kernel_id
int64 24.2k
23.3M
| prompt
stringlengths 8
1.85M
| completetion
stringlengths 1
182k
| comp_name
stringlengths 5
57
|
---|---|---|---|
8,310,908 | seeds = pd.read_csv(FILEDIR / 'MDataFiles_Stage1/MNCAATourneySeeds.csv')
seeds = pd.concat(
[seeds.query('Season == @season and TeamID in @teams')for season, teams in tourney_teams.items() ])
seeds = seeds.set_index(['Season', 'TeamID'] ).sort_index()
seeds['Region'] = seeds['Seed'].str[0]
seeds['Number'] = seeds['Seed'].str[1:3].astype(int)
del seeds['Seed']<load_from_csv> | test_df['Seed1'] = test_df['Seed1'].map(lambda x: get_seed(x))
test_df['Seed2'] = test_df['Seed2'].map(lambda x: get_seed(x))
test_df['Seed_diff'] = test_df['Seed1'] - test_df['Seed2']
test_df['ScoreT_diff'] = test_df['ScoreT1'] - test_df['ScoreT2']
test_df = test_df.drop(['ID', 'Pred', 'Season', 'WTeamID', 'LTeamID'], axis=1)
test_df | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,310,908 | regular = pd.read_csv(FILEDIR / 'MDataFiles_Stage1/MRegularSeasonDetailedResults.csv')
regular = regular.drop(columns=['DayNum', 'LTeamID'])
regular = pd.concat(
[regular.query('Season == @season and WTeamID in @teams')for season, teams in tourney_teams.items() ])
regular = regular.groupby(['Season', 'WTeamID'] ).sum()
regular = regular.rename_axis(index=['Season', 'TeamID'] )<concatenate> | X = train_df.drop('result', axis=1)
y = train_df.result | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,310,908 | ctcsr = pd.concat([coaches, teams, conferences, seeds, regular], axis=1 )<load_from_csv> | params_lgb = {'num_leaves': lgb_num_leaves_max,
'min_data_in_leaf': lgb_in_leaf,
'objective': 'binary',
'max_depth': -1,
'learning_rate': lgb_lr,
"boosting_type": "gbdt",
"bagging_seed": lgb_bagging,
"metric": 'logloss',
"verbosity": -1,
'random_state': 42,
} | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,310,908 | result = pd.read_csv(FILEDIR / 'MDataFiles_Stage1/MNCAATourneyCompactResults.csv')
result = result[result['Season'] >= 2015].set_index(['Season', 'WTeamID', 'LTeamID'] )<concatenate> | NFOLDS = 5
folds = KFold(n_splits=NFOLDS)
columns = X.columns
splits = folds.split(X, y)
y_preds_lgb = np.zeros(test_df.shape[0])
y_train_lgb = np.zeros(X.shape[0])
y_oof = np.zeros(X.shape[0])
feature_importances = pd.DataFrame()
feature_importances['feature'] = columns
for fold_n,(train_index, valid_index)in enumerate(splits):
print('Fold:',fold_n+1)
X_train, X_valid = X[columns].iloc[train_index], X[columns].iloc[valid_index]
y_train, y_valid = y.iloc[train_index], y.iloc[valid_index]
dtrain = lgb.Dataset(X_train, label=y_train)
dvalid = lgb.Dataset(X_valid, label=y_valid)
clf = lgb.train(params_lgb, dtrain, 10000, valid_sets = [dtrain, dvalid], verbose_eval=200)
feature_importances[f'fold_{fold_n + 1}'] = clf.feature_importance()
y_pred_valid = clf.predict(X_valid)
y_oof[valid_index] = y_pred_valid
y_train_lgb += clf.predict(X)/ NFOLDS
y_preds_lgb += clf.predict(test_df)/ NFOLDS
del X_train, X_valid, y_train, y_valid
gc.collect() | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,310,908 | merged_teams = pd.concat(
[ctcsr.loc[[(season, wteam),(season, lteam)], :] for season, wteam, lteam, in result.index])
team1 = merged_teams.iloc[::2, :].reset_index('TeamID')
team2 = merged_teams.iloc[1::2, :].reset_index('TeamID')
merged_teams = pd.concat([
pd.concat([team1.add_suffix('1'), team2.add_suffix('2')], axis=1 ).assign(Res=1),
pd.concat([team2.add_suffix('1'), team1.add_suffix('2')], axis=1 ).assign(Res=0),
] ).reset_index().set_index(['Season', 'TeamID1', 'TeamID2'] ).sort_index()<normalization> | params_xgb = {'max_depth': xgb_max_depth,
'objective': 'binary:logistic',
'min_child_weight': xgb_min_child_weight,
'learning_rate': xgb_lr,
'eta' : 0.3,
'subsample': 0.8,
'eval_metric': 'logloss',
'colsample_bylevel': 1
} | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,310,908 | x_columns = merged_teams.columns[merged_teams.columns != 'Res']
X = merged_teams[x_columns]
columns_number = X.select_dtypes(include='number' ).columns
X.loc[:, columns_number] = MinMaxScaler().fit_transform(X[columns_number])
X = pd.get_dummies(X, columns=x_columns[X.dtypes == 'object'])
X<prepare_x_and_y> | NFOLDS = 5
folds = KFold(n_splits=NFOLDS)
columns = X.columns
splits = folds.split(X, y)
y_preds_xgb = np.zeros(test_df.shape[0])
y_train_xgb = np.zeros(X.shape[0])
y_oof_xgb = np.zeros(X.shape[0])
train_df_set = xgb.DMatrix(X)
test_set = xgb.DMatrix(test_df)
for fold_n,(train_index, valid_index)in enumerate(splits):
print('Fold:',fold_n+1)
X_train, X_valid = X[columns].iloc[train_index], X[columns].iloc[valid_index]
y_train, y_valid = y.iloc[train_index], y.iloc[valid_index]
train_set = xgb.DMatrix(X_train, y_train)
val_set = xgb.DMatrix(X_valid, y_valid)
clf = xgb.train(params_xgb, train_set, num_boost_round=xgb_num_boost_round_max, evals=[(train_set, 'train'),(val_set, 'val')], verbose_eval=100)
y_train_xgb += clf.predict(train_df_set)/ NFOLDS
y_preds_xgb += clf.predict(test_set)/ NFOLDS
del X_train, X_valid, y_train, y_valid
gc.collect() | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,310,908 | y = merged_teams['Res']
y<choose_model_class> | %%time
scaler = StandardScaler()
train_log = pd.DataFrame(
scaler.fit_transform(X),
columns=X.columns,
index=X.index
)
test_log = pd.DataFrame(
scaler.transform(test_df),
columns=test_df.columns,
index=test_df.index
) | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,310,908 | clfs = {}
clfs['SVC'] = {
'instance': SVC(probability=True),
'params': [
{'kernel': ['linear'], 'C': [0.01, 0.05, 0.1, 0.5, 1]},
{'kernel': ['rbf'], 'C': [1, 10, 50, 100, 250], 'gamma': [0.1, 0.2, 0.3]}
]
}
clfs['RandomForestClassifier'] = {
'instance': RandomForestClassifier(n_jobs=-1),
'params': {
'n_estimators': [25, 50, 100],
'criterion': ['gini', 'entropy'],
'max_depth': [10, 25, 50, None]
}
}
clfs['LogisticRegression'] = {
'instance': LogisticRegression(max_iter=200, n_jobs=-1),
'params': [
{'penalty': ['l2'], 'C': [0.1, 0.5, 1, 5, 10]},
{'penalty': ['l1'], 'solver': ['liblinear', 'saga'], 'C': [0.1, 0.5, 1, 5, 10]},
{'penalty': ['elasticnet'], 'C': [0.1, 0.5, 1, 5, 10], 'l1_ratio': [0.1, 0.3, 0.5, 0.7, 0.9]}
]
}<train_on_grid> | logreg = LogisticRegression()
logreg.fit(train_log, y)
coeff_logreg = pd.DataFrame(train_log.columns.delete(0))
coeff_logreg.columns = ['feature']
coeff_logreg["score_logreg"] = pd.Series(logreg.coef_[0])
coeff_logreg.sort_values(by='score_logreg', ascending=False ) | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,310,908 | for clf_name, clf in clfs.items() :
print('<{}>'.format(clf_name))
print(' training...')
gs = GridSearchCV(clf['instance'], param_grid=clf['params'], cv=5, n_jobs=-1)
gs.fit(X, y)
print(' best_score: {:.3f}'.format(gs.best_score_))
print(' best_params: {}'.format(gs.best_params_))
clfs[clf_name]['best_params'] = gs.best_params_<train_model> | eli5.show_weights(logreg ) | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,310,908 | for clf_name, clf in clfs.items() :
clf['best_estimator'] = clf['instance'].set_params(**clf['best_params'] ).fit(X, y )<find_best_params> | y_logreg_train = logreg.predict(train_log)
y_logreg_pred = logreg.predict(test_log ) | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,310,908 | [clf['best_estimator'] for clf in clfs.values() ]<train_on_grid> | def plot_cm(y_true, y_pred, title, figsize=(7,6)) :
y_pred = y_pred.round().astype(int)
cm = confusion_matrix(y_true, y_pred, labels=np.unique(y_true))
cm_sum = np.sum(cm, axis=1, keepdims=True)
cm_perc = cm / cm_sum.astype(float)* 100
annot = np.empty_like(cm ).astype(str)
nrows, ncols = cm.shape
for i in range(nrows):
for j in range(ncols):
c = cm[i, j]
p = cm_perc[i, j]
if i == j:
s = cm_sum[i]
annot[i, j] = '%.1f%%
%d/%d' %(p, c, s)
elif c == 0:
annot[i, j] = ''
else:
annot[i, j] = '%.1f%%
%d' %(p, c)
cm = pd.DataFrame(cm, index=np.unique(y_true), columns=np.unique(y_true))
cm.index.name = 'Actual'
cm.columns.name = 'Predicted'
fig, ax = plt.subplots(figsize=figsize)
plt.title(title)
sns.heatmap(cm, cmap= "YlGnBu", annot=annot, fmt='', ax=ax ) | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,310,908 | vote = VotingClassifier(
estimators=[(clf_name, clf['best_estimator'])for clf_name, clf in clfs.items() ],
voting='soft',
n_jobs=-1
)
vote.fit(X, y)
clfs['Vote'] = {}
clfs['Vote']['best_estimator'] = vote<compute_test_metric> | y_preds = w_lgb*y_preds_lgb + w_xgb*y_preds_xgb + w_logreg*y_logreg_pred | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,310,908 | for clf_name, clf in clfs.items() :
score = accuracy_score(y, clf['best_estimator'].predict(X))
print(clf_name, score )<predict_on_test> | sub['Pred'] = y_preds
sub.head() | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,310,908 | predict = pd.DataFrame(
{
**{'pp_' + clf_name: clf['best_estimator'].predict_proba(X)[:, 1] for clf_name, clf in clfs.items() },
**{'p_' + clf_name: clf['best_estimator'].predict(X)for clf_name, clf in clfs.items() }
},
index=X.index)
predict<feature_engineering> | sub.to_csv('submission.csv', index=False ) | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,310,908 | for column in predict.columns:
sub[column] = 0.5
mask = [idx for idx in sub.index if idx in X.index]
sub.loc[mask, predict.columns] = predict.loc[mask, predict.columns]
sub<save_to_csv> | sub.to_csv('submission.csv', index=False ) | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,315,903 | for column in predict.columns:
sub[['ID', column]].rename(columns={column: 'pred'} ).to_csv('{}.csv'.format(column), index=False )<import_modules> | from sklearn.preprocessing import StandardScaler, MinMaxScaler, OneHotEncoder
from sklearn.model_selection import train_test_split, KFold, cross_val_score, GridSearchCV
from sklearn import preprocessing
import lightgbm as lgb
import optuna
import glob | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,315,903 | import os
from pathlib import Path
import numpy as np
import pandas as pd
from sklearn.model_selection import cross_validate, GridSearchCV
from sklearn.ensemble import RandomForestClassifier
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score<define_variables> | path = '.. /input/google-cloud-ncaa-march-madness-2020-division-1-womens-tournament/'
Files = 'WDataFiles_Stage1/' | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,315,903 | FILEDIR = Path('/kaggle/input/google-cloud-ncaa-march-madness-2020-division-1-mens-tournament' )<load_from_csv> | TourneyCompactResults = pd.read_csv(path + Files + 'WNCAATourneyCompactResults.csv')
GameCities = pd.read_csv(path+Files+'WGameCities.csv')
Seasons = pd.read_csv(path+Files+'WSeasons.csv')
TourneySeeds = pd.read_csv(path+Files+'WNCAATourneySeeds.csv')
RegularSeasonCompactResults = pd.read_csv(path+Files+'WRegularSeasonCompactResults.csv' ) | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,315,903 | sub = pd.read_csv(FILEDIR / 'MSampleSubmissionStage1_2020.csv')
id_splited = sub['ID'].str.split('_', expand=True ).astype(int ).rename(columns={0: 'Season', 1: 'Team1', 2: 'Team2'})
sub = pd.concat([sub, id_splited], axis=1 ).set_index(['Season', 'Team1', 'Team2'] ).sort_index()<count_duplicates> | test= pd.read_csv(path +'WSampleSubmissionStage1_2020.csv' ) | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,315,903 | tourney_teams = {}
tourney_teams_all = set()
for season in sub.index.get_level_values('Season' ).drop_duplicates() :
tourney_teams[season] = set()
tourney_teams[season].update(sub.loc[season].index.get_level_values('Team1'))
tourney_teams[season].update(sub.loc[season].index.get_level_values('Team2'))
tourney_teams_all.update(tourney_teams[season])
{k: len(v)for k, v in tourney_teams.items() }<load_from_csv> | TourneySeeds['Seed'] = TourneySeeds['Seed'].apply(lambda x: int(x[1:3]))
print(TourneySeeds.shape)
TourneySeeds.head() | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,315,903 | conferences = pd.read_csv(FILEDIR / 'MDataFiles_Stage1/MTeamConferences.csv')
conferences = pd.concat(
[conferences.query('Season == @season and TeamID in @teams')for season, teams in tourney_teams.items() ])
conferences = conferences.set_index(['Season', 'TeamID'] ).sort_index()<load_from_csv> | train = train.replace({'H':0,'A':1,'N':2})
train.head() | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,315,903 | coaches = pd.read_csv(FILEDIR / 'MDataFiles_Stage1/MTeamCoaches.csv')
coaches = pd.concat(
[coaches.query('Season == @season and TeamID in @team')for season, team in tourney_teams.items() ])
coaches = coaches[coaches['LastDayNum'] == 154].set_index(['Season', 'TeamID'] ).sort_index() [['CoachName']]<load_from_csv> | le = preprocessing.LabelEncoder()
for column in ['CRType']:
le.fit(GameCities[column])
GameCities[column] = le.transform(GameCities[column])
GameCities.head() | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,315,903 | teams = pd.read_csv(FILEDIR / 'MDataFiles_Stage1/MTeams.csv', usecols=['TeamID', 'FirstD1Season'])
teams['FirstD1Season'] = 2020 - teams['FirstD1Season']
teams = pd.concat(
[teams.query('TeamID in @team' ).assign(Season=season)for season, team in tourney_teams.items() ])
teams = teams.set_index(['Season', 'TeamID'] ).sort_index()<load_from_csv> | le = preprocessing.LabelEncoder()
for column in ['RegionW','RegionX','RegionY','RegionZ']:
le.fit(Seasons[column])
Seasons[column] = le.transform(Seasons[column])
for i in range(0,23):
print(Seasons['DayZero'][i].split('/'))
Seasons['ZeroMonth'] = Seasons['DayZero'][i].split('/')[0]
Seasons['ZeroDay'] = Seasons['DayZero'][i].split('/')[1]
Seasons['ZeroYear'] = Seasons['DayZero'][i].split('/')[2]
Seasons = Seasons.drop('DayZero',axis=1)
Seasons['ZeroMonth'] = Seasons['ZeroMonth'].astype(int)
Seasons['ZeroDay'] = Seasons['ZeroMonth'].astype(int)
Seasons['ZeroYear'] = Seasons['ZeroMonth'].astype(int)
Seasons.head() | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,315,903 | seeds = pd.read_csv(FILEDIR / 'MDataFiles_Stage1/MNCAATourneySeeds.csv')
seeds = pd.concat(
[seeds.query('Season == @season and TeamID in @teams')for season, teams in tourney_teams.items() ])
seeds = seeds.set_index(['Season', 'TeamID'] ).sort_index()
seeds['Region'] = seeds['Seed'].str[0]
seeds['Number'] = seeds['Seed'].str[1:3].astype(int)
del seeds['Seed']<load_from_csv> | train = train.merge(Seasons, how='left',on=['Season'])
train.head() | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,315,903 | regular = pd.read_csv(FILEDIR / 'MDataFiles_Stage1/MRegularSeasonDetailedResults.csv')
regular = regular.drop(columns=['DayNum', 'LTeamID'])
regular = pd.concat(
[regular.query('Season == @season and WTeamID in @teams')for season, teams in tourney_teams.items() ])
regular = regular.groupby(['Season', 'WTeamID'] ).sum()
regular = regular.rename_axis(index=['Season', 'TeamID'] )<concatenate> | train = train.merge(TourneySeeds, how='left', left_on=['Season', 'WTeamID'], right_on=['Season','TeamID'])
train = train.drop('TeamID',axis=1)
train = train.rename(columns={'Seed': 'WSeed'})
train = train.merge(TourneySeeds, how='left', left_on=['Season', 'LTeamID'], right_on=['Season','TeamID'])
train = train.drop('TeamID',axis=1)
train = train.rename(columns={'Seed': 'LSeed'})
train.head() | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,315,903 | ctcsr = pd.concat([coaches, teams, conferences, seeds, regular], axis=1 )<load_from_csv> | test = test.drop(['Pred'], axis=1)
test['Season'] = test['ID'].apply(lambda x: int(x.split('_')[0]))
test['WTeamID'] = test['ID'].apply(lambda x: int(x.split('_')[1]))
test['LTeamID'] = test['ID'].apply(lambda x: int(x.split('_')[2]))
test.head() | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,315,903 | result = pd.read_csv(FILEDIR / 'MDataFiles_Stage1/MNCAATourneyCompactResults.csv')
result = result[result['Season'] >= 2015].set_index(['Season', 'WTeamID', 'LTeamID'] )<concatenate> | test = test.merge(TourneyCompactResults,how='left',on=['Season','WTeamID','LTeamID'] ) | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,315,903 | merged_teams = pd.concat(
[ctcsr.loc[[(season, wteam),(season, lteam)], :] for season, wteam, lteam, in result.index])
team1 = merged_teams.iloc[::2, :].reset_index('TeamID')
team2 = merged_teams.iloc[1::2, :].reset_index('TeamID')
merged_teams = pd.concat([
pd.concat([team1.add_suffix('1'), team2.add_suffix('2')], axis=1 ).assign(Res=1),
pd.concat([team2.add_suffix('1'), team1.add_suffix('2')], axis=1 ).assign(Res=0),
] ).reset_index().set_index(['Season', 'TeamID1', 'TeamID2'] ).sort_index()<categorify> | test = test.replace({'H':0,'A':1,'N':2})
test = test.merge(Seasons, how='left',on=['Season'])
test = test.merge(TourneySeeds, how='left', left_on=['Season', 'WTeamID'], right_on=['Season','TeamID'])
test = test.drop('TeamID',axis=1)
test = test.rename(columns={'Seed': 'WSeed'})
test = test.merge(TourneySeeds, how='left', left_on=['Season', 'LTeamID'], right_on=['Season','TeamID'])
test = test.drop('TeamID',axis=1)
test = test.rename(columns={'Seed': 'LSeed'})
| Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,315,903 | x_columns = merged_teams.columns[merged_teams.columns != 'Res']
X = merged_teams[x_columns]
columns_number = X.select_dtypes(include='number' ).columns
X = pd.get_dummies(X, columns=x_columns[X.dtypes == 'object'])
X<prepare_x_and_y> | test.merge(test,how='left',on=['ID','Season','WTeamID','LTeamID'] ) | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,315,903 | y = merged_teams['Res']
y<train_on_grid> | not_exist_in_test = [c for c in train.columns.values.tolist() if c not in test.columns.values.tolist() ]
print(not_exist_in_test)
train = train.drop(not_exist_in_test, axis=1)
train.head() | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,315,903 | params = {
'n_estimators': [25, 50, 100],
'criterion': ['gini', 'entropy'],
'max_depth': [10, 25, 50, None]
}
gs = GridSearchCV(RandomForestClassifier(n_jobs=-1, random_state=0), param_grid=params, cv=8, n_jobs=-1)
gs.fit(X, y )<train_model> | team_win_score = RegularSeasonCompactResults.groupby(['Season', 'WTeamID'] ).agg({'WScore':['sum', 'count', 'var']} ).reset_index()
team_win_score.columns = [' '.join(col ).strip() for col in team_win_score.columns.values]
team_loss_score = RegularSeasonCompactResults.groupby(['Season', 'LTeamID'] ).agg({'LScore':['sum', 'count', 'var']} ).reset_index()
team_loss_score.columns = [' '.join(col ).strip() for col in team_loss_score.columns.values]
print(team_win_score.shape)
team_win_score.head() | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,315,903 | clf = RandomForestClassifier(n_jobs=-1, random_state=0, **gs.best_params_)
clf.fit(X, y)
accuracy_score(y, clf.predict(X))<predict_on_test> | train = pd.merge(train, team_win_score, how='left', left_on=['Season', 'WTeamID'], right_on=['Season', 'WTeamID'])
train = pd.merge(train, team_loss_score, how='left', left_on=['Season', 'LTeamID'], right_on=['Season', 'LTeamID'])
train = pd.merge(train, team_loss_score, how='left', left_on=['Season', 'WTeamID'], right_on=['Season', 'LTeamID'])
train = pd.merge(train, team_win_score, how='left', left_on=['Season', 'LTeamID_x'], right_on=['Season', 'WTeamID'])
train.drop(['LTeamID_y', 'WTeamID_y'], axis=1, inplace=True)
train.head() | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,315,903 | predict = pd.DataFrame(clf.predict_proba(X), index=X.index, columns=clf.classes_)
predict<save_to_csv> | test = pd.merge(test, team_win_score, how='left', left_on=['Season', 'WTeamID'], right_on=['Season', 'WTeamID'])
test = pd.merge(test, team_loss_score, how='left', left_on=['Season', 'LTeamID'], right_on=['Season', 'LTeamID'])
test = pd.merge(test, team_loss_score, how='left', left_on=['Season', 'WTeamID'], right_on=['Season', 'LTeamID'])
test = pd.merge(test, team_win_score, how='left', left_on=['Season', 'LTeamID_x'], right_on=['Season', 'WTeamID'])
test.drop(['LTeamID_y', 'WTeamID_y'], axis=1, inplace=True)
test.head()
| Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,315,903 | sub.to_csv('RandomForest.csv', index=False )<set_options> | def preprocess(df):
df['x_score'] = df['WScore sum_x'] + df['LScore sum_y']
df['y_score'] = df['WScore sum_y'] + df['LScore sum_x']
df['x_count'] = df['WScore count_x'] + df['LScore count_y']
df['y_count'] = df['WScore count_y'] + df['WScore count_x']
df['x_var'] = df['WScore var_x'] + df['LScore count_y']
df['y_var'] = df['WScore var_y'] + df['WScore var_x']
return df
train = preprocess(train)
test = preprocess(test)
test.shape | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,315,903 | %reload_ext autoreload
%autoreload 2
%matplotlib inline<import_modules> | train_win = train.copy()
train_los = train.copy()
train_win = train_win[['WSeed', 'LSeed',
'x_score', 'y_score', 'x_count', 'y_count', 'x_var', 'y_var']]
train_los = train_los[['LSeed', 'WSeed',
'y_score', 'x_score', 'x_count', 'y_count', 'x_var', 'y_var']]
train_win.columns = ['Seed_1', 'Seed_2',
'Score_1', 'Score_2', 'Count_1', 'Count_2', 'Var_1', 'Var_2']
train_los.columns = ['Seed_1', 'Seed_2',
'Score_1', 'Score_2', 'Count_1', 'Count_2', 'Var_1', 'Var_2']
test = test[['ID', 'WSeed', 'LSeed',
'x_score', 'y_score', 'x_count', 'y_count', 'x_var', 'y_var']]
test.columns = ['ID', 'Seed_1', 'Seed_2',
'Score_1', 'Score_2', 'Count_1', 'Count_2', 'Var_1', 'Var_2'] | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,315,903 | from fastai import *
from fastai.vision import *
import pandas as pd<set_options> | def feature_engineering(df):
df['Seed_diff'] = df['Seed_1'] - df['Seed_2']
df['Score_diff'] = df['Score_1'] - df['Score_2']
df['Count_diff'] = df['Count_1'] - df['Count_2']
df['Var_diff'] = df['Var_1'] - df['Var_2']
df['Mean_score1'] = df['Score_1'] / df['Count_1']
df['Mean_score2'] = df['Score_2'] / df['Count_2']
df['Mean_score_diff'] = df['Mean_score1'] - df['Mean_score2']
df['FanoFactor_1'] = df['Var_1'] / df['Mean_score1']
df['FanoFactor_2'] = df['Var_2'] / df['Mean_score2']
return df
train_win = feature_engineering(train_win)
train_los = feature_engineering(train_los)
test = feature_engineering(test)
test.shape | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,315,903 | print('Make sure cuda is installed:', torch.cuda.is_available())
print('Make sure cudnn is enabled:', torch.backends.cudnn.enabled )<define_variables> | train_win["result"] = 1
print(train_win.shape)
train_win.head()
| Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,315,903 | path = Path('.. /input' )<load_from_csv> | data = pd.concat(( train_win, train_los)).reset_index(drop=True)
print(data.shape)
data.head() | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,315,903 | train_df = pd.read_csv(path/'train.csv')
train_df = pd.concat([train_df['id'],train_df['category_id']],axis=1,keys=['id','category_id'])
train_df.head()<load_from_csv> | test = test.drop(['ID'],axis=1)
test.head() | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,315,903 | test_df = pd.read_csv(path/'test.csv')
test_df = pd.DataFrame(test_df['id'])
test_df['predicted'] = 0
test_df.head()<define_variables> | from sklearn.linear_model import LogisticRegression
import matplotlib.pyplot as plt
from sklearn.utils import shuffle
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import KFold
import lightgbm as lgb
import xgboost as xgb
from xgboost import XGBClassifier | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,315,903 | data.show_batch()<choose_model_class> | y_train=data['result']
X_train=data.drop(columns='result' ) | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,315,903 | learn = cnn_learner(data, base_arch=models.densenet121, metrics=[FBeta() ,accuracy], wd=1e-5 ).mixup()<train_model> | params_lgb = {'num_leaves': 400,
'min_child_weight': 0.034,
'feature_fraction': 0.379,
'bagging_fraction': 0.418,
'min_data_in_leaf': 106,
'objective': 'binary',
'max_depth': 50,
'learning_rate': 0.0068,
"boosting_type": "gbdt",
"bagging_seed": 11,
"metric": 'logloss',
"verbosity": -1,
'reg_alpha': 0.3899,
'reg_lambda': 0.648,
'random_state': 47,
}
params_xgb = {'colsample_bytree': 0.8,
'learning_rate': 0.0004,
'max_depth': 31,
'subsample': 1,
'objective':'binary:logistic',
'eval_metric':'logloss',
'min_child_weight':3,
'gamma':0.25,
'n_estimators':5000
} | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,315,903 | lr = 2e-2
learn.fit_one_cycle(2, slice(lr))<save_model> | NFOLDS = 10
folds = KFold(n_splits=NFOLDS)
columns = X_train.columns
splits = folds.split(X_train, y_train ) | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,315,903 | learn.save('stage-1-sz32' )<train_model> | y_preds_lgb = np.zeros(test.shape[0])
y_oof_lgb = np.zeros(X_train.shape[0])
| Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,315,903 | lr = 1e-3
learn.fit_one_cycle(4, slice(lr/100, lr))<save_model> | for fold_n,(train_index, valid_index)in enumerate(splits):
print('Fold:',fold_n+1)
X_train1, X_valid1 = X_train[columns].iloc[train_index], X_train[columns].iloc[valid_index]
y_train1, y_valid1 = y_train.iloc[train_index], y_train.iloc[valid_index]
dtrain = lgb.Dataset(X_train1, label=y_train1)
dvalid = lgb.Dataset(X_valid1, label=y_valid1)
clf = lgb.train(params_lgb, dtrain, 10000, valid_sets = [dtrain, dvalid], verbose_eval=200)
y_pred_valid = clf.predict(X_valid1)
y_oof_lgb[valid_index] = y_pred_valid
y_preds_lgb += clf.predict(test)/ NFOLDS | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,315,903 | learn.save('stage-2-sz32' )<find_best_params> | submission_df = pd.read_csv(path + 'WSampleSubmissionStage1_2020.csv')
submission_df['Pred'] = y_preds_lgb
submission_df | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,315,903 | interp = ClassificationInterpretation.from_learner(learn)
losses,idxs = interp.top_losses()
len(data.valid_ds)==len(losses)==len(idxs )<feature_engineering> | test= pd.read_csv(path +'WSampleSubmissionStage1_2020.csv')
test.shape | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,315,903 | test_preds = learn.TTA(DatasetType.Test)
test_df['predicted'] = test_preds[0].argmax(dim=1 )<save_to_csv> | submission_df.to_csv('submission.csv', index=False ) | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,082,740 | test_df.to_csv('submission.csv', index=False )<load_from_csv> | pd.set_option('max_columns', None)
plt.style.use('fivethirtyeight')
%matplotlib inline
py.init_notebook_mode(connected=True)
warnings.filterwarnings('ignore')
print("Libraries imported!" ) | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,082,740 | print(check_output(["cp", ".. /input/sampleSubmission.csv", "sub.csv"] ).decode("utf8"))<load_from_csv> | class BaseModel(object):
def __init__(self, train_df, test_df, target, features, categoricals=[],
n_splits=3, cv_method="KFold", group=None, task="regression",
parameter_tuning=False, scaler=None, verbose=True):
self.train_df = train_df
self.test_df = test_df
self.target = target
self.features = features
self.n_splits = n_splits
self.categoricals = categoricals
self.cv_method = cv_method
self.group = group
self.task = task
self.parameter_tuning = parameter_tuning
self.scaler = scaler
self.cv = self.get_cv()
self.verbose = verbose
self.params = self.get_params()
self.y_pred, self.score, self.model, self.oof, self.y_val, self.fi_df = self.fit()
def train_model(self, train_set, val_set):
raise NotImplementedError
def get_params(self):
raise NotImplementedError
def convert_dataset(self, x_train, y_train, x_val, y_val):
raise NotImplementedError
def convert_x(self, x):
return x
def calc_metric(self, y_true, y_pred):
if self.task == "classification":
return log_loss(y_true, y_pred)
elif self.task == "regression":
return np.sqrt(mean_squared_error(y_true, y_pred))
def get_cv(self):
if self.cv_method == "KFold":
cv = KFold(n_splits=self.n_splits, shuffle=True, random_state=42)
return cv.split(self.train_df)
elif self.cv_method == "StratifiedKFold":
cv = StratifiedKFold(n_splits=self.n_splits, shuffle=True, random_state=42)
return cv.split(self.train_df, self.train_df[self.target])
elif self.cv_method == "TimeSeriesSplit":
cv = TimeSeriesSplit(max_train_size=None, n_splits=self.n_splits)
return cv.split(self.train_df)
elif self.cv_method == "GroupKFold":
cv = GroupKFold(n_splits=self.n_splits, shuffle=True, random_state=42)
return cv.split(self.train_df, self.train_df[self.target], self.group)
elif self.cv_method == "StratifiedGroupKFold":
cv = StratifiedGroupKFold(n_splits=self.n_splits, shuffle=True, random_state=42)
return cv.split(self.train_df, self.train_df[self.target], self.group)
def fit(self):
oof_pred = np.zeros(( self.train_df.shape[0],))
y_vals = np.zeros(( self.train_df.shape[0],))
y_pred = np.zeros(( self.test_df.shape[0],))
if self.group is not None:
if self.group in self.features:
self.features.remove(self.group)
if self.group in self.categoricals:
self.categoricals.remove(self.group)
fi = np.zeros(( self.n_splits, len(self.features)))
if self.scaler is not None:
numerical_features = [f for f in self.features if f not in self.categoricals]
self.train_df[numerical_features] = self.train_df[numerical_features].fillna(self.train_df[numerical_features].median())
self.test_df[numerical_features] = self.test_df[numerical_features].fillna(self.test_df[numerical_features].median())
self.train_df[self.categoricals] = self.train_df[self.categoricals].fillna(self.train_df[self.categoricals].mode().iloc[0])
self.test_df[self.categoricals] = self.test_df[self.categoricals].fillna(self.test_df[self.categoricals].mode().iloc[0])
if self.scaler == "MinMax":
scaler = MinMaxScaler()
elif self.scaler == "Standard":
scaler = StandardScaler()
df = pd.concat([self.train_df[numerical_features], self.test_df[numerical_features]], ignore_index=True)
scaler.fit(df[numerical_features])
x_test = self.test_df.copy()
x_test[numerical_features] = scaler.transform(x_test[numerical_features])
x_test = [np.absolute(x_test[i])for i in self.categoricals] + [x_test[numerical_features]]
else:
x_test = self.test_df[self.features]
for fold,(train_idx, val_idx)in enumerate(self.cv):
x_train, x_val = self.train_df.loc[train_idx, self.features], self.train_df.loc[val_idx, self.features]
y_train, y_val = self.train_df.loc[train_idx, self.target], self.train_df.loc[val_idx, self.target]
if self.scaler is not None:
x_train[numerical_features] = scaler.transform(x_train[numerical_features])
x_val[numerical_features] = scaler.transform(x_val[numerical_features])
x_train = [np.absolute(x_train[i])for i in self.categoricals] + [x_train[numerical_features]]
x_val = [np.absolute(x_val[i])for i in self.categoricals] + [x_val[numerical_features]]
train_set, val_set = self.convert_dataset(x_train, y_train, x_val, y_val)
model, importance = self.train_model(train_set, val_set)
fi[fold, :] = importance
conv_x_val = self.convert_x(x_val)
y_vals[val_idx] = y_val
oof_pred[val_idx] = model.predict(conv_x_val ).reshape(oof_pred[val_idx].shape)
x_test = self.convert_x(x_test)
y_pred += model.predict(x_test ).reshape(y_pred.shape)/ self.n_splits
print('Partial score of fold {} is: {}'.format(fold, self.calc_metric(y_val, oof_pred[val_idx])))
fi_df = pd.DataFrame()
for n in np.arange(self.n_splits):
tmp = pd.DataFrame()
tmp["features"] = self.features
tmp["importance"] = fi[n, :]
tmp["fold"] = n
fi_df = pd.concat([fi_df, tmp], ignore_index=True)
gfi = fi_df[["features", "importance"]].groupby(["features"] ).mean().reset_index()
fi_df = fi_df.merge(gfi, on="features", how="left", suffixes=('', '_mean'))
loss_score = self.calc_metric(self.train_df[self.target], oof_pred)
if self.verbose:
print('Our oof loss score is: ', loss_score)
return y_pred, loss_score, model, oof_pred, y_vals, fi_df
def plot_feature_importance(self, rank_range=[1, 50]):
fig, ax = plt.subplots(1, 1, figsize=(10, 20))
sorted_df = self.fi_df.sort_values(by = "importance_mean", ascending=False ).reset_index().iloc[self.n_splits *(rank_range[0]-1): self.n_splits * rank_range[1]]
sns.barplot(data=sorted_df, x ="importance", y ="features", orient='h')
ax.set_xlabel("feature importance")
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
return sorted_df | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,082,740 | train_data = pd.read_csv('/kaggle/input/DontGetKicked/training.csv')
train_data.head()<load_from_csv> | class LgbModel(BaseModel):
def train_model(self, train_set, val_set):
verbosity = 100 if self.verbose else 0
model = lgb.train(self.params, train_set, num_boost_round = 5000, valid_sets=[train_set, val_set], verbose_eval=verbosity)
fi = model.feature_importance(importance_type="gain")
return model, fi
def convert_dataset(self, x_train, y_train, x_val, y_val):
train_set = lgb.Dataset(x_train, y_train, categorical_feature=self.categoricals)
val_set = lgb.Dataset(x_val, y_val, categorical_feature=self.categoricals)
return train_set, val_set
def get_params(self):
params = {
'num_leaves': 127,
'min_data_in_leaf': 50,
'max_depth': -1,
'learning_rate': 0.005,
"boosting_type": "gbdt",
"bagging_seed": 11,
"verbosity": -1,
'random_state': 42,
}
if self.task == "regression":
params["objective"] = "regression"
params["metric"] = "rmse"
elif self.task == "classification":
params["objective"] = "binary"
params["metric"] = "binary_logloss"
if self.parameter_tuning == True:
def objective(trial):
train_x, test_x, train_y, test_y = train_test_split(self.train_df[self.features],
self.train_df[self.target],
test_size=0.3, random_state=42)
dtrain = lgb.Dataset(train_x, train_y, categorical_feature=self.categoricals)
dtest = lgb.Dataset(test_x, test_y, categorical_feature=self.categoricals)
hyperparams = {'num_leaves': trial.suggest_int('num_leaves', 24, 1024),
'boosting_type': 'gbdt',
'objective': params["objective"],
'metric': params["metric"],
'max_depth': trial.suggest_int('max_depth', 4, 16),
'min_child_weight': trial.suggest_int('min_child_weight', 1, 20),
'feature_fraction': trial.suggest_uniform('feature_fraction', 0.4, 1.0),
'bagging_fraction': trial.suggest_uniform('bagging_fraction', 0.4, 1.0),
'bagging_freq': trial.suggest_int('bagging_freq', 1, 7),
'min_child_samples': trial.suggest_int('min_child_samples', 5, 100),
'lambda_l1': trial.suggest_loguniform('lambda_l1', 1e-8, 10.0),
'lambda_l2': trial.suggest_loguniform('lambda_l2', 1e-8, 10.0),
'early_stopping_rounds': 100
}
model = lgb.train(hyperparams, dtrain, valid_sets=dtest, verbose_eval=500)
pred = model.predict(test_x)
if self.task == "classification":
return log_loss(test_y, pred)
elif self.task == "regression":
return np.sqrt(mean_squared_error(test_y, pred))
study = optuna.create_study(direction='minimize')
study.optimize(objective, n_trials=50)
print('Number of finished trials: {}'.format(len(study.trials)))
print('Best trial:')
trial = study.best_trial
print(' Value: {}'.format(trial.value))
print(' Params: ')
for key, value in trial.params.items() :
print(' {}: {}'.format(key, value))
params = trial.params
params["learning_rate"] = 0.001
plot_optimization_history(study)
return params | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,082,740 | test_data = pd.read_csv('/kaggle/input/DontGetKicked/test.csv')
test_data.head()<count_missing_values> | data_dict = {}
for i in glob.glob('/kaggle/input/google-cloud-ncaa-march-madness-2020-division-1-womens-tournament/WDataFiles_Stage1/*'):
name = i.split('/')[-1].split('.')[0]
if name != 'WTeamSpellings':
data_dict[name] = pd.read_csv(i)
else:
data_dict[name] = pd.read_csv(i, encoding='cp1252' ) | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,082,740 | train_data.isnull().sum()<count_values> | data_dict['WNCAATourneySeeds']['Seed'] = data_dict['WNCAATourneySeeds']['Seed'].apply(lambda x: int(x[1:3]))
data_dict[fname].head() | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,082,740 | train_data['IsBadBuy'].value_counts()<count_values> | test = pd.read_csv('.. /input/google-cloud-ncaa-march-madness-2020-division-1-womens-tournament/WSampleSubmissionStage1_2020.csv')
print(test.shape)
test.head() | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,082,740 | train_data['Model'].value_counts()<drop_column> | test = test.drop(['Pred'], axis=1)
test['Season'] = test['ID'].apply(lambda x: int(x.split('_')[0]))
test['WTeamID'] = test['ID'].apply(lambda x: int(x.split('_')[1]))
test['LTeamID'] = test['ID'].apply(lambda x: int(x.split('_')[2]))
test.head() | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,082,740 | train_data.drop('Model',axis = 1,inplace = True)
test_data.drop('Model',axis = 1,inplace = True)
<count_values> | gameCities = pd.merge(data_dict['WGameCities'], data_dict['Cities'], how='left', on=['CityID'])
cols_to_use = gameCities.columns.difference(train.columns ).tolist() + ["Season", "WTeamID", "LTeamID"]
train = train.merge(gameCities[cols_to_use], how="left", on=["Season", "WTeamID", "LTeamID"])
train.head()
cols_to_use = data_dict["WSeasons"].columns.difference(train.columns ).tolist() + ["Season"]
train = train.merge(data_dict["WSeasons"][cols_to_use], how="left", on=["Season"])
train.head()
cols_to_use = data_dict["WTeams"].columns.difference(train.columns ).tolist()
train = train.merge(data_dict["WTeams"][cols_to_use], how="left", left_on=["WTeamID"], right_on=["TeamID"])
train.drop(['TeamID'], axis=1, inplace=True)
train = train.merge(data_dict["WTeams"][cols_to_use], how="left", left_on=["LTeamID"], right_on=["TeamID"], suffixes=('_W', '_L'))
train.drop(['TeamID'], axis=1, inplace=True)
print(train.shape)
train.head() | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,082,740 | train_data['Trim'].value_counts()<drop_column> | cols_to_use = data_dict['WNCAATourneySeeds'].columns.difference(train.columns ).tolist() + ['Season']
train = train.merge(data_dict['WNCAATourneySeeds'][cols_to_use].drop_duplicates(subset=["Season","TeamID"]),
how='left', left_on=['Season', 'WTeamID'], right_on=['Season', 'TeamID'])
train.drop(['TeamID'], axis=1, inplace=True)
train = train.merge(data_dict['WNCAATourneySeeds'][cols_to_use].drop_duplicates(subset=["Season","TeamID"]),
how='left', left_on=['Season', 'LTeamID'], right_on=['Season', 'TeamID'], suffixes=('_W', '_L'))
train.drop(['TeamID'], axis=1, inplace=True)
print(train.shape)
train.head() | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,082,740 | train_data.drop('Trim',axis = 1,inplace = True)
test_data.drop('Trim',axis = 1,inplace = True )<count_values> | cols_to_use = gameCities.columns.difference(test.columns ).tolist() + ["Season", "WTeamID", "LTeamID"]
test = test.merge(gameCities[cols_to_use].drop_duplicates(subset=["Season", "WTeamID", "LTeamID"]),
how="left", on=["Season", "WTeamID", "LTeamID"])
del gameCities
gc.collect()
test.head()
cols_to_use = data_dict["WSeasons"].columns.difference(test.columns ).tolist() + ["Season"]
test = test.merge(data_dict["WSeasons"][cols_to_use].drop_duplicates(subset=["Season"]),
how="left", on=["Season"])
test.head()
cols_to_use = data_dict["WTeams"].columns.difference(test.columns ).tolist()
test = test.merge(data_dict["WTeams"][cols_to_use].drop_duplicates(subset=["TeamID"]),
how="left", left_on=["WTeamID"], right_on=["TeamID"])
test.drop(['TeamID'], axis=1, inplace=True)
test = test.merge(data_dict["WTeams"][cols_to_use].drop_duplicates(subset=["TeamID"]),
how="left", left_on=["LTeamID"], right_on=["TeamID"], suffixes=('_W', '_L'))
test.drop(['TeamID'], axis=1, inplace=True)
test.head()
cols_to_use = data_dict['WNCAATourneySeeds'].columns.difference(test.columns ).tolist() + ['Season']
test = test.merge(data_dict['WNCAATourneySeeds'][cols_to_use].drop_duplicates(subset=["Season","TeamID"]),
how='left', left_on=['Season', 'WTeamID'], right_on=['Season', 'TeamID'])
test.drop(['TeamID'], axis=1, inplace=True)
test = test.merge(data_dict['WNCAATourneySeeds'][cols_to_use].drop_duplicates(subset=["Season","TeamID"]),
how='left', left_on=['Season', 'LTeamID'], right_on=['Season', 'TeamID'], suffixes=('_W', '_L'))
test.drop(['TeamID'], axis=1, inplace=True)
print(test.shape)
test.head() | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,082,740 | train_data['SubModel'].value_counts()<drop_column> | not_exist_in_test = [c for c in train.columns.values.tolist() if c not in test.columns.values.tolist() ]
print(not_exist_in_test)
train = train.drop(not_exist_in_test, axis=1)
train.head() | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,082,740 | train_data.drop('SubModel',axis = 1,inplace = True)
test_data.drop('SubModel',axis = 1,inplace = True )<count_values> | team_win_score = regularSeason.groupby(['Season', 'WTeamID'] ).agg({'WScore':['sum', 'count', 'var']} ).reset_index()
team_win_score.columns = [' '.join(col ).strip() for col in team_win_score.columns.values]
team_loss_score = regularSeason.groupby(['Season', 'LTeamID'] ).agg({'LScore':['sum', 'count', 'var']} ).reset_index()
team_loss_score.columns = [' '.join(col ).strip() for col in team_loss_score.columns.values]
del regularSeason
gc.collect() | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,082,740 | train_data['Color'].value_counts()<data_type_conversions> | train = pd.merge(train, team_win_score, how='left', left_on=['Season', 'WTeamID'], right_on=['Season', 'WTeamID'])
train = pd.merge(train, team_loss_score, how='left', left_on=['Season', 'LTeamID'], right_on=['Season', 'LTeamID'])
train = pd.merge(train, team_loss_score, how='left', left_on=['Season', 'WTeamID'], right_on=['Season', 'LTeamID'])
train = pd.merge(train, team_win_score, how='left', left_on=['Season', 'LTeamID_x'], right_on=['Season', 'WTeamID'])
train.drop(['LTeamID_y', 'WTeamID_y'], axis=1, inplace=True)
train.head() | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,082,740 | train_data['Color'].fillna(value = 'Color_Unkown',inplace=True)
test_data['Color'].fillna(value= 'Color_Unknown',inplace =True )<count_values> | test = pd.merge(test, team_win_score, how='left', left_on=['Season', 'WTeamID'], right_on=['Season', 'WTeamID'])
test = pd.merge(test, team_loss_score, how='left', left_on=['Season', 'LTeamID'], right_on=['Season', 'LTeamID'])
test = pd.merge(test, team_loss_score, how='left', left_on=['Season', 'WTeamID'], right_on=['Season', 'LTeamID'])
test = pd.merge(test, team_win_score, how='left', left_on=['Season', 'LTeamID_x'], right_on=['Season', 'WTeamID'])
test.drop(['LTeamID_y', 'WTeamID_y'], axis=1, inplace=True)
test.head() | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,082,740 | train_data['Transmission'].value_counts()<rename_columns> | def preprocess(df):
df['x_score'] = df['WScore sum_x'] + df['LScore sum_y']
df['y_score'] = df['WScore sum_y'] + df['LScore sum_x']
df['x_count'] = df['WScore count_x'] + df['LScore count_y']
df['y_count'] = df['WScore count_y'] + df['WScore count_x']
df['x_var'] = df['WScore var_x'] + df['LScore count_y']
df['y_var'] = df['WScore var_y'] + df['WScore var_x']
return df
train = preprocess(train)
test = preprocess(test ) | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,082,740 | train_data['Transmission'].replace('Manual','MANUAL',inplace=True )<count_values> | train_win = train.copy()
train_los = train.copy()
train_win = train_win[['Seed_W', 'Seed_L', 'TeamName_W', 'TeamName_L',
'x_score', 'y_score', 'x_count', 'y_count', 'x_var', 'y_var']]
train_los = train_los[['Seed_L', 'Seed_W', 'TeamName_L', 'TeamName_W',
'y_score', 'x_score', 'x_count', 'y_count', 'x_var', 'y_var']]
train_win.columns = ['Seed_1', 'Seed_2', 'TeamName_1', 'TeamName_2',
'Score_1', 'Score_2', 'Count_1', 'Count_2', 'Var_1', 'Var_2']
train_los.columns = ['Seed_1', 'Seed_2', 'TeamName_1', 'TeamName_2',
'Score_1', 'Score_2', 'Count_1', 'Count_2', 'Var_1', 'Var_2']
test = test[['ID', 'Seed_W', 'Seed_L', 'TeamName_W', 'TeamName_L',
'x_score', 'y_score', 'x_count', 'y_count', 'x_var', 'y_var']]
test.columns = ['ID', 'Seed_1', 'Seed_2', 'TeamName_1', 'TeamName_2',
'Score_1', 'Score_2', 'Count_1', 'Count_2', 'Var_1', 'Var_2'] | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,082,740 | train_data["Transmission"].value_counts()<count_values> | def feature_engineering(df):
df['Seed_diff'] = df['Seed_1'] - df['Seed_2']
df['Score_diff'] = df['Score_1'] - df['Score_2']
df['Count_diff'] = df['Count_1'] - df['Count_2']
df['Var_diff'] = df['Var_1'] - df['Var_2']
df['Mean_score1'] = df['Score_1'] / df['Count_1']
df['Mean_score2'] = df['Score_2'] / df['Count_2']
df['Mean_score_diff'] = df['Mean_score1'] - df['Mean_score2']
df['FanoFactor_1'] = df['Var_1'] / df['Mean_score1']
df['FanoFactor_2'] = df['Var_2'] / df['Mean_score2']
return df
train_win = feature_engineering(train_win)
train_los = feature_engineering(train_los)
test = feature_engineering(test ) | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,082,740 | train_data['WheelTypeID'].value_counts()<drop_column> | data = pd.concat(( train_win, train_los)).reset_index(drop=True)
print(data.shape)
data.head() | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,082,740 | train_data.drop('WheelTypeID',axis = 1,inplace = True)
test_data.drop('WheelTypeID',axis = 1,inplace = True )<count_values> | categoricals = ["TeamName_1", "TeamName_2"]
for c in categoricals:
le = LabelEncoder()
data[c] = data[c].fillna("NaN")
data[c] = le.fit_transform(data[c])
test[c] = le.transform(test[c])
data.head() | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,082,740 | train_data['WheelType'].value_counts()<data_type_conversions> | target = 'result'
features = data.columns.values.tolist()
features.remove(target ) | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,082,740 | train_data['WheelType'].fillna(value = 'WheelType_unk',inplace=True)
test_data['WheelType'].fillna(value= 'WheelType_unk',inplace =True )<count_values> | lgbm = LgbModel(data, test, target, features, categoricals=categoricals, n_splits=10,
cv_method="StratifiedKFold", group=None, task="classification", scaler=None, verbose=True ) | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,082,740 | train_data['Nationality'].value_counts()<data_type_conversions> | submission_df = pd.read_csv('.. /input/google-cloud-ncaa-march-madness-2020-division-1-womens-tournament/WSampleSubmissionStage1_2020.csv')
submission_df['Pred'] = lgbm.y_pred
submission_df | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,082,740 | <count_values><EOS> | submission_df.to_csv('submission.csv', index=False ) | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,079,138 | <SOS> metric: logloss Kaggle data source: google-cloud-ncaa-march-madness-2020-division-1-womens-tournament<data_type_conversions> | pd.set_option('max_columns', None)
plt.style.use('fivethirtyeight')
%matplotlib inline
py.init_notebook_mode(connected=True)
warnings.filterwarnings('ignore')
print("Libraries imported!" ) | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,079,138 | train_data['Size'].fillna(value = 'Size_unk',inplace=True)
test_data['Size'].fillna(value= 'Size_unk',inplace =True )<count_values> | class BaseModel(object):
def __init__(self, train_df, test_df, target, features, categoricals=[],
n_splits=3, cv_method="KFold", group=None, task="regression",
parameter_tuning=False, scaler=None, verbose=True):
self.train_df = train_df
self.test_df = test_df
self.target = target
self.features = features
self.n_splits = n_splits
self.categoricals = categoricals
self.cv_method = cv_method
self.group = group
self.task = task
self.parameter_tuning = parameter_tuning
self.scaler = scaler
self.cv = self.get_cv()
self.verbose = verbose
self.params = self.get_params()
self.y_pred, self.score, self.model, self.oof, self.y_val, self.fi_df = self.fit()
def train_model(self, train_set, val_set):
raise NotImplementedError
def get_params(self):
raise NotImplementedError
def convert_dataset(self, x_train, y_train, x_val, y_val):
raise NotImplementedError
def convert_x(self, x):
return x
def calc_metric(self, y_true, y_pred):
if self.task == "classification":
return log_loss(y_true, y_pred)
elif self.task == "regression":
return np.sqrt(mean_squared_error(y_true, y_pred))
def get_cv(self):
if self.cv_method == "KFold":
cv = KFold(n_splits=self.n_splits, shuffle=True, random_state=42)
return cv.split(self.train_df)
elif self.cv_method == "StratifiedKFold":
cv = StratifiedKFold(n_splits=self.n_splits, shuffle=True, random_state=42)
return cv.split(self.train_df, self.train_df[self.target])
elif self.cv_method == "TimeSeriesSplit":
cv = TimeSeriesSplit(max_train_size=None, n_splits=self.n_splits)
return cv.split(self.train_df)
elif self.cv_method == "GroupKFold":
cv = GroupKFold(n_splits=self.n_splits, shuffle=True, random_state=42)
return cv.split(self.train_df, self.train_df[self.target], self.group)
elif self.cv_method == "StratifiedGroupKFold":
cv = StratifiedGroupKFold(n_splits=self.n_splits, shuffle=True, random_state=42)
return cv.split(self.train_df, self.train_df[self.target], self.group)
def fit(self):
oof_pred = np.zeros(( self.train_df.shape[0],))
y_vals = np.zeros(( self.train_df.shape[0],))
y_pred = np.zeros(( self.test_df.shape[0],))
if self.group is not None:
if self.group in self.features:
self.features.remove(self.group)
if self.group in self.categoricals:
self.categoricals.remove(self.group)
fi = np.zeros(( self.n_splits, len(self.features)))
if self.scaler is not None:
numerical_features = [f for f in self.features if f not in self.categoricals]
self.train_df[numerical_features] = self.train_df[numerical_features].fillna(self.train_df[numerical_features].median())
self.test_df[numerical_features] = self.test_df[numerical_features].fillna(self.test_df[numerical_features].median())
self.train_df[self.categoricals] = self.train_df[self.categoricals].fillna(self.train_df[self.categoricals].mode().iloc[0])
self.test_df[self.categoricals] = self.test_df[self.categoricals].fillna(self.test_df[self.categoricals].mode().iloc[0])
if self.scaler == "MinMax":
scaler = MinMaxScaler()
elif self.scaler == "Standard":
scaler = StandardScaler()
df = pd.concat([self.train_df[numerical_features], self.test_df[numerical_features]], ignore_index=True)
scaler.fit(df[numerical_features])
x_test = self.test_df.copy()
x_test[numerical_features] = scaler.transform(x_test[numerical_features])
x_test = [np.absolute(x_test[i])for i in self.categoricals] + [x_test[numerical_features]]
else:
x_test = self.test_df[self.features]
for fold,(train_idx, val_idx)in enumerate(self.cv):
x_train, x_val = self.train_df.loc[train_idx, self.features], self.train_df.loc[val_idx, self.features]
y_train, y_val = self.train_df.loc[train_idx, self.target], self.train_df.loc[val_idx, self.target]
if self.scaler is not None:
x_train[numerical_features] = scaler.transform(x_train[numerical_features])
x_val[numerical_features] = scaler.transform(x_val[numerical_features])
x_train = [np.absolute(x_train[i])for i in self.categoricals] + [x_train[numerical_features]]
x_val = [np.absolute(x_val[i])for i in self.categoricals] + [x_val[numerical_features]]
train_set, val_set = self.convert_dataset(x_train, y_train, x_val, y_val)
model, importance = self.train_model(train_set, val_set)
fi[fold, :] = importance
conv_x_val = self.convert_x(x_val)
y_vals[val_idx] = y_val
oof_pred[val_idx] = model.predict(conv_x_val ).reshape(oof_pred[val_idx].shape)
x_test = self.convert_x(x_test)
y_pred += model.predict(x_test ).reshape(y_pred.shape)/ self.n_splits
print('Partial score of fold {} is: {}'.format(fold, self.calc_metric(y_val, oof_pred[val_idx])))
fi_df = pd.DataFrame()
for n in np.arange(self.n_splits):
tmp = pd.DataFrame()
tmp["features"] = self.features
tmp["importance"] = fi[n, :]
tmp["fold"] = n
fi_df = pd.concat([fi_df, tmp], ignore_index=True)
gfi = fi_df[["features", "importance"]].groupby(["features"] ).mean().reset_index()
fi_df = fi_df.merge(gfi, on="features", how="left", suffixes=('', '_mean'))
loss_score = self.calc_metric(self.train_df[self.target], oof_pred)
if self.verbose:
print('Our oof loss score is: ', loss_score)
return y_pred, loss_score, model, oof_pred, y_vals, fi_df
def plot_feature_importance(self, rank_range=[1, 50]):
fig, ax = plt.subplots(1, 1, figsize=(10, 20))
sorted_df = self.fi_df.sort_values(by = "importance_mean", ascending=False ).reset_index().iloc[self.n_splits *(rank_range[0]-1): self.n_splits * rank_range[1]]
sns.barplot(data=sorted_df, x ="importance", y ="features", orient='h')
ax.set_xlabel("feature importance")
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
return sorted_df | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,079,138 | train_data['TopThreeAmericanName'].value_counts()<data_type_conversions> | class LgbModel(BaseModel):
def train_model(self, train_set, val_set):
verbosity = 100 if self.verbose else 0
model = lgb.train(self.params, train_set, num_boost_round = 5000, valid_sets=[train_set, val_set], verbose_eval=verbosity)
fi = model.feature_importance(importance_type="gain")
return model, fi
def convert_dataset(self, x_train, y_train, x_val, y_val):
train_set = lgb.Dataset(x_train, y_train, categorical_feature=self.categoricals)
val_set = lgb.Dataset(x_val, y_val, categorical_feature=self.categoricals)
return train_set, val_set
def get_params(self):
params = {
'num_leaves': 127,
'min_data_in_leaf': 50,
'max_depth': -1,
'learning_rate': 0.005,
"boosting_type": "gbdt",
"bagging_seed": 11,
"verbosity": -1,
'random_state': 42,
}
if self.task == "regression":
params["objective"] = "regression"
params["metric"] = "rmse"
elif self.task == "classification":
params["objective"] = "binary"
params["metric"] = "binary_logloss"
if self.parameter_tuning == True:
def objective(trial):
train_x, test_x, train_y, test_y = train_test_split(self.train_df[self.features],
self.train_df[self.target],
test_size=0.3, random_state=42)
dtrain = lgb.Dataset(train_x, train_y, categorical_feature=self.categoricals)
dtest = lgb.Dataset(test_x, test_y, categorical_feature=self.categoricals)
hyperparams = {'num_leaves': trial.suggest_int('num_leaves', 24, 1024),
'boosting_type': 'gbdt',
'objective': params["objective"],
'metric': params["metric"],
'max_depth': trial.suggest_int('max_depth', 4, 16),
'min_child_weight': trial.suggest_int('min_child_weight', 1, 20),
'feature_fraction': trial.suggest_uniform('feature_fraction', 0.4, 1.0),
'bagging_fraction': trial.suggest_uniform('bagging_fraction', 0.4, 1.0),
'bagging_freq': trial.suggest_int('bagging_freq', 1, 7),
'min_child_samples': trial.suggest_int('min_child_samples', 5, 100),
'lambda_l1': trial.suggest_loguniform('lambda_l1', 1e-8, 10.0),
'lambda_l2': trial.suggest_loguniform('lambda_l2', 1e-8, 10.0),
'early_stopping_rounds': 100
}
model = lgb.train(hyperparams, dtrain, valid_sets=dtest, verbose_eval=500)
pred = model.predict(test_x)
if self.task == "classification":
return log_loss(test_y, pred)
elif self.task == "regression":
return np.sqrt(mean_squared_error(test_y, pred))
study = optuna.create_study(direction='minimize')
study.optimize(objective, n_trials=50)
print('Number of finished trials: {}'.format(len(study.trials)))
print('Best trial:')
trial = study.best_trial
print(' Value: {}'.format(trial.value))
print(' Params: ')
for key, value in trial.params.items() :
print(' {}: {}'.format(key, value))
params = trial.params
params["learning_rate"] = 0.001
plot_optimization_history(study)
return params | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,079,138 | train_data['TopThreeAmericanName'].fillna(value = 'TopThreeAmericanName_unk',inplace=True)
test_data['TopThreeAmericanName'].fillna(value= 'TopThreeAmericanName_unk',inplace =True )<count_values> | class CatbModel(BaseModel):
def train_model(self, train_set, val_set):
verbosity = 100 if self.verbose else 0
if self.task == "regression":
model = CatBoostRegressor(**self.params)
elif self.task == "classification":
model = CatBoostClassifier(**self.params)
model.fit(train_set['X'], train_set['y'], eval_set=(val_set['X'], val_set['y']),
verbose=verbosity, cat_features=self.categoricals)
return model, model.get_feature_importance()
def convert_dataset(self, x_train, y_train, x_val, y_val):
train_set = {'X': x_train, 'y': y_train}
val_set = {'X': x_val, 'y': y_val}
return train_set, val_set
def get_params(self):
params = { 'task_type': "CPU",
'learning_rate': 0.01,
'iterations': 1000,
'random_seed': 42,
'use_best_model': True
}
if self.task == "regression":
params["loss_function"] = "RMSE"
elif self.task == "classification":
params["loss_function"] = "Logloss"
return params | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,079,138 | train_data['PRIMEUNIT'].value_counts()<data_type_conversions> | class Mish(Layer):
def __init__(self, **kwargs):
super(Mish, self ).__init__(**kwargs)
def build(self, input_shape):
super(Mish, self ).build(input_shape)
def call(self, x):
return x * K.tanh(K.softplus(x))
def compute_output_shape(self, input_shape):
return input_shape
class LayerNormalization(keras.layers.Layer):
def __init__(self,
center=True,
scale=True,
epsilon=None,
gamma_initializer='ones',
beta_initializer='zeros',
gamma_regularizer=None,
beta_regularizer=None,
gamma_constraint=None,
beta_constraint=None,
**kwargs):
super(LayerNormalization, self ).__init__(**kwargs)
self.supports_masking = True
self.center = center
self.scale = scale
if epsilon is None:
epsilon = K.epsilon() * K.epsilon()
self.epsilon = epsilon
self.gamma_initializer = keras.initializers.get(gamma_initializer)
self.beta_initializer = keras.initializers.get(beta_initializer)
self.gamma_regularizer = keras.regularizers.get(gamma_regularizer)
self.beta_regularizer = keras.regularizers.get(beta_regularizer)
self.gamma_constraint = keras.constraints.get(gamma_constraint)
self.beta_constraint = keras.constraints.get(beta_constraint)
self.gamma, self.beta = None, None
def get_config(self):
config = {
'center': self.center,
'scale': self.scale,
'epsilon': self.epsilon,
'gamma_initializer': keras.initializers.serialize(self.gamma_initializer),
'beta_initializer': keras.initializers.serialize(self.beta_initializer),
'gamma_regularizer': keras.regularizers.serialize(self.gamma_regularizer),
'beta_regularizer': keras.regularizers.serialize(self.beta_regularizer),
'gamma_constraint': keras.constraints.serialize(self.gamma_constraint),
'beta_constraint': keras.constraints.serialize(self.beta_constraint),
}
base_config = super(LayerNormalization, self ).get_config()
return dict(list(base_config.items())+ list(config.items()))
def compute_output_shape(self, input_shape):
return input_shape
def compute_mask(self, inputs, input_mask=None):
return input_mask
def build(self, input_shape):
shape = input_shape[-1:]
if self.scale:
self.gamma = self.add_weight(
shape=shape,
initializer=self.gamma_initializer,
regularizer=self.gamma_regularizer,
constraint=self.gamma_constraint,
name='gamma',
)
if self.center:
self.beta = self.add_weight(
shape=shape,
initializer=self.beta_initializer,
regularizer=self.beta_regularizer,
constraint=self.beta_constraint,
name='beta',
)
super(LayerNormalization, self ).build(input_shape)
def call(self, inputs, training=None):
mean = K.mean(inputs, axis=-1, keepdims=True)
variance = K.mean(K.square(inputs - mean), axis=-1, keepdims=True)
std = K.sqrt(variance + self.epsilon)
outputs =(inputs - mean)/ std
if self.scale:
outputs *= self.gamma
if self.center:
outputs += self.beta
return outputs | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,079,138 | train_data['PRIMEUNIT'].fillna(value = 'PRIMEUNIT_unk',inplace=True)
test_data['PRIMEUNIT'].fillna(value= 'PRIMEUNIT_unk',inplace =True )<count_values> | class NeuralNetworkModel(BaseModel):
def train_model(self, train_set, val_set):
inputs = []
embeddings = []
embedding_out_dim = self.params['embedding_out_dim']
n_neuron = self.params['hidden_units']
for i in self.categoricals:
input_ = Input(shape=(1,))
embedding = Embedding(int(np.absolute(self.train_df[i] ).max() + 1), embedding_out_dim, input_length=1 )(input_)
embedding = Reshape(target_shape=(embedding_out_dim,))(embedding)
inputs.append(input_)
embeddings.append(embedding)
input_numeric = Input(shape=(len(self.features)- len(self.categoricals),))
embedding_numeric = Dense(n_neuron )(input_numeric)
embedding_numeric = Mish()(embedding_numeric)
inputs.append(input_numeric)
embeddings.append(embedding_numeric)
x = Concatenate()(embeddings)
for i in np.arange(self.params['hidden_layers'] - 1):
x = Dense(n_neuron //(2 *(i+1)) )(x)
x = Mish()(x)
x = Dropout(self.params['hidden_dropout'] )(x)
x = LayerNormalization()(x)
if self.task == "regression":
out = Dense(1, activation="linear", name = "out" )(x)
loss = "mse"
elif self.task == "classification":
out = Dense(1, activation='sigmoid', name = 'out' )(x)
loss = "binary_crossentropy"
model = Model(inputs=inputs, outputs=out)
model.compile(loss=loss, optimizer=Adam(lr=1e-04, beta_1=0.9, beta_2=0.999, decay=1e-04))
er = EarlyStopping(patience=10, min_delta=1e-4, restore_best_weights=True, monitor='val_loss')
ReduceLR = ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=7, verbose=1, epsilon=1e-4, mode='min')
model.fit(train_set['X'], train_set['y'], callbacks=[er, ReduceLR],
epochs=self.params['epochs'], batch_size=self.params['batch_size'],
validation_data=[val_set['X'], val_set['y']])
fi = np.zeros(len(self.features))
return model, fi
def convert_dataset(self, x_train, y_train, x_val, y_val):
train_set = {'X': x_train, 'y': y_train}
val_set = {'X': x_val, 'y': y_val}
return train_set, val_set
def get_params(self):
params = {
'input_dropout': 0.0,
'hidden_layers': 2,
'hidden_units': 128,
'embedding_out_dim': 4,
'hidden_activation': 'relu',
'hidden_dropout': 0.05,
'batch_norm': 'before_act',
'optimizer': {'type': 'adam', 'lr': 0.001},
'batch_size': 128,
'epochs': 80
}
return params | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,079,138 | train_data['AUCGUART'].value_counts()<data_type_conversions> | data_dict = {}
for i in glob.glob('/kaggle/input/google-cloud-ncaa-march-madness-2020-division-1-womens-tournament/WDataFiles_Stage1/*'):
name = i.split('/')[-1].split('.')[0]
if name != 'WTeamSpellings':
data_dict[name] = pd.read_csv(i)
else:
data_dict[name] = pd.read_csv(i, encoding='cp1252' ) | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,079,138 | train_data['AUCGUART'].fillna(value = 'AUCGUART_unk',inplace=True)
test_data['AUCGUART'].fillna(value= 'AUCGUART_unk',inplace =True )<drop_column> | data_dict['WNCAATourneySeeds']['Seed'] = data_dict['WNCAATourneySeeds']['Seed'].apply(lambda x: int(x[1:3]))
data_dict[fname].head() | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,079,138 | train_data.drop(['MMRAcquisitionAuctionAveragePrice','MMRAcquisitionAuctionCleanPrice','MMRAcquisitionRetailAveragePrice','MMRAcquisitonRetailCleanPrice','MMRCurrentAuctionAveragePrice','MMRCurrentAuctionCleanPrice','MMRCurrentRetailAveragePrice','MMRCurrentRetailCleanPrice'
],axis = 1,inplace = True)
test_data.drop(['MMRAcquisitionAuctionAveragePrice','MMRAcquisitionAuctionCleanPrice','MMRAcquisitionRetailAveragePrice','MMRAcquisitonRetailCleanPrice','MMRCurrentAuctionAveragePrice','MMRCurrentAuctionCleanPrice','MMRCurrentRetailAveragePrice','MMRCurrentRetailCleanPrice'
],axis = 1,inplace = True )<drop_column> | test = pd.read_csv('.. /input/google-cloud-ncaa-march-madness-2020-division-1-womens-tournament/WSampleSubmissionStage1_2020.csv')
print(test.shape)
test.head() | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,079,138 | train_data.drop('PurchDate',axis = 1,inplace = True)
test_data.drop('PurchDate',axis = 1,inplace = True )<drop_column> | test = test.drop(['Pred'], axis=1)
test['Season'] = test['ID'].apply(lambda x: int(x.split('_')[0]))
test['WTeamID'] = test['ID'].apply(lambda x: int(x.split('_')[1]))
test['LTeamID'] = test['ID'].apply(lambda x: int(x.split('_')[2]))
test.head() | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,079,138 | non_categorical = train_data.drop(['RefId','IsBadBuy'],axis=1 ).columns[train_data.drop(['RefId','IsBadBuy'],axis=1 ).dtypes!='object']<feature_engineering> | gameCities = pd.merge(data_dict['WGameCities'], data_dict['Cities'], how='left', on=['CityID'])
cols_to_use = gameCities.columns.difference(train.columns ).tolist() + ["Season", "WTeamID", "LTeamID"]
train = train.merge(gameCities[cols_to_use], how="left", on=["Season", "WTeamID", "LTeamID"])
train.head()
cols_to_use = data_dict["WSeasons"].columns.difference(train.columns ).tolist() + ["Season"]
train = train.merge(data_dict["WSeasons"][cols_to_use], how="left", on=["Season"])
train.head()
cols_to_use = data_dict["WTeams"].columns.difference(train.columns ).tolist()
train = train.merge(data_dict["WTeams"][cols_to_use], how="left", left_on=["WTeamID"], right_on=["TeamID"])
train.drop(['TeamID'], axis=1, inplace=True)
train = train.merge(data_dict["WTeams"][cols_to_use], how="left", left_on=["LTeamID"], right_on=["TeamID"], suffixes=('_W', '_L'))
train.drop(['TeamID'], axis=1, inplace=True)
print(train.shape)
train.head() | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,079,138 | for i in non_categorical:
maximum = np.max(train_data[i])
train_data[i]/=maximum
maximum_test = np.max(test_data[i])
test_data[i]/=maximum_test<drop_column> | cols_to_use = data_dict['WNCAATourneySeeds'].columns.difference(train.columns ).tolist() + ['Season']
train = train.merge(data_dict['WNCAATourneySeeds'][cols_to_use].drop_duplicates(subset=["Season","TeamID"]),
how='left', left_on=['Season', 'WTeamID'], right_on=['Season', 'TeamID'])
train.drop(['TeamID'], axis=1, inplace=True)
train = train.merge(data_dict['WNCAATourneySeeds'][cols_to_use].drop_duplicates(subset=["Season","TeamID"]),
how='left', left_on=['Season', 'LTeamID'], right_on=['Season', 'TeamID'], suffixes=('_W', '_L'))
train.drop(['TeamID'], axis=1, inplace=True)
print(train.shape)
train.head() | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,079,138 | categorical = train_data.drop(['RefId','IsBadBuy'],axis=1 ).columns[train_data.drop(['RefId','IsBadBuy'],axis=1 ).dtypes=='object']<categorify> | cols_to_use = gameCities.columns.difference(test.columns ).tolist() + ["Season", "WTeamID", "LTeamID"]
test = test.merge(gameCities[cols_to_use].drop_duplicates(subset=["Season", "WTeamID", "LTeamID"]),
how="left", on=["Season", "WTeamID", "LTeamID"])
del gameCities
gc.collect()
test.head()
cols_to_use = data_dict["WSeasons"].columns.difference(test.columns ).tolist() + ["Season"]
test = test.merge(data_dict["WSeasons"][cols_to_use].drop_duplicates(subset=["Season"]),
how="left", on=["Season"])
test.head()
cols_to_use = data_dict["WTeams"].columns.difference(test.columns ).tolist()
test = test.merge(data_dict["WTeams"][cols_to_use].drop_duplicates(subset=["TeamID"]),
how="left", left_on=["WTeamID"], right_on=["TeamID"])
test.drop(['TeamID'], axis=1, inplace=True)
test = test.merge(data_dict["WTeams"][cols_to_use].drop_duplicates(subset=["TeamID"]),
how="left", left_on=["LTeamID"], right_on=["TeamID"], suffixes=('_W', '_L'))
test.drop(['TeamID'], axis=1, inplace=True)
test.head()
cols_to_use = data_dict['WNCAATourneySeeds'].columns.difference(test.columns ).tolist() + ['Season']
test = test.merge(data_dict['WNCAATourneySeeds'][cols_to_use].drop_duplicates(subset=["Season","TeamID"]),
how='left', left_on=['Season', 'WTeamID'], right_on=['Season', 'TeamID'])
test.drop(['TeamID'], axis=1, inplace=True)
test = test.merge(data_dict['WNCAATourneySeeds'][cols_to_use].drop_duplicates(subset=["Season","TeamID"]),
how='left', left_on=['Season', 'LTeamID'], right_on=['Season', 'TeamID'], suffixes=('_W', '_L'))
test.drop(['TeamID'], axis=1, inplace=True)
print(test.shape)
test.head() | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,079,138 | pd.get_dummies(train_data[categorical[0]] )<categorify> | not_exist_in_test = [c for c in train.columns.values.tolist() if c not in test.columns.values.tolist() ]
print(not_exist_in_test)
train = train.drop(not_exist_in_test, axis=1)
train.head() | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,079,138 | for i in categorical:
dummies = pd.get_dummies(train_data[i])
dummies.columns=str(i)+'_'+dummies.columns
train_data = pd.concat([train_data,dummies],axis=1)
train_data.drop(i,inplace=True,axis=1)
dummies = pd.get_dummies(test_data[i])
dummies.columns=str(i)+'_'+dummies.columns
test_data = pd.concat([test_data,dummies],axis=1)
test_data.drop(i,inplace=True,axis=1 )<feature_engineering> | team_win_score = regularSeason.groupby(['Season', 'WTeamID'] ).agg({'WScore':['sum', 'count', 'var']} ).reset_index()
team_win_score.columns = [' '.join(col ).strip() for col in team_win_score.columns.values]
team_loss_score = regularSeason.groupby(['Season', 'LTeamID'] ).agg({'LScore':['sum', 'count', 'var']} ).reset_index()
team_loss_score.columns = [' '.join(col ).strip() for col in team_loss_score.columns.values]
del regularSeason
gc.collect() | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,079,138 | for i in train_data.drop('IsBadBuy',axis=1 ).columns:
if i not in test_data.columns:
test_data[i]=np.zeros(len(test_data))<feature_engineering> | train = pd.merge(train, team_win_score, how='left', left_on=['Season', 'WTeamID'], right_on=['Season', 'WTeamID'])
train = pd.merge(train, team_loss_score, how='left', left_on=['Season', 'LTeamID'], right_on=['Season', 'LTeamID'])
train = pd.merge(train, team_loss_score, how='left', left_on=['Season', 'WTeamID'], right_on=['Season', 'LTeamID'])
train = pd.merge(train, team_win_score, how='left', left_on=['Season', 'LTeamID_x'], right_on=['Season', 'WTeamID'])
train.drop(['LTeamID_y', 'WTeamID_y'], axis=1, inplace=True)
train.head() | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,079,138 | for i in test_data.columns:
if i not in train_data.columns:
train_data[i]=np.zeros(len(train_data))<drop_column> | test = pd.merge(test, team_win_score, how='left', left_on=['Season', 'WTeamID'], right_on=['Season', 'WTeamID'])
test = pd.merge(test, team_loss_score, how='left', left_on=['Season', 'LTeamID'], right_on=['Season', 'LTeamID'])
test = pd.merge(test, team_loss_score, how='left', left_on=['Season', 'WTeamID'], right_on=['Season', 'LTeamID'])
test = pd.merge(test, team_win_score, how='left', left_on=['Season', 'LTeamID_x'], right_on=['Season', 'WTeamID'])
test.drop(['LTeamID_y', 'WTeamID_y'], axis=1, inplace=True)
test.head() | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,079,138 | test_data = test_data[train_data.drop('IsBadBuy',axis=1 ).columns]<prepare_x_and_y> | def preprocess(df):
df['x_score'] = df['WScore sum_x'] + df['LScore sum_y']
df['y_score'] = df['WScore sum_y'] + df['LScore sum_x']
df['x_count'] = df['WScore count_x'] + df['LScore count_y']
df['y_count'] = df['WScore count_y'] + df['WScore count_x']
df['x_var'] = df['WScore var_x'] + df['LScore count_y']
df['y_var'] = df['WScore var_y'] + df['WScore var_x']
return df
train = preprocess(train)
test = preprocess(test ) | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,079,138 | X = train_data.drop(['RefId','IsBadBuy'],axis=1)
y = train_data['IsBadBuy']<split> | train_win = train.copy()
train_los = train.copy()
train_win = train_win[['Seed_W', 'Seed_L', 'TeamName_W', 'TeamName_L',
'x_score', 'y_score', 'x_count', 'y_count', 'x_var', 'y_var']]
train_los = train_los[['Seed_L', 'Seed_W', 'TeamName_L', 'TeamName_W',
'y_score', 'x_score', 'x_count', 'y_count', 'x_var', 'y_var']]
train_win.columns = ['Seed_1', 'Seed_2', 'TeamName_1', 'TeamName_2',
'Score_1', 'Score_2', 'Count_1', 'Count_2', 'Var_1', 'Var_2']
train_los.columns = ['Seed_1', 'Seed_2', 'TeamName_1', 'TeamName_2',
'Score_1', 'Score_2', 'Count_1', 'Count_2', 'Var_1', 'Var_2']
test = test[['ID', 'Seed_W', 'Seed_L', 'TeamName_W', 'TeamName_L',
'x_score', 'y_score', 'x_count', 'y_count', 'x_var', 'y_var']]
test.columns = ['ID', 'Seed_1', 'Seed_2', 'TeamName_1', 'TeamName_2',
'Score_1', 'Score_2', 'Count_1', 'Count_2', 'Var_1', 'Var_2'] | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,079,138 | X_train,X_test,y_train,y_test = train_test_split(X,y,random_state=42 )<import_modules> | def feature_engineering(df):
df['Seed_diff'] = df['Seed_1'] - df['Seed_2']
df['Score_diff'] = df['Score_1'] - df['Score_2']
df['Count_diff'] = df['Count_1'] - df['Count_2']
df['Var_diff'] = df['Var_1'] - df['Var_2']
df['Mean_score1'] = df['Score_1'] / df['Count_1']
df['Mean_score2'] = df['Score_2'] / df['Count_2']
df['Mean_score_diff'] = df['Mean_score1'] - df['Mean_score2']
df['FanoFactor_1'] = df['Var_1'] / df['Mean_score1']
df['FanoFactor_2'] = df['Var_2'] / df['Mean_score2']
return df
train_win = feature_engineering(train_win)
train_los = feature_engineering(train_los)
test = feature_engineering(test ) | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,079,138 | from sklearn.neighbors import KNeighborsClassifier<import_modules> | data = pd.concat(( train_win, train_los)).reset_index(drop=True)
print(data.shape)
data.head() | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,079,138 | from sklearn.neighbors import KNeighborsClassifier<import_modules> | categoricals = ["TeamName_1", "TeamName_2"]
for c in categoricals:
le = LabelEncoder()
data[c] = data[c].fillna("NaN")
data[c] = le.fit_transform(data[c])
test[c] = le.transform(test[c])
data.head() | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,079,138 | from sklearn.neighbors import KNeighborsClassifier<train_model> | target = 'result'
features = data.columns.values.tolist()
features.remove(target ) | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,079,138 | KNN = KNeighborsClassifier(n_neighbors=11)
KNN.fit(X_train,y_train )<compute_test_metric> | nn = NeuralNetworkModel(data, test, target, features, categoricals=categoricals, n_splits=10,
cv_method="StratifiedKFold", group=None, task="classification", scaler="MinMax", verbose=True ) | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,079,138 | KNN.score(X_test,y_test )<predict_on_test> | lgbm = LgbModel(data, test, target, features, categoricals=categoricals, n_splits=10,
cv_method="StratifiedKFold", group=None, task="classification", scaler=None, verbose=True ) | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,079,138 | predict = KNN.predict(test_data.drop('RefId',axis=1))<prepare_output> | catb = CatbModel(data, test, target, features, categoricals=categoricals, n_splits=10,
cv_method="StratifiedKFold", group=None, task="classification", scaler=None, verbose=True ) | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,079,138 | Submissions = pd.DataFrame(predict,columns=['IsBadBuy'])
Submissions.head()<prepare_output> | submission_df = pd.read_csv('.. /input/google-cloud-ncaa-march-madness-2020-division-1-womens-tournament/WSampleSubmissionStage1_2020.csv')
submission_df['Pred'] = 0.7 * lgbm.y_pred + 0.2 * catb.y_pred + 0.1 * nn.y_pred
submission_df | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,079,138 | <save_to_csv><EOS> | submission_df.to_csv('submission.csv', index=False ) | Google Cloud & NCAA® ML Competition 2020-NCAAW |
8,016,864 | <SOS> metric: logloss Kaggle data source: google-cloud-ncaa-march-madness-2020-division-1-womens-tournament<load_from_csv> | pd.set_option('max_columns', None)
plt.style.use('fivethirtyeight')
%matplotlib inline
py.init_notebook_mode(connected=True)
warnings.filterwarnings('ignore')
print("Libraries imported!" ) | Google Cloud & NCAA® ML Competition 2020-NCAAW |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.