Dataset Viewer
Auto-converted to Parquet
python_code
stringlengths
0
456k
#!/usr/bin/env python import confu parser = confu.standard_parser() parser.add_argument("--backend", dest="backend", default="auto", choices=["auto", "psimd", "scalar"]) parser.add_argument("--inference-only", dest="inference_only", default=False, action="store_true", help="Build only inference/forward pass functions to reduce library size") parser.add_argument("--convolution-only", dest="convolution_only", default=False, action="store_true", help="Build only convolution functions to reduce library size") def main(args): options = parser.parse_args(args) backend = options.backend if backend == "auto": if options.target.is_x86_64: backend = "x86_64" elif options.target.is_arm or options.target.is_arm64: backend = "arm" elif options.target.is_emscripten: backend = "scalar" else: backend = "psimd" build = confu.Build.from_options(options) macros = dict() if backend == "psimd": macros["NNP_BACKEND_PSIMD"] = 1 if backend == "scalar": macros["NNP_BACKEND_SCALAR"] = 1 export_macros = dict() export_macros["NNP_CONVOLUTION_ONLY"] = int(options.convolution_only) export_macros["NNP_INFERENCE_ONLY"] = int(options.inference_only) macros.update(export_macros) build.export_cpath("include", ["nnpack.h"]) with build.options(source_dir="src", macros=macros, deps={ (build.deps.pthreadpool, build.deps.cpuinfo, build.deps.fxdiv, build.deps.fp16): any, build.deps.psimd: backend == "psimd" or backend == "arm", }, extra_include_dirs={ ("src", "src/ref"): any, "src/x86_64-fma": options.target.is_x86_64 }): nnpack_objects = [ build.cc("init.c"), build.cc("convolution-inference.c"), ] if not options.convolution_only: # Fully-connected, pooling, Softmax, ReLU layers nnpack_objects += [ build.cc("fully-connected-inference.c"), build.cc("pooling-output.c"), build.cc("softmax-output.c"), build.cc("relu-output.c"), ] if not options.inference_only: # Training functions for fully-connected and ReLU layers nnpack_objects += [ build.cc("fully-connected-output.c"), build.cc("relu-input-gradient.c"), ] if not options.inference_only: # Training functions for convolutional layer nnpack_objects += [ build.cc("convolution-output.c"), build.cc("convolution-input-gradient.c"), build.cc("convolution-kernel-gradient.c"), ] if backend == "x86_64": arch_nnpack_objects = [ # Transformations build.peachpy("x86_64-fma/2d-fourier-8x8.py"), build.peachpy("x86_64-fma/2d-fourier-16x16.py"), build.peachpy("x86_64-fma/2d-winograd-8x8-3x3.py"), # Tuple GEMM build.peachpy("x86_64-fma/blas/s8gemm.py"), build.peachpy("x86_64-fma/blas/c8gemm.py"), build.peachpy("x86_64-fma/blas/s4c6gemm.py"), # Direct convolution build.peachpy("x86_64-fma/blas/conv1x1.py"), # BLAS microkernels build.peachpy("x86_64-fma/blas/sgemm.py"), ] if not options.convolution_only: arch_nnpack_objects += [ # Activations build.peachpy("x86_64-fma/softmax.py"), build.cc("x86_64-fma/softmax.c"), build.peachpy("x86_64-fma/relu.py"), # Pooling build.peachpy("x86_64-fma/max-pooling.py"), # BLAS microkernels build.peachpy("x86_64-fma/blas/sdotxf.py"), build.peachpy("x86_64-fma/blas/shdotxf.py"), ] elif backend == "scalar": arch_nnpack_objects = [ # Transformations build.cc("scalar/2d-fourier-8x8.c"), build.cc("scalar/2d-fourier-16x16.c"), build.cc("scalar/2d-winograd-8x8-3x3.c"), # Tuple GEMM build.cc("scalar/blas/s2gemm.c"), build.cc("scalar/blas/cgemm-conjb.c"), # Direct convolution build.cc("scalar/blas/conv1x1.c"), # BLAS microkernels build.cc("scalar/blas/sgemm.c"), ] if not options.inference_only: arch_nnpack_objects += [ # Tuple GEMM build.cc("scalar/blas/s2gemm-transc.c"), build.cc("scalar/blas/cgemm.c"), build.cc("scalar/blas/cgemm-conjb-transc.c"), ] if not options.convolution_only: arch_nnpack_objects += [ # Activations build.cc("scalar/relu.c"), build.cc("scalar/softmax.c"), # BLAS microkernels build.cc("scalar/blas/sdotxf.c"), build.cc("scalar/blas/shdotxf.c"), ] elif backend == "arm": from confu import arm with build.options(isa=arm.neon+arm.fp16 if options.target.is_arm else None): arch_nnpack_objects = [ # Transformations build.cc("psimd/2d-fourier-8x8.c"), build.cc("psimd/2d-fourier-16x16.c"), build.cc("neon/2d-winograd-8x8-3x3.c"), build.cc("neon/2d-winograd-8x8-3x3-fp16.c"), # Tuple GEMM build.cc("neon/blas/h4gemm.c"), build.cc("neon/blas/s4gemm.c"), build.cc("neon/blas/c4gemm-conjb.c"), build.cc("neon/blas/s4c2gemm-conjb.c"), # Direct convolution build.cc("neon/blas/conv1x1.c"), # BLAS microkernels build.cc("neon/blas/sgemm.c"), ] if not options.inference_only: arch_nnpack_objects += [ # Transformations build.cc("psimd/2d-winograd-8x8-3x3.c"), # Tuple GEMM build.cc("neon/blas/c4gemm.c"), build.cc("neon/blas/s4c2gemm.c"), build.cc("neon/blas/c4gemm-conjb-transc.c"), build.cc("neon/blas/s4c2gemm-conjb-transc.c"), ] if not options.convolution_only: arch_nnpack_objects += [ # ReLU and Softmax build.cc("neon/relu.c"), build.cc("psimd/softmax.c"), # BLAS microkernels build.cc("neon/blas/sdotxf.c"), build.cc("psimd/blas/shdotxf.c"), ] if options.target.is_arm: # Functions implemented in assembly arch_nnpack_objects += [ build.cc("neon/blas/h4gemm-aarch32.S"), build.cc("neon/blas/s4gemm-aarch32.S"), build.cc("neon/blas/sgemm-aarch32.S"), ] elif backend == "psimd": arch_nnpack_objects = [ # Transformations build.cc("psimd/2d-fourier-8x8.c"), build.cc("psimd/2d-fourier-16x16.c"), build.cc("psimd/2d-winograd-8x8-3x3.c"), # Tuple GEMM build.cc("psimd/blas/s4gemm.c"), build.cc("psimd/blas/c4gemm-conjb.c"), build.cc("psimd/blas/s4c2gemm-conjb.c"), # Direct convolution build.cc("psimd/blas/conv1x1.c"), # BLAS microkernels build.cc("psimd/blas/sgemm.c"), ] if not options.inference_only: arch_nnpack_objects += [ # Tuple GEMM build.cc("psimd/blas/c4gemm.c"), build.cc("psimd/blas/s4c2gemm.c"), build.cc("psimd/blas/c4gemm-conjb-transc.c"), build.cc("psimd/blas/s4c2gemm-conjb-transc.c"), ] if not options.convolution_only: arch_nnpack_objects += [ # Activations build.cc("psimd/relu.c"), build.cc("psimd/softmax.c"), # BLAS microkernels build.cc("psimd/blas/sdotxf.c"), build.cc("psimd/blas/shdotxf.c"), ] reference_layer_objects = [ build.cc("ref/convolution-output.c"), build.cc("ref/convolution-input-gradient.c"), build.cc("ref/convolution-kernel.c"), build.cc("ref/fully-connected-output.c"), build.cc("ref/max-pooling-output.c"), build.cc("ref/softmax-output.c"), build.cc("ref/relu-output.c"), build.cc("ref/relu-input-gradient.c"), ] reference_fft_objects = [ build.cc("ref/fft/aos.c"), build.cc("ref/fft/soa.c"), build.cc("ref/fft/forward-real.c"), build.cc("ref/fft/forward-dualreal.c"), build.cc("ref/fft/inverse-real.c"), build.cc("ref/fft/inverse-dualreal.c"), ] if backend == "x86_64": arch_fft_stub_objects = [ build.peachpy("x86_64-fma/fft-soa.py"), build.peachpy("x86_64-fma/fft-aos.py"), build.peachpy("x86_64-fma/fft-dualreal.py"), build.peachpy("x86_64-fma/ifft-dualreal.py"), build.peachpy("x86_64-fma/fft-real.py"), build.peachpy("x86_64-fma/ifft-real.py"), ] arch_winograd_stub_objects = [ build.peachpy("x86_64-fma/winograd-f6k3.py"), ] arch_math_stub_objects = [ ] elif backend == "scalar": arch_fft_stub_objects = [ build.cc("scalar/fft-aos.c"), build.cc("scalar/fft-soa.c"), build.cc("scalar/fft-real.c"), build.cc("scalar/fft-dualreal.c"), ] arch_winograd_stub_objects = [ build.cc("scalar/winograd-f6k3.c"), ] elif backend == "psimd" or backend == "arm": arch_fft_stub_objects = [ build.cc("psimd/fft-aos.c"), build.cc("psimd/fft-soa.c"), build.cc("psimd/fft-real.c"), build.cc("psimd/fft-dualreal.c"), ] if backend == "psimd": arch_winograd_stub_objects = [ build.cc("psimd/winograd-f6k3.c"), ] else: # ARM NEON Winograd transform optionally uses FP16 storage with build.options(isa=arm.neon+arm.fp16 if options.target.is_arm else None): arch_winograd_stub_objects = [ build.cc("neon/winograd-f6k3.c"), ] arch_math_stub_objects = [ build.cc("psimd/exp.c"), ] fft_objects = reference_fft_objects + arch_fft_stub_objects nnpack_objects = nnpack_objects + arch_nnpack_objects build.static_library("nnpack", nnpack_objects) # Build tests for micro-kernels. Link to the micro-kernels implementations with build.options(source_dir="test", extra_include_dirs="test", deps={ (build.deps.googletest, build.deps.cpuinfo, build.deps.clog, build.deps.fp16): any, "log": build.target.is_android}): build.unittest("fourier-reference-test", reference_fft_objects + [build.cxx("fourier/reference.cc")]) if backend == "x86_64": build.smoketest("fourier-test", reference_fft_objects + arch_fft_stub_objects + [build.cxx("fourier/x86_64-avx2.cc")]) build.smoketest("winograd-test", arch_winograd_stub_objects + arch_nnpack_objects + [build.cxx("winograd/x86_64-fma3.cc")]) build.smoketest("sgemm-test", arch_nnpack_objects + [build.cxx("sgemm/x86_64-fma3.cc")]) elif backend == "psimd": build.smoketest("fourier-test", reference_fft_objects + arch_fft_stub_objects + [build.cxx("fourier/psimd.cc")]) build.smoketest("winograd-test", arch_winograd_stub_objects + arch_nnpack_objects + [build.cxx("winograd/psimd.cc")]) build.smoketest("sgemm-test", arch_nnpack_objects + [build.cxx("sgemm/psimd.cc")]) elif backend == "arm": # No ARM-specific Fourier implementation; use PSIMD build.smoketest("fourier-test", reference_fft_objects + arch_fft_stub_objects + [build.cxx("fourier/psimd.cc")]) build.smoketest("winograd-test", arch_winograd_stub_objects + arch_nnpack_objects + [build.cxx("winograd/neon.cc")]) build.smoketest("sgemm-test", arch_nnpack_objects + [build.cxx("sgemm/neon.cc")]) build.smoketest("sxgemm-test", arch_nnpack_objects + [build.cxx("sxgemm/neon.cc")]) build.smoketest("hxgemm-test", arch_nnpack_objects + [build.cxx("hxgemm/neon.cc")]) elif backend == "scalar": build.smoketest("fourier-test", reference_fft_objects + arch_fft_stub_objects + [build.cxx("fourier/scalar.cc")]) build.smoketest("winograd-test", arch_winograd_stub_objects + arch_nnpack_objects + [build.cxx("winograd/scalar.cc")]) build.smoketest("sgemm-test", arch_nnpack_objects + [build.cxx("sgemm/scalar.cc")]) # Build test for layers. Link to the library. with build.options(source_dir="test", include_dirs="test", deps={ (build, build.deps.pthreadpool, build.deps.cpuinfo, build.deps.clog, build.deps.googletest.core, build.deps.fp16): any, "rt": build.target.is_linux, "log": build.target.is_android, }): if not options.inference_only: build.smoketest("convolution-output-smoketest", reference_layer_objects + [build.cxx("convolution-output/smoke.cc")]) build.unittest("convolution-output-alexnet-test", reference_layer_objects + [build.cxx("convolution-output/alexnet.cc")]) build.unittest("convolution-output-vgg-a-test", reference_layer_objects + [build.cxx("convolution-output/vgg-a.cc")]) build.unittest("convolution-output-overfeat-fast-test", reference_layer_objects + [build.cxx("convolution-output/overfeat-fast.cc")]) build.smoketest("convolution-input-gradient-smoketest", reference_layer_objects + [build.cxx("convolution-input-gradient/smoke.cc")]) build.unittest("convolution-input-gradient-alexnet-test", reference_layer_objects + [build.cxx("convolution-input-gradient/alexnet.cc")]) build.unittest("convolution-input-gradient-vgg-a-test", reference_layer_objects + [build.cxx("convolution-input-gradient/vgg-a.cc")]) build.unittest("convolution-input-gradient-overfeat-fast-test", reference_layer_objects + [build.cxx("convolution-input-gradient/overfeat-fast.cc")]) build.smoketest("convolution-kernel-gradient-smoketest", reference_layer_objects + [build.cxx("convolution-kernel-gradient/smoke.cc")]) build.unittest("convolution-kernel-gradient-alexnet-test", reference_layer_objects + [build.cxx("convolution-kernel-gradient/alexnet.cc")]) build.unittest("convolution-kernel-gradient-vgg-a-test", reference_layer_objects + [build.cxx("convolution-kernel-gradient/vgg-a.cc")]) build.unittest("convolution-kernel-gradient-overfeat-fast-test", reference_layer_objects + [build.cxx("convolution-kernel-gradient/overfeat-fast.cc")]) build.smoketest("convolution-inference-smoketest", reference_layer_objects + [build.cxx("convolution-inference/smoke.cc")]) build.unittest("convolution-inference-alexnet-test", reference_layer_objects + [build.cxx("convolution-inference/alexnet.cc")]) build.unittest("convolution-inference-vgg-a-test", reference_layer_objects + [build.cxx("convolution-inference/vgg-a.cc")]) build.unittest("convolution-inference-overfeat-fast-test", reference_layer_objects + [build.cxx("convolution-inference/overfeat-fast.cc")]) if not options.convolution_only: build.unittest("fully-connected-inference-alexnet-test", reference_layer_objects + [build.cxx("fully-connected-inference/alexnet.cc")]) build.unittest("fully-connected-inference-vgg-a-test", reference_layer_objects + [build.cxx("fully-connected-inference/vgg-a.cc")]) build.unittest("fully-connected-inference-overfeat-fast-test", reference_layer_objects + [build.cxx("fully-connected-inference/overfeat-fast.cc")]) if not options.inference_only: build.smoketest("fully-connected-output-smoketest", reference_layer_objects + [build.cxx("fully-connected-output/smoke.cc")]) build.unittest("fully-connected-output-alexnet-test", reference_layer_objects + [build.cxx("fully-connected-output/alexnet.cc")]) build.unittest("fully-connected-output-vgg-a-test", reference_layer_objects + [build.cxx("fully-connected-output/vgg-a.cc")]) build.unittest("fully-connected-output-overfeat-fast-test", reference_layer_objects + [build.cxx("fully-connected-output/overfeat-fast.cc")]) build.smoketest("max-pooling-output-smoketest", reference_layer_objects + [build.cxx("max-pooling-output/smoke.cc")]) build.unittest("max-pooling-output-vgg-a-test", reference_layer_objects + [build.cxx("max-pooling-output/vgg-a.cc")]) build.unittest("max-pooling-output-overfeat-fast", reference_layer_objects + [build.cxx("max-pooling-output/overfeat-fast.cc")]) build.unittest("relu-output-alexnet-test", reference_layer_objects + [build.cxx("relu-output/alexnet.cc")]) build.unittest("relu-output-vgg-a-test", reference_layer_objects + [build.cxx("relu-output/vgg-a.cc")]) build.unittest("relu-output-overfeat-fast-test", reference_layer_objects + [build.cxx("relu-output/overfeat-fast.cc")]) if not options.inference_only: build.unittest("relu-input-gradient-alexnet-test", reference_layer_objects + [build.cxx("relu-input-gradient/alexnet.cc")]) build.unittest("relu-input-gradient-vgg-a-test", reference_layer_objects + [build.cxx("relu-input-gradient/vgg-a.cc")]) build.unittest("relu-input-gradient-overfeat-fast-test", reference_layer_objects + [build.cxx("relu-input-gradient/overfeat-fast.cc")]) build.smoketest("softmax-output-smoketest", reference_layer_objects + [build.cxx("softmax-output/smoke.cc")]) build.unittest("softmax-output-imagenet-test", reference_layer_objects + [build.cxx("softmax-output/imagenet.cc")]) # Build automatic benchmarks with build.options(source_dir="bench", extra_include_dirs=["bench", "test"], macros=macros, deps={ (build, build.deps.pthreadpool, build.deps.cpuinfo, build.deps.clog, build.deps.fp16, build.deps.googlebenchmark): all, "rt": build.target.is_linux, "log": build.target.is_android}): build.benchmark("convolution-inference-bench", build.cxx("convolution-inference.cc")) build.benchmark("sgemm-bench", build.cxx("sgemm.cc")) build.benchmark("sxgemm-bench", build.cxx("sxgemm.cc")) build.benchmark("hxgemm-bench", build.cxx("hxgemm.cc")) build.benchmark("conv1x1-bench", build.cxx("conv1x1.cc")) build.benchmark("winograd-bench", build.cxx("winograd.cc")) # Build benchmarking utilities if not options.inference_only and not build.target.is_android: with build.options(source_dir="bench", extra_include_dirs="bench", macros=macros, deps={ (build, build.deps.pthreadpool, build.deps.cpuinfo, build.deps.clog): all, "rt": build.target.is_linux, "log": build.target.is_android}): support_objects = [build.cc("median.c")] if build.target.is_x86_64: support_objects += [build.peachpy("memread.py")] else: support_objects += [build.cc("memread.c")] if build.target.is_linux and build.target.is_x86_64: support_objects += [build.cc("perf_counter.c")] build.executable("transform-benchmark", [build.cc("transform.c")] + support_objects) build.executable("convolution-benchmark", [build.cc("convolution.c")] + support_objects) if not options.convolution_only: build.executable("fully-connected-benchmark", [build.cc("fully-connected.c")] + support_objects) build.executable("pooling-benchmark", [build.cc("pooling.c")] + support_objects) build.executable("relu-benchmark", [build.cc("relu.c")] + support_objects) return build if __name__ == "__main__": import sys main(sys.argv[1:]).generate()
#!/usr/bin/env python from __future__ import print_function def extract_time(line, prefix): if line.startswith(prefix): line = line[len(prefix):].lstrip() line = line[:line.index(" ms")].rstrip() return line def convolution(mode, batch_size, input_channels, output_channels, image_size, kernel_size, padding, algorithm, transform_strategy=None, threads=None, verbose=False, use_selldr=False): import subprocess if use_selldr: import os import sys nacl_sdk_dir = os.getenv("NACL_SDK_ROOT") if nacl_sdk_dir is None: print("Error: can not find Native Client SDK: set NACL_SDK_ROOT envorinment variable and try again", file=sys.stderr) sys.exit(1) benchmark_args = [os.path.join(nacl_sdk_dir, "tools", "sel_ldr.py"), "--", "bin/convolution-benchmark"] else: benchmark_args = ["bin/convolution-benchmark"] benchmark_args += [ "-m", mode, "-b", str(batch_size), "-ic", str(input_channels), "-oc", str(output_channels), "-is", str(image_size[0]), str(image_size[1]), "-ip", str(padding), "-ks", str(kernel_size[0]), str(kernel_size[1]), "-a", algorithm ] if mode == "inference" and transform_strategy is not None: benchmark_args += ["-ts", transform_strategy] if threads is not None: benchmark_args += ["-t", str(threads)] benchmark = subprocess.Popen(benchmark_args, stdout=subprocess.PIPE) benchmark_stdout, _ = benchmark.communicate() if benchmark.returncode == 0: output_lines = [line for line in benchmark_stdout.splitlines() if len(line)] total, input_transform, kernel_transform, output_transform, block_multiplication, overhead = None, None, None, None, None, None for output_line in output_lines: total = total or extract_time(output_line, "Time:") input_transform = input_transform or extract_time(output_line, "Input transform:") kernel_transform = kernel_transform or extract_time(output_line, "Kernel transform:") output_transform = output_transform or extract_time(output_line, "Output transform:") block_multiplication = block_multiplication or extract_time(output_line, "Block multiplication:") overhead = overhead or extract_time(output_line, "Overhead:") if verbose: return (total, input_transform, kernel_transform, output_transform, block_multiplication, overhead) else: return (total,) def fully_connected(mode, batch_size, input_channels, output_channels, threads=None, verbose=False, use_selldr=False): import subprocess if use_selldr: import os import sys nacl_sdk_dir = os.getenv("NACL_SDK_ROOT") if nacl_sdk_dir is None: print("Error: can not find Native Client SDK: set NACL_SDK_ROOT envorinment variable and try again", file=sys.stderr) sys.exit(1) benchmark_args = [os.path.join(nacl_sdk_dir, "tools", "sel_ldr.py"), "--", "bin/fully-connected-benchmark"] else: benchmark_args = ["bin/fully-connected-benchmark"] benchmark_args += [ "-m", mode, "-b", str(batch_size), "-ic", str(input_channels), "-oc", str(output_channels) ] if threads is not None: benchmark_args += ["-t", str(threads)] benchmark = subprocess.Popen(benchmark_args, stdout=subprocess.PIPE) benchmark_stdout, _ = benchmark.communicate() if benchmark.returncode == 0: output_lines = [line for line in benchmark_stdout.splitlines() if len(line)] total, input_transform, kernel_transform, block_multiplication, overhead = None, None, None, None, None for output_line in output_lines: total = total or extract_time(output_line, "Time:") input_transform = input_transform or extract_time(output_line, "Input packing:") kernel_transform = kernel_transform or extract_time(output_line, "Kernel packing:") block_multiplication = block_multiplication or extract_time(output_line, "Block multiplication:") overhead = overhead or extract_time(output_line, "Overhead:") if verbose: return (total, input_transform, kernel_transform, block_multiplication, overhead) else: return (total,) overfeat_fast_layers = [ ("conv2", 96, 256, (24, 24), (5, 5), 0), ("conv3", 256, 512, (12, 12), (3, 3), 1), ("conv4", 512, 1024, (12, 12), (3, 3), 1), ("conv5", 1024, 1024, (12, 12), (3, 3), 1), ("fc6", 36864, 3072), ("fc7", 3072, 4096), ("fc8", 4096, 1000), ] alexnet_layers = [ ("conv2", 64, 192, (27, 27), (5, 5), 2), ("conv3", 192, 384, (13, 13), (3, 3), 1), ("conv4", 384, 256, (13, 13), (3, 3), 1), ("conv5", 256, 256, (13, 13), (3, 3), 1), ("fc6", 12544, 4096), ("fc7", 4096, 4096), ("fc8", 4096, 1000), ] vgg_a_layers = [ ("conv1", 3, 64, (224, 224), (3, 3), 1), ("conv2", 64, 128, (112, 112), (3, 3), 1), ("conv3.1", 128, 256, (56, 56), (3, 3), 1), ("conv3.2", 256, 256, (56, 56), (3, 3), 1), ("conv4.1", 256, 512, (28, 28), (3, 3), 1), ("conv4.2", 512, 512, (28, 28), (3, 3), 1), ("conv5", 512, 512, (14, 14), (3, 3), 1), ("fc6", 25088, 4096), ("fc7", 4096, 4096), ("fc8", 4096, 1000), ] if __name__ == "__main__": import argparse parser = argparse.ArgumentParser( description="NNPACK benchmarking script") parser.add_argument("--enable-selldr", dest="use_selldr", action="store_true") parser.add_argument("-l", "--layer", dest="layer", required=True, choices=["convolution", "fully-connected", "pooling"]) parser.add_argument("-n", "--network", dest="network", required=True, choices=["vgg-a", "alexnet", "overfeat-fast"]) parser.add_argument("-m", "--mode", dest="mode", required=True, choices=["inference", "output", "input-gradient", "kernel-gradient"]) parser.add_argument("--transform-strategy", dest="transform_strategy", default="compute", choices=["compute", "precompute"]) parser.add_argument("-b", "--batch", dest="batch", type=int) parser.add_argument("-t", "--threads", dest="threads") parser.add_argument("-v", "--verbose", dest="verbose", action="store_true", default=False) options = parser.parse_args() network_layers, default_batch = { "vgg-a": (vgg_a_layers, 64), "alexnet": (alexnet_layers, 128), "overfeat-fast": (overfeat_fast_layers, 128) }[options.network] layer_prefix = { "convolution": "conv", "fully-connected": "fc", "pooling": "pool" }[options.layer] network_layers = [layer for layer in network_layers if layer[0].startswith(layer_prefix)] batch = default_batch if options.batch is not None: batch = options.batch if batch != 1 and options.mode == "inference": raise ValueError("Non-unit batch {batch} is not allowed in inference mode".format(batch=batch)) elif options.mode == "inference": batch = 1 if options.transform_strategy is not None: if options.layer != "convolution": raise ValueError("Transform strategy {transform_strategy} is meaningless for non-convolutional layers".format(transform_strategy=transform_strategy)) elif options.mode != "inference": raise ValueError("Transform strategy {transform_strategy} is meaningless in non-inference mode".format(transform_strategy=transform_strategy)) if options.layer == "convolution": for name, input_channels, output_channels, image_size, kernel_size, padding in network_layers: measurements = [name] for algorithm in ["implicit-gemm", "ft8x8", "ft16x16", "wt8x8"]: if algorithm.startswith("wt") and kernel_size != (3, 3): continue measurements += list(convolution(options.mode, batch, input_channels, output_channels, image_size, kernel_size, padding, algorithm, transform_strategy=options.transform_strategy, threads=options.threads, verbose=options.verbose, use_selldr=options.use_selldr)) print("\t".join(map(str, measurements))) elif options.layer == "fully-connected": for name, input_channels, output_channels in network_layers: measurements = fully_connected(options.mode, batch, input_channels, output_channels, threads=options.threads, verbose=options.verbose, use_selldr=options.use_selldr) print("{name}\t{measurements}".format(name=name, measurements="\t".join(measurements)))
arg_mem = Argument(ptr(), "mem") arg_len = Argument(size_t, "n") with Function("read_memory", (arg_mem, arg_len)): reg_mem = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_mem, arg_mem) reg_len = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_len, arg_len) main_loop = Loop() SUB(reg_len, 64) JB(main_loop.end) with main_loop: MOVAPS(xmm0, [reg_mem]) ADD(reg_mem, 64) SUB(reg_len, 64) JAE(main_loop.begin) RETURN()
import fft.complex_soa arg_t = Argument(ptr(const_float_), name="t") arg_f = Argument(ptr(float_), name="f") with Function("nnp_fft16_soa__avx2", (arg_t, arg_f), target=uarch.default + isa.fma3 + isa.avx2): reg_t = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_t, arg_t) reg_f = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_f, arg_f) ymm_real = YMMRegister(), YMMRegister() ymm_imag = YMMRegister(), YMMRegister() for i, ymm_data in enumerate(ymm_real + ymm_imag): VMOVUPS(ymm_data, [reg_t + i * YMMRegister.size]) fft.complex_soa.fft16_within_rows(ymm_real, ymm_imag) for i, ymm_data in enumerate(ymm_real + ymm_imag): VMOVUPS([reg_f + i * YMMRegister.size], ymm_data) RETURN() with Function("nnp_fft8_soa__avx2", (arg_t, arg_f), target=uarch.default + isa.fma3 + isa.avx2): reg_t = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_t, arg_t) reg_f = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_f, arg_f) ymm_real, ymm_imag = YMMRegister(), YMMRegister() VMOVUPS(ymm_real, [reg_t]) VMOVUPS(ymm_imag, [reg_t + YMMRegister.size]) fft.complex_soa.fft8_within_rows(ymm_real, ymm_imag) VMOVUPS([reg_f], ymm_real) VMOVUPS([reg_f + YMMRegister.size], ymm_imag) RETURN() with Function("nnp_ifft8_soa__avx2", (arg_t, arg_f), target=uarch.default + isa.fma3 + isa.avx2): reg_t = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_t, arg_t) reg_f = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_f, arg_f) ymm_real, ymm_imag = YMMRegister(), YMMRegister() VMOVUPS(ymm_real, [reg_t]) VMOVUPS(ymm_imag, [reg_t + YMMRegister.size]) fft.complex_soa.fft8_within_rows(ymm_real, ymm_imag, transformation="inverse") VMOVUPS([reg_f], ymm_real) VMOVUPS([reg_f + YMMRegister.size], ymm_imag) RETURN() with Function("nnp_ifft16_soa__avx2", (arg_f, arg_t), target=uarch.default + isa.fma3 + isa.avx2): reg_f = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_f, arg_f) reg_t = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_t, arg_t) ymm_real = YMMRegister(), YMMRegister() ymm_imag = YMMRegister(), YMMRegister() for i, ymm_data in enumerate(ymm_real + ymm_imag): VMOVUPS(ymm_data, [reg_f + i * YMMRegister.size]) fft.complex_soa.ifft16_within_rows(ymm_real, ymm_imag) for i, ymm_data in enumerate(ymm_real + ymm_imag): VMOVUPS([reg_t + i * YMMRegister.size], ymm_data) RETURN()
from __future__ import absolute_import from __future__ import division import fft16x16 import fft.complex_soa import fft.two_real_to_two_complex_soa_perm_planar import fft.two_complex_soa_perm_to_two_real_planar arg_t_pointer = Argument(ptr(const_float_), name="t") arg_f_pointer = Argument(ptr(float_), name="f") arg_x_pointer = Argument(ptr(const_float_), name="x") arg_t_stride = Argument(size_t, name="stride_t") arg_f_stride = Argument(size_t, name="stride_f") arg_row_count = Argument(uint32_t, name="row_count") arg_column_count = Argument(uint32_t, name="column_count") arg_row_offset = Argument(uint32_t, name="row_offset") arg_column_offset = Argument(uint32_t, name="column_offset") for post_operation in ["stream", "store"]: fft16x16_arguments = (arg_t_pointer, arg_f_pointer, arg_t_stride, arg_f_stride, arg_row_count, arg_column_count, arg_row_offset, arg_column_offset) with Function("nnp_fft16x16_with_offset_and_{post_operation}__avx2".format(post_operation=post_operation), fft16x16_arguments, target=uarch.default + isa.fma3 + isa.avx2): reg_t0 = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_t0, arg_t_pointer) reg_f = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_f, arg_f_pointer) reg_t_stride = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_t_stride, arg_t_stride) reg_f_stride = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_f_stride, arg_f_stride) reg_row_end = GeneralPurposeRegister32() LOAD.ARGUMENT(reg_row_end, arg_row_count) reg_column_end = GeneralPurposeRegister32() LOAD.ARGUMENT(reg_column_end, arg_column_count) reg_row_start = GeneralPurposeRegister32() LOAD.ARGUMENT(reg_row_start, arg_row_offset) ADD(reg_row_end, reg_row_start) reg_column_start = GeneralPurposeRegister32() LOAD.ARGUMENT(reg_column_start, arg_column_offset) ADD(reg_column_end, reg_column_start) ymm_column_start, ymm_column_end = YMMRegister(), YMMRegister() VMOVD(ymm_column_start.as_xmm, reg_column_start.as_dword) VMOVD(ymm_column_end.as_xmm, reg_column_end.as_dword) VPBROADCASTD(ymm_column_start, ymm_column_start.as_xmm) VPBROADCASTD(ymm_column_end, ymm_column_end.as_xmm) ymm_column_01234567 = YMMRegister() VMOVDQA(ymm_column_01234567, Constant.uint32x8(0, 1, 2, 3, 4, 5, 6, 7)) ymm_column_start_gt_01234567, ymm_column_end_gt_01234567 = YMMRegister(), YMMRegister() VPCMPGTD(ymm_column_start_gt_01234567, ymm_column_start, ymm_column_01234567) VPCMPGTD(ymm_column_end_gt_01234567, ymm_column_end, ymm_column_01234567) ymm_column_89ABCDEF = YMMRegister() VMOVDQA(ymm_column_89ABCDEF, Constant.uint32x8(8, 9, 10, 11, 12, 13, 14, 15)) ymm_column_start_gt_89ABCDEF, ymm_column_end_gt_89ABCDEF = YMMRegister(), YMMRegister() VPCMPGTD(ymm_column_start_gt_89ABCDEF, ymm_column_start, ymm_column_89ABCDEF) VPCMPGTD(ymm_column_end_gt_89ABCDEF, ymm_column_end, ymm_column_89ABCDEF) ymm_load_mask_columns_0_to_8 = YMMRegister() VPANDN(ymm_load_mask_columns_0_to_8, ymm_column_start_gt_01234567, ymm_column_end_gt_01234567) ymm_load_mask_columns_8_to_16 = YMMRegister() VPANDN(ymm_load_mask_columns_8_to_16, ymm_column_start_gt_89ABCDEF, ymm_column_end_gt_89ABCDEF) load_mask_columns_8_to_16 = LocalVariable(ymm_load_mask_columns_8_to_16) VMOVDQA(load_mask_columns_8_to_16, ymm_load_mask_columns_8_to_16) # data points to the first element, which is loaded into lane `reg_column_start` # However, VMASKMOVPS expects pointer to the first lane, even if it is not loaded. # Adjust the pointer by subtracting column_offset, in bytes SHL(reg_column_start, 2) SUB(reg_t0, reg_column_start.as_qword) # Multiply stride by sizeof(float) to convert from elements to bytes SHL(reg_t_stride, 2) # t8_offset = stride * (8 - row_start) reg_t8_offset = GeneralPurposeRegister64() MOV(reg_t8_offset.as_dword, 8) SUB(reg_t8_offset.as_dword, reg_row_start) IMUL(reg_t8_offset, reg_t_stride) reg_t8 = GeneralPurposeRegister64() LEA(reg_t8, [reg_t0 + reg_t8_offset * 1]) CMP(reg_row_start, 8) CMOVAE(reg_t8, reg_t0) reg_t0_column_8, reg_t8_column_8 = GeneralPurposeRegister64(), GeneralPurposeRegister64() LEA(reg_t0_column_8, [reg_t0 + YMMRegister.size]) LEA(reg_t8_column_8, [reg_t8 + YMMRegister.size]) vfft_columns_0_to_8 = [LocalVariable(YMMRegister.size) for _ in range(16)] vfft_columns_8_to_16 = [YMMRegister() if i < 4 else LocalVariable(YMMRegister.size) for i in range(16)] fft16x16.forward_vfft(reg_t0, reg_t8, reg_t_stride, data_out=vfft_columns_0_to_8, reg_row_start=reg_row_start, reg_row_end=reg_row_end, ymm_load_mask=ymm_load_mask_columns_0_to_8) ymm_load_mask_columns_8_to_16 = YMMRegister() VMOVDQA(ymm_load_mask_columns_8_to_16, load_mask_columns_8_to_16) fft16x16.forward_vfft(reg_t0_column_8, reg_t8_column_8, reg_t_stride, data_out=vfft_columns_8_to_16, reg_row_start=reg_row_start, reg_row_end=reg_row_end, ymm_load_mask=ymm_load_mask_columns_8_to_16) for row_batch_start, row_batch_end in [(0, 2), (2, 5), (5, 8)]: ymm_wr_list = [(YMMRegister(), YMMRegister()) for _ in range(row_batch_start, row_batch_end)] ymm_wi_list = [(YMMRegister(), YMMRegister()) for _ in range(row_batch_start, row_batch_end)] for row_offset, (ymm_wr, ymm_wi) in enumerate(zip(ymm_wr_list, ymm_wi_list)): row = row_batch_start + row_offset VMOVAPS(ymm_wr[0], vfft_columns_0_to_8[row*2+0]) VMOVAPS(ymm_wr[1], vfft_columns_8_to_16[row*2+0]) VMOVAPS(ymm_wi[0], vfft_columns_0_to_8[row*2+1]) VMOVAPS(ymm_wi[1], vfft_columns_8_to_16[row*2+1]) fft.complex_soa.fft16_within_rows(ymm_wr_list, ymm_wi_list, bit_reversal=False) if row_batch_start == 0: fft.two_real_to_two_complex_soa_perm_planar.fft16_within_rows_postprocess(ymm_wr_list[0], ymm_wi_list[0], bit_reversal=True) VSTOREPS = {"store": VMOVAPS, "stream": VMOVNTPS}[post_operation] for row_batch_offset, (ymm_wr, ymm_wi) in enumerate(zip(ymm_wr_list, ymm_wi_list)): row = row_batch_start + row_batch_offset for column in range(2): VSTOREPS([reg_f], ymm_wr[column]) VSTOREPS([reg_f + YMMRegister.size], ymm_wi[column]) if row + 1 != 8 or column + 1 != 2: ADD(reg_f, reg_f_stride) RETURN() arg_f_pointer = Argument(ptr(const_float_), name="f_pointer") arg_t_pointer = Argument(ptr(float_), name="t_pointer") arg_bias = Argument(ptr(const_float_), name="bias_pointer") arg_f_stride = Argument(size_t, name="f_stride") arg_t_stride = Argument(size_t, name="t_stride") arg_row_count = Argument(uint32_t, name="row_count") arg_column_count = Argument(uint32_t, name="column_count") arg_row_offset = Argument(uint32_t, name="row_offset") arg_column_offset = Argument(uint32_t, name="column_offset") for with_offset, with_bias, with_relu in [(True, False, False), (False, True, False), (False, True, True)]: if with_bias: ifft16x16_arguments = (arg_f_pointer, arg_t_pointer, arg_bias, arg_f_stride, arg_t_stride, arg_row_count, arg_column_count) else: ifft16x16_arguments = (arg_f_pointer, arg_t_pointer, arg_f_stride, arg_t_stride, arg_row_count, arg_column_count) if with_offset: ifft16x16_arguments += (arg_row_offset, arg_column_offset) with Function("nnp_ifft16x16{with_offset}{with_bias}{with_relu}__avx2".format( with_offset="_with_offset" if with_offset else "", with_bias="_with_bias" if with_bias else "", with_relu="_with_relu" if with_relu else ""), ifft16x16_arguments, target=uarch.default + isa.fma3 + isa.avx2): reg_f = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_f, arg_f_pointer) reg_t0 = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_t0, arg_t_pointer) if with_bias: reg_bias = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_bias, arg_bias) reg_f_stride = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_f_stride, arg_f_stride) reg_t_stride = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_t_stride, arg_t_stride) reg_row_end = GeneralPurposeRegister32() LOAD.ARGUMENT(reg_row_end, arg_row_count) reg_column_end = GeneralPurposeRegister32() LOAD.ARGUMENT(reg_column_end, arg_column_count) if with_offset: reg_row_start = GeneralPurposeRegister32() LOAD.ARGUMENT(reg_row_start, arg_row_offset) ADD(reg_row_end, reg_row_start) reg_column_start = GeneralPurposeRegister32() LOAD.ARGUMENT(reg_column_start, arg_column_offset) ADD(reg_column_end, reg_column_start) else: reg_row_start = None if with_offset: ymm_column_start, ymm_column_end = YMMRegister(), YMMRegister() VMOVD(ymm_column_start.as_xmm, reg_column_start.as_dword) VMOVD(ymm_column_end.as_xmm, reg_column_end.as_dword) VPBROADCASTD(ymm_column_start, ymm_column_start.as_xmm) VPBROADCASTD(ymm_column_end, ymm_column_end.as_xmm) ymm_column_01234567 = YMMRegister() VMOVDQA(ymm_column_01234567, Constant.uint32x8(0, 1, 2, 3, 4, 5, 6, 7)) ymm_column_start_gt_01234567, ymm_column_end_gt_01234567 = YMMRegister(), YMMRegister() VPCMPGTD(ymm_column_start_gt_01234567, ymm_column_start, ymm_column_01234567) VPCMPGTD(ymm_column_end_gt_01234567, ymm_column_end, ymm_column_01234567) ymm_column_89ABCDEF = YMMRegister() VMOVDQA(ymm_column_89ABCDEF, Constant.uint32x8(8, 9, 10, 11, 12, 13, 14, 15)) ymm_column_start_gt_89ABCDEF, ymm_column_end_gt_89ABCDEF = YMMRegister(), YMMRegister() VPCMPGTD(ymm_column_start_gt_89ABCDEF, ymm_column_start, ymm_column_89ABCDEF) VPCMPGTD(ymm_column_end_gt_89ABCDEF, ymm_column_end, ymm_column_89ABCDEF) ymm_store_mask_columns_0_to_8 = YMMRegister() VPANDN(ymm_store_mask_columns_0_to_8, ymm_column_start_gt_01234567, ymm_column_end_gt_01234567) store_mask_columns_0_to_8 = LocalVariable(ymm_store_mask_columns_0_to_8) VMOVDQA(store_mask_columns_0_to_8, ymm_store_mask_columns_0_to_8) ymm_store_mask_columns_8_to_16 = YMMRegister() VPANDN(ymm_store_mask_columns_8_to_16, ymm_column_start_gt_89ABCDEF, ymm_column_end_gt_89ABCDEF) store_mask_columns_8_to_16 = LocalVariable(ymm_store_mask_columns_8_to_16) VMOVDQA(store_mask_columns_8_to_16, ymm_store_mask_columns_8_to_16) SHL(reg_column_start, 2) SUB(reg_t0, reg_column_start.as_qword) else: ymm_column_end = YMMRegister() VMOVD(ymm_column_end.as_xmm, reg_column_end.as_dword) VPBROADCASTD(ymm_column_end, ymm_column_end.as_xmm) ymm_store_mask_columns_0_to_8, ymm_store_mask_columns_8_to_16 = YMMRegister(), YMMRegister() VPCMPGTD(ymm_store_mask_columns_0_to_8, ymm_column_end, Constant.uint32x8(0, 1, 2, 3, 4, 5, 6, 7)) VPCMPGTD(ymm_store_mask_columns_8_to_16, ymm_column_end, Constant.uint32x8(8, 9, 10, 11, 12, 13, 14, 15)) store_mask_columns_0_to_8 = LocalVariable(ymm_store_mask_columns_0_to_8) VMOVDQA(store_mask_columns_0_to_8, ymm_store_mask_columns_0_to_8) store_mask_columns_8_to_16 = LocalVariable(ymm_store_mask_columns_8_to_16) VMOVDQA(store_mask_columns_8_to_16, ymm_store_mask_columns_8_to_16) # Multiply stride by sizeof(float) to convert from elements to bytes SHL(reg_t_stride, 2) vfft_columns_0_to_8 = [YMMRegister() if i > 10 else LocalVariable(YMMRegister.size) for i in range(16)] vfft_columns_8_to_16 = [LocalVariable(YMMRegister.size) for _ in range(16)] for row_batch_start, row_batch_end in [(0, 2), (2, 5), (5, 8)]: ymm_wr_list = [(YMMRegister(), YMMRegister()) for _ in range(row_batch_start, row_batch_end)] ymm_wi_list = [(YMMRegister(), YMMRegister()) for _ in range(row_batch_start, row_batch_end)] for row_offset, (ymm_wr, ymm_wi) in enumerate(zip(ymm_wr_list, ymm_wi_list)): row = row_batch_start + row_offset VMOVAPS(ymm_wr[0], [reg_f]) VMOVAPS(ymm_wi[0], [reg_f + YMMRegister.size]) ADD(reg_f, reg_f_stride) if with_bias and row == 0: ymm_bias = YMMRegister() VMOVSS(ymm_bias.as_xmm, [reg_bias]) VFMADD231PS(ymm_wr[0], ymm_bias, Constant.float32x8(256.0)) VMOVAPS(ymm_wr[1], [reg_f]) VMOVAPS(ymm_wi[1], [reg_f + YMMRegister.size]) if row + 1 != 8: ADD(reg_f, reg_f_stride) if row_batch_start == 0: fft.two_complex_soa_perm_to_two_real_planar.ifft16_within_rows_preprocess(ymm_wr_list[0], ymm_wi_list[0], bit_reversal=True) fft.complex_soa.ifft16_within_rows(ymm_wr_list, ymm_wi_list, bit_reversal=False) for row_offset, (ymm_wr, ymm_wi) in enumerate(zip(ymm_wr_list, ymm_wi_list)): row = row_batch_start + row_offset VMOVAPS(vfft_columns_0_to_8[row*2+0], ymm_wr[0]) VMOVAPS(vfft_columns_8_to_16[row*2+0], ymm_wr[1]) VMOVAPS(vfft_columns_0_to_8[row*2+1], ymm_wi[0]) VMOVAPS(vfft_columns_8_to_16[row*2+1], ymm_wi[1]) if reg_row_start is not None: # t8_offset = stride * (8 - row_start) reg_t8_offset = GeneralPurposeRegister64() MOV(reg_t8_offset.as_dword, 8) SUB(reg_t8_offset.as_dword, reg_row_start) IMUL(reg_t8_offset, reg_t_stride) reg_t8 = GeneralPurposeRegister64() LEA(reg_t8, [reg_t0 + reg_t8_offset * 1]) CMP(reg_row_start, 8) CMOVAE(reg_t8, reg_t0) else: reg_t8 = GeneralPurposeRegister64() LEA(reg_t8, [reg_t0 + reg_t_stride * 8]) reg_t0_column_8, reg_t8_column_8 = GeneralPurposeRegister64(), GeneralPurposeRegister64() LEA(reg_t0_column_8, [reg_t0 + YMMRegister.size]) LEA(reg_t8_column_8, [reg_t8 + YMMRegister.size]) fft16x16.inverse_vfft(reg_t0, reg_t8, reg_t_stride, data_in=vfft_columns_0_to_8, reg_row_start=reg_row_start, reg_row_end=reg_row_end, store_mask=store_mask_columns_0_to_8, relu=with_relu) with Block() as store_columns_8_to_16: CMP(reg_column_end, 8) JB(store_columns_8_to_16.end) fft16x16.inverse_vfft(reg_t0_column_8, reg_t8_column_8, reg_t_stride, data_in=vfft_columns_8_to_16, \ reg_row_start=reg_row_start, reg_row_end=reg_row_end, store_mask=store_mask_columns_8_to_16, relu=with_relu) RETURN()
from __future__ import absolute_import from __future__ import division from peachpy import * from peachpy.x86_64 import * from common import butterfly, sqrt2_over_2 from common import butterfly, sqrt2_over_2, cos_npi_over_8, interleave def fft8_bitreverse(n): return int(format(n, "03b")[::-1], 2) def load_ymm_variable(variable): assert isinstance(variable, (YMMRegister, LocalVariable)) ymm_variable = variable if isinstance(variable, LocalVariable): assert variable.size == YMMRegister.size ymm_variable = YMMRegister() VMOVAPS(ymm_variable, variable) return ymm_variable def store_ymm_result(variable, result): assert isinstance(result, YMMRegister) if isinstance(variable, YMMRegister): SWAP.REGISTERS(variable, result) else: VMOVAPS(variable, result) def forward_vfft(reg_t0, reg_t8, reg_t_stride, data_out, reg_row_start=None, reg_row_end=None, ymm_load_mask=None): assert isinstance(reg_t0, GeneralPurposeRegister64) assert isinstance(reg_t8, GeneralPurposeRegister64) assert isinstance(reg_t_stride, GeneralPurposeRegister64) assert isinstance(data_out, list) and len(data_out) == 16 assert ymm_load_mask is None or isinstance(ymm_load_mask, YMMRegister) out_real, out_imag = data_out[0::2], data_out[1::2] real, imag = [YMMRegister() for _ in range(8)], [YMMRegister() for _ in range(8)] imag[0] = LocalVariable(YMMRegister.size) imag[4] = LocalVariable(YMMRegister.size) data = interleave(real, imag) for i, (data_lo, data_hi) in enumerate(zip(data[0:8], data[8:16])): row_lo = i row_hi = row_lo + 8 ymm_data_lo, ymm_data_hi = data_lo, data_hi if isinstance(data_lo, LocalVariable): ymm_data_lo = YMMRegister() if isinstance(data_hi, LocalVariable): ymm_data_hi = YMMRegister() VXORPS(ymm_data_lo, ymm_data_lo, ymm_data_lo) skip_data_lo = Label() if reg_row_start: CMP(reg_row_start, row_lo) JA(skip_data_lo) if reg_row_end: CMP(reg_row_end, row_lo) JBE(skip_data_lo) if ymm_load_mask is None: VMOVUPS(ymm_data_lo, [reg_t0]) else: VMASKMOVPS(ymm_data_lo, ymm_load_mask, [reg_t0]) if i + 1 != 8: ADD(reg_t0, reg_t_stride) LABEL(skip_data_lo) VMOVAPS(ymm_data_hi, ymm_data_lo) skip_data_hi = Label() if reg_row_start: CMP(reg_row_start, row_hi) JA(skip_data_hi) if reg_row_end: CMP(reg_row_end, row_hi) JBE(skip_data_hi) if ymm_load_mask is None: VMOVUPS(ymm_data_hi, [reg_t8]) butterfly(ymm_data_lo, ymm_data_hi) else: ymm_temp_hi = YMMRegister() VMASKMOVPS(ymm_temp_hi, ymm_load_mask, [reg_t8]) VSUBPS(ymm_data_hi, ymm_data_lo, ymm_temp_hi) VADDPS(ymm_data_lo, ymm_data_lo, ymm_temp_hi) if i + 1 != 8: ADD(reg_t8, reg_t_stride) LABEL(skip_data_hi) if isinstance(data_lo, LocalVariable): VMOVAPS(data_lo, ymm_data_lo) if isinstance(data_hi, LocalVariable): VMOVAPS(data_hi, ymm_data_hi) # FFT8: multiplication by twiddle factors fft4_scale_b, fft4_negate_b = {}, {} fft2_scale_b, fft2_negate_b = {}, {} # w6.re, w6.im = w6.im, -w6.re SWAP.REGISTERS(real[6], imag[6]) fft4_negate_b[id(imag[6])] = True # w5.re, w5.im = SQRT2_OVER_2 * (w5.re + w5.im), SQRT2_OVER_2 * (w5.im - w5.re) butterfly(imag[5], real[5]) SWAP.REGISTERS(real[5], imag[5]) # w7.re, w7.im = -SQRT2_OVER_2 * (w7.re - w7.im), -SQRT2_OVER_2 * (w7.re + w7.im) butterfly(real[7], imag[7], negate_b=True) fft4_negate_b[id(real[7])] = True fft4_negate_b[id(imag[7])] = True # Propogate multiplication by sqrt2_over_2 until the last butterfly in FFT2 ymm_sqrt2_over_2 = YMMRegister() fft2_scale_b[id(real[5])] = ymm_sqrt2_over_2 fft2_scale_b[id(imag[5])] = ymm_sqrt2_over_2 fft2_scale_b[id(real[7])] = ymm_sqrt2_over_2 fft2_scale_b[id(imag[7])] = ymm_sqrt2_over_2 # 2x FFT4: butterfly for data_lo, data_hi in zip(data[0:4] + data[8:12], data[4:8] + data[12:16]): butterfly(data_lo, data_hi, negate_b=fft4_negate_b.get(id(data_hi), False), scale_b=fft4_scale_b.get(id(data_hi))) # 2x FFT4: multiplication by twiddle factors # w3.re, w3.im = w3.im, -w3.re # w7.re, w7.im = w7.im, -w7.re SWAP.REGISTERS(real[3], imag[3]) SWAP.REGISTERS(real[7], imag[7]) fft2_negate_b[id(imag[3])] = True fft2_negate_b[id(imag[7])] = True # 4x FFT2: butterfly # Process the first two elements separately ymm_real0, ymm_real1 = butterfly(real[0], real[1], writeback=False) store_ymm_result(out_real[4], ymm_real1) # bit-reversal: 1->4 ymm_imag0, ymm_imag1 = butterfly(imag[0], imag[1], negate_out_b=True, writeback=False) store_ymm_result(out_imag[4], ymm_imag1) # bit-reversal: 1->4 VMOVAPS(ymm_sqrt2_over_2, Constant.float32x8(sqrt2_over_2)) for i, (data_lo, data_hi) in enumerate(zip(data[4:6] + data[8:10] + data[12:14], data[6:8] + data[10:12] + data[14:16])): butterfly(data_lo, data_hi, negate_b=fft2_negate_b.get(id(data_hi), False), scale_b=fft2_scale_b.get(id(data_hi))) butterfly(ymm_real0, ymm_imag0) store_ymm_result(out_real[0], ymm_real0) store_ymm_result(out_imag[0], ymm_imag0) # Bit reversal for i in range(8): new_i = fft8_bitreverse(i) if new_i > i: real[i], real[new_i] = real[new_i], real[i] imag[i], imag[new_i] = imag[new_i], imag[i] data = interleave(real, imag) ymm_two_g2_real, ymm_two_g2_imag = YMMRegister(), YMMRegister() ymm_two_h2_real, ymm_two_h2_imag = YMMRegister(), YMMRegister() VADDPS(ymm_two_g2_real, real[2], real[6]) VSUBPS(ymm_two_h2_imag, real[6], real[2]) VSUBPS(ymm_two_g2_imag, imag[2], imag[6]) VADDPS(ymm_two_h2_real, imag[2], imag[6]) ymm_two_g1_real, ymm_two_g1_imag = YMMRegister(), YMMRegister() ymm_two_h1_real, ymm_two_h1_imag = YMMRegister(), YMMRegister() ymm_real1 = load_ymm_variable(real[1]) VADDPS(ymm_two_g1_real, ymm_real1, real[7]) VSUBPS(ymm_two_h1_imag, real[7], ymm_real1) ymm_imag1 = load_ymm_variable(imag[1]) VSUBPS(ymm_two_g1_imag, ymm_imag1, imag[7]) VADDPS(ymm_two_h1_real, ymm_imag1, imag[7]) ymm_two_h2_add, ymm_two_h2_sub = YMMRegister(), YMMRegister() VADDPS(ymm_two_h2_add, ymm_two_h2_real, ymm_two_h2_imag) VSUBPS(ymm_two_h2_sub, ymm_two_h2_imag, ymm_two_h2_real) ymm_two_g3_real, ymm_two_g3_imag = YMMRegister(), YMMRegister() ymm_two_h3_real, ymm_two_h3_imag = YMMRegister(), YMMRegister() VADDPS(ymm_two_g3_real, real[3], real[5]) VSUBPS(ymm_two_h3_imag, real[5], real[3]) VSUBPS(ymm_two_g3_imag, imag[3], imag[5]) VADDPS(ymm_two_h3_real, imag[3], imag[5]) # const float two_w2_real = two_g2_real + SQRT2_OVER_2 * (two_h2_real + two_h2_imag); # const float two_w2_imag = two_g2_imag + SQRT2_OVER_2 * (two_h2_imag - two_h2_real); # const float two_w6_real = two_g2_real - SQRT2_OVER_2 * (two_h2_real + two_h2_imag); # const float two_w6_imag = -two_g2_imag + SQRT2_OVER_2 * (two_h2_imag - two_h2_real); ymm_sqrt2_over_2 = YMMRegister() VMOVAPS(ymm_sqrt2_over_2, Constant.float32x8(sqrt2_over_2)) ymm_two_w2_real, ymm_two_w6_real = YMMRegister(), ymm_two_g2_real VMOVAPS(ymm_two_w2_real, ymm_two_g2_real) VFMADD231PS(ymm_two_w2_real, ymm_two_h2_add, ymm_sqrt2_over_2) VFNMADD231PS(ymm_two_w6_real, ymm_two_h2_add, ymm_sqrt2_over_2) ymm_two_w2_imag, ymm_two_w6_imag = YMMRegister(), ymm_two_g2_imag VMOVAPS(ymm_two_w2_imag, ymm_two_g2_imag) VFMADD231PS(ymm_two_w2_imag, ymm_two_h2_sub, ymm_sqrt2_over_2) VFMSUB231PS(ymm_two_w6_imag, ymm_two_h2_sub, ymm_sqrt2_over_2) ymm_half = YMMRegister() VMOVAPS(ymm_half, Constant.float32x8(0.5)) VMULPS(ymm_two_w2_real, ymm_two_w2_real, ymm_half) store_ymm_result(out_real[2], ymm_two_w2_real) VMULPS(ymm_two_w6_real, ymm_two_w6_real, ymm_half) store_ymm_result(out_real[6], ymm_two_w6_real) VMULPS(ymm_two_w2_imag, ymm_two_w2_imag, ymm_half) store_ymm_result(out_imag[2], ymm_two_w2_imag) VMULPS(ymm_two_w6_imag, ymm_two_w6_imag, ymm_half) store_ymm_result(out_imag[6], ymm_two_w6_imag) # const float two_w1_real = two_g1_real + two_h1_real * COS_1PI_OVER_8 + two_h1_imag * COS_3PI_OVER_8; # const float two_w1_imag = two_g1_imag + two_h1_imag * COS_1PI_OVER_8 - two_h1_real * COS_3PI_OVER_8; # const float two_w7_real = two_g1_real - two_h1_real * COS_1PI_OVER_8 - two_h1_imag * COS_3PI_OVER_8; # const float two_w7_imag = -two_g1_imag + two_h1_imag * COS_1PI_OVER_8 - two_h1_real * COS_3PI_OVER_8; # const float two_w3_real = two_g3_real + two_h3_real * COS_3PI_OVER_8 + two_h3_imag * COS_1PI_OVER_8; # const float two_w3_imag = two_g3_imag + two_h3_imag * COS_3PI_OVER_8 - two_h3_real * COS_1PI_OVER_8; # const float two_w5_real = two_g3_real - two_h3_real * COS_3PI_OVER_8 - two_h3_imag * COS_1PI_OVER_8; # const float two_w5_imag = -two_g3_imag + two_h3_imag * COS_3PI_OVER_8 - two_h3_real * COS_1PI_OVER_8; ymm_cos_1pi_over_8 = YMMRegister() VMOVAPS(ymm_cos_1pi_over_8, Constant.float32x8(cos_npi_over_8[1])) ymm_two_w1_real, ymm_two_w7_real = YMMRegister(), ymm_two_g1_real VMOVAPS(ymm_two_w1_real, ymm_two_g1_real) VFMADD231PS(ymm_two_w1_real, ymm_two_h1_real, ymm_cos_1pi_over_8) VFNMADD231PS(ymm_two_w7_real, ymm_two_h1_real, ymm_cos_1pi_over_8) ymm_two_w1_imag, ymm_two_w7_imag = YMMRegister(), ymm_two_g1_imag VMOVAPS(ymm_two_w1_imag, ymm_two_g1_imag) VFMADD231PS(ymm_two_w1_imag, ymm_two_h1_imag, ymm_cos_1pi_over_8) VFMSUB231PS(ymm_two_w7_imag, ymm_two_h1_imag, ymm_cos_1pi_over_8) ymm_two_w3_real, ymm_two_w5_real = YMMRegister(), ymm_two_g3_real VMOVAPS(ymm_two_w3_real, ymm_two_g3_real) VFMADD231PS(ymm_two_w3_real, ymm_two_h3_imag, ymm_cos_1pi_over_8) VFNMADD231PS(ymm_two_w5_real, ymm_two_h3_imag, ymm_cos_1pi_over_8) ymm_two_w3_imag, ymm_two_w5_imag = YMMRegister(), ymm_two_g3_imag VMOVAPS(ymm_two_w3_imag, ymm_two_g3_imag) VFNMADD231PS(ymm_two_w3_imag, ymm_two_h3_real, ymm_cos_1pi_over_8) VFNMSUB231PS(ymm_two_w5_imag, ymm_two_h3_real, ymm_cos_1pi_over_8) ymm_cos_3pi_over_8 = YMMRegister() VMOVAPS(ymm_cos_3pi_over_8, Constant.float32x8(cos_npi_over_8[3])) VFMADD231PS(ymm_two_w1_real, ymm_two_h1_imag, ymm_cos_3pi_over_8) VFNMADD231PS(ymm_two_w7_real, ymm_two_h1_imag, ymm_cos_3pi_over_8) VFNMADD231PS(ymm_two_w1_imag, ymm_two_h1_real, ymm_cos_3pi_over_8) VFNMADD231PS(ymm_two_w7_imag, ymm_two_h1_real, ymm_cos_3pi_over_8) VFMADD231PS(ymm_two_w3_real, ymm_two_h3_real, ymm_cos_3pi_over_8) VFNMADD231PS(ymm_two_w5_real, ymm_two_h3_real, ymm_cos_3pi_over_8) VFMADD231PS(ymm_two_w3_imag, ymm_two_h3_imag, ymm_cos_3pi_over_8) VFMADD231PS(ymm_two_w5_imag, ymm_two_h3_imag, ymm_cos_3pi_over_8) ymm_half = YMMRegister() VMOVAPS(ymm_half, Constant.float32x8(0.5)) VMULPS(ymm_two_w1_real, ymm_two_w1_real, ymm_half) store_ymm_result(out_real[1], ymm_two_w1_real) VMULPS(ymm_two_w7_real, ymm_two_w7_real, ymm_half) store_ymm_result(out_real[7], ymm_two_w7_real) VMULPS(ymm_two_w1_imag, ymm_two_w1_imag, ymm_half) store_ymm_result(out_imag[1], ymm_two_w1_imag) VMULPS(ymm_two_w7_imag, ymm_two_w7_imag, ymm_half) store_ymm_result(out_imag[7], ymm_two_w7_imag) VMULPS(ymm_two_w3_real, ymm_two_w3_real, ymm_half) store_ymm_result(out_real[3], ymm_two_w3_real) VMULPS(ymm_two_w5_real, ymm_two_w5_real, ymm_half) store_ymm_result(out_real[5], ymm_two_w5_real) VMULPS(ymm_two_w3_imag, ymm_two_w3_imag, ymm_half) store_ymm_result(out_imag[3], ymm_two_w3_imag) VMULPS(ymm_two_w5_imag, ymm_two_w5_imag, ymm_half) store_ymm_result(out_imag[5], ymm_two_w5_imag) def inverse_vfft(reg_t0, reg_t8, reg_t_stride, data_in, reg_row_start=None, reg_row_end=None, store_mask=None, relu=False): assert isinstance(reg_t0, GeneralPurposeRegister64) assert isinstance(reg_t8, GeneralPurposeRegister64) assert isinstance(reg_t_stride, GeneralPurposeRegister64) assert isinstance(data_in, list) and len(data_in) == 16 assert reg_row_end is None or isinstance(reg_row_end, GeneralPurposeRegister32) assert store_mask is None or isinstance(store_mask, LocalVariable) and store_mask.size == YMMRegister.size in_real, in_imag = data_in[0::2], data_in[1::2] ymm_scale_factor = YMMRegister() VMOVAPS(ymm_scale_factor, Constant.float32x8(0.0625)) ymm_W1_real, ymm_W1_imag = YMMRegister(), YMMRegister() VMULPS(ymm_W1_real, ymm_scale_factor, in_real[1]) VMULPS(ymm_W1_imag, ymm_scale_factor, in_imag[1]) ymm_W2_real, ymm_W2_imag = YMMRegister(), YMMRegister() VMULPS(ymm_W2_real, ymm_scale_factor, in_real[2]) VMULPS(ymm_W2_imag, ymm_scale_factor, in_imag[2]) ymm_W3_real, ymm_W3_imag = YMMRegister(), YMMRegister() VMULPS(ymm_W3_real, ymm_scale_factor, in_real[3]) VMULPS(ymm_W3_imag, ymm_scale_factor, in_imag[3]) # G[n].real, H[n].real = W[n].real + W[8-n].real, W[n].real - W[8-n].real # G[n].imag, H[n].imag = W[n].imag - W[8-n].imag, W[n].imag + W[8-n].imag ymm_W7_real, ymm_W7_imag = YMMRegister(), YMMRegister() VMOVUPS(ymm_W7_real, in_real[7]) ymm_G1_real, ymm_H1_real = butterfly(ymm_W1_real, ymm_W7_real, scale_b=ymm_scale_factor) VMOVUPS(ymm_W7_imag, in_imag[7]) ymm_G1_imag, ymm_H1_imag = butterfly(ymm_W1_imag, ymm_W7_imag, scale_b=ymm_scale_factor, negate_b=True) ymm_W6_real, ymm_W6_imag = YMMRegister(), YMMRegister() VMOVUPS(ymm_W6_real, in_real[6]) ymm_G2_real, ymm_H2_real = butterfly(ymm_W2_real, ymm_W6_real, scale_b=ymm_scale_factor) VMOVUPS(ymm_W6_imag, in_imag[6]) ymm_G2_imag, ymm_H2_imag = butterfly(ymm_W2_imag, ymm_W6_imag, scale_b=ymm_scale_factor, negate_b=True) ymm_W5_real, ymm_W5_imag = YMMRegister(), YMMRegister() VMOVUPS(ymm_W5_real, in_real[5]) ymm_G3_real, ymm_H3_real = butterfly(ymm_W3_real, ymm_W5_real, scale_b=ymm_scale_factor) VMOVUPS(ymm_W5_imag, in_imag[5]) ymm_G3_imag, ymm_H3_imag = butterfly(ymm_W3_imag, ymm_W5_imag, scale_b=ymm_scale_factor, negate_b=True) # H[2]+, H[2]- = H[2].real + H[2].imag, H[2].real - H[2].imag ymm_H2_add, ymm_H2_sub = butterfly(ymm_H2_real, ymm_H2_imag) # w[ n].real = G[ n].real - H[ n].real * cos((N-n)*pi/2N) - H[ n].imag * cos(n*pi/2N) # w[2N-n].real = G[ n].real + H[ n].real * cos((N-n)*pi/2N) + H[ n].imag * cos(n*pi/2N) # w[ n].imag = G[ n].imag + H[ n].real * cos(n*pi/2N) - H[ n].imag * cos((N-n)*pi/2N) # w[2N-n].imag = -G[ n].imag + H[ n].real * cos(n*pi/2N) - H[ n].imag * cos((N-n)*pi/2N) # w[ N-n].real = G[N-n].real - H[N-n].real * cos(n*pi/2N) - H[N-n].imag * cos((N-n)*pi/2N) # w[ N+n].real = G[N-n].real + H[N-n].real * cos(n*pi/2N) + H[N-n].imag * cos((N-n)*pi/2N) # w[ N-n].imag = G[N-n].imag + H[N-n].real * cos((N-n)*pi/2N) - H[N-n].imag * cos(n*pi/2N) # w[ N+n].imag = -G[N-n].imag + H[N-n].real * cos((N-n)*pi/2N) - H[N-n].imag * cos(n*pi/2N) ymm_cos_1pi_over_8, ymm_cos_3pi_over_8 = YMMRegister(), YMMRegister() VMOVAPS(ymm_cos_3pi_over_8, Constant.float32x8(cos_npi_over_8[3])) VMOVAPS(ymm_cos_1pi_over_8, Constant.float32x8(cos_npi_over_8[1])) ymm_w1_real, ymm_w7_real = YMMRegister(), ymm_G1_real VMOVAPS(ymm_w1_real, ymm_G1_real) VFNMADD231PS(ymm_w1_real, ymm_H1_real, ymm_cos_3pi_over_8) VFMADD231PS(ymm_w7_real, ymm_H1_real, ymm_cos_3pi_over_8) ymm_w1_imag, ymm_w7_imag = YMMRegister(), ymm_G1_imag VMOVAPS(ymm_w1_imag, ymm_G1_imag) VFMADD231PS(ymm_w1_imag, ymm_H1_real, ymm_cos_1pi_over_8) VFMSUB231PS(ymm_w7_imag, ymm_H1_real, ymm_cos_1pi_over_8) ymm_w3_real, ymm_w5_real = YMMRegister(), ymm_G3_real VMOVAPS(ymm_w3_real, ymm_G3_real) VFNMADD231PS(ymm_w3_real, ymm_H3_real, ymm_cos_1pi_over_8) VFMADD231PS(ymm_w5_real, ymm_H3_real, ymm_cos_1pi_over_8) ymm_w3_imag, ymm_w5_imag = YMMRegister(), ymm_G3_imag VMOVAPS(ymm_w3_imag, ymm_G3_imag) VFMADD231PS(ymm_w3_imag, ymm_H3_real, ymm_cos_3pi_over_8) VFMSUB231PS(ymm_w5_imag, ymm_H3_real, ymm_cos_3pi_over_8) ymm_sqrt2_over_2 = YMMRegister() VMOVAPS(ymm_sqrt2_over_2, Constant.float32x8(sqrt2_over_2)) # w[ N/2].real = G[N/2].real - H[N/2]+ * sqrt(2)/2 # w[ N/2].imag = G[N/2].imag + H[N/2]- * sqrt(2)/2 # w[3N/2].real = G[N/2].real + H[N/2]+ * sqrt(2)/2 # w[3N/2].imag = -G[N/2].imag + H[N/2]- * sqrt(2)/2 ymm_w2_real, ymm_w6_real = YMMRegister(), ymm_G2_real VMOVAPS(ymm_w2_real, ymm_G2_real) VFNMADD231PS(ymm_w2_real, ymm_H2_add, ymm_sqrt2_over_2) VFMADD231PS(ymm_w6_real, ymm_H2_add, ymm_sqrt2_over_2) ymm_w2_imag, ymm_w6_imag = YMMRegister(), ymm_G2_imag VMOVAPS(ymm_w2_imag, ymm_G2_imag) VFMADD231PS(ymm_w2_imag, ymm_H2_sub, ymm_sqrt2_over_2) VFMSUB231PS(ymm_w6_imag, ymm_H2_sub, ymm_sqrt2_over_2) # w[ n].real = G[ n].real - H[ n].real * cos((N-n)*pi/2N) - H[ n].imag * cos(n*pi/2N) # w[2N-n].real = G[ n].real + H[ n].real * cos((N-n)*pi/2N) + H[ n].imag * cos(n*pi/2N) # w[ n].imag = G[ n].imag + H[ n].real * cos(n*pi/2N) - H[ n].imag * cos((N-n)*pi/2N) # w[2N-n].imag = -G[ n].imag + H[ n].real * cos(n*pi/2N) - H[ n].imag * cos((N-n)*pi/2N) # w[ N-n].real = G[N-n].real - H[N-n].real * cos(n*pi/2N) - H[N-n].imag * cos((N-n)*pi/2N) # w[ N+n].real = G[N-n].real + H[N-n].real * cos(n*pi/2N) + H[N-n].imag * cos((N-n)*pi/2N) # w[ N-n].imag = G[N-n].imag + H[N-n].real * cos((N-n)*pi/2N) - H[N-n].imag * cos(n*pi/2N) # w[ N+n].imag = -G[N-n].imag + H[N-n].real * cos((N-n)*pi/2N) - H[N-n].imag * cos(n*pi/2N) ymm_cos_1pi_over_8, ymm_cos_3pi_over_8 = YMMRegister(), YMMRegister() VMOVAPS(ymm_cos_1pi_over_8, Constant.float32x8(cos_npi_over_8[1])) VMOVAPS(ymm_cos_3pi_over_8, Constant.float32x8(cos_npi_over_8[3])) VFNMADD231PS(ymm_w1_real, ymm_H1_imag, ymm_cos_1pi_over_8) VFMADD231PS(ymm_w7_real, ymm_H1_imag, ymm_cos_1pi_over_8) VFNMADD231PS(ymm_w1_imag, ymm_H1_imag, ymm_cos_3pi_over_8) VFNMADD231PS(ymm_w7_imag, ymm_H1_imag, ymm_cos_3pi_over_8) VFNMADD231PS(ymm_w3_real, ymm_H3_imag, ymm_cos_3pi_over_8) VFMADD231PS(ymm_w5_real, ymm_H3_imag, ymm_cos_3pi_over_8) VFNMADD231PS(ymm_w3_imag, ymm_H3_imag, ymm_cos_1pi_over_8) VFNMADD231PS(ymm_w5_imag, ymm_H3_imag, ymm_cos_1pi_over_8) data = [ LocalVariable(YMMRegister.size), YMMRegister(), ymm_w1_real, ymm_w1_imag, ymm_w2_real, ymm_w2_imag, ymm_w3_real, ymm_w3_imag, LocalVariable(YMMRegister.size), LocalVariable(YMMRegister.size), ymm_w5_real, ymm_w5_imag, ymm_w6_real, ymm_w6_imag, ymm_w7_real, ymm_w7_imag ] real, imag = data[0::2], data[1::2] # TODO: optimize ymm_w0_real, ymm_w0_imag = YMMRegister(), imag[0] VMOVUPS(ymm_w0_real, in_real[0]) VMOVUPS(ymm_w0_imag, in_imag[0]) VMULPS(ymm_w0_real, ymm_w0_real, Constant.float32x8(0.0625)) butterfly(ymm_w0_real, ymm_w0_imag, scale_b=Constant.float32x8(0.0625)) VMOVAPS(real[0], ymm_w0_real) # TODO: optimize ymm_w4_real, ymm_w4_imag = YMMRegister(), YMMRegister() VMOVUPS(ymm_w4_real, in_real[4]) VMOVUPS(ymm_w4_imag, in_imag[4]) VMULPS(ymm_w4_real, ymm_w4_real, Constant.float32x8(0.125)) VMULPS(ymm_w4_imag, ymm_w4_imag, Constant.float32x8(-0.125)) VMOVAPS(real[4], ymm_w4_real) VMOVAPS(imag[4], ymm_w4_imag) # Bit reversal for i in range(8): new_i = fft8_bitreverse(i) if new_i > i: real[i], real[new_i] = real[new_i], real[i] imag[i], imag[new_i] = imag[new_i], imag[i] data = interleave(real, imag) # 4x FFT2: butterfly for i, (data_lo, data_hi) in enumerate(zip(data[0:2] + data[4:6] + data[8:10] + data[12:14], data[2:4] + data[6:8] + data[10:12] + data[14:16])): butterfly(data_lo, data_hi) # 2x FFT4: multiplication by twiddle factors fft4_scale_b, fft4_negate_b = {}, {} fft8_scale_b, fft8_negate_b = {}, {} # w3.re, w3.im = -w3.im, w3.re # w7.re, w7.im = -w7.im, w7.re SWAP.REGISTERS(real[3], imag[3]) fft4_negate_b[id(real[3])] = True SWAP.REGISTERS(real[7], imag[7]) fft4_negate_b[id(real[7])] = True # 2x FFT4: butterfly for data_lo, data_hi in zip(data[0:4] + data[8:12], data[4:8] + data[12:16]): butterfly(data_lo, data_hi, negate_b=fft4_negate_b.get(id(data_hi), False)) # FFT8: multiplication by twiddle factors # w6.re, w6.im = -w6.im, w6.re SWAP.REGISTERS(real[6], imag[6]) fft8_negate_b[id(real[6])] = True # w5.re, w5.im = SQRT2_OVER_2 * (w5.re - w5.im), SQRT2_OVER_2 * (w5.re + w5.im) butterfly(real[5], imag[5], negate_b=True) fft8_scale_b[id(real[5])] = Constant.float32x8(sqrt2_over_2) fft8_scale_b[id(imag[5])] = Constant.float32x8(sqrt2_over_2) # w7.re, w7.im = -SQRT2_OVER_2 * (w7.re + w7.im), SQRT2_OVER_2 * (w7.re - w7.im) butterfly(real[7], imag[7]) fft8_scale_b[id(real[7])] = Constant.float32x8(sqrt2_over_2) fft8_negate_b[id(real[7])] = True fft8_scale_b[id(imag[7])] = Constant.float32x8(sqrt2_over_2) ymm_store_mask = YMMRegister() if store_mask: VMOVAPS(ymm_store_mask, store_mask) # FFT8: butterfly with Block() as store_data: for i, (data_lo, data_hi) in enumerate(zip(data[0:8], data[8:16])): row_lo = i row_hi = row_lo + 8 ymm_data_lo, ymm_data_hi = \ butterfly(data_lo, data_hi, scale_b=fft8_scale_b.get(id(data_hi)), negate_b=fft8_negate_b.get(id(data_hi), False), writeback=False) if relu: ymm_zero = YMMRegister() VMOVAPS(ymm_zero, Constant.float32x8(-0.0)) with Block() as store_data_lo: if reg_row_start: CMP(reg_row_start, row_lo) JA(store_data_lo.end) if reg_row_end: CMP(reg_row_end, row_lo) JBE(store_data_lo.end) elif reg_row_end: CMP(reg_row_end, row_lo) JBE(store_data.end) if relu: VMAXPS(ymm_data_lo, ymm_zero, ymm_data_lo) if store_mask: VMASKMOVPS([reg_t0], ymm_store_mask, ymm_data_lo) else: VMOVUPS([reg_t0], ymm_data_lo) if i + 1 != 8: ADD(reg_t0, reg_t_stride) with Block() as store_data_hi: if reg_row_start: CMP(reg_row_start, row_hi) JA(store_data_hi.end) if reg_row_end: CMP(reg_row_end, row_hi) JBE(store_data_hi.end) if relu: VMAXPS(ymm_data_hi, ymm_zero, ymm_data_hi) if store_mask: VMASKMOVPS([reg_t8], ymm_store_mask, ymm_data_hi) else: VMOVUPS([reg_t8], ymm_data_hi) if i + 1 != 8: ADD(reg_t8, reg_t_stride)
from __future__ import absolute_import from __future__ import division import fft.complex_soa arg_t = Argument(ptr(const_float_), name="t") arg_f = Argument(ptr(float_), name="f") with Function("nnp_fft4_8aos__fma3", (arg_t, arg_f), target=uarch.default + isa.fma3): reg_t = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_t, arg_t) reg_f = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_f, arg_f) ymm_data = [YMMRegister() for _ in range(8)] ymm_real, ymm_imag = ymm_data[0::2], ymm_data[1::2] for i, ymm_i in enumerate(ymm_data): VMOVUPS(ymm_i, [reg_t + i * YMMRegister.size]) fft.complex_soa.fft4_across_rows(ymm_real, ymm_imag) for i, ymm_i in enumerate(ymm_data): VMOVUPS([reg_f + i * YMMRegister.size], ymm_i) RETURN() from common import butterfly, sqrt2_over_2 def fft8_bitreverse(n): return int(format(n, "03b")[::-1], 2) with Function("nnp_fft8_8aos__fma3", (arg_t, arg_f), target=uarch.default + isa.fma3): reg_t = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_t, arg_t) reg_f = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_f, arg_f) data = [YMMRegister() for _ in range(16)] data[0] = LocalVariable(data[0]) data[8] = LocalVariable(data[8]) real, imag = data[0::2], data[1::2] for i, (data_lo, data_hi) in enumerate(zip(data[0:8], data[8:16])): ymm_data_lo, ymm_data_hi = data_lo, data_hi if isinstance(data_lo, LocalVariable): ymm_data_lo = YMMRegister() if isinstance(data_hi, LocalVariable): ymm_data_hi = YMMRegister() VMOVUPS(ymm_data_lo, [reg_t + i * YMMRegister.size]) VMOVUPS(ymm_data_hi, [reg_t + (i + 8) * YMMRegister.size]) butterfly(ymm_data_lo, ymm_data_hi) if isinstance(data_lo, LocalVariable): VMOVAPS(data_lo, ymm_data_lo) if isinstance(data_hi, LocalVariable): VMOVAPS(data_hi, ymm_data_hi) # FFT8: multiplication by twiddle factors fft4_scale_b, fft4_negate_b = {}, {} fft2_scale_b, fft2_negate_b = {}, {} # w6.re, w6.im = w6.im, -w6.re SWAP.REGISTERS(real[6], imag[6]) fft4_negate_b[id(imag[6])] = True # w5.re, w5.im = SQRT2_OVER_2 * (w5.re + w5.im), SQRT2_OVER_2 * (w5.im - w5.re) butterfly(imag[5], real[5]) SWAP.REGISTERS(real[5], imag[5]) # w7.re, w7.im = -SQRT2_OVER_2 * (w7.re - w7.im), -SQRT2_OVER_2 * (w7.re + w7.im) butterfly(real[7], imag[7], negate_b=True) fft4_negate_b[id(real[7])] = True fft4_negate_b[id(imag[7])] = True # Propogate multiplication by sqrt2_over_2 until the last butterfly in FFT2 ymm_sqrt2_over_2 = YMMRegister() fft2_scale_b[id(real[5])] = ymm_sqrt2_over_2 fft2_scale_b[id(imag[5])] = ymm_sqrt2_over_2 fft2_scale_b[id(real[7])] = ymm_sqrt2_over_2 fft2_scale_b[id(imag[7])] = ymm_sqrt2_over_2 # 2x FFT4: butterfly for data_lo, data_hi in zip(data[0:4] + data[8:12], data[4:8] + data[12:16]): butterfly(data_lo, data_hi, negate_b=fft4_negate_b.get(id(data_hi), False), scale_b=fft4_scale_b.get(id(data_hi))) # 2x FFT4: multiplication by twiddle factors # w3.re, w3.im = w3.im, -w3.re # w7.re, w7.im = w7.im, -w7.re SWAP.REGISTERS(real[3], imag[3]) SWAP.REGISTERS(real[7], imag[7]) fft2_negate_b[id(imag[3])] = True fft2_negate_b[id(imag[7])] = True # 4x FFT2: butterfly for i, (data_lo, data_hi) in enumerate(zip(data[0:2] + data[4:6] + data[8:10] + data[12:14], data[2:4] + data[6:8] + data[10:12] + data[14:16])): ymm_data_lo, ymm_data_hi = \ butterfly(data_lo, data_hi, negate_b=fft2_negate_b.get(id(data_hi), False), scale_b=fft2_scale_b.get(id(data_hi)), writeback=False) index_lo = (i // 2) * 2 index_hi = index_lo + 1 VMOVUPS([reg_f + (fft8_bitreverse(index_lo) * 2 + i % 2) * YMMRegister.size], ymm_data_lo) VMOVUPS([reg_f + (fft8_bitreverse(index_hi) * 2 + i % 2) * YMMRegister.size], ymm_data_hi) if i == 0: VMOVAPS(ymm_sqrt2_over_2, Constant.float32x8(sqrt2_over_2)) RETURN() with Function("nnp_ifft8_8aos__fma3", (arg_t, arg_f), target=uarch.default + isa.fma3): reg_t = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_t, arg_t) reg_f = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_f, arg_f) data = [YMMRegister() for _ in range(16)] data[0] = LocalVariable(data[0]) data[8] = LocalVariable(data[8]) real, imag = data[0::2], data[1::2] for i, (data_lo, data_hi) in enumerate(zip(data[0:8], data[8:16])): ymm_data_lo, ymm_data_hi = data_lo, data_hi if isinstance(data_lo, LocalVariable): ymm_data_lo = YMMRegister() if isinstance(data_hi, LocalVariable): ymm_data_hi = YMMRegister() VMOVUPS(ymm_data_lo, [reg_t + i * YMMRegister.size]) VMOVUPS(ymm_data_hi, [reg_t + (i + 8) * YMMRegister.size]) butterfly(ymm_data_lo, ymm_data_hi) if isinstance(data_lo, LocalVariable): VMOVAPS(data_lo, ymm_data_lo) if isinstance(data_hi, LocalVariable): VMOVAPS(data_hi, ymm_data_hi) # FFT8: multiplication by twiddle factors fft4_scale_b, fft4_negate_b = {}, {} fft2_scale_b, fft2_negate_b = {}, {} # w6.re, w6.im = -w6.im, w6.re SWAP.REGISTERS(real[6], imag[6]) fft4_negate_b[id(real[6])] = True # w5.re, w5.im = SQRT2_OVER_2 * (w5.re - w5.im), SQRT2_OVER_2 * (w5.re + w5.im) butterfly(real[5], imag[5], negate_b=True) # w7.re, w7.im = -SQRT2_OVER_2 * (w7.re + w7.im), SQRT2_OVER_2 * (w7.re - w7.im) butterfly(real[7], imag[7]) fft4_negate_b[id(real[7])] = True # Propogate multiplication by sqrt2_over_2 until the last butterfly in FFT2 fft2_scale_b[id(real[5])] = Constant.float32x8(sqrt2_over_2) fft2_scale_b[id(imag[5])] = Constant.float32x8(sqrt2_over_2) fft2_scale_b[id(real[7])] = Constant.float32x8(sqrt2_over_2) fft2_scale_b[id(imag[7])] = Constant.float32x8(sqrt2_over_2) # 2x FFT4: butterfly for data_lo, data_hi in zip(data[0:4] + data[8:12], data[4:8] + data[12:16]): butterfly(data_lo, data_hi, negate_b=fft4_negate_b.get(id(data_hi), False), scale_b=fft4_scale_b.get(id(data_hi))) # 2x FFT4: multiplication by twiddle factors # w3.re, w3.im = -w3.im, w3.re # w7.re, w7.im = -w7.im, w7.re SWAP.REGISTERS(real[3], imag[3]) SWAP.REGISTERS(real[7], imag[7]) fft2_negate_b[id(real[3])] = True fft2_negate_b[id(real[7])] = True # 4x FFT2: butterfly for i, (data_lo, data_hi) in enumerate(zip(data[0:2] + data[4:6] + data[8:10] + data[12:14], data[2:4] + data[6:8] + data[10:12] + data[14:16])): ymm_data_lo, ymm_data_hi = \ butterfly(data_lo, data_hi, negate_b=fft2_negate_b.get(id(data_hi), False), scale_b=fft2_scale_b.get(id(data_hi)), writeback=False) index_lo = (i // 2) * 2 index_hi = index_lo + 1 VMULPS(ymm_data_lo, ymm_data_lo, Constant.float32x8(0.125)) VMULPS(ymm_data_hi, ymm_data_hi, Constant.float32x8(0.125)) VMOVUPS([reg_f + (fft8_bitreverse(index_lo) * 2 + i % 2) * YMMRegister.size], ymm_data_lo) VMOVUPS([reg_f + (fft8_bitreverse(index_hi) * 2 + i % 2) * YMMRegister.size], ymm_data_hi) RETURN()
import fft.complex_soa import fft.two_real_to_two_complex_soa_perm_planar arg_t = Argument(ptr(const_float_), name="t") arg_f = Argument(ptr(float_), name="f") with Function("nnp_fft8_dualreal__avx2", (arg_t, arg_f), target=uarch.default + isa.fma3 + isa.avx2): reg_t = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_t, arg_t) reg_f = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_f, arg_f) ymm_seq_a, ymm_seq_b = YMMRegister(), YMMRegister() VMOVUPS(ymm_seq_a, [reg_t]) VMOVUPS(ymm_seq_b, [reg_t + YMMRegister.size]) fft.complex_soa.fft8_within_rows(ymm_seq_a, ymm_seq_b) ymm_wr, ymm_wi = ymm_seq_a, ymm_seq_b fft.two_real_to_two_complex_soa_perm_planar.fft8_within_rows_postprocess(ymm_wr, ymm_wi) ymm_xhr, ymm_xhi = ymm_wr, ymm_wi VMOVUPS([reg_f], ymm_xhr) VMOVUPS([reg_f + YMMRegister.size], ymm_xhi) RETURN() with Function("nnp_fft16_dualreal__avx2", (arg_t, arg_f), target=uarch.default + isa.fma3 + isa.avx2): reg_t = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_t, arg_t) reg_f = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_f, arg_f) ymm_seq_a = YMMRegister(), YMMRegister() ymm_seq_b = YMMRegister(), YMMRegister() for i, ymm_a in enumerate(ymm_seq_a + ymm_seq_b): VMOVUPS(ymm_a, [reg_t + i * YMMRegister.size]) fft.complex_soa.fft16_within_rows(ymm_seq_a, ymm_seq_b) ymm_wr, ymm_wi = ymm_seq_a, ymm_seq_b fft.two_real_to_two_complex_soa_perm_planar.fft16_within_rows_postprocess(ymm_wr, ymm_wi) for i, ymm_w in enumerate(ymm_wr + ymm_wi): VMOVUPS([reg_f + i * YMMRegister.size], ymm_w) RETURN()
import fft.complex_soa_perm_to_real from common import butterfly, cos_npi_over_8, sqrt2_over_2 def fft8_bitreverse(n): return int(format(n, "03b")[::-1], 2) arg_f = Argument(ptr(const_float_), name="f") arg_t = Argument(ptr(float_), name="t") with Function("nnp_ifft8_8real__fma3", (arg_f, arg_t), target=uarch.default + isa.fma3): reg_f = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_f, arg_f) reg_t = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_t, arg_t) ymm_data = [YMMRegister() for _ in range(8)] ymm_real, ymm_imag = ymm_data[0::2], ymm_data[1::2] for i, ymm_i in enumerate(ymm_data): VMOVUPS(ymm_i, [reg_f + i * YMMRegister.size]) fft.complex_soa_perm_to_real.ifft8_across_rows(ymm_data) for i, ymm_i in enumerate(ymm_data): VMOVUPS([reg_t + i * YMMRegister.size], ymm_i) RETURN() import fft16x16 with Function("nnp_ifft16_8real__fma3", (arg_f, arg_t), target=uarch.default + isa.fma3): reg_f = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_f, arg_f) reg_t0 = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_t0, arg_t) reg_stride = GeneralPurposeRegister64() MOV(reg_stride, YMMRegister.size) reg_t8 = GeneralPurposeRegister64() LEA(reg_t8, [reg_t0 + 8 * YMMRegister.size]) fft16x16.inverse_vfft(reg_t0, reg_t8, reg_stride, data_in=[yword[reg_f + YMMRegister.size * i] for i in range(16)]) RETURN()
from __future__ import absolute_import from __future__ import division import winograd.o6x6k3x3 import block8x8 from common import _MM_SHUFFLE for post_operation in ["store", "stream"]: arg_d_pointer = Argument(ptr(const_float_), name="d_pointer") arg_wd_pointer = Argument(ptr(float_), name="wd_pointer") arg_d_stride = Argument(size_t, name="d_stride") arg_wd_stride = Argument(size_t, name="wd_stride") arg_row_count = Argument(uint32_t, name="row_count") arg_column_count = Argument(uint32_t, name="column_count") arg_row_offset = Argument(uint32_t, name="row_offset") arg_column_offset = Argument(uint32_t, name="column_offset") with Function("nnp_iwt8x8_3x3_with_offset_and_{post_operation}__avx2".format(post_operation=post_operation), (arg_d_pointer, arg_wd_pointer, arg_d_stride, arg_wd_stride, arg_row_count, arg_column_count, arg_row_offset, arg_column_offset), target=uarch.default + isa.fma3 + isa.avx2): reg_d = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_d, arg_d_pointer) reg_wd = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_wd, arg_wd_pointer) reg_stride_d = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_stride_d, arg_d_stride) reg_stride_wd = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_stride_wd, arg_wd_stride) reg_row_cnt = GeneralPurposeRegister32() LOAD.ARGUMENT(reg_row_cnt, arg_row_count) reg_col_cnt = GeneralPurposeRegister32() LOAD.ARGUMENT(reg_col_cnt, arg_column_count) reg_row_off = GeneralPurposeRegister32() LOAD.ARGUMENT(reg_row_off, arg_row_offset) reg_col_off = GeneralPurposeRegister32() LOAD.ARGUMENT(reg_col_off, arg_column_offset) ymm_data = [YMMRegister() for _ in range(8)] block8x8.load_with_padding(ymm_data, reg_d, reg_stride_d, reg_row_off, reg_row_cnt, reg_col_off, reg_col_cnt) ymm_data = winograd.o6x6k3x3.input_transform(ymm_data) winograd.o6x6k3x3.transpose8x8(ymm_data) ymm_data = winograd.o6x6k3x3.input_transform(ymm_data) VSTOREPS = {"store": VMOVAPS, "stream": VMOVNTPS}[post_operation] for ymm_row in ymm_data: VSTOREPS([reg_wd], ymm_row) if ymm_row is not ymm_data[-1]: ADD(reg_wd, reg_stride_wd) RETURN() for reverse_kernel in [False, True]: for post_operation in ["store", "stream"]: arg_g_pointer = Argument(ptr(const_float_), name="d_pointer") arg_wg_pointer = Argument(ptr(float_), name="wd_pointer") arg_g_stride = Argument(size_t, name="d_stride") arg_wg_stride = Argument(size_t, name="wd_stride") arg_row_count = Argument(uint32_t, name="row_count") arg_column_count = Argument(uint32_t, name="column_count") arg_row_offset = Argument(uint32_t, name="row_offset") arg_column_offset = Argument(uint32_t, name="column_offset") kwt_arguments = (arg_g_pointer, arg_wg_pointer, arg_g_stride, arg_wg_stride, arg_row_count, arg_column_count, arg_row_offset, arg_column_offset) with Function("nnp_kwt8x8_3{reverse}x3{reverse}_and_{post_operation}__avx2".format( reverse="R" if reverse_kernel else "", post_operation=post_operation), kwt_arguments, target=uarch.default + isa.fma3 + isa.avx2): reg_g = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_g, arg_g_pointer) reg_wg = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_wg, arg_wg_pointer) reg_stride_g = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_stride_g, arg_g_stride) reg_stride_wg = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_stride_wg, arg_wg_stride) # stride is in elements; multiply by sizeof(float) to get stride in bytes SHL(reg_stride_g, 2) xmm_load_mask = XMMRegister() VMOVAPS(xmm_load_mask.as_ymm, Constant.float32x8(-0.0, -0.0, -0.0, +0.0, +0.0, +0.0, +0.0, +0.0)) xmm_g = [XMMRegister() for _ in range(3)] for xmm in xmm_g: VMASKMOVPS(xmm, xmm_load_mask, [reg_g]) if xmm is not xmm_g[-1]: ADD(reg_g, reg_stride_g) if reverse_kernel: xmm_g = xmm_g[::-1] ymm_wg_rows = winograd.o6x6k3x3.kernel_transform([xmm.as_ymm for xmm in xmm_g], rescale_coefficients=False) ymm_g_rows = winograd.o6x6k3x3.transpose8x3([ymm.as_xmm for ymm in ymm_wg_rows]) if reverse_kernel: ymm_g_rows = ymm_g_rows[::-1] ymm_wg_rows = winograd.o6x6k3x3.kernel_transform(ymm_g_rows, rescale_coefficients=False) rcp_9 = float.fromhex("0x1.C71C72p-4") rcp_81 = float.fromhex("0x1.948B10p-7") rcp_90 = float.fromhex("0x1.6C16C2p-7") rcp_180 = float.fromhex("0x1.6C16C2p-8") rcp_810 = float.fromhex("0x1.43A274p-10") rcp_1620 = float.fromhex("0x1.43A274p-11") rcp_8100 = float.fromhex("0x1.02E85Cp-13") rcp_16200 = float.fromhex("0x1.02E85Cp-14") rcp_32400 = float.fromhex("0x1.02E85Cp-15") ymm_edge_scale = YMMRegister() VMOVAPS(ymm_edge_scale, Constant.float32x8( 1.0, -2.0 * rcp_9, -2.0 * rcp_9, rcp_90, rcp_90, rcp_180, rcp_180, 1.0)) VMULPS(ymm_wg_rows[0], ymm_wg_rows[0], ymm_edge_scale) VMULPS(ymm_wg_rows[7], ymm_wg_rows[7], ymm_edge_scale) ymm_row12_scale = YMMRegister() VMOVAPS(ymm_row12_scale, Constant.float32x8(-2.0 * rcp_9, 4.0 * rcp_81, 4.0 * rcp_81, -2.0 * rcp_810, -2.0 * rcp_810, -2.0 * rcp_1620, -2.0 * rcp_1620, -2.0 * rcp_9)) VMULPS(ymm_wg_rows[1], ymm_wg_rows[1], ymm_row12_scale) VMULPS(ymm_wg_rows[2], ymm_wg_rows[2], ymm_row12_scale) ymm_row34_scale = YMMRegister() VMOVAPS(ymm_row34_scale, Constant.float32x8( rcp_90, -2.0 * rcp_810, -2.0 * rcp_810, rcp_8100, rcp_8100, rcp_16200, rcp_16200, rcp_90)) VMULPS(ymm_wg_rows[3], ymm_wg_rows[3], ymm_row34_scale) VMULPS(ymm_wg_rows[4], ymm_wg_rows[4], ymm_row34_scale) ymm_row56_scale = YMMRegister() VMOVAPS(ymm_row56_scale, Constant.float32x8( rcp_180, -2.0 * rcp_1620, -2.0 * rcp_1620, rcp_16200, rcp_16200, rcp_32400, rcp_32400, rcp_180)) VMULPS(ymm_wg_rows[5], ymm_wg_rows[5], ymm_row56_scale) VMULPS(ymm_wg_rows[6], ymm_wg_rows[6], ymm_row56_scale) # Write output with stride VSTOREPS = {"store": VMOVAPS, "stream": VMOVNTPS}[post_operation] for ymm_wg_row in ymm_wg_rows: VSTOREPS([reg_wg], ymm_wg_row) if ymm_wg_row is not ymm_wg_rows[-1]: ADD(reg_wg, reg_stride_wg) RETURN() arg_m_pointer = Argument(ptr(const_float_), name="m_pointer") arg_s_pointer = Argument(ptr(float_), name="s_pointer") arg_bias = Argument(ptr(const_float_), name="bias_pointer") arg_m_stride = Argument(size_t, name="m_stride") arg_s_stride = Argument(size_t, name="s_stride") arg_row_count = Argument(uint32_t, name="row_count") arg_column_count = Argument(uint32_t, name="column_count") arg_row_offset = Argument(uint32_t, name="row_offset") arg_column_offset = Argument(uint32_t, name="column_offset") for with_offset, with_bias, with_relu in [(True, False, False), (False, True, False), (False, True, True)]: if with_bias: owt8x8_arguments = (arg_m_pointer, arg_s_pointer, arg_bias, arg_m_stride, arg_s_stride, arg_row_count, arg_column_count) else: owt8x8_arguments = (arg_m_pointer, arg_s_pointer, arg_m_stride, arg_s_stride, arg_row_count, arg_column_count) if with_offset: # Note: the version with offset has offset arguments, but they are never used (assumed 0). owt8x8_arguments += (arg_row_offset, arg_column_offset) with Function("nnp_owt8x8_3x3{with_bias}{with_relu}__avx2".format( with_bias="_with_bias" if with_bias else "", with_relu="_with_relu" if with_relu else ""), owt8x8_arguments, target=uarch.default + isa.fma3 + isa.avx2): reg_m = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_m, arg_m_pointer) reg_s = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_s, arg_s_pointer) if with_bias: reg_bias = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_bias, arg_bias) xmm_bias = XMMRegister() VINSERTPS(xmm_bias, xmm_bias, [reg_bias], 0b1101 | 1<<4) reg_m_stride = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_m_stride, arg_m_stride) reg_s_stride = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_s_stride, arg_s_stride) reg_row_count = GeneralPurposeRegister32() LOAD.ARGUMENT(reg_row_count, arg_row_count) reg_column_count = GeneralPurposeRegister32() LOAD.ARGUMENT(reg_column_count, arg_column_count) ymm_m = [YMMRegister() for _ in range(8)] for ymm in ymm_m: if with_bias and ymm is ymm_m[1]: VADDPS(ymm, xmm_bias.as_ymm, [reg_m]) else: VMOVAPS(ymm, [reg_m]) if ymm is not ymm_m[-1]: ADD(reg_m, reg_m_stride) ymm_t = winograd.o6x6k3x3.output_transform(ymm_m) ymm_tt = winograd.o6x6k3x3.transpose6x8(ymm_t) ymm_s = winograd.o6x6k3x3.output_transform(ymm_tt) block8x8.store_packed(ymm_s, reg_s, reg_s_stride, reg_row_count, reg_column_count, None, None, with_relu) RETURN()
from __future__ import absolute_import from __future__ import division import block8x8 import fft.complex_soa import fft.real_to_complex_soa_perm import fft.complex_soa_perm_to_real import fft.two_real_to_two_complex_soa_perm_planar import fft.two_complex_soa_perm_to_two_real_planar arg_t_pointer = Argument(ptr(const_float_), name="t_pointer") arg_f_pointer = Argument(ptr(float_), name="f_pointer") arg_x_pointer = Argument(ptr(const_float_), name="x_pointer") arg_t_stride = Argument(size_t, name="t_stride") arg_f_stride = Argument(size_t, name="f_stride") arg_row_offset = Argument(uint32_t, name="row_offset") arg_row_count = Argument(uint32_t, name="row_count") arg_column_offset = Argument(uint32_t, name="column_offset") arg_column_count = Argument(uint32_t, name="column_count") for post_operation in ["stream", "store"]: fft8x8_arguments = (arg_t_pointer, arg_f_pointer, arg_t_stride, arg_f_stride, arg_row_count, arg_column_count, arg_row_offset, arg_column_offset) with Function("nnp_fft8x8_with_offset_and_{post_operation}__avx2".format(post_operation=post_operation), fft8x8_arguments, target=uarch.default + isa.fma3 + isa.avx2): reg_t = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_t, arg_t_pointer) reg_f = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_f, arg_f_pointer) reg_inct = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_inct, arg_t_stride) reg_incf = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_incf, arg_f_stride) reg_row_cnt = GeneralPurposeRegister32() LOAD.ARGUMENT(reg_row_cnt, arg_row_count) reg_col_cnt = GeneralPurposeRegister32() LOAD.ARGUMENT(reg_col_cnt, arg_column_count) reg_row_off = GeneralPurposeRegister32() LOAD.ARGUMENT(reg_row_off, arg_row_offset) reg_col_off = GeneralPurposeRegister32() LOAD.ARGUMENT(reg_col_off, arg_column_offset) ymm_data = [YMMRegister(i) for i in range(8)] ymm_real, ymm_imag = ymm_data[0::2], ymm_data[1::2] block8x8.load_with_padding(ymm_data, reg_t, reg_inct, reg_row_off, reg_row_cnt, reg_col_off, reg_col_cnt) fft.real_to_complex_soa_perm.fft8_across_rows(ymm_data) fft.complex_soa.fft8_within_rows(ymm_real, ymm_imag) fft.two_real_to_two_complex_soa_perm_planar.fft8_within_rows_postprocess(ymm_real[0], ymm_imag[0]) VSTOREPS = {"store": VMOVAPS, "stream": VMOVNTPS}[post_operation] for ymm_re, ymm_im in zip(ymm_real, ymm_imag): VSTOREPS([reg_f], ymm_re) VSTOREPS([reg_f + YMMRegister.size], ymm_im) if ymm_re is not ymm_real[-1]: ADD(reg_f, reg_incf) RETURN() arg_f_pointer = Argument(ptr(const_float_), name="f_pointer") arg_t_pointer = Argument(ptr(float_), name="t_pointer") arg_bias = Argument(ptr(const_float_), name="bias_pointer") arg_f_stride = Argument(size_t, name="f_stride") arg_t_stride = Argument(size_t, name="t_stride") arg_row_offset = Argument(uint32_t, name="row_offset") arg_row_count = Argument(uint32_t, name="row_count") arg_column_offset = Argument(uint32_t, name="column_offset") arg_column_count = Argument(uint32_t, name="column_count") for with_offset, with_bias, with_relu in [(True, False, False), (False, True, False), (False, True, True)]: if with_bias: ifft8x8_arguments = (arg_f_pointer, arg_t_pointer, arg_bias, arg_f_stride, arg_t_stride, arg_row_count, arg_column_count) else: ifft8x8_arguments = (arg_f_pointer, arg_t_pointer, arg_f_stride, arg_t_stride, arg_row_count, arg_column_count) if with_offset: ifft8x8_arguments += arg_row_offset, arg_column_offset with Function("nnp_ifft8x8{with_offset}{with_bias}{with_relu}__avx2".format( with_offset="_with_offset" if with_offset else "", with_bias="_with_bias" if with_bias else "", with_relu="_with_relu" if with_relu else ""), ifft8x8_arguments, target=uarch.default + isa.fma3 + isa.avx2): reg_f = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_f, arg_f_pointer) reg_t = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_t, arg_t_pointer) if with_bias: reg_bias = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_bias, arg_bias) reg_f_stride = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_f_stride, arg_f_stride) reg_t_stride = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_t_stride, arg_t_stride) reg_row_count = GeneralPurposeRegister32() LOAD.ARGUMENT(reg_row_count, arg_row_count) reg_column_end = GeneralPurposeRegister32() LOAD.ARGUMENT(reg_column_end, arg_column_count) if with_offset: reg_row_start = GeneralPurposeRegister32() LOAD.ARGUMENT(reg_row_start, arg_row_offset) reg_column_start = GeneralPurposeRegister32() LOAD.ARGUMENT(reg_column_start, arg_column_offset) ADD(reg_column_end, reg_column_start) else: reg_row_start = None reg_column_start = None ymm_data = [YMMRegister(i) for i in range(8)] ymm_real, ymm_imag = ymm_data[0::2], ymm_data[1::2] if with_bias: ymm_bias = YMMRegister() VMOVSS(ymm_bias.as_xmm, [reg_bias]) for ymm_re, ymm_im in zip(ymm_real, ymm_imag): VMOVAPS(ymm_re, [reg_f]) VMOVAPS(ymm_im, [reg_f + YMMRegister.size]) if with_bias and ymm_re is ymm_real[0]: VFMADD231PS(ymm_re, ymm_bias, Constant.float32x8(64.0)) if ymm_im is not ymm_imag[-1]: ADD(reg_f, reg_f_stride) fft.two_complex_soa_perm_to_two_real_planar.ifft8_within_rows_preprocess(ymm_real[0], ymm_imag[0]) fft.complex_soa.fft8_within_rows(ymm_real, ymm_imag, transformation="inverse") fft.complex_soa_perm_to_real.ifft8_across_rows(ymm_data) block8x8.store_packed(ymm_data, reg_t, reg_t_stride, reg_row_count, reg_column_end, reg_row_start, reg_column_start, with_relu) RETURN()
import fft.complex_soa import fft.two_complex_soa_perm_to_two_real_planar arg_f = Argument(ptr(const_float_), name="f") arg_t = Argument(ptr(float_), name="t") with Function("nnp_ifft8_dualreal__avx2", (arg_f, arg_t), target=uarch.default + isa.fma3 + isa.avx2): reg_f = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_f, arg_f) reg_t = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_t, arg_t) ymm_xhr, ymm_xhi = YMMRegister(), YMMRegister() VMOVUPS(ymm_xhr, [reg_f]) VMOVUPS(ymm_xhi, [reg_f + YMMRegister.size]) fft.two_complex_soa_perm_to_two_real_planar.ifft8_within_rows_preprocess(ymm_xhr, ymm_xhi) ymm_wr, ymm_wi = ymm_xhr, ymm_xhi fft.complex_soa.fft8_within_rows(ymm_wr, ymm_wi, transformation="inverse") ymm_seq_a, ymm_seq_b = ymm_wr, ymm_wi VMOVUPS([reg_t], ymm_seq_a) VMOVUPS([reg_t + YMMRegister.size], ymm_seq_b) RETURN() with Function("nnp_ifft16_dualreal__avx2", (arg_f, arg_t), target=uarch.default + isa.fma3 + isa.avx2): reg_f = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_f, arg_f) reg_t = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_t, arg_t) ymm_wr = YMMRegister(), YMMRegister() ymm_wi = YMMRegister(), YMMRegister() for i, ymm_w in enumerate(ymm_wr + ymm_wi): VMOVUPS(ymm_w, [reg_f + i * YMMRegister.size]) fft.two_complex_soa_perm_to_two_real_planar.ifft16_within_rows_preprocess(ymm_wr, ymm_wi) fft.complex_soa.ifft16_within_rows(ymm_wr, ymm_wi) for i, ymm_w in enumerate(ymm_wr + ymm_wi): VMOVUPS([reg_t + i * YMMRegister.size], ymm_w) RETURN()
import fft.real_to_complex_soa_perm arg_t = Argument(ptr(const_float_), name="t") arg_f = Argument(ptr(float_), name="f") with Function("nnp_fft8_8real__fma3", (arg_t, arg_f), target=uarch.default + isa.fma3): reg_t = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_t, arg_t) reg_f = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_f, arg_f) ymm_data = [YMMRegister() for _ in range(8)] for i, ymm_i in enumerate(ymm_data): VMOVUPS(ymm_i, [reg_t + i * YMMRegister.size]) fft.real_to_complex_soa_perm.fft8_across_rows(ymm_data) for i, ymm_i in enumerate(ymm_data): VMOVUPS([reg_f + i * YMMRegister.size], ymm_i) RETURN() import fft16x16 with Function("nnp_fft16_8real__fma3", (arg_t, arg_f), target=uarch.default + isa.fma3): reg_t0 = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_t0, arg_t) reg_f = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_f, arg_f) reg_stride = GeneralPurposeRegister64() MOV(reg_stride, YMMRegister.size) reg_t8 = GeneralPurposeRegister64() LEA(reg_t8, [reg_t0 + 8 * YMMRegister.size]) fft16x16.forward_vfft(reg_t0, reg_t8, reg_stride, data_out=[yword[reg_f + YMMRegister.size * i] for i in range(16)]) RETURN()
from __future__ import absolute_import from __future__ import division from peachpy import * from peachpy.x86_64 import * def load_with_padding(ymm_data, reg_data, reg_stride, reg_row_offset, reg_row_count, reg_column_offset, reg_column_count): assert isinstance(ymm_data, list) and all(isinstance(ymm_row, YMMRegister) for ymm_row in ymm_data) assert isinstance(reg_data, GeneralPurposeRegister64) assert isinstance(reg_stride, GeneralPurposeRegister64) assert isinstance(reg_row_offset, GeneralPurposeRegister32) assert isinstance(reg_row_count, GeneralPurposeRegister32) assert isinstance(reg_column_offset, GeneralPurposeRegister32) assert isinstance(reg_column_count, GeneralPurposeRegister32) reg_column_end = GeneralPurposeRegister64() LEA(reg_column_end, [reg_column_offset.as_qword + reg_column_count.as_qword * 1]) ymm_before_column_end_mask = YMMRegister() VMOVD(ymm_before_column_end_mask.as_xmm, reg_column_end.as_dword) ymm_before_column_start_mask = YMMRegister() VMOVD(ymm_before_column_start_mask.as_xmm, reg_column_offset.as_dword) ymm_column_index_mask = YMMRegister() VMOVAPD(ymm_column_index_mask, Constant.uint32x8(0, 1, 2, 3, 4, 5, 6, 7)) VPBROADCASTD(ymm_before_column_end_mask, ymm_before_column_end_mask.as_xmm) VPCMPGTD(ymm_before_column_end_mask, ymm_before_column_end_mask, ymm_column_index_mask) VPBROADCASTD(ymm_before_column_start_mask, ymm_before_column_start_mask.as_xmm) VPCMPGTD(ymm_before_column_start_mask, ymm_before_column_start_mask, ymm_column_index_mask) ymm_load_mask = YMMRegister() VPANDN(ymm_load_mask, ymm_before_column_start_mask, ymm_before_column_end_mask) # Multiply by sizeof(float) to get offset in bytes SHL(reg_column_offset, 2) # data points to the first element, which is loaded into lane `reg_column_offset` # However, VMASKMOVPS expects pointer to the first lane, even if it is not loaded. # Adjust the pointer by subtracting column_offset, in bytes SUB(reg_data, reg_column_offset.as_qword) # stride is in elements; multiply by sizeof(float) to get stride in bytes SHL(reg_stride, 2) # Zero all elements. Rows which are not loaded are initialized here. for ymm_row in ymm_data: VXORPS(ymm_row, ymm_row, ymm_row) with Block() as load_rows: for i, ymm_row in enumerate(ymm_data): with Block() as load_row: CMP(reg_row_offset, i) JA(load_row.end) VMASKMOVPS(ymm_row, ymm_load_mask, [reg_data]) if i + 1 != len(ymm_data): ADD(reg_data, reg_stride) SUB(reg_row_count, 1) JZ(load_rows.end) def store_packed(ymm_data, reg_data, reg_stride, reg_row_count, reg_column_end, reg_row_offset=None, reg_column_start=None, relu=False): assert isinstance(ymm_data, list) and all(isinstance(ymm_row, YMMRegister) for ymm_row in ymm_data) assert isinstance(reg_data, GeneralPurposeRegister64) assert isinstance(reg_stride, GeneralPurposeRegister64) assert isinstance(reg_row_count, GeneralPurposeRegister32) assert isinstance(reg_column_end, GeneralPurposeRegister32) assert reg_row_offset is None or isinstance(reg_row_offset, GeneralPurposeRegister32) assert reg_column_start is None or isinstance(reg_column_start, GeneralPurposeRegister32) if reg_column_start is None: ymm_store_mask = YMMRegister() VMOVD(ymm_store_mask.as_xmm, reg_column_end) VPBROADCASTD(ymm_store_mask, ymm_store_mask.as_xmm) VPCMPGTD(ymm_store_mask, ymm_store_mask, Constant.uint32x8(0, 1, 2, 3, 4, 5, 6, 7)) else: ymm_before_column_end_mask = YMMRegister() VMOVD(ymm_before_column_end_mask.as_xmm, reg_column_end) ymm_before_column_start_mask = YMMRegister() VMOVD(ymm_before_column_start_mask.as_xmm, reg_column_start) SHL(reg_column_start, 2) SUB(reg_data, reg_column_start.as_qword) ymm_column_index_mask = YMMRegister() VMOVDQA(ymm_column_index_mask, Constant.uint32x8(0, 1, 2, 3, 4, 5, 6, 7)) VPBROADCASTD(ymm_before_column_end_mask, ymm_before_column_end_mask.as_xmm) VPCMPGTD(ymm_before_column_end_mask, ymm_before_column_end_mask, ymm_column_index_mask) VPBROADCASTD(ymm_before_column_start_mask, ymm_before_column_start_mask.as_xmm) VPCMPGTD(ymm_before_column_start_mask, ymm_before_column_start_mask, ymm_column_index_mask) ymm_store_mask = YMMRegister() VPANDN(ymm_store_mask, ymm_before_column_start_mask, ymm_before_column_end_mask) # stride is in elements; multiply by sizeof(float) to get stride in bytes SHL(reg_stride, 2) if relu: ymm_zero = YMMRegister() VMOVAPS(ymm_zero, Constant.float32x8(-0.0)) with Block() as store_rows: for i, ymm_row in enumerate(ymm_data): with Block() as store_row: if reg_row_offset is not None: CMP(reg_row_offset, i) JA(store_row.end) if relu: VMAXPS(ymm_row, ymm_zero, ymm_row) VMASKMOVPS([reg_data], ymm_store_mask, ymm_row) if ymm_row is not ymm_data[-1]: ADD(reg_data, reg_stride) SUB(reg_row_count, 1) JZ(store_rows.end)
import winograd.o6x6k3x3 arg_d_pointer = Argument(ptr(const_float_), name="d") arg_w_pointer = Argument(ptr(float_), name="w") with Function("nnp_iwt_f6k3__fma3", (arg_d_pointer, arg_w_pointer), target=uarch.default + isa.fma3): reg_d = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_d, arg_d_pointer) reg_w = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_w, arg_w_pointer) ymm_data = [YMMRegister() for _ in range(8)] for i, ymm_row in enumerate(ymm_data): VMOVUPS(ymm_row, [reg_d + i * YMMRegister.size]) ymm_data = winograd.o6x6k3x3.input_transform(ymm_data) for i, ymm_row in enumerate(ymm_data): VMOVUPS([reg_w + i * YMMRegister.size], ymm_row) RETURN() arg_g_pointer = Argument(ptr(const_float_), name="g") arg_w_pointer = Argument(ptr(float_), name="w") with Function("nnp_kwt_f6k3__fma3", (arg_g_pointer, arg_w_pointer), target=uarch.default + isa.fma3): reg_g = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_g, arg_g_pointer) reg_w = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_w, arg_w_pointer) ymm_data = [YMMRegister() for _ in range(3)] for i, ymm_row in enumerate(ymm_data): VMOVUPS(ymm_row, [reg_g + i * YMMRegister.size]) ymm_data = winograd.o6x6k3x3.kernel_transform(ymm_data) for i, ymm_row in enumerate(ymm_data): VMOVUPS([reg_w + i * YMMRegister.size], ymm_row) RETURN() arg_m_pointer = Argument(ptr(const_float_), name="m") arg_s_pointer = Argument(ptr(float_), name="s") with Function("nnp_owt_f6k3__fma3", (arg_m_pointer, arg_s_pointer), target=uarch.default + isa.fma3): reg_m = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_m, arg_m_pointer) reg_s = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_s, arg_s_pointer) ymm_m = [YMMRegister() for _ in range(8)] for i, ymm_row in enumerate(ymm_m): VMOVUPS(ymm_row, [reg_m + i * YMMRegister.size]) ymm_s = winograd.o6x6k3x3.output_transform(ymm_m) for i, ymm_row in enumerate(ymm_s): VMOVUPS([reg_s + i * YMMRegister.size], ymm_row) RETURN()
from common import _MM_SHUFFLE arg_src_pointer = Argument(ptr(const_float_), name="src_pointer") arg_dst_pointer = Argument(ptr(float_), name="dst_pointer") arg_src_stride = Argument(size_t, name="src_stride") arg_src_row_offset = Argument(uint32_t, name="src_row_offset") arg_src_row_count = Argument(uint32_t, name="src_row_count") arg_src_column_offset = Argument(uint32_t, name="src_column_offset") arg_src_column_count = Argument(uint32_t, name="src_column_count") arg_dst_column_count = Argument(uint32_t, name="dst_column_count") with Function("nnp_maxpool_2x2_2x2__avx2", (arg_src_pointer, arg_dst_pointer, arg_src_stride, arg_src_row_offset, arg_src_row_count, arg_src_column_offset, arg_src_column_count, arg_dst_column_count), target=uarch.default + isa.fma3 + isa.avx2): reg_src_ptr = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_src_ptr, arg_src_pointer) reg_dst_ptr = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_dst_ptr, arg_dst_pointer) reg_src_stride = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_src_stride, arg_src_stride) reg_src_row_index = GeneralPurposeRegister32() LOAD.ARGUMENT(reg_src_row_index, arg_src_row_offset) reg_src_row_count = GeneralPurposeRegister32() LOAD.ARGUMENT(reg_src_row_count, arg_src_row_count) reg_src_column_start = GeneralPurposeRegister32() LOAD.ARGUMENT(reg_src_column_start, arg_src_column_offset) reg_src_column_end = GeneralPurposeRegister32() LOAD.ARGUMENT(reg_src_column_end, arg_src_column_count) ADD(reg_src_column_end, reg_src_column_start) reg_dst_column_count = GeneralPurposeRegister32() LOAD.ARGUMENT(reg_dst_column_count, arg_dst_column_count) ymm_src_column_start, ymm_src_column_end, ymm_dst_column_count = YMMRegister(), YMMRegister(), YMMRegister() VMOVD(ymm_src_column_start.as_xmm, reg_src_column_start) VMOVD(ymm_src_column_end.as_xmm, reg_src_column_end) VMOVD(ymm_dst_column_count.as_xmm, reg_dst_column_count) VPBROADCASTD(ymm_src_column_start, ymm_src_column_start.as_xmm) VPBROADCASTD(ymm_src_column_end, ymm_src_column_end.as_xmm) VPBROADCASTD(ymm_dst_column_count, ymm_dst_column_count.as_xmm) ymm_column_01234567, ymm_column_89ABCDEF = YMMRegister(), YMMRegister() VMOVDQA(ymm_column_01234567, Constant.uint32x8(0, 1, 2, 3, 4, 5, 6, 7)) VMOVDQA(ymm_column_89ABCDEF, Constant.uint32x8(8, 9, 10, 11, 12, 13, 14, 15)) ymm_src_column_start_gt_01234567, ymm_src_column_end_gt_01234567 = YMMRegister(), YMMRegister() VPCMPGTD(ymm_src_column_start_gt_01234567, ymm_src_column_start, ymm_column_01234567) VPCMPGTD(ymm_src_column_end_gt_01234567, ymm_src_column_end, ymm_column_01234567) ymm_src_column_start_gt_89ABCDEF, ymm_src_column_end_gt_89ABCDEF = YMMRegister(), YMMRegister() VPCMPGTD(ymm_src_column_start_gt_89ABCDEF, ymm_src_column_start, ymm_column_89ABCDEF) VPCMPGTD(ymm_src_column_end_gt_89ABCDEF, ymm_src_column_end, ymm_column_89ABCDEF) ymm_src_mask_columns_0_to_8, ymm_src_mask_columns_8_to_16 = YMMRegister(), YMMRegister() VPANDN(ymm_src_mask_columns_0_to_8, ymm_src_column_start_gt_01234567, ymm_src_column_end_gt_01234567) VPANDN(ymm_src_mask_columns_8_to_16, ymm_src_column_start_gt_89ABCDEF, ymm_src_column_end_gt_89ABCDEF) ymm_dst_mask_columns_0_to_8 = YMMRegister() VPCMPGTD(ymm_dst_mask_columns_0_to_8, ymm_dst_column_count, ymm_column_01234567) # data points to the first element, which is loaded into lane `reg_column_start` # However, VMASKMOVPS expects pointer to the first lane, even if it is not loaded. # Adjust the pointer by subtracting column_offset, in bytes SHL(reg_src_column_start, 2) SUB(reg_src_ptr, reg_src_column_start.as_qword) # Multiply stride by sizeof(float) to convert from elements to bytes SHL(reg_src_stride, 2) ymm_row0 = YMMRegister(), YMMRegister() ymm_row1 = YMMRegister(), YMMRegister() ymm_minus_inf = YMMRegister() VMOVAPS(ymm_minus_inf, Constant.float32x8(-float("inf"))) VMOVAPS(ymm_row0[0], ymm_minus_inf) VMOVAPS(ymm_row0[1], ymm_minus_inf) VMOVAPS(ymm_row1[0], ymm_minus_inf) VMOVAPS(ymm_row1[1], ymm_minus_inf) NEG(reg_src_row_index) with Block() as load_row0: CMP(reg_src_row_index, reg_src_row_count) JAE(load_row0.end) VMASKMOVPS(ymm_row0[0], ymm_src_mask_columns_0_to_8, [reg_src_ptr]) VBLENDVPS(ymm_row0[0], ymm_minus_inf, ymm_row0[0], ymm_src_mask_columns_0_to_8) VMASKMOVPS(ymm_row0[1], ymm_src_mask_columns_8_to_16, [reg_src_ptr + YMMRegister.size]) VBLENDVPS(ymm_row0[1], ymm_minus_inf, ymm_row0[1], ymm_src_mask_columns_8_to_16) ADD(reg_src_ptr, reg_src_stride) with Block() as load_row1: INC(reg_src_row_index) CMP(reg_src_row_index, reg_src_row_count) JAE(load_row1.end) VMASKMOVPS(ymm_row1[0], ymm_src_mask_columns_0_to_8, [reg_src_ptr]) VBLENDVPS(ymm_row1[0], ymm_minus_inf, ymm_row1[0], ymm_src_mask_columns_0_to_8) VMASKMOVPS(ymm_row1[1], ymm_src_mask_columns_8_to_16, [reg_src_ptr + YMMRegister.size]) VBLENDVPS(ymm_row1[1], ymm_minus_inf, ymm_row1[1], ymm_src_mask_columns_8_to_16) # ymm_row[0] = ( x7 x6 x5 x4 x3 x2 x1 x0 ) # ymm_row[1] = ( x15 x14 x13 x12 x11 x10 x9 x8 ) ymm_row = YMMRegister(), YMMRegister() VMAXPS(ymm_row[0], ymm_row0[0], ymm_row1[0]) VMAXPS(ymm_row[1], ymm_row0[1], ymm_row1[1]) # ymm_row[0] = ( x14 x12 x6 x4 x10 x8 x2 x0 ) # ymm_row[1] = ( x15 x13 x7 x5 x11 x9 x3 x1 ) ymm_tmp = YMMRegister() VSHUFPS(ymm_tmp, ymm_row[0], ymm_row[1], _MM_SHUFFLE(2, 0, 2, 0)) VSHUFPS(ymm_row[1], ymm_row[0], ymm_row[1], _MM_SHUFFLE(3, 1, 3, 1)) SWAP.REGISTERS(ymm_row[0], ymm_tmp) # ymm_out = ( y7 y6 y3 y2 y5 y4 y1 y0 ) ymm_out = YMMRegister() VMAXPS(ymm_out, ymm_row[0], ymm_row[1]) VPERMPD(ymm_out, ymm_out, _MM_SHUFFLE(3, 1, 2, 0)) VMASKMOVPS([reg_dst_ptr], ymm_dst_mask_columns_0_to_8, ymm_out) RETURN()
from __future__ import absolute_import from __future__ import division from peachpy import * from peachpy.x86_64 import * sqrt2_over_2 = float.fromhex("0x1.6A09E6p-1") cos_1pi_over_8 = float.fromhex("0x1.D906BCp-1") cos_3pi_over_8 = float.fromhex("0x1.87DE2Ap-2") tan_1pi_over_8 = float.fromhex("0x1.A8279Ap-2") tan_3pi_over_8 = float.fromhex("0x1.3504F4p+1") cos_npi_over_8 = [ 1.0, cos_1pi_over_8, sqrt2_over_2, cos_3pi_over_8, 0.0, -cos_3pi_over_8, -sqrt2_over_2, -cos_1pi_over_8, ] cos_npi_over_4 = [ 1.0, sqrt2_over_2, 0.0, -sqrt2_over_2 ] sin_npi_over_8 = [ 0.0, cos_3pi_over_8, sqrt2_over_2, cos_1pi_over_8, 1.0, cos_1pi_over_8, sqrt2_over_2, cos_3pi_over_8 ] sin_npi_over_4 = [ 0.0, sqrt2_over_2, 1.0, sqrt2_over_2 ] def _MM_SHUFFLE(z, y, x, w): assert z & ~0b11 == 0 assert y & ~0b11 == 0 assert x & ~0b11 == 0 assert w & ~0b11 == 0 return (z << 6) | (y << 4) | (x << 2) | w def _MM_SHUFFLE2(x, y): assert x & ~1 == 0 assert y & ~1 == 0 return (x << 1) | y def butterfly(a, b, negate_a=False, negate_b=False, scale_a=None, scale_b=None, negate_out_b=False, writeback=True): assert isinstance(a, YMMRegister) or isinstance(a, LocalVariable) and a.size == YMMRegister.size assert isinstance(b, YMMRegister) or isinstance(b, LocalVariable) and b.size == YMMRegister.size assert isinstance(negate_a, bool) assert isinstance(negate_b, bool) assert isinstance(negate_out_b, bool) assert scale_b is None or \ isinstance(scale_b, YMMRegister) or \ isinstance(scale_b, (LocalVariable, Constant)) and scale_b.size == YMMRegister.size assert scale_a is None or \ isinstance(scale_a, YMMRegister) or \ isinstance(scale_a, (LocalVariable, Constant)) and scale_a.size == YMMRegister.size assert scale_a is None or scale_b is None assert isinstance(writeback, bool) assert not negate_out_b or not negate_a and not negate_b and scale_a is None and scale_b is None ymm_a, ymm_b = a, b if isinstance(a, LocalVariable): ymm_a = YMMRegister() VMOVAPS(ymm_a, a) if isinstance(b, LocalVariable): ymm_b = YMMRegister() VMOVAPS(ymm_b, b) if scale_b is None and scale_a is None: assert not negate_a, "Negation of a is supported only in combination with scaling" ymm_new_a = YMMRegister() VADDPS(ymm_new_a, ymm_a, ymm_b) ymm_new_b = YMMRegister() if not negate_out_b: VSUBPS(ymm_new_b, ymm_a, ymm_b) else: VSUBPS(ymm_new_b, ymm_b, ymm_a) if not negate_b: SWAP.REGISTERS(ymm_new_a, ymm_a) SWAP.REGISTERS(ymm_new_b, ymm_b) else: SWAP.REGISTERS(ymm_new_a, ymm_b) SWAP.REGISTERS(ymm_new_b, ymm_a) elif scale_a is not None: ymm_a_copy = YMMRegister() VMOVAPS(ymm_a_copy, ymm_a) if not negate_a and not negate_b: VFMADD132PS(ymm_a, ymm_b, scale_a) VFMSUB132PS(ymm_a_copy, ymm_b, scale_a) elif not negate_a and negate_b: VFMSUB132PS(ymm_a, ymm_b, scale_a) VFMADD132PS(ymm_a_copy, ymm_b, scale_a) elif negate_a and not negate_b: VFMMADD132PS(ymm_a, ymm_b, scale_a) VFNMSUB132PS(ymm_a_copy, ymm_b, scale_a) elif negate_a and negate_b: VFNMSUB132PS(ymm_a, ymm_b, scale_a) VFNMADD132PS(ymm_a_copy, ymm_b, scale_a) SWAP.REGISTERS(ymm_b, ymm_a_copy) elif scale_b is not None: ymm_a_copy = YMMRegister() VMOVAPS(ymm_a_copy, ymm_a) if not negate_a and not negate_b: VFMADD231PS(ymm_a, ymm_b, scale_b) VFNMADD231PS(ymm_a_copy, ymm_b, scale_b) elif not negate_a and negate_b: VFNMADD231PS(ymm_a, ymm_b, scale_b) VFMADD231PS(ymm_a_copy, ymm_b, scale_b) elif negate_a and not negate_b: VFMSUB231PS(ymm_a, ymm_b, scale_b) VFNMSUB231PS(ymm_a_copy, ymm_b, scale_b) elif negate_a and negate_b: VFNMSUB231PS(ymm_a, ymm_b, scale_b) VFMSUB231PS(ymm_a_copy, ymm_b, scale_b) SWAP.REGISTERS(ymm_b, ymm_a_copy) if writeback and isinstance(a, LocalVariable): VMOVAPS(a, ymm_a) if writeback and isinstance(b, LocalVariable): VMOVAPS(b, ymm_b) return ymm_a, ymm_b def transpose2x2x128(ymm_a, ymm_b, use_blend=True): # ymm_a = (a.lo, a.hi) # ymm_b = (b.lo, b.hi) if use_blend: # ymm_ab = (a.hi, b.lo) ymm_ab = YMMRegister() VPERM2F128(ymm_ab, ymm_a, ymm_b, 0x21) # ymm_a = (a.lo, b.lo) VBLENDPS(ymm_a, ymm_a, ymm_ab, 0xF0) # ymm_b = (a.hi, b.hi) VBLENDPS(ymm_b, ymm_b, ymm_ab, 0x0F) else: # ymm_new_a = (a.lo, b.lo) ymm_new_a = YMMRegister() VINSERTF128(ymm_new_a, ymm_a, ymm_b.as_xmm, 1) # ymm_new_b = (a.hi, b.hi) ymm_new_b = YMMRegister() VPERM2F128(ymm_new_b, ymm_a, ymm_b, 0x31) SWAP.REGISTERS(ymm_a, ymm_new_a) SWAP.REGISTERS(ymm_b, ymm_new_b) def transpose2x2x2x64(ymm_a, ymm_b, use_blend=True): # ymm_a = (a0, a1, a2, a3) # ymm_b = (b0, b1, a2, b3) if use_blend: # ymm_ab = (a1, b0, a3, b2) ymm_ab = YMMRegister() VSHUFPD(ymm_ab, ymm_a, ymm_b, 0b0101) # ymm_a = (a0, b0, a2, b2) VBLENDPS(ymm_a, ymm_a, ymm_ab, 0b11001100) # ymm_b = (a1, b1, a3, b3) VBLENDPS(ymm_b, ymm_b, ymm_ab, 0b00110011) else: # ymm_new_a = (a0, b0, a2, b2) ymm_new_a = YMMRegister() VUNPCKLPD(ymm_new_a, ymm_a, ymm_b) # ymm_new_b = (a1, b1, a3, b3) ymm_new_b = YMMRegister() VUNPCKHPD(ymm_new_b, ymm_a, ymm_b) SWAP.REGISTERS(ymm_a, ymm_new_a) SWAP.REGISTERS(ymm_b, ymm_new_b) def compute_masks(masks, reg_column_offset, reg_column_count): assert isinstance(masks, list) and all(isinstance(mask, (YMMRegister, LocalVariable)) for mask in masks) assert isinstance(reg_column_offset, GeneralPurposeRegister64) assert isinstance(reg_column_count, GeneralPurposeRegister64) def interleave(sequence_a, sequence_b): assert isinstance(sequence_a, list) and isinstance(sequence_b, list) or isinstance(sequence_a, tuple) and isinstance(sequence_b, tuple) if isinstance(sequence_a, list): return list(sum(zip(sequence_a, sequence_b), ())) else: return sum(zip(sequence_a, sequence_b), ())
arg_input = Argument(ptr(const_float_), "input") arg_output = Argument(ptr(float_), "output") arg_length = Argument(size_t, "length") arg_negative_slope = Argument(float_, "negative_slope") with Function("nnp_relu__avx2", (arg_input, arg_output, arg_length, arg_negative_slope), target=uarch.default + isa.avx2): reg_input = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_input, arg_input) reg_output = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_output, arg_output) reg_length = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_length, arg_length) ymm_negative_slope = YMMRegister() LOAD.ARGUMENT(ymm_negative_slope.as_xmm, arg_negative_slope) VBROADCASTSS(ymm_negative_slope, ymm_negative_slope.as_xmm) loop = Loop() TEST(reg_length, reg_length) JZ(loop.end) with loop: # Load (unaligned!) data and update input pointer ymm_data = YMMRegister() VMOVUPS(ymm_data, [reg_input]) ADD(reg_input, YMMRegister.size) # Scale data with negative slope (for negative inputs) ymm_scaled_data = YMMRegister() VMULPS(ymm_scaled_data, ymm_data, ymm_negative_slope) # Select scaled data if input is negative VBLENDVPS(ymm_data, ymm_data, ymm_scaled_data, ymm_data) # Stream (aligned!) data to memory and update output pointer VMOVNTPS([reg_output], ymm_data) ADD(reg_output, YMMRegister.size) SUB(reg_length, YMMRegister.size // float_.size) JNZ(loop.begin) RETURN() arg_data = Argument(ptr(float_), "data") arg_length = Argument(size_t, "length") arg_negative_slope = Argument(float_, "negative_slope") with Function("nnp_inplace_relu__avx2", (arg_data, arg_length, arg_negative_slope), target=uarch.default + isa.avx2): reg_data = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_data, arg_data) reg_length = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_length, arg_length) ymm_negative_slope = YMMRegister() LOAD.ARGUMENT(ymm_negative_slope.as_xmm, arg_negative_slope) VBROADCASTSS(ymm_negative_slope, ymm_negative_slope.as_xmm) loop = Loop() TEST(reg_length, reg_length) JZ(loop.end) with loop: # Load data ymm_data = YMMRegister() VMOVAPS(ymm_data, [reg_data]) # Scale data with negative slope (for negative inputs) ymm_scaled_data = YMMRegister() VMULPS(ymm_scaled_data, ymm_data, ymm_negative_slope) # Select scaled data if input is negative VBLENDVPS(ymm_data, ymm_data, ymm_scaled_data, ymm_data) # Store data back to the same location and update pointer VMOVAPS([reg_data], ymm_data) ADD(reg_data, YMMRegister.size) SUB(reg_length, YMMRegister.size // float_.size) JNZ(loop.begin) RETURN() arg_output_gradient = Argument(ptr(const_float_), "output_gradient") arg_input = Argument(ptr(const_float_), "input") arg_input_gradient = Argument(ptr(float_), "input_gradient") arg_length = Argument(size_t, "length") arg_negative_slope = Argument(float_, "negative_slope") with Function("nnp_grad_relu__avx2", (arg_output_gradient, arg_input, arg_input_gradient, arg_length, arg_negative_slope), target=uarch.default + isa.avx2): reg_output_gradient = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_output_gradient, arg_output_gradient) reg_input = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_input, arg_input) reg_input_gradient = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_input_gradient, arg_input_gradient) reg_length = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_length, arg_length) ymm_negative_slope = YMMRegister() LOAD.ARGUMENT(ymm_negative_slope.as_xmm, arg_negative_slope) VBROADCASTSS(ymm_negative_slope, ymm_negative_slope.as_xmm) loop = Loop() TEST(reg_length, reg_length) JZ(loop.end) with loop: # Load (unaligned!) gradient and update output gradient pointer ymm_gradient = YMMRegister() VMOVUPS(ymm_gradient, [reg_output_gradient]) ADD(reg_output_gradient, YMMRegister.size) # Load (unaligned!) data and update input pointer ymm_data = YMMRegister() VMOVUPS(ymm_data, [reg_input]) ADD(reg_input, YMMRegister.size) # Scale gradient with negative slope (for negative inputs) ymm_scaled_gradient = YMMRegister() VMULPS(ymm_scaled_gradient, ymm_gradient, ymm_negative_slope) # Select scaled gradient if input is negative VBLENDVPS(ymm_gradient, ymm_gradient, ymm_scaled_gradient, ymm_data) # Stream (aligned!) gradient to memory and update input gradient pointer VMOVAPS([reg_input_gradient], ymm_gradient) ADD(reg_input_gradient, YMMRegister.size) SUB(reg_length, YMMRegister.size // float_.size) JNZ(loop.begin) RETURN()
from __future__ import absolute_import from __future__ import division from peachpy import * from peachpy.x86_64 import * log2e = float.fromhex("+0x1.715476p+3") magic_bias = float.fromhex("+0x1.800000p+23") zero_cutoff = float.fromhex("-0x1.9FE368p+6") inf_cutoff = float.fromhex("+0x1.62E42Ep+6") minus_ln2_hi = float.fromhex("-0x1.62E430p-4") minus_ln2_lo = float.fromhex("+0x1.05C610p-32") plus_inf = float("inf") c2 = float.fromhex("0x1.00088Ap-1") c3 = float.fromhex("0x1.555A86p-3") t0 = float.fromhex("0x1.000000p+0") t1 = float.fromhex("0x1.172B84p+0") t2 = float.fromhex("0x1.306FE0p+0") t3 = float.fromhex("0x1.4BFDAEp+0") t4 = float.fromhex("0x1.6A09E6p+0") t5 = float.fromhex("0x1.8ACE54p+0") t6 = float.fromhex("0x1.AE89FAp+0") t7 = float.fromhex("0x1.D5818Ep+0") min_exponent = (-126 << 23) & 0xFFFFFFFF max_exponent = 127 << 23 default_exponent = 0x3F800000 mantissa_mask = 0x007FFFF8 x_arg = Argument(m256, "x") with Function("_mm256_exp_ps", (x_arg,), m256, target=uarch.default + isa.fma3 + isa.avx2): ymm_x = YMMRegister() LOAD.ARGUMENT(ymm_x, x_arg) ymm_magic_bias = YMMRegister() VMOVAPS(ymm_magic_bias, Constant.float32x8(magic_bias)) ymm_t = YMMRegister() VMOVAPS(ymm_t, ymm_x) VFMADD132PS(ymm_t, ymm_magic_bias, Constant.float32x8(log2e)) ymm_e1, ymm_e2 = YMMRegister(), YMMRegister() VPAND(ymm_e2, ymm_t, Constant.uint32x8(mantissa_mask)) VPSLLD(ymm_e2, ymm_e2, 20) ymm_tf = YMMRegister() VPERMPS(ymm_tf, ymm_t, Constant.float32x8(t0, t1, t2, t3, t4, t5, t6, t7)) VSUBPS(ymm_t, ymm_t, ymm_magic_bias) # rx = fma(t, minus_ln2_lo, fma(t, minus_ln2_hi, x)) # rx := t * minus_ln2_hi + x # rx := t * minus_ln2_lo + rx ymm_rx = YMMRegister() VMOVAPS(ymm_rx, ymm_x) VFMADD231PS(ymm_rx, ymm_t, Constant.float32x8(minus_ln2_hi)) VFMADD231PS(ymm_rx, ymm_t, Constant.float32x8(minus_ln2_lo)) VPMAXSD(ymm_e1, ymm_e2, Constant.uint32x8(min_exponent)) VPMINSD(ymm_e1, ymm_e1, Constant.uint32x8(max_exponent)) ymm_default_exponent = YMMRegister() VMOVDQA(ymm_default_exponent, Constant.uint32x8(default_exponent)) VPSUBD(ymm_e2, ymm_e2, ymm_e1) VPADDD(ymm_e1, ymm_e1, ymm_default_exponent) VPADDD(ymm_e2, ymm_e2, ymm_default_exponent) # rf = fma(rx, rx * fma(rx, c3, c2), rx) # rf := rx * c3 + c2 # rf := rx * rf # rf := rx * rf + rx ymm_rf = YMMRegister() VMOVAPS(ymm_rf, Constant.float32x8(c2)) VFMADD231PS(ymm_rf, ymm_rx, Constant.float32x8(c3)) VMULPS(ymm_rf, ymm_rf, ymm_rx) VFMADD213PS(ymm_rf, ymm_rx, ymm_rx) # f = fma(tf, rf, tf) VFMADD231PS(ymm_tf, ymm_tf, ymm_rf) ymm_f = ymm_tf VMULPS(ymm_f, ymm_f, ymm_e1) VMULPS(ymm_f, ymm_f, ymm_e2) RETURN(ymm_f)
from common import _MM_SHUFFLE from vecmath.exp import simd_exp arg_n = Argument(size_t, "n") arg_v = Argument(ptr(const_float_), "v") with Function("max__avx", (arg_n, arg_v), float_, target=uarch.default + isa.avx): reg_n = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_n, arg_n) reg_v = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_v, arg_v) unroll_loop = Loop() vector_loop = Loop() final_block = Block() simd_width = YMMRegister.size // float_.size unroll_factor = 4 # Initialize reduction registers with the first element (v[0]) ymm_ms = [YMMRegister() for _ in range(unroll_factor)] VBROADCASTSS(ymm_ms[0], [reg_v]) for ymm_m in ymm_ms[1:]: VMOVAPS(ymm_m, ymm_ms[0]) # Unrolled vectorized loop SUB(reg_n, simd_width * unroll_factor) JB(unroll_loop.end) with unroll_loop: for i, ymm_m in enumerate(ymm_ms): VMAXPS(ymm_m, ymm_m, [reg_v + i * YMMRegister.size]) SUB(reg_v, -unroll_factor * YMMRegister.size) SUB(reg_n, simd_width * unroll_factor) JAE(unroll_loop.begin) VMAXPS(ymm_ms[0], ymm_ms[0], ymm_ms[1]) VMAXPS(ymm_ms[2], ymm_ms[2], ymm_ms[3]) VMAXPS(ymm_ms[0], ymm_ms[0], ymm_ms[2]) ymm_m = ymm_ms[0] ADD(reg_n, simd_width * unroll_factor) JZ(final_block.end) # Vectorized loop without unrolling SUB(reg_n, simd_width) JB(vector_loop.end) with vector_loop: VMAXPS(ymm_m, ymm_m, [reg_v]) ADD(reg_v, YMMRegister.size) SUB(reg_n, simd_width) JAE(vector_loop.begin) ADD(reg_n, simd_width) JZ(final_block.end) # Process remainder: 0 < reg_n < simd_width with final_block: reg_mask = GeneralPurposeRegister64() LEA(reg_mask, Constant.uint32x16(*([0xFFFFFFFF] * 8 + [0x00000000] * 8))) NEG(reg_n) LEA(reg_mask, [reg_mask + reg_n * 4 + 16]) ymm_mask = YMMRegister() VMOVUPS(ymm_mask, [reg_mask]) ymm_temp = YMMRegister() VMASKMOVPS(ymm_temp, ymm_mask, [reg_v]) VBLENDVPS(ymm_temp, ymm_temp, ymm_m, ymm_mask) VMAXPS(ymm_m, ymm_m, ymm_temp) ymm_temp = YMMRegister() VPERM2F128(ymm_temp, ymm_m, ymm_m, 0x01) VMAXPS(ymm_m, ymm_m, ymm_temp) VPERMILPS(ymm_temp, ymm_m, _MM_SHUFFLE(1, 0, 3, 2)) VMAXPS(ymm_m, ymm_m, ymm_temp) VPERMILPS(ymm_temp, ymm_m, _MM_SHUFFLE(2, 3, 0, 1)) VMAXPS(ymm_m, ymm_m, ymm_temp) RETURN(ymm_m.as_xmm) arg_n = Argument(size_t, "n") arg_v = Argument(ptr(const_float_), "v") arg_c = Argument(float_, "c") with Function("sum_exp_minus_c__avx2", (arg_n, arg_v, arg_c), float_, target=uarch.default + isa.avx2): reg_n = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_n, arg_n) reg_v = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_v, arg_v) ymm_c = YMMRegister() LOAD.ARGUMENT(ymm_c.as_xmm, arg_c) VBROADCASTSS(ymm_c, ymm_c.as_xmm) unroll_loop = Loop() vector_loop = Loop() final_block = Block() simd_width = YMMRegister.size // float_.size unroll_factor = 3 # Clear reduction registers ymm_sums = [YMMRegister() for _ in range(unroll_factor)] for ymm_sum in ymm_sums: VXORPS(ymm_sum.as_xmm, ymm_sum.as_xmm, ymm_sum.as_xmm) # Unrolled vectorized loop SUB(reg_n, simd_width * unroll_factor) JB(unroll_loop.end) with unroll_loop: ymm_xs = [YMMRegister() for _ in ymm_sums] for i, ymm_x in enumerate(ymm_xs): VMOVUPS(ymm_x, [reg_v + i * YMMRegister.size]) VSUBPS(ymm_x, ymm_x, ymm_c) ymm_ys = simd_exp(ymm_xs) for ymm_sum, ymm_y in zip(ymm_sums, ymm_ys): VADDPS(ymm_sum, ymm_sum, ymm_y) SUB(reg_v, -unroll_factor * YMMRegister.size) SUB(reg_n, simd_width * unroll_factor) JAE(unroll_loop.begin) VADDPS(ymm_sums[0], ymm_sums[0], ymm_sums[1]) VADDPS(ymm_sums[0], ymm_sums[0], ymm_sums[2]) ymm_sum = ymm_sums[0] ADD(reg_n, simd_width * unroll_factor) JZ(final_block.end) # Vectorized loop without unrolling SUB(reg_n, simd_width) JB(vector_loop.end) with vector_loop: ymm_x = YMMRegister() VMOVUPS(ymm_x, [reg_v]) VSUBPS(ymm_x, ymm_x, ymm_c) ymm_y = simd_exp([ymm_x])[0] VADDPS(ymm_sum, ymm_sum, ymm_y) ADD(reg_v, YMMRegister.size) SUB(reg_n, simd_width) JAE(vector_loop.begin) ADD(reg_n, simd_width) JZ(final_block.end) # Process remainder: 0 < reg_n < simd_width with final_block: ymm_mask = YMMRegister() VMOVD(ymm_mask.as_xmm, reg_n.as_dword) VPBROADCASTD(ymm_mask, ymm_mask.as_xmm) VPCMPGTD(ymm_mask, ymm_mask, Constant.uint32x8(0, 1, 2, 3, 4, 5, 6, 7)) ymm_x = YMMRegister() VMASKMOVPS(ymm_x, ymm_mask, [reg_v]) VSUBPS(ymm_x, ymm_x, ymm_c) ymm_y = simd_exp([ymm_x])[0] VANDPS(ymm_y, ymm_y, ymm_mask) VADDPS(ymm_sum, ymm_sum, ymm_y) ymm_temp = YMMRegister() VPERM2F128(ymm_temp, ymm_sum, ymm_sum, 0x01) VADDPS(ymm_sum, ymm_sum, ymm_temp) VPERMILPS(ymm_temp, ymm_sum, _MM_SHUFFLE(1, 0, 3, 2)) VADDPS(ymm_sum, ymm_sum, ymm_temp) VPERMILPS(ymm_temp, ymm_sum, _MM_SHUFFLE(2, 3, 0, 1)) VADDPS(ymm_sum, ymm_sum, ymm_temp) RETURN(ymm_sum.as_xmm) def scaled_exp_minus_c(reg_n, reg_x, reg_y, ymm_scale, ymm_c): unroll_loop = Loop() vector_loop = Loop() final_block = Block() simd_width = YMMRegister.size // float_.size unroll_factor = 3 # Unrolled vectorized loop SUB(reg_n, simd_width * unroll_factor) JB(unroll_loop.end) with unroll_loop: ymm_xs = [YMMRegister() for _ in range(unroll_factor)] for i, ymm_x in enumerate(ymm_xs): VMOVUPS(ymm_x, [reg_x + i * YMMRegister.size]) VSUBPS(ymm_x, ymm_x, ymm_c) if reg_x != reg_y: SUB(reg_x, -unroll_factor * YMMRegister.size) ymm_ys = simd_exp(ymm_xs) for i, ymm_y in enumerate(ymm_ys): VMULPS(ymm_y, ymm_y, ymm_scale) VMOVUPS([reg_y + i * YMMRegister.size], ymm_y) SUB(reg_y, -unroll_factor * YMMRegister.size) SUB(reg_n, simd_width * unroll_factor) JAE(unroll_loop.begin) ADD(reg_n, simd_width * unroll_factor) JZ(final_block.end) # Vectorized loop without unrolling SUB(reg_n, simd_width) JB(vector_loop.end) with vector_loop: ymm_x = YMMRegister() VMOVUPS(ymm_x, [reg_x]) if reg_x != reg_y: ADD(reg_x, YMMRegister.size) VSUBPS(ymm_x, ymm_x, ymm_c) ymm_y = simd_exp([ymm_x])[0] VMULPS(ymm_y, ymm_y, ymm_scale) VMOVUPS([reg_y], ymm_y) ADD(reg_y, YMMRegister.size) SUB(reg_n, simd_width) JAE(vector_loop.begin) ADD(reg_n, simd_width) JZ(final_block.end) # Process remainder: 0 < reg_n < simd_width with final_block: ymm_mask = YMMRegister() VMOVD(ymm_mask.as_xmm, reg_n.as_dword) VPBROADCASTD(ymm_mask, ymm_mask.as_xmm) VPCMPGTD(ymm_mask, ymm_mask, Constant.uint32x8(0, 1, 2, 3, 4, 5, 6, 7)) ymm_x = YMMRegister() VMASKMOVPS(ymm_x, ymm_mask, [reg_x]) VSUBPS(ymm_x, ymm_x, ymm_c) ymm_y = simd_exp([ymm_x])[0] VMULPS(ymm_y, ymm_y, ymm_scale) VMASKMOVPS([reg_y], ymm_mask, ymm_y) arg_n = Argument(size_t, "n") arg_v = Argument(ptr(const_float_), "v") arg_scale = Argument(float_, "scale") arg_c = Argument(float_, "c") with Function("inplace_scaled_exp_minus_c__avx2", (arg_n, arg_v, arg_scale, arg_c), target=uarch.default + isa.avx2): reg_n = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_n, arg_n) reg_v = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_v, arg_v) ymm_scale = YMMRegister() LOAD.ARGUMENT(ymm_scale.as_xmm, arg_scale) VBROADCASTSS(ymm_scale, ymm_scale.as_xmm) ymm_c = YMMRegister() LOAD.ARGUMENT(ymm_c.as_xmm, arg_c) VBROADCASTSS(ymm_c, ymm_c.as_xmm) scaled_exp_minus_c(reg_n, reg_v, reg_v, ymm_scale, ymm_c) RETURN() arg_n = Argument(size_t, "n") arg_x = Argument(ptr(const_float_), "x") arg_y = Argument(ptr(float_), "y") arg_scale = Argument(float_, "scale") arg_c = Argument(float_, "c") with Function("scaled_exp_minus_c__avx2", (arg_n, arg_x, arg_y, arg_scale, arg_c), target=uarch.default + isa.avx2): reg_n = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_n, arg_n) reg_x = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_x, arg_x) reg_y = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_y, arg_y) ymm_scale = YMMRegister() LOAD.ARGUMENT(ymm_scale.as_xmm, arg_scale) VBROADCASTSS(ymm_scale, ymm_scale.as_xmm) ymm_c = YMMRegister() LOAD.ARGUMENT(ymm_c.as_xmm, arg_c) VBROADCASTSS(ymm_c, ymm_c.as_xmm) scaled_exp_minus_c(reg_n, reg_x, reg_y, ymm_scale, ymm_c) RETURN()
from __future__ import absolute_import from __future__ import division mr, nr = 3, 4 arg_k = Argument(size_t, "k") arg_update = Argument(size_t, "update") arg_a = Argument(ptr(const_float_), "a") arg_b = Argument(ptr(const_float_), "b") arg_c = Argument(ptr(float_), "c") arg_row_stride = Argument(size_t, "row_stride_c") with Function("nnp_s8gemm_only_{mr}x{nr}__fma3".format(mr=mr, nr=nr), (arg_k, arg_update, arg_a, arg_b, arg_c, arg_row_stride), target=uarch.default + isa.fma3): reg_k = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_k, arg_k) reg_update = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_update, arg_update) reg_a = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_a, arg_a) reg_b = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_b, arg_b) reg_c = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_c, arg_c) reg_row_stride = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_row_stride, arg_row_stride) SHL(reg_row_stride, 2) with Block() as prefetch_c: for m in range(mr): PREFETCHT0([reg_c]) if m + 1 != mr: ADD(reg_c, reg_row_stride) ymm_c = [[YMMRegister() for n in range(nr)] for m in range(mr)] VZEROALL() ymm_a = [YMMRegister() for m in range(mr)] ymm_b_n = YMMRegister() with Loop() as loop: for m in range(mr): VMOVAPS(ymm_a[m], [reg_a + m * YMMRegister.size]) SUB(reg_a, -mr * YMMRegister.size) for n in range(nr): VMOVAPS(ymm_b_n, [reg_b + n * YMMRegister.size]) for m in range(mr): VFMADD231PS(ymm_c[m][n], ymm_a[m], ymm_b_n) SUB(reg_b, -nr * YMMRegister.size) DEC(reg_k) JNZ(loop.begin) store_c = Block() # Check if we need to update C or overwrite it TEST(reg_update, reg_update) JZ(store_c.begin) with Block() as update_c: for m in reversed(range(mr)): for n in range(nr): VADDPS(ymm_c[m][n], ymm_c[m][n], [reg_c + n * YMMRegister.size]) VMOVAPS([reg_c + n * YMMRegister.size], ymm_c[m][n]) if m != 0: SUB(reg_c, reg_row_stride) RETURN() with store_c: for m in reversed(range(mr)): for n in range(nr): VMOVAPS([reg_c + n * YMMRegister.size], ymm_c[m][n]) if m != 0: SUB(reg_c, reg_row_stride) RETURN() arg_mr = Argument(uint32_t, "mr") arg_nr = Argument(uint32_t, "nr") arg_k = Argument(size_t, "k") arg_update = Argument(size_t, "update") arg_a = Argument(ptr(const_float_), "a") arg_b = Argument(ptr(const_float_), "b") arg_c = Argument(ptr(float_), "c") arg_row_stride = Argument(size_t, "row_stride_c") with Function("nnp_s8gemm_upto_{mr}x{nr}__fma3".format(mr=mr, nr=nr), (arg_mr, arg_nr, arg_k, arg_update, arg_a, arg_b, arg_c, arg_row_stride), target=uarch.default + isa.fma3): reg_mr = GeneralPurposeRegister32() LOAD.ARGUMENT(reg_mr, arg_mr) reg_nr = GeneralPurposeRegister32() LOAD.ARGUMENT(reg_nr, arg_nr) reg_k = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_k, arg_k) reg_update = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_update, arg_update) reg_a = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_a, arg_a) reg_b = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_b, arg_b) reg_c = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_c, arg_c) reg_row_stride = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_row_stride, arg_row_stride) SHL(reg_row_stride, 2) ymm_c = [[YMMRegister() for n in range(nr)] for m in range(mr)] VZEROALL() ymm_a = [YMMRegister() for m in range(mr)] ymm_b_n = YMMRegister() with Loop() as loop: with Block() as load_a: for m in range(mr): VMOVAPS(ymm_a[m], [reg_a]) ADD(reg_a, YMMRegister.size) if m + 1 != mr: CMP(reg_mr, m + 1) JE(load_a.end) with Block() as load_b: for n in range(nr): VMOVAPS(ymm_b_n, [reg_b]) ADD(reg_b, YMMRegister.size) for m in range(mr): VFMADD231PS(ymm_c[m][n], ymm_a[m], ymm_b_n) if n + 1 != nr: CMP(reg_nr, n + 1) JE(load_b.end) DEC(reg_k) JNE(loop.begin) store_c = Block() # Check if we need to update C or overwrite it TEST(reg_update, reg_update) JZ(store_c.begin) with Block() as update_c: for m in range(mr): with Block() as update_c_row: for n in range(nr): VADDPS(ymm_c[m][n], ymm_c[m][n], [reg_c + n * YMMRegister.size]) VMOVAPS([reg_c + n * YMMRegister.size], ymm_c[m][n]) if n + 1 != nr: CMP(reg_nr, n + 1) JE(update_c_row.end) if m + 1 != mr: CMP(reg_mr, m + 1) JE(update_c.end) ADD(reg_c, reg_row_stride) RETURN() with store_c: for m in range(mr): with Block() as store_c_row: for n in range(nr): VMOVAPS([reg_c + n * YMMRegister.size], ymm_c[m][n]) if n + 1 != nr: CMP(reg_nr, n + 1) JE(store_c_row.end) if m + 1 != mr: CMP(reg_mr, m + 1) JE(store_c.end) ADD(reg_c, reg_row_stride) RETURN()
from __future__ import absolute_import from __future__ import division mr, nr = 2, 4 arg_input_channels = Argument(size_t, "input_channels") arg_image_size = Argument(size_t, "image_size") arg_input = Argument(ptr(const_float_), "input") arg_kernel = Argument(ptr(const_float_), "kernel") arg_output = Argument(ptr(float_), "output") with Function("nnp_conv1x1_only_{mr}x{nr}__fma3".format(mr=mr, nr=nr), (arg_input_channels, arg_image_size, arg_input, arg_kernel, arg_output), target=uarch.default + isa.fma3): reg_input_channels = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_input_channels, arg_input_channels) SHL(reg_input_channels, 2) reg_image_size = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_image_size, arg_image_size) SHL(reg_image_size, 2) reg_inputs = [GeneralPurposeRegister64() for m in range(mr)] LOAD.ARGUMENT(reg_inputs[0], arg_input) for m in range(1, mr): LEA(reg_inputs[m], [reg_inputs[m - 1] + reg_image_size * 1]) reg_kernel = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_kernel, arg_kernel) reg_outputs = [GeneralPurposeRegister64() for n in range(nr)] LOAD.ARGUMENT(reg_outputs[0], arg_output) for n in range(1, nr): LEA(reg_outputs[n], [reg_outputs[n - 1] + reg_image_size * 1]) ymm_kernel = [[YMMRegister() for n in range(nr)] for m in range(mr)] for n in range(nr): for m in range(mr): VBROADCASTSS(ymm_kernel[m][n], [reg_kernel + m * float_.size]) if n + 1 != nr: ADD(reg_kernel, reg_input_channels) main_loop = Loop() final_block = Block() SUB(reg_image_size, YMMRegister.size) JB(main_loop.end) with main_loop: # Load vectors from different channels of the output image ymm_outputs = [YMMRegister() for n in range(nr)] for reg_output, ymm_output in zip(reg_outputs, ymm_outputs): VMOVUPS(ymm_output, [reg_output]) for m, reg_input in enumerate(reg_inputs): # Load vector for a channel of the input image ymm_input = YMMRegister() VMOVUPS(ymm_input, [reg_input]) ADD(reg_input, YMMRegister.size) # Update all outputs using the input and corresponding kernel elements for n, (reg_output, ymm_output) in enumerate(zip(reg_outputs, ymm_outputs)): VFMADD231PS(ymm_output, ymm_kernel[m][n], ymm_input) if reg_input is reg_inputs[-1]: VMOVUPS([reg_output], ymm_output) ADD(reg_output, YMMRegister.size) SUB(reg_image_size, YMMRegister.size) JAE(main_loop.begin) ADD(reg_image_size, YMMRegister.size) JZ(final_block.end) with final_block: reg_mask, ymm_mask = GeneralPurposeRegister64(), YMMRegister() LEA(reg_mask, Constant.uint32x16(*([0xFFFFFFFF] * 8 + [0x00000000] * 8))) SUB(reg_mask, reg_image_size) VMOVDQU(ymm_mask, [reg_mask + YMMRegister.size]) # Load vectors from different channels of the output image ymm_outputs = [YMMRegister() for n in range(nr)] for reg_output, ymm_output in zip(reg_outputs, ymm_outputs): VMASKMOVPS(ymm_output, ymm_mask, [reg_output]) for m, reg_input in enumerate(reg_inputs): # Load vector for a channel of the input image ymm_input = YMMRegister() VMASKMOVPS(ymm_input, ymm_mask, [reg_input]) # Update all outputs using the input and corresponding kernel elements for n, (reg_output, ymm_output) in enumerate(zip(reg_outputs, ymm_outputs)): VFMADD231PS(ymm_output, ymm_kernel[m][n], ymm_input) if reg_input is reg_inputs[-1]: VMASKMOVPS([reg_output], ymm_mask, ymm_output) RETURN() arg_mr = Argument(uint32_t, "mr") arg_nr = Argument(uint32_t, "nr") arg_input_channels = Argument(size_t, "input_channels") arg_image_size = Argument(size_t, "image_size") arg_input = Argument(ptr(const_float_), "input") arg_kernel = Argument(ptr(const_float_), "kernel") arg_output = Argument(ptr(float_), "output") with Function("nnp_conv1x1_upto_{mr}x{nr}__fma3".format(mr=mr, nr=nr), (arg_mr, arg_nr, arg_input_channels, arg_image_size, arg_input, arg_kernel, arg_output), target=uarch.default + isa.fma3): reg_mr = GeneralPurposeRegister32() LOAD.ARGUMENT(reg_mr, arg_mr) reg_nr = GeneralPurposeRegister32() LOAD.ARGUMENT(reg_nr, arg_nr) reg_input_channels = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_input_channels, arg_input_channels) SHL(reg_input_channels, 2) reg_image_size = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_image_size, arg_image_size) SHL(reg_image_size, 2) reg_inputs = [GeneralPurposeRegister64() for m in range(mr)] LOAD.ARGUMENT(reg_inputs[0], arg_input) for m in range(1, mr): LEA(reg_inputs[m], [reg_inputs[m - 1] + reg_image_size * 1]) reg_kernel = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_kernel, arg_kernel) reg_outputs = [GeneralPurposeRegister64() for n in range(nr)] LOAD.ARGUMENT(reg_outputs[0], arg_output) for n in range(1, nr): LEA(reg_outputs[n], [reg_outputs[n - 1] + reg_image_size * 1]) VZEROALL() ymm_inputs = [YMMRegister() for m in range(mr)] ymm_kernel = [[YMMRegister() for n in range(nr)] for m in range(mr)] with Block() as load_kernels: for n in range(nr): with Block() as load_kernels_row: for m in range(mr): VBROADCASTSS(ymm_kernel[m][n], [reg_kernel + m * float_.size]) if m + 1 != mr: CMP(reg_mr, m + 1) JE(load_kernels_row.end) if n + 1 != nr: CMP(reg_nr, n + 1) JE(load_kernels.end) ADD(reg_kernel, reg_input_channels) main_loop = Loop() final_block = Block() SUB(reg_image_size, YMMRegister.size) JB(main_loop.end) with main_loop: # Load vectors from different channels of the output image ymm_outputs = [YMMRegister() for n in range(nr)] with Block() as load_outputs: for n, (reg_output, ymm_output) in enumerate(zip(reg_outputs, ymm_outputs)): VMOVUPS(ymm_output, [reg_output]) if n + 1 != nr: CMP(reg_nr, n + 1) JE(load_outputs.end) with Block() as load_inputs: for m, (ymm_input, reg_input) in enumerate(zip(ymm_inputs, reg_inputs)): # Load vector for a channel of the input image VMOVUPS(ymm_input, [reg_input]) ADD(reg_input, YMMRegister.size) # Update all outputs using the input and corresponding kernel elements for n, ymm_output in enumerate(ymm_outputs): VFMADD231PS(ymm_output, ymm_kernel[m][n], ymm_input) if m + 1 != mr: CMP(reg_mr, m + 1) JE(load_inputs.end) # Store vectors to different channels of the output image with Block() as store_outputs: for n, (reg_output, ymm_output) in enumerate(zip(reg_outputs, ymm_outputs)): VMOVUPS([reg_output], ymm_output) ADD(reg_output, YMMRegister.size) if n + 1 != nr: CMP(reg_nr, n + 1) JE(store_outputs.end) SUB(reg_image_size, YMMRegister.size) JAE(main_loop.begin) ADD(reg_image_size, YMMRegister.size) JZ(final_block.end) with final_block: reg_mask, ymm_mask = GeneralPurposeRegister64(), YMMRegister() LEA(reg_mask, Constant.uint32x16(*([0xFFFFFFFF] * 8 + [0x00000000] * 8))) SUB(reg_mask, reg_image_size) VMOVDQU(ymm_mask, [reg_mask + YMMRegister.size]) # Load vectors from different channels of the output image ymm_outputs = [YMMRegister() for n in range(nr)] with Block() as load_outputs: for n, (reg_output, ymm_output) in enumerate(zip(reg_outputs, ymm_outputs)): VMASKMOVPS(ymm_output, ymm_mask, [reg_output]) if n + 1 != nr: CMP(reg_nr, n + 1) JE(load_outputs.end) with Block() as load_inputs: for m, (ymm_input, reg_input) in enumerate(zip(ymm_inputs, reg_inputs)): # Load vector for a channel of the input image VMASKMOVPS(ymm_inputs[m], ymm_mask, [reg_input]) # Update all outputs using the input and corresponding kernel elements for n, (reg_output, ymm_output) in enumerate(zip(reg_outputs, ymm_outputs)): VFMADD231PS(ymm_output, ymm_kernel[m][n], ymm_inputs[m]) if m + 1 != mr: CMP(reg_mr, m + 1) JE(load_inputs.end) # Store vectors to different channels of the output image with Block() as store_outputs: for n, (reg_output, ymm_output) in enumerate(zip(reg_outputs, ymm_outputs)): VMASKMOVPS([reg_output], ymm_mask, ymm_output) if n + 1 != nr: CMP(reg_nr, n + 1) JE(store_outputs.end) RETURN()
from __future__ import absolute_import from __future__ import division simd_width = YMMRegister.size // float_.size for fusion_factor in range(1, 8 + 1): arg_x = Argument(ptr(const_float_), "x") arg_y = Argument(ptr(const_float_), "y") arg_stride_y = Argument(size_t, "stride_y") arg_sum = Argument(ptr(float_), "sum") arg_n = Argument(size_t, "n") with Function("nnp_sdotxf{fusion_factor}__avx2".format(fusion_factor=fusion_factor), (arg_x, arg_y, arg_stride_y, arg_sum, arg_n), target=uarch.default + isa.fma3 + isa.avx2): reg_x = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_x, arg_x) reg_ys = [GeneralPurposeRegister64() for m in range(fusion_factor)] LOAD.ARGUMENT(reg_ys[0], arg_y) reg_stride_y = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_stride_y, arg_stride_y) SHL(reg_stride_y, 2) reg_sum = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_sum, arg_sum) reg_n = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_n, arg_n) ymm_accs = [YMMRegister() for m in range(fusion_factor)] VZEROALL() for m in range(1, fusion_factor): LEA(reg_ys[m], [reg_ys[m - 1] + reg_stride_y * 1]) main_loop = Loop() end_block = Block() SUB(reg_n, YMMRegister.size // float_.size) JB(main_loop.end) with main_loop: ymm_x = YMMRegister() VMOVUPS(ymm_x, [reg_x]) ADD(reg_x, YMMRegister.size) for reg_y, ymm_acc in zip(reg_ys, ymm_accs): VFMADD231PS(ymm_acc, ymm_x, [reg_y]) ADD(reg_y, YMMRegister.size) SUB(reg_n, YMMRegister.size // float_.size) JAE(main_loop.begin) ADD(reg_n, YMMRegister.size // float_.size) JE(end_block.end) with end_block: ymm_mask = YMMRegister() VMOVD(ymm_mask.as_xmm, reg_n.as_dword) VPBROADCASTD(ymm_mask, ymm_mask.as_xmm) VPCMPGTD(ymm_mask, ymm_mask, Constant.uint32x8(0, 1, 2, 3, 4, 5, 6, 7)) ymm_x = YMMRegister() VMASKMOVPS(ymm_x, ymm_mask, [reg_x]) for reg_y, ymm_acc in zip(reg_ys, ymm_accs): ymm_y = YMMRegister() VMASKMOVPS(ymm_y, ymm_mask, [reg_y]) VFMADD231PS(ymm_acc, ymm_x, ymm_y) # Reduce the SIMD registers into a single elements xmm_tmp = XMMRegister() for i, ymm_acc in enumerate(ymm_accs): VEXTRACTF128(xmm_tmp, ymm_acc, 1) VADDPS(ymm_acc.as_xmm, ymm_acc.as_xmm, xmm_tmp) VHADDPS(ymm_acc, ymm_acc, ymm_acc) VHADDPS(ymm_acc, ymm_acc, ymm_acc) VMOVSS([reg_sum + i * float_.size], ymm_acc.as_xmm) RETURN()
from __future__ import absolute_import from __future__ import division from fp16.avx import fp16_alt_xmm_to_fp32_xmm from fp16.avx2 import fp16_alt_xmm_to_fp32_ymm simd_width = YMMRegister.size // float_.size for fusion_factor in range(1, 8 + 1): arg_x = Argument(ptr(const_float_), "x") arg_y = Argument(ptr(const_float_), "y") arg_stride_y = Argument(size_t, "stride_y") arg_sum = Argument(ptr(float_), "sum") arg_n = Argument(size_t, "n") with Function("nnp_shdotxf{fusion_factor}__avx2".format(fusion_factor=fusion_factor), (arg_x, arg_y, arg_stride_y, arg_sum, arg_n), target=uarch.default + isa.fma3 + isa.avx2): reg_x = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_x, arg_x) reg_ys = [GeneralPurposeRegister64() for m in range(fusion_factor)] LOAD.ARGUMENT(reg_ys[0], arg_y) reg_stride_y = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_stride_y, arg_stride_y) ADD(reg_stride_y, reg_stride_y) reg_sum = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_sum, arg_sum) reg_n = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_n, arg_n) ymm_accs = [YMMRegister() for m in range(fusion_factor)] VZEROALL() for m in range(1, fusion_factor): LEA(reg_ys[m], [reg_ys[m - 1] + reg_stride_y * 1]) main_loop = Loop() edge_loop = Loop() SUB(reg_n, XMMRegister.size // uint16_t.size) JB(main_loop.end) with main_loop: ymm_x = YMMRegister() VMOVUPS(ymm_x, [reg_x]) ADD(reg_x, YMMRegister.size) for reg_y, ymm_acc in zip(reg_ys, ymm_accs): xmm_half = XMMRegister() VMOVUPS(xmm_half, [reg_y]) ADD(reg_y, XMMRegister.size) ymm_y = fp16_alt_xmm_to_fp32_ymm(xmm_half) VFMADD231PS(ymm_acc, ymm_x, ymm_y) SUB(reg_n, YMMRegister.size // float_.size) JAE(main_loop.begin) ADD(reg_n, XMMRegister.size // uint16_t.size) JE(edge_loop.end) with edge_loop: xmm_x = XMMRegister() VMOVSS(xmm_x, [reg_x]) ADD(reg_x, YMMRegister.size) for reg_y, ymm_acc in zip(reg_ys, ymm_accs): reg_half = GeneralPurposeRegister32() MOVZX(reg_half, word[reg_y]) xmm_half = XMMRegister() VMOVD(xmm_half, reg_half) ADD(reg_y, uint16_t.size) ymm_y = fp16_alt_xmm_to_fp32_ymm(xmm_half) VFMADD231PS(ymm_acc, xmm_x.as_ymm, ymm_y) SUB(reg_n, 1) JAE(edge_loop.begin) # Reduce the SIMD registers into a single elements xmm_tmp = XMMRegister() for i, ymm_acc in enumerate(ymm_accs): VEXTRACTF128(xmm_tmp, ymm_acc, 1) VADDPS(ymm_acc.as_xmm, ymm_acc.as_xmm, xmm_tmp) VHADDPS(ymm_acc, ymm_acc, ymm_acc) VHADDPS(ymm_acc, ymm_acc, ymm_acc) VMOVSS([reg_sum + i * float_.size], ymm_acc.as_xmm) RETURN()
from __future__ import absolute_import from __future__ import division from common import _MM_SHUFFLE simd_width = YMMRegister.size // float_.size mr = 4 nr = 3 * simd_width arg_k = Argument(size_t, "k") arg_update = Argument(size_t, "update") arg_a = Argument(ptr(const_float_), "a") arg_b = Argument(ptr(const_float_), "b") arg_c = Argument(ptr(float_), "c") arg_row_stride = Argument(size_t, "row_stride_c") with Function("nnp_sgemm_only_{mr}x{nr}__fma3".format(mr=mr, nr=nr), (arg_k, arg_update, arg_a, arg_b, arg_c, arg_row_stride), target=uarch.default + isa.fma3): reg_k = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_k, arg_k) reg_update = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_update, arg_update) reg_a = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_a, arg_a) reg_b = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_b, arg_b) reg_c = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_c, arg_c) reg_row_stride = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_row_stride, arg_row_stride) SHL(reg_row_stride, 2) with Block() as prefetch_c: for m in range(mr): PREFETCHT0([reg_c]) if m + 1 != mr: ADD(reg_c, reg_row_stride) ymm_c = [[YMMRegister() for n in range(0, nr, simd_width)] for m in range(mr)] VZEROALL() ymm_b = [YMMRegister() for n in range(0, nr, simd_width)] ymm_a_m = YMMRegister() with Loop() as loop: for n in range(nr // simd_width): VMOVAPS(ymm_b[n], [reg_b + n * YMMRegister.size]) ADD(reg_b, nr * float_.size) for m in range(mr): VBROADCASTSS(ymm_a_m, [reg_a + m * float_.size]) for n in range(nr // simd_width): VFMADD231PS(ymm_c[m][n], ymm_a_m, ymm_b[n]) ADD(reg_a, mr * float_.size) DEC(reg_k) JNE(loop.begin) store_c = Block() # Check if we need to update C or overwrite it TEST(reg_update, reg_update) JZ(store_c.begin) with Block() as load_and_store_c: for m in reversed(range(mr)): for n in range(nr // simd_width): VADDPS(ymm_c[m][n], ymm_c[m][n], [reg_c + n * YMMRegister.size]) VMOVUPS([reg_c + n * YMMRegister.size], ymm_c[m][n]) if m != 0: SUB(reg_c, reg_row_stride) RETURN() with store_c: for m in reversed(range(mr)): for n in range(nr // simd_width): VMOVUPS([reg_c + n * YMMRegister.size], ymm_c[m][n]) if m != 0: SUB(reg_c, reg_row_stride) RETURN() arg_mr = Argument(uint32_t, "mr") arg_nr = Argument(uint32_t, "nr") arg_k = Argument(size_t, "k") arg_update = Argument(size_t, "update") arg_a = Argument(ptr(const_float_), "a") arg_b = Argument(ptr(const_float_), "b") arg_c = Argument(ptr(float_), "c") arg_row_stride = Argument(size_t, "row_stride_c") with Function("nnp_sgemm_upto_{mr}x{nr}__fma3".format(mr=mr, nr=nr), (arg_mr, arg_nr, arg_k, arg_update, arg_a, arg_b, arg_c, arg_row_stride), target=uarch.default + isa.fma3): reg_mr = GeneralPurposeRegister32() LOAD.ARGUMENT(reg_mr, arg_mr) reg_nr = GeneralPurposeRegister32() LOAD.ARGUMENT(reg_nr, arg_nr) reg_k = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_k, arg_k) reg_update = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_update, arg_update) reg_a = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_a, arg_a) reg_b = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_b, arg_b) reg_c = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_c, arg_c) reg_row_stride = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_row_stride, arg_row_stride) SHL(reg_row_stride, 2) ymm_c = [[YMMRegister() for n in range(0, nr, simd_width)] for m in range(mr)] VZEROALL() ymm_b = [YMMRegister() for n in range(0, nr, simd_width)] ymm_a_m = YMMRegister() with Loop() as loop: with Block() as load_b: for n in range(nr // simd_width): VMOVAPS(ymm_b[n], [reg_b]) ADD(reg_b, YMMRegister.size) if n + 1 != nr // simd_width: CMP(reg_nr, (n + 1) * simd_width) JBE(load_b.end) with Block() as multiply_by_a: for m in range(mr): VBROADCASTSS(ymm_a_m, [reg_a]) ADD(reg_a, float_.size) for n in range(nr // simd_width): VFMADD231PS(ymm_c[m][n], ymm_a_m, ymm_b[n]) if m + 1 != mr: CMP(reg_mr, m + 1) JE(multiply_by_a.end) DEC(reg_k) JNE(loop.begin) store_c = Block() # Load mask reg_mask_index = GeneralPurposeRegister32() LEA(reg_mask_index, [reg_nr.as_qword - 1]) AND(reg_mask_index, simd_width - 1) NEG(reg_mask_index.as_qword) const_mask_table = Constant.uint32x16(*([0xFFFFFFFF] * 8 + [0x00000000] * 8)) reg_mask = GeneralPurposeRegister64() LEA(reg_mask, const_mask_table) LEA(reg_mask, [reg_mask + reg_mask_index.as_qword * 4 + 32 - 4]) ymm_mask = YMMRegister() VMOVDQU(ymm_mask, [reg_mask]) # Check if we need to update C or overwrite it TEST(reg_update, reg_update) JZ(store_c.begin) with Block() as update_c: for m in range(mr): reg_c_mn = GeneralPurposeRegister64() MOV(reg_c_mn, reg_c) ymm_c_mn = YMMRegister() with Block() as update_c_full_registers: for n in range(nr // simd_width): # Copy the current accumulator register into a fixed register ymm_c_mn. # If a partial register is to be stored, the storing code would expect it there. VMOVAPS(ymm_c_mn, ymm_c[m][n]) if n + 1 != nr // simd_width: CMP(reg_nr, (n + 1) * simd_width) JBE(update_c_full_registers.end) VADDPS(ymm_c[m][n], ymm_c[m][n], [reg_c_mn]) VMOVUPS([reg_c_mn], ymm_c[m][n]) ADD(reg_c_mn, YMMRegister.size) # Update (potentially) partial register # Important: ymm_c_mn is the content of the register and [reg_c_mn] is the address of the tuple of C ymm_temp = YMMRegister() VMASKMOVPS(ymm_temp, ymm_mask, [reg_c_mn]) VADDPS(ymm_c_mn, ymm_c_mn, ymm_temp) VMASKMOVPS([reg_c_mn], ymm_mask, ymm_c_mn) if m + 1 != mr: CMP(reg_mr, m + 1) JE(update_c.end) ADD(reg_c, reg_row_stride) RETURN() with store_c: for m in range(mr): reg_c_mn = GeneralPurposeRegister64() MOV(reg_c_mn, reg_c) ymm_c_mn = YMMRegister() with Block() as store_c_full_registers: for n in range(nr // simd_width): # Copy the current accumulator register into a fixed register ymm_c_mn. # If a partial register is to be stored, the storing code would expect it there. VMOVAPS(ymm_c_mn, ymm_c[m][n]) if n + 1 != nr // simd_width: CMP(reg_nr, (n + 1) * simd_width) JBE(store_c_full_registers.end) VMOVUPS([reg_c_mn], ymm_c[m][n]) ADD(reg_c_mn, YMMRegister.size) # Store (potentially) partial register # Important: ymm_c_mn is the content of the register and [reg_c_mn] is the address of the tuple of C VMASKMOVPS([reg_c_mn], ymm_mask, ymm_c_mn) if m + 1 != mr: CMP(reg_mr, m + 1) JE(store_c.end) ADD(reg_c, reg_row_stride) RETURN()
from __future__ import absolute_import from __future__ import division mr, nr = 2, 2 for conjugate_b, transpose_c in [(False, False), (True, False), (True, True)]: arg_k = Argument(size_t, "k") arg_update = Argument(size_t, "update") arg_a = Argument(ptr(const_float_), "a") arg_b = Argument(ptr(const_float_), "b") arg_c = Argument(ptr(float_), "c") arg_row_stride = Argument(size_t, "row_stride_c") with Function("nnp_c8gemm{conjb}{transc}_only_{mr}x{nr}__fma3".format(mr=mr, nr=nr, conjb="_conjb" if conjugate_b else "", transc="_transc" if transpose_c else ""), (arg_k, arg_update, arg_a, arg_b, arg_c, arg_row_stride), target=uarch.default + isa.fma3): reg_k = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_k, arg_k) reg_update = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_update, arg_update) reg_a = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_a, arg_a) reg_b = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_b, arg_b) reg_c = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_c, arg_c) reg_row_stride = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_row_stride, arg_row_stride) SHL(reg_row_stride, 2) with Block() as prefetch_c: if not transpose_c: for m in range(mr): PREFETCHT0([reg_c]) if m + 1 != mr: ADD(reg_c, reg_row_stride) else: for n in range(nr): PREFETCHT0([reg_c]) if n + 1 != nr: ADD(reg_c, reg_row_stride) ymm_c_re = [[YMMRegister() for n in range(nr)] for m in range(mr)] ymm_c_im = [[YMMRegister() for n in range(nr)] for m in range(mr)] VZEROALL() ymm_a = [YMMRegister() for m in range(2*mr)] ymm_a_re, ymm_a_im = ymm_a[0::2], ymm_a[1::2] ymm_b = [YMMRegister() for n in range(2*nr)] ymm_b_re, ymm_b_im = ymm_b[0::2], ymm_b[1::2] with Loop() as loop: for i, ymm in enumerate(ymm_a): VMOVAPS(ymm, [reg_a + i * YMMRegister.size]) SUB(reg_a, -YMMRegister.size * 2 * mr) for j, ymm in enumerate(ymm_b): VMOVAPS(ymm, [reg_b + j * YMMRegister.size]) SUB(reg_b, -YMMRegister.size * 2 * nr) for n in range(nr): for m in range(mr): VFMADD231PS(ymm_c_re[m][n], ymm_a_re[m], ymm_b_re[n]) VFMADD231PS(ymm_c_im[m][n], ymm_a_im[m], ymm_b_re[n]) for n in range(nr): for m in range(mr): if conjugate_b: VFMADD231PS(ymm_c_re[m][n], ymm_a_im[m], ymm_b_im[n]) VFNMADD231PS(ymm_c_im[m][n], ymm_a_re[m], ymm_b_im[n]) else: VFNMADD231PS(ymm_c_re[m][n], ymm_a_im[m], ymm_b_im[n]) VFMADD231PS(ymm_c_im[m][n], ymm_a_re[m], ymm_b_im[n]) DEC(reg_k) JNZ(loop.begin) store_c = Block() # Check if we need to update C or overwrite it TEST(reg_update, reg_update) JZ(store_c.begin) if transpose_c: mr, nr = nr, mr ymm_c_re = [list(ymm_column) for ymm_column in zip(*ymm_c_re)] ymm_c_im = [list(ymm_column) for ymm_column in zip(*ymm_c_im)] with Block() as update_c: for m in reversed(range(mr)): for n in range(nr): VADDPS(ymm_c_re[m][n], ymm_c_re[m][n], [reg_c + (2*n+0) * YMMRegister.size]) VADDPS(ymm_c_im[m][n], ymm_c_im[m][n], [reg_c + (2*n+1) * YMMRegister.size]) VMOVAPS([reg_c + (2*n+0) * YMMRegister.size], ymm_c_re[m][n]) VMOVAPS([reg_c + (2*n+1) * YMMRegister.size], ymm_c_im[m][n]) if m != 0: SUB(reg_c, reg_row_stride) RETURN() with store_c: for m in reversed(range(mr)): for n in range(nr): VMOVAPS([reg_c + (2*n+0) * YMMRegister.size], ymm_c_re[m][n]) VMOVAPS([reg_c + (2*n+1) * YMMRegister.size], ymm_c_im[m][n]) if m != 0: SUB(reg_c, reg_row_stride) RETURN() arg_mr = Argument(uint32_t, "mr") arg_nr = Argument(uint32_t, "nr") arg_k = Argument(size_t, "k") arg_update = Argument(size_t, "update") arg_a = Argument(ptr(const_float_), "a") arg_b = Argument(ptr(const_float_), "b") arg_c = Argument(ptr(float_), "c") arg_row_stride = Argument(size_t, "row_stride_c") with Function("nnp_c8gemm{conjb}{transc}_upto_{mr}x{nr}__fma3".format(mr=mr, nr=nr, conjb="_conjb" if conjugate_b else "", transc="_transc" if transpose_c else ""), (arg_mr, arg_nr, arg_k, arg_update, arg_a, arg_b, arg_c, arg_row_stride), target=uarch.default + isa.fma3): reg_mr = GeneralPurposeRegister32() LOAD.ARGUMENT(reg_mr, arg_mr) reg_nr = GeneralPurposeRegister32() LOAD.ARGUMENT(reg_nr, arg_nr) reg_k = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_k, arg_k) reg_update = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_update, arg_update) reg_a = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_a, arg_a) reg_b = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_b, arg_b) reg_c = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_c, arg_c) reg_row_stride = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_row_stride, arg_row_stride) SHL(reg_row_stride, 2) ymm_c_re, ymm_c_im = tuple([[YMMRegister() for n in range(nr)] for m in range(mr)] for c in range(2)) VZEROALL() ymm_a_re, ymm_a_im = tuple([YMMRegister() for m in range(mr)] for c in range(2)) ymm_b_re, ymm_b_im = tuple([YMMRegister() for n in range(nr)] for c in range(2)) with Loop() as loop: with Block() as load_a: for m, (ymm_re, ymm_im) in enumerate(zip(ymm_a_re, ymm_a_im)): VMOVAPS(ymm_re, [reg_a]) VMOVAPS(ymm_im, [reg_a + YMMRegister.size]) ADD(reg_a, 2 * YMMRegister.size) if m + 1 != mr: CMP(reg_mr, m + 1) JE(load_a.end) with Block() as load_b: for n, (ymm_re, ymm_im) in enumerate(zip(ymm_b_re, ymm_b_im)): VMOVAPS(ymm_re, [reg_b]) VMOVAPS(ymm_im, [reg_b + YMMRegister.size]) ADD(reg_b, 2 * YMMRegister.size) with Block() as mutiply_by_bn: for m in range(mr): VFMADD231PS(ymm_c_re[m][n], ymm_a_re[m], ymm_b_re[n]) VFMADD231PS(ymm_c_im[m][n], ymm_a_im[m], ymm_b_re[n]) if conjugate_b: VFMADD231PS(ymm_c_re[m][n], ymm_a_im[m], ymm_b_im[n]) VFNMADD231PS(ymm_c_im[m][n], ymm_a_re[m], ymm_b_im[n]) else: VFNMADD231PS(ymm_c_re[m][n], ymm_a_im[m], ymm_b_im[n]) VFMADD231PS(ymm_c_im[m][n], ymm_a_re[m], ymm_b_im[n]) if m + 1 != mr: CMP(reg_mr, m + 1) JE(mutiply_by_bn.end) if n + 1 != nr: CMP(reg_nr, n + 1) JE(load_b.end) DEC(reg_k) JNZ(loop.begin) store_c = Block() # Check if we need to update C or overwrite it TEST(reg_update, reg_update) JZ(store_c.begin) if transpose_c: mr, nr = nr, mr reg_mr, reg_nr = reg_nr, reg_mr ymm_c_re = [list(ymm_column) for ymm_column in zip(*ymm_c_re)] ymm_c_im = [list(ymm_column) for ymm_column in zip(*ymm_c_im)] with Block() as update_c: for m in range(mr): with Block() as update_c_row: for n in range(nr): VADDPS(ymm_c_re[m][n], ymm_c_re[m][n], [reg_c + (2*n+0) * YMMRegister.size]) VADDPS(ymm_c_im[m][n], ymm_c_im[m][n], [reg_c + (2*n+1) * YMMRegister.size]) VMOVAPS([reg_c + (2*n+0) * YMMRegister.size], ymm_c_re[m][n]) VMOVAPS([reg_c + (2*n+1) * YMMRegister.size], ymm_c_im[m][n]) if n + 1 != nr: CMP(reg_nr, n + 1) JE(update_c_row.end) if m + 1 != mr: CMP(reg_mr, m + 1) JE(update_c.end) ADD(reg_c, reg_row_stride) RETURN() with store_c: for m in range(mr): with Block() as store_c_row: for n in range(nr): VMOVAPS([reg_c + (2*n+0) * YMMRegister.size], ymm_c_re[m][n]) VMOVAPS([reg_c + (2*n+1) * YMMRegister.size], ymm_c_im[m][n]) if n + 1 != nr: CMP(reg_nr, n + 1) JE(store_c_row.end) if m + 1 != mr: CMP(reg_mr, m + 1) JE(store_c.end) ADD(reg_c, reg_row_stride) RETURN()
from __future__ import absolute_import from __future__ import division mr, nr = 2, 2 for conjugate_b, transpose_c in [(False, False), (True, False), (True, True)]: arg_k = Argument(size_t, "k") arg_update = Argument(size_t, "update") arg_a = Argument(ptr(const_float_), "a") arg_b = Argument(ptr(const_float_), "b") arg_c = Argument(ptr(float_), "c") arg_row_stride = Argument(size_t, "row_stride_c") with Function("nnp_s4c6gemm{conjb}{transc}_only_{mr}x{nr}__fma3".format(mr=mr, nr=nr, conjb="_conjb" if conjugate_b else "", transc="_transc" if transpose_c else ""), (arg_k, arg_update, arg_a, arg_b, arg_c, arg_row_stride), target=uarch.default + isa.fma3): reg_k = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_k, arg_k) reg_update = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_update, arg_update) reg_a = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_a, arg_a) reg_b = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_b, arg_b) reg_c = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_c, arg_c) reg_row_stride = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_row_stride, arg_row_stride) SHL(reg_row_stride, 2) with Block() as prefetch_c: if not transpose_c: for m in range(mr): PREFETCHT0([reg_c]) if m + 1 != mr: ADD(reg_c, reg_row_stride) else: for n in range(nr): PREFETCHT0([reg_c]) if n + 1 != nr: ADD(reg_c, reg_row_stride) ymm_c_re, ymm_c_im = tuple([[YMMRegister() for n in range(nr)] for m in range(mr)] for c in range(2)) VZEROALL() ymm_a_re, ymm_a_im = tuple([YMMRegister() for m in range(2*mr)] for c in range(2)) ymm_b_re, ymm_b_im = tuple([YMMRegister() for n in range(2*nr)] for c in range(2)) with Loop() as loop: for m in range(mr): VMOVAPS(ymm_a_re[m], [reg_a + (2*m+0) * YMMRegister.size]) VMOVAPS(ymm_a_im[m], [reg_a + (2*m+1) * YMMRegister.size]) SUB(reg_a, -YMMRegister.size * 2 * mr) for n in range(nr): VMOVAPS(ymm_b_re[n], [reg_b + (2*n+0) * YMMRegister.size]) for m in range(mr): VFMADD231PS(ymm_c_re[m][n], ymm_a_re[m], ymm_b_re[n]) VMOVAPS(ymm_b_im[n], [reg_b + (2*n+1) * YMMRegister.size]) VBLENDPS(ymm_b_re[n], ymm_b_re[n], ymm_b_im[n], 0b00000011) for m in range(mr): VFMADD231PS(ymm_c_im[m][n], ymm_a_im[m], ymm_b_re[n]) SUB(reg_b, -YMMRegister.size * 2 * nr) ymm_zero_columns01_mask = YMMRegister() VMOVAPS(ymm_zero_columns01_mask, Constant.uint32x8(0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF)) for n in range(nr): VANDPS(ymm_b_im[n], ymm_b_im[n], ymm_zero_columns01_mask) for m in range(mr): if conjugate_b: VFMADD231PS(ymm_c_re[m][n], ymm_a_im[m], ymm_b_im[n]) VFNMADD231PS(ymm_c_im[m][n], ymm_a_re[m], ymm_b_im[n]) else: VFNMADD231PS(ymm_c_re[m][n], ymm_a_im[m], ymm_b_im[n]) VFMADD231PS(ymm_c_im[m][n], ymm_a_re[m], ymm_b_im[n]) DEC(reg_k) JNZ(loop.begin) store_c = Block() # Check if we need to update C or overwrite it TEST(reg_update, reg_update) JZ(store_c.begin) if transpose_c: mr, nr = nr, mr ymm_c_re = [list(ymm_column) for ymm_column in zip(*ymm_c_re)] ymm_c_im = [list(ymm_column) for ymm_column in zip(*ymm_c_im)] with Block() as update_c: for m in reversed(range(mr)): for n in range(nr): VADDPS(ymm_c_re[m][n], ymm_c_re[m][n], [reg_c + (2*n+0) * YMMRegister.size]) VADDPS(ymm_c_im[m][n], ymm_c_im[m][n], [reg_c + (2*n+1) * YMMRegister.size]) VMOVAPS([reg_c + (2*n+0) * YMMRegister.size], ymm_c_re[m][n]) VMOVAPS([reg_c + (2*n+1) * YMMRegister.size], ymm_c_im[m][n]) if m != 0: SUB(reg_c, reg_row_stride) RETURN() with store_c: for m in reversed(range(mr)): for n in range(nr): VMOVAPS([reg_c + (2*n+0) * YMMRegister.size], ymm_c_re[m][n]) VMOVAPS([reg_c + (2*n+1) * YMMRegister.size], ymm_c_im[m][n]) if m != 0: SUB(reg_c, reg_row_stride) RETURN() arg_mr = Argument(uint32_t, "mr") arg_nr = Argument(uint32_t, "nr") arg_k = Argument(size_t, "k") arg_update = Argument(size_t, "update") arg_a = Argument(ptr(const_float_), "a") arg_b = Argument(ptr(const_float_), "b") arg_c = Argument(ptr(float_), "c") arg_row_stride = Argument(size_t, "row_stride_c") with Function("nnp_s4c6gemm{conjb}{transc}_upto_{mr}x{nr}__fma3".format(mr=mr, nr=nr, conjb="_conjb" if conjugate_b else "", transc="_transc" if transpose_c else ""), (arg_mr, arg_nr, arg_k, arg_update, arg_a, arg_b, arg_c, arg_row_stride), target=uarch.default + isa.fma3): reg_mr = GeneralPurposeRegister32() LOAD.ARGUMENT(reg_mr, arg_mr) reg_nr = GeneralPurposeRegister32() LOAD.ARGUMENT(reg_nr, arg_nr) reg_k = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_k, arg_k) reg_update = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_update, arg_update) reg_a = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_a, arg_a) reg_b = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_b, arg_b) reg_c = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_c, arg_c) reg_row_stride = GeneralPurposeRegister64() LOAD.ARGUMENT(reg_row_stride, arg_row_stride) SHL(reg_row_stride, 2) ymm_c_re, ymm_c_im = tuple([[YMMRegister() for n in range(nr)] for m in range(mr)] for c in range(2)) VZEROALL() ymm_a_re, ymm_a_im = tuple([YMMRegister() for m in range(mr)] for c in range(2)) ymm_b_re, ymm_b_im = tuple([YMMRegister() for n in range(nr)] for c in range(2)) with Loop() as loop: with Block() as load_a: for m, (ymm_re, ymm_im) in enumerate(zip(ymm_a_re, ymm_a_im)): VMOVAPS(ymm_re, [reg_a]) VMOVAPS(ymm_im, [reg_a + YMMRegister.size]) ADD(reg_a, 2 * YMMRegister.size) if m + 1 != mr: CMP(reg_mr, m + 1) JE(load_a.end) with Block() as load_b: for n in range(nr): VMOVAPS(ymm_b_re[n], [reg_b]) for m in range(mr): VFMADD231PS(ymm_c_re[m][n], ymm_a_re[m], ymm_b_re[n]) VMOVAPS(ymm_b_im[n], [reg_b + YMMRegister.size]) VBLENDPS(ymm_b_re[n], ymm_b_re[n], ymm_b_im[n], 0b00000011) for m in range(mr): VFMADD231PS(ymm_c_im[m][n], ymm_a_im[m], ymm_b_re[n]) ADD(reg_b, YMMRegister.size * 2) if n + 1 != nr: CMP(reg_nr, n + 1) JE(load_b.end) ymm_zero_columns01_mask = YMMRegister() VMOVAPS(ymm_zero_columns01_mask, Constant.uint32x8(0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF)) for n in range(nr): VANDPS(ymm_b_im[n], ymm_b_im[n], ymm_zero_columns01_mask) for m in range(mr): if conjugate_b: VFMADD231PS(ymm_c_re[m][n], ymm_a_im[m], ymm_b_im[n]) VFNMADD231PS(ymm_c_im[m][n], ymm_a_re[m], ymm_b_im[n]) else: VFNMADD231PS(ymm_c_re[m][n], ymm_a_im[m], ymm_b_im[n]) VFMADD231PS(ymm_c_im[m][n], ymm_a_re[m], ymm_b_im[n]) DEC(reg_k) JNZ(loop.begin) store_c = Block() # Check if we need to update C or overwrite it TEST(reg_update, reg_update) JZ(store_c.begin) if transpose_c: mr, nr = nr, mr reg_mr, reg_nr = reg_nr, reg_mr ymm_c_re = [list(ymm_column) for ymm_column in zip(*ymm_c_re)] ymm_c_im = [list(ymm_column) for ymm_column in zip(*ymm_c_im)] with Block() as update_c: for m in range(mr): with Block() as update_c_row: for n in range(nr): VADDPS(ymm_c_re[m][n], ymm_c_re[m][n], [reg_c + (2*n+0) * YMMRegister.size]) VADDPS(ymm_c_im[m][n], ymm_c_im[m][n], [reg_c + (2*n+1) * YMMRegister.size]) VMOVAPS([reg_c + (2*n+0) * YMMRegister.size], ymm_c_re[m][n]) VMOVAPS([reg_c + (2*n+1) * YMMRegister.size], ymm_c_im[m][n]) if n + 1 != nr: CMP(reg_nr, n + 1) JE(update_c_row.end) if m + 1 != mr: CMP(reg_mr, m + 1) JE(update_c.end) ADD(reg_c, reg_row_stride) RETURN() with store_c: for m in range(mr): with Block() as store_c_row: for n in range(nr): VMOVAPS([reg_c + (2*n+0) * YMMRegister.size], ymm_c_re[m][n]) VMOVAPS([reg_c + (2*n+1) * YMMRegister.size], ymm_c_im[m][n]) if n + 1 != nr: CMP(reg_nr, n + 1) JE(store_c_row.end) if m + 1 != mr: CMP(reg_mr, m + 1) JE(store_c.end) ADD(reg_c, reg_row_stride) RETURN()
from __future__ import absolute_import from __future__ import division from peachpy import * from peachpy.x86_64 import * from common import sqrt2_over_2 from common import butterfly import fft.complex_soa def fft8_across_rows(ymm_data): assert isinstance(ymm_data, list) and len(ymm_data) == 8 ymm_real = ymm_data[0::2] ymm_imag = ymm_data[1::2] fft.complex_soa.fft4_across_rows(ymm_real, ymm_imag) butterfly(ymm_real[0], ymm_imag[0]) # const float two_gdata1_real = crealf(data1) + crealf(data3); # const float two_gdata1_imag = cimagf(data1) - cimagf(data3); ymm_two_gdata1_real, ymm_two_gdata1_imag = YMMRegister(), YMMRegister() VADDPS(ymm_two_gdata1_real, ymm_real[1], ymm_real[3]) VSUBPS(ymm_two_gdata1_imag, ymm_imag[1], ymm_imag[3]) # const float two_hdata1_real = cimagf(data1) + cimagf(data3); # const float two_hdata1_imag = crealf(data3) - crealf(data1); ymm_two_hdata1_real, ymm_two_hdata1_imag = YMMRegister(), YMMRegister() VADDPS(ymm_two_hdata1_real, ymm_imag[1], ymm_imag[3]) VSUBPS(ymm_two_hdata1_imag, ymm_real[3], ymm_real[1]) # const float two_hdata1_real_plus_imag = two_hdata1_real + two_hdata1_imag; # const float two_hdata1_real_minus_imag = two_hdata1_real - two_hdata1_imag; ymm_two_hdata1_plus, ymm_two_hdata1_minus = YMMRegister(), YMMRegister() VADDPS(ymm_two_hdata1_plus, ymm_two_hdata1_real, ymm_two_hdata1_imag) VSUBPS(ymm_two_hdata1_minus, ymm_two_hdata1_real, ymm_two_hdata1_imag) ymm_sqrt2_over_2 = YMMRegister() VMOVAPS(ymm_sqrt2_over_2, Constant.float32x8(sqrt2_over_2)) # const float two_data1_real = two_gdata1_real + SQRT2_OVER_2 * two_hdata1_real_plus_imag; # const float two_data1_imag = two_gdata1_imag - SQRT2_OVER_2 * two_hdata1_real_minus_imag; # const float two_data3_real = two_gdata1_real - SQRT2_OVER_2 * two_hdata1_real_plus_imag; # const float two_data3_imag = -two_gdata1_imag - SQRT2_OVER_2 * two_hdata1_real_minus_imag; ymm_two_data1_real, ymm_two_data1_imag = YMMRegister(), YMMRegister() ymm_two_data3_real, ymm_two_data3_imag = YMMRegister(), YMMRegister() VMOVAPS(ymm_two_data3_real, ymm_two_gdata1_real) VMOVAPS(ymm_two_data3_imag, ymm_two_gdata1_imag) VFMADD231PS(ymm_two_gdata1_real, ymm_two_hdata1_plus, ymm_sqrt2_over_2) VFNMADD231PS(ymm_two_gdata1_imag, ymm_two_hdata1_minus, ymm_sqrt2_over_2) SWAP.REGISTERS(ymm_two_data1_real, ymm_two_gdata1_real) SWAP.REGISTERS(ymm_two_data1_imag, ymm_two_gdata1_imag) VFNMADD231PS(ymm_two_data3_real, ymm_two_hdata1_plus, ymm_sqrt2_over_2) VFNMSUB231PS(ymm_two_data3_imag, ymm_two_hdata1_minus, ymm_sqrt2_over_2) # /* Store outputs */ # fdata[0] = crealf(data0) + cimagf(data0); # fdata[1] = crealf(data0) - cimagf(data0); # fdata[2] = 0.5f * two_data1_real; # fdata[3] = 0.5f * two_data1_imag; # fdata[4] = crealf(data2); # fdata[5] = -cimagf(data2); # fdata[6] = 0.5f * two_data3_real; # fdata[7] = 0.5f * two_data3_imag; ymm_half = YMMRegister() VMOVAPS(ymm_half, Constant.float32x8(0.5)) VMULPS(ymm_real[1], ymm_two_data1_real, ymm_half) VMULPS(ymm_imag[1], ymm_two_data1_imag, ymm_half) VXORPS(ymm_imag[2], ymm_imag[2], Constant.float32x8(-0.0)) VMULPS(ymm_real[3], ymm_two_data3_real, ymm_half) VMULPS(ymm_imag[3], ymm_two_data3_imag, ymm_half)
End of preview. Expand in Data Studio
README.md exists but content is empty.
Downloads last month
30