove('Fare') useful.remove('older_relative_age') train_X=train[useful] train_X.shape<train_on_grid>
import tensorflow as tf
Conway's Reverse Game of Life 2020
12,266,838
search_best_hyperparameters = False if search_best_hyperparameters: parameter_grid = { 'n_estimators': [10, 20, 50, 100, 200, 500], 'learning_rate': [0.1, 0.2, 0.5, 1, 1.2], 'random_state': [1] } model = AdaBoostClassifier() gs = GridSearchCV( model, scoring='accuracy', param_grid=parameter_grid, cv=4, n_jobs=-1) gs.fit(train_X, train_y) params = gs.best_params_ print(params) else: params = { 'learning_rate': 0.1, 'n_estimators': 500, 'random_state': 1 }<train_model>
tf.__version__
Conway's Reverse Game of Life 2020
12,266,838
clf = AdaBoostClassifier(**params) clf = clf.fit(train_X, train_y) clf.score(train_X, train_y )<predict_on_test>
SIZE = 25
Conway's Reverse Game of Life 2020
12,266,838
test = df[df['Survived'].isnull() ] test_X = test[useful] test_y = clf.predict(test_X )<data_type_conversions>
def life_step_1(X): nbrs_count = sum(np.roll(np.roll(X, i, 0), j, 1) for i in(-1, 0, 1)for j in(-1, 0, 1) if(i != 0 or j != 0)) return(nbrs_count == 3)|(X &(nbrs_count == 2))
Conway's Reverse Game of Life 2020
12,266,838
submit = pd.DataFrame(test_y.astype(int), index=test_X.index, columns=['Survived']) submit.head()<save_to_csv>
train_df = pd.read_csv('/kaggle/input/conways-reverse-game-of-life-2020/train.csv') test_df = pd.read_csv('/kaggle/input/conways-reverse-game-of-life-2020/test.csv') print(train_df.shape) print(test_df.shape )
Conway's Reverse Game of Life 2020
12,266,838
submit.to_csv('submission.csv' )<import_modules>
train_df.groupby(['delta'] ).size()
Conway's Reverse Game of Life 2020
12,266,838
import numpy as np import pandas as pd import numpy as np import pandas as pd from sympy import simplify, cos, sin, Symbol, Function, tanh, pprint, init_printing, exp from sympy.functions import Min,Max <prepare_x_and_y>
sample_start = train_sample.loc[:, train_sample.columns.str.startswith('start')] sample_stop = train_sample.loc[:, train_sample.columns.str.startswith('stop')]
Conway's Reverse Game of Life 2020
12,266,838
A = 0.058823499828577 B = 0.841127 C = 0.138462007045746 D = 0.31830988618379069 E = 2.810815 F = 0.63661977236758138 G = 5.428569793701172 H = 3.1415926535897931 I = 0.592158 J = 4.869778 K = 0.063467 L = -0.091481 M = 0.0821533 N = 0.720430016517639 O = 0.230145 P = 9.89287 Q = 785 R = 1.07241 S = 281 T = 734 U = 5.3 V = 67.0 W = 2.484848 X = 8.48635 Y = 63 Z = 12.6275 AA = 0.735354 AB = 727 AC = 2.5 AD = 2.6 AE = 0.3 AF = 3.0 AG = 0.226263 AH = 2.0 AI = 12.4148 AJ = 96 AK = 0.130303 AL = 176 AM = 3.2 BIG = [A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,AA,AB,AC,AD,AE,AF,AG,AH,AI,AJ,AK,AL,AM] <compute_test_metric>
start_arr = np.asarray(sample_start ).reshape(25, 25) stop_arr = np.asarray(sample_stop ).reshape(25, 25) time_step = train_sample['delta'].values[0] print(time_step )
Conway's Reverse Game of Life 2020
12,266,838
def GeneticFunction(data,A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,AA,AB,AC,AD,AE,AF,AG,AH,AI,AJ,AK,AL,AM): return(( np.minimum(((((A + data["Sex"])- np.cos(( data["Pclass"] / AH)))* AH)) ,(( B)))* AH)+ np.maximum(((data["SibSp"] - AC)) ,(-(np.minimum(( data["Sex"]),(np.sin(data["Parch"])))* data["Pclass"])))+ (AG *(( np.minimum(( data["Sex"]),(((data["Parch"] / AH)/ AH)))* data["Age"])- data["Cabin"])) + np.minimum(((np.sin(( data["Parch"] *(( data["Fare"] - AA)* AH)))* AH)) ,(( data["SibSp"] / AH)))+ np.maximum(( np.minimum(( -np.cos(data["Embarked"])) ,(C))),(np.sin(((data["Cabin"] - data["Fare"])* AH)))) + -np.minimum(((((data["Age"] * data["Parch"])* data["Embarked"])+ data["Parch"])) ,(np.sin(data["Pclass"])))+ np.minimum(( data["Sex"]),(( np.sin(-(data["Fare"] * np.cos(( data["Fare"] * W)))) / AH)))+ np.minimum(((O)) ,(np.sin(np.minimum(((( V / AH)* np.sin(data["Fare"]))),(D)))))+ np.sin(( np.sin(data["Cabin"])*(np.sin(( Z)) * np.maximum(( data["Age"]),(data["Fare"])))))+ np.sin(((np.minimum(( data["Fare"]),(( data["Cabin"] * data["Embarked"])))/ AH)* -data["Fare"])) + np.minimum(((( AD * data["SibSp"])* np.sin(((AJ)* np.sin(data["Cabin"]))))),(data["Parch"])) + np.sin(np.sin(( np.maximum(( np.minimum(( data["Age"]),(data["Cabin"]))),(( data["Fare"] * AK)))* data["Cabin"])))+ np.maximum(( np.sin(((AI)*(data["Age"] / AH)))) ,(np.sin(( -AF * data["Cabin"])))) + (np.minimum(( np.sin(((( np.sin(((data["Fare"] * AH)* AH)) * AH)* AH)* AH))),(data["SibSp"])) / AH)+ (( data["Sex"] - data["SibSp"])*(np.cos(((data["Embarked"] - AA)+ data["Age"])) / AH)) + (( np.sin(data["Cabin"])/ AH)-(np.cos(np.minimum(( data["Age"]),(data["Embarked"])))* np.sin(data["Embarked"])))+ np.minimum(( AE),(( data["Sex"] *(J *(N - np.sin(( data["Age"] * AH)))))))+ (np.minimum(( np.cos(data["Fare"])) ,(np.maximum(( np.sin(data["Age"])) ,(data["Parch"])))) * np.cos(( data["Fare"] / AH)))+ np.sin(( data["Parch"] * np.minimum(((data["Age"] - K)) ,(( np.cos(( data["Pclass"] * AH)) / AH)))))+ (data["Parch"] *(np.sin(((data["Fare"] *(I * data["Age"])) * AH)) / AH)) + (D * np.cos(np.maximum(((0.5 * data["Fare"])) ,(( np.sin(N)* data["Age"])))))+ (np.minimum(((data["SibSp"] / AH)) ,(np.sin(((data["Pclass"] - data["Fare"])* data["SibSp"])))) * data["SibSp"])+ np.tanh(( data["Sex"] * np.sin(( U * np.sin(( data["Cabin"] * np.cos(data["Fare"])))))))+ (np.minimum(( data["Parch"]),(data["Sex"])) * np.cos(np.maximum(((np.cos(data["Parch"])+ data["Age"])) ,(AM)))) + (np.minimum(( np.tanh(((data["Cabin"] / AH)+ data["Parch"]))),(( data["Sex"] + np.cos(data["Age"])))) / AH)+ (np.sin(( np.sin(data["Sex"])*(np.sin(( data["Age"] * data["Pclass"])) * data["Pclass"])))/ AH)+ (data["Sex"] *(np.cos(((data["Sex"] + data["Fare"])*(( X)*(Y)))) / AH)) + np.minimum(( data["Sex"]),(( np.cos(( data["Age"] * np.tanh(np.sin(np.cos(data["Fare"])))))/ AH)))+ (np.tanh(np.tanh(-np.cos(( np.maximum(( np.cos(data["Fare"])) ,(L)) * data["Age"])))) / AH)+ (np.tanh(np.cos(( np.cos(data["Age"])+(data["Age"] + np.minimum(( data["Fare"]),(data["Age"])))))) / AH)+ (np.tanh(np.cos(( data["Age"] *(( -AH + np.sin(data["SibSp"])) + data["Fare"])))) / AH)+ (np.minimum(((( S)- data["Fare"])) ,(np.sin(( np.maximum(((AL)) ,(data["Fare"])) * data["SibSp"])))) * AH)+ np.sin(((np.maximum(( data["Embarked"]),(data["Age"])) * AH)*(((Q)* H)* data["Age"])))+ np.minimum(( data["Sex"]),(np.sin(-(np.minimum(((data["Cabin"] / AH)) ,(data["SibSp"])) *(data["Fare"] / AH)))))+ np.sin(np.sin(( data["Cabin"] *(data["Embarked"] +(np.tanh(-data["Age"])+ data["Fare"])))))+ (np.cos(np.cos(data["Fare"])) *(np.sin(( data["Embarked"] -(( T)* data["Fare"])))/ AH)) + (( np.minimum(( data["SibSp"]),(np.cos(data["Fare"])))* np.cos(data["SibSp"])) * np.sin(( data["Age"] / AH)))+ (np.sin(( np.sin(( data["SibSp"] * np.cos(( data["Fare"] * AH)))) +(data["Cabin"] * AH)))/ AH)+ (((data["Sex"] * data["SibSp"])* np.sin(np.sin(-(data["Fare"] * data["Cabin"])))) * AH)+ (np.sin(( data["SibSp"] *(((( G + V)* AH)/ AH)* data["Age"])))/ AH)+ (data["Pclass"] *(np.sin(((data["Embarked"] * data["Cabin"])*(data["Age"] -(R)))) / AH)) + (np.cos(((((-data["SibSp"] + data["Age"])+ data["Parch"])* data["Embarked"])/ AH)) / AH)+ (D * np.sin(((data["Age"] *(( data["Embarked"] * np.sin(data["Fare"])) * AH)) * AH)))+ (( np.minimum(((data["Age"] * A)) ,(data["Sex"])) - F)* np.tanh(np.sin(data["Pclass"])))+ -np.minimum(((np.cos(((AB)*(( data["Fare"] + data["Parch"])* AH)))/ AH)) ,(data["Fare"])) + (np.minimum(( np.cos(data["Fare"])) ,(data["SibSp"])) * np.minimum(( np.sin(data["Parch"])) ,(np.cos(( data["Embarked"] * AH)))))+ (np.minimum(((( data["Fare"] / AH)- E)) ,(C)) * np.sin(( K * data["Age"])))+ np.minimum(((M)) ,(((np.sin(data["Fare"])+ data["Embarked"])- np.cos(( data["Age"] *(P)))))) )<feature_engineering>
updated_arr = np.copy(start_arr) steps = [] steps.append(updated_arr) for x in range(time_step): updated_arr = life_step_1(updated_arr) steps.append(updated_arr )
Conway's Reverse Game of Life 2020
12,266,838
def CleanData(data): data.drop(['Ticket', 'Name'], inplace=True, axis=1) data.Sex.fillna('0', inplace=True) data.loc[data.Sex != 'male', 'Sex'] = 0 data.loc[data.Sex == 'male', 'Sex'] = 1 data.Cabin.fillna('0', inplace=True) data.loc[data.Cabin.str[0] == 'A', 'Cabin'] = 1 data.loc[data.Cabin.str[0] == 'B', 'Cabin'] = 2 data.loc[data.Cabin.str[0] == 'C', 'Cabin'] = 3 data.loc[data.Cabin.str[0] == 'D', 'Cabin'] = 4 data.loc[data.Cabin.str[0] == 'E', 'Cabin'] = 5 data.loc[data.Cabin.str[0] == 'F', 'Cabin'] = 6 data.loc[data.Cabin.str[0] == 'G', 'Cabin'] = 7 data.loc[data.Cabin.str[0] == 'T', 'Cabin'] = 8 data.loc[data.Embarked == 'C', 'Embarked'] = 1 data.loc[data.Embarked == 'Q', 'Embarked'] = 2 data.loc[data.Embarked == 'S', 'Embarked'] = 3 data.Embarked.fillna(0, inplace=True) data.fillna(-1, inplace=True) return data.astype(float) def Outputs(data): return np.round(1.-(1./(1.+np.exp(-data)))) <load_from_csv>
single_step_df = train_df.loc[train_df['delta'] == 1]
Conway's Reverse Game of Life 2020
12,266,838
raw_train = pd.read_csv('.. /input/titanic/train.csv') raw_test = pd.read_csv('.. /input/titanic/test.csv') cleanedTrain = CleanData(raw_train) cleanedTest = CleanData(raw_test )<create_dataframe>
idx = 13970 single_img = np.asarray(single_step_df.loc[idx][2:627] ).reshape(25,25 ).astype('uint8' )
Conway's Reverse Game of Life 2020
12,266,838
thisArray = BIG.copy() testPredictions = Outputs(GeneticFunction(cleanedTrain,thisArray[0],thisArray[1],thisArray[2],thisArray[3],thisArray[4],thisArray[5],thisArray[6],thisArray[7],thisArray[8],thisArray[9],thisArray[10],thisArray[11],thisArray[12],thisArray[13],thisArray[14],thisArray[15],thisArray[16],thisArray[17],thisArray[18],thisArray[19],thisArray[20],thisArray[21],thisArray[22],thisArray[23],thisArray[24],thisArray[25],thisArray[26],thisArray[27],thisArray[28],thisArray[29],thisArray[30],thisArray[31],thisArray[32],thisArray[33],thisArray[34],thisArray[35],thisArray[36],thisArray[37],thisArray[38])) pdcheck = pd.DataFrame({'Survived': testPredictions.astype(int)}) ret = pdcheck.Survived.where(pdcheck["Survived"].values==cleanedTrain["Survived"].values ).notna() t,f = ret.value_counts() score = 100/(t+f)*t print("Training set score: ",score) <save_to_csv>
end_single_img_33 = life_step_1(single_img_33 )
Conway's Reverse Game of Life 2020
12,266,838
testPredictions = Outputs(GeneticFunction(cleanedTest,A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,AA,AB,AC,AD,AE,AF,AG,AH,AI,AJ,AK,AL,AM)) pdtest = pd.DataFrame({'PassengerId': cleanedTest.PassengerId.astype(int), 'Survived': testPredictions.astype(int)}) pdtest.to_csv('submission.csv', index=False) pdtest.head()<import_modules>
def postprocess(arr): return arr[4:-4, 4:-4]
Conway's Reverse Game of Life 2020
12,266,838
from sklearn.metrics import accuracy_score from sklearn.preprocessing import OneHotEncoder, LabelEncoder, StandardScaler,MinMaxScaler import pickle import string<define_variables>
start_key = ['start_' + str(i)for i in range(625)] stop_key = ['stop_' + str(i)for i in range(625)]
Conway's Reverse Game of Life 2020