Dataset Viewer
Auto-converted to Parquet
python_code
stringlengths
0
4.04M
repo_name
stringlengths
7
58
file_path
stringlengths
5
147
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import argparse import copy import json import sys sys.path.append("./FLSim") from FLSim.flsim.utils.config_utils import fl_config_from_json def bool_flag(s): """ Parse boolean arguments from the command line. """ if s.lower() in ["False", "false"]: return False elif s.lower() in ["True", "true"]: return True else: raise argparse.ArgumentTypeError("invalid value for a boolean flag") def flsim_args(parser): parser.add_argument( "--dp-level", default="user_level", type=str, help="FLSim DP level (User or item level DP). Defaults to user_level.", ) parser.add_argument( "--gpu-mem-minimiser", default="False", type=bool_flag, help="FLSim, whether to use the GPUMemoryMinimiser", ) parser.add_argument( "--debug-config", default="False", type=bool_flag, help="For debugging: Whether to use FLSim debug configs (without CanarySyncTrainer)", ) parser.add_argument( "--users-per-round", default=1, type=int, help="FLSim, Sets the number of users per round for training + attacking FL models", ) parser.add_argument( "--client-epochs", default=1, type=int, help="FLSim, number of local epochs per user", ) parser.add_argument( "--num-local-updates", default=-1, type=int, help="FLSim, number of local updates made by a user. -1 if users have varying number of local batches (default)", ) parser.add_argument( "--server-clip-const", default=1, type=int, help="Sets the FLSim 'clipping_value' parameter. This is the clipping constant of model updates.", ) parser.add_argument( "--canary-design-reverse-server-clip", default=False, type=bool_flag, help="For debugging: If True, will design and test on unclipped server updates, but will still train the model on clipped server updates", ) parser.add_argument( "--insert-canary-as-batch", default=False, type=bool_flag, help="Whether to insert the canary as a sample or an entire batch. Does not need to be set, will be updated based on canary-insert-batch-index", ) parser.add_argument( "--canary-insert-global-round", default=-1, type=int, help="FLSim, the global round to insert the canary into, overrides canary-insert-epoch", ) parser.add_argument( "--canary-insert-offset", default=1, type=int, help="FLSim, used in train_and_freeze and continuous testing and is the round period between attacks", ) parser.add_argument( "--canary-insert-batch-index", default="batch", type=str, help="FLSim, the batch index to insert the canary. Options: 0,-1, 'batch', Default: batch (i.e inserts canary on its own)", ) parser.add_argument( "--canary-design-local-models", type=bool_flag, default=False, help="For debugging: If True and canary_insert_batch_index=-1, then design canaries on the (num_local_updates-1)th model", ) parser.add_argument( "--canary-insert-train-acc", default=-1, type=int, help="In FLSim, inserts canary after model achieves train acc >= canary-insert-train-acc, overrides canary-insert-epoch and canary-insert-global-round", ) parser.add_argument( "--canary-insert-test-acc", default=-1, type=int, help="In FLSim, inserts canary after model achieves given test acc, overrides canary-insert-epoch, canary-insert-global-round and canary-insert-train-acc", ) parser.add_argument( "--canary-insert-type", default="", type=str, help="Types: train (acc), test (acc)", ) parser.add_argument( "--canary-test-type", default="freeze", type=str, help="Takes values: 'freeze', 'train_and_freeze', 'continuous'", ) parser.add_argument( "--canary-insert-acc-threshold", default=-1, type=int, help="FLSim, Round or accuracy to design canary at and begin CANIFE attack", ) parser.add_argument( "--canary-insert-epsilon", default=-1, type=float, help="FLSim, train model to target epsilon before inserting canary, Default: -1 (disabled)", ) parser.add_argument( "--epsilon", default=-1, type=float, help="FLSim, will calibrate noise_multiplier to guarantee epsilon over fl-epochs Default -1 (disabled)", ) parser.add_argument( "--fl-server-lr", default=-1, type=float, help="FLSim server lr, Default: -1 (uses FLSim config default)", ) parser.add_argument( "--fl-client-lr", default=-1, type=float, help="FLSim client lr, Default: -1 (uses FLSim config default)", ) parser.add_argument( "--fl-dropout", default=0, type=float, help="FLSim, model dropout if using simpleconv, Default: 0 (no dropout)", ) parser.add_argument( "--fl-checkpoint-only", default=False, type=bool_flag, help="FLSim, Train until canary insertion, save checkpoint and then exit", ) parser.add_argument( "--fl-load-checkpoint", default=False, type=bool_flag, help="FLSim, Attempt to load the checkpoint of the experiments parameters if possible, otherwise train from scratch", ) parser.add_argument( "--fl-epochs", default=-1, type=int, help="FLSim number of epochs Default: -1 (uses FLSim config epochs)", ) parser.add_argument( "--local-batch-size", default="", type=str, help="FLSim, Local batch size of FLSim clients", ) parser.add_argument( "--override-noise-multiplier", default="False", type=bool_flag, help="FLSim, If True, will override noise multiplier with epsilon/sigma even when loading a DP checkpoint", ) def canary_args(parser): parser.add_argument( "--canary-normalize-optim-grad", default="True", type=bool_flag, help="Normalize grad", ) # Takes values: Random, Image, Text parser.add_argument( "--canary-init", default="random", type=str, help="CANIFE, Method for initialising the canary sample. Default: Randomly initialised (from token space or image space)", ) parser.add_argument( "--canary-epochs", default=5000, type=int, help="CANIFE, number of canary design iterations", ) parser.add_argument( "--canary-iters", default=1, type=int, help="How many times to repeat the canary experiment. Default: 1", ) parser.add_argument( "--canary-clip-const", default=1, type=float, help="CANIFE, Canary sample-grad clip factor. Only used for debugging.", ) # loss1 - Square dot product with batch mean # loss2 - Square dot product with per sample gradients parser.add_argument( "--canary-loss", default="loss2", type=str, help="CANIFE, Canary loss to use. Defaults to loss2 (First term of Eq1 in paper)", ) parser.add_argument( "--canary-norm-matching", default="True", type=bool_flag, help="CANIFE, If True, will optimise canary sample to have gradient matched to canary-norm-constant", ) parser.add_argument( "--canary-norm-loss", default="hinge_squared", type=str, help="For debugging: hinge vs hinge_squared", ) parser.add_argument( "--canary-norm-constant", default=1, type=int, help="CANIFE, If canary_norm_matching=True, will optimise canary to have norm >= canary-norm-consant", ) # sample_grads = Orthogonal to sample grads # model_updates = Orthogonal to model updates parser.add_argument( "--canary-design-type", default="model_updates", type=str, help="CANIFE, whether to design on clipped model updates or on clipped sample grads. Default: model_updates", ) # freeze / holdout # exact parser.add_argument( "--canary-setup", default="exact", type=str, help="CANIFE, Whether to form the design pool of mock clients from a holdout (test) set or 'exact' (design on current rounds clients)", ) parser.add_argument( "--canary-insert-epoch", default="1", type=str, help="FLSim, Epoch to design canary from and carry out CANIFE attack", ) parser.add_argument( "--canary-num-test-batches", default=50, type=int, help="Number of batches (from the training set) to test canary against", ) parser.add_argument( "--canary-design-sample-size", default="", type=str, help="CANIFE, Design pool sample size. If empty will be inferred from canary-design-minibatch-size", ) parser.add_argument( "--canary-design-pool-size", default="", type=str, help="CANIFE, Design pools size. If not empty and using model updates, will override sample size", ) parser.add_argument( "--canary-design-minibatch-size", default="", type=str, help="CANIFE, Design optimisation minibatch size. If empty will be set to canary_design_sample_size or users_per_round", ) parser.add_argument( "--benchmark-design", default="False", type=bool_flag, help="CANIFE, Whether to track canary design time or not. Default: False", ) parser.add_argument( "--scale-canary-test", default="False", type=bool_flag, help="CANIFE, Debugging" ) def parse_args(): parser = argparse.ArgumentParser(description="PyTorch CIFAR10 Mad Canaries") canary_args(parser) flsim_args(parser) parser.add_argument( "--task", default="FLSim", type=str, help="Task", ) parser.add_argument( "--model-arch", default="simpleconv", type=str, help="Model arch options: lstm, resnet, simpleconv, shakes_lstm", ) parser.add_argument( "--num-classes", default=10, type=int, help="", ) parser.add_argument( "--sigma", type=float, default=0, metavar="S", help="Noise multiplier for DP (default 0)", ) parser.add_argument( "--delta", type=float, default=1e-5, metavar="D", help="Target DP delta (default: 1e-5)", ) parser.add_argument( "--disable-dp", type=bool_flag, default=False, help="Not used in FLSim/CANIFE. Disable privacy training and just train with vanilla SGD.", ) parser.add_argument( "--skip-acc", type=bool_flag, default=False, help="If True, does not benchmark accuracy when loading a checkpointed model in central canary attack", ) parser.add_argument( "--checkpoint", type=bool_flag, default=True, help="Save checkpoints every checkpoint_round during training", ) parser.add_argument( "--checkpoint-path", type=str, default="./local_checkpoints", help="path of checkpoints (saving/loading)", ) parser.add_argument( "--plot-path", type=str, default="", help="Will output experiment results to DUMP_PATH/PLOT_PATH. Default: '' ", ) parser.add_argument( "--dump-path", type=str, default="./local_checkpoints", help="Output path of experiment run.", ) parser.add_argument( "--checkpoint-round", type=int, default=5, metavar="k", help="Not used. FLSim, Checkpoint every k rounds", ) parser.add_argument( "--dataset", type=str, default="CIFAR10", help="Options: CIFAR10, celeba, shakespeare, sent140", ) parser.add_argument( "--data-root", type=str, default="../cifar10", help="Location of LEAF datsets or CIFAR10", ) parser.add_argument( "--device", type=str, default="cpu", help="Device on which to run the code. Values: cpu or gpu" ) parser.add_argument( "--master-port", default=12568, type=str, help="Slurm master port", ) parser.add_argument( "--debug", type=int, default=0, help="debug level (default: 0)", ) parser.add_argument( "--prettify-samples", type=bool_flag, default="False", help="CANIFE, For debugging. Disables data augmentation + outputs canary samples", ) return parser.parse_args() def create_flsim_cfg(args, base_config="./FLSim/examples/configs/"): config_map = { "CIFAR10_True": "cifar10_resnet_canary_sample_level.json", "CIFAR10_False": "cifar10_resnet_canary_user_level.json", "celeba_True": "celeba_example.json", "celeba_False": "celeba_resnet_canary_user_level.json", "sent140_True": "sent140_config.json", "sent140_False": "sent140_canary_user_level.json", "femnist_False": "femnist_config.json", "shakespeare_False": "shakespeare_config.json" } config_key = f"{args.dataset}_{args.debug_config}" config_name = config_map.get(config_key, None) if config_name is None: raise Exception("No viable config provided") base_config += config_name with open(base_config, "r") as config_file: json_config = json.load(config_file) if args.dp_level == "server_level": json_config["config"]["trainer"]["server"]["privacy_setting"]["clipping_value"] = args.flsim_server_clip_const cfg = fl_config_from_json(json_config["config"]) if args.canary_insert_type != "": if args.canary_insert_type == "train": args.canary_insert_train_acc = args.canary_insert_acc_threshold elif args.canary_insert_type == "test": args.canary_insert_test_acc = args.canary_insert_acc_threshold if args.canary_insert_batch_index == "batch": args.insert_canary_as_batch = True else: args.canary_insert_batch_index = int(args.canary_insert_batch_index) # Data args if args.local_batch_size != "": cfg["data"]["local_batch_size"] = int(args.local_batch_size) if args.dataset == "CIFAR10": cfg["data"]["examples_per_user"] = max(args.local_batch_size, 1)*max(args.num_local_updates,1) cfg["data"]["data_root"] = args.data_root cfg["data"]["canary_iters"] = args.canary_iters cfg["data"]["debug_config"] = args.debug_config # Model args cfg["model"]["model_arch"] = args.model_arch cfg["model"]["dropout"] = args.fl_dropout # Trainer args cfg["trainer"]["checkpoint_only"] = args.fl_checkpoint_only cfg["trainer"]["load_checkpoint"] = args.fl_load_checkpoint if not args.debug_config: args.canary_insert_epoch = int(args.canary_insert_epoch) dict_args = copy.deepcopy(vars(args)) cfg["trainer"]["users_per_round"] = args.users_per_round cfg["trainer"]["args"] = dict_args cfg["trainer"]["client"]["epochs"] = args.client_epochs if args.fl_server_lr != -1: cfg["trainer"]["server"]["server_optimizer"]["lr"] = args.fl_server_lr if args.fl_client_lr != -1: cfg["trainer"]["client"]["optimizer"]["lr"] = args.fl_client_lr if "privacy_setting" in cfg["trainer"]["server"]: cfg["trainer"]["server"]["privacy_setting"]["clipping_value"] = args.server_clip_const cfg["trainer"]["server"]["privacy_setting"]["target_delta"] = args.delta cfg["trainer"]["server"]["privacy_setting"]["noise_multiplier"] = args.sigma if args.fl_epochs != -1: cfg["trainer"]["epochs"] = args.fl_epochs if args.canary_test_type == "train_and_freeze" and args.epsilon > 0: cfg["trainer"]["always_keep_trained_model"] = True return cfg
canife-main
arg_handler.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import logging import sys import matplotlib.pyplot as plt sys.path.append("./FLSim") from arg_handler import create_flsim_cfg, parse_args from FLSim.examples.canary_example import run from FLSim.flsim.common.logger import Logger plt.rcParams.update({ # "text.usetex": True, "font.family": "sans-serif", "font.sans-serif": ["Helvetica"]}) logging.basicConfig( format="%(asctime)s:%(levelname)s:%(message)s", datefmt="%m/%d/%Y %H:%M:%S", stream=sys.stdout, ) logger = logging.getLogger("ddp") logger.setLevel(level=logging.INFO) num_class_map = {"CIFAR10": 10, "imagenet": 1000, "sent140": 2, "femnist": 62, "celeba": 2, "shakespeare": 80} # ----------------- Args + Main ----------------- if __name__ == "__main__": args = parse_args() if not args.debug_config: args.canary_design_minibatch_size = int(args.users_per_round) if args.canary_design_minibatch_size == "num_users" else args.canary_design_minibatch_size args.canary_design_pool_size = int(args.users_per_round) if args.canary_design_pool_size == "num_users" else args.canary_design_pool_size if args.canary_design_type == "sample_grads": # Defaults for sample grads if args.canary_design_pool_size != "": # Design pool size overrides design sample size args.canary_design_sample_size = args.canary_design_pool_size else: args.canary_design_sample_size = 32 if args.canary_design_minibatch_size == "" else args.canary_design_minibatch_size args.canary_design_pool_size = args.canary_design_sample_size args.canary_design_minibatch_size = args.canary_design_sample_size if args.canary_design_minibatch_size == "" else args.canary_design_minibatch_size args.local_batch_size = 128 if args.local_batch_size == "" else args.local_batch_size else: # Defaults for model_updates args.local_batch_size = 128 if args.local_batch_size == "" else args.local_batch_size if args.canary_design_minibatch_size == "": args.canary_design_minibatch_size = int(args.users_per_round) if args.canary_design_type == "model_updates" else int(args.local_batch_size) args.canary_design_sample_size = int(args.local_batch_size) * abs(args.num_local_updates) * int(args.canary_design_minibatch_size) if args.canary_design_sample_size == "" else args.canary_design_sample_size if args.canary_design_pool_size != "": args.canary_design_sample_size = int(args.canary_design_pool_size) * abs(args.num_local_updates) * int(args.local_batch_size) args.canary_design_sample_size = int(args.canary_design_sample_size) args.canary_design_minibatch_size = int(args.canary_design_minibatch_size) args.local_batch_size = int(args.local_batch_size) args.canary_design_pool_size = int(args.canary_design_pool_size) if args.canary_design_pool_size != "" else -1 args.num_classes = num_class_map[args.dataset] if args.task == "FLSim": # Run FLSim with a canary attack # Load config and run flsim if args.debug == 1: Logger.set_logging_level(logging.DEBUG) cfg = create_flsim_cfg(args) print(args.dataset) run(cfg)
canife-main
launcher.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. class Canary(): def __init__(self, data, init_data, class_label, init_loss=0, init_grad=None, canary_grad=None, final_loss=0, health=0) -> None: """Canary class Args: data: Tensor of final optimised canary init_data: Tensor of initial canary (before optimisation) class_label: Canary class init_loss (int, optional): Initial canary loss. Defaults to 0. init_grad (tensor, optional): Initial canary gradient. Defaults to None. canary_grad (tensor, optional): Final canary gradient. Defaults to None. final_loss (int, optional): Final loss after optimisation. Defaults to 0. health (int, optional): Canary health between 0-1. Defaults to 0. """ self.data = data self.init_data = init_data self.final_loss = final_loss self.init_loss = init_loss self.class_label = class_label self.health = health self.grad = canary_grad self.init_grad = init_grad self.health = health
canife-main
canife/canary.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. # flake8: noqa from .canary import Canary from .canary_analyser import CanaryAnalyser from .canary_designer import CanaryDesigner from .canary_designer_nlp import CanaryDesignerNLP
canife-main
canife/__init__.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import copy import random from collections import defaultdict from timeit import default_timer as timer import numpy as np import torch import torch.autograd as autograd import torch.optim as optim from hydra.utils import instantiate from canife import Canary from canife.utils import ( clip_grad, compute_batch_grad, compute_local_update, compute_sample_grads, count_params, display_gpu_mem, ) class CanaryDesigner(): def __init__(self, grad_sample_module, canary_class=None, canary_loss="loss1", canary_norm_loss="hinge_squared", canary_design_type="sample_grads", canary_epochs=1000, canary_init="random", canary_preprocess=None, canary_clip_const=1, local_batch_size=128, canary_insert_batch_index=0, canary_design_local_models=False, server_clip_const=1, client_lr=1, num_classes=10, logger=None, local_updates=1, local_epochs=1, optimizer_config=None, dp_level="sample_level", gpu_mem_minimiser=False, canary_norm_matching=False, canary_norm_constant=50, canary_normalize_optim_grad=True, in_channels=3, image_size=32, benchmark_design=False, **kwargs) -> None: self.canary_init = canary_init self.canary_loss = canary_loss self.canary_norm_loss = canary_norm_loss self.canary_norm_matching = canary_norm_matching self.canary_norm_constant = canary_norm_constant self.canary_normalize_optim_grad = canary_normalize_optim_grad self.canary_design_type = canary_design_type self.canary_class = canary_class self.canary_epochs = canary_epochs self.canary_clip_const = canary_clip_const self.canary_preprocess = canary_preprocess self.local_batch_size = local_batch_size self.canary_insert_batch_index = canary_insert_batch_index self.canary_design_local_models = canary_design_local_models self.canary_design_bias = 0 self.canary_losses = canary_loss self.canary_type = "image" self.local_updates = local_updates self.local_epochs = local_epochs self.server_clip_const = server_clip_const self.client_lr = client_lr self.dp_level = dp_level self.num_classes = num_classes self.gpu_mem_minimiser = gpu_mem_minimiser self.logger = logger self.grad_sample_module = grad_sample_module self.optimizer_config = optimizer_config self.in_channels = in_channels self.image_size = image_size self.benchmark_design = benchmark_design self.benchmark_times = [] # If user-level, design canary on unclipped gradients if self.dp_level == "user_level": self.canary_clip_const = float('inf') def get_analyser_args(self): """Returns attributes of CanaryDesigner which can be used to populate args when creating a CanaryAnalyser Returns: dict: attributes of CanaryDesigner """ return self.__dict__ def set_grad_sample_module(self, grad_sample_module): """ Args: grad_sample_module (GradSampleModule): GradSampleModule to be used to compute per-sample gradients when designing the canary """ self.grad_sample_module = grad_sample_module def _compute_clipped_grad(self, model, criterion, batch, device="cpu"): """Computes the clipped gradients of a batch Args: model: nn.Module to compute clipped grad criterion: Loss function batch: Batch to compute gradients from device (optional): Torch device. Defaults to "cpu". Returns: Clipped gradient of batch """ grad = compute_batch_grad(model, criterion, batch, device=device) # clip canary grad return clip_grad(grad, self.canary_clip_const) def _init_canary(self, canary_design_loader): """Initialises canary Args: canary_design_loader: Canary design pool, required for image initialisation Returns: canary: Canary as a tensor """ if self.canary_init == "random": canary = torch.rand(size=(1,self.in_channels,self.image_size,self.image_size)) canary = canary if self.canary_preprocess is None else self.canary_preprocess(canary) self.canary_class = random.randint(0, self.num_classes-1) else: if self.canary_design_type == "sample_grads": # The specific shapes of design loaders depends on sample_grads vs model_updates canary = next(iter(canary_design_loader))[0][0].clone().view(1,self.in_channels,self.image_size,self.image_size) self.canary_class = next(iter(canary_design_loader))[1][0].clone().item() else: canary = next(iter(canary_design_loader))[0][0][0].clone().view(1,self.in_channels,self.image_size,self.image_size) self.canary_class = next(iter(canary_design_loader))[0][1][0].clone().item() return canary.clone() def _compute_local_update(self, model, criterion, local_batches, device): """Computes a model update from a mock client who has local_batches Args: model: nn.Module criterion: Loss function local_batches: Clients local batches device: torch device Returns: model_update: An unscaled model update (clipped and then scaled by 1/lr * expected batch size) """ initial_model_state = copy.deepcopy(model.state_dict()) model_optimizer = instantiate(self.optimizer_config, model=model) local_model_state, local_model_before_insert, _ = compute_local_update(model, criterion, model_optimizer, local_batches, expected_batch_size=self.local_batch_size, local_epochs=self.local_epochs, reverse_batch_scaling=False, device=device) # Difference original and local model local_update = torch.tensor([]).to(device) for name, param in model.named_parameters(): if param.requires_grad: local_update = torch.cat([local_update, (initial_model_state[name].data-local_model_state[name].data).flatten().detach().clone()]) model.load_state_dict(initial_model_state) # Revert changes made by multiple local updates self.logger.debug(f"Mock client local update {local_update}, server clip const {self.server_clip_const}") # (1/lr)*B*clip(local update) # return (1/self.client_lr)*self.local_batch_size*clip_grad(local_update.cpu(), self.server_clip_const), local_model_before_insert return clip_grad(local_update.cpu(), self.server_clip_const), local_model_before_insert def _compute_aggregated_design_vectors(self, model, grad_dim, canary_design_loader, criterion, device): """Computes aggregated design vectors to craft canary on Args: model: nn.Module grad_dim: Gradient dimension of model canary_design_loader: Design loader criterion: Loss function device: torch device Returns: aggregated_design_vec: Either the aggregated sum of per-sample-gradients (if canary_design_type == sample_grads) or aggregated model updates (if canary_design_type == model_updates) batch_design_vecs: Individual per-sample gradients or individual model updates from mock design clients local_model_states: The final states of local models if canary_design_type=="model_updates" """ aggregated_design_vec = torch.zeros(size=(grad_dim,)) batch_design_vecs = torch.tensor([]) local_model_states = [] if self.canary_design_type == "sample_grads": batch_design_vecs = torch.zeros((grad_dim, )) elif self.canary_design_type == "model_updates": batch_design_vecs = torch.zeros((len(canary_design_loader), grad_dim)) self.logger.info(" Computing sample grads/model updates from canary design pool...") for i, design_batch in enumerate(canary_design_loader): if i % 10 == 0: self.logger.debug(f" Computing sample grads/model updates of canary design batch={i+1}") if self.canary_design_type == "model_updates": # Scaled and clipped model updates local_update, before_insert_model_state, = self._compute_local_update(model, criterion, design_batch, device) # The design batch is a mock client's local daata batch_design_vecs[i] = local_update aggregated_design_vec += local_update local_model_states.append(before_insert_model_state) self.logger.debug(f"Mock client {i} scaled local update {local_update}") if i == 0: self.logger.info(f"Local design updates are scaled by B={self.local_batch_size}, lr={self.client_lr}, clip const={self.server_clip_const}") elif self.canary_design_type == "gradient_pool": global_state = copy.deepcopy(self.grad_sample_module.state_dict()) model_optimizer = instantiate(self.optimizer_config, model=self.grad_sample_module) _, _, local_step_sample_grads = compute_local_update(self.grad_sample_module, criterion, model_optimizer, design_batch, device=device, compute_sample_grads=True) self.grad_sample_module.load_state_dict(global_state) # Revert changes made by multiple local updates batch_design_vecs = torch.cat([batch_design_vecs, local_step_sample_grads], dim=0) aggregated_design_vec += local_step_sample_grads.sum(axis=0) else: batch_design_vecs, _ = compute_sample_grads(self.grad_sample_module, criterion, design_batch, device=device, clipping_const=self.canary_clip_const) aggregated_design_vec += batch_design_vecs.sum(axis=0) return aggregated_design_vec, batch_design_vecs, local_model_states # Will be overriden for NLP def _init_canary_optimisation(self, canary_design_loader, device): """Initialises canaries for optimisation Args: canary_design_loader: Design pool device: Torch device Returns: init_canary: Initial Canary for metrics canary: Tensor canary to optimise canary_class: Tensor class of canary canary_optimizer: Optimizer over canary """ init_canary = self._init_canary(canary_design_loader) canary = init_canary.clone().to(device) # Clone because we keep the initial canary for statistics canary.requires_grad = True canary_class = torch.tensor([self.canary_class]).to(device) base_lr = 1 canary_optimizer = optim.Adam([canary], lr=base_lr) return init_canary, canary, canary_class, canary_optimizer # Will be overriden for NLP def _forward_pass_canary(self, model, canary): """Runs a forward pass on a canary given a model Args: model: nn.Module canary: canary tensor Returns: output: Output of model(canary) """ model.train() model.zero_grad() output = model(canary) return output # Will be overriden for NLP def _post_process_canary(self, model, criterion, canary, canary_class, device="cpu"): """Computes final gradient from the canary Args: model: nn.Module criterion: Loss function canary: tensor canary_class: tensor device (optional): torch device, defaults to "cpu". Returns: canary: Final canary after post-processsing canary_grad: Final canary gradient """ canary_grad = self._compute_clipped_grad(model, criterion, [canary, canary_class], device=device).detach().cpu() return canary, canary_grad def _optimise(self, model, criterion, canary_design_loader, device="cpu"): """ Optimise over model and design loader to craft a canary Args: model: nn.Module criterion: Loss function canary_design_loader: DataLoader or list of tensors that mimics the batch structure of a DataLoader device (str, optional): Torch device, defaults to "cpu". Returns: canary: Canary object """ display_gpu_mem(prefix="Start of optim", device=device, logger=self.logger) init_canary, canary, canary_class, canary_optimizer = self._init_canary_optimisation(canary_design_loader, device) model = model.to(device) model.zero_grad() # Init optim grad_dim = count_params(model) self.logger.info(f" Grad Dim {grad_dim}") canary_loss = torch.tensor(float("inf")) initial_model_state = copy.deepcopy(model.state_dict()) local_model_states = [] t, initial_canary_loss = 0,0 optim_stats = defaultdict(list) best_canary = [float("inf"), None, 0] optim_improving = True aggregated_design_vec = torch.tensor([]) x_grad_norm = 0 display_gpu_mem(prefix="After moving model", device=device, logger=self.logger) # Compute the aggregated (sum or mean) grads of the canary design set and batch sample grads (if it fits into memory) if self.canary_loss == "loss1" or self.canary_design_sample_size <= self.canary_design_minibatch_size or self.canary_design_type != "sample_grads": aggregated_design_vec, batch_design_vecs, local_model_states = self._compute_aggregated_design_vectors(model, grad_dim, canary_design_loader, criterion, device) display_gpu_mem(prefix="After grad sample comp", device=device, logger=self.logger) self.logger.info("\n ===== Beginning canary optimization... =====") self.logger.info(f"Canary optimizer {canary_optimizer}") if self.canary_loss != "loss1" and (self.canary_design_sample_size <= self.canary_design_minibatch_size or self.canary_design_type != "sample_grads"): # i.e no minibatches target = batch_design_vecs # loss2 when sample grads fit into memory or when designing against model updates gradient_norms = torch.norm(target, dim=1) self.logger.info(f"Design norms {gradient_norms}") # Model updates or sample gradients self.logger.info(f"Average design norm {torch.mean(gradient_norms)}") else: target = aggregated_design_vec # loss1, optimisation target is the aggregated gradients or model updates display_gpu_mem(prefix="After target comp", device=device, logger=self.logger) parameters = [] for p in model.parameters(): if p.requires_grad: parameters.append(p) loss1_target = target.to(device) epoch_target = loss1_target self.logger.debug(f"Pre-optim model arch {model}, {sum([p.flatten().sum() for p in model.parameters()])}") display_gpu_mem(prefix="Target moved to gpu", device=device, logger=self.logger) # grad_dim = 1 model.zero_grad() while (t<=self.canary_epochs) and optim_improving: t+= 1 if (t+1) % 100 == 0: loss_mean = np.mean(optim_stats["canary_loss"][-100:]) self.logger.info(f" Canary optimisation, epoch={t}, initial loss={initial_canary_loss.item()}, average loss (last 100 iters)={loss_mean}, last loss={canary_loss.item()}") self.logger.debug(f" Canary grad (w.r.t canary loss) t={t}, {x_grad_norm}") if self.benchmark_design: start = timer() # Calculate loss of canary canary_optimizer.zero_grad() if (t+1) % 100 == 0 or t==1: display_gpu_mem(prefix=f"Start of optim t={t}", device=device, logger=self.logger) if len(local_model_states) > 0 and self.canary_insert_batch_index == -1 and self.canary_design_local_models: model.load_state_dict(local_model_states[random.randint(0, len(local_model_states)-1)]) # Randomly sample a local model to compute canary grad from if self.canary_loss == "loss2" and self.canary_design_sample_size > self.canary_design_minibatch_size or self.canary_loss == "loss_both": # minibatching if self.canary_design_type == "sample_grads": # Minibatch sample grads design_batch = next(iter(canary_design_loader)) epoch_target, _ = compute_sample_grads(self.grad_sample_module, criterion, design_batch, device, move_grads_to_cpu=False, clipping_const=self.canary_clip_const) else: # Minibatch model updates idx = torch.ones(target.shape[0]).multinomial(num_samples=self.canary_design_minibatch_size, replacement=False).to(device) epoch_target = target[idx] if (t+1) % 100 == 0 or t==1: display_gpu_mem(prefix=f"Minibatch optim t={t}", device=device, logger=self.logger) output = self._forward_pass_canary(model, canary) loss = criterion(output, canary_class) self.logger.debug(f"Model canary {canary}, norm={torch.norm(canary)}") self.logger.debug(f"Model output {output}") self.logger.debug(f" Model loss t={t}, {loss}") canary_loss = torch.zeros(1, requires_grad=True).to(device) # hvp grad_f = autograd.grad(loss, parameters, create_graph=True, retain_graph=True) grad_f = torch.cat([g.flatten() for g in grad_f]) self.logger.debug(f" Autograd grad_f t={t}, {grad_f}\n") self.logger.debug(f" Sum grad_f t={t}, {torch.sum(grad_f)}\n") temp_grad = grad_f.clone().detach().cpu() # Norm loss if self.canary_norm_matching and self.canary_norm_constant-torch.norm(grad_f) > 0: if self.canary_norm_loss == "hinge_squared": canary_loss = canary_loss + grad_dim*((self.canary_norm_constant-torch.norm(grad_f)))**2 else: canary_loss = canary_loss + grad_dim*((self.canary_norm_constant-torch.norm(grad_f))) # Normalise canary grad if self.canary_normalize_optim_grad: grad_f = torch.nn.functional.normalize(grad_f, dim=0)*self.server_clip_const canary_loss = canary_loss + (grad_dim*(torch.sum(grad_f.view(1,-1) * epoch_target, dim=(1))**2).sum()/epoch_target.shape[0]) # Loss 1/2 term if self.canary_loss == "loss_both": canary_loss += (grad_dim*(torch.sum(grad_f.view(1,-1) * loss1_target, dim=(1))**2).sum()/loss1_target.shape[0]) self.logger.debug(f" Canary loss t={t}, {canary_loss}\n") canary_loss.backward() canary_loss = canary_loss.detach().cpu() initial_canary_loss = canary_loss if t==1 else initial_canary_loss optim_stats["canary_loss"].append(canary_loss.item()) optim_stats["canary_norm"].append(torch.norm(temp_grad).norm().item()) x_grad_norm = torch.norm(canary.grad.detach()).cpu() if (t+1) % 100 == 0 or t==1: display_gpu_mem(prefix=f"Pre-end of optim t={t}", device=device, logger=self.logger) if t < self.canary_epochs: canary_optimizer.step() model.zero_grad() # if canary_loss < best_canary[0]: if True and t == self.canary_epochs: best_canary = [canary_loss.detach().cpu(), canary.detach().clone().cpu(), t] if (t+1) % 100 == 0 or t==1: display_gpu_mem(prefix=f"End of optim t={t}", device=device, logger=self.logger) if self.benchmark_design: end = timer() self.benchmark_times.append(end-start) best_canary_loss, canary, best_t = best_canary # Computes grad of canary from the model # For NLP this will sample the canary and compute the exact gradient canary, canary_grad = self._post_process_canary(model, criterion, canary, canary_class, device=device) init_canary, init_canary_grad = self._post_process_canary(model, criterion, init_canary, canary_class, device=device) self.logger.debug(f"Clipped gradient computed {torch.sum(canary_grad)}, {canary_grad}") self.logger.info(f" Grad Descent for canary...t={t}") self.logger.info(f" Best canary at t={best_t}, {best_canary_loss}") canary_health = ((initial_canary_loss-best_canary_loss) / initial_canary_loss).item() self.logger.info(f" Canary Norm {torch.norm(canary_grad).item()}") self.logger.info(f" Canary Health {canary_health}") if self.canary_loss == "loss1" or self.canary_design_sample_size <= self.canary_design_minibatch_size or self.canary_design_type == "model_updates": aggregated_design_vec = aggregated_design_vec/self.canary_design_pool_size self.canary_design_bias = -torch.dot(canary_grad/torch.norm(canary_grad), aggregated_design_vec).cpu().detach().item() self.logger.info(f"Canary grad {canary_grad}") self.logger.info(f"Canary grad normalised {canary_grad/torch.norm(canary_grad)}") self.logger.info(f"Dot Product <Canary/||grad(can)||, S> {-self.canary_design_bias}") self.logger.info(f"Dot Product <Canary/||grad(can)||, S+canary> {torch.dot(canary_grad/torch.norm(canary_grad), aggregated_design_vec + (canary_grad/torch.norm(canary_grad))).cpu().detach().item()}") self.logger.info(f"Canary batch gradients {aggregated_design_vec + canary_grad/torch.norm(canary_grad)}") self.logger.info(f" x.grad Norm {x_grad_norm}\n\n") self.canary_losses = optim_stats["canary_loss"] self.canary_norms = optim_stats["canary_norm"] model.load_state_dict(initial_model_state) return Canary(canary, init_canary, canary_class.item(), init_loss=initial_canary_loss.item(), init_grad=init_canary_grad, final_loss=best_canary_loss.item(), canary_grad=canary_grad, health=canary_health) def _update_design_params(self, canary_design_loader, clients_per_round, design_minibatch_size=None, varying_local_batches=False): """Updates relevant design params (canary_design_sample_size, canary_design_pool_size, canary_design_minibatch_size) will infer this from the canary_design_loader and other provided args Args: canary_design_loader: Design loader design_minibatch_size (optional): To override inferred minibatch size. Defaults to None which sets design_minibatch_size to num_local_updates varying_local_batches (bool): If True then clients have varying batch sizes. Defaults to False. """ example_design_batch = next(iter(canary_design_loader))[0] if self.canary_design_type == "sample_grads" else canary_design_loader[0] # Either a batch of sample gradients or a mock client num_local_updates = -1 if self.canary_design_type == "sample_grads": self.canary_design_minibatch_size = example_design_batch.shape[0] self.local_batch_size = self.canary_design_minibatch_size self.canary_design_sample_size = len(canary_design_loader) * self.canary_design_minibatch_size self.canary_design_pool_size = self.canary_design_sample_size else: if not varying_local_batches: self.local_batch_size = example_design_batch[0][0].shape[0] num_local_updates = len(example_design_batch) self.canary_design_minibatch_size = design_minibatch_size if design_minibatch_size else clients_per_round self.canary_design_sample_size = sum([sum([batch[0].shape[0] for batch in mock_client]) for mock_client in canary_design_loader]) self.canary_design_pool_size = len(canary_design_loader) if self.canary_design_type == "gradient_pool": self.canary_design_pool_size = self.canary_design_sample_size if self.canary_design_type == "model_updates" and self.canary_design_minibatch_size > self.canary_design_pool_size: self.canary_design_minibatch_size = self.canary_design_pool_size self.logger.info(f"Designer inferred design sample size={self.canary_design_sample_size}, design pool={self.canary_design_pool_size}, minibatch size={self.canary_design_minibatch_size}, local updates={num_local_updates}, local client batch size={self.local_batch_size}") def design(self, model, criterion, canary_design_loader, clients_per_round=100, varying_local_batches=False, canary_design_minibatch_size=None, device="cpu"): """Designs a canary from a given model and design pool (canary_design_loader) Args: model: nn.Module criterion: Loss function canary_design_loader: Design loader varying_local_batches (bool, optional): If True, design clients contain varying batch sizes. Defaults to False. canary_design_minibatch_size (optional): Minibatch size for designing. Defaults to None. device (optional): Torch device to design on, defaults to "cpu". Returns: canary: Canary object """ assert self.grad_sample_module is not None, "Must set_grad_sample_module before designing a canary" display_gpu_mem(prefix="Start of design", device=device, logger=self.logger) # For debugging self.grad_sample_module.to(device) display_gpu_mem(prefix="Grad sample module moved", device=device, logger=self.logger) # For debugging self.logger.debug(f"Design model arch {model}, {sum([p.flatten().sum() for p in model.parameters()])}") # Infer design parameters such as the design pool + sample size from the canary_design_loader self._update_design_params(canary_design_loader, clients_per_round, design_minibatch_size=canary_design_minibatch_size, varying_local_batches=varying_local_batches) # Optimise and find canary canary = self._optimise(model, criterion, canary_design_loader, device) # To avoid GPU mem issues with FLSim if using GPUMemoryMinimiser if self.gpu_mem_minimiser: self.grad_sample_module.to("cpu") model.to("cpu") return canary
canife-main
canife/canary_designer.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import copy import itertools import re import string import unicodedata from typing import List import torch # Sent140 character embeddings class TextProcessorSent140(): def __init__(self): self.all_letters = {c: i for i, c in enumerate(string.printable)} self.reverse_map_all_letters = {i: c for i, c in enumerate(string.printable)} self.num_letters = len(self.all_letters) self.vocab_size = self.num_letters+1 self.UNK: int = self.num_letters def unicodeToAscii(self, s): return "".join( c for c in unicodedata.normalize("NFD", s) if unicodedata.category(c) != "Mn" and c in self.all_letters ) def split_line(self, line): """split given line/phrase into list of words Args: line: string representing phrase to be split Return: list of strings, with each string representing a word """ return re.findall(r"[\w']+|[.,!?;]", line) def flatten_list(self, nested_list): return list(itertools.chain.from_iterable(nested_list)) def line_to_indices(self, line: str, max_seq_len: int): line_list = self.split_line(line) # split phrase in words line_list = line_list chars = self.flatten_list([list(word) for word in line_list]) # padding indices: List[int] = [ self.all_letters.get(letter, self.UNK) for i, letter in enumerate(chars) if i < max_seq_len ] indices = indices + ([self.UNK] * (max_seq_len - len(indices))) return indices # Assume input is a tensor of indices def index_sequence_to_text(self, indices): line = "" for i in indices: line += self.reverse_map_all_letters.get(i.item(), "�") return line def text_to_index_sequence(self, text): return torch.tensor([self.all_letters.get(c, self.UNK) for c in text]) # Preprocessing for Shakespeare class TextProcessorShakes(): def __init__(self) -> None: self.all_letters = ( "\n !\"&'(),-.0123456789:;>?ABCDEFGHIJKLMNOPQRSTUVWXYZ[]abcdefghijklmnopqrstuvwxyz}" ) self.vocab_size = len(self.all_letters) def word_to_indices(self, word): """returns a list of character indices Args: word: string Return: indices: int list with length len(word) """ indices = [] for c in word: indices.append(self.all_letters.find(c)) return indices def index_sequence_to_text(self, indices): line = "" for i in indices: line += self.all_letters[i] return line def _one_hot(self, index, size): """returns one-hot vector with given size and value 1 at given index""" vec = [0 for _ in range(size)] vec[int(index)] = 1 return vec def letter_to_vec(self, letter): """returns one-hot representation of given letter""" index = self.all_letters.find(letter) return index # _one_hot(index, NUM_LETTERS) def get_plot_path(args, exp_num=1, file_suffix=".png"): plot_name = args.model_arch + "_" + args.canary_loss + "_B=" + str(args.local_batch_size) if args.canary_setup == "holdout": plot_name += "_CanaryDesign=" + str(args.canary_design_sample_size) + "_" + str(args.canary_design_minibatch_size) plot_name += "_" + args.canary_setup + "_checkpoint_epoch=" + str(args.canary_insert_epoch) + "_iter=" + str(exp_num) plot_path = args.dump_path + args.plot_path + "/" + plot_name + file_suffix return plot_path def state_dict_to_cpu(state_dict): """Moves a state dict from GPU to CPU Args: state_dict: model state dict (on GPU) Returns: state_dict: model state dict (on CPU) """ for k,v in state_dict.items(): state_dict[k] = v.detach().clone().cpu() return state_dict def display_gpu_mem(device, logger=None, prefix=""): """Debug function - displays device GPU memory statistics Args: device: GPU device logger (_type_, optional): Optional logger. Defaults to None. prefix (str, optional): Add prefix to debug output. Defaults to "". """ if str(device) != "cpu": mem = torch.cuda.mem_get_info(device=device) if logger is None: print(prefix, torch.cuda.mem_get_info(device=device)) else: logger.debug(f"{prefix} {mem} {round((mem[1] - mem[0]) / 1024**3, 4)}Gb used") def count_params(model): """Counts number of parameters (that require grad) in a model Args: model: Model to count params Returns: Total number of parameters (that require grad) """ return sum(p.numel() for p in model.parameters() if p.requires_grad) def clip_grad(grad, clip_const=1): """Clip gradient Args: grad (tensor): Gradient to clip clip_const (int, optional): Clipping constant. Defaults to 1. Returns: Clipped gradient tensor """ if torch.norm(grad) > clip_const: grad = grad*clip_const / torch.norm(grad) return grad def compute_batch_grad(model, criterion, batch, device="cpu"): """Computes average gradients of a batch Args: model: nn.Module criterion: Loss function batch: Batch to compute average gradients device (str, optional): Torch device. Defaults to "cpu". Returns: Batch gradients, moved to cpu """ model.to(device) model.zero_grad() img = batch[0].to(device) target = batch[1].to(device) outputs = model(img) batch_losses = criterion(outputs, target) batch_losses.backward() batch_grads = torch.tensor([]).to(device) for p in model.parameters(): if p.requires_grad: batch_grads = torch.cat([batch_grads, p.grad.detach().clone().flatten()]) model.zero_grad() return batch_grads.cpu() def compute_sample_grads(grad_sample_module, criterion, batch, device="cpu", move_grads_to_cpu=True, clipping=True, clipping_const=1): """Computes per-sample gradients given a GSM and a batch Args: grad_sample_module: GradSampleModule criterion: Loss function batch: Batch to compute per-sample grads of device (str, optional): Defaults to "cpu". move_grads_to_cpu (bool, optional): If True will move all sample grads to cpu. Defaults to True. clipping (bool, optional): Whether to clip per-sample-gradients. Defaults to True. clipping_const (int, optional): Clipping const. Defaults to 1. Returns: batch_grads: Per-sample gradients of batch clip_count: Number of per-sample gradients that were clipped """ grad_sample_module.to(device) grad_sample_module.zero_grad() img = batch[0].to(device) target = batch[1].to(device) outputs = grad_sample_module(img) batch_losses = criterion(outputs, target) batch_losses.backward() batch_grads = torch.hstack([p.grad_sample.detach().clone().view(img.shape[0], -1) for p in grad_sample_module.parameters()]) clip_count = 0 if clipping: for i, grad in enumerate(batch_grads): grad_norm = torch.norm(grad) if grad_norm > clipping_const: clip_count += 1 batch_grads[i] = batch_grads[i]*clipping_const / grad_norm # Calling zero-grad of GradSampleModule without DPOptimizer doesn't remove sample grads (?) grad_sample_module.zero_grad() for p in grad_sample_module.parameters(): p.grad_sample = None if move_grads_to_cpu: return batch_grads.cpu(), clip_count else: return batch_grads, clip_count def compute_local_update(model, criterion, optimizer, batches, reverse_batch_scaling=True, expected_batch_size=1, compute_sample_grads=False, local_epochs=1, device="cpu"): """Computes a model update given a set of local batches Args: model: nn.Module criterion: Loss function optimizer: Model optimizer batches: Mock client local batches reverse_batch_scaling (bool, optional): Reverse 1/B averaging, multiplies gradients by B/expected B. Defaults to True. expected_batch_size (int, optional): The expected batch size. Defaults to 1. compute_sample_grads (bool, optional): Whether to also compute per-sample gradients. If True expects model to be a GSM. Defaults to False. local_epochs (int, optional): Number of local epochs to perform. Defaults to 1. device (str, optional): Defaults to "cpu". Returns: local_model_state: The model state dict after the local training. Can be used to compute a model update by differencing with global model. local_model_before_insert: Local model at step n-1 where n is the number of local batches sample_grads: The per-sample grads, defaults to empty tensor is compute_sample_grads=False """ model.to(device) sample_grads = torch.tensor([]) local_model_before_insert = None for epochs in range(local_epochs): for i, batch in enumerate(batches): img, target = batch model.zero_grad() if i == len(batches)-1: local_model_before_insert = state_dict_to_cpu(copy.deepcopy(model.state_dict())) img = img.to(device) target = target.to(device) outputs = model(img) batch_losses = criterion(outputs, target) batch_losses.backward() if reverse_batch_scaling: for p in model.parameters(): p.grad *= (img.shape[0]/expected_batch_size) if compute_sample_grads: sample_grads = torch.cat((sample_grads, torch.hstack([p.grad_sample.clone().cpu().view(img.shape[0], -1) for p in model.parameters()])), dim=0) optimizer.step() model.zero_grad() return model.state_dict(), local_model_before_insert, sample_grads
canife-main
canife/utils.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import random import matplotlib.pyplot as plt import numpy as np import seaborn as sns import torch import torch.nn.functional as F from canife import CanaryDesigner from canife.utils import TextProcessorSent140, TextProcessorShakes class CanaryDesignerNLP(CanaryDesigner): def __init__(self, grad_sample_module, canary_class=None, canary_loss="loss1", canary_norm_loss="hinge_squared", canary_design_type="sample_grads", canary_epochs=1000, canary_init="random", canary_preprocess=None, canary_clip_const=1, local_batch_size=128, canary_insert_batch_index=0, canary_design_local_models=False, server_clip_const=1, client_lr=1, num_classes=10, logger=None, local_updates=1, local_epochs=1, optimizer_config=None, dp_level="sample_level", gpu_mem_minimiser=False, canary_norm_matching=False, canary_norm_constant=50, canary_normalize_optim_grad=True, benchmark_design=False, **kwargs) -> None: super().__init__(grad_sample_module=grad_sample_module, canary_class=canary_class, canary_loss=canary_loss, canary_norm_loss=canary_norm_loss, canary_design_type=canary_design_type, canary_epochs=canary_epochs, canary_init=canary_init, canary_preprocess=canary_preprocess, canary_clip_const=canary_clip_const, local_batch_size=local_batch_size, canary_insert_batch_index=canary_insert_batch_index, canary_design_local_models=canary_design_local_models, server_clip_const=server_clip_const, client_lr=client_lr, num_classes = num_classes, logger=logger, local_updates=local_updates, local_epochs=local_epochs, optimizer_config=optimizer_config, dp_level=dp_level, gpu_mem_minimiser=gpu_mem_minimiser, canary_norm_matching=canary_norm_matching, canary_norm_constant=canary_norm_constant, canary_normalize_optim_grad=canary_normalize_optim_grad, benchmark_design=benchmark_design, **kwargs) self.text_processor = TextProcessorShakes() if kwargs["dataset"] == "shakespeare" else TextProcessorSent140() self.canary_type = "nlp" def _init_canary_optimisation(self, canary_design_loader, device): """Initialises canaries for optimisation Args: canary_design_loader: Design pool device: Torch device Returns: init_canary: Initial Canary for metrics canary: Tensor canary to optimise canary_class: Tensor class of canary canary_optimizer: Optimizer over canary """ init_canary = self._init_canary(canary_design_loader) canary = init_canary.clone().to(device) # Clone because we keep the initial canary for statistics canary.requires_grad = True canary_class = torch.tensor([self.canary_class]).to(device) canary_optimizer = torch.optim.Adam([canary], lr=0.1) return init_canary, canary, canary_class, canary_optimizer def _init_canary(self, canary_design_loader): """Initialises canary Args: canary_design_loader: Canary design pool, required to infer sequence length for text initialisation Returns: canary: Canary as a tensor """ # Initialise log coeffs if self.canary_design_type == "sample_grads": example_seq = next(iter(canary_design_loader))[0][0].clone() self.canary_class = next(iter(canary_design_loader))[1][0].clone().item() else: example_seq = next(iter(canary_design_loader))[0][0][0].clone() self.canary_class = next(iter(canary_design_loader))[0][1][0].clone().item() if self.canary_init == "random": log_coeffs = torch.rand(len(example_seq), self.text_processor.vocab_size) self.canary_class = random.randint(0, self.num_classes-1) else: log_coeffs = torch.zeros(len(example_seq), self.text_processor.vocab_size) indices = torch.arange(log_coeffs.size(0)).long() log_coeffs[indices, example_seq] = 12 self.logger.info(f"Log coeffs initialised shape={log_coeffs.shape}") return log_coeffs def _forward_pass_canary(self, model, canary): """Runs a forward pass on a canary given a model Uses the Gumbel softmax method of Guo et al. (2021) (https://arxiv.org/abs/2104.13733) Args: model: nn.Module canary: canary tensor Returns: output: Output of model(canary) """ model.train() model.zero_grad() # Gumbel softmax the log coeffs coeffs = F.gumbel_softmax(canary, hard=False) # T x V # Form soft embeddings embedding_weights = model.__dict__["_modules"]["embedding"].weight inputs_embeds = (coeffs @ embedding_weights) # T x D # Forward pass through model (using soft embeddings as input) pred = model(None, input_embeds=inputs_embeds.unsqueeze(0)) return pred def _post_process_canary(self, model, criterion, canary, canary_class, device="cpu"): """Computes final gradient from the canary. Converts token distribution to text sample Args: model: nn.Module criterion: Loss function canary: tensor canary_class: tensor device (optional): torch device, defaults to "cpu". Returns: canary: Final canary after post-processsing canary_grad: Final canary gradient """ # self._plot_canary_dist(canary) canary = F.gumbel_softmax(canary, hard=True).argmax(1).unsqueeze(0).long() canary_grad = self._compute_clipped_grad(model, criterion, [canary, canary_class], device=device).detach().cpu() return canary, canary_grad def _plot_canary_dist(self, canary): """ For debugging. Plots the token distribution of the canary. Args: canary: canary token distribution to plot """ coeffs = F.gumbel_softmax(canary, hard=False) for row in coeffs: row = np.array(row) sns.barplot(x=list(range(0, len(row))), y=row) plt.plot() plt.pause(1) plt.clf()
canife-main
canife/canary_designer_nlp.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import copy import math import matplotlib.pyplot as plt import numpy as np import torch from opacus import GradSampleModule from scipy.stats import binomtest from canife.utils import TextProcessorSent140, TextProcessorShakes, compute_sample_grads from privacy_lint.privacy_lint.attack_results import AttackResults class CanaryAnalyser(): def __init__(self, plot_path, result_path, grad_sample_module=None, canary_epochs=1000, canary_loss="loss1", canary_norm_matching=None, canary_design_type="sample_grads", canary_setup="holdout", canary_init="random", canary_design_minibatch_size=0, canary_design_sample_size = 0, canary_design_pool_size=0, local_batch_size=128, canary_clip_const=1, canary_insert_train_acc=0, canary_insert_test_acc=0, canary_losses=None, canary_norms=None, canary_design_reverse_server_clip=False, canary_design_bias=0, canary_insert_epoch="unknown", canary_insert_global_round=-1, canary_insert_batch_index=-1, canary_insert_acc_threshold=-1, canary_normalize_optim_grad=True, canary_design_local_models=False, local_updates=1, local_epochs=1, canary_type="image", delta=1e-5, sigma=0, epsilon=float('inf'), sample_rate=1, checkpoint_train_acc = 0, checkpoint_test_acc = 0, model_arch="unknown", dataset="unknown", task="canary_attack", dp_level="sample_level", logger=None, benchmark_times=None, server_clip_const=1, actual_sample_size=0, actual_pool_size=0 , actual_minibatch_size=0, canary_norm_constant=1, canary_norm_loss="hinge_squared", scale_canary_test=False, **kwargs) -> None: self.reset() self.epsilon = epsilon self.delta = delta self.sigma = sigma self.sample_rate = sample_rate self.global_round = 0 self.canary_type = canary_type self.canary_loss = canary_loss self.canary_losses = canary_losses self.canary_norms = canary_norms self.canary_epochs = canary_epochs self.canary_init = canary_init self.canary_design_type = canary_design_type self.canary_setup = canary_setup self.canary_clip_const = canary_clip_const self.canary_design_minibatch_size = canary_design_minibatch_size self.canary_design_sample_size = canary_design_sample_size self.canary_design_pool_size = canary_design_pool_size self.scale_canary_test = scale_canary_test self.actual_sample_size = actual_sample_size self.actual_pool_size = actual_pool_size self.actual_minibatch_size = actual_minibatch_size self.canary_design_reverse_server_clip = canary_design_reverse_server_clip self.canary_design_bias = canary_design_bias self.local_batch_size = local_batch_size self.canary_norm_matching = canary_norm_matching self.canary_norm_constant = canary_norm_constant self.canary_norm_loss = canary_norm_loss self.canary_normalize_optim_grad = canary_normalize_optim_grad self.model_arch = model_arch self.dataset = dataset self.canary_insert_epoch = canary_insert_epoch self.canary_insert_global_round = canary_insert_global_round self.canary_insert_batch_index = canary_insert_batch_index self.canary_insert_train_acc = canary_insert_train_acc self.canary_insert_test_acc = canary_insert_test_acc self.canary_insert_acc_threshold = canary_insert_acc_threshold self.canary_design_local_models = canary_design_local_models self.local_updates = local_updates self.local_epochs = local_epochs self.num_clients = "N/A" self.server_clip_const = server_clip_const self.accuracy_metrics = {"train": [], "eval": [], "test": []} # Used to track model accuracies self.checkpoint_train_acc = checkpoint_train_acc self.checkpoint_test_acc = checkpoint_test_acc self.empirical_eps_tracker = [] self.logger = logger self.dp_level = dp_level self.task = task self.base_plot_path = plot_path self.base_result_path = result_path self.grad_sample_module = grad_sample_module self.benchmark_times = benchmark_times if benchmark_times else [] self.text_processor = TextProcessorSent140() if dataset == "sent140" else TextProcessorShakes() def reset(self): """ Resets attributes that track a canary attack """ self.canary_healths = [] self.canaries = [] self.canary_dot_prods = {"with_canary": [], "without_canary": []} self.init_canary_dot_prods = {"with_canary": [], "without_canary": []} self.batch_clip_percs = [] self.clip_rates = [] self.num_tests = 0 def _plot_canary_hist(self, canary_metrics, suffix=""): """ Plots canary histogram and associated attack metrics for a canary that is being analysed Args: canary_metrics (dict): Dict of canary metrics suffix (str, optional): Plot name suffix. Defaults to "". """ if np.isnan(np.sum(canary_metrics["dot_prods_without_canary"])) or np.isnan(np.sum(canary_metrics["dot_prods_with_canary"])): self.logger.info("WARNING - Some dot products are NaN, these are being removed for plotting...") canary_metrics["dot_prods_without_canary"] = np.array(canary_metrics["dot_prods_without_canary"])[~np.isnan(canary_metrics["dot_prods_without_canary"])] canary_metrics["dot_prods_with_canary"] = np.array(canary_metrics["dot_prods_with_canary"])[~np.isnan( canary_metrics["dot_prods_with_canary"])] if len(canary_metrics["dot_prods_without_canary"]) == 0 or len(canary_metrics["dot_prods_with_canary"]) == 0 : self.logger.info("Dot products were empty, likely all nans, optimisation has failed. Canary norm is likely 0...") return bins = 25 bins=None plt.hist(canary_metrics["dot_prods_without_canary"], bins=bins, label="Without canary (" + self.canary_design_type + "), m=" + str(round(canary_metrics["without_canary_mean"], 5)) + " std=" + str(round(canary_metrics["without_canary_sd"], 5))) plt.hist(canary_metrics["dot_prods_with_canary"], bins=bins, label="W/ canary (" + self.canary_design_type + ") m=" + str(round(canary_metrics["with_canary_mean"], 5)) + " std=" + str(round(canary_metrics["with_canary_sd"], 5))) plt.vlines(canary_metrics["mia_threshold"], ymin=0, ymax=10, color="red") plot_title = self.task + " " + self.dp_level + " num_clients=" + str(self.num_clients) + " local_steps=" + str(self.local_updates) + " init=" + self.canary_init + "\n" plot_title += "Design: naive" if self.canary_design_type == "naive" else f"Design: {self.canary_design_type } {self.canary_loss}" plot_title += f" Local Batch Size={self.local_batch_size} epoch={self.canary_insert_epoch}, round={self.canary_insert_global_round}" if len(self.accuracy_metrics["train"]) > 0 and len(self.accuracy_metrics["test"]) > 0: plot_title += f" (Train, Test): {round(self.accuracy_metrics['train'][-1],2)}, {round(self.accuracy_metrics['test'][-1],2)}" if self.canary_setup == "holdout" and self.canary_design_type != "naive": plot_title += f"\n Design Sample={self.canary_design_sample_size} Design Pool={self.canary_design_pool_size}" if self.canary_loss != "loss1": plot_title += f" Minibatch= {self.canary_design_minibatch_size}" if self.canary_setup == "exact" and self.canary_design_type != "naive": plot_title += "\n Canary Health (min, max, mean): {min}, {max}, {mean}".format(min=str(round(np.min(canary_metrics["canary_health_list"]), 4)), max=str(np.round(max(canary_metrics["canary_health_list"]),4)), mean=str(round(np.mean(canary_metrics["canary_health_list"]), 4))) else: plot_title += f"\n Canary norm={round(canary_metrics['canary_norm'],3)} Canary Health: {round(canary_metrics['canary_health_list'][0],5)}" plot_title += f" (Acc, Max Acc, AUC): {round(canary_metrics['mia_acc'], 4)}, {round(canary_metrics['mia_max_acc'],4)}, {round(canary_metrics['mia_auc'],4)}" plot_title += f"\n (eps, delta)=({round(canary_metrics['initial_epsilon'],4)}, {canary_metrics['initial_delta']}), sigma={round(canary_metrics['final_sigma'],4)}, empirical= {round(canary_metrics['empirical_eps'],4)}, ({round(canary_metrics['empirical_eps_lower'],4)}, {round(canary_metrics['empirical_eps_upper'],4)})" plt.title(plot_title, fontdict={"fontsize": 10}) plt.ylabel("Freq") plt.xlabel(r'<S, grad(canary)>') plt.legend() plt.tight_layout() full_path = self.plot_path + suffix + ".png" plt.savefig(full_path, bbox_inches='tight') self.logger.info(f" Plot Saved: {full_path}") plt.clf() def _plot_canary_losses(self): """Plots the optimisation loss of an analysed canary. """ smoothed_loss = np.mean(np.array(self.canary_losses)[:(len(self.canary_losses)//100)*100].reshape(-1,100), axis=1) data_list = [("canary_norms", self.canary_norms), ("canary_loss_full", self.canary_losses), ("canary_loss_last_epochs", self.canary_losses[-1000:]), ("canary_loss_smoothed", smoothed_loss)] for item in data_list: name, data = item plt.plot(range(0, len(data)), data) plt.title(name) plt.ylabel(name) plt.xlabel("Epoch") plt.tight_layout() full_path = self.plot_path + f"_{name}.png" plt.savefig(full_path) self.logger.info(f" Plot Saved: {full_path}") plt.clf() def _plot_pr_curve(self, precision, recall, auprc=0, suffix=""): """Plots pr curves of an analysed canary Args: precision (list): Precision values recall (list): Recall values auprc (int, optional): Optional AUPRC to display in the plot title. Defaults to 0. suffix (str, optional): Plot name suffix. Defaults to "". """ for i in range(recall.shape[0]-1): plt.plot((recall[i],recall[i]),(precision[i],precision[i+1]),'b-') plt.plot((recall[i],recall[i+1]),(precision[i+1],precision[i+1]),'b-') plt.title(f"PR Curve - MAP={auprc}") plt.xlabel("Recall") plt.ylabel("Precision") plot_name = self.plot_path + "_pr_curve_" + suffix plt.savefig(plot_name) self.logger.info(f" Plot Saved: {plot_name}") plt.clf() def _save_results(self, canary_metrics, additional_args): """Checkpoint analysed canary attack Args: canary_metrics (dict): All canary metrics to checkpoint additional_args (dict): Additional args i.e, from a CanaryDesigner """ all_args = canary_metrics all_args.update(self.__dict__) remove_list = ["grad_sample_module", "canaries", "logger", "canary_losses", "text_processor", "canary_dot_prods", "init_canary_dot_prods", "canary_norms"] for attr in remove_list: all_args.pop(attr) if additional_args is not None: all_args.update(vars(additional_args)) experiment_dict = {} all_args["canary_health"] = all_args["canary_health_list"][0] if len(all_args["canary_health_list"]) == 1 else np.mean(all_args["canary_health_list"]) columns = list(canary_metrics.keys()) row = [all_args[col] for col in columns] experiment_dict["row"] = row experiment_dict["columns"] = columns torch.save(experiment_dict, self.result_path + ".tar") self.logger.info(f" Experiment metrics saved {self.result_path}") self.logger.info(f"Saved columns {columns}") self.logger.info(f"Canary insert epoch={all_args['canary_insert_epoch']}, global round={all_args['canary_insert_global_round']}") def _save_canary(self, batched_canary, title): """Saves an output of the designed canary. Either as an image of a .txt for NLP Args: batched_canary: Batch with a single canary title: Title of the canary output file """ if self.canary_type == "image": if self.dataset == "femnist": plt.imshow(np.transpose(batched_canary[0]).numpy(), cmap="gray") else: plt.imshow(np.transpose(batched_canary[0].numpy(), (1, 2, 0))) plt.title(title) plt.axis("off") plt.savefig(self.plot_path + "_" + title + ".png") plt.clf() elif self.canary_type == "nlp": try: with open(self.plot_path + "_" + title + ".txt", 'w') as f: f.write(self.text_processor.index_sequence_to_text(batched_canary[0])) except: plt.clf() self.logger.info("Saving nlp error...") def ci_eps(self, fp, fn, n_pos, n_neg, delta=1e-5, bound="lower"): """Calculate the 95% CI for empirial epsilon via the Clopper-Pearson method Args: fp (_type_): False positives fn (function): False negatives n_pos (_type_): Number of positive examples n_neg (_type_): Number of negative examples delta (_type_, optional): DP delta. Defaults to 10e-5. bound (str, optional): "upper" or "lower" CI bounds. Defaults to "lower". Returns: empirial eps """ fp = int(fp) fn = int(fn) fp_result = binomtest(k=fp, n=n_pos) fn_result = binomtest(k=fn, n=n_neg) if bound == "lower": fp_hi = fp_result.proportion_ci().high fn_hi = fn_result.proportion_ci().high else: fp_hi = fp_result.proportion_ci().low fn_hi = fn_result.proportion_ci().low return self.empirical_eps(1-fn_hi,fp_hi, delta=delta, type=bound) def empirical_eps(self, tpr, fpr, delta=1e-5, type=""): """Calculate empirical epsilon Args: tpr: True Positive Rate (TPR) fpr: False Positive Rate (FPR) delta: DP delta. Defaults to 10e-5. type (str, optional): "lower" or "upper" for CI calculations. Defaults to "". Returns: empirical eps """ x = [] if 1-tpr > 0: x.append((1-delta-fpr)/(1-tpr)) if fpr > 0: x.append((1-delta-(1-tpr))/fpr) if len(x) <= 1 or max(x) < 0: print(f"Warning empirical eps=inf, type={type} - {fpr}, {1-tpr}") x = [float("inf")] return math.log(max(x)) def _compute_empirical_eps(self, attack_results: AttackResults, use_max_acc_threshold=False): n_pos, n_neg = len(attack_results.scores_train), len(attack_results.scores_test) delta = 1/(n_pos + n_neg) max_empirical_eps = 0 _, scores = attack_results._get_scores_and_labels_ordered() tpr_fpr = attack_results.get_tpr_fpr() if use_max_acc_threshold: # Calculate empirical eps from max acc threshold max_acc_thresh = attack_results.get_max_accuracy_threshold()[0] tp = int((attack_results.scores_train >= max_acc_thresh).sum().item()) fp = int((attack_results.scores_test >= max_acc_thresh).sum().item()) max_fp, max_fn, max_tp, max_tn = fp, n_pos-tp, tp, n_neg-fp max_tpr, max_fpr = max_tp / (max_tp + max_fn), max_fp/(max_fp+max_tn) max_empirical_eps = self.empirical_eps(max_tpr, max_fpr, delta=delta) else: # Maximise empirical eps over TPR/FPR for i, t in enumerate(scores): tpr, fpr = tpr_fpr[0][i], tpr_fpr[1][i] empirical_eps = self.empirical_eps(tpr, fpr, delta=delta) acc = attack_results.get_accuracy(t) if empirical_eps > max_empirical_eps and (empirical_eps != float("inf") or acc == 1): tp = int((attack_results.scores_train >= t).sum().item()) fp = int((attack_results.scores_test >= t).sum().item()) max_empirical_eps = empirical_eps max_fp, max_fn, max_tp, max_tn = fp, n_pos-tp, tp, n_neg-fp max_tpr, max_fpr = tpr, fpr empirical_eps_lower = self.ci_eps(max_fp, max_fn, n_pos=n_pos, n_neg=n_neg, delta=delta) empirical_eps_upper = self.ci_eps(max_fp, max_fn, bound="upper", n_pos=n_pos, n_neg=n_neg, delta=delta) return max_empirical_eps, empirical_eps_lower, empirical_eps_upper, max_fp, max_fn, max_tp, max_tn def _compute_canary_metrics(self, initial_privacy_budget, final_privacy_budget, type="canary", correct_bias=False, plot_prc=True, **kwargs): """Computes canary and attack metrics for checkpointing Args: initial_privacy_budget (dict): Initial privacy budget of the model final_privacy_budget (dict): Final privacy budget at the attack round type (str, optional): Type of canary metrics, either "init" or "canary". Defaults to "canary". correct_bias (bool, optional): Debugging, if True computes corrected bias metrics. Defaults to False. plot_prc (bool, optional): If True will plot PR curves. Defaults to True. Returns: canary_metrics: dict of canary metrics to checkpoint """ canary_metrics = {} canary_metrics.update(kwargs) bias = self.canary_design_bias if correct_bias else 0 canary_metrics["with_canary_mean"] = np.round(np.mean(canary_metrics["dot_prods_with_canary"], axis=0)+bias,10) canary_metrics["with_canary_var"] = np.round(np.var(canary_metrics["dot_prods_with_canary"], axis=0),10) canary_metrics["without_canary_mean"] = np.round(np.mean(canary_metrics["dot_prods_without_canary"], axis=0)+bias,10) canary_metrics["without_canary_var"] = np.round(np.var(canary_metrics["dot_prods_without_canary"], axis=0),10) results = AttackResults(torch.tensor(canary_metrics["dot_prods_with_canary"])+bias, torch.tensor(canary_metrics["dot_prods_without_canary"])+bias) max_accuracy_threshold, max_accuracy = results.get_max_accuracy_threshold() tpr, fpr = results.get_tpr_fpr() precision, recall = results.get_precision_recall() auprc = results.get_map() canary_metrics["mia_auc"] = results.get_auc() canary_metrics["mia_threshold"] = max_accuracy_threshold canary_metrics["mia_max_acc"] = max_accuracy canary_metrics["mia_acc"] = results.get_accuracy(threshold=0.5).item() if plot_prc: self._plot_pr_curve(precision, recall, auprc=auprc, suffix=type) n_pos = len(results.scores_test) n_neg = len(results.scores_train) n = n_pos + n_neg self.logger.info(f"=== Computing metrics for type={type}") self.logger.info(f"Number of tests={self.num_tests}, without={len(results.scores_train)}, with={len(results.scores_test)}, n={n}") empirical_eps, empirical_eps_lower, empirical_eps_upper, fp, fn, tp, tn = self._compute_empirical_eps(attack_results=results, use_max_acc_threshold=False) self.logger.info(f"n={n}, tp={tp}, fp={fp}, tn={tn}, fn={fn}") fpr = fp/(fp+tn) fnr = fn/(fn+tp) tpr = 1-fnr self.logger.info(f"FPR={fpr}, TPR={tpr}, FNR={fnr}") self.logger.info(f"Type={type}, Acc= {canary_metrics['mia_acc']}, empirical eps={empirical_eps}, lower, upper =({empirical_eps_lower},{empirical_eps_upper})\n") canary_metrics["fp"] = fp canary_metrics["fn"] = fn canary_metrics["tp"] = tp canary_metrics["tn"] = tn canary_metrics["empirical_eps_lower"] = empirical_eps_lower canary_metrics["empirical_eps_upper"] = empirical_eps_upper canary_metrics["empirical_eps"] = empirical_eps canary_metrics["without_canary_sd"] = math.sqrt(canary_metrics["without_canary_var"]) canary_metrics["with_canary_sd"] = math.sqrt(canary_metrics["with_canary_var"]) canary_metrics["sd_gap"] = abs(canary_metrics["without_canary_sd"] - canary_metrics["with_canary_sd"]) canary_metrics["loss_gap"] = np.min(canary_metrics["dot_prods_with_canary"])+bias - np.max(canary_metrics["dot_prods_without_canary"])+bias canary_metrics["batch_clip_percs"] = kwargs["batch_clip_percs"] if type == 'canary': self.empirical_eps_tracker.append((canary_metrics["empirical_eps_lower"], canary_metrics["empirical_eps"], canary_metrics["empirical_eps_upper"])) self._add_privacy_metrics(canary_metrics, initial_privacy_budget, type="initial") self._add_privacy_metrics(canary_metrics, final_privacy_budget, type="final") return canary_metrics def _add_privacy_metrics(self, metrics, privacy_budget, type="final"): """Adds privacy budget to canary metrics Args: metrics (Canary metrics): Canary metrics privacy_budget (dict): Privacy budget type (str, optional): Type. Defaults to "final". """ metrics[f"{type}_epsilon"] = privacy_budget["epsilon"] metrics[f"{type}_delta"] = privacy_budget["delta"] metrics[f"{type}_sigma"] = privacy_budget["sigma"] def add_clip_rate(self, clip_rate): """Add a clip rate e.g. a % of model updates that were clipped in the current test round Args: clip_rate (float): clip percentage """ self.clip_rates.append(clip_rate) def add_canary(self, canary): """Add a canary to be analysed Args: canary (Canary): canary """ self.canaries.append(canary) def set_canary(self, canary): """Set a canary, replacing all old canaries being tracked Args: canary """ self.canaries = [canary] def reset_canaries(self): """Reset all tracked canaries """ self.canaries = [] def set_grad_sample_module(self, model): """Set GradSampleModule, not used in FLSim Args: model (GSM) """ self.grad_sample_module = GradSampleModule(copy.deepcopy(model)) def set_accuracy_metrics(self, accuracy_metrics): """Set accuracy metrics of model to checkpoint in canary_metrics Args: accuracy_metrics: FLSim accuracy metrics """ self.accuracy_metrics = accuracy_metrics self.current_train_acc = accuracy_metrics["train"][-1] if len(accuracy_metrics["train"]) > 0 else 0 self.current_test_acc = accuracy_metrics["test"][-1] if len(accuracy_metrics["test"]) > 0 else 0 def test_against_batch(self, criterion, batch, canary, device="cpu"): """Debugging only, not used in FLSim. Args: criterion: torch criterion batch: Batch to test canary presence canary (Canary): canary device (str, optional): torch device. Defaults to "cpu". """ assert self.grad_sample_module is not None, "Must set_grad_sample_module() before testing with a batch" if canary not in self.canaries: self.add_canary(canary) # Compute required gradients batch_sample_grads, clip_count = compute_sample_grads(self.grad_sample_module, criterion, batch, device=device, clipping_const=self.canary_clip_const) clip_perc = round(clip_count / self.local_batch_size, 8)*100 self.batch_clip_percs.append(clip_perc) self.logger.info(f" Clip Percentage {clip_perc}") aggregated_batch_grad = torch.sum(batch_sample_grads, axis=0) canary_norm = torch.norm(canary.grad).item() self.logger.info(f" Canary grad norm: {canary_norm}\n") self.canary_dot_prods["without_canary"].append(torch.dot(canary.grad, aggregated_batch_grad).item()) self.init_canary_dot_prods["without_canary"].append(torch.dot(canary.init_grad, aggregated_batch_grad).item()) self.canary_dot_prods["with_canary"].append(torch.dot(canary.grad, aggregated_batch_grad + canary.grad).item()) self.init_canary_dot_prods["with_canary"].append(torch.dot(canary.init_grad, aggregated_batch_grad+canary.init_grad).item()) self.num_tests += 1 def test_against_agg_grad(self, canary, aggregated_model, lr, num_clients, clip_factor=1, type="with"): """Tests canary against aggregated model udpates by computing a dot-product score. Args: canary (Canary): canary to test aggregated_model (tensor): Aggregated clipped (noisy) model updates lr: Client lr num_clients: Number of clients in the current round clip_factor (int, optional): Clip factor (not used). Defaults to 1. type (str, optional): Type of the test, either "with" or "without" canary. Defaults to "with". """ self.num_clients = num_clients aggregated_batch_grad = torch.tensor([]) for p in aggregated_model.parameters(): aggregated_batch_grad = torch.cat([aggregated_batch_grad, p.detach().clone().cpu().flatten()]) aggregated_batch_grad = num_clients * aggregated_batch_grad * 1/clip_factor self.logger.debug(f"Aggregated grads {aggregated_batch_grad}") self.logger.debug(f"Norm of aggregated grads {torch.norm(aggregated_batch_grad)}") self.logger.debug(f"Clip factor {clip_factor}, num clients {num_clients}, lr {lr}, Batch size {self.local_batch_size}") self.logger.debug(f"Aggregated scaled grads {aggregated_batch_grad}") self.logger.info(f"Canary grad norm {torch.norm(canary.grad)}, Canary clip const {self.canary_clip_const}") # if self.canary_design_type == "sample_grads": # Designing against unclipped updates (must unscale) # aggregated_batch_grad = (1/lr) * num_clients * self.local_batch_size * aggregated_batch_grad * 1/clip_factor # else: # Designing against clipped and scaled updates (so no need to unscale) # Aggregate attack scores if type == "with" or type == "without": if self.canary_design_reverse_server_clip: canary_dot_prod = torch.dot(canary.grad/torch.norm(canary.grad)**2, aggregated_batch_grad).item() else: if self.scale_canary_test and torch.norm(canary.grad) < self.server_clip_const: canary_dot_prod = torch.dot(canary.grad/(torch.norm(canary.grad)**2)*self.server_clip_const, aggregated_batch_grad).item() else: canary_dot_prod = torch.dot((canary.grad/torch.norm(canary.grad)*self.server_clip_const)/self.server_clip_const**2, aggregated_batch_grad).item() self.canary_dot_prods[type+"_canary"].append(canary_dot_prod) # Aggregate canary init scores init_dot_prod = torch.dot(canary.init_grad/torch.norm(canary.init_grad), aggregated_batch_grad).item() if type == "without": self.init_canary_dot_prods[type+"_canary"].append(init_dot_prod) elif type == "with_init": self.init_canary_dot_prods["with_canary"].append(init_dot_prod) self.num_tests += 1 def analyse(self, global_round=0, initial_privacy_budget=None, final_privacy_budget=None, one_step_budget=None, disable_init_metrics=False, disable_bias_metrics=False, plot_hists=True, plot_canaries=True, plot_losses=True, plot_prc=True, args=None): """Analyse current set canary and checkpoint associated attack metrics and plots Args: global_round (int, optional): Global FL round of the attack. Defaults to 0. initial_privacy_budget (dict, optional): Initial model privacy budget. Defaults to None. final_privacy_budget (dict, optional): Current model privacy budget. Defaults to None. one_step_budget (dict, optional): Model one-step budget. Defaults to None. disable_init_metrics (bool, optional): If True will not compute canary init metrics. Defaults to False. disable_bias_metrics (bool, optional): If False will not compute bias corrected metrics. Defaults to False. plot_hists (bool, optional): If False will not plot attack histograms. Defaults to True. plot_canaries (bool, optional): If False will not output canaries. Defaults to True. plot_losses (bool, optional): If False will not output canary optimisation loss plots. Defaults to True. plot_prc (bool, optional): If False will not plot PR curves. Defaults to True. args (dict, optional): Additional args for checkpointing. Defaults to None. """ assert len(self.canaries) > 0, "Cannot anaylse() before test_against_agg_grad() or test_against_batch() at least once" if final_privacy_budget is None: final_privacy_budget = {"epsilon": float('inf'), "delta": 0, "sigma": 0} if initial_privacy_budget is None: initial_privacy_budget = {"epsilon": 0, "delta": 0, "sigma": 0} if one_step_budget is None: one_step_budget = {"epsilon": 0, "delta": 0, "sigma": 0} self.global_round = global_round self.plot_path = self.base_plot_path + f"_global_round={global_round}" self.result_path = self.base_result_path + f"_global_round={global_round}" self.canary_healths = [canary.health for canary in self.canaries] canary_norm = np.mean([torch.norm(canary.grad).item() for canary in self.canaries]) init_norm = np.mean([torch.norm(canary.init_grad).item() for canary in self.canaries]) final_loss = np.mean([canary.final_loss for canary in self.canaries]) init_loss = np.mean([canary.init_loss for canary in self.canaries]) # Save initial and final canaries if plot_canaries: self._save_canary(self.canaries[0].data, "final_canary class " + str(self.canaries[0].class_label)) self._save_canary(self.canaries[0].init_data, "init_canary class " + str(self.canaries[0].class_label)) # Compute and save canary metrics canary_metrics = self._compute_canary_metrics(initial_privacy_budget, final_privacy_budget, type="canary", plot_prc=plot_prc, dot_prods_with_canary=self.canary_dot_prods["with_canary"], dot_prods_without_canary=self.canary_dot_prods["without_canary"], canary_norm=canary_norm, canary_health_list=self.canary_healths, batch_clip_percs=self.batch_clip_percs, final_loss=final_loss) if not disable_bias_metrics: canary_bias_corrected_metrics = self._compute_canary_metrics(initial_privacy_budget, final_privacy_budget, type="bias_canary", plot_prc=False, correct_bias=True, dot_prods_with_canary=self.canary_dot_prods["with_canary"], dot_prods_without_canary=self.canary_dot_prods["without_canary"], canary_norm=canary_norm, canary_health_list=self.canary_healths, batch_clip_percs=self.batch_clip_percs, final_loss=final_loss) canary_bias_corrected_metrics["mia_threshold"] = 0.5 canary_metrics["bias_corrected_acc"] = canary_bias_corrected_metrics["mia_acc"] if not disable_init_metrics: init_canary_metrics = self._compute_canary_metrics(initial_privacy_budget, final_privacy_budget, type="init", plot_prc=plot_prc, dot_prods_with_canary=self.init_canary_dot_prods["with_canary"], dot_prods_without_canary=self.init_canary_dot_prods["without_canary"], canary_norm=init_norm, canary_health_list=[0], batch_clip_percs=self.batch_clip_percs, final_loss=init_loss) canary_metrics["sd_improvement"] = "n/a" if disable_init_metrics else init_canary_metrics["without_canary_sd"] - canary_metrics["without_canary_sd"] canary_metrics["init_without_canary_sd"] = "n/a" if disable_init_metrics else init_canary_metrics["without_canary_sd"] canary_metrics["init_with_canary_sd"] = "n/a" if disable_init_metrics else init_canary_metrics["with_canary_sd"] canary_metrics["mia_acc_improvement"] = "n/a" if disable_init_metrics else canary_metrics["mia_max_acc"] - init_canary_metrics["mia_max_acc"] canary_metrics["dot_prods_with_init_canary"] = "n/a" if disable_init_metrics else self.init_canary_dot_prods["with_canary"] canary_metrics["dot_prods_without_init_canary"] = "n/a" if disable_init_metrics else self.init_canary_dot_prods["without_canary"] canary_metrics["one_step_eps"] = one_step_budget["epsilon"] self.logger.info(f"One step privacy metrics (no sampling) (eps,delta)={one_step_budget['epsilon']}, {one_step_budget['delta']}, sigma={one_step_budget['sigma']}") self.logger.info(f"Initial privacy metrics (eps,delta)={canary_metrics['initial_epsilon']}, {canary_metrics['initial_delta']}, sigma={canary_metrics['initial_sigma']}") self.logger.info(f"Final privacy metrics (eps,delta)={canary_metrics['final_epsilon']}, {canary_metrics['final_delta']}, sigma={canary_metrics['final_sigma']}, sample rate={self.sample_rate}") self.logger.info(f"Empirical epsilon tracker {self.empirical_eps_tracker}\n") self.logger.info(f"Checkpoint train acc {self.checkpoint_train_acc} Checkpoint test acc {self.checkpoint_test_acc}") self.logger.info(f"Current train acc {self.current_train_acc} Current test acc {self.current_test_acc}") self.logger.info(f"All accuracy metrics {self.accuracy_metrics}\n") if not disable_init_metrics: self.logger.info(f" SD Improvement: {canary_metrics['sd_improvement']}") self.logger.info(f" MIA Acc Improvement: {canary_metrics['mia_acc_improvement']}\n") # Save canary metrics self._save_results(canary_metrics, args) # Plot and save dot product histograms if plot_hists: self._plot_canary_hist(canary_metrics, suffix="_canary") # Final canary if not disable_bias_metrics: self._plot_canary_hist(canary_bias_corrected_metrics, suffix="_bias_corrected_canary") # Final canary (bias-corrected) if not disable_init_metrics: self._plot_canary_hist(init_canary_metrics, suffix="_init") # Initial canary # Save canary optim losses if plot_losses: self._plot_canary_losses() self.logger.info(f"Minibatch, sample size, pool size, {self.canary_design_minibatch_size, self.canary_design_sample_size, self.canary_design_pool_size}") self.logger.info(f"Actual minibatch, sample size, pool size, {self.actual_minibatch_size, self.actual_sample_size, self.actual_pool_size}")
canife-main
canife/canary_analyser.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import argparse import glob import pandas as pd import torch def extract_sweep(root_dir="local_checkpoints", csv_name=""): rows = [] full_path = root_dir tar_path = full_path + "/**/*.tar" print("Full path", full_path) for file in glob.glob(tar_path, recursive=True): exp_checkpoint = torch.load(file) row = exp_checkpoint["row"] # row.append(exp_checkpoint["batch_clip_percs"]) columns = exp_checkpoint["columns"] columns.extend(["train_acc", "test_acc"]) row.extend([-1,-1]) if "accuracy_metrics" in columns: metrics = row[columns.index("accuracy_metrics")] if len(metrics["train"]) > 0: train_acc = metrics["train"][-1] row[-2] = train_acc if len(metrics["test"]) > 0: test_acc = metrics["test"][-1] row[-1] = test_acc rows.append(row) df = pd.DataFrame(rows, columns=columns) print(df.info(memory_usage="deep")) save_path = f"{args.path}{args.csv_name}" df.to_csv(save_path) print(f"Sweep extracted saved to {save_path}...") if __name__ == "__main__": parser = argparse.ArgumentParser(description="Extract canife experiment") parser.add_argument("--path", type=str, help= "Path to location of experiment output") parser.add_argument("--csv-name", type=str, help= "Name of output .csv") args = parser.parse_args() extract_sweep(csv_name=args.csv_name, root_dir=args.path)
canife-main
plotting/extract_exp.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import argparse import ast import pathlib import sys from pathlib import Path import matplotlib import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns import torch sys.path.append("../canife") sys.path.append("../privacy_lint") from collections import defaultdict from opacus.accountants import RDPAccountant from opacus.accountants.utils import get_noise_multiplier from canife import CanaryAnalyser from privacy_lint.privacy_lint.attack_results import AttackResults BASE_PATH = str(pathlib.Path(__file__).parent.resolve()) sns.set_theme(style="whitegrid") def set_fontsize(size=14): usetex = matplotlib.checkdep_usetex(True) tex_fonts = { "text.usetex": usetex, "font.family": "serif", "axes.labelsize": size, "font.size": size, "legend.fontsize": size, "xtick.labelsize": size, "ytick.labelsize": size } plt.rcParams.update(tex_fonts) FONT_SIZE = 20 set_fontsize(FONT_SIZE) # convert pandas col names to readable plot labels column_map = { "global_round": r"Global Round ($r$)", "empirical_eps_upper": r"$\hat{\varepsilon}_U$", "empirical_eps_lower": r"$\hat{\varepsilon}_L$", "empirical_eps": r"$\hat{\varepsilon}$", "current_test_acc": r"Model Test Accuracy", "current_train_acc": r"Model Train Accuracy", "canary_health": r"Canary Health", "mia_acc": r"Attack Accuracy ($\gamma = 0.5$)", "mia_max_acc": r"Attack Accuracy", "mia_max_acc_rolling": r"Attack Accuracy", "acc_rolling": r"Attack Accuracy", "final_epsilon": r"Privacy Budget ($\varepsilon$)", "one_step_eps": r"One-step $\varepsilon$", "num_clients": r"Clients Per Round", "canary_design_pool_size": r"Design Pool Size ($m$)", "canary_design_sample_size": "Design Sample Size", "average_sd": r"Mean Standard Deviation", "with_canary_sd": r"With Canary SD", "without_canary_sd": r"Without Canary SD", "mia_auc": r"Attack AUC", "empirical_global_eps": r"$\hat{\varepsilon}}$", "epsilon": r"$\varepsilon$", "canary_epochs": r"Design Iterations ($t$)", "canary_norm_constant": r"Canary Gradient Norm Constant", "dataset": "Dataset" } def print_full(x): pd.set_option('display.max_rows', len(x)) pd.set_option('display.max_columns', len(x.columns)) print(x) pd.reset_option('display.max_rows') def format_axis(ax): xlabel = ax.xaxis.get_label()._text ylabel = ax.yaxis.get_label()._text xlabel = column_map.get(xlabel, xlabel) ylabel = column_map.get(ylabel, ylabel) ax.set_xlabel(xlabel) ax.set_ylabel(ylabel) def save_plot(name="", fig=None): plt.tight_layout() if fig: fig.savefig(f"{BASE_PATH}/{name}.pdf", bbox_inches='tight', format="pdf") else: plt.savefig(f"{BASE_PATH}/{name}.pdf", bbox_inches='tight', format="pdf") plt.clf() def extract_epsilon_metrics(df, override_empirical_eps=False, use_max_acc=False): extra_cols = defaultdict(list) if override_empirical_eps: print("Extracting empirical epsilon data...") analyser = CanaryAnalyser(None, None, None) for idx, x in df.iterrows(): with_dot_prods = ast.literal_eval(x["dot_prods_with_canary"].replace('nan,', '')) without_dot_prods = ast.literal_eval(x["dot_prods_without_canary"].replace('nan,', '')) results = AttackResults(torch.tensor(with_dot_prods), torch.tensor(without_dot_prods)) max_acc_thresh = results.get_max_accuracy_threshold()[0] n_pos, n_neg = len(results.scores_train), len(results.scores_test) max_empirical_eps = 0 _, scores = results._get_scores_and_labels_ordered() tpr_fpr = results.get_tpr_fpr() # delta = 1e-5 delta = 1/(n_pos + n_neg) if use_max_acc: # Calculate empirical eps from max acc threshold tp = int((results.scores_train >= max_acc_thresh).sum().item()) fp = int((results.scores_test >= max_acc_thresh).sum().item()) max_fp, max_fn, max_tp, max_tn = fp, n_pos-tp, tp, n_neg-fp max_tpr, max_fpr = max_tp / (max_tp + max_fn), max_fp/(max_fp+max_tn) max_empirical_eps = analyser.empirical_eps(max_tpr, max_fpr, delta=delta) else: # Maximise empirical eps over TPR/FPR for i, t in enumerate(scores): tpr, fpr = tpr_fpr[0][i], tpr_fpr[1][i] empirical_eps = analyser.empirical_eps(tpr, fpr, delta=delta) acc = results.get_accuracy(t) if empirical_eps > max_empirical_eps and (empirical_eps != float("inf") or acc == 1): tp = int((results.scores_train >= t).sum().item()) fp = int((results.scores_test >= t).sum().item()) max_empirical_eps = empirical_eps max_fp, max_fn, max_tp, max_tn = fp, n_pos-tp, tp, n_neg-fp max_tpr, max_fpr = tpr, fpr lower_eps = analyser.ci_eps(max_fp, max_fn, n_pos, n_neg, delta=delta) upper_eps = analyser.ci_eps(max_fp, max_fn, bound="upper", n_pos=n_pos, n_neg=n_neg, delta=delta) extra_cols["fp"].append(max_fp) extra_cols["fn"].append(max_fn) extra_cols["tp"].append(max_tp) extra_cols["tn"].append(max_tn) extra_cols["empirical_eps_lower"].append(lower_eps) extra_cols["empirical_eps_upper"].append(upper_eps) extra_cols["empirical_eps"].append(max_empirical_eps) for col in extra_cols.keys(): df[col] = extra_cols[col] print("Empirical epsilon data added...") def extract_global_empirical_eps(df, skip_ci=True): df["empirical_global_eps"] = 0 df["empirical_global_eps_lower"] = 0 df["empirical_global_eps_upper"] = 0 df = df.sort_values(by="global_round") eps_list = df["epsilon"].unique() sample_rate = df["sample_rate"].unique()[0] print(f"Eps list {eps_list}, sample rate={sample_rate}") for eps in eps_list: temp_df = df[df["epsilon"] == eps] temp_df = temp_df.sort_values(by="global_round") df_eps = temp_df["empirical_eps"].values steps = temp_df["global_round"].values theoretical_sigma = temp_df["final_sigma"].mean() empirical_global_eps = calculate_global_eps(df_eps, theoretical_sigma=theoretical_sigma, steps=steps, sample_rate=sample_rate) df.loc[df["epsilon"] == eps, 'empirical_global_eps'] = empirical_global_eps print(f"eps={eps} estimate done...") if not skip_ci: empirical_global_eps = calculate_global_eps(temp_df["empirical_eps_lower"].clip(lower=0.2).values, theoretical_sigma=theoretical_sigma, steps=steps, sample_rate=sample_rate) df.loc[df["epsilon"] == eps, 'empirical_global_eps_lower'] = empirical_global_eps print(f"eps={eps} lower done...") empirical_global_eps = calculate_global_eps(temp_df["empirical_eps_upper"].values, theoretical_sigma=theoretical_sigma, steps=steps, sample_rate=sample_rate) df.loc[df["epsilon"] == eps, 'empirical_global_eps_upper'] = empirical_global_eps print(f"eps={eps} upper done...\n") return df def compute_one_step_eps(sample_rate, noise, delta=1e-5): accountant = RDPAccountant() history_step = (noise, sample_rate, 1) accountant.history.append(history_step) current_budget = accountant.get_privacy_spent(delta=delta) return current_budget[0] def calculate_global_eps(empirical_per_step_epsilons, theoretical_sigma, sample_rate=0.01, steps=1000, delta=1e-5, n=100, verbose=False): if type(steps) == int: steps = range(1, steps+1) accountant = RDPAccountant() previous_step = 0 if verbose: theoretical_accountant = RDPAccountant() one_step_theoretical_eps = compute_one_step_eps(1, theoretical_sigma, delta) budgets = [] for i,step in enumerate(steps): # One-step sigma based on current empirical eps if empirical_per_step_epsilons[i] == float("inf"): # Resort to theoretical sigma if empirical eps is inf estimated_sigma = theoretical_sigma else: estimated_sigma = get_noise_multiplier(target_epsilon=max(empirical_per_step_epsilons[i], 0.15), target_delta=1/n, sample_rate=1, steps=1) # Assume noise is constant for step-previous_step rounds (i.e time between last estimate and current) history_step = (estimated_sigma, sample_rate, step-previous_step) accountant.history.append(history_step) previous_step = step current_budget = accountant.get_privacy_spent(delta=delta) budgets.append(current_budget[0]) if verbose: estimated_sigma_theoretical = get_noise_multiplier(target_epsilon=one_step_theoretical_eps, target_delta=delta, sample_rate=1, steps=1) history_step = (estimated_sigma_theoretical, sample_rate, step-previous_step) theoretical_accountant.history.append(history_step) theoretical_eps = theoretical_accountant.get_privacy_spent(delta=delta)[0] print(f"i={i}, global round={step}") print(f"Estimated empirical one-step sigma = {estimated_sigma} vs theoretical = {estimated_sigma_theoretical}") print(f"Estimated empirical one-step epsilon = {empirical_per_step_epsilons[i]} vs theoretical = {one_step_theoretical_eps}") print(f"Accumulated empirical budget {budgets[-1]} vs theoretical {theoretical_eps}\n") return budgets def load_sweep(name, relative_path=False, override_empirical_eps=False): if relative_path: df = pd.read_csv(name) else: df = pd.read_csv(BASE_PATH + "/" + name + ".csv") df["sd_gap"] = np.sqrt(df["without_canary_var"]) - np.sqrt(df["with_canary_var"]) print(df.columns) # For compatability with old sweeps where some metrics were tensors if df["mia_acc"].dtype == object: for s in ["tensor", "(", ")"]: df["mia_acc"] = df["mia_acc"].str.replace(s, "") df["mia_acc"] = df["mia_acc"].astype("float64") extract_epsilon_metrics(df, override_empirical_eps=override_empirical_eps) return df def plot(csv_name): dataset = "sent140" model = "lstm" xlim = 8900 main_df = load_sweep(f"{csv_name}", relative_path=True, override_empirical_eps=False) main_df["epsilon"] = main_df["epsilon"].astype("int") main_df = main_df[main_df["dataset"] == dataset] main_df = main_df[main_df["epsilon"].isin([10,30,50])] # Per-round empirical eps comparison for eps in main_df["epsilon"].unique(): plot_df = main_df.copy() plot_df = plot_df[plot_df["epsilon"] == eps] plot_df.replace([float("inf")], np.nan, inplace=True) for y in ["one_step_eps"]: plot_df = main_df.copy() plot_df = plot_df[plot_df["epsilon"] == eps] ax = sns.lineplot(data=plot_df, x="global_round", y="empirical_eps", markers=False, label=r"$\hat{\varepsilon}_r$") plt.fill_between(plot_df["global_round"].values, plot_df["empirical_eps_lower"].values, plot_df["empirical_eps_upper"].values, alpha=.3) sns.lineplot(data=plot_df, x="global_round", y=y, markers=False, label=r"$\varepsilon_r$", ax=ax) plt.ylim(0) plt.xlim(0, xlim) plt.tight_layout() plt.draw() plt.legend(loc='upper right', bbox_to_anchor=(1, 0.95)) format_axis(ax) ax.set_ylabel(r"Privacy Budget ($\varepsilon$)") save_plot(name=f"{dataset}_{eps}_{model}_per_round_eps") # Global empirical eps comparison plot_df = main_df.copy() main_palette = sns.color_palette("deep", 3) palette_dict = {10: main_palette[0], 30: main_palette[1], 50: main_palette[2]} palette = [palette_dict[eps] for eps in plot_df["epsilon"].unique()] ax = sns.lineplot(data=plot_df, x="global_round", y="final_epsilon", hue="epsilon", linestyle="--", palette=palette) sns.lineplot(data=plot_df, x="global_round", y="empirical_global_eps", hue="epsilon", ax=ax, label='_nolegend_', palette=palette) plt.xlim(0, xlim) format_axis(ax) hand, labl = ax.get_legend_handles_labels() handout=[] lablout=[] for h,l in zip(hand,labl): if l not in lablout: lablout.append(l) handout.append(h) legend1 = plt.legend(handout, lablout, title=r"$\varepsilon$") plt.ylim(0, 50) linestyles = ['-', "--"] dummy_lines = [] titles = [r"Empirical $\hat{\varepsilon}$", r"Theoretical $\varepsilon$"] for b_idx, b in enumerate(titles): dummy_lines.append(ax.plot([],[], c="black", ls = linestyles[b_idx])[0]) plt.legend([dummy_lines[i] for i in [0,1]], titles, loc="upper left", bbox_to_anchor=(0.4,0.6)) ax.add_artist(legend1) save_plot(name=f"{dataset}_global_eps") if __name__ == "__main__": parser = argparse.ArgumentParser(description="Plot example canife experiment") parser.add_argument("--csv-path", type=str, help= "Path to output .csv for plotting") args = parser.parse_args() global_eps_path = args.csv_path.split(".csv")[0] + "_extracted.csv" global_eps_csv_file = Path(global_eps_path) csv_file = Path(args.csv_path) if not csv_file.is_file(): raise FileNotFoundError(f"Output .csv does not exist at the given file path {args.csv_path}") if not global_eps_csv_file.is_file(): df = pd.read_csv(args.csv_path) df = extract_global_empirical_eps(df) df.to_csv(global_eps_csv_file) plot(csv_name=global_eps_csv_file)
canife-main
plotting/example_plotter.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import argparse import glob import os import pandas as pd import torch USERNAME = os.getlogin() print(f"USERNAME: {USERNAME}") def extract_sweep(root_dir="saved_sweeps", csv_name=""): rows = [] full_path = root_dir tar_path = full_path + "/**/*.tar" print("Full path", full_path) for file in glob.glob(tar_path, recursive=True): exp_checkpoint = torch.load(file) row = exp_checkpoint["row"] columns = exp_checkpoint["columns"] columns.extend(["train_acc", "test_acc"]) row.extend([-1,-1]) if "accuracy_metrics" in columns: metrics = row[columns.index("accuracy_metrics")] if len(metrics["train"]) > 0: train_acc = metrics["train"][-1] row[-2] = train_acc if len(metrics["test"]) > 0: test_acc = metrics["test"][-1] row[-1] = test_acc rows.append(row) df = pd.DataFrame(rows, columns=columns) print(df.info(memory_usage="deep")) save_path = f"/checkpoints/{USERNAME}/" + csv_name + ".csv" df.to_csv(f"/checkpoints/{USERNAME}/" + csv_name + ".csv") print(f"Sweep extracted saved to {save_path}...") if __name__ == "__main__": parser = argparse.ArgumentParser(description="Extract canife sweep") parser.add_argument("--sweep", type=str, help= "Name of saved sweep") args = parser.parse_args() extract_sweep(csv_name=args.sweep, root_dir=f"/checkpoints/{USERNAME}/canife/{args.sweep}")
canife-main
plotting/extract_aws.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import os import sys from setuptools import find_packages, setup # 3.6.8 is the final Windows binary release for 3.6.x REQUIRED_MAJOR = 3 REQUIRED_MINOR = 6 REQUIRED_MICRO = 8 version = {} with open("flsim/version.py") as fp: exec(fp.read(), version) __version__ = version["__version__"] # Check for python version if sys.version_info < (REQUIRED_MAJOR, REQUIRED_MINOR, REQUIRED_MICRO): error = ( "Your version of python ({major}.{minor}.{micro}) is too old. You need " "python >= {required_major}.{required_minor}.{required_micro}" ).format( major=sys.version_info.major, minor=sys.version_info.minor, micro=sys.version_info.micro, required_major=REQUIRED_MAJOR, required_minor=REQUIRED_MINOR, required_micro=REQUIRED_MICRO, ) sys.exit(error) src_dir = os.path.abspath(os.path.dirname(__file__)) with open("README.md", "r", encoding="utf8") as fh: long_description = fh.read() requirements_txt = os.path.join(src_dir, "requirements.txt") with open(requirements_txt, encoding="utf8") as f: required = f.read().splitlines() dev_required = [] setup( name="flsim", version=__version__, author="The FLSim Team", description="Federated Learning Simulator (FLSim) is a flexible, standalone core library that simulates FL settings with a minimal, easy-to-use API. FLSim is domain-agnostic and accommodates many use cases such as vision and text.", long_description=long_description, long_description_content_type="text/markdown", url="https://flsim.ai", project_urls={ "Documentation": "https://flsim.ai/api", "Source": "https://github.com/facebookresearch/flsim", }, license="Apache-2.0", install_requires=required, extras_require={"dev": dev_required}, packages=find_packages(), keywords=[ "PyTorch", "Federated Learning", "FL", "On device training", "Differential Privacy", "Secure Aggregation", "Privacy Preserving Machine Learning", "PPML", "PPAI", ], classifiers=[ "Development Status :: 4 - Beta", "Intended Audience :: Developers", "Intended Audience :: Education", "Intended Audience :: Science/Research", "License :: OSI Approved :: Apache Software License", "Programming Language :: Python :: 3 :: Only", "Topic :: Scientific/Engineering", ], python_requires=f">={REQUIRED_MAJOR}.{REQUIRED_MINOR}.{REQUIRED_MICRO}", )
canife-main
FLSim/setup.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree.
canife-main
FLSim/examples/__init__.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. """ """ import copy import json import os import random from typing import Any, Iterator, List, Tuple import flsim.configs # noqa import hydra # @manual import numpy as np import torch import torch.nn as nn from flsim.interfaces.metrics_reporter import Channel from flsim.utils.config_utils import maybe_parse_json_config from flsim.utils.example_utils import ( DataLoader, DataProvider, FLModel, LEAFDataLoader, LEAFDataProvider, MetricsReporter, Resnet18, SequentialSharder, SimpleConvNet, ) from hydra.utils import instantiate from omegaconf import DictConfig, OmegaConf from PIL import Image from torch.utils.data import Dataset from torchvision import transforms from torchvision.datasets import ImageFolder from torchvision.datasets.cifar import CIFAR10 from canife.utils import TextProcessorSent140, TextProcessorShakes, get_plot_path IMAGE_SIZE = 32 # Datasets class ShakespeareDataset(Dataset): SEED = 7 def __init__( self, data_root=None, num_users=None, ): self.text_processor = TextProcessorShakes() with open(data_root, "r") as f: dataset = json.load(f) user_ids = dataset["users"] random.seed(self.SEED) num_users = num_users if num_users is not None else len(user_ids) user_ids = random.sample(user_ids, min(len(user_ids), num_users)) print(f"Creating dataset with {num_users} users") # Filter train and test datasets based on user_ids list self.dataset = dataset self.data = {} self.targets = {} # Populate self.data and self.targets for user_id, user_data in self.dataset["user_data"].items(): if user_id not in user_ids: continue self.data[user_id] = list(user_data["x"]) self.targets[user_id] = list(user_data["y"]) def __iter__(self) -> Iterator[Tuple[List[torch.Tensor], List[Any]]]: for user_id in self.data.keys(): yield self.__getitem__(user_id) def __getitem__(self, user_id: str) -> Tuple[List[torch.Tensor], List[Any]]: if user_id not in self.data or user_id not in self.targets: raise IndexError(f"User {user_id} is not in dataset") user_utterances = self.process_x(self.data[user_id]) user_targets = self.process_y(self.targets[user_id]) return user_utterances, user_targets def __len__(self) -> int: return len(self.data) def get_user_ids(self): return self.data.keys() def process_x(self, raw_x_batch): x_batch = [self.text_processor.word_to_indices(word) for word in raw_x_batch] x_batch = torch.LongTensor(x_batch) return x_batch def process_y(self, raw_y_batch): y_batch = [self.text_processor.letter_to_vec(c) for c in raw_y_batch] return y_batch class CelebaDataset(Dataset): def __init__( self, data_root, image_root, num_users=None, transform=None, target_transform=None, ): with open(data_root, "r") as f: self.dataset = json.load(f) user_ids = self.dataset["users"] num_users = num_users if num_users is not None else len(user_ids) user_ids = random.sample(user_ids, min(len(user_ids), num_users)) self.transform = transform self.target_transform = target_transform self.image_root = image_root self.image_folder = ImageFolder(image_root, transform) self.data = {} self.targets = {} # Populate self.data and self.targets for user_id, user_data in self.dataset["user_data"].items(): if user_id in user_ids: self.data[user_id] = [ int(os.path.splitext(img_path)[0]) for img_path in user_data["x"] ] self.targets[user_id] = list(user_data["y"]) def __iter__(self) -> Iterator[Tuple[List[torch.Tensor], List[Any]]]: for user_id in self.data.keys(): yield self.__getitem__(user_id) def __getitem__(self, user_id: str) -> Tuple[List[torch.Tensor], List[Any]]: if user_id not in self.data or user_id not in self.targets: raise IndexError(f"User {user_id} is not in dataset") user_imgs = [] for image_index in self.data[user_id]: user_imgs.append(self.image_folder[image_index - 1][0]) user_targets = self.targets[user_id] if self.target_transform is not None: user_targets = [self.target_transform(target) for target in user_targets] return user_imgs, user_targets def __len__(self) -> int: return len(self.data) class Sent140Dataset(Dataset): def __init__(self, data_root, max_seq_len): self.data_root = data_root self.max_seq_len = max_seq_len self.text_processor = TextProcessorSent140() self.vocab_size = self.text_processor.vocab_size self.embedding_size = 300 with open(data_root, "r") as f: self.dataset = json.load(f) self.data = {} self.targets = {} self.num_classes = 2 # Populate self.data and self.targets for user_id, user_data in self.dataset["user_data"].items(): self.data[user_id] = self.process_x(list(user_data["x"])) self.targets[user_id] = self.process_y(list(user_data["y"])) def __len__(self): return len(self.data) def __iter__(self): for user_id in self.data.keys(): yield self.__getitem__(user_id) def __getitem__(self, user_id: str): if user_id not in self.data or user_id not in self.targets: raise IndexError(f"User {user_id} is not in dataset") return self.data[user_id], self.targets[user_id] def process_x(self, raw_x_batch): x_batch = [e[4] for e in raw_x_batch] x_batch = [self.text_processor.line_to_indices(e, self.max_seq_len) for e in x_batch] x_batch = torch.LongTensor(x_batch) return x_batch def process_y(self, raw_y_batch): y_batch = [int(e) for e in raw_y_batch] return y_batch class FemnistDatasetChunked(Dataset): IMAGE_SIZE = (28, 28) def __init__( self, data_root, num_users=None, transform=None, target_transform=None, ): with open(data_root, "r") as f: dataset = json.load(f) user_ids = [] for _, chunk_data in dataset: user_ids.extend(list(chunk_data["user_data"].keys())) num_users = num_users if num_users is not None else len(user_ids) user_ids = random.sample(user_ids, min(len(user_ids), num_users)) print(f"Creating dataset with {num_users} users") self.transform = transform self.transform = transform self.target_transform = target_transform self.data = {} self.targets = {} # Populate self.data and self.targets for _, chunk_data in dataset: for user_id in user_ids: if user_id in set(chunk_data["users"]): self.data[user_id] = [ np.array(img) for img in chunk_data["user_data"][user_id]["x"] ] self.targets[user_id] = list(chunk_data["user_data"][user_id]["y"]) def __iter__(self) -> Iterator[Tuple[List[torch.Tensor], List[Any]]]: for user_id in self.data.keys(): yield self.__getitem__(user_id) def __getitem__(self, user_id: str) -> Tuple[List[torch.Tensor], List[Any]]: if user_id not in self.data or user_id not in self.targets: return [], [] user_imgs, user_targets = self.data[user_id], self.targets[user_id] user_imgs = [ Image.fromarray(img.reshape(FemnistDataset.IMAGE_SIZE)) for img in user_imgs ] user_imgs = [self.transform(img) for img in user_imgs] if self.target_transform is not None: user_targets = [self.target_transform(target) for target in user_targets] return user_imgs, user_targets def __len__(self) -> int: return len(self.data) class FemnistDataset(Dataset): IMAGE_SIZE = (28, 28) def __init__( self, data_root, num_users=None, transform=None, target_transform=None, ): with open(data_root, "r") as f: dataset = json.load(f) user_ids = dataset["users"] num_users = num_users if num_users is not None else len(user_ids) user_ids = random.sample(user_ids, min(len(user_ids), num_users)) print(f"Creating dataset with {num_users} users") self.transform = transform self.transform = transform self.target_transform = target_transform self.data = {} self.targets = {} # Populate self.data and self.targets for user_id in user_ids: if user_id in set(dataset["users"]): self.data[user_id] = [ np.array(img) for img in dataset["user_data"][user_id]["x"] ] self.targets[user_id] = list(dataset["user_data"][user_id]["y"]) def __iter__(self) -> Iterator[Tuple[List[torch.Tensor], List[Any]]]: for user_id in self.data.keys(): yield self.__getitem__(user_id) def __getitem__(self, user_id: str) -> Tuple[List[torch.Tensor], List[Any]]: if user_id not in self.data or user_id not in self.targets: return [], [] user_imgs, user_targets = self.data[user_id], self.targets[user_id] user_imgs = [ Image.fromarray(img.reshape(FemnistDataset.IMAGE_SIZE)) for img in user_imgs ] user_imgs = [self.transform(img) for img in user_imgs] if self.target_transform is not None: user_targets = [self.target_transform(target) for target in user_targets] return user_imgs, user_targets def __len__(self) -> int: return len(self.data) # NLP Models class Sent140StackedLSTMModel(nn.Module): def __init__( self, seq_len, num_classes, emb_size, n_hidden, vocab_size, dropout_rate, **kwargs ): super(Sent140StackedLSTMModel, self).__init__() self.seq_len = seq_len self.num_classes = num_classes self.n_hidden = n_hidden self.vocab_size = vocab_size self.emb_size = emb_size self.dropout_rate = dropout_rate self.embedding = nn.Embedding(self.vocab_size, self.emb_size) self.stacked_lstm = nn.LSTM( self.emb_size, self.n_hidden, 2, batch_first=True, dropout=self.dropout_rate ) self.fc1 = nn.Linear(self.n_hidden, self.num_classes) self.dropout = nn.Dropout(p=self.dropout_rate) # self.out = nn.Linear(128, self.num_classes) def set_embedding_weights(self, emb_matrix, trainable=False): self.embedding.weight = torch.nn.Parameter(emb_matrix) if not trainable: self.embedding.weight.requires_grad = False def forward(self, features, input_embeds=None): # seq_lens = torch.sum(features != (self.vocab_size - 1), 1) - 1 if features is not None: x = self.embedding(features) else: x = input_embeds outputs, _ = self.stacked_lstm(x) # outputs = outputs[torch.arange(outputs.size(0)), seq_lens] pred = self.fc1(self.dropout(outputs[:, -1])) return pred class ShakespeareModel(nn.Module): def __init__(self, seq_len, num_classes, n_hidden, dropout_rate=0.0, **kwargs): super(ShakespeareModel, self).__init__() self.seq_len = seq_len self.num_classes = num_classes # Number of characters supported self.n_hidden = n_hidden self.dropout_rate = dropout_rate self.embedding = nn.Embedding(self.num_classes, 8) self.stacked_lstm = nn.LSTM( 8, self.n_hidden, 2, batch_first=True, dropout=self.dropout_rate ) self.out = nn.Linear(self.n_hidden, self.num_classes) def forward(self, features, input_embeds=None): if features is not None: x = self.embedding(features) else: x = input_embeds outputs, _ = self.stacked_lstm(x) pred = self.out(outputs[:, -1]) return pred # Data providers def build_data_provider_shakespeare(data_config): # Local testing # train_split = "/data/train/all_data_0_2_keep_0_train_9.json" # test_split = "/data/test/all_data_0_2_keep_0_test_9.json" # Full splits train_split = "/data/train/all_data_0_0_keep_0_train_9.json" test_split = "/data/test/all_data_0_0_keep_0_test_9.json" train_dataset = ShakespeareDataset(data_root=data_config.data_root + train_split) test_dataset = ShakespeareDataset(data_root=data_config.data_root + test_split) dataloader = LEAFDataLoader( train_dataset, test_dataset, test_dataset, batch_size=data_config.local_batch_size, drop_last=True, ) data_provider = LEAFDataProvider(dataloader) return data_provider def build_data_provider_sent140( local_batch_size, vocab_size, num_users, user_dist, max_seq_len, drop_last, data_path ): train_dataset = Sent140Dataset( data_root=data_path + "/data/train/all_data_0_15_keep_1_train_6.json", max_seq_len=max_seq_len, ) eval_dataset = Sent140Dataset( data_root=data_path + "/data/test/all_data_0_15_keep_1_test_6.json", max_seq_len=max_seq_len, ) test_dataset = Sent140Dataset( data_root=data_path + "/data/test/all_data_0_15_keep_1_test_6.json", max_seq_len=max_seq_len, ) dataloader = LEAFDataLoader( train_dataset, eval_dataset, test_dataset, batch_size=local_batch_size, drop_last=drop_last, ) data_provider = LEAFDataProvider(dataloader) return data_provider, train_dataset.vocab_size, train_dataset.embedding_size def build_data_provider_cifar10(data_root, local_batch_size, examples_per_user, drop_last: bool = False, disable_aug=False): if disable_aug: transform_list = [transforms.Resize((IMAGE_SIZE, IMAGE_SIZE)), transforms.ToTensor()] else: transform_list = [ transforms.Resize(IMAGE_SIZE), transforms.CenterCrop(IMAGE_SIZE), transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), ] transform = transforms.Compose(transform_list) train_dataset = CIFAR10( root=data_root, train=True, download=False, transform=transform ) val_dataset = CIFAR10( root=data_root, train=False, download=False, transform=transform ) test_dataset = CIFAR10( root=data_root, train=False, download=False, transform=transform ) sharder = SequentialSharder(examples_per_shard=examples_per_user) fl_data_loader = DataLoader( train_dataset, val_dataset, test_dataset, sharder, local_batch_size, drop_last ) data_provider = DataProvider(fl_data_loader) print(f"Clients in total: {data_provider.num_train_users()}") return data_provider def build_data_provider_celeba(data_config, trainer_config, disable_aug=False): IMAGE_SIZE: int = 32 if disable_aug: IMAGE_SIZE = 128 transform_list = [transforms.Resize((IMAGE_SIZE, IMAGE_SIZE)), transforms.ToTensor()] else: transform_list = [ transforms.Resize(IMAGE_SIZE), transforms.CenterCrop(IMAGE_SIZE), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ] transform = transforms.Compose(transform_list) # Local testing # train_split = "/data/train/all_data_0_01_keep_0_train_9.json" if not "celeba_iid" in trainer_config.args.dataset else "/data/train/all_data_0_01_01_keep_1_train_9.json" # test_split = "/data/test/all_data_0_01_keep_0_test_9.json" if not "celeba_iid" in trainer_config.args.dataset else "/data/test/all_data_0_01_01_keep_1_test_9.json" # GPU Debug (Non-IID) # train_split = "/data/train/all_data_0_1_keep_1_train_9.json" # test_split = "/data/test/all_data_0_1_keep_1_test_9.json" train_split = "/data/train/all_data_0_0_keep_0_train_9.json" if "celeba_iid" not in trainer_config.args.dataset else "/data/train/all_data_0_0_0_keep_0_train_9_iid.json" test_split = "/data/test/all_data_0_0_keep_0_test_9.json" if "celeba_iid" not in trainer_config.args.dataset else "/data/test/all_data_0_0_0_keep_0_test_9_iid.json" train_dataset = CelebaDataset( # data_root arg should be leaf/celeba data_root=data_config.data_root + train_split, image_root=data_config.data_root+"/data/raw/", transform=transform, ) test_dataset = CelebaDataset( data_root=data_config.data_root + test_split, transform=transform, image_root=train_dataset.image_root, ) print( f"Created datasets with {len(train_dataset)} train users and {len(test_dataset)} test users" ) dataloader = LEAFDataLoader( train_dataset, test_dataset, test_dataset, batch_size=data_config.local_batch_size, drop_last=data_config.drop_last, ) # data_provider = LEAFDataProvider(dataloader) data_provider = DataProvider(dataloader) print(f"Training clients in total: {data_provider.num_train_users()}") return data_provider def build_data_provider_femnist(data_config, disable_aug=False): if disable_aug: transform_list = [transforms.ToTensor()] else: transform_list = [transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)),] transform = transforms.Compose(transform_list) # Local debugging train_split = data_config.data_root + "/data/train/all_data_0_niid_05_keep_0_train_9.json" test_split = data_config.data_root + "/data/test/all_data_0_niid_05_keep_0_test_9.json" train_dataset = FemnistDataset( data_root=train_split, transform=transform, ) test_dataset = FemnistDataset( data_root=test_split, transform=transform, ) print( f"Created datasets with {len(train_dataset)} train users and {len(test_dataset)} test users" ) dataloader = LEAFDataLoader( train_dataset, test_dataset, test_dataset, batch_size=data_config.local_batch_size, ) data_provider = LEAFDataProvider(dataloader) print(f"Training clients in total: {data_provider.num_train_users()}") return data_provider def _get_checkpoint_path(cfg): filename = cfg.args.checkpoint_path filename += f"/FLSim_dp={cfg.args.dp_level}_model={cfg.args.model_arch}_dataset={cfg.args.dataset}_num_clients={cfg.args.users_per_round}_test_size={cfg.args.local_batch_size}" filename += f"_insert_test_acc={cfg.args.canary_insert_test_acc}_insert_train_acc={cfg.args.canary_insert_train_acc}_client_epochs={cfg.args.client_epochs}" if cfg.args.epsilon != -1 or cfg.args.sigma != 0: if cfg.args.epsilon != -1: filename += f"_private_eps={cfg.args.epsilon}_delta={cfg.args.delta}" else: filename += f"_private_sigma={cfg.args.sigma}_delta={cfg.args.delta}" filename += ".tar" return filename def _load_checkpoint(trainer_cfg, model, device="cpu"): checkpoint_path = _get_checkpoint_path(trainer_cfg) print(f"\n====== Attempting to load checkpoint {checkpoint_path} ======") checkpoint = {} try: checkpoint = torch.load(checkpoint_path, map_location=torch.device(device)) model.load_state_dict(checkpoint["state_dict"]) if "epsilon" not in checkpoint: checkpoint["epsilon"] = float("inf") if "delta" not in checkpoint: checkpoint["delta"] = max(0, trainer_cfg.args.delta) if "noise_multiplier" not in checkpoint: checkpoint["noise_multiplier"] = max(0, trainer_cfg.args.sigma) if "steps" not in checkpoint: checkpoint["steps"] = -1 # Let CanarySyncTrainer compute this if "train_acc" not in checkpoint: checkpoint["train_acc"] = 0 if "test_acc" not in checkpoint: checkpoint["test_acc"] = 0 print(f"Checkpointed FL model loaded successfully epoch={checkpoint['epoch']}, round={checkpoint['round']}") print(f"Checkpointed model DP guarantees (eps, delta)=({checkpoint['epsilon']}, {checkpoint['delta']}) sigma={checkpoint['noise_multiplier']}") # TODO: Rework this? trainer_cfg.args.canary_insert_epoch = 1 trainer_cfg.args.canary_insert_test_acc = -1 trainer_cfg.args.canary_insert_train_acc = -1 except FileNotFoundError: print("Checkpoint not found for the specific combination of parameters, resorting to training model from scratch") return checkpoint def create_model(model_config, data_config, in_channels, vocab_size, emb_size): if model_config.model_arch == "resnet": model = Resnet18(num_classes=model_config.num_classes, in_channels=in_channels) elif model_config.model_arch == "lstm": model = Sent140StackedLSTMModel( seq_len=data_config.max_seq_len, num_classes=model_config.num_classes, emb_size=emb_size, n_hidden=model_config.n_hidden, vocab_size=vocab_size, dropout_rate=model_config.dropout, ) elif model_config.model_arch == "shakes_lstm": model = ShakespeareModel( seq_len=model_config.seq_len, n_hidden=model_config.n_hidden, num_classes=model_config.num_classes, dropout_rate=model_config.dropout, ) else: model = SimpleConvNet(num_classes=model_config.num_classes, in_channels=in_channels, dropout_rate=model_config.dropout) return model def create_data_provider(trainer_config, data_config): in_channels, vocab_size, emb_size = 0, 0, 0 if trainer_config.args.dataset == "CIFAR10": data_provider = build_data_provider_cifar10( data_root=data_config.data_root, local_batch_size=data_config.local_batch_size, examples_per_user=data_config.examples_per_user, drop_last=False, disable_aug=trainer_config.args.prettify_samples ) in_channels = 3 elif "celeba" in trainer_config.args.dataset: data_provider = build_data_provider_celeba(data_config, trainer_config, disable_aug=trainer_config.args.prettify_samples) in_channels = 3 elif "femnist" in trainer_config.args.dataset: data_provider = build_data_provider_femnist(data_config, disable_aug=trainer_config.args.prettify_samples) in_channels = 1 elif "shakespeare" in trainer_config.args.dataset: data_provider = build_data_provider_shakespeare(data_config) else: data_provider, vocab_size, emb_size = build_data_provider_sent140( local_batch_size=data_config.local_batch_size, vocab_size=data_config.vocab_size, num_users=data_config.num_users, user_dist=data_config.user_dist, max_seq_len=data_config.max_seq_len, drop_last=False, data_path=data_config.data_root, ) return data_provider, in_channels, vocab_size, emb_size # Main def main_worker( trainer_config, data_config, model_config, use_cuda_if_available: bool = True, distributed_world_size: int = 1, ) -> None: original_trainer_config = copy.deepcopy(trainer_config) # If loading checkpoints, the trainer config is modified to change canary insert epochs to 1 emb_size, vocab_size = 0,0 # For sent140 checkpoint_path = _get_checkpoint_path(trainer_config) if (trainer_config.args.fl_load_checkpoint) and not os.path.isfile(checkpoint_path): print(f"Checkpoint {checkpoint_path} does not exist, experiment exiting early...") return if trainer_config.checkpoint_only: print(f"Checkpoint only run - will save checkpoint as {checkpoint_path}") data_provider, in_channels, vocab_size, emb_size = create_data_provider(trainer_config, data_config) for exp_num in range(0, data_config.canary_iters): torch.cuda.empty_cache() trainer_config = copy.deepcopy(original_trainer_config) if not data_config.debug_config: trainer_config["plot_path"] = get_plot_path(trainer_config.args, exp_num=exp_num, file_suffix="") trainer_config["result_path"] = get_plot_path(trainer_config.args, exp_num, ".tar") model = create_model(model_config, data_config, in_channels, vocab_size, emb_size) print(model) cuda_enabled = torch.cuda.is_available() and use_cuda_if_available device = torch.device(f"cuda:{0}" if cuda_enabled else "cpu") checkpoint = {} if trainer_config.load_checkpoint: checkpoint = _load_checkpoint(trainer_config, model, device) global_model = FLModel(model, device) if cuda_enabled: global_model.fl_cuda() trainer = instantiate(trainer_config, model=global_model, cuda_enabled=cuda_enabled) metrics_reporter = MetricsReporter([Channel.TENSORBOARD, Channel.STDOUT]) final_model, eval_score = trainer.train( data_provider=data_provider, metrics_reporter=metrics_reporter, num_total_users=data_provider.num_train_users(), distributed_world_size=1, checkpoint=checkpoint ) if trainer_config.checkpoint_only and not trainer.insert_acc_achieved: trainer.logger.info("Failed to achieve insert accuracy, checkpointing model anyway...") trainer._checkpoint_model(trainer_config.epochs, 1, final=True) if not hasattr(trainer, "canary_analyser") and data_config.canary_iters > 1: trainer.logger.info("Experiment ended early - either checkpoint only or model failed to reach insertion epoch/accuracy for canary testing") return @hydra.main(config_path=None, config_name="celeba_config", version_base="1.1") def run(cfg: DictConfig) -> None: print(OmegaConf.to_yaml(cfg)) trainer_config = cfg.trainer data_config = cfg.data model_config = cfg.model main_worker( trainer_config, data_config, model_config, cfg.use_cuda_if_available, cfg.distributed_world_size, ) if __name__ == "__main__": cfg = maybe_parse_json_config() run(cfg)
canife-main
FLSim/examples/canary_example.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. """In this tutorial, we will train a binary classifier on LEAF's CelebA dataset with FLSim. Before running this file, you need to download the dataset and partition the data by users. 1. Clone the leaf dataset by running `git clone https://github.com/TalwalkarLab/leaf.git` 2. Change direectory to celeba: `cd leaf/data/celeba || exit` 3. Download the data from http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html - Download or request the metadata files `identity_CelebA.txt` and `list_attr_celeba.txt`, and place them inside the data/raw folder. - Download the celebrity faces dataset from the same site. Place the images in a folder named `img_align_celeba` in the same folder as above. 4. Run the pre-processing script: - `./preprocess.sh --sf 0.01 -s niid -t 'user' --tf 0.90 -k 1 --spltseed 1` Typical usage example: python3 celeba_example.py --config-file configs/celeba_config.json """ import json import os import random from typing import Any, Iterator, List, Tuple import flsim.configs # noqa import hydra # @manual import torch from flsim.interfaces.metrics_reporter import Channel from flsim.utils.config_utils import maybe_parse_json_config from flsim.utils.example_utils import ( DataProvider, FLModel, LEAFDataLoader, MetricsReporter, Resnet18, SimpleConvNet, ) from hydra.utils import instantiate from omegaconf import DictConfig, OmegaConf from torch.utils.data import Dataset from torchvision import transforms from torchvision.datasets import ImageFolder from canife.utils import get_plot_path class CelebaDataset(Dataset): def __init__( self, data_root, image_root, num_users=None, transform=None, target_transform=None, ): with open(data_root, "r+") as f: self.dataset = json.load(f) user_ids = self.dataset["users"] num_users = num_users if num_users is not None else len(user_ids) user_ids = random.sample(user_ids, min(len(user_ids), num_users)) self.transform = transform self.target_transform = target_transform self.image_root = image_root self.image_folder = ImageFolder(image_root, transform) self.data = {} self.targets = {} # Populate self.data and self.targets for user_id, user_data in self.dataset["user_data"].items(): if user_id in user_ids: self.data[user_id] = [ int(os.path.splitext(img_path)[0]) for img_path in user_data["x"] ] self.targets[user_id] = list(user_data["y"]) def __iter__(self) -> Iterator[Tuple[List[torch.Tensor], List[Any]]]: for user_id in self.data.keys(): yield self.__getitem__(user_id) def __getitem__(self, user_id: str) -> Tuple[List[torch.Tensor], List[Any]]: if user_id not in self.data or user_id not in self.targets: raise IndexError(f"User {user_id} is not in dataset") user_imgs = [] for image_index in self.data[user_id]: user_imgs.append(self.image_folder[image_index - 1][0]) user_targets = self.targets[user_id] if self.target_transform is not None: user_targets = [self.target_transform(target) for target in user_targets] return user_imgs, user_targets def __len__(self) -> int: return len(self.data) def build_data_provider(data_config, trainer_config): IMAGE_SIZE: int = 32 transform = transforms.Compose( [ transforms.Resize(IMAGE_SIZE), transforms.CenterCrop(IMAGE_SIZE), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ] ) # Local testing # train_split = "/data/train/all_data_0_01_keep_0_train_9.json" if "celeba_iid" not in trainer_config.args.dataset else "/data/train/all_data_0_01_01_keep_0_train_9_iid.json" # test_split = "/data/test/all_data_0_01_keep_0_test_9.json" if "celeba_iid" not in trainer_config.args.dataset else "/data/test/all_data_0_01_01_keep_0_test_9_iid.json" train_split = "/data/train/all_data_0_0_keep_0_train_9.json" if "celeba_iid" not in trainer_config.args.dataset else "/data/train/all_data_0_0_0_keep_0_train_9_iid.json" test_split = "/data/test/all_data_0_0_keep_0_test_9.json" if "celeba_iid" not in trainer_config.args.dataset else "/data/test/all_data_0_0_0_keep_0_test_9_iid.json" train_dataset = CelebaDataset( # data_root arg should be leaf/celeba data_root=data_config.data_root + train_split, image_root=data_config.data_root+"/data/raw/", transform=transform, ) test_dataset = CelebaDataset( data_root=data_config.data_root + test_split, transform=transform, image_root=train_dataset.image_root, ) print( f"Created datasets with {len(train_dataset)} train users and {len(test_dataset)} test users" ) dataloader = LEAFDataLoader( train_dataset, test_dataset, test_dataset, batch_size=data_config.local_batch_size, drop_last=data_config.drop_last, ) # data_provider = LEAFDataProvider(dataloader) data_provider = DataProvider(dataloader) print(f"Training clients in total: {data_provider.num_train_users()}") return data_provider def _get_checkpoint_path(cfg): filename = cfg.args.checkpoint_path filename += f"/FLSim_dp={cfg.args.dp_level}_model={cfg.args.model_arch}_dataset={cfg.args.dataset}_num_clients={cfg.args.users_per_round}_test_size={cfg.args.local_batch_size}" filename += f"_insert_test_acc={cfg.args.canary_insert_test_acc}_insert_train_acc={cfg.args.canary_insert_train_acc}" filename += ".tar" return filename def main_worker( trainer_config, data_config, model_config, use_cuda_if_available: bool = True, distributed_world_size: int = 1, ) -> None: checkpoint_path = _get_checkpoint_path(trainer_config) if (trainer_config.args.fl_load_checkpoint) and not os.path.isfile(checkpoint_path): print(f"Checkpoint {checkpoint_path} does not exist, experiment exiting early...") return data_provider = build_data_provider(data_config, trainer_config) for exp_num in range(0, data_config.canary_iters): torch.cuda.empty_cache() if not data_config.debug_config: trainer_config["plot_path"] = get_plot_path(trainer_config.args, exp_num=exp_num, file_suffix="") trainer_config["result_path"] = get_plot_path(trainer_config.args, exp_num, ".tar") if model_config.model_arch == "resnet": model = Resnet18(num_classes=2) else: model = SimpleConvNet(num_classes=2, dropout_rate=model_config.dropout) cuda_enabled = torch.cuda.is_available() and use_cuda_if_available device = torch.device(f"cuda:{0}" if cuda_enabled else "cpu") print(model) # pyre-fixme[6]: Expected `Optional[str]` for 2nd param but got `device`. global_model = FLModel(model, device) if cuda_enabled: global_model.fl_cuda() trainer = instantiate(trainer_config, model=global_model, cuda_enabled=cuda_enabled) metrics_reporter = MetricsReporter([Channel.TENSORBOARD, Channel.STDOUT]) final_model, eval_score = trainer.train( data_provider=data_provider, metrics_reporter=metrics_reporter, num_total_users=data_provider.num_train_users(), distributed_world_size=1, ) test_metrics = trainer.test( data_provider=data_provider, metrics_reporter=MetricsReporter([Channel.STDOUT]), ) if hasattr(trainer, "canary_analyser") and trainer.canary_analyser: trainer.accuracy_metrics["test"].append(test_metrics["Accuracy"]) trainer.canary_analyser.set_accuracy_metrics(trainer.accuracy_metrics) trainer.logger.info(f"Final accuracy metrics {trainer.accuracy_metrics}") trainer.logger.info("Analysing canary tests...") trainer.canary_analyser.analyse() else: if data_config.canary_iters > 1: trainer.logger.info("Experiment ended early - either checkpoint only or model failed to reach insertion epoch/accuracy for canary testing") return @hydra.main(config_path=None, config_name="celeba_config", version_base="1.1") def run(cfg: DictConfig) -> None: print(OmegaConf.to_yaml(cfg)) trainer_config = cfg.trainer data_config = cfg.data model_config = cfg.model main_worker( trainer_config, data_config, model_config, cfg.use_cuda_if_available, cfg.distributed_world_size, ) if __name__ == "__main__": cfg = maybe_parse_json_config() run(cfg)
canife-main
FLSim/examples/old_examples/celeba_example.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. """In this tutorial, we will train a binary sentiment classifier on LEAF's Sent140 dataset with FLSim. Before running this file, you need to download the dataset and partition the data by users. We provide the script get_data.sh for this purpose. Typical usage example: FedAvg python3 sent140_example.py --config-file configs/sent140_config.json FedBuff + SGDM python3 sent140_example.py --config-file configs/sent140_fedbuff_config.json """ import itertools import json import re import string import unicodedata from typing import List import flsim.configs # noqa import hydra # @manual import torch import torch.nn as nn from flsim.interfaces.metrics_reporter import Channel from flsim.utils.config_utils import maybe_parse_json_config from flsim.utils.example_utils import ( FLModel, LEAFDataLoader, LEAFDataProvider, MetricsReporter, ) from hydra.utils import instantiate from omegaconf import DictConfig, OmegaConf from torch.utils.data import Dataset class Sent140StackedLSTMModel(nn.Module): def __init__( self, seq_len, num_classes, emb_size, n_hidden, vocab_size, dropout ): super(Sent140StackedLSTMModel, self).__init__() self.seq_len = seq_len self.num_classes = num_classes self.n_hidden = n_hidden self.vocab_size = vocab_size self.emb_size = emb_size self.dropout = dropout self.embedding = nn.Embedding(self.vocab_size + 1, self.emb_size) self.stacked_lstm = nn.LSTM( self.emb_size, self.n_hidden, 2, batch_first=True, dropout=self.dropout ) self.fc1 = nn.Linear(self.n_hidden, self.num_classes) self.dropout = nn.Dropout(p=self.dropout) self.out = nn.Linear(128, self.num_classes) def set_embedding_weights(self, emb_matrix, trainable=False): self.embedding.weight = torch.nn.Parameter(emb_matrix) if not trainable: self.embedding.weight.requires_grad = False def forward(self, features): seq_lens = torch.sum(features != (self.vocab_size - 1), 1) - 1 x = self.embedding(features) outputs, _ = self.stacked_lstm(x) outputs = outputs[torch.arange(outputs.size(0)), seq_lens] pred = self.fc1(self.dropout(outputs)) return pred class Sent140Dataset(Dataset): def __init__(self, data_root, max_seq_len): self.data_root = data_root self.max_seq_len = max_seq_len self.all_letters = {c: i for i, c in enumerate(string.printable)} self.num_letters = len(self.all_letters) self.UNK: int = self.num_letters self.vocab_size = 9930 self.embedding_size = 300 with open(data_root, "r+") as f: self.dataset = json.load(f) self.data = {} self.targets = {} self.num_classes = 2 # Populate self.data and self.targets for user_id, user_data in self.dataset["user_data"].items(): self.data[user_id] = self.process_x(list(user_data["x"])) self.targets[user_id] = self.process_y(list(user_data["y"])) def __len__(self): return len(self.data) def __iter__(self): for user_id in self.data.keys(): yield self.__getitem__(user_id) def __getitem__(self, user_id: str): if user_id not in self.data or user_id not in self.targets: raise IndexError(f"User {user_id} is not in dataset") return self.data[user_id], self.targets[user_id] def unicodeToAscii(self, s): return "".join( c for c in unicodedata.normalize("NFD", s) if unicodedata.category(c) != "Mn" and c in self.all_letters ) def line_to_indices(self, line: str, max_seq_len: int): line_list = self.split_line(line) # split phrase in words line_list = line_list chars = self.flatten_list([list(word) for word in line_list]) # padding indices: List[int] = [ self.all_letters.get(letter, self.UNK) for i, letter in enumerate(chars) if i < max_seq_len ] indices = indices + ([self.UNK] * (max_seq_len - len(indices))) return indices def process_x(self, raw_x_batch): x_batch = [e[4] for e in raw_x_batch] x_batch = [self.line_to_indices(e, self.max_seq_len) for e in x_batch] x_batch = torch.LongTensor(x_batch) return x_batch def process_y(self, raw_y_batch): y_batch = [int(e) for e in raw_y_batch] return y_batch def split_line(self, line): """split given line/phrase into list of words Args: line: string representing phrase to be split Return: list of strings, with each string representing a word """ return re.findall(r"[\w']+|[.,!?;]", line) def flatten_list(self, nested_list): return list(itertools.chain.from_iterable(nested_list)) def build_data_provider_vocab( local_batch_size, vocab_size, num_users, user_dist, max_seq_len, drop_last, data_path ): train_dataset = Sent140Dataset( data_root=data_path + "/data/train/all_data_0_15_keep_1_train_6.json", max_seq_len=max_seq_len, ) eval_dataset = Sent140Dataset( data_root=data_path + "/data/test/all_data_0_15_keep_1_test_6.json", max_seq_len=max_seq_len, ) test_dataset = Sent140Dataset( data_root=data_path + "/data/test/all_data_0_15_keep_1_test_6.json", max_seq_len=max_seq_len, ) dataloader = LEAFDataLoader( train_dataset, eval_dataset, test_dataset, batch_size=local_batch_size, drop_last=drop_last, ) data_provider = LEAFDataProvider(dataloader) return data_provider, train_dataset.vocab_size, train_dataset.embedding_size def main_worker( trainer_config, model_config, data_config, use_cuda_if_available: bool = True, distributed_world_size: int = 1, ) -> None: data_provider, vocab_size, emb_size = build_data_provider_vocab( local_batch_size=data_config.local_batch_size, vocab_size=data_config.vocab_size, num_users=data_config.num_users, user_dist=data_config.user_dist, max_seq_len=data_config.max_seq_len, drop_last=False, data_path=data_config.data_root ) model = Sent140StackedLSTMModel( seq_len=data_config.max_seq_len, num_classes=model_config.num_classes, emb_size=emb_size, n_hidden=model_config.n_hidden, vocab_size=vocab_size, dropout_rate=model_config.dropout_rate, ) cuda_enabled = torch.cuda.is_available() and use_cuda_if_available device = torch.device(f"cuda:{0}" if cuda_enabled else "cpu") print(model) # pyre-fixme[6]: Expected `Optional[str]` for 2nd param but got `device`. global_model = FLModel(model, device) if cuda_enabled: global_model.fl_cuda() trainer = instantiate(trainer_config, model=global_model, cuda_enabled=cuda_enabled) metrics_reporter = MetricsReporter([Channel.TENSORBOARD, Channel.STDOUT]) final_model, eval_score = trainer.train( data_provider=data_provider, metrics_reporter=metrics_reporter, num_total_users=data_provider.num_train_users(), distributed_world_size=distributed_world_size, ) trainer.test( data_provider=data_provider, metrics_reporter=MetricsReporter([Channel.STDOUT]), ) @hydra.main(config_path=None, config_name="sent140_config", version_base="1.1") def run(cfg: DictConfig) -> None: print(OmegaConf.to_yaml(cfg)) trainer_config = cfg.trainer model_config = cfg.model data_config = cfg.data main_worker(trainer_config, model_config, data_config) if __name__ == "__main__": cfg = maybe_parse_json_config() run(cfg)
canife-main
FLSim/examples/old_examples/sent140_example.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. """In this tutorial, we will train an image classifier with FLSim to simulate a federated learning training environment. With this tutorial, you will learn the following key components of FLSim: 1. Data loading 2. Model construction 3. Trainer construction Typical usage example: python3 cifar10_example.py --config-file configs/cifar10_config.json """ import flsim.configs # noqa import hydra import torch from flsim.data.data_sharder import SequentialSharder from flsim.interfaces.metrics_reporter import Channel from flsim.utils.config_utils import maybe_parse_json_config from flsim.utils.example_utils import ( DataLoader, DataProvider, FLModel, MetricsReporter, Resnet18, SimpleConvNet, ) from hydra.utils import instantiate from omegaconf import DictConfig from torchvision import transforms from torchvision.datasets.cifar import CIFAR10 from canife.utils import get_plot_path IMAGE_SIZE = 32 def build_data_provider(data_root, local_batch_size, examples_per_user, drop_last: bool = False): transform = transforms.Compose( [ transforms.Resize(IMAGE_SIZE), transforms.CenterCrop(IMAGE_SIZE), transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), ] ) train_dataset = CIFAR10( root=data_root, train=True, download=False, transform=transform ) val_dataset = CIFAR10( root=data_root, train=False, download=False, transform=transform ) test_dataset = CIFAR10( root=data_root, train=False, download=False, transform=transform ) sharder = SequentialSharder(examples_per_shard=examples_per_user) fl_data_loader = DataLoader( train_dataset, val_dataset, test_dataset, sharder, local_batch_size, drop_last ) data_provider = DataProvider(fl_data_loader) print(f"Clients in total: {data_provider.num_train_users()}") return data_provider def main( trainer_config, data_config, model_config, use_cuda_if_available: bool = True, ) -> None: data_provider = build_data_provider( data_root=data_config.data_root, local_batch_size=data_config.local_batch_size, examples_per_user=data_config.examples_per_user, drop_last=False, ) for exp_num in range(0, data_config.canary_iters): if not data_config.debug_config: trainer_config["plot_path"] = get_plot_path(trainer_config.args, exp_num=exp_num, file_suffix="") trainer_config["result_path"] = get_plot_path(trainer_config.args, exp_num, ".tar") cuda_enabled = torch.cuda.is_available() and use_cuda_if_available device = torch.device(f"cuda:{0}" if cuda_enabled else "cpu") if model_config.model_arch == "resnet": model = Resnet18(num_classes=10) else: model = SimpleConvNet(num_classes=10, dropout_rate=model_config.dropout) # pyre-fixme[6]: Expected `Optional[str]` for 2nd param but got `device`. global_model = FLModel(model, device) if cuda_enabled: global_model.fl_cuda() trainer = instantiate(trainer_config, model=global_model, cuda_enabled=cuda_enabled) print(f"Created {trainer_config._target_}") metrics_reporter = MetricsReporter([Channel.TENSORBOARD, Channel.STDOUT]) final_model, eval_score = trainer.train( data_provider=data_provider, metrics_reporter=metrics_reporter, num_total_users=data_provider.num_train_users(), distributed_world_size=1, ) test_metrics = trainer.test( data_provider=data_provider, metrics_reporter=MetricsReporter([Channel.STDOUT]), ) if hasattr(trainer, "canary_analyser") and trainer.canary_analyser: trainer.accuracy_metrics["test"].append(test_metrics["Accuracy"]) trainer.canary_analyser.set_accuracy_metrics(trainer.accuracy_metrics) trainer.logger.info(f"Final accuracy metrics {trainer.accuracy_metrics}") trainer.logger.info("Analysing canary tests...") trainer.canary_analyser.analyse() else: if data_config.canary_iters > 1: trainer.logger.info("Experiment ended early - either checkpoint only or model failed to reach insertion epoch/accuracy for canary testing") return @hydra.main(config_path=None, config_name="cifar10_tutorial", version_base="1.1") def run(cfg: DictConfig) -> None: # print(OmegaConf.to_yaml(cfg)) trainer_config = cfg.trainer data_config = cfg.data model_config = cfg.model main( trainer_config, data_config, model_config ) if __name__ == "__main__": cfg = maybe_parse_json_config() run(cfg)
canife-main
FLSim/examples/old_examples/cifar10_example.py
End of preview. Expand in Data Studio
README.md exists but content is empty.
Downloads last month
32