kernel_id
int64 24.2k
23.3M
| prompt
stringlengths 8
1.85M
| completetion
stringlengths 1
182k
| comp_name
stringlengths 5
57
|
---|---|---|---|
11,281,017 | import os
from typing import Dict, List, Tuple
from joblib import Parallel, delayed
import pandas as pd
import numpy as np
from scipy.optimize.minpack import curve_fit
from scipy.optimize import least_squares
from xgboost import XGBRegressor<load_from_csv> | class Visibility(tf.keras.callbacks.Callback):
def __init__(self):
super(Visibility, self ).__init__()
self.metrics = ['sparse_categorical_accuracy', 'loss']
def on_train_begin(self, logs=None):
self.train_begin = time.time()
def on_train_end(self, logs=None):
print('
Training took ', time.time() - self.train_begin, 'seconds')
def on_epoch_end(self, epoch, logs=None):
output = ""
for metric in self.metrics:
diff =(( logs['val_'+metric] / logs[metric])- 1)*100
output += f"val/{metric}: {diff:.2f}% "
print("
" + output)
def on_train_batch_begin(self, batch, logs=None):
print("▪", end="")
def on_test_batch_end(self, batch, logs=None):
print("▫", end="")
| Petals to the Metal - Flower Classification on TPU |
11,281,017 | def load_kaggle_csv(dataset: str, datadir: str)-> pd.DataFrame:
df = pd.read_csv(
f"{os.path.join(datadir,dataset)}.csv", parse_dates=["Date"]
)
df['country'] = df["Country_Region"]
if "Province_State" in df:
df["Country_Region"] = np.where(
df["Province_State"].isnull() ,
df["Country_Region"],
df["Country_Region"] + "_" + df["Province_State"],
)
df.drop(columns="Province_State", inplace=True)
if "ConfirmedCases" in df:
df["ConfirmedCases"] = df.groupby("Country_Region")[
"ConfirmedCases"
].cummax()
if "Fatalities" in df:
df["Fatalities"] = df.groupby("Country_Region")["Fatalities"].cummax()
if not "DayOfYear" in df:
df["DayOfYear"] = df["Date"].dt.dayofyear
df["Date"] = df["Date"].dt.date
return df
def RMSLE(actual: np.ndarray, prediction: np.ndarray)-> float:
return np.sqrt(
np.mean(
np.power(np.log1p(np.maximum(0, prediction)) - np.log1p(actual), 2)
)
)<load_from_csv> | EPOCHS = 50
history = {}
def fit_models(models, history):
for x in models:
print(f'Starting training for {x}')
hist = models[x].fit(
train_ds.data() ,
validation_data = val_ds.data() ,
epochs = EPOCHS,
steps_per_epoch = train_ds.count() // BATCH_SIZE,
verbose=2,
callbacks=[
tf.keras.callbacks.ModelCheckpoint(
monitor='val_sparse_categorical_accuracy', verbose=2, save_best_only=True, save_weights_only=True, mode='max', filepath=f'{x}.h5'),
lr_callback,
tf.keras.callbacks.EarlyStopping(
monitor='val_sparse_categorical_accuracy', min_delta=0.001, patience=3, verbose=2, mode='max', baseline=None, restore_best_weights=True
),
Visibility() ,
],
)
history[x] = hist
fit_models(models, history ) | Petals to the Metal - Flower Classification on TPU |
11,281,017 | train = load_kaggle_csv(
"train", "/kaggle/input/covid19-global-forecasting-week-3")
country_health_indicators =(
pd.read_csv("/kaggle/input/country-health-indicators/country_health_indicators_v3.csv")).rename(
columns={'Country_Region': 'country'})
train = pd.merge(train, country_health_indicators, on="country", how="left" )<merge> | highest_f1 = 0
highest_f1_model = ''
preds = list()
def get_y_true() :
def get_val_classes() :
all_classes = np.array([])
for examples in val_ds.data() :
all_classes = np.concatenate([all_classes, examples[1].numpy() ])
return all_classes
y_true = get_val_classes()
print('True Values:: Length:', len(y_true), ', List:', y_true)
return y_true
def predict_models(models, y_true):
global highest_f1
global highest_f1_model
global preds
val_tpu_ds = val_aug_ds.data().map(lambda image, ids: image)
for x in models:
val_aug_count = 2
y_val_pred = np.zeros(( 3712,104), dtype=np.float64)
for i in range(val_aug_count):
y_val_loop = models[x].predict(val_tpu_ds, verbose=1)
y_val_loop = tf.cast(y_val_loop, tf.float32)
y_val_pred += y_val_loop.numpy()
y_val_pred /= val_aug_count
y_val = np.argmax(y_val_pred, axis=-1 ).astype(np.float32)
print(f'
Scores for {x}
')
print(f'{x}: Pred Values:: Length:{len(y_val)} List: {y_val}')
model_f1_score = f1_score(y_true, y_val, average='macro', zero_division=0)*100
if model_f1_score > highest_f1:
highest_f1 = model_f1_score
highest_f1_model = x
scores = {
"metrics": [
"F1",
"Precision",
"Recall",
],
"scores": [
model_f1_score,
precision_score(y_true, y_val, average='macro', zero_division=0)*100,
recall_score(y_true, y_val, average='macro', zero_division=0)*100,
]
}
print(pd.DataFrame.from_dict(scores))
preds.append((
x,
y_val_pred,
model_f1_score,
))
y_true = get_y_true()
predict_models(models, y_true ) | Petals to the Metal - Flower Classification on TPU |
11,281,017 | test = load_kaggle_csv(
"test", "/kaggle/input/covid19-global-forecasting-week-3")
test = pd.merge(test, country_health_indicators, on="country", how="left" )<train_on_grid> | def get_best_alpha(pred1, pred2):
best_alpha = 0
best_f1 = 0
for x in np.linspace(0, 1, 101):
mixed =(pred1 * x)+(pred2 *(1-x))
y_mixed = np.argmax(mixed, axis=-1 ).astype(np.float32)
mixed_f1 = f1_score(y_true, y_mixed, average='macro', zero_division=0)*100
if mixed_f1 > best_f1:
best_f1 = mixed_f1
best_alpha = x
return best_alpha, best_f1
def get_alpha(preds, y_true):
output = list()
preds = np.array(preds)
preds = preds[preds[:,2].argsort() [::-1]]
model_name = preds[0][0]
predictions = preds[0][1]
model_f1 = preds[0][2]
output.append(( model_name, 1))
best_predictions = predictions
best_f1 = model_f1
print(best_f1, output)
for i in range(1, len(preds)) :
i_name = preds[i][0]
i_preds = preds[i][1]
i_f1 = preds[i][1]
alpha, f1 = get_best_alpha(best_predictions, i_preds)
if f1 > best_f1:
best_predictions =(alpha * i_preds)+(( 1-alpha)* best_predictions)
best_f1 = f1
output.append(( i_name, alpha))
print(best_f1, output)
return output
alpha_chain = get_alpha(preds, y_true ) | Petals to the Metal - Flower Classification on TPU |
11,281,017 | def logistic(x: np.ndarray, x0: float, L: float, k: float)-> np.ndarray:
return L /(1 + np.exp(-k *(x - x0)))
def fit_single_logistic(x: np.ndarray, y: np.ndarray, maxfev: float)-> Tuple:
p0 = [np.median(x), y[-1], 0.1]
pn0 = p0 *(np.random.random(len(p0)) + [0.5, 1.0, 0.5])
try:
params, pcov = curve_fit(
logistic,
x,
y,
p0=pn0,
maxfev=maxfev,
sigma=np.maximum(1, np.sqrt(y)) *(0.1 + 0.9 * np.random.random()),
bounds=([0, y[-1], 0.01], [200, 1e6, 1.5]),
)
pcov = pcov[np.triu_indices_from(pcov)]
except(RuntimeError, ValueError):
params = p0
pcov = np.zeros(len(p0)*(len(p0)- 1))
y_hat = logistic(x, *params)
rmsle = RMSLE(y_hat, y)
return(params, pcov, rmsle, y_hat)
def fit_logistic(
df: pd.DataFrame,
n_jobs: int = 8,
n_samples: int = 80,
maxfev: int = 8000,
x_col: str = "DayOfYear",
y_cols: List[str] = ["ConfirmedCases", "Fatalities"],
)-> pd.DataFrame:
def fit_one(df: pd.DataFrame, y_col: str)-> Dict:
best_rmsle = None
best_params = None
x = df[x_col].to_numpy()
y = df[y_col].to_numpy()
for(params, cov, rmsle, y_hat)in Parallel(n_jobs=n_jobs )(
delayed(fit_single_logistic )(x, y, maxfev=maxfev)
for i in range(n_samples)
):
if rmsle >=(best_rmsle or rmsle):
best_rmsle = rmsle
best_params = params
result = {f"{y_col}_rmsle": best_rmsle}
result.update({f"{y_col}_p_{i}": p for i, p in enumerate(best_params)})
return result
result = {}
for y_col in y_cols:
result.update(fit_one(df, y_col))
return pd.DataFrame([result])
def predict_logistic(
df: pd.DataFrame,
x_col: str = "DayOfYear",
y_cols: List[str] = ["ConfirmedCases", "Fatalities"],
):
def predict_one(col):
df[f"yhat_logistic_{col}"] = logistic(
df[x_col].to_numpy() ,
df[f"{col}_p_0"].to_numpy() ,
df[f"{col}_p_1"].to_numpy() ,
df[f"{col}_p_2"].to_numpy() ,
)
for y_col in y_cols:
predict_one(y_col )<merge> | print(f'{highest_f1_model} has the highest f1 score - {highest_f1:0.5f}' ) | Petals to the Metal - Flower Classification on TPU |
11,281,017 | <train_model><EOS> | ds_submission = DS(TEST_FILES, training=False, augment=True, batch_size=BATCH_SIZE ).data()
ds_submission = ds_submission.map(lambda image, ids: image)
def get_test_ids() :
all_ids = np.array([])
for examples in test_ds.data() :
all_ids = np.concatenate([all_ids, examples[1].numpy().astype('U')])
return all_ids
def get_prediction_with_tta(model, ds_submission):
tta = 5
y_pred = np.zeros(( 7382,104), dtype=np.float64)
for x in range(tta):
y_pred_loop = model.predict(ds_submission, verbose=2)
y_pred_loop = tf.cast(y_pred_loop, tf.float32)
y_pred += y_pred_loop.numpy()
y_pred /= tta
return y_pred
def create_submission(alpha_chain, models, ds_submission):
y_pred = np.zeros(( 7382,104), dtype=np.float64)
for x in alpha_chain:
model = x[0]
alpha = x[1]
print('Predicting with', model, 'with alpha', alpha)
y_pred_chain = get_prediction_with_tta(models[model], ds_submission)
y_pred =(alpha * y_pred_chain)+(( 1-alpha)* y_pred)
y_pred = np.argmax(y_pred, axis=-1)
filename = f'submission.csv'
np.savetxt(
filename,
np.column_stack(( get_test_ids() , y_pred)) ,
fmt=('%s', '%s'),
delimiter=',',
header='id,label',
comments=''
)
create_submission(alpha_chain, models, ds_submission ) | Petals to the Metal - Flower Classification on TPU |
11,172,062 | <SOS> metric: macrofscore Kaggle data source: petals-to-the-metal-flower-classification-on-tpu<define_variables> | !pip install -q tensorflow==2.3.0
!pip install -q git+https://github.com/keras-team/keras-tuner@master
!pip install -q cloud-tpu-client | Petals to the Metal - Flower Classification on TPU |
11,172,062 | xgb_params = dict(
gamma=0.2,
learning_rate=0.15,
n_estimators=100,
max_depth=11,
min_child_weight=1,
nthread=8,
objective="reg:squarederror")
x_columns = [
'DayOfYear', 'cases_growth', 'death_growth',
'Cardiovascular diseases(%)', 'Cancers(%)',
'Diabetes, blood, & endocrine diseases(%)', 'Respiratory diseases(%)',
'Liver disease(%)', 'Diarrhea & common infectious diseases(%)',
'Musculoskeletal disorders(%)', 'HIV/AIDS and tuberculosis(%)',
'Malaria & neglected tropical diseases(%)',
'Nutritional deficiencies(%)', 'pneumonia-death-rates',
'Share of deaths from smoking(%)', 'alcoholic_beverages',
'animal_fats', 'animal_products', 'aquatic_products,_other',
'cereals_-_excluding_beer', 'eggs', 'fish,_seafood',
'fruits_-_excluding_wine', 'meat', 'milk_-_excluding_butter',
'miscellaneous', 'offals', 'oilcrops', 'pulses', 'spices',
'starchy_roots', 'stimulants', 'sugar_&_sweeteners', 'treenuts',
'vegetable_oils', 'vegetables', 'vegetal_products',
'hospital_beds_per10k', 'hospital_density', 'nbr_surgeons',
'nbr_obstetricians', 'nbr_anaesthesiologists', 'medical_doctors_per10k',
'bcg_coverage', 'bcg_year_delta', 'population',
'median age', 'population growth rate', 'birth rate', 'death rate',
'net migration rate', 'maternal mortality rate',
'infant mortality rate', 'life expectancy at birth',
'total fertility rate', 'obesity - adult prevalence rate',
'school_shutdown_1case', 'school_shutdown_10case',
'school_shutdown_50case', 'school_shutdown_1death', 'FF_DayOfYear',
'case1_DayOfYear', 'case10_DayOfYear', 'case50_DayOfYear', 'yhat_logistic_ConfirmedCases',
'yhat_logistic_Fatalities']
xgb_c_rmsle, xgb_c_fit = apply_xgb_model(
train, x_columns, "ConfirmedCases", xgb_params)
xgb_f_rmsle, xgb_f_fit = apply_xgb_model(
train, x_columns, "Fatalities", xgb_params )<train_model> | print('Tensorflow version ' + tf.__version__)
| Petals to the Metal - Flower Classification on TPU |
11,172,062 | def interpolate(alpha, x0, x1):
return x0 * alpha + x1 *(1 - alpha)
def RMSLE_interpolate(alpha, y, x0, x1):
return RMSLE(y, interpolate(alpha, x0, x1))
def fit_hybrid(
train: pd.DataFrame, y_cols: List[str] = ["ConfirmedCases", "Fatalities"]
)-> pd.DataFrame:
def fit_one(y_col: str):
opt = least_squares(
fun=RMSLE_interpolate,
args=(
train[y_col],
train[f"yhat_logistic_{y_col}"],
train[f"yhat_xgb_{y_col}"],
),
x0=(0.5,),
bounds=(( 0.0),(1.0,)) ,
)
return {f"{y_col}_alpha": opt.x[0], f"{y_col}_cost": opt.cost}
result = {}
for y_col in y_cols:
result.update(fit_one(y_col))
return pd.DataFrame([result])
def predict_hybrid(
df: pd.DataFrame,
x_col: str = "DayOfYear",
y_cols: List[str] = ["ConfirmedCases", "Fatalities"],
):
def predict_one(col):
df[f"yhat_hybrid_{col}"] = interpolate(
df[f"{y_col}_alpha"].to_numpy() ,
df[f"yhat_logistic_{y_col}"].to_numpy() ,
df[f"yhat_xgb_{y_col}"].to_numpy() ,
)
for y_col in y_cols:
predict_one(y_col )<merge> | try:
c = Client()
c.configure_tpu_version(tf.__version__, restart_type='ifNeeded')
tpu = tf.distribute.cluster_resolver.TPUClusterResolver()
print('Running on TPU ', tpu.master())
except ValueError:
tpu = None
if tpu:
tf.config.experimental_connect_to_cluster(tpu)
tf.tpu.experimental.initialize_tpu_system(tpu)
strategy = tf.distribute.TPUStrategy(tpu)
else:
strategy = tf.distribute.get_strategy()
print("REPLICAS: ", strategy.num_replicas_in_sync ) | Petals to the Metal - Flower Classification on TPU |
11,172,062 | train = pd.merge(
train,
train.groupby(["Country_Region"], observed=True, sort=False)
.apply(lambda x: fit_hybrid(x))
.reset_index() ,
on=["Country_Region"],
how="left",
)<predict_on_test> | IMAGE_SIZE = [331, 331]
EPOCHS_SEARCH = 10
EPOCHS_FINAL = 20
SEED = 123
BATCH_SIZE = 32 * strategy.num_replicas_in_sync | Petals to the Metal - Flower Classification on TPU |
11,172,062 | predict_hybrid(train )<compute_test_metric> | GCS_DS_PATH = KaggleDatasets().get_gcs_path('tpu-getting-started')
GCS_PATH_SELECT = {
192: GCS_DS_PATH + '/tfrecords-jpeg-192x192',
224: GCS_DS_PATH + '/tfrecords-jpeg-224x224',
331: GCS_DS_PATH + '/tfrecords-jpeg-331x331',
512: GCS_DS_PATH + '/tfrecords-jpeg-512x512'
}
GCS_PATH = GCS_PATH_SELECT[IMAGE_SIZE[0]]
TRAINING_FILENAMES = tf.io.gfile.glob(GCS_PATH + '/train/*.tfrec')
VALIDATION_FILENAMES = tf.io.gfile.glob(GCS_PATH + '/val/*.tfrec')
TEST_FILENAMES = tf.io.gfile.glob(GCS_PATH + '/test/*.tfrec' ) | Petals to the Metal - Flower Classification on TPU |
11,172,062 | print(
"Confirmed:
"
f'Logistic\t{RMSLE(train["ConfirmedCases"], train["yhat_logistic_ConfirmedCases"])}
'
f'XGBoost\t{RMSLE(train["ConfirmedCases"], train["yhat_xgb_ConfirmedCases"])}
'
f'Hybrid\t{RMSLE(train["ConfirmedCases"], train["yhat_hybrid_ConfirmedCases"])}
'
f"Fatalities:
"
f'Logistic\t{RMSLE(train["Fatalities"], train["yhat_logistic_Fatalities"])}
'
f'XGBoost\t{RMSLE(train["Fatalities"], train["yhat_xgb_Fatalities"])}
'
f'Hybrid\t{RMSLE(train["Fatalities"], train["yhat_hybrid_Fatalities"])}
'
)<merge> | CLASSES = ['pink primrose', 'hard-leaved pocket orchid', 'canterbury bells', 'sweet pea', 'wild geranium', 'tiger lily', 'moon orchid', 'bird of paradise', 'monkshood', 'globe thistle',
'snapdragon', "colt's foot", 'king protea', 'spear thistle', 'yellow iris', 'globe-flower', 'purple coneflower', 'peruvian lily', 'balloon flower', 'giant white arum lily',
'fire lily', 'pincushion flower', 'fritillary', 'red ginger', 'grape hyacinth', 'corn poppy', 'prince of wales feathers', 'stemless gentian', 'artichoke', 'sweet william',
'carnation', 'garden phlox', 'love in the mist', 'cosmos', 'alpine sea holly', 'ruby-lipped cattleya', 'cape flower', 'great masterwort', 'siam tulip', 'lenten rose',
'barberton daisy', 'daffodil', 'sword lily', 'poinsettia', 'bolero deep blue', 'wallflower', 'marigold', 'buttercup', 'daisy', 'common dandelion',
'petunia', 'wild pansy', 'primula', 'sunflower', 'lilac hibiscus', 'bishop of llandaff', 'gaura', 'geranium', 'orange dahlia', 'pink-yellow dahlia',
'cautleya spicata', 'japanese anemone', 'black-eyed susan', 'silverbush', 'californian poppy', 'osteospermum', 'spring crocus', 'iris', 'windflower', 'tree poppy',
'gazania', 'azalea', 'water lily', 'rose', 'thorn apple', 'morning glory', 'passion flower', 'lotus', 'toad lily', 'anthurium',
'frangipani', 'clematis', 'hibiscus', 'columbine', 'desert-rose', 'tree mallow', 'magnolia', 'cyclamen ', 'watercress', 'canna lily',
'hippeastrum ', 'bee balm', 'pink quill', 'foxglove', 'bougainvillea', 'camellia', 'mallow', 'mexican petunia', 'bromelia', 'blanket flower',
'trumpet creeper', 'blackberry lily', 'common tulip', 'wild rose'] | Petals to the Metal - Flower Classification on TPU |
11,172,062 | test = pd.merge(
test,
train[["Country_Region"] +
['ConfirmedCases_p_0', 'ConfirmedCases_p_1', 'ConfirmedCases_p_2']+
['Fatalities_p_0','Fatalities_p_1', 'Fatalities_p_2'] +
["Fatalities_alpha"] +
["ConfirmedCases_alpha"]].groupby(['Country_Region'] ).head(1), on="Country_Region", how="left" )<predict_on_test> | def decode_image(image_data):
image = tf.image.decode_jpeg(image_data, channels=3)
image = tf.cast(image, tf.float32)
image = tf.ensure_shape(image, [*IMAGE_SIZE, 3])
return image
def read_labeled_tfrecord(example):
LABELED_TFREC_FORMAT = {
"image": tf.io.FixedLenFeature([], tf.string),
"class": tf.io.FixedLenFeature([], tf.int64),
}
example = tf.io.parse_single_example(example, LABELED_TFREC_FORMAT)
image = decode_image(example['image'])
label = tf.cast(example['class'], tf.int32)
return image, label
def read_unlabeled_tfrecord(example):
UNLABELED_TFREC_FORMAT = {
"image": tf.io.FixedLenFeature([], tf.string),
"id": tf.io.FixedLenFeature([], tf.string),
}
example = tf.io.parse_single_example(example, UNLABELED_TFREC_FORMAT)
image = decode_image(example['image'])
idnum = example['id']
return image, idnum
def load_dataset(filenames, labeled = True, ordered = False):
ignore_order = tf.data.Options()
if not ordered:
ignore_order.experimental_deterministic = False
dataset = tf.data.TFRecordDataset(filenames, num_parallel_reads = AUTOTUNE)
dataset = dataset.with_options(ignore_order)
dataset = dataset.map(read_labeled_tfrecord if labeled else read_unlabeled_tfrecord,
num_parallel_calls = AUTOTUNE)
return dataset
def one_hot_encoding(image, label, num_classes=len(CLASSES)) :
return image, tf.one_hot(label, num_classes)
def get_training_dataset(dataset,do_aug=True):
dataset = dataset.map(one_hot_encoding, num_parallel_calls=AUTOTUNE)
if do_aug: dataset = dataset.map(transform, num_parallel_calls=AUTOTUNE)
dataset = dataset.repeat()
dataset = dataset.shuffle(2048)
dataset = dataset.batch(BATCH_SIZE, drop_remainder=True)
dataset = dataset.prefetch(AUTOTUNE)
return dataset
def get_validation_dataset(dataset):
dataset = dataset.map(one_hot_encoding, num_parallel_calls=AUTOTUNE)
dataset = dataset.batch(BATCH_SIZE, drop_remainder=True)
dataset = dataset.cache()
dataset = dataset.prefetch(AUTOTUNE)
return dataset
def get_test_dataset(ordered=False):
dataset = load_dataset(TEST_FILENAMES, labeled=False, ordered=ordered)
dataset = dataset.batch(BATCH_SIZE, drop_remainder=False)
dataset = dataset.prefetch(AUTOTUNE)
return dataset
def count_data_items(filenames):
n = [int(re.compile(r"-([0-9]*)\." ).search(filename ).group(1)) for filename in filenames]
return np.sum(n ) | Petals to the Metal - Flower Classification on TPU |
11,172,062 | predict_logistic(test)
test["yhat_xgb_ConfirmedCases"] = xgb_c_fit.predict(test[x_columns].to_numpy())
test["yhat_xgb_Fatalities"] = xgb_f_fit.predict(test[x_columns].to_numpy())
predict_hybrid(test )<prepare_output> | def get_mat(rotation, shear, height_zoom, width_zoom, height_shift, width_shift):
rotation = math.pi * rotation / 180.
shear = math.pi * shear / 180.
c1 = tf.math.cos(rotation)
s1 = tf.math.sin(rotation)
one = tf.constant([1],dtype='float32')
zero = tf.constant([0],dtype='float32')
rotation_matrix = tf.reshape(tf.concat([c1,s1,zero, -s1,c1,zero, zero,zero,one],axis=0),[3,3])
c2 = tf.math.cos(shear)
s2 = tf.math.sin(shear)
shear_matrix = tf.reshape(tf.concat([one,s2,zero, zero,c2,zero, zero,zero,one],axis=0),[3,3])
zoom_matrix = tf.reshape(tf.concat([one/height_zoom,zero,zero, zero,one/width_zoom,zero, zero,zero,one],axis=0),[3,3])
shift_matrix = tf.reshape(tf.concat([one,zero,height_shift, zero,one,width_shift, zero,zero,one],axis=0),[3,3])
return K.dot(K.dot(rotation_matrix, shear_matrix), K.dot(zoom_matrix, shift_matrix)) | Petals to the Metal - Flower Classification on TPU |
11,172,062 | submission = test[["ForecastId", "yhat_hybrid_ConfirmedCases", "yhat_hybrid_Fatalities"]].round().astype(int ).rename(
columns={
"yhat_hybrid_ConfirmedCases": "ConfirmedCases",
"yhat_hybrid_Fatalities": "Fatalities",
}
)
submission["ConfirmedCases"] = np.maximum(0, submission["ConfirmedCases"])
submission["Fatalities"] = np.maximum(0, submission["Fatalities"] )<save_to_csv> | def transform(image,label):
image = tf.image.random_flip_left_right(image)
DIM = IMAGE_SIZE[0]
XDIM = DIM%2
rot = 15.* tf.random.normal([1],dtype='float32')
shr = 5.* tf.random.normal([1],dtype='float32')
h_zoom = 1.0 + tf.random.normal([1],dtype='float32')/10.
w_zoom = 1.0 + tf.random.normal([1],dtype='float32')/10.
h_shift = 16.* tf.random.normal([1],dtype='float32')
w_shift = 16.* tf.random.normal([1],dtype='float32')
m = get_mat(rot,shr,h_zoom,w_zoom,h_shift,w_shift)
x = tf.repeat(tf.range(DIM//2,-DIM//2,-1), DIM)
y = tf.tile(tf.range(-DIM//2,DIM//2),[DIM])
z = tf.ones([DIM*DIM],dtype='int32')
idx = tf.stack([x,y,z])
idx2 = K.dot(m,tf.cast(idx,dtype='float32'))
idx2 = K.cast(idx2,dtype='int32')
idx2 = K.clip(idx2,-DIM//2+XDIM+1,DIM//2)
idx3 = tf.stack([DIM//2-idx2[0,], DIM//2-1+idx2[1,]])
d = tf.gather_nd(image,tf.transpose(idx3))
return tf.reshape(d,[DIM,DIM,3]),label | Petals to the Metal - Flower Classification on TPU |
11,172,062 | submission.to_csv("submission.csv", index=False )<save_to_csv> | hm = HyperEfficientNet(input_shape=[IMAGE_SIZE[0], IMAGE_SIZE[1], 3] , classes=len(CLASSES))
hp = HyperParameters()
hp.Choice('version', ['B0', 'B1', 'B2', 'B3', 'B4'])
tuner = kt.tuners.randomsearch.RandomSearch(
hypermodel=hm,
objective='val_accuracy',
max_trials=5,
distribution_strategy=strategy,
directory='flower_classification',
project_name='randomsearch_efficientnet',
hyperparameters=hp,
)
tuner.search_space_summary() | Petals to the Metal - Flower Classification on TPU |
11,172,062 | submission.to_csv("submission.csv", index=False )<import_modules> | num_val_samples = count_data_items(VALIDATION_FILENAMES)
num_train_samples = count_data_items(TRAINING_FILENAMES)
train_ds = get_training_dataset(load_dataset(TRAINING_FILENAMES))
validation_ds = get_validation_dataset(load_dataset(VALIDATION_FILENAMES))
num_train_batches = num_train_samples // BATCH_SIZE
num_val_batches = num_val_samples // BATCH_SIZE | Petals to the Metal - Flower Classification on TPU |
11,172,062 | K.set_image_data_format('channels_last')
print(os.listdir(".. /input"))
<load_from_csv> | tuner.search(train_ds,
epochs=EPOCHS_SEARCH,
validation_data=validation_ds,
steps_per_epoch=num_train_batches,
verbose=2 ) | Petals to the Metal - Flower Classification on TPU |
11,172,062 | train = pd.read_csv('.. /input/train.csv')
test = pd.read_csv('.. /input/test.csv')
df = train.copy()
df_test = test.copy()<train_model> | ds_all = get_training_dataset(load_dataset(TRAINING_FILENAMES + VALIDATION_FILENAMES))
model.fit(ds_all,
epochs=EPOCHS_FINAL,
steps_per_epoch=num_train_batches + num_val_batches,
callbacks=[tf.keras.callbacks.ReduceLROnPlateau() ],
verbose=2 ) | Petals to the Metal - Flower Classification on TPU |
11,172,062 | print("Train: ", df.shape)
print("Test: ", df_test.shape )<count_missing_values> | ds_test = get_test_dataset(ordered=True)
print('Computing predictions...')
predictions = []
for i,(test_img, test_id)in enumerate(ds_test):
print('Processing batch ', i)
probabilities = model(test_img)
prediction = np.argmax(probabilities, axis=-1)
predictions.append(prediction)
predictions = np.concatenate(predictions)
print('Number of test examples predicted: ', predictions.shape ) | Petals to the Metal - Flower Classification on TPU |
11,172,062 | <count_missing_values><EOS> | ds_test_ids = ds_test.map(lambda image, idnum: idnum ).unbatch()
test_ids = next(iter(ds_test_ids.batch(np.iinfo(np.int64 ).max)) ).numpy().astype('U')
np.savetxt(
'submission.csv',
np.rec.fromarrays([test_ids, predictions]),
fmt=['%s', '%d'],
delimiter=',',
header='id,label',
comments='',
)
!head submission.csv | Petals to the Metal - Flower Classification on TPU |
11,010,976 | <SOS> metric: macrofscore Kaggle data source: petals-to-the-metal-flower-classification-on-tpu<prepare_x_and_y> | !pip install -q efficientnet | Petals to the Metal - Flower Classification on TPU |
11,010,976 | x = train.drop(labels = ["label"],axis = 1)
y = train["label"]<split> | print("Tensorflow version " + tf.__version__ ) | Petals to the Metal - Flower Classification on TPU |
11,010,976 | xtrain, xtest, ytrain, ytest = train_test_split(x,y, test_size = 0.2, random_state = 123)
xtrain.shape, xtest.shape, ytrain.shape, ytest.shape<data_type_conversions> | AUTO = tf.data.experimental.AUTOTUNE
try:
tpu = tf.distribute.cluster_resolver.TPUClusterResolver()
print('Running on TPU ', tpu.master())
except ValueError:
tpu = None
if tpu:
tf.config.experimental_connect_to_cluster(tpu)
tf.tpu.experimental.initialize_tpu_system(tpu)
strategy = tf.distribute.experimental.TPUStrategy(tpu)
else:
strategy = tf.distribute.get_strategy()
print("REPLICAS: ", strategy.num_replicas_in_sync)
GCS_DS_PATH = KaggleDatasets().get_gcs_path() | Petals to the Metal - Flower Classification on TPU |
11,010,976 | xtrain = xtrain.astype("float32")/255
xtest = xtest.astype("float32")/255
test = test.astype("float32")/255
ytrain = to_categorical(ytrain, num_classes=10)
ytest = to_categorical(ytest, num_classes=10 )<choose_model_class> | IMAGE_SIZE = [512, 512]
EPOCHS = 20
BATCH_SIZE = 16 * strategy.num_replicas_in_sync | Petals to the Metal - Flower Classification on TPU |
11,010,976 | model = Sequential()
model.add(Conv2D(filters = 32,
kernel_size =(3,3),padding = 'Same', activation ='relu',
input_shape =(28,28,1)))
model.add(BatchNormalization())
model.add(Conv2D(filters = 32, kernel_size =(3,3),padding = 'Same', activation ='relu'))
model.add(BatchNormalization())
model.add(MaxPool2D(pool_size=(2,2)))
model.add(Dropout(0.25))
model.add(Conv2D(filters = 64, kernel_size =(3,3),padding = 'Same', activation ='relu'))
model.add(BatchNormalization())
model.add(Conv2D(filters = 64, kernel_size =(3,3),padding = 'Same', activation ='relu'))
model.add(BatchNormalization())
model.add(MaxPool2D(pool_size=(2,2), strides=(2,2)))
model.add(Dropout(0.25))
model.add(Conv2D(filters = 64, kernel_size =(3,3), padding = 'Same', activation ='relu'))
model.add(BatchNormalization())
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(256, activation = "relu"))
model.add(BatchNormalization())
model.add(Dropout(0.25))
model.add(Dense(10, activation = "softmax"))<choose_model_class> | LR_START = 0.00001
LR_MAX = 0.00005 * strategy.num_replicas_in_sync
LR_MIN = 0.00001
LR_RAMPUP_EPOCHS = 5
LR_SUSTAIN_EPOCHS = 0
LR_EXP_DECAY =.8
def lrfn(epoch):
if epoch < LR_RAMPUP_EPOCHS:
lr =(LR_MAX - LR_START)/ LR_RAMPUP_EPOCHS * epoch + LR_START
elif epoch < LR_RAMPUP_EPOCHS + LR_SUSTAIN_EPOCHS:
lr = LR_MAX
else:
lr =(LR_MAX - LR_MIN)* LR_EXP_DECAY**(epoch - LR_RAMPUP_EPOCHS - LR_SUSTAIN_EPOCHS)+ LR_MIN
return lr
lr_callback = tf.keras.callbacks.LearningRateScheduler(lrfn, verbose=True)
rng = [i for i in range(EPOCHS)]
y = [lrfn(x)for x in rng]
plt.plot(rng, y)
print("Learning rate schedule: {:.3g} to {:.3g} to {:.3g}".format(y[0], max(y), y[-1])) | Petals to the Metal - Flower Classification on TPU |
11,010,976 | optimizer = Adam(lr=0.001, beta_1=0.9, beta_2=0.999)
model.compile(optimizer=optimizer, loss="categorical_crossentropy", metrics=["accuracy"])
model.summary()<train_model> | GCS_PATH_SELECT = {
192: GCS_DS_PATH + '/tfrecords-jpeg-192x192',
224: GCS_DS_PATH + '/tfrecords-jpeg-224x224',
331: GCS_DS_PATH + '/tfrecords-jpeg-331x331',
512: GCS_DS_PATH + '/tfrecords-jpeg-512x512'
}
GCS_PATH = GCS_PATH_SELECT[IMAGE_SIZE[0]]
TRAINING_FILENAMES = tf.io.gfile.glob(GCS_PATH + '/train/*.tfrec')
VALIDATION_FILENAMES = tf.io.gfile.glob(GCS_PATH + '/val/*.tfrec')
TEST_FILENAMES = tf.io.gfile.glob(GCS_PATH + '/test/*.tfrec')
SKIP_VALIDATION = True
if SKIP_VALIDATION:
TRAINING_FILENAMES = TRAINING_FILENAMES + VALIDATION_FILENAMES
VALIDATION_MISMATCHES_IDS = [] | Petals to the Metal - Flower Classification on TPU |
11,010,976 | batch_size = 128
epochs = 50
reduce_lr = LearningRateScheduler(lambda x: 1e-3 * 0.9 ** x)
history = model.fit_generator(datagen.flow(xtrain, ytrain, batch_size = batch_size), epochs = epochs,
validation_data =(xtest, ytest), verbose=2,
steps_per_epoch=xtrain.shape[0] // batch_size,
callbacks = [reduce_lr] )<compute_test_metric> | CLASSES = ['pink primrose', 'hard-leaved pocket orchid', 'canterbury bells', 'sweet pea', 'wild geranium', 'tiger lily', 'moon orchid', 'bird of paradise', 'monkshood', 'globe thistle',
'snapdragon', "colt's foot", 'king protea', 'spear thistle', 'yellow iris', 'globe-flower', 'purple coneflower', 'peruvian lily', 'balloon flower', 'giant white arum lily',
'fire lily', 'pincushion flower', 'fritillary', 'red ginger', 'grape hyacinth', 'corn poppy', 'prince of wales feathers', 'stemless gentian', 'artichoke', 'sweet william',
'carnation', 'garden phlox', 'love in the mist', 'cosmos', 'alpine sea holly', 'ruby-lipped cattleya', 'cape flower', 'great masterwort', 'siam tulip', 'lenten rose',
'barberton daisy', 'daffodil', 'sword lily', 'poinsettia', 'bolero deep blue', 'wallflower', 'marigold', 'buttercup', 'daisy', 'common dandelion',
'petunia', 'wild pansy', 'primula', 'sunflower', 'lilac hibiscus', 'bishop of llandaff', 'gaura', 'geranium', 'orange dahlia', 'pink-yellow dahlia',
'cautleya spicata', 'japanese anemone', 'black-eyed susan', 'silverbush', 'californian poppy', 'osteospermum', 'spring crocus', 'iris', 'windflower', 'tree poppy',
'gazania', 'azalea', 'water lily', 'rose', 'thorn apple', 'morning glory', 'passion flower', 'lotus', 'toad lily', 'anthurium',
'frangipani', 'clematis', 'hibiscus', 'columbine', 'desert-rose', 'tree mallow', 'magnolia', 'cyclamen ', 'watercress', 'canna lily',
'hippeastrum ', 'bee balm', 'pink quill', 'foxglove', 'bougainvillea', 'camellia', 'mallow', 'mexican petunia', 'bromelia', 'blanket flower',
'trumpet creeper', 'blackberry lily', 'common tulip', 'wild rose'] | Petals to the Metal - Flower Classification on TPU |
11,010,976 | model.evaluate(xtest, ytest )<compute_test_metric> | def get_mat(rotation, shear, height_zoom, width_zoom, height_shift, width_shift):
rotation = math.pi * rotation / 180.
shear = math.pi * shear / 180.
c1 = tf.math.cos(rotation)
s1 = tf.math.sin(rotation)
one = tf.constant([1],dtype='float32')
zero = tf.constant([0],dtype='float32')
rotation_matrix = tf.reshape(tf.concat([c1,s1,zero, -s1,c1,zero, zero,zero,one],axis=0),[3,3])
c2 = tf.math.cos(shear)
s2 = tf.math.sin(shear)
shear_matrix = tf.reshape(tf.concat([one,s2,zero, zero,c2,zero, zero,zero,one],axis=0),[3,3])
zoom_matrix = tf.reshape(tf.concat([one/height_zoom,zero,zero, zero,one/width_zoom,zero, zero,zero,one],axis=0),[3,3])
shift_matrix = tf.reshape(tf.concat([one,zero,height_shift, zero,one,width_shift, zero,zero,one],axis=0),[3,3])
return K.dot(K.dot(rotation_matrix, shear_matrix), K.dot(zoom_matrix, shift_matrix))
def transform(image,label):
DIM = IMAGE_SIZE[0]
XDIM = DIM%2
rot = 15.* tf.random.normal([1],dtype='float32')
shr = 5.* tf.random.normal([1],dtype='float32')
h_zoom = 1.0 + tf.random.normal([1],dtype='float32')/10.
w_zoom = 1.0 + tf.random.normal([1],dtype='float32')/10.
h_shift = 16.* tf.random.normal([1],dtype='float32')
w_shift = 16.* tf.random.normal([1],dtype='float32')
m = get_mat(rot,shr,h_zoom,w_zoom,h_shift,w_shift)
x = tf.repeat(tf.range(DIM//2,-DIM//2,-1), DIM)
y = tf.tile(tf.range(-DIM//2,DIM//2),[DIM])
z = tf.ones([DIM*DIM],dtype='int32')
idx = tf.stack([x,y,z])
idx2 = K.dot(m,tf.cast(idx,dtype='float32'))
idx2 = K.cast(idx2,dtype='int32')
idx2 = K.clip(idx2,-DIM//2+XDIM+1,DIM//2)
idx3 = tf.stack([DIM//2-idx2[0,], DIM//2-1+idx2[1,]])
d = tf.gather_nd(image,tf.transpose(idx3))
return tf.reshape(d,[DIM,DIM,3]),label
| Petals to the Metal - Flower Classification on TPU |
11,010,976 | model.evaluate(xtrain, ytrain )<save_to_csv> | def decode_image(image_data):
image = tf.image.decode_jpeg(image_data, channels=3)
image = tf.cast(image, tf.float32)/ 255.0
image = tf.reshape(image, [*IMAGE_SIZE, 3])
return image
def read_labeled_tfrecord(example):
LABELED_TFREC_FORMAT = {
"image": tf.io.FixedLenFeature([], tf.string),
"class": tf.io.FixedLenFeature([], tf.int64),
}
example = tf.io.parse_single_example(example, LABELED_TFREC_FORMAT)
image = decode_image(example['image'])
label = tf.cast(example['class'], tf.int32)
return image, label
def read_unlabeled_tfrecord(example):
UNLABELED_TFREC_FORMAT = {
"image": tf.io.FixedLenFeature([], tf.string),
"id": tf.io.FixedLenFeature([], tf.string),
}
example = tf.io.parse_single_example(example, UNLABELED_TFREC_FORMAT)
image = decode_image(example['image'])
idnum = example['id']
return image, idnum
def read_labeled_id_tfrecord(example):
LABELED_ID_TFREC_FORMAT = {
"image": tf.io.FixedLenFeature([], tf.string),
"class": tf.io.FixedLenFeature([], tf.int64),
"id": tf.io.FixedLenFeature([], tf.string),
}
example = tf.io.parse_single_example(example, LABELED_ID_TFREC_FORMAT)
image = decode_image(example['image'])
label = tf.cast(example['class'], tf.int32)
idnum = example['id']
return image, label, idnum
def load_dataset(filenames, labeled=True, ordered=False):
ignore_order = tf.data.Options()
if not ordered:
ignore_order.experimental_deterministic = False
dataset = tf.data.TFRecordDataset(filenames, num_parallel_reads=AUTO)
dataset = dataset.with_options(ignore_order)
dataset = dataset.map(read_labeled_id_tfrecord if labeled else read_unlabeled_tfrecord, num_parallel_calls=AUTO)
return dataset
def load_dataset_with_id(filenames, ordered=False):
ignore_order = tf.data.Options()
if not ordered:
ignore_order.experimental_deterministic = False
dataset = tf.data.TFRecordDataset(filenames, num_parallel_reads=AUTO)
dataset = dataset.with_options(ignore_order)
dataset = dataset.map(read_labeled_id_tfrecord, num_parallel_calls=AUTO)
return dataset
def data_augment(image, label):
image = tf.image.random_flip_left_right(image)
return image, label
def get_training_dataset() :
dataset = load_dataset(TRAINING_FILENAMES, labeled=True)
dataset = dataset.filter(lambda image, label, idnum: tf.reduce_sum(tf.cast(idnum == VALIDATION_MISMATCHES_IDS, tf.int32)) ==0)
dataset = dataset.map(lambda image, label, idnum: [image, label])
dataset = dataset.map(transform, num_parallel_calls=AUTO)
dataset = dataset.map(data_augment, num_parallel_calls=AUTO)
dataset = dataset.repeat()
dataset = dataset.shuffle(2048)
dataset = dataset.batch(BATCH_SIZE)
dataset = dataset.prefetch(AUTO)
return dataset
def get_validation_dataset(ordered=False):
dataset = load_dataset(VALIDATION_FILENAMES, labeled=True, ordered=ordered)
dataset = dataset.filter(lambda image, label, idnum: tf.reduce_sum(tf.cast(idnum == VALIDATION_MISMATCHES_IDS, tf.int32)) ==0)
dataset = dataset.map(lambda image, label, idnum: [image, label])
dataset = dataset.batch(BATCH_SIZE)
dataset = dataset.cache()
dataset = dataset.prefetch(AUTO)
return dataset
def get_validation_dataset_with_id(ordered=False):
dataset = load_dataset_with_id(VALIDATION_FILENAMES, ordered=ordered)
dataset = dataset.batch(BATCH_SIZE)
dataset = dataset.cache()
dataset = dataset.prefetch(AUTO)
return dataset
def get_test_dataset(ordered=False):
dataset = load_dataset(TEST_FILENAMES, labeled=False, ordered=ordered)
dataset = dataset.batch(BATCH_SIZE)
dataset = dataset.prefetch(AUTO)
return dataset
def count_data_items(filenames):
dataset = load_dataset(filenames,labeled = False)
dataset = dataset.map(lambda image, idnum: idnum)
dataset = dataset.filter(lambda idnum: tf.reduce_sum(tf.cast(idnum == VALIDATION_MISMATCHES_IDS, tf.int32)) ==0)
uids = next(iter(dataset.batch(21000)) ).numpy().astype('U')
return len(np.unique(uids))
NUM_TRAINING_IMAGES = count_data_items(TRAINING_FILENAMES)
NUM_VALIDATION_IMAGES =(1 - SKIP_VALIDATION)* count_data_items(VALIDATION_FILENAMES)
NUM_TEST_IMAGES = count_data_items(TEST_FILENAMES)
STEPS_PER_EPOCH = NUM_TRAINING_IMAGES // BATCH_SIZE
print('Dataset: {} training images, {} validation images, {} unlabeled test images'.format(NUM_TRAINING_IMAGES, NUM_VALIDATION_IMAGES, NUM_TEST_IMAGES)) | Petals to the Metal - Flower Classification on TPU |
11,010,976 | testprediction=np.argmax(model.predict(test),axis=1)
testimage=[]
for i in range(len(testprediction)) :
testimage.append(i+1)
final={'ImageId':testimage,'Label':testprediction}
submission=pd.DataFrame(final)
submission.to_csv('submssion.csv',index=False )<load_from_csv> | with strategy.scope() :
enet = efn.EfficientNetB7(
input_shape=(512, 512, 3),
weights='noisy-student',
include_top=False
)
model = tf.keras.Sequential([
enet,
tf.keras.layers.GlobalAveragePooling2D() ,
tf.keras.layers.Dense(len(CLASSES), activation='softmax')
])
model.compile(
optimizer=tf.keras.optimizers.Adam(lr=0.0001),
loss = 'sparse_categorical_crossentropy',
metrics=['sparse_categorical_accuracy']
)
model.summary() | Petals to the Metal - Flower Classification on TPU |
11,010,976 | pd.set_option('display.max_columns', 500)
pd.set_option('display.max_rows', 500)
df_train = pd.read_csv('.. /input/titanic/train.csv', delimiter = ",")
df_test = pd.read_csv('.. /input/titanic/test.csv', delimiter = ",")
df_sub = pd.read_csv('.. /input/titanic/gender_submission.csv', delimiter = "," )<concatenate> | history = model.fit(
get_training_dataset() ,
steps_per_epoch=STEPS_PER_EPOCH,
epochs=EPOCHS,
callbacks=[lr_callback],
validation_data=None if SKIP_VALIDATION else get_validation_dataset()
) | Petals to the Metal - Flower Classification on TPU |
11,010,976 | df = pd.concat([df_train, df_test],sort=False)
df.reset_index(drop=True,inplace=True )<feature_engineering> | with strategy.scope() :
rnet = DenseNet201(
input_shape=(512, 512, 3),
weights='imagenet',
include_top=False
)
model2 = tf.keras.Sequential([
rnet,
tf.keras.layers.GlobalAveragePooling2D() ,
tf.keras.layers.Dense(len(CLASSES), activation='softmax')
])
model2.compile(
optimizer=tf.keras.optimizers.Adam(lr=0.0001),
loss = 'sparse_categorical_crossentropy',
metrics=['sparse_categorical_accuracy']
)
model2.summary() | Petals to the Metal - Flower Classification on TPU |
11,010,976 | age60=df[(df['Age']>60)&(df['Age']<70)]
age60.groupby(['Pclass','Embarked','SibSp','Parch'] ).median()
df.loc[df['PassengerId'] == 1044, 'Fare'] = 7.9<feature_engineering> | history2 = model2.fit(
get_training_dataset() ,
steps_per_epoch=STEPS_PER_EPOCH,
epochs=EPOCHS,
callbacks=[lr_callback],
validation_data=None if SKIP_VALIDATION else get_validation_dataset()
) | Petals to the Metal - Flower Classification on TPU |
11,010,976 | df['Fare']=np.round(df['Fare'])
p01 = df['Fare'].quantile(0.01)
p99 = df['Fare'].quantile(0.99)
df['Fare'] = df['Fare'].clip(p01, p99 )<feature_engineering> | test_ds = get_test_dataset(ordered=True)
print('Computing predictions...')
test_images_ds = test_ds.map(lambda image, idnum: image)
probabilities = best_alpha*model.predict(test_images_ds)+(1-best_alpha)*model2.predict(test_images_ds)
predictions = np.argmax(probabilities, axis=-1)
print(predictions)
print('Generating submission.csv file...')
test_ids_ds = test_ds.map(lambda image, idnum: idnum ).unbatch()
test_ids = next(iter(test_ids_ds.batch(NUM_TEST_IMAGES)) ).numpy().astype('U')
np.savetxt('submission.csv', np.rec.fromarrays([test_ids, predictions]), fmt=['%s', '%d'], delimiter=',', header='id,label', comments='' ) | Petals to the Metal - Flower Classification on TPU |
10,514,418 | df['Farecut']=pd.cut(df['Fare'], 5, labels=False )<feature_engineering> | try:
tpu = tf.distribute.cluster_resolver.TPUClusterResolver()
print("Running on tpu", tpu.master())
except ValueError:
tpu = None
if tpu:
tf.config.experimental_connect_to_cluster(tpu)
tf.tpu.experimental.initialize_tpu_system(tpu)
strategy = tf.distribute.experimental.TPUStrategy(tpu)
else:
strategy = tf.distribute.get_strategy()
print("Replicas", strategy.num_replicas_in_sync ) | Petals to the Metal - Flower Classification on TPU |
10,514,418 | column = 'mrms'
df[column] = df['Name'].str.extract('([A-Za-z]+)\.', expand = False)
df[column] = df[column].replace(['Capt', 'Countess','Lady','Sir','Jonkheer', 'Don','Dona', 'Mlle','Mme','Major'], 'test_non')
df[column] = df[column].replace(['Ms'], 'Miss')
df[column] = df[column].replace(['Col','Dr', 'Rev'], 'Other' )<drop_column> | GCS_DS_PATH = KaggleDatasets().get_gcs_path('tpu-getting-started')
GCS_PATH = GCS_DS_PATH + '/tfrecords-jpeg-512x512' | Petals to the Metal - Flower Classification on TPU |
10,514,418 | column='Embarked'
df['Embarked'].fillna('S',inplace=True )<feature_engineering> | AUTO = tf.data.experimental.AUTOTUNE
IMAGE_SIZE = [512,512]
EPOCHS = 12
BATCH_SIZE = 16*strategy.num_replicas_in_sync
TRAINING_FILENAMES = tf.io.gfile.glob(GCS_PATH + '/train/*.tfrec')
VALIDATION_FILENAMES = tf.io.gfile.glob(GCS_PATH + '/val/*.tfrec')
TEST_FILENAMES = tf.io.gfile.glob(GCS_PATH + '/test/*.tfrec' ) | Petals to the Metal - Flower Classification on TPU |
10,514,418 | df.loc[df['Parch'] >= 3, 'Parch'] = 3
df.loc[df['SibSp'] >= 3, 'SibSp'] = 3<feature_engineering> | def count_data_items(filenames):
n = [int(re.compile(r"-([0-9]*)\." ).search(filename ).group(1)) for filename in filenames]
return np.sum(n)
| Petals to the Metal - Flower Classification on TPU |
10,514,418 | df['Parch+SibSp']=df['Parch']+df['SibSp']<feature_engineering> | NUM_TRAINING_IMAGES = count_data_items(TRAINING_FILENAMES)
NUM_VALIDATION_IMAGES = count_data_items(VALIDATION_FILENAMES)
NUM_TEST_IMAGES = count_data_items(TEST_FILENAMES)
print('Dataset: {} training images, {} validation images, {} unlabeled test images'.format(NUM_TRAINING_IMAGES, NUM_VALIDATION_IMAGES, NUM_TEST_IMAGES)) | Petals to the Metal - Flower Classification on TPU |
10,514,418 | df['Parch-SibSp']=df['Parch']-df['SibSp']<feature_engineering> | def decode_image(image_data):
image = tf.image.decode_jpeg(image_data, channels = 3)
image = tf.cast(image, tf.float32)/255.0
image = tf.reshape(image, [*IMAGE_SIZE, 3])
return image
def read_labeled_tfrecord(example):
LABELED_TFREC_FORMAT = {
"image": tf.io.FixedLenFeature([], tf.string),
"class": tf.io.FixedLenFeature([], tf.int64)
}
example = tf.io.parse_single_example(example, LABELED_TFREC_FORMAT)
image = decode_image(example['image'])
label = tf.cast(example['class'], tf.int32)
return image,label
def read_unlabeled_tfrecord(example):
UNLABELED_TFREC_FORMAT = {
"image": tf.io.FixedLenFeature([], tf.string),
"id": tf.io.FixedLenFeature([], tf.string)
}
example = tf.io.parse_single_example(example, UNLABELED_TFREC_FORMAT)
image = decode_image(example['image'])
idnum = example['id']
return image,idnum
| Petals to the Metal - Flower Classification on TPU |
10,514,418 | l=list(['Pclass','SibSp','Fare','Parch'])
df['Agemedian'] = df['Age'].fillna(df.groupby(l)['Age'].transform('median'))
df['Agemedian'] = df['Agemedian'].fillna(df['Agemedian'].median())
df['Agemedian'] = np.round(df['Agemedian'] )<feature_engineering> | def load_dataset(filenames, labeled = True, ordered = False):
ignore_order = tf.data.Options()
if not ordered:
ignore_order.experimental_deterministic = False
dataset = tf.data.TFRecordDataset(filenames, num_parallel_reads = AUTO)
dataset = dataset.with_options(ignore_order)
dataset = dataset.map(read_labeled_tfrecord if labeled else read_unlabeled_tfrecord, num_parallel_calls = AUTO)
return dataset
def data_augment(image,label):
image = tf.image.random_flip_left_right(image)
image = tf.image.random_saturation(image, 0, 2)
return image,label
def get_training_dataset() :
dataset = load_dataset(TRAINING_FILENAMES, labeled = True)
dataset = dataset.map(data_augment, num_parallel_calls = AUTO)
dataset = dataset.repeat()
dataset = dataset.shuffle(2048)
dataset = dataset.batch(BATCH_SIZE)
dataset = dataset.prefetch(AUTO)
return dataset
def get_validation_dataset(ordered= False):
dataset = load_dataset(VALIDATION_FILENAMES, labeled = True, ordered = ordered)
dataset = dataset.batch(BATCH_SIZE)
dataset = dataset.cache()
dataset = dataset.prefetch(AUTO)
return dataset
def get_test_dataset(ordered = False):
dataset = load_dataset(TEST_FILENAMES, labeled = False, ordered= ordered)
dataset = dataset.batch(BATCH_SIZE)
dataset = dataset.prefetch(AUTO)
return dataset
| Petals to the Metal - Flower Classification on TPU |
10,514,418 | column = 'Cabin'
df[column+'head'] = df[column].str.extract('([A-Za-z]+)', expand = False)
labels, uniques = pd.factorize(df['Cabinhead'])
df['Cabinhead']=labels
df['Cabinhead'].fillna(0,inplace=True)
df['Cabinhead'].replace(-1,np.NaN,inplace=True)
Ticket = df['Ticket'].str.extract(' (.*)\s (.*)')
df['Ticket_head']=Ticket[0]
df['Ticket_num']=Ticket[1]
l = list(['Pclass','Farecut'])
df['Cabinheadmedian'] = df['Cabinhead'].fillna(df.groupby(l)['Cabinhead'].transform('median'))
df['Cabinheadmedian'] = np.round(df['Cabinheadmedian'] )<categorify> | ds_train = get_training_dataset()
ds_val = get_validation_dataset()
ds_test = get_test_dataset()
print("Training", ds_train)
print("Validation", ds_val)
print("Test", ds_test)
| Petals to the Metal - Flower Classification on TPU |
10,514,418 | l = list(['Farecut'])
df['Cabinheadmedian'] = df['Cabinhead'].fillna(df.groupby(l)['Cabinhead'].transform('median'))<categorify> | CLASSES = ['pink primrose', 'hard-leaved pocket orchid', 'canterbury bells', 'sweet pea', 'wild geranium', 'tiger lily', 'moon orchid', 'bird of paradise', 'monkshood', 'globe thistle',
'snapdragon', "colt's foot", 'king protea', 'spear thistle', 'yellow iris', 'globe-flower', 'purple coneflower', 'peruvian lily', 'balloon flower', 'giant white arum lily',
'fire lily', 'pincushion flower', 'fritillary', 'red ginger', 'grape hyacinth', 'corn poppy', 'prince of wales feathers', 'stemless gentian', 'artichoke', 'sweet william',
'carnation', 'garden phlox', 'love in the mist', 'cosmos', 'alpine sea holly', 'ruby-lipped cattleya', 'cape flower', 'great masterwort', 'siam tulip', 'lenten rose',
'barberton daisy', 'daffodil', 'sword lily', 'poinsettia', 'bolero deep blue', 'wallflower', 'marigold', 'buttercup', 'daisy', 'common dandelion',
'petunia', 'wild pansy', 'primula', 'sunflower', 'lilac hibiscus', 'bishop of llandaff', 'gaura', 'geranium', 'orange dahlia', 'pink-yellow dahlia',
'cautleya spicata', 'japanese anemone', 'black-eyed susan', 'silverbush', 'californian poppy', 'osteospermum', 'spring crocus', 'iris', 'windflower', 'tree poppy',
'gazania', 'azalea', 'water lily', 'rose', 'thorn apple', 'morning glory', 'passion flower', 'lotus', 'toad lily', 'anthurium',
'frangipani', 'clematis', 'hibiscus', 'columbine', 'desert-rose', 'tree mallow', 'magnolia', 'cyclamen ', 'watercress', 'canna lily',
'hippeastrum ', 'bee balm', 'pink quill', 'foxglove', 'bougainvillea', 'camellia', 'mallow', 'mexican petunia', 'bromelia', 'blanket flower',
'trumpet creeper', 'blackberry lily', 'common tulip', 'wild rose'] | Petals to the Metal - Flower Classification on TPU |
10,514,418 | for column in ['mrms','Sex','Embarked','Ticket_head']:
labels, uniques = pd.factorize(df[column])
df[column]=labels<drop_column> | print("Number of classes: {}".format(len(CLASSES)))
print("First five classes, sorted alphabetically:")
for name in sorted(CLASSES)[:5]:
print(name)
print("number of training images: {}".format(NUM_TRAINING_IMAGES)) | Petals to the Metal - Flower Classification on TPU |
10,514,418 | df = df.drop(['Name','Ticket','Cabin','Cabinhead','Age','Fare','Ticket_num'], axis=1 )<import_modules> | print("Training data shapes")
for image,label in ds_train.take(3):
print(image.numpy().shape, label.numpy().shape)
print("training data label examples:", label.numpy() ) | Petals to the Metal - Flower Classification on TPU |
10,514,418 | import operator
import math
import random
from deap import gp
from deap import algorithms
from deap import base
from deap import creator
from deap import tools<define_variables> | print("Test data shapes")
for image,idnum in ds_test.take(3):
print(image.numpy().shape, idnum.numpy().shape)
print("test data IDs", idnum.numpy().astype('U')) | Petals to the Metal - Flower Classification on TPU |
10,514,418 | train=df<prepare_x_and_y> | one_batch = next(iter(ds_train.unbatch().batch(20)))
display_batch_of_images(one_batch ) | Petals to the Metal - Flower Classification on TPU |
10,514,418 | target = train['Survived']<define_search_model> | LR_START = 0.00001
LR_MAX = 0.00005 * strategy.num_replicas_in_sync
LR_MIN = LR_START
LR_RAMPUP_EPOCHS = 5
LR_SUSTAIN_EPOCHS = 0
LR_EXP_DECAY = 0.80
def lrfn(epoch):
if epoch < LR_RAMPUP_EPOCHS:
lr = LR_START +(epoch *(LR_MAX - LR_START)/ LR_RAMPUP_EPOCHS)
elif epoch <(LR_RAMPUP_EPOCHS + LR_SUSTAIN_EPOCHS):
lr = LR_MAX
else:
lr = LR_MIN +(LR_MAX - LR_MIN)* LR_EXP_DECAY **(epoch - LR_RAMPUP_EPOCHS - LR_SUSTAIN_EPOCHS)
return lr
lr_callback = tf.keras.callbacks.LearningRateScheduler(lrfn, verbose = True)
rng = [i for i in range(30)]
y = [lrfn(x)for x in rng]
plt.plot(rng, y ) | Petals to the Metal - Flower Classification on TPU |
10,514,418 | def mydeap(mungedtrain):
inputs = mungedtrain.iloc[:,2:14].values.tolist()
outputs = mungedtrain['Survived'].values.tolist()
def protectedDiv(left, right):
try:
return left / right
except ZeroDivisionError:
return 1
pset = gp.PrimitiveSet("MAIN", 12)
pset.addPrimitive(operator.add, 2)
pset.addPrimitive(operator.sub, 2)
pset.addPrimitive(operator.mul, 2)
pset.addPrimitive(protectedDiv, 2)
pset.addPrimitive(operator.neg, 1)
pset.addPrimitive(math.cos, 1)
pset.addPrimitive(math.sin, 1)
pset.addPrimitive(max, 2)
pset.addPrimitive(min, 2)
pset.addEphemeralConstant("rand101", lambda: random.uniform(-10,10))
pset.renameArguments(ARG0='x1')
pset.renameArguments(ARG1='x2')
pset.renameArguments(ARG2='x3')
pset.renameArguments(ARG3='x4')
pset.renameArguments(ARG4='x5')
pset.renameArguments(ARG5='x6')
pset.renameArguments(ARG6='x7')
pset.renameArguments(ARG7='x8')
pset.renameArguments(ARG8='x9')
pset.renameArguments(ARG9='x10')
pset.renameArguments(ARG10='x11')
pset.renameArguments(ARG11='x12')
creator.create("FitnessMin", base.Fitness, weights=(1.0,))
creator.create("Individual", gp.PrimitiveTree, fitness=creator.FitnessMin)
toolbox = base.Toolbox()
toolbox.register("expr", gp.genHalfAndHalf, pset=pset, min_=1, max_=3)
toolbox.register("individual", tools.initIterate, creator.Individual, toolbox.expr)
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
toolbox.register("compile", gp.compile, pset=pset)
def evalSymbReg(individual):
func = toolbox.compile(expr=individual)
return sum(round(1.-(1./(1.+numpy.exp(-func(*in_)))))== out for in_, out in zip(inputs, outputs)) /len(mungedtrain),
toolbox.register("evaluate", evalSymbReg)
toolbox.register("select", tools.selTournament, tournsize=3)
toolbox.register("mate", gp.cxOnePoint)
toolbox.register("expr_mut", gp.genFull, min_=0, max_=2)
toolbox.register("mutate", gp.mutUniform, expr=toolbox.expr_mut, pset=pset)
toolbox.decorate("mate", gp.staticLimit(key=operator.attrgetter("height"), max_value=17))
toolbox.decorate("mutate", gp.staticLimit(key=operator.attrgetter("height"), max_value=17))
random.seed(318)
pop = toolbox.population(n=300)
hof = tools.HallOfFame(1)
stats_fit = tools.Statistics(lambda ind: ind.fitness.values)
stats_size = tools.Statistics(len)
mstats = tools.MultiStatistics(fitness=stats_fit, size=stats_size)
mstats.register("avg", numpy.mean)
mstats.register("std", numpy.std)
mstats.register("min", numpy.min)
mstats.register("max", numpy.max)
pop, log = algorithms.eaSimple(pop, toolbox, 0.5, 0.2, 1000, stats=mstats,
halloffame=hof, verbose=True)
print(hof[0])
func2 =toolbox.compile(expr=hof[0])
return func2<save_to_csv> | early_stop = tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=20, restore_best_weights = True ) | Petals to the Metal - Flower Classification on TPU |
10,514,418 | if __name__ == "__main__":
mungedtrain = train[:df_train.shape[0]]
GeneticFunction = mydeap(mungedtrain)
mytrain = mungedtrain.iloc[:,2:14].values.tolist()
trainPredictions = Outputs(np.array([GeneticFunction(*x)for x in mytrain]))
pdtrain = pd.DataFrame({'PassengerId': mungedtrain.PassengerId.astype(int),
'Predicted': trainPredictions.astype(int),
'Survived': mungedtrain.Survived.astype(int)})
pdtrain.to_csv('MYgptrain.csv', index=False )<save_to_csv> | !pip install -q efficientnet | Petals to the Metal - Flower Classification on TPU |
10,514,418 | print(accuracy_score(df_train.Survived.astype(int),trainPredictions.astype(int)))
mungedtest = train[df_train.shape[0]:]
mytest = mungedtest.iloc[:,2:14].values.tolist()
testPredictions = Outputs(np.array([GeneticFunction(*x)for x in mytest]))
pdtest = pd.DataFrame({'PassengerId': mungedtest.PassengerId.astype(int),
'Survived': testPredictions.astype(int)})
pdtest.to_csv('gptest.csv', index=False )<train_model> | with strategy.scope() :
pretrained_model = efficientnet.EfficientNetB7(
weights = 'noisy-student',
include_top = False,
input_shape = [*IMAGE_SIZE, 3]
)
pretrained_model.trainable = True
model = tf.keras.Sequential([
pretrained_model,
tf.keras.layers.GlobalAveragePooling2D() ,
tf.keras.layers.Dense(len(CLASSES),activation = 'softmax')
])
model.compile(
optimizer = 'adam',
loss = 'sparse_categorical_crossentropy',
metrics = ['sparse_categorical_accuracy'],
)
model.summary() | Petals to the Metal - Flower Classification on TPU |
10,514,418 | print('end' )<import_modules> | BATCH_SIZE = 16*strategy.num_replicas_in_sync
EPOCHS = 11
STEPS_PER_EPOCH = NUM_TRAINING_IMAGES//BATCH_SIZE
history = model.fit(
ds_train,
validation_data = ds_val,
epochs = EPOCHS,
steps_per_epoch = STEPS_PER_EPOCH,
callbacks = [lr_callback, early_stop]
)
| Petals to the Metal - Flower Classification on TPU |
10,514,418 | import numpy as np
import pandas as pd<load_from_csv> | cmdataset = get_validation_dataset(ordered = True)
images_ds = cmdataset.map(lambda image,label:image)
labels_ds = cmdataset.map(lambda image,label:label ).unbatch()
cm_correct_labels = next(iter(labels_ds.batch(NUM_VALIDATION_IMAGES)) ).numpy()
cm_probabilites = model.predict(images_ds)
cm_predictions = np.argmax(cm_probabilites, axis = -1)
labels = range(len(CLASSES))
cmat = confusion_matrix(
cm_correct_labels,
cm_predictions,
labels = labels,
)
cmat =(cmat.T/cmat.sum(axis=1)).T | Petals to the Metal - Flower Classification on TPU |
10,514,418 | sample_submission = pd.read_csv('.. /input/titanic/gender_submission.csv')
test = pd.read_csv('.. /input/titanic/test.csv')
train = pd.read_csv('.. /input/titanic/train.csv' )<count_values> | score = f1_score(
cm_correct_labels,
cm_predictions,
labels = labels,
average= 'macro',
)
precision = precision_score(
cm_correct_labels,
cm_predictions,
labels = labels,
average = 'macro',
)
recall = recall_score(
cm_correct_labels,
cm_predictions,
labels = labels,
average = 'macro',
)
display_confusion_matrix(cmat,score,precision,recall ) | Petals to the Metal - Flower Classification on TPU |
10,514,418 | train['Survived'].value_counts(dropna=False )<split> | dataset = get_validation_dataset()
dataset = dataset.unbatch().batch(20)
batch = iter(dataset)
| Petals to the Metal - Flower Classification on TPU |
10,514,418 | kf = model_selection.StratifiedKFold(n_splits=5)
x = list(kf.split(train, train['Survived'].values))<define_variables> | images,labels = next(batch)
probabilites = model.predict(images)
predictions = np.argmax(probabilites, axis = -1)
display_batch_of_images(( images,labels), predictions ) | Petals to the Metal - Flower Classification on TPU |
10,514,418 | [len(i)for i in x]<concatenate> | test_ds = get_test_dataset(ordered = True)
print("Computing predictions for test set")
test_images_ds = test_ds.map(lambda image,idnum: image)
probabilities = model.predict(test_images_ds)
predictions = np.argmax(probabilities, axis = -1)
print(predictions)
| Petals to the Metal - Flower Classification on TPU |
10,514,418 | all_data = train.append(test, sort=True ).fillna({'Survived': -1})
len(train), len(test), len(all_data )<groupby> | print('Generating submision file')
test_ids_ds = test_ds.map(lambda image,idnum: idnum ).unbatch()
test_ids = next(iter(test_ids_ds.batch(NUM_TEST_IMAGES)) ).numpy().astype('U')
np.savetxt(
"submission.csv",
np.rec.fromarrays([test_ids, predictions]),
fmt = ['%s', '%d'],
delimiter = ',',
header = 'id,label',
comments = '',
)
!head submission.csv | Petals to the Metal - Flower Classification on TPU |
10,757,160 | def count_na(series):
return series.isna().sum()
agg_funcs =('nunique', count_na)
dv = 'Survived'
summary_df = all_data.aggregate(agg_funcs, dropna=False ).transpose()
for dv_val in all_data[dv].unique() :
dv_val_data =(
all_data
.loc[lambda df: df[dv] == dv_val]
.aggregate(agg_funcs, dropna=False ).transpose()
)
summary_df[pd.MultiIndex.from_product([[f'{dv}_{dv_val}'], dv_val_data.columns])] = dv_val_data
summary_df['dtypes'] = all_data.dtypes
summary_df['cardinality'] = np.where(summary_df['nunique'] > 20, 'many', 'few')
summary_df = summary_df.sort_values(['dtypes', 'nunique'] ).drop(dv)
summary_df<count_duplicates> | !pip install efficientnet
print("Tensorflow version " + tf.__version__)
| Petals to the Metal - Flower Classification on TPU |
10,757,160 | for _, row in summary_df[['dtypes', 'cardinality']].drop_duplicates().iterrows() :
print(
f"{row['dtypes']} {row['cardinality']}:",
summary_df.loc[
lambda df:(df['dtypes'] == row['dtypes'])&(df['cardinality'] == row['cardinality'])
].index.tolist() ,
)<load_from_csv> | AUTO = tf.data.experimental.AUTOTUNE
AUTO | Petals to the Metal - Flower Classification on TPU |
10,757,160 | train_df = pd.read_csv('/kaggle/input/titanic/train.csv' )<load_from_csv> | tpu = tf.distribute.cluster_resolver.TPUClusterResolver()
tf.config.experimental_connect_to_cluster(tpu)
tf.tpu.experimental.initialize_tpu_system(tpu)
strategy = tf.distribute.experimental.TPUStrategy(tpu)
| Petals to the Metal - Flower Classification on TPU |
10,757,160 | test_df = pd.read_csv('/kaggle/input/titanic/test.csv')
test_df.head()<filter> | IMAGE_SIZE = [512, 512]
EPOCHS = 30
BATCH_SIZE = 32 * strategy.num_replicas_in_sync
LEARNING_RATE = 1e-3
TTA_NUM = 5
| Petals to the Metal - Flower Classification on TPU |
10,757,160 | women = train_df[train_df['Sex'] == 'female']['Survived']
sum(women)/len(women)* 100<filter> | GCS_DS_PATH = KaggleDatasets().get_gcs_path('tpu-getting-started' ) | Petals to the Metal - Flower Classification on TPU |
10,757,160 | men = train_df[train_df['Sex'] == 'male']['Survived']
sum(men)/len(men)* 100<count_values> | GCS_PATH_SELECT = {
192: GCS_DS_PATH + '/tfrecords-jpeg-192x192',
224: GCS_DS_PATH + '/tfrecords-jpeg-224x224',
331: GCS_DS_PATH + '/tfrecords-jpeg-331x331',
512: GCS_DS_PATH + '/tfrecords-jpeg-512x512'
}
GCS_PATH = GCS_PATH_SELECT[IMAGE_SIZE[0]]
TRAINING_FILENAMES = tf.io.gfile.glob(GCS_PATH + '/train/*.tfrec')
VALIDATION_FILENAMES = tf.io.gfile.glob(GCS_PATH + '/val/*.tfrec')
TEST_FILENAMES = tf.io.gfile.glob(GCS_PATH + '/test/*.tfrec' ) | Petals to the Metal - Flower Classification on TPU |
10,757,160 | train_df['SibSp'].value_counts()<save_to_csv> | SKIP_VALIDATION = True
if SKIP_VALIDATION:
TRAINING_FILENAMES = TRAINING_FILENAMES + VALIDATION_FILENAMES
| Petals to the Metal - Flower Classification on TPU |
10,757,160 | y = train_df['Survived']
features = ["Sex", "Pclass", "SibSp", "Parch"]
X = pd.get_dummies(train_df[features])
X_test = pd.get_dummies(test_df[features])
model = RandomForestClassifier(n_estimators=100, max_depth=5, random_state=1)
model.fit(X, y)
predictions = model.predict(X_test)
output = pd.DataFrame({'PassengerId': test_df.PassengerId, 'Survived': predictions})
output.to_csv('my_submission.csv', index=False)
print("Your submission was successfully saved!" )<count_values> | CLASSES = ['pink primrose', 'hard-leaved pocket orchid', 'canterbury bells', 'sweet pea', 'wild geranium', 'tiger lily', 'moon orchid', 'bird of paradise', 'monkshood', 'globe thistle',
'snapdragon', "colt's foot", 'king protea', 'spear thistle', 'yellow iris', 'globe-flower', 'purple coneflower', 'peruvian lily', 'balloon flower', 'giant white arum lily',
'fire lily', 'pincushion flower', 'fritillary', 'red ginger', 'grape hyacinth', 'corn poppy', 'prince of wales feathers', 'stemless gentian', 'artichoke', 'sweet william',
'carnation', 'garden phlox', 'love in the mist', 'cosmos', 'alpine sea holly', 'ruby-lipped cattleya', 'cape flower', 'great masterwort', 'siam tulip', 'lenten rose',
'barberton daisy', 'daffodil', 'sword lily', 'poinsettia', 'bolero deep blue', 'wallflower', 'marigold', 'buttercup', 'daisy', 'common dandelion',
'petunia', 'wild pansy', 'primula', 'sunflower', 'lilac hibiscus', 'bishop of llandaff', 'gaura', 'geranium', 'orange dahlia', 'pink-yellow dahlia',
'cautleya spicata', 'japanese anemone', 'black-eyed susan', 'silverbush', 'californian poppy', 'osteospermum', 'spring crocus', 'iris', 'windflower', 'tree poppy',
'gazania', 'azalea', 'water lily', 'rose', 'thorn apple', 'morning glory', 'passion flower', 'lotus', 'toad lily', 'anthurium',
'frangipani', 'clematis', 'hibiscus', 'columbine', 'desert-rose', 'tree mallow', 'magnolia', 'cyclamen ', 'watercress', 'canna lily',
'hippeastrum ', 'bee balm', 'pink quill', 'foxglove', 'bougainvillea', 'camellia', 'mallow', 'mexican petunia', 'bromelia', 'blanket flower',
'trumpet creeper', 'blackberry lily', 'common tulip', 'wild rose']
print(f"No of Flower classes in dataset: {len(CLASSES)}" ) | Petals to the Metal - Flower Classification on TPU |
10,757,160 | train_df['Survived'].value_counts()<sort_values> | LR_START = 0.00001
LR_MAX = 0.00005 * strategy.num_replicas_in_sync
LR_MIN = 0.00001
LR_RAMPUP_EPOCHS = 5
LR_SUSTAIN_EPOCHS = 0
LR_EXP_DECAY =.7
def lrfn(epoch):
if epoch < LR_RAMPUP_EPOCHS:
lr =(LR_MAX - LR_START)/ LR_RAMPUP_EPOCHS * epoch + LR_START
elif epoch < LR_RAMPUP_EPOCHS + LR_SUSTAIN_EPOCHS:
lr = LR_MAX
else:
lr =(LR_MAX - LR_MIN)* LR_EXP_DECAY**(epoch - LR_RAMPUP_EPOCHS - LR_SUSTAIN_EPOCHS)+ LR_MIN
return lr
lr_callback = tf.keras.callbacks.LearningRateScheduler(lrfn, verbose=True)
rng = [i for i in range(EPOCHS)]
y = [lrfn(x)for x in rng]
plt.plot(rng, y)
print("Learning rate schedule: {:.3g} to {:.3g} to {:.3g}".format(y[0], max(y), y[-1])) | Petals to the Metal - Flower Classification on TPU |
10,757,160 | train_df[['Pclass','Survived']].groupby(['Pclass'], as_index=False ).mean().sort_values(by='Survived', ascending='False' )<sort_values> | def decode_image(image_data):
image = tf.image.decode_jpeg(image_data, channels=3)
image = tf.cast(image, tf.float32)/ 255.0
image = tf.reshape(image, [*IMAGE_SIZE, 3])
return image
def read_labeled_tfrecord(example):
LABELED_TFREC_FORMAT = {
"image": tf.io.FixedLenFeature([], tf.string),
"class": tf.io.FixedLenFeature([], tf.int64),
}
example = tf.io.parse_single_example(example, LABELED_TFREC_FORMAT)
image = decode_image(example['image'])
label = tf.cast(example['class'], tf.int32)
return image, label
def read_unlabeled_tfrecord(example):
UNLABELED_TFREC_FORMAT = {
"image": tf.io.FixedLenFeature([], tf.string),
"id": tf.io.FixedLenFeature([], tf.string),
}
example = tf.io.parse_single_example(example, UNLABELED_TFREC_FORMAT)
image = decode_image(example['image'])
idnum = example['id']
return image, idnum
def data_augment(image, label, seed=2020):
image = tf.image.random_flip_left_right(image, seed=seed)
return image, label
def get_training_dataset() :
dataset = load_dataset(TRAINING_FILENAMES, labeled=True)
dataset = dataset.map(data_augment, num_parallel_calls=AUTO)
dataset = dataset.repeat()
dataset = dataset.shuffle(2048)
dataset = dataset.batch(BATCH_SIZE)
dataset = dataset.prefetch(AUTO)
return dataset
def get_validation_dataset(ordered=False):
dataset = load_dataset(VALIDATION_FILENAMES, labeled=True, ordered=ordered)
dataset = dataset.batch(BATCH_SIZE)
dataset = dataset.cache()
dataset = dataset.prefetch(AUTO)
return dataset
def get_train_valid_datasets() :
dataset = load_dataset(TRAINING_FILENAMES + VALIDATION_FILENAMES, labeled=True)
dataset = dataset.map(data_augment, num_parallel_calls=AUTO)
dataset = dataset.repeat()
dataset = dataset.shuffle(2048)
dataset = dataset.batch(BATCH_SIZE)
dataset = dataset.prefetch(AUTO)
return dataset
def get_test_dataset(ordered=False):
dataset = load_dataset(TEST_FILENAMES, labeled=False, ordered=ordered)
dataset = dataset.batch(BATCH_SIZE)
dataset = dataset.prefetch(AUTO)
return dataset
def count_data_items(filenames):
n = [int(re.compile(r"-([0-9]*)\." ).search(filename ).group(1)) for filename in filenames]
return np.sum(n ) | Petals to the Metal - Flower Classification on TPU |
10,757,160 | train_df[['Sex','Survived']].groupby(['Sex'], as_index=False ).mean().sort_values(by='Survived', ascending='False' )<sort_values> | models = []
histories = []
| Petals to the Metal - Flower Classification on TPU |
10,757,160 | train_df[['SibSp','Survived']].groupby(['SibSp'], as_index=False ).mean().sort_values(by='Survived', ascending='False' )<sort_values> | NUM_TRAINING_IMAGES = count_data_items(TRAINING_FILENAMES)
NUM_VALIDATION_IMAGES = count_data_items(VALIDATION_FILENAMES)
NUM_TEST_IMAGES = count_data_items(TEST_FILENAMES)
STEPS_PER_EPOCH =(NUM_TRAINING_IMAGES + NUM_VALIDATION_IMAGES)// BATCH_SIZE
print('Dataset: {} training images, {} unlabeled test images'.format(NUM_TRAINING_IMAGES+NUM_VALIDATION_IMAGES, NUM_TEST_IMAGES)) | Petals to the Metal - Flower Classification on TPU |
10,757,160 | train_df[['Parch','Survived']].groupby(['Parch'], as_index=False ).mean().sort_values(by='Survived', ascending='False' )<sort_values> | def load_dataset(filenames, labeled=True, ordered=False):
ignore_order = tf.data.Options()
if not ordered:
ignore_order.experimental_deterministic = False
dataset = tf.data.TFRecordDataset(filenames, num_parallel_reads=AUTO)
dataset = dataset.with_options(ignore_order)
dataset = dataset.map(read_labeled_tfrecord if labeled else read_unlabeled_tfrecord, num_parallel_calls=AUTO)
return dataset
def get_training_dataset_preview(ordered=True):
dataset = load_dataset(TRAINING_FILENAMES, labeled=True, ordered=ordered)
dataset = dataset.batch(BATCH_SIZE)
dataset = dataset.cache()
dataset = dataset.prefetch(AUTO)
return dataset
np.set_printoptions(threshold=15, linewidth=80)
def batch_to_numpy_images_and_labels(data):
images, labels = data
numpy_images = images.numpy()
numpy_labels = labels.numpy()
if numpy_labels.dtype == object:
numpy_labels = [None for _ in enumerate(numpy_images)]
return numpy_images, numpy_labels
def title_from_label_and_target(label, correct_label):
if correct_label is None:
return CLASSES[label], True
correct =(label == correct_label)
return "{} [{}{}{}]".format(CLASSES[label], 'OK' if correct else 'NO', u"\u2192" if not correct else '',
CLASSES[correct_label] if not correct else ''), correct
def dataset_to_numpy_util(dataset, N):
dataset = dataset.unbatch().batch(N)
for images, labels in dataset:
numpy_images = images.numpy()
numpy_labels = labels.numpy()
break;
return numpy_images, numpy_labels | Petals to the Metal - Flower Classification on TPU |
10,757,160 | train_df[['Embarked','Survived']].groupby(['Embarked'], as_index=False ).mean().sort_values(by='Survived', ascending='False' )<feature_engineering> | train_dataset = get_training_dataset_preview(ordered=True)
y_train = next(iter(train_dataset.unbatch().map(lambda image, label: label ).batch(NUM_TRAINING_IMAGES)) ).numpy()
print('Number of training images %d' % NUM_TRAINING_IMAGES)
| Petals to the Metal - Flower Classification on TPU |
10,757,160 | for dataset in combine:
dataset['Title'] = dataset.Name.str.extract('([A-Za-z]+)\.', expand=False)
pd.crosstab(train_df['Title'], train_df['Sex'] )<feature_engineering> | display_batch_of_images(next(iter(train_dataset.unbatch().batch(20)))) | Petals to the Metal - Flower Classification on TPU |
10,757,160 | for dataset in combine:
dataset['Title'] = dataset['Title'].replace(['Lady', 'Countess','Capt', 'Col', 'Don', 'Dr', 'Major', 'Rev', 'Sir', 'Jonkheer', 'Dona'], 'Rare')
dataset['Title'] = dataset['Title'].replace('Mlle', 'Miss')
dataset['Title'] = dataset['Title'].replace('Ms', 'Miss')
dataset['Title'] = dataset['Title'].replace('Mme', 'Mrs')
train_df[['Title', 'Survived']].groupby(['Title'], as_index=False ).mean()<categorify> | test_dataset = get_test_dataset()
test_dataset = test_dataset.unbatch().batch(20)
test_batch = iter(test_dataset)
| Petals to the Metal - Flower Classification on TPU |
10,757,160 | title_mapping = {"Mr": 1, "Miss": 2, "Mrs": 3, "Master": 4, "Rare": 5}
for dataset in combine:
dataset['Title'] = dataset['Title'].map(title_mapping)
dataset['Title'] = dataset['Title'].fillna(0)
train_df.head()<drop_column> | def create_model() :
pretrained_model = tf.keras.applications.Xception(input_shape=(IMAGE_SIZE[0],IMAGE_SIZE[1],3),weights='imagenet',include_top=False)
pretrained_model.trainable = True
model = tf.keras.Sequential([
pretrained_model,
tf.keras.layers.GlobalAveragePooling2D(name="Layer1"),
tf.keras.layers.Dropout(0.4),
tf.keras.layers.Dense(len(CLASSES), activation='softmax')
])
model.compile(
optimizer=tf.keras.optimizers.Adam(lr=0.0001),
loss = 'sparse_categorical_crossentropy',
metrics=['categorical_accuracy']
)
return model | Petals to the Metal - Flower Classification on TPU |
10,757,160 | train_df = train_df.drop(['Name', 'PassengerId'], axis=1)
test_df = test_df.drop(['Name'], axis=1)
combine = [train_df, test_df]
train_df.shape, test_df.shape<data_type_conversions> | with strategy.scope() :
Xception_model = create_model()
Xception_model.summary() | Petals to the Metal - Flower Classification on TPU |
10,757,160 | for dataset in combine:
dataset['Sex'] = dataset['Sex'].map({'female': 1, 'male': 0} ).astype(int)
train_df.head()<define_variables> | %%time
Checkpoint=tf.keras.callbacks.ModelCheckpoint(f"xception_model.h5", monitor='val_accuracy', verbose=1, save_best_only=True,
save_weights_only=True,mode='max')
Xception_history1 = Xception_model.fit(
get_training_dataset() ,
steps_per_epoch=STEPS_PER_EPOCH,
epochs=EPOCHS,
callbacks=[lr_callback, Checkpoint])
histories.append(Xception_history1 ) | Petals to the Metal - Flower Classification on TPU |
10,757,160 | guess_ages = np.zeros(( 2,3))
guess_ages<find_best_params> | with strategy.scope() :
enet = efn.EfficientNetB7(
input_shape=(IMAGE_SIZE[0], IMAGE_SIZE[1], 3),
weights='imagenet',
include_top=False
)
enet.trainable = True
model1 = tf.keras.Sequential([
enet,
tf.keras.layers.GlobalMaxPooling2D(name="Layer1"),
tf.keras.layers.Dropout(0.4),
tf.keras.layers.Dense(len(CLASSES), activation='softmax')
])
model1.compile(
optimizer=tf.keras.optimizers.Adam(lr=0.0001),
loss = 'sparse_categorical_crossentropy',
metrics=['categorical_accuracy']
)
model1.summary()
models.append(model1 ) | Petals to the Metal - Flower Classification on TPU |
10,757,160 | for dataset in combine:
for i in range(0, 2):
for j in range(0, 3):
guess_df = dataset[(dataset['Sex'] == i)& \
(dataset['Pclass'] == j+1)]['Age'].dropna()
age_guess = guess_df.median()
guess_ages[i,j] = int(age_guess/0.5 + 0.5)* 0.5
for i in range(0, 2):
for j in range(0, 3):
dataset.loc[(dataset.Age.isnull())&(dataset.Sex == i)&(dataset.Pclass == j+1),\
'Age'] = guess_ages[i,j]
dataset['Age'] = dataset['Age'].astype(int)
train_df.head()<sort_values> | %%time
Checkpoint=tf.keras.callbacks.ModelCheckpoint(f"Enet_model.h5", monitor='val_accuracy', verbose=1, save_best_only=True,
save_weights_only=True,mode='max')
train_history1 = model1.fit(
get_training_dataset() ,
steps_per_epoch=STEPS_PER_EPOCH,
epochs=EPOCHS,
callbacks=[lr_callback, Checkpoint],
)
histories.append(train_history1)
| Petals to the Metal - Flower Classification on TPU |
10,757,160 | train_df['AgeBand'] = pd.cut(train_df['Age'], 5)
train_df[['AgeBand', 'Survived']].groupby(['AgeBand'], as_index=False ).mean().sort_values(by='AgeBand', ascending=True )<feature_engineering> | if not SKIP_VALIDATION:
cmdataset = get_validation_dataset(ordered=True)
images_ds = cmdataset.map(lambda image, label: image)
labels_ds = cmdataset.map(lambda image, label: label ).unbatch()
cm_correct_labels = next(iter(labels_ds.batch(NUM_VALIDATION_IMAGES)) ).numpy()
m1 = model1.predict(images_ds)
m2 = Xception_model.predict(images_ds)
scores = []
for alpha in np.linspace(0,1,100):
cm_probabilities = alpha*m1+(1-alpha)*m2
cm_predictions = np.argmax(cm_probabilities, axis=-1)
scores.append(f1_score(cm_correct_labels, cm_predictions, labels=range(len(CLASSES)) , average='macro'))
best_alpha = np.argmax(scores)/100
else:
best_alpha = 0.51
print('Best alpha: ' + str(best_alpha)) | Petals to the Metal - Flower Classification on TPU |
10,757,160 | for dataset in combine:
dataset.loc[ dataset['Age'] <= 16, 'Age'] = 0
dataset.loc[(dataset['Age'] > 16)&(dataset['Age'] <= 32), 'Age'] = 1
dataset.loc[(dataset['Age'] > 32)&(dataset['Age'] <= 48), 'Age'] = 2
dataset.loc[(dataset['Age'] > 48)&(dataset['Age'] <= 64), 'Age'] = 3
dataset.loc[ dataset['Age'] > 64, 'Age']
train_df.head()<drop_column> | if not SKIP_VALIDATION:
cmat = confusion_matrix(cm_correct_labels, cm_predictions, labels=range(len(CLASSES)))
score = f1_score(cm_correct_labels, cm_predictions, labels=range(len(CLASSES)) , average='macro')
precision = precision_score(cm_correct_labels, cm_predictions, labels=range(len(CLASSES)) , average='macro')
recall = recall_score(cm_correct_labels, cm_predictions, labels=range(len(CLASSES)) , average='macro')
display_confusion_matrix(cmat, score, precision, recall)
print('f1 score: {:.3f}, precision: {:.3f}, recall: {:.3f}'.format(score, precision, recall)) | Petals to the Metal - Flower Classification on TPU |
10,757,160 | train_df = train_df.drop(['AgeBand'], axis=1)
combine = [train_df, test_df]
train_df.head()<sort_values> | def predict_tta(model, n_iter):
probs = []
for i in range(n_iter):
test_ds = get_test_dataset(ordered=True)
test_images_ds = test_ds.map(lambda image, idnum: image)
probs.append(model.predict(test_images_ds,verbose=0))
return probs
| Petals to the Metal - Flower Classification on TPU |
10,757,160 | <feature_engineering><EOS> | test_ds = get_test_dataset(ordered=True)
print('Calculating predictions...')
test_images_ds = test_ds.map(lambda image, idnum: image)
probs1 = np.mean(predict_tta(model1, TTA_NUM), axis=0)
probs2 = np.mean(predict_tta(Xception_model, TTA_NUM), axis=0)
probabilities = best_alpha*probs1 +(1-best_alpha)*probs2
predictions = np.argmax(probabilities, axis=-1)
print('Generating submission file...')
test_ids_ds = test_ds.map(lambda image, idnum: idnum ).unbatch()
test_ids = next(iter(test_ids_ds.batch(NUM_TEST_IMAGES)) ).numpy().astype('U')
np.savetxt('submission.csv', np.rec.fromarrays([test_ids, predictions]), fmt=['%s', '%d'], delimiter=',', header='id,label', comments='')
| Petals to the Metal - Flower Classification on TPU |
10,683,657 | <SOS> metric: macrofscore Kaggle data source: petals-to-the-metal-flower-classification-on-tpu<drop_column> | import numpy as np
import pandas as pd
import tensorflow as tf
import matplotlib.pyplot as plt
from kaggle_datasets import KaggleDatasets | Petals to the Metal - Flower Classification on TPU |
10,683,657 | train_df = train_df.drop(['Parch', 'SibSp', 'FamilySize'], axis=1)
test_df = test_df.drop(['Parch', 'SibSp', 'FamilySize'], axis=1)
combine = [train_df, test_df]
train_df.head()<feature_engineering> | !pip install -q efficientnet
| Petals to the Metal - Flower Classification on TPU |
10,683,657 | for dataset in combine:
dataset['Age*Class'] = dataset.Age * dataset.Pclass
train_df.loc[:, ['Age*Class', 'Age', 'Pclass']].head(10 )<correct_missing_values> | GCS_DS_PATH = KaggleDatasets().get_gcs_path('tpu-getting-started')
print(GCS_DS_PATH ) | Petals to the Metal - Flower Classification on TPU |
10,683,657 | freq_port = train_df.Embarked.dropna().mode() [0]
freq_port<sort_values> | IMAGE_SIZE = 512
EPOCHS = 35
BATCH_SIZE = 16 * strategy.num_replicas_in_sync
NUM_TRAINING_IMAGES = 12753
NUM_TEST_IMAGES = 7382
STEPS_PER_EPOCH = NUM_TRAINING_IMAGES // BATCH_SIZE | Petals to the Metal - Flower Classification on TPU |
10,683,657 | for dataset in combine:
dataset['Embarked'] = dataset['Embarked'].fillna(freq_port)
train_df[['Embarked', 'Survived']].groupby(['Embarked'], as_index=False ).mean().sort_values(by='Survived', ascending=False )<data_type_conversions> | train_data = tf.data.TFRecordDataset(
tf.io.gfile.glob(GCS_DS_PATH + '/tfrecords-jpeg-' + str(IMAGE_SIZE)+ 'x' + str(IMAGE_SIZE)+ '/train/*.tfrec'),
num_parallel_reads = tf.data.experimental.AUTOTUNE
) | Petals to the Metal - Flower Classification on TPU |
10,683,657 | for dataset in combine:
dataset['Embarked'] = dataset['Embarked'].map({'S': 0, 'C': 1, 'Q': 2} ).astype(int)
train_df.head()<data_type_conversions> | ignore_order = tf.data.Options()
ignore_order.experimental_deterministic = False
train_data = train_data.with_options(ignore_order ) | Petals to the Metal - Flower Classification on TPU |
10,683,657 | test_df['Fare'].fillna(test_df['Fare'].dropna().median() , inplace=True)
test_df.head()<data_type_conversions> | def read_labeled_tfrecord(example):
tfrec_format = {
"image": tf.io.FixedLenFeature([], tf.string),
"class": tf.io.FixedLenFeature([], tf.int64),
}
example = tf.io.parse_single_example(example, tfrec_format)
image = decode_image(example['image'])
label = tf.cast(example['class'], tf.int32)
return image, label
def decode_image(image_data):
image = tf.image.decode_jpeg(image_data, channels=3)
image = tf.cast(image, tf.float32)/ 255.0
image = tf.reshape(image, [IMAGE_SIZE, IMAGE_SIZE, 3])
return image | Petals to the Metal - Flower Classification on TPU |
10,683,657 | for dataset in combine:
dataset.loc[ dataset['Fare'] <= 7.91, 'Fare'] = 0
dataset.loc[(dataset['Fare'] > 7.91)&(dataset['Fare'] <= 14.454), 'Fare'] = 1
dataset.loc[(dataset['Fare'] > 14.454)&(dataset['Fare'] <= 31), 'Fare'] = 2
dataset.loc[ dataset['Fare'] > 31, 'Fare'] = 3
dataset['Fare'] = dataset['Fare'].astype(int)
combine = [train_df, test_df]
train_df.head(10 )<prepare_x_and_y> | train_data = train_data.map(read_labeled_tfrecord ) | Petals to the Metal - Flower Classification on TPU |
10,683,657 | X_train = train_df.drop("Survived", axis=1)
Y_train = train_df["Survived"]
X_test = test_df.drop("PassengerId", axis=1 ).copy()
X_train.shape, Y_train.shape, X_test.shape<compute_train_metric> | train_data = train_data.map(augment, num_parallel_calls=tf.data.experimental.AUTOTUNE ) | Petals to the Metal - Flower Classification on TPU |
10,683,657 | logreg = LogisticRegression()
logreg.fit(X_train, Y_train)
Y_pred = logreg.predict(X_test)
acc_log = round(logreg.score(X_train, Y_train)* 100, 2)
acc_log<predict_on_test> | train_data = train_data.repeat()
train_data = train_data.shuffle(2048)
train_data = train_data.batch(BATCH_SIZE)
train_data = train_data.prefetch(tf.data.experimental.AUTOTUNE ) | Petals to the Metal - Flower Classification on TPU |
10,683,657 | knn = KNeighborsClassifier(n_neighbors = 3)
knn.fit(X_train, Y_train)
Y_pred = knn.predict(X_test)
acc_knn = round(knn.score(X_train, Y_train)* 100, 2)
acc_knn<train_model> | val_data = tf.data.TFRecordDataset(
tf.io.gfile.glob(GCS_DS_PATH + '/tfrecords-jpeg-' + str(IMAGE_SIZE)+ 'x' + str(IMAGE_SIZE)+ '/val/*.tfrec'),
num_parallel_reads = tf.data.experimental.AUTOTUNE
)
val_data = val_data.with_options(ignore_order)
val_data = val_data.map(read_labeled_tfrecord, num_parallel_calls = tf.data.experimental.AUTOTUNE)
val_data = val_data.batch(BATCH_SIZE)
val_data = val_data.cache()
val_data = val_data.prefetch(tf.data.experimental.AUTOTUNE ) | Petals to the Metal - Flower Classification on TPU |
10,683,657 | model = RandomForestClassifier(n_estimators=100, max_depth=5, random_state=1)
model.fit(X_train, Y_train)
predictions = model.predict(X_test)
model.score(X_train, Y_train)
acc_random_forest = round(model.score(X_train, Y_train)* 100, 2)
acc_random_forest<save_to_csv> | with strategy.scope() :
enet = efn.EfficientNetB7(
input_shape=(IMAGE_SIZE, IMAGE_SIZE, 3),
weights='imagenet',
include_top=False
)
enet.trainable = True
model = tf.keras.Sequential([
enet,
tf.keras.layers.GlobalAveragePooling2D() ,
tf.keras.layers.Dense(104, activation='softmax', dtype='float32')
] ) | Petals to the Metal - Flower Classification on TPU |
10,683,657 | output = pd.DataFrame({'PassengerId': test_df.PassengerId, 'Survived': predictions})
output.to_csv('my_submission.csv', index=False)
print("Your second submission was successfully saved!" )<define_variables> | model.compile(
optimizer='adam',
loss = 'sparse_categorical_crossentropy',
metrics=['sparse_categorical_accuracy']
) | Petals to the Metal - Flower Classification on TPU |
10,683,657 | warnings.filterwarnings('ignore')
daybasecount = 4
baseday = 98 - float(daybasecount-1)/2.
exponent = 1./float(daybasecount)
fatalityBaseDayShift = 10
maxincrease = 140
maxDeadPrDay = 1500<load_from_csv> | callbacks = [
tf.keras.callbacks.ReduceLROnPlateau(monitor='loss', patience=2, verbose=1),
tf.keras.callbacks.EarlyStopping(monitor='loss', patience=5, verbose=1, restore_best_weights=True),
] | Petals to the Metal - Flower Classification on TPU |
10,683,657 | dftrain = pd.read_csv('.. /input/covid19-global-forecasting-week-3/train.csv', parse_dates=['Date'] ).sort_values(by=['Country_Region', 'Date'])
dftest = pd.read_csv('.. /input/covid19-global-forecasting-week-3/test.csv', parse_dates=['Date'] ).sort_values(by=['Country_Region', 'Date'])
ppp_tabel = pd.read_csv('.. /input/country-ppp/Country_PPP.csv', sep='\s+')
ppp_tabel.drop('Id', 1,inplace=True)
ppp_tabel = ppp_tabel.append({'Country' : 'Burma' , 'ppp' : 8000} , ignore_index=True)
ppp_tabel = ppp_tabel.append({'Country' : 'MS_Zaandam' , 'ppp' : 40000} , ignore_index=True)
ppp_tabel = ppp_tabel.append({'Country' : 'West_Bank_and_Gaza' , 'ppp' : 20000} , ignore_index=True)
ppp_tabel["Country"].replace('_',' ', regex=True,inplace=True)
ppp_tabel["Country"].replace('United States','US', regex=True,inplace=True)
ppp_tabel.rename(columns={'Country':'Country_Region'},inplace=True)
ppp_tabel.sort_values('Country_Region',inplace=True )<merge> | history = model.fit(
train_data,
validation_data = val_data,
steps_per_epoch = STEPS_PER_EPOCH,
epochs = EPOCHS,
callbacks = callbacks,
) | Petals to the Metal - Flower Classification on TPU |
10,683,657 | dftrain['Dayofyear'] = dftrain['Date'].dt.dayofyear
dftest['Dayofyear'] = dftest['Date'].dt.dayofyear
dftest['Expo'] = dftest['Dayofyear']-baseday
print(dftrain.tail(5))
dftest = dftest.merge(dftrain[['Country_Region','Province_State','Date','ConfirmedCases','Fatalities']]
, on=['Country_Region','Province_State','Date'], how='left', indicator=True)
<merge> | def read_unlabeled_tfrecord(example):
tfrec_format = {
"image": tf.io.FixedLenFeature([], tf.string),
"id": tf.io.FixedLenFeature([], tf.string),
}
example = tf.io.parse_single_example(example, tfrec_format)
image = decode_image(example['image'])
idnum = example['id']
return image, idnum | Petals to the Metal - Flower Classification on TPU |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.