python_code
stringlengths 0
187k
| repo_name
stringlengths 8
46
| file_path
stringlengths 6
135
|
---|---|---|
BARTScore-main | SUM/gehrmann_rouge_opennmt/rouge_baselines/__init__.py |
|
from __future__ import print_function, unicode_literals, division
import os
import pdb
import re
import codecs
import platform
from subprocess import check_output
from tempfile import mkdtemp
from functools import partial
try:
from configparser import ConfigParser
except ImportError:
from ConfigParser import ConfigParser
from gehrmann_rouge_opennmt.rouge_baselines.pyrouge.pyrouge.utils import log
from gehrmann_rouge_opennmt.rouge_baselines.pyrouge.pyrouge.utils.file_utils import DirectoryProcessor
from gehrmann_rouge_opennmt.rouge_baselines.pyrouge.pyrouge.utils.file_utils import verify_dir
class Rouge155(object):
"""
This is a wrapper for the ROUGE 1.5.5 summary evaluation package.
This class is designed to simplify the evaluation process by:
1) Converting summaries into a format ROUGE understands.
2) Generating the ROUGE configuration file automatically based
on filename patterns.
This class can be used within Python like this:
rouge = Rouge155()
rouge.system_dir = 'test/systems'
rouge.model_dir = 'test/models'
# The system filename pattern should contain one group that
# matches the document ID.
rouge.system_filename_pattern = 'SL.P.10.R.11.SL062003-(\d+).html'
# The model filename pattern has '#ID#' as a placeholder for the
# document ID. If there are multiple model summaries, pyrouge
# will use the provided regex to automatically match them with
# the corresponding system summary. Here, [A-Z] matches
# multiple model summaries for a given #ID#.
rouge.model_filename_pattern = 'SL.P.10.R.[A-Z].SL062003-#ID#.html'
rouge_output = rouge.evaluate()
print(rouge_output)
output_dict = rouge.output_to_dict(rouge_ouput)
print(output_dict)
-> {'rouge_1_f_score': 0.95652,
'rouge_1_f_score_cb': 0.95652,
'rouge_1_f_score_ce': 0.95652,
'rouge_1_precision': 0.95652,
[...]
To evaluate multiple systems:
rouge = Rouge155()
rouge.system_dir = '/PATH/TO/systems'
rouge.model_dir = 'PATH/TO/models'
for system_id in ['id1', 'id2', 'id3']:
rouge.system_filename_pattern = \
'SL.P/.10.R.{}.SL062003-(\d+).html'.format(system_id)
rouge.model_filename_pattern = \
'SL.P.10.R.[A-Z].SL062003-#ID#.html'
rouge_output = rouge.evaluate(system_id)
print(rouge_output)
"""
def __init__(self, rouge_dir=None, rouge_args=None, log_level=None):
"""
Create a Rouge155 object.
rouge_dir: Directory containing Rouge-1.5.5.pl
rouge_args: Arguments to pass through to ROUGE if you
don't want to use the default pyrouge
arguments.
"""
if log_level is None:
self.log = log.get_global_console_logger()
else:
self.log = log.get_global_console_logger(log_level)
self.__set_dir_properties()
self._config_file = None
self._settings_file = self.__get_config_path()
self.__set_rouge_dir(rouge_dir)
self.args = self.__clean_rouge_args(rouge_args)
self._system_filename_pattern = None
self._model_filename_pattern = None
def save_home_dir(self):
config = ConfigParser()
section = 'pyrouge settings'
config.add_section(section)
config.set(section, 'home_dir', self._home_dir)
with open(self._settings_file, 'w') as f:
config.write(f)
self.log.info("Set ROUGE home directory to {}.".format(self._home_dir))
@property
def settings_file(self):
"""
Path of the setttings file, which stores the ROUGE home dir.
"""
return self._settings_file
@property
def bin_path(self):
"""
The full path of the ROUGE binary (although it's technically
a script), i.e. rouge_home_dir/ROUGE-1.5.5.pl
"""
if self._bin_path is None:
raise Exception(
"ROUGE path not set. Please set the ROUGE home directory "
"and ensure that ROUGE-1.5.5.pl exists in it.")
return self._bin_path
@property
def system_filename_pattern(self):
"""
The regular expression pattern for matching system summary
filenames. The regex string.
E.g. "SL.P.10.R.11.SL062003-(\d+).html" will match the system
filenames in the SPL2003/system folder of the ROUGE SPL example
in the "sample-test" folder.
Currently, there is no support for multiple systems.
"""
return self._system_filename_pattern
@system_filename_pattern.setter
def system_filename_pattern(self, pattern):
self._system_filename_pattern = pattern
@property
def model_filename_pattern(self):
"""
The regular expression pattern for matching model summary
filenames. The pattern needs to contain the string "#ID#",
which is a placeholder for the document ID.
E.g. "SL.P.10.R.[A-Z].SL062003-#ID#.html" will match the model
filenames in the SPL2003/system folder of the ROUGE SPL
example in the "sample-test" folder.
"#ID#" is a placeholder for the document ID which has been
matched by the "(\d+)" part of the system filename pattern.
The different model summaries for a given document ID are
matched by the "[A-Z]" part.
"""
return self._model_filename_pattern
@model_filename_pattern.setter
def model_filename_pattern(self, pattern):
self._model_filename_pattern = pattern
@property
def config_file(self):
return self._config_file
@config_file.setter
def config_file(self, path):
config_dir, _ = os.path.split(path)
verify_dir(config_dir, "configuration file")
self._config_file = path
def split_sentences(self):
"""
ROUGE requires texts split into sentences. In case the texts
are not already split, this method can be used.
"""
from pyrouge.utils.sentence_splitter import PunktSentenceSplitter
self.log.info("Splitting sentences.")
ss = PunktSentenceSplitter()
sent_split_to_string = lambda s: "\n".join(ss.split(s))
process_func = partial(
DirectoryProcessor.process, function=sent_split_to_string)
self.__process_summaries(process_func)
@staticmethod
def convert_summaries_to_rouge_format(input_dir, output_dir):
"""
Convert all files in input_dir into a format ROUGE understands
and saves the files to output_dir. The input files are assumed
to be plain text with one sentence per line.
input_dir: Path of directory containing the input files.
output_dir: Path of directory in which the converted files
will be saved.
"""
DirectoryProcessor.process(
input_dir, output_dir, Rouge155.convert_text_to_rouge_format)
@staticmethod
def convert_text_to_rouge_format(text, title="dummy title"):
"""
Convert a text to a format ROUGE understands. The text is
assumed to contain one sentence per line.
text: The text to convert, containg one sentence per line.
title: Optional title for the text. The title will appear
in the converted file, but doesn't seem to have
any other relevance.
Returns: The converted text as string.
"""
sentences = text.split("\n")
sent_elems = [
"<a name=\"{i}\">[{i}]</a> <a href=\"#{i}\" id={i}>"
"{text}</a>".format(i=i, text=sent)
for i, sent in enumerate(sentences, start=1)]
html = """<html>
<head>
<title>{title}</title>
</head>
<body bgcolor="white">
{elems}
</body>
</html>""".format(title=title, elems="\n".join(sent_elems))
return html
@staticmethod
def write_config_static(system_dir, system_filename_pattern,
model_dir, model_filename_pattern,
config_file_path, system_id=None):
"""
Write the ROUGE configuration file, which is basically a list
of system summary files and their corresponding model summary
files.
pyrouge uses regular expressions to automatically find the
matching model summary files for a given system summary file
(cf. docstrings for system_filename_pattern and
model_filename_pattern).
system_dir: Path of directory containing
system summaries.
system_filename_pattern: Regex string for matching
system summary filenames.
model_dir: Path of directory containing
model summaries.
model_filename_pattern: Regex string for matching model
summary filenames.
config_file_path: Path of the configuration file.
system_id: Optional system ID string which
will appear in the ROUGE output.
"""
system_filenames = [f for f in os.listdir(system_dir)]
system_models_tuples = []
system_filename_pattern = re.compile(system_filename_pattern)
for system_filename in sorted(system_filenames, key=lambda x: int(x.split('.')[0])):
# pdb.set_trace()
match = system_filename_pattern.match(system_filename)
if match:
id = match.groups(0)[0]
model_filenames = Rouge155.__get_model_filenames_for_id(
id, model_dir, model_filename_pattern)
system_models_tuples.append(
(system_filename, sorted(model_filenames)))
if not system_models_tuples:
raise Exception(
"Did not find any files matching the pattern {} "
"in the system summaries directory {}.".format(
system_filename_pattern.pattern, system_dir))
with codecs.open(config_file_path, 'w', encoding='utf-8') as f:
f.write('<ROUGE-EVAL version="1.55">')
for task_id, (system_filename, model_filenames) in enumerate(
system_models_tuples, start=1):
eval_string = Rouge155.__get_eval_string(
task_id, system_id,
system_dir, system_filename,
model_dir, model_filenames)
f.write(eval_string)
f.write("</ROUGE-EVAL>")
def write_config(self, config_file_path=None, system_id=None):
"""
Write the ROUGE configuration file, which is basically a list
of system summary files and their matching model summary files.
This is a non-static version of write_config_file_static().
config_file_path: Path of the configuration file.
system_id: Optional system ID string which will
appear in the ROUGE output.
"""
if not system_id:
system_id = 1
if (not config_file_path) or (not self._config_dir):
self._config_dir = mkdtemp()
config_filename = "rouge_conf.xml"
else:
config_dir, config_filename = os.path.split(config_file_path)
verify_dir(config_dir, "configuration file")
self._config_file = os.path.join(self._config_dir, config_filename)
Rouge155.write_config_static(
self._system_dir, self._system_filename_pattern,
self._model_dir, self._model_filename_pattern,
self._config_file, system_id)
# self.log.info(
# "Written ROUGE configuration to {}".format(self._config_file))
def evaluate(self, system_id=1, rouge_args=None):
"""
Run ROUGE to evaluate the system summaries in system_dir against
the model summaries in model_dir. The summaries are assumed to
be in the one-sentence-per-line HTML format ROUGE understands.
system_id: Optional system ID which will be printed in
ROUGE's output.
Returns: Rouge output as string.
"""
self.write_config(system_id=system_id)
options = self.__get_options(rouge_args)
command = [self._bin_path] + options
env = os.environ.copy()
if hasattr(self, "_home_dir") and self._home_dir:
env['ROUGE_EVAL_HOME'] = self._home_dir
# self.log.info(
# "Running ROUGE with command {}".format(" ".join(command)))
rouge_output = check_output(command, env=env).decode("UTF-8")
return rouge_output
def convert_and_evaluate(self, system_id=1,
split_sentences=False, rouge_args=None):
"""
Convert plain text summaries to ROUGE format and run ROUGE to
evaluate the system summaries in system_dir against the model
summaries in model_dir. Optionally split texts into sentences
in case they aren't already.
This is just a convenience method combining
convert_summaries_to_rouge_format() and evaluate().
split_sentences: Optional argument specifying if
sentences should be split.
system_id: Optional system ID which will be printed
in ROUGE's output.
Returns: ROUGE output as string.
"""
if split_sentences:
self.split_sentences()
self.__write_summaries()
rouge_output = self.evaluate(system_id, rouge_args)
return rouge_output
def output_to_dict(self, output, get_each_score):
"""
Convert the ROUGE output into python dictionary for further
processing.
"""
#0 ROUGE-1 Average_R: 0.02632 (95%-conf.int. 0.02632 - 0.02632)
pattern = re.compile(
r"(\d+) (ROUGE-\S+) (Average_\w): (\d.\d+) "
r"\(95%-conf.int. (\d.\d+) - (\d.\d+)\)")
individual_score_pattern = re.compile(
r"(\d+) (ROUGE-\S+) Eval (\d+).1 R:(\d.\d+) P:(\d.\d+) F:(\d.\d+)"
)
results = {}
if get_each_score:
results['individual_score_results'] = {}
for line in output.split("\n"):
match = pattern.match(line)
if match:
sys_id, rouge_type, measure, result, conf_begin, conf_end = \
match.groups()
measure = {
'Average_R': 'recall',
'Average_P': 'precision',
'Average_F': 'f_score'
}[measure]
rouge_type = rouge_type.lower().replace("-", '_')
key = "{}_{}".format(rouge_type, measure)
results[key] = float(result)
results["{}_cb".format(key)] = float(conf_begin)
results["{}_ce".format(key)] = float(conf_end)
if get_each_score:
individual_score_match = individual_score_pattern.match(line)
if individual_score_match:
sys_id, rouge_type, eval_id, recall, precision, f_score = individual_score_match.groups()
eval_id = int(eval_id)
eval_id = eval_id - 1 # IMPORTANT: pyrouge returns doc_ids starting from 1, we want them to start at 0
rouge_type = rouge_type.lower().replace("-", '_')
if eval_id not in results['individual_score_results'].keys():
results['individual_score_results'][eval_id] = {}
results['individual_score_results'][eval_id][f'{rouge_type}_recall'] = float(recall)
results['individual_score_results'][eval_id][f'{rouge_type}_precision'] = float(precision)
results['individual_score_results'][eval_id][f'{rouge_type}_f_score'] = float(f_score)
return results
###################################################################
# Private methods
def __set_rouge_dir(self, home_dir=None):
"""
Verfify presence of ROUGE-1.5.5.pl and data folder, and set
those paths.
"""
if not home_dir:
self._home_dir = self.__get_rouge_home_dir_from_settings()
else:
self._home_dir = home_dir
self.save_home_dir()
self._bin_path = os.path.join(self._home_dir, 'ROUGE-1.5.5.pl')
self.data_dir = os.path.join(self._home_dir, 'data')
if not os.path.exists(self._bin_path):
raise Exception(
"ROUGE binary not found at {}. Please set the "
"correct path by running pyrouge_set_rouge_path "
"/path/to/rouge/home.".format(self._bin_path))
def __get_rouge_home_dir_from_settings(self):
config = ConfigParser()
with open(self._settings_file) as f:
if hasattr(config, "read_file"):
config.read_file(f)
else:
# use deprecated python 2.x method
config.readfp(f)
rouge_home_dir = config.get('pyrouge settings', 'home_dir')
return rouge_home_dir
@staticmethod
def __get_eval_string(
task_id, system_id,
system_dir, system_filename,
model_dir, model_filenames):
"""
ROUGE can evaluate several system summaries for a given text
against several model summaries, i.e. there is an m-to-n
relation between system and model summaries. The system
summaries are listed in the <PEERS> tag and the model summaries
in the <MODELS> tag. pyrouge currently only supports one system
summary per text, i.e. it assumes a 1-to-n relation between
system and model summaries.
"""
peer_elems = "<P ID=\"{id}\">{name}</P>".format(
id=system_id, name=system_filename)
model_elems = ["<M ID=\"{id}\">{name}</M>".format(
id=chr(65 + i), name=name)
for i, name in enumerate(model_filenames)]
model_elems = "\n\t\t\t".join(model_elems)
eval_string = """
<EVAL ID="{task_id}">
<MODEL-ROOT>{model_root}</MODEL-ROOT>
<PEER-ROOT>{peer_root}</PEER-ROOT>
<INPUT-FORMAT TYPE="SEE">
</INPUT-FORMAT>
<PEERS>
{peer_elems}
</PEERS>
<MODELS>
{model_elems}
</MODELS>
</EVAL>
""".format(
task_id=task_id,
model_root=model_dir, model_elems=model_elems,
peer_root=system_dir, peer_elems=peer_elems)
return eval_string
def __process_summaries(self, process_func):
"""
Helper method that applies process_func to the files in the
system and model folders and saves the resulting files to new
system and model folders.
"""
temp_dir = mkdtemp()
new_system_dir = os.path.join(temp_dir, "system")
os.mkdir(new_system_dir)
new_model_dir = os.path.join(temp_dir, "model")
os.mkdir(new_model_dir)
# self.log.info(
# "Processing summaries. Saving system files to {} and "
# "model files to {}.".format(new_system_dir, new_model_dir))
process_func(self._system_dir, new_system_dir)
process_func(self._model_dir, new_model_dir)
self._system_dir = new_system_dir
self._model_dir = new_model_dir
def __write_summaries(self):
# self.log.info("Writing summaries.")
self.__process_summaries(self.convert_summaries_to_rouge_format)
@staticmethod
def __get_model_filenames_for_id(id, model_dir, model_filenames_pattern):
pattern = re.compile(model_filenames_pattern.replace('#ID#', id))
model_filenames = [
f for f in os.listdir(model_dir) if pattern.match(f)]
if not model_filenames:
raise Exception(
"Could not find any model summaries for the system"
" summary with ID {}. Specified model filename pattern was: "
"{}".format(id, model_filenames_pattern))
return model_filenames
def __get_options(self, rouge_args=None):
"""
Get supplied command line arguments for ROUGE or use default
ones.
"""
if self.args:
options = self.args.split()
elif rouge_args:
options = rouge_args.split()
else:
options = [
'-e', self._data_dir,
'-c', 95,
'-2',
'-1',
'-U',
'-r', 1000,
'-n', 4,
'-w', 1.2,
'-a',
]
options = list(map(str, options))
options = self.__add_config_option(options)
return options
def __create_dir_property(self, dir_name, docstring):
"""
Generate getter and setter for a directory property.
"""
property_name = "{}_dir".format(dir_name)
private_name = "_" + property_name
setattr(self, private_name, None)
def fget(self):
return getattr(self, private_name)
def fset(self, path):
verify_dir(path, dir_name)
setattr(self, private_name, path)
p = property(fget=fget, fset=fset, doc=docstring)
setattr(self.__class__, property_name, p)
def __set_dir_properties(self):
"""
Automatically generate the properties for directories.
"""
directories = [
("home", "The ROUGE home directory."),
("data", "The path of the ROUGE 'data' directory."),
("system", "Path of the directory containing system summaries."),
("model", "Path of the directory containing model summaries."),
]
for (dirname, docstring) in directories:
self.__create_dir_property(dirname, docstring)
def __clean_rouge_args(self, rouge_args):
"""
Remove enclosing quotation marks, if any.
"""
if not rouge_args:
return
quot_mark_pattern = re.compile('"(.+)"')
match = quot_mark_pattern.match(rouge_args)
if match:
cleaned_args = match.group(1)
return cleaned_args
else:
return rouge_args
def __add_config_option(self, options):
return options + ['-m'] + [self._config_file]
def __get_config_path(self):
if platform.system() == "Windows":
parent_dir = os.getenv("APPDATA")
config_dir_name = "pyrouge"
elif os.name == "posix":
parent_dir = os.path.expanduser("~")
config_dir_name = ".pyrouge"
else:
parent_dir = os.path.dirname(__file__)
config_dir_name = ""
config_dir = os.path.join(parent_dir, config_dir_name)
if not os.path.exists(config_dir):
os.makedirs(config_dir)
return os.path.join(config_dir, 'settings.ini')
if __name__ == "__main__":
import argparse
from utils.argparsers import rouge_path_parser
parser = argparse.ArgumentParser(parents=[rouge_path_parser])
args = parser.parse_args()
rouge = Rouge155(args.rouge_home)
rouge.save_home_dir()
| BARTScore-main | SUM/gehrmann_rouge_opennmt/rouge_baselines/Rouge155.py |
# -*- coding: utf-8 -*-
# Copyright 2017 Google Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""ROUGe metric implementation.
This is a modified and slightly extended verison of
https://github.com/miso-belica/sumy/blob/dev/sumy/evaluation/rouge.py.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import itertools
import numpy as np
#pylint: disable=C0103
def _get_ngrams(n, text):
"""Calcualtes n-grams.
Args:
n: which n-grams to calculate
text: An array of tokens
Returns:
A set of n-grams
"""
ngram_set = set()
text_length = len(text)
max_index_ngram_start = text_length - n
for i in range(max_index_ngram_start + 1):
ngram_set.add(tuple(text[i:i + n]))
return ngram_set
def _split_into_words(sentences):
"""Splits multiple sentences into words and flattens the result"""
return list(itertools.chain(*[_.split() for _ in sentences]))
def _get_word_ngrams(n, sentences):
"""Calculates word n-grams for multiple sentences.
"""
assert len(sentences) > 0
assert n > 0
words = _split_into_words(sentences)
return _get_ngrams(n, words)
def _len_lcs(x, y):
"""
Returns the length of the Longest Common Subsequence between sequences x
and y.
Source: http://www.algorithmist.com/index.php/Longest_Common_Subsequence
Args:
x: sequence of words
y: sequence of words
Returns
integer: Length of LCS between x and y
"""
table = _lcs(x, y)
n, m = len(x), len(y)
return table[n, m]
def _lcs(x, y):
"""
Computes the length of the longest common subsequence (lcs) between two
strings. The implementation below uses a DP programming algorithm and runs
in O(nm) time where n = len(x) and m = len(y).
Source: http://www.algorithmist.com/index.php/Longest_Common_Subsequence
Args:
x: collection of words
y: collection of words
Returns:
Table of dictionary of coord and len lcs
"""
n, m = len(x), len(y)
table = dict()
for i in range(n + 1):
for j in range(m + 1):
if i == 0 or j == 0:
table[i, j] = 0
elif x[i - 1] == y[j - 1]:
table[i, j] = table[i - 1, j - 1] + 1
else:
table[i, j] = max(table[i - 1, j], table[i, j - 1])
return table
def _recon_lcs(x, y):
"""
Returns the Longest Subsequence between x and y.
Source: http://www.algorithmist.com/index.php/Longest_Common_Subsequence
Args:
x: sequence of words
y: sequence of words
Returns:
sequence: LCS of x and y
"""
i, j = len(x), len(y)
table = _lcs(x, y)
def _recon(i, j):
"""private recon calculation"""
if i == 0 or j == 0:
return []
elif x[i - 1] == y[j - 1]:
return _recon(i - 1, j - 1) + [(x[i - 1], i)]
elif table[i - 1, j] > table[i, j - 1]:
return _recon(i - 1, j)
else:
return _recon(i, j - 1)
recon_tuple = tuple(map(lambda x: x[0], _recon(i, j)))
return recon_tuple
def rouge_n(evaluated_sentences, reference_sentences, n=2):
"""
Computes ROUGE-N of two text collections of sentences.
Sourece: http://research.microsoft.com/en-us/um/people/cyl/download/
papers/rouge-working-note-v1.3.1.pdf
Args:
evaluated_sentences: The sentences that have been picked by the summarizer
reference_sentences: The sentences from the referene set
n: Size of ngram. Defaults to 2.
Returns:
A tuple (f1, precision, recall) for ROUGE-N
Raises:
ValueError: raises exception if a param has len <= 0
"""
if len(evaluated_sentences) <= 0 or len(reference_sentences) <= 0:
raise ValueError("Collections must contain at least 1 sentence.")
evaluated_ngrams = _get_word_ngrams(n, evaluated_sentences)
reference_ngrams = _get_word_ngrams(n, reference_sentences)
reference_count = len(reference_ngrams)
evaluated_count = len(evaluated_ngrams)
# Gets the overlapping ngrams between evaluated and reference
overlapping_ngrams = evaluated_ngrams.intersection(reference_ngrams)
overlapping_count = len(overlapping_ngrams)
# Handle edge case. This isn't mathematically correct, but it's good enough
if evaluated_count == 0:
precision = 0.0
else:
precision = overlapping_count / evaluated_count
if reference_count == 0:
recall = 0.0
else:
recall = overlapping_count / reference_count
f1_score = 2.0 * ((precision * recall) / (precision + recall + 1e-8))
# return overlapping_count / reference_count
return f1_score, precision, recall
def _f_p_r_lcs(llcs, m, n):
"""
Computes the LCS-based F-measure score
Source: http://research.microsoft.com/en-us/um/people/cyl/download/papers/
rouge-working-note-v1.3.1.pdf
Args:
llcs: Length of LCS
m: number of words in reference summary
n: number of words in candidate summary
Returns:
Float. LCS-based F-measure score
"""
r_lcs = llcs / m
p_lcs = llcs / n
beta = p_lcs / (r_lcs + 1e-12)
num = (1 + (beta**2)) * r_lcs * p_lcs
denom = r_lcs + ((beta**2) * p_lcs)
f_lcs = num / (denom + 1e-12)
return f_lcs, p_lcs, r_lcs
def rouge_l_sentence_level(evaluated_sentences, reference_sentences):
"""
Computes ROUGE-L (sentence level) of two text collections of sentences.
http://research.microsoft.com/en-us/um/people/cyl/download/papers/
rouge-working-note-v1.3.1.pdf
Calculated according to:
R_lcs = LCS(X,Y)/m
P_lcs = LCS(X,Y)/n
F_lcs = ((1 + beta^2)*R_lcs*P_lcs) / (R_lcs + (beta^2) * P_lcs)
where:
X = reference summary
Y = Candidate summary
m = length of reference summary
n = length of candidate summary
Args:
evaluated_sentences: The sentences that have been picked by the summarizer
reference_sentences: The sentences from the referene set
Returns:
A float: F_lcs
Raises:
ValueError: raises exception if a param has len <= 0
"""
if len(evaluated_sentences) <= 0 or len(reference_sentences) <= 0:
raise ValueError("Collections must contain at least 1 sentence.")
reference_words = _split_into_words(reference_sentences)
evaluated_words = _split_into_words(evaluated_sentences)
m = len(reference_words)
n = len(evaluated_words)
lcs = _len_lcs(evaluated_words, reference_words)
return _f_p_r_lcs(lcs, m, n)
def _union_lcs(evaluated_sentences, reference_sentence):
"""
Returns LCS_u(r_i, C) which is the LCS score of the union longest common
subsequence between reference sentence ri and candidate summary C. For example
if r_i= w1 w2 w3 w4 w5, and C contains two sentences: c1 = w1 w2 w6 w7 w8 and
c2 = w1 w3 w8 w9 w5, then the longest common subsequence of r_i and c1 is
“w1 w2” and the longest common subsequence of r_i and c2 is “w1 w3 w5”. The
union longest common subsequence of r_i, c1, and c2 is “w1 w2 w3 w5” and
LCS_u(r_i, C) = 4/5.
Args:
evaluated_sentences: The sentences that have been picked by the summarizer
reference_sentence: One of the sentences in the reference summaries
Returns:
float: LCS_u(r_i, C)
ValueError:
Raises exception if a param has len <= 0
"""
if len(evaluated_sentences) <= 0:
raise ValueError("Collections must contain at least 1 sentence.")
lcs_union = set()
reference_words = _split_into_words([reference_sentence])
combined_lcs_length = 0
for eval_s in evaluated_sentences:
evaluated_words = _split_into_words([eval_s])
lcs = set(_recon_lcs(reference_words, evaluated_words))
combined_lcs_length += len(lcs)
lcs_union = lcs_union.union(lcs)
union_lcs_count = len(lcs_union)
union_lcs_value = union_lcs_count / combined_lcs_length
return union_lcs_value
def rouge_l_summary_level(evaluated_sentences, reference_sentences):
"""
Computes ROUGE-L (summary level) of two text collections of sentences.
http://research.microsoft.com/en-us/um/people/cyl/download/papers/
rouge-working-note-v1.3.1.pdf
Calculated according to:
R_lcs = SUM(1, u)[LCS<union>(r_i,C)]/m
P_lcs = SUM(1, u)[LCS<union>(r_i,C)]/n
F_lcs = ((1 + beta^2)*R_lcs*P_lcs) / (R_lcs + (beta^2) * P_lcs)
where:
SUM(i,u) = SUM from i through u
u = number of sentences in reference summary
C = Candidate summary made up of v sentences
m = number of words in reference summary
n = number of words in candidate summary
Args:
evaluated_sentences: The sentences that have been picked by the summarizer
reference_sentence: One of the sentences in the reference summaries
Returns:
A float: F_lcs
Raises:
ValueError: raises exception if a param has len <= 0
"""
if len(evaluated_sentences) <= 0 or len(reference_sentences) <= 0:
raise ValueError("Collections must contain at least 1 sentence.")
# total number of words in reference sentences
m = len(_split_into_words(reference_sentences))
# total number of words in evaluated sentences
n = len(_split_into_words(evaluated_sentences))
union_lcs_sum_across_all_references = 0
for ref_s in reference_sentences:
union_lcs_sum_across_all_references += _union_lcs(evaluated_sentences,
ref_s)
return _f_p_r_lcs(union_lcs_sum_across_all_references, m, n)
def rouge(hypotheses, references):
"""Calculates average rouge scores for a list of hypotheses and
references"""
# Filter out hyps that are of 0 length
# hyps_and_refs = zip(hypotheses, references)
# hyps_and_refs = [_ for _ in hyps_and_refs if len(_[0]) > 0]
# hypotheses, references = zip(*hyps_and_refs)
# Calculate ROUGE-1 F1, precision, recall scores
rouge_1 = [
rouge_n(hyp, ref, 1) for hyp, ref in zip(hypotheses, references)
]
rouge_1_f, rouge_1_p, rouge_1_r = map(np.mean, zip(*rouge_1))
# Calculate ROUGE-2 F1, precision, recall scores
rouge_2 = [
rouge_n(hyp, ref, 2) for hyp, ref in zip(hypotheses, references)
]
rouge_2_f, rouge_2_p, rouge_2_r = map(np.mean, zip(*rouge_2))
# Calculate ROUGE-L F1, precision, recall scores
rouge_l = [
rouge_l_sentence_level(hyp, ref)
for hyp, ref in zip(hypotheses, references)
]
rouge_l_f, rouge_l_p, rouge_l_r = map(np.mean, zip(*rouge_l))
return {
"rouge_1/f_score": rouge_1_f,
"rouge_1/r_score": rouge_1_r,
"rouge_1/p_score": rouge_1_p,
"rouge_2/f_score": rouge_2_f,
"rouge_2/r_score": rouge_2_r,
"rouge_2/p_score": rouge_2_p,
"rouge_l/f_score": rouge_l_f,
"rouge_l/r_score": rouge_l_r,
"rouge_l/p_score": rouge_l_p,
}
if __name__ == '__main__':
from baseline import split_sentences
article = r'''<s> marseille prosecutor says `` so far no videos were used in the crash investigation '' despite media reports . </s> <s> journalists at bild and paris match are `` very confident '' the video clip is real , an editor says . </s> <s> andreas lubitz had informed his lufthansa training school of an episode of severe depression , airline says . </s>'''
sents = split_sentences(article)
print(sents)
print(rouge([sents], [sents]))
| BARTScore-main | SUM/gehrmann_rouge_opennmt/rouge_baselines/g_rouge.py |
BARTScore-main | SUM/gehrmann_rouge_opennmt/rouge_baselines/pyrouge/__init__.py |
|
from setuptools import setup
import os
from pyrouge.utils.file_utils import list_files
data_files = list_files('pyrouge/tests/data')
data_files = [p.replace('pyrouge/tests/', '') for p in data_files]
script_files = [os.path.join('bin', s) for s in os.listdir('bin')]
setup(
name='pyrouge',
version='0.1.3',
author='Benjamin Heinzerling, Anders Johannsen',
author_email='[email protected]',
packages=['pyrouge', 'pyrouge.utils', 'pyrouge.tests'],
scripts=script_files,
#test_suite='pyrouge.test.suite',
package_data={'pyrouge.tests': data_files},
url='https://github.com/noutenki/pyrouge',
license='LICENSE.txt',
description='A Python wrapper for the ROUGE summarization evaluation'
' package.',
classifiers=[
'Intended Audience :: Science/Research',
'License :: OSI Approved :: MIT License',
'Operating System :: OS Independent',
'Programming Language :: Python',
'Programming Language :: Python :: 2.7',
'Programming Language :: Python :: 3',
'Topic :: Text Processing :: Linguistic'],
long_description=open('README.rst').read(),
)
| BARTScore-main | SUM/gehrmann_rouge_opennmt/rouge_baselines/pyrouge/setup.py |
BARTScore-main | SUM/gehrmann_rouge_opennmt/rouge_baselines/pyrouge/bin/__init__.py |
|
# from pyrouge.Rouge155 import Rouge155
| BARTScore-main | SUM/gehrmann_rouge_opennmt/rouge_baselines/pyrouge/pyrouge/__init__.py |
import unittest
from pyrouge.tests.Rouge155_test import PyrougeTest
loader = unittest.TestLoader()
suite = unittest.TestSuite()
suite.addTest(loader.loadTestsFromTestCase(PyrougeTest))
unittest.TextTestRunner().run(suite)
| BARTScore-main | SUM/gehrmann_rouge_opennmt/rouge_baselines/pyrouge/pyrouge/test.py |
from __future__ import print_function, unicode_literals, division
import os
import re
import codecs
import platform
from subprocess import check_output
from tempfile import mkdtemp
from functools import partial
try:
from configparser import ConfigParser
except ImportError:
from ConfigParser import ConfigParser
from pyrouge.utils import log
from pyrouge.utils.file_utils import DirectoryProcessor
from pyrouge.utils.file_utils import verify_dir
class Rouge155(object):
"""
This is a wrapper for the ROUGE 1.5.5 summary evaluation package.
This class is designed to simplify the evaluation process by:
1) Converting summaries into a format ROUGE understands.
2) Generating the ROUGE configuration file automatically based
on filename patterns.
This class can be used within Python like this:
rouge = Rouge155()
rouge.system_dir = 'test/systems'
rouge.model_dir = 'test/models'
# The system filename pattern should contain one group that
# matches the document ID.
rouge.system_filename_pattern = 'SL.P.10.R.11.SL062003-(\d+).html'
# The model filename pattern has '#ID#' as a placeholder for the
# document ID. If there are multiple model summaries, pyrouge
# will use the provided regex to automatically match them with
# the corresponding system summary. Here, [A-Z] matches
# multiple model summaries for a given #ID#.
rouge.model_filename_pattern = 'SL.P.10.R.[A-Z].SL062003-#ID#.html'
rouge_output = rouge.evaluate()
print(rouge_output)
output_dict = rouge.output_to_dict(rouge_ouput)
print(output_dict)
-> {'rouge_1_f_score': 0.95652,
'rouge_1_f_score_cb': 0.95652,
'rouge_1_f_score_ce': 0.95652,
'rouge_1_precision': 0.95652,
[...]
To evaluate multiple systems:
rouge = Rouge155()
rouge.system_dir = '/PATH/TO/systems'
rouge.model_dir = 'PATH/TO/models'
for system_id in ['id1', 'id2', 'id3']:
rouge.system_filename_pattern = \
'SL.P/.10.R.{}.SL062003-(\d+).html'.format(system_id)
rouge.model_filename_pattern = \
'SL.P.10.R.[A-Z].SL062003-#ID#.html'
rouge_output = rouge.evaluate(system_id)
print(rouge_output)
"""
def __init__(self, rouge_dir=None, rouge_args=None, log_level=None):
"""
Create a Rouge155 object.
rouge_dir: Directory containing Rouge-1.5.5.pl
rouge_args: Arguments to pass through to ROUGE if you
don't want to use the default pyrouge
arguments.
"""
if log_level is None:
self.log = log.get_global_console_logger()
else:
self.log = log.get_global_console_logger(log_level)
self.__set_dir_properties()
self._config_file = None
self._settings_file = self.__get_config_path()
self.__set_rouge_dir(rouge_dir)
self.args = self.__clean_rouge_args(rouge_args)
self._system_filename_pattern = None
self._model_filename_pattern = None
def save_home_dir(self):
config = ConfigParser()
section = 'pyrouge settings'
config.add_section(section)
config.set(section, 'home_dir', self._home_dir)
with open(self._settings_file, 'w') as f:
config.write(f)
self.log.info("Set ROUGE home directory to {}.".format(self._home_dir))
@property
def settings_file(self):
"""
Path of the setttings file, which stores the ROUGE home dir.
"""
return self._settings_file
@property
def bin_path(self):
"""
The full path of the ROUGE binary (although it's technically
a script), i.e. rouge_home_dir/ROUGE-1.5.5.pl
"""
if self._bin_path is None:
raise Exception(
"ROUGE path not set. Please set the ROUGE home directory "
"and ensure that ROUGE-1.5.5.pl exists in it.")
return self._bin_path
@property
def system_filename_pattern(self):
"""
The regular expression pattern for matching system summary
filenames. The regex string.
E.g. "SL.P.10.R.11.SL062003-(\d+).html" will match the system
filenames in the SPL2003/system folder of the ROUGE SPL example
in the "sample-test" folder.
Currently, there is no support for multiple systems.
"""
return self._system_filename_pattern
@system_filename_pattern.setter
def system_filename_pattern(self, pattern):
self._system_filename_pattern = pattern
@property
def model_filename_pattern(self):
"""
The regular expression pattern for matching model summary
filenames. The pattern needs to contain the string "#ID#",
which is a placeholder for the document ID.
E.g. "SL.P.10.R.[A-Z].SL062003-#ID#.html" will match the model
filenames in the SPL2003/system folder of the ROUGE SPL
example in the "sample-test" folder.
"#ID#" is a placeholder for the document ID which has been
matched by the "(\d+)" part of the system filename pattern.
The different model summaries for a given document ID are
matched by the "[A-Z]" part.
"""
return self._model_filename_pattern
@model_filename_pattern.setter
def model_filename_pattern(self, pattern):
self._model_filename_pattern = pattern
@property
def config_file(self):
return self._config_file
@config_file.setter
def config_file(self, path):
config_dir, _ = os.path.split(path)
verify_dir(config_dir, "configuration file")
self._config_file = path
def split_sentences(self):
"""
ROUGE requires texts split into sentences. In case the texts
are not already split, this method can be used.
"""
from pyrouge.utils.sentence_splitter import PunktSentenceSplitter
self.log.info("Splitting sentences.")
ss = PunktSentenceSplitter()
sent_split_to_string = lambda s: "\n".join(ss.split(s))
process_func = partial(
DirectoryProcessor.process, function=sent_split_to_string)
self.__process_summaries(process_func)
@staticmethod
def convert_summaries_to_rouge_format(input_dir, output_dir):
"""
Convert all files in input_dir into a format ROUGE understands
and saves the files to output_dir. The input files are assumed
to be plain text with one sentence per line.
input_dir: Path of directory containing the input files.
output_dir: Path of directory in which the converted files
will be saved.
"""
DirectoryProcessor.process(
input_dir, output_dir, Rouge155.convert_text_to_rouge_format)
@staticmethod
def convert_text_to_rouge_format(text, title="dummy title"):
"""
Convert a text to a format ROUGE understands. The text is
assumed to contain one sentence per line.
text: The text to convert, containg one sentence per line.
title: Optional title for the text. The title will appear
in the converted file, but doesn't seem to have
any other relevance.
Returns: The converted text as string.
"""
sentences = text.split("\n")
sent_elems = [
"<a name=\"{i}\">[{i}]</a> <a href=\"#{i}\" id={i}>"
"{text}</a>".format(i=i, text=sent)
for i, sent in enumerate(sentences, start=1)]
html = """<html>
<head>
<title>{title}</title>
</head>
<body bgcolor="white">
{elems}
</body>
</html>""".format(title=title, elems="\n".join(sent_elems))
return html
@staticmethod
def write_config_static(system_dir, system_filename_pattern,
model_dir, model_filename_pattern,
config_file_path, system_id=None):
"""
Write the ROUGE configuration file, which is basically a list
of system summary files and their corresponding model summary
files.
pyrouge uses regular expressions to automatically find the
matching model summary files for a given system summary file
(cf. docstrings for system_filename_pattern and
model_filename_pattern).
system_dir: Path of directory containing
system summaries.
system_filename_pattern: Regex string for matching
system summary filenames.
model_dir: Path of directory containing
model summaries.
model_filename_pattern: Regex string for matching model
summary filenames.
config_file_path: Path of the configuration file.
system_id: Optional system ID string which
will appear in the ROUGE output.
"""
system_filenames = [f for f in os.listdir(system_dir)]
system_models_tuples = []
system_filename_pattern = re.compile(system_filename_pattern)
for system_filename in sorted(system_filenames):
match = system_filename_pattern.match(system_filename)
if match:
id = match.groups(0)[0]
model_filenames = Rouge155.__get_model_filenames_for_id(
id, model_dir, model_filename_pattern)
system_models_tuples.append(
(system_filename, sorted(model_filenames)))
if not system_models_tuples:
raise Exception(
"Did not find any files matching the pattern {} "
"in the system summaries directory {}.".format(
system_filename_pattern.pattern, system_dir))
with codecs.open(config_file_path, 'w', encoding='utf-8') as f:
f.write('<ROUGE-EVAL version="1.55">')
for task_id, (system_filename, model_filenames) in enumerate(
system_models_tuples, start=1):
eval_string = Rouge155.__get_eval_string(
task_id, system_id,
system_dir, system_filename,
model_dir, model_filenames)
f.write(eval_string)
f.write("</ROUGE-EVAL>")
def write_config(self, config_file_path=None, system_id=None):
"""
Write the ROUGE configuration file, which is basically a list
of system summary files and their matching model summary files.
This is a non-static version of write_config_file_static().
config_file_path: Path of the configuration file.
system_id: Optional system ID string which will
appear in the ROUGE output.
"""
if not system_id:
system_id = 1
if (not config_file_path) or (not self._config_dir):
self._config_dir = mkdtemp()
config_filename = "rouge_conf.xml"
else:
config_dir, config_filename = os.path.split(config_file_path)
verify_dir(config_dir, "configuration file")
self._config_file = os.path.join(self._config_dir, config_filename)
Rouge155.write_config_static(
self._system_dir, self._system_filename_pattern,
self._model_dir, self._model_filename_pattern,
self._config_file, system_id)
self.log.info(
"Written ROUGE configuration to {}".format(self._config_file))
def evaluate(self, system_id=1, rouge_args=None):
"""
Run ROUGE to evaluate the system summaries in system_dir against
the model summaries in model_dir. The summaries are assumed to
be in the one-sentence-per-line HTML format ROUGE understands.
system_id: Optional system ID which will be printed in
ROUGE's output.
Returns: Rouge output as string.
"""
self.write_config(system_id=system_id)
options = self.__get_options(rouge_args)
command = [self._bin_path] + options
self.log.info(
"Running ROUGE with command {}".format(" ".join(command)))
rouge_output = check_output(command).decode("UTF-8")
return rouge_output
def convert_and_evaluate(self, system_id=1,
split_sentences=False, rouge_args=None):
"""
Convert plain text summaries to ROUGE format and run ROUGE to
evaluate the system summaries in system_dir against the model
summaries in model_dir. Optionally split texts into sentences
in case they aren't already.
This is just a convenience method combining
convert_summaries_to_rouge_format() and evaluate().
split_sentences: Optional argument specifying if
sentences should be split.
system_id: Optional system ID which will be printed
in ROUGE's output.
Returns: ROUGE output as string.
"""
if split_sentences:
self.split_sentences()
self.__write_summaries()
rouge_output = self.evaluate(system_id, rouge_args)
# return rouge_output
return "" #Pgour DEBUG
def output_to_dict(self, output):
"""
Convert the ROUGE output into python dictionary for further
processing.
"""
#0 ROUGE-1 Average_R: 0.02632 (95%-conf.int. 0.02632 - 0.02632)
pattern = re.compile(
r"(\d+) (ROUGE-\S+) (Average_\w): (\d.\d+) "
r"\(95%-conf.int. (\d.\d+) - (\d.\d+)\)")
results = {}
for line in output.split("\n"):
match = pattern.match(line)
if match:
sys_id, rouge_type, measure, result, conf_begin, conf_end = \
match.groups()
measure = {
'Average_R': 'recall',
'Average_P': 'precision',
'Average_F': 'f_score'
}[measure]
rouge_type = rouge_type.lower().replace("-", '_')
key = "{}_{}".format(rouge_type, measure)
results[key] = float(result)
results["{}_cb".format(key)] = float(conf_begin)
results["{}_ce".format(key)] = float(conf_end)
return results
###################################################################
# Private methods
def __set_rouge_dir(self, home_dir=None):
"""
Verfify presence of ROUGE-1.5.5.pl and data folder, and set
those paths.
"""
if not home_dir:
self._home_dir = self.__get_rouge_home_dir_from_settings()
else:
self._home_dir = home_dir
self.save_home_dir()
self._bin_path = os.path.join(self._home_dir, 'ROUGE-1.5.5.pl')
self.data_dir = os.path.join(self._home_dir, 'data')
if not os.path.exists(self._bin_path):
raise Exception(
"ROUGE binary not found at {}. Please set the "
"correct path by running pyrouge_set_rouge_path "
"/path/to/rouge/home.".format(self._bin_path))
def __get_rouge_home_dir_from_settings(self):
config = ConfigParser()
with open(self._settings_file) as f:
if hasattr(config, "read_file"):
config.read_file(f)
else:
# use deprecated python 2.x method
config.readfp(f)
rouge_home_dir = config.get('pyrouge settings', 'home_dir')
return rouge_home_dir
@staticmethod
def __get_eval_string(
task_id, system_id,
system_dir, system_filename,
model_dir, model_filenames):
"""
ROUGE can evaluate several system summaries for a given text
against several model summaries, i.e. there is an m-to-n
relation between system and model summaries. The system
summaries are listed in the <PEERS> tag and the model summaries
in the <MODELS> tag. pyrouge currently only supports one system
summary per text, i.e. it assumes a 1-to-n relation between
system and model summaries.
"""
peer_elems = "<P ID=\"{id}\">{name}</P>".format(
id=system_id, name=system_filename)
model_elems = ["<M ID=\"{id}\">{name}</M>".format(
id=chr(65 + i), name=name)
for i, name in enumerate(model_filenames)]
model_elems = "\n\t\t\t".join(model_elems)
eval_string = """
<EVAL ID="{task_id}">
<MODEL-ROOT>{model_root}</MODEL-ROOT>
<PEER-ROOT>{peer_root}</PEER-ROOT>
<INPUT-FORMAT TYPE="SEE">
</INPUT-FORMAT>
<PEERS>
{peer_elems}
</PEERS>
<MODELS>
{model_elems}
</MODELS>
</EVAL>
""".format(
task_id=task_id,
model_root=model_dir, model_elems=model_elems,
peer_root=system_dir, peer_elems=peer_elems)
return eval_string
def __process_summaries(self, process_func):
"""
Helper method that applies process_func to the files in the
system and model folders and saves the resulting files to new
system and model folders.
"""
temp_dir = mkdtemp()
new_system_dir = os.path.join(temp_dir, "system")
os.mkdir(new_system_dir)
new_model_dir = os.path.join(temp_dir, "model")
os.mkdir(new_model_dir)
self.log.info(
"Processing summaries. Saving system files to {} and "
"model files to {}.".format(new_system_dir, new_model_dir))
process_func(self._system_dir, new_system_dir)
process_func(self._model_dir, new_model_dir)
self._system_dir = new_system_dir
self._model_dir = new_model_dir
def __write_summaries(self):
self.log.info("Writing summaries.")
self.__process_summaries(self.convert_summaries_to_rouge_format)
@staticmethod
def __get_model_filenames_for_id(id, model_dir, model_filenames_pattern):
pattern = re.compile(model_filenames_pattern.replace('#ID#', id))
model_filenames = [
f for f in os.listdir(model_dir) if pattern.match(f)]
if not model_filenames:
raise Exception(
"Could not find any model summaries for the system"
" summary with ID {}. Specified model filename pattern was: "
"{}".format(id, model_filenames_pattern))
return model_filenames
def __get_options(self, rouge_args=None):
"""
Get supplied command line arguments for ROUGE or use default
ones.
"""
if self.args:
options = self.args.split()
elif rouge_args:
options = rouge_args.split()
else:
options = [
'-m',
'-c', 95,
'-2',
'-1',
'-U',
'-r', 1000,
'-n', 4,
'-w', 1.2,
'-a',
]
options = list(map(str, options))
options = self.__add_config_option(options)
return options
def __create_dir_property(self, dir_name, docstring):
"""
Generate getter and setter for a directory property.
"""
property_name = "{}_dir".format(dir_name)
private_name = "_" + property_name
setattr(self, private_name, None)
def fget(self):
return getattr(self, private_name)
def fset(self, path):
verify_dir(path, dir_name)
setattr(self, private_name, path)
p = property(fget=fget, fset=fset, doc=docstring)
setattr(self.__class__, property_name, p)
def __set_dir_properties(self):
"""
Automatically generate the properties for directories.
"""
directories = [
("home", "The ROUGE home directory."),
("data", "The path of the ROUGE 'data' directory."),
("system", "Path of the directory containing system summaries."),
("model", "Path of the directory containing model summaries."),
]
for (dirname, docstring) in directories:
self.__create_dir_property(dirname, docstring)
def __clean_rouge_args(self, rouge_args):
"""
Remove enclosing quotation marks, if any.
"""
if not rouge_args:
return
quot_mark_pattern = re.compile('"(.+)"')
match = quot_mark_pattern.match(rouge_args)
if match:
cleaned_args = match.group(1)
return cleaned_args
else:
return rouge_args
def __add_config_option(self, options):
return options + ['-e', self._data_dir] + [self._config_file]
def __get_config_path(self):
if platform.system() == "Windows":
parent_dir = os.getenv("APPDATA")
config_dir_name = "pyrouge"
elif os.name == "posix":
parent_dir = os.path.expanduser("~")
config_dir_name = ".pyrouge"
else:
parent_dir = os.path.dirname(__file__)
config_dir_name = ""
config_dir = os.path.join(parent_dir, config_dir_name)
if not os.path.exists(config_dir):
os.makedirs(config_dir)
return os.path.join(config_dir, 'settings.ini')
if __name__ == "__main__":
import argparse
from utils.argparsers import rouge_path_parser
parser = argparse.ArgumentParser(parents=[rouge_path_parser])
args = parser.parse_args()
rouge = Rouge155(args.rouge_home)
rouge.save_home_dir()
| BARTScore-main | SUM/gehrmann_rouge_opennmt/rouge_baselines/pyrouge/pyrouge/Rouge155.py |
from __future__ import print_function, unicode_literals, division
import unittest
import os
import re
from subprocess import check_output
from tempfile import mkdtemp
from pyrouge import Rouge155
from pyrouge.utils.file_utils import str_from_file, xml_equal
module_path = os.path.dirname(__file__)
os.chdir(module_path)
add_data_path = lambda p: os.path.join('data', p)
check_output_clean = lambda c: check_output(c).decode("UTF-8").strip()
class PyrougeTest(unittest.TestCase):
def test_paths(self):
rouge = Rouge155()
def get_home_from_settings():
with open(rouge.settings_file) as f:
for line in f.readlines():
if line.startswith("home_dir"):
rouge_home = line.split("=")[1].strip()
return rouge_home
self.assertEqual(rouge.home_dir, get_home_from_settings())
self.assertTrue(os.path.exists(rouge.bin_path))
self.assertTrue(os.path.exists(rouge.data_dir))
wrong_path = "/nonexisting/path/rewafafkljaerearjafankwe3"
with self.assertRaises(Exception) as context:
rouge.system_dir = wrong_path
self.assertEqual(
str(context.exception),
"Cannot set {} directory because the path {} does not "
"exist.".format("system", wrong_path))
right_path = add_data_path("systems")
rouge.system_dir = right_path
self.assertEqual(rouge.system_dir, right_path)
with self.assertRaises(Exception) as context:
rouge.model_dir = wrong_path
self.assertEqual(
str(context.exception),
"Cannot set {} directory because the path {} does not "
"exist.".format("model", wrong_path))
right_path = add_data_path("models")
rouge.model_dir = right_path
self.assertEqual(rouge.model_dir, right_path)
def test_wrong_system_pattern(self):
wrong_regexp = "adfdas454fd"
rouge = Rouge155()
rouge.system_dir = add_data_path("systems")
rouge.model_dir = add_data_path("models")
#rouge.system_filename_pattern = "SL.P.10.R.11.SL062003-(\d+).html"
rouge.system_filename_pattern = wrong_regexp
rouge.model_filename_pattern = "SL.P.10.R.[A-D].SL062003-#ID#.html"
with self.assertRaises(Exception) as context:
rouge.evaluate()
self.assertEqual(
str(context.exception),
"Did not find any files matching the pattern {} in the system "
"summaries directory {}.".format(wrong_regexp, rouge.system_dir))
def test_wrong_model_pattern(self):
rouge = Rouge155()
rouge.system_dir = add_data_path("systems")
rouge.model_dir = add_data_path("models_plain")
rouge.system_filename_pattern = "SL.P.10.R.11.SL062003-(\d+).html"
rouge.model_filename_pattern = "SL.P.10.R.[A-D].SL062003-#ID#.html"
with self.assertRaises(Exception) as context:
rouge.evaluate()
match_string = (
r"Could not find any model summaries for the system "
r"summary with ID " + "(\d+)" + r". Specified model filename "
r"pattern was: " + re.escape(rouge.model_filename_pattern))
try:
assert_regex = self.assertRegex
except AttributeError:
assert_regex = self.assertRegexpMatches
assert_regex(str(context.exception), re.compile(match_string))
def test_text_conversion(self):
rouge = Rouge155()
text = str_from_file(add_data_path("spl_test_doc"))
html = rouge.convert_text_to_rouge_format(text, "D00000.M.100.A.C")
target = str_from_file(add_data_path("spl_test_doc.html"))
self.assertEqual(html, target)
# only run this test if BeautifulSoup is installed
try:
from bs4 import BeautifulSoup
def test_get_plain_text(self):
input_dir = add_data_path("SL2003_models_rouge_format")
output_dir = mkdtemp()
target_dir = add_data_path("SL2003_models_plain_text")
command = (
"pyrouge_convert_rouge_format_to_plain_text "
"-i {} -o {}".format(input_dir, output_dir))
check_output(command.split())
filenames = os.listdir(input_dir)
for filename in filenames:
output_file = os.path.join(output_dir, filename)
output = str_from_file(output_file)
target_file = os.path.join(target_dir, filename)
target = str_from_file(target_file)
self.assertEqual(output, target)
except ImportError:
pass
def test_convert_summaries(self):
input_dir = add_data_path("SL2003_models_plain_text")
output_dir = mkdtemp()
target_dir = add_data_path("SL2003_models_rouge_format")
command = (
"pyrouge_convert_plain_text_to_rouge_format -i {} -o {}".format(
input_dir, output_dir))
check_output(command.split())
filenames = os.listdir(input_dir)
for filename in filenames:
output_file = os.path.join(output_dir, filename)
output = str_from_file(output_file)
target_file = os.path.join(target_dir, filename)
target = str_from_file(target_file)
filename = filename.replace(".html", "")
target = target.replace(filename, "dummy title")
self.assertEqual(output, target, filename)
def test_config_file(self):
rouge = Rouge155()
rouge.system_dir = add_data_path("systems")
rouge.model_dir = add_data_path("models")
rouge.system_filename_pattern = "SL.P.10.R.11.SL062003-(\d+).html"
rouge.model_filename_pattern = "SL.P.10.R.[A-D].SL062003-#ID#.html"
rouge.config_file = add_data_path("config_test.xml")
rouge.write_config(system_id=11)
self.assertTrue(xml_equal(
rouge.config_file,
add_data_path("ROUGE-test_11.xml")))
os.remove(rouge.config_file)
def test_evaluation(self):
rouge = Rouge155()
rouge.system_dir = add_data_path("systems")
rouge.model_dir = add_data_path("models")
rouge.system_filename_pattern = "SL.P.10.R.11.SL062003-(\d+).html"
rouge.model_filename_pattern = "SL.P.10.R.[A-D].SL062003-#ID#.html"
pyrouge_output = rouge.evaluate(system_id=11).strip()
rouge_command = (
"{bin} -e {data} -c 95 -2 -1 -U -r 1000 -n 4 -w 1.2 "
"-a -m {xml}".format(
bin=rouge.bin_path,
data=rouge.data_dir,
xml=add_data_path("ROUGE-test_11.xml")))
orig_rouge_output = check_output_clean(rouge_command.split())
self.assertEqual(pyrouge_output, orig_rouge_output)
def test_rouge_for_plain_text(self):
model_dir = add_data_path("models_plain")
system_dir = add_data_path("systems_plain")
pyrouge_command = (
"pyrouge_evaluate_plain_text_files -m {} -s {} -sfp "
"D(\d+).M.100.T.A -mfp D#ID#.M.100.T.[A-Z] -id 1".format(
model_dir, system_dir))
pyrouge_output = check_output_clean(pyrouge_command.split())
rouge = Rouge155()
config_file = add_data_path("config_test2.xml")
rouge_command = (
"{bin} -e {data} -c 95 -2 -1 -U -r 1000 -n 4 -w 1.2 "
"-a -m {xml}".format(
bin=rouge.bin_path,
data=rouge.data_dir,
xml=config_file))
orig_rouge_output = check_output_clean(rouge_command.split())
self.assertEqual(pyrouge_output, orig_rouge_output)
def test_write_config(self):
system_dir = add_data_path("systems")
model_dir = add_data_path("models")
system_filename_pattern = "SL.P.10.R.11.SL062003-(\d+).html"
model_filename_pattern = "SL.P.10.R.[A-D].SL062003-#ID#.html"
config_file = os.path.join(mkdtemp(), "config_test.xml")
command = (
"pyrouge_write_config_file -m {m} -s {s} "
"-mfp {mfp} -sfp {sfp} -c {c}".format(
m=model_dir, s=system_dir,
mfp=model_filename_pattern, sfp=system_filename_pattern,
c=config_file))
check_output(command.split())
target_xml = add_data_path("config_test.xml")
print(config_file, target_xml)
self.assertTrue(xml_equal(config_file, target_xml))
def test_options(self):
rouge = Rouge155()
model_dir = add_data_path("models_plain")
system_dir = add_data_path("systems_plain")
config_file = add_data_path("config_test2.xml")
command_part1 = (
"pyrouge_evaluate_plain_text_files -m {} -s {} -sfp "
"D(\d+).M.100.T.A -mfp D#ID#.M.100.T.[A-Z] -id 1 -rargs".format(
model_dir, system_dir))
command_part2 = [
"\"-e {data} -c 90 -2 -1 -U -r 1000 -n 2 -w 1.2 "
"-a -m {xml}\"".format(
data=rouge.data_dir, xml=config_file)]
pyrouge_command = command_part1.split() + command_part2
pyrouge_output = check_output_clean(pyrouge_command)
rouge_command = (
"{bin} -e {data} -c 90 -2 -1 -U -r 1000 -n 2 -w 1.2 "
"-a -m {xml}".format(
bin=rouge.bin_path, data=rouge.data_dir, xml=config_file))
orig_rouge_output = check_output_clean(rouge_command.split())
self.assertEqual(pyrouge_output, orig_rouge_output)
def main():
unittest.main()
if __name__ == "__main__":
main()
| BARTScore-main | SUM/gehrmann_rouge_opennmt/rouge_baselines/pyrouge/pyrouge/tests/Rouge155_test.py |
BARTScore-main | SUM/gehrmann_rouge_opennmt/rouge_baselines/pyrouge/pyrouge/tests/__init__.py |
|
import unittest
import pyrouge.test
from pyrouge.test.Rouge155_test import PyrougeTest
loader = unittest.TestLoader()
suite = unittest.TestSuite()
suite.addTest(loader.loadTestsFromTestCase(PyrougeTest))
unittest.TextTestRunner().run(suite)
| BARTScore-main | SUM/gehrmann_rouge_opennmt/rouge_baselines/pyrouge/pyrouge/tests/__main__.py |
from __future__ import print_function, unicode_literals, division
from pyrouge.utils import log
from pyrouge.utils.string_utils import cleanup
from pyrouge.utils.file_utils import DirectoryProcessor
class PunktSentenceSplitter:
"""
Splits sentences using the NLTK Punkt sentence tokenizer. If installed,
PunktSentenceSplitter can use the default NLTK data for English, otherwise
custom trained data has to be provided.
"""
def __init__(self, language="en", punkt_data_path=None):
self.lang2datapath = {"en": "tokenizers/punkt/english.pickle"}
self.log = log.get_global_console_logger()
try:
import nltk.data
except ImportError:
self.log.error(
"Cannot import NLTK data for the sentence splitter. Please "
"check if the 'punkt' NLTK-package is installed correctly.")
try:
if not punkt_data_path:
punkt_data_path = self.lang2datapath[language]
self.sent_detector = nltk.data.load(punkt_data_path)
except KeyError:
self.log.error(
"No sentence splitter data for language {}.".format(language))
except:
self.log.error(
"Could not load sentence splitter data: {}".format(
self.lang2datapath[language]))
def split(self, text):
"""Splits text and returns a list of the resulting sentences."""
text = cleanup(text)
return self.sent_detector.tokenize(text.strip())
@staticmethod
def split_files(input_dir, output_dir, lang="en", punkt_data_path=None):
ss = PunktSentenceSplitter(lang, punkt_data_path)
DirectoryProcessor.process(input_dir, output_dir, ss.split)
if __name__ == '__main__':
text = "Punkt knows that the periods in Mr. Smith and Johann S. Bach do "
"not mark sentence boundaries. And sometimes sentences can start with "
"non-capitalized words. i is a good variable name."
ss = PunktSentenceSplitter()
print(ss.split(text))
| BARTScore-main | SUM/gehrmann_rouge_opennmt/rouge_baselines/pyrouge/pyrouge/utils/sentence_splitter.py |
import logging
def get_console_logger(name, level=logging.INFO):
logFormatter = logging.Formatter(
"%(asctime)s [%(threadName)-12.12s] [%(levelname)-5.5s] %(message)s")
logger = logging.getLogger(name)
if not logger.handlers:
logger.setLevel(level)
ch = logging.StreamHandler()
ch.setFormatter(logFormatter)
logger.addHandler(ch)
return logger
def get_global_console_logger(level=logging.INFO):
return get_console_logger('global', level)
| BARTScore-main | SUM/gehrmann_rouge_opennmt/rouge_baselines/pyrouge/pyrouge/utils/log.py |
BARTScore-main | SUM/gehrmann_rouge_opennmt/rouge_baselines/pyrouge/pyrouge/utils/__init__.py |
|
import argparse
io_parser = argparse.ArgumentParser(add_help=False)
io_parser.add_argument(
'-i', '--input-files-dir',
help="Path of the directory containing the files to be converted.",
type=str, action="store", dest="input_dir",
required=True
)
io_parser.add_argument(
'-o', '--output-files-dir',
help="Path of the directory in which the converted files will be saved.",
type=str, action="store", dest="output_dir",
required=True
)
ss_parser = argparse.ArgumentParser(add_help=False)
ss_parser.add_argument(
'-ss', '--split-sentences',
help="ROUGE assumes one sentence per line as default summary format. Use "
"this flag to split sentences using NLTK if the summary texts have "
"another format.",
action="store_true", dest="split_sents"
)
rouge_path_parser = argparse.ArgumentParser(add_help=False)
rouge_path_parser.add_argument(
'-hd', '--home-dir',
help="Path of the directory containing ROUGE-1.5.5.pl.",
type=str, action="store", dest="rouge_home",
required=True
)
model_sys_parser = argparse.ArgumentParser(add_help=False)
model_sys_parser.add_argument(
'-mfp', '--model-fn-pattern',
help="Regexp matching model filenames.",
type=str, action="store", dest="model_filename_pattern",
required=True
)
model_sys_parser.add_argument(
'-sfp', '--system-fn-pattern',
help="Regexp matching system filenames.",
type=str, action="store", dest="system_filename_pattern",
required=True
)
model_sys_parser.add_argument(
'-m', '--model-dir',
help="Path of the directory containing model summaries.",
type=str, action="store", dest="model_dir",
required=True
)
model_sys_parser.add_argument(
'-s', '--system-dir',
help="Path of the directory containing system summaries.",
type=str, action="store", dest="system_dir",
required=True
)
model_sys_parser.add_argument(
'-id', '--system-id',
help="Optional system ID. This is useful when comparing several systems.",
action="store", dest="system_id"
)
config_parser = argparse.ArgumentParser(add_help=False)
config_parser.add_argument(
'-c', '--config-file-path',
help="Path of configfile to be written, including file name.",
type=str, action="store", dest="config_file_path",
required=True
)
main_parser = argparse.ArgumentParser(
parents=[model_sys_parser], add_help=False)
main_parser.add_argument(
'-hd', '--home-dir',
help="Path of the directory containing ROUGE-1.5.5.pl.",
type=str, action="store", dest="rouge_home",
)
main_parser.add_argument(
'-rargs', '--rouge-args',
help="Override pyrouge default ROUGE command line options with the "
"ROUGE_ARGS string, enclosed in qoutation marks.",
type=str, action="store", dest="rouge_args"
)
| BARTScore-main | SUM/gehrmann_rouge_opennmt/rouge_baselines/pyrouge/pyrouge/utils/argparsers.py |
from __future__ import print_function, unicode_literals, division
import re
def remove_newlines(s):
p = re.compile("[\n|\r\n|\n\r]")
s = re.sub(p, " ", s)
s = remove_extraneous_whitespace(s)
return s
def remove_extraneous_whitespace(s):
p = re.compile("(\s+)")
s = re.sub(p, " ", s)
return s
def cleanup(s):
return remove_newlines(s)
| BARTScore-main | SUM/gehrmann_rouge_opennmt/rouge_baselines/pyrouge/pyrouge/utils/string_utils.py |
from __future__ import print_function, unicode_literals, division
import os
import re
import codecs
import logging
import xml.etree.ElementTree as et
from gehrmann_rouge_opennmt.rouge_baselines.pyrouge.pyrouge.utils import log
class DirectoryProcessor:
@staticmethod
def process(input_dir, output_dir, function):
"""
Apply function to all files in input_dir and save the resulting ouput
files in output_dir.
"""
if not os.path.exists(output_dir):
os.makedirs(output_dir)
logger = log.get_global_console_logger(level=logging.INFO)
# logger.info("Processing files in {}.".format(input_dir))
input_file_names = os.listdir(input_dir)
for input_file_name in input_file_names:
# logger.info("Processing {}.".format(input_file_name))
input_file = os.path.join(input_dir, input_file_name)
with codecs.open(input_file, "r", encoding="UTF-8") as f:
input_string = f.read()
output_string = function(input_string)
output_file = os.path.join(output_dir, input_file_name)
with codecs.open(output_file, "w", encoding="UTF-8") as f:
f.write(output_string)
# logger.info("Saved processed files to {}.".format(output_dir))
def str_from_file(path):
"""
Return file contents as string.
"""
with open(path) as f:
s = f.read().strip()
return s
def xml_equal(xml_file1, xml_file2):
"""
Parse xml and convert to a canonical string representation so we don't
have to worry about semantically meaningless differences
"""
def canonical(xml_file):
# poor man's canonicalization, since we don't want to install
# external packages just for unittesting
s = et.tostring(et.parse(xml_file).getroot()).decode("UTF-8")
s = re.sub("[\n|\t]*", "", s)
s = re.sub("\s+", " ", s)
s = "".join(sorted(s)).strip()
return s
return canonical(xml_file1) == canonical(xml_file2)
def list_files(dir_path, recursive=True):
"""
Return a list of files in dir_path.
"""
for root, dirs, files in os.walk(dir_path):
file_list = [os.path.join(root, f) for f in files]
if recursive:
for dir in dirs:
dir = os.path.join(root, dir)
file_list.extend(list_files(dir, recursive=True))
return file_list
def verify_dir(path, name=None):
if name:
name_str = "Cannot set {} directory because t".format(name)
else:
name_str = "T"
msg = "{}he path {} does not exist.".format(name_str, path)
if not os.path.exists(path):
raise Exception(msg)
| BARTScore-main | SUM/gehrmann_rouge_opennmt/rouge_baselines/pyrouge/pyrouge/utils/file_utils.py |
import math
import os
from args import pretrain_args
import nltk
from accelerate import Accelerator
from datasets import load_dataset
from torch.utils.data.dataloader import DataLoader
from tqdm.auto import tqdm
from transformers import (
AdamW,
DataCollatorForSeq2Seq,
get_scheduler,
set_seed,
)
import time
from transformers import BartTokenizer, BartForConditionalGeneration
class BART:
def __init__(self, checkpoint='facebook/bart-large-cnn'):
self.model = BartForConditionalGeneration.from_pretrained(checkpoint)
self.tokenizer = BartTokenizer.from_pretrained(checkpoint)
self.criterion = None
def pretrain(self, args):
"""
args.seed
args.datapath
args.max_source_length
args.max_target_length
args.ignore_pad_token_for_loss
"""
# Initialize the accelerator. We will let the accelerator handle device placement for us
# in this example
accelerator = Accelerator()
set_seed(args.seed)
data_files = {
'train': args.train_file,
'validation': args.validation_file
}
extension = args.train_file.split('.')[-1]
raw_datasets = load_dataset(extension,
data_files=data_files)
# Preprocessing the datasets
# First we tokenize all the texts
column_names = raw_datasets['train'].column_names
text_column, summary_column = column_names[0], column_names[1]
# Temporarily set max_target_length for training
padding = False
def preprocess_function(examples):
inputs = examples[text_column]
targets = examples[summary_column]
inputs = [inp for inp in inputs]
model_inputs = self.tokenizer(inputs, max_length=args.max_source_length, padding=padding, truncation=True)
# Setup the tokenizer for targets
with self.tokenizer.as_target_tokenizer():
labels = self.tokenizer(targets, max_length=args.max_target_length, padding=padding, truncation=True)
# If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore
# padding in the loss.
if padding == "max_length" and args.ignore_pad_token_for_loss:
labels["input_ids"] = [
[(l if l != self.tokenizer.pad_token_id else -100) for l in label] for label in labels["input_ids"]
]
model_inputs["labels"] = labels["input_ids"]
return model_inputs
processed_datasets = raw_datasets.map(
preprocess_function, batched=True, remove_columns=column_names,
load_from_cache_file=True
)
train_dataset = processed_datasets["train"]
eval_dataset = processed_datasets["validation"]
label_pad_token_id = -100 if args.ignore_pad_token_for_loss else self.tokenizer.pad_token_id
data_collator = DataCollatorForSeq2Seq(
self.tokenizer,
model=self.model,
label_pad_token_id=label_pad_token_id,
pad_to_multiple_of=8 if accelerator.use_fp16 else None,
)
train_dataloader = DataLoader(
train_dataset, shuffle=True, collate_fn=data_collator, batch_size=args.per_device_train_batch_size
)
eval_dataloader = DataLoader(eval_dataset, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size)
# Optimizer
# Split weights in two groups, one with weight decay and the other not.
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": args.weight_decay,
},
{
"params": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay)],
"weight_decay": 0.0,
},
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate)
# Prepare everything with our `accelerator`.
model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare(
self.model, optimizer, train_dataloader, eval_dataloader
)
# Note -> the training dataloader needs to be prepared before we grab his length below (cause its length will be
# shorter in multiprocess)
# Scheduler and math around the number of training steps.
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
else:
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
lr_scheduler = get_scheduler(
name=args.lr_scheduler_type,
optimizer=optimizer,
num_warmup_steps=args.num_warmup_steps,
num_training_steps=args.max_train_steps,
)
total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
print("***** Running training *****")
print(f" Num examples = {len(train_dataset)}")
print(f" Num Epochs = {args.num_train_epochs}")
print(f" Instantaneous batch size per device = {args.per_device_train_batch_size}")
print(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
print(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
print(f" Total optimization steps = {args.max_train_steps}")
# Only show the progress bar once on each machine.
progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process)
completed_steps = 0
for epoch in range(args.num_train_epochs):
model.train()
for step, batch in enumerate(train_dataloader):
outputs = model(**batch)
loss = outputs.loss
loss = loss / args.gradient_accumulation_steps
accelerator.backward(loss)
if step % args.gradient_accumulation_steps == 0 or step == len(train_dataloader) - 1:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
progress_bar.update(1)
completed_steps += 1
if args.save_every > 0:
if completed_steps % args.save_every == 0:
out_dir = f'{args.output_dir}/{completed_steps}'
os.makedirs(out_dir, exist_ok=True)
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
unwrapped_model.save_pretrained(out_dir, save_function=accelerator.save)
if completed_steps >= args.max_train_steps:
break
if args.output_dir is not None:
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
unwrapped_model.save_pretrained(args.output_dir, save_function=accelerator.save)
if __name__ == '__main__':
bart = BART()
args = pretrain_args()
bart.pretrain(args)
| BARTScore-main | train/bart.py |
import argparse
import os
from transformers import SchedulerType
def pretrain_args():
parser = argparse.ArgumentParser(description="Finetune a transformers model on a Seq2Seq task")
parser.add_argument(
"--train_file", type=str, default='data/parabank2.json', help="A csv or a json file containing the training data."
)
parser.add_argument(
"--validation_file", type=str, default='data/eval.json', help="A csv or a json file containing the validation data."
)
parser.add_argument(
"--ignore_pad_token_for_loss",
type=bool,
default=True,
help="Whether to ignore the tokens corresponding to " "padded labels in the loss computation or not.",
)
parser.add_argument(
"--max_source_length",
type=int,
default=1024,
help="The maximum total input sequence length after "
"tokenization.Sequences longer than this will be truncated, sequences shorter will be padded.",
)
parser.add_argument(
"--preprocessing_num_workers",
type=int,
default=None,
help="The number of processes to use for the preprocessing.",
)
parser.add_argument(
"--overwrite_cache", type=bool, default=False, help="Overwrite the cached training and evaluation sets"
)
parser.add_argument(
"--max_target_length",
type=int,
default=1024,
help="The maximum total sequence length for target text after "
"tokenization. Sequences longer than this will be truncated, sequences shorter will be padded."
"during ``evaluate`` and ``predict``.",
)
parser.add_argument(
"--max_length",
type=int,
default=1024,
help=(
"The maximum total input sequence length after tokenization. Sequences longer than this will be truncated,"
" sequences shorter will be padded if `--pad_to_max_lengh` is passed."
),
)
parser.add_argument(
"--per_device_train_batch_size",
type=int,
default=8,
help="Batch size (per device) for the training dataloader.",
)
parser.add_argument(
"--per_device_eval_batch_size",
type=int,
default=8,
help="Batch size (per device) for the evaluation dataloader.",
)
parser.add_argument(
"--learning_rate",
type=float,
default=5e-5,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument("--weight_decay", type=float, default=0.0, help="Weight decay to use.")
parser.add_argument("--num_train_epochs", type=int, default=3, help="Total number of training epochs to perform.")
parser.add_argument(
"--max_train_steps",
type=int,
default=None,
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--lr_scheduler_type",
type=SchedulerType,
default="linear",
help="The scheduler type to use.",
choices=["linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"],
)
parser.add_argument(
"--num_warmup_steps", type=int, default=0, help="Number of steps for the warmup in the lr scheduler."
)
parser.add_argument("--output_dir", type=str, default='steps', help="Where to store the final model.")
parser.add_argument("--save_every", type=int, default=-1, help="To save the model every certain number of steps.")
args = parser.parse_args()
# Sanity checks
if args.train_file is None and args.validation_file is None:
raise ValueError("Need either a dataset name or a training/validation file.")
else:
if args.train_file is not None:
extension = args.train_file.split(".")[-1]
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
if args.validation_file is not None:
extension = args.validation_file.split(".")[-1]
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
if args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
# Set seed
args.seed = 666
return args
| BARTScore-main | train/args.py |
import random
from collections import namedtuple
from typing import List
import torch
from tqdm import tqdm, trange
from transformers import AdamW, get_linear_schedule_with_warmup
from models.bart_utils import ShardedBART
TextPairData = namedtuple('TextPairData', ['src_text', 'tgt_text'])
class BART:
def __init__(self, args):
self.args = args
assert args.gpu in [0, 1, 2, 3, 4]
self.device = 'cuda' if args.gpu > 0 else 'cpu'
self.src_max_len = args.src_max_len
self.tgt_max_len = args.tgt_max_len
self.bart = ShardedBART(args)
self.optimizer = None
self.lr_scheduler = None
self.data = []
# Number of optimization performed
self.train_steps = 0
def get_optimizer(self, lr, train_steps, warmup_steps,
weight_decay, adam_epsilon):
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{"params": [p for n, p in self.bart.named_parameters()
if not any(nd in n for nd in no_decay)],
"weight_decay": weight_decay},
{"params": [p for n, p in self.bart.named_parameters()
if any(nd in n for nd in no_decay)],
"weight_decay": 0.0}]
self.optimizer = AdamW(
optimizer_grouped_parameters, lr=lr, eps=adam_epsilon)
self.lr_scheduler = get_linear_schedule_with_warmup(
self.optimizer, num_warmup_steps=warmup_steps,
num_training_steps=train_steps)
def save_model(self, path):
torch.save(self.bart.state_dict(), path)
print(f'Model saved in {path}.')
def load_model(self, path):
self.bart.load_state_dict(torch.load(path, map_location=self.device))
print(f'Model {path} loaded.')
def load_data(self, src_texts, tgt_texts):
""" Just go through all the data (maybe once), no more preprocessing """
for src_text, tgt_text in tqdm(zip(src_texts, tgt_texts),
total=len(src_texts),
desc='Loading data...'):
self.data.append(TextPairData(
src_text=src_text,
tgt_text=tgt_text
))
print(f'Data size: {len(self.data)}')
def train_epoch(self, batch_size):
self.bart.shard()
self.bart.train()
random.shuffle(self.data)
for i in trange(0, len(self.data), batch_size,
desc='BART Training...'):
batch = self.data[i: i + batch_size]
self.optimizer.zero_grad()
for j in range(0, len(batch)):
data = batch[j]
src_encoded = self.bart.encode(data.src_text, self.src_max_len)
src_tokens = src_encoded['input_ids']
src_attn_mask = src_encoded['attention_mask']
tgt_encoded = self.bart.encode(data.tgt_text, self.tgt_max_len)
tgt_tokens = tgt_encoded['input_ids']
tgt_attn_mask = tgt_encoded['attention_mask']
loss = self.bart.forward(
input_ids=src_tokens,
attention_mask=src_attn_mask,
decoder_attention_mask=tgt_attn_mask,
labels=tgt_tokens
)
loss = loss / batch_size
loss.backward()
self.optimizer.step()
self.train_steps += 1
self.lr_scheduler.step()
# Save checkpoint
if self.train_steps % 50 == 0:
self.save_model(f'{self.args.save_dir}/bart_{self.train_steps}.pth')
if self.train_steps == 6000:
exit(0)
def generate(self, src_sents: List[str]):
self.bart.eval()
input_ids = self.bart.tokenizer(
src_sents,
max_length=self.src_max_len,
padding=True,
truncation=True,
return_tensors='pt'
)['input_ids'].to(self.device)
output = self.bart.generate(
input_ids=input_ids,
max_length=self.args.gen_max_len,
min_length=self.args.gen_min_len,
num_beams=self.args.beam,
length_penalty=self.args.lenpen,
no_repeat_ngram_size=self.args.no_repeat_ngram_size
)
hypos = [self.bart.tokenizer.decode(g, skip_special_tokens=True,
clean_up_tokenization_spaces=False).strip()
for g in output]
return hypos
| BARTScore-main | train/reproduce/bart.py |
import jsonlines
def read_file_to_list(file_name):
lines = []
with open(file_name, 'r', encoding='utf8') as f:
for line in f.readlines():
lines.append(line.strip())
return lines
def write_list_to_file(list_to_write, filename):
out_file = open(filename, 'w')
for line in list_to_write:
print(line, file=out_file)
out_file.flush()
out_file.close()
def read_jsonlines_to_list(file_name):
lines = []
with jsonlines.open(file_name, 'r') as reader:
for obj in reader:
lines.append(obj)
return lines
def write_list_to_jsonline(list_to_write, filename):
with jsonlines.open(filename, 'w') as writer:
writer.write_all(list_to_write)
| BARTScore-main | train/reproduce/utils.py |
import argparse
def finetune_args():
parser = argparse.ArgumentParser(description='Finetune parameters')
parser.add_argument('--gpu', default=2, type=int, help='Number of GPU used')
parser.add_argument('--src_max_len', default=1024, type=int, help='Max source length')
parser.add_argument('--tgt_max_len', default=1024, type=int, help='Max target length')
parser.add_argument('--save_dir', default='trained', type=str, help='Where to save model checkpoints')
parser.add_argument('--checkpoint', default='facebook/bart-large-cnn', type=str,
help='Which checkpoint to load from')
parser.add_argument('--n_epochs', default=3, type=int, help='How many epochs to train')
parser.add_argument('--lr', default=5e-5, type=float, help='learning rage')
parser.add_argument('--weight_decay', default=0.0, type=float, help='weight decay')
parser.add_argument('--warmup_steps', default=0, type=int, help='Number of warmup steps')
parser.add_argument('--adam_epsilon', default=1e-8, type=float, help='AdamW epsilon')
parser.add_argument('--batch_size', default=20, type=int, help='Training batch size')
args = parser.parse_args()
return args
def generate_args():
parser = argparse.ArgumentParser(description='Generation parameters')
args = parser.parse_args()
return args
| BARTScore-main | train/reproduce/args.py |
import logging
import os
import random
import torch
from args import finetune_args
from utils import *
from bart import BART
logging.disable(logging.WARNING)
def set_seed_everywhere(seed, cuda):
""" Set seed for reproduce """
random.seed(seed)
torch.manual_seed(seed)
if cuda:
torch.cuda.manual_seed_all(seed)
set_seed_everywhere(666, True)
def load_data(filepath):
""" Json data, {'text': ..., 'summary': ...}"""
data = read_jsonlines_to_list(filepath)
src_texts, tgt_texts = [], []
for obj in data:
src_texts.append(obj.get('text').strip())
tgt_texts.append(obj.get('summary').strip())
return src_texts, tgt_texts
def main(args):
save_dir = args.save_dir
os.makedirs(save_dir, exist_ok=True)
bart = BART(args)
src_texts, tgt_texts = load_data('data/parabank2.json')
bart.load_data(src_texts, tgt_texts)
n_epochs = args.n_epochs
train_steps = n_epochs * (len(bart.data) // args.batch_size + 1)
bart.get_optimizer(
lr=args.lr,
train_steps=train_steps,
warmup_steps=args.warmup_steps,
weight_decay=args.weight_decay,
adam_epsilon=args.adam_epsilon
)
for epoch in range(n_epochs):
print(f'On epoch {epoch}')
bart.train_epoch(batch_size=args.batch_size)
if __name__ == '__main__':
args = finetune_args()
main(args)
| BARTScore-main | train/reproduce/finetune.py |
BARTScore-main | train/reproduce/models/__init__.py |
|
import torch
import random
import torch.nn as nn
from transformers import BartTokenizer, BartForConditionalGeneration
import torch.nn.functional as F
from typing import Optional
def move_device(tensor, device):
if tensor is None:
return None
else:
tensor = tensor.to(device)
return tensor
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
"""
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
"""
bsz, src_len = mask.size()
tgt_len = tgt_len if tgt_len is not None else src_len
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
inverted_mask = 1.0 - expanded_mask
return inverted_mask.masked_fill(inverted_mask.bool(), torch.finfo(dtype).min)
def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int):
"""
Shift input ids one token to the right.
"""
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
shifted_input_ids[:, 0] = decoder_start_token_id
assert pad_token_id is not None, "self.model.config.pad_token_id has to be defined."
# replace possible -100 values in labels by `pad_token_id`
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
return shifted_input_ids
class ShardedBART(nn.Module):
def __init__(self, args):
super(ShardedBART, self).__init__()
self.args = args
self.tokenizer = BartTokenizer.from_pretrained(args.checkpoint)
self.model = BartForConditionalGeneration.from_pretrained(args.checkpoint)
self.device_enc1 = self.device_enc2 = self.device_dec1 = self.device_dec2 = None
self.loss_fct = nn.CrossEntropyLoss(ignore_index=self.tokenizer.pad_token_id)
def shard(self):
""" Shard the model to at most 4 gpus"""
assert self.args.gpu > 0 and torch.cuda.is_available()
gpu = min(self.args.gpu, 4)
if gpu == 4:
assert torch.cuda.device_count() >= 4
self.device_enc1 = 'cuda:0'
self.device_enc2 = 'cuda:1'
self.device_dec1 = 'cuda:2'
self.device_dec2 = 'cuda:3'
self.cuda()
elif gpu == 3:
assert torch.cuda.device_count() >= 3
self.device_enc1 = 'cuda:0'
self.device_enc2 = 'cuda:1'
self.device_dec1 = 'cuda:1'
self.device_dec2 = 'cuda:2'
elif gpu == 2:
assert torch.cuda.device_count() >= 2
self.device_enc1 = self.device_enc2 = 'cuda:0'
self.device_dec1 = self.device_dec2 = 'cuda:1'
else:
self.device_enc1 = self.device_enc2 = self.device_dec1 = self.device_dec2 = 'cuda:0'
# Model sharding
self.encoder.to(self.device_enc1)
self.decoder.to(self.device_dec1)
# We further shard the model if needed.
encoder_layer_num = len(self.encoder.layers)
for i in range(encoder_layer_num):
if i >= (encoder_layer_num // 2):
self.encoder.layers[i].to(self.device_enc2)
decoder_layer_num = len(self.decoder.layers)
for i in range(decoder_layer_num):
if i >= (decoder_layer_num // 2):
self.decoder.layers[i].to(self.device_dec2)
# For calculating lm logits
self.model.final_logits_bias = move_device(
self.model.final_logits_bias, self.device_dec2
)
self.model.model.shared = move_device(self.model.model.shared, self.device_dec2)
torch.cuda.empty_cache()
print(f'Sharded to {gpu} GPUs.')
def encode(self, sentence, max_len):
""" Encode text (up to max_length)
Example output:
{
'input_ids': tensor([[ 0, 713, 16, 1531, 2]]),
'attention_mask': tensor([[1, 1, 1, 1, 1]])
}
"""
encoded = self.tokenizer([sentence], max_length=max_len,
truncation=True, return_tensors='pt')
return encoded
def forward(
self,
input_ids=None,
attention_mask=None,
decoder_attention_mask=None,
labels=None,
):
decoder_input_ids = shift_tokens_right(
labels, self.config.pad_token_id, self.config.decoder_start_token_id
)
# Go through encoder
hidden_states = forward_encoder(
self=self.encoder,
input_ids=input_ids,
attention_mask=attention_mask
)
# Go through decoder
hidden_states = forward_decoder(
self=self.decoder,
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
encoder_hidden_states=hidden_states,
encoder_attention_mask=attention_mask
)
lm_logits = self.model.lm_head(hidden_states) + self.model.final_logits_bias
masked_lm_loss = self.loss_fct(lm_logits.view(-1, self.config.vocab_size),
labels.view(-1).to(lm_logits.device))
return masked_lm_loss
@property
def config(self):
return self.model.config
@property
def encoder(self):
return self.model.model.encoder
@property
def decoder(self):
return self.model.model.decoder
@property
def generate(self):
return self.model.generate
def forward_encoder(
self,
input_ids=None,
attention_mask=None
):
""" Here self is self.encoder"""
# retrieve input_ids and inputs_embeds
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1]).to(self.embed_tokens.weight.device)
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
embed_pos = self.embed_positions(input_shape)
hidden_states = inputs_embeds.to(self.layernorm_embedding.weight.device) \
+ embed_pos.to(self.layernorm_embedding.weight.device)
hidden_states = self.layernorm_embedding(hidden_states)
hidden_states = F.dropout(hidden_states, p=self.dropout, training=self.training)
# expand attention_mask
if attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
attention_mask = _expand_mask(attention_mask, inputs_embeds.dtype)
for idx, encoder_layer in enumerate(self.layers):
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = random.uniform(0, 1)
if self.training and (dropout_probability < self.layerdrop): # skip the layer
pass
else:
layer_outputs = encoder_layer(
hidden_states.to(encoder_layer.fc1.weight.device),
attention_mask.to(encoder_layer.fc1.weight.device),
layer_head_mask=None,
output_attentions=False,
)
hidden_states = layer_outputs[0]
return hidden_states
def forward_decoder(
self,
input_ids=None,
attention_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
):
""" Here self is self.decoder """
# retrieve input_ids and inputs_embeds
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
inputs_embeds = self.embed_tokens(input_ids.to(self.embed_tokens.weight.device)) * self.embed_scale
# past_key_values_length
past_key_values_length = 0
attention_mask = self._prepare_decoder_attention_mask(
attention_mask.to(inputs_embeds.device), input_shape, inputs_embeds, past_key_values_length
)
# expand encoder attention mask
if encoder_hidden_states is not None and encoder_attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
encoder_attention_mask = _expand_mask(encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1])
# embed positions
positions = self.embed_positions(input_shape, past_key_values_length)
hidden_states = inputs_embeds.to(self.layernorm_embedding.weight.device) \
+ positions.to(self.layernorm_embedding.weight.device)
hidden_states = self.layernorm_embedding(hidden_states)
hidden_states = F.dropout(hidden_states, p=self.dropout, training=self.training)
for idx, decoder_layer in enumerate(self.layers):
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = random.uniform(0, 1)
if self.training and (dropout_probability < self.layerdrop):
continue
curr_device = decoder_layer.fc1.weight.device
layer_outputs = decoder_layer(
hidden_states.to(curr_device),
attention_mask=attention_mask.to(curr_device),
encoder_hidden_states=encoder_hidden_states.to(curr_device),
encoder_attention_mask=encoder_attention_mask.to(curr_device),
layer_head_mask=None,
cross_attn_layer_head_mask=None,
past_key_value=None,
output_attentions=False,
use_cache=False,
)
hidden_states = layer_outputs[0]
return hidden_states
| BARTScore-main | train/reproduce/models/bart_utils.py |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.