python_code
stringlengths
0
187k
repo_name
stringlengths
8
46
file_path
stringlengths
6
135
# encoding: utf-8 # the following try/except block will make the custom check compatible with any Agent version try: # first, try to import the base class from old versions of the Agent... from checks import AgentCheck except ImportError: # ...if the above failed, the check is running in Agent version 6 or later from datadog_checks.checks import AgentCheck # psutil import psutil # pynvml import pynvml __version__ = '0.1.5' __author__ = 'Takashi NAGAI, Alejandro Ferrari' # These values are not exposed through Pynvml, but are reported in the throttle # reasons. The reason values are defined in # https://github.com/NVIDIA/gpu-monitoring-tools/blob/master/bindings/go/nvml/nvml.h # Indicates that the clocks are throttled because the GPU is part of a sync # boost group, which syncs the clocks to the minimum clocks across the group. # Corresponds to nvmlClocksThrottleReasonSyncBoost. GPU_THROTTLE_SYNCBOOST = 0x10 # Indicates that the GPU core or memory temperature is above max. Corresponds to # nvmlClocksThrottleReasonSwThermalSlowdown. GPU_THROTTLE_THERMAL_SLOWDOWN_SOFTWARE = 0x20 # Indicates that the clocks are throttled by 50% or more due to very high # temperature. Corresponds to nvmlClocksThrottleReasonHwThermalSlowdown. GPU_THROTTLE_THERMAL_SLOWDOWN_HARDWARE = 0x40 # Indicates that the clocks are throttled by 50% or more by the power supply. # Corresponds to nvmlClocksThrottleReasonHwPowerBrakeSlowdown. GPU_THROTTLE_POWER_BRAKE_SLOWDOWN_HARDWARE = 0x80 # Indicates that the clocks are throttled by the current display settings. # Corresponds to nvmlClocksThrottleReasonDisplayClockSetting. GPU_THROTTLE_DISPLAY_CLOCKS_SETTINGS = 0x100 class NvmlCheck(AgentCheck): def _dict2list(self, tags={}): return ["{k}:{v}".format(k=k, v=v) for k, v in list(tags.items())] def check(self, instance): pynvml.nvmlInit() msg_list = [] try: deviceCount = pynvml.nvmlDeviceGetCount() except: deviceCount = 0 # Number of active GPUs self.gauge('nvml.gpus.number', deviceCount) for device_id in range(deviceCount): handle = pynvml.nvmlDeviceGetHandleByIndex(device_id) name = pynvml.nvmlDeviceGetName(handle) tags = dict(name="{}-{}".format(name, device_id)) d_tags = self._dict2list(tags) # temperature info try: temp = pynvml.nvmlDeviceGetTemperature( handle, pynvml.NVML_TEMPERATURE_GPU) self.gauge('nvml.temp.', temp, tags=d_tags) except pynvml.NVMLError as err: msg_list.append('nvmlDeviceGetTemperature:{}'.format(err)) # power info try: pwr = pynvml.nvmlDeviceGetPowerUsage(handle) // 1000 self.gauge('nvml.power.', pwr, tags=d_tags) except pynvml.NVMLError as err: msg_list.append('nvmlDeviceGetPowerUsage:{}'.format(err)) # fan info try: fan = pynvml.nvmlDeviceGetFanSpeed(handle) self.gauge('nvml.fan.', fan, tags=d_tags) except pynvml.NVMLError as err: msg_list.append('nvmlDeviceGetFanSpeed:{}'.format(err)) # memory info try: mem = pynvml.nvmlDeviceGetMemoryInfo(handle) self.gauge('nvml.mem.total', mem.total, tags=d_tags) self.gauge('nvml.mem.used', mem.used, tags=d_tags) self.gauge('nvml.mem.free', mem.free, tags=d_tags) except pynvml.NVMLError as err: msg_list.append('nvmlDeviceGetMemoryInfo:{}'.format(err)) # utilization GPU/Memory info try: util_rate = pynvml.nvmlDeviceGetUtilizationRates(handle) self.gauge('nvml.util.gpu', util_rate.gpu, tags=d_tags) self.gauge('nvml.util.memory', util_rate.memory, tags=d_tags) except pynvml.NVMLError as err: msg_list.append( 'nvmlDeviceGetUtilizationRates:{}'.format(err)) # utilization Encoder info try: util_encoder = pynvml.nvmlDeviceGetEncoderUtilization(handle) self.log.debug('nvml.util.encoder %s' % int(util_encoder[0])) self.gauge('nvml.util.encoder', int( util_encoder[0]), tags=d_tags) except pynvml.NVMLError as err: msg_list.append( 'nvmlDeviceGetEncoderUtilization:{}'.format(err)) # utilization Decoder info try: util_decoder = pynvml.nvmlDeviceGetDecoderUtilization(handle) self.log.debug('nvml.util.decoder %s' % int(util_decoder[0])) self.gauge('nvml.util.decoder', int( util_decoder[0]), tags=d_tags) except pynvml.NVMLError as err: msg_list.append( 'nvmlDeviceGetDecoderUtilization:{}'.format(err)) # Compute running processes try: cps = pynvml.nvmlDeviceGetComputeRunningProcesses(handle) for ps in cps: p_tags = tags.copy() p_tags['pid'] = ps.pid p_tags['name'] = pynvml.nvmlSystemGetProcessName(ps.pid) p_tags = self._dict2list(p_tags) self.gauge('nvml.process.used_gpu_memory', ps.usedGpuMemory, tags=p_tags) except pynvml.NVMLError as err: msg_list.append( 'nvmlDeviceGetComputeRunningProcesses:{}'.format(err)) # Clocks throttling info # Divide by the mask so that the value is either 0 or 1 per GPU try: throttle_reasons = ( pynvml.nvmlDeviceGetCurrentClocksThrottleReasons(handle)) self.gauge('nvml.throttle.appsettings', (throttle_reasons & pynvml.nvmlClocksThrottleReasonApplicationsClocksSetting) / pynvml.nvmlClocksThrottleReasonApplicationsClocksSetting, tags=d_tags) self.gauge('nvml.throttle.display', (throttle_reasons & GPU_THROTTLE_DISPLAY_CLOCKS_SETTINGS) / GPU_THROTTLE_DISPLAY_CLOCKS_SETTINGS, tags=d_tags) self.gauge('nvml.throttle.hardware', (throttle_reasons & pynvml.nvmlClocksThrottleReasonHwSlowdown) / pynvml.nvmlClocksThrottleReasonHwSlowdown, tags=d_tags) self.gauge('nvml.throttle.idle', (throttle_reasons & pynvml.nvmlClocksThrottleReasonGpuIdle) / pynvml.nvmlClocksThrottleReasonGpuIdle, tags=d_tags) self.gauge('nvml.throttle.power.hardware', (throttle_reasons & GPU_THROTTLE_POWER_BRAKE_SLOWDOWN_HARDWARE) / GPU_THROTTLE_POWER_BRAKE_SLOWDOWN_HARDWARE, tags=d_tags) self.gauge('nvml.throttle.power.software', (throttle_reasons & pynvml.nvmlClocksThrottleReasonSwPowerCap) / pynvml.nvmlClocksThrottleReasonSwPowerCap, tags=d_tags) self.gauge('nvml.throttle.syncboost', (throttle_reasons & GPU_THROTTLE_SYNCBOOST) / GPU_THROTTLE_SYNCBOOST, tags=d_tags) self.gauge('nvml.throttle.temp.hardware', (throttle_reasons & GPU_THROTTLE_THERMAL_SLOWDOWN_HARDWARE) / GPU_THROTTLE_THERMAL_SLOWDOWN_HARDWARE, tags=d_tags) self.gauge('nvml.throttle.temp.software', (throttle_reasons & GPU_THROTTLE_THERMAL_SLOWDOWN_SOFTWARE) / GPU_THROTTLE_THERMAL_SLOWDOWN_SOFTWARE, tags=d_tags) self.gauge('nvml.throttle.unknown', (throttle_reasons & pynvml.nvmlClocksThrottleReasonUnknown) / pynvml.nvmlClocksThrottleReasonUnknown, tags=d_tags) except pynvml.NVMLError as err: msg_list.append( 'nvmlDeviceGetCurrentClocksThrottleReasons:{}'.format(err)) if msg_list: status = AgentCheck.CRITICAL msg = ','.join(msg_list) else: status = AgentCheck.OK msg = 'Ok' pynvml.nvmlShutdown() self.service_check('nvml.check', status, message=msg)
datadog_nvml-master
nvml.py
"""Manages constants required by multiple files.""" import getpass import os import platform import socket from pathlib import Path def make_scene_name(type, num): if type == "": return "FloorPlan" + str(num) + "_physics" elif num < 10: return "FloorPlan" + type + "0" + str(num) + "_physics" else: return "FloorPlan" + type + str(num) + "_physics" SCENES_NAMES_SPLIT_BY_TYPE = [ [make_scene_name(j, i) for i in range(1, 31)] for j in ["", "2", "3", "4"] ] SCENE_NAMES = sum(SCENES_NAMES_SPLIT_BY_TYPE, []) TRAIN_SCENE_NAMES = [ SCENES_NAMES_SPLIT_BY_TYPE[j][i] for j in range(3) for i in range(20) ] VALID_SCENE_NAMES = [ SCENES_NAMES_SPLIT_BY_TYPE[j][i] for j in range(3) for i in range(20, 25) ] TEST_SCENE_NAMES = [ SCENES_NAMES_SPLIT_BY_TYPE[j][i] for j in range(3) for i in range(25, 30) ] + SCENES_NAMES_SPLIT_BY_TYPE[3] VISIBILITY_DISTANCE = 1.25 FOV = 90.0 PICK_UP_HEIGHT = 1.0 UNREACHABLE_SYM = 0 REACHABLE_SYM = 1 AGENT_SYM = 2 NO_INFO_SYM = 3 GOAL_OBJ_SYM = 4 VISITED_SYM = 5 AGENT_SELF_0 = 6 AGENT_SELF_90 = 7 AGENT_SELF_180 = 8 AGENT_SELF_270 = 9 AGENT_OTHER_0 = 10 AGENT_OTHER_90 = 11 AGENT_OTHER_180 = 12 AGENT_OTHER_270 = 13 # Distance that qualifies an episode as easy or medium # For more details see `create_table` method in # `rl_multi_agent/analysis/summarize_furnlift_eval_results.py`. # array([ 2., 11., 17., 45.]) == [0, 1/3, 2/3, 1] percentiles of initial manhat distances EASY_MAX = 10 MED_MAX = 17 def rotate_tuple_90_clockwise(t): return (t[1], -t[0]) TELEVISION_ROT_0_POINTS = ( [(0.25 * i, 0.25) for i in [-1, 0, 1]] + [(0.25 * i, 0) for i in [-2, -1, 0, 1, 2]] + [(0.25 * i, -0.25) for i in [-2, -1, 0, 1, 2]] ) TELEVISION_ROT_90_POINTS = [ rotate_tuple_90_clockwise(t) for t in TELEVISION_ROT_0_POINTS ] TELEVISION_ROT_180_POINTS = [ rotate_tuple_90_clockwise(t) for t in TELEVISION_ROT_90_POINTS ] TELEVISION_ROT_270_POINTS = [ rotate_tuple_90_clockwise(t) for t in TELEVISION_ROT_180_POINTS ] TELEVISION_ROTATION_TO_OCCUPATIONS = { 0: TELEVISION_ROT_0_POINTS, 90: TELEVISION_ROT_90_POINTS, 180: TELEVISION_ROT_180_POINTS, 270: TELEVISION_ROT_270_POINTS, } TV_STAND_ROT_0_POINTS = [ (0.25 * i, 0.25 * j) for i in range(-2, 3) for j in range(-1, 2) ] TV_STAND_ROT_90_POINTS = [ (0.25 * i, 0.25 * j) for i in range(-1, 2) for j in range(-2, 3) ] TV_STAND_ROT_180_POINTS = TV_STAND_ROT_0_POINTS TV_STAND_ROT_270_POINTS = TV_STAND_ROT_90_POINTS TV_STAND_ROTATION_TO_OCCUPATIONS = { 0: TV_STAND_ROT_0_POINTS, 90: TV_STAND_ROT_90_POINTS, 180: TV_STAND_ROT_180_POINTS, 270: TV_STAND_ROT_270_POINTS, } DRESSER_SILHOUETTE_STRING = """1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 """ SPLIT_TO_USE_FOR_EVALUATION = "test" HOST_NAME = socket.gethostname() USERNAME = getpass.getuser() PLATFORM = platform.system() PROJECT_TOP_DIR = os.path.dirname(Path(__file__)) if PLATFORM == "Linux": ABS_PATH_TO_LOCAL_THOR_BUILD = os.path.join( PROJECT_TOP_DIR, "ai2thor_builds/thor-2-3-2020-Linux64" ) elif PLATFORM == "Darwin": ABS_PATH_TO_LOCAL_THOR_BUILD = os.path.join( PROJECT_TOP_DIR, "ai2thor_builds/thor-2-3-2020-OSXIntel64.app/Contents/MacOS/thor-2-3-2020-OSXIntel64", ) else: raise NotImplementedError( ( "Your platform, {}, is not currently supported. " "Supported platforms include Linux and MacOSX." ).format(PLATFORM) ) ABS_PATH_TO_FINAL_FURNMOVE_CKPTS = os.path.join( PROJECT_TOP_DIR, "trained_models", "final_furnmove_ckpts" ) ABS_PATH_TO_FINAL_FURNLIFT_CKPTS = os.path.join( PROJECT_TOP_DIR, "trained_models", "final_furnlift_ckpts" ) ABS_PATH_TO_ANALYSIS_RESULTS_DIR = os.path.join(PROJECT_TOP_DIR, "analysis_output") ABS_PATH_TO_DATA_DIR = os.path.join(PROJECT_TOP_DIR, "data")
cordial-sync-master
constants.py
"""Defines the tasks that an agent should complete in a given environment.""" from abc import abstractmethod from typing import ( Dict, Any, Tuple, TypeVar, Generic, List, Optional, Callable, ) EnvType = TypeVar("EnvType") class Episode(Generic[EnvType]): def __init__( self, env: EnvType, task_data: Dict[str, Any], max_steps: int, **kwargs ) -> None: self._env = env self.task_data = task_data self._num_steps_taken_in_episode = 0 self.max_steps = max_steps @property def environment(self) -> EnvType: return self._env @abstractmethod def state_for_agent(self): raise NotImplementedError() def step(self, action_as_int: int) -> Dict[str, Any]: assert not self.is_paused() and not self.is_complete() self._increment_num_steps_taken_in_episode() return self._step(action_as_int=action_as_int) @abstractmethod def _step(self, action_as_int: int) -> Dict[str, Any]: raise NotImplementedError() def reached_max_steps(self) -> bool: return self.num_steps_taken_in_episode() >= self.max_steps @abstractmethod def reached_terminal_state(self) -> bool: raise NotImplementedError() def is_complete(self) -> bool: return self.reached_terminal_state() or self.reached_max_steps() def is_paused(self) -> bool: return False def _increment_num_steps_taken_in_episode(self) -> None: self._num_steps_taken_in_episode += 1 def num_steps_taken_in_episode(self) -> int: return self._num_steps_taken_in_episode def info(self): return {"ep_length": self.num_steps_taken_in_episode()} @property def available_actions(self) -> Tuple[str, ...]: return tuple(a for g in self.available_action_groups for a in g) @property def available_action_groups(self) -> Tuple[Tuple[str, ...], ...]: return self.class_available_action_groups() @classmethod def class_available_actions(cls, **kwargs) -> Tuple[str, ...]: return tuple(a for g in cls.class_available_action_groups(**kwargs) for a in g) @classmethod @abstractmethod def class_available_action_groups(cls, **kwargs) -> Tuple[Tuple[str, ...], ...]: raise NotImplementedError() @property def total_available_actions(self) -> int: return len(self.available_actions) def index_to_action(self, index: int) -> str: assert 0 <= index < self.total_available_actions return self.available_actions[index] class MultiAgentEpisode(Generic[EnvType]): def __init__( self, env: EnvType, task_data: Dict[str, Any], max_steps: int, before_step_function: Optional[Callable] = None, after_step_function: Optional[Callable] = None, **kwargs, ) -> None: self._env = env self.task_data = task_data self._num_steps_taken_in_episode = 0 self.max_steps = max_steps self.before_step_function = before_step_function self.after_step_function = after_step_function @property def environment(self) -> EnvType: return self._env @abstractmethod def states_for_agents(self): raise NotImplementedError() def multi_step(self, actions_as_ints: Tuple[int, ...]) -> List[Dict[str, Any]]: assert not self.is_paused() and not self.is_complete() step_results = [] before_info = ( None if self.before_step_function is None else self.before_step_function(episode=self) ) for i in range(self._env.num_agents): self._increment_num_steps_taken_in_episode() step_results.append(self._step(actions_as_ints[i], agent_id=i)) if self.after_step_function is not None: self.after_step_function( step_results=step_results, before_info=before_info, episode=self ) return step_results @abstractmethod def _step(self, action_as_int: int, agent_id: int) -> Dict[str, Any]: raise NotImplementedError() def reached_max_steps(self) -> bool: return self.num_steps_taken_in_episode() >= self.max_steps @abstractmethod def reached_terminal_state(self) -> bool: raise NotImplementedError() def is_complete(self) -> bool: return self.reached_terminal_state() or self.reached_max_steps() def is_paused(self) -> bool: return False def _increment_num_steps_taken_in_episode(self) -> None: self._num_steps_taken_in_episode += 1 def num_steps_taken_in_episode(self) -> int: return self._num_steps_taken_in_episode def info(self): return {"ep_length": self.num_steps_taken_in_episode()} @property def available_actions(self) -> Tuple[str, ...]: return tuple(a for g in self.available_action_groups for a in g) @property def available_action_groups(self) -> Tuple[Tuple[str, ...], ...]: return self.class_available_action_groups() @classmethod def class_available_actions(cls, **kwargs) -> Tuple[str, ...]: return tuple(a for g in cls.class_available_action_groups(**kwargs) for a in g) @classmethod @abstractmethod def class_available_action_groups(cls, **kwargs) -> Tuple[Tuple[str, ...], ...]: raise NotImplementedError() @property def total_available_actions(self) -> int: return len(self.available_actions) def index_to_action(self, index: int) -> str: assert 0 <= index < self.total_available_actions return self.available_actions[index]
cordial-sync-master
rl_base/episode.py
from .agent import A3CAgent from .episode import Episode from .shared_optim import SharedAdam, SharedRMSprop
cordial-sync-master
rl_base/__init__.py
from __future__ import division import copy from abc import ABC from typing import Dict, List, Union, Optional, Any, TypeVar, Generic import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from utils import net_util from utils.misc_util import huber_loss from .episode import Episode EnvType = TypeVar("EnvType") class RLAgent(Generic[EnvType]): def __init__( self, model: Optional[nn.Module] = None, episode: Optional[Episode[EnvType]] = None, gpu_id: int = -1, **kwargs, ) -> None: # Important that gpu_id is set first as the model setter requires it self.gpu_id = gpu_id self._model: Optional[nn.Module] = None if model is not None: self.model = model self._episode = episode self.hidden: Optional[Any] = None self.global_episode_count = 0 def sync_with_shared(self, shared_model: nn.Module) -> None: if self.gpu_id >= 0: with torch.cuda.device(self.gpu_id): self.model.load_state_dict(shared_model.state_dict()) else: self.model.load_state_dict(shared_model.state_dict()) def eval_at_state(self, state, hidden, **kwargs): raise NotImplementedError() def eval_at_current_state(self): return self.eval_at_state(state=self.state, hidden=self.hidden) @property def episode(self) -> Optional[Episode[EnvType]]: return self._episode @episode.setter def episode(self, value: Episode[EnvType]) -> None: self.reset_hidden() self.clear_history() self._episode = value @property def environment(self) -> Optional[EnvType]: if self.episode is None: return None return self.episode.environment @property def state(self): raise NotImplementedError() @property def model(self) -> nn.Module: assert self._model is not None return self._model @model.setter def model(self, model_to_set: nn.Module): if self.gpu_id >= 0: with torch.cuda.device(self.gpu_id): self._model = model_to_set.cuda() else: self._model = model_to_set def gpuify(self, tensor: torch.Tensor) -> Union[torch.Tensor]: if self.gpu_id >= 0: with torch.cuda.device(self.gpu_id): tensor = tensor.cuda() return tensor def act(self, **kwargs) -> Dict: raise NotImplementedError() def reset_hidden(self) -> None: self.hidden = None def repackage_hidden(self) -> None: self.hidden = net_util.recursively_detach(self.hidden) def preprocess_action( self, last_action: Optional[int] ) -> Optional[Union[torch.LongTensor, torch.cuda.LongTensor]]: if last_action is not None: # noinspection PyTypeChecker return self.gpuify(torch.LongTensor([[last_action]])) return None def preprocess_frame( self, frame: np.ndarray, new_frame_size: int ) -> Union[torch.FloatTensor, torch.cuda.FloatTensor]: frame = net_util.resnet_input_transform(frame, new_frame_size) # noinspection PyArgumentList return self.gpuify(torch.FloatTensor(frame)) def preprocess_long_tensor_frame( self, frame: np.ndarray ) -> Union[torch.LongTensor, torch.cuda.LongTensor]: agent_local_tensor = torch.LongTensor(frame) if len(agent_local_tensor.shape) == 2: agent_local_tensor = agent_local_tensor.unsqueeze(0) return self.gpuify(agent_local_tensor) def preprocess_depth_frame( self, depth_frame: np.ndarray, new_frame_size: int ) -> Union[torch.FloatTensor, torch.cuda.FloatTensor]: depth_frame = net_util.resize_image( torch.FloatTensor(np.expand_dims(depth_frame / 5000.0, axis=0)), new_frame_size, ) return self.gpuify(depth_frame) def clear_history(self) -> None: raise NotImplementedError() def clear_graph_data(self): raise NotImplementedError() def loss(self, **kwargs) -> Dict[str, torch.FloatTensor]: raise NotImplementedError() class A3CAgent(RLAgent[EnvType], ABC): def __init__( self, model: Optional[nn.Module] = None, episode: Optional[Episode[EnvType]] = None, gamma: float = 0.99, tau: float = 1.0, beta: float = 1e-2, gpu_id: int = -1, include_test_eval_results: bool = False, huber_delta: Optional[float] = None, **kwargs, ) -> None: super().__init__(model=model, episode=episode, gpu_id=gpu_id, **kwargs) self.gamma = gamma self.tau = tau self.beta = beta self.include_test_eval_results = include_test_eval_results self.huber_delta = huber_delta self.last_reward: Optional[float] = None self.values: List[torch.FloatTensor] = [] self.log_prob_of_actions: List[torch.FloatTensor] = [] self.rewards: List[float] = [] self.entropies: List[torch.FloatTensor] = [] self.actions: List[int] = [] self.step_results: List[Dict[str, Any]] = [] self.eval_results: List[Dict[str, Any]] = [] self._a3c_loss_disabled_for_episode: bool = False def eval_at_state(self, state, hidden, **kwargs): raise NotImplementedError() def disable_a3c_loss_for_episode(self, mode: bool = True): self._a3c_loss_disabled_for_episode = mode @property def episode(self): return super(A3CAgent, self).episode @episode.setter def episode(self, value: Episode[EnvType]) -> None: super(A3CAgent, self).episode = value self.disable_a3c_loss_for_episode(False) def act( self, train: bool = True, action: Optional[int] = None, sample_action: bool = True, **kwargs, ) -> Dict: if not self.model.training and train: self.model.train() if self.model.training and not train: self.model.eval() assert self.episode is not None assert not self.episode.is_complete() if not train and self.hidden is not None: self.repackage_hidden() eval = self.eval_at_current_state() value = eval["value"] self.hidden = None if "hidden" not in eval else eval["hidden"] logit = eval["logit"] probs = F.softmax(logit, dim=1) log_probs = F.log_softmax(logit, dim=1) if hasattr(self.model, "action_groups"): entropy_list = [] k = 0 marginal_probs = [] for action_group in self.model.action_groups: marginal_probs.append( probs[:, k : (k + len(action_group))].sum(1).unsqueeze(1) ) group_probs = F.softmax(logit[:, k : (k + len(action_group))], dim=1) group_log_probs = F.log_softmax( logit[:, k : (k + len(action_group))], dim=1 ) entropy_list.append(-(group_log_probs * group_probs).sum(1)) k += len(action_group) entropy = sum(entropy_list) / len(entropy_list) marginal_probs = torch.cat(tuple(marginal_probs), dim=1) entropy += -(marginal_probs * torch.log(marginal_probs)).sum(1) else: entropy = -(log_probs * probs).sum().unsqueeze(0) if action is None: if sample_action: action = probs.multinomial(num_samples=1).item() else: action = probs.argmax(dim=-1, keepdim=True).item() assert log_probs.shape[0] == 1 log_prob_of_action = log_probs.view(-1)[action] before_location = self.environment.get_agent_location() step_result = self.episode.step(action) after_location = self.environment.get_agent_location() self.last_reward = ( None if step_result["reward"] is None else float(step_result["reward"]) ) step_result["before_location"] = before_location step_result["after_location"] = after_location eval["probs"] = probs eval["action"] = action eval["step_result"] = step_result eval["training"] = train self.step_results.append(step_result) self.actions.append(action) self.rewards.append(self.last_reward) if train or self.include_test_eval_results: self.eval_results.append(eval) if train: self.entropies.append(entropy) self.values.append(value) self.log_prob_of_actions.append(log_prob_of_action) return eval def clear_history(self) -> None: self.clear_graph_data() self.rewards = [] self.actions = [] self.step_results = [] def clear_graph_data(self): self.values = [] self.log_prob_of_actions = [] self.entropies = [] self.eval_results = [] def loss(self, **kwargs) -> Dict[str, torch.FloatTensor]: assert self.episode is not None if self._a3c_loss_disabled_for_episode: return {} if self.episode.is_complete(): future_reward_est = 0.0 else: eval = self.eval_at_current_state() future_reward_est = eval["value"].item() return self.a3c_loss( values=self.values, rewards=self.rewards, log_prob_of_actions=self.log_prob_of_actions, entropies=self.entropies, future_reward_est=future_reward_est, gamma=self.gamma, tau=self.tau, beta=self.beta, gpu_id=self.gpu_id, ) @staticmethod def a3c_loss( values: List[torch.FloatTensor], rewards: List[float], log_prob_of_actions: List[torch.FloatTensor], entropies: List[torch.FloatTensor], future_reward_est: float, gamma: float, tau: float, beta: float, gpu_id: int, huber_delta: Optional[float] = None, ): R = torch.FloatTensor([[future_reward_est]]) if gpu_id >= 0: with torch.cuda.device(gpu_id): R = R.cuda() values = copy.copy(values) values.append(R) policy_loss = 0 value_loss = 0 entropy_loss = 0 gae = torch.zeros(1, 1) if gpu_id >= 0: with torch.cuda.device(gpu_id): gae = gae.cuda() for i in reversed(range(len(rewards))): R = gamma * R + rewards[i] advantage = R - values[i] value_loss = value_loss + ( 0.5 * advantage.pow(2) if huber_delta is None else 0.5 * huber_loss(advantage, huber_delta) ) # Generalized Advantage Estimation delta_t = rewards[i] + gamma * values[i + 1].detach() - values[i].detach() gae = gae * gamma * tau + delta_t policy_loss = policy_loss - log_prob_of_actions[i] * gae entropy_loss -= beta * entropies[i] return { "policy": policy_loss, "value": 0.5 * value_loss, "entropy": entropy_loss, }
cordial-sync-master
rl_base/agent.py
from __future__ import division import math from collections import defaultdict from typing import Tuple, Dict, Union, Optional, Iterable, Callable import torch import torch.optim as optim from torch import nn class SharedRMSprop(optim.Optimizer): """Implements RMSprop algorithm with shared states. """ def __init__( self, params: Union[Iterable[nn.Parameter], Dict], lr: float = 7e-4, alpha: float = 0.99, eps: float = 0.1, weight_decay: float = 0, momentum: float = 0, centered: bool = False, saved_state: Dict = None, ) -> None: defaults: defaultdict = defaultdict( lr=lr, alpha=alpha, eps=eps, weight_decay=weight_decay, momentum=momentum, centered=centered, ) super(SharedRMSprop, self).__init__(params, defaults) if saved_state: self.load_state_dict(saved_state) for group in self.param_groups: for p in group["params"]: if p.requires_grad: state = self.state[p] state["step"] = torch.zeros(1) state["grad_avg"] = p.data.new().resize_as_(p.data).zero_() state["square_avg"] = p.data.new().resize_as_(p.data).zero_() state["momentum_buffer"] = p.data.new().resize_as_(p.data).zero_() def share_memory(self) -> None: for group in self.param_groups: for p in group["params"]: state = self.state[p] state["square_avg"].share_memory_() state["step"].share_memory_() state["grad_avg"].share_memory_() state["momentum_buffer"].share_memory_() def step(self, closure: Optional[Callable] = None) -> Optional[torch.FloatTensor]: """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() for group in self.param_groups: for p in group["params"]: if p.grad is None: continue grad = p.grad.data if grad.is_sparse: raise RuntimeError("RMSprop does not support sparse gradients") state = self.state[p] square_avg = state["square_avg"] alpha = group["alpha"] state["step"] += 1 if group["weight_decay"] != 0: grad = grad.add(group["weight_decay"], p.data) square_avg.mul_(alpha).addcmul_(1 - alpha, grad, grad) if group["centered"]: grad_avg = state["grad_avg"] grad_avg.mul_(alpha).add_(1 - alpha, grad) avg = ( square_avg.addcmul(-1, grad_avg, grad_avg) .sqrt() .add_(group["eps"]) ) else: avg = square_avg.sqrt().add_(group["eps"]) if group["momentum"] > 0: buf = state["momentum_buffer"] buf.mul_(group["momentum"]).addcdiv_(grad, avg) p.data.add_(-group["lr"], buf) else: p.data.addcdiv_(-group["lr"], grad, avg) return loss class SharedAdam(optim.Optimizer): """Implements Adam algorithm with shared states. """ def __init__( self, params: Union[Iterable[nn.Parameter], Dict], lr: float = 1e-3, betas: Tuple[float, float] = (0.9, 0.999), eps: float = 1e-3, weight_decay: float = 0, amsgrad: bool = False, saved_state: Dict = None, ) -> None: defaults: defaultdict = defaultdict( lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, amsgrad=amsgrad ) super(SharedAdam, self).__init__(params, defaults) if saved_state: self.load_state_dict(saved_state) for group in self.param_groups: for p in group["params"]: if p.requires_grad: state = self.state[p] state["step"] = torch.zeros(1) state["exp_avg"] = p.data.new().resize_as_(p.data).zero_() state["exp_avg_sq"] = p.data.new().resize_as_(p.data).zero_() state["max_exp_avg_sq"] = p.data.new().resize_as_(p.data).zero_() def share_memory(self) -> None: for group in self.param_groups: for p in group["params"]: state = self.state[p] state["step"].share_memory_() state["exp_avg"].share_memory_() state["exp_avg_sq"].share_memory_() state["max_exp_avg_sq"].share_memory_() def step(self, closure: Optional[Callable] = None) -> Optional[torch.FloatTensor]: """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() for group in self.param_groups: for p in group["params"]: if p.grad is None: continue grad = p.grad.data if grad.is_sparse: raise RuntimeError( "Adam does not support sparse gradients, please consider SparseAdam instead" ) amsgrad = group["amsgrad"] state = self.state[p] exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"] if amsgrad: max_exp_avg_sq = state["max_exp_avg_sq"] beta1, beta2 = group["betas"] state["step"] += 1 if group["weight_decay"] != 0: grad = grad.add(group["weight_decay"], p.data) # Decay the first and second moment running average coefficient exp_avg.mul_(beta1).add_(1 - beta1, grad) exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad) if amsgrad: # Maintains the maximum of all 2nd moment running avg. till # now torch.max(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq) # Use the max. for normalizing running avg. of gradient denom = max_exp_avg_sq.sqrt().add_(group["eps"]) else: denom = exp_avg_sq.sqrt().add_(group["eps"]) bias_correction1 = 1 - beta1 ** state["step"][0] bias_correction2 = 1 - beta2 ** state["step"][0] step_size = group["lr"] * math.sqrt(bias_correction2) / bias_correction1 p.data.addcdiv_(-step_size, exp_avg, denom) return loss
cordial-sync-master
rl_base/shared_optim.py
import queue import random import warnings from collections import Counter from typing import List, Callable, Optional, Dict import torch from torch import multiprocessing as mp from rl_ai2thor.ai2thor_environment import AI2ThorEnvironment from rl_ai2thor.ai2thor_gridworld_environment import AI2ThorLiftedObjectGridEnvironment from rl_base.agent import RLAgent from rl_multi_agent import MultiAgent from rl_multi_agent.furnlift_episode_samplers import save_talk_reply_data_frame from rl_multi_agent.furnmove_episodes import FurnMoveEpisode from rl_multi_agent.multi_agent_utils import TrainingCompleteException class FurnMoveEpisodeSampler(object): def __init__( self, scenes: List[str], num_agents: int, object_type: str, to_object_type: str, env_args=None, max_episode_length: int = 500, episode_class: Callable = FurnMoveEpisode, player_screen_height=224, player_screen_width=224, save_talk_reply_probs_path: Optional[str] = None, max_ep_using_expert_actions: int = 10000, visible_agents: bool = True, include_depth_frame: bool = False, object_initial_height: float = 1.0, max_distance_from_object: float = 0.5, headless: bool = False, episode_args: Optional[Dict] = None, environment_args: Optional[Dict] = None, ): self.visible_agents = visible_agents self.max_ep_using_expert_actions = max_ep_using_expert_actions self.save_talk_reply_probs_path = save_talk_reply_probs_path self.player_screen_height = player_screen_height self.player_screen_width = player_screen_width self.episode_class = episode_class self.max_episode_length = max_episode_length self.env_args = env_args self.num_agents = num_agents self.scenes = scenes self.object_type = object_type self.to_object_type = to_object_type self.include_depth_frame = include_depth_frame self.object_initial_height = object_initial_height self.max_distance_from_object = max_distance_from_object self.headless = headless self.episode_args = episode_args if episode_args is not None else {} self.environment_args = environment_args if environment_args is not None else {} self.grid_size = 0.25 self._current_train_episode = 0 self._internal_episodes = 0 self.episode_init_data = None @staticmethod def _create_environment( num_agents, env_args, visible_agents: bool, render_depth_image: bool, headless: bool, **environment_args, ) -> AI2ThorEnvironment: env = AI2ThorEnvironment( docker_enabled=env_args.docker_enabled, x_display=env_args.x_display, local_thor_build=env_args.local_thor_build, num_agents=num_agents, restrict_to_initially_reachable_points=True, visible_agents=visible_agents, render_depth_image=render_depth_image, time_scale=1.0, headless=headless, **environment_args, ) return env @property def current_train_episode(self): return self._current_train_episode @current_train_episode.setter def current_train_episode(self, value): self._current_train_episode = value def start_env(self, agent: RLAgent, env: Optional[AI2ThorEnvironment]): if env is None: if agent.environment is not None: env = agent.environment else: env = self._create_environment( num_agents=self.num_agents, env_args=self.env_args, visible_agents=self.visible_agents, render_depth_image=self.include_depth_frame, headless=self.headless, **self.environment_args, ) env.start( "FloorPlan1_physics", move_mag=self.grid_size, quality="Very Low", player_screen_height=self.player_screen_height, player_screen_width=self.player_screen_width, ) return env def __call__( self, agent: MultiAgent, agent_location_seed=None, env: Optional[AI2ThorEnvironment] = None, episode_init_queue: Optional[mp.Queue] = None, ) -> None: self._internal_episodes += 1 if ( self.max_ep_using_expert_actions != 0 and self.current_train_episode <= self.max_ep_using_expert_actions ): agent.take_expert_action_prob = 0.9 * ( 1.0 - self.current_train_episode / self.max_ep_using_expert_actions ) else: agent.take_expert_action_prob = 0 env = self.start_env(agent=agent, env=env) self.episode_init_data = None if episode_init_queue is not None: try: self.episode_init_data = episode_init_queue.get(timeout=1) except queue.Empty: raise TrainingCompleteException("No more data in episode init queue.") scene = self.episode_init_data["scene"] env.reset(scene) agent_locations = self.episode_init_data["agent_locations"] for i in range(self.num_agents): env.teleport_agent_to( **agent_locations[i], standing=True, force_action=True, agent_id=i ) # Place agents in appropriate locations env.step( { "action": "DisableAllObjectsOfType", "objectId": self.object_type, "agentId": 0, } ) lifted_object_loc = self.episode_init_data["lifted_object_location"] sr = env.step( { "action": "CreateObjectAtLocation", "objectType": self.object_type, "position": { "x": lifted_object_loc["x"], "y": lifted_object_loc["y"], "z": lifted_object_loc["z"], }, "rotation": {"x": 0, "y": lifted_object_loc["rotation"], "z": 0}, "forceAction": True, "agentId": 0, } ) assert env.last_event.metadata["lastActionSuccess"] objects_of_type = env.all_objects_with_properties( {"objectType": self.object_type}, agent_id=0 ) if len(objects_of_type) != 1: print("len(objects_of_type): {}".format(len(objects_of_type))) raise (Exception("len(objects_of_type) != 1")) object = objects_of_type[0] object_id = object["objectId"] # Create the object we should navigate to to_object_loc = self.episode_init_data["to_object_location"] env.step( { "action": "CreateObjectAtLocation", "objectType": self.to_object_type, "position": { "x": to_object_loc["x"], "y": to_object_loc["y"], "z": to_object_loc["z"], }, "rotation": {"x": 0, "y": to_object_loc["rotation"], "z": 0}, "forceAction": True, "agentId": 0, } ) assert env.last_event.metadata["lastActionSuccess"] objects_of_to_type = [ o["objectId"] for o in env.all_objects_with_properties( {"objectType": self.to_object_type}, agent_id=0 ) if len(o["objectId"].split("|")) == 2 ] assert len(objects_of_to_type) == 1 to_object_id = objects_of_to_type[0] assert to_object_id is not None and len(to_object_id) != 0 else: scene = random.choice(self.scenes) env.reset(scene) for i in range(self.num_agents): env.teleport_agent_to( **env.last_event.metadata["agent"]["position"], rotation=env.last_event.metadata["agent"]["rotation"]["y"], horizon=30.0, standing=True, force_action=True, agent_id=i, ) scene_successfully_setup = False failure_reasons = [] for _ in range(10): # Randomly generate agents looking at the TV env.step( { "action": "DisableAllObjectsOfType", "objectId": self.object_type, "agentId": 0, } ) sr = env.step( { "action": "RandomlyCreateLiftedFurniture", "objectType": self.object_type, "y": self.object_initial_height, "z": self.max_distance_from_object, } ) if ( env.last_event.metadata["lastAction"] != "RandomlyCreateLiftedFurniture" or not env.last_event.metadata["lastActionSuccess"] ): failure_reasons.append( "Could not randomize location of {} in {}. Error message {}.".format( self.object_type, scene, env.last_event.metadata["errorMessage"], ) ) continue # Refreshing reachable here should not be done as it means the # space underneath the TV would be considered unreachable even though, # once the TV moves, it is. # env.refresh_initially_reachable() objects_of_type = env.all_objects_with_properties( {"objectType": self.object_type}, agent_id=0 ) if len(objects_of_type) != 1: print("len(objects_of_type): {}".format(len(objects_of_type))) raise (Exception("len(objects_of_type) != 1")) object = objects_of_type[0] object_id = object["objectId"] assert object_id == sr.metadata["actionReturn"] # Create the object we should navigate to env.step( { "action": "RandomlyCreateAndPlaceObjectOnFloor", "objectType": self.to_object_type, "agentId": 0, } ) if ( env.last_event.metadata["lastAction"] != "RandomlyCreateAndPlaceObjectOnFloor" or not env.last_event.metadata["lastActionSuccess"] ): failure_reasons.append( "Could not randomize location of {} in {}. Error message: {}.".format( self.to_object_type, scene, env.last_event.metadata["errorMessage"], ) ) continue to_object_id = env.last_event.metadata["actionReturn"] assert to_object_id is not None and len(to_object_id) != 0 scene_successfully_setup = True break if not scene_successfully_setup: # raise Exception( warnings.warn( ( "Failed to randomly initialize objects and agents in scene {} 10 times" + "for the following reasons:" + "\n\t* ".join(failure_reasons) + "\nTrying a new scene." ).format(env.scene_name) ) yield from self(agent, env=env) return assert env.scene_name == scene # Task data includes the target object id and one agent state/metadata to naviagate to. task_data = {"move_obj_id": object_id, "move_to_obj_id": to_object_id} agent.episode = self.episode_class( env, task_data, max_steps=self.max_episode_length, num_agents=self.num_agents, max_distance_from_object=self.max_distance_from_object, include_depth_frame=self.include_depth_frame, **self.episode_args, ) yield True if self.save_talk_reply_probs_path is not None: if torch.cuda.is_available(): save_talk_reply_data_frame( agent, self.save_talk_reply_probs_path, None, use_hash=True, # self._internal_episodes, ) else: save_talk_reply_data_frame( agent, self.save_talk_reply_probs_path, self._internal_episodes ) class FurnMoveGridEpisodeSampler(object): def __init__( self, scenes: List[str], num_agents: int, object_type: str, to_object_type: str, to_object_silhouette: str, env_args=None, max_episode_length: int = 500, episode_class: Callable = FurnMoveEpisode, player_screen_height=224, player_screen_width=224, save_talk_reply_probs_path: Optional[str] = None, max_ep_using_expert_actions: int = 10000, visible_agents: bool = True, include_depth_frame: bool = False, object_initial_height: float = 1.0, max_distance_from_object: float = 0.5, headless: bool = False, episode_args: Optional[Dict] = None, environment_args: Optional[Dict] = None, ): self.visible_agents = visible_agents self.max_ep_using_expert_actions = max_ep_using_expert_actions self.save_talk_reply_probs_path = save_talk_reply_probs_path self.player_screen_height = player_screen_height self.player_screen_width = player_screen_width self.episode_class = episode_class self.max_episode_length = max_episode_length self.env_args = env_args self.num_agents = num_agents self.scenes = scenes self.object_type = object_type self.to_object_type = to_object_type self.include_depth_frame = include_depth_frame self.object_initial_height = object_initial_height self.max_distance_from_object = max_distance_from_object self.headless = headless self.episode_args = episode_args if episode_args is not None else {} self.environment_args = environment_args if environment_args is not None else {} self.to_object_silhouette = to_object_silhouette self.grid_size = 0.25 self._current_train_episode = 0 self._internal_episodes = 0 self.episode_init_data = None @staticmethod def _create_environment( num_agents, env_args, object_initial_height, max_distance_from_object, object_type, visible_agents: bool, render_depth_image: bool, headless: bool, **environment_args, ) -> AI2ThorLiftedObjectGridEnvironment: # TODO: restrict_to_initially_reachable_points # and render_depth_image are excluded from this. env = AI2ThorLiftedObjectGridEnvironment( docker_enabled=env_args.docker_enabled, x_display=env_args.x_display, local_thor_build=env_args.local_thor_build, num_agents=num_agents, visible_agents=visible_agents, time_scale=1.0, headless=headless, lifted_object_height=object_initial_height, max_dist_to_lifted_object=max_distance_from_object, object_type=object_type, **environment_args, ) return env @property def current_train_episode(self): return self._current_train_episode @current_train_episode.setter def current_train_episode(self, value): self._current_train_episode = value def start_env(self, agent: RLAgent, env: Optional[AI2ThorEnvironment]): if agent.environment is not None: env = agent.environment else: env = self._create_environment( num_agents=self.num_agents, env_args=self.env_args, visible_agents=self.visible_agents, render_depth_image=self.include_depth_frame, headless=self.headless, object_initial_height=self.object_initial_height, max_distance_from_object=self.max_distance_from_object, object_type=self.object_type, **self.environment_args, ) env.start( "FloorPlan1_physics", move_mag=self.grid_size, quality="Very Low", player_screen_height=self.player_screen_height, player_screen_width=self.player_screen_width, ) return env def __call__( self, agent: MultiAgent, agent_location_seed=None, env: Optional[AI2ThorEnvironment] = None, episode_init_queue: Optional[mp.Queue] = None, ) -> None: self._internal_episodes += 1 if ( self.max_ep_using_expert_actions != 0 and self.current_train_episode <= self.max_ep_using_expert_actions ): agent.take_expert_action_prob = 0.9 * ( 1.0 - self.current_train_episode / self.max_ep_using_expert_actions ) else: agent.take_expert_action_prob = 0 env = self.start_env(agent=agent, env=env) if episode_init_queue is not None: try: self.episode_init_data = episode_init_queue.get(timeout=1) except queue.Empty: raise TrainingCompleteException("No more data in episode init queue.") scene = self.episode_init_data["scene"] env.reset(scene) agent_locations = self.episode_init_data["agent_locations"] for i in range(self.num_agents): loc = agent_locations[i] env.step( { "action": "TeleportFull", "agentId": i, "x": loc["x"], "z": loc["z"], "rotation": {"y": loc["rotation"]}, "allowAgentIntersection": True, "makeReachable": True, } ) assert env.last_event.metadata["lastActionSuccess"] # Place agents in appropriate locations lifted_object_loc = self.episode_init_data["lifted_object_location"] env.step( { "action": "CreateLiftedFurnitureAtLocation", "objectType": self.object_type, "x": lifted_object_loc["x"], "z": lifted_object_loc["z"], "rotation": {"y": lifted_object_loc["rotation"]}, "agentId": 0, "forceAction": True, } ) assert env.last_event.metadata["lastActionSuccess"] object_id = env.last_event.metadata["actionReturn"] # Create the object we should navigate to to_object_loc = self.episode_init_data["to_object_location"] env.step( { "action": "CreateAndPlaceObjectOnFloorAtLocation", "objectType": "Dresser", "object_mask": env.controller.parse_template_to_mask( self.to_object_silhouette ), **to_object_loc, "rotation": {"y": to_object_loc["rotation"]}, "agentId": 0, "forceAction": True, } ) assert env.last_event.metadata["lastActionSuccess"] to_object_id = env.last_event.metadata["actionReturn"]["objectId"] assert to_object_id is not None and len(to_object_id) != 0 else: scene = random.choice(self.scenes) env.reset(scene) scene_successfully_setup = False failure_reasons = [] for _ in range(10 if env.num_agents <= 3 else 50): # Randomly generate agents looking at the TV sr = env.step( { "action": "RandomlyCreateLiftedFurniture", "agentId": 0, "objectType": self.object_type, "y": self.object_initial_height, "z": self.max_distance_from_object, } ) if ( env.last_event.metadata["lastAction"] != "RandomlyCreateLiftedFurniture" or not env.last_event.metadata["lastActionSuccess"] ): failure_reasons.append( "Could not randomize location of {} in {}.".format( self.object_type, scene ) ) continue object_id = sr.metadata["actionReturn"] # Create the object we should navigate to env.step( { "action": "RandomlyCreateAndPlaceObjectOnFloor", "objectType": self.to_object_type, "object_mask": env.controller.parse_template_to_mask( self.to_object_silhouette ), "agentId": 0, } ) if ( env.last_event.metadata["lastAction"] != "RandomlyCreateAndPlaceObjectOnFloor" or not env.last_event.metadata["lastActionSuccess"] ): failure_reasons.append( "Could not randomize location of {} in {}.".format( self.to_object_type, scene ) ) continue to_object_id = env.last_event.metadata["actionReturn"]["objectId"] assert to_object_id is not None and len(to_object_id) != 0 scene_successfully_setup = True break if not scene_successfully_setup: # raise Exception( warnings.warn( ( "Failed to randomly initialize objects and agents in scene {} 10 times".format( scene ) + "for the following reasons:" + "\n\t* ".join( [ "({} times): {}".format(cnt, reason) for reason, cnt in Counter(failure_reasons).items() ] ) + "\nTrying a new scene." ).format(env.scene_name) ) yield from self(agent, env=env) return assert env.scene_name == scene # Task data includes the target object id and one agent state/metadata to naviagate to. task_data = {"move_obj_id": object_id, "move_to_obj_id": to_object_id} agent.episode = self.episode_class( env, task_data, max_steps=self.max_episode_length, num_agents=self.num_agents, max_distance_from_object=self.max_distance_from_object, include_depth_frame=self.include_depth_frame, **self.episode_args, ) yield True if self.save_talk_reply_probs_path is not None: if torch.cuda.is_available(): save_talk_reply_data_frame( agent, self.save_talk_reply_probs_path, None, use_hash=True, # self._internal_episodes, ) else: save_talk_reply_data_frame( agent, self.save_talk_reply_probs_path, self._internal_episodes )
cordial-sync-master
rl_multi_agent/furnmove_episode_samplers.py
from __future__ import division from collections import OrderedDict from typing import Tuple, Optional, Sequence import torch import torch.nn as nn import torch.nn.functional as F from utils.misc_util import norm_col_init, weights_init, outer_product, outer_sum def _unfold_communications(speech_per_agent: torch.FloatTensor): assert len(speech_per_agent.shape) >= 2 num_agents = speech_per_agent.shape[0] unfolded_commns = [speech_per_agent[1:, :].view(1, -1)] for i in range(1, num_agents - 1): unfolded_commns.append( torch.cat( ( speech_per_agent[(i + 1) :,].view(1, -1), speech_per_agent[:i,].view(1, -1), ), dim=1, ) ) unfolded_commns.append(speech_per_agent[:-1,].view(1, -1)) return torch.cat(unfolded_commns, dim=0) class A3CLSTMCentralEgoGridsEmbedCNN(nn.Module): def __init__( self, num_inputs_per_agent: int, action_groups: Tuple[Tuple[str, ...], ...], num_agents: int, state_repr_length: int, occupancy_embed_length: int, ): super(A3CLSTMCentralEgoGridsEmbedCNN, self).__init__() self.num_outputs = sum(len(x) for x in action_groups) self.num_inputs_per_agent = num_inputs_per_agent self.num_inputs = num_inputs_per_agent * num_agents self.num_agents = num_agents self.occupancy_embed_length = occupancy_embed_length self.occupancy_embeddings = nn.Embedding( num_inputs_per_agent, self.occupancy_embed_length ) # input to conv is (num_agents * self.occupancy_embed_length, 15, 15) self.cnn = nn.Sequential( OrderedDict( [ ( "conv1", nn.Conv2d( self.occupancy_embed_length * self.num_agents, 32, 3, padding=1, ), ), ("relu1", nn.ReLU(inplace=True)), # shape = (15, 15) ("conv2", nn.Conv2d(32, 64, 3, stride=2)), ("relu2", nn.ReLU(inplace=True)), # shape = (7, 7) ("conv3", nn.Conv2d(64, 128, 3, stride=2)), ("relu3", nn.ReLU(inplace=True)), # shape = (3, 3) ("conv4", nn.Conv2d(128, 256, 3, stride=2)), ("relu4", nn.ReLU(inplace=True)), # shape = (1, 1); Stride doesn't matter above ] ) ) # LSTM self.lstm_in_dim = 256 self.lstm = nn.LSTM(self.lstm_in_dim, state_repr_length, batch_first=True) # Post LSTM fully connected layers self.after_lstm_mlp = nn.Sequential( nn.Linear(state_repr_length, state_repr_length), nn.ReLU(inplace=True), nn.Linear(state_repr_length, state_repr_length), nn.ReLU(inplace=True), ) # Marginal Linear actor self.marginal_actor_linear_list = nn.ModuleList( [ nn.Linear(state_repr_length, self.num_outputs) for _ in range(self.num_agents) ] ) # Conditional actor self.joint_actor_linear = nn.Linear( state_repr_length, self.num_outputs ** self.num_agents ) # Linear critic self.critic_linear = nn.Linear(state_repr_length, 1) # Setting initial weights self.apply(weights_init) relu_gain = nn.init.calculate_gain("relu") self.cnn._modules["conv1"].weight.data.mul_(relu_gain) self.cnn._modules["conv2"].weight.data.mul_(relu_gain) self.cnn._modules["conv3"].weight.data.mul_(relu_gain) self.cnn._modules["conv4"].weight.data.mul_(relu_gain) for agent_id in range(self.num_agents): self.marginal_actor_linear_list[agent_id].weight.data = norm_col_init( self.marginal_actor_linear_list[agent_id].weight.data, 0.01 ) self.marginal_actor_linear_list[agent_id].bias.data.fill_(0) self.train() def forward( self, inputs: torch.FloatTensor, hidden: Optional[torch.FloatTensor], agent_rotations: Sequence[int], ): if inputs.shape != (self.num_agents, self.num_inputs_per_agent, 15, 15): raise Exception("input to model is not as expected, check!") inputs = inputs.float() # inputs.shape == (self.num_agents, self.num_inputs, 15, 15) inputs = inputs.permute(0, 2, 3, 1).contiguous() original_shape = inputs.shape # original_shape == (self.num_agents, 15, 15, self.num_inputs) scaling_factor = torch.reciprocal( (inputs == 1).sum(dim=3).unsqueeze(3).float() + 1e-3 ) # scaling_factor.shape == (self.num_agents, 15, 15, 1) inputs = inputs.view(-1, self.num_inputs_per_agent) inputs = inputs.matmul(self.occupancy_embeddings.weight) inputs = inputs.view( original_shape[0], original_shape[1], original_shape[2], self.occupancy_embed_length, ) x = torch.mul(inputs, scaling_factor.expand_as(inputs)) # x.shape == (self.num_agents, 15, 15, self.occupancy_embed_length) x = ( x.permute(0, 3, 1, 2) .contiguous() .view( 1, original_shape[0] * self.occupancy_embed_length, original_shape[1], original_shape[2], ) ) # x.shape == (1, self.num_agents * self.occupancy_embed_length, 15, 15) x = self.cnn(x) # x.shape == (1, 256, 1, 1) x = x.view(1, -1) # x.shape == (1, self.lstm_in_dim) batch_dim = 1 # x.shape = [batch_dim, self.lstm_in_dim] if x.shape != (1, self.lstm_in_dim): print("x.shape: {}".format(x.shape)) raise Exception("output of model is not as expected, check!") x, hidden = self.lstm(x.unsqueeze(1), hidden) # x.shape = [batch_dim, 1, state_repr_length] x = x.squeeze(1) # x.shape = [batch_dim, state_repr_length] final_state = x + self.after_lstm_mlp(x) # state_talk_reply_repr.shape = [batch=1, state_repr_length] marginal_actor_linear_output_list = [ self.marginal_actor_linear_list[agent_id](final_state).view(-1) for agent_id in range(self.num_agents) ] # list with each element of size [batch_dim, self.num_outputs] # Strangely we have to unsqueeze(0) instead of unsqueeze(1) here. # This seems to be because the LSTM is not expecting its hidden # state to have the batch first despite the batch_first=True parameter # making it expect its input to have the batch first. hidden = (final_state.unsqueeze(0), hidden[1]) joint_actor_logits = self.joint_actor_linear(final_state).view( batch_dim, *((self.num_outputs,) * self.num_agents) ) if self.num_agents <= 2: marginal_logits = outer_product( marginal_actor_linear_output_list ).unsqueeze(0) else: marginal_logits = outer_sum(marginal_actor_linear_output_list).unsqueeze(0) assert marginal_logits.shape == joint_actor_logits.shape combined_logits = joint_actor_logits + marginal_logits # One length lists as this is a central agent return { "logit_all": combined_logits.view( batch_dim, self.num_outputs ** self.num_agents ), "value_all": self.critic_linear(final_state), # shape: [batch_dim,1] "hidden_all": hidden, "joint_logit_all": True, } class A3CLSTMBigCentralEgoGridsEmbedCNN(nn.Module): def __init__( self, num_inputs_per_agent: int, action_groups: Tuple[Tuple[str, ...], ...], num_agents: int, state_repr_length: int, occupancy_embed_length: int, ): super(A3CLSTMBigCentralEgoGridsEmbedCNN, self).__init__() self.num_outputs = sum(len(x) for x in action_groups) self.num_inputs_per_agent = num_inputs_per_agent self.num_inputs = num_inputs_per_agent * num_agents self.num_agents = num_agents self.occupancy_embed_length = occupancy_embed_length self.occupancy_embeddings = nn.Embedding( num_inputs_per_agent, self.occupancy_embed_length ) # input to conv is (self.occupancy_embed_length, 15, 15) self.cnn = nn.Sequential( OrderedDict( [ ("conv1", nn.Conv2d(self.occupancy_embed_length, 32, 3, padding=1)), ("relu1", nn.ReLU(inplace=True)), # shape = (15, 15) ("conv2", nn.Conv2d(32, 64, 3, stride=2)), ("relu2", nn.ReLU(inplace=True)), # shape = (7, 7) ("conv3", nn.Conv2d(64, 128, 3, stride=2)), ("relu3", nn.ReLU(inplace=True)), # shape = (3, 3) ("conv4", nn.Conv2d(128, 256, 3, stride=2)), ("relu4", nn.ReLU(inplace=True)), # shape = (1, 1); Stride doesn't matter above ] ) ) self.lstm_in_dim = 256 self.before_lstm_mlp = nn.Sequential( nn.Linear( self.num_agents * self.lstm_in_dim, self.num_agents * self.lstm_in_dim ), nn.ReLU(inplace=True), nn.Linear(self.num_agents * self.lstm_in_dim, self.lstm_in_dim), nn.ReLU(inplace=True), ) # LSTM self.lstm = nn.LSTM(self.lstm_in_dim, state_repr_length, batch_first=True) # Post LSTM fully connected layers self.after_lstm_mlp = nn.Sequential( nn.Linear(state_repr_length, state_repr_length), nn.ReLU(inplace=True), nn.Linear(state_repr_length, state_repr_length), nn.ReLU(inplace=True), ) # Marginal Linear actor self.marginal_actor_linear_list = nn.ModuleList( [ nn.Linear(state_repr_length, self.num_outputs) for _ in range(self.num_agents) ] ) # Conditional actor self.joint_actor_linear = nn.Linear( state_repr_length, self.num_outputs ** self.num_agents ) # Linear critic self.critic_linear = nn.Linear(state_repr_length, 1) # Setting initial weights self.apply(weights_init) relu_gain = nn.init.calculate_gain("relu") self.cnn._modules["conv1"].weight.data.mul_(relu_gain) self.cnn._modules["conv2"].weight.data.mul_(relu_gain) self.cnn._modules["conv3"].weight.data.mul_(relu_gain) self.cnn._modules["conv4"].weight.data.mul_(relu_gain) for agent_id in range(self.num_agents): self.marginal_actor_linear_list[agent_id].weight.data = norm_col_init( self.marginal_actor_linear_list[agent_id].weight.data, 0.01 ) self.marginal_actor_linear_list[agent_id].bias.data.fill_(0) self.train() def forward( self, inputs: torch.FloatTensor, hidden: Optional[torch.FloatTensor], agent_rotations: Sequence[int], ): if inputs.shape != (self.num_agents, self.num_inputs_per_agent, 15, 15): raise Exception("input to model is not as expected, check!") inputs = inputs.float() # inputs.shape == (self.num_agents, self.num_inputs, 15, 15) inputs = inputs.permute(0, 2, 3, 1).contiguous() original_shape = inputs.shape # original_shape == (self.num_agents, 15, 15, self.num_inputs) scaling_factor = torch.reciprocal( (inputs == 1).sum(dim=3).unsqueeze(3).float() + 1e-3 ) # scaling_factor.shape == (self.num_agents, 15, 15, 1) inputs = inputs.view(-1, self.num_inputs_per_agent) inputs = inputs.matmul(self.occupancy_embeddings.weight) inputs = inputs.view( original_shape[0], original_shape[1], original_shape[2], self.occupancy_embed_length, ) x = torch.mul(inputs, scaling_factor.expand_as(inputs)) # x.shape == (self.num_agents, 15, 15, self.occupancy_embed_length) x = x.permute(0, 3, 1, 2).contiguous() # x.shape == (self.num_agents, self.occupancy_embed_length, 15, 15) x = self.cnn(x) # x.shape == (self.num_agents, 256, 1, 1) x = x.view(1, -1) # x.shape == (1, self.num_agents * self.lstm_in_dim) x = self.before_lstm_mlp(x) batch_dim = 1 # x.shape = [batch_dim, self.lstm_in_dim] if x.shape != (1, self.lstm_in_dim): print("x.shape: {}".format(x.shape)) raise Exception("output of model is not as expected, check!") x, hidden = self.lstm(x.unsqueeze(1), hidden) # x.shape = [batch_dim, 1, state_repr_length] x = x.squeeze(1) # x.shape = [batch_dim, state_repr_length] final_state = x + self.after_lstm_mlp(x) # state_talk_reply_repr.shape = [batch=1, state_repr_length] marginal_actor_linear_output_list = [ self.marginal_actor_linear_list[agent_id](final_state).view(-1) for agent_id in range(self.num_agents) ] # list with each element of size [batch_dim, self.num_outputs] # Strangely we have to unsqueeze(0) instead of unsqueeze(1) here. # This seems to be because the LSTM is not expecting its hidden # state to have the batch first despite the batch_first=True parameter # making it expect its input to have the batch first. hidden = (final_state.unsqueeze(0), hidden[1]) joint_actor_logits = self.joint_actor_linear(final_state).view( batch_dim, *((self.num_outputs,) * self.num_agents) ) if self.num_agents <= 2: marginal_logits = outer_product( marginal_actor_linear_output_list ).unsqueeze(0) else: marginal_logits = outer_sum(marginal_actor_linear_output_list).unsqueeze(0) assert marginal_logits.shape == joint_actor_logits.shape combined_logits = joint_actor_logits + marginal_logits # One length lists as this is a central agent return { "logit_all": combined_logits.view( batch_dim, self.num_outputs ** self.num_agents ), "value_all": self.critic_linear(final_state), # shape: [batch_dim,1] "hidden_all": hidden, "joint_logit_all": True, } class A3CLSTMBigCentralBackboneAndCoordinatedActionsEgoGridsEmbedCNN(nn.Module): def __init__( self, num_inputs_per_agent: int, action_groups: Tuple[Tuple[str, ...], ...], num_agents: int, state_repr_length: int, occupancy_embed_length: int, coordinate_actions: bool, coordinate_actions_dim: Optional[int] = None, central_critic: bool = False, ): super( A3CLSTMBigCentralBackboneAndCoordinatedActionsEgoGridsEmbedCNN, self ).__init__() # Either coordinate actions (mixture of marginals) # Otherwise i.e. single marginals then there shouldn't be any # coordinate_actions_dim assert coordinate_actions or not coordinate_actions_dim # Since the representation for both agents is the same, having # separate actor weights for mixture and also for single is # necessary. Explicitly captured below. separate_actor_weights = True # Also since this is a single central agent, there is no central critic # feature expected in this model assert not central_critic self.separate_actor_weights = separate_actor_weights self.coordinate_actions_dim = ( self.num_outputs if coordinate_actions and coordinate_actions_dim is None else coordinate_actions_dim ) self.num_outputs = sum(len(x) for x in action_groups) self.num_inputs_per_agent = num_inputs_per_agent self.num_inputs = num_inputs_per_agent * num_agents self.num_agents = num_agents self.occupancy_embed_length = occupancy_embed_length self.occupancy_embeddings = nn.Embedding( num_inputs_per_agent, self.occupancy_embed_length ) self.coordinate_actions = coordinate_actions # input to conv is (self.occupancy_embed_length, 15, 15) self.cnn = nn.Sequential( OrderedDict( [ ("conv1", nn.Conv2d(self.occupancy_embed_length, 32, 3, padding=1)), ("relu1", nn.ReLU(inplace=True)), # shape = (15, 15) ("conv2", nn.Conv2d(32, 64, 3, stride=2)), ("relu2", nn.ReLU(inplace=True)), # shape = (7, 7) ("conv3", nn.Conv2d(64, 128, 3, stride=2)), ("relu3", nn.ReLU(inplace=True)), # shape = (3, 3) ("conv4", nn.Conv2d(128, 256, 3, stride=2)), ("relu4", nn.ReLU(inplace=True)), # shape = (1, 1); Stride doesn't matter above ] ) ) self.lstm_in_dim = 256 self.before_lstm_mlp = nn.Sequential( nn.Linear(2 * self.lstm_in_dim, 2 * self.lstm_in_dim), nn.ReLU(inplace=True), nn.Linear(2 * self.lstm_in_dim, self.lstm_in_dim), nn.ReLU(inplace=True), ) # LSTM self.lstm = nn.LSTM(self.lstm_in_dim, state_repr_length, batch_first=True) # Post LSTM fully connected layers self.after_lstm_mlp = nn.Sequential( nn.Linear(state_repr_length, state_repr_length), nn.ReLU(inplace=True), nn.Linear(state_repr_length, state_repr_length), nn.ReLU(inplace=True), ) if coordinate_actions: # Randomization MLP operating on the central state representation self.to_randomization_logits = nn.Sequential( nn.Linear(1 * state_repr_length, 64), nn.ReLU(inplace=True), nn.Linear(64, 64), nn.ReLU(inplace=True), nn.Linear(64, self.coordinate_actions_dim), ) # Linear actor self.actor_linear = None actor_linear_input_dim = state_repr_length # self.pre_actor_list = nn.ModuleList( # [ # nn.Sequential( # nn.Linear(state_repr_length, actor_linear_input_dim), # nn.ReLU(inplace=True), # ) # # for _ in range(2) # ] # ) if coordinate_actions: self.actor_linear_list = nn.ModuleList( [ nn.Linear( actor_linear_input_dim, self.num_outputs * self.coordinate_actions_dim, ) for _ in range(2) ] ) else: self.actor_linear_list = nn.ModuleList( [nn.Linear(actor_linear_input_dim, self.num_outputs) for _ in range(2)] ) for al in self.actor_linear_list: al.weight.data = norm_col_init(al.weight.data, 0.01) al.bias.data.fill_(0) # Linear critic self.critic_linear = nn.Linear(state_repr_length, 1) # Setting initial weights self.apply(weights_init) relu_gain = nn.init.calculate_gain("relu") self.cnn._modules["conv1"].weight.data.mul_(relu_gain) self.cnn._modules["conv2"].weight.data.mul_(relu_gain) self.cnn._modules["conv3"].weight.data.mul_(relu_gain) self.cnn._modules["conv4"].weight.data.mul_(relu_gain) self.train() def forward( self, inputs: torch.FloatTensor, hidden: Optional[torch.FloatTensor], agent_rotations: Sequence[int], ): if inputs.shape != (self.num_agents, self.num_inputs_per_agent, 15, 15): raise Exception("input to model is not as expected, check!") inputs = inputs.float() # inputs.shape == (2, self.num_inputs, 15, 15) inputs = inputs.permute(0, 2, 3, 1).contiguous() original_shape = inputs.shape # original_shape == (2, 15, 15, self.num_inputs) scaling_factor = torch.reciprocal( (inputs == 1).sum(dim=3).unsqueeze(3).float() + 1e-3 ) # scaling_factor.shape == (2, 15, 15, 1) inputs = inputs.view(-1, self.num_inputs_per_agent) inputs = inputs.matmul(self.occupancy_embeddings.weight) inputs = inputs.view( original_shape[0], original_shape[1], original_shape[2], self.occupancy_embed_length, ) x = torch.mul(inputs, scaling_factor.expand_as(inputs)) # x.shape == (2, 15, 15, self.occupancy_embed_length) x = x.permute(0, 3, 1, 2).contiguous() # x.shape == (2, self.occupancy_embed_length, 15, 15) x = self.cnn(x) # x.shape == (2, 256, 1, 1) x = x.view(1, -1) # x.shape == (1, 2 * self.lstm_in_dim = 512) x = self.before_lstm_mlp(x) batch_dim = 1 # x.shape = [batch_dim, self.lstm_in_dim] if x.shape != (1, self.lstm_in_dim): print("x.shape: {}".format(x.shape)) raise Exception("output of model is not as expected, check!") x, hidden = self.lstm(x.unsqueeze(1), hidden) # x.shape = [batch_dim, 1, state_repr_length] x = x.squeeze(1) # x.shape = [batch_dim, state_repr_length] final_state = x + self.after_lstm_mlp(x) # state_talk_reply_repr.shape = [batch=1, state_repr_length] # Strangely we have to unsqueeze(0) instead of unsqueeze(1) here. # This seems to be because the LSTM is not expecting its hidden # state to have the batch first despite the batch_first=True parameter # making it expect its input to have the batch first. hidden = (final_state.unsqueeze(0), hidden[1]) # One central backbone agent, so no option for central critic, check asserts value_all = self.critic_linear(final_state) # Same value for both agents to_return = { "value_all": torch.cat([value_all, value_all], dim=0), "hidden_all": hidden, } logits = torch.cat( [ linear( # self.pre_actor_list[i](final_state) final_state ) for i, linear in enumerate(self.actor_linear_list) ], dim=0, ) if self.coordinate_actions: # Mixture marginals, actor output = num_outputs * coordinate_action_dim to_return["randomization_logits"] = self.to_randomization_logits( final_state ) to_return["coordinated_logits"] = logits else: # Single marginal, actor output = num_outputs to_return["logit_all"] = logits return to_return class A3CLSTMCentralEgoVision(nn.Module): def __init__( self, num_inputs_per_agent: int, action_groups: Tuple[Tuple[str, ...], ...], num_agents: int, state_repr_length: int, ): super(A3CLSTMCentralEgoVision, self).__init__() self.num_outputs = sum(len(x) for x in action_groups) self.num_inputs_per_agent = num_inputs_per_agent self.num_inputs = num_inputs_per_agent * num_agents self.num_agents = num_agents # input to conv is (num_agents * self.num_inputs_per_agent, 84, 84) self.cnn = nn.Sequential( OrderedDict( [ ( "conv1", nn.Conv2d( self.num_inputs_per_agent * self.num_agents, 16, 5, stride=1, padding=2, ), ), ("maxpool1", nn.MaxPool2d(2, 2)), ("relu1", nn.ReLU(inplace=True)), # shape = ("conv2", nn.Conv2d(16, 16, 5, stride=1, padding=1)), ("maxpool2", nn.MaxPool2d(2, 2)), ("relu2", nn.ReLU(inplace=True)), # shape = ("conv3", nn.Conv2d(16, 32, 4, stride=1, padding=1)), ("maxpool3", nn.MaxPool2d(2, 2)), ("relu3", nn.ReLU(inplace=True)), # shape = ("conv4", nn.Conv2d(32, 64, 3, stride=1, padding=1)), ("maxpool4", nn.MaxPool2d(2, 2)), ("relu4", nn.ReLU(inplace=True)), # shape = (4, 4) ("conv5", nn.Conv2d(64, 128, 3, stride=1, padding=1)), ("maxpool5", nn.MaxPool2d(2, 2)), ("relu5", nn.ReLU(inplace=True)), # shape = (2, 2) ] ) ) # LSTM self.lstm_in_dim = 512 self.lstm = nn.LSTM(self.lstm_in_dim, state_repr_length, batch_first=True) # Post LSTM fully connected layers self.after_lstm_mlp = nn.Sequential( nn.Linear(state_repr_length, state_repr_length), nn.ReLU(inplace=True), nn.Linear(state_repr_length, state_repr_length), nn.ReLU(inplace=True), ) # Marginal Linear actor self.marginal_actor_linear_list = nn.ModuleList( [ nn.Linear(state_repr_length, self.num_outputs) for _ in range(self.num_agents) ] ) # Conditional actor self.joint_actor_linear = nn.Linear( state_repr_length, self.num_outputs * self.num_outputs ) # Linear critic self.critic_linear = nn.Linear(state_repr_length, 1) # Setting initial weights self.apply(weights_init) relu_gain = nn.init.calculate_gain("relu") self.cnn._modules["conv1"].weight.data.mul_(relu_gain) self.cnn._modules["conv2"].weight.data.mul_(relu_gain) self.cnn._modules["conv3"].weight.data.mul_(relu_gain) self.cnn._modules["conv4"].weight.data.mul_(relu_gain) for agent_id in range(self.num_agents): self.marginal_actor_linear_list[agent_id].weight.data = norm_col_init( self.marginal_actor_linear_list[agent_id].weight.data, 0.01 ) self.marginal_actor_linear_list[agent_id].bias.data.fill_(0) self.train() def forward( self, inputs: torch.FloatTensor, hidden: Optional[torch.FloatTensor], agent_rotations: Sequence[int], ): if inputs.shape != (self.num_agents, self.num_inputs_per_agent, 84, 84): raise Exception("input to model is not as expected, check!") inputs = inputs.view( self.num_agents * self.num_inputs_per_agent, 84, 84 ).unsqueeze(0) # inputs.shape == (1, self.num_agents * self.num_inputs, 84, 84) x = self.cnn(inputs) # x.shape == (1, 128, 4, 4) x = x.view(1, -1) # x.shape == (batch_dim, self.lstm_in_dim) batch_dim = 1 # x.shape = [batch_dim, self.lstm_in_dim] if x.shape != (1, self.lstm_in_dim): print("x.shape: {}".format(x.shape)) raise Exception("output of model is not as expected, check!") x, hidden = self.lstm(x.unsqueeze(1), hidden) # x.shape = [batch_dim, 1, state_repr_length] x = x.squeeze(1) # x.shape = [batch_dim, state_repr_length] final_state = x + self.after_lstm_mlp(x) # state_talk_reply_repr.shape = [batch=1, state_repr_length] marginal_actor_linear_output_list = [ self.marginal_actor_linear_list[agent_id](final_state) for agent_id in range(self.num_agents) ] # list with each element of size [batch_dim, self.num_outputs] # Strangely we have to unsqueeze(0) instead of unsqueeze(1) here. # This seems to be because the LSTM is not expecting its hidden # state to have the batch first despite the batch_first=True parameter # making it expect its input to have the batch first. hidden = (final_state.unsqueeze(0), hidden[1]) joint_actor_logits = self.joint_actor_linear(final_state).view( batch_dim, self.num_outputs, self.num_outputs ) outer_product_marginal_logits = marginal_actor_linear_output_list[0].unsqueeze( 2 ) * marginal_actor_linear_output_list[1].unsqueeze(1) assert outer_product_marginal_logits.shape == ( batch_dim, self.num_outputs, self.num_outputs, ) combined_logits = joint_actor_logits + outer_product_marginal_logits # One length lists as this is a central agent return { "logit_all": combined_logits.view( batch_dim, self.num_outputs * self.num_outputs ), "value_all": self.critic_linear(final_state), # shape: [batch_dim,1] "hidden_all": hidden, "joint_logit_all": True, } class A3CLSTMBigCentralEgoVision(nn.Module): def __init__( self, num_inputs_per_agent: int, action_groups: Tuple[Tuple[str, ...], ...], num_agents: int, state_repr_length: int, ): super(A3CLSTMBigCentralEgoVision, self).__init__() self.num_outputs = sum(len(x) for x in action_groups) self.num_inputs_per_agent = num_inputs_per_agent self.num_inputs = num_inputs_per_agent * num_agents self.num_agents = num_agents # input to conv is (self.num_inputs_per_agent, 84, 84) self.cnn = nn.Sequential( OrderedDict( [ ( "conv1", nn.Conv2d( self.num_inputs_per_agent, 16, 5, stride=1, padding=2 ), ), ("maxpool1", nn.MaxPool2d(2, 2)), ("relu1", nn.ReLU(inplace=True)), # shape = ("conv2", nn.Conv2d(16, 16, 5, stride=1, padding=1)), ("maxpool2", nn.MaxPool2d(2, 2)), ("relu2", nn.ReLU(inplace=True)), # shape = ("conv3", nn.Conv2d(16, 32, 4, stride=1, padding=1)), ("maxpool3", nn.MaxPool2d(2, 2)), ("relu3", nn.ReLU(inplace=True)), # shape = ("conv4", nn.Conv2d(32, 64, 3, stride=1, padding=1)), ("maxpool4", nn.MaxPool2d(2, 2)), ("relu4", nn.ReLU(inplace=True)), # shape = (4, 4) ("conv5", nn.Conv2d(64, 128, 3, stride=1, padding=1)), ("maxpool5", nn.MaxPool2d(2, 2)), ("relu5", nn.ReLU(inplace=True)), # shape = (2, 2) ] ) ) # LSTM self.lstm_in_dim = 512 self.before_lstm_mlp = nn.Sequential( nn.Linear(self.lstm_in_dim * self.num_agents, self.lstm_in_dim), nn.ReLU(inplace=True), ) self.lstm = nn.LSTM(self.lstm_in_dim, state_repr_length, batch_first=True) # Post LSTM fully connected layers self.after_lstm_mlp = nn.Sequential( nn.Linear(state_repr_length, state_repr_length), nn.ReLU(inplace=True), nn.Linear(state_repr_length, state_repr_length), nn.ReLU(inplace=True), ) # Marginal Linear actor self.marginal_actor_linear_list = nn.ModuleList( [ nn.Linear(state_repr_length, self.num_outputs) for _ in range(self.num_agents) ] ) # Conditional actor self.joint_actor_linear = nn.Linear( state_repr_length, self.num_outputs ** self.num_agents ) # Linear critic self.critic_linear = nn.Linear(state_repr_length, 1) # Setting initial weights self.apply(weights_init) relu_gain = nn.init.calculate_gain("relu") self.cnn._modules["conv1"].weight.data.mul_(relu_gain) self.cnn._modules["conv2"].weight.data.mul_(relu_gain) self.cnn._modules["conv3"].weight.data.mul_(relu_gain) self.cnn._modules["conv4"].weight.data.mul_(relu_gain) for agent_id in range(self.num_agents): self.marginal_actor_linear_list[agent_id].weight.data = norm_col_init( self.marginal_actor_linear_list[agent_id].weight.data, 0.01 ) self.marginal_actor_linear_list[agent_id].bias.data.fill_(0) self.train() def forward( self, inputs: torch.FloatTensor, hidden: Optional[torch.FloatTensor], agent_rotations: Sequence[int], ): if inputs.shape != (self.num_agents, self.num_inputs_per_agent, 84, 84): raise Exception("input to model is not as expected, check!") # inputs.shape == (1, self.num_agents * self.num_inputs, 84, 84) x = self.cnn(inputs) # x.shape == (self.num_agents, 128, 4, 4) x = x.view(1, -1) # x.shape == (batch_dim, self.lstm_in_dim * self.num_agents) x = self.before_lstm_mlp(x) # x.shape == (batch_dim, self.lstm_in_dim) batch_dim = 1 if x.shape != (1, self.lstm_in_dim): print("x.shape: {}".format(x.shape)) raise Exception("output of model is not as expected, check!") x, hidden = self.lstm(x.unsqueeze(1), hidden) # x.shape = [batch_dim, 1, state_repr_length] x = x.squeeze(1) # x.shape = [batch_dim, state_repr_length] final_state = x + self.after_lstm_mlp(x) # state_talk_reply_repr.shape = [batch=1, state_repr_length] marginal_actor_linear_output_list = [ self.marginal_actor_linear_list[agent_id](final_state).view(-1) for agent_id in range(self.num_agents) ] # list with each element of size [batch_dim, self.num_outputs] # Strangely we have to unsqueeze(0) instead of unsqueeze(1) here. # This seems to be because the LSTM is not expecting its hidden # state to have the batch first despite the batch_first=True parameter # making it expect its input to have the batch first. hidden = (final_state.unsqueeze(0), hidden[1]) joint_actor_logits = self.joint_actor_linear(final_state).view( batch_dim, *((self.num_outputs,) * self.num_agents) ) if self.num_agents <= 2: marginal_logits = outer_product( marginal_actor_linear_output_list ).unsqueeze(0) else: marginal_logits = outer_sum(marginal_actor_linear_output_list).unsqueeze(0) assert marginal_logits.shape == joint_actor_logits.shape assert marginal_logits.shape == ( batch_dim, *((self.num_outputs,) * self.num_agents), ) combined_logits = joint_actor_logits + marginal_logits # One length lists as this is a central agent return { "logit_all": combined_logits.view( batch_dim, self.num_outputs ** self.num_agents ), "value_all": self.critic_linear(final_state), # shape: [batch_dim,1] "hidden_all": hidden, "joint_logit_all": True, } class OldTaskA3CLSTMBigCentralEgoVision(nn.Module): def __init__( self, num_inputs_per_agent: int, action_groups: Tuple[Tuple[str, ...], ...], num_agents: int, state_repr_length: int, ): super(OldTaskA3CLSTMBigCentralEgoVision, self).__init__() self.num_outputs = sum(len(x) for x in action_groups) self.num_inputs_per_agent = num_inputs_per_agent self.num_inputs = num_inputs_per_agent * num_agents self.num_agents = num_agents final_cnn_channels = 19 # input to conv is (self.num_inputs_per_agent, 84, 84) self.cnn = nn.Sequential( OrderedDict( [ ( "conv1", nn.Conv2d( self.num_inputs_per_agent, 32, 5, stride=1, padding=2 ), ), ("maxpool1", nn.MaxPool2d(2, 2)), ("relu1", nn.ReLU(inplace=True)), # shape = ("conv2", nn.Conv2d(32, 32, 5, stride=1, padding=1)), ("maxpool2", nn.MaxPool2d(2, 2)), ("relu2", nn.ReLU(inplace=True)), # shape = ("conv3", nn.Conv2d(32, 64, 4, stride=1, padding=1)), ("maxpool3", nn.MaxPool2d(2, 2)), ("relu3", nn.ReLU(inplace=True)), # shape = ( "conv4", nn.Conv2d(64, final_cnn_channels, 3, stride=1, padding=1), ), ("maxpool4", nn.MaxPool2d(2, 2)), ("relu4", nn.ReLU(inplace=True)), # shape = (4, 4) ] ) ) # CNN output: self.cnn_output_dim = final_cnn_channels * 4 * 4 # LSTM self.lstm_in_dim = 64 * 4 * 4 self.before_lstm_mlp = nn.Sequential( nn.Linear(self.cnn_output_dim * 2, self.lstm_in_dim), nn.ReLU(inplace=True) ) self.lstm = nn.LSTM(self.lstm_in_dim, state_repr_length, batch_first=True) # Post LSTM fully connected layers self.after_lstm_mlp = nn.Sequential( nn.Linear(state_repr_length, state_repr_length), nn.ReLU(inplace=True), nn.Linear(state_repr_length, state_repr_length), nn.ReLU(inplace=True), ) # Marginal Linear actor self.marginal_actor_linear_list = nn.ModuleList( [ nn.Linear(state_repr_length, self.num_outputs) for _ in range(self.num_agents) ] ) # Conditional actor self.joint_actor_linear = nn.Linear( state_repr_length, self.num_outputs * self.num_outputs ) # Linear critic self.critic_linear = nn.Linear(state_repr_length, 1) # Setting initial weights self.apply(weights_init) relu_gain = nn.init.calculate_gain("relu") self.cnn._modules["conv1"].weight.data.mul_(relu_gain) self.cnn._modules["conv2"].weight.data.mul_(relu_gain) self.cnn._modules["conv3"].weight.data.mul_(relu_gain) self.cnn._modules["conv4"].weight.data.mul_(relu_gain) for agent_id in range(self.num_agents): self.marginal_actor_linear_list[agent_id].weight.data = norm_col_init( self.marginal_actor_linear_list[agent_id].weight.data, 0.01 ) self.marginal_actor_linear_list[agent_id].bias.data.fill_(0) self.train() def forward( self, inputs: torch.FloatTensor, hidden: Optional[torch.FloatTensor], agent_rotations: Sequence[int], ): if inputs.shape != (self.num_agents, self.num_inputs_per_agent, 84, 84): raise Exception("input to model is not as expected, check!") # inputs.shape == (1, self.num_agents * self.num_inputs, 84, 84) x = self.cnn(inputs) # x.shape == (self.num_agents, 128, 4, 4) x = x.view(1, -1) # x.shape == (batch_dim, self.lstm_in_dim * 2) x = self.before_lstm_mlp(x) # x.shape == (batch_dim, self.lstm_in_dim) batch_dim = 1 if x.shape != (1, self.lstm_in_dim): print("x.shape: {}".format(x.shape)) raise Exception("output of model is not as expected, check!") x, hidden = self.lstm(x.unsqueeze(1), hidden) # x.shape = [batch_dim, 1, state_repr_length] x = x.squeeze(1) # x.shape = [batch_dim, state_repr_length] final_state = x + self.after_lstm_mlp(x) # state_talk_reply_repr.shape = [batch=1, state_repr_length] marginal_actor_linear_output_list = [ self.marginal_actor_linear_list[agent_id](final_state) for agent_id in range(self.num_agents) ] # list with each element of size [batch_dim, self.num_outputs] # Strangely we have to unsqueeze(0) instead of unsqueeze(1) here. # This seems to be because the LSTM is not expecting its hidden # state to have the batch first despite the batch_first=True parameter # making it expect its input to have the batch first. hidden = (final_state.unsqueeze(0), hidden[1]) joint_actor_logits = self.joint_actor_linear(final_state).view( batch_dim, self.num_outputs, self.num_outputs ) outer_product_marginal_logits = marginal_actor_linear_output_list[0].unsqueeze( 2 ) * marginal_actor_linear_output_list[1].unsqueeze(1) assert outer_product_marginal_logits.shape == ( batch_dim, self.num_outputs, self.num_outputs, ) combined_logits = joint_actor_logits + outer_product_marginal_logits # One length lists as this is a central agent return { "logit_all": combined_logits.view( batch_dim, self.num_outputs * self.num_outputs ), "value_all": self.critic_linear(final_state), # shape: [batch_dim,1] "hidden_all": hidden, "joint_logit_all": True, } class A3CLSTMNStepComCoordinatedActionsEgoVision(nn.Module): def __init__( self, num_inputs_per_agent: int, action_groups: Tuple[Tuple[str, ...], ...], num_agents: int, state_repr_length: int, talk_embed_length: int, agent_num_embed_length: int, reply_embed_length: int, num_talk_symbols: int, num_reply_symbols: int, turn_off_communication: bool, coordinate_actions: bool, coordinate_actions_dim: Optional[int] = None, central_critic: bool = False, separate_actor_weights: bool = False, final_cnn_channels: int = 128, ): super(A3CLSTMNStepComCoordinatedActionsEgoVision, self).__init__() self.num_outputs = sum(len(x) for x in action_groups) self.turn_off_communication = turn_off_communication self.central_critic = central_critic self.num_inputs_per_agent = num_inputs_per_agent self.num_agents = num_agents self.num_talk_symbols = num_talk_symbols self.num_reply_symbols = num_reply_symbols self.separate_actor_weights = separate_actor_weights self.coordinate_actions_dim = ( self.num_outputs if coordinate_actions_dim is None else coordinate_actions_dim ) self.coordinate_actions = coordinate_actions # input to conv is (num_agents, self.num_inputs_per_agent, 84, 84) self.cnn = nn.Sequential( OrderedDict( [ ( "conv1", nn.Conv2d( self.num_inputs_per_agent, 16, 5, stride=1, padding=2 ), ), ("maxpool1", nn.MaxPool2d(2, 2)), ("relu1", nn.ReLU(inplace=True)), # shape = ("conv2", nn.Conv2d(16, 16, 5, stride=1, padding=1)), ("maxpool2", nn.MaxPool2d(2, 2)), ("relu2", nn.ReLU(inplace=True)), # shape = ("conv3", nn.Conv2d(16, 32, 4, stride=1, padding=1)), ("maxpool3", nn.MaxPool2d(2, 2)), ("relu3", nn.ReLU(inplace=True)), # shape = ("conv4", nn.Conv2d(32, 64, 3, stride=1, padding=1)), ("maxpool4", nn.MaxPool2d(2, 2)), ("relu4", nn.ReLU(inplace=True)), # shape = (4, 4) ( "conv5", nn.Conv2d(64, final_cnn_channels, 3, stride=1, padding=1), ), ("maxpool5", nn.MaxPool2d(2, 2)), ("relu5", nn.ReLU(inplace=True)), # shape = (2, 2) ] ) ) # Vocab embed self.talk_embeddings = nn.Embedding(num_talk_symbols, talk_embed_length) self.reply_embeddings = nn.Embedding(num_reply_symbols, reply_embed_length) self.talk_symbol_classifier = nn.Linear(state_repr_length, num_talk_symbols) self.reply_symbol_classifier = nn.Linear(state_repr_length, num_reply_symbols) # Agent embed self.agent_num_embeddings = nn.Parameter( torch.rand(self.num_agents, agent_num_embed_length) ) # LSTM self.lstm = nn.LSTM( final_cnn_channels * 4 + agent_num_embed_length, state_repr_length, batch_first=True, ) # Belief update MLP state_and_talk_rep_len = state_repr_length + talk_embed_length * ( num_agents - 1 ) self.after_talk_mlp = nn.Sequential( nn.Linear(state_and_talk_rep_len, state_and_talk_rep_len), nn.ReLU(inplace=True), nn.Linear(state_and_talk_rep_len, state_repr_length), nn.ReLU(inplace=True), ) state_and_reply_rep_len = state_repr_length + reply_embed_length * ( num_agents - 1 ) self.after_reply_mlp = nn.Sequential( nn.Linear(state_and_reply_rep_len, state_and_reply_rep_len), nn.ReLU(inplace=True), nn.Linear(state_and_reply_rep_len, state_repr_length), nn.ReLU(inplace=True), ) if coordinate_actions: # Randomization MLP self.to_randomization_logits = nn.Sequential( nn.Linear(self.num_agents * reply_embed_length, 64), nn.ReLU(inplace=True), nn.Linear(64, 64), nn.ReLU(inplace=True), nn.Linear(64, self.coordinate_actions_dim), ) # self.marginal_linear_actor = nn.Linear(state_repr_length, self.num_outputs) # self.marginal_linear_actor.weight.data = norm_col_init( # self.marginal_linear_actor.weight.data, 0.01 # ) # self.marginal_linear_actor.bias.data.fill_(0) # Linear actor self.actor_linear = None if coordinate_actions: if separate_actor_weights: self.actor_linear_list = nn.ModuleList( [ nn.Linear( state_repr_length, self.num_outputs * self.coordinate_actions_dim, ) for _ in range(2) ] ) else: self.actor_linear = nn.Linear( state_repr_length, self.num_outputs * self.coordinate_actions_dim ) else: assert not separate_actor_weights self.actor_linear = nn.Linear(state_repr_length, self.num_outputs) if self.actor_linear is not None: self.actor_linear.weight.data = norm_col_init( self.actor_linear.weight.data, 0.01 ) self.actor_linear.bias.data.fill_(0) else: for al in self.actor_linear_list: al.weight.data = norm_col_init(al.weight.data, 0.01) al.bias.data.fill_(0) # Linear critic if self.central_critic: self.critic_linear = nn.Linear(state_repr_length * self.num_agents, 1) else: self.critic_linear = nn.Linear(state_repr_length, 1) # Setting initial weights self.apply(weights_init) relu_gain = nn.init.calculate_gain("relu") self.cnn._modules["conv1"].weight.data.mul_(relu_gain) self.cnn._modules["conv2"].weight.data.mul_(relu_gain) self.cnn._modules["conv3"].weight.data.mul_(relu_gain) self.cnn._modules["conv4"].weight.data.mul_(relu_gain) self.cnn._modules["conv5"].weight.data.mul_(relu_gain) self.talk_symbol_classifier.weight.data = norm_col_init( self.talk_symbol_classifier.weight.data, 0.01 ) self.talk_symbol_classifier.bias.data.fill_(0) self.reply_symbol_classifier.weight.data = norm_col_init( self.reply_symbol_classifier.weight.data, 0.01 ) self.reply_symbol_classifier.bias.data.fill_(0) self.train() def forward( self, inputs: torch.FloatTensor, hidden: Optional[torch.FloatTensor], agent_rotations: Sequence[int], ): if inputs.shape != (self.num_agents, self.num_inputs_per_agent, 84, 84): raise Exception("input to model is not as expected, check!") x = self.cnn(inputs) # x.shape == (2, 128, 2, 2) x = x.view(x.size(0), -1) # x.shape = [num_agents, 512] x = torch.cat((x, self.agent_num_embeddings), dim=1) # x.shape = [num_agents, 512 + agent_num_embed_length] x, hidden = self.lstm(x.unsqueeze(1), hidden) # x.shape = [num_agents, 1, state_repr_length] # hidden[0].shape == [1, num_agents, state_repr_length] # hidden[1].shape == [1, num_agents, state_repr_length] x = x.squeeze(1) # x.shape = [num_agents, state_repr_length] talk_logits = self.talk_symbol_classifier(x) talk_probs = F.softmax(talk_logits, dim=1) # talk_probs.shape = [num_agents, num_talk_symbols] talk_outputs = torch.mm(talk_probs, self.talk_embeddings.weight) # talk_outputs.shape = [num_agents, talk_embed_length] if not self.turn_off_communication: talk_heard_per_agent = _unfold_communications(talk_outputs) else: talk_heard_per_agent = torch.cat( [talk_outputs] * (self.num_agents - 1), dim=1 ) state_talk_repr = x + self.after_talk_mlp( torch.cat((x, talk_heard_per_agent), dim=1) ) # feature_talk_repr.shape = [num_agents, state_repr_length] reply_logits = self.reply_symbol_classifier(state_talk_repr) reply_probs = F.softmax(reply_logits, dim=1) # reply_probs.shape = [num_agents, num_reply_symbols] reply_outputs = torch.mm(reply_probs, self.reply_embeddings.weight) # reply_outputs.shape = [num_agents, reply_embed_length] if not self.turn_off_communication: reply_heard_per_agent = _unfold_communications(reply_outputs) else: reply_heard_per_agent = torch.cat( [reply_outputs] * (self.num_agents - 1), dim=1 ) state_talk_reply_repr = state_talk_repr + self.after_reply_mlp( torch.cat((state_talk_repr, reply_heard_per_agent), dim=1) ) # state_talk_reply_repr.shape = [num_agents, state_repr_length] # Strangely we have to unsqueeze(0) instead of unsqueeze(1) here. # This seems to be because the LSTM is not expecting its hidden # state to have the batch first despite the batch_first=True parameter # making it expect its input to have the batch first. hidden = (state_talk_reply_repr.unsqueeze(0), hidden[1]) if self.central_critic: value_all = self.critic_linear( torch.cat( [ state_talk_reply_repr, _unfold_communications(state_talk_reply_repr), ], dim=1, ) ) else: value_all = self.critic_linear(state_talk_reply_repr) to_return = { "value_all": value_all, "hidden_all": hidden, "talk_probs": talk_probs, "reply_probs": reply_probs, } if self.coordinate_actions: if self.num_agents != 2: to_return["randomization_logits"] = self.to_randomization_logits( reply_outputs.view(1, -1) ) else: to_return["randomization_logits"] = self.to_randomization_logits( reply_heard_per_agent.view(1, -1) ) if not self.separate_actor_weights: logits = self.actor_linear(state_talk_reply_repr) else: logits = torch.cat( [ linear(state_talk_reply_repr[i].unsqueeze(0)) for i, linear in enumerate(self.actor_linear_list) ], dim=0, ) # logits = self.actor_linear( # state_talk_reply_repr # ) + self.marginal_linear_actor(state_talk_reply_repr).unsqueeze(1).repeat( # 1, self.coordinate_actions_dim, 1 # ).view( # self.num_agents, self.num_outputs ** 2 # ) to_return["coordinated_logits"] = logits else: to_return["logit_all"] = self.actor_linear(state_talk_reply_repr) return to_return class BigA3CLSTMNStepComCoordinatedActionsEgoVision(nn.Module): def __init__( self, num_inputs_per_agent: int, action_groups: Tuple[Tuple[str, ...], ...], num_agents: int, state_repr_length: int, talk_embed_length: int, agent_num_embed_length: int, reply_embed_length: int, num_talk_symbols: int, num_reply_symbols: int, turn_off_communication: bool, coordinate_actions: bool, coordinate_actions_dim: Optional[int] = None, central_critic: bool = False, separate_actor_weights: bool = False, final_cnn_channels: int = 64, ): super(BigA3CLSTMNStepComCoordinatedActionsEgoVision, self).__init__() self.num_outputs = sum(len(x) for x in action_groups) self.turn_off_communication = turn_off_communication self.central_critic = central_critic self.num_inputs_per_agent = num_inputs_per_agent self.num_agents = num_agents self.num_talk_symbols = num_talk_symbols self.num_reply_symbols = num_reply_symbols self.separate_actor_weights = separate_actor_weights self.coordinate_actions_dim = ( self.num_outputs if coordinate_actions_dim is None else coordinate_actions_dim ) self.coordinate_actions = coordinate_actions # input to conv is (num_agents, self.num_inputs_per_agent, 84, 84) self.cnn = nn.Sequential( OrderedDict( [ ( "conv1", nn.Conv2d( self.num_inputs_per_agent, 32, 5, stride=1, padding=2 ), ), ("maxpool1", nn.MaxPool2d(2, 2)), ("relu1", nn.ReLU(inplace=True)), # shape = ("conv2", nn.Conv2d(32, 32, 5, stride=1, padding=1)), ("maxpool2", nn.MaxPool2d(2, 2)), ("relu2", nn.ReLU(inplace=True)), # shape = ("conv3", nn.Conv2d(32, 64, 4, stride=1, padding=1)), ("maxpool3", nn.MaxPool2d(2, 2)), ("relu3", nn.ReLU(inplace=True)), # shape = ( "conv4", nn.Conv2d(64, final_cnn_channels, 3, stride=1, padding=1), ), ("maxpool4", nn.MaxPool2d(2, 2)), ("relu4", nn.ReLU(inplace=True)), # shape = (4, 4) ] ) ) # Vocab embed self.talk_embeddings = nn.Embedding(num_talk_symbols, talk_embed_length) self.reply_embeddings = nn.Embedding(num_reply_symbols, reply_embed_length) self.talk_symbol_classifier = nn.Linear(state_repr_length, num_talk_symbols) self.reply_symbol_classifier = nn.Linear(state_repr_length, num_reply_symbols) # Agent embed self.agent_num_embeddings = nn.Parameter( torch.rand(self.num_agents, agent_num_embed_length) ) # LSTM self.lstm = nn.LSTM( final_cnn_channels * 4 * 4 + agent_num_embed_length, state_repr_length, batch_first=True, ) # Belief update MLP state_and_talk_rep_len = state_repr_length + talk_embed_length * ( num_agents - 1 ) self.after_talk_mlp = nn.Sequential( nn.Linear(state_and_talk_rep_len, state_and_talk_rep_len), nn.ReLU(inplace=True), nn.Linear(state_and_talk_rep_len, state_repr_length), nn.ReLU(inplace=True), ) state_and_reply_rep_len = state_repr_length + reply_embed_length * ( num_agents - 1 ) self.after_reply_mlp = nn.Sequential( nn.Linear(state_and_reply_rep_len, state_and_reply_rep_len), nn.ReLU(inplace=True), nn.Linear(state_and_reply_rep_len, state_repr_length), nn.ReLU(inplace=True), ) if coordinate_actions: # Randomization MLP self.to_randomization_logits = nn.Sequential( nn.Linear(self.num_agents * reply_embed_length, 64), nn.ReLU(inplace=True), nn.Linear(64, 64), nn.ReLU(inplace=True), nn.Linear(64, self.coordinate_actions_dim), ) # self.marginal_linear_actor = nn.Linear(state_repr_length, self.num_outputs) # self.marginal_linear_actor.weight.data = norm_col_init( # self.marginal_linear_actor.weight.data, 0.01 # ) # self.marginal_linear_actor.bias.data.fill_(0) # Linear actor self.actor_linear = None if coordinate_actions: if separate_actor_weights: self.actor_linear_list = nn.ModuleList( [ nn.Linear( state_repr_length, self.num_outputs * self.coordinate_actions_dim, ) for _ in range(2) ] ) else: self.actor_linear = nn.Linear( state_repr_length, self.num_outputs * self.coordinate_actions_dim ) else: assert not separate_actor_weights self.actor_linear = nn.Linear(state_repr_length, self.num_outputs) if self.actor_linear is not None: self.actor_linear.weight.data = norm_col_init( self.actor_linear.weight.data, 0.01 ) self.actor_linear.bias.data.fill_(0) else: for al in self.actor_linear_list: al.weight.data = norm_col_init(al.weight.data, 0.01) al.bias.data.fill_(0) # Linear critic if self.central_critic: self.critic_linear = nn.Linear(state_repr_length * self.num_agents, 1) else: self.critic_linear = nn.Linear(state_repr_length, 1) # Setting initial weights self.apply(weights_init) relu_gain = nn.init.calculate_gain("relu") self.cnn._modules["conv1"].weight.data.mul_(relu_gain) self.cnn._modules["conv2"].weight.data.mul_(relu_gain) self.cnn._modules["conv3"].weight.data.mul_(relu_gain) self.cnn._modules["conv4"].weight.data.mul_(relu_gain) self.talk_symbol_classifier.weight.data = norm_col_init( self.talk_symbol_classifier.weight.data, 0.01 ) self.talk_symbol_classifier.bias.data.fill_(0) self.reply_symbol_classifier.weight.data = norm_col_init( self.reply_symbol_classifier.weight.data, 0.01 ) self.reply_symbol_classifier.bias.data.fill_(0) self.train() def forward( self, inputs: torch.FloatTensor, hidden: Optional[torch.FloatTensor], agent_rotations: Sequence[int], ): if inputs.shape != (self.num_agents, self.num_inputs_per_agent, 84, 84): raise Exception("input to model is not as expected, check!") x = self.cnn(inputs) # x.shape == (2, 128, 2, 2) x = x.view(x.size(0), -1) # x.shape = [num_agents, 512] x = torch.cat((x, self.agent_num_embeddings), dim=1) # x.shape = [num_agents, 512 + agent_num_embed_length] x, hidden = self.lstm(x.unsqueeze(1), hidden) # x.shape = [num_agents, 1, state_repr_length] # hidden[0].shape == [1, num_agents, state_repr_length] # hidden[1].shape == [1, num_agents, state_repr_length] x = x.squeeze(1) # x.shape = [num_agents, state_repr_length] talk_logits = self.talk_symbol_classifier(x) talk_probs = F.softmax(talk_logits, dim=1) # talk_probs.shape = [num_agents, num_talk_symbols] talk_outputs = torch.mm(talk_probs, self.talk_embeddings.weight) # talk_outputs.shape = [num_agents, talk_embed_length] if not self.turn_off_communication: talk_heard_per_agent = _unfold_communications(talk_outputs) else: talk_heard_per_agent = torch.cat( [talk_outputs] * (self.num_agents - 1), dim=1 ) state_talk_repr = x + self.after_talk_mlp( torch.cat((x, talk_heard_per_agent), dim=1) ) # feature_talk_repr.shape = [num_agents, state_repr_length] reply_logits = self.reply_symbol_classifier(state_talk_repr) reply_probs = F.softmax(reply_logits, dim=1) # reply_probs.shape = [num_agents, num_reply_symbols] reply_outputs = torch.mm(reply_probs, self.reply_embeddings.weight) # reply_outputs.shape = [num_agents, reply_embed_length] if not self.turn_off_communication: reply_heard_per_agent = _unfold_communications(reply_outputs) else: reply_heard_per_agent = torch.cat( [reply_outputs] * (self.num_agents - 1), dim=1 ) state_talk_reply_repr = state_talk_repr + self.after_reply_mlp( torch.cat((state_talk_repr, reply_heard_per_agent), dim=1) ) # state_talk_reply_repr.shape = [num_agents, state_repr_length] # Strangely we have to unsqueeze(0) instead of unsqueeze(1) here. # This seems to be because the LSTM is not expecting its hidden # state to have the batch first despite the batch_first=True parameter # making it expect its input to have the batch first. hidden = (state_talk_reply_repr.unsqueeze(0), hidden[1]) if self.central_critic: value_all = self.critic_linear( torch.cat( [ state_talk_reply_repr, _unfold_communications(state_talk_reply_repr), ], dim=1, ) ) else: value_all = self.critic_linear(state_talk_reply_repr) to_return = { "value_all": value_all, "hidden_all": hidden, "talk_probs": talk_probs, "reply_probs": reply_probs, } if self.coordinate_actions: to_return["randomization_logits"] = self.to_randomization_logits( reply_heard_per_agent.view(1, -1) ) if not self.separate_actor_weights: logits = self.actor_linear(state_talk_reply_repr) else: logits = torch.cat( [ linear(state_talk_reply_repr[i].unsqueeze(0)) for i, linear in enumerate(self.actor_linear_list) ], dim=0, ) # logits = self.actor_linear( # state_talk_reply_repr # ) + self.marginal_linear_actor(state_talk_reply_repr).unsqueeze(1).repeat( # 1, self.coordinate_actions_dim, 1 # ).view( # self.num_agents, self.num_outputs ** 2 # ) to_return["coordinated_logits"] = logits else: to_return["logit_all"] = self.actor_linear(state_talk_reply_repr) return to_return class A3CLSTMNStepComCoordinatedActionsEgoGridsEmbedCNN(nn.Module): def __init__( self, num_inputs: int, action_groups: Tuple[Tuple[str, ...], ...], num_agents: int, state_repr_length: int, talk_embed_length: int, agent_num_embed_length: int, reply_embed_length: int, num_talk_symbols: int, num_reply_symbols: int, occupancy_embed_length: int, turn_off_communication: bool, coordinate_actions: bool, coordinate_actions_dim: Optional[int] = None, central_critic: bool = False, separate_actor_weights: bool = False, final_cnn_channels: int = 256, ): super(A3CLSTMNStepComCoordinatedActionsEgoGridsEmbedCNN, self).__init__() self.num_outputs = sum(len(x) for x in action_groups) # assert not turn_off_communication self.turn_off_communication = turn_off_communication self.central_critic = central_critic self.num_inputs = num_inputs self.num_agents = num_agents self.num_talk_symbols = num_talk_symbols self.num_reply_symbols = num_reply_symbols self.separate_actor_weights = separate_actor_weights self.coordinate_actions_dim = ( self.num_outputs if coordinate_actions_dim is None else coordinate_actions_dim ) self.occupancy_embed_length = occupancy_embed_length self.occupancy_embeddings = nn.Embedding( num_inputs, self.occupancy_embed_length ) self.coordinate_actions = coordinate_actions # input to conv is (num_agents, self.occupancy_embed_length, 15, 15) self.cnn = nn.Sequential( OrderedDict( [ ("conv1", nn.Conv2d(self.occupancy_embed_length, 32, 3, padding=1)), ("relu1", nn.ReLU(inplace=True)), # shape = (15, 15) ("conv2", nn.Conv2d(32, 64, 3, stride=2)), ("relu2", nn.ReLU(inplace=True)), # shape = (7, 7) ("conv3", nn.Conv2d(64, 128, 3, stride=2)), ("relu3", nn.ReLU(inplace=True)), # shape = (3, 3) ("conv4", nn.Conv2d(128, final_cnn_channels, 3, stride=2)), ("relu4", nn.ReLU(inplace=True)), # shape = (1, 1); Stride doesn't matter above ] ) ) # Vocab embed self.talk_embeddings = nn.Embedding(num_talk_symbols, talk_embed_length) self.reply_embeddings = nn.Embedding(num_reply_symbols, reply_embed_length) self.talk_symbol_classifier = nn.Linear(state_repr_length, num_talk_symbols) self.reply_symbol_classifier = nn.Linear(state_repr_length, num_reply_symbols) # Agent embed self.agent_num_embeddings = nn.Parameter( torch.rand(self.num_agents, agent_num_embed_length) ) # LSTM self.lstm = nn.LSTM( final_cnn_channels * 1 + agent_num_embed_length, state_repr_length, batch_first=True, ) # Belief update MLP state_and_talk_rep_len = state_repr_length + talk_embed_length * ( num_agents - 1 ) self.after_talk_mlp = nn.Sequential( nn.Linear(state_and_talk_rep_len, state_and_talk_rep_len), nn.ReLU(inplace=True), nn.Linear(state_and_talk_rep_len, state_repr_length), nn.ReLU(inplace=True), ) state_and_reply_rep_len = state_repr_length + reply_embed_length * ( num_agents - 1 ) self.after_reply_mlp = nn.Sequential( nn.Linear(state_and_reply_rep_len, state_and_reply_rep_len), nn.ReLU(inplace=True), nn.Linear(state_and_reply_rep_len, state_repr_length), nn.ReLU(inplace=True), ) if coordinate_actions: # Randomization MLP self.to_randomization_logits = nn.Sequential( nn.Linear(self.num_agents * reply_embed_length, 64), nn.ReLU(inplace=True), nn.Linear(64, 64), nn.ReLU(inplace=True), nn.Linear(64, self.coordinate_actions_dim), ) # self.marginal_linear_actor = nn.Linear(state_repr_length, self.num_outputs) # self.marginal_linear_actor.weight.data = norm_col_init( # self.marginal_linear_actor.weight.data, 0.01 # ) # self.marginal_linear_actor.bias.data.fill_(0) # Linear actor self.actor_linear = None if coordinate_actions: if separate_actor_weights: self.actor_linear_list = nn.ModuleList( [ nn.Linear( state_repr_length, self.num_outputs * self.coordinate_actions_dim, ) for _ in range(2) ] ) else: self.actor_linear = nn.Linear( state_repr_length, self.num_outputs * self.coordinate_actions_dim ) else: assert not separate_actor_weights self.actor_linear = nn.Linear(state_repr_length, self.num_outputs) if self.actor_linear is not None: self.actor_linear.weight.data = norm_col_init( self.actor_linear.weight.data, 0.01 ) self.actor_linear.bias.data.fill_(0) else: for al in self.actor_linear_list: al.weight.data = norm_col_init(al.weight.data, 0.01) al.bias.data.fill_(0) # Linear critic if self.central_critic: self.critic_linear = nn.Linear(state_repr_length * self.num_agents, 1) else: self.critic_linear = nn.Linear(state_repr_length, 1) # Setting initial weights self.apply(weights_init) relu_gain = nn.init.calculate_gain("relu") self.cnn._modules["conv1"].weight.data.mul_(relu_gain) self.cnn._modules["conv2"].weight.data.mul_(relu_gain) self.cnn._modules["conv3"].weight.data.mul_(relu_gain) self.cnn._modules["conv4"].weight.data.mul_(relu_gain) self.talk_symbol_classifier.weight.data = norm_col_init( self.talk_symbol_classifier.weight.data, 0.01 ) self.talk_symbol_classifier.bias.data.fill_(0) self.reply_symbol_classifier.weight.data = norm_col_init( self.reply_symbol_classifier.weight.data, 0.01 ) self.reply_symbol_classifier.bias.data.fill_(0) self.train() def forward( self, inputs: torch.FloatTensor, hidden: Optional[torch.FloatTensor], agent_rotations: Sequence[int], ): if inputs.shape != (self.num_agents, self.num_inputs, 15, 15): raise Exception("input to model is not as expected, check!") inputs = inputs.float() # inputs.shape == (self.num_agents, self.num_inputs, 15, 15) inputs = inputs.permute(0, 2, 3, 1).contiguous() original_shape = inputs.shape # original_shape == (self.num_agents, 15, 15, self.num_inputs) scaling_factor = torch.reciprocal( (inputs == 1).sum(dim=3).unsqueeze(3).float() + 1e-3 ) # scaling_factor.shape == (2, 15, 15, 1) inputs = inputs.view(-1, self.num_inputs) inputs = inputs.matmul(self.occupancy_embeddings.weight) inputs = inputs.view( original_shape[0], original_shape[1], original_shape[2], self.occupancy_embed_length, ) x = torch.mul(inputs, scaling_factor.expand_as(inputs)) # x.shape == (self.num_agents, 15, 15, self.occupancy_embed_length) x = x.permute(0, 3, 1, 2).contiguous() # x.shape == (self.num_agents, self.occupancy_embed_length, 15, 15) x = self.cnn(x) # x.shape == (2, 256, 1, 1) x = x.view(x.size(0), -1) # x.shape = [num_agents, 256] x = torch.cat((x, self.agent_num_embeddings), dim=1) # x.shape = [num_agents, 256 + agent_num_embed_length] x, hidden = self.lstm(x.unsqueeze(1), hidden) # x.shape = [num_agents, 1, state_repr_length] # hidden[0].shape == [1, num_agents, state_repr_length] # hidden[1].shape == [1, num_agents, state_repr_length] x = x.squeeze(1) # x.shape = [num_agents, state_repr_length] talk_logits = self.talk_symbol_classifier(x) talk_probs = F.softmax(talk_logits, dim=1) # talk_probs.shape = [num_agents, num_talk_symbols] talk_outputs = torch.mm(talk_probs, self.talk_embeddings.weight) # talk_outputs.shape = [num_agents, talk_embed_length] if not self.turn_off_communication: talk_heard_per_agent = _unfold_communications(talk_outputs) else: talk_heard_per_agent = torch.cat( [talk_outputs] * (self.num_agents - 1), dim=1 ) state_talk_repr = x + self.after_talk_mlp( torch.cat((x, talk_heard_per_agent), dim=1) ) # feature_talk_repr.shape = [num_agents, state_repr_length] reply_logits = self.reply_symbol_classifier(state_talk_repr) reply_probs = F.softmax(reply_logits, dim=1) # reply_probs.shape = [num_agents, num_reply_symbols] reply_outputs = torch.mm(reply_probs, self.reply_embeddings.weight) # reply_outputs.shape = [num_agents, reply_embed_length] if not self.turn_off_communication: reply_heard_per_agent = _unfold_communications(reply_outputs) else: reply_heard_per_agent = torch.cat( [reply_outputs] * (self.num_agents - 1), dim=1 ) state_talk_reply_repr = state_talk_repr + self.after_reply_mlp( torch.cat((state_talk_repr, reply_heard_per_agent), dim=1) ) # state_talk_reply_repr.shape = [num_agents, state_repr_length] # Strangely we have to unsqueeze(0) instead of unsqueeze(1) here. # This seems to be because the LSTM is not expecting its hidden # state to have the batch first despite the batch_first=True parameter # making it expect its input to have the batch first. hidden = (state_talk_reply_repr.unsqueeze(0), hidden[1]) if self.central_critic: value_all = self.critic_linear( torch.cat( [ state_talk_reply_repr, _unfold_communications(state_talk_reply_repr), ], dim=1, ) ) else: value_all = self.critic_linear(state_talk_reply_repr) to_return = { "value_all": value_all, "hidden_all": hidden, "talk_probs": talk_probs, "reply_probs": reply_probs, } if self.coordinate_actions: if self.num_agents != 2: to_return["randomization_logits"] = self.to_randomization_logits( reply_outputs.view(1, -1) ) else: to_return["randomization_logits"] = self.to_randomization_logits( reply_heard_per_agent.view(1, -1) ) if not self.separate_actor_weights: logits = self.actor_linear(state_talk_reply_repr) else: logits = torch.cat( [ linear(state_talk_reply_repr[i].unsqueeze(0)) for i, linear in enumerate(self.actor_linear_list) ], dim=0, ) # logits = self.actor_linear( # state_talk_reply_repr # ) + self.marginal_linear_actor(state_talk_reply_repr).unsqueeze(1).repeat( # 1, self.coordinate_actions_dim, 1 # ).view( # self.num_agents, self.num_outputs ** 2 # ) to_return["coordinated_logits"] = logits else: to_return["logit_all"] = self.actor_linear(state_talk_reply_repr) return to_return
cordial-sync-master
rl_multi_agent/models.py
import itertools import math import warnings from typing import Tuple, Dict, List, Any, Union import matplotlib as mpl import constants from rl_ai2thor.ai2thor_environment import AI2ThorEnvironmentWithGraph from rl_ai2thor.ai2thor_episodes import MultiAgentAI2ThorEpisode from rl_ai2thor.ai2thor_utils import manhattan_dists_between_positions from .furnmove_episodes import are_actions_coordinated, coordination_type_tensor mpl.use("Agg", force=False) class JointNavigationEpisode(MultiAgentAI2ThorEpisode): def __init__( self, env: AI2ThorEnvironmentWithGraph, task_data: Dict[str, Any], max_steps: int, **kwargs ): super(JointNavigationEpisode, self).__init__( env=env, task_data=task_data, max_steps=max_steps, **kwargs ) self.initial_agent_metadata = env.get_all_agent_metadata() self.target_key_groups = task_data["target_key_groups"] self.object_id = task_data["goal_obj_id"] self.target_keys_set = set(o for group in self.target_key_groups for o in group) self.oracle_length = self.calculate_oracle_length() @classmethod def class_available_action_groups(cls, **kwargs) -> Tuple[Tuple[str, ...], ...]: actions = ("MoveAhead", "RotateLeft", "RotateRight", "Pass") return (actions,) def _is_goal_object_visible(self, agent_id: int) -> bool: return self.task_data["goal_obj_id"] in [ o["objectId"] for o in self.environment.visible_objects(agent_id=agent_id) ] def goal_visibility(self) -> List[bool]: return [ self._is_goal_object_visible(agentId) for agentId in range(self.environment.num_agents) ] def goal_visibility_int(self) -> List[int]: return [ int(self._is_goal_object_visible(agentId)) for agentId in range(self.environment.num_agents) ] def goal_visible_to_all(self) -> bool: return all(self.goal_visibility()) def info(self): return { **super(JointNavigationEpisode, self).info(), "accuracy": 1 * self.goal_visible_to_all(), "goal_visible_to_one_agent": 1 * (sum(self.goal_visibility()) == 1), } def _step(self, action_as_int: int, agent_id: int) -> Dict[str, Any]: action = self.available_actions[action_as_int] action_dict = {"action": action, "agentId": agent_id} self.environment.step(action_dict) return { "action": action_as_int, "action_success": self.environment.last_event.events[agent_id].metadata[ "lastActionSuccess" ], } def _closest_target(self, source_key): closest_target = None closest_steps = float("inf") for target_key in self.target_keys_set: nsteps = self.environment.shortest_path_length( source_state_key=source_key, goal_state_key=target_key ) if closest_target is None or nsteps < closest_steps: closest_steps = nsteps closest_target = target_key return closest_target def next_expert_action(self) -> Tuple[Union[int, None], ...]: expert_actions = [] is_goal_visible = self.goal_visibility() for agent_id in range(self.environment.num_agents): source_key = self.environment.get_key( self.environment.last_event.events[agent_id].metadata["agent"] ) if is_goal_visible[agent_id] or source_key in self.target_keys_set: action = "Pass" else: action = self.environment.shortest_path_next_action( source_key, self._closest_target(source_key) ) expert_actions.append(self.available_actions.index(action)) return tuple(expert_actions) def reached_terminal_state(self) -> bool: return self.goal_visible_to_all() def calculate_oracle_length(self): path_lengths = [] for agent_id in range(self.environment.num_agents): source_state_key = self.environment.get_key( self.initial_agent_metadata[agent_id] ) # goal_state_key = self.environment.get_key(self.target_metadata[agent_id]) path_length_single = self.environment.shortest_path_length( source_state_key, self._closest_target(source_state_key) ) path_lengths.append(path_length_single) return max(path_lengths) class FurnLiftEpisode(JointNavigationEpisode): def __init__( self, env: AI2ThorEnvironmentWithGraph, task_data: Dict[str, Any], max_steps: int, **kwargs ): super().__init__(env=env, task_data=task_data, max_steps=max_steps, **kwargs) self._item_successfully_picked_up = False self._jointly_visible_but_not_picked = 0 self._picked_but_not_jointly_visible = 0 @classmethod def class_available_action_groups(cls, **kwargs) -> Tuple[Tuple[str, ...], ...]: actions = ("MoveAhead", "RotateLeft", "RotateRight", "Pass", "Pickup") return (actions,) def info(self): return { **super(JointNavigationEpisode, self).info(), "accuracy": 1 * self._item_successfully_picked_up, "jointly_visible_but_not_picked": self._jointly_visible_but_not_picked, "picked_but_not_jointly_visible": self._picked_but_not_jointly_visible, } def multi_step(self, actions_as_ints: Tuple[int, ...]) -> List[Dict[str, Any]]: assert not self.is_paused() and not self.is_complete() pickup_index = self.available_actions.index("Pickup") visibility = self.goal_visibility() visible_to_all = all(visibility) agent_tried_pickup = [i == pickup_index for i in actions_as_ints] all_pick_up = all(agent_tried_pickup) self._jointly_visible_but_not_picked += visible_to_all * (not all_pick_up) if visible_to_all and all(i == pickup_index for i in actions_as_ints): for i in range(self.environment.num_agents): self._increment_num_steps_taken_in_episode() step_results = [ { "action": pickup_index, "action_success": True, "goal_visible": True, "pickup_action_taken": True, } for _ in range(self.environment.num_agents) ] object = self.environment.get_object_by_id(self.object_id, agent_id=0) self.environment.step( { "action": "TeleportObject", **object["position"], "objectId": self.object_id, "y": object["position"]["y"] + 1.0, "rotation": object["rotation"], "agentId": 0, } ) self._item_successfully_picked_up = True else: step_results = [] for i in range(self._env.num_agents): self._increment_num_steps_taken_in_episode() step_results.append(self._step(actions_as_ints[i], agent_id=i)) step_results[-1]["goal_visible"] = visibility[i] step_results[-1]["pickup_action_taken"] = agent_tried_pickup[i] return step_results def _step(self, action_as_int: int, agent_id: int) -> Dict[str, Any]: action = self.available_actions[action_as_int] if action == "Pickup": self._picked_but_not_jointly_visible += 1 metadata = self.environment.last_event.events[agent_id].metadata metadata["lastAction"] = "Pickup" metadata["lastActionSuccess"] = False else: action_dict = {"action": action, "agentId": agent_id} self.environment.step(action_dict) return { "action": action_as_int, "action_success": self.environment.last_event.events[agent_id].metadata[ "lastActionSuccess" ], } def next_expert_action(self) -> Tuple[Union[int, None], ...]: expert_actions = [] is_goal_visible = self.goal_visibility() if all(is_goal_visible): return tuple( [self.available_actions.index("Pickup")] * self.environment.num_agents ) for agent_id in range(self.environment.num_agents): source_key = self.environment.get_key( self.environment.last_event.events[agent_id].metadata["agent"] ) if is_goal_visible[agent_id] or source_key in self.target_keys_set: action = "Pass" else: action = self.environment.shortest_path_next_action( source_key, self._closest_target(source_key) ) expert_actions.append(self.available_actions.index(action)) return tuple(expert_actions) def reached_terminal_state(self) -> bool: return self._item_successfully_picked_up class FurnLiftNApartStateEpisode(FurnLiftEpisode): def __init__( self, env: AI2ThorEnvironmentWithGraph, task_data: Dict[str, Any], max_steps: int, **kwargs ): super().__init__(env=env, task_data=task_data, max_steps=max_steps, **kwargs) self._min_dist_between_agents_to_pickup = kwargs[ "min_dist_between_agents_to_pickup" ] self._pickupable_but_not_picked = 0 self._picked_but_not_pickupable = 0 self._picked_but_not_pickupable_distance = 0 self._picked_but_not_pickupable_visibility = 0 self.total_reward = 0.0 self.coordinated_action_checker = are_actions_coordinated goal_object = self.environment.get_object_by_id(self.object_id, agent_id=0) self.object_location = dict( x=round(goal_object["position"]["x"], 2), z=round(goal_object["position"]["z"], 2), ) # Initial agent locations, to calculate the expert path lengths self._initial_agent_locations = [ self.environment.get_agent_location(i) for i in range(self.environment.num_agents) ] @staticmethod def location_l1_dist(loc1, loc2): return abs(loc1["x"] - loc2["x"]) + abs(loc1["z"] - loc2["z"]) def info(self): nagents = self.environment.num_agents _final_l1_dist = [ self.location_l1_dist( self.object_location, self.environment.get_agent_location(i) ) for i in range(nagents) ] mean_final_agent_l1_distance_from_target = round( sum(_final_l1_dist) / len(_final_l1_dist), 2 ) _init_l1_dist = [ self.location_l1_dist(self.object_location, ag_loc) for ag_loc in self._initial_agent_locations ] mean_initial_agent_manhattan_steps_from_target = ( sum(_init_l1_dist) / len(_init_l1_dist) ) / self.environment.grid_size return { **super(JointNavigationEpisode, self).info(), "accuracy": 1 * self._item_successfully_picked_up, "pickupable_but_not_picked": self._pickupable_but_not_picked, "picked_but_not_pickupable": self._picked_but_not_pickupable, "picked_but_not_pickupable_distance": self._picked_but_not_pickupable_distance, "picked_but_not_pickupable_visibility": self._picked_but_not_pickupable_visibility, "reward": self.total_reward, "initial_manhattan_steps": mean_initial_agent_manhattan_steps_from_target, "final_manhattan_distance_from_target": mean_final_agent_l1_distance_from_target, "spl_manhattan": int(self._item_successfully_picked_up) * ( (mean_initial_agent_manhattan_steps_from_target + 0.0001) / ( max( mean_initial_agent_manhattan_steps_from_target, (self.num_steps_taken_in_episode() / nagents), ) + 0.0001 ) ), } def manhattan_dists_between_agents(self): return manhattan_dists_between_positions( [ self.environment.get_agent_location(i) for i in range(self.environment.num_agents) ], self.environment.grid_size, ) def multi_step(self, actions_as_ints: Tuple[int, ...]) -> List[Dict[str, Any]]: assert not self.is_paused() and not self.is_complete() pickup_index = self.available_actions.index("Pickup") visibility = self.goal_visibility() visible_to_all = all(visibility) agent_tried_pickup = [i == pickup_index for i in actions_as_ints] all_pick_up = all(agent_tried_pickup) pairwise_distances = self.manhattan_dists_between_agents() sufficiently_far = [ all(x >= self._min_dist_between_agents_to_pickup for x in dists) for dists in pairwise_distances ] all_sufficiently_far = all(sufficiently_far) self._pickupable_but_not_picked += ( visible_to_all * all_sufficiently_far * (not all_pick_up) ) if visible_to_all and all_sufficiently_far and all_pick_up: for i in range(self.environment.num_agents): self._increment_num_steps_taken_in_episode() step_results = [ { "action": pickup_index, "action_success": True, "goal_visible": True, "pickup_action_taken": True, "mutually_distant": True, "reward": 1.0, } for _ in range(self.environment.num_agents) ] object = self.environment.get_object_by_id(self.object_id, agent_id=0) self.environment.step( { "action": "TeleportObject", **object["position"], "objectId": self.object_id, "y": object["position"]["y"] + 1.0, "rotation": object["rotation"], "agentId": 0, } ) self._item_successfully_picked_up = True else: step_results = [] for i in range(self._env.num_agents): self._increment_num_steps_taken_in_episode() step_results.append(self._step(actions_as_ints[i], agent_id=i)) step_results[-1]["goal_visible"] = visibility[i] step_results[-1]["pickup_action_taken"] = agent_tried_pickup[i] self._picked_but_not_pickupable += agent_tried_pickup[i] self._picked_but_not_pickupable_distance += ( agent_tried_pickup[i] and not all_sufficiently_far ) self._picked_but_not_pickupable_visibility += ( agent_tried_pickup[i] and not visible_to_all ) step_results[-1]["mutually_distant"] = sufficiently_far[i] self.total_reward += sum(sr["reward"] for sr in step_results) return step_results def _step(self, action_as_int: int, agent_id: int) -> Dict[str, Any]: STEP_PENALITY = -0.01 FAILED_ACTION_PENALTY = -0.02 reward = STEP_PENALITY action = self.available_actions[action_as_int] if action == "Pickup": self._picked_but_not_jointly_visible += 1 metadata = self.environment.last_event.events[agent_id].metadata metadata["lastAction"] = "Pickup" metadata["lastActionSuccess"] = False reward += -0.1 else: action_dict = {"action": action, "agentId": agent_id} self.environment.step(action_dict) action_success = self.environment.last_event.events[agent_id].metadata[ "lastActionSuccess" ] if not action_success: reward += FAILED_ACTION_PENALTY return { "reward": reward, "action": action_as_int, "action_success": action_success, } def next_expert_action(self) -> Tuple[Union[int, None], ...]: expert_actions = [] visibility = self.goal_visibility() visible_to_all = all(visibility) pairwise_distances = self.manhattan_dists_between_agents() sufficiently_far = [ all(x >= self._min_dist_between_agents_to_pickup for x in dists) for dists in pairwise_distances ] all_sufficiently_far = all(sufficiently_far) agent_keys = [ self.environment.get_key( self.environment.last_event.events[agent_id].metadata["agent"] ) for agent_id in range(self.environment.num_agents) ] # In the case that we have reached the expert targets but the expert targets # fail to be correct (as can happen if, for example, two agents intersect and # block one anothers vision) then we should remove the relevant agent_key_ind_tuple # from the set of good target ind tuples and have the agents move somewhere else. if all(k in self.target_keys_set for k in agent_keys): agent_key_tuple = tuple(sorted(agent_keys)) if agent_key_tuple in self.target_key_groups and ( not visible_to_all or not all_sufficiently_far ): self.target_key_groups.remove(agent_key_tuple) if visible_to_all and all_sufficiently_far: return tuple( [self.available_actions.index("Pickup")] * self.environment.num_agents ) if len(self.target_key_groups) == 0: return None _dist_cache = {} def agent_to_dist_to_target(agent_id, target_key): key = (agent_id, target_key) if key not in _dist_cache: _dist_cache[key] = self.environment.shortest_path_length( source_state_key=agent_keys[agent_id], goal_state_key=target_key ) return _dist_cache[key] best_ordered_target_group = None best_path_length = None for good_target_group in self.target_key_groups: for ordered_target_group in itertools.permutations( good_target_group, len(good_target_group) ): path_length = sum( agent_to_dist_to_target(agent_id, target_key) for agent_id, target_key in enumerate(ordered_target_group) ) if best_ordered_target_group is None or best_path_length > path_length: best_path_length = path_length best_ordered_target_group = ordered_target_group for agent_id in range(self.environment.num_agents): target_key = best_ordered_target_group[agent_id] if agent_keys[agent_id] == target_key: action = "Pass" else: action = self.environment.shortest_path_next_action( agent_keys[agent_id], target_key ) expert_actions.append(self.available_actions.index(action)) return tuple(expert_actions) def reached_terminal_state(self) -> bool: return self._item_successfully_picked_up def coordination_type_tensor(self): return coordination_type_tensor( self.environment, self.available_actions, self.coordinated_action_checker ) class FurnLiftNApartStateLoggingEpisode(FurnLiftNApartStateEpisode): def __init__( self, env: AI2ThorEnvironmentWithGraph, task_data: Dict[str, Any], max_steps: int, **kwargs ): super().__init__(env=env, task_data=task_data, max_steps=max_steps, **kwargs) # Extra logging of step number at which an agent first saw the target self._first_view_of_target = [self.max_steps + 1] * self.environment.num_agents # Initial agent locations, to calculate the expert path lengths self._initial_agent_locations = [ self.environment.get_agent_location(i) for i in range(self.environment.num_agents) ] self._initial_agent_keys = [ self.environment.get_key(ag_loc) for ag_loc in self._initial_agent_locations ] goal_object = self.environment.get_object_by_id(self.object_id, agent_id=0) self.object_location = dict( x=round(goal_object["position"]["x"], 2), z=round(goal_object["position"]["z"], 2), ) @staticmethod def location_l2_dist(loc1, loc2): return math.sqrt((loc1["x"] - loc2["x"]) ** 2 + (loc1["z"] - loc2["z"]) ** 2) def info(self): final_agent_distance_from_target = [ self.location_l2_dist( self.object_location, self.environment.get_agent_location(i) ) for i in range(self.environment.num_agents) ] _dist_cache = {} def agent_to_dist_to_target(agent_id, target_key): key = (agent_id, target_key) if key not in _dist_cache: _dist_cache[key] = self.environment.shortest_path_length( source_state_key=self._initial_agent_keys[agent_id], goal_state_key=target_key, ) return _dist_cache[key] best_path_lengths = None best_path_length = None for good_target_group in self.target_key_groups: for ordered_target_group in itertools.permutations( good_target_group, len(good_target_group) ): path_lengths = tuple( agent_to_dist_to_target(agent_id, target_key) for agent_id, target_key in enumerate(ordered_target_group) ) path_length = sum(path_lengths) if best_path_lengths is None or best_path_length > path_length: best_path_length = best_path_length best_path_lengths = path_lengths initial_agent_distance_from_target = [ self.location_l2_dist(self.object_location, ag_loc) for ag_loc in self._initial_agent_locations ] return { **super(JointNavigationEpisode, self).info(), "accuracy": 1 * self._item_successfully_picked_up, "pickupable_but_not_picked": self._pickupable_but_not_picked, "picked_but_not_pickupable": self._picked_but_not_pickupable, "picked_but_not_pickupable_distance": self._picked_but_not_pickupable_distance, "picked_but_not_pickupable_visibility": self._picked_but_not_pickupable_visibility, "reward": self.total_reward, "first_view_of_target": self._first_view_of_target, "final_distance_between_agents": self.manhattan_dists_between_agents(), "best_path_to_target_length": best_path_length, "path_to_target_lengths": best_path_lengths, "initial_agent_distance_from_target": initial_agent_distance_from_target, "final_agent_distance_from_target": final_agent_distance_from_target, "object_location": self.object_location, "scene_name": self.environment.scene_name, } def multi_step(self, actions_as_ints: Tuple[int, ...]) -> List[Dict[str, Any]]: step_results = super(FurnLiftNApartStateLoggingEpisode, self).multi_step( actions_as_ints=actions_as_ints ) # Extra logging of step number at which an agent first saw the target visibility = self.goal_visibility() for i in range(self.environment.num_agents): if visibility[i]: self._first_view_of_target[i] = min( self._first_view_of_target[i], self.num_steps_taken_in_episode() ) return step_results class FurnLiftGridStateEpisode(FurnLiftNApartStateEpisode): def __init__( self, env: AI2ThorEnvironmentWithGraph, task_data: Dict[str, Any], max_steps: int, **kwargs ): super().__init__(env=env, task_data=task_data, max_steps=max_steps, **kwargs) self.object_points_set = kwargs["object_points_set"] def states_for_agents(self) -> List[Dict[str, Any]]: # TODO: Getting the current occupancy matrix like this on every iteration is, # TODO: in principle, an expensive operation as it requires doing some thor actions. # TODO: We could track state changes without doing this but this requires some annoying bookkeeping. # Reachable, unreachable and agent locations are marked matrix, point_to_element_map = self.environment.get_current_occupancy_matrix( padding=0.5, use_initially_reachable_points_matrix=True ) # Mark goal object locations nskipped = 0 for point_tuple in self.object_points_set: if point_tuple not in point_to_element_map: nskipped += 1 continue row, col = point_to_element_map[point_tuple] matrix[row, col] = constants.GOAL_OBJ_SYM if nskipped == len(self.object_points_set): raise RuntimeError( "Skipped all object points in scene {}.".format( self.environment.scene_name ) ) elif nskipped > 10: warnings.warn( "Skipping many object points ({}) in scene {}.".format( nskipped, self.environment.scene_name ) ) states = [] for agent_id in range(self.environment.num_agents): matrix_ego_per_agent = self.environment.current_matrix_frame( agent_id, matrix, point_to_element_map, int(self.environment.visibility_distance // self.environment.grid_size), int(self.environment.visibility_distance // self.environment.grid_size), ) last_action = ( None if self._last_actions is None else self._last_actions[agent_id] ) last_action_success = ( None if self._last_actions_success is None else self._last_actions_success[agent_id] ) states.append( { "frame": matrix_ego_per_agent, "last_action": last_action, "last_action_success": last_action_success, } ) return states
cordial-sync-master
rl_multi_agent/furnlift_episodes.py
import glob import inspect import json import math import os import time import warnings from collections import defaultdict from typing import List, Dict, Any import matplotlib as mpl import numpy as np import torch from matplotlib import pyplot as plt from constants import ABS_PATH_TO_ANALYSIS_RESULTS_DIR, ABS_PATH_TO_DATA_DIR from rl_ai2thor.ai2thor_episodes import MultiAgentAI2ThorEpisode from rl_base import A3CAgent from rl_multi_agent import MultiAgent from utils.visualization_utils import get_agent_map_data, visualize_agent_path def step_results_to_data_to_save_for_furnmove_experiment( episode: MultiAgentAI2ThorEpisode, step_results: List[List[Dict]] ): if len(step_results) == 0: return {} episode_info = episode.info() nagents = len(step_results[0]) info = { "ep_length": len(step_results) * nagents, "final_distance": episode_info["navigation/final_distance"], "reached_target": episode_info["navigation/reached_target"], "spl_manhattan": episode_info["navigation/spl_manhattan"], "initial_manhattan_steps": episode_info["navigation/initial_manhattan_steps"], } avail_actions = episode.available_actions action_taken_matrix = np.zeros((len(avail_actions),) * nagents) action_taken_success_matrix = np.zeros((len(avail_actions),) * nagents) agent_action_info = [defaultdict(lambda: []) for _ in range(nagents)] total_reward = 0 for srs in step_results: action_inds = [] success_so_far = None for agent_id, sr in enumerate(srs): agent_info = agent_action_info[agent_id] total_reward += sr["reward"] action_ind = sr["action"] action = avail_actions[sr["action"]] action_success = sr["action_success"] action_inds.append(action_ind) agent_info["action_ind"].append(action_ind) agent_info["action"].append(action) agent_info["action_success"].append(action_success) if "extra_before_info" in sr: agent_info["dresser_visible"].append( sr["extra_before_info"]["dresser_visible"] ) agent_info["tv_visible"].append(sr["extra_before_info"]["tv_visible"]) if success_so_far is None: success_so_far = action_success elif success_so_far != action_success: success_so_far = math.nan action_inds = tuple(action_inds) if success_so_far is math.nan: if all( "Pass" != agent_action_info[i]["action"][-1] for i in range(nagents) ): warnings.warn("One agent was successful while the other was not!") elif success_so_far: action_taken_success_matrix[action_inds] += 1 action_taken_matrix[action_inds] += 1 info["step_results"] = step_results info["reward"] = total_reward info["agent_action_info"] = [dict(info) for info in agent_action_info] info["action_taken_matrix"] = action_taken_matrix.tolist() info["action_taken_success_matrix"] = action_taken_success_matrix.tolist() return info class SaveFurnMoveMixin(object): def simple_name(self): raise NotImplementedError() def create_episode_summary( self, agent: A3CAgent, additional_metrics: Dict[str, float], step_results: List[List[Dict]], ) -> Any: data_to_save = step_results_to_data_to_save_for_furnmove_experiment( episode=agent.episode, step_results=step_results ) data_to_save["episode_init_data"] = self.init_train_agent.episode_init_data if len(agent.eval_results) != 0: for i in range(agent.environment.num_agents): for k in ["talk_probs", "reply_probs"]: data_to_save["a{}_{}".format(i, k)] = [] for er in agent.eval_results: if k in er: data_to_save["a{}_{}".format(i, k)].append( er[k][i].cpu().detach().view(-1).numpy().tolist() ) if "randomization_probs" in agent.eval_results[0]: data_to_save["randomization_probs"] = [] for er in agent.eval_results: data_to_save["randomization_probs"].append( torch.exp(er["randomization_log_probs"]) .cpu() .detach() .view(-1) .numpy() .tolist() ) return {**data_to_save, **additional_metrics} def data_save_dir(self) -> str: return os.path.join(ABS_PATH_TO_DATA_DIR, "furnmove_evaluations__{}/{}").format( self.episode_init_queue_file_name.split("__")[-1].replace(".json", ""), self.simple_name(), ) def save_episode_summary(self, data_to_save: Any): self.total_saved += 1 scene = data_to_save["episode_init_data"]["scene"] rep = data_to_save["episode_init_data"]["replication"] print( "Saving data corresponding to scene {} and replication {}. {}/{} completed.".format( scene, rep, self.total_saved, self.total_to_save ), flush=True, ) write_path = os.path.join( self.data_save_dir(), "{}__{}.json".format(scene, rep) ) with open(write_path, "w") as f: json.dump(data_to_save, f) def create_episode_init_queue(self, mp_module) -> torch.multiprocessing.Queue: q = mp_module.Queue() self.total_saved = 0 with open( os.path.join(ABS_PATH_TO_DATA_DIR, "{}").format( self.episode_init_queue_file_name ), "r", ) as f: scene_to_rep_to_ep_data = json.load(f) keys_remaining = { (scene, rep) for scene in scene_to_rep_to_ep_data for rep in scene_to_rep_to_ep_data[scene] } os.makedirs(self.data_save_dir(), exist_ok=True) for p in glob.glob(os.path.join(self.data_save_dir(), "*.json")): file_name = os.path.basename(p) keys_remaining.remove(tuple(file_name.replace(".json", "").split("__"))) k = 0 for scene, rep in keys_remaining: data = scene_to_rep_to_ep_data[scene][rep] data["scene"] = scene data["replication"] = rep q.put(data) k += 1 print("{} episodes added to queue".format(k)) self.total_to_save = k return q def stopping_criteria_reached(self): return self.total_saved >= self.total_to_save def step_results_to_data_to_save_for_furnlift_experiment( episode: MultiAgentAI2ThorEpisode, step_results: List[List[Dict]] ): if len(step_results) == 0: return {} episode_info = episode.info() nagents = len(step_results[0]) info = { "ep_length": len(step_results) * nagents, "picked_but_not_pickupable_distance": episode_info[ "picked_but_not_pickupable_distance" ], "picked_but_not_pickupable": episode_info["picked_but_not_pickupable"], "picked_but_not_pickupable_visibility": episode_info[ "picked_but_not_pickupable_visibility" ], "pickupable_but_not_picked": episode_info["pickupable_but_not_picked"], "accuracy": episode_info["accuracy"], "final_distance": episode_info["final_manhattan_distance_from_target"], "initial_manhattan_steps": episode_info["initial_manhattan_steps"], "spl_manhattan": episode_info["spl_manhattan"], } avail_actions = episode.available_actions action_taken_matrix = np.zeros((len(avail_actions),) * nagents) agent_action_info = [defaultdict(lambda: []) for _ in range(nagents)] total_reward = 0 for srs in step_results: action_inds = [] success_so_far = None for agent_id, sr in enumerate(srs): agent_info = agent_action_info[agent_id] total_reward += sr["reward"] action_ind = sr["action"] action = avail_actions[sr["action"]] action_success = sr["action_success"] action_inds.append(action_ind) agent_info["action_ind"].append(action_ind) agent_info["action"].append(action) agent_info["action_success"].append(action_success) if success_so_far is None: success_so_far = action_success elif success_so_far != action_success: success_so_far = math.nan action_inds = tuple(action_inds) action_taken_matrix[action_inds] += 1 info["step_results"] = step_results info["reward"] = total_reward info["agent_action_info"] = [dict(info) for info in agent_action_info] info["action_taken_matrix"] = action_taken_matrix.tolist() return info class SaveFurnLiftMixin(object): def simple_name(self): raise NotImplementedError() def create_episode_summary( self, agent: A3CAgent, additional_metrics: Dict[str, float], step_results: List[List[Dict]], ) -> Any: data_to_save = step_results_to_data_to_save_for_furnlift_experiment( episode=agent.episode, step_results=step_results ) data_to_save["episode_init_data"] = self.init_train_agent.episode_init_data if len(agent.eval_results) != 0: for i in range(agent.environment.num_agents): for k in ["talk_probs", "reply_probs"]: data_to_save["a{}_{}".format(i, k)] = [] for er in agent.eval_results: if k in er: data_to_save["a{}_{}".format(i, k)].append( er[k][i].cpu().detach().view(-1).numpy().tolist() ) if "randomization_probs" in agent.eval_results[0]: data_to_save["randomization_probs"] = [] for er in agent.eval_results: data_to_save["randomization_probs"].append( torch.exp(er["randomization_log_probs"]) .cpu() .detach() .view(-1) .numpy() .tolist() ) return {**data_to_save, **additional_metrics} def data_save_dir(self) -> str: unique_dir = os.path.basename(inspect.getfile(type(self))).replace( "_config.py", "" ) return os.path.join( ABS_PATH_TO_DATA_DIR, "furnlift_evaluations__{}/{}__{}" ).format( self.episode_init_queue_file_name.split("__")[-1].replace(".json", ""), self.simple_name(), unique_dir, ) def save_episode_summary(self, data_to_save: Any): self.total_saved += 1 scene = data_to_save["episode_init_data"]["scene"] rep = data_to_save["episode_init_data"]["replication"] print( ( "Saving data corresponding to scene {} and replication {}." " {}/{} completed." ).format(scene, rep, self.total_saved, self.total_to_save), flush=True, ) write_path = os.path.join( self.data_save_dir(), "{}__{}.json".format(scene, rep) ) with open(write_path, "w") as f: json.dump(data_to_save, f) def create_episode_init_queue(self, mp_module) -> torch.multiprocessing.Queue: q = mp_module.Queue() self.total_saved = 0 with open( os.path.join(ABS_PATH_TO_DATA_DIR, "{}").format( self.episode_init_queue_file_name ), "r", ) as f: scene_to_rep_to_ep_data = json.load(f) keys_remaining = { (scene, rep) for scene in scene_to_rep_to_ep_data for rep in scene_to_rep_to_ep_data[scene] } os.makedirs(self.data_save_dir(), exist_ok=True) for p in glob.glob(os.path.join(self.data_save_dir(), "*.json")): file_name = os.path.basename(p) keys_remaining.remove(tuple(file_name.replace(".json", "").split("__"))) k = 0 for scene, rep in keys_remaining: data = scene_to_rep_to_ep_data[scene][rep] data["scene"] = scene data["replication"] = rep q.put(data) k += 1 print("{} episodes added to queue".format(k)) self.total_to_save = k return q def stopping_criteria_reached(self): return self.total_saved >= self.total_to_save def save_agents_path_without_frame_png( agent: MultiAgent, k=0, sampling_rate=5, **kwargs ): angle_to_dx = {0: 0.0, 90: 0.1, 180: 0, 270: -0.1} angle_to_dz = {0: 0.1, 90: 0.0, 180: -0.1, 270: 0.0} available_actions = agent.episode.available_actions step_results = agent.step_results plt.figure(figsize=(14, 14)) plt.tight_layout() plt.axis("equal") colors = mpl.cm.rainbow(np.linspace(0, 1, agent.episode.environment.num_agents)) agent_marker_type = "o" agent_marker_size = 6 object_marker_type = "*" object_marker_size = 10 short_arrow_length_factor = 1.8 long_arrow_length_factor = 1.2 longer_arrow_length_factor = 0.8 object_color = "cyan" object_before_positions = [ sr[0]["object_location"][agent.episode.object_id]["before_location"] for sr in step_results ] object_after_positions = [ sr[0]["object_location"][agent.episode.object_id]["after_location"] for sr in step_results ] plt.plot( object_before_positions[0]["x"], object_before_positions[0]["z"], color="blue", marker="x", markersize=12, ) plt.arrow( object_before_positions[0]["x"], object_before_positions[0]["z"], angle_to_dx[round(object_before_positions[0]["rotation"] / 90.0) * 90] / 0.5, angle_to_dz[round(object_before_positions[0]["rotation"] / 90.0) * 90] / 0.5, color="blue", head_width=0.08, ) if hasattr(agent.episode, "object_points_set"): object_points_set = agent.episode.object_points_set() object_points_set_x = [point_tuple[0] for point_tuple in object_points_set] object_points_set_z = [point_tuple[1] for point_tuple in object_points_set] plt.plot( object_points_set_x, object_points_set_z, color="blue", marker="x", markersize=6, linestyle="None", ) for agent_id in range(agent.environment.num_agents): agent_color = colors[agent_id] before_positions = [sr[agent_id]["before_location"] for sr in step_results] after_positions = [sr[agent_id]["after_location"] for sr in step_results] plt.plot( before_positions[0]["x"], before_positions[0]["z"], color=agent_color, marker="x", markersize=10, ) plt.arrow( before_positions[0]["x"], before_positions[0]["z"], angle_to_dx[round(object_before_positions[0]["rotation"] / 90.0) * 90] / 0.5, angle_to_dz[round(object_before_positions[0]["rotation"] / 90.0) * 90] / 0.5, color=agent_color, head_width=0.08, ) for sr_i, sr in enumerate(step_results): before_position_i = before_positions[sr_i] after_position_i = after_positions[sr_i] object_before_position_i = object_before_positions[sr_i] object_after_position_i = object_after_positions[sr_i] object_before_angle_i = ( round((object_before_position_i["rotation"] % 360) / 90.0) * 90.0 ) object_after_angle_i = ( round((object_after_position_i["rotation"] % 360) / 90.0) * 90.0 ) before_angle_i = round((before_position_i["rotation"] % 360) / 90.0) * 90.0 after_angle_i = round((after_position_i["rotation"] % 360) / 90.0) * 90.0 action_string = available_actions[sr[agent_id]["action"]] agent_arrow = { "color": ["black"], "length_factor": [short_arrow_length_factor], "angle": [after_angle_i], } object_arrow = { "color": ["black"], "length_factor": [short_arrow_length_factor], "angle": [object_after_angle_i], } if not sr[agent_id]["action_success"]: # No marks for unsuccessful actions continue if action_string == "MoveAhead": # No extra marks for individual move aheads pass elif action_string in ["RotateLeft", "RotateRight"]: # overwite with a long arrow to mark rotations agent_arrow["color"].append("yellow") agent_arrow["length_factor"].append(long_arrow_length_factor) agent_arrow["angle"].append(after_angle_i) elif action_string in ["RotateLiftedRight"]: # overwite with a long arrow to mark rotations object_arrow["color"].append("yellow") object_arrow["length_factor"].append(long_arrow_length_factor) object_arrow["angle"].append(object_after_angle_i) elif action_string in [ "MoveLiftedObjectAhead", "MoveLiftedObjectRight", "MoveLiftedObjectBack", "MoveLiftedObjectLeft", ]: object_arrow["color"].append("green") object_arrow["length_factor"].append(longer_arrow_length_factor) action_to_rot_ind_offset = { "MoveLiftedObjectAhead": 0, "MoveLiftedObjectRight": 1, "MoveLiftedObjectBack": 2, "MoveLiftedObjectLeft": 3, } object_rot_ind = round((object_after_angle_i % 360) / 90.0) adjusted_rot_ind = ( action_to_rot_ind_offset[action_string] + object_rot_ind ) % 4 adjusted_rot = adjusted_rot_ind * 90 object_arrow["angle"].append(adjusted_rot) elif action_string in [ "MoveAgentsAheadWithObject", "MoveAgentsRightWithObject", "MoveAgentsBackWithObject", "MoveAgentsLeftWithObject", ]: agent_arrow["color"].append(agent_color) agent_arrow["length_factor"].append(longer_arrow_length_factor) action_to_rot_ind_offset = { "MoveAgentsAheadWithObject": 0, "MoveAgentsRightWithObject": 1, "MoveAgentsBackWithObject": 2, "MoveAgentsLeftWithObject": 3, } agent_rot_ind = round((after_angle_i % 360) / 90.0) adjusted_rot_ind = ( action_to_rot_ind_offset[action_string] + agent_rot_ind ) % 4 adjusted_rot = adjusted_rot_ind * 90 agent_arrow["angle"].append(adjusted_rot) elif action_string in [ "MoveAgentsNorthWithObject", "MoveAgentsEastWithObject", "MoveAgentsSouthWithObject", "MoveAgentsWestWithObject", ]: agent_arrow["color"].append(agent_color) agent_arrow["length_factor"].append(longer_arrow_length_factor) action_to_rot = { "MoveAgentsNorthWithObject": 0, "MoveAgentsEastWithObject": 90, "MoveAgentsSouthWithObject": 180, "MoveAgentsWestWithObject": 270, } agent_arrow["angle"].append(action_to_rot[action_string]) elif action_string == "Pass": continue plt.plot( after_position_i["x"], after_position_i["z"], color=agent_color, marker=agent_marker_type, markersize=agent_marker_size, alpha=0.2, ) plt.plot( object_after_position_i["x"], object_after_position_i["z"], color=object_color, marker=object_marker_type, markersize=object_marker_size, alpha=0.2, ) assert agent_arrow.keys() == object_arrow.keys() arrow_keys = list(agent_arrow.keys()) assert all( len(agent_arrow[key]) == len(agent_arrow[arrow_keys[0]]) for key in arrow_keys ) assert all( len(object_arrow[key]) == len(object_arrow[arrow_keys[0]]) for key in arrow_keys ) for arrow_i in range(len(agent_arrow[arrow_keys[0]]))[::-1]: angle = agent_arrow["angle"][arrow_i] color = agent_arrow["color"][arrow_i] length_factor = agent_arrow["length_factor"][arrow_i] plt.arrow( after_position_i["x"], after_position_i["z"], angle_to_dx[angle] / (length_factor + 0.05), angle_to_dz[angle] / (length_factor + 0.05), color=color, alpha=0.4, ) if sr_i % sampling_rate == 0: plt.annotate( str(sr_i), ( after_position_i["x"] + angle_to_dx[angle] * 2 / (length_factor + 0.05), after_position_i["z"] + angle_to_dz[angle] * 2 / (length_factor + 0.05), ), ) for arrow_i in range(len(object_arrow[arrow_keys[0]]))[::-1]: angle = object_arrow["angle"][arrow_i] color = object_arrow["color"][arrow_i] length_factor = object_arrow["length_factor"][arrow_i] plt.arrow( object_after_position_i["x"], object_after_position_i["z"], angle_to_dx[angle] / (length_factor + 0.05), angle_to_dz[angle] / (length_factor + 0.05), color=color, alpha=0.4, ) if sr_i % sampling_rate == 0: plt.annotate( str(sr_i), ( object_after_position_i["x"] + angle_to_dx[angle] * 2 / (length_factor + 0.05), object_after_position_i["z"] + angle_to_dz[angle] * 2 / (length_factor + 0.05), ), ) plt.arrow( object_after_positions[-1]["x"], object_after_positions[-1]["z"], angle_to_dx[round(object_after_positions[-1]["rotation"] / 90.0) * 90] / 0.5, angle_to_dz[round(object_after_positions[-1]["rotation"] / 90.0) * 90] / 0.5, color="blue", head_width=0.08, linestyle=":", ) # Mark all reachable points for p in agent.episode.environment.initially_reachable_points: plt.plot(p["x"], p["z"], "k.", markersize=5) # Mark all unreachable points for (px, pz) in list(agent.episode.environment.get_initially_unreachable_points()): plt.plot(px, pz, "k,", markersize=5) plt.savefig( os.path.join( ABS_PATH_TO_ANALYSIS_RESULTS_DIR, "episode_run_paths/{}_{}.jpg" ).format(kwargs["args"].task, k), bbox_inches="tight", ) plt.close("all") time.sleep(0.1) def save_agents_path_png( agent: MultiAgent, k=0, start_resolution: int = 84, save_resolution: int = 1000, ): agent.environment.step( { "action": "ChangeResolution", "x": save_resolution, "y": save_resolution, "agentId": 0, } ) time.sleep(2) step_results = agent.step_results joint_position_mark_colors = [] pickup_index = agent.episode.available_actions.index("Pickup") for sr in step_results: all_picked = all( sr[i]["action"] == pickup_index for i in range(agent.environment.num_agents) ) all_success = all( sr[i]["action_success"] for i in range(agent.environment.num_agents) ) if all_picked and all_success: joint_position_mark_colors.append("white") elif all_picked: joint_position_mark_colors.append("grey") else: joint_position_mark_colors.append(None) map_data = get_agent_map_data(agent.environment) frame = map_data["frame"] for i in range(agent.environment.num_agents): positions = [sr[i]["before_location"] for sr in step_results] positions.append(step_results[-1][i]["after_location"]) position_mark_colors = [] for j, sr in enumerate(step_results): if joint_position_mark_colors[j] is not None: position_mark_colors.append(joint_position_mark_colors[j]) elif sr[i]["action"] == agent.episode.available_actions.index("Pickup"): position_mark_colors.append("black") else: position_mark_colors.append(None) position_mark_colors.append(None) frame = visualize_agent_path( positions, frame, map_data["pos_translator"], color_pair_ind=i, position_mark_colors=position_mark_colors, only_show_last_visibility_cone=True, ) agent.environment.step( { "action": "ChangeResolution", "x": start_resolution, "y": start_resolution, "agentId": 0, } ) time.sleep(2) def vector3s_near_equal(p0: Dict[str, float], p1: Dict[str, float], ep: float = 1e-3): return abs(p0["x"] - p1["x"]) + abs(p0["y"] - p1["y"]) + abs(p0["z"] - p1["z"]) < ep def at_same_location(m0, m1, ignore_camera: bool = False): the_same = vector3s_near_equal( m0 if "position" not in m0 else m0["position"], m1 if "position" not in m1 else m1["position"], ) and vector3s_near_equal(m0["rotation"], m1["rotation"]) if "cameraHorizon" in m0: the_same = the_same and ( ignore_camera or abs( (m0.get("horizon") if "horizon" in m0 else m0["cameraHorizon"]) - (m1.get("horizon") if "horizon" in m1 else m1["cameraHorizon"]) ) < 0.001 ) return the_same
cordial-sync-master
rl_multi_agent/furnmove_utils.py
from .agents import *
cordial-sync-master
rl_multi_agent/__init__.py
import hashlib import itertools import math import os import queue import random import warnings from typing import Dict, List, Optional, Callable, Tuple import networkx as nx import numpy as np import pandas as pd import torch from networkx import find_cliques from torch import multiprocessing as mp from constants import TELEVISION_ROTATION_TO_OCCUPATIONS from rl_ai2thor.ai2thor_environment import AI2ThorEnvironmentWithGraph from rl_ai2thor.ai2thor_utils import manhattan_dists_between_positions from rl_multi_agent import MultiAgent from rl_multi_agent.furnlift_episodes import JointNavigationEpisode from rl_multi_agent.furnmove_utils import at_same_location from rl_multi_agent.multi_agent_utils import TrainingCompleteException def create_or_append(dict: Dict[str, List], key, value): if key not in dict: dict[key] = [value] else: dict[key].append(value) def save_talk_reply_data_frame( agent, save_path, index: Optional[int], use_hash: bool = False, prefix: str = "" ): num_agents = agent.environment.num_agents eval_results = agent.eval_results object_id = agent.episode.object_id o = agent.environment.get_object_by_id(object_id, agent_id=0) o_pos = {**o["position"], "rotation": o["rotation"]["y"]} data = {} for i in range(len(eval_results)): er = eval_results[i] for k in er: if "cpu" in dir(er[k]): er[k] = er[k].cpu() sr = er["step_result"] for agent_id in range(num_agents): agent_key = "agent_{}_".format(agent_id) for probs_key in ["talk_probs", "reply_probs"]: probs = er[probs_key][agent_id, :].detach().numpy() for j in range(len(probs)): create_or_append( data, agent_key + probs_key + "_" + str(j), probs[j] ) sr_i = sr[agent_id] for key in ["goal_visible", "pickup_action_taken", "action_success"]: create_or_append(data, agent_key + key, sr_i[key]) create_or_append( data, agent_key + "action", agent.episode.available_actions[sr_i["action"]], ) before_loc = sr_i["before_location"] for key in before_loc: create_or_append(data, agent_key + key, before_loc[key]) create_or_append( data, agent_key + "l2_dist_to_object", math.sqrt( (o_pos["x"] - before_loc["x"]) ** 2 + (o_pos["z"] - before_loc["z"]) ** 2 ), ) create_or_append( data, agent_key + "manhat_dist_to_object", abs(o_pos["x"] - before_loc["x"]) + abs(o_pos["z"] - before_loc["z"]), ) for key in o_pos: create_or_append(data, "object_" + key, o_pos[key]) mutual_agent_distance = int( 4 * ( abs(data["agent_0_x"][-1] - data["agent_1_x"][-1]) + abs(data["agent_0_z"][-1] - data["agent_1_z"][-1]) ) ) create_or_append(data, "mutual_agent_distance", mutual_agent_distance) df = pd.DataFrame( data={**data, "scene_name": [agent.environment.scene_name] * len(eval_results)} ) for df_k in df.keys(): if df[df_k].dtype in [float, np.float32, np.float64]: df[df_k] = np.round(df[df_k], 4) if use_hash: file_name = ( agent.environment.scene_name + "_" + hashlib.md5(pd.util.hash_pandas_object(df, index=True).values).hexdigest() + ".tsv" ) else: file_name = "{}_{}_talk_reply_data.tsv".format(index, prefix) df.to_csv( os.path.join(save_path, file_name), sep="\t", # float_format="%.4f", ) def _create_environment( num_agents, env_args, visible_agents: bool, render_depth_image: bool, headless: bool = False, **environment_args, ) -> AI2ThorEnvironmentWithGraph: env = AI2ThorEnvironmentWithGraph( docker_enabled=env_args.docker_enabled, x_display=env_args.x_display, local_thor_build=env_args.local_thor_build, num_agents=num_agents, restrict_to_initially_reachable_points=True, visible_agents=visible_agents, render_depth_image=render_depth_image, headless=headless, **environment_args, ) return env class FurnLiftEpisodeSamplers(object): def __init__( self, scenes: List[str], num_agents: int, object_type: str, env_args=None, max_episode_length: int = 500, episode_class: Callable = JointNavigationEpisode, player_screen_height=224, player_screen_width=224, save_talk_reply_probs_path: Optional[str] = None, min_dist_between_agents_to_pickup: int = 0, max_ep_using_expert_actions: int = 10000, visible_agents: bool = True, max_visible_positions_push: int = 8, min_max_visible_positions_to_consider: Tuple[int, int] = (8, 16), include_depth_frame: bool = False, allow_agents_to_intersect: bool = False, ): self.visible_agents = visible_agents self.max_ep_using_expert_actions = max_ep_using_expert_actions self.min_dist_between_agents_to_pickup = min_dist_between_agents_to_pickup self.save_talk_reply_probs_path = save_talk_reply_probs_path self.player_screen_height = player_screen_height self.player_screen_width = player_screen_width self.episode_class = episode_class self.max_episode_length = max_episode_length self.env_args = env_args self.num_agents = num_agents self.scenes = scenes self.object_type = object_type self.max_visible_positions_push = max_visible_positions_push self.min_max_visible_positions_to_consider = ( min_max_visible_positions_to_consider ) self.include_depth_frame = include_depth_frame self.allow_agents_to_intersect = allow_agents_to_intersect self.grid_size = 0.25 self._current_train_episode = 0 self._internal_episodes = 0 @property def current_train_episode(self): return self._current_train_episode @current_train_episode.setter def current_train_episode(self, value): self._current_train_episode = value def _contain_n_positions_at_least_dist_apart(self, positions, n, min_dist): for sub_positions in itertools.combinations(positions, n): if all( x >= min_dist for x in sum( manhattan_dists_between_positions(sub_positions, self.grid_size), [], ) ): return True return False def __call__( self, agent: MultiAgent, agent_location_seed=None, env: Optional[AI2ThorEnvironmentWithGraph] = None, episode_init_queue: Optional[mp.Queue] = None, ) -> None: self._internal_episodes += 1 if env is None: if agent.environment is not None: env = agent.environment else: env = _create_environment( num_agents=self.num_agents, env_args=self.env_args, visible_agents=self.visible_agents, render_depth_image=self.include_depth_frame, allow_agents_to_intersect=self.allow_agents_to_intersect, ) env.start( "FloorPlan1_physics", move_mag=self.grid_size, quality="Very Low", player_screen_height=self.player_screen_height, player_screen_width=self.player_screen_width, ) if ( self.max_ep_using_expert_actions != 0 and self.current_train_episode <= self.max_ep_using_expert_actions ): agent.take_expert_action_prob = 0.9 * ( 1.0 - self.current_train_episode / self.max_ep_using_expert_actions ) else: agent.take_expert_action_prob = 0 if episode_init_queue is not None: try: self.episode_init_data = episode_init_queue.get(timeout=1) except queue.Empty: raise TrainingCompleteException("No more data in episode init queue.") scene = self.episode_init_data["scene"] env.reset(scene) assert self.object_type == "Television" env.step( { "action": "DisableAllObjectsOfType", "objectId": self.object_type, "agentId": 0, } ) for agent_id, agent_location in enumerate( self.episode_init_data["agent_locations"] ): env.teleport_agent_to( **agent_location, agent_id=agent_id, only_initially_reachable=False, force_action=True, ) assert env.last_event.metadata["lastActionSuccess"] object_location = self.episode_init_data["object_location"] env.step( { "action": "CreateObjectAtLocation", "objectType": self.object_type, **object_location, "position": { "x": object_location["x"], "y": object_location["y"], "z": object_location["z"], }, "rotation": {"x": 0, "y": object_location["rotation"], "z": 0}, "agentId": 0, "forceAction": True, } ) assert env.last_event.metadata["lastActionSuccess"] env.refresh_initially_reachable() objects_of_type = env.all_objects_with_properties( {"objectType": self.object_type}, agent_id=0 ) if len(objects_of_type) != 1: print("len(objects_of_type): {}".format(len(objects_of_type))) raise (Exception("len(objects_of_type) != 1")) object = objects_of_type[0] object_id = object["objectId"] obj_rot = int(object["rotation"]["y"]) object_points_set = set( ( round(object["position"]["x"] + t[0], 2), round(object["position"]["z"] + t[1], 2), ) for t in TELEVISION_ROTATION_TO_OCCUPATIONS[obj_rot] ) # Find agent metadata from where the target is visible env.step( { "action": "GetPositionsObjectVisibleFrom", "objectId": object_id, "agentId": 0, } ) possible_targets = env.last_event.metadata["actionVector3sReturn"] distances = [] for i, r in enumerate(env.last_event.metadata["actionFloatsReturn"]): possible_targets[i]["rotation"] = int(r) possible_targets[i]["horizon"] = 30 distances.append( env.position_dist(object["position"], possible_targets[i]) ) possible_targets = [ env.get_key(x[1]) for x in sorted( list(zip(distances, possible_targets)), key=lambda x: x[0] ) ] if self.min_dist_between_agents_to_pickup != 0: possible_targets_array = np.array([t[:2] for t in possible_targets]) manhat_dist_mat = np.abs( ( ( possible_targets_array.reshape((-1, 1, 2)) - possible_targets_array.reshape((1, -1, 2)) ) / self.grid_size ).round() ).sum(2) sufficiently_distant = ( manhat_dist_mat >= self.min_dist_between_agents_to_pickup ) g = nx.Graph(sufficiently_distant) good_cliques = [] for i, clique in enumerate(find_cliques(g)): if i > 1000 or len(good_cliques) > 40: break if len(clique) == env.num_agents: good_cliques.append(clique) elif len(clique) > env.num_agents: good_cliques.extend( itertools.combinations(clique, env.num_agents) ) good_cliques = [ [possible_targets[i] for i in gc] for gc in good_cliques ] else: assert False, "Old code." if len(possible_targets) < env.num_agents: raise Exception( ( "Using data from episode queue (scene {} and replication {}) " "but there seem to be no good final positions for the agents?" ).format(scene, self.episode_init_data["replication"]) ) scene_successfully_setup = True else: scene = random.choice(self.scenes) env.reset(scene) scene_successfully_setup = False failure_reasons = [] for _ in range(10): env.step( { "action": "DisableAllObjectsOfType", "objectId": self.object_type, "agentId": 0, } ) for agent_id in range(self.num_agents): env.randomize_agent_location( agent_id=agent_id, seed=agent_location_seed[agent_id] if agent_location_seed else None, partial_position={"horizon": 30}, only_initially_reachable=True, ) env.step( { "action": "RandomlyCreateAndPlaceObjectOnFloor", "objectType": self.object_type, "agentId": 0, } ) if ( env.last_event.metadata["lastAction"] != "RandomlyCreateAndPlaceObjectOnFloor" or not env.last_event.metadata["lastActionSuccess"] ): failure_reasons.append( "Could not randomize location of {}.".format( self.object_type, scene ) ) continue env.refresh_initially_reachable() objects_of_type = env.all_objects_with_properties( {"objectType": self.object_type}, agent_id=0 ) if len(objects_of_type) != 1: print("len(objects_of_type): {}".format(len(objects_of_type))) raise (Exception("len(objects_of_type) != 1")) object = objects_of_type[0] object_id = object["objectId"] obj_rot = int(object["rotation"]["y"]) object_points_set = set( ( round(object["position"]["x"] + t[0], 2), round(object["position"]["z"] + t[1], 2), ) for t in TELEVISION_ROTATION_TO_OCCUPATIONS[obj_rot] ) for agent_id in range(self.num_agents): env.randomize_agent_location( agent_id=agent_id, seed=agent_location_seed[agent_id] if agent_location_seed else None, partial_position={"horizon": 30}, only_initially_reachable=True, ) # Find agent metadata from where the target is visible env.step( { "action": "GetPositionsObjectVisibleFrom", "objectId": object_id, "agentId": 0, } ) possible_targets = env.last_event.metadata["actionVector3sReturn"] distances = [] for i, r in enumerate(env.last_event.metadata["actionFloatsReturn"]): possible_targets[i]["rotation"] = int(r) possible_targets[i]["horizon"] = 30 distances.append( env.position_dist(object["position"], possible_targets[i]) ) possible_targets = [ env.get_key(x[1]) for x in sorted( list(zip(distances, possible_targets)), key=lambda x: x[0] ) ] if self.min_dist_between_agents_to_pickup != 0: possible_targets_array = np.array([t[:2] for t in possible_targets]) manhat_dist_mat = np.abs( ( ( possible_targets_array.reshape((-1, 1, 2)) - possible_targets_array.reshape((1, -1, 2)) ) / self.grid_size ).round() ).sum(2) sufficiently_distant = ( manhat_dist_mat >= self.min_dist_between_agents_to_pickup ) g = nx.Graph(sufficiently_distant) good_cliques = [] for i, clique in enumerate(find_cliques(g)): if i > 1000 or len(good_cliques) > 40: break if len(clique) == env.num_agents: good_cliques.append(clique) elif len(clique) > env.num_agents: good_cliques.extend( itertools.combinations(clique, env.num_agents) ) if len(good_cliques) == 0: failure_reasons.append( "Failed to find a tuple of {} targets all {} steps apart.".format( env.num_agents, self.min_dist_between_agents_to_pickup ) ) continue good_cliques = [ [possible_targets[i] for i in gc] for gc in good_cliques ] else: assert False, "Old code." ( min_considered, max_considered, ) = self.min_max_visible_positions_to_consider offset0 = min( max(len(possible_targets) - min_considered, 0), self.max_visible_positions_push, ) # offset1 = min( # max(len(possible_targets) - max_considered, 0), # self.max_visible_positions_push, # ) min_slice = slice(offset0, offset0 + min_considered) # max_slice = slice(offset1, offset1 + max_considered) possible_targets = possible_targets[min_slice] good_cliques = list( itertools.combinations(possible_targets, self.num_agents) ) if len(possible_targets) < env.num_agents: failure_reasons.append( "The number of positions from which the object was visible was less than the number of agents." ) continue scene_successfully_setup = True break if not scene_successfully_setup: warnings.warn( ( "Failed to randomly initialize objects and agents in scene {} 10 times" + "for the following reasons:" + "\n\t* ".join(failure_reasons) + "\nTrying a new scene." ).format(env.scene_name) ) yield from self(agent, env=env) return # Task data includes the target object id and one agent state/metadata to navigate to. good_cliques = {tuple(sorted(gc)) for gc in good_cliques} task_data = {"goal_obj_id": object_id, "target_key_groups": good_cliques} agent.episode = self.episode_class( env, task_data, max_steps=self.max_episode_length, num_agents=self.num_agents, min_dist_between_agents_to_pickup=self.min_dist_between_agents_to_pickup, object_points_set=object_points_set, include_depth_frame=self.include_depth_frame, ) yield True if self.save_talk_reply_probs_path is not None: if torch.cuda.is_available(): save_talk_reply_data_frame( agent, self.save_talk_reply_probs_path, None, use_hash=True, # self._internal_episodes, ) else: save_talk_reply_data_frame( agent, self.save_talk_reply_probs_path, self._internal_episodes ) class FurnLiftForViewsEpisodeSampler(object): def __init__( self, scene: str, num_agents: int, object_type: str, agent_start_locations: List, object_start_location: Dict, env_args=None, max_episode_length: int = 500, episode_class: Callable = JointNavigationEpisode, player_screen_height=224, player_screen_width=224, save_talk_reply_probs_path: Optional[str] = None, min_dist_between_agents_to_pickup: int = 0, visible_agents: bool = True, ): self.scene = scene self.agent_start_locations = agent_start_locations self.object_start_location = object_start_location self.visible_agents = visible_agents self.min_dist_between_agents_to_pickup = min_dist_between_agents_to_pickup self.save_talk_reply_probs_path = save_talk_reply_probs_path self.player_screen_height = player_screen_height self.player_screen_width = player_screen_width self.episode_class = episode_class self.max_episode_length = max_episode_length self.env_args = env_args self.num_agents = num_agents self.object_type = object_type self.grid_size = 0.25 self._current_train_episode = 0 self._internal_episodes = 0 @property def current_train_episode(self): return self._current_train_episode @current_train_episode.setter def current_train_episode(self, value): self._current_train_episode = value def __call__( self, agent: MultiAgent, agent_location_seed=None, env: Optional[AI2ThorEnvironmentWithGraph] = None, ) -> None: self._internal_episodes += 1 agent.take_expert_action_prob = 0 if env is None: if agent.environment is not None: env = agent.environment else: env = _create_environment( num_agents=self.num_agents, env_args=self.env_args, visible_agents=self.visible_agents, render_depth_image=False, ) env.start( self.scene, move_mag=self.grid_size, quality="Very Low", player_screen_height=self.player_screen_height, player_screen_width=self.player_screen_width, ) env.reset(self.scene) env.step( { "action": "DisableAllObjectsOfType", "objectId": self.object_type, "agentId": 0, } ) object_pos = { "position": {k: self.object_start_location[k] for k in ["x", "y", "z"]}, "rotation": {"x": 0, "y": self.object_start_location["rotation"], "z": 0}, } env.teleport_agent_to( **{ **self.agent_start_locations[0], "rotation": self.agent_start_locations[0]["rotation"]["y"], }, force_action=True, agent_id=0, ) assert at_same_location( env.last_event.metadata["agent"], self.agent_start_locations[0] ) env.teleport_agent_to( **{ **self.agent_start_locations[1], "rotation": self.agent_start_locations[1]["rotation"]["y"], }, force_action=True, agent_id=1, ) assert at_same_location( env.last_event.metadata["agent"], self.agent_start_locations[1] ) env.step( { "action": "CreateObjectAtLocation", "objectType": self.object_type, "agentId": 0, **object_pos, } ) assert env.last_event.metadata["lastActionSuccess"] env.refresh_initially_reachable() objects_of_type = env.all_objects_with_properties( {"objectType": self.object_type}, agent_id=0 ) if len(objects_of_type) != 1: print("len(objects_of_type): {}".format(len(objects_of_type))) raise (Exception("len(objects_of_type) != 1")) object = objects_of_type[0] assert at_same_location(object, object_pos, ignore_camera=True) object_id = object["objectId"] obj_rot = int(object["rotation"]["y"]) object_points_set = set( ( round(object["position"]["x"] + t[0], 2), round(object["position"]["z"] + t[1], 2), ) for t in TELEVISION_ROTATION_TO_OCCUPATIONS[obj_rot] ) # Find agent metadata from where the target is visible env.step( { "action": "GetPositionsObjectVisibleFrom", "objectId": object_id, "agentId": 0, } ) possible_targets = env.last_event.metadata["actionVector3sReturn"] distances = [] for i, r in enumerate(env.last_event.metadata["actionFloatsReturn"]): possible_targets[i]["rotation"] = int(r) possible_targets[i]["horizon"] = 30 distances.append(env.position_dist(object["position"], possible_targets[i])) possible_targets = [ x[1] for x in sorted(list(zip(distances, possible_targets)), key=lambda x: x[0]) ] possible_targets = possible_targets[:24] if len(possible_targets) < env.num_agents: raise Exception( "The number of positions from which the object was visible was less than the number of agents." ) # Task data includes the target object id and one agent state/metadata to naviagate to. task_data = {"goal_obj_id": object_id, "targets": possible_targets} agent.episode = self.episode_class( env, task_data, max_steps=self.max_episode_length, num_agents=self.num_agents, min_dist_between_agents_to_pickup=self.min_dist_between_agents_to_pickup, object_points_set=object_points_set, ) yield True if self.save_talk_reply_probs_path is not None: if torch.cuda.is_available(): save_talk_reply_data_frame( agent, self.save_talk_reply_probs_path, None, use_hash=True, # self._internal_episodes, ) else: save_talk_reply_data_frame( agent, self.save_talk_reply_probs_path, self._internal_episodes )
cordial-sync-master
rl_multi_agent/furnlift_episode_samplers.py
import random from typing import Tuple, Dict, Union, Optional, List, Any, Sequence import numpy as np import torch import torch.nn.functional as F from torch import nn from rl_base import Episode from rl_base.agent import EnvType, RLAgent, A3CAgent from utils import net_util from utils.misc_util import ( log_sum_exp, outer_product, joint_probability_tensor_from_mixture, joint_log_probability_tensor_from_mixture, outer_sum, ) class MultiAgent(RLAgent): def __init__( self, model: Optional[nn.Module] = None, model_expert: Optional[nn.Module] = None, episode: Optional[Episode[EnvType]] = None, expert_class_available_actions: Optional[Sequence[str]] = None, gpu_id: int = -1, include_test_eval_results: bool = False, record_all_in_test: bool = False, include_depth_frame: bool = False, huber_delta: Optional[float] = None, discourage_failed_coordination: Union[bool, int, float] = False, use_smooth_ce_loss_for_expert: bool = False, resize_image_as: Optional[int] = None, dagger_mode: Optional[bool] = None, coordination_use_marginal_entropy: bool = False, **kwargs, ) -> None: super().__init__(model=model, episode=episode, gpu_id=gpu_id, **kwargs) self.last_reward_per_agent: Optional[Tuple[float, ...]] = None self.include_test_eval_results = include_test_eval_results or record_all_in_test self.record_all_in_test = record_all_in_test self.include_depth_frame = include_depth_frame self.huber_delta = huber_delta self.discourage_failed_coordination = discourage_failed_coordination self.resize_image_as = resize_image_as self.log_prob_of_actions: List[Tuple[torch.FloatTensor]] = [] self.entropy_per_agent: List[Optional[Tuple[torch.FloatTensor, ...]]] = [] self.rewards_per_agent: List[Tuple[float, ...]] = [] self.values_per_agent: List[Optional[Tuple[torch.FloatTensor, ...]]] = [] self.actions: List[int] = [] self.step_results: List[Dict[str, Any]] = [] self.eval_results: List[Dict[str, Any]] = [] self.log_prob_of_expert_action = [] self.log_prob_of_unsafe_action = [] self.expert_actions = [] self.took_expert_action = [] # For model based expert self._model_expert: Optional[nn.Module] = None if model_expert is not None: self.model_expert = model_expert self.hidden_expert: Optional[Any] = None self.expert_class_available_actions = expert_class_available_actions self.use_smooth_ce_loss_for_expert = use_smooth_ce_loss_for_expert # For rule based expert: assert not (dagger_mode and model_expert) self.dagger_mode = dagger_mode self.coordination_use_marginal_entropy = coordination_use_marginal_entropy self.take_expert_action_prob = ( 0 if "take_expert_action_prob" not in kwargs else kwargs["take_expert_action_prob"] ) self._unsafe_action_ind = kwargs.get("unsafe_action_ind") self._safety_loss_lambda = ( 1.0 if "safety_loss_lambda" not in kwargs else kwargs["safety_loss_lambda"] ) self._use_a3c_loss = ( False if "use_a3c_loss_when_not_expert_forcing" not in kwargs else kwargs["use_a3c_loss_when_not_expert_forcing"] ) self.a3c_gamma = 0.99 self.a3c_tau = 1.0 self.a3c_beta = 1e-2 @property def model_expert(self) -> nn.Module: assert self._model_expert is not None return self._model_expert @model_expert.setter def model_expert(self, model_expert_to_set: nn.Module): if self.gpu_id >= 0: with torch.cuda.device(self.gpu_id): self._model_expert = model_expert_to_set.cuda() else: self._model_expert = model_expert_to_set self._model_expert.eval() def eval_at_state( self, state: Dict[str, Union[Tuple, torch.FloatTensor, torch.cuda.FloatTensor]], hidden: Optional[Tuple[Tuple[torch.FloatTensor, ...]]], **kwargs, ) -> Dict[str, Union[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]]: assert type(state) == dict extra = {} if "object_ind" in state: extra["object_ind"] = self.preprocess_action(state["object_ind"]) if "extra_embedding" in state: extra["extra_embedding"] = state["extra_embedding"] return self.model( inputs=torch.cat(tuple(s.unsqueeze(0) for s in state["frames"]), dim=0), hidden=hidden, agent_rotations=state["agent_rotations"], **extra, ) def eval_at_state_expert( self, state: Dict[str, Union[Tuple, torch.FloatTensor, torch.cuda.FloatTensor]], hidden: Optional[Tuple[Tuple[torch.FloatTensor, ...]]], **kwargs, ) -> Dict[str, Union[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]]: assert type(state) == dict extra = {} if "object_ind" in state: extra["object_ind"] = self.preprocess_action(state["object_ind"]) if "extra_embedding" in state: extra["extra_embedding"] = state["extra_embedding"] return net_util.recursively_detach( self.model_expert( inputs=torch.cat(tuple(s.unsqueeze(0) for s in state["frames"]), dim=0), hidden=hidden, agent_rotations=state["agent_rotations"], **extra, ) ) def _get_state(self, expert: bool): if not expert: states_for_agents = self.episode.states_for_agents() else: states_for_agents = self.episode.expert_states_for_agents() if self.include_depth_frame: assert ( self.resize_image_as is not None and states_for_agents[0]["frame"].shape[-1] == 3 ) frames = tuple( torch.cat( ( self.preprocess_frame(s["frame"], self.resize_image_as), self.preprocess_depth_frame( s["depth_frame"], self.resize_image_as ), ), dim=0, ) for s in states_for_agents ) elif self.resize_image_as is not None: assert states_for_agents[0]["frame"].shape[-1] == 3 frames = tuple( self.preprocess_frame(s["frame"], self.resize_image_as) for s in states_for_agents ) else: assert self.resize_image_as is None frames = tuple( self.preprocess_long_tensor_frame(s["frame"]) for s in states_for_agents ) extra = {} if "object_ind" in states_for_agents[0]: extra["object_ind"] = states_for_agents[0]["object_ind"] state = { "frames": frames, "agent_rotations": [ 90 * int(self.environment.get_agent_location(agent_id=i)["rotation"] / 90) for i in range(self.environment.num_agents) ], **extra, } if "would_coordinated_action_succeed" in states_for_agents[0]: state["extra_embedding"] = self.gpuify( torch.FloatTensor( states_for_agents[0]["would_coordinated_action_succeed"] ) .view(1, -1) .repeat(self.environment.num_agents, 1) ) return state @property def state( self, ) -> Dict[str, Union[Tuple, torch.FloatTensor, torch.cuda.FloatTensor]]: return self._get_state(expert=False) @property def state_expert( self, ) -> Dict[str, Union[Tuple, torch.FloatTensor, torch.cuda.FloatTensor]]: return self._get_state(expert=True) def next_expert_agent_action(self) -> Dict[str, Tuple[Optional[int], ...]]: # Currently not supporting model expert assert hasattr(self.episode, "next_expert_action") return {"expert_actions": self.episode.next_expert_action()} def act( self, train: bool = True, overriding_actions: Optional[Tuple[int, ...]] = None, **kwargs, ) -> Dict: if self.dagger_mode and overriding_actions: # Dagger mode and overriding actions raise Exception( "Overriding action and dagger flags, both set to true, check!" ) if not self.model.training and train: self.model.train() if self.model.training and not train: self.model.eval() assert self.episode is not None assert not self.episode.is_complete() if not train and self.hidden is not None: self.repackage_hidden() eval_result = self.eval_at_current_state() eval_result["coordination_type_tensor"] = self.gpuify( torch.LongTensor( np.array(self.episode.coordination_type_tensor(), dtype=int) ) ) m = eval_result["coordination_type_tensor"].squeeze() m_individual = (m == 0).float() m_coord = (m > 0).float() valid_action_tensor = m_individual + m_coord num_agents = self.environment.num_agents num_actions = len(self.episode.available_actions) coordinated_actions = False coordination_ind = None if "logit_all" in eval_result: # Either marginal or central agent logit_per_agent = tuple( eval_result["logit_all"][i].unsqueeze(0) for i in range(len(eval_result["logit_all"])) ) probs_per_agent = tuple( F.softmax(logit, dim=1) for logit in logit_per_agent ) log_probs_per_agent = tuple( F.log_softmax(logit, dim=1) for logit in logit_per_agent ) joint_logit_all = eval_result.get("joint_logit_all") if joint_logit_all is not None and joint_logit_all: # Central agent assert len(probs_per_agent) == 1 joint_prob_tensor = probs_per_agent[0].view( *(num_agents * [num_actions]) ) else: joint_prob_tensor = outer_product(probs_per_agent) eval_result["log_probs_per_agent"] = log_probs_per_agent elif "coordinated_logits" in eval_result: # Mixture coordinated_actions = True randomization_logits = eval_result["randomization_logits"] coordinated_logits = eval_result["coordinated_logits"].view( num_agents, -1, num_actions ) coordinated_probs = F.softmax(coordinated_logits, dim=2) randomization_probs = F.softmax(randomization_logits, dim=1) coordinated_log_probs = F.log_softmax(coordinated_logits, dim=2) randomization_log_probs = F.log_softmax(randomization_logits, dim=1) eval_result["coordinated_log_probs"] = coordinated_log_probs eval_result["randomization_log_probs"] = randomization_log_probs coordination_ind = randomization_probs.multinomial(num_samples=1).item() probs_per_agent = tuple( coordinated_probs[agent_id, :, :].unsqueeze(0) * randomization_probs.view(1, -1, 1) for agent_id in range(num_agents) ) log_probs_per_agent = tuple( coordinated_log_probs[agent_id, :, :].unsqueeze(0) + randomization_log_probs.view(1, -1, 1) for agent_id in range(num_agents) ) joint_prob_tensor = joint_probability_tensor_from_mixture( mixture_weights=randomization_probs.view(-1), marginal_prob_matrices=coordinated_probs, ) else: raise NotImplementedError() low_rank_approx = outer_product( tuple( joint_prob_tensor.sum(dim=[j for j in range(num_agents) if j != i]) for i in range(num_agents) ) ) eval_result["additional_metrics"] = {} eval_result["additional_metrics"]["dist_to_low_rank"] = torch.dist( joint_prob_tensor, low_rank_approx, p=1 ).item() eval_result["additional_metrics"]["invalid_prob_mass"] = ( torch.mul(joint_prob_tensor, 1 - valid_action_tensor).sum().item() ) self.hidden = eval_result.get("hidden_all") joint_logit_all = eval_result.get("joint_logit_all") # If expert action needs to be taken or not if self.dagger_mode: take_expert_action = ( train and self.take_expert_action_prob != 0 and random.random() < self.take_expert_action_prob ) else: take_expert_action = False if not take_expert_action: # Operations when not acting as per expert actions if self._use_a3c_loss: if self.coordination_use_marginal_entropy and coordinated_actions: assert len(log_probs_per_agent[0].shape) == 3 self.entropy_per_agent.append( tuple( -(log_sum_exp(log_probs, 1) * probs.sum(1)) .sum() .unsqueeze(0) for log_probs, probs in zip( log_probs_per_agent, probs_per_agent ) ) ) else: self.entropy_per_agent.append( tuple( -(log_probs * probs).sum().unsqueeze(0) for log_probs, probs in zip( log_probs_per_agent, probs_per_agent ) ) ) # Compute and update the expert actions # Ensures length of expert actions is always less than (i.e. with None's) or equal to agent action-steps expert_actions_dict = self.next_expert_agent_action() self.expert_actions.append(expert_actions_dict["expert_actions"]) # deciding which action to take: # The flow currently expects "actions": # joint: is tuple of len 1 (multi index) # mixture: is tuple of len nagents # marginal: is tuple of len nagents if take_expert_action: assert not overriding_actions # take actions as per the expert. if joint_logit_all: # tuple of length 1 actions = tuple( [ int( np.ravel_multi_index( self.expert_actions[-1], (num_actions,) * num_agents ) ) ] ) else: actions = tuple(self.expert_actions[-1]) elif overriding_actions: # take actions as per the specified overriding actions. actions = tuple(overriding_actions) else: # take actions as per the agent policy if coordinated_actions: actions = tuple( ( probs[:, coordination_ind, :] / probs[:, coordination_ind, :].sum() ) .multinomial(num_samples=1) .item() for probs in probs_per_agent ) else: actions = tuple( probs.multinomial(num_samples=1).item() for probs in probs_per_agent ) self.took_expert_action.append(take_expert_action) if coordinated_actions: log_prob_of_action_per_agent = tuple( log_probs[:, coordination_ind, :].view(num_actions)[action] for log_probs, action in zip(log_probs_per_agent, actions) ) else: log_prob_of_action_per_agent = tuple( log_probs.view(-1)[action] for log_probs, action in zip(log_probs_per_agent, actions) ) log_prob_of_expert_action_per_agent = None if self.expert_actions[-1] is not None and all( x is not None for x in self.expert_actions[-1] ): if self.use_smooth_ce_loss_for_expert: raise NotImplementedError( "Expert actions coming from an expert model, currently not supported" ) elif coordinated_actions: assert "permute_agent_probs" not in expert_actions_dict log_probs_tensor = joint_log_probability_tensor_from_mixture( log_mixture_weights=randomization_log_probs.view(-1), marginal_log_prob_matrices=coordinated_log_probs, ) ce = log_probs_tensor for expert_action in self.expert_actions[-1]: ce = ce[expert_action] assert ce.dim() == 0 log_prob_of_expert_action_per_agent = ( ce / self.environment.num_agents, ) * self.environment.num_agents else: # Multiagent navigation task update if joint_logit_all: # Central assert len(self.expert_actions[-1]) == num_agents assert len(log_probs_per_agent) == 1 assert log_probs_per_agent[0].shape[1] == num_actions ** num_agents log_prob_of_expert_action_per_agent = tuple( [ log_probs_per_agent[0].view(num_actions ** num_agents)[ int( np.ravel_multi_index( self.expert_actions[-1], (num_actions,) * num_agents, ) ) ] ] ) else: # Marginal log_prob_of_expert_action_per_agent = tuple( log_probs.view(num_actions)[action] for log_probs, action in zip( log_probs_per_agent, self.expert_actions[-1] ) ) if train and (self._unsafe_action_ind is not None): raise NotImplementedError() before_locations = tuple( self.environment.get_agent_location(agent_id=i) for i in range(self.environment.num_agents) ) # Making joint action single agent work with the current multi (marginal) agent setup if joint_logit_all is not None and joint_logit_all: assert len(probs_per_agent) == 1 assert probs_per_agent[0].shape[1] == num_actions ** num_agents actions = tuple( int(a) for a in np.unravel_index(actions[0], (num_actions,) * num_agents) ) step_result = self.episode.multi_step(actions) after_locations = tuple( self.environment.get_agent_location(agent_id=i) for i in range(self.environment.num_agents) ) rewards = tuple(s.get("reward") for s in step_result) if any(r is None for r in rewards): self.last_reward_per_agent = None elif joint_logit_all is not None: self.last_reward_per_agent = tuple( sum(rewards) for _ in range(self.environment.num_agents) ) else: self.last_reward_per_agent = tuple(float(r) for r in rewards) self.values_per_agent.append(eval_result.get("value_all")) for i in range(len(step_result)): step_result[i]["before_location"] = before_locations[i] step_result[i]["after_location"] = after_locations[i] eval_result["probs_per_agent"] = probs_per_agent eval_result["log_probs_per_agent"] = log_probs_per_agent eval_result["step_result"] = step_result eval_result["actions"] = actions eval_result["training"] = train self.step_results.append(step_result) self.actions.append(eval_result["actions"]) self.rewards_per_agent.append(self.last_reward_per_agent) if train or self.include_test_eval_results or self.record_all_in_test: self.eval_results.append(eval_result) if train or self.record_all_in_test: self.log_prob_of_actions.append(log_prob_of_action_per_agent) self.log_prob_of_expert_action.append(log_prob_of_expert_action_per_agent) return eval_result def clear_history(self) -> None: self.clear_graph_data() self.last_reward_per_agent = None self.rewards_per_agent = [] self.actions = [] self.expert_actions = [] self.step_results = [] self.took_expert_action = [] def clear_graph_data(self): self.log_prob_of_actions = [] self.entropy_per_agent = [] self.values_per_agent = [] self.log_prob_of_expert_action = [] self.log_prob_of_unsafe_action = [] self.eval_results = [] def safety_loss(self, loss_dict): assert self._unsafe_action_ind is not None divisor = 0 numerator = 0 for expert_actions, actions, log_probs in zip( self.expert_actions, self.actions, self.log_prob_of_unsafe_action ): unsafe_but_expert_safe = [ expert_action != self._unsafe_action_ind and action == self._unsafe_action_ind for expert_action, action in zip(expert_actions, actions) ] numerator += sum( log_prob for include, log_prob in zip(unsafe_but_expert_safe, log_probs) if include ) divisor += sum(unsafe_but_expert_safe) if divisor != 0: loss_dict["safety_loss"] = self._safety_loss_lambda * (numerator / divisor) def failed_coordination_loss(self, loss_dict): loss = 0.0 nactions = len(self.episode.available_actions) for er in self.eval_results: m = er["coordination_type_tensor"].squeeze() m_individual = (m == 0).float() m_coord = (m > 0).float() if "coordinated_log_probs" in er: joint_log_probs = joint_log_probability_tensor_from_mixture( log_mixture_weights=er["randomization_log_probs"].view(-1), marginal_log_prob_matrices=er["coordinated_log_probs"], ) elif "joint_logit_all" in er and er["joint_logit_all"]: assert len(er["logit_all"]) == 1 joint_log_probs = er["log_probs_per_agent"][0].view( *[self.environment.num_agents * [nactions]] ) else: assert len(er["logit_all"]) > 1 joint_log_probs = outer_sum( [log_probs.view(-1) for log_probs in er["log_probs_per_agent"]] ) loss -= 0.5 * ( (joint_log_probs * m_individual).sum() / (m_individual.sum()) + (joint_log_probs * m_coord).sum() / (m_coord.sum()) ) loss_dict["failed_coordination"] = loss / len(self.eval_results) def loss( self, train: bool = True, size_average: bool = True, **kwargs ) -> Union[Dict[str, torch.Tensor], None]: loss_dict = {} filtered_expert_log_prob_sums = [ sum(x) for x in self.log_prob_of_expert_action if x is not None ] if len(filtered_expert_log_prob_sums) != 0: loss_dict["xe_loss"] = -sum(filtered_expert_log_prob_sums) / len( filtered_expert_log_prob_sums ) if self._unsafe_action_ind is not None: self.safety_loss(loss_dict) if ( self._use_a3c_loss and (not any(self.took_expert_action)) and all(r is not None for r in self.rewards_per_agent) and all(e is not None for e in self.entropy_per_agent) and all(v is not None for v in self.values_per_agent) ): policy_loss = 0.0 value_loss = 0.0 entropy_loss = 0.0 eval = self.eval_at_current_state() for agent_id in range(len(eval["value_all"])): if self.episode.is_complete(): future_reward_est = 0.0 else: future_reward_est = eval["value_all"][agent_id].item() def extract(inputs: List[Tuple]): return [input[agent_id] for input in inputs] a3c_losses = A3CAgent.a3c_loss( values=extract(self.values_per_agent), rewards=extract(self.rewards_per_agent), log_prob_of_actions=extract(self.log_prob_of_actions), entropies=extract(self.entropy_per_agent), future_reward_est=future_reward_est, gamma=self.a3c_gamma, tau=self.a3c_tau, beta=self.a3c_beta, gpu_id=self.gpu_id, huber_delta=self.huber_delta, ) policy_loss += a3c_losses["policy"] value_loss += a3c_losses["value"] entropy_loss += a3c_losses["entropy"] policy_loss /= len(self.rewards_per_agent) value_loss /= len(self.rewards_per_agent) entropy_loss /= len(self.rewards_per_agent) loss_dict["a3c_policy_loss"] = policy_loss loss_dict["a3c_value_loss"] = value_loss loss_dict["a3c_entropy_loss"] = entropy_loss if self.discourage_failed_coordination: if "a3c_entropy_loss" in loss_dict: loss_dict["a3c_entropy_loss"] = net_util.recursively_detach( loss_dict["a3c_entropy_loss"] ) if type(self.discourage_failed_coordination) in [int, float]: self.failed_coordination_loss(loss_dict) alpha = max( self.a3c_beta, (self.discourage_failed_coordination - self.global_episode_count) / self.discourage_failed_coordination, ) loss_dict["failed_coordination"] *= alpha else: assert type(self.discourage_failed_coordination) is bool self.failed_coordination_loss(loss_dict) return loss_dict
cordial-sync-master
rl_multi_agent/agents.py
from __future__ import division import random import sys import time import traceback import warnings from rl_multi_agent.furnmove_utils import save_agents_path_without_frame_png from rl_multi_agent.multi_agent_utils import ( compute_losses_no_backprop, EndProcessException, ) warnings.simplefilter("always", UserWarning) from setproctitle import setproctitle as ptitle from typing import Optional import networkx import numpy as np import torch import torch.multiprocessing as mp import torch.nn as nn import utils.debug_util as debug_util import matplotlib as mpl mpl.use("Agg") from rl_multi_agent import MultiAgent from rl_multi_agent.experiments.experiment import ExperimentConfig from utils.net_util import recursively_detach np.set_printoptions(linewidth=1000) def test( args, shared_model: nn.Module, experiment: ExperimentConfig, res_queue: mp.Queue, end_flag: mp.Value, worker_num: Optional[int] = None, num_test_workers: Optional[int] = None, ) -> None: if worker_num is not None: ptitle("Test Agent {}".format(worker_num)) if args.test_gpu_ids is not None: gpu_id = args.test_gpu_ids[worker_num % len(args.test_gpu_ids)] else: gpu_id = args.gpu_ids[worker_num % len(args.gpu_ids)] else: ptitle("Test Agent") if args.test_gpu_ids is not None: gpu_id = args.test_gpu_ids[-1] else: gpu_id = args.gpu_ids[-1] torch.manual_seed(args.seed) np.random.seed(args.seed) random.seed(args.seed) if gpu_id >= 0: torch.cuda.manual_seed(args.seed) if "set_worker_num" in dir(experiment.init_test_agent): experiment.init_test_agent.set_worker_num( worker_num=worker_num, total_workers=num_test_workers ) model: nn.Module = experiment.create_model() if gpu_id >= 0: with torch.cuda.device(gpu_id): model.load_state_dict(shared_model.state_dict()) else: model.load_state_dict(shared_model.state_dict()) agent: MultiAgent = experiment.create_agent(model=model, gpu_id=gpu_id) res_sampler = debug_util.ReservoirSampler(3) k = 0 while not end_flag.value: try: last_episode_data = None agent.sync_with_shared(shared_model) while True: agent_iterator = experiment.init_test_agent(agent=agent) try: next(agent_iterator) break except StopIteration as _: warnings.warn("Agent iterator was empty.") while not agent.episode.is_complete(): action_result = agent.act(train=False) if len(agent.eval_results) != 0: agent.eval_results[-1] = recursively_detach(agent.eval_results[-1]) if end_flag.value: raise EndProcessException() last_episode_data = { "iter": agent.episode.num_steps_taken_in_episode(), "probs_per_agent": tuple( probs.detach().cpu()[0, :].numpy() for probs in action_result["probs_per_agent"] ), "actions": action_result["actions"], "action_success": [ action_result["step_result"][i]["action_success"] for i in range(len(action_result["step_result"])) ], "reward": [ action_result["step_result"][i]["reward"] for i in range(len(action_result["step_result"])) ], } if not agent.episode.is_complete(): res_sampler.add(last_episode_data) k += 1 if args.visualize_test_agent: save_agents_path_without_frame_png(agent, k=k, args=args) try: next(agent_iterator) raise Exception("Agent iterator should only yield once.") except StopIteration as e: pass # Saving losses: if agent.record_all_in_test: last_losses = compute_losses_no_backprop(agent=agent) else: last_losses = None info = agent.episode.info() if last_losses is not None: info = {**info, **last_losses} if ( len(agent.eval_results) > 0 and "additional_metrics" in agent.eval_results[0] ): for a_metric in agent.eval_results[0]["additional_metrics"]: info[a_metric] = ( 1.0 / len(agent.eval_results) * sum( er["additional_metrics"][a_metric] for er in agent.eval_results ) ) res_queue.put({k: info[k] for k in info}) if args.verbose and last_episode_data is not None: res_sample = res_sampler.get_sample() print( "\nRandom sample of testing episode in scene {}:".format( agent.environment.scene_name ) ) num_agents = agent.environment.num_agents using_central_agent = num_agents > len( last_episode_data["probs_per_agent"] ) for i in range(num_agents if not using_central_agent else 1): verbose_string = "\nAGENT {}".format(i) for x in sorted( res_sample + [last_episode_data], key=lambda y: y["iter"] ): # TODO: Currently marginalizing to only show the first two agents. # As things become quickly messy. Is there a nice way to visualize # the probabilities for >2 agents? probs_str = np.array2string( x["probs_per_agent"][i] if not using_central_agent else np.reshape( x["probs_per_agent"][i], [ round( len(x["probs_per_agent"][i]) ** (1 / num_agents) ) ] * 2 + [-1], ).sum(-1), precision=2, floatmode="fixed", suppress_small=True, ) if ( len(x["probs_per_agent"][i].squeeze().shape) == 1 and not using_central_agent ): probs_split = probs_str.split(" ") if len(probs_split) > 10: probs_split = ( probs_split[0:5] + ["(..{}..)".format(len(probs_split) - 10)] + probs_split[-5:] ) probs_str = " ".join(probs_split) else: probs_str = "\n" + probs_str + "\n" verbose_string += "\n\tIter {0:>3}: probs {1}, action {2}, success: {3}, reward: {4}".format( x["iter"], probs_str, x["actions"][i], x["action_success"][i], x["reward"][i], ) print(verbose_string) print(info) res_sampler = debug_util.ReservoirSampler(3) except EndProcessException as _: print( "End process signal received in test worker. Quitting...", flush=True, ) sys.exit() except (RuntimeError, ValueError, networkx.exception.NetworkXNoPath) as e: print( "RuntimeError, ValueError, or networkx exception when training, attempting to print traceback, print metadata, and reset." ) print("-" * 60) traceback.print_exc(file=sys.stdout) print("-" * 60) try: print(agent.environment.last_event.metadata) except NameError: print("Unable to print environment metadata.") print("-" * 60) agent.clear_history() agent.repackage_hidden() time.sleep(args.val_timeout)
cordial-sync-master
rl_multi_agent/test_process_runner.py
import warnings from typing import Dict import torch from torch import nn, optim as optim from rl_multi_agent import MultiAgent from utils.misc_util import ensure_shared_grads def compute_losses_no_backprop(agent: MultiAgent): full_loss = None last_losses = {} for k, loss in agent.loss().items(): loss = loss.squeeze() last_losses["loss/" + k] = loss.item() if full_loss is None: full_loss = loss elif (full_loss.is_cuda == loss.is_cuda) and ( not full_loss.is_cuda or full_loss.get_device() == loss.get_device() ): full_loss += loss else: warnings.warn("Loss {} is on a different device!".format(k)) assert full_loss is not None return last_losses class TrainingCompleteException(Exception): pass class EndProcessException(Exception): pass def compute_losses_and_backprop( agent: MultiAgent, shared_model: nn.Module, optimizer: optim.Optimizer, update_lock, gpu: bool, retain_graph: bool = False, skip_backprop: bool = False, ) -> Dict[str, float]: agent.model.zero_grad() full_loss = None last_losses = {} for k, loss in agent.loss().items(): loss = loss.squeeze() last_losses["loss/" + k] = loss.item() if full_loss is None: full_loss = loss elif (full_loss.is_cuda == loss.is_cuda) and ( not full_loss.is_cuda or full_loss.get_device() == loss.get_device() ): full_loss += loss else: warnings.warn("Loss {} is on a different device!".format(k)) if full_loss is not None: if not skip_backprop: full_loss.backward(retain_graph=retain_graph) torch.nn.utils.clip_grad_norm_(agent.model.parameters(), 3, "inf") if update_lock is not None: update_lock.acquire() ensure_shared_grads(agent.model, shared_model, gpu=gpu) optimizer.step() if update_lock is not None: update_lock.release() else: warnings.warn( ( "No loss avaliable for agent.\n" "Episode length: {}\n" "Rewards: {}\n" "Actions: {}\n" "Expert actions: {}\n" ).format( agent.episode.num_steps_taken_in_episode(), agent.rewards_per_agent, agent.actions, agent.expert_actions, ) ) return last_losses
cordial-sync-master
rl_multi_agent/multi_agent_utils.py
import itertools import re import warnings from collections import defaultdict from enum import Enum from typing import Sequence, Tuple, Callable, Dict, Any, Optional, List, Union import frozendict import numpy as np import scipy.spatial import constants from rl_ai2thor.ai2thor_environment import AI2ThorEnvironment from rl_ai2thor.ai2thor_episodes import MultiAgentAI2ThorEpisode from rl_ai2thor.ai2thor_gridworld_environment import AI2ThorLiftedObjectGridEnvironment from utils.misc_util import all_equal STEP_PENALTY = -0.01 FAILED_ACTION_PENALTY = -0.02 JOINT_MOVE_WITH_OBJECT_KEYWORD = "WithObject" JOINT_MOVE_OBJECT_KEYWORD = "MoveLifted" JOINT_ROTATE_KEYWORD = "RotateLifted" EXPLORATION_BONUS = 0.5 JOINT_PASS_PENALTY = -0.1 CARD_DIR_STRS = ["North", "East", "South", "West"] EGO_DIR_STRS = ["Ahead", "Right", "Back", "Left"] ROTATE_OBJECT_ACTIONS = ["RotateLiftedObjectLeft", "RotateLiftedObjectRight"] def allocentric_action_groups(include_move_obj_actions): actions = ( "MoveNorth", "MoveEast", "MoveSouth", "MoveWest", "Pass", "MoveAgentsNorthWithObject", "MoveAgentsEastWithObject", "MoveAgentsSouthWithObject", "MoveAgentsWestWithObject", "RotateLiftedObjectRight", ) if include_move_obj_actions: actions = actions + ( "MoveLiftedObjectNorth", "MoveLiftedObjectEast", "MoveLiftedObjectSouth", "MoveLiftedObjectWest", ) return (actions,) def semiallocentric_action_groups(include_move_obj_actions): actions = ( "MoveAhead", "RotateLeft", "RotateRight", "Pass", "MoveAgentsNorthWithObject", "MoveAgentsEastWithObject", "MoveAgentsSouthWithObject", "MoveAgentsWestWithObject", "RotateLiftedObjectRight", ) if include_move_obj_actions: actions = actions + ( "MoveLiftedObjectNorth", "MoveLiftedObjectEast", "MoveLiftedObjectSouth", "MoveLiftedObjectWest", ) return (actions,) def egocentric_action_groups(include_move_obj_actions): actions = ( "MoveAhead", "RotateLeft", "RotateRight", "Pass", "MoveAgentsAheadWithObject", "MoveAgentsRightWithObject", "MoveAgentsBackWithObject", "MoveAgentsLeftWithObject", "RotateLiftedObjectRight", ) if include_move_obj_actions: actions = actions + ( "MoveLiftedObjectAhead", "MoveLiftedObjectRight", "MoveLiftedObjectBack", "MoveLiftedObjectLeft", ) return (actions,) def egocentric_no_rotate_action_groups(include_move_obj_actions): actions = ( "MoveAhead", "MoveLeft", "MoveRight", "MoveBack", "Pass", "MoveAgentsAheadWithObject", "MoveAgentsRightWithObject", "MoveAgentsBackWithObject", "MoveAgentsLeftWithObject", "RotateLiftedObjectRight", ) if include_move_obj_actions: actions = actions + ( "MoveLiftedObjectAhead", "MoveLiftedObjectRight", "MoveLiftedObjectBack", "MoveLiftedObjectLeft", ) return (actions,) class CoordType(Enum): # DO NOT CHANGE THIS WITHOUT CHANGING coordination_type_tensor to match # INDIVIDUAL should be the smallest value and equal 0 INDIVIDUAL = 0 ROTATE_LIFTED = 1 MOVE_LIFTED_CARD = 2 MOVE_LIFTED_EGO = 3 MOVE_WITH_LIFTED_CARD = 4 MOVE_WITH_LIFTED_EGO = 5 PICKUP = 6 ACTION_TO_COORD_TYPE = frozendict.frozendict( { "Pass": CoordType.INDIVIDUAL, # **{ "Move{}".format(dir): CoordType.INDIVIDUAL for dir in CARD_DIR_STRS + EGO_DIR_STRS }, **{"Rotate{}".format(dir): CoordType.INDIVIDUAL for dir in ["Left", "Right"]}, # **{ "RotateLiftedObject{}".format(dir): CoordType.ROTATE_LIFTED for dir in ["Left", "Right"] }, # **{ "MoveLiftedObject{}".format(dir): CoordType.MOVE_LIFTED_CARD for dir in CARD_DIR_STRS }, # **{ "MoveAgents{}WithObject".format(dir): CoordType.MOVE_WITH_LIFTED_CARD for dir in CARD_DIR_STRS }, # **{ "MoveLiftedObject{}".format(dir): CoordType.MOVE_LIFTED_EGO for dir in EGO_DIR_STRS }, # **{ "MoveAgents{}WithObject".format(dir): CoordType.MOVE_WITH_LIFTED_EGO for dir in EGO_DIR_STRS }, "Pickup": CoordType.PICKUP, } ) def rotate_clockwise(l, n): return l[-n:] + l[:-n] def are_actions_coordinated(env: AI2ThorEnvironment, action_strs: Sequence[str]): action_types = [ACTION_TO_COORD_TYPE[a] for a in action_strs] if not all_equal(action_types): return False action_type = action_types[0] if action_type == CoordType.INDIVIDUAL: return True if action_type in [ CoordType.ROTATE_LIFTED, CoordType.MOVE_LIFTED_CARD, CoordType.MOVE_WITH_LIFTED_CARD, CoordType.PICKUP, ]: return all_equal(action_strs) elif action_type in [CoordType.MOVE_LIFTED_EGO, CoordType.MOVE_WITH_LIFTED_EGO]: action_relative_ind = [None] * env.num_agents for i, action in enumerate(action_strs): for j, dir in enumerate(EGO_DIR_STRS): if dir in action: action_relative_ind[i] = j break if action_relative_ind[i] is None: raise RuntimeError("Ego action but no ego dir in action name?") agent_rot_inds = [ round(env.get_agent_location(agent_id)["rotation"] / 90) for agent_id in range(env.num_agents) ] return all_equal( [ int(dir_rel_ind + agent_rot_ind) % 4 for dir_rel_ind, agent_rot_ind in zip( action_relative_ind, agent_rot_inds ) ] ) else: raise NotImplementedError( "Cannot determine if {} actions are coordinated.".format(action_strs) ) def are_actions_coordinated_with_pass_conditioning( env: AI2ThorEnvironment, action_strs: Sequence[str] ): action_types = [ACTION_TO_COORD_TYPE[a] for a in action_strs] if not all_equal(action_types): return False action_type = action_types[0] if action_type == CoordType.INDIVIDUAL: if "Pass" in action_strs: return True else: return False if action_type in [ CoordType.ROTATE_LIFTED, CoordType.MOVE_LIFTED_CARD, CoordType.MOVE_WITH_LIFTED_CARD, CoordType.PICKUP, ]: return all_equal(action_strs) elif action_type in [CoordType.MOVE_LIFTED_EGO, CoordType.MOVE_WITH_LIFTED_EGO]: action_relative_ind = [None] * env.num_agents for i, action in enumerate(action_strs): for j, dir in enumerate(EGO_DIR_STRS): if dir in action: action_relative_ind[i] = j break if action_relative_ind[i] is None: raise RuntimeError("Ego action but no ego dir in action name?") agent_rot_inds = [ round(env.get_agent_location(agent_id)["rotation"] / 90) for agent_id in range(env.num_agents) ] return all_equal( [ int(dir_rel_ind + agent_rot_ind) % 4 for dir_rel_ind, agent_rot_ind in zip( action_relative_ind, agent_rot_inds ) ] ) else: raise NotImplementedError( "Cannot determine if {} actions are coordinated.".format(action_strs) ) COORDINATION_TYPE_TENSOR_CACHE = {} def coordination_type_tensor( env, action_strings: Tuple[str], action_coordination_checker: Callable[[AI2ThorEnvironment, Sequence[str]], bool], ): agent_rot_inds = tuple( round(env.get_agent_location(i)["rotation"] / 90) % 4 for i in range(env.num_agents) ) key = (agent_rot_inds, action_strings, action_coordination_checker) if key in COORDINATION_TYPE_TENSOR_CACHE: return COORDINATION_TYPE_TENSOR_CACHE[key] coord_tensor = np.full( (len(action_strings),) * env.num_agents, fill_value=-1, dtype=int ) for ind in range(np.product(coord_tensor.shape)): multi_ind = np.unravel_index(ind, coord_tensor.shape) multi_action = tuple(action_strings[i] for i in multi_ind) if action_coordination_checker(env, multi_action): coord_tensor[multi_ind] = int(ACTION_TO_COORD_TYPE[multi_action[0]].value) COORDINATION_TYPE_TENSOR_CACHE[key] = coord_tensor return coord_tensor def lifted_furniture_step( episode, action: str, action_as_int: int, agent_id: int = None, **kwargs ) -> Dict[str, Any]: if any(dir in action for dir in CARD_DIR_STRS): action_dir = None for dir in CARD_DIR_STRS: if dir in action: action_dir = dir break joint_actions_nesw_to_local_index = dict(North=0, East=1, South=2, West=3) joint_actions_aligned_to_agent = ["Ahead", "Right", "Back", "Left"] rotation = episode.environment.get_agent_location(agent_id)["rotation"] clock_90 = round(rotation / 90.0) joint_actions_aligned_to_agent = rotate_clockwise( joint_actions_aligned_to_agent, clock_90 ) # joint_actions_aligned_to_agent is Ahead, Right, Back and Left aligned as per # agent rotation. Eg. for a 90 degree agent the (relative) joint actions would be: # [ # "MoveAgentsLeftWithObject", # "MoveAgentsAheadWithObject", # "MoveAgentsRightWithObject", # "MoveAgentsBackWithObject", # ] # reference: # L # | # B ---> A # | # R # # This converts N,E,S,W (nesw) to 0,1,2,3 and then to L,A,R,B (arbl) joint_action_nesw_index = joint_actions_nesw_to_local_index[action_dir] assert joint_action_nesw_index >= 0 joint_action_arbl = joint_actions_aligned_to_agent[joint_action_nesw_index] action_dict = { "action": action.replace(action_dir, joint_action_arbl), "agentId": agent_id, **kwargs, } else: action_dict = {"action": action, "agentId": agent_id, **kwargs} action_dict["maxAgentsDistance"] = episode.max_distance_from_object episode.environment.step(action_dict) action_success = episode.environment.last_event.events[agent_id].metadata[ "lastActionSuccess" ] episode.environment.last_event.metadata["lastAction"] = action if ( "actionReturn" in episode.environment.last_event.events[agent_id].metadata.keys() ): action_return = episode.environment.last_event.events[agent_id].metadata[ "actionReturn" ] else: action_return = None return { "action": action_as_int, "action_success": action_success, "action_return": action_return, } class MultiAgentMovingWithFurnitureBaseEpisode(MultiAgentAI2ThorEpisode): def __init__( self, env: AI2ThorEnvironment, task_data: Dict[str, Any], max_steps: int, max_distance_from_object: float, frame_type: str = "image", grid_output_shape: Optional[Tuple[int, int]] = None, first_correct_coord_reward: Optional[float] = None, increasing_rotate_penalty: bool = False, step_penalty=STEP_PENALTY, failed_action_penalty=FAILED_ACTION_PENALTY, exploration_bonus=EXPLORATION_BONUS, expert_frame_type: Optional[str] = None, return_likely_successfuly_move_actions: bool = False, return_likely_successfuly_move_actions_for_expert: bool = False, pass_conditioned_coordination: bool = False, **kwargs, ): super(MultiAgentMovingWithFurnitureBaseEpisode, self).__init__( env=env, task_data=task_data, max_steps=max_steps, **kwargs ) self.frame_type = frame_type self.first_correct_coord_reward = first_correct_coord_reward self.increasing_rotate_penalty = increasing_rotate_penalty self.initial_agent_metadata = env.get_all_agent_metadata() self.object_id = task_data["move_obj_id"] self.to_object_id = task_data.get("move_to_obj_id") self.grid_output_shape = grid_output_shape self.visited_xz = set() self.visited_xzr = set() self._max_distance_from_object = max_distance_from_object self.total_reward = 0.0 self.action_counts = defaultdict(int) self.coordinated_actions_taken = set() self.agent_num_sequential_rotates = {} # For now we assume we're moving a Television assert "Television" in self.object_id assert self.to_object_id is None or "Dresser" in self.to_object_id self.step_penalty = step_penalty self.failed_action_penalty = failed_action_penalty self.exploration_bonus = exploration_bonus self.joint_pass_penalty = JOINT_PASS_PENALTY self.expert_frame_type = expert_frame_type self.return_likely_successfuly_move_actions = ( return_likely_successfuly_move_actions ) self.return_likely_successfuly_move_actions_for_expert = ( return_likely_successfuly_move_actions_for_expert ) self.tv_reachable_positions_tensor = None self._tv_reachable_positions_set = None self.pass_conditioned_coordination = pass_conditioned_coordination self.coordinated_action_checker: Callable[ [AI2ThorEnvironment, Sequence[str]], bool ] = None if self.pass_conditioned_coordination: self.coordinated_action_checker = ( are_actions_coordinated_with_pass_conditioning ) else: self.coordinated_action_checker = are_actions_coordinated @property def max_distance_from_object(self): return self._max_distance_from_object @property def tv_reachable_positions_set(self): if self._tv_reachable_positions_set is not None: return self._tv_reachable_positions_set self.environment.step( { "action": "GetReachablePositionsForObject", "objectId": self.object_id, "agentId": 0, } ) self._tv_reachable_positions_set = set( (round(pos["x"], 2), round(pos["z"], 2)) for pos in self.environment.last_event.metadata["actionReturn"] ) return self._tv_reachable_positions_set def _points_set_for_rotation(self, obj_id, obj_points_dict): obj = self.environment.get_object_by_id(obj_id, agent_id=0) obj_rot = 90 * int(obj["rotation"]["y"] / 90) return set( ( round(obj["position"]["x"] + t[0], 2), round(obj["position"]["z"] + t[1], 2), ) for t in obj_points_dict[obj_rot] ) def current_object_points_set(self): return self._points_set_for_rotation( self.object_id, constants.TELEVISION_ROTATION_TO_OCCUPATIONS ) def current_to_object_points_set(self): return self._points_set_for_rotation( self.to_object_id, constants.TV_STAND_ROTATION_TO_OCCUPATIONS ) def current_distance_between_lifted_and_goal_objects(self): move_obj = self.environment.get_object_by_id(self.object_id, agent_id=0) move_to_obj = self.environment.get_object_by_id(self.to_object_id, agent_id=0) return round( abs(move_obj["position"]["x"] - move_to_obj["position"]["x"]) + abs(move_obj["position"]["z"] - move_to_obj["position"]["z"]), 2, ) def coordination_type_tensor(self): return coordination_type_tensor( self.environment, self.available_actions, self.coordinated_action_checker ) def _increment_num_steps_taken_in_episode_by_n(self, n) -> None: self._num_steps_taken_in_episode += n def info(self): def cammel_to_snake(name): # See https://stackoverflow.com/questions/1175208/elegant-python-function-to-convert-camelcase-to-snake-case s1 = re.sub("(.)([A-Z][a-z]+)", r"\1_\2", name) return re.sub("([a-z0-9])([A-Z])", r"\1_\2", s1).lower() info = { **super(MultiAgentMovingWithFurnitureBaseEpisode, self).info(), "num_pass": self.action_counts["Pass"], "num_rotation": self.action_counts["Rotate"], "reward": self.total_reward, "percent_points_visited": len(self.visited_xz) / len(self.environment.initially_reachable_points) * 100.0, } for k_attempt in list(self.action_counts.keys()): if "Attempted" in k_attempt: k_base = k_attempt.replace("Attempted", "") k_success = k_attempt.replace("Attempted", "Successful") n_attempt = self.action_counts[k_attempt] n_success = self.action_counts[k_success] info[cammel_to_snake(k_base) + "/attempted/count"] = n_attempt if n_attempt > 0: info[cammel_to_snake(k_base) + "/successful/percent"] = 100 * ( n_success / n_attempt ) return info def add_likely_successful_move_actions(self, states, frame_type): assert frame_type == "allocentric-tensor-centered-at-tv" tensor = states[0]["frame"] agent_reachable = tensor[0] tv_reachable = tensor[-2] a0_pos_mat = tensor[1:5].sum(0) != 0 a1_pos_mat = tensor[5:9].sum(0) != 0 tv_pos_mat = tensor[-3] != 0 try: a0row, a0col = tuple(zip(*np.where(a0_pos_mat)))[0] a1row, a1col = tuple(zip(*np.where(a1_pos_mat)))[0] all_tv_pos = np.stack(np.where(tv_pos_mat), axis=1) tv_row, tv_col = np.array(np.median(all_tv_pos, axis=0), dtype=int) would_succeed = [] moves = [(-1, 0), (0, 1), (1, 0), (0, -1)] # Move with tv for m in moves: r_off, c_off = m try: would_succeed.append( agent_reachable[a0row + r_off, a0col + c_off] and agent_reachable[a1row + r_off, a1col + c_off] and tv_reachable[tv_row + r_off, tv_col + c_off] ) except IndexError as _: would_succeed.append(False) # Move tv alone for m in moves: r_off, c_off = m shifted_tv_pos = all_tv_pos + np.array((m,)) would_succeed.append( tv_reachable[a0row + r_off, a0col + c_off] and ( not np.any( np.abs(shifted_tv_pos - np.array(((a0row, a0col),))).sum(1) == 0 ) ) and ( not np.any( np.abs(shifted_tv_pos - np.array(((a1row, a1col),))).sum(1) == 0 ) ) ) would_succeed = [bool(w) for w in would_succeed] for s in states: s["would_coordinated_action_succeed"] = [bool(w) for w in would_succeed] except IndexError as _: for s in states: s["would_coordinated_action_succeed"] = [False] * 4 warnings.warn( "\nCould not compute whether coordinated actions would succeed.\nIn scene {}, agent positions {} and {}. Current tensor: {}".format( self.environment.scene_name, self.environment.get_agent_location(0), self.environment.get_agent_location(1), tensor, ) ) def states_for_expert_agents(self): states = self.states_for_agents(self.expert_frame_type) if self.return_likely_successfuly_move_actions_for_expert: if "would_coordinated_action_succeed" not in states[0]: self.add_likely_successful_move_actions( states=states, frame_type=self.expert_frame_type ) return states def _step( self, action_as_int: int, agent_id: int = None, **kwargs ) -> Dict[str, Any]: return lifted_furniture_step( episode=self, action=self.available_actions[action_as_int], action_as_int=action_as_int, agent_id=agent_id, **kwargs, ) def multi_step(self, actions_as_ints: Tuple[int, ...]) -> List[Dict[str, Any]]: assert not self.is_paused() and not self.is_complete() self._increment_num_steps_taken_in_episode_by_n(self.environment.num_agents) available_actions = self.available_actions # if all actions_as_ints are valid for this episode's available_actions assert all( [action_id < len(available_actions) for action_id in actions_as_ints] ) actions_as_strings = tuple( [available_actions[action_id] for action_id in actions_as_ints] ) for agent_id, action in enumerate(actions_as_strings): if agent_id not in self.agent_num_sequential_rotates: self.agent_num_sequential_rotates[agent_id] = 0 if [action == ra for ra in ["RotateRight", "RotateLeft"]]: self.agent_num_sequential_rotates[agent_id] += 1 elif action.lower() != "pass": self.agent_num_sequential_rotates[agent_id] = 0 before_object_metadata = self.environment.get_object_by_id( object_id=self.object_id, agent_id=0 ) before_object_location = { "x": before_object_metadata["position"]["x"], "y": before_object_metadata["position"]["y"], "z": before_object_metadata["position"]["z"], "rotation": before_object_metadata["rotation"]["y"], } step_results = [] before_info = ( None if self.before_step_function is None else self.before_step_function(episode=self) ) for i, action in enumerate(actions_as_strings): step_results.append( { "action": actions_as_ints[i], "action_as_string": action, "reward": self.step_penalty, } ) # If an action is for movement with object is_joint_move_with = tuple( [ JOINT_MOVE_WITH_OBJECT_KEYWORD.lower() in action.lower() for action in actions_as_strings ] ) # If an action is for moving the object is_joint_move_object = tuple( [ JOINT_MOVE_OBJECT_KEYWORD.lower() in action.lower() for action in actions_as_strings ] ) # If joint rotate action is_joint_rotate = tuple( [ JOINT_ROTATE_KEYWORD.lower() in action.lower() for action in actions_as_strings ] ) # Correct coordination? correct_coordination = self.coordinated_action_checker( self.environment, actions_as_strings ) if correct_coordination and ( all(is_joint_rotate) or all(is_joint_move_object) or all(is_joint_move_with) ): self.coordinated_multi_step( actions_as_ints=actions_as_ints, actions_as_strings=actions_as_strings, available_actions=available_actions, step_results=step_results, ) else: if not self.pass_conditioned_coordination: # Handles the old coordination setting self.uncoordinated_multi_step( actions_as_strings=actions_as_strings, available_actions=available_actions, is_joint_action=list( any(z) for z in zip( is_joint_move_with, is_joint_move_object, is_joint_rotate ) ), step_results=step_results, ) elif "Pass" in actions_as_strings: # (Pass, X) can always go through the uncoordinated_multi_step # If X is joint, it would lead to failed_penalty error self.uncoordinated_multi_step( actions_as_strings=actions_as_strings, available_actions=available_actions, is_joint_action=list( any(z) for z in zip( is_joint_move_with, is_joint_move_object, is_joint_rotate ) ), step_results=step_results, ) else: # (Non pass, Non pass) actions which aren't coordindated (joint, joint) for agent_id, action in enumerate(actions_as_strings): step_results[agent_id]["reward"] += self.failed_action_penalty step_results[agent_id]["action_success"] = False self.total_reward += sum(sr["reward"] for sr in step_results) after_object_metadata = self.environment.get_object_by_id( object_id=self.object_id, agent_id=0 ) after_object_location = { "x": after_object_metadata["position"]["x"], "y": after_object_metadata["position"]["y"], "z": after_object_metadata["position"]["z"], "rotation": after_object_metadata["rotation"]["y"], } object_location = { self.object_id: { "before_location": before_object_location, "after_location": after_object_location, } } for sr in step_results: sr["object_location"] = object_location if self.after_step_function is not None: self.after_step_function( step_results=step_results, before_info=before_info, episode=self ) return step_results # @profile def coordinated_multi_step( self, actions_as_ints, actions_as_strings, available_actions, step_results ): if self.first_correct_coord_reward is not None: assert type(actions_as_ints) == tuple if actions_as_ints not in self.coordinated_actions_taken: self.coordinated_actions_taken.add(actions_as_ints) for sr in step_results: sr["reward"] += self.first_correct_coord_reward found_substring = False action_count_string = None for substr in CARD_DIR_STRS + EGO_DIR_STRS: if substr in actions_as_strings[0]: found_substring = True action_count_string = ( actions_as_strings[0].replace(substr, "") + "Attempted" ) break if not found_substring: raise Exception("Could not construct action_count_string") self.action_counts[action_count_string] += self.environment.num_agents step_result = self._step( action_as_int=available_actions.index(actions_as_strings[0]), agent_id=0, objectId=self.object_id, maxAgentsDistance=self._max_distance_from_object, ) action_success = step_result["action_success"] self.action_counts[action_count_string.replace("Attempted", "Successful")] += ( action_success * self.environment.num_agents ) object = self.environment.get_object_by_id(self.object_id, agent_id=0) object_position = object["position"] object_pos_rot_tuple = ( round(object_position["x"], 2), round(object_position["z"], 2), round(object["rotation"]["y"] / 90) % 2, ) object_pos_tuple = object_pos_rot_tuple[:2] additional_reward = self.failed_action_penalty * (1 - action_success) is_new_object_rotation = False if ( object_pos_tuple in self.visited_xz and object_pos_rot_tuple not in self.visited_xzr ): is_new_object_rotation = True additional_reward += 0.5 * self.exploration_bonus is_new_object_position = False if object_pos_tuple not in self.visited_xz: is_new_object_position = True additional_reward += self.exploration_bonus self.visited_xz.add(object_pos_tuple) self.visited_xzr.add(object_pos_rot_tuple) for srs in step_results: srs["successfully_coordinated"] = True srs["object_pos_rot_tuple"] = object_pos_rot_tuple srs["is_new_object_position"] = is_new_object_position srs["is_new_object_rotation"] = is_new_object_rotation srs["action_success"] = action_success srs["reward"] += additional_reward return step_results # @profile def uncoordinated_multi_step( self, actions_as_strings, available_actions, is_joint_action, step_results ): for agent_id, action in enumerate(actions_as_strings): additional_reward = 0.0 action_success = False if is_joint_action[agent_id]: additional_reward += self.failed_action_penalty elif action == "Pass": additional_reward += 0.0 action_success = True self.action_counts["Pass"] += 1 self._step( action_as_int=available_actions.index(action), agent_id=agent_id ) elif action == "RotateLeft" or action == "RotateRight": if self.increasing_rotate_penalty: additional_reward += max( -1, self.step_penalty * ( 2 ** ((self.agent_num_sequential_rotates[agent_id] // 4)) - 1 ), ) action_success = True self.action_counts["Rotate"] += 1 self._step( action_as_int=available_actions.index(action), agent_id=agent_id ) elif "Move" in action: # Based on the order of conditions, this will be executed for single # agent move actions, bucketed under MoveAheadAttempted/Successful # Could be: # MoveAhead, MoveRight, MoveBack, MoveLeft or # MoveNorth, MoveEast, MoveSouth, MoveWest self.action_counts["MoveAheadAttempted"] += 1 sr = self._step( action_as_int=available_actions.index(action), agent_id=agent_id, maxAgentsDistance=self._max_distance_from_object, objectId=self.object_id, ) action_success = sr["action_success"] self.action_counts["MoveAheadSuccessful"] += 1 * action_success additional_reward += self.failed_action_penalty * (1 - action_success) else: raise Exception( "Something wrong with conditions for action {}".format(action) ) step_results[agent_id]["reward"] += additional_reward step_results[agent_id]["action_success"] = action_success return step_results def expert_states_for_agents(self): return self.states_for_agents(frame_type=self.expert_frame_type) def states_for_agents(self, frame_type: Optional[str] = None): frames = [] if frame_type is None: frame_type = self.frame_type if frame_type == "image": return super( MultiAgentMovingWithFurnitureBaseEpisode, self ).states_for_agents() elif frame_type == "grid-matrix": # Reachable, unreachable and agent locations are marked ( matrix_all_agents, point_to_element_map, ) = self.environment.get_current_occupancy_matrices_two_agents( padding=0.5, use_initially_reachable_points_matrix=True ) # TODO: Edit to have generic n-agent version of this # Configured for two agents only assert self.environment.num_agents == 2 # Mark visited locations nskipped = 0 for point_tuple in self.visited_xz: if point_tuple not in point_to_element_map: nskipped += 1 continue row, col = point_to_element_map[point_tuple] # Shouldn't overwrite agent embedding information or goal object information if not ( matrix_all_agents[0][row, col] in [ constants.REACHABLE_SYM, constants.UNREACHABLE_SYM, constants.NO_INFO_SYM, ] and matrix_all_agents[1][row, col] in [ constants.REACHABLE_SYM, constants.UNREACHABLE_SYM, constants.NO_INFO_SYM, ] ): continue matrix_all_agents[0][row, col] = constants.VISITED_SYM matrix_all_agents[1][row, col] = constants.VISITED_SYM if nskipped > 10: warnings.warn( "Skipping many object's visited points ({}) in scene {}.".format( nskipped, self.environment.scene_name ) ) # Mark goal object locations nskipped = 0 object_points_set = self.current_object_points_set() agent_position_consts = { constants.AGENT_OTHER_0, constants.AGENT_OTHER_90, constants.AGENT_OTHER_180, constants.AGENT_OTHER_270, constants.AGENT_SELF_0, constants.AGENT_SELF_90, constants.AGENT_SELF_180, constants.AGENT_SELF_270, } for point_tuple in object_points_set: if point_tuple not in point_to_element_map: nskipped += 1 continue row, col = point_to_element_map[point_tuple] if matrix_all_agents[0][row, col] not in agent_position_consts: matrix_all_agents[0][row, col] = constants.GOAL_OBJ_SYM if matrix_all_agents[1][row, col] not in agent_position_consts: matrix_all_agents[1][row, col] = constants.GOAL_OBJ_SYM if nskipped == len(object_points_set): raise RuntimeError( "Skipped all object points in scene {}.".format( self.environment.scene_name ) ) elif nskipped > 10: warnings.warn( "Skipping many object points ({}) in scene {}.".format( nskipped, self.environment.scene_name ) ) if self.to_object_id is not None: raise NotImplementedError( "to_object_id must be None when using frame_tupe=='grid-matrix'" ) for agent_id in range(self.environment.num_agents): matrix_allo_per_agent = self.environment.current_allocentric_matrix_frame( agent_id, matrix_all_agents[agent_id], point_to_element_map, 10 ) frames.append(matrix_allo_per_agent) elif frame_type in [ "allocentric-tensor", "allocentric-tensor-centered-at-tv", "egocentric-tensor", "allocentric-tensor-no-rotations", ]: if frame_type in [ "allocentric-tensor", "allocentric-tensor-centered-at-tv", "egocentric-tensor", ]: # Reachable, unreachable and agent locations are marked ( state_tensor_per_agent, point_to_element_map, ) = self.environment.get_current_multi_agent_occupancy_tensors( padding=1.0, use_initially_reachable_points_matrix=True ) elif frame_type in ["allocentric-tensor-no-rotations"]: ( state_tensor_per_agent, point_to_element_map, ) = self.environment.get_current_multi_agent_occupancy_tensors_no_rot( padding=1.0, use_initially_reachable_points_matrix=True ) else: raise Exception("Check conditions!") nrow_ncol = state_tensor_per_agent[0].shape[-2:] # TODO: Edit to have generic n-agent version of this # Configured for two agents only assert self.environment.num_agents == 2 # Mark visited locations nskipped = 0 visited_tensor = np.zeros((1, *nrow_ncol), dtype=bool) for point_tuple in self.visited_xz: if point_tuple not in point_to_element_map: nskipped += 1 continue row, col = point_to_element_map[point_tuple] visited_tensor[0, row, col] = True if nskipped > 10: warnings.warn( "Skipping many object's visited points ({}) in scene {}.".format( nskipped, self.environment.scene_name ) ) # Mark goal object locations nskipped = 0 object_points_set = self.current_object_points_set() object_tensor = np.zeros((1, *nrow_ncol), dtype=bool) for point_tuple in object_points_set: if point_tuple not in point_to_element_map: nskipped += 1 continue row, col = point_to_element_map[point_tuple] object_tensor[0, row, col] = True if nskipped == len(object_points_set): raise RuntimeError( "Skipped all object points in scene {}.".format( self.environment.scene_name ) ) elif nskipped > 10: warnings.warn( "Skipping many object points ({}) in scene {}.".format( nskipped, self.environment.scene_name ) ) if self.tv_reachable_positions_tensor is None: self.tv_reachable_positions_tensor = np.zeros( (1, *nrow_ncol), dtype=bool ) nskipped = 0 for point_tuple in self.tv_reachable_positions_set: if point_tuple not in point_to_element_map: nskipped += 1 continue row, col = point_to_element_map[point_tuple] self.tv_reachable_positions_tensor[0, row, col] = True to_object_tensor_tuple = tuple() if self.to_object_id is not None: nskipped = 0 to_object_points_set = self.current_to_object_points_set() to_object_tensor = np.zeros((1, *nrow_ncol), dtype=bool) for point_tuple in to_object_points_set: if point_tuple not in point_to_element_map: nskipped += 1 continue row, col = point_to_element_map[point_tuple] to_object_tensor[0, row, col] = True if nskipped == len(to_object_points_set): raise RuntimeError( "Skipped all to_object points in scene {}.".format( self.environment.scene_name ) ) elif nskipped > 10: warnings.warn( "Skipping many to_object points ({}) in scene {}.".format( nskipped, self.environment.scene_name ) ) to_object_tensor_tuple = (to_object_tensor,) if frame_type == "egocentric-tensor": reachable = state_tensor_per_agent[0][:1] agent_rot_inds = [] other_agent_position_tensors = [] for agent_id, state in enumerate(state_tensor_per_agent): agent_rot_inds.append( round( self.environment.get_agent_location(agent_id)["rotation"] / 90 ) % 4 ) other_agent_position_tensor = state[5:9] if agent_rot_inds[-1] == 0: order = [0, 1, 2, 3] elif agent_rot_inds[-1] == 1: order = [1, 2, 3, 0] elif agent_rot_inds[-1] == 2: order = [2, 3, 0, 1] elif agent_rot_inds[-1] == 3: order = [3, 0, 1, 2] else: raise NotImplementedError() other_agent_position_tensors.append( np.stack( [other_agent_position_tensor[i] for i in order], axis=0 ) ) for agent_id in range(self.environment.num_agents): visibility_mask = np.zeros((1, *nrow_ncol), dtype=bool) assert ( len( self.environment.last_event.events[agent_id].metadata[ "visibleRange" ] ) == 26 ) visible_tuples = [ (p["x"], p["z"]) for p in self.environment.last_event.events[agent_id].metadata[ "visibleRange" ] ] visible_hull = scipy.spatial.Delaunay(np.array(visible_tuples)) for point_tuple in point_to_element_map: if visible_hull.find_simplex(point_tuple) >= 0: row, col = point_to_element_map[point_tuple] visibility_mask[0, row, col] = True tensor = np.concatenate( ( self.tv_reachable_positions_tensor, reachable, visited_tensor, visibility_mask, other_agent_position_tensors[agent_id], object_tensor, ) + to_object_tensor_tuple, axis=0, ) tensor *= visibility_mask outsize = 15 padding = outsize - 1 assert outsize % 2 == 1 tensor = np.pad( tensor, [(0, 0), (padding, padding), (padding, padding)], "constant", constant_values=False, ) agent_pos = self.environment.get_agent_location(agent_id=agent_id) agent_x = round(agent_pos["x"], 2) agent_z = round(agent_pos["z"], 2) pos_tuple = (agent_x, agent_z) row, col = point_to_element_map[pos_tuple] row = row + padding col = col + padding half_pad = padding // 2 if agent_rot_inds[agent_id] == 0: egocentric_tensor = tensor[ :, (row - padding) : (row + 1), (col - half_pad) : (col + half_pad + 1), ] elif agent_rot_inds[agent_id] == 1: egocentric_tensor = tensor[ :, (row - half_pad) : (row + half_pad + 1), col : (col + padding + 1), ] egocentric_tensor = np.rot90(egocentric_tensor, axes=(1, 2)) elif agent_rot_inds[agent_id] == 2: egocentric_tensor = tensor[ :, row : (row + padding + 1), (col - half_pad) : (col + half_pad + 1), ] egocentric_tensor = np.rot90( egocentric_tensor, k=2, axes=(1, 2) ) elif agent_rot_inds[agent_id] == 3: egocentric_tensor = tensor[ :, (row - half_pad) : (row + half_pad + 1), (col - padding) : (col + 1), ] egocentric_tensor = np.rot90( egocentric_tensor, k=3, axes=(1, 2) ) else: raise NotImplementedError() frames.append(np.array(egocentric_tensor, dtype=float)) else: state_tensor_per_agent = [ np.concatenate( ( state, visited_tensor, object_tensor, self.tv_reachable_positions_tensor, ) + to_object_tensor_tuple, axis=0, ) for state in state_tensor_per_agent ] if frame_type in [ "allocentric-tensor", "allocentric-tensor-no-rotations", ]: for agent_id in range(self.environment.num_agents): agent_pos = self.environment.get_agent_location( agent_id=agent_id ) agent_x = round(agent_pos["x"], 2) agent_z = round(agent_pos["z"], 2) pos_tuple = (agent_x, agent_z) row, col = point_to_element_map[pos_tuple] tensor = np.pad( state_tensor_per_agent[agent_id], [(0, 0), (10, 10), (10, 10)], "constant", constant_values=False, ) allocentric_tensor = tensor[ :, row : (row + 21), col : (col + 21) ] frames.append(np.array(allocentric_tensor, dtype=float)) elif frame_type == "allocentric-tensor-centered-at-tv": object_metadata = self.environment.get_object_by_id( object_id=self.object_id, agent_id=0 ) object_location = { "x": object_metadata["position"]["x"], "y": object_metadata["position"]["y"], "z": object_metadata["position"]["z"], "rotation": object_metadata["rotation"]["y"], } for agent_id in range(self.environment.num_agents): object_x = round(object_location["x"], 2) object_z = round(object_location["z"], 2) pos_tuple = (object_x, object_z) row, col = point_to_element_map[pos_tuple] tensor = np.pad( state_tensor_per_agent[agent_id], [(0, 0), (10, 10), (10, 10)], "constant", constant_values=False, ) allocentric_tensor = tensor[ :, row : (row + 21), col : (col + 21) ] frames.append(np.array(allocentric_tensor, dtype=float)) else: raise Exception("something wrong with conditions") else: raise Exception("Invalid frame type {}.".format(frame_type)) states = [] for agent_id in range(self.environment.num_agents): last_action = ( None if self._last_actions is None else self._last_actions[agent_id] ) last_action_success = ( None if self._last_actions_success is None else self._last_actions_success[agent_id] ) states.append( { "last_action": last_action, "last_action_success": last_action_success, "frame": frames[agent_id], } ) if ( frame_type == self.frame_type and self.return_likely_successfuly_move_actions ) or ( frame_type == self.expert_frame_type and self.return_likely_successfuly_move_actions_for_expert ): self.add_likely_successful_move_actions( states=states, frame_type=frame_type ) return states class FurnMoveEpisode(MultiAgentMovingWithFurnitureBaseEpisode): def __init__( self, env: AI2ThorEnvironment, task_data: Dict[str, Any], max_steps: int, max_distance_from_object: float, min_dist_to_to_object: float, include_move_obj_actions: bool = False, reached_target_reward: float = 1.0, moved_closer_reward: float = 0.1, **kwargs, ): super().__init__( env=env, task_data=task_data, max_steps=max_steps, max_distance_from_object=max_distance_from_object, **kwargs, ) self.include_move_obj_actions = include_move_obj_actions self.reached_target_reward = reached_target_reward self.moved_closer_reward = moved_closer_reward self.min_dist_to_to_object = min_dist_to_to_object self.closest_to_object_achieved = ( self.current_distance_between_lifted_and_goal_objects() ) self.initial_move_obj = self.environment.get_object_by_id( self.object_id, agent_id=0 ) self.initial_move_to_obj = self.environment.get_object_by_id( self.to_object_id, agent_id=0 ) @property def available_action_groups(self) -> Tuple[Tuple[str, ...], ...]: return self.class_available_action_groups( include_move_obj_actions=self.include_move_obj_actions ) @classmethod def class_available_action_groups( cls, include_move_obj_actions: bool = False, **kwargs ) -> Tuple[Tuple[str, ...], ...]: raise NotImplementedError def info(self): info = super(FurnMoveEpisode, self).info() info["navigation/reached_target"] = self.reached_terminal_state() info[ "navigation/final_distance" ] = self.current_distance_between_lifted_and_goal_objects() initial_manhattan_distance = round( abs( self.initial_move_obj["position"]["x"] - self.initial_move_to_obj["position"]["x"] ) + abs( self.initial_move_obj["position"]["z"] - self.initial_move_to_obj["position"]["z"] ), 2, ) initial_manhattan_steps = round( initial_manhattan_distance / self.environment.grid_size ) path_length = self.num_steps_taken_in_episode() / self.environment.num_agents info["navigation/spl_manhattan"] = info["navigation/reached_target"] * ( (initial_manhattan_steps + 0.0001) / (max(initial_manhattan_steps, path_length) + 0.0001) ) info["navigation/initial_manhattan_steps"] = initial_manhattan_steps return info def reached_terminal_state(self) -> bool: return self.closest_to_object_achieved < self.min_dist_to_to_object def next_expert_action(self) -> Tuple[Union[int, None], ...]: # No expert supervision for exploring the environment. expert_actions = [None] * self.environment.num_agents return tuple(expert_actions) def coordinated_multi_step( self, actions_as_ints, actions_as_strings, available_actions, step_results ): super(FurnMoveEpisode, self).coordinated_multi_step( actions_as_ints=actions_as_ints, actions_as_strings=actions_as_strings, available_actions=available_actions, step_results=step_results, ) dist = self.current_distance_between_lifted_and_goal_objects() additional_reward = 0.0 if self.reached_terminal_state(): additional_reward += self.reached_target_reward elif dist < self.closest_to_object_achieved: additional_reward += self.moved_closer_reward self.closest_to_object_achieved = min(dist, self.closest_to_object_achieved) for sr in step_results: sr["reward"] += additional_reward return step_results class FurnMoveAllocentricEpisode(FurnMoveEpisode): def __init__( self, env: AI2ThorEnvironment, task_data: Dict[str, Any], max_steps: int, max_distance_from_object: float, include_move_obj_actions: bool = False, reached_target_reward: float = 1.0, moved_closer_reward: float = 0.1, **kwargs, ): assert kwargs["frame_type"] == "allocentric-tensor" super().__init__( env=env, task_data=task_data, max_steps=max_steps, max_distance_from_object=max_distance_from_object, include_move_obj_actions=include_move_obj_actions, reached_target_reward=reached_target_reward, moved_closer_reward=moved_closer_reward, **kwargs, ) @classmethod def class_available_action_groups( cls, include_move_obj_actions: bool = False, **kwargs ) -> Tuple[Tuple[str, ...], ...]: return semiallocentric_action_groups( include_move_obj_actions=include_move_obj_actions ) class FurnMoveEgocentricEpisode(FurnMoveEpisode): def __init__( self, env: AI2ThorEnvironment, task_data: Dict[str, Any], max_steps: int, max_distance_from_object: float, include_move_obj_actions: bool = False, reached_target_reward: float = 1.0, moved_closer_reward: float = 0.1, **kwargs, ): assert "frame_type" in kwargs assert kwargs["frame_type"] in ["egocentric-tensor", "image"] super().__init__( env=env, task_data=task_data, max_steps=max_steps, max_distance_from_object=max_distance_from_object, include_move_obj_actions=include_move_obj_actions, reached_target_reward=reached_target_reward, moved_closer_reward=moved_closer_reward, **kwargs, ) if "track_time_averaged_action_pairs" in kwargs: self.track_time_averaged_action_pairs = kwargs[ "track_time_averaged_action_pairs" ] num_actions = len(self.available_actions) self.action_pairs_matrix_attempted = np.zeros( (num_actions, num_actions), dtype=float ) self.action_pairs_matrix_successful = np.zeros( (num_actions, num_actions), dtype=float ) else: self.track_time_averaged_action_pairs = False @classmethod def class_available_action_groups( cls, include_move_obj_actions: bool = False, **kwargs ) -> Tuple[Tuple[str, ...], ...]: return egocentric_action_groups( include_move_obj_actions=include_move_obj_actions ) def multi_step(self, actions_as_ints: Tuple[int, ...]): step_results = super(FurnMoveEgocentricEpisode, self).multi_step( actions_as_ints ) if self.track_time_averaged_action_pairs: assert self.environment.num_agents == 2 self.action_pairs_matrix_attempted[ actions_as_ints[0], actions_as_ints[1] ] += 1 self.action_pairs_matrix_successful[ actions_as_ints[0], actions_as_ints[1] ] += int(all([sr["action_success"] for sr in step_results])) return step_results def info(self): info = super(FurnMoveEgocentricEpisode, self).info() if self.track_time_averaged_action_pairs: total_actions = np.sum(self.action_pairs_matrix_attempted) info[ "action_pairs_matrix_attempted" ] = self.action_pairs_matrix_attempted / (total_actions + 0.0001) info[ "action_pairs_matrix_successful" ] = self.action_pairs_matrix_successful / (total_actions + 0.0001) return info class FurnMoveEgocentricFastGridEpisode(FurnMoveEpisode): def __init__( self, env: AI2ThorLiftedObjectGridEnvironment, task_data: Dict[str, Any], max_steps: int, max_distance_from_object: float, include_move_obj_actions: bool = False, reached_target_reward: float = 1.0, moved_closer_reward: float = 0.1, **kwargs, ): assert kwargs["frame_type"] in [ "fast-egocentric-tensor", "fast-egocentric-relative-tensor", ] if "visualize_test_gridworld" in kwargs: self.visualize_test_gridworld = kwargs["visualize_test_gridworld"] assert "visualizing_ms" in kwargs self.visualizing_ms = kwargs["visualizing_ms"] else: self.visualize_test_gridworld = False self.visualizing_ms = None super().__init__( env=env, task_data=task_data, max_steps=max_steps, max_distance_from_object=max_distance_from_object, include_move_obj_actions=include_move_obj_actions, reached_target_reward=reached_target_reward, moved_closer_reward=moved_closer_reward, **kwargs, ) if "track_time_averaged_action_pairs" in kwargs: self.track_time_averaged_action_pairs = kwargs[ "track_time_averaged_action_pairs" ] num_actions = len(self.available_actions) self.action_pairs_matrix_attempted = np.zeros( (num_actions, num_actions), dtype=float ) self.action_pairs_matrix_successful = np.zeros( (num_actions, num_actions), dtype=float ) else: self.track_time_averaged_action_pairs = False @classmethod def class_available_action_groups( cls, include_move_obj_actions: bool = False, **kwargs ) -> Tuple[Tuple[str, ...], ...]: return egocentric_action_groups( include_move_obj_actions=include_move_obj_actions ) @property def tv_reachable_positions_set(self): if self._tv_reachable_positions_set is not None: return self._tv_reachable_positions_set self.environment.step( { "action": "GetReachablePositionsForObject", "objectId": self.object_id, "agentId": 0, } ) self._tv_reachable_positions_set = set( (round(pos["x"], 2), round(pos["z"], 2)) for pos in itertools.chain.from_iterable( self.environment.last_event.metadata["actionReturn"].values() ) ) return self._tv_reachable_positions_set def states_for_agents(self, frame_type: Optional[str] = None): frames = [] if frame_type is None: frame_type = self.frame_type if frame_type in ["fast-egocentric-tensor", "fast-egocentric-relative-tensor"]: # Reachable, unreachable and agent locations are marked # Since it's the same cost, may as well set # use_initially_reachable_points_matrix to False ( state_tensor_per_agent, point_to_element_map, ) = self.environment.get_current_multi_agent_occupancy_tensors( use_initially_reachable_points_matrix=False ) nrow_ncol = state_tensor_per_agent[0].shape[-2:] # Mark visited locations nskipped = 0 visited_tensor = np.zeros((1, *nrow_ncol), dtype=bool) for point_tuple in self.visited_xz: if point_tuple not in point_to_element_map: nskipped += 1 continue row, col = point_to_element_map[point_tuple] visited_tensor[0, row, col] = True if nskipped > 10: warnings.warn( "Skipping many object's visited points ({}) in scene {}.".format( nskipped, self.environment.scene_name ) ) # Mark goal object locations nskipped = 0 object_points_set = self.current_object_points_set() object_tensor = np.zeros((1, *nrow_ncol), dtype=bool) for point_tuple in object_points_set: if point_tuple not in point_to_element_map: nskipped += 1 continue row, col = point_to_element_map[point_tuple] object_tensor[0, row, col] = True if nskipped == len(object_points_set): raise RuntimeError( "Skipped all object points in scene {}.".format( self.environment.scene_name ) ) elif nskipped > 10: warnings.warn( "Skipping many object points ({}) in scene {}.".format( nskipped, self.environment.scene_name ) ) # TODO: This can be replaced with rotation_to_lifted_object_reachable_position_masks if self.tv_reachable_positions_tensor is None: self.tv_reachable_positions_tensor = np.zeros( (1, *nrow_ncol), dtype=bool ) nskipped = 0 for point_tuple in self.tv_reachable_positions_set: if point_tuple not in point_to_element_map: nskipped += 1 continue row, col = point_to_element_map[point_tuple] self.tv_reachable_positions_tensor[0, row, col] = True to_object_tensor_tuple = tuple() if self.to_object_id is not None: nskipped = 0 to_object_points_set = self.current_to_object_points_set() to_object_tensor = np.zeros((1, *nrow_ncol), dtype=bool) for point_tuple in to_object_points_set: if point_tuple not in point_to_element_map: nskipped += 1 continue row, col = point_to_element_map[point_tuple] to_object_tensor[0, row, col] = True if nskipped == len(to_object_points_set): raise RuntimeError( "Skipped all to_object points in scene {}.".format( self.environment.scene_name ) ) elif nskipped > 10: warnings.warn( "Skipping many to_object points ({}) in scene {}.".format( nskipped, self.environment.scene_name ) ) to_object_tensor_tuple = (to_object_tensor,) if frame_type == "fast-egocentric-tensor": output_tensor_per_agent = [ np.concatenate( ( state, visited_tensor, object_tensor, self.tv_reachable_positions_tensor, ) + to_object_tensor_tuple, axis=0, ) for state in state_tensor_per_agent ] elif frame_type == "fast-egocentric-relative-tensor": reachable = state_tensor_per_agent[0][:1] agent_rot_inds = [] other_agent_position_tensors_list = [] for agent_id, state in enumerate(state_tensor_per_agent): agent_rot_inds.append( round( self.environment.get_agent_location(agent_id)["rotation"] / 90 ) % 4 ) other_agent_positions = state[5:] if agent_rot_inds[-1] == 0: order = [0, 1, 2, 3] elif agent_rot_inds[-1] == 1: order = [1, 2, 3, 0] elif agent_rot_inds[-1] == 2: order = [2, 3, 0, 1] elif agent_rot_inds[-1] == 3: order = [3, 0, 1, 2] else: raise NotImplementedError() other_agent_position_tensors_list.append( other_agent_positions[ sum( [ [o + 4 * i for o in order] for i in range(self.environment.num_agents - 1) ], [], ) ] ) output_tensor_per_agent = [ np.concatenate( ( self.tv_reachable_positions_tensor, reachable, visited_tensor, other_agent_position_tensors_list[agent_id], object_tensor, ) + to_object_tensor_tuple, axis=0, ) for agent_id in range(self.environment.num_agents) ] else: raise Exception("something wrong with conditions, check!") for agent_id in range(self.environment.num_agents): agent_pos = self.environment.get_agent_location(agent_id=agent_id) agent_x = round(agent_pos["x"], 2) agent_z = round(agent_pos["z"], 2) pos_tuple = (agent_x, agent_z) row, col = point_to_element_map[pos_tuple] agent_location_in_mask = self.environment.get_agent_location_in_mask( agent_id=agent_id ) if not row == agent_location_in_mask["row"]: print( "row: {} | agent_location_in_mask[row]: {}".format( row, agent_location_in_mask["row"] ) ) if not col == agent_location_in_mask["col"]: print( "col: {} | agent_location_in_mask[col]: {}".format( col, agent_location_in_mask["col"] ) ) rot = round(agent_location_in_mask["rot"] / 90) % 4 outsize = 15 padding = outsize - 1 assert outsize % 2 == 1 tensor = np.pad( output_tensor_per_agent[agent_id], [(0, 0), (padding, padding), (padding, padding)], "constant", constant_values=False, ) row = row + padding col = col + padding half_pad = padding // 2 if rot == 0: egocentric_tensor = tensor[ :, (row - padding) : (row + 1), (col - half_pad) : (col + half_pad + 1), ] elif rot == 1: egocentric_tensor = tensor[ :, (row - half_pad) : (row + half_pad + 1), col : (col + padding + 1), ] egocentric_tensor = np.rot90(egocentric_tensor, axes=(1, 2)) elif rot == 2: egocentric_tensor = tensor[ :, row : (row + padding + 1), (col - half_pad) : (col + half_pad + 1), ] egocentric_tensor = np.rot90(egocentric_tensor, k=2, axes=(1, 2)) elif rot == 3: egocentric_tensor = tensor[ :, (row - half_pad) : (row + half_pad + 1), (col - padding) : (col + 1), ] egocentric_tensor = np.rot90(egocentric_tensor, k=3, axes=(1, 2)) else: raise NotImplementedError() # TODO: See if this copy is needed? frames.append(np.array(egocentric_tensor, dtype=float)) else: raise Exception("Invalid frame type {}.".format(frame_type)) states = [] for agent_id in range(self.environment.num_agents): last_action = ( None if self._last_actions is None else self._last_actions[agent_id] ) last_action_success = ( None if self._last_actions_success is None else self._last_actions_success[agent_id] ) states.append( { "last_action": last_action, "last_action_success": last_action_success, "frame": frames[agent_id], } ) if ( frame_type == self.frame_type and self.return_likely_successfuly_move_actions ) or ( frame_type == self.expert_frame_type and self.return_likely_successfuly_move_actions_for_expert ): self.add_likely_successful_move_actions( states=states, frame_type=frame_type ) return states def multi_step(self, actions_as_ints: Tuple[int, ...]): step_results = super(FurnMoveEgocentricFastGridEpisode, self).multi_step( actions_as_ints ) if self.visualize_test_gridworld: self.environment.visualize(self.visualizing_ms) if self.track_time_averaged_action_pairs: assert self.environment.num_agents == 2 self.action_pairs_matrix_attempted[ actions_as_ints[0], actions_as_ints[1] ] += 1 self.action_pairs_matrix_successful[ actions_as_ints[0], actions_as_ints[1] ] += int(all([sr["action_success"] for sr in step_results])) return step_results def info(self): info = super(FurnMoveEgocentricFastGridEpisode, self).info() if self.track_time_averaged_action_pairs: total_actions = np.sum(self.action_pairs_matrix_attempted) info[ "action_pairs_matrix_attempted" ] = self.action_pairs_matrix_attempted / (total_actions + 0.0001) info[ "action_pairs_matrix_successful" ] = self.action_pairs_matrix_successful / (total_actions + 0.0001) return info class FurnMoveEgocentricNoRotationsFastGridEpisode(FurnMoveEgocentricFastGridEpisode): def __init__( self, env: AI2ThorLiftedObjectGridEnvironment, task_data: Dict[str, Any], max_steps: int, max_distance_from_object: float, include_move_obj_actions: bool = False, reached_target_reward: float = 1.0, moved_closer_reward: float = 0.1, **kwargs, ): super().__init__( env=env, task_data=task_data, max_steps=max_steps, max_distance_from_object=max_distance_from_object, include_move_obj_actions=include_move_obj_actions, reached_target_reward=reached_target_reward, moved_closer_reward=moved_closer_reward, **kwargs, ) @classmethod def class_available_action_groups( cls, include_move_obj_actions: bool = False, **kwargs ) -> Tuple[Tuple[str, ...], ...]: return egocentric_no_rotate_action_groups( include_move_obj_actions=include_move_obj_actions ) class FurnMoveAllocentricTVCenteredEpisode(FurnMoveEpisode): def __init__( self, env: AI2ThorEnvironment, task_data: Dict[str, Any], max_steps: int, max_distance_from_object: float, include_move_obj_actions: bool = False, reached_target_reward: float = 1.0, moved_closer_reward: float = 0.1, **kwargs, ): assert "frame_type" not in kwargs kwargs["frame_type"] = "allocentric-tensor-centered-at-tv" super().__init__( env=env, task_data=task_data, max_steps=max_steps, max_distance_from_object=max_distance_from_object, include_move_obj_actions=include_move_obj_actions, reached_target_reward=reached_target_reward, moved_closer_reward=moved_closer_reward, **kwargs, ) @classmethod def class_available_action_groups( cls, include_move_obj_actions: bool = False, **kwargs ) -> Tuple[Tuple[str, ...], ...]: return semiallocentric_action_groups( include_move_obj_actions=include_move_obj_actions )
cordial-sync-master
rl_multi_agent/furnmove_episodes.py
from __future__ import division import sys import traceback import warnings from typing import Optional, Dict import networkx import torch import torch.multiprocessing as mp import torch.optim as optim from setproctitle import setproctitle as ptitle from torch import nn from rl_multi_agent import MultiAgent from rl_multi_agent.experiments.experiment import ExperimentConfig from rl_multi_agent.multi_agent_utils import ( TrainingCompleteException, EndProcessException, compute_losses_and_backprop, ) from utils.net_util import recursively_detach warnings.simplefilter("always", UserWarning) def train( worker_number: int, args, shared_model: nn.Module, experiment: ExperimentConfig, optimizer: optim.Optimizer, res_queue: mp.Queue, end_flag: mp.Value, train_total_ep: mp.Value, update_lock: Optional[mp.Lock] = None, save_data_queue: Optional[mp.Queue] = None, episode_init_queue: Optional[mp.Queue] = None, ) -> None: ptitle("Training Agent: {}".format(worker_number)) experiment.init_train_agent.worker_number = worker_number gpu_id = args.gpu_ids[worker_number % len(args.gpu_ids)] torch.manual_seed(args.seed + worker_number) if gpu_id >= 0: with torch.cuda.device(gpu_id): torch.cuda.manual_seed(args.seed + worker_number) model: nn.Module = experiment.create_model() if gpu_id >= 0: with torch.cuda.device(gpu_id): model.load_state_dict(shared_model.state_dict()) else: model.load_state_dict(shared_model.state_dict()) agent: MultiAgent = experiment.create_agent(model=model, gpu_id=gpu_id) num_sequential_errors = 0 while not end_flag.value: last_losses: Dict[str, float] = {} additional_metrics = {} try: experiment.init_train_agent.current_train_episode = train_total_ep.value agent.global_episode_count = train_total_ep.value agent.sync_with_shared(shared_model) while True: agent_iterator = experiment.init_train_agent( agent=agent, episode_init_queue=episode_init_queue ) try: next(agent_iterator) break except StopIteration as e: warnings.warn("Agent iterator was empty.") additional_metrics = {} step_results = [] while not agent.episode.is_complete(): agent.global_episode_count = train_total_ep.value for step in range(args.num_steps): agent.act(train=True) if args.skip_backprop: agent.repackage_hidden() if len(agent.eval_results) != 0: agent.eval_results[-1] = recursively_detach( agent.eval_results[-1] ) if agent.episode.is_complete(): break if end_flag.value: raise EndProcessException() last_losses = compute_losses_and_backprop( agent=agent, shared_model=shared_model, optimizer=optimizer, update_lock=update_lock, gpu=gpu_id >= 0, retain_graph=False, skip_backprop=args.skip_backprop, ) if ( len(agent.eval_results) > 0 and "additional_metrics" in agent.eval_results[0] ): for a_metric in agent.eval_results[0]["additional_metrics"]: if a_metric not in additional_metrics: additional_metrics[a_metric] = [] additional_metrics[a_metric].extend( er["additional_metrics"][a_metric] for er in agent.eval_results ) if save_data_queue is not None: step_results.extend(agent.step_results) if (not agent.episode.is_complete()) or (not args.skip_backprop): agent.clear_history() agent.repackage_hidden() agent.sync_with_shared(shared_model) additional_metrics = { k: float(sum(additional_metrics[k]) / len(additional_metrics[k])) for k in additional_metrics if len(additional_metrics[k]) != 0 } try: next(agent_iterator) raise Exception("Agent iterator should only yield once.") except StopIteration as _: pass info = agent.episode.info() if save_data_queue is not None: data_to_save = experiment.create_episode_summary( agent, additional_metrics=additional_metrics, step_results=step_results, ) if data_to_save is not None: save_data_queue.put(data_to_save) if last_losses is not None: info = {**info, **last_losses} if additional_metrics: info = {**info, **additional_metrics} res_queue.put({k: info[k] for k in info}) agent.clear_history() agent.repackage_hidden() num_sequential_errors = 0 except EndProcessException as _: print( "End process signal received in worker {}. Quitting...".format( worker_number ), flush=True, ) sys.exit() except TrainingCompleteException as _: print( ( "Training complete signal received in worker {}. " "Closing open files/subprocesses exiting." ).format(worker_number), flush=True, ) try: agent.environment.stop() except Exception as _: pass sys.exit() except (RuntimeError, ValueError, networkx.exception.NetworkXNoPath) as e: num_sequential_errors += 1 if num_sequential_errors == 10: print("Too many sequential errors in training.") raise e if "out of memory at" in str(e): raise e print( "RuntimeError, ValueError, or networkx exception when" " training, attempting to print traceback, print metadata, and reset." ) print("-" * 60) traceback.print_exc(file=sys.stdout) print("-" * 60) try: print(agent.environment.last_event.metadata) except NameError: print("Unable to print environment metadata.") print("-" * 60) agent.clear_history() agent.repackage_hidden()
cordial-sync-master
rl_multi_agent/train_process_runner.py
from __future__ import print_function, division import collections import copy import ctypes import importlib import os import queue import random import signal import sys import time import warnings from typing import Optional import numpy as np import torch import torch.multiprocessing as mp from setproctitle import setproctitle as ptitle from tensorboardX import SummaryWriter from torch import nn from rl_base.shared_optim import SharedRMSprop, SharedAdam from rl_multi_agent.test_process_runner import test from rl_multi_agent.train_process_runner import train from utils import flag_parser from utils.misc_util import save_project_state_in_log from utils.net_util import ( ScalarMeanTracker, load_model_from_state_dict, TensorConcatTracker, ) np.set_printoptions(threshold=10000000, suppress=True, linewidth=100000) os.environ["OMP_NUM_THREADS"] = "1" # Based on # https://github.com/pytorch/examples/tree/master/mnist_hogwild # Training settings # Implemented multiprocessing using locks but was not beneficial. Hogwild # training was far superior if __name__ == "__main__": ptitle("Train/Test Manager") args = flag_parser.parse_arguments() task = args.task task = task.replace("-", "_") if task[-7:] == "_config": task = task[:-7] if task[-10:] == "_config.py": task = task[:-10] module = importlib.import_module( "{}.{}_config".format( args.experiment_dir.replace("/", "."), task.replace("-", "_") ) ) experiment = module.get_experiment() experiment.init_train_agent.env_args = args experiment.init_test_agent.env_args = args start_time = time.time() local_start_time_str = time.strftime( "%Y-%m-%d_%H-%M-%S", time.localtime(start_time) ) if args.enable_logging: # Caching current state of the project log_file_path = save_project_state_in_log( sys.argv, task + ("" if args.tag == "" else "/{}".format(args.tag)), local_start_time_str, None if experiment.saved_model_path is None else (experiment.saved_model_path,), args.log_dir, ) # Create a tensorboard logger log_writer = SummaryWriter(log_file_path) for arg in vars(args): log_writer.add_text("call/" + arg, str(getattr(args, arg)), 0) s = "" for arg in vars(args): s += "--" + arg + " " s += str(getattr(args, arg)) + " " log_writer.add_text("call/full", s, 0) log_writer.add_text("log-path/", log_file_path, 0) if experiment.saved_model_path is not None: log_writer.add_text("model-load-path", experiment.saved_model_path, 0) # Seed (hopefully) all sources of randomness np.random.seed(args.seed) torch.manual_seed(args.seed) random.seed(args.seed) if args.gpu_ids == -1: args.gpu_ids = [-1] else: torch.cuda.manual_seed(args.seed) mp = mp.get_context("spawn") if any(gpu_id >= 0 for gpu_id in args.gpu_ids): assert torch.cuda.is_available(), ( f"You have specified gpu_ids=={args.gpu_ids} but no GPUs are available." " Please check that your machine has GPUs installed and that the correct (GPU compatible)" " version of torch has been installed." ) shared_model: nn.Module = experiment.create_model() optimizer_state = None restarted_from_episode = None if experiment.saved_model_path is not None: path = experiment.saved_model_path saved_state = torch.load(path, map_location=lambda storage, loc: storage) print("\nLoading pretrained weights from {}...".format(path)) if "model_state" in saved_state: load_model_from_state_dict(shared_model, saved_state["model_state"]) optimizer_state = saved_state["optimizer_state"] restarted_from_episode = saved_state["episodes"] else: load_model_from_state_dict(shared_model, saved_state) print("Done.") shared_model.share_memory() pytorch_total_params = sum(p.numel() for p in shared_model.parameters()) pytorch_total_trainable_params = sum( p.numel() for p in shared_model.parameters() if p.requires_grad ) print("pytorch_total_params:" + str(pytorch_total_params)) print("pytorch_total_trainable_params:" + str(pytorch_total_trainable_params)) if not args.shared_optimizer: raise NotImplementedError("Must use shared optimizer.") optimizer: Optional[torch.optim.Optimizer] = None if args.shared_optimizer: if args.optimizer == "RMSprop": optimizer = SharedRMSprop( filter(lambda param: param.requires_grad, shared_model.parameters()), lr=args.lr, saved_state=optimizer_state, ) elif args.optimizer == "Adam": optimizer = SharedAdam( filter(lambda param: param.requires_grad, shared_model.parameters()), lr=args.lr, amsgrad=args.amsgrad, saved_state=optimizer_state, ) else: raise NotImplementedError( "Must choose a shared optimizer from 'RMSprop' or 'Adam'." ) processes = [] end_flag = mp.Value(ctypes.c_bool, False) train_scalars = ScalarMeanTracker() train_tensors = TensorConcatTracker() train_total_ep = mp.Value( ctypes.c_int32, restarted_from_episode if restarted_from_episode else 0 ) train_res_queue = mp.Queue() assert ( args.x_display is None or args.x_displays is None ), "One of x_display ({}) and x_displays ({}) must not have a value.".format( args.x_display, args.x_displays ) save_data_queue = None if not args.save_extra_data else mp.Queue() episode_init_queue = ( None if not args.use_episode_init_queue else experiment.create_episode_init_queue(mp_module=mp) ) if experiment.stopping_criteria_reached(): warnings.warn("Stopping criteria reached before any computations started!") print("All done.") sys.exit() for rank in range(0, args.workers): train_experiment = copy.deepcopy(experiment) train_experiment.init_train_agent.seed = random.randint(0, 10 ** 10) if args.x_displays is not None: args = copy.deepcopy(args) args.x_display = args.x_displays[rank % len(args.x_displays)] train_experiment.init_train_agent.env_args = args train_experiment.init_test_agent.env_args = args p = mp.Process( target=train, args=( rank, args, shared_model, train_experiment, optimizer, train_res_queue, end_flag, train_total_ep, None, # Update lock save_data_queue, episode_init_queue, ), ) p.start() processes.append(p) time.sleep(0.2) time.sleep(5) valid_res_queue = mp.Queue() valid_total_ep = mp.Value( ctypes.c_int32, restarted_from_episode if restarted_from_episode else 0 ) if args.enable_val_agent: test_experiment = copy.deepcopy(experiment) if args.x_displays is not None: args = copy.deepcopy(args) args.x_display = args.x_displays[-1] test_experiment.init_train_agent.env_args = args test_experiment.init_test_agent.env_args = args p = mp.Process( target=test, args=(args, shared_model, test_experiment, valid_res_queue, end_flag, 0, 1), ) p.start() processes.append(p) time.sleep(0.2) time.sleep(1) train_thin = 500 valid_thin = 1 n_frames = 0 try: while ( (not experiment.stopping_criteria_reached()) and any(p.is_alive() for p in processes) and train_total_ep.value < args.max_ep ): try: train_result = train_res_queue.get(timeout=10) if len(train_result) != 0: train_scalars.add_scalars(train_result) train_tensors.add_tensors(train_result) ep_length = sum( train_result[k] for k in train_result if "ep_length" in k ) train_total_ep.value += 1 n_frames += ep_length if args.enable_logging and train_total_ep.value % train_thin == 0: tracked_means = train_scalars.pop_and_reset() for k in tracked_means: log_writer.add_scalar( k + "/train", tracked_means[k], train_total_ep.value ) if train_total_ep.value % (20 * train_thin) == 0: tracked_tensors = train_tensors.pop_and_reset() for k in tracked_tensors: log_writer.add_histogram( k + "/train", tracked_tensors[k], train_total_ep.value, ) if args.enable_logging and train_total_ep.value % (10 * train_thin): log_writer.add_scalar( "n_frames", n_frames, train_total_ep.value ) if args.enable_logging and args.enable_val_agent: while not valid_res_queue.empty(): valid_result = valid_res_queue.get() if len(valid_result) == 0: continue key = list(valid_result.keys())[0].split("/")[0] valid_total_ep.value += 1 if valid_total_ep.value % valid_thin == 0: for k in valid_result: if np.isscalar(valid_result[k]): log_writer.add_scalar( k + "/valid", valid_result[k], train_total_ep.value, ) elif isinstance(valid_result[k], collections.Iterable): log_writer.add_histogram( k + "/train", valid_result[k], train_total_ep.value, ) # Saving extra data (if any) if save_data_queue is not None: while True: try: experiment.save_episode_summary( data_to_save=save_data_queue.get(timeout=0.2) ) except queue.Empty as _: break # Checkpoints if ( train_total_ep.value == args.max_ep or (train_total_ep.value % args.save_freq) == 0 ): if not os.path.exists(args.save_model_dir): os.makedirs(args.save_model_dir) state_to_save = shared_model.state_dict() save_path = os.path.join( args.save_model_dir, "{}_{}_{}.dat".format( task, train_total_ep.value, local_start_time_str ), ) torch.save( { "model_state": shared_model.state_dict(), "optimizer_state": optimizer.state_dict(), "episodes": train_total_ep.value, }, save_path, ) except queue.Empty as _: pass finally: end_flag.value = True print( "Stopping criteria reached: {}".format( experiment.stopping_criteria_reached() ), flush=True, ) print( "Any workers still alive: {}".format(any(p.is_alive() for p in processes)), flush=True, ) print( "Reached max episodes: {}".format(train_total_ep.value >= args.max_ep), flush=True, ) if args.enable_logging: log_writer.close() for p in processes: p.join(0.1) if p.is_alive(): os.kill(p.pid, signal.SIGTERM) print("All done.", flush=True)
cordial-sync-master
rl_multi_agent/main.py
""" This script can be used to reproduce the training curves presented in our paper assuming you have followed the directions in our README.md to download the `data` directory. The plots will be saved in the `PATH/TO/THIS/PROJECT/analysis_output/plots` directory. """ import json import os import sys import traceback import warnings import matplotlib.pyplot as plt import numpy as np from skmisc.loess import loess from constants import ABS_PATH_TO_ANALYSIS_RESULTS_DIR, ABS_PATH_TO_DATA_DIR from utils.misc_util import unzip DIR_TO_SAVE_PROCESSED_OUTPUT = os.path.join( ABS_PATH_TO_DATA_DIR, "furnmove_and_furnlift_logs_processed_to_jsons/" ) os.makedirs(DIR_TO_SAVE_PROCESSED_OUTPUT, exist_ok=True) # Vision VISION_ID_TO_NAME = { "vision_bigcentral_cl_rot": "Central", "vision_mixture_cl_rot": "SYNC", "vision_marginal_nocl_rot": "Marginal", "vision_marginalnocomm_nocl_rot": "Marginal (w/o comm)", } # Grid GRID_ID_TO_NAME = { "grid_bigcentral_cl_rot": "Central", "grid_mixture_cl_rot": "SYNC", "grid_marginal_nocl_rot": "Marginal", "grid_marginalnocomm_nocl_rot": "Marginal (w/o comm)", } # FurnLift vision noimplicit FURNLIFT_VISION_TO_NAME = { "furnlift__vision_noimplicit_central_cl": "Central", "furnlift__vision_noimplicit_mixture_cl": "SYNC", "furnlift__vision_noimplicit_marginal_nocl": "Marginal", "furnlift__vision_noimplicit_marginalnocomm_nocl": "Marginal (w/o comm)", } METRIC_ID_TO_NAME = { "reached_target": "Reached Target Successfully", "ep_length": "Episode Length", "accuracy": "Find and Lift Success", "spl_manhattan": "MD-SPL", "pickupable_but_not_picked": "Pickupable But Not Picked", "picked_but_not_pickupable": "Picked But Not Pickupable", "invalid_prob_mass": "Invalid Probability Mass", "dist_to_low_rank": "TVD", "reward": "Reward", } HEAD_NAME_TO_COLOR = { "Central": "red", "SYNC": "blue", "Marginal": "green", "Marginal (w/o comm)": "black", } def plot_metric_for_saved_logs(id_to_name, metric_id, max_step, max_points=50000): for id in id_to_name: file_name = "furnmove_{}_info.json".format(id) try: with open(os.path.join(DIR_TO_SAVE_PROCESSED_OUTPUT, file_name), "r") as f: tb_data = json.load(f) span = 0.1 except Exception as _: file_name = "{}_info.json".format(id) span = 0.1 try: with open( os.path.join(DIR_TO_SAVE_PROCESSED_OUTPUT, file_name), "r" ) as f: tb_data = json.load(f) except Exception as _: raise RuntimeError("Could not find json log file with id {}".format(id)) name = id_to_name[id] color = HEAD_NAME_TO_COLOR[name] for split in ["train", "valid"]: print(split) is_train = split == "train" tb_split_data = tb_data[split] if metric_id not in tb_split_data: warnings.warn( "{} does not exist for metric {} and method {}".format( split, METRIC_ID_TO_NAME[metric_id], name ) ) continue x, y = unzip(tb_split_data[metric_id]) x = np.array(x) inds = np.arange(0, len(x) - 1, max(len(x) // max_points, 1)) inds = inds[x[inds] <= max_step] x, y = np.array(x)[inds], np.array(y)[inds] x = x / 1000 print("Fitting loess") l = loess(x, y, span=span, degree=1) l.fit() pred = l.predict(x, stderror=True) conf = pred.confidence(alpha=0.05) y_pred = ( pred.values if metric_id == "reward" else np.maximum(pred.values, 0) ) ll = conf.lower if metric_id == "reward" else np.maximum(conf.lower, 0) ul = conf.upper print("Plotting line") plt.plot( x, y_pred, color=color, dashes=[] if is_train else [10, 5], # [5, 5, 5, 5], linewidth=0.75 if is_train else 0.5, alpha=1, label=name if is_train else None, ) print("Plotting fill") plt.fill_between( x, ll, ul, alpha=0.10 * (2 if is_train else 1), color=color, linewidth=0.0, ) plt.ylabel(METRIC_ID_TO_NAME[metric_id]) plt.xlabel("Training Episodes (Thousands)") ax = plt.gca() ax.spines["top"].set_visible(False) ax.spines["right"].set_visible(False) ymin, ymax = ax.get_ylim() if ymax < 1 and "spl" not in metric_id: plt.scatter([1], [1], alpha=0) # ax.spines["left"].set_smart_bounds(True) # ax.spines["bottom"].set_smart_bounds(True) return ax if __name__ == "__main__": os.makedirs(os.path.join(ABS_PATH_TO_ANALYSIS_RESULTS_DIR, "plots"), exist_ok=True) figsize = (4, 3) # Do you wish to overwrite existing plots? overwrite = True # Select tasks for which metrics are to be plotted. task_interested_in = ["furnlift_vision", "vision", "grid"] for type in task_interested_in: for metric_id in ( [ "reached_target", "ep_length", "spl_manhattan", "invalid_prob_mass", "dist_to_low_rank", "reward", ] if type != "furnlift_vision" else [ "pickupable_but_not_picked", "picked_but_not_pickupable", "reward", "ep_length", "accuracy", "invalid_prob_mass", "dist_to_low_rank", ] ): plot_save_path = os.path.join( ABS_PATH_TO_ANALYSIS_RESULTS_DIR, "plots/{}__{}.pdf" ).format(type, metric_id) if (not overwrite) and os.path.exists(plot_save_path): continue print("\n" * 3) print(metric_id, type) print("\n") if type == "vision": id_to_name = VISION_ID_TO_NAME max_step = 500000 elif type == "grid": id_to_name = GRID_ID_TO_NAME max_step = 1000000 elif type == "furnlift_vision": id_to_name = FURNLIFT_VISION_TO_NAME max_step = 100000 else: raise NotImplementedError plt.figure(figsize=figsize) try: plot_metric_for_saved_logs( id_to_name=id_to_name, metric_id=metric_id, max_step=max_step, max_points=20000, ) if any(k in metric_id for k in ["reached", "accuracy"]): plt.legend(loc="best") plt.savefig(plot_save_path, bbox_inches="tight") except Exception as e: traceback.print_exc(file=sys.stdout) print("Continuing") finally: plt.close()
cordial-sync-master
rl_multi_agent/analysis/visualize_furnmove_and_furnlift_log_jsons.py
""" This script generates joint policy summaries presented in the paper assuming you have followed the directions in our README.md to download the `data` directory. The plots will be saved in the `PATH/TO/THIS/PROJECT/analysis_output/plots/ATTEMPT_OR_SUCCESS` directory. The `ATTEMPT_OR_SUCCESS` flag helps visualize the actions attempted and actions successful (note that in the paper we show `attempt` joint policy summaries. """ import glob import json import os import matplotlib.colors as mcolors import matplotlib.pyplot as plt import numpy as np from matplotlib import patches from constants import ABS_PATH_TO_ANALYSIS_RESULTS_DIR, ABS_PATH_TO_DATA_DIR def make_colormap(seq): """Return a LinearSegmentedColormap seq: a sequence of floats and RGB-tuples. The floats should be increasing and in the interval (0,1). """ seq = [(None,) * 3, 0.0] + list(seq) + [1.0, (None,) * 3] cdict = {"red": [], "green": [], "blue": []} for i, item in enumerate(seq): if isinstance(item, float): r1, g1, b1 = seq[i - 1] r2, g2, b2 = seq[i + 1] cdict["red"].append([item, r1, r2]) cdict["green"].append([item, g1, g2]) cdict["blue"].append([item, b1, b2]) return mcolors.LinearSegmentedColormap("CustomMap", cdict) if __name__ == "__main__": split = "test" id_to_time_averaged_action_mat = {} id_to_time_averaged_success_action_mat = {} for dir in glob.glob( os.path.join(ABS_PATH_TO_DATA_DIR, "furnmove_evaluations__{}/*").format(split) ): dir_name = os.path.basename(dir) id = dir_name.split("__")[0] if "3agents" in id: continue print() print(id) time_averaged_success_action_mats = [] time_averaged_action_mats = [] for i, p in enumerate(glob.glob(os.path.join(dir, "*.json"))): if i % 100 == 0: print(i) with open(p, "r") as f: result_dict = json.load(f) time_averaged_success_action_mats.append( np.array(result_dict["action_taken_success_matrix"]) ) time_averaged_success_action_mats[-1] = time_averaged_success_action_mats[ -1 ] / (time_averaged_success_action_mats[-1].sum() + 1e-6) time_averaged_action_mats.append( np.array(result_dict["action_taken_matrix"]) ) time_averaged_action_mats[-1] = time_averaged_action_mats[-1] / ( time_averaged_action_mats[-1].sum() + 1e-6 ) id_to_time_averaged_success_action_mat[id] = np.stack( time_averaged_success_action_mats, axis=0 ).mean(0) id_to_time_averaged_action_mat[id] = np.stack( time_averaged_action_mats, axis=0 ).mean(0) c = mcolors.ColorConverter().to_rgb wr = make_colormap([c("white"), c("red")]) success_or_attempt = "attempt" if success_or_attempt == "attempt": id_to_mat = id_to_time_averaged_action_mat else: id_to_mat = id_to_time_averaged_success_action_mat dir = os.path.join( ABS_PATH_TO_ANALYSIS_RESULTS_DIR, "plots/average_policy_mats/{}" ).format(success_or_attempt) os.makedirs(dir, exist_ok=True) for id in id_to_mat: if "3agents" in id: continue a = id_to_mat[id] size = a.shape[0] plt.figure(figsize=(3, 3)) plt.matshow(a, cmap=wr) ax = plt.gca() ax.spines["top"].set_visible(False) ax.spines["right"].set_visible(False) ax.spines["bottom"].set_visible(False) ax.spines["left"].set_visible(False) ax.set_xticks([]) ax.set_yticks([]) plt.tick_params( axis="x", # changes apply to the x-axis which="both", # both major and minor ticks are affected bottom=False, # ticks along the bottom edge are off top=False, # True, labelbottom=False, length=0, ) ax.set_ylim(size + 0.1 - 0.5, -0.5 - 0.1) plt.tick_params(axis="y", which="both", left=False, length=0) # left=True, for i in range(size): for j in range(size): rect = patches.Rectangle( (i - 0.5, j - 0.5), 1, 1, linewidth=1, edgecolor="lightgrey", facecolor="none", ) # Add the patch to the Axes ax.add_patch(rect) for i in range(size): for j in range(size): if ( size == 13 and ( (i < 4 and j < 4) or (3 < i <= 7 and 3 < j <= 7) or (i == j == 8) or (8 < i and 8 < j) ) or ( size == 14 and ( (i < 5 and j < 5) or (4 < i <= 8 and 4 < j <= 8) or (i == j == 9) or (9 < i and 9 < j) ) ) ): rect = patches.Rectangle( (i - 0.5, j - 0.5), 1, 1, linewidth=1, edgecolor="black", facecolor="none", ) ax.add_patch(rect) plt.savefig(os.path.join(dir, "{}.pdf".format(id)), bbox_inches="tight")
cordial-sync-master
rl_multi_agent/analysis/visualize_furnmove_time_averaged_policies.py
cordial-sync-master
rl_multi_agent/analysis/__init__.py
""" This script parses the saved data in `furnmove_evaluations__test/METHOD` to create trajectory visualizations included in the supplementary of the paper and the videos included in the qualitative result video. Particularly, the gridworld 2-agent experiments are analysed and the trajectory summaries (4 top down views, evenly spread over the episode) and selected video trajectories are saved in `ABS_PATH_TO_ANALYSIS_RESULTS_DIR/furnmove_traj_visualizations_gridworld/{METHOD}` directory. Moreover, if the `METHOD` is communicative, an audio rendering of the agent's communication is also saved as a MIDI file. Set the appropriate options/flags at the start of the script for the desired outputs. Guiding comments are included. Run using command: `python rl_multi_agent/analysis/visualize_gridbased_furnmove_trajectories.py` See `visualize_visionbased_furnmove_trajectories.py` for an analogous vision-based script. """ import copy import glob import json import os import random from typing import Tuple, Optional, List import PIL import colour as col import imageio import numpy as np import torch from PIL import Image from midiutil import MIDIFile import constants from constants import ABS_PATH_TO_ANALYSIS_RESULTS_DIR, ABS_PATH_TO_DATA_DIR from constants import ABS_PATH_TO_LOCAL_THOR_BUILD from rl_ai2thor.ai2thor_environment import AI2ThorEnvironment from rl_ai2thor.ai2thor_gridworld_environment import AI2ThorLiftedObjectGridEnvironment from rl_multi_agent.analysis.visualize_visionbased_furnmove_trajectories import ( get_icon, add_outline, interleave, add_progress_bar, ) from utils.visualization_utils import save_frames_to_mp4 def add_actions_to_frame( frame, ba: Optional[int], aa: Optional[int], outline_colors: Optional[List[Optional[Tuple[int, int, int]]]] = None, position_top=False, ): import copy frame = copy.deepcopy(frame) h = frame.shape[0] icon_size = h // 6 ba_icon, aa_icon = [ get_icon(i, size=icon_size) if i is not None else None for i in [ba, aa] ] if outline_colors is not None: for icon, color in zip([ba_icon, aa_icon], outline_colors): if icon is not None and color is not None: add_outline(icon, color=color) margin = icon_size // 8 row_slice = ( slice(-(margin + icon_size), -margin) if not position_top else slice(margin, margin + icon_size) ) if ba_icon is not None: frame[row_slice, margin : (margin + icon_size)] = ba_icon if aa_icon is not None: frame[row_slice, -(margin + icon_size) : (-margin)] = aa_icon return frame if __name__ == "__main__": # Set some options for the desired output: # --------- # Note that a snapshot/summary of all trajectories will be saved by this script. # You could decide to save the video or not SAVE_VIDEO = True # Which episode do you wish to save the video for. # Scheme: FloorPlan{SCENE_NUMBER}_physics_{TEST_EPISODE}, where SCENE_NUMBER goes from 226 to 230 # and TEST_EPISODE goes from 0 to 199. video_save_path_ids = { # "FloorPlan229_physics__0", "FloorPlan229_physics__15", # "FloorPlan229_physics__193", # "FloorPlan230_physics__47", # "FloorPlan230_physics__70", # "FloorPlan230_physics__72", } # To add a progress bar to indicate how much of the episode has been completed ADD_PROGRESS_BAR = True # FPS for the video, faster/slower viewing. FPS = 5 # Method to test METHOD = "grid_mixture_cl_rot" # --------- # Additional path variables are set load_from_dir = os.path.join( ABS_PATH_TO_DATA_DIR, "furnmove_evaluations__test", METHOD ) top_save_dir = os.path.join( ABS_PATH_TO_ANALYSIS_RESULTS_DIR, "furnmove_traj_visualizations_gridworld", METHOD, ) os.makedirs(top_save_dir, exist_ok=True) env = AI2ThorLiftedObjectGridEnvironment( local_thor_build=ABS_PATH_TO_LOCAL_THOR_BUILD, num_agents=2, lifted_object_height=1.3, object_type="Television", max_dist_to_lifted_object=0.76, min_steps_between_agents=2, remove_unconnected_positions=True, ) env.start("FloorPlan1_physics") paths = sorted(glob.glob(os.path.join(load_from_dir, "*.json"))) if not torch.cuda.is_available(): random.shuffle(paths) for path in paths: path_id = str(os.path.basename(path).replace(".json", "")) if SAVE_VIDEO and path_id not in video_save_path_ids: continue with open(path, "r") as f: traj_info = json.load(f) step_results = traj_info["step_results"] last_sr = copy.deepcopy(step_results[-1]) step_results.append(last_sr) for i in range(len(last_sr)): last_sr[i]["before_location"] = last_sr[i]["after_location"] last_sr[i]["object_location"]["Television|1"]["before_location"] = last_sr[ i ]["object_location"]["Television|1"]["after_location"] episode_init_data = traj_info["episode_init_data"] tv_loc_start = episode_init_data["lifted_object_location"] tv_loc_end = step_results[-1][0]["object_location"]["Television|1"][ "after_location" ] if (not SAVE_VIDEO) and AI2ThorEnvironment.position_dist( tv_loc_start, tv_loc_end, use_l1=True ) < 3.0: print("Skipping {}".format(path_id)) continue print("Visualizing {}".format(path_id)) env.reset(path_id.split("__")[0], move_mag=0.25) for agent_id, loc in enumerate(episode_init_data["agent_locations"]): env.step( { "action": "TeleportFull", "agentId": agent_id, "x": loc["x"], "z": loc["z"], "rotation": {"y": loc["rotation"]}, "allowAgentIntersection": True, "makeReachable": True, } ) assert env.last_event.metadata["lastActionSuccess"] env.step( { "action": "CreateLiftedFurnitureAtLocation", "objectType": "Television", "x": tv_loc_start["x"], "z": tv_loc_start["z"], "rotation": {"y": tv_loc_start["rotation"]}, "agentId": 0, "forceAction": True, } ) assert env.last_event.metadata["lastActionSuccess"] tv_id = "Television|1" to_object_loc = episode_init_data["to_object_location"] env.step( { "action": "CreateAndPlaceObjectOnFloorAtLocation", "objectType": "Dresser", "object_mask": env.controller.parse_template_to_mask( constants.DRESSER_SILHOUETTE_STRING ), **to_object_loc, "rotation": {"y": to_object_loc["rotation"]}, "agentId": 0, "forceAction": True, } ) assert env.last_event.metadata["lastActionSuccess"] dresser_id = "Dresser|2" video_inds = list(range(len(step_results))) png_inds = list( set(int(x) for x in np.linspace(0, len(step_results) - 1, num=4).round()) ) png_inds.sort() save_path_png = os.path.join( top_save_dir, "{}__{}.png".format( os.path.basename(path).replace(".json", ""), "_".join([str(ind) for ind in png_inds]), ), ) save_path_mp4 = os.path.join( top_save_dir, "{}__video.mp4".format(os.path.basename(path).replace(".json", "")), ) if os.path.exists(save_path_png) and ( os.path.exists(save_path_png) or not SAVE_VIDEO ): print("{} already exists, skipping...".format(save_path_png)) continue map_frames = [] a0_frames = [] a1_frames = [] colors_list = [ list(col.Color("red").range_to(col.Color("#ffc8c8"), len(step_results))), list(col.Color("green").range_to(col.Color("#c8ffc8"), len(step_results))), list(col.Color("blue").range_to(col.Color("#c8c8ff"), len(step_results))), ] for ind in png_inds if not SAVE_VIDEO else video_inds: if SAVE_VIDEO and ind % 50 == 0: print("Processed {} steps".format(ind)) sr0, sr1 = step_results[ind] loc0 = sr0["before_location"] loc1 = sr1["before_location"] tv_loc = sr0["object_location"][tv_id]["before_location"] traj0 = [x["before_location"] for x, _ in step_results[: (ind + 1)]] traj1 = [y["before_location"] for _, y in step_results[: (ind + 1)]] tv_traj = [ x["object_location"][tv_id]["before_location"] for x, _ in step_results[: (ind + 1)] ] if ind == len(step_results) - 1: traj0.append(loc0) traj1.append(loc1) tv_traj.append(tv_loc) for agent_id, loc in enumerate([loc0, loc1]): env.step( { "action": "TeleportFull", "agentId": agent_id, "x": loc["x"], "z": loc["z"], "rotation": {"y": loc["rotation"]}, "allowAgentIntersection": True, "makeReachable": True, "forceAction": True, } ) assert env.last_event.metadata[ "lastActionSuccess" ], env.last_event.metadata["errorMessage"] env.step( { "action": "TeleportObject", "objectId": tv_id, **tv_loc, "rotation": {"y": tv_loc["rotation"]}, "forceAction": True, "agentId": 0, } ) assert env.last_event.metadata["lastActionSuccess"] map_frames.append(env.controller.viz_world(20, False, 0, True)) if SAVE_VIDEO: def to_outline_color(success): if success is None: return None elif success: return (0, 255, 0) else: return (255, 0, 0) action_success0 = [None, None] action_success1 = [None, None] # ba{i} aa{i} are before and after actions of agent i if ind == 0: ba0, ba1 = None, None aa0, aa1 = sr0["action"], sr1["action"] action_success0[1] = sr0["action_success"] action_success1[1] = sr1["action_success"] elif ind == len(video_inds): oldsr0, oldsr1 = step_results[ind - 1] ba0, ba1 = oldsr0["action"], step_results["action"] aa0, aa1 = None, None action_success0[0] = sr0["action_success"] action_success1[0] = sr1["action_success"] else: oldsr0, oldsr1 = step_results[ind - 1] ba0, ba1 = oldsr0["action"], oldsr1["action"] aa0, aa1 = sr0["action"], sr1["action"] action_success0[0] = oldsr0["action_success"] action_success1[0] = oldsr1["action_success"] action_success0[1] = sr0["action_success"] action_success1[1] = sr1["action_success"] ego_frames = env.controller.viz_ego_agent_views(40, array_only=True) ego_frames = [ np.pad( ef, ((4, 4), (4, 4), (0, 0)), mode="constant", constant_values=200, ) for ef in ego_frames ] a0_frames.append( add_actions_to_frame( ego_frames[0], ba=ba0, aa=None, # aa0, outline_colors=list(map(to_outline_color, action_success0)), position_top=True, ) ) a1_frames.append( add_actions_to_frame( ego_frames[1], ba=ba1, aa=None, # aa1, outline_colors=list(map(to_outline_color, action_success1)), position_top=True, ) ) map_height, map_width, _ = map_frames[0].shape fp_frame_height = a0_frames[0].shape[0] if len(a0_frames) != 0 else map_height spacer = np.full( (fp_frame_height, fp_frame_height // 20, 3), fill_value=255, dtype=np.uint8 ) if SAVE_VIDEO and not os.path.exists(save_path_mp4): new_map_width = round(fp_frame_height * map_width / map_height) f = lambda x: np.array( Image.fromarray(x.astype("uint8"), "RGB").resize( (new_map_width, fp_frame_height), resample=PIL.Image.LANCZOS ) ) joined_frames = [] for ind, (map_frame, a0_frame, a1_frame) in enumerate( zip(map_frames, a0_frames, a1_frames) ): joined_frames.append( np.concatenate( interleave( [a0_frame, a1_frame, f(map_frame)], # [f(a0_frame), f(a1_frame), map_frame], [spacer] * len(map_frames), )[:-1], axis=1, ) ) if ADD_PROGRESS_BAR: color = (100, 100, 255) if ind == len(map_frames) - 1: color = (0, 255, 0) if len(step_results) < 250 else (255, 0, 0) joined_frames[-1] = add_progress_bar( joined_frames[-1], ind / (len(map_frames) - 1), color=color ) final_frame = copy.deepcopy(joined_frames[-1]) save_frames_to_mp4( joined_frames + [final_frame] * FPS, save_path_mp4, fps=FPS, ) for agent_id in range(2): MyMIDI = MIDIFile(1) MyMIDI.addTempo(0, 0, FPS * 60) current_time = 0 for probs in traj_info["a{}_reply_probs".format(agent_id)]: MyMIDI.addNote( 0, 0, round(127 * probs[0]), current_time, 1, volume=100 ) current_time += 1 for i in range(FPS): MyMIDI.addNote(0, 0, 0, current_time, 1, volume=0) current_time += 1 midi_save_path = os.path.join( top_save_dir, "{}_{}.mid".format( os.path.basename(path).replace(".json", ""), agent_id ), ) with open(midi_save_path, "wb") as output_file: MyMIDI.writeFile(output_file) if not os.path.exists(save_path_png): if SAVE_VIDEO: # Select the frames from the video. No selection is needed if `SAVE_VIDEO` is `False`. map_frames = [map_frames[ind] for ind in png_inds] spacer = np.full( (map_height, fp_frame_height // 20, 3), fill_value=255, dtype=np.uint8 ) big_frame = np.concatenate( interleave(map_frames, [spacer] * len(map_frames))[:-1], axis=1 ) imageio.imwrite(save_path_png, big_frame)
cordial-sync-master
rl_multi_agent/analysis/visualize_gridbased_furnmove_trajectories.py
""" A script to summarize data saved in the `data/furnlift_evaluations__test/` directory, as a result of downloading data or running evaluation using the script: `rl_multi_agent/scripts/run_furnmove_or_furnlift_evaluations.py` Set the metrics, methods, dataset split and generate a csv-styled table of metrics and confidence intervals. Run using command: `python rl_multi_agent/analysis/summarize_furnlift_eval_results.py` Also, see `rl_multi_agent/analysis/summarize_furnmove_eval_results.py` for a similar script for FurnMove task. """ import glob import json import math import os from collections import defaultdict import numpy as np import pandas as pd from constants import ABS_PATH_TO_DATA_DIR, EASY_MAX, MED_MAX pd.set_option("display.max_rows", 500) pd.set_option("display.max_columns", 500) pd.set_option("display.width", 1000) def create_table(id_to_df, metrics_to_record, split: str = "all"): if split == "easy": min_dist = -1 max_dist = EASY_MAX elif split == "medium": min_dist = EASY_MAX + 1 max_dist = MED_MAX elif split == "hard": min_dist = MED_MAX + 1 max_dist = 1000 elif split == "all": min_dist = -1 max_dist = 10000 else: raise NotImplementedError() sorted_ids = sorted(list(id_to_df.keys())) result_means = defaultdict(lambda: []) result_95_confs = defaultdict(lambda: []) for id in sorted_ids: df = id_to_df[id].query( "initial_manhattan_steps <= {max_dist} and initial_manhattan_steps > {min_dist}".format( max_dist=max_dist, min_dist=min_dist ) ) for metric_name in metrics_to_record: values = np.array(df[metric_name]) result_means[metric_name].append(np.mean(values)) result_95_confs[metric_name].append( 1.96 * np.std(values) / math.sqrt(len(values)) ) means_df = pd.DataFrame(dict(result_means), index=sorted_ids) confs_df = pd.DataFrame(dict(result_95_confs), index=sorted_ids) return means_df.round(6), confs_df.round(6) if __name__ == "__main__": # Set constants for summarizing results. # Select metrics to summarize metrics_to_record = [ "spl_manhattan", "accuracy", "ep_length", "final_distance", "invalid_prob_mass", "tvd", "picked_but_not_pickupable", "pickupable_but_not_picked", ] # Listing all methods vision_multi_nav = [ "vision_noimplicit_central_cl", "vision_noimplicit_marginal_nocl", "vision_noimplicit_marginalnocomm_nocl", "vision_noimplicit_mixture_cl", ] # Split of the dataset. The relevant directory would be searched for saved evaluation information split = "test" # Which methods to summarize subset_interested_in = vision_multi_nav # Summarize absolute values, 95% confidence intervals, and show them with a (val \pm conf) schema # The last is useful to input into a latex table. display_values = True display_95conf = True display_combined = False id_to_df = {} for dir in glob.glob( os.path.join(ABS_PATH_TO_DATA_DIR, "furnlift_evaluations__{}/*__*").format( split ) ): dir_name = os.path.basename(dir) id = dir_name.split("__")[1] if id not in subset_interested_in: continue print() print("Processing method: {}".format(id)) recorded = defaultdict(lambda: []) for i, p in enumerate(glob.glob(os.path.join(dir, "*.json"))): if i % 100 == 0: print("Completed {} episodes".format(i)) with open(p, "r") as f: result_dict = json.load(f) for k in metrics_to_record + ["initial_manhattan_steps"]: if k == "tvd": assert "dist_to_low_rank" in result_dict recorded[k].append(result_dict["dist_to_low_rank"] / 2) elif k != "action_success_percent": recorded[k].append(result_dict[k]) id_to_df[id] = pd.DataFrame(dict(recorded)) if id_to_df[id].shape[0] == 0: del id_to_df[id] a, b = create_table(id_to_df, metrics_to_record) if display_values: # Metrics only print(a.round(3).to_csv()) if display_95conf: # Corresponding 95% confidence intervals print(b.round(3).to_csv()) if display_combined: # Combining the above a_str = a.round(3).to_numpy().astype("str").astype(np.object) b_str = b.round(3).to_numpy().astype("str").astype(np.object) combined_str = a_str + " pm " + b_str print( pd.DataFrame(data=combined_str, index=a.index, columns=a.columns).to_csv() )
cordial-sync-master
rl_multi_agent/analysis/summarize_furnlift_eval_results.py
""" This script parses the saved data in `furnmove_evaluations__test/METHOD` to create trajectory visualizations included in the supplementary of the paper and the videos included in the qualitative result video. Particularly, the marginal and SYNC 2-agent experiments are analysed and the trajectory summaries (4 top down views, evenly spread over the episode) and selected video trajectories are saved in `ABS_PATH_TO_ANALYSIS_RESULTS_DIR/furnmove_traj_visualizations_vision/{METHOD}` directory. Moreover, if the `METHOD` is communicative, an audio rendering of the agent's communication is also saved as a MIDI file. Set the appropriate options/flags at the start of the script for the desired outputs. Guiding comments are included. Run using command: `python rl_multi_agent/analysis/visualize_visionbased_furnmove_trajectories.py` See `visualize_gridbased_furnmove_trajectories.py` for an analogous grid-based script. """ import copy import glob import json import math import os from functools import lru_cache from typing import Tuple, Optional, List import PIL import colour as col import imageio import numpy as np from PIL import Image from midiutil import MIDIFile from constants import ( ABS_PATH_TO_LOCAL_THOR_BUILD, ABS_PATH_TO_ANALYSIS_RESULTS_DIR, ABS_PATH_TO_DATA_DIR, PROJECT_TOP_DIR, ) from rl_ai2thor.ai2thor_environment import AI2ThorEnvironment from rl_multi_agent.furnmove_episodes import FurnMoveEgocentricEpisode from utils.visualization_utils import ( visualize_agent_path, save_frames_to_mp4, get_agent_map_data, ) def interleave(l0, l1): return [v for p in zip(l0, l1) for v in p] IND_TO_ACTION_STR = FurnMoveEgocentricEpisode.class_available_actions( include_move_obj_actions=True ) @lru_cache(128) def get_icon(ind, size): im = Image.open( os.path.join( PROJECT_TOP_DIR, "images/action_icons/furnmove/{}.png".format(IND_TO_ACTION_STR[int(ind)]), ), "r", ).convert("RGBA") white_frame = Image.new("RGBA", im.size, color=(255, 255, 255, 255)) return np.array( Image.alpha_composite(white_frame, im) .convert("RGB") .resize((size, size), resample=PIL.Image.LANCZOS) ) def add_outline(frame, color, size=2): color = np.array(color).reshape((1, 1, 3)) frame[:, :size, :] = color frame[:, -size:, :] = color frame[:size, :, :] = color frame[-size:, :, :] = color def add_progress_bar(frame, p, color=(100, 100, 255)): height, width, _ = frame.shape bar = np.full((max(20, height // 30), width, 3), fill_value=255, dtype=np.uint8) spacer = np.copy(bar[: bar.shape[0] // 3, :, :]) bar[:, : round(width * p), :] = np.array(color).reshape((1, 1, 3)) add_outline(bar, (200, 200, 200), size=max(1, height // 200)) return np.concatenate((frame, spacer, bar), axis=0) def add_actions_to_frame( frame, ba: Optional[int], aa: Optional[int], outline_colors: Optional[List[Optional[Tuple[int, int, int]]]] = None, ): import copy frame = copy.deepcopy(frame) h = frame.shape[0] icon_size = h // 6 ba_icon, aa_icon = [ get_icon(i, size=icon_size) if i is not None else None for i in [ba, aa] ] if outline_colors is not None: for icon, color in zip([ba_icon, aa_icon], outline_colors): if icon is not None and color is not None: add_outline(icon, color=color) margin = icon_size // 8 if ba_icon is not None: frame[ -(margin + icon_size) : (-margin), margin : (margin + icon_size) ] = ba_icon if aa_icon is not None: frame[ -(margin + icon_size) : (-margin), -(margin + icon_size) : (-margin) ] = aa_icon return frame def unit_vector(vector): """ Returns the unit vector of the vector. Taken from https://stackoverflow.com/questions/2827393/angles-between-two-n-dimensional-vectors-in-python/13849249#13849249. """ return vector / np.linalg.norm(vector) def linear_increase_decrease(p): if p <= 1 / 2: return 2 * (p ** 2) else: return -1 + 4 * p - 2 * (p ** 2) def signed_angle_between(v1, v2): """ Returns the angle in radians between vectors 'v1' and 'v2':: Taken from https://stackoverflow.com/questions/2827393/angles-between-two-n-dimensional-vectors-in-python/13849249#13849249. """ v1_u = unit_vector(v1) v2_u = unit_vector(v2) minor = np.linalg.det(np.stack((v1_u[-2:], v2_u[-2:]))) angle = np.arccos(np.clip(np.dot(v1_u, v2_u), -1.0, 1.0)) if round(angle, 8) == 0: return angle if minor == 0: raise NotImplementedError("Too odd vectors =(") return np.sign(minor) * angle def interpolate_step_results(step_results, multiplier): if multiplier == 1: return step_results @lru_cache(100) def signed_angle(rota, rotb): avec = np.array( [math.cos(-2 * math.pi * rota / 360), math.sin(-2 * math.pi * rota / 360)] ) bvec = np.array( [math.cos(-2 * math.pi * rotb / 360), math.sin(-2 * math.pi * rotb / 360)] ) return 360 * (-signed_angle_between(avec, bvec)) / (2 * math.pi) def recursive_dict_interpolator(a, b, p, is_angle=False): if is_angle: is_angle_dict = type(a) == dict if is_angle_dict: rota = a["y"] rotb = b["y"] else: rota = a rotb = b rota = 90 * round(rota / 90) % 360 rotb = 90 * round(rotb / 90) % 360 angle_from_a_to_b = signed_angle(rota, rotb) if is_angle_dict: return { "x": a["x"], "y": (a["y"] + p * angle_from_a_to_b) % 360, "z": a["z"], } else: return (a + p * angle_from_a_to_b) % 360 t = type(a) if t == dict: return { k: ( (1 - p) * a[k] + p * b[k] if k in ["x", "y", "z", "horizon"] else (recursive_dict_interpolator(a[k], b[k], p, "rotation" in k)) ) for k in a if k in b } else: if p == 1: return b return a new_step_results = [step_results[0]] for next_sr in step_results[1:]: last_sr = new_step_results[-1] new_step_results.extend( [ recursive_dict_interpolator( last_sr[j], next_sr[j], (i + 1) / multiplier, False, ) for j in range(2) ] for i in range(multiplier) ) return new_step_results if __name__ == "__main__": # See `visualize_gridbased_furnmove_trajectories.py` for a guide on how to set the options for # desired visualizations. # The additional flag of `MULTIPLIER` helps generate a smoother video, by dividing one step into `MULTIPLIER` steps. SAVE_VIDEO = False ADD_PROGRESS_BAR = True FPS = 5 MULTIPLIER = 5 mode = "mixture" # mode = "marginal" if mode == "mixture": METHOD = "vision_mixture_cl_rot" elif mode == "marginal": METHOD = "vision_marginal_nocl_rot" else: raise NotImplementedError load_from_dir = os.path.join( ABS_PATH_TO_DATA_DIR, "furnmove_evaluations__test", METHOD ) top_save_dir = os.path.join( ABS_PATH_TO_ANALYSIS_RESULTS_DIR, "furnmove_traj_visualizations_vision", METHOD ) os.makedirs(top_save_dir, exist_ok=True) video_save_path_ids = { # "FloorPlan229_physics__0", "FloorPlan229_physics__15", # "FloorPlan229_physics__193", # "FloorPlan230_physics__47", # "FloorPlan230_physics__70", # "FloorPlan230_physics__72", } screen_size = 500 env = AI2ThorEnvironment( local_thor_build=ABS_PATH_TO_LOCAL_THOR_BUILD, num_agents=2 ) env.start( "FloorPlan1_physics", player_screen_height=screen_size, player_screen_width=screen_size, quality="Ultra", move_mag=0.25 / MULTIPLIER, ) paths = sorted(glob.glob(os.path.join(load_from_dir, "*.json"))) for path in paths: path_id = str(os.path.basename(path).replace(".json", "")) if path_id not in video_save_path_ids: continue with open(path, "r") as f: traj_info = json.load(f) map_row_slice = None map_col_slice = None step_results = traj_info["step_results"] last_sr = copy.deepcopy(step_results[-1]) step_results.append(last_sr) for i in range(len(last_sr)): last_sr[i]["before_location"] = last_sr[i]["after_location"] last_sr[i]["object_location"]["Television|1"]["before_location"] = last_sr[ i ]["object_location"]["Television|1"]["after_location"] episode_init_data = traj_info["episode_init_data"] tv_loc_start = episode_init_data["lifted_object_location"] tv_loc_end = step_results[-1][0]["object_location"]["Television|1"][ "after_location" ] if (not SAVE_VIDEO) and AI2ThorEnvironment.position_dist( tv_loc_start, tv_loc_end, use_l1=True ) < 3.0: print("Skipping {}".format(path_id)) continue if SAVE_VIDEO: step_results = interpolate_step_results(step_results, multiplier=MULTIPLIER) print("Visualizing {}".format(path_id)) env.reset(path_id.split("__")[0], move_mag=0.25) init_reachable = env.initially_reachable_points_set env.reset(path_id.split("__")[0], move_mag=0.25 / MULTIPLIER) env.step( { "action": "CreateObjectAtLocation", "objectType": "Television", "forceAction": True, "agentId": 0, "renderImage": False, "position": { k: v for k, v in tv_loc_start.items() if k in ["x", "y", "z"] }, "rotation": {"x": 0, "y": tv_loc_start["rotation"], "z": 0}, } ) assert env.last_event.metadata["lastActionSuccess"] tv_id = "Television|1" to_object_loc = episode_init_data["to_object_location"] env.step( { "action": "CreateObjectAtLocation", "objectType": "Dresser", "forceAction": True, "agentId": 0, "renderImage": False, "position": { k: v for k, v in to_object_loc.items() if k in ["x", "y", "z"] }, "rotation": {"x": 0, "y": to_object_loc["rotation"], "z": 0}, } ) assert env.last_event.metadata["lastActionSuccess"] dresser_id = "Dresser|2" video_inds = list(range(len(step_results))) png_inds = list( set(int(x) for x in np.linspace(0, len(step_results) - 1, num=4).round()) ) png_inds.sort() save_path_png = os.path.join( top_save_dir, "{}__{}.png".format( os.path.basename(path).replace(".json", ""), "_".join( [str(ind // MULTIPLIER if SAVE_VIDEO else ind) for ind in png_inds] ), ), ) save_path_mp4 = os.path.join( top_save_dir, "{}__video.mp4".format(os.path.basename(path).replace(".json", "")), ) if os.path.exists(save_path_png) and ( os.path.exists(save_path_png) or not SAVE_VIDEO ): print("{} already exists, skipping...".format(save_path_png)) continue map_frames = [] a0_frames = [] a1_frames = [] colors_list = [ list(col.Color("red").range_to(col.Color("#ffc8c8"), len(step_results))), list(col.Color("green").range_to(col.Color("#c8ffc8"), len(step_results))), list(col.Color("blue").range_to(col.Color("#c8c8ff"), len(step_results))), ] agent_0_full_traj = [x["before_location"] for x, _ in step_results] agent_1_full_traj = [y["before_location"] for _, y in step_results] full_tv_traj = [ x["object_location"][tv_id]["before_location"] for x, _ in step_results ] for ind in png_inds if not SAVE_VIDEO else video_inds: if SAVE_VIDEO and ind % (50 * MULTIPLIER) == 0: print("Processed {} steps".format(ind // MULTIPLIER)) sr0, sr1 = step_results[ind] loc0 = sr0["before_location"] loc1 = sr1["before_location"] tv_loc = sr0["object_location"][tv_id]["before_location"] traj0 = agent_0_full_traj[: (ind + 1)] traj1 = agent_1_full_traj[: (ind + 1)] tv_traj = full_tv_traj[: (ind + 1)] if ind == len(step_results) - 1: traj0.append(loc0) traj1.append(loc1) tv_traj.append(tv_loc) env.teleport_agent_to( **loc0, force_action=True, agent_id=0, render_image=False ) assert env.last_event.metadata["lastActionSuccess"] env.teleport_agent_to( **loc1, force_action=True, agent_id=1, render_image=False ) assert env.last_event.metadata["lastActionSuccess"] env.step( { "action": "TeleportObject", "objectId": tv_id, **tv_loc, "rotation": tv_loc["rotation"], "forceAction": True, "agentId": 0, "renderImage": False, } ) assert env.last_event.metadata["lastActionSuccess"] map_data = get_agent_map_data(env) frame = map_data["frame"] for i, (traj, show_vis_cone, opacity) in enumerate( zip([traj0, traj1, tv_traj], [True, True, False], [0.4, 0.4, 0.8]) ): frame = visualize_agent_path( traj, frame, map_data["pos_translator"], color_pair_ind=i, show_vis_cone=show_vis_cone, only_show_last_visibility_cone=True, opacity=opacity, colors=colors_list[i], ) if map_row_slice is None: xs = [p[0] for p in init_reachable] zs = [p[1] for p in init_reachable] minx, maxx = min(xs) - 0.5, max(xs) + 0.5 minz, maxz = min(zs) - 0.5, max(zs) + 0.5 minrow, mincol = map_data["pos_translator"]((minx, maxz)) maxrow, maxcol = map_data["pos_translator"]((maxx, minz)) map_row_slice = slice(max(minrow, 0), min(maxrow, screen_size)) map_col_slice = slice(max(mincol, 0), min(maxcol, screen_size)) frame = frame[ map_row_slice, map_col_slice, ] map_frames.append(frame) if SAVE_VIDEO: def to_outline_color(success): if success is None: return None elif success: return (0, 255, 0) else: return (255, 0, 0) action_success0 = [None, None] action_success1 = [None, None] if ind == 0: ba0, ba1 = None, None aa0, aa1 = sr0["action"], sr1["action"] action_success0[1] = sr0["action_success"] action_success1[1] = sr1["action_success"] elif ind == len(video_inds): oldsr0, oldsr1 = step_results[ind - 1] ba0, ba1 = oldsr0["action"], step_results["action"] aa0, aa1 = None, None action_success0[0] = sr0["action_success"] action_success1[0] = sr1["action_success"] else: oldsr0, oldsr1 = step_results[ind - 1] ba0, ba1 = oldsr0["action"], oldsr1["action"] aa0, aa1 = sr0["action"], sr1["action"] action_success0[0] = oldsr0["action_success"] action_success1[0] = oldsr1["action_success"] action_success0[1] = sr0["action_success"] action_success1[1] = sr1["action_success"] a0_frames.append( add_actions_to_frame( env.current_frames[0], ba=ba0, aa=None, outline_colors=list(map(to_outline_color, action_success0)), ) ) a1_frames.append( add_actions_to_frame( env.current_frames[1], ba=ba1, aa=None, outline_colors=list(map(to_outline_color, action_success1)), ) ) map_height, map_width, _ = map_frames[0].shape fp_frame_height = a0_frames[0].shape[0] if len(a0_frames) != 0 else map_height spacer = np.full( (fp_frame_height, screen_size // 20, 3), fill_value=255, dtype=np.uint8 ) if SAVE_VIDEO and not os.path.exists(save_path_mp4): new_map_width = round(fp_frame_height * map_width / map_height) f = lambda x: np.array( Image.fromarray(x.astype("uint8"), "RGB").resize( (new_map_width, fp_frame_height), resample=PIL.Image.LANCZOS ) ) joined_frames = [] for ind, (map_frame, a0_frame, a1_frame) in enumerate( zip(map_frames, a0_frames, a1_frames) ): joined_frames.append( np.concatenate( interleave( [a0_frame, a1_frame, f(map_frame)], [spacer] * len(map_frames), )[:-1], axis=1, ) ) if ADD_PROGRESS_BAR: color = (100, 100, 255) if ind == len(map_frames) - 1: color = ( (0, 255, 0) if len(step_results) // MULTIPLIER < 250 else (255, 0, 0) ) joined_frames[-1] = add_progress_bar( joined_frames[-1], ind / (len(map_frames) - 1), color=color ) final_frame = copy.deepcopy(joined_frames[-1]) if MULTIPLIER == 1: save_frames_to_mp4( joined_frames + [final_frame] * FPS, save_path_mp4, fps=FPS, ) else: save_frames_to_mp4( joined_frames + [final_frame] * FPS * MULTIPLIER, save_path_mp4, fps=FPS * MULTIPLIER, ) for agent_id in range(2): MyMIDI = MIDIFile(1) MyMIDI.addTempo(0, 0, FPS * 60) current_time = 0 for probs in traj_info["a{}_reply_probs".format(agent_id)]: MyMIDI.addNote(0, 0, round(127 * probs[0]), current_time, 1, volume=100) current_time += 1 for i in range(FPS): MyMIDI.addNote(0, 0, 0, current_time, 1, volume=0) current_time += 1 midi_save_path = os.path.join( top_save_dir, "{}_{}.mid".format( os.path.basename(path).replace(".json", ""), agent_id ), ) with open(midi_save_path, "wb") as output_file: MyMIDI.writeFile(output_file) if not os.path.exists(save_path_png): map_frames = [ map_frames[ind] for ind in (png_inds if SAVE_VIDEO else range(len(map_frames))) ] spacer = np.full( (map_height, screen_size // 20, 3), fill_value=255, dtype=np.uint8 ) big_frame = np.concatenate( interleave(map_frames, [spacer] * len(map_frames))[:-1], axis=1 ) imageio.imwrite(save_path_png, big_frame)
cordial-sync-master
rl_multi_agent/analysis/visualize_visionbased_furnmove_trajectories.py
""" A script to summarize data saved in the `data/furnmove_evaluations__test/` directory, as a result of downloading data or running evaluation using the script: `rl_multi_agent/scripts/run_furnmove_or_furnlift_evaluations.py` Set the metrics, methods, dataset split and generate a csv-styled table of metrics and confidence intervals. Particularly, which of the methods: * grid_vision_furnmove: Four prominent methods (no comm, marginal, SYNC, central) for gridworld and visual environments. * grid_3agents: Marginal, SYNC, and central methods for three agent gridworld-FurnMove setting. * vision_mixtures: Effect of number of mixture components m on SYNC’s performance (in FurnMove) * vision_cl_ablation: Effect of CORDIAL (`cl`) on marginal, SYNC, and central methods. * vision_3agents: Marginal, SYNC, and central methods for three agent FurnMove setting. Run using command: `python rl_multi_agent/analysis/summarize_furnmove_eval_results.py` Also, see `rl_multi_agent/analysis/summarize_furnlift_eval_results.py` for a similar script for FurnLift task. """ import glob import json import os from collections import defaultdict import numpy as np import pandas as pd from constants import ABS_PATH_TO_DATA_DIR from rl_multi_agent.analysis.summarize_furnlift_eval_results import create_table pd.set_option("display.max_rows", 500) pd.set_option("display.max_columns", 500) pd.set_option("display.width", 1000) if __name__ == "__main__": # Set constants for summarizing results. # Select metrics to summarize metrics_to_record = [ "spl_manhattan", "reached_target", "ep_length", "final_distance", "invalid_prob_mass", "tvd", # "reward", ] # Split of the dataset. The relevant directory would be searched for saved evaluation information split = "test" id_to_df = {} # Listing all methods grid_vision_furnmove = [ "grid_bigcentral_cl_rot", "grid_marginal_nocl_rot", "grid_marginalnocomm_nocl_rot", "grid_mixture_cl_rot", "vision_bigcentral_cl_rot", "vision_marginal_nocl_rot", "vision_marginalnocomm_nocl_rot", "vision_mixture_cl_rot", ] grid_3agents = [ "grid_central_3agents", "grid_marginal_3agents", "grid_mixture_3agents", ] vision_mixtures = [ "vision_marginal_cl_rot", "vision_mixture2mix_cl_rot", "vision_mixture4mix_cl_rot", "vision_mixture_cl_rot", ] vision_cl_ablation = [ "vision_marginal_nocl_rot", "vision_marginal_cl_rot", "vision_bigcentral_nocl_rot", "vision_bigcentral_cl_rot", "vision_mixture_nocl_rot", "vision_mixture_cl_rot", ] vision_3agents = [ "vision_central_3agents", "vision_marginal_3agents", "vision_mixture_3agents", ] # Which methods to summarize subset_interested_in = grid_vision_furnmove # Summarize absolute values, 95% confidence intervals, and show them with a (val \pm conf) schema # The last is useful to input into a latex table. display_values = True display_95conf = True display_combined = False for dir in glob.glob( os.path.join(ABS_PATH_TO_DATA_DIR, "furnmove_evaluations__{}/*").format(split) ): id = os.path.basename(dir) if id not in subset_interested_in: continue print() print("Processing method: {}".format(id)) recorded = defaultdict(lambda: []) for i, p in enumerate(glob.glob(os.path.join(dir, "*.json"))): if i % 100 == 0: print("Completed {} episodes".format(i)) with open(p, "r") as f: result_dict = json.load(f) for k in metrics_to_record + ["initial_manhattan_steps"]: if k == "tvd": assert "dist_to_low_rank" in result_dict recorded[k].append(result_dict["dist_to_low_rank"] / 2) elif k != "action_success_percent": recorded[k].append(result_dict[k]) recorded["action_success_percent"].append( np.array(result_dict["action_taken_success_matrix"]).sum() / (result_dict["ep_length"] // 2) ) id_to_df[id] = pd.DataFrame(dict(recorded)) if id_to_df[id].shape[0] == 0: del id_to_df[id] a, b = create_table(id_to_df, metrics_to_record) if display_values: # Metrics only print(a.round(3).to_csv()) if display_95conf: # Corresponding 95% confidence intervals print(b.round(3).to_csv()) if display_combined: # Combining the above a_str = a.round(3).to_numpy().astype("str").astype(np.object) b_str = b.round(3).to_numpy().astype("str").astype(np.object) combined_str = a_str + " pm " + b_str print( pd.DataFrame(data=combined_str, index=a.index, columns=a.columns).to_csv() )
cordial-sync-master
rl_multi_agent/analysis/summarize_furnmove_eval_results.py
from rl_multi_agent.experiments.furnlift_vision_marginalnocomm_nocl_config import ( FurnLiftMinDistUncoordinatedNocommExperimentConfig, ) class FurnLiftMinDistUncoordinatedNocommNoimplicitExperimentConfig( FurnLiftMinDistUncoordinatedNocommExperimentConfig ): # Env/episode config visible_agents = False def get_experiment(): return FurnLiftMinDistUncoordinatedNocommNoimplicitExperimentConfig()
cordial-sync-master
rl_multi_agent/experiments/furnlift_vision_noimplicit_marginalnocomm_nocl_config.py
from typing import Optional from rl_multi_agent.experiments.furnmove_grid_marginal_cl_base_config import ( FurnMoveExperimentConfig, ) class FurnMoveGridExperimentConfig(FurnMoveExperimentConfig): @classmethod def get_init_train_params(cls): init_train_params = FurnMoveExperimentConfig.get_init_train_params() init_train_params["environment_args"] = {"min_steps_between_agents": 2} return init_train_params @property def saved_model_path(self) -> Optional[str]: return None def get_experiment(): return FurnMoveGridExperimentConfig()
cordial-sync-master
rl_multi_agent/experiments/furnmove_grid_marginal_cl_rot_config.py
from typing import Callable, Optional import torch from torch import nn import constants from rl_multi_agent import MultiAgent from rl_multi_agent.experiments.experiment import ExperimentConfig from rl_multi_agent.furnmove_episode_samplers import FurnMoveEpisodeSampler from rl_multi_agent.furnmove_episodes import FurnMoveEgocentricEpisode from rl_multi_agent.models import A3CLSTMBigCentralEgoVision class FurnMoveCentralVision3AgentsExperimentConfig(ExperimentConfig): # Env/episode config num_agents = 3 screen_size = 84 episode_class = FurnMoveEgocentricEpisode frame_type = "image" episode_sampler_class = FurnMoveEpisodeSampler visible_agents = True include_depth_frame = False include_move_obj_actions = True headless = False # Model config state_repr_length = 512 # Agent config agent_class = MultiAgent discourage_failed_coordination = 5000 # Training config max_ep_using_expert_actions = 0 train_scenes = constants.TRAIN_SCENE_NAMES[20:40] valid_scenes = constants.VALID_SCENE_NAMES[5:10] use_a3c_loss_when_not_expert_forcing = True # Misc (e.g. visualization) record_all_in_test = False save_talk_reply_probs_path = None include_test_eval_results = not torch.cuda.is_available() return_likely_successfuly_move_actions = False @classmethod def get_init_train_params(cls): init_train_params = { "scenes": cls.train_scenes, "num_agents": cls.num_agents, "object_type": "Television", "to_object_type": "Dresser", "episode_class": cls.episode_class, "player_screen_height": cls.screen_size, "player_screen_width": cls.screen_size, "max_ep_using_expert_actions": cls.max_ep_using_expert_actions, "visible_agents": cls.visible_agents, "include_depth_frame": cls.include_depth_frame, "object_initial_height": 1.3, "headless": cls.headless, "max_distance_from_object": 0.76, "max_episode_length": 250 * cls.num_agents, "episode_args": { "include_move_obj_actions": cls.include_move_obj_actions, "first_correct_coord_reward": 0.0, "exploration_bonus": 0.0, "failed_action_penalty": -0.02, "step_penalty": -0.01, "joint_pass_penalty": -0.09, "moved_closer_reward": 2.0, "min_dist_to_to_object": 0.26, "frame_type": cls.frame_type, "reached_target_reward": 2.0, "return_likely_successfuly_move_actions": cls.return_likely_successfuly_move_actions, "pass_conditioned_coordination": True, }, } return init_train_params @classmethod def get_init_valid_params(cls): init_valid_params = { **cls.get_init_train_params(), "scenes": cls.valid_scenes, "player_screen_height": 224, "player_screen_width": 224, "headless": False, } if cls.save_talk_reply_probs_path is not None: init_valid_params[ "save_talk_reply_probs_path" ] = cls.save_talk_reply_probs_path return init_valid_params def __init__(self): self._init_train_agent = self.episode_sampler_class( **self.get_init_train_params() ) self._init_test_agent = self.episode_sampler_class( **self.get_init_valid_params() ) @classmethod def create_model(cls, **kwargs) -> nn.Module: return A3CLSTMBigCentralEgoVision( num_inputs_per_agent=3 + 1 * cls.include_depth_frame, action_groups=cls.episode_class.class_available_action_groups( include_move_obj_actions=cls.include_move_obj_actions ), num_agents=cls.num_agents, state_repr_length=cls.state_repr_length, ) @classmethod def create_agent(cls, **kwargs) -> MultiAgent: return cls.agent_class( model=kwargs["model"], gpu_id=kwargs["gpu_id"], include_test_eval_results=cls.include_test_eval_results, use_a3c_loss_when_not_expert_forcing=cls.use_a3c_loss_when_not_expert_forcing, record_all_in_test=cls.record_all_in_test, include_depth_frame=cls.include_depth_frame, resize_image_as=cls.screen_size, discourage_failed_coordination=cls.discourage_failed_coordination, ) @property def init_train_agent(self) -> Callable: return self._init_train_agent @property def init_test_agent(self) -> Callable: return self._init_test_agent @property def saved_model_path(cls) -> Optional[str]: return None def get_experiment(): return FurnMoveCentralVision3AgentsExperimentConfig()
cordial-sync-master
rl_multi_agent/experiments/furnmove_vision_central_3agents_config.py
from typing import Callable, Optional import torch from torch import nn import constants from rl_multi_agent import MultiAgent from rl_multi_agent.experiments.experiment import ExperimentConfig from rl_multi_agent.furnmove_episode_samplers import FurnMoveEpisodeSampler from rl_multi_agent.furnmove_episodes import FurnMoveEgocentricEpisode from rl_multi_agent.models import A3CLSTMNStepComCoordinatedActionsEgoVision class FurnMoveExperimentConfig(ExperimentConfig): """ All scenes + 1.0 reward for getting closer to the target Discrete communication + discourage failed coordination loss """ # Env/episode config num_agents = 2 screen_size = 84 episode_class = FurnMoveEgocentricEpisode frame_type = "image" episode_sampler_class = FurnMoveEpisodeSampler visible_agents = True include_depth_frame = False include_move_obj_actions = True headless = False # Model config state_repr_length = 512 talk_embed_length = 16 reply_embed_length = 16 agent_num_embed_length = 8 num_talk_symbols = 2 num_reply_symbols = 2 coordinate_actions = True # Agent config agent_class = MultiAgent turn_off_communication = False # Training config max_ep_using_expert_actions = 0 train_scenes = constants.TRAIN_SCENE_NAMES[20:40] valid_scenes = constants.VALID_SCENE_NAMES[5:10] use_a3c_loss_when_not_expert_forcing = True # Misc (e.g. visualization) record_all_in_test = False save_talk_reply_probs_path = None include_test_eval_results = not torch.cuda.is_available() return_likely_successfuly_move_actions = False @classmethod def get_init_train_params(cls): init_train_params = { "scenes": cls.train_scenes, "num_agents": cls.num_agents, "object_type": "Television", "to_object_type": "Dresser", "episode_class": cls.episode_class, "player_screen_height": cls.screen_size, "player_screen_width": cls.screen_size, "max_ep_using_expert_actions": cls.max_ep_using_expert_actions, "visible_agents": cls.visible_agents, "include_depth_frame": cls.include_depth_frame, "object_initial_height": 1.3, "headless": cls.headless, "max_distance_from_object": 0.76, "max_episode_length": 500, "episode_args": { "include_move_obj_actions": cls.include_move_obj_actions, "first_correct_coord_reward": 0.0, "exploration_bonus": 0.0, "failed_action_penalty": -0.02, "step_penalty": -0.01, # "increasing_rotate_penalty": True, "joint_pass_penalty": -0.09, "moved_closer_reward": 1.0, # "moved_closer_reward": 0.50, "min_dist_to_to_object": 0.26, "frame_type": cls.frame_type, "reached_target_reward": 1.0, "return_likely_successfuly_move_actions": cls.return_likely_successfuly_move_actions, "pass_conditioned_coordination": True, }, } return init_train_params @classmethod def get_init_valid_params(cls): init_valid_params = { **cls.get_init_train_params(), "scenes": cls.valid_scenes, "player_screen_height": 224, "player_screen_width": 224, "headless": False, } if cls.save_talk_reply_probs_path is not None: init_valid_params[ "save_talk_reply_probs_path" ] = cls.save_talk_reply_probs_path return init_valid_params def __init__(self): self._init_train_agent = self.episode_sampler_class( **self.get_init_train_params() ) self._init_test_agent = self.episode_sampler_class( **self.get_init_valid_params() ) @classmethod def create_model(cls, **kwargs) -> nn.Module: return A3CLSTMNStepComCoordinatedActionsEgoVision( num_inputs_per_agent=3 + 1 * cls.include_depth_frame, action_groups=cls.episode_class.class_available_action_groups( include_move_obj_actions=cls.include_move_obj_actions ), num_agents=cls.num_agents, state_repr_length=cls.state_repr_length, talk_embed_length=cls.talk_embed_length, agent_num_embed_length=cls.agent_num_embed_length, reply_embed_length=cls.reply_embed_length, num_talk_symbols=cls.num_talk_symbols, num_reply_symbols=cls.num_reply_symbols, turn_off_communication=cls.turn_off_communication, coordinate_actions=cls.coordinate_actions, coordinate_actions_dim=2 if cls.coordinate_actions else None, separate_actor_weights=False, ) @classmethod def create_agent(cls, **kwargs) -> MultiAgent: return cls.agent_class( model=kwargs["model"], gpu_id=kwargs["gpu_id"], include_test_eval_results=cls.include_test_eval_results, use_a3c_loss_when_not_expert_forcing=cls.use_a3c_loss_when_not_expert_forcing, record_all_in_test=cls.record_all_in_test, include_depth_frame=cls.include_depth_frame, resize_image_as=cls.screen_size, # discourage_failed_coordination=5000, ) @property def init_train_agent(self) -> Callable: return self._init_train_agent @property def init_test_agent(self) -> Callable: return self._init_test_agent @property def saved_model_path(self) -> Optional[str]: # return "trained_models/furnmove_a3c_mixture_ego_vision_ego_actions_v3_490000_2019-10-28_16-43-13.dat" return None def get_experiment(): return FurnMoveExperimentConfig()
cordial-sync-master
rl_multi_agent/experiments/furnmove_vision_mixture2mix_nocl_rot_config.py
from typing import Optional from torch import nn import constants from rl_multi_agent.experiments.furnmove_grid_marginalnocomm_base_config import ( FurnMoveExperimentConfig, ) from rl_multi_agent.furnmove_episodes import ( FurnMoveEgocentricNoRotationsFastGridEpisode, ) from rl_multi_agent.models import A3CLSTMNStepComCoordinatedActionsEgoGridsEmbedCNN class FurnMoveNoCommNoRotationsExperimentConfig(FurnMoveExperimentConfig): episode_class = FurnMoveEgocentricNoRotationsFastGridEpisode # Increasing the params of marginal to match mixture final_cnn_channels = 288 @classmethod def get_init_train_params(cls): init_train_params = { "scenes": cls.train_scenes, "num_agents": cls.num_agents, "object_type": "Television", "to_object_type": "Dresser", "to_object_silhouette": constants.DRESSER_SILHOUETTE_STRING, "episode_class": cls.episode_class, "player_screen_height": cls.screen_size, "player_screen_width": cls.screen_size, "max_ep_using_expert_actions": cls.max_ep_using_expert_actions, "visible_agents": cls.visible_agents, "include_depth_frame": cls.include_depth_frame, "object_initial_height": 1.3, "headless": cls.headless, "max_distance_from_object": 0.76, "max_episode_length": 500, "environment_args": {"min_steps_between_agents": 2}, "episode_args": { "include_move_obj_actions": cls.include_move_obj_actions, "first_correct_coord_reward": 0.0, "exploration_bonus": 0.0, "failed_action_penalty": -0.02, "step_penalty": -0.01, "joint_pass_penalty": -0.09, "moved_closer_reward": 1.0, "min_dist_to_to_object": 0.26, "reached_target_reward": 1.0, "return_likely_successfuly_move_actions": cls.return_likely_successfuly_move_actions, "frame_type": "fast-egocentric-relative-tensor", "pass_conditioned_coordination": True, }, } return init_train_params @property def saved_model_path(self) -> Optional[str]: return None @classmethod def create_model(cls, **kwargs) -> nn.Module: def _create_model(**kwargs): return A3CLSTMNStepComCoordinatedActionsEgoGridsEmbedCNN( **{ **dict( num_inputs=9, action_groups=cls.episode_class.class_available_action_groups( include_move_obj_actions=cls.include_move_obj_actions ), num_agents=cls.num_agents, state_repr_length=cls.state_repr_length, occupancy_embed_length=8, talk_embed_length=cls.talk_embed_length, agent_num_embed_length=cls.agent_num_embed_length, reply_embed_length=cls.reply_embed_length, turn_off_communication=cls.turn_off_communication, coordinate_actions=cls.coordinate_actions, coordinate_actions_dim=13 if cls.coordinate_actions else None, separate_actor_weights=False, num_talk_symbols=cls.num_talk_symbols, num_reply_symbols=cls.num_reply_symbols, final_cnn_channels=cls.final_cnn_channels, ), **kwargs, } ) return _create_model(**kwargs) def get_experiment(): return FurnMoveNoCommNoRotationsExperimentConfig()
cordial-sync-master
rl_multi_agent/experiments/furnmove_grid_marginalnocomm_nocl_norot_config.py
from typing import Callable, Optional import torch from torch import nn import constants from rl_multi_agent import MultiAgent from rl_multi_agent.experiments.experiment import ExperimentConfig from rl_multi_agent.furnmove_episode_samplers import FurnMoveGridEpisodeSampler from rl_multi_agent.furnmove_episodes import FurnMoveEgocentricFastGridEpisode from rl_multi_agent.models import A3CLSTMNStepComCoordinatedActionsEgoGridsEmbedCNN class FurnMoveExperimentConfig(ExperimentConfig): # Env/episode config num_agents = 2 screen_size = 84 episode_class = FurnMoveEgocentricFastGridEpisode episode_sampler_class = FurnMoveGridEpisodeSampler visible_agents = True include_depth_frame = False include_move_obj_actions = True headless = True if torch.cuda.is_available() else False # Model config state_repr_length = 512 talk_embed_length = 16 reply_embed_length = 16 agent_num_embed_length = 8 coordinate_actions = False num_talk_symbols = 2 num_reply_symbols = 2 # Agent config agent_class = MultiAgent turn_off_communication = True # Training config max_ep_using_expert_actions = 0 train_scenes = constants.TRAIN_SCENE_NAMES[20:40] valid_scenes = constants.VALID_SCENE_NAMES[5:10] use_a3c_loss_when_not_expert_forcing = True # Misc (e.g. visualization) record_all_in_test = False save_talk_reply_probs_path = None include_test_eval_results = not torch.cuda.is_available() return_likely_successfuly_move_actions = False @classmethod def get_init_train_params(cls): init_train_params = { "scenes": cls.train_scenes, "num_agents": cls.num_agents, "object_type": "Television", "to_object_type": "Dresser", "to_object_silhouette": constants.DRESSER_SILHOUETTE_STRING, "episode_class": cls.episode_class, "player_screen_height": cls.screen_size, "player_screen_width": cls.screen_size, "max_ep_using_expert_actions": cls.max_ep_using_expert_actions, "visible_agents": cls.visible_agents, "include_depth_frame": cls.include_depth_frame, "object_initial_height": 1.3, "headless": cls.headless, "max_distance_from_object": 0.76, "max_episode_length": 500, "episode_args": { "include_move_obj_actions": cls.include_move_obj_actions, "first_correct_coord_reward": 0.0, "exploration_bonus": 0.0, "failed_action_penalty": -0.02, "step_penalty": -0.01, "joint_pass_penalty": -0.09, "moved_closer_reward": 1.0, "min_dist_to_to_object": 0.26, "reached_target_reward": 1.0, "return_likely_successfuly_move_actions": cls.return_likely_successfuly_move_actions, "frame_type": "fast-egocentric-relative-tensor", "pass_conditioned_coordination": True, }, } return init_train_params @classmethod def get_init_valid_params(cls): init_valid_params = { **cls.get_init_train_params(), "scenes": cls.valid_scenes, "player_screen_height": 224, "player_screen_width": 224, "headless": False, } if cls.save_talk_reply_probs_path is not None: init_valid_params[ "save_talk_reply_probs_path" ] = cls.save_talk_reply_probs_path return init_valid_params def __init__(self): self._init_train_agent = self.episode_sampler_class( **self.get_init_train_params() ) self._init_test_agent = self.episode_sampler_class( **self.get_init_valid_params() ) @classmethod def create_model(cls, **kwargs) -> nn.Module: return A3CLSTMNStepComCoordinatedActionsEgoGridsEmbedCNN( num_inputs=9, action_groups=cls.episode_class.class_available_action_groups( include_move_obj_actions=cls.include_move_obj_actions ), num_agents=cls.num_agents, state_repr_length=cls.state_repr_length, occupancy_embed_length=8, talk_embed_length=cls.talk_embed_length, agent_num_embed_length=cls.agent_num_embed_length, reply_embed_length=cls.reply_embed_length, turn_off_communication=cls.turn_off_communication, coordinate_actions=cls.coordinate_actions, coordinate_actions_dim=13 if cls.coordinate_actions else None, separate_actor_weights=False, num_talk_symbols=cls.num_talk_symbols, num_reply_symbols=cls.num_reply_symbols, ) # IF WE WANTED CENTRAL # return A3CLSTMCentralEgoGridsEmbedCNN( # num_inputs_per_agent=10, # action_groups=cls.episode_class.class_available_action_groups( # include_move_obj_actions=cls.include_move_obj_actions # ), # num_agents=cls.num_agents, # state_repr_length=cls.state_repr_length, # occupancy_embed_length=8, # ) @classmethod def create_agent(cls, **kwargs) -> MultiAgent: return cls.agent_class( model=kwargs["model"], gpu_id=kwargs["gpu_id"], include_test_eval_results=cls.include_test_eval_results, use_a3c_loss_when_not_expert_forcing=cls.use_a3c_loss_when_not_expert_forcing, record_all_in_test=cls.record_all_in_test, include_depth_frame=cls.include_depth_frame, ) @property def init_train_agent(self) -> Callable: return self._init_train_agent @property def init_test_agent(self) -> Callable: return self._init_test_agent @property def saved_model_path(self) -> Optional[str]: return None # return "trained_models/furnmove_a3c_noncentral_ego_grids_ego_actions_uncoordinated_discrete_com_fast_relative_v2_pass_1000000_2019-11-02_14-28-33.dat" def get_experiment(): return FurnMoveExperimentConfig()
cordial-sync-master
rl_multi_agent/experiments/furnmove_grid_marginalnocomm_base_config.py
from typing import Callable, Optional import torch from torch import nn import constants from rl_multi_agent import MultiAgent from rl_multi_agent.experiments.experiment import ExperimentConfig from rl_multi_agent.furnmove_episode_samplers import FurnMoveEpisodeSampler from rl_multi_agent.furnmove_episodes import FurnMoveEgocentricEpisode from rl_multi_agent.models import A3CLSTMCentralEgoVision class FurnMoveExperimentConfig(ExperimentConfig): """ All scenes + 1.0 reward for getting closer to the target With Failed coordination loss """ # Env/episode config num_agents = 2 screen_size = 84 episode_class = FurnMoveEgocentricEpisode frame_type = "image" episode_sampler_class = FurnMoveEpisodeSampler visible_agents = True include_depth_frame = False include_move_obj_actions = True headless = False # Model config state_repr_length = 512 # Agent config agent_class = MultiAgent # Training config max_ep_using_expert_actions = 0 train_scenes = constants.TRAIN_SCENE_NAMES[20:40] valid_scenes = constants.VALID_SCENE_NAMES[5:10] use_a3c_loss_when_not_expert_forcing = True # Misc (e.g. visualization) record_all_in_test = False save_talk_reply_probs_path = None include_test_eval_results = not torch.cuda.is_available() return_likely_successfuly_move_actions = False @classmethod def get_init_train_params(cls): init_train_params = { "scenes": cls.train_scenes, "num_agents": cls.num_agents, "object_type": "Television", "to_object_type": "Dresser", "episode_class": cls.episode_class, "player_screen_height": cls.screen_size, "player_screen_width": cls.screen_size, "max_ep_using_expert_actions": cls.max_ep_using_expert_actions, "visible_agents": cls.visible_agents, "include_depth_frame": cls.include_depth_frame, "object_initial_height": 1.3, "headless": cls.headless, "max_distance_from_object": 0.76, "max_episode_length": 500, "episode_args": { "include_move_obj_actions": cls.include_move_obj_actions, "first_correct_coord_reward": 0.0, "exploration_bonus": 0.0, "failed_action_penalty": -0.02, "step_penalty": -0.01, "joint_pass_penalty": -0.09, "moved_closer_reward": 1.0, "min_dist_to_to_object": 0.26, "frame_type": cls.frame_type, "reached_target_reward": 1.0, "return_likely_successfuly_move_actions": cls.return_likely_successfuly_move_actions, "pass_conditioned_coordination": True, }, } return init_train_params @classmethod def get_init_valid_params(cls): init_valid_params = { **cls.get_init_train_params(), "scenes": cls.valid_scenes, "player_screen_height": 224, "player_screen_width": 224, "headless": False, } if cls.save_talk_reply_probs_path is not None: init_valid_params[ "save_talk_reply_probs_path" ] = cls.save_talk_reply_probs_path return init_valid_params def __init__(self): self._init_train_agent = self.episode_sampler_class( **self.get_init_train_params() ) self._init_test_agent = self.episode_sampler_class( **self.get_init_valid_params() ) @classmethod def create_model(cls, **kwargs) -> nn.Module: return A3CLSTMCentralEgoVision( num_inputs_per_agent=3 + 1 * cls.include_depth_frame, action_groups=cls.episode_class.class_available_action_groups( include_move_obj_actions=cls.include_move_obj_actions ), num_agents=cls.num_agents, state_repr_length=cls.state_repr_length, ) @classmethod def create_agent(cls, **kwargs) -> MultiAgent: return cls.agent_class( model=kwargs["model"], gpu_id=kwargs["gpu_id"], include_test_eval_results=cls.include_test_eval_results, use_a3c_loss_when_not_expert_forcing=cls.use_a3c_loss_when_not_expert_forcing, record_all_in_test=cls.record_all_in_test, include_depth_frame=cls.include_depth_frame, resize_image_as=cls.screen_size, discourage_failed_coordination=5000, ) @property def init_train_agent(self) -> Callable: return self._init_train_agent @property def init_test_agent(self) -> Callable: return self._init_test_agent @property def saved_model_path(self) -> Optional[str]: return None def get_experiment(): return FurnMoveExperimentConfig()
cordial-sync-master
rl_multi_agent/experiments/furnmove_vision_bigcentral_base_config.py
from typing import Callable, Optional import torch from torch import nn import constants from rl_multi_agent import MultiAgent from rl_multi_agent.experiments.experiment import ExperimentConfig from rl_multi_agent.furnmove_episode_samplers import FurnMoveEpisodeSampler from rl_multi_agent.furnmove_episodes import FurnMoveEgocentricEpisode from rl_multi_agent.models import A3CLSTMNStepComCoordinatedActionsEgoVision class FurnMoveMixtureVision3AgentsExperimentConfig(ExperimentConfig): # Env/episode config num_agents = 3 screen_size = 84 episode_class = FurnMoveEgocentricEpisode frame_type = "image" episode_sampler_class = FurnMoveEpisodeSampler visible_agents = True include_depth_frame = False include_move_obj_actions = True headless = False # Model config state_repr_length = 512 talk_embed_length = 16 reply_embed_length = 16 agent_num_embed_length = 8 num_talk_symbols = 2 num_reply_symbols = 2 coordinate_actions = True # Agent config agent_class = MultiAgent turn_off_communication = False discourage_failed_coordination = 5000 # Training config max_ep_using_expert_actions = 0 train_scenes = constants.TRAIN_SCENE_NAMES[20:40] valid_scenes = constants.VALID_SCENE_NAMES[5:10] use_a3c_loss_when_not_expert_forcing = True # Misc (e.g. visualization) record_all_in_test = False save_talk_reply_probs_path = None include_test_eval_results = not torch.cuda.is_available() return_likely_successfuly_move_actions = False @classmethod def get_init_train_params(cls): init_train_params = { "scenes": cls.train_scenes, "num_agents": cls.num_agents, "object_type": "Television", "to_object_type": "Dresser", "episode_class": cls.episode_class, "player_screen_height": cls.screen_size, "player_screen_width": cls.screen_size, "max_ep_using_expert_actions": cls.max_ep_using_expert_actions, "visible_agents": cls.visible_agents, "include_depth_frame": cls.include_depth_frame, "object_initial_height": 1.3, "headless": cls.headless, "max_distance_from_object": 0.76, "max_episode_length": 250 * cls.num_agents, "episode_args": { "include_move_obj_actions": cls.include_move_obj_actions, "first_correct_coord_reward": 0.0, "exploration_bonus": 0.0, "failed_action_penalty": -0.02, "step_penalty": -0.01, "joint_pass_penalty": -0.09, "moved_closer_reward": 2.0, "min_dist_to_to_object": 0.26, "frame_type": cls.frame_type, "reached_target_reward": 2.0, "return_likely_successfuly_move_actions": cls.return_likely_successfuly_move_actions, "pass_conditioned_coordination": True, }, } return init_train_params @classmethod def get_init_valid_params(cls): init_valid_params = { **cls.get_init_train_params(), "scenes": cls.valid_scenes, "player_screen_height": 224, "player_screen_width": 224, "headless": False, } if cls.save_talk_reply_probs_path is not None: init_valid_params[ "save_talk_reply_probs_path" ] = cls.save_talk_reply_probs_path return init_valid_params def __init__(self): self._init_train_agent = self.episode_sampler_class( **self.get_init_train_params() ) self._init_test_agent = self.episode_sampler_class( **self.get_init_valid_params() ) @classmethod def create_model(cls, **kwargs) -> nn.Module: return A3CLSTMNStepComCoordinatedActionsEgoVision( num_inputs_per_agent=3 + 1 * cls.include_depth_frame, action_groups=cls.episode_class.class_available_action_groups( include_move_obj_actions=cls.include_move_obj_actions ), num_agents=cls.num_agents, state_repr_length=cls.state_repr_length, talk_embed_length=cls.talk_embed_length, agent_num_embed_length=cls.agent_num_embed_length, reply_embed_length=cls.reply_embed_length, num_talk_symbols=cls.num_talk_symbols, num_reply_symbols=cls.num_reply_symbols, turn_off_communication=cls.turn_off_communication, coordinate_actions=cls.coordinate_actions, coordinate_actions_dim=13 if cls.coordinate_actions else None, separate_actor_weights=False, ) @classmethod def create_agent(cls, **kwargs) -> MultiAgent: return cls.agent_class( model=kwargs["model"], gpu_id=kwargs["gpu_id"], include_test_eval_results=cls.include_test_eval_results, use_a3c_loss_when_not_expert_forcing=cls.use_a3c_loss_when_not_expert_forcing, record_all_in_test=cls.record_all_in_test, include_depth_frame=cls.include_depth_frame, resize_image_as=cls.screen_size, discourage_failed_coordination=cls.discourage_failed_coordination, ) @property def init_train_agent(self) -> Callable: return self._init_train_agent @property def init_test_agent(self) -> Callable: return self._init_test_agent @property def saved_model_path(cls) -> Optional[str]: return None def get_experiment(): return FurnMoveMixtureVision3AgentsExperimentConfig()
cordial-sync-master
rl_multi_agent/experiments/furnmove_vision_mixture_3agents_config.py
from typing import Optional from torch import nn from rl_multi_agent.experiments.furnmove_grid_marginalnocomm_base_config import ( FurnMoveExperimentConfig, ) from rl_multi_agent.models import A3CLSTMNStepComCoordinatedActionsEgoGridsEmbedCNN class FurnMoveGridExperimentConfig(FurnMoveExperimentConfig): # Increasing the params of marginal to match mixture final_cnn_channels = 288 @classmethod def get_init_train_params(cls): init_train_params = FurnMoveExperimentConfig.get_init_train_params() init_train_params["environment_args"] = {"min_steps_between_agents": 2} return init_train_params @property def saved_model_path(self) -> Optional[str]: return None @classmethod def create_model(cls, **kwargs) -> nn.Module: def _create_model(**kwargs): return A3CLSTMNStepComCoordinatedActionsEgoGridsEmbedCNN( **{ **dict( num_inputs=9, action_groups=cls.episode_class.class_available_action_groups( include_move_obj_actions=cls.include_move_obj_actions ), num_agents=cls.num_agents, state_repr_length=cls.state_repr_length, occupancy_embed_length=8, talk_embed_length=cls.talk_embed_length, agent_num_embed_length=cls.agent_num_embed_length, reply_embed_length=cls.reply_embed_length, turn_off_communication=cls.turn_off_communication, coordinate_actions=cls.coordinate_actions, coordinate_actions_dim=13 if cls.coordinate_actions else None, separate_actor_weights=False, num_talk_symbols=cls.num_talk_symbols, num_reply_symbols=cls.num_reply_symbols, final_cnn_channels=cls.final_cnn_channels, ), **kwargs, } ) return _create_model(**kwargs) def get_experiment(): return FurnMoveGridExperimentConfig()
cordial-sync-master
rl_multi_agent/experiments/furnmove_grid_marginalnocomm_nocl_rot_config.py
from torch import nn from rl_multi_agent import MultiAgent from rl_multi_agent.experiments.furnlift_base_config import FurnLiftBaseConfig from rl_multi_agent.experiments.furnlift_vision_mixture_cl_config import ( FurnLiftMinDistMixtureConfig, ) from rl_multi_agent.models import BigA3CLSTMNStepComCoordinatedActionsEgoVision from utils.net_util import ( binary_search_for_model_with_least_upper_bound_parameters, count_parameters, ) class FurnLiftMinDistUncoordinatedExperimentConfig(FurnLiftBaseConfig): # Env/episode config min_dist_between_agents_to_pickup = 8 visible_agents = True # Model config turn_off_communication = False # Agent config agent_class = MultiAgent # Coordination coordinate_actions = False # Marginal # Balancing final_cnn_channels = 64 increased_params_for_balancing_marginal = True balance_against_model_function = FurnLiftMinDistMixtureConfig.create_model @classmethod def create_model(cls, **kwargs) -> nn.Module: def _create_model(**kwargs): return BigA3CLSTMNStepComCoordinatedActionsEgoVision( **{ **dict( num_inputs_per_agent=3 + 1 * (cls.include_depth_frame), action_groups=cls.episode_class.class_available_action_groups(), num_agents=cls.num_agents, state_repr_length=cls.state_repr_length, talk_embed_length=cls.talk_embed_length, agent_num_embed_length=cls.agent_num_embed_length, reply_embed_length=cls.reply_embed_length, num_talk_symbols=cls.num_talk_symbols, num_reply_symbols=cls.num_reply_symbols, turn_off_communication=cls.turn_off_communication, coordinate_actions=cls.coordinate_actions, separate_actor_weights=False, final_cnn_channels=cls.final_cnn_channels, ), **kwargs, } ) if cls.increased_params_for_balancing_marginal: final_cnn_channels = binary_search_for_model_with_least_upper_bound_parameters( target_parameter_count=count_parameters( cls.balance_against_model_function() ), create_model_func=lambda x: _create_model(final_cnn_channels=x), lower=cls.final_cnn_channels, upper=2 * cls.final_cnn_channels, ) kwargs["final_cnn_channels"] = final_cnn_channels return _create_model(**kwargs) else: return _create_model(**kwargs) def get_experiment(): return FurnLiftMinDistUncoordinatedExperimentConfig()
cordial-sync-master
rl_multi_agent/experiments/furnlift_vision_marginal_nocl_config.py
from typing import Callable, Optional import torch from torch import nn import constants from rl_multi_agent import MultiAgent from rl_multi_agent.experiments.experiment import ExperimentConfig from rl_multi_agent.furnmove_episode_samplers import FurnMoveGridEpisodeSampler from rl_multi_agent.furnmove_episodes import FurnMoveEgocentricFastGridEpisode from rl_multi_agent.models import A3CLSTMNStepComCoordinatedActionsEgoGridsEmbedCNN class FurnMoveExperimentConfig(ExperimentConfig): # Env/episode config num_agents = 2 screen_size = 84 episode_class = FurnMoveEgocentricFastGridEpisode episode_sampler_class = FurnMoveGridEpisodeSampler visible_agents = True include_depth_frame = False include_move_obj_actions = True headless = True if torch.cuda.is_available() else False # Model config state_repr_length = 512 talk_embed_length = 16 reply_embed_length = 16 agent_num_embed_length = 8 coordinate_actions = False num_talk_symbols = 2 num_reply_symbols = 2 # Agent config agent_class = MultiAgent turn_off_communication = False # Training config max_ep_using_expert_actions = 0 train_scenes = constants.TRAIN_SCENE_NAMES[20:40] valid_scenes = constants.VALID_SCENE_NAMES[5:10] use_a3c_loss_when_not_expert_forcing = True # Misc (e.g. visualization) record_all_in_test = False save_talk_reply_probs_path = None include_test_eval_results = not torch.cuda.is_available() return_likely_successfuly_move_actions = False @classmethod def get_init_train_params(cls): init_train_params = { "scenes": cls.train_scenes, "num_agents": cls.num_agents, "object_type": "Television", "to_object_type": "Dresser", "to_object_silhouette": constants.DRESSER_SILHOUETTE_STRING, "episode_class": cls.episode_class, "player_screen_height": cls.screen_size, "player_screen_width": cls.screen_size, "max_ep_using_expert_actions": cls.max_ep_using_expert_actions, "visible_agents": cls.visible_agents, "include_depth_frame": cls.include_depth_frame, "object_initial_height": 1.3, "headless": cls.headless, "max_distance_from_object": 0.76, "max_episode_length": 500, "episode_args": { "include_move_obj_actions": cls.include_move_obj_actions, "first_correct_coord_reward": 0.0, "exploration_bonus": 0.0, "failed_action_penalty": -0.02, "step_penalty": -0.01, "joint_pass_penalty": -0.09, "moved_closer_reward": 1.0, "min_dist_to_to_object": 0.26, "reached_target_reward": 1.0, "return_likely_successfuly_move_actions": cls.return_likely_successfuly_move_actions, "frame_type": "fast-egocentric-relative-tensor", "pass_conditioned_coordination": True, }, } return init_train_params @classmethod def get_init_valid_params(cls): init_valid_params = { **cls.get_init_train_params(), "scenes": cls.valid_scenes, "player_screen_height": 224, "player_screen_width": 224, "headless": False, } if cls.save_talk_reply_probs_path is not None: init_valid_params[ "save_talk_reply_probs_path" ] = cls.save_talk_reply_probs_path return init_valid_params def __init__(self): self._init_train_agent = self.episode_sampler_class( **self.get_init_train_params() ) self._init_test_agent = self.episode_sampler_class( **self.get_init_valid_params() ) @classmethod def create_model(cls, **kwargs) -> nn.Module: return A3CLSTMNStepComCoordinatedActionsEgoGridsEmbedCNN( num_inputs=9, action_groups=cls.episode_class.class_available_action_groups( include_move_obj_actions=cls.include_move_obj_actions ), num_agents=cls.num_agents, state_repr_length=cls.state_repr_length, occupancy_embed_length=8, talk_embed_length=cls.talk_embed_length, agent_num_embed_length=cls.agent_num_embed_length, reply_embed_length=cls.reply_embed_length, turn_off_communication=cls.turn_off_communication, coordinate_actions=cls.coordinate_actions, coordinate_actions_dim=13 if cls.coordinate_actions else None, separate_actor_weights=False, num_talk_symbols=cls.num_talk_symbols, num_reply_symbols=cls.num_reply_symbols, ) @classmethod def create_agent(cls, **kwargs) -> MultiAgent: return cls.agent_class( model=kwargs["model"], gpu_id=kwargs["gpu_id"], include_test_eval_results=cls.include_test_eval_results, use_a3c_loss_when_not_expert_forcing=cls.use_a3c_loss_when_not_expert_forcing, record_all_in_test=cls.record_all_in_test, include_depth_frame=cls.include_depth_frame, discourage_failed_coordination=5000, ) @property def init_train_agent(self) -> Callable: return self._init_train_agent @property def init_test_agent(self) -> Callable: return self._init_test_agent @property def saved_model_path(self) -> Optional[str]: return None def get_experiment(): return FurnMoveExperimentConfig()
cordial-sync-master
rl_multi_agent/experiments/furnmove_grid_marginal_cl_base_config.py
cordial-sync-master
rl_multi_agent/experiments/__init__.py
from torch import nn from rl_multi_agent import MultiAgent from rl_multi_agent.experiments.furnlift_base_config import FurnLiftBaseConfig from rl_multi_agent.experiments.furnlift_vision_mixture_cl_config import ( FurnLiftMinDistMixtureConfig, ) from rl_multi_agent.models import BigA3CLSTMNStepComCoordinatedActionsEgoVision from utils.net_util import ( binary_search_for_model_with_least_upper_bound_parameters, count_parameters, ) class FurnLiftMinDistUncoordinatedNocommExperimentConfig(FurnLiftBaseConfig): # Env/episode config min_dist_between_agents_to_pickup = 8 visible_agents = True # Model config turn_off_communication = True # Agent config agent_class = MultiAgent # Coordination coordinate_actions = False # Marginal # Balancing final_cnn_channels = 64 increased_params_for_balancing_marginal = True balance_against_model_function = FurnLiftMinDistMixtureConfig.create_model @classmethod def create_model(cls, **kwargs) -> nn.Module: def _create_model(**kwargs): return BigA3CLSTMNStepComCoordinatedActionsEgoVision( **{ **dict( num_inputs_per_agent=3 + 1 * (cls.include_depth_frame), action_groups=cls.episode_class.class_available_action_groups(), num_agents=cls.num_agents, state_repr_length=cls.state_repr_length, talk_embed_length=cls.talk_embed_length, agent_num_embed_length=cls.agent_num_embed_length, reply_embed_length=cls.reply_embed_length, num_talk_symbols=cls.num_talk_symbols, num_reply_symbols=cls.num_reply_symbols, turn_off_communication=cls.turn_off_communication, coordinate_actions=cls.coordinate_actions, separate_actor_weights=False, final_cnn_channels=cls.final_cnn_channels, ), **kwargs, } ) if cls.increased_params_for_balancing_marginal: final_cnn_channels = binary_search_for_model_with_least_upper_bound_parameters( target_parameter_count=count_parameters( cls.balance_against_model_function() ), create_model_func=lambda x: _create_model(final_cnn_channels=x), lower=cls.final_cnn_channels, upper=2 * cls.final_cnn_channels, ) kwargs["final_cnn_channels"] = final_cnn_channels return _create_model(**kwargs) else: return _create_model(**kwargs) def get_experiment(): return FurnLiftMinDistUncoordinatedNocommExperimentConfig()
cordial-sync-master
rl_multi_agent/experiments/furnlift_vision_marginalnocomm_nocl_config.py
from typing import Optional from torch import nn import constants from rl_multi_agent.experiments.furnmove_grid_mixture_base_config import ( FurnMoveExperimentConfig, ) from rl_multi_agent.models import ( A3CLSTMBigCentralBackboneAndCoordinatedActionsEgoGridsEmbedCNN, ) class FurnMoveGridExperimentConfig(FurnMoveExperimentConfig): @classmethod def get_init_train_params(cls): init_train_params = { "scenes": cls.train_scenes, "num_agents": cls.num_agents, "object_type": "Television", "to_object_type": "Dresser", "to_object_silhouette": constants.DRESSER_SILHOUETTE_STRING, "episode_class": cls.episode_class, "player_screen_height": cls.screen_size, "player_screen_width": cls.screen_size, "max_ep_using_expert_actions": cls.max_ep_using_expert_actions, "visible_agents": cls.visible_agents, "include_depth_frame": cls.include_depth_frame, "object_initial_height": 1.3, "headless": cls.headless, "max_distance_from_object": 0.76, "max_episode_length": 500, "environment_args": {"min_steps_between_agents": 2}, "episode_args": { "include_move_obj_actions": cls.include_move_obj_actions, "first_correct_coord_reward": 0.0, "exploration_bonus": 0.0, "failed_action_penalty": -0.02, "step_penalty": -0.01, "joint_pass_penalty": -0.09, "moved_closer_reward": 1.0, "min_dist_to_to_object": 0.26, "reached_target_reward": 1.0, "return_likely_successfuly_move_actions": cls.return_likely_successfuly_move_actions, "frame_type": "fast-egocentric-relative-tensor", "pass_conditioned_coordination": True, }, } return init_train_params @classmethod def create_model(cls, **kwargs) -> nn.Module: return A3CLSTMBigCentralBackboneAndCoordinatedActionsEgoGridsEmbedCNN( num_inputs_per_agent=9, action_groups=cls.episode_class.class_available_action_groups( include_move_obj_actions=cls.include_move_obj_actions ), num_agents=cls.num_agents, state_repr_length=cls.state_repr_length, occupancy_embed_length=8, coordinate_actions=cls.coordinate_actions, coordinate_actions_dim=13 if cls.coordinate_actions else None, ) @property def saved_model_path(self) -> Optional[str]: return None def get_experiment(): return FurnMoveGridExperimentConfig()
cordial-sync-master
rl_multi_agent/experiments/furnmove_grid_bigcentralmixture_cl_rot_config.py
from rl_multi_agent.experiments.furnmove_grid_mixture_3agents_config import ( FurnMove3AgentMixtureExperimentConfig as FurnMoveCoordinatedMultiAgentConfig, ) class FurnMove3AgentUncoordinatedExperimentConfig(FurnMoveCoordinatedMultiAgentConfig): coordinate_actions = False discourage_failed_coordination = False def get_experiment(): return FurnMove3AgentUncoordinatedExperimentConfig()
cordial-sync-master
rl_multi_agent/experiments/furnmove_grid_marginal_3agents_config.py
from typing import Optional from torch import nn import constants from rl_multi_agent.experiments.furnmove_grid_mixture_base_config import ( FurnMoveExperimentConfig, ) from rl_multi_agent.furnmove_episodes import ( FurnMoveEgocentricNoRotationsFastGridEpisode, ) from rl_multi_agent.models import A3CLSTMNStepComCoordinatedActionsEgoGridsEmbedCNN class FurnMoveMixtureNoRotationsExperimentConfig(FurnMoveExperimentConfig): episode_class = FurnMoveEgocentricNoRotationsFastGridEpisode coordinate_actions_dim = 14 # Number of actions in NoRotationsFastGridEpisode @classmethod def get_init_train_params(cls): init_train_params = { "scenes": cls.train_scenes, "num_agents": cls.num_agents, "object_type": "Television", "to_object_type": "Dresser", "to_object_silhouette": constants.DRESSER_SILHOUETTE_STRING, "episode_class": cls.episode_class, "player_screen_height": cls.screen_size, "player_screen_width": cls.screen_size, "max_ep_using_expert_actions": cls.max_ep_using_expert_actions, "visible_agents": cls.visible_agents, "include_depth_frame": cls.include_depth_frame, "object_initial_height": 1.3, "headless": cls.headless, "max_distance_from_object": 0.76, "max_episode_length": 500, "environment_args": {"min_steps_between_agents": 2}, "episode_args": { "include_move_obj_actions": cls.include_move_obj_actions, "first_correct_coord_reward": 0.0, "exploration_bonus": 0.0, "failed_action_penalty": -0.02, "step_penalty": -0.01, "joint_pass_penalty": -0.09, "moved_closer_reward": 1.0, "min_dist_to_to_object": 0.26, "reached_target_reward": 1.0, "return_likely_successfuly_move_actions": cls.return_likely_successfuly_move_actions, "frame_type": "fast-egocentric-relative-tensor", "pass_conditioned_coordination": True, }, } return init_train_params @classmethod def create_model(cls, **kwargs) -> nn.Module: return A3CLSTMNStepComCoordinatedActionsEgoGridsEmbedCNN( num_inputs=9, action_groups=cls.episode_class.class_available_action_groups( include_move_obj_actions=cls.include_move_obj_actions ), num_agents=cls.num_agents, state_repr_length=cls.state_repr_length, occupancy_embed_length=8, talk_embed_length=cls.talk_embed_length, agent_num_embed_length=cls.agent_num_embed_length, reply_embed_length=cls.reply_embed_length, turn_off_communication=cls.turn_off_communication, coordinate_actions=cls.coordinate_actions, coordinate_actions_dim=cls.coordinate_actions_dim if cls.coordinate_actions else None, separate_actor_weights=False, num_talk_symbols=cls.num_talk_symbols, num_reply_symbols=cls.num_reply_symbols, ) @property def saved_model_path(self) -> Optional[str]: return None def get_experiment(): return FurnMoveMixtureNoRotationsExperimentConfig()
cordial-sync-master
rl_multi_agent/experiments/furnmove_grid_mixture_cl_norot_config.py
import abc from typing import Dict, Callable, Any, List, Optional import torch from torch import nn from rl_base.agent import RLAgent from rl_multi_agent import MultiAgent class ExperimentConfig(abc.ABC): @classmethod def create_model(cls, **kwargs) -> nn.Module: raise NotImplementedError() @classmethod def create_agent(cls, **kwargs) -> MultiAgent: raise NotImplementedError() @property def saved_model_path(self) -> Dict[str, str]: raise NotImplementedError() @property def init_train_agent(self) -> Callable: raise NotImplementedError() @property def init_test_agent(self) -> Callable: raise NotImplementedError() def create_episode_summary( self, agent: RLAgent, additional_metrics: Dict[str, float], step_results: List[Dict], ) -> Any: """Summarize an episode. On a worker thread, generate an episode summary that is passed to the :func:`save_episode_summary <ExperimentConfig.save_episode_summary>` method of of experiment object on the Train/Test Manager main thread. This can be used to summarize episodes and then save them for analysis. :param agent: Agent from the worker thread. :param additional_metrics: Mean of metrics, across the episode, saved in agent.eval_results[i]["additional_metrics"] which is of type Dict[str, float]. :param step_results: The step results from the episode. :return: Data to be saved. """ return None def save_episode_summary(self, data_to_save: Any): raise RuntimeError("Attempting to save episode summary but do not know how.") def create_episode_init_queue( self, mp_module ) -> Optional[torch.multiprocessing.Queue]: raise RuntimeError( "Attempting to create an episode init queue but do not know how." ) def stopping_criteria_reached(self): return False
cordial-sync-master
rl_multi_agent/experiments/experiment.py
from abc import ABC from typing import Callable, Optional import torch import constants from rl_multi_agent import MultiAgent from rl_multi_agent.experiments.experiment import ExperimentConfig from rl_multi_agent.furnlift_episode_samplers import FurnLiftEpisodeSamplers from rl_multi_agent.furnlift_episodes import FurnLiftNApartStateEpisode class FurnLiftBaseConfig(ExperimentConfig, ABC): # Env/episode config num_agents = 2 screen_size = 84 episode_class = FurnLiftNApartStateEpisode episode_sampler_class = FurnLiftEpisodeSamplers min_dist_between_agents_to_pickup = None visible_agents = None include_depth_frame = False # CVPR 2019 baselines allowed intersection of agent. # With new capabilities in AI2Thor, we can switch on/off this option allow_agents_to_intersect = True # Model config state_repr_length = 512 talk_embed_length = 8 reply_embed_length = 8 agent_num_embed_length = 8 num_talk_symbols = 2 num_reply_symbols = 2 # Agent config agent_class = None turn_off_communication = None # Training config max_ep_using_expert_actions = 10000 dagger_mode = True train_scenes = constants.TRAIN_SCENE_NAMES[20:40] valid_scenes = constants.VALID_SCENE_NAMES[5:10] use_a3c_loss_when_not_expert_forcing = True # Misc (e.g. visualization) record_all_in_test = False save_talk_reply_probs_path = None include_test_eval_results = not torch.cuda.is_available() # Balancing params increased_params_for_balancing_marginal = False @classmethod def get_init_train_params(cls): init_train_params = { "scenes": cls.train_scenes, "num_agents": cls.num_agents, "object_type": "Television", "episode_class": cls.episode_class, "player_screen_height": cls.screen_size, "player_screen_width": cls.screen_size, "min_dist_between_agents_to_pickup": cls.min_dist_between_agents_to_pickup, "max_ep_using_expert_actions": cls.max_ep_using_expert_actions, "visible_agents": cls.visible_agents, "include_depth_frame": cls.include_depth_frame, "allow_agents_to_intersect": cls.allow_agents_to_intersect, } return init_train_params @classmethod def get_init_valid_params(cls): init_valid_params = {**cls.get_init_train_params(), "scenes": cls.valid_scenes} if cls.save_talk_reply_probs_path is not None: init_valid_params[ "save_talk_reply_probs_path" ] = cls.save_talk_reply_probs_path return init_valid_params def __init__(self): self._init_train_agent = self.episode_sampler_class( **self.get_init_train_params() ) self._init_test_agent = self.episode_sampler_class( **self.get_init_valid_params() ) @classmethod def create_agent(cls, **kwargs) -> MultiAgent: return cls.agent_class( model=kwargs["model"], gpu_id=kwargs["gpu_id"], include_test_eval_results=cls.include_test_eval_results, use_a3c_loss_when_not_expert_forcing=cls.use_a3c_loss_when_not_expert_forcing, record_all_in_test=cls.record_all_in_test, include_depth_frame=cls.include_depth_frame, resize_image_as=cls.screen_size, dagger_mode=cls.dagger_mode, ) @property def init_train_agent(self) -> Callable: return self._init_train_agent @property def init_test_agent(self) -> Callable: return self._init_test_agent @property def saved_model_path(self) -> Optional[str]: return None
cordial-sync-master
rl_multi_agent/experiments/furnlift_base_config.py
from torch import nn from rl_multi_agent.experiments.furnmove_vision_mixture_3agents_config import ( FurnMoveMixtureVision3AgentsExperimentConfig, ) from rl_multi_agent.models import A3CLSTMNStepComCoordinatedActionsEgoVision from utils.net_util import ( binary_search_for_model_with_least_upper_bound_parameters, count_parameters, ) class FurnMoveVision3AgentUncoordinatedExperimentConfig( FurnMoveMixtureVision3AgentsExperimentConfig ): coordinate_actions = False discourage_failed_coordination = False # Balancing final_cnn_channels = 128 increased_params_for_balancing_marginal = True balance_against_model_function = ( FurnMoveMixtureVision3AgentsExperimentConfig.create_model ) @classmethod def create_model(cls, **kwargs) -> nn.Module: def _create_model(**kwargs): return A3CLSTMNStepComCoordinatedActionsEgoVision( **{ **dict( num_inputs_per_agent=3 + 1 * (cls.include_depth_frame), action_groups=cls.episode_class.class_available_action_groups( include_move_obj_actions=cls.include_move_obj_actions ), num_agents=cls.num_agents, state_repr_length=cls.state_repr_length, talk_embed_length=cls.talk_embed_length, agent_num_embed_length=cls.agent_num_embed_length, reply_embed_length=cls.reply_embed_length, num_talk_symbols=cls.num_talk_symbols, num_reply_symbols=cls.num_reply_symbols, turn_off_communication=cls.turn_off_communication, coordinate_actions=cls.coordinate_actions, coordinate_actions_dim=13 if cls.coordinate_actions else None, separate_actor_weights=False, final_cnn_channels=cls.final_cnn_channels, ), **kwargs, } ) if cls.increased_params_for_balancing_marginal: final_cnn_channels = binary_search_for_model_with_least_upper_bound_parameters( target_parameter_count=count_parameters( cls.balance_against_model_function() ), create_model_func=lambda x: _create_model(final_cnn_channels=x), lower=cls.final_cnn_channels, upper=2 * cls.final_cnn_channels, ) kwargs["final_cnn_channels"] = final_cnn_channels return _create_model(**kwargs) else: return _create_model(**kwargs) def get_experiment(): return FurnMoveVision3AgentUncoordinatedExperimentConfig()
cordial-sync-master
rl_multi_agent/experiments/furnmove_vision_marginal_3agents_config.py
from typing import Optional from torch import nn import constants from rl_multi_agent import MultiAgent from rl_multi_agent.experiments.furnmove_grid_mixture_base_config import ( FurnMoveExperimentConfig, ) from rl_multi_agent.furnmove_episodes import ( FurnMoveEgocentricNoRotationsFastGridEpisode, ) from rl_multi_agent.models import A3CLSTMNStepComCoordinatedActionsEgoGridsEmbedCNN class FurnMoveMixtureNoRotationsNoCLExperimentConfig(FurnMoveExperimentConfig): episode_class = FurnMoveEgocentricNoRotationsFastGridEpisode coordinate_actions_dim = 14 # Number of actions in NoRotationsFastGridEpisode @classmethod def get_init_train_params(cls): init_train_params = { "scenes": cls.train_scenes, "num_agents": cls.num_agents, "object_type": "Television", "to_object_type": "Dresser", "to_object_silhouette": constants.DRESSER_SILHOUETTE_STRING, "episode_class": cls.episode_class, "player_screen_height": cls.screen_size, "player_screen_width": cls.screen_size, "max_ep_using_expert_actions": cls.max_ep_using_expert_actions, "visible_agents": cls.visible_agents, "include_depth_frame": cls.include_depth_frame, "object_initial_height": 1.3, "headless": cls.headless, "max_distance_from_object": 0.76, "max_episode_length": 500, "environment_args": {"min_steps_between_agents": 2}, "episode_args": { "include_move_obj_actions": cls.include_move_obj_actions, "first_correct_coord_reward": 0.0, "exploration_bonus": 0.0, "failed_action_penalty": -0.02, "step_penalty": -0.01, "joint_pass_penalty": -0.09, "moved_closer_reward": 1.0, "min_dist_to_to_object": 0.26, "reached_target_reward": 1.0, "return_likely_successfuly_move_actions": cls.return_likely_successfuly_move_actions, "frame_type": "fast-egocentric-relative-tensor", "pass_conditioned_coordination": True, }, } return init_train_params @classmethod def create_model(cls, **kwargs) -> nn.Module: return A3CLSTMNStepComCoordinatedActionsEgoGridsEmbedCNN( num_inputs=9, action_groups=cls.episode_class.class_available_action_groups( include_move_obj_actions=cls.include_move_obj_actions ), num_agents=cls.num_agents, state_repr_length=cls.state_repr_length, occupancy_embed_length=8, talk_embed_length=cls.talk_embed_length, agent_num_embed_length=cls.agent_num_embed_length, reply_embed_length=cls.reply_embed_length, turn_off_communication=cls.turn_off_communication, coordinate_actions=cls.coordinate_actions, coordinate_actions_dim=cls.coordinate_actions_dim if cls.coordinate_actions else None, separate_actor_weights=False, num_talk_symbols=cls.num_talk_symbols, num_reply_symbols=cls.num_reply_symbols, ) @classmethod def create_agent(cls, **kwargs) -> MultiAgent: return cls.agent_class( model=kwargs["model"], gpu_id=kwargs["gpu_id"], include_test_eval_results=cls.include_test_eval_results, use_a3c_loss_when_not_expert_forcing=cls.use_a3c_loss_when_not_expert_forcing, record_all_in_test=cls.record_all_in_test, include_depth_frame=cls.include_depth_frame, discourage_failed_coordination=5000, ) @property def saved_model_path(self) -> Optional[str]: return None def get_experiment(): return FurnMoveMixtureNoRotationsNoCLExperimentConfig()
cordial-sync-master
rl_multi_agent/experiments/furnmove_grid_mixture_nocl_norot_config.py
from typing import Optional import constants from rl_multi_agent.experiments.furnmove_grid_marginal_cl_base_config import ( FurnMoveExperimentConfig, ) from rl_multi_agent.furnmove_episodes import ( FurnMoveEgocentricNoRotationsFastGridEpisode, ) class FurnMoveGridExperimentConfig(FurnMoveExperimentConfig): episode_class = FurnMoveEgocentricNoRotationsFastGridEpisode @classmethod def get_init_train_params(cls): init_train_params = { "scenes": cls.train_scenes, "num_agents": cls.num_agents, "object_type": "Television", "to_object_type": "Dresser", "to_object_silhouette": constants.DRESSER_SILHOUETTE_STRING, "episode_class": cls.episode_class, "player_screen_height": cls.screen_size, "player_screen_width": cls.screen_size, "max_ep_using_expert_actions": cls.max_ep_using_expert_actions, "visible_agents": cls.visible_agents, "include_depth_frame": cls.include_depth_frame, "object_initial_height": 1.3, "headless": cls.headless, "max_distance_from_object": 0.76, "max_episode_length": 500, "environment_args": {"min_steps_between_agents": 2}, "episode_args": { "include_move_obj_actions": cls.include_move_obj_actions, "first_correct_coord_reward": 0.0, "exploration_bonus": 0.0, "failed_action_penalty": -0.02, "step_penalty": -0.01, "joint_pass_penalty": -0.09, "moved_closer_reward": 1.0, "min_dist_to_to_object": 0.26, "reached_target_reward": 1.0, "return_likely_successfuly_move_actions": cls.return_likely_successfuly_move_actions, "frame_type": "fast-egocentric-relative-tensor", "pass_conditioned_coordination": True, }, } return init_train_params @property def saved_model_path(self) -> Optional[str]: return None def get_experiment(): return FurnMoveGridExperimentConfig()
cordial-sync-master
rl_multi_agent/experiments/furnmove_grid_marginal_cl_norot_config.py
from typing import Optional from torch import nn import constants from rl_multi_agent import MultiAgent from rl_multi_agent.experiments.furnmove_grid_bigcentral_base_config import ( FurnMoveExperimentConfig, ) from rl_multi_agent.furnmove_episodes import ( FurnMoveEgocentricNoRotationsFastGridEpisode, ) from rl_multi_agent.models import A3CLSTMBigCentralEgoGridsEmbedCNN class FurnMoveNoRotationsExperimentConfig(FurnMoveExperimentConfig): episode_class = FurnMoveEgocentricNoRotationsFastGridEpisode @classmethod def get_init_train_params(cls): init_train_params = { "scenes": cls.train_scenes, "num_agents": cls.num_agents, "object_type": "Television", "to_object_type": "Dresser", "to_object_silhouette": constants.DRESSER_SILHOUETTE_STRING, "episode_class": cls.episode_class, "player_screen_height": cls.screen_size, "player_screen_width": cls.screen_size, "max_ep_using_expert_actions": cls.max_ep_using_expert_actions, "visible_agents": cls.visible_agents, "include_depth_frame": cls.include_depth_frame, "object_initial_height": 1.3, "headless": cls.headless, "max_distance_from_object": 0.76, "max_episode_length": 500, "environment_args": {"min_steps_between_agents": 2}, "episode_args": { "include_move_obj_actions": cls.include_move_obj_actions, "first_correct_coord_reward": 0.0, "exploration_bonus": 0.0, "failed_action_penalty": -0.02, "step_penalty": -0.01, # "increasing_rotate_penalty": True, "joint_pass_penalty": -0.09, "moved_closer_reward": 1.0, # "moved_closer_reward": 0.50, "min_dist_to_to_object": 0.26, "frame_type": cls.frame_type, "reached_target_reward": 1.0, "return_likely_successfuly_move_actions": cls.return_likely_successfuly_move_actions, "pass_conditioned_coordination": True, }, } return init_train_params @classmethod def create_model(cls, **kwargs) -> nn.Module: return A3CLSTMBigCentralEgoGridsEmbedCNN( num_inputs_per_agent=9, action_groups=cls.episode_class.class_available_action_groups( include_move_obj_actions=cls.include_move_obj_actions ), num_agents=cls.num_agents, state_repr_length=cls.state_repr_length, occupancy_embed_length=8, ) @classmethod def create_agent(cls, **kwargs) -> MultiAgent: return cls.agent_class( model=kwargs["model"], gpu_id=kwargs["gpu_id"], include_test_eval_results=cls.include_test_eval_results, use_a3c_loss_when_not_expert_forcing=cls.use_a3c_loss_when_not_expert_forcing, record_all_in_test=cls.record_all_in_test, include_depth_frame=cls.include_depth_frame, # discourage_failed_coordination=5000, ) @property def saved_model_path(self) -> Optional[str]: return None def get_experiment(): return FurnMoveNoRotationsExperimentConfig()
cordial-sync-master
rl_multi_agent/experiments/furnmove_grid_bigcentral_nocl_norot_config.py
from typing import Callable, Optional import torch from torch import nn import constants from rl_multi_agent import MultiAgent from rl_multi_agent.experiments.experiment import ExperimentConfig from rl_multi_agent.furnmove_episode_samplers import FurnMoveGridEpisodeSampler from rl_multi_agent.furnmove_episodes import FurnMoveEgocentricFastGridEpisode from rl_multi_agent.models import A3CLSTMNStepComCoordinatedActionsEgoGridsEmbedCNN class FurnMoveExperimentConfig(ExperimentConfig): # Env/episode config num_agents = 2 screen_size = 84 episode_class = FurnMoveEgocentricFastGridEpisode episode_sampler_class = FurnMoveGridEpisodeSampler visible_agents = True include_depth_frame = False include_move_obj_actions = True headless = True if torch.cuda.is_available() else False # Model config state_repr_length = 512 talk_embed_length = 16 reply_embed_length = 16 agent_num_embed_length = 8 coordinate_actions = False num_talk_symbols = 2 num_reply_symbols = 2 # Agent config agent_class = MultiAgent turn_off_communication = False # Training config max_ep_using_expert_actions = 0 train_scenes = constants.TRAIN_SCENE_NAMES[20:40] valid_scenes = constants.VALID_SCENE_NAMES[5:10] use_a3c_loss_when_not_expert_forcing = True # Misc (e.g. visualization) record_all_in_test = False save_talk_reply_probs_path = None include_test_eval_results = not torch.cuda.is_available() return_likely_successfuly_move_actions = False @classmethod def get_init_train_params(cls): init_train_params = { "scenes": cls.train_scenes, "num_agents": cls.num_agents, "object_type": "Television", "to_object_type": "Dresser", "to_object_silhouette": constants.DRESSER_SILHOUETTE_STRING, "episode_class": cls.episode_class, "player_screen_height": cls.screen_size, "player_screen_width": cls.screen_size, "max_ep_using_expert_actions": cls.max_ep_using_expert_actions, "visible_agents": cls.visible_agents, "include_depth_frame": cls.include_depth_frame, "object_initial_height": 1.3, "headless": cls.headless, "max_distance_from_object": 0.76, "max_episode_length": 500, "episode_args": { "include_move_obj_actions": cls.include_move_obj_actions, "first_correct_coord_reward": 0.0, "exploration_bonus": 0.0, "failed_action_penalty": -0.02, "step_penalty": -0.01, "joint_pass_penalty": -0.09, "moved_closer_reward": 1.0, "min_dist_to_to_object": 0.26, "reached_target_reward": 1.0, "return_likely_successfuly_move_actions": cls.return_likely_successfuly_move_actions, "frame_type": "fast-egocentric-relative-tensor", "pass_conditioned_coordination": True, }, } return init_train_params @classmethod def get_init_valid_params(cls): init_valid_params = { **cls.get_init_train_params(), "scenes": cls.valid_scenes, "player_screen_height": 224, "player_screen_width": 224, "headless": False, } if cls.save_talk_reply_probs_path is not None: init_valid_params[ "save_talk_reply_probs_path" ] = cls.save_talk_reply_probs_path return init_valid_params def __init__(self): self._init_train_agent = self.episode_sampler_class( **self.get_init_train_params() ) self._init_test_agent = self.episode_sampler_class( **self.get_init_valid_params() ) @classmethod def create_model(cls, **kwargs) -> nn.Module: return A3CLSTMNStepComCoordinatedActionsEgoGridsEmbedCNN( num_inputs=9, action_groups=cls.episode_class.class_available_action_groups( include_move_obj_actions=cls.include_move_obj_actions ), num_agents=cls.num_agents, state_repr_length=cls.state_repr_length, occupancy_embed_length=8, talk_embed_length=cls.talk_embed_length, agent_num_embed_length=cls.agent_num_embed_length, reply_embed_length=cls.reply_embed_length, turn_off_communication=cls.turn_off_communication, coordinate_actions=cls.coordinate_actions, coordinate_actions_dim=13 if cls.coordinate_actions else None, separate_actor_weights=False, num_talk_symbols=cls.num_talk_symbols, num_reply_symbols=cls.num_reply_symbols, ) # IF WE WANTED CENTRAL # return A3CLSTMCentralEgoGridsEmbedCNN( # num_inputs_per_agent=10, # action_groups=cls.episode_class.class_available_action_groups( # include_move_obj_actions=cls.include_move_obj_actions # ), # num_agents=cls.num_agents, # state_repr_length=cls.state_repr_length, # occupancy_embed_length=8, # ) @classmethod def create_agent(cls, **kwargs) -> MultiAgent: return cls.agent_class( model=kwargs["model"], gpu_id=kwargs["gpu_id"], include_test_eval_results=cls.include_test_eval_results, use_a3c_loss_when_not_expert_forcing=cls.use_a3c_loss_when_not_expert_forcing, record_all_in_test=cls.record_all_in_test, include_depth_frame=cls.include_depth_frame, ) @property def init_train_agent(self) -> Callable: return self._init_train_agent @property def init_test_agent(self) -> Callable: return self._init_test_agent @property def saved_model_path(self) -> Optional[str]: return None # return "trained_models/furnmove_a3c_noncentral_ego_grids_ego_actions_uncoordinated_discrete_com_fast_relative_v2_pass_1000000_2019-11-02_14-28-33.dat" def get_experiment(): return FurnMoveExperimentConfig()
cordial-sync-master
rl_multi_agent/experiments/furnmove_grid_marginal_nocl_base_config.py
from typing import Callable, Optional import torch from torch import nn import constants from rl_multi_agent import MultiAgent from rl_multi_agent.experiments.experiment import ExperimentConfig from rl_multi_agent.furnmove_episode_samplers import FurnMoveEpisodeSampler from rl_multi_agent.furnmove_episodes import FurnMoveEgocentricEpisode from rl_multi_agent.models import A3CLSTMNStepComCoordinatedActionsEgoVision class FurnMoveExperimentConfig(ExperimentConfig): """ All scenes + 1.0 reward for getting closer to the target Discrete communication with NO discourage failed coordination loss """ # Env/episode config num_agents = 2 screen_size = 84 episode_class = FurnMoveEgocentricEpisode frame_type = "image" episode_sampler_class = FurnMoveEpisodeSampler visible_agents = True include_depth_frame = False include_move_obj_actions = True headless = False # Model config state_repr_length = 512 talk_embed_length = 16 reply_embed_length = 16 agent_num_embed_length = 8 num_talk_symbols = 2 num_reply_symbols = 2 coordinate_actions = False # Agent config agent_class = MultiAgent turn_off_communication = True # Training config max_ep_using_expert_actions = 0 train_scenes = constants.TRAIN_SCENE_NAMES[20:40] valid_scenes = constants.VALID_SCENE_NAMES[5:10] use_a3c_loss_when_not_expert_forcing = True # Misc (e.g. visualization) record_all_in_test = False save_talk_reply_probs_path = None include_test_eval_results = not torch.cuda.is_available() return_likely_successfuly_move_actions = False # Balancing final_cnn_channels = 140 @classmethod def get_init_train_params(cls): init_train_params = { "scenes": cls.train_scenes, "num_agents": cls.num_agents, "object_type": "Television", "to_object_type": "Dresser", "episode_class": cls.episode_class, "player_screen_height": cls.screen_size, "player_screen_width": cls.screen_size, "max_ep_using_expert_actions": cls.max_ep_using_expert_actions, "visible_agents": cls.visible_agents, "include_depth_frame": cls.include_depth_frame, "object_initial_height": 1.3, "headless": cls.headless, "max_distance_from_object": 0.76, "max_episode_length": 500, "episode_args": { "include_move_obj_actions": cls.include_move_obj_actions, "first_correct_coord_reward": 0.0, "exploration_bonus": 0.0, "failed_action_penalty": -0.02, "step_penalty": -0.01, # "increasing_rotate_penalty": True, "joint_pass_penalty": -0.09, "moved_closer_reward": 1.0, # "moved_closer_reward": 0.50, "min_dist_to_to_object": 0.26, "frame_type": cls.frame_type, "reached_target_reward": 1.0, "return_likely_successfuly_move_actions": cls.return_likely_successfuly_move_actions, "pass_conditioned_coordination": True, }, } return init_train_params @classmethod def get_init_valid_params(cls): init_valid_params = { **cls.get_init_train_params(), "scenes": cls.valid_scenes, "player_screen_height": 224, "player_screen_width": 224, "headless": False, } if cls.save_talk_reply_probs_path is not None: init_valid_params[ "save_talk_reply_probs_path" ] = cls.save_talk_reply_probs_path return init_valid_params def __init__(self): self._init_train_agent = self.episode_sampler_class( **self.get_init_train_params() ) self._init_test_agent = self.episode_sampler_class( **self.get_init_valid_params() ) @classmethod def create_model(cls, **kwargs) -> nn.Module: def _create_model(**kwargs): return A3CLSTMNStepComCoordinatedActionsEgoVision( **{ **dict( num_inputs_per_agent=3 + 1 * cls.include_depth_frame, action_groups=cls.episode_class.class_available_action_groups( include_move_obj_actions=cls.include_move_obj_actions ), num_agents=cls.num_agents, state_repr_length=cls.state_repr_length, talk_embed_length=cls.talk_embed_length, agent_num_embed_length=cls.agent_num_embed_length, reply_embed_length=cls.reply_embed_length, num_talk_symbols=cls.num_talk_symbols, num_reply_symbols=cls.num_reply_symbols, turn_off_communication=cls.turn_off_communication, coordinate_actions=cls.coordinate_actions, coordinate_actions_dim=13 if cls.coordinate_actions else None, separate_actor_weights=False, final_cnn_channels=cls.final_cnn_channels, ), **kwargs, } ) return _create_model(**kwargs) @classmethod def create_agent(cls, **kwargs) -> MultiAgent: return cls.agent_class( model=kwargs["model"], gpu_id=kwargs["gpu_id"], include_test_eval_results=cls.include_test_eval_results, use_a3c_loss_when_not_expert_forcing=cls.use_a3c_loss_when_not_expert_forcing, record_all_in_test=cls.record_all_in_test, include_depth_frame=cls.include_depth_frame, resize_image_as=cls.screen_size, ) @property def init_train_agent(self) -> Callable: return self._init_train_agent @property def init_test_agent(self) -> Callable: return self._init_test_agent @property def saved_model_path(self) -> Optional[str]: return None def get_experiment(): return FurnMoveExperimentConfig()
cordial-sync-master
rl_multi_agent/experiments/furnmove_vision_marginalnocomm_nocl_rot_config.py
from typing import Callable, Optional import torch import constants from rl_multi_agent import MultiAgent from rl_multi_agent.experiments.experiment import ExperimentConfig from rl_multi_agent.furnmove_episode_samplers import FurnMoveGridEpisodeSampler from rl_multi_agent.furnmove_episodes import FurnMoveEgocentricFastGridEpisode class FurnMoveExperimentConfig(ExperimentConfig): # Env/episode config num_agents = 2 screen_size = 84 episode_class = FurnMoveEgocentricFastGridEpisode frame_type = "fast-egocentric-relative-tensor" episode_sampler_class = FurnMoveGridEpisodeSampler visible_agents = True include_depth_frame = False include_move_obj_actions = True headless = True if torch.cuda.is_available() else False # Model config state_repr_length = 512 # Agent config agent_class = MultiAgent # Training config max_ep_using_expert_actions = 0 train_scenes = constants.TRAIN_SCENE_NAMES[20:40] valid_scenes = constants.VALID_SCENE_NAMES[5:10] use_a3c_loss_when_not_expert_forcing = True # Misc (e.g. visualization) record_all_in_test = False save_talk_reply_probs_path = None include_test_eval_results = not torch.cuda.is_available() return_likely_successfuly_move_actions = False @classmethod def get_init_train_params(cls): init_train_params = { "scenes": cls.train_scenes, "num_agents": cls.num_agents, "object_type": "Television", "to_object_type": "Dresser", "to_object_silhouette": constants.DRESSER_SILHOUETTE_STRING, "episode_class": cls.episode_class, "player_screen_height": cls.screen_size, "player_screen_width": cls.screen_size, "max_ep_using_expert_actions": cls.max_ep_using_expert_actions, "visible_agents": cls.visible_agents, "include_depth_frame": cls.include_depth_frame, "object_initial_height": 1.3, "headless": cls.headless, "max_distance_from_object": 0.76, "max_episode_length": 500, "episode_args": { "include_move_obj_actions": cls.include_move_obj_actions, "first_correct_coord_reward": 0.0, "exploration_bonus": 0.0, "failed_action_penalty": -0.02, "step_penalty": -0.01, # "increasing_rotate_penalty": True, "joint_pass_penalty": -0.09, "moved_closer_reward": 1.0, # "moved_closer_reward": 0.50, "min_dist_to_to_object": 0.26, "frame_type": cls.frame_type, "reached_target_reward": 1.0, "return_likely_successfuly_move_actions": cls.return_likely_successfuly_move_actions, "pass_conditioned_coordination": True, }, } return init_train_params @classmethod def get_init_valid_params(cls): init_valid_params = { **cls.get_init_train_params(), "scenes": cls.valid_scenes, "player_screen_height": 224, "player_screen_width": 224, "headless": False, } if cls.save_talk_reply_probs_path is not None: init_valid_params[ "save_talk_reply_probs_path" ] = cls.save_talk_reply_probs_path # init_valid_params["episode_args"]["visualize_test_gridworld"] = True # init_valid_params["episode_args"]["visualizing_ms"] = 50 return init_valid_params def __init__(self): self._init_train_agent = self.episode_sampler_class( **self.get_init_train_params() ) self._init_test_agent = self.episode_sampler_class( **self.get_init_valid_params() ) @classmethod def create_agent(cls, **kwargs) -> MultiAgent: return cls.agent_class( model=kwargs["model"], gpu_id=kwargs["gpu_id"], include_test_eval_results=cls.include_test_eval_results, use_a3c_loss_when_not_expert_forcing=cls.use_a3c_loss_when_not_expert_forcing, record_all_in_test=cls.record_all_in_test, include_depth_frame=cls.include_depth_frame, discourage_failed_coordination=5000, ) @property def init_train_agent(self) -> Callable: return self._init_train_agent @property def init_test_agent(self) -> Callable: return self._init_test_agent @property def saved_model_path(self) -> Optional[str]: return None def get_experiment(): return FurnMoveExperimentConfig()
cordial-sync-master
rl_multi_agent/experiments/furnmove_grid_bigcentral_base_config.py
from typing import Callable, Optional import torch from torch import nn import constants from rl_multi_agent import MultiAgent from rl_multi_agent.experiments.experiment import ExperimentConfig from rl_multi_agent.furnmove_episode_samplers import FurnMoveGridEpisodeSampler from rl_multi_agent.furnmove_episodes import FurnMoveEgocentricFastGridEpisode from rl_multi_agent.models import A3CLSTMNStepComCoordinatedActionsEgoGridsEmbedCNN class FurnMove3AgentMixtureExperimentConfig(ExperimentConfig): # Env/episode config num_agents = 3 screen_size = 84 episode_class = FurnMoveEgocentricFastGridEpisode episode_sampler_class = FurnMoveGridEpisodeSampler visible_agents = True include_depth_frame = False include_move_obj_actions = True headless = True if torch.cuda.is_available() else False # Model config state_repr_length = 512 talk_embed_length = 16 reply_embed_length = 16 agent_num_embed_length = 8 coordinate_actions = True num_talk_symbols = 2 num_reply_symbols = 2 # Agent config agent_class = MultiAgent turn_off_communication = False discourage_failed_coordination = 5000 # Training config max_ep_using_expert_actions = 0 train_scenes = constants.TRAIN_SCENE_NAMES[20:40] valid_scenes = constants.VALID_SCENE_NAMES[5:10] use_a3c_loss_when_not_expert_forcing = True # Misc (e.g. visualization) record_all_in_test = False save_talk_reply_probs_path = None include_test_eval_results = not torch.cuda.is_available() return_likely_successfuly_move_actions = False @classmethod def get_init_train_params(cls): init_train_params = { "scenes": cls.train_scenes, "num_agents": cls.num_agents, "object_type": "Television", "to_object_type": "Dresser", "to_object_silhouette": constants.DRESSER_SILHOUETTE_STRING, "episode_class": cls.episode_class, "player_screen_height": cls.screen_size, "player_screen_width": cls.screen_size, "max_ep_using_expert_actions": cls.max_ep_using_expert_actions, "visible_agents": cls.visible_agents, "include_depth_frame": cls.include_depth_frame, "object_initial_height": 1.3, "headless": cls.headless, "max_distance_from_object": 0.76, "max_episode_length": 250 * cls.num_agents, "environment_args": {"min_steps_between_agents": 2}, "episode_args": { "include_move_obj_actions": cls.include_move_obj_actions, "first_correct_coord_reward": 0.0, "exploration_bonus": 0.0, "failed_action_penalty": -0.02, "step_penalty": -0.01, "joint_pass_penalty": -0.09, "moved_closer_reward": 2.0, "min_dist_to_to_object": 0.26, "reached_target_reward": 2.0, "return_likely_successfuly_move_actions": cls.return_likely_successfuly_move_actions, "frame_type": "fast-egocentric-relative-tensor", "pass_conditioned_coordination": True, }, } return init_train_params @classmethod def get_init_valid_params(cls): init_valid_params = { **cls.get_init_train_params(), "scenes": cls.valid_scenes, "player_screen_height": 224, "player_screen_width": 224, "headless": False, } if cls.save_talk_reply_probs_path is not None: init_valid_params[ "save_talk_reply_probs_path" ] = cls.save_talk_reply_probs_path return init_valid_params def __init__(self): self._init_train_agent = self.episode_sampler_class( **self.get_init_train_params() ) self._init_test_agent = self.episode_sampler_class( **self.get_init_valid_params() ) @classmethod def create_model(cls, **kwargs) -> nn.Module: return A3CLSTMNStepComCoordinatedActionsEgoGridsEmbedCNN( num_inputs=13, action_groups=cls.episode_class.class_available_action_groups( include_move_obj_actions=cls.include_move_obj_actions ), num_agents=cls.num_agents, state_repr_length=cls.state_repr_length, occupancy_embed_length=8, talk_embed_length=cls.talk_embed_length, agent_num_embed_length=cls.agent_num_embed_length, reply_embed_length=cls.reply_embed_length, turn_off_communication=cls.turn_off_communication, coordinate_actions=cls.coordinate_actions, coordinate_actions_dim=13 if cls.coordinate_actions else None, separate_actor_weights=False, num_talk_symbols=cls.num_talk_symbols, num_reply_symbols=cls.num_reply_symbols, ) # IF WE WANTED CENTRAL # return A3CLSTMCentralEgoGridsEmbedCNN( # num_inputs_per_agent=10, # action_groups=cls.episode_class.class_available_action_groups( # include_move_obj_actions=cls.include_move_obj_actions # ), # num_agents=cls.num_agents, # state_repr_length=cls.state_repr_length, # occupancy_embed_length=8, # ) @classmethod def create_agent(cls, **kwargs) -> MultiAgent: return cls.agent_class( model=kwargs["model"], gpu_id=kwargs["gpu_id"], include_test_eval_results=cls.include_test_eval_results, use_a3c_loss_when_not_expert_forcing=cls.use_a3c_loss_when_not_expert_forcing, record_all_in_test=cls.record_all_in_test, include_depth_frame=cls.include_depth_frame, discourage_failed_coordination=cls.discourage_failed_coordination, ) @property def init_train_agent(self) -> Callable: return self._init_train_agent @property def init_test_agent(self) -> Callable: return self._init_test_agent @property def saved_model_path(self) -> Optional[str]: return None def get_experiment(): return FurnMove3AgentMixtureExperimentConfig()
cordial-sync-master
rl_multi_agent/experiments/furnmove_grid_mixture_3agents_config.py
from typing import Optional from torch import nn from rl_multi_agent import MultiAgent from rl_multi_agent.experiments.furnmove_vision_bigcentral_base_config import ( FurnMoveExperimentConfig, ) from rl_multi_agent.models import A3CLSTMBigCentralEgoVision class FurnMoveBigCentralVisionExperimentConfig(FurnMoveExperimentConfig): @classmethod def create_model(cls, **kwargs) -> nn.Module: return A3CLSTMBigCentralEgoVision( num_inputs_per_agent=3 + 1 * cls.include_depth_frame, action_groups=cls.episode_class.class_available_action_groups( include_move_obj_actions=cls.include_move_obj_actions ), num_agents=cls.num_agents, state_repr_length=cls.state_repr_length, ) @classmethod def create_agent(cls, **kwargs) -> MultiAgent: return cls.agent_class( model=kwargs["model"], gpu_id=kwargs["gpu_id"], include_test_eval_results=cls.include_test_eval_results, use_a3c_loss_when_not_expert_forcing=cls.use_a3c_loss_when_not_expert_forcing, record_all_in_test=cls.record_all_in_test, include_depth_frame=cls.include_depth_frame, resize_image_as=cls.screen_size, # discourage_failed_coordination=5000, ) @property def saved_model_path(self) -> Optional[str]: return None def get_experiment(): return FurnMoveBigCentralVisionExperimentConfig()
cordial-sync-master
rl_multi_agent/experiments/furnmove_vision_bigcentral_nocl_rot_config.py
from typing import Optional from torch import nn from rl_multi_agent.experiments.furnmove_grid_bigcentral_base_config import ( FurnMoveExperimentConfig, ) from rl_multi_agent.models import A3CLSTMBigCentralEgoGridsEmbedCNN class FurnMoveBigCentralNoCLExperimentConfig(FurnMoveExperimentConfig): @classmethod def create_model(cls, **kwargs) -> nn.Module: return A3CLSTMBigCentralEgoGridsEmbedCNN( num_inputs_per_agent=9, action_groups=cls.episode_class.class_available_action_groups( include_move_obj_actions=cls.include_move_obj_actions ), num_agents=cls.num_agents, state_repr_length=cls.state_repr_length, occupancy_embed_length=8, ) @classmethod def create_agent(cls, **kwargs): return cls.agent_class( model=kwargs["model"], gpu_id=kwargs["gpu_id"], include_test_eval_results=cls.include_test_eval_results, use_a3c_loss_when_not_expert_forcing=cls.use_a3c_loss_when_not_expert_forcing, record_all_in_test=cls.record_all_in_test, include_depth_frame=cls.include_depth_frame, ) @classmethod def get_init_train_params(cls): init_train_params = FurnMoveExperimentConfig.get_init_train_params() init_train_params["environment_args"] = {"min_steps_between_agents": 2} return init_train_params @property def saved_model_path(self) -> Optional[str]: return None def get_experiment(): return FurnMoveBigCentralNoCLExperimentConfig()
cordial-sync-master
rl_multi_agent/experiments/furnmove_grid_bigcentral_nocl_rot_config.py
from typing import Optional from rl_multi_agent.experiments.furnmove_grid_mixture_base_config import ( FurnMoveExperimentConfig, ) class FurnMoveGridMixtureExperimentConfig(FurnMoveExperimentConfig): @classmethod def get_init_train_params(cls): init_train_params = FurnMoveExperimentConfig.get_init_train_params() init_train_params["environment_args"] = {"min_steps_between_agents": 2} return init_train_params @property def saved_model_path(self) -> Optional[str]: return None def get_experiment(): return FurnMoveGridMixtureExperimentConfig()
cordial-sync-master
rl_multi_agent/experiments/furnmove_grid_mixture_cl_rot_config.py
from typing import Callable, Optional import torch from torch import nn import constants from rl_multi_agent import MultiAgent from rl_multi_agent.experiments.experiment import ExperimentConfig from rl_multi_agent.furnmove_episode_samplers import FurnMoveEpisodeSampler from rl_multi_agent.furnmove_episodes import FurnMoveEgocentricEpisode from rl_multi_agent.models import A3CLSTMNStepComCoordinatedActionsEgoVision class FurnMoveExperimentConfig(ExperimentConfig): """ All scenes + 1.0 reward for getting closer to the target Discrete communication + discourage failed coordination loss """ # Env/episode config num_agents = 2 screen_size = 84 episode_class = FurnMoveEgocentricEpisode frame_type = "image" episode_sampler_class = FurnMoveEpisodeSampler visible_agents = True include_depth_frame = False include_move_obj_actions = True headless = False # Model config state_repr_length = 512 talk_embed_length = 16 reply_embed_length = 16 agent_num_embed_length = 8 num_talk_symbols = 2 num_reply_symbols = 2 coordinate_actions = True # Agent config agent_class = MultiAgent turn_off_communication = False # Training config max_ep_using_expert_actions = 0 train_scenes = constants.TRAIN_SCENE_NAMES[20:40] valid_scenes = constants.VALID_SCENE_NAMES[5:10] use_a3c_loss_when_not_expert_forcing = True # Misc (e.g. visualization) record_all_in_test = False save_talk_reply_probs_path = None include_test_eval_results = not torch.cuda.is_available() return_likely_successfuly_move_actions = False @classmethod def get_init_train_params(cls): init_train_params = { "scenes": cls.train_scenes, "num_agents": cls.num_agents, "object_type": "Television", "to_object_type": "Dresser", "episode_class": cls.episode_class, "player_screen_height": cls.screen_size, "player_screen_width": cls.screen_size, "max_ep_using_expert_actions": cls.max_ep_using_expert_actions, "visible_agents": cls.visible_agents, "include_depth_frame": cls.include_depth_frame, "object_initial_height": 1.3, "headless": cls.headless, "max_distance_from_object": 0.76, "max_episode_length": 500, "episode_args": { "include_move_obj_actions": cls.include_move_obj_actions, "first_correct_coord_reward": 0.0, "exploration_bonus": 0.0, "failed_action_penalty": -0.02, "step_penalty": -0.01, # "increasing_rotate_penalty": True, "joint_pass_penalty": -0.09, "moved_closer_reward": 1.0, # "moved_closer_reward": 0.50, "min_dist_to_to_object": 0.26, "frame_type": cls.frame_type, "reached_target_reward": 1.0, "return_likely_successfuly_move_actions": cls.return_likely_successfuly_move_actions, "pass_conditioned_coordination": True, }, } return init_train_params @classmethod def get_init_valid_params(cls): init_valid_params = { **cls.get_init_train_params(), "scenes": cls.valid_scenes, "player_screen_height": 224, "player_screen_width": 224, "headless": False, } if cls.save_talk_reply_probs_path is not None: init_valid_params[ "save_talk_reply_probs_path" ] = cls.save_talk_reply_probs_path return init_valid_params def __init__(self): self._init_train_agent = self.episode_sampler_class( **self.get_init_train_params() ) self._init_test_agent = self.episode_sampler_class( **self.get_init_valid_params() ) @classmethod def create_model(cls, **kwargs) -> nn.Module: return A3CLSTMNStepComCoordinatedActionsEgoVision( num_inputs_per_agent=3 + 1 * cls.include_depth_frame, action_groups=cls.episode_class.class_available_action_groups( include_move_obj_actions=cls.include_move_obj_actions ), num_agents=cls.num_agents, state_repr_length=cls.state_repr_length, talk_embed_length=cls.talk_embed_length, agent_num_embed_length=cls.agent_num_embed_length, reply_embed_length=cls.reply_embed_length, num_talk_symbols=cls.num_talk_symbols, num_reply_symbols=cls.num_reply_symbols, turn_off_communication=cls.turn_off_communication, coordinate_actions=cls.coordinate_actions, coordinate_actions_dim=4 if cls.coordinate_actions else None, separate_actor_weights=False, ) @classmethod def create_agent(cls, **kwargs) -> MultiAgent: return cls.agent_class( model=kwargs["model"], gpu_id=kwargs["gpu_id"], include_test_eval_results=cls.include_test_eval_results, use_a3c_loss_when_not_expert_forcing=cls.use_a3c_loss_when_not_expert_forcing, record_all_in_test=cls.record_all_in_test, include_depth_frame=cls.include_depth_frame, resize_image_as=cls.screen_size, discourage_failed_coordination=5000, ) @property def init_train_agent(self) -> Callable: return self._init_train_agent @property def init_test_agent(self) -> Callable: return self._init_test_agent @property def saved_model_path(self) -> Optional[str]: # return "trained_models/furnmove_a3c_mixture_ego_vision_ego_actions_v3_490000_2019-10-28_16-43-13.dat" return None def get_experiment(): return FurnMoveExperimentConfig()
cordial-sync-master
rl_multi_agent/experiments/furnmove_vision_mixture4mix_cl_rot_config.py
from typing import Callable, Optional import torch from torch import nn import constants from rl_multi_agent import MultiAgent from rl_multi_agent.experiments.experiment import ExperimentConfig from rl_multi_agent.furnmove_episode_samplers import FurnMoveEpisodeSampler from rl_multi_agent.furnmove_episodes import FurnMoveEgocentricEpisode from rl_multi_agent.models import A3CLSTMNStepComCoordinatedActionsEgoVision class FurnMoveExperimentConfig(ExperimentConfig): """ All scenes + 1.0 reward for getting closer to the target Discrete communication + discourage failed coordination loss """ # Env/episode config num_agents = 2 screen_size = 84 episode_class = FurnMoveEgocentricEpisode frame_type = "image" episode_sampler_class = FurnMoveEpisodeSampler visible_agents = True include_depth_frame = False include_move_obj_actions = True headless = False # Model config state_repr_length = 512 talk_embed_length = 16 reply_embed_length = 16 agent_num_embed_length = 8 num_talk_symbols = 2 num_reply_symbols = 2 coordinate_actions = True # Agent config agent_class = MultiAgent turn_off_communication = False # Training config max_ep_using_expert_actions = 0 train_scenes = constants.TRAIN_SCENE_NAMES[20:40] valid_scenes = constants.VALID_SCENE_NAMES[5:10] use_a3c_loss_when_not_expert_forcing = True # Misc (e.g. visualization) record_all_in_test = False save_talk_reply_probs_path = None include_test_eval_results = not torch.cuda.is_available() return_likely_successfuly_move_actions = False @classmethod def get_init_train_params(cls): init_train_params = { "scenes": cls.train_scenes, "num_agents": cls.num_agents, "object_type": "Television", "to_object_type": "Dresser", "episode_class": cls.episode_class, "player_screen_height": cls.screen_size, "player_screen_width": cls.screen_size, "max_ep_using_expert_actions": cls.max_ep_using_expert_actions, "visible_agents": cls.visible_agents, "include_depth_frame": cls.include_depth_frame, "object_initial_height": 1.3, "headless": cls.headless, "max_distance_from_object": 0.76, "max_episode_length": 500, "episode_args": { "include_move_obj_actions": cls.include_move_obj_actions, "first_correct_coord_reward": 0.0, "exploration_bonus": 0.0, "failed_action_penalty": -0.02, "step_penalty": -0.01, # "increasing_rotate_penalty": True, "joint_pass_penalty": -0.09, "moved_closer_reward": 1.0, # "moved_closer_reward": 0.50, "min_dist_to_to_object": 0.26, "frame_type": cls.frame_type, "reached_target_reward": 1.0, "return_likely_successfuly_move_actions": cls.return_likely_successfuly_move_actions, "pass_conditioned_coordination": True, }, } return init_train_params @classmethod def get_init_valid_params(cls): init_valid_params = { **cls.get_init_train_params(), "scenes": cls.valid_scenes, "player_screen_height": 224, "player_screen_width": 224, "headless": False, } if cls.save_talk_reply_probs_path is not None: init_valid_params[ "save_talk_reply_probs_path" ] = cls.save_talk_reply_probs_path return init_valid_params def __init__(self): self._init_train_agent = self.episode_sampler_class( **self.get_init_train_params() ) self._init_test_agent = self.episode_sampler_class( **self.get_init_valid_params() ) @classmethod def create_model(cls, **kwargs) -> nn.Module: return A3CLSTMNStepComCoordinatedActionsEgoVision( num_inputs_per_agent=3 + 1 * cls.include_depth_frame, action_groups=cls.episode_class.class_available_action_groups( include_move_obj_actions=cls.include_move_obj_actions ), num_agents=cls.num_agents, state_repr_length=cls.state_repr_length, talk_embed_length=cls.talk_embed_length, agent_num_embed_length=cls.agent_num_embed_length, reply_embed_length=cls.reply_embed_length, num_talk_symbols=cls.num_talk_symbols, num_reply_symbols=cls.num_reply_symbols, turn_off_communication=cls.turn_off_communication, coordinate_actions=cls.coordinate_actions, coordinate_actions_dim=13 if cls.coordinate_actions else None, separate_actor_weights=False, ) @classmethod def create_agent(cls, **kwargs) -> MultiAgent: return cls.agent_class( model=kwargs["model"], gpu_id=kwargs["gpu_id"], include_test_eval_results=cls.include_test_eval_results, use_a3c_loss_when_not_expert_forcing=cls.use_a3c_loss_when_not_expert_forcing, record_all_in_test=cls.record_all_in_test, include_depth_frame=cls.include_depth_frame, resize_image_as=cls.screen_size, ) @property def init_train_agent(self) -> Callable: return self._init_train_agent @property def init_test_agent(self) -> Callable: return self._init_test_agent @property def saved_model_path(self) -> Optional[str]: # return "trained_models/furnmove_a3c_mixture_ego_vision_ego_actions_v3_490000_2019-10-28_16-43-13.dat" return None def get_experiment(): return FurnMoveExperimentConfig()
cordial-sync-master
rl_multi_agent/experiments/furnmove_vision_mixture_nocl_rot_config.py
from typing import Callable, Optional import torch from torch import nn import constants from rl_multi_agent import MultiAgent from rl_multi_agent.experiments.experiment import ExperimentConfig from rl_multi_agent.furnmove_episode_samplers import FurnMoveEpisodeSampler from rl_multi_agent.furnmove_episodes import FurnMoveEgocentricEpisode from rl_multi_agent.models import A3CLSTMNStepComCoordinatedActionsEgoVision class FurnMoveMixtureVisionExperimentConfig(ExperimentConfig): """ All scenes + 1.0 reward for getting closer to the target Discrete communication + discourage failed coordination loss """ # Env/episode config num_agents = 2 screen_size = 84 episode_class = FurnMoveEgocentricEpisode frame_type = "image" episode_sampler_class = FurnMoveEpisodeSampler visible_agents = True include_depth_frame = False include_move_obj_actions = True headless = False # Model config state_repr_length = 512 talk_embed_length = 16 reply_embed_length = 16 agent_num_embed_length = 8 num_talk_symbols = 2 num_reply_symbols = 2 coordinate_actions = True # Agent config agent_class = MultiAgent turn_off_communication = False # Training config max_ep_using_expert_actions = 0 train_scenes = constants.TRAIN_SCENE_NAMES[20:40] valid_scenes = constants.VALID_SCENE_NAMES[5:10] use_a3c_loss_when_not_expert_forcing = True # Misc (e.g. visualization) record_all_in_test = False save_talk_reply_probs_path = None include_test_eval_results = not torch.cuda.is_available() return_likely_successfuly_move_actions = False @classmethod def get_init_train_params(cls): init_train_params = { "scenes": cls.train_scenes, "num_agents": cls.num_agents, "object_type": "Television", "to_object_type": "Dresser", "episode_class": cls.episode_class, "player_screen_height": cls.screen_size, "player_screen_width": cls.screen_size, "max_ep_using_expert_actions": cls.max_ep_using_expert_actions, "visible_agents": cls.visible_agents, "include_depth_frame": cls.include_depth_frame, "object_initial_height": 1.3, "headless": cls.headless, "max_distance_from_object": 0.76, "max_episode_length": 500, "episode_args": { "include_move_obj_actions": cls.include_move_obj_actions, "first_correct_coord_reward": 0.0, "exploration_bonus": 0.0, "failed_action_penalty": -0.02, "step_penalty": -0.01, "joint_pass_penalty": -0.09, "moved_closer_reward": 1.0, "min_dist_to_to_object": 0.26, "frame_type": cls.frame_type, "reached_target_reward": 1.0, "return_likely_successfuly_move_actions": cls.return_likely_successfuly_move_actions, "pass_conditioned_coordination": True, }, } return init_train_params @classmethod def get_init_valid_params(cls): init_valid_params = { **cls.get_init_train_params(), "scenes": cls.valid_scenes, "player_screen_height": 224, "player_screen_width": 224, "headless": False, } if cls.save_talk_reply_probs_path is not None: init_valid_params[ "save_talk_reply_probs_path" ] = cls.save_talk_reply_probs_path return init_valid_params def __init__(self): self._init_train_agent = self.episode_sampler_class( **self.get_init_train_params() ) self._init_test_agent = self.episode_sampler_class( **self.get_init_valid_params() ) @classmethod def create_model(cls, **kwargs) -> nn.Module: return A3CLSTMNStepComCoordinatedActionsEgoVision( num_inputs_per_agent=3 + 1 * cls.include_depth_frame, action_groups=cls.episode_class.class_available_action_groups( include_move_obj_actions=cls.include_move_obj_actions ), num_agents=cls.num_agents, state_repr_length=cls.state_repr_length, talk_embed_length=cls.talk_embed_length, agent_num_embed_length=cls.agent_num_embed_length, reply_embed_length=cls.reply_embed_length, num_talk_symbols=cls.num_talk_symbols, num_reply_symbols=cls.num_reply_symbols, turn_off_communication=cls.turn_off_communication, coordinate_actions=cls.coordinate_actions, coordinate_actions_dim=13 if cls.coordinate_actions else None, separate_actor_weights=False, ) @classmethod def create_agent(cls, **kwargs) -> MultiAgent: return cls.agent_class( model=kwargs["model"], gpu_id=kwargs["gpu_id"], include_test_eval_results=cls.include_test_eval_results, use_a3c_loss_when_not_expert_forcing=cls.use_a3c_loss_when_not_expert_forcing, record_all_in_test=cls.record_all_in_test, include_depth_frame=cls.include_depth_frame, resize_image_as=cls.screen_size, discourage_failed_coordination=5000, ) @property def init_train_agent(self) -> Callable: return self._init_train_agent @property def init_test_agent(self) -> Callable: return self._init_test_agent @property def saved_model_path(self) -> Optional[str]: return None def get_experiment(): return FurnMoveMixtureVisionExperimentConfig()
cordial-sync-master
rl_multi_agent/experiments/furnmove_vision_mixture_cl_rot_config.py
from typing import Callable, Optional import torch from torch import nn import constants from rl_multi_agent import MultiAgent from rl_multi_agent.experiments.experiment import ExperimentConfig from rl_multi_agent.furnmove_episode_samplers import FurnMoveEpisodeSampler from rl_multi_agent.furnmove_episodes import FurnMoveEgocentricEpisode from rl_multi_agent.models import A3CLSTMNStepComCoordinatedActionsEgoVision class FurnMoveExperimentConfig(ExperimentConfig): """ All scenes + 1.0 reward for getting closer to the target Discrete communication with NO discourage failed coordination loss """ # Env/episode config num_agents = 2 screen_size = 84 episode_class = FurnMoveEgocentricEpisode frame_type = "image" episode_sampler_class = FurnMoveEpisodeSampler visible_agents = True include_depth_frame = False include_move_obj_actions = True headless = False # Model config state_repr_length = 512 talk_embed_length = 16 reply_embed_length = 16 agent_num_embed_length = 8 num_talk_symbols = 2 num_reply_symbols = 2 coordinate_actions = False # Agent config agent_class = MultiAgent turn_off_communication = False # Training config max_ep_using_expert_actions = 0 train_scenes = constants.TRAIN_SCENE_NAMES[20:40] valid_scenes = constants.VALID_SCENE_NAMES[5:10] use_a3c_loss_when_not_expert_forcing = True # Misc (e.g. visualization) record_all_in_test = False save_talk_reply_probs_path = None include_test_eval_results = not torch.cuda.is_available() return_likely_successfuly_move_actions = False # Balancing final_cnn_channels = 140 @classmethod def get_init_train_params(cls): init_train_params = { "scenes": cls.train_scenes, "num_agents": cls.num_agents, "object_type": "Television", "to_object_type": "Dresser", "episode_class": cls.episode_class, "player_screen_height": cls.screen_size, "player_screen_width": cls.screen_size, "max_ep_using_expert_actions": cls.max_ep_using_expert_actions, "visible_agents": cls.visible_agents, "include_depth_frame": cls.include_depth_frame, "object_initial_height": 1.3, "headless": cls.headless, "max_distance_from_object": 0.76, "max_episode_length": 500, "episode_args": { "include_move_obj_actions": cls.include_move_obj_actions, "first_correct_coord_reward": 0.0, "exploration_bonus": 0.0, "failed_action_penalty": -0.02, "step_penalty": -0.01, # "increasing_rotate_penalty": True, "joint_pass_penalty": -0.09, "moved_closer_reward": 1.0, # "moved_closer_reward": 0.50, "min_dist_to_to_object": 0.26, "frame_type": cls.frame_type, "reached_target_reward": 1.0, "return_likely_successfuly_move_actions": cls.return_likely_successfuly_move_actions, "pass_conditioned_coordination": True, }, } return init_train_params @classmethod def get_init_valid_params(cls): init_valid_params = { **cls.get_init_train_params(), "scenes": cls.valid_scenes, "player_screen_height": 224, "player_screen_width": 224, "headless": False, } if cls.save_talk_reply_probs_path is not None: init_valid_params[ "save_talk_reply_probs_path" ] = cls.save_talk_reply_probs_path return init_valid_params def __init__(self): self._init_train_agent = self.episode_sampler_class( **self.get_init_train_params() ) self._init_test_agent = self.episode_sampler_class( **self.get_init_valid_params() ) @classmethod def create_model(cls, **kwargs) -> nn.Module: def _create_model(**kwargs): return A3CLSTMNStepComCoordinatedActionsEgoVision( **{ **dict( num_inputs_per_agent=3 + 1 * cls.include_depth_frame, action_groups=cls.episode_class.class_available_action_groups( include_move_obj_actions=cls.include_move_obj_actions ), num_agents=cls.num_agents, state_repr_length=cls.state_repr_length, talk_embed_length=cls.talk_embed_length, agent_num_embed_length=cls.agent_num_embed_length, reply_embed_length=cls.reply_embed_length, num_talk_symbols=cls.num_talk_symbols, num_reply_symbols=cls.num_reply_symbols, turn_off_communication=cls.turn_off_communication, coordinate_actions=cls.coordinate_actions, coordinate_actions_dim=13 if cls.coordinate_actions else None, separate_actor_weights=False, final_cnn_channels=cls.final_cnn_channels, ), **kwargs, } ) return _create_model(**kwargs) @classmethod def create_agent(cls, **kwargs) -> MultiAgent: return cls.agent_class( model=kwargs["model"], gpu_id=kwargs["gpu_id"], include_test_eval_results=cls.include_test_eval_results, use_a3c_loss_when_not_expert_forcing=cls.use_a3c_loss_when_not_expert_forcing, record_all_in_test=cls.record_all_in_test, include_depth_frame=cls.include_depth_frame, resize_image_as=cls.screen_size, ) @property def init_train_agent(self) -> Callable: return self._init_train_agent @property def init_test_agent(self) -> Callable: return self._init_test_agent @property def saved_model_path(self) -> Optional[str]: return None def get_experiment(): return FurnMoveExperimentConfig()
cordial-sync-master
rl_multi_agent/experiments/furnmove_vision_marginal_nocl_rot_config.py
from typing import Optional import constants from rl_multi_agent import MultiAgent from rl_multi_agent.experiments.furnmove_grid_mixture_base_config import ( FurnMoveExperimentConfig, ) class FurnMoveGridExperimentConfig(FurnMoveExperimentConfig): @classmethod def get_init_train_params(cls): init_train_params = { "scenes": cls.train_scenes, "num_agents": cls.num_agents, "object_type": "Television", "to_object_type": "Dresser", "to_object_silhouette": constants.DRESSER_SILHOUETTE_STRING, "episode_class": cls.episode_class, "player_screen_height": cls.screen_size, "player_screen_width": cls.screen_size, "max_ep_using_expert_actions": cls.max_ep_using_expert_actions, "visible_agents": cls.visible_agents, "include_depth_frame": cls.include_depth_frame, "object_initial_height": 1.3, "headless": cls.headless, "max_distance_from_object": 0.76, "max_episode_length": 500, "environment_args": {"min_steps_between_agents": 2}, "episode_args": { "include_move_obj_actions": cls.include_move_obj_actions, "first_correct_coord_reward": 0.0, "exploration_bonus": 0.0, "failed_action_penalty": -0.02, "step_penalty": -0.01, "joint_pass_penalty": -0.09, "moved_closer_reward": 1.0, "min_dist_to_to_object": 0.26, "reached_target_reward": 1.0, "return_likely_successfuly_move_actions": cls.return_likely_successfuly_move_actions, "frame_type": "fast-egocentric-relative-tensor", "pass_conditioned_coordination": True, }, } return init_train_params @classmethod def create_agent(cls, **kwargs) -> MultiAgent: return cls.agent_class( model=kwargs["model"], gpu_id=kwargs["gpu_id"], include_test_eval_results=cls.include_test_eval_results, use_a3c_loss_when_not_expert_forcing=cls.use_a3c_loss_when_not_expert_forcing, record_all_in_test=cls.record_all_in_test, include_depth_frame=cls.include_depth_frame, ) @property def saved_model_path(self) -> Optional[str]: return None def get_experiment(): return FurnMoveGridExperimentConfig()
cordial-sync-master
rl_multi_agent/experiments/furnmove_grid_mixture_nocl_rot_config.py
from typing import Optional from torch import nn from rl_multi_agent import MultiAgent from rl_multi_agent.experiments.furnlift_base_config import FurnLiftBaseConfig from rl_multi_agent.models import BigA3CLSTMNStepComCoordinatedActionsEgoVision class FurnLiftMinDistNoimplicitMixtureConfig(FurnLiftBaseConfig): # Env/episode config min_dist_between_agents_to_pickup = 8 visible_agents = False # Model config turn_off_communication = False # Agent config agent_class = MultiAgent # Coordination coordinate_actions = True # Mixture @classmethod def create_model(cls, **kwargs) -> nn.Module: return BigA3CLSTMNStepComCoordinatedActionsEgoVision( num_inputs_per_agent=3 + 1 * (cls.include_depth_frame), action_groups=cls.episode_class.class_available_action_groups(), num_agents=cls.num_agents, state_repr_length=cls.state_repr_length, talk_embed_length=cls.talk_embed_length, agent_num_embed_length=cls.agent_num_embed_length, reply_embed_length=cls.reply_embed_length, num_talk_symbols=cls.num_talk_symbols, num_reply_symbols=cls.num_reply_symbols, turn_off_communication=cls.turn_off_communication, coordinate_actions=cls.coordinate_actions, coordinate_actions_dim=2 if cls.coordinate_actions else None, separate_actor_weights=False, ) @classmethod def create_agent(cls, **kwargs) -> MultiAgent: return cls.agent_class( model=kwargs["model"], gpu_id=kwargs["gpu_id"], include_test_eval_results=cls.include_test_eval_results, use_a3c_loss_when_not_expert_forcing=cls.use_a3c_loss_when_not_expert_forcing, record_all_in_test=cls.record_all_in_test, include_depth_frame=cls.include_depth_frame, resize_image_as=cls.screen_size, dagger_mode=cls.dagger_mode, discourage_failed_coordination=False, coordination_use_marginal_entropy=True, ) @property def saved_model_path(self) -> Optional[str]: return None def get_experiment(): return FurnLiftMinDistNoimplicitMixtureConfig()
cordial-sync-master
rl_multi_agent/experiments/furnlift_vision_noimplicit_mixture_cl_config.py
from torch import nn from rl_multi_agent import MultiAgent from rl_multi_agent.experiments.furnlift_base_config import FurnLiftBaseConfig from rl_multi_agent.models import OldTaskA3CLSTMBigCentralEgoVision class FurnLiftExperimentConfig(FurnLiftBaseConfig): # Env/episode config min_dist_between_agents_to_pickup = 8 visible_agents = True # Agent config agent_class = MultiAgent @classmethod def create_model(cls, **kwargs) -> nn.Module: return OldTaskA3CLSTMBigCentralEgoVision( num_inputs_per_agent=3 + 1 * (cls.include_depth_frame), action_groups=cls.episode_class.class_available_action_groups(), num_agents=cls.num_agents, state_repr_length=cls.state_repr_length, ) def get_experiment(): return FurnLiftExperimentConfig()
cordial-sync-master
rl_multi_agent/experiments/furnlift_vision_central_cl_config.py
from typing import Optional from torch import nn import constants from rl_multi_agent.experiments.furnmove_grid_marginal_nocl_base_config import ( FurnMoveExperimentConfig, ) from rl_multi_agent.furnmove_episodes import ( FurnMoveEgocentricNoRotationsFastGridEpisode, ) from rl_multi_agent.models import A3CLSTMNStepComCoordinatedActionsEgoGridsEmbedCNN class FurnMoveMarginalNoRotationsExperimentConfig(FurnMoveExperimentConfig): episode_class = FurnMoveEgocentricNoRotationsFastGridEpisode # Increasing the params of marginal to match mixture final_cnn_channels = 288 @classmethod def get_init_train_params(cls): init_train_params = { "scenes": cls.train_scenes, "num_agents": cls.num_agents, "object_type": "Television", "to_object_type": "Dresser", "to_object_silhouette": constants.DRESSER_SILHOUETTE_STRING, "episode_class": cls.episode_class, "player_screen_height": cls.screen_size, "player_screen_width": cls.screen_size, "max_ep_using_expert_actions": cls.max_ep_using_expert_actions, "visible_agents": cls.visible_agents, "include_depth_frame": cls.include_depth_frame, "object_initial_height": 1.3, "headless": cls.headless, "max_distance_from_object": 0.76, "max_episode_length": 500, "environment_args": {"min_steps_between_agents": 2}, "episode_args": { "include_move_obj_actions": cls.include_move_obj_actions, "first_correct_coord_reward": 0.0, "exploration_bonus": 0.0, "failed_action_penalty": -0.02, "step_penalty": -0.01, "joint_pass_penalty": -0.09, "moved_closer_reward": 1.0, "min_dist_to_to_object": 0.26, "reached_target_reward": 1.0, "return_likely_successfuly_move_actions": cls.return_likely_successfuly_move_actions, "frame_type": "fast-egocentric-relative-tensor", "pass_conditioned_coordination": True, }, } return init_train_params @property def saved_model_path(self) -> Optional[str]: return None @classmethod def create_model(cls, **kwargs) -> nn.Module: def _create_model(**kwargs): return A3CLSTMNStepComCoordinatedActionsEgoGridsEmbedCNN( **{ **dict( num_inputs=9, action_groups=cls.episode_class.class_available_action_groups( include_move_obj_actions=cls.include_move_obj_actions ), num_agents=cls.num_agents, state_repr_length=cls.state_repr_length, occupancy_embed_length=8, talk_embed_length=cls.talk_embed_length, agent_num_embed_length=cls.agent_num_embed_length, reply_embed_length=cls.reply_embed_length, turn_off_communication=cls.turn_off_communication, coordinate_actions=cls.coordinate_actions, coordinate_actions_dim=13 if cls.coordinate_actions else None, separate_actor_weights=False, num_talk_symbols=cls.num_talk_symbols, num_reply_symbols=cls.num_reply_symbols, final_cnn_channels=cls.final_cnn_channels, ), **kwargs, } ) return _create_model(**kwargs) def get_experiment(): return FurnMoveMarginalNoRotationsExperimentConfig()
cordial-sync-master
rl_multi_agent/experiments/furnmove_grid_marginal_nocl_norot_config.py
from rl_multi_agent.experiments.furnlift_vision_marginal_nocl_config import ( FurnLiftMinDistUncoordinatedExperimentConfig, ) class FurnLiftMinDistUncoordinatedNoimplicitExperimentConfig( FurnLiftMinDistUncoordinatedExperimentConfig ): # Env/episode config visible_agents = False def get_experiment(): return FurnLiftMinDistUncoordinatedNoimplicitExperimentConfig()
cordial-sync-master
rl_multi_agent/experiments/furnlift_vision_noimplicit_marginal_nocl_config.py
from typing import Optional from torch import nn from rl_multi_agent.experiments.furnmove_grid_marginal_nocl_base_config import ( FurnMoveExperimentConfig, ) from rl_multi_agent.models import A3CLSTMNStepComCoordinatedActionsEgoGridsEmbedCNN class FurnMoveGridExperimentConfig(FurnMoveExperimentConfig): # Increasing the params of marginal to match mixture final_cnn_channels = 288 @classmethod def get_init_train_params(cls): init_train_params = FurnMoveExperimentConfig.get_init_train_params() init_train_params["environment_args"] = {"min_steps_between_agents": 2} return init_train_params @property def saved_model_path(self) -> Optional[str]: return None @classmethod def create_model(cls, **kwargs) -> nn.Module: def _create_model(**kwargs): return A3CLSTMNStepComCoordinatedActionsEgoGridsEmbedCNN( **{ **dict( num_inputs=9, action_groups=cls.episode_class.class_available_action_groups( include_move_obj_actions=cls.include_move_obj_actions ), num_agents=cls.num_agents, state_repr_length=cls.state_repr_length, occupancy_embed_length=8, talk_embed_length=cls.talk_embed_length, agent_num_embed_length=cls.agent_num_embed_length, reply_embed_length=cls.reply_embed_length, turn_off_communication=cls.turn_off_communication, coordinate_actions=cls.coordinate_actions, coordinate_actions_dim=13 if cls.coordinate_actions else None, separate_actor_weights=False, num_talk_symbols=cls.num_talk_symbols, num_reply_symbols=cls.num_reply_symbols, final_cnn_channels=cls.final_cnn_channels, ), **kwargs, } ) return _create_model(**kwargs) def get_experiment(): return FurnMoveGridExperimentConfig()
cordial-sync-master
rl_multi_agent/experiments/furnmove_grid_marginal_nocl_rot_config.py
from typing import Callable, Optional import torch from torch import nn import constants from rl_multi_agent import MultiAgent from rl_multi_agent.experiments.experiment import ExperimentConfig from rl_multi_agent.furnmove_episode_samplers import FurnMoveGridEpisodeSampler from rl_multi_agent.furnmove_episodes import FurnMoveEgocentricFastGridEpisode from rl_multi_agent.models import A3CLSTMNStepComCoordinatedActionsEgoGridsEmbedCNN class FurnMoveExperimentConfig(ExperimentConfig): # Env/episode config num_agents = 2 screen_size = 84 episode_class = FurnMoveEgocentricFastGridEpisode episode_sampler_class = FurnMoveGridEpisodeSampler visible_agents = True include_depth_frame = False include_move_obj_actions = True headless = True if torch.cuda.is_available() else False # Model config state_repr_length = 512 talk_embed_length = 16 reply_embed_length = 16 agent_num_embed_length = 8 coordinate_actions = True num_talk_symbols = 2 num_reply_symbols = 2 # Agent config agent_class = MultiAgent turn_off_communication = False # Training config max_ep_using_expert_actions = 0 train_scenes = constants.TRAIN_SCENE_NAMES[20:40] valid_scenes = constants.VALID_SCENE_NAMES[5:10] use_a3c_loss_when_not_expert_forcing = True # Misc (e.g. visualization) record_all_in_test = False save_talk_reply_probs_path = None include_test_eval_results = not torch.cuda.is_available() return_likely_successfuly_move_actions = False @classmethod def get_init_train_params(cls): init_train_params = { "scenes": cls.train_scenes, "num_agents": cls.num_agents, "object_type": "Television", "to_object_type": "Dresser", "to_object_silhouette": constants.DRESSER_SILHOUETTE_STRING, "episode_class": cls.episode_class, "player_screen_height": cls.screen_size, "player_screen_width": cls.screen_size, "max_ep_using_expert_actions": cls.max_ep_using_expert_actions, "visible_agents": cls.visible_agents, "include_depth_frame": cls.include_depth_frame, "object_initial_height": 1.3, "headless": cls.headless, "max_distance_from_object": 0.76, "max_episode_length": 500, "episode_args": { "include_move_obj_actions": cls.include_move_obj_actions, "first_correct_coord_reward": 0.0, "exploration_bonus": 0.0, "failed_action_penalty": -0.02, "step_penalty": -0.01, "joint_pass_penalty": -0.09, "moved_closer_reward": 1.0, "min_dist_to_to_object": 0.26, "reached_target_reward": 1.0, "return_likely_successfuly_move_actions": cls.return_likely_successfuly_move_actions, "frame_type": "fast-egocentric-relative-tensor", "pass_conditioned_coordination": True, }, } return init_train_params @classmethod def get_init_valid_params(cls): init_valid_params = { **cls.get_init_train_params(), "scenes": cls.valid_scenes, "player_screen_height": 224, "player_screen_width": 224, "headless": False, } if cls.save_talk_reply_probs_path is not None: init_valid_params[ "save_talk_reply_probs_path" ] = cls.save_talk_reply_probs_path return init_valid_params def __init__(self): self._init_train_agent = self.episode_sampler_class( **self.get_init_train_params() ) self._init_test_agent = self.episode_sampler_class( **self.get_init_valid_params() ) @classmethod def create_model(cls, **kwargs) -> nn.Module: return A3CLSTMNStepComCoordinatedActionsEgoGridsEmbedCNN( num_inputs=9, action_groups=cls.episode_class.class_available_action_groups( include_move_obj_actions=cls.include_move_obj_actions ), num_agents=cls.num_agents, state_repr_length=cls.state_repr_length, occupancy_embed_length=8, talk_embed_length=cls.talk_embed_length, agent_num_embed_length=cls.agent_num_embed_length, reply_embed_length=cls.reply_embed_length, turn_off_communication=cls.turn_off_communication, coordinate_actions=cls.coordinate_actions, coordinate_actions_dim=13 if cls.coordinate_actions else None, separate_actor_weights=False, num_talk_symbols=cls.num_talk_symbols, num_reply_symbols=cls.num_reply_symbols, ) @classmethod def create_agent(cls, **kwargs) -> MultiAgent: return cls.agent_class( model=kwargs["model"], gpu_id=kwargs["gpu_id"], include_test_eval_results=cls.include_test_eval_results, use_a3c_loss_when_not_expert_forcing=cls.use_a3c_loss_when_not_expert_forcing, record_all_in_test=cls.record_all_in_test, include_depth_frame=cls.include_depth_frame, discourage_failed_coordination=5000, ) @property def init_train_agent(self) -> Callable: return self._init_train_agent @property def init_test_agent(self) -> Callable: return self._init_test_agent @property def saved_model_path(self) -> Optional[str]: return None def get_experiment(): return FurnMoveExperimentConfig()
cordial-sync-master
rl_multi_agent/experiments/furnmove_grid_mixture_base_config.py
import torch.nn as nn from rl_multi_agent.experiments.furnmove_grid_mixture_3agents_config import ( FurnMove3AgentMixtureExperimentConfig as FurnMoveCoordinatedMultiAgentConfig, ) from rl_multi_agent.models import A3CLSTMCentralEgoGridsEmbedCNN class FurnMove3AgentCentralExperimentConfig(FurnMoveCoordinatedMultiAgentConfig): num_agents = 3 @classmethod def create_model(cls, **kwargs) -> nn.Module: return A3CLSTMCentralEgoGridsEmbedCNN( num_inputs_per_agent=13, action_groups=cls.episode_class.class_available_action_groups( include_move_obj_actions=cls.include_move_obj_actions ), num_agents=cls.num_agents, state_repr_length=cls.state_repr_length, occupancy_embed_length=8, ) def get_experiment(): return FurnMove3AgentCentralExperimentConfig()
cordial-sync-master
rl_multi_agent/experiments/furnmove_grid_central_3agents_config.py
from typing import Optional from torch import nn from rl_multi_agent.experiments.furnmove_grid_bigcentral_base_config import ( FurnMoveExperimentConfig, ) from rl_multi_agent.models import A3CLSTMBigCentralEgoGridsEmbedCNN class FurnMoveBigCentralExperimentConfig(FurnMoveExperimentConfig): @classmethod def create_model(cls, **kwargs) -> nn.Module: return A3CLSTMBigCentralEgoGridsEmbedCNN( num_inputs_per_agent=9, action_groups=cls.episode_class.class_available_action_groups( include_move_obj_actions=cls.include_move_obj_actions ), num_agents=cls.num_agents, state_repr_length=cls.state_repr_length, occupancy_embed_length=8, ) @classmethod def get_init_train_params(cls): init_train_params = FurnMoveExperimentConfig.get_init_train_params() init_train_params["environment_args"] = {"min_steps_between_agents": 2} return init_train_params @property def saved_model_path(self) -> Optional[str]: return None def get_experiment(): return FurnMoveBigCentralExperimentConfig()
cordial-sync-master
rl_multi_agent/experiments/furnmove_grid_bigcentral_cl_rot_config.py
from typing import Optional from rl_multi_agent.agents import MultiAgent from rl_multi_agent.experiments.furnmove_vision_marginal_nocl_rot_config import ( FurnMoveExperimentConfig, ) class FurnMoveVisionMarginalWithCLExperimentConfig(FurnMoveExperimentConfig): @classmethod def create_agent(cls, **kwargs) -> MultiAgent: return cls.agent_class( model=kwargs["model"], gpu_id=kwargs["gpu_id"], include_test_eval_results=cls.include_test_eval_results, use_a3c_loss_when_not_expert_forcing=cls.use_a3c_loss_when_not_expert_forcing, record_all_in_test=cls.record_all_in_test, include_depth_frame=cls.include_depth_frame, resize_image_as=cls.screen_size, discourage_failed_coordination=5000, ) @property def saved_model_path(self) -> Optional[str]: return None def get_experiment(): return FurnMoveVisionMarginalWithCLExperimentConfig()
cordial-sync-master
rl_multi_agent/experiments/furnmove_vision_marginal_cl_rot_config.py
from typing import Optional from torch import nn import constants from rl_multi_agent.experiments.furnmove_grid_bigcentral_base_config import ( FurnMoveExperimentConfig, ) from rl_multi_agent.furnmove_episodes import ( FurnMoveEgocentricNoRotationsFastGridEpisode, ) from rl_multi_agent.models import A3CLSTMBigCentralEgoGridsEmbedCNN class FurnMoveNoRotationsExperimentConfig(FurnMoveExperimentConfig): episode_class = FurnMoveEgocentricNoRotationsFastGridEpisode @classmethod def get_init_train_params(cls): init_train_params = { "scenes": cls.train_scenes, "num_agents": cls.num_agents, "object_type": "Television", "to_object_type": "Dresser", "to_object_silhouette": constants.DRESSER_SILHOUETTE_STRING, "episode_class": cls.episode_class, "player_screen_height": cls.screen_size, "player_screen_width": cls.screen_size, "max_ep_using_expert_actions": cls.max_ep_using_expert_actions, "visible_agents": cls.visible_agents, "include_depth_frame": cls.include_depth_frame, "object_initial_height": 1.3, "headless": cls.headless, "max_distance_from_object": 0.76, "max_episode_length": 500, "environment_args": {"min_steps_between_agents": 2}, "episode_args": { "include_move_obj_actions": cls.include_move_obj_actions, "first_correct_coord_reward": 0.0, "exploration_bonus": 0.0, "failed_action_penalty": -0.02, "step_penalty": -0.01, # "increasing_rotate_penalty": True, "joint_pass_penalty": -0.09, "moved_closer_reward": 1.0, # "moved_closer_reward": 0.50, "min_dist_to_to_object": 0.26, "frame_type": cls.frame_type, "reached_target_reward": 1.0, "return_likely_successfuly_move_actions": cls.return_likely_successfuly_move_actions, "pass_conditioned_coordination": True, }, } return init_train_params @classmethod def create_model(cls, **kwargs) -> nn.Module: return A3CLSTMBigCentralEgoGridsEmbedCNN( num_inputs_per_agent=9, action_groups=cls.episode_class.class_available_action_groups( include_move_obj_actions=cls.include_move_obj_actions ), num_agents=cls.num_agents, state_repr_length=cls.state_repr_length, occupancy_embed_length=8, ) @property def saved_model_path(self) -> Optional[str]: return None def get_experiment(): return FurnMoveNoRotationsExperimentConfig()
cordial-sync-master
rl_multi_agent/experiments/furnmove_grid_bigcentral_cl_norot_config.py
from rl_multi_agent.experiments.furnlift_vision_central_cl_config import ( FurnLiftExperimentConfig, ) class FurnLiftNoimplicitExperimentConfig(FurnLiftExperimentConfig): # Env/episode config visible_agents = False def get_experiment(): return FurnLiftNoimplicitExperimentConfig()
cordial-sync-master
rl_multi_agent/experiments/furnlift_vision_noimplicit_central_cl_config.py
from typing import Optional from torch import nn from rl_multi_agent import MultiAgent from rl_multi_agent.experiments.furnlift_base_config import FurnLiftBaseConfig from rl_multi_agent.models import BigA3CLSTMNStepComCoordinatedActionsEgoVision class FurnLiftMinDistMixtureConfig(FurnLiftBaseConfig): # Env/episode config min_dist_between_agents_to_pickup = 8 visible_agents = True # Model config turn_off_communication = False # Agent config agent_class = MultiAgent # Coordination coordinate_actions = True # Mixture @classmethod def create_model(cls, **kwargs) -> nn.Module: return BigA3CLSTMNStepComCoordinatedActionsEgoVision( num_inputs_per_agent=3 + 1 * (cls.include_depth_frame), action_groups=cls.episode_class.class_available_action_groups(), num_agents=cls.num_agents, state_repr_length=cls.state_repr_length, talk_embed_length=cls.talk_embed_length, agent_num_embed_length=cls.agent_num_embed_length, reply_embed_length=cls.reply_embed_length, num_talk_symbols=cls.num_talk_symbols, num_reply_symbols=cls.num_reply_symbols, turn_off_communication=cls.turn_off_communication, coordinate_actions=cls.coordinate_actions, coordinate_actions_dim=2 if cls.coordinate_actions else None, separate_actor_weights=False, ) @classmethod def create_agent(cls, **kwargs) -> MultiAgent: return cls.agent_class( model=kwargs["model"], gpu_id=kwargs["gpu_id"], include_test_eval_results=cls.include_test_eval_results, use_a3c_loss_when_not_expert_forcing=cls.use_a3c_loss_when_not_expert_forcing, record_all_in_test=cls.record_all_in_test, include_depth_frame=cls.include_depth_frame, resize_image_as=cls.screen_size, dagger_mode=cls.dagger_mode, discourage_failed_coordination=False, coordination_use_marginal_entropy=True, ) @property def saved_model_path(self) -> Optional[str]: return None def get_experiment(): return FurnLiftMinDistMixtureConfig()
cordial-sync-master
rl_multi_agent/experiments/furnlift_vision_mixture_cl_config.py
from typing import Callable, Optional import torch from torch import nn import constants from rl_multi_agent import MultiAgent from rl_multi_agent.experiments.experiment import ExperimentConfig from rl_multi_agent.furnmove_episode_samplers import FurnMoveEpisodeSampler from rl_multi_agent.furnmove_episodes import FurnMoveEgocentricEpisode from rl_multi_agent.models import A3CLSTMNStepComCoordinatedActionsEgoVision class FurnMoveExperimentConfig(ExperimentConfig): """ All scenes + 1.0 reward for getting closer to the target Discrete communication + discourage failed coordination loss """ # Env/episode config num_agents = 2 screen_size = 84 episode_class = FurnMoveEgocentricEpisode frame_type = "image" episode_sampler_class = FurnMoveEpisodeSampler visible_agents = True include_depth_frame = False include_move_obj_actions = True headless = False # Model config state_repr_length = 512 talk_embed_length = 16 reply_embed_length = 16 agent_num_embed_length = 8 num_talk_symbols = 2 num_reply_symbols = 2 coordinate_actions = True # Agent config agent_class = MultiAgent turn_off_communication = False # Training config max_ep_using_expert_actions = 0 train_scenes = constants.TRAIN_SCENE_NAMES[20:40] valid_scenes = constants.VALID_SCENE_NAMES[5:10] use_a3c_loss_when_not_expert_forcing = True # Misc (e.g. visualization) record_all_in_test = False save_talk_reply_probs_path = None include_test_eval_results = not torch.cuda.is_available() return_likely_successfuly_move_actions = False @classmethod def get_init_train_params(cls): init_train_params = { "scenes": cls.train_scenes, "num_agents": cls.num_agents, "object_type": "Television", "to_object_type": "Dresser", "episode_class": cls.episode_class, "player_screen_height": cls.screen_size, "player_screen_width": cls.screen_size, "max_ep_using_expert_actions": cls.max_ep_using_expert_actions, "visible_agents": cls.visible_agents, "include_depth_frame": cls.include_depth_frame, "object_initial_height": 1.3, "headless": cls.headless, "max_distance_from_object": 0.76, "max_episode_length": 500, "episode_args": { "include_move_obj_actions": cls.include_move_obj_actions, "first_correct_coord_reward": 0.0, "exploration_bonus": 0.0, "failed_action_penalty": -0.02, "step_penalty": -0.01, # "increasing_rotate_penalty": True, "joint_pass_penalty": -0.09, "moved_closer_reward": 1.0, # "moved_closer_reward": 0.50, "min_dist_to_to_object": 0.26, "frame_type": cls.frame_type, "reached_target_reward": 1.0, "return_likely_successfuly_move_actions": cls.return_likely_successfuly_move_actions, "pass_conditioned_coordination": True, }, } return init_train_params @classmethod def get_init_valid_params(cls): init_valid_params = { **cls.get_init_train_params(), "scenes": cls.valid_scenes, "player_screen_height": 224, "player_screen_width": 224, "headless": False, } if cls.save_talk_reply_probs_path is not None: init_valid_params[ "save_talk_reply_probs_path" ] = cls.save_talk_reply_probs_path return init_valid_params def __init__(self): self._init_train_agent = self.episode_sampler_class( **self.get_init_train_params() ) self._init_test_agent = self.episode_sampler_class( **self.get_init_valid_params() ) @classmethod def create_model(cls, **kwargs) -> nn.Module: return A3CLSTMNStepComCoordinatedActionsEgoVision( num_inputs_per_agent=3 + 1 * cls.include_depth_frame, action_groups=cls.episode_class.class_available_action_groups( include_move_obj_actions=cls.include_move_obj_actions ), num_agents=cls.num_agents, state_repr_length=cls.state_repr_length, talk_embed_length=cls.talk_embed_length, agent_num_embed_length=cls.agent_num_embed_length, reply_embed_length=cls.reply_embed_length, num_talk_symbols=cls.num_talk_symbols, num_reply_symbols=cls.num_reply_symbols, turn_off_communication=cls.turn_off_communication, coordinate_actions=cls.coordinate_actions, coordinate_actions_dim=2 if cls.coordinate_actions else None, separate_actor_weights=False, ) @classmethod def create_agent(cls, **kwargs) -> MultiAgent: return cls.agent_class( model=kwargs["model"], gpu_id=kwargs["gpu_id"], include_test_eval_results=cls.include_test_eval_results, use_a3c_loss_when_not_expert_forcing=cls.use_a3c_loss_when_not_expert_forcing, record_all_in_test=cls.record_all_in_test, include_depth_frame=cls.include_depth_frame, resize_image_as=cls.screen_size, discourage_failed_coordination=5000, ) @property def init_train_agent(self) -> Callable: return self._init_train_agent @property def init_test_agent(self) -> Callable: return self._init_test_agent @property def saved_model_path(self) -> Optional[str]: # return "trained_models/furnmove_a3c_mixture_ego_vision_ego_actions_v3_490000_2019-10-28_16-43-13.dat" return None def get_experiment(): return FurnMoveExperimentConfig()
cordial-sync-master
rl_multi_agent/experiments/furnmove_vision_mixture2mix_cl_rot_config.py
from typing import Optional from torch import nn from rl_multi_agent.experiments.furnmove_vision_bigcentral_base_config import ( FurnMoveExperimentConfig, ) from rl_multi_agent.models import A3CLSTMBigCentralEgoVision class FurnMoveBigCentralVisionExperimentConfig(FurnMoveExperimentConfig): @classmethod def create_model(cls, **kwargs) -> nn.Module: return A3CLSTMBigCentralEgoVision( num_inputs_per_agent=3 + 1 * cls.include_depth_frame, action_groups=cls.episode_class.class_available_action_groups( include_move_obj_actions=cls.include_move_obj_actions ), num_agents=cls.num_agents, state_repr_length=cls.state_repr_length, ) @property def saved_model_path(self) -> Optional[str]: return None def get_experiment(): return FurnMoveBigCentralVisionExperimentConfig()
cordial-sync-master
rl_multi_agent/experiments/furnmove_vision_bigcentral_cl_rot_config.py
import os from typing import Optional from constants import ABS_PATH_TO_FINAL_FURNLIFT_CKPTS from constants import SPLIT_TO_USE_FOR_EVALUATION from rl_multi_agent.experiments.furnlift_vision_noimplicit_marginalnocomm_nocl_config import ( FurnLiftMinDistUncoordinatedNocommNoimplicitExperimentConfig, ) from rl_multi_agent.furnmove_utils import SaveFurnLiftMixin class EvalConfigNocommVision( SaveFurnLiftMixin, FurnLiftMinDistUncoordinatedNocommNoimplicitExperimentConfig, ): max_ep_using_expert_actions = 0 @property def saved_model_path(cls) -> Optional[str]: return os.path.join( ABS_PATH_TO_FINAL_FURNLIFT_CKPTS, "furnlift_vision_noimplicit_marginalnocomm_nocl_100000_2020-03-03_06-21-49.dat", ) def simple_name(self): return "furnlift__vision_noimplicit_marginalnocomm_nocl" def get_experiment(): ec = EvalConfigNocommVision() ec.episode_init_queue_file_name = "furnlift_episode_start_positions_for_eval__{}.json".format( SPLIT_TO_USE_FOR_EVALUATION ) return ec
cordial-sync-master
rl_multi_agent/furnlift_eval_experiments/furnlift_vision_noimplicit_marginalnocomm_nocl_config.py
cordial-sync-master
rl_multi_agent/furnlift_eval_experiments/__init__.py
import os from typing import Optional from constants import ABS_PATH_TO_FINAL_FURNLIFT_CKPTS from constants import SPLIT_TO_USE_FOR_EVALUATION from rl_multi_agent.experiments.furnlift_vision_marginalnocomm_nocl_config import ( FurnLiftMinDistUncoordinatedNocommExperimentConfig, ) from rl_multi_agent.furnmove_utils import SaveFurnLiftMixin class EvalConfigNocommVision( SaveFurnLiftMixin, FurnLiftMinDistUncoordinatedNocommExperimentConfig, ): max_ep_using_expert_actions = 0 @property def saved_model_path(self) -> Optional[str]: return os.path.join( ABS_PATH_TO_FINAL_FURNLIFT_CKPTS, "furnlift_vision_marginalnocomm_nocl_100000_2020-02-29_01-38-14.dat", ) def simple_name(self): return "furnlift__vision_marginalnocomm_nocl" def get_experiment(): ec = EvalConfigNocommVision() ec.episode_init_queue_file_name = "furnlift_episode_start_positions_for_eval__{}.json".format( SPLIT_TO_USE_FOR_EVALUATION ) return ec
cordial-sync-master
rl_multi_agent/furnlift_eval_experiments/furnlift_vision_marginalnocomm_nocl_config.py
import os from typing import Optional from constants import SPLIT_TO_USE_FOR_EVALUATION, ABS_PATH_TO_FINAL_FURNLIFT_CKPTS from rl_multi_agent.experiments.furnlift_vision_marginal_nocl_config import ( FurnLiftMinDistUncoordinatedExperimentConfig, ) from rl_multi_agent.furnmove_utils import SaveFurnLiftMixin class EvalConfigMarginalVision( SaveFurnLiftMixin, FurnLiftMinDistUncoordinatedExperimentConfig ): max_ep_using_expert_actions = 0 @property def saved_model_path(self) -> Optional[str]: return os.path.join( ABS_PATH_TO_FINAL_FURNLIFT_CKPTS, "furnlift_vision_marginal_nocl_100000_2020-02-28_09-16-44.dat", ) def simple_name(self): return "furnlift__vision_marginal_nocl" def get_experiment(): ec = EvalConfigMarginalVision() ec.episode_init_queue_file_name = "furnlift_episode_start_positions_for_eval__{}.json".format( SPLIT_TO_USE_FOR_EVALUATION ) return ec
cordial-sync-master
rl_multi_agent/furnlift_eval_experiments/furnlift_vision_marginal_nocl.py
import os from typing import Optional from constants import ABS_PATH_TO_FINAL_FURNLIFT_CKPTS from constants import SPLIT_TO_USE_FOR_EVALUATION from rl_multi_agent.experiments.furnlift_vision_noimplicit_mixture_cl_config import ( FurnLiftMinDistNoimplicitMixtureConfig, ) from rl_multi_agent.furnmove_utils import SaveFurnLiftMixin class EvalConfigMixtureVision( SaveFurnLiftMixin, FurnLiftMinDistNoimplicitMixtureConfig ): max_ep_using_expert_actions = 0 @property def saved_model_path(cls) -> Optional[str]: return os.path.join( ABS_PATH_TO_FINAL_FURNLIFT_CKPTS, "furnlift_vision_noimplicit_mixture_cl_100000_2020-03-02_18-34-36.dat", ) def simple_name(self): return "furnlift__vision_noimplicit_mixture_cl" def get_experiment(): ec = EvalConfigMixtureVision() ec.episode_init_queue_file_name = "furnlift_episode_start_positions_for_eval__{}.json".format( SPLIT_TO_USE_FOR_EVALUATION ) return ec
cordial-sync-master
rl_multi_agent/furnlift_eval_experiments/furnlift_vision_noimplicit_mixture_cl_config.py
import os from typing import Optional from constants import ABS_PATH_TO_FINAL_FURNLIFT_CKPTS from constants import SPLIT_TO_USE_FOR_EVALUATION from rl_multi_agent.experiments.furnlift_vision_central_cl_config import ( FurnLiftExperimentConfig, ) from rl_multi_agent.furnmove_utils import SaveFurnLiftMixin class EvalConfigCentralVision(SaveFurnLiftMixin, FurnLiftExperimentConfig): max_ep_using_expert_actions = 0 @property def saved_model_path(self) -> Optional[str]: return os.path.join( ABS_PATH_TO_FINAL_FURNLIFT_CKPTS, "furnlift_vision_central_cl_100000_2020-02-26_00-00-23.dat", ) def simple_name(self): return "furnlift__vision_central_cl" def get_experiment(): ec = EvalConfigCentralVision() ec.episode_init_queue_file_name = "furnlift_episode_start_positions_for_eval__{}.json".format( SPLIT_TO_USE_FOR_EVALUATION ) return ec
cordial-sync-master
rl_multi_agent/furnlift_eval_experiments/furnlift_vision_central_cl_config.py
import os from typing import Optional from constants import ABS_PATH_TO_FINAL_FURNLIFT_CKPTS from constants import SPLIT_TO_USE_FOR_EVALUATION from rl_multi_agent.experiments.furnlift_vision_noimplicit_marginal_nocl_config import ( FurnLiftMinDistUncoordinatedNoimplicitExperimentConfig, ) from rl_multi_agent.furnmove_utils import SaveFurnLiftMixin class EvalConfigMarginalVision( SaveFurnLiftMixin, FurnLiftMinDistUncoordinatedNoimplicitExperimentConfig, ): max_ep_using_expert_actions = 0 @property def saved_model_path(cls) -> Optional[str]: return os.path.join( ABS_PATH_TO_FINAL_FURNLIFT_CKPTS, "furnlift_vision_noimplicit_marginal_nocl_100000_2020-03-03_01-43-25.dat", ) def simple_name(self): return "furnlift__vision_noimplicit_marginal_nocl" def get_experiment(): ec = EvalConfigMarginalVision() ec.episode_init_queue_file_name = "furnlift_episode_start_positions_for_eval__{}.json".format( SPLIT_TO_USE_FOR_EVALUATION ) return ec
cordial-sync-master
rl_multi_agent/furnlift_eval_experiments/furnlift_vision_noimplicit_marginal_nocl_config.py
import os from typing import Optional from constants import ABS_PATH_TO_FINAL_FURNLIFT_CKPTS from constants import SPLIT_TO_USE_FOR_EVALUATION from rl_multi_agent.experiments.furnlift_vision_noimplicit_central_cl_config import ( FurnLiftNoimplicitExperimentConfig, ) from rl_multi_agent.furnmove_utils import SaveFurnLiftMixin class EvalConfigCentralVision(SaveFurnLiftMixin, FurnLiftNoimplicitExperimentConfig): max_ep_using_expert_actions = 0 @property def saved_model_path(cls) -> Optional[str]: return os.path.join( ABS_PATH_TO_FINAL_FURNLIFT_CKPTS, "furnlift_vision_noimplicit_central_cl_100000_2020-03-03_17-54-13.dat", ) def simple_name(self): return "furnlift__vision_noimplicit_central_cl" def get_experiment(): ec = EvalConfigCentralVision() ec.episode_init_queue_file_name = "furnlift_episode_start_positions_for_eval__{}.json".format( SPLIT_TO_USE_FOR_EVALUATION ) return ec
cordial-sync-master
rl_multi_agent/furnlift_eval_experiments/furnlift_vision_noimplicit_central_cl_config.py
import os from typing import Optional from constants import ABS_PATH_TO_FINAL_FURNLIFT_CKPTS from constants import SPLIT_TO_USE_FOR_EVALUATION from rl_multi_agent.experiments.furnlift_vision_mixture_cl_config import ( FurnLiftMinDistMixtureConfig, ) from rl_multi_agent.furnmove_utils import SaveFurnLiftMixin class EvalConfigMixtureVision(SaveFurnLiftMixin, FurnLiftMinDistMixtureConfig): max_ep_using_expert_actions = 0 @property def saved_model_path(self) -> Optional[str]: return os.path.join( ABS_PATH_TO_FINAL_FURNLIFT_CKPTS, "furnlift_vision_mixture_cl_100000_2020-02-29_12-23-05.dat", ) def simple_name(self): return "furnlift__vision_mixture_cl" def get_experiment(): ec = EvalConfigMixtureVision() ec.episode_init_queue_file_name = "furnlift_episode_start_positions_for_eval__{}.json".format( SPLIT_TO_USE_FOR_EVALUATION ) return ec
cordial-sync-master
rl_multi_agent/furnlift_eval_experiments/furnlift_vision_mixture_cl_config.py
""" A script used to generate a fixed dataset of initial starting locations for agents, the TV, and the TV stand. This dataset can then be used to provide a fair comparison between different models trained to complete the FurnMove task. """ import hashlib import itertools import json import os import random import sys import time import traceback import warnings from queue import Empty import numpy as np import torch import torch.multiprocessing as mp from setproctitle import setproctitle as ptitle import constants from constants import ABS_PATH_TO_LOCAL_THOR_BUILD, ABS_PATH_TO_DATA_DIR from rl_ai2thor.ai2thor_environment import AI2ThorEnvironment mp = mp.get_context("spawn") LIFTED_OBJECT_INITIAL_HEIGHT = 1.3 MAX_DISTANCE_FROM_OBJECT = 0.76 CURRENTLY_ON_SERVER = torch.cuda.is_available() def create_environment(num_agents): return AI2ThorEnvironment( x_display="0.0" if CURRENTLY_ON_SERVER else None, local_thor_build=ABS_PATH_TO_LOCAL_THOR_BUILD, restrict_to_initially_reachable_points=True, num_agents=num_agents, ) def try_setting_up_environment(env, scene, lifted_object_type, to_object_type): env.reset(scene) for i in range(env.num_agents): env.teleport_agent_to( **env.last_event.metadata["agent"]["position"], rotation=env.last_event.metadata["agent"]["rotation"]["y"], horizon=30.0, standing=True, force_action=True, agent_id=i, ) failure_reasons = [] scene_successfully_setup = False lifted_object_id = None to_object_id = None for _ in range(20): # Randomly generate agents looking at the TV env.step( { "action": "DisableAllObjectsOfType", "objectId": lifted_object_type, "agentId": 0, } ) sr = env.step( { "action": "RandomlyCreateLiftedFurniture", "objectType": lifted_object_type, "y": LIFTED_OBJECT_INITIAL_HEIGHT, "z": MAX_DISTANCE_FROM_OBJECT, } ) if ( env.last_event.metadata["lastAction"] != "RandomlyCreateLiftedFurniture" or not env.last_event.metadata["lastActionSuccess"] ): failure_reasons.append( "Could not randomize location of {} in {}. Error message {}.".format( lifted_object_type, scene, env.last_event.metadata["errorMessage"] ) ) continue # Refreshing reachable here should not be done as it means the # space underneath the TV would be considered unreachable even though, # once the TV moves, it is. objects_of_type = env.all_objects_with_properties( {"objectType": lifted_object_type}, agent_id=0 ) if len(objects_of_type) != 1: print("len(objects_of_type): {}".format(len(objects_of_type))) raise (Exception("len(objects_of_type) != 1")) object = objects_of_type[0] lifted_object_id = object["objectId"] assert lifted_object_id == sr.metadata["actionReturn"] # Create the object we should navigate to env.step( { "action": "RandomlyCreateAndPlaceObjectOnFloor", "objectType": to_object_type, "agentId": 0, } ) if ( env.last_event.metadata["lastAction"] != "RandomlyCreateAndPlaceObjectOnFloor" or not env.last_event.metadata["lastActionSuccess"] ): failure_reasons.append( "Could not randomize location of {} in {}. Error message: {}.".format( to_object_type, scene, env.last_event.metadata["errorMessage"] ) ) continue to_object_id = env.last_event.metadata["actionReturn"] assert to_object_id is not None and len(to_object_id) != 0 scene_successfully_setup = True break return scene_successfully_setup, lifted_object_id, to_object_id def generate_data( worker_num: int, num_agents: int, lifted_object_type: str, to_object_type: str, in_queue: mp.Queue, out_queue: mp.Queue, ): ptitle("Training Agent: {}".format(worker_num)) try: env = None while not in_queue.empty(): scene, index = in_queue.get(timeout=3) if env is None: env = create_environment(num_agents=num_agents) env.start(scene, player_screen_width=84, player_screen_height=84) seed = ( int(hashlib.md5((scene + "|{}".format(index)).encode()).hexdigest(), 16) % 2 ** 31 ) random.seed(seed) np.random.seed(seed) torch.random.manual_seed(seed) torch.cuda.manual_seed(seed) success, lifted_object_id, to_object_id = try_setting_up_environment( env, scene, lifted_object_type=lifted_object_type, to_object_type=to_object_type, ) if not success: warnings.warn( "Failed to successfully set up environment in scene {} with index {}".format( scene, index ) ) continue lifted_object = env.get_object_by_id(object_id=lifted_object_id, agent_id=0) lifted_object_location = { **lifted_object["position"], "rotation": (round(lifted_object["rotation"]["y"] / 90) % 4) * 90, } to_object = env.get_object_by_id(object_id=to_object_id, agent_id=0) to_object_location = { **to_object["position"], "rotation": (round(to_object["rotation"]["y"] / 90) % 4) * 90, } out_queue.put( { "scene": scene, "index": index, "agent_locations": env.get_agent_locations(), "lifted_object_location": lifted_object_location, "to_object_location": to_object_location, } ) except Exception as _: print("ERROR:") traceback.print_exc(file=sys.stdout) raise e finally: if env is not None: env.stop() print("Process ending.") sys.exit() if __name__ == "__main__": num_agents = 2 num_processes = 16 if CURRENTLY_ON_SERVER else 4 split = "test" if split == "train": scenes = constants.TRAIN_SCENE_NAMES[20:40] repeats_per_scene = 50 elif split == "valid": scenes = constants.VALID_SCENE_NAMES[5:10] repeats_per_scene = 200 elif split == "test": scenes = constants.TEST_SCENE_NAMES[5:10] repeats_per_scene = 200 else: raise NotImplementedError() assert os.path.exists(ABS_PATH_TO_DATA_DIR) save_path = os.path.join( ABS_PATH_TO_DATA_DIR, "furnmove_episode_start_positions_for_eval{}__{}.json".format( "" if num_agents == 2 else "__{}agents".format(num_agents), split ), ) start_positions_data = {} if os.path.exists(save_path): with open(save_path, "r") as f: start_positions_data = json.load(f) def save_data_to_disk(): with open(save_path, "w") as f: json.dump(start_positions_data, f) processes = [] try: remaining_keys = set() send_queue = mp.Queue() recieve_queue = mp.Queue() k = 0 for scene, index in itertools.product(scenes, list(range(repeats_per_scene))): if scene not in start_positions_data: start_positions_data[scene] = {} if str(index) in start_positions_data[scene]: continue remaining_keys.add((scene, index)) send_queue.put((scene, index)) k += 1 if k == 0: print("Already generated all positions for evaluation? Quitting...") sys.exit() print("Starting data generation with {} unique configurations.".format(k)) for worker_num in range(num_processes): p = mp.Process( target=generate_data, kwargs=dict( worker_num=worker_num, num_agents=num_agents, lifted_object_type="Television", to_object_type="Dresser", in_queue=send_queue, out_queue=recieve_queue, ), ) p.start() time.sleep(0.2) processes.append(p) time.sleep(3) while len(remaining_keys) != 0 and ( any([p.is_alive() for p in processes]) or not recieve_queue.empty() ): print("Gathering incoming data...") last_time = time.time() while time.time() - last_time < 60 and len(remaining_keys) != 0: data = recieve_queue.get(timeout=120) scene, index = (data["scene"], data["index"]) del data["scene"], data["index"] start_positions_data[scene][str(index)] = data remaining_keys.remove((scene, index)) print("Saving to disk...") save_data_to_disk() except Empty as _: print( "Outqueue empty for 120 seconds. Assuming everything is done. Writing to disk..." ) save_data_to_disk() except Exception as e: traceback.print_exc(file=sys.stdout) finally: print("Cleaning up main process.\n") print("Joining processes.") for p in processes: p.join(0.1) print("Joined.\n") print("All done.") sys.exit(1)
cordial-sync-master
rl_multi_agent/scripts/generate_furnmove_starting_locations_for_evaluation.py
""" A script used to (randomly) test that our gridworld variant of AI2-THOR (Grid-AI2-THOR) aligns properly with the standard version of AI2-THOR. In particular, this script will randomly initialize agents in Grid-AI2-THOR and AI2-THOR in exactly the same (living-room) scenes and positions and then will take the same (randomly chosen) actions in both environments. This script then verifies that actions in both environments succeed and fail at the same time steps. Currently the number of agents used during this test is fixed at 2. If you wish to change this number, simply edit `num_agents = 2` below. """ import random import numpy as np import torch.multiprocessing as mp from constants import ( ABS_PATH_TO_LOCAL_THOR_BUILD, DRESSER_SILHOUETTE_STRING, SCENES_NAMES_SPLIT_BY_TYPE, ) from rl_ai2thor.ai2thor_gridworld_environment import AI2ThorLiftedObjectGridEnvironment from rl_multi_agent.furnmove_episodes import egocentric_action_groups from rl_multi_agent.scripts.generate_furnmove_starting_locations_for_evaluation import ( create_environment, MAX_DISTANCE_FROM_OBJECT, LIFTED_OBJECT_INITIAL_HEIGHT, try_setting_up_environment, ) mp = mp.get_context("spawn") if __name__ == "__main__": num_agents = 2 vision_env = create_environment(num_agents=num_agents) vision_env.start("FloorPlan1_physics") grid_env = AI2ThorLiftedObjectGridEnvironment( local_thor_build=ABS_PATH_TO_LOCAL_THOR_BUILD, object_type="Television", num_agents=num_agents, max_dist_to_lifted_object=MAX_DISTANCE_FROM_OBJECT, lifted_object_height=LIFTED_OBJECT_INITIAL_HEIGHT, min_steps_between_agents=2, ) grid_env.start("FloorPlan1_physics") dresser_mask = grid_env.controller.parse_template_to_mask(DRESSER_SILHOUETTE_STRING) def to_xzr(loc): if hasattr(loc, "rot"): return np.array([loc.x, loc.z, loc.rot]) elif "position" in loc: return np.array( [loc["position"]["x"], loc["position"]["z"], loc["rotation"]["y"]] ) else: return np.array([loc["x"], loc["z"], loc["rotation"]]) for i in range(1000): print(i) random.seed(i) scene = random.choice(SCENES_NAMES_SPLIT_BY_TYPE[1]) ( success, vision_lifted_object_id, vision_to_object_id, ) = try_setting_up_environment(vision_env, scene, "Television", "Dresser") agent_locations = vision_env.get_agent_locations() lifted_object = vision_env.get_object_by_id(vision_lifted_object_id, 0) to_object = vision_env.get_object_by_id(vision_to_object_id, 0) grid_env.reset(scene) for j, al in enumerate(agent_locations): grid_env.step( { "action": "TeleportFull", "agentId": j, "x": al["x"], "z": al["z"], "rotation": {"y": al["rotation"]}, "allowAgentIntersection": True, } ) assert grid_env.last_event.metadata["lastActionSuccess"] grid_env.step( { "action": "CreateLiftedFurnitureAtLocation", "objectType": "Television", **lifted_object["position"], "rotation": lifted_object["rotation"], "agentId": 0, } ) assert grid_env.last_event.metadata["lastActionSuccess"] grid_env.step( { "action": "CreateAndPlaceObjectOnFloorAtLocation", "objectType": "Dresser", "object_mask": dresser_mask, **to_object["position"], "rotation": to_object["rotation"], "agentId": 0, "forceAction": True, } ) if grid_env.last_event.metadata["lastActionSuccess"]: for _ in range(10): grid_env.controller.viz_world(do_wait=False) action = random.choice(sum(egocentric_action_groups(True), tuple())) agent_id = random.choice([0, 1]) print() vision_object_xzr = to_xzr( vision_env.get_object_by_id(vision_lifted_object_id, agent_id=0) ) gridworld_object_xzr = to_xzr(grid_env.controller.lifted_object) print("TV positions before") print("V", vision_object_xzr.round(2)) print("G", gridworld_object_xzr.round(2)) print("Before agent locs") print("V", [to_xzr(l) for l in vision_env.get_agent_locations()]) print("G", [to_xzr(l) for l in grid_env.get_agent_locations()]) print(action, agent_id) vision_env.step( { "action": action, "objectId": vision_lifted_object_id, "maxAgentsDistance": 0.76, "agentId": agent_id, } ) grid_env.step( { "action": action, "objectId": "Television|1", "maxAgentsDistance": 0.76, "agentId": agent_id, } ) vision_object_xzr = to_xzr( vision_env.get_object_by_id(vision_lifted_object_id, agent_id=0) ) gridworld_object_xzr = to_xzr(grid_env.controller.lifted_object) a = vision_env.last_event.metadata["lastActionSuccess"] b = grid_env.last_event.metadata["lastActionSuccess"] print("action success", a, b) if a != b: print("Different" + "\n" * 3) break if np.abs(vision_object_xzr - gridworld_object_xzr).sum() > 0.01: print("Different tv xzr's") print("V", vision_object_xzr) print("G", gridworld_object_xzr) print("\n" * 5) break different_locs = False for vloc, gloc in zip( vision_env.get_agent_locations(), grid_env.get_agent_locations() ): vloc = to_xzr(vloc) gloc = to_xzr(gloc) if np.abs(vloc - gloc).sum() > 0.01: different_locs = True print("Different agent locs") print(vloc) print(gloc) break if different_locs: continue else: print("Could not place dresser on floor")
cordial-sync-master
rl_multi_agent/scripts/check_equality_gridworld_and_vision_world.py
cordial-sync-master
rl_multi_agent/scripts/__init__.py
""" Script used to download and extract: * `ai2thor_builds` - Our custom AI2-THOR build (necessary for running any experiments), * `data` - Our evaluation data (necessary to reproduce the plots/tables reported in our paper), and * `trained_models` - Our trained model checkpoints. When running ```bash python rl_multi_agent/scripts/download_evaluation_data.py ai2thor_builds ``` this script downloads all of the above. If you'd prefer to only download a single one of the above directories simply specify this on the command line, e.g. ```bash python rl_multi_agent/scripts/download_evaluation_data.py ai2thor_builds ``` will only download the `ai2thor_builds` directory. """ import glob import hashlib import os import platform import shutil import sys from zipfile import ZipFile from constants import PLATFORM, PROJECT_TOP_DIR DIR_TO_DOWNLOAD_ID = { "ai2thor_builds": "1zRbOYb-K07R7Bb1vMBGWdPGqXYY-adMY", "data": "1iz_zV74ZIdZd9UwYDvomKPRgqwpPctEi", "trained_models": "1vLckX20fnImvoxugZd812fKi2JVKwC0Z", } DIR_TO_MD5 = { "ai2thor_builds": "84201a23b87b60771ac16e7814cd28a0", "data": "fbbad25bb7d0494fe9a818e496630522", "trained_models": "b3d4b0208515a0fc59096e2659bb8b19", } DIR_TO_NAME = { "ai2thor_builds": "AI2-THOR builds", "data": "evaluation data", "trained_models": "model checkpoints", } def get_md5_hash(file_name: str): md5_obj = hashlib.md5() with open(file_name, "rb") as f: buf = f.read() md5_obj.update(buf) return md5_obj.hexdigest() if platform.system() == "Linux": DOWNLOAD_TEMPLATE = """wget --quiet --load-cookies /tmp/cookies.txt "https://docs.google.com/uc?export=download&confirm=$(wget --quiet --save-cookies /tmp/cookies.txt --keep-session-cookies --no-check-certificate 'https://docs.google.com/uc?export=download&id={}' -O- | sed -rn 's/.*confirm=([0-9A-Za-z_]+).*/\\1\\n/p')&id={}" -O {}""" elif platform.system() == "Darwin": DOWNLOAD_TEMPLATE = """wget --quiet --load-cookies /tmp/cookies.txt "https://docs.google.com/uc?export=download&confirm=$(wget --quiet --save-cookies /tmp/cookies.txt --keep-session-cookies --no-check-certificate 'https://docs.google.com/uc?export=download&id={}' -O- | gsed -rn 's/.*confirm=([0-9A-Za-z_]+).*/\\1\\n/p')&id={}" -O {}""" else: raise NotImplementedError("{} is not supported".format(PLATFORM)) if __name__ == "__main__": if len(sys.argv) == 1 or sys.argv[1] == "all": print("Beginning process of downloading, unzipping, and moving all data.\n") download_dirs = sorted(list(DIR_TO_DOWNLOAD_ID.keys())) else: download_dirs = [sys.argv[1].lower()] assert ( download_dirs[0] in DIR_TO_DOWNLOAD_ID ), "Do not know how to download {} directory.".format(download_dirs[0]) for rel_download_dir in download_dirs: print("Now populating {} directory.".format(rel_download_dir)) download_id = DIR_TO_DOWNLOAD_ID[rel_download_dir] abs_download_dir = os.path.join(PROJECT_TOP_DIR, rel_download_dir) zip_expected_md5 = DIR_TO_MD5[rel_download_dir] os.makedirs(abs_download_dir, exist_ok=True) tmp_directory = os.path.join("/tmp", download_id) assert os.path.exists("/tmp") os.makedirs(tmp_directory, exist_ok=True) tmp_zip_path = os.path.join(tmp_directory, "to_unzip.zip") tmp_unzip_path = os.path.join(tmp_directory, "unzipped_contents") if ( os.path.exists(tmp_zip_path) and get_md5_hash(tmp_zip_path) == DIR_TO_MD5[rel_download_dir] ): print( "{} already exists and has correct hash, skipping download.".format( tmp_zip_path ) ) else: print( "Downloading archive to temporary directory {}...".format(tmp_zip_path) ) os.system(DOWNLOAD_TEMPLATE.format(download_id, download_id, tmp_zip_path)) print("Downloaded.") if (not os.path.exists(tmp_zip_path)) or get_md5_hash( tmp_zip_path ) != DIR_TO_MD5[rel_download_dir]: print( "Could not download contents of {}, this is likely an error. Skipping...".format( rel_download_dir ) ) continue print("Unzipping to temporary file {}...".format(tmp_unzip_path)) with ZipFile(tmp_zip_path, "r") as zip_file: zip_file.extractall(tmp_unzip_path) print("Unzipped.".format(tmp_unzip_path)) if os.path.exists(os.path.join(tmp_unzip_path, rel_download_dir)): tmp_unzip_path = os.path.join(tmp_unzip_path, rel_download_dir) print("Moving unzipped contents to {}".format(abs_download_dir)) for from_path in glob.glob(os.path.join(tmp_unzip_path, "*")): if "_MACOS" in from_path: continue to_path = os.path.join(abs_download_dir, os.path.basename(from_path)) if os.path.exists(to_path): while True: should_proceed_str = ( input( "\nMoving {} to {} but this will cause {} to be overwritten. " "Overwrite? (y/n)".format(from_path, to_path, to_path) ) .strip() .lower() ) if should_proceed_str in ["yes", "y"]: should_proceed = True break elif should_proceed_str in ["no", "n"]: should_proceed = False break else: print( "Unrecognized input '{}', please try again.".format( should_proceed_str ) ) else: should_proceed = True if not should_proceed: print("Not overwritting {} and continuing.".format(abs_download_dir)) continue print("Moving extracted path {} to {}".format(from_path, to_path)) if os.path.exists(to_path): if os.path.isdir(to_path): shutil.rmtree(to_path) else: os.remove(to_path) shutil.move(from_path, to_path) print("Moving complete!".format(rel_download_dir)) print()
cordial-sync-master
rl_multi_agent/scripts/download_evaluation_data.py
""" A script used to generate a fixed dataset of initial starting locations for agents and the TV. This dataset can then be used to provide a fair comparison between different models trained to complete the FurnLift task. """ import hashlib import itertools import json import os import random import sys import time import traceback from queue import Empty import numpy as np import torch import torch.multiprocessing as mp from setproctitle import setproctitle as ptitle import constants from constants import ABS_PATH_TO_LOCAL_THOR_BUILD, ABS_PATH_TO_DATA_DIR from rl_multi_agent.furnlift_episode_samplers import FurnLiftEpisodeSamplers from rl_multi_agent.furnlift_episodes import FurnLiftNApartStateEpisode from rl_multi_agent.scripts.generate_furnmove_starting_locations_for_evaluation import ( CURRENTLY_ON_SERVER, ) class TmpObject(object): def __init__(self): self.env = None self.task_data = None self.environment = None self.episode = None self.docker_enabled = False self.local_thor_build = ABS_PATH_TO_LOCAL_THOR_BUILD self.x_display = None def fake_episode_class(env, task_data, **kwargs): o = TmpObject() o.task_data = task_data o.env = env return o def try_setting_up_environment( env, fake_agent, scene, target_object_type, num_agents=2, min_dist_between_agents_to_pickup=8, ): init_params = { "scenes": [scene], "num_agents": num_agents, "object_type": target_object_type, "episode_class": FurnLiftNApartStateEpisode, "player_screen_height": 84, "player_screen_width": 84, "min_dist_between_agents_to_pickup": min_dist_between_agents_to_pickup, "max_ep_using_expert_actions": 1000000, "visible_agents": True, "max_visible_positions_push": 0, "min_max_visible_positions_to_consider": (1000, 1000), } episode_sampler = FurnLiftEpisodeSamplers(**init_params) episode_sampler.env_args = TmpObject() next(episode_sampler(agent=fake_agent, env=env)) target_object_id = fake_agent.episode.task_data["goal_obj_id"] return target_object_id def generate_data(worker_num, target_object_type, in_queue, out_queue): ptitle("Training Agent: {}".format(worker_num)) env = None fake_agent = TmpObject() try: while not in_queue.empty(): scene, index = in_queue.get(timeout=3) seed = ( int(hashlib.md5((scene + "|{}".format(index)).encode()).hexdigest(), 16) % 2 ** 31 ) random.seed(seed) np.random.seed(seed) torch.random.manual_seed(seed) if torch.cuda.is_available(): torch.cuda.manual_seed(seed) target_object_id = try_setting_up_environment( env=env, fake_agent=fake_agent, scene=scene, target_object_type=target_object_type, ) env = fake_agent.episode.environment target_object = env.get_object_by_id(object_id=target_object_id, agent_id=0) object_location = { **target_object["position"], "rotation": (round(target_object["rotation"]["y"] / 90) % 4) * 90, } out_queue.put( { "scene": scene, "index": index, "agent_locations": env.get_agent_locations(), "object_location": object_location, } ) except Exception as _: print("ERROR:") traceback.print_exc(file=sys.stdout) raise e finally: if env is not None: env.stop() print("Process ending.") sys.exit() if __name__ == "__main__": split = "test" num_processes = 16 if CURRENTLY_ON_SERVER else 4 if split == "train": scenes = constants.TRAIN_SCENE_NAMES[20:40] repeats_per_scene = 50 elif split == "valid": scenes = constants.VALID_SCENE_NAMES[5:10] repeats_per_scene = 200 elif split == "test": scenes = constants.TEST_SCENE_NAMES[5:10] repeats_per_scene = 200 else: raise NotImplementedError() assert os.path.exists(ABS_PATH_TO_DATA_DIR) save_path = os.path.join( ABS_PATH_TO_DATA_DIR, "furnlift_episode_start_positions_for_eval__{}.json".format(split), ) start_positions_data = {} if os.path.exists(save_path): with open(save_path, "r") as f: start_positions_data = json.load(f) def save_data_to_disk(): with open(save_path, "w") as f: json.dump(start_positions_data, f) processes = [] try: remaining_keys = set() send_queue = mp.Queue() recieve_queue = mp.Queue() k = 0 for scene, index in itertools.product(scenes, list(range(repeats_per_scene))): if scene not in start_positions_data: start_positions_data[scene] = {} if str(index) in start_positions_data[scene]: continue remaining_keys.add((scene, index)) send_queue.put((scene, index)) k += 1 if k == 0: print("Already generated all positions for evaluation? Quitting...") sys.exit() print("Starting data generation with {} unique configurations.".format(k)) for worker_num in range(num_processes): p = mp.Process( target=generate_data, args=(worker_num, "Television", send_queue, recieve_queue), ) p.start() time.sleep(0.2) processes.append(p) time.sleep(3) while len(remaining_keys) != 0 and ( any([p.is_alive() for p in processes]) or not recieve_queue.empty() ): print("Gathering incoming data...") last_time = time.time() while time.time() - last_time < 60 and len(remaining_keys) != 0: data = recieve_queue.get(timeout=120) scene, index = (data["scene"], data["index"]) del data["scene"], data["index"] start_positions_data[scene][str(index)] = data remaining_keys.remove((scene, index)) print("Saving to disk...") save_data_to_disk() except Empty as _: print( "Outqueue empty for 120 seconds. Assuming everything is done. Writing to disk..." ) save_data_to_disk() except Exception as e: traceback.print_exc(file=sys.stdout) finally: print("Cleaning up main process.\n") print("Joining processes.") for p in processes: p.join(0.1) print("Joined.\n") print("All done.") sys.exit(1)
cordial-sync-master
rl_multi_agent/scripts/generate_furnlift_starting_locations_for_evaluation.py
""" A script which extracts the communication information from FurnMove evaluation episodes (using agents trained with SYNC policies and the CORDIAL loss) and saves this information into a TSV file. This TSV file can then be further analyzed (as we have done in our paper) to study _what_ the agents have learned to communicate with one another. By default, this script will also save visualizations of the communication between agents for episodes that are possibly interesting (e.g. not too short and not too long). If you wish turn off this behavior, change `create_communication_visualizations = True` to `create_communication_visualizations = False` below. """ import glob import json import os from collections import defaultdict from typing import Optional import numpy as np import pandas as pd from matplotlib import pyplot as plt from constants import ABS_PATH_TO_ANALYSIS_RESULTS_DIR, ABS_PATH_TO_DATA_DIR def visualize_talk_reply_probs(df: pd.DataFrame, save_path: Optional[str] = None): steps = list(range(df.shape[0])) a0_tv_visible = np.array(df["a0_tv_visible"]) a1_tv_visible = np.array(df["a1_tv_visible"]) a0_action_taken = np.array(df["a0_next_action"]) a1_action_taken = np.array(df["a1_next_action"]) a0_took_pass_action = np.logical_and(a0_action_taken == 3, a1_action_taken < 3) a1_took_pass_action = np.logical_and(a1_action_taken == 3, a0_action_taken < 3) a0_took_mwo_action = np.logical_and(4 <= a0_action_taken, a0_action_taken <= 7) a1_took_mwo_action = np.logical_and(4 <= a1_action_taken, a1_action_taken <= 7) fig, axs = plt.subplots(2, 1, sharex=True, figsize=(3, 3)) fig.subplots_adjust(hspace=0.1) # Plot 1 axs[0].set_ylim((-0.15, 1.15)) axs[0].set_ylabel("Talk Weight") axs[0].plot(steps, df["a00_talk_probs"], color="r", linewidth=0.75) axs[0].plot(steps, df["a10_talk_probs"], color="g", linewidth=0.75) a0_tv_visible_inds = np.argwhere(a0_tv_visible) if len(a0_tv_visible_inds) != 0: axs[0].scatter( a0_tv_visible_inds, [-0.05] * len(a0_tv_visible_inds), color="r", s=4, marker="|", ) a1_tv_visible_inds = np.argwhere(a1_tv_visible) if len(a1_tv_visible_inds) != 0: axs[0].scatter( a1_tv_visible_inds, [-0.1] * len(a1_tv_visible_inds), color="green", s=4, marker="|", ) # Plot 2 axs[1].set_ylim((-0.15, 1.15)) axs[1].set_ylabel("Reply Weight") axs[1].set_xlabel("Steps in Episode") axs[1].plot(steps, df["a00_reply_probs"], color="r", linewidth=0.75) axs[1].plot(steps, df["a10_reply_probs"], color="g", linewidth=0.75) a0_pass_action_steps = np.argwhere(a0_took_pass_action) if len(a0_pass_action_steps) != 0: axs[1].scatter( a0_pass_action_steps, [1.1] * len(a0_pass_action_steps), color="r", s=4, marker="|", ) a1_pass_action_steps = np.argwhere(a1_took_pass_action) if len(a1_pass_action_steps) != 0: axs[1].scatter( a1_pass_action_steps, [1.05] * len(a1_pass_action_steps), color="g", s=4, marker="|", ) a0_mwo_action = np.argwhere(a0_took_mwo_action) if len(a0_mwo_action) != 0: axs[1].scatter( a0_mwo_action, [-0.05] * len(a0_mwo_action), color="r", s=4, marker="|", ) a1_mwo_action = np.argwhere(a1_took_mwo_action) if len(a1_mwo_action) != 0: axs[1].scatter( a1_mwo_action, [-0.1] * len(a1_mwo_action), color="g", s=4, marker="|", ) if save_path is not None: fig.savefig(save_path, bbox_inches="tight") plt.close(fig) else: plt.show() if __name__ == "__main__": create_communication_visualizations = True dir = os.path.join( ABS_PATH_TO_DATA_DIR, "furnmove_evaluations__test/vision_mixture_cl_rot" ) id = dir.split("__")[-2] print() print(id) recorded = defaultdict(lambda: []) for i, p in enumerate(sorted(glob.glob(os.path.join(dir, "*.json")))): if i % 100 == 0: print(i) with open(p, "r") as f: result_dict = json.load(f) recorded["a00_talk_probs"].extend( [probs[0] for probs in result_dict["a0_talk_probs"]] ) recorded["a10_talk_probs"].extend( [probs[0] for probs in result_dict["a1_talk_probs"]] ) recorded["a00_reply_probs"].extend( [probs[0] for probs in result_dict["a0_reply_probs"]] ) recorded["a10_reply_probs"].extend( [probs[0] for probs in result_dict["a1_reply_probs"]] ) ar0, ar1 = result_dict["agent_action_info"] for j, srs in enumerate(result_dict["step_results"]): sr0, sr1 = srs before_loc0 = sr0["before_location"] before_loc1 = sr1["before_location"] recorded["from_a0_to_a1"].append( round((before_loc0["rotation"] - before_loc1["rotation"]) / 90) % 4 ) recorded["from_a1_to_a0"].append((-recorded["from_a0_to_a1"][-1]) % 4) recorded["a0_next_action"].append(sr0["action"]) recorded["a1_next_action"].append(sr1["action"]) recorded["a0_action_success"].append(1 * sr0["action_success"]) recorded["a1_action_success"].append(1 * sr1["action_success"]) if j == 0: recorded["a0_last_action_success"].append(1) recorded["a1_last_action_success"].append(1) else: old0, old1 = result_dict["step_results"][j - 1] recorded["a0_last_action_success"].append(1 * old0["action_success"]) recorded["a1_last_action_success"].append(1 * old1["action_success"]) e0 = sr0["extra_before_info"] e1 = sr1["extra_before_info"] recorded["a0_tv_visible"].append(1 * e0["tv_visible"]) recorded["a1_tv_visible"].append(1 * e1["tv_visible"]) recorded["a0_dresser_visible"].append(1 * e0["dresser_visible"]) recorded["a1_dresser_visible"].append(1 * e1["dresser_visible"]) recorded["index"].extend([i] * len(result_dict["a0_talk_probs"])) recorded = dict(recorded) df = pd.DataFrame(recorded) df.to_csv( os.path.join( ABS_PATH_TO_DATA_DIR, "furnmove_communication_analysis/furnmove_talk_reply_dataset.tsv", ), sep="\t", ) if create_communication_visualizations: print("Creating communication visualizations") k = 0 while True: print(k) k += 1 subdf = df.query("index == {}".format(k)) if 60 < subdf.shape[0] < 80 and subdf.shape[0] != 250: visualize_talk_reply_probs( subdf, save_path=os.path.join( ABS_PATH_TO_ANALYSIS_RESULTS_DIR, "plots/furnmove_communication/{}.pdf", ).format(k), )
cordial-sync-master
rl_multi_agent/scripts/generate_furnmove_communication_dataset.py
""" This script can be used to evaluate the model checkpoints saved in * `PATH/TO/THIS/PROJECT/trained_models/final_furnlift_ckpts` or * `PATH/TO/THIS/PROJECT/trained_models/final_furnmove_ckpts` using the fixed evaluation datasets saved in * `PATH/TO/THIS/PROJECT/data/furnlift_episode_start_positions_for_eval__test.json`, * `PATH/TO/THIS/PROJECT/data/furnmove_episode_start_positions_for_eval__3agents__test.json`, * `PATH/TO/THIS/PROJECT/data/furnmove_episode_start_positions_for_eval__test.json`, or * `PATH/TO/THIS/PROJECT/data/furnmove_episode_start_positions_for_eval__train.json`. The above checkpoints can either be trained and created by you or downloaded by following the directions in the README.md. Likewise, you can download the above json files by following the directions in the README.md or generate new starting evaluation datasets by running `generate_furnlift_starting_locations_for_evaluation.py` and `generate_furnmove_starting_locations_for_evaluation.py` appropriately. Note, do to randomness in generating these evaluation datasets, we DO NOT GUARANTEE that running the above scripts will result in the same `*.json` that we used in our experiments. If you wish to directly compare to our results, please download the above json files. To run this script, run ``` python rl_multi_agent/scripts/generate_furnmove_starting_locations_for_evaluation.py furnmove ``` where you will want to change `furnmove` to `furnlift` if you wish to run the FurnLift evaluations. """ import glob import os import subprocess import sys import time import torch from constants import ABS_PATH_TO_LOCAL_THOR_BUILD, PROJECT_TOP_DIR from utils.misc_util import NonBlockingStreamReader def run(args): thor_build = ABS_PATH_TO_LOCAL_THOR_BUILD thor_build = os.path.abspath(thor_build) split_command = ( ["pipenv", "run", "python"] + args + ["--local_thor_build", thor_build, "--x_display", "0.0"] ) print("Command:\n" + " ".join(split_command)) p = subprocess.Popen( split_command, encoding="utf-8", env={**os.environ, "PYTHONPATH": os.getcwd()}, stdout=subprocess.PIPE, ) nbsr = NonBlockingStreamReader(p.stdout) last_time = time.time() while p.poll() is None: l = nbsr.readline(1) if l: print(l.rstrip(), flush=True) if "All done." in l: p.kill() return time.sleep(0.02) if time.time() - last_time > 60: last_time = time.time() print("PID of process currently running: {}".format(p.pid), flush=True) while True: l = nbsr.readline(1) if l: print(l.rstrip(), flush=True) else: break print(p.stdout.read()) eval_args_string = ( "main.py" " --experiment_dir {eval_experiments_dir}" " --task {task}" " --num_steps 50" " --val_timeout 0" " --enable_val_agent f" " --enable_logging f" " --save_freq 100000" " --seed 1" " --gpu_ids {gpu_ids_string}" " --amsgrad t" " --use_episode_init_queue t" " --save_extra_data t" " --skip_backprop t" " --workers {workers}" " --verbose t" ) if __name__ == "__main__": if len(sys.argv) == 1: eval_experiments_dir = "rl_multi_agent/furnmove_eval_experiments" else: eval_experiments_dir = "rl_multi_agent/{}_eval_experiments".format( sys.argv[1].strip().lower() ) os.chdir(PROJECT_TOP_DIR) gpu_ids_string = ( "-1" if not torch.cuda.is_available() else " ".join([str(i) for i in range(1, 8)]) ) workers = 4 if not torch.cuda.is_available() else 40 results = [] for config_path in sorted( glob.glob(os.path.join(eval_experiments_dir, "/*_config.py")) ): task = os.path.basename(config_path).replace("_config.py", "") try: run( eval_args_string.format( eval_experiments_dir=eval_experiments_dir, task=task, gpu_ids_string=gpu_ids_string, workers=workers, ).split(" ") ) results.append("{} likely success".format(task)) except subprocess.CalledProcessError as cpe: results.append("{} failure".format(task)) print("Summary:") print("\n".join(results))
cordial-sync-master
rl_multi_agent/scripts/run_furnmove_or_furnlift_evaluations.py
import os from typing import Optional from constants import SPLIT_TO_USE_FOR_EVALUATION, ABS_PATH_TO_FINAL_FURNMOVE_CKPTS from rl_multi_agent.experiments.furnmove_grid_marginal_cl_rot_config import ( FurnMoveGridExperimentConfig, ) from rl_multi_agent.furnmove_utils import SaveFurnMoveMixin class EvalConfig(SaveFurnMoveMixin, FurnMoveGridExperimentConfig): @property def saved_model_path(self) -> Optional[str]: return os.path.join( ABS_PATH_TO_FINAL_FURNMOVE_CKPTS, "furnmove_grid_marginal_cl_rot_1000000_2019-11-12_07-58-51.dat", ) def simple_name(self): return "grid_marginal_cl_rot" def get_experiment(): ec = EvalConfig() ec.episode_init_queue_file_name = "furnmove_episode_start_positions_for_eval__{}.json".format( SPLIT_TO_USE_FOR_EVALUATION ) return ec
cordial-sync-master
rl_multi_agent/furnmove_eval_experiments/furnmove_grid_marginal_cl_rot_config.py
import os from typing import Optional from constants import SPLIT_TO_USE_FOR_EVALUATION, ABS_PATH_TO_FINAL_FURNMOVE_CKPTS from rl_multi_agent.experiments.furnmove_vision_central_3agents_config import ( FurnMoveCentralVision3AgentsExperimentConfig, ) from rl_multi_agent.furnmove_utils import SaveFurnMoveMixin class EvalConfig(SaveFurnMoveMixin, FurnMoveCentralVision3AgentsExperimentConfig): @property def saved_model_path(cls) -> Optional[str]: return os.path.join( ABS_PATH_TO_FINAL_FURNMOVE_CKPTS, "furnmove_vision_central_3agents_300000_2020-03-08_21-38-23.dat", ) def simple_name(self): return "vision_central_3agents" def get_experiment(): ec = EvalConfig() ec.episode_init_queue_file_name = "furnmove_episode_start_positions_for_eval__3agents__{}.json".format( SPLIT_TO_USE_FOR_EVALUATION ) return ec
cordial-sync-master
rl_multi_agent/furnmove_eval_experiments/furnmove_vision_central_3agents_config.py
import os from typing import Optional from constants import SPLIT_TO_USE_FOR_EVALUATION, ABS_PATH_TO_FINAL_FURNMOVE_CKPTS from rl_multi_agent.experiments.furnmove_vision_mixture2mix_nocl_rot_config import ( FurnMoveExperimentConfig, ) from rl_multi_agent.furnmove_utils import SaveFurnMoveMixin class EvalConfig(SaveFurnMoveMixin, FurnMoveExperimentConfig): @property def saved_model_path(self) -> Optional[str]: return os.path.join( ABS_PATH_TO_FINAL_FURNMOVE_CKPTS, "furnmove_vision_mixture2mix_nocl_rot_500000_2019-11-19_13-42-40.dat", ) def simple_name(self): return "vision_mixture2mix_nocl_rot" def get_experiment(): ec = EvalConfig() ec.episode_init_queue_file_name = "furnmove_episode_start_positions_for_eval__{}.json".format( SPLIT_TO_USE_FOR_EVALUATION ) return ec
cordial-sync-master
rl_multi_agent/furnmove_eval_experiments/furnmove_vision_mixture2mix_nocl_rot_config.py
import os from typing import Optional from constants import SPLIT_TO_USE_FOR_EVALUATION, ABS_PATH_TO_FINAL_FURNMOVE_CKPTS from rl_multi_agent.experiments.furnmove_grid_marginalnocomm_nocl_norot_config import ( FurnMoveNoCommNoRotationsExperimentConfig, ) from rl_multi_agent.furnmove_utils import SaveFurnMoveMixin class EvalConfig(SaveFurnMoveMixin, FurnMoveNoCommNoRotationsExperimentConfig): @property def saved_model_path(self) -> Optional[str]: return os.path.join( ABS_PATH_TO_FINAL_FURNMOVE_CKPTS, "furnmove_grid_marginalnocomm_nocl_norot_1000000_2020-02-22_05-54-13.dat", ) def simple_name(self): return "grid_marginalnocomm_nocl_norot" def get_experiment(): ec = EvalConfig() ec.episode_init_queue_file_name = "furnmove_episode_start_positions_for_eval__{}.json".format( SPLIT_TO_USE_FOR_EVALUATION ) return ec
cordial-sync-master
rl_multi_agent/furnmove_eval_experiments/furnmove_grid_marginalnocomm_nocl_norot_config.py
import os from typing import Optional from constants import SPLIT_TO_USE_FOR_EVALUATION, ABS_PATH_TO_FINAL_FURNMOVE_CKPTS from rl_multi_agent.experiments.furnmove_vision_mixture_3agents_config import ( FurnMoveMixtureVision3AgentsExperimentConfig, ) from rl_multi_agent.furnmove_utils import SaveFurnMoveMixin class EvalConfig(SaveFurnMoveMixin, FurnMoveMixtureVision3AgentsExperimentConfig): @property def saved_model_path(cls) -> Optional[str]: return os.path.join( ABS_PATH_TO_FINAL_FURNMOVE_CKPTS, "furnmove_vision_mixture_3agents_300000_2020-03-08_14-47-04.dat", ) def simple_name(self): return "vision_mixture_3agents" def get_experiment(): ec = EvalConfig() ec.episode_init_queue_file_name = "furnmove_episode_start_positions_for_eval__3agents__{}.json".format( SPLIT_TO_USE_FOR_EVALUATION ) return ec
cordial-sync-master
rl_multi_agent/furnmove_eval_experiments/furnmove_vision_mixture_3agents_config.py
import os from typing import Optional from constants import SPLIT_TO_USE_FOR_EVALUATION, ABS_PATH_TO_FINAL_FURNMOVE_CKPTS from rl_multi_agent.experiments.furnmove_grid_marginalnocomm_nocl_rot_config import ( FurnMoveGridExperimentConfig, ) from rl_multi_agent.furnmove_utils import SaveFurnMoveMixin class EvalConfig(SaveFurnMoveMixin, FurnMoveGridExperimentConfig): @property def saved_model_path(self) -> Optional[str]: return os.path.join( ABS_PATH_TO_FINAL_FURNMOVE_CKPTS, "furnmove_grid_marginalnocomm_nocl_rot_1000000_2020-02-22_00-40-34.dat", ) def simple_name(self): return "grid_marginalnocomm_nocl_rot" def get_experiment(): ec = EvalConfig() ec.episode_init_queue_file_name = "furnmove_episode_start_positions_for_eval__{}.json".format( SPLIT_TO_USE_FOR_EVALUATION ) return ec
cordial-sync-master
rl_multi_agent/furnmove_eval_experiments/furnmove_grid_marginalnocomm_nocl_rot_config.py
cordial-sync-master
rl_multi_agent/furnmove_eval_experiments/constants.py
cordial-sync-master
rl_multi_agent/furnmove_eval_experiments/__init__.py
import os from typing import Optional from constants import SPLIT_TO_USE_FOR_EVALUATION, ABS_PATH_TO_FINAL_FURNMOVE_CKPTS from rl_multi_agent.experiments.furnmove_grid_bigcentralmixture_cl_rot_config import ( FurnMoveGridExperimentConfig, ) from rl_multi_agent.furnmove_utils import SaveFurnMoveMixin class EvalConfig(SaveFurnMoveMixin, FurnMoveGridExperimentConfig): @property def saved_model_path(self) -> Optional[str]: return os.path.join( ABS_PATH_TO_FINAL_FURNMOVE_CKPTS, "furnmove_grid_bigcentralmixture_cl_rot_1000000_2019-11-20_07-08-15.dat", ) def simple_name(self): return "grid_bigcentralmixture_cl_rot" def get_experiment(): ec = EvalConfig() ec.episode_init_queue_file_name = "furnmove_episode_start_positions_for_eval__{}.json".format( SPLIT_TO_USE_FOR_EVALUATION ) return ec
cordial-sync-master
rl_multi_agent/furnmove_eval_experiments/furnmove_grid_bigcentralmixture_cl_rot_config.py
import os from typing import Optional from constants import SPLIT_TO_USE_FOR_EVALUATION, ABS_PATH_TO_FINAL_FURNMOVE_CKPTS from rl_multi_agent.experiments.furnmove_grid_marginal_3agents_config import ( FurnMove3AgentUncoordinatedExperimentConfig, ) from rl_multi_agent.furnmove_utils import SaveFurnMoveMixin class EvalConfig(SaveFurnMoveMixin, FurnMove3AgentUncoordinatedExperimentConfig): @property def saved_model_path(self) -> Optional[str]: return os.path.join( ABS_PATH_TO_FINAL_FURNMOVE_CKPTS, "furnmove_grid_marginal_3agents_1000000_2020-02-28_00-24-58.dat", ) def simple_name(self): return "grid_marginal_3agents" def get_experiment(): ec = EvalConfig() ec.episode_init_queue_file_name = "furnmove_episode_start_positions_for_eval__3agents__{}.json".format( SPLIT_TO_USE_FOR_EVALUATION ) return ec
cordial-sync-master
rl_multi_agent/furnmove_eval_experiments/furnmove_grid_marginal_3agents_config.py
import os from typing import Optional from constants import SPLIT_TO_USE_FOR_EVALUATION, ABS_PATH_TO_FINAL_FURNMOVE_CKPTS from rl_multi_agent.experiments.furnmove_grid_mixture_cl_norot_config import ( FurnMoveMixtureNoRotationsExperimentConfig, ) from rl_multi_agent.furnmove_utils import SaveFurnMoveMixin class EvalConfig(SaveFurnMoveMixin, FurnMoveMixtureNoRotationsExperimentConfig): @property def saved_model_path(self) -> Optional[str]: return os.path.join( ABS_PATH_TO_FINAL_FURNMOVE_CKPTS, "furnmove_grid_mixture_cl_norot_1000000_2019-11-12_16-24-15.dat", ) def simple_name(self): return "grid_mixture_cl_norot" def get_experiment(): ec = EvalConfig() ec.episode_init_queue_file_name = "furnmove_episode_start_positions_for_eval__{}.json".format( SPLIT_TO_USE_FOR_EVALUATION ) return ec
cordial-sync-master
rl_multi_agent/furnmove_eval_experiments/furnmove_grid_mixture_cl_norot_config.py