python_code
stringlengths
0
780k
repo_name
stringlengths
7
38
file_path
stringlengths
5
103
# Copyright 2021 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Component common to all architecture streams(vector, visual and units).""" from typing import Iterable, Optional from alphastar import types from alphastar.architectures import modular from alphastar.architectures.components import util from alphastar.commons import sample import dm_env from dm_env import specs import jax.numpy as jnp class ActionFromBehaviourFeatures(modular.BatchedComponent): """Copies the action from the behaviour features (for training).""" def __init__(self, argument_name: types.ArgumentName, max_action_value: Optional[int] = None, name: Optional[str] = None): """Initializes ActionFromBehaviourFeatures module. Args: argument_name: The name of the action argument to use. max_action_value: An optional clipping of the max value for the action. name: The name of this component. """ super().__init__(name=name) self._argument_name = argument_name self._max_action_value = max_action_value @property def input_spec(self) -> types.SpecDict: """Generates the specifications for the input.""" return types.SpecDict({ ("behaviour_features", "action", self._argument_name): specs.Array( (), jnp.int32)}) @property def output_spec(self) -> types.SpecDict: """Generates the specifications for the output.""" return types.SpecDict({ ("action", self._argument_name): specs.Array((), jnp.int32)}) def _forward(self, inputs: types.StreamDict) -> modular.ForwardOutputType: x = inputs["behaviour_features", "action", self._argument_name] if self._max_action_value is not None: x = jnp.minimum(x, self._max_action_value) outputs = types.StreamDict({("action", self._argument_name): x}) return outputs, {} class Sample(modular.BatchedComponent): """Samples the logits into an action (for inference).""" def __init__(self, argument_name: types.ArgumentName, num_logits: int, sample_fn: sample.SampleFn, name: Optional[str] = None): """Initializes Sample module. Args: argument_name: The name of the action argument to use. num_logits: The size of the logits 1d vector. sample_fn: The function to sample the logits, taking a float32 1d logits vector as input and returning a int32 0d action. name: The name of this component. """ super().__init__(name=name) self._argument_name = argument_name self._num_logits = num_logits self._sample_fn = sample_fn @property def input_spec(self) -> types.SpecDict: """Generates the specifications for the input.""" return types.SpecDict({("logits", self._argument_name): specs.Array( (self._num_logits,), jnp.float32)}) @property def output_spec(self) -> types.SpecDict: """Generates the specifications for the output.""" return types.SpecDict({ ("action", self._argument_name): specs.Array((), jnp.int32)}) def _forward(self, inputs: types.StreamDict) -> modular.ForwardOutputType: action = self._sample_fn(inputs["logits", self._argument_name]) outputs = types.StreamDict({("action", self._argument_name): action}) return outputs, {} class ArgumentMasks(modular.BatchedComponent): """Compute the argument masks from the function argument.""" def __init__(self, action_spec: types.ActionSpec, input_name: types.StreamType = ("action", "function"), output_name: types.StreamType = "argument_masks", name: Optional[str] = None): """Initializes ArgumentMasks object. Args: action_spec: The action spec. input_name: The name of the input to use, of shape [] and dtype int32. output_name: The prefix of the name to give to the output. There is one output per argument name in action_spec, each one of shape [] and dtype bool. name: The name of this component. """ super().__init__(name=name) self._action_spec = action_spec self._input_name = input_name self._output_name = output_name @property def input_spec(self) -> types.SpecDict: """Generates the specifications for the input.""" return types.SpecDict({ self._input_name: specs.Array((), jnp.int32), "step_type": specs.Array((), jnp.int32)}) @property def output_spec(self) -> types.SpecDict: """Generates the specifications for the output.""" return types.SpecDict({(self._output_name, arg): specs.Array((), jnp.bool_) for arg in self._action_spec}) def _forward(self, inputs: types.StreamDict) -> modular.ForwardOutputType: function_arg = inputs[self._input_name] full_argument_masks = util.get_full_argument_masks(self._action_spec) first_step_mask = jnp.not_equal( inputs["step_type"], int(dm_env.StepType.FIRST)) outputs = types.StreamDict({ (self._output_name, arg): jnp.logical_and( full_argument_masks[arg][function_arg], first_step_mask) for arg in self._action_spec}) return outputs, {} class FeatureFromPrevState(modular.Component): """Copies a feature from the prev_state. During training, the feature must be in behaviour_features. """ def __init__(self, input_name: types.StreamType, output_name: types.StreamType, is_training: bool, stream_shape: Iterable[int], stream_dtype: jnp.dtype = jnp.float32, name: Optional[str] = None): """Initializes FeatureFromPrevState module. Args: input_name: The name of the input to use, of shape `stream_shape` and dtype `stream_dtype`. output_name: The name to give to the output, of shape `stream_shape` and dtype `stream_dtype`. is_training: A boolean specifying whether this is training or inference. During inference, `behaviour_features` must be in the inputs to provide the values used by the behaviour model (or the recorded episode for offline learning). stream_shape: The shape of the input and output. stream_dtype: The dtype of the input and output. name: The name of this component. """ super().__init__(name=name) self._input_name = input_name self._output_name = output_name self._is_training = is_training self._stream_spec = specs.Array(stream_shape, stream_dtype) @property def input_spec(self) -> types.SpecDict: """Generates the specifications for the input.""" spec = types.SpecDict() if self._is_training: spec["behaviour_features", self._input_name] = self._stream_spec return spec @property def prev_state_spec(self) -> types.SpecDict: """Generates the specifications for the previous state.""" return types.SpecDict({self._input_name: self._stream_spec}) @property def output_spec(self) -> types.SpecDict: """Generates the specifications for the output.""" return types.SpecDict({self._output_name: self._stream_spec}) @property def next_state_spec(self) -> types.SpecDict: """Generates the specifications for the next state.""" return types.SpecDict() def _unroll(self, inputs: types.StreamDict, prev_state: types.StreamDict) -> modular.UnrollOutputType: outputs = types.StreamDict() prev_state_input = prev_state[self._input_name][jnp.newaxis] if self._is_training: behaviour_inputs = inputs.get("behaviour_features")[self._input_name] outputs = types.StreamDict({ self._output_name: jnp.concatenate( [prev_state_input, behaviour_inputs[:-1]], axis=0)}) else: outputs = types.StreamDict({self._output_name: prev_state_input}) return outputs, types.StreamDict(), {} class FeatureToNextState(modular.Component): """Copies a feature from the prev_state.""" def __init__(self, input_name: types.StreamType, output_name: types.StreamType, overlap_len: int, stream_shape: Iterable[int], stream_dtype: jnp.dtype = jnp.float32, name: Optional[str] = None): """Initializes FeatureToNextState module. Args: input_name: The name of the input to use, of shape `stream_shape` and dtype `stream_dtype`. output_name: The name to give to the output, of shape `stream_shape` and dtype `stream_dtype`. overlap_len: The number of timesteps overlapping between two trajectories. During training, the timestep passed to the next rollout is the one immediately before the next rollout, which is not the last one if overlap_len is not 0. Note that during inference, overlap_len must be 0 since the rollout length is 1. stream_shape: The shape of the input and output. stream_dtype: The dtype of the input and output. name: The name of this component. """ super().__init__(name=name) self._input_name = input_name self._output_name = output_name self._stream_spec = specs.Array(stream_shape, stream_dtype) self._overlap_len = overlap_len if overlap_len < 0: raise ValueError(f"overlap_len must be non-negative, not {overlap_len}.") @property def input_spec(self) -> types.SpecDict: """Generates the specifications for the input.""" return types.SpecDict({self._input_name: self._stream_spec}) @property def prev_state_spec(self) -> types.SpecDict: """Generates the specifications for the previous state.""" return types.SpecDict() @property def output_spec(self) -> types.SpecDict: """Generates the specifications for the output.""" return types.SpecDict() @property def next_state_spec(self) -> types.SpecDict: """Generates the specifications for the next state.""" return types.SpecDict({self._output_name: self._stream_spec}) def _unroll(self, inputs: types.StreamDict, prev_state: types.StreamDict) -> modular.UnrollOutputType: x = inputs[self._input_name] unroll_len = x.shape[0] if self._overlap_len >= unroll_len: raise ValueError(f"overlap_len ({self._overlap_len}) is larger than the " f"unroll length ({x.shape[0]}).") effective_sequence_length = unroll_len - self._overlap_len - 1 next_state = types.StreamDict({ self._output_name: x[effective_sequence_length]}) return types.StreamDict(), next_state, {}
alphastar-main
alphastar/architectures/components/common.py
# Copyright 2021 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Visual-based modules, acting on 2d feature maps.""" from typing import Callable, Optional, Sequence, Tuple, Union from alphastar import types from alphastar.architectures import modular from alphastar.architectures.components import util from alphastar.architectures.components.static_data import camera_masks from alphastar.commons import sample import chex from dm_env import specs import dm_pix as pix import haiku as hk import jax import jax.numpy as jnp import numpy as np class FeatureEncoder(modular.BatchedComponent): """Encodes 2d feature maps applying a function and a convolution.""" def __init__(self, input_name: types.StreamType, output_name: types.StreamType, input_spatial_size: Union[int, Tuple[int, int]], input_feature_size: Optional[int], downscale_factor: int, output_features_size: int, kernel_size: int, fun: Callable[[chex.Array], chex.Array] = lambda x: x, input_dtype: jnp.dtype = jnp.uint8, name: Optional[str] = None): """Initializes FeatureEncoder module. Args: input_name: The name of the input to use, of shape [input_spatial_size[0], input_spatial_size[1]] and dtype int32. output_name: The name to give to the output, of shape [input_spatial_size[0] / downscale_factor, input_spatial_size[1] / downscale_factor, output_features_size] and dtype float32. input_spatial_size: The spatial size of the input to encode. If the input is square, a single int can be used, otherwise a pair is required. input_feature_size: The number of feature planes of the input, or None if the input does not have a feature dimension. downscale_factor: The downscale factor to apply to the input. output_features_size: The number of feature planes of the output. kernel_size: The size of the convolution kernel to use. Note that with downsampling, a `kernel_size` not multiple of the `downscale_factor` will result in a checkerboard pattern, so it is not recommended. fun: An optional function to apply to the input before applying the convolution. input_dtype: The type of the input. name: The name of this component. """ super().__init__(name=name) self._input_name = input_name self._output_name = output_name if isinstance(input_spatial_size, int): self._input_spatial_size = (input_spatial_size, input_spatial_size) else: self._input_spatial_size = tuple(input_spatial_size) for i in range(2): if self._input_spatial_size[i] % downscale_factor: raise ValueError(f'input_spatial_size[{i}] must be a multiple of ' f'downscale_factor ({downscale_factor}) but is ' f'({self._input_spatial_size[i]}).') self._input_feature_size = input_feature_size self._downscale_factor = downscale_factor self._output_features_size = output_features_size self._kernel_size = kernel_size self._fun = fun self._input_dtype = input_dtype @property def input_spec(self) -> types.SpecDict: if self._input_feature_size is None: input_size = self._input_spatial_size else: input_size = self._input_spatial_size + (self._input_feature_size,) return types.SpecDict({ self._input_name: specs.Array(input_size, self._input_dtype)}) @property def output_spec(self) -> types.SpecDict: output_size = tuple(size // self._downscale_factor for size in self._input_spatial_size) return types.SpecDict({ self._output_name: specs.Array( output_size + (self._output_features_size,), jnp.float32) }) def _forward(self, inputs: types.StreamDict) -> modular.ForwardOutputType: x = inputs[self._input_name] x = util.astype(x, jnp.float32) x = self._fun(x) if self._input_feature_size is None: x = x[..., jnp.newaxis] x = hk.Conv2D(output_channels=self._output_features_size, kernel_shape=self._kernel_size, stride=self._downscale_factor)(x) outputs = types.StreamDict({self._output_name: x}) return outputs, {} class Embedding(modular.BatchedComponent): """Encodes a visual (2d) int32 input, embedding each pixel independently.""" def __init__(self, input_name: types.StreamType, output_name: types.StreamType, input_spatial_size: int, downscale_factor: int, num_classes: int, output_features_size: int, kernel_size: int, name: Optional[str] = None): """Initializes Embedding module. Args: input_name: The name of the input to use, of shape [input_spatial_size, input_spatial_size] and dtype int32. output_name: The name to give to the output, of shape [input_spatial_size / downscale_factor, input_spatial_size / downscale_factor, output_features_size] and dtype float32. input_spatial_size: The spatial size of the input to encode. downscale_factor: The downscale factor to apply to the input. num_classes: The number of values the input can take, ie. max(input)-1. For safety, the input is clipped to stay within [0, num_classes-1], but it probably should never be larger than num_classes-1. output_features_size: The number of feature planes of the output. kernel_size: The size of the convolution kernel to use. Note that with downsampling, a `kernel_size` not multiple of the `downscale_factor` will result in a checkerboard pattern, so it is not recommended. name: The name of this component. """ super().__init__(name=name) self._input_name = input_name self._output_name = output_name self._input_spatial_size = input_spatial_size if input_spatial_size % downscale_factor: raise ValueError(f'input_spatial_size ({input_spatial_size}) must be a ' f'multiple of downscale_factor ({downscale_factor}).') self._downscale_factor = downscale_factor self._num_classes = num_classes self._output_features_size = output_features_size self._kernel_size = kernel_size @property def input_spec(self) -> types.SpecDict: return types.SpecDict({ self._input_name: specs.Array( (self._input_spatial_size, self._input_spatial_size), jnp.uint8)}) @property def output_spec(self) -> types.SpecDict: output_size = self._input_spatial_size // self._downscale_factor return types.SpecDict({ self._output_name: specs.Array( (output_size, output_size, self._output_features_size), jnp.float32) }) def _forward(self, inputs: types.StreamDict) -> modular.ForwardOutputType: x = inputs[self._input_name] x = jnp.minimum(x, self._num_classes - 1) x = jax.nn.one_hot(x, self._num_classes, dtype=jnp.float32) x = hk.Conv2D(output_channels=self._output_features_size, kernel_shape=self._kernel_size, stride=self._downscale_factor)(x) outputs = types.StreamDict({self._output_name: x}) return outputs, {} class CameraEncoder(modular.BatchedComponent): """Encodes the camera visual feature.""" def __init__(self, output_name: types.StreamType, input_spatial_size: int, downscale_factor: int, output_features_size: int, name: Optional[str] = None): """Initializes CameraEncoder module.. Args: output_name: The name to give to the output, of shape [input_spatial_size / downscale_factor, input_spatial_size / downscale_factor, output_features_size] and dtype float32. input_spatial_size: The spatial size of the input to encode. downscale_factor: The downscale factor to apply to the input. output_features_size: The number of feature planes of the output. name: The name of this component. """ super().__init__(name=name) self._output_name = output_name self._input_spatial_size = input_spatial_size if input_spatial_size % downscale_factor: raise ValueError(f'input_spatial_size ({input_spatial_size}) must be a ' f'multiple of downscale_factor ({downscale_factor}).') self._downscale_factor = downscale_factor self._output_features_size = output_features_size @property def input_spec(self) -> types.SpecDict: return types.SpecDict({ ('observation', 'camera'): specs.Array( (self._input_spatial_size, self._input_spatial_size), jnp.int32)}) @property def output_spec(self) -> types.SpecDict: output_size = self._input_spatial_size // self._downscale_factor return types.SpecDict({ self._output_name: specs.Array( (output_size, output_size, self._output_features_size), jnp.float32) }) def _forward(self, inputs: types.StreamDict) -> modular.ForwardOutputType: x = inputs['observation', 'camera'] ds = self._downscale_factor x = hk.AvgPool((ds, ds), (ds, ds), 'SAME')(x)[..., jnp.newaxis] x = hk.Linear(self._output_features_size)(x) outputs = types.StreamDict({self._output_name: x}) return outputs, {} class Downscale(modular.BatchedComponent): """Downscale the visual stream..""" def __init__(self, input_name: types.StreamType, output_name: types.StreamType, input_spatial_size: int, input_features_size: int, output_features_size: int, downscale_factor: int, kernel_size: int, use_layer_norm: bool = True, name: Optional[str] = None): """Initializes Downscale module.. Args: input_name: The name of the input to use, of shape [input_spatial_size, input_spatial_size, input_features_size] and dtype float32. output_name: The name to give to the output, of shape [input_spatial_size / downscale_factor, input_spatial_size / downscale_factor, output_features_size] and dtype float32. input_spatial_size: The spatial size of the input. input_features_size: The number of feature planes of the input. output_features_size: The number of feature planes of the output. downscale_factor: The downscale factor to apply to the input. kernel_size: The size of the convolution kernel to use. Note that with downsampling, a `kernel_size` not multiple of the `downscale_factor` will result in a checkerboard pattern, so it is not recommended. use_layer_norm: Whether to use layer normalization. name: The name of this component. """ super().__init__(name=name) self._input_name = input_name self._output_name = output_name if input_spatial_size % downscale_factor: raise ValueError(f'input_spatial_size ({input_spatial_size}) must be a ' f'multiple of downscale_factor ({downscale_factor}).') self._input_spatial_size = input_spatial_size self._input_features_size = input_features_size self._output_features_size = output_features_size self._downscale_factor = downscale_factor self._kernel_size = kernel_size self._use_layer_norm = use_layer_norm @property def input_spec(self) -> types.SpecDict: return types.SpecDict({ self._input_name: specs.Array((self._input_spatial_size, self._input_spatial_size, self._input_features_size), jnp.float32)}) @property def output_spec(self) -> types.SpecDict: output_size = self._input_spatial_size // self._downscale_factor return types.SpecDict({ self._output_name: specs.Array( (output_size, output_size, self._output_features_size), jnp.float32) }) def _forward(self, inputs: types.StreamDict) -> modular.ForwardOutputType: x = inputs[self._input_name] if self._use_layer_norm: x = util.visual_layer_norm(x) x = jax.nn.relu(x) x = hk.Conv2D( output_channels=self._output_features_size, kernel_shape=self._kernel_size, stride=self._downscale_factor)(x) outputs = types.StreamDict({self._output_name: x}) return outputs, {} class Upscale(modular.BatchedComponent): """Upscale the visual stream.""" def __init__(self, input_name: types.StreamType, output_name: types.StreamType, input_spatial_size: int, input_features_size: int, output_features_size: int, upscale_factor: int, kernel_size: int, use_layer_norm: bool = True, name: Optional[str] = None): """Initializes Upscale module.. Args: input_name: The name of the input to use, of shape [input_spatial_size, input_spatial_size, input_features_size] and dtype float32. output_name: The name to give to the output, of shape [input_spatial_size * upscale_factor, input_spatial_size * upscale_factor, output_features_size] and dtype float32. input_spatial_size: The spatial size of the input. input_features_size: The number of feature planes of the input. output_features_size: The number of feature planes of the output. upscale_factor: The upscale factor to apply to the input. kernel_size: The size of the convolution kernel to use. Note that with upsampling, a `kernel_size` not multiple of the `upscale_factor` will result in a checkerboard pattern, so it is not recommended. use_layer_norm: Whether to use layer normalization. name: The name of this component. """ super().__init__(name=name) self._input_name = input_name self._output_name = output_name self._input_spatial_size = input_spatial_size self._input_features_size = input_features_size self._output_features_size = output_features_size self._upscale_factor = upscale_factor self._kernel_size = kernel_size self._use_layer_norm = use_layer_norm @property def input_spec(self) -> types.SpecDict: return types.SpecDict({ self._input_name: specs.Array((self._input_spatial_size, self._input_spatial_size, self._input_features_size), jnp.float32)}) @property def output_spec(self) -> types.SpecDict: output_size = self._input_spatial_size * self._upscale_factor return types.SpecDict({ self._output_name: specs.Array( (output_size, output_size, self._output_features_size), jnp.float32) }) def _forward(self, inputs: types.StreamDict) -> modular.ForwardOutputType: x = inputs[self._input_name] if self._use_layer_norm: x = util.visual_layer_norm(x) x = jax.nn.relu(x) x = hk.Conv2DTranspose( output_channels=self._output_features_size, kernel_shape=self._kernel_size, stride=self._upscale_factor)(x) outputs = types.StreamDict({self._output_name: x}) return outputs, {} class Resnet(modular.BatchedComponent): """Resnet processing of the visual stream.""" def __init__(self, input_name: types.StreamType, output_name: types.StreamType, input_spatial_size: int, input_features_size: int, num_resblocks: int, kernel_size: int = 3, use_layer_norm: bool = True, num_hidden_feature_planes: Optional[int] = None, name: Optional[str] = None): """Initializes Resnet module.. Args: input_name: The name of the input to use, of shape [input_spatial_size, input_spatial_size, input_features_size] and dtype float32. output_name: The name to give to the output, of shape [input_spatial_size, input_spatial_size, input_features_size] and dtype float32. input_spatial_size: The spatial size of the input. input_features_size: The number of feature planes of the input. num_resblocks: The number of residual blocks. kernel_size: The size of the convolution kernel to use. use_layer_norm: Whether to use layer normalization. num_hidden_feature_planes: Optional number of feature planes in the hidden layers of the residual blocks. If None, the number of feature planes of the input is used. name: The name of this component. """ super().__init__(name) self._input_name = input_name self._output_name = output_name self._input_spec = specs.Array( (input_spatial_size, input_spatial_size, input_features_size), jnp.float32) self._num_resblocks = num_resblocks self._kernel_size = kernel_size self._use_layer_norm = use_layer_norm self._num_hidden_feature_planes = num_hidden_feature_planes @property def input_spec(self) -> types.SpecDict: return types.SpecDict({self._input_name: self._input_spec}) @property def output_spec(self) -> types.SpecDict: return types.SpecDict({self._output_name: self._input_spec}) def _forward(self, inputs: types.StreamDict) -> modular.ForwardOutputType: x = inputs[self._input_name] for _ in range(self._num_resblocks): x = util.VisualResblock( kernel_size=self._kernel_size, hidden_size=self._num_hidden_feature_planes, use_layer_norm=self._use_layer_norm)(x) outputs = types.StreamDict({self._output_name: x}) return outputs, {} class ToVector(modular.BatchedComponent): """Strided convolutions (downscales) followed by a linear layer.""" def __init__(self, input_name: types.StreamType, output_name: types.StreamType, input_spatial_size: Union[int, Tuple[int, int]], input_features_size: int, vector_stream_size: int, hidden_feature_sizes: Sequence[int], downscale_factor: int = 2, kernel_size: int = 4, use_layer_norm: bool = True, name: Optional[str] = None): """Initializes ToVector module.. Args: input_name: The name of the input to use, of shape [input_spatial_size[0], input_spatial_size[1], input_features_size] and dtype float32. output_name: The name to give to the output, of shape [output_size] and dtype float32. input_spatial_size: The spatial size of the input. If the input is square, a single int can be used, otherwise a pair is required. input_features_size: The number of feature planes of the input. vector_stream_size: The size of the output (1d vector representation). hidden_feature_sizes: The list of number of feature planes in the convolutional hidden layers, before reshaping into a single vector. Each convolution is strided, decreasing the spatial resolution. downscale_factor: The downscale factor of each strided convolution. kernel_size: The size of the convolution kernel to use. Note that with downsampling, a `kernel_size` not multiple of the `downscale_factor` will result in a checkerboard pattern, so it is not recommended. use_layer_norm: Whether to use layer normalization. name: The name of this component. """ super().__init__(name=name) self._input_name = input_name self._output_name = output_name if isinstance(input_spatial_size, int): self._input_spatial_size = (input_spatial_size, input_spatial_size) else: self._input_spatial_size = tuple(input_spatial_size) total_downscale_factor = downscale_factor ** len(hidden_feature_sizes) for i in range(2): if self._input_spatial_size[i] % total_downscale_factor: raise ValueError( f'input_spatial_size[{i}] ({input_spatial_size}) must be a ' f'multiple of downscale_factor ({downscale_factor}) to the power ' f'of len(hidden_feature_sizes) ({len(hidden_feature_sizes)}).') self._input_features_size = input_features_size self._vector_stream_size = vector_stream_size self._hidden_feature_sizes = hidden_feature_sizes self._use_layer_norm = use_layer_norm self._downscale_factor = downscale_factor self._kernel_size = kernel_size @property def input_spec(self) -> types.SpecDict: return types.SpecDict({ self._input_name: specs.Array((self._input_spatial_size[0], self._input_spatial_size[1], self._input_features_size), jnp.float32)}) @property def output_spec(self) -> types.SpecDict: return types.SpecDict({ self._output_name: specs.Array((self._vector_stream_size,), jnp.float32) }) def _forward(self, inputs: types.StreamDict) -> modular.ForwardOutputType: x = inputs[self._input_name] for num_hidden_features in self._hidden_feature_sizes: if self._use_layer_norm: x = util.visual_layer_norm(x) x = jax.nn.relu(x) x = hk.Conv2D( output_channels=num_hidden_features, kernel_shape=self._kernel_size, stride=self._downscale_factor)(x) x = jnp.reshape(x, [-1]) if self._use_layer_norm: x = util.vector_layer_norm(x) x = jax.nn.relu(x) x = hk.Linear(output_size=self._vector_stream_size)(x) outputs = types.StreamDict({self._output_name: x}) return outputs, {} class Logits(modular.BatchedComponent): """Visual logits: generate a 2d headmap.""" def __init__(self, input_name: types.StreamType, input_spatial_size: int, input_features_size: int, logits_output_name: types.StreamType, mask_output_name: types.StreamType, upscale_factor: int, kernel_size: int, use_layer_norm: bool = True, use_depth_to_space: bool = False, name: Optional[str] = None): """Initializes Logits module.. Args: input_name: The name of the input to use, of shape [input_spatial_size, input_spatial_size, input_features_size] and dtype float32. input_spatial_size: The spatial size of the input. input_features_size: The number of feature planes of the input. logits_output_name: The name to give to the output for the logits, of shape [(input_spatial_size*upscale_factor) ** 2] and dtype float32. mask_output_name: The name to give to the output for the mask, of shape [(input_spatial_size*upscale_factor) ** 2] and dtype bool. upscale_factor: The upscale factor to apply to the input. kernel_size: The size of the convolution kernel to use. Note that with upsampling, a `kernel_size` not multiple of the `upscale_factor` will result in a checkerboard pattern, so it is not recommended. If `use_depth_to_space` is set to True, then the kernel size is actually required to be a multiple of upscale_factor. use_layer_norm: Whether to use layer normalization. use_depth_to_space: If False, strided convolutions are used. If True, a regular convolution (stride=1) is used, and the output is reshaped to produce an upsampled result. The operations are equivalent, but result in reshuffled weight vectors, so the trained models are not interchangeable. Using this option gives a performance boost on some hardwares (GPUs). name: The name of this component. """ super().__init__(name=name) self._input_name = input_name self._input_spatial_size = input_spatial_size self._input_features_size = input_features_size self._logits_output_name = logits_output_name self._mask_output_name = mask_output_name if upscale_factor < 1: raise ValueError( f'upscale_factor must be > 0, but was set to {upscale_factor}.') self._upscale_factor = upscale_factor self._kernel_size = kernel_size if use_depth_to_space and (kernel_size % upscale_factor): raise ValueError( f'upscale_factor ({upscale_factor}) must be a multiple of kernel_size' f' ({kernel_size}) when use_depth_to_space is set to True.') self._use_layer_norm = use_layer_norm self._use_depth_to_space = use_depth_to_space @property def input_spec(self) -> types.SpecDict: camera_size = self._input_spatial_size * self._upscale_factor return types.SpecDict({ self._input_name: specs.Array((self._input_spatial_size, self._input_spatial_size, self._input_features_size), jnp.float32), ('observation', 'camera'): specs.Array( (camera_size, camera_size), jnp.int32), ('action', 'function'): specs.Array((), jnp.int32)}) @property def output_spec(self) -> types.SpecDict: output_size = self._input_spatial_size * self._upscale_factor return types.SpecDict({ self._logits_output_name: specs.Array( (output_size * output_size,), jnp.float32), self._mask_output_name: specs.Array( (output_size * output_size,), jnp.bool_)}) def _forward(self, inputs: types.StreamDict) -> modular.ForwardOutputType: # mask: with some functions arguments, the agent can only click on the # screen (ie. in the camera view). camera = inputs['observation', 'camera'] function_arg = inputs['action', 'function'] all_camera_only_functions = camera_masks.get_on_camera_only_functions_pt() all_not_camera_only_functions = jnp.asarray( np.logical_not(all_camera_only_functions), dtype=jnp.bool_) is_not_camera_only = all_not_camera_only_functions[function_arg] camera_mask = jnp.logical_or(is_not_camera_only[jnp.newaxis], camera) camera_mask = jnp.reshape(camera_mask, [-1]) x = inputs[self._input_name] if self._use_layer_norm: x = util.visual_layer_norm(x) x = jax.nn.relu(x) if self._upscale_factor > 1: if self._use_depth_to_space: output_channels = self._upscale_factor * self._upscale_factor kernel_shape = self._kernel_size // self._upscale_factor x = hk.Conv2D( output_channels=output_channels, kernel_shape=kernel_shape)(x) x = pix.depth_to_space(x, self._upscale_factor)[:, :, 0] else: x = hk.Conv2DTranspose( # upscale output_channels=1, kernel_shape=self._kernel_size, stride=self._upscale_factor)(x)[:, :, 0] else: x = hk.Conv2D( output_channels=1, kernel_shape=self._kernel_size)(x)[:, :, 0] logits = jnp.reshape(x, [-1]) logits = sample.mask_logits(logits, camera_mask) outputs = types.StreamDict({self._logits_output_name: logits, self._mask_output_name: camera_mask}) return outputs, {}
alphastar-main
alphastar/architectures/components/visual.py
# Copyright 2021 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for visual.""" from typing import Callable, Optional, Sequence, Tuple, Union from absl.testing import absltest from absl.testing import parameterized from alphastar.architectures import util from alphastar.architectures.components import test_utils from alphastar.architectures.components import visual import chex import jax.numpy as jnp class VisualTest(test_utils.ComponentTest): """Basic tests for the visual components.""" @parameterized.product( is_training=[True, False], input_spatial_size=[1, 3, [4, 2]], input_feature_size=[None, 3], downscale_factor=[1, 2, 3], output_features_size=[1, 5], kernel_size=[1, 2, 3], fun=[jnp.sqrt, jnp.log1p], input_dtype=[jnp.uint8, jnp.float32]) def test_FeatureEncoder(self, is_training: bool, input_spatial_size: Union[int, Tuple[int, int]], input_feature_size: Optional[int], downscale_factor: int, output_features_size: int, kernel_size: int, fun: Callable[[chex.Array], chex.Array], input_dtype: jnp.dtype): kwargs = dict( input_name='input_stream', output_name='output_stream', input_spatial_size=input_spatial_size, input_feature_size=input_feature_size, downscale_factor=downscale_factor, output_features_size=output_features_size, kernel_size=kernel_size, fun=fun, input_dtype=input_dtype) if isinstance(input_spatial_size, int): input_spatial_size = (input_spatial_size, input_spatial_size) if ((input_spatial_size[0] % downscale_factor != 0) or (input_spatial_size[1] % downscale_factor != 0)): with self.assertRaises(ValueError): _ = visual.FeatureEncoder(**kwargs) else: component = visual.FeatureEncoder(**kwargs) self._test_component( component, batch_size=2, unroll_len=3 if is_training else 1) @parameterized.product( is_training=[True, False], input_spatial_size=[1, 3], downscale_factor=[1, 2, 3], num_classes=[1, 4], output_features_size=[1, 5], kernel_size=[1, 2, 3]) def test_Embedding(self, is_training: bool, input_spatial_size: int, downscale_factor: int, num_classes: int, output_features_size: int, kernel_size: int): kwargs = dict( input_name='input_stream', output_name='output_stream', input_spatial_size=input_spatial_size, downscale_factor=downscale_factor, num_classes=num_classes, output_features_size=output_features_size, kernel_size=kernel_size) if input_spatial_size % downscale_factor != 0: with self.assertRaises(ValueError): _ = visual.Embedding(**kwargs) else: component = visual.Embedding(**kwargs) self._test_component( component, batch_size=2, unroll_len=3 if is_training else 1) @parameterized.product( is_training=[True, False], input_spatial_size=[1, 3], downscale_factor=[1, 2, 3], output_features_size=[1, 5]) def test_CameraEncoder(self, is_training: bool, input_spatial_size: int, downscale_factor: int, output_features_size: int): kwargs = dict( output_name='output_stream', input_spatial_size=input_spatial_size, downscale_factor=downscale_factor, output_features_size=output_features_size) if input_spatial_size % downscale_factor != 0: with self.assertRaises(ValueError): _ = visual.CameraEncoder(**kwargs) else: component = visual.CameraEncoder(**kwargs) self._test_component( component, batch_size=2, unroll_len=3 if is_training else 1) @parameterized.product( is_training=[True, False], input_spatial_size=[1, 4], input_features_size=[1, 3], output_features_size=[1, 5], downscale_factor=[1, 2, 3], kernel_size=[1, 2, 3], use_layer_norm=[True, False]) def test_Downscale(self, is_training: bool, input_spatial_size: int, input_features_size: int, output_features_size: int, downscale_factor: int, kernel_size: int, use_layer_norm: bool): kwargs = dict(input_name='input_stream', output_name='output_stream', input_spatial_size=input_spatial_size, input_features_size=input_features_size, output_features_size=output_features_size, downscale_factor=downscale_factor, kernel_size=kernel_size, use_layer_norm=use_layer_norm) if input_spatial_size % downscale_factor != 0: with self.assertRaises(ValueError): _ = visual.Downscale(**kwargs) else: component = visual.Downscale(**kwargs) self._test_component( component, batch_size=2, unroll_len=3 if is_training else 1) @parameterized.product( is_training=[True, False], input_spatial_size=[1, 4], input_features_size=[1, 3], output_features_size=[1, 5], downscale_factor=[1, 2, 3], kernel_size=[1, 2, 3], use_layer_norm=[True, False]) def test_Upscale(self, is_training: bool, input_spatial_size: int, input_features_size: int, output_features_size: int, downscale_factor: int, kernel_size: int, use_layer_norm: bool): component = visual.Upscale(input_name='input_stream', output_name='output_stream', input_spatial_size=input_spatial_size, input_features_size=input_features_size, output_features_size=output_features_size, upscale_factor=downscale_factor, kernel_size=kernel_size, use_layer_norm=use_layer_norm) self._test_component( component, batch_size=2, unroll_len=3 if is_training else 1) @parameterized.product( is_training=[True, False], input_spatial_size=[1, 4], input_features_size=[1, 3], num_resblocks=[0, 2], kernel_size=[1, 2, 3], use_layer_norm=[True, False], num_hidden_feature_planes=[None, 3]) def test_Resnet(self, is_training: bool, input_spatial_size: int, input_features_size: int, num_resblocks: int, kernel_size: int, use_layer_norm: bool, num_hidden_feature_planes: Optional[int] = None): component = visual.Resnet( input_name='input_stream', output_name='output_stream', input_spatial_size=input_spatial_size, input_features_size=input_features_size, num_resblocks=num_resblocks, kernel_size=kernel_size, use_layer_norm=use_layer_norm, num_hidden_feature_planes=num_hidden_feature_planes) self._test_component( component, batch_size=2, unroll_len=3 if is_training else 1) @parameterized.product( is_training=[True, False], input_spatial_size=[1, 4, [3, 4]], input_features_size=[1, 3], output_size=[3], hidden_feature_sizes=[[], [2, 3]], downscale_factor=[1, 2, 3], kernel_size=[1, 2, 3], use_layer_norm=[True, False]) def test_ToVector(self, is_training: bool, input_spatial_size: int, input_features_size: int, output_size: int, hidden_feature_sizes: Sequence[int], downscale_factor: int, kernel_size: int, use_layer_norm: bool): kwargs = dict(input_name='input_stream', output_name='output_stream', input_spatial_size=input_spatial_size, input_features_size=input_features_size, vector_stream_size=output_size, hidden_feature_sizes=hidden_feature_sizes, downscale_factor=downscale_factor, kernel_size=kernel_size, use_layer_norm=use_layer_norm) if isinstance(input_spatial_size, int): input_spatial_size = (input_spatial_size, input_spatial_size) total_downscale_factor = downscale_factor ** len(hidden_feature_sizes) if ((input_spatial_size[0] % total_downscale_factor != 0) or (input_spatial_size[1] % total_downscale_factor != 0)): with self.assertRaises(ValueError): _ = visual.ToVector(**kwargs) else: component = visual.ToVector(**kwargs) self._test_component( component, batch_size=2, unroll_len=3 if is_training else 1) @parameterized.product( is_training=[True, False], input_spatial_size=[1, 4], input_features_size=[1, 3], upscale_factor=[1, 2, 3], kernel_size=[1, 2, 3], use_layer_norm=[True, False], use_depth_to_space=[True, False]) def test_Logits(self, is_training: bool, input_spatial_size: int, input_features_size: int, upscale_factor: int, kernel_size: int, use_layer_norm: bool, use_depth_to_space: bool): kwargs = dict(input_name='input_stream', input_spatial_size=input_spatial_size, input_features_size=input_features_size, logits_output_name=('logits', util.Argument.WORLD), mask_output_name=('masks', util.Argument.WORLD), upscale_factor=upscale_factor, kernel_size=kernel_size, use_layer_norm=use_layer_norm, use_depth_to_space=use_depth_to_space) if use_depth_to_space and kernel_size % upscale_factor != 0: with self.assertRaises(ValueError): _ = visual.Logits(**kwargs) else: component = visual.Logits(**kwargs) self._test_component( component, batch_size=2, unroll_len=3 if is_training else 1) if __name__ == '__main__': absltest.main()
alphastar-main
alphastar/architectures/components/visual_test.py
# Copyright 2021 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for units.""" from typing import Optional, Sequence from absl.testing import absltest from absl.testing import parameterized from alphastar import types from alphastar.architectures import modular from alphastar.architectures.components import common from alphastar.architectures.components import merge from alphastar.architectures.components import test_utils from alphastar.architectures.components import units from alphastar.architectures.components import util from alphastar.architectures.components.static_data import unit_encoder_data from alphastar.commons import sample from dm_env import specs import jax.numpy as jnp import numpy as np _UNIT_TAGS = 'unit_tags' class UnitsTest(test_utils.ComponentTest): """Basic tests for the units components.""" def test_encode_one_hot(self): raw_unit = np.zeros(47, np.int32) raw_unit[1] = 1 # alliance self.assertEqual(units._encode_one_hot(jnp.asarray(raw_unit), 1), (1, 5)) def test_encode_capped_one_hot(self): raw_unit = np.zeros(47, np.int32) raw_unit[1] = 1 # alliance self.assertEqual( units._encode_capped_one_hot(jnp.asarray(raw_unit), 1), (1, 5)) raw_unit[1] = 10_000 # alliance self.assertEqual( units._encode_capped_one_hot(jnp.asarray(raw_unit), 1), (4, 5)) def test_encode_sqrt_one_hot(self): raw_unit = np.zeros(47, np.int32) raw_unit[2] = 142 # health raw_unit[3] = 0 # shield self.assertEqual( units._encode_sqrt_one_hot(jnp.asarray(raw_unit), 2), (11, 39)) self.assertEqual( units._encode_sqrt_one_hot(jnp.asarray(raw_unit), 3), (0, 32)) raw_unit[2] = 10_000 # health self.assertEqual( units._encode_sqrt_one_hot(jnp.asarray(raw_unit), 2), (38, 39)) def test_encode_divided_one_hot(self): raw_unit = np.zeros(47, np.int32) raw_unit[2] = 142 # health self.assertEqual( units._encode_divided_one_hot(jnp.asarray(raw_unit), 2, 10), (14, 151)) self.assertEqual( units._encode_divided_one_hot(jnp.asarray(raw_unit), 2, 9), (15, 167)) self.assertEqual( units._encode_divided_one_hot(jnp.asarray(raw_unit), 2, 2), (71, 751)) raw_unit[2] = 10_000 # health self.assertEqual( units._encode_divided_one_hot(jnp.asarray(raw_unit), 2, 10), (150, 151)) def test_encode_mined_resource_one_hot(self): raw_unit = np.zeros(47, np.int32) raw_unit[0] = 149 # unit_type (VespeneGeyser) raw_unit[21] = 1042 # vespene_contents self.assertEqual( units._encode_mined_resource_one_hot(jnp.asarray(raw_unit), 21, 256), (34, 51)) raw_unit[0] = 18 # unit_type (Barracks) self.assertEqual( units._encode_mined_resource_one_hot(jnp.asarray(raw_unit), 21, 256), (0, 51)) raw_unit[0] = 149 # unit_type (VespeneGeyser) raw_unit[21] = 10_000 # vespene_contents self.assertEqual( units._encode_mined_resource_one_hot(jnp.asarray(raw_unit), 21, 256), (0, 51)) def test_encode_addon_lookup(self): addon_lookup = unit_encoder_data.get_addon_lookup(256) self.assertEqual( units._encode_lookup(jnp.asarray(34), addon_lookup), (1, 7)) self.assertEqual( units._encode_lookup(jnp.asarray(0), addon_lookup), (0, 7)) self.assertEqual( units._encode_lookup(jnp.asarray(10_000), addon_lookup), (0, 7)) def test_encode_order_id_lookup(self): action_spec = types.SpecDict({ 'function': specs.BoundedArray((), jnp.int32, 0, 555)}) function_list = util.get_function_list(action_spec) function_names = [f.name for f in function_list] order_id_lookup = unit_encoder_data.get_order_id_lookup(function_names) id_1 = [x.id for x in function_list if x.name == 'Patrol_Patrol_unit'][0] id_2 = [x.id for x in function_list if x.name == 'Patrol_unit'][0] id_3 = [x.id for x in function_list if x.name == 'Load_unit'][0] lookup_1, num1 = units._encode_lookup(jnp.asarray(id_1), order_id_lookup) lookup_2, _ = units._encode_lookup(jnp.asarray(id_2), order_id_lookup) lookup_3, _ = units._encode_lookup(jnp.asarray(id_3), order_id_lookup) self.assertEqual(lookup_1, lookup_2) self.assertEqual(num1, max(order_id_lookup) + 1) self.assertNotEqual(lookup_1, lookup_3) id_4 = [x.id for x in function_list if x.name == 'no_op'][0] id_5 = [x.id for x in function_list if x.name == 'Research_ZergMeleeWeaponsLevel2_quick'][0] build_queue_order_id_lookup = ( unit_encoder_data.get_build_queue_order_id_lookup(function_names)) lookup_1b, num_1b = units._encode_lookup( jnp.asarray(id_1), build_queue_order_id_lookup) lookup_3b, _ = units._encode_lookup( jnp.asarray(id_3), build_queue_order_id_lookup) lookup_4b, _ = units._encode_lookup( jnp.asarray(id_4), build_queue_order_id_lookup) lookup_5b, _ = units._encode_lookup( jnp.asarray(id_5), build_queue_order_id_lookup) self.assertEqual(lookup_1b, lookup_3b) self.assertEqual(num_1b, max(build_queue_order_id_lookup) + 1) self.assertEqual(lookup_1b, lookup_4b) self.assertNotEqual(lookup_4b, lookup_5b) def test_features_embedding(self): raw_unit = np.zeros(47, np.int32) raw_unit[6] = 42 # build_progress raw_unit[7] = 6 # health_ratio raw_unit[8] = 255 # shield_ratio raw_unit[9] = 0 # energy_ratio raw_unit[13] = 3 # y (not used) raw_unit[36] = 4 # order_progress_1 raw_unit[37] = 78 # order_progress_1 raw_unit[38] = 4 # order_id_2 (not used) rescales = { 6: 1. / 100, 7: 1. / 255, 8: 1. / 255, 9: 1. / 255, 36: 1. / 100, 37: 1. / 100} embeddings = units._features_embedding(jnp.asarray(raw_unit), rescales) np.testing.assert_allclose(embeddings, jnp.asarray([ 0.42, 6./255, 1., 0., 0.04, 0.78])) def test_binary_scale_embedding(self): np.testing.assert_array_equal( units._binary_scale_embedding(jnp.asarray(42), 256), jnp.asarray([0, 1, 0, 1, 0, 1, 0, 0], jnp.float32)) np.testing.assert_array_equal( units._binary_scale_embedding(jnp.asarray(119), 128), jnp.asarray([1, 1, 1, 0, 1, 1, 1], jnp.float32)) def test_remap_and_one_hot_embedding(self): action_spec = types.SpecDict({ 'function': specs.BoundedArray((), jnp.int32, 0, 555)}) function_list = util.get_function_list(action_spec) function_names = [f.name for f in function_list] id_1 = [x.id for x in function_list if x.name == 'Halt_Building_quick'][0] id_2 = [x.id for x in function_list if x.name == 'Halt_quick'][0] order_id_lookup = unit_encoder_data.get_order_id_lookup(function_names) one_hot_1 = units._remap_and_one_hot_embedding( jnp.asarray(id_1), order_id_lookup) one_hot_2 = units._remap_and_one_hot_embedding( jnp.asarray(id_2), order_id_lookup) np.testing.assert_array_equal(one_hot_1, one_hot_2) @parameterized.product( is_training=[True, False], output_size=[1, 4]) def test_UnitsEncoder(self, is_training: bool, output_size: int): input_spec, action_spec = test_utils.get_test_specs(is_training) component = units.UnitsEncoder( max_num_observed_units=input_spec['observation', 'raw_units'].shape[0], output_name='output_stream', num_raw_unit_features=input_spec['observation', 'raw_units'].shape[1], units_stream_size=output_size, action_spec=action_spec, num_unit_types=256, num_buff_types=5) self._test_component( component, batch_size=2, unroll_len=3 if is_training else 1) @parameterized.product( is_training=[True, False], units_stream_size=[3], transformer_num_layers=[0, 2], transformer_num_heads=[1, 2], transformer_key_size=[4], transformer_value_size=[5], resblocks_num_before=[0, 1], resblocks_num_after=[0, 1], resblocks_hidden_size=[None, 3], use_layer_norm=[True, False]) def test_Transformer(self, is_training: bool, units_stream_size: int, transformer_num_layers: int, transformer_num_heads: int, transformer_key_size: int, transformer_value_size: int, resblocks_num_before: int, resblocks_num_after: int, resblocks_hidden_size: Optional[int], use_layer_norm: bool): input_spec, _ = test_utils.get_test_specs(is_training) component = units.Transformer( max_num_observed_units=input_spec['observation', 'raw_units'].shape[0], units_stream_size=units_stream_size, transformer_num_layers=transformer_num_layers, transformer_num_heads=transformer_num_heads, transformer_key_size=transformer_key_size, transformer_value_size=transformer_value_size, resblocks_num_before=resblocks_num_before, resblocks_num_after=resblocks_num_after, resblocks_hidden_size=resblocks_hidden_size, use_layer_norm=use_layer_norm, input_name='input_stream', output_name='output_stream') self._test_component( component, batch_size=2, unroll_len=3 if is_training else 1) @parameterized.product( is_training=[True, False], input_size=[1, 4], layer_sizes=[[1], [3, 2]], use_layer_norm=[True, False]) def test_MLP(self, is_training: bool, input_size: int, layer_sizes: Sequence[int], use_layer_norm: bool): input_spec, _ = test_utils.get_test_specs(is_training) component = units.MLP( max_num_observed_units=input_spec['observation', 'raw_units'].shape[0], units_stream_size=input_size, layer_sizes=layer_sizes, use_layer_norm=use_layer_norm, input_name='input_stream', output_name='output_stream') self._test_component( component, batch_size=2, unroll_len=3 if is_training else 1) @parameterized.product( is_training=[True, False], units_stream_size=[1, 3], units_hidden_sizes=[[], [1], [2, 4]], vector_stream_size=[1, 4], use_layer_norm=[True, False]) def test_ToVector(self, is_training: bool, units_stream_size: int, units_hidden_sizes: Sequence[int], vector_stream_size: int, use_layer_norm: bool = True): input_spec, _ = test_utils.get_test_specs(is_training) component = units.ToVector( input_name='input_stream', output_name='output_stream', max_num_observed_units=input_spec['observation', 'raw_units'].shape[0], units_stream_size=units_stream_size, units_hidden_sizes=units_hidden_sizes, vector_stream_size=vector_stream_size, use_layer_norm=use_layer_norm) self._test_component( component, batch_size=2, unroll_len=3 if is_training else 1) @parameterized.product( is_training=[True, False], units_stream_size=[2], units_world_dim=[1, 4], units_hidden_sizes=[[], [1], [2, 4]], output_spatial_size=[1, 4], output_features_size=[1, 3], kernel_size=[1, 2, 3], use_layer_norm=[True, False]) def test_ToVisualScatter(self, is_training: bool, units_stream_size: int, units_world_dim: int, units_hidden_sizes: Sequence[int], output_spatial_size: int, output_features_size: int, kernel_size: int, use_layer_norm: bool): input_spec, _ = test_utils.get_test_specs(is_training) kwargs = dict( input_name='input_stream', output_name='output_stream', max_num_observed_units=input_spec['observation', 'raw_units'].shape[0], num_raw_unit_features=input_spec['observation', 'raw_units'].shape[1], units_stream_size=units_stream_size, units_world_dim=units_world_dim, units_hidden_sizes=units_hidden_sizes, output_spatial_size=output_spatial_size, output_features_size=output_features_size, kernel_size=kernel_size, use_layer_norm=use_layer_norm) if units_world_dim % output_spatial_size != 0: with self.assertRaises(ValueError): units.ToVisualScatter(**kwargs) else: component = units.ToVisualScatter(**kwargs) self._test_component( component, batch_size=2, unroll_len=3 if is_training else 1) @parameterized.product( is_training=[True, False], query_input_size=[4], keys_input_size=[3], unit_tags_masking=list(units.UnitTagsMasking), num_layers_query=[0, 1], num_layers_keys=[0, 1], key_size=[3, 4, 5], use_layer_norm=[True, False]) def test_PointerLogits(self, is_training: bool, unit_tags_masking: units.UnitTagsMasking, query_input_size: int, keys_input_size: int, num_layers_query: int, num_layers_keys: int, key_size: int, use_layer_norm: bool): input_spec, _ = test_utils.get_test_specs(is_training) kwargs = dict( max_num_observed_units=input_spec['observation', 'raw_units'].shape[0], num_raw_unit_features=input_spec['observation', 'raw_units'].shape[1], logits_output_name=('logits', 'target_unit_tag'), mask_output_name=('masks', 'target_unit_tag'), query_input_size=query_input_size, keys_input_size=keys_input_size, unit_tags_masking=unit_tags_masking, query_input_name='vector_stream', keys_input_name='units_stream', num_layers_query=num_layers_query, num_layers_keys=num_layers_keys, key_size=key_size, use_layer_norm=use_layer_norm) expect_error = False if num_layers_query == 0 and key_size != query_input_size: expect_error = True if num_layers_keys == 0 and key_size != keys_input_size: expect_error = True if expect_error: with self.assertRaises(ValueError): units.PointerLogits(**kwargs) else: component = units.PointerLogits(**kwargs) self._test_component( component, batch_size=2, unroll_len=3 if is_training else 1) @parameterized.product( is_training=[True, False], vector_input_size=[1, 3]) def test_FinalizeUnitTagsLogits(self, is_training: bool, vector_input_size: int): input_spec, _ = test_utils.get_test_specs(is_training) component = units.FinalizeUnitTagsLogits( input_logits_name='pre_logits_stream', input_mask_name='pre_mask_stream', output_logits_name='logits_stream', output_mask_name='mask_stream', vector_input_name='vector_input', max_num_observed_units=input_spec['observation', 'raw_units'].shape[0], vector_input_size=vector_input_size) self._test_component( component, batch_size=2, unroll_len=3 if is_training else 1) @parameterized.parameters(True, False) def test_UnitTagsHead(self, is_training: bool): input_spec, action_spec = test_utils.get_test_specs(is_training) inner_component = modular.SequentialComponent() num_units = input_spec['observation', 'raw_units'].shape[0] inner_component.append(units.PointerLogits( max_num_observed_units=num_units, num_raw_unit_features=input_spec['observation', 'raw_units'].shape[1], logits_output_name=('logits', _UNIT_TAGS), mask_output_name=('masks', _UNIT_TAGS), query_input_size=num_units, keys_input_size=6, unit_tags_masking=units.UnitTagsMasking.SELECTABLE, query_input_name='query_stream', keys_input_name='keys_stream', num_layers_query=1, num_layers_keys=0, key_size=6, use_layer_norm=True)) inner_component.append(merge.SumMerge( input_names=[('logits', _UNIT_TAGS), 'per_step_input_stream'], output_name='query_stream', stream_shape=(num_units,))) inner_component.append(common.Sample( argument_name=_UNIT_TAGS, num_logits=input_spec['observation', 'raw_units'].shape[0], sample_fn=sample.sample)) component = units.UnitTagsHead( inner_component=inner_component, constant_inputs=['keys_stream', ('observation', 'raw_units')], carries=['query_stream'], per_step_inputs=['per_step_input_stream'], per_step_outputs=[('masks', _UNIT_TAGS), ('action', _UNIT_TAGS)], max_num_selected_units=action_spec['unit_tags'].shape[0], max_num_observed_units=num_units, action_output=('action', _UNIT_TAGS)) self._test_component( component, batch_size=2, unroll_len=3 if is_training else 1) if __name__ == '__main__': absltest.main()
alphastar-main
alphastar/architectures/components/units_test.py
# Copyright 2021 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for vector.""" from typing import Callable, Optional, Sequence, Tuple from absl.testing import absltest from absl.testing import parameterized from alphastar import types from alphastar.architectures.components import test_utils from alphastar.architectures.components import vector import chex import jax.numpy as jnp class VectorTest(test_utils.ComponentTest): """Basic tests for the vector components.""" @parameterized.product( is_training=[True, False], num_features=[1, 3], output_size=[1, 4], fun=[jnp.sqrt, jnp.log1p]) def test_VectorEncoder(self, is_training: bool, num_features: int, output_size: int, fun: Callable[[chex.Array], chex.Array]): component = vector.VectorEncoder(input_name='input_stream', output_name='output_stream', num_features=num_features, output_size=output_size, fun=fun) self._test_component( component, batch_size=2, unroll_len=3 if is_training else 1) @parameterized.product( is_training=[True, False], num_classes=[1, 3], output_size=[1, 4], mask_name=[None, 'mask_stream'], fun=[None, lambda x: x * 0.1]) def test_Embedding(self, is_training: bool, num_classes: int, output_size: int, mask_name: Optional[types.StreamType] = None, fun: Optional[float] = None): component = vector.Embedding(input_name='input_stream', output_name='output_stream', num_classes=num_classes, output_size=output_size, mask_name=mask_name, fun=fun) self._test_component( component, batch_size=2, unroll_len=3 if is_training else 1) @parameterized.product( is_training=[True, False], input_size=[1, 4], num_classes=[1, 3]) def test_FixedLengthToMask(self, is_training: bool, input_size: int, num_classes: int): component = vector.FixedLengthToMask(input_name='input_stream', output_name='output_stream', input_size=input_size, num_classes=num_classes) self._test_component( component, batch_size=2, unroll_len=3 if is_training else 1) @parameterized.product( is_training=[True, False], input_size=[1, 4], output_size=[1, 3], mask_name=[None, 'mask_stream']) def test_BinaryVectorEmbedding(self, is_training: bool, input_size: int, output_size: int, mask_name: Optional[types.StreamType] = None): component = vector.BinaryVectorEmbedding(input_name='input_stream', output_name='output_stream', input_size=input_size, output_size=output_size, mask_name=mask_name) self._test_component( component, batch_size=2, unroll_len=3 if is_training else 1) @parameterized.product( is_training=[True, False], encoding_size=[2, 4], output_size=[1, 3]) def test_ClockFeatureEncoder(self, is_training: bool, encoding_size: int, output_size: int): component = vector.ClockFeatureEncoder(input_name='input_stream', output_name='output_stream', encoding_size=encoding_size, output_size=output_size) self._test_component( component, batch_size=2, unroll_len=3 if is_training else 1) @parameterized.product( is_training=[True, False], input_size=[1, 4], num_resblocks=[0, 1, 2], use_layer_norm=[True, False]) def test_Resnet(self, is_training: bool, input_size: int, num_resblocks: int, use_layer_norm: bool): component = vector.Resnet(input_name='input_stream', output_name='output_stream', input_size=input_size, num_resblocks=num_resblocks, use_layer_norm=use_layer_norm) self._test_component( component, batch_size=2, unroll_len=3 if is_training else 1) @parameterized.product( is_training=[True, False], input_size=[1, 4], output_features_size=[1, 3], features_size_and_upscale=[[3, [3], 1], [8, [5, 3], 2], [3, [3], 3]], use_layer_norm=[True, False], kernel_size=[1, 2, 3]) def test_ToVisual(self, is_training: bool, input_size: int, output_features_size: int, features_size_and_upscale: Tuple[int, Sequence[int], int], use_layer_norm: bool, kernel_size: int): output_spatial_size, hidden_feature_sizes, upscale_factor = ( features_size_and_upscale) component = vector.ToVisual(input_name='input_stream', output_name='output_stream', input_size=input_size, output_spatial_size=output_spatial_size, output_features_size=output_features_size, hidden_feature_sizes=hidden_feature_sizes, upscale_factor=upscale_factor, use_layer_norm=use_layer_norm, kernel_size=kernel_size) self._test_component( component, batch_size=2, unroll_len=3 if is_training else 1) @parameterized.product( is_training=[True, False], num_logits=[1, 4], input_size=[1, 3], num_linear_layers=[1, 2], use_layer_norm=[True, False]) def test_Logits(self, is_training: bool, num_logits: int, input_size: int, num_linear_layers: int = 2, use_layer_norm: bool = True): component = vector.Logits(num_logits=num_logits, input_size=input_size, logits_output_name=('logits', 'function'), mask_output_name=('masks', 'function'), input_name='input_stream', num_linear_layers=num_linear_layers, use_layer_norm=use_layer_norm) self._test_component( component, batch_size=2, unroll_len=3 if is_training else 1) if __name__ == '__main__': absltest.main()
alphastar-main
alphastar/architectures/components/vector_test.py
# Copyright 2021 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """List of function arguments which are forbidden outside the camera view.""" import numpy as np from pysc2.lib import actions as sc2_actions def get_on_camera_only_functions_unit() -> np.ndarray: """Get numpy arrays for forbidden function aruments (for target_unit_tag). A function is allowed if this function can target a unit outside the camera view. Returns: A numpy array or size [num_functions] with allowed actions. """ # The comments represent the proportion of this action being taken inside the # camera view. A ratio smaller than 1 means that it is possible to take the # action outside the camera view, but a ratio too very close to 1 can # probably be attributed to extremely rare cases of lag. forbidden_strings_unit = [ "Effect_Heal_unit", # 1.0 "Load_unit", # 1.0 "UnloadAllAt_unit", # 0.999983450056 "Effect_Repair_unit", # 0.999948423984 "Effect_ParasiticBomb_unit", # 0.999918923301 "Effect_NeuralParasite_unit", # 0.999915218313 "Effect_InterferenceMatrix_unit", # 0.999906153954 "Effect_Transfusion_unit", # 0.999903032766 "Effect_KD8Charge_unit", # 0.999860876478 "Effect_GravitonBeam_unit", # 0.999811122204 "Effect_Feedback_unit", # 0.999803439803 "Effect_AntiArmorMissile_unit", # 0.999800478851 "Rally_Workers_unit", # 0.99979222557 "Harvest_Gather_unit", # 0.999783643444 "Effect_GhostSnipe_unit", # 0.999712542302 "Effect_CalldownMULE_unit", # 0.999684635984 "Effect_YamatoGun_unit", # 0.999666009288 "Effect_Abduct_unit", # 0.99961916632 "Effect_Restore_unit", # 0.999610894942 "Effect_LockOn_unit", # 0.999435436919 "Effect_CausticSpray_unit", # 0.999386466788 "Build_Assimilator_unit", # 0.999380867711 "Effect_ChronoBoostEnergyCost_unit", # 0.999369350264 "Effect_SupplyDrop_unit", # 0.999364486992 "Attack_unit", # 0.999226272993 "Build_Extractor_unit", # 0.999015262677 ] num_functions = len(sc2_actions.RAW_FUNCTIONS) func_forbidden_unit = np.zeros((num_functions,), dtype=np.bool_) for func in sc2_actions.RAW_FUNCTIONS: if func.name in forbidden_strings_unit: func_forbidden_unit[func.id] = True return func_forbidden_unit def get_on_camera_only_functions_pt() -> np.ndarray: """Get numpy arrays for forbidden function aruments (for world targets). A function is allowed if this function can target a point outside the camera view. Returns: A numpy array or size [num_functions] with allowed actions. """ # See get_on_camera_only_functions_unit for an explanation about this: forbidden_strings_pt = [ "Build_SpawningPool_pt", # 0.999961021547 "Build_RoboticsFacility_pt", # 0.999951444054 "Build_DarkShrine_pt", # 0.999946532642 "Build_ShieldBattery_pt", # 0.999942637826 "Build_CyberneticsCore_pt", # 0.999935187586 "Build_FleetBeacon_pt", # 0.999916742986 "Build_Forge_pt", # 0.999885483468 "Build_Bunker_pt", # 0.999880587034 "Build_TwilightCouncil_pt", # 0.999878848251 "TrainWarp_Sentry_pt", # 0.999874913631 "Build_RoboticsBay_pt", # 0.999865885824 "Build_EvolutionChamber_pt", # 0.999857662698 "Build_Gateway_pt", # 0.99983839885 "Build_RoachWarren_pt", # 0.999834649776 "Build_LurkerDen_pt", # 0.999834011121 "Build_Reactor_pt", # 0.999822511059 "Build_PhotonCannon_pt", # 0.999820207885 "Build_TemplarArchive_pt", # 0.999805560957 "Build_Factory_pt", # 0.999803283379 "Build_UltraliskCavern_pt", # 0.999794175157 "Build_Stargate_pt", # 0.999792180443 "Effect_KD8Charge_pt", # 0.999764604339 "Build_BanelingNest_pt", # 0.999760468917 "Effect_ForceField_pt", # 0.999744805733 "Effect_BlindingCloud_pt", # 0.999743754004 "Build_Barracks_pt", # 0.999720537569 "Build_GhostAcademy_pt", # 0.99971667375 "Build_InfestationPit_pt", # 0.999707345625 "Build_Starport_pt", # 0.999704161829 "TrainWarp_Adept_pt", # 0.999697424477 "Build_SpineCrawler_pt", # 0.999697112121 "Build_NydusNetwork_pt", # 0.999696251747 "TrainWarp_HighTemplar_pt", # 0.999682031856 "TrainWarp_DarkTemplar_pt", # 0.999670937893 "Build_HydraliskDen_pt", # 0.999667068958 "Effect_PsiStorm_pt", # 0.999665857415 "Build_Nexus_pt", # 0.999633286184 "Build_Hatchery_pt", # 0.999602838197 "Build_TechLab_pt", # 0.999594232302 "Build_EngineeringBay_pt", # 0.999573728563 "Morph_Root_pt", # 0.999563520376 "Build_NydusWorm_pt", # 0.99955992372 "Build_Armory_pt", # 0.99951750906 "Build_SporeCrawler_pt", # 0.999503242441 "Effect_EMP_pt", # 0.999490282118 "Build_Spire_pt", # 0.999481813652 "Effect_FungalGrowth_pt", # 0.999471675961 "Build_SupplyDepot_pt", # 0.999392261968 "Effect_CorrosiveBile_pt", # 0.999334492724 "Build_FusionCore_pt", # 0.999280989359 "TrainWarp_Zealot_pt", # 0.999219225426 "TrainWarp_Stalker_pt", # 0.999179110584 "Build_Pylon_pt", # 0.999056181889 "Effect_TimeWarp_pt", # 0.999025341131 "Build_CommandCenter_pt", # 0.998844091799 "Build_MissileTurret_pt", # 0.998724833923 "Land_pt", # 0.998663265556 "Effect_InfestedTerrans_pt", # 0.998277927523 "Build_SensorTower_pt", # 0.998016675332 "Build_Refinery_pt", # 0.997900839664 "Build_StasisTrap_pt", # 0.997851289226 "Effect_OracleRevelation_pt", # 0.997267759563 "Effect_AutoTurret_pt", # 0.997062686567 "Effect_PurificationNova_pt", # 0.995978149949 ] num_functions = len(sc2_actions.RAW_FUNCTIONS) func_forbidden_pt = np.zeros((num_functions,), dtype=np.bool_) for func in sc2_actions.RAW_FUNCTIONS: if func.name in forbidden_strings_pt: func_forbidden_pt[func.id] = 1 return func_forbidden_pt
alphastar-main
alphastar/architectures/components/static_data/camera_masks.py
# Copyright 2021 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
alphastar-main
alphastar/architectures/components/static_data/__init__.py
# Copyright 2021 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Lookups for the drastic torso preprocessors.""" import enum import itertools from typing import List, Mapping, Optional import chex import numpy as np from pysc2.env.converter.cc.game_data.python import uint8_lookup from pysc2.lib import actions as sc2_actions from pysc2.lib import units as sc2_units from pysc2.lib.features import FeatureUnit from s2clientprotocol import raw_pb2 as sc_raw INITIAL_MINERALS_CONTENTS = { sc2_units.Neutral.RichMineralField: 1500, sc2_units.Neutral.RichMineralField750: 750, sc2_units.Neutral.MineralField: 1800, sc2_units.Neutral.MineralField750: 750, sc2_units.Neutral.LabMineralField: 1800, sc2_units.Neutral.LabMineralField750: 750, sc2_units.Neutral.PurifierRichMineralField: 1500, sc2_units.Neutral.PurifierRichMineralField750: 750, sc2_units.Neutral.BattleStationMineralField: 1500, sc2_units.Neutral.BattleStationMineralField750: 750, sc2_units.Neutral.PurifierMineralField: 1500, sc2_units.Neutral.PurifierMineralField750: 750, } INITIAL_VESPENE_CONTENTS = { sc2_units.Neutral.VespeneGeyser: 2250, sc2_units.Neutral.RichVespeneGeyser: 2500, sc2_units.Neutral.PurifierVespeneGeyser: 2250, sc2_units.Neutral.ShakurasVespeneGeyser: 2250, } INITIAL_RESOURCE_CONTENTS = dict(itertools.chain( INITIAL_MINERALS_CONTENTS.items(), INITIAL_VESPENE_CONTENTS.items())) MAX_VALUES = { FeatureUnit.alliance: max(sc_raw.Alliance.values()), FeatureUnit.health: 1500, FeatureUnit.shield: 1000, FeatureUnit.energy: 200, FeatureUnit.cargo_space_taken: 8, FeatureUnit.display_type: max(sc_raw.DisplayType.values()), FeatureUnit.cloak: max(sc_raw.CloakState.values()), FeatureUnit.is_powered: 1, FeatureUnit.mineral_contents: max(INITIAL_MINERALS_CONTENTS.values()), FeatureUnit.vespene_contents: max(INITIAL_VESPENE_CONTENTS.values()), FeatureUnit.cargo_space_max: 8, FeatureUnit.assigned_harvesters: 24, FeatureUnit.ideal_harvesters: 16, FeatureUnit.weapon_cooldown: 32, FeatureUnit.order_length: 8, FeatureUnit.hallucination: 1, FeatureUnit.active: 1, FeatureUnit.is_on_screen: 1, FeatureUnit.is_blip: 1, FeatureUnit.order_progress_0: 100, FeatureUnit.order_progress_1: 100, FeatureUnit.is_in_cargo: 1, FeatureUnit.buff_duration_remain: 250, FeatureUnit.attack_upgrade_level: 4, FeatureUnit.armor_upgrade_level: 4, FeatureUnit.shield_upgrade_level: 4, # Previous arguments: -2: 1, -1: 1, } # This table maps the redundant and unused order id to their remapped version. # Everything not in this map is not remapped, so this is future-proof. REDUNDANT_GENERIC_ORDER_ID = { "Attack_Attack_pt": "Attack_pt", "Attack_AttackBuilding_pt": "Attack_pt", "Attack_Attack_unit": "Attack_unit", "Attack_AttackBuilding_unit": "Attack_unit", "Attack_Battlecruiser_pt": "Attack_pt", "Attack_Battlecruiser_unit": "Attack_unit", "Attack_Redirect_pt": "Attack_pt", "Attack_Redirect_unit": "Attack_unit", "Behavior_BuildingAttackOff_quick": "no_op", "Behavior_BuildingAttackOn_quick": "no_op", "Behavior_CloakOff_Banshee_quick": "Behavior_CloakOff_quick", "Behavior_CloakOff_Ghost_quick": "Behavior_CloakOff_quick", "Behavior_CloakOn_Banshee_quick": "Behavior_CloakOn_quick", "Behavior_CloakOn_Ghost_quick": "Behavior_CloakOn_quick", "Behavior_HoldFireOff_Ghost_quick": "Behavior_HoldFireOff_quick", "Behavior_HoldFireOff_Lurker_quick": "Behavior_HoldFireOff_quick", "Behavior_HoldFireOn_Ghost_quick": "Behavior_HoldFireOn_quick", "Behavior_HoldFireOn_Lurker_quick": "Behavior_HoldFireOn_quick", "Build_CreepTumor_Queen_pt": "Build_CreepTumor_pt", "Build_CreepTumor_Tumor_pt": "Build_CreepTumor_pt", "Build_Reactor_Barracks_pt": "Build_Reactor_pt", "Build_Reactor_Barracks_quick": "Build_Reactor_quick", "Build_Reactor_Factory_pt": "Build_Reactor_pt", "Build_Reactor_Factory_quick": "Build_Reactor_quick", "Build_Reactor_Starport_pt": "Build_Reactor_pt", "Build_Reactor_Starport_quick": "Build_Reactor_quick", "Build_TechLab_Barracks_pt": "Build_TechLab_pt", "Build_TechLab_Barracks_quick": "Build_TechLab_quick", "Build_TechLab_Factory_pt": "Build_TechLab_pt", "Build_TechLab_Factory_quick": "Build_TechLab_quick", "Build_TechLab_Starport_pt": "Build_TechLab_pt", "Build_TechLab_Starport_quick": "Build_TechLab_quick", "BurrowDown_Baneling_quick": "BurrowDown_quick", "BurrowDown_Drone_quick": "BurrowDown_quick", "BurrowDown_Hydralisk_quick": "BurrowDown_quick", "BurrowDown_Infestor_quick": "BurrowDown_quick", "BurrowDown_InfestorTerran_quick": "BurrowDown_quick", "BurrowDown_Lurker_quick": "BurrowDown_quick", "BurrowDown_Queen_quick": "BurrowDown_quick", "BurrowDown_Ravager_quick": "BurrowDown_quick", "BurrowDown_Roach_quick": "BurrowDown_quick", "BurrowDown_SwarmHost_quick": "BurrowDown_quick", "BurrowDown_Ultralisk_quick": "BurrowDown_quick", "BurrowDown_WidowMine_quick": "BurrowDown_quick", "BurrowDown_Zergling_quick": "BurrowDown_quick", "BurrowUp_Baneling_autocast": "BurrowUp_autocast", "BurrowUp_Baneling_quick": "BurrowUp_quick", "BurrowUp_Drone_quick": "BurrowUp_quick", "BurrowUp_Hydralisk_autocast": "BurrowUp_autocast", "BurrowUp_Hydralisk_quick": "BurrowUp_quick", "BurrowUp_Infestor_quick": "BurrowUp_quick", "BurrowUp_InfestorTerran_autocast": "BurrowUp_autocast", "BurrowUp_InfestorTerran_quick": "BurrowUp_quick", "BurrowUp_Lurker_quick": "BurrowUp_quick", "BurrowUp_Queen_autocast": "BurrowUp_autocast", "BurrowUp_Queen_quick": "BurrowUp_quick", "BurrowUp_Ravager_autocast": "BurrowUp_autocast", "BurrowUp_Ravager_quick": "BurrowUp_quick", "BurrowUp_Roach_autocast": "BurrowUp_autocast", "BurrowUp_Roach_quick": "BurrowUp_quick", "BurrowUp_SwarmHost_quick": "BurrowUp_quick", "BurrowUp_Ultralisk_autocast": "BurrowUp_autocast", "BurrowUp_Ultralisk_quick": "BurrowUp_quick", "BurrowUp_WidowMine_quick": "BurrowUp_quick", "BurrowUp_Zergling_autocast": "BurrowUp_autocast", "BurrowUp_Zergling_quick": "BurrowUp_quick", "Cancel_AdeptPhaseShift_quick": "Cancel_quick", "Cancel_AdeptShadePhaseShift_quick": "Cancel_quick", "Cancel_BarracksADDON_quick": "Cancel_quick", "Cancel_BuildInProgress_quick": "Cancel_quick", "Cancel_CreepTumor_quick": "Cancel_quick", "Cancel_FactoryADDON_quick": "Cancel_quick", "Cancel_GravitonBeam_quick": "Cancel_quick", "Cancel_HangarQueue5_quick": "Cancel_quick", "Cancel_Last_quick": "Cancel_quick", "Cancel_LockOn_quick": "Cancel_quick", "Cancel_MorphBroodlord_quick": "Cancel_quick", "Cancel_MorphGreaterSpire_quick": "Cancel_quick", "Cancel_MorphHive_quick": "Cancel_quick", "Cancel_MorphLair_quick": "Cancel_quick", "Cancel_MorphLurkerDen_quick": "Cancel_quick", "Cancel_MorphLurker_quick": "Cancel_quick", "Cancel_MorphMothership_quick": "Cancel_quick", "Cancel_MorphOrbital_quick": "Cancel_quick", "Cancel_MorphOverlordTransport_quick": "Cancel_quick", "Cancel_MorphOverseer_quick": "Cancel_quick", "Cancel_MorphPlanetaryFortress_quick": "Cancel_quick", "Cancel_MorphRavager_quick": "Cancel_quick", "Cancel_MorphThorExplosiveMode_quick": "Cancel_quick", "Cancel_NeuralParasite_quick": "Cancel_quick", "Cancel_Nuke_quick": "Cancel_quick", "Cancel_Queue1_quick": "Cancel_quick", "Cancel_Queue5_quick": "Cancel_quick", "Cancel_QueueADDON_quick": "Cancel_quick", "Cancel_QueueCancelToSelection_quick": "Cancel_quick", "Cancel_QueuePassiveCancelToSelection_quick": "Cancel_quick", "Cancel_QueuePassive_quick": "Cancel_quick", "Cancel_SpineCrawlerRoot_quick": "Cancel_quick", "Cancel_SporeCrawlerRoot_quick": "Cancel_quick", "Cancel_StarportADDON_quick": "Cancel_quick", "Cancel_StasisTrap_quick": "Cancel_quick", "Cancel_VoidRayPrismaticAlignment_quick": "Cancel_quick", "Effect_Blink_Stalker_pt": "Effect_Blink_pt", "Effect_ChronoBoost_unit": "Effect_ChronoBoostEnergyCost_unit", "Effect_MassRecall_Mothership_pt": "Effect_MassRecall_pt", "Effect_MassRecall_Nexus_pt": "Effect_MassRecall_pt", "Effect_MassRecall_StrategicRecall_pt": "Effect_MassRecall_pt", "Effect_Repair_Mule_autocast": "Effect_Repair_autocast", "Effect_Repair_Mule_unit": "Effect_Repair_unit", "Effect_Repair_RepairDrone_autocast": "Effect_Repair_autocast", "Effect_Repair_RepairDrone_unit": "Effect_Repair_unit", "Effect_Repair_SCV_autocast": "Effect_Repair_autocast", "Effect_Repair_SCV_unit": "Effect_Repair_unit", "Effect_ShadowStride_pt": "Effect_Blink_pt", "Effect_Spray_pt": "no_op", "Effect_Spray_Protoss_pt": "no_op", "Effect_Spray_Terran_pt": "no_op", "Effect_Spray_Zerg_pt": "no_op", "Effect_Stim_Marauder_quick": "Effect_Stim_quick", "Effect_Stim_Marauder_Redirect_quick": "Effect_Stim_quick", "Effect_Stim_Marine_quick": "Effect_Stim_quick", "Effect_Stim_Marine_Redirect_quick": "Effect_Stim_quick", "Effect_WidowMineAttack_pt": "Attack_pt", "Effect_WidowMineAttack_unit": "Attack_unit", "Halt_Building_quick": "Halt_quick", "Halt_TerranBuild_quick": "Halt_quick", "Harvest_Gather_Drone_pt": "Harvest_Gather_unit", "Harvest_Gather_Mule_pt": "Harvest_Gather_unit", "Harvest_Gather_Probe_pt": "Harvest_Gather_unit", "Harvest_Gather_SCV_pt": "Harvest_Gather_unit", "Harvest_Gather_Drone_unit": "Harvest_Gather_unit", "Harvest_Gather_Mule_unit": "Harvest_Gather_unit", "Harvest_Gather_Probe_unit": "Harvest_Gather_unit", "Harvest_Gather_SCV_unit": "Harvest_Gather_unit", "Harvest_Return_Drone_quick": "Harvest_Return_quick", "Harvest_Return_Mule_quick": "Harvest_Return_quick", "Harvest_Return_Probe_quick": "Harvest_Return_quick", "Harvest_Return_SCV_quick": "Harvest_Return_quick", "HoldPosition_Battlecruiser_quick": "HoldPosition_quick", "HoldPosition_Hold_quick": "HoldPosition_quick", "Land_Barracks_pt": "Land_pt", "Land_CommandCenter_pt": "Land_pt", "Land_Factory_pt": "Land_pt", "Land_OrbitalCommand_pt": "Land_pt", "Land_Starport_pt": "Land_pt", "Lift_Barracks_quick": "Lift_quick", "Lift_CommandCenter_quick": "Lift_quick", "Lift_Factory_quick": "Lift_quick", "Lift_OrbitalCommand_quick": "Lift_quick", "Lift_Starport_quick": "Lift_quick", "LoadAll_CommandCenter_quick": "LoadAll_quick", "Load_Bunker_unit": "Load_unit", "Load_Medivac_unit": "Load_unit", "Load_NydusNetwork_unit": "Load_unit", "Load_NydusWorm_unit": "Load_unit", "Load_Overlord_unit": "Load_unit", "Load_WarpPrism_unit": "Load_unit", "Morph_LurkerDen_quick": "Build_LurkerDen_pt", "Morph_Mothership_quick": "no_op", "Morph_SpineCrawlerRoot_pt": "Morph_Root_pt", "Morph_SpineCrawlerUproot_quick": "Morph_Uproot_quick", "Morph_SporeCrawlerRoot_pt": "Morph_Root_pt", "Morph_SporeCrawlerUproot_quick": "Morph_Uproot_quick", "Move_Battlecruiser_pt": "Move_pt", "Move_Battlecruiser_unit": "Move_unit", "Move_Move_pt": "Move_pt", "Move_Move_unit": "Move_unit", "Patrol_Battlecruiser_pt": "Patrol_pt", "Patrol_Battlecruiser_unit": "Patrol_unit", "Patrol_Patrol_pt": "Patrol_pt", "Patrol_Patrol_unit": "Patrol_unit", "Rally_CommandCenter_pt": "Rally_Building_pt", "Rally_CommandCenter_unit": "Rally_Building_unit", "Rally_Hatchery_Units_pt": "Rally_Building_pt", "Rally_Hatchery_Units_unit": "Rally_Building_unit", "Rally_Hatchery_Workers_pt": "Rally_Building_pt", "Rally_Hatchery_Workers_unit": "Rally_Building_unit", "Rally_Morphing_Unit_pt": "Rally_Building_pt", "Rally_Morphing_Unit_unit": "Rally_Building_unit", "Rally_Nexus_pt": "Rally_Building_pt", "Rally_Nexus_unit": "Rally_Building_unit", "Rally_Units_pt": "Rally_Building_pt", "Rally_Units_unit": "Rally_Building_unit", "Rally_Workers_pt": "Rally_Building_pt", "Rally_Workers_unit": "Rally_Building_unit", "Research_NeosteelFrame_quick": "Research_TerranStructureArmorUpgrade_quick", "Research_ProtossAirArmorLevel1_quick": "Research_ProtossAirArmor_quick", "Research_ProtossAirArmorLevel2_quick": "Research_ProtossAirArmor_quick", "Research_ProtossAirArmorLevel3_quick": "Research_ProtossAirArmor_quick", "Research_ProtossAirWeaponsLevel1_quick": "Research_ProtossAirWeapons_quick", "Research_ProtossAirWeaponsLevel2_quick": "Research_ProtossAirWeapons_quick", "Research_ProtossAirWeaponsLevel3_quick": "Research_ProtossAirWeapons_quick", "Research_ProtossGroundArmorLevel1_quick": "Research_ProtossGroundArmor_quick", "Research_ProtossGroundArmorLevel2_quick": "Research_ProtossGroundArmor_quick", "Research_ProtossGroundArmorLevel3_quick": "Research_ProtossGroundArmor_quick", "Research_ProtossGroundWeaponsLevel1_quick": "Research_ProtossGroundWeapons_quick", "Research_ProtossGroundWeaponsLevel2_quick": "Research_ProtossGroundWeapons_quick", "Research_ProtossGroundWeaponsLevel3_quick": "Research_ProtossGroundWeapons_quick", "Research_ProtossShieldsLevel1_quick": "Research_ProtossShields_quick", "Research_ProtossShieldsLevel2_quick": "Research_ProtossShields_quick", "Research_ProtossShieldsLevel3_quick": "Research_ProtossShields_quick", "Research_TerranInfantryArmorLevel1_quick": "Research_TerranInfantryArmor_quick", "Research_TerranInfantryArmorLevel2_quick": "Research_TerranInfantryArmor_quick", "Research_TerranInfantryArmorLevel3_quick": "Research_TerranInfantryArmor_quick", "Research_TerranInfantryWeaponsLevel1_quick": "Research_TerranInfantryWeapons_quick", "Research_TerranInfantryWeaponsLevel2_quick": "Research_TerranInfantryWeapons_quick", "Research_TerranInfantryWeaponsLevel3_quick": "Research_TerranInfantryWeapons_quick", "Research_TerranShipWeaponsLevel1_quick": "Research_TerranShipWeapons_quick", "Research_TerranShipWeaponsLevel2_quick": "Research_TerranShipWeapons_quick", "Research_TerranShipWeaponsLevel3_quick": "Research_TerranShipWeapons_quick", "Research_TerranVehicleAndShipPlatingLevel1_quick": "Research_TerranVehicleAndShipPlating_quick", "Research_TerranVehicleAndShipPlatingLevel2_quick": "Research_TerranVehicleAndShipPlating_quick", "Research_TerranVehicleAndShipPlatingLevel3_quick": "Research_TerranVehicleAndShipPlating_quick", "Research_TerranVehicleWeaponsLevel1_quick": "Research_TerranVehicleWeapons_quick", "Research_TerranVehicleWeaponsLevel2_quick": "Research_TerranVehicleWeapons_quick", "Research_TerranVehicleWeaponsLevel3_quick": "Research_TerranVehicleWeapons_quick", "Research_ZergFlyerArmorLevel1_quick": "Research_ZergFlyerArmor_quick", "Research_ZergFlyerArmorLevel2_quick": "Research_ZergFlyerArmor_quick", "Research_ZergFlyerArmorLevel3_quick": "Research_ZergFlyerArmor_quick", "Research_ZergFlyerAttackLevel1_quick": "Research_ZergFlyerAttack_quick", "Research_ZergFlyerAttackLevel2_quick": "Research_ZergFlyerAttack_quick", "Research_ZergFlyerAttackLevel3_quick": "Research_ZergFlyerAttack_quick", "Research_ZergGroundArmorLevel1_quick": "Research_ZergGroundArmor_quick", "Research_ZergGroundArmorLevel2_quick": "Research_ZergGroundArmor_quick", "Research_ZergGroundArmorLevel3_quick": "Research_ZergGroundArmor_quick", "Research_ZergMeleeWeaponsLevel1_quick": "Research_ZergMeleeWeapons_quick", "Research_ZergMeleeWeaponsLevel2_quick": "Research_ZergMeleeWeapons_quick", "Research_ZergMeleeWeaponsLevel3_quick": "Research_ZergMeleeWeapons_quick", "Research_ZergMissileWeaponsLevel1_quick": "Research_ZergMissileWeapons_quick", "Research_ZergMissileWeaponsLevel2_quick": "Research_ZergMissileWeapons_quick", "Research_ZergMissileWeaponsLevel3_quick": "Research_ZergMissileWeapons_quick", "Stop_Battlecruiser_quick": "Stop_quick", "Stop_Building_quick": "Stop_quick", "Stop_Redirect_quick": "Stop_quick", "Stop_Stop_quick": "Stop_quick", "Train_MothershipCore_quick": "no_op", "UnloadAllAt_Medivac_pt": "UnloadAllAt_pt", "UnloadAllAt_Medivac_unit": "UnloadAllAt_unit", "UnloadAllAt_Overlord_pt": "UnloadAllAt_pt", "UnloadAllAt_Overlord_unit": "UnloadAllAt_unit", "UnloadAllAt_WarpPrism_pt": "UnloadAllAt_pt", "UnloadAllAt_WarpPrism_unit": "UnloadAllAt_unit", "UnloadAll_Bunker_quick": "UnloadAll_quick", "UnloadAll_CommandCenter_quick": "UnloadAll_quick", "UnloadAll_NydusNetwork_quick": "UnloadAll_quick", "UnloadAll_NydusWorm_quick": "UnloadAll_quick", } ADDON_UNIT_TYPES = [ sc2_units.Terran.BarracksTechLab, sc2_units.Terran.BarracksReactor, sc2_units.Terran.FactoryTechLab, sc2_units.Terran.FactoryReactor, sc2_units.Terran.StarportTechLab, sc2_units.Terran.StarportReactor, ] class UA(enum.IntEnum): """Unit attributes.""" LIGHT = 0 ARMORED = 1 BIOLOGICAL = 2 MECHANICAL = 3 PSIONIC = 4 MASSIVE = 5 STRUCTURE = 6 DETECTOR = 7 SUMMONED = 8 FLYING = 9 ADDON = 10 BURROWED = 11 UNITS_ATTRIBUTES = { # Protoss sc2_units.Protoss.Adept: [UA.LIGHT, UA.BIOLOGICAL], sc2_units.Protoss.AdeptPhaseShift: [UA.LIGHT, UA.BIOLOGICAL, UA.SUMMONED], sc2_units.Protoss.Archon: [UA.PSIONIC, UA.MASSIVE], sc2_units.Protoss.Assimilator: [UA.ARMORED, UA.STRUCTURE], sc2_units.Protoss.Carrier: [ UA.ARMORED, UA.MASSIVE, UA.MECHANICAL, UA.FLYING ], sc2_units.Protoss.Colossus: [UA.ARMORED, UA.MASSIVE, UA.MECHANICAL], sc2_units.Protoss.CyberneticsCore: [UA.ARMORED, UA.STRUCTURE], sc2_units.Protoss.DarkShrine: [UA.ARMORED, UA.STRUCTURE], sc2_units.Protoss.DarkTemplar: [UA.BIOLOGICAL, UA.LIGHT, UA.PSIONIC], sc2_units.Protoss.Disruptor: [UA.ARMORED, UA.MECHANICAL], sc2_units.Protoss.DisruptorPhased: [UA.SUMMONED], sc2_units.Protoss.FleetBeacon: [UA.ARMORED, UA.STRUCTURE], sc2_units.Protoss.ForceField: [UA.SUMMONED], sc2_units.Protoss.Forge: [UA.ARMORED, UA.STRUCTURE], sc2_units.Protoss.Gateway: [UA.ARMORED, UA.STRUCTURE], sc2_units.Protoss.HighTemplar: [UA.BIOLOGICAL, UA.LIGHT, UA.PSIONIC], sc2_units.Protoss.Immortal: [UA.ARMORED, UA.MECHANICAL], sc2_units.Protoss.Interceptor: [ UA.LIGHT, UA.MECHANICAL, UA.SUMMONED, UA.FLYING ], sc2_units.Protoss.Mothership: [ UA.ARMORED, UA.MASSIVE, UA.PSIONIC, UA.MECHANICAL, UA.FLYING ], # sc2_units.Protoss.MothershipCore: [UA.MECHANICAL, UA.ARMORED, UA.PSIONIC], sc2_units.Protoss.Nexus: [UA.ARMORED, UA.STRUCTURE], sc2_units.Protoss.Observer: [ UA.LIGHT, UA.MECHANICAL, UA.DETECTOR, UA.FLYING ], sc2_units.Protoss.ObserverSurveillanceMode: [ UA.LIGHT, UA.MECHANICAL, UA.DETECTOR, UA.FLYING ], sc2_units.Protoss.Oracle: [ UA.MECHANICAL, UA.ARMORED, UA.PSIONIC, UA.FLYING ], sc2_units.Protoss.Phoenix: [UA.LIGHT, UA.MECHANICAL, UA.FLYING], sc2_units.Protoss.PhotonCannon: [UA.ARMORED, UA.STRUCTURE, UA.DETECTOR], sc2_units.Protoss.Probe: [UA.LIGHT, UA.MECHANICAL], sc2_units.Protoss.Pylon: [UA.ARMORED, UA.STRUCTURE], sc2_units.Protoss.PylonOvercharged: [UA.ARMORED, UA.STRUCTURE], sc2_units.Protoss.RoboticsBay: [UA.ARMORED, UA.STRUCTURE], sc2_units.Protoss.RoboticsFacility: [UA.ARMORED, UA.STRUCTURE], sc2_units.Protoss.Sentry: [UA.LIGHT, UA.MECHANICAL, UA.PSIONIC], sc2_units.Protoss.ShieldBattery: [UA.ARMORED, UA.STRUCTURE], sc2_units.Protoss.Stalker: [UA.ARMORED, UA.MECHANICAL], sc2_units.Protoss.Stargate: [UA.ARMORED, UA.STRUCTURE], sc2_units.Protoss.StasisTrap: [UA.LIGHT, UA.STRUCTURE, UA.SUMMONED], sc2_units.Protoss.Tempest: [ UA.ARMORED, UA.MECHANICAL, UA.MASSIVE, UA.FLYING ], sc2_units.Protoss.TemplarArchive: [UA.ARMORED, UA.STRUCTURE], sc2_units.Protoss.TwilightCouncil: [UA.ARMORED, UA.STRUCTURE], sc2_units.Protoss.VoidRay: [UA.ARMORED, UA.MECHANICAL, UA.FLYING], sc2_units.Protoss.WarpGate: [UA.ARMORED, UA.STRUCTURE], sc2_units.Protoss.WarpPrism: [ UA.ARMORED, UA.MECHANICAL, UA.PSIONIC, UA.FLYING ], sc2_units.Protoss.WarpPrismPhasing: [ UA.ARMORED, UA.MECHANICAL, UA.PSIONIC, UA.FLYING ], sc2_units.Protoss.Zealot: [UA.LIGHT, UA.BIOLOGICAL], # Terran sc2_units.Terran.Armory: [UA.ARMORED, UA.STRUCTURE, UA.MECHANICAL], sc2_units.Terran.AutoTurret: [ UA.MECHANICAL, UA.STRUCTURE, UA.ARMORED, UA.SUMMONED ], sc2_units.Terran.Banshee: [UA.LIGHT, UA.MECHANICAL, UA.FLYING], sc2_units.Terran.Barracks: [UA.ARMORED, UA.STRUCTURE, UA.MECHANICAL], sc2_units.Terran.BarracksFlying: [ UA.ARMORED, UA.STRUCTURE, UA.MECHANICAL, UA.FLYING ], sc2_units.Terran.BarracksReactor: [ UA.ARMORED, UA.STRUCTURE, UA.MECHANICAL, UA.ADDON ], sc2_units.Terran.BarracksTechLab: [ UA.ARMORED, UA.STRUCTURE, UA.MECHANICAL, UA.ADDON ], sc2_units.Terran.Battlecruiser: [ UA.ARMORED, UA.MECHANICAL, UA.MASSIVE, UA.FLYING ], sc2_units.Terran.Bunker: [UA.ARMORED, UA.STRUCTURE, UA.MECHANICAL], sc2_units.Terran.CommandCenter: [UA.ARMORED, UA.STRUCTURE, UA.MECHANICAL], sc2_units.Terran.CommandCenterFlying: [ UA.ARMORED, UA.STRUCTURE, UA.MECHANICAL, UA.FLYING ], sc2_units.Terran.Cyclone: [UA.ARMORED, UA.MECHANICAL], sc2_units.Terran.EngineeringBay: [UA.ARMORED, UA.STRUCTURE, UA.MECHANICAL], sc2_units.Terran.Factory: [UA.ARMORED, UA.STRUCTURE, UA.MECHANICAL], sc2_units.Terran.FactoryFlying: [ UA.ARMORED, UA.STRUCTURE, UA.MECHANICAL, UA.FLYING ], sc2_units.Terran.FactoryReactor: [ UA.ARMORED, UA.STRUCTURE, UA.MECHANICAL, UA.ADDON ], sc2_units.Terran.FactoryTechLab: [ UA.ARMORED, UA.STRUCTURE, UA.MECHANICAL, UA.ADDON ], sc2_units.Terran.FusionCore: [UA.ARMORED, UA.STRUCTURE, UA.MECHANICAL], sc2_units.Terran.Ghost: [UA.BIOLOGICAL, UA.PSIONIC], sc2_units.Terran.GhostAcademy: [UA.ARMORED, UA.STRUCTURE, UA.MECHANICAL], sc2_units.Terran.GhostAlternate: [UA.BIOLOGICAL, UA.PSIONIC], sc2_units.Terran.GhostNova: [UA.BIOLOGICAL, UA.PSIONIC], sc2_units.Terran.Hellion: [UA.LIGHT, UA.MECHANICAL], sc2_units.Terran.Hellbat: [UA.BIOLOGICAL, UA.LIGHT, UA.MECHANICAL], sc2_units.Terran.KD8Charge: [UA.SUMMONED], sc2_units.Terran.Liberator: [UA.ARMORED, UA.MECHANICAL, UA.FLYING], sc2_units.Terran.LiberatorAG: [UA.ARMORED, UA.MECHANICAL, UA.FLYING], sc2_units.Terran.MULE: [UA.LIGHT, UA.MECHANICAL, UA.SUMMONED], sc2_units.Terran.Marauder: [UA.ARMORED, UA.BIOLOGICAL], sc2_units.Terran.Marine: [UA.BIOLOGICAL, UA.LIGHT], sc2_units.Terran.Medivac: [UA.ARMORED, UA.MECHANICAL, UA.FLYING], sc2_units.Terran.MissileTurret: [ UA.ARMORED, UA.STRUCTURE, UA.MECHANICAL, UA.DETECTOR ], sc2_units.Terran.Nuke: [UA.SUMMONED], sc2_units.Terran.OrbitalCommand: [UA.ARMORED, UA.STRUCTURE, UA.MECHANICAL], sc2_units.Terran.OrbitalCommandFlying: [ UA.ARMORED, UA.STRUCTURE, UA.MECHANICAL, UA.FLYING ], sc2_units.Terran.PlanetaryFortress: [ UA.ARMORED, UA.STRUCTURE, UA.MECHANICAL ], sc2_units.Terran.PointDefenseDrone: [ UA.LIGHT, UA.MECHANICAL, UA.STRUCTURE, UA.SUMMONED ], sc2_units.Terran.Raven: [UA.LIGHT, UA.MECHANICAL, UA.DETECTOR, UA.FLYING], sc2_units.Terran.Reactor: [ UA.ARMORED, UA.STRUCTURE, UA.MECHANICAL, UA.ADDON ], sc2_units.Terran.Reaper: [UA.BIOLOGICAL, UA.LIGHT], sc2_units.Terran.Refinery: [UA.ARMORED, UA.STRUCTURE, UA.MECHANICAL], sc2_units.Terran.RepairDrone: [UA.SUMMONED], sc2_units.Terran.SCV: [UA.BIOLOGICAL, UA.LIGHT, UA.MECHANICAL], sc2_units.Terran.SensorTower: [UA.ARMORED, UA.STRUCTURE, UA.MECHANICAL], sc2_units.Terran.SiegeTank: [UA.ARMORED, UA.MECHANICAL], sc2_units.Terran.SiegeTankSieged: [UA.ARMORED, UA.MECHANICAL], sc2_units.Terran.Starport: [UA.ARMORED, UA.STRUCTURE, UA.MECHANICAL], sc2_units.Terran.StarportFlying: [ UA.ARMORED, UA.STRUCTURE, UA.MECHANICAL, UA.FLYING ], sc2_units.Terran.StarportReactor: [ UA.ARMORED, UA.STRUCTURE, UA.MECHANICAL, UA.ADDON ], sc2_units.Terran.StarportTechLab: [ UA.ARMORED, UA.STRUCTURE, UA.MECHANICAL, UA.ADDON ], sc2_units.Terran.SupplyDepot: [UA.ARMORED, UA.STRUCTURE, UA.MECHANICAL], sc2_units.Terran.SupplyDepotLowered: [ UA.ARMORED, UA.STRUCTURE, UA.MECHANICAL ], sc2_units.Terran.TechLab: [ UA.ARMORED, UA.STRUCTURE, UA.MECHANICAL, UA.ADDON ], sc2_units.Terran.Thor: [UA.ARMORED, UA.MECHANICAL, UA.MASSIVE], sc2_units.Terran.ThorHighImpactMode: [ UA.ARMORED, UA.MECHANICAL, UA.MASSIVE ], sc2_units.Terran.VikingAssault: [UA.ARMORED, UA.MECHANICAL], sc2_units.Terran.VikingFighter: [UA.ARMORED, UA.MECHANICAL, UA.FLYING], sc2_units.Terran.WidowMine: [UA.MECHANICAL, UA.LIGHT], sc2_units.Terran.WidowMineBurrowed: [UA.MECHANICAL, UA.LIGHT, UA.BURROWED], # Zerg sc2_units.Zerg.Baneling: [UA.BIOLOGICAL], sc2_units.Zerg.BanelingBurrowed: [UA.BIOLOGICAL, UA.BURROWED], sc2_units.Zerg.BanelingCocoon: [UA.BIOLOGICAL], sc2_units.Zerg.BanelingNest: [UA.ARMORED, UA.STRUCTURE, UA.BIOLOGICAL], sc2_units.Zerg.BroodLord: [ UA.ARMORED, UA.BIOLOGICAL, UA.MASSIVE, UA.FLYING ], sc2_units.Zerg.BroodLordCocoon: [UA.BIOLOGICAL, UA.FLYING], sc2_units.Zerg.Broodling: [UA.BIOLOGICAL, UA.LIGHT, UA.SUMMONED], sc2_units.Zerg.BroodlingEscort: [ UA.BIOLOGICAL, UA.LIGHT, UA.FLYING, UA.SUMMONED ], sc2_units.Zerg.Changeling: [UA.BIOLOGICAL, UA.LIGHT], sc2_units.Zerg.ChangelingMarine: [UA.BIOLOGICAL, UA.LIGHT], sc2_units.Zerg.ChangelingMarineShield: [UA.BIOLOGICAL, UA.LIGHT], sc2_units.Zerg.ChangelingZealot: [UA.BIOLOGICAL, UA.LIGHT], sc2_units.Zerg.ChangelingZergling: [UA.BIOLOGICAL, UA.LIGHT], sc2_units.Zerg.ChangelingZerglingWings: [UA.BIOLOGICAL, UA.LIGHT], sc2_units.Zerg.Cocoon: [UA.BIOLOGICAL], sc2_units.Zerg.Corruptor: [UA.ARMORED, UA.BIOLOGICAL, UA.FLYING], sc2_units.Zerg.CreepTumor: [UA.ARMORED, UA.STRUCTURE, UA.BIOLOGICAL], sc2_units.Zerg.CreepTumorBurrowed: [ UA.ARMORED, UA.STRUCTURE, UA.BIOLOGICAL, UA.BURROWED ], sc2_units.Zerg.CreepTumorQueen: [UA.ARMORED, UA.STRUCTURE, UA.BIOLOGICAL], sc2_units.Zerg.Drone: [UA.BIOLOGICAL, UA.LIGHT], sc2_units.Zerg.DroneBurrowed: [UA.BIOLOGICAL, UA.LIGHT, UA.BURROWED], sc2_units.Zerg.EvolutionChamber: [UA.ARMORED, UA.STRUCTURE, UA.BIOLOGICAL], sc2_units.Zerg.Extractor: [UA.ARMORED, UA.STRUCTURE, UA.BIOLOGICAL], sc2_units.Zerg.GreaterSpire: [UA.ARMORED, UA.STRUCTURE, UA.BIOLOGICAL], sc2_units.Zerg.Hatchery: [UA.ARMORED, UA.STRUCTURE, UA.BIOLOGICAL], sc2_units.Zerg.Hive: [UA.ARMORED, UA.STRUCTURE, UA.BIOLOGICAL], sc2_units.Zerg.Hydralisk: [UA.BIOLOGICAL, UA.LIGHT], sc2_units.Zerg.HydraliskBurrowed: [UA.BIOLOGICAL, UA.LIGHT, UA.BURROWED], sc2_units.Zerg.HydraliskDen: [UA.ARMORED, UA.STRUCTURE, UA.BIOLOGICAL], sc2_units.Zerg.InfestationPit: [UA.ARMORED, UA.STRUCTURE, UA.BIOLOGICAL], sc2_units.Zerg.InfestedTerran: [UA.BIOLOGICAL, UA.LIGHT, UA.SUMMONED], sc2_units.Zerg.InfestedTerranBurrowed: [ UA.BIOLOGICAL, UA.LIGHT, UA.SUMMONED, UA.BURROWED ], sc2_units.Zerg.InfestedTerranCocoon: [UA.BIOLOGICAL, UA.LIGHT, UA.SUMMONED], sc2_units.Zerg.Infestor: [UA.ARMORED, UA.BIOLOGICAL, UA.PSIONIC], sc2_units.Zerg.InfestorBurrowed: [ UA.ARMORED, UA.BIOLOGICAL, UA.PSIONIC, UA.BURROWED ], sc2_units.Zerg.Lair: [UA.ARMORED, UA.STRUCTURE, UA.BIOLOGICAL], sc2_units.Zerg.Larva: [UA.BIOLOGICAL, UA.LIGHT], sc2_units.Zerg.Locust: [UA.LIGHT, UA.BIOLOGICAL], sc2_units.Zerg.LocustFlying: [UA.LIGHT, UA.BIOLOGICAL, UA.FLYING], sc2_units.Zerg.Lurker: [UA.BIOLOGICAL, UA.ARMORED], sc2_units.Zerg.LurkerBurrowed: [UA.BIOLOGICAL, UA.ARMORED, UA.BURROWED], sc2_units.Zerg.LurkerDen: [UA.ARMORED, UA.STRUCTURE, UA.BIOLOGICAL], sc2_units.Zerg.LurkerCocoon: [UA.BIOLOGICAL], sc2_units.Zerg.Mutalisk: [UA.BIOLOGICAL, UA.LIGHT, UA.FLYING], sc2_units.Zerg.NydusCanal: [UA.ARMORED, UA.STRUCTURE, UA.BIOLOGICAL], sc2_units.Zerg.NydusNetwork: [UA.ARMORED, UA.STRUCTURE, UA.BIOLOGICAL], sc2_units.Zerg.Overlord: [UA.ARMORED, UA.BIOLOGICAL, UA.FLYING], sc2_units.Zerg.OverlordTransport: [UA.ARMORED, UA.BIOLOGICAL, UA.FLYING], sc2_units.Zerg.OverlordTransportCocoon: [UA.BIOLOGICAL, UA.FLYING], sc2_units.Zerg.Overseer: [ UA.ARMORED, UA.BIOLOGICAL, UA.FLYING, UA.DETECTOR ], sc2_units.Zerg.OverseerCocoon: [UA.BIOLOGICAL, UA.FLYING], sc2_units.Zerg.OverseerOversightMode: [ UA.ARMORED, UA.BIOLOGICAL, UA.FLYING, UA.DETECTOR ], sc2_units.Zerg.ParasiticBombDummy: [UA.SUMMONED], sc2_units.Zerg.Queen: [UA.BIOLOGICAL, UA.PSIONIC], sc2_units.Zerg.QueenBurrowed: [UA.BIOLOGICAL, UA.PSIONIC, UA.BURROWED], sc2_units.Zerg.Ravager: [UA.BIOLOGICAL], sc2_units.Zerg.RavagerBurrowed: [UA.BIOLOGICAL, UA.BURROWED], sc2_units.Zerg.RavagerCocoon: [UA.BIOLOGICAL], sc2_units.Zerg.Roach: [UA.ARMORED, UA.BIOLOGICAL], sc2_units.Zerg.RoachBurrowed: [UA.ARMORED, UA.BIOLOGICAL, UA.BURROWED], sc2_units.Zerg.RoachWarren: [UA.ARMORED, UA.STRUCTURE, UA.BIOLOGICAL], sc2_units.Zerg.SpawningPool: [UA.ARMORED, UA.STRUCTURE, UA.BIOLOGICAL], sc2_units.Zerg.SpineCrawler: [UA.ARMORED, UA.STRUCTURE, UA.BIOLOGICAL], sc2_units.Zerg.SpineCrawlerUprooted: [ UA.ARMORED, UA.STRUCTURE, UA.BIOLOGICAL ], sc2_units.Zerg.Spire: [UA.ARMORED, UA.STRUCTURE, UA.BIOLOGICAL], sc2_units.Zerg.SporeCrawler: [ UA.ARMORED, UA.STRUCTURE, UA.BIOLOGICAL, UA.DETECTOR ], sc2_units.Zerg.SporeCrawlerUprooted: [ UA.ARMORED, UA.STRUCTURE, UA.BIOLOGICAL ], sc2_units.Zerg.SwarmHost: [UA.ARMORED, UA.BIOLOGICAL], sc2_units.Zerg.SwarmHostBurrowed: [UA.ARMORED, UA.BIOLOGICAL, UA.BURROWED], sc2_units.Zerg.Ultralisk: [UA.ARMORED, UA.BIOLOGICAL, UA.MASSIVE], sc2_units.Zerg.UltraliskBurrowed: [ UA.ARMORED, UA.BIOLOGICAL, UA.MASSIVE, UA.BURROWED ], sc2_units.Zerg.UltraliskCavern: [UA.ARMORED, UA.STRUCTURE, UA.BIOLOGICAL], sc2_units.Zerg.Viper: [UA.ARMORED, UA.BIOLOGICAL, UA.PSIONIC, UA.FLYING], sc2_units.Zerg.Zergling: [UA.BIOLOGICAL, UA.LIGHT], sc2_units.Zerg.ZerglingBurrowed: [UA.BIOLOGICAL, UA.LIGHT, UA.BURROWED], } def get_attribute_lookup(num_unit_types: int) -> chex.Array: """Returns an boolean array specifying the attributes of each unit.""" attribute_lookup = np.zeros((num_unit_types, max(UA).value + 1), dtype=np.float32) for unit, attributes in UNITS_ATTRIBUTES.items(): unit_id = uint8_lookup.PySc2ToUint8(unit) for attribute in attributes: attribute_lookup[unit_id, attribute.value] = 1. return attribute_lookup def get_order_id_lookup(function_names: List[str], redundant_list: Optional[Mapping[str, str]] = None ) -> np.ndarray: """Remaps function arguments to remove redundent ones.""" if redundant_list is None: redundant_list = dict(REDUNDANT_GENERIC_ORDER_ID) current_max = 0 lookup_map = {} for i, function in enumerate(function_names): if function not in redundant_list: lookup_map[i] = current_max current_max += 1 lookup = np.zeros((len(function_names),), dtype=np.int32) for i, function in enumerate(function_names): if function in redundant_list: remapped_name = redundant_list[function] lookup[i] = lookup_map[function_names.index(remapped_name)] else: lookup[i] = lookup_map[i] return lookup def get_build_queue_order_id_lookup(function_names: List[str]) -> np.ndarray: """Remaps function arguments to remove irrelevant ones to build queue.""" remap = dict(REDUNDANT_GENERIC_ORDER_ID) # copy for fun in sc2_actions.RAW_FUNCTIONS: name = fun.name if (name == "no_op") or ("Train_" in name) or ("Research_" in name): continue else: remap[name] = "no_op" return get_order_id_lookup(function_names, remap) def get_addon_lookup(num_unit_types: int) -> np.ndarray: """Remaps units to keep only the add-on types.""" lookup = np.zeros((num_unit_types,), dtype=np.int32) for i, unit in enumerate(ADDON_UNIT_TYPES): lookup[uint8_lookup.PySc2ToUint8(unit)] = i + 1 return lookup
alphastar-main
alphastar/architectures/components/static_data/unit_encoder_data.py
# Copyright 2021 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
alphastar-main
alphastar/unplugged/__init__.py
# Copyright 2021 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utility functions for the losses.""" from typing import Dict from alphastar import types from alphastar.commons import log_utils import chex import dm_env import jax import jax.numpy as jnp import numpy as np def get_global_loss_masks(step_type: chex.Array, argument_masks: types.StreamDict, num_first_steps_to_ignore: int, num_last_steps_to_ignore: int, ) -> types.StreamDict: """Gets the global loss masks (for each argument). The mask is 0 if at least one of these conditions is true: * The argument is masked OR * The step is an episode terminal state (since the action associated with this observation is a dummy, and the next state will be always an initial state). OR * The step is one of the first `num_first_steps_to_ignore` steps of the rollout (this can be used for burn-in). OR * The step is one of the first `num_last_steps_to_ignore` steps of the rollout (this can be used for bootstrapping). Args: step_type: Step type. argument_masks: A StreamDict containing the argument masks, unit_tags can be a single scalar mask (instad of one per unit_tags argument). num_first_steps_to_ignore: The number of steps to mask at the beginning of every trajectory. num_last_steps_to_ignore: The number of steps to mask at the end of every trajectory. Returns: A StreamDict containing the loss masks for each of the arguments. """ if (num_first_steps_to_ignore + num_last_steps_to_ignore >= step_type.shape[0]): raise ValueError( "Total number of steps to ignore (" f"{num_first_steps_to_ignore, num_last_steps_to_ignore}) " f"should be less than the total timesteps {step_type.shape[0]}") chex.assert_rank(step_type, 1) # Step type and argument masks don't have identical tree structure but are # expected to have the same shape at their leaves. chex.assert_equal_shape(jax.tree_leaves([step_type, argument_masks])) terminal_state_mask = jnp.not_equal(step_type, int(dm_env.StepType.LAST)) trajectory_mask = np.zeros(shape=(step_type.shape[0],), dtype=np.bool_) trajectory_mask[num_first_steps_to_ignore:step_type.shape[0] - num_last_steps_to_ignore] = True trajectory_mask = jnp.asarray(trajectory_mask) global_mask = jnp.logical_and(terminal_state_mask, trajectory_mask) return jax.tree_map(lambda x: jnp.logical_and(x, global_mask), argument_masks) def get_masked_log(data: chex.Array, mask: chex.Array) -> Dict[log_utils.ReduceType, chex.Array]: """Gets the masked value and count of data to log.""" masked_data = jnp.where(mask, data, 0) return { log_utils.ReduceType.MEAN: masked_data, log_utils.ReduceType.SUM: masked_data, log_utils.ReduceType.NUM: mask.astype(jnp.int32)}
alphastar-main
alphastar/unplugged/losses/util.py
# Copyright 2021 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Alphastar Losses.""" from alphastar.unplugged.losses.loss_base import Loss from alphastar.unplugged.losses.loss_base import LossBuilder from alphastar.unplugged.losses.loss_base import LossOutputType from alphastar.unplugged.losses.supervised import Supervised
alphastar-main
alphastar/unplugged/losses/__init__.py
# Copyright 2021 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for supervised.""" from absl.testing import absltest from alphastar import types from alphastar.commons import log_utils from alphastar.unplugged.losses import supervised import dm_env from dm_env import specs import jax import jax.numpy as jnp import numpy as np class SupervisedTest(absltest.TestCase): def test_supervised_loss(self): unroll_len = 50 max_num_selected_units = 10 burnin_len = 2 overlap_len = 3 action_spec = { 'function': specs.BoundedArray((), np.int32, minimum=0, maximum=10), 'delay': specs.BoundedArray((), np.int32, minimum=0, maximum=6), 'queued': specs.BoundedArray((), np.int32, minimum=0, maximum=2), 'repeat': specs.BoundedArray((), np.int32, minimum=0, maximum=4), 'unit_tags': specs.BoundedArray( (max_num_selected_units,), np.int32, minimum=0, maximum=10), 'target_unit_tag': specs.BoundedArray( (), jnp.int32, minimum=0, maximum=10), 'world': specs.BoundedArray((), np.int32, minimum=0, maximum=25)} action = {k: np.random.randint(v.maximum + 1, size=(unroll_len,) + v.shape) for k, v in action_spec.items()} logits = {k: np.random.rand(unroll_len, *v.shape, v.maximum + 1,) for k, v in action_spec.items()} masks = {k: np.random.randint(2, size=v.shape).astype(jnp.bool_) for k, v in logits.items()} argument_masks = { k: np.random.randint(2, size=(unroll_len,)).astype(jnp.bool_) for k in action_spec} step_type = np.random.randint(3, size=(unroll_len,)) inputs = { 'action': action, 'logits': logits, 'masks': masks, 'argument_masks': argument_masks, 'step_type': step_type } weights = dict( function=40., delay=9., queued=1., repeat=0.1, target_unit_tag=30., unit_tags=320., world=11.) supervised_loss = supervised.Supervised( action_spec=action_spec, weights=weights, overlap_len=overlap_len, burnin_len=burnin_len, name='supervised') jnp_input = jax.tree_map(jnp.asarray, inputs) loss, logs = supervised_loss.loss(types.StreamDict(jnp_input)) self.assertEqual( jnp.sum(loss), jnp.sum(logs['[supervised] loss'][log_utils.ReduceType.MEAN])) for i in range(unroll_len): total_xentropy = np.zeros((), np.float32) for arg in action_spec: log_prob = np.array(jax.nn.log_softmax(logits[arg][i])) xentropy = np.take_along_axis( -log_prob, action[arg][i][..., np.newaxis], axis=-1) xentropy = np.squeeze(xentropy, axis=-1) if arg == 'unit_tags': for j in range(xentropy.shape[0]): xentropy[j] *= masks[arg][i, j][action[arg][i, j]] xentropy = np.mean(xentropy) else: xentropy *= masks[arg][i][action[arg][i]] weight = weights[arg] if (argument_masks[arg][i] and step_type[i] != int(dm_env.StepType.LAST) and (burnin_len <= i < unroll_len - overlap_len)): total_xentropy += weight * xentropy np.testing.assert_allclose(loss[i], total_xentropy, rtol=1E-5) if __name__ == '__main__': absltest.main()
alphastar-main
alphastar/unplugged/losses/supervised_test.py
# Copyright 2021 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Supervised (Behaviour Cloning) losses.""" import functools from typing import Dict, Mapping, Tuple from alphastar import types from alphastar.architectures import util as arch_util from alphastar.commons import log_utils from alphastar.unplugged.losses import loss_base from alphastar.unplugged.losses import util as loss_util import chex from dm_env import specs import jax import jax.numpy as jnp class Supervised(loss_base.Loss): """Supervised loss. Logits are assumed to be already masked, ie. if a mask is 0, we assume that the corresponding logit is -infinity. """ def __init__(self, action_spec: types.ActionSpec, weights: Mapping[types.ArgumentName, float], burnin_len: int = 0, overlap_len: int = 0, name: str = 'Supervised'): """Initializes the module. Args: action_spec: The action specification. weights: The weight of the cross-entropy loss for each part of the loss. Its structure must match the action spec. burnin_len: The number of steps used for burn-in. The loss is not applied to these steps. overlap_len: The number of steps at the end of the trajectory where we the loss should not be applied. name: Name of the module. """ super().__init__(name=name) self._burnin_len = burnin_len self._overlap_len = overlap_len self._action_spec = action_spec self._weights = weights if set(weights.keys()) != set(action_spec.keys()): raise ValueError('Weights keys do not match action spec keys. Got ' f'{set(weights.keys())} and {set(action_spec.keys())}.') @property def input_spec(self) -> types.SpecDict: """Gets the specs for inputs to supervised loss.""" spec = types.SpecDict() spec['step_type'] = specs.Array((), jnp.int32) for arg, arg_spec in self._action_spec.items(): spec['argument_masks', arg] = specs.Array((), jnp.bool_) num_logits = arg_spec.maximum + 1 if arg == arch_util.Argument.UNIT_TAGS: num_unit_tags = arg_spec.shape[0] spec['logits', arg] = specs.Array( (num_unit_tags, num_logits), jnp.float32) spec['masks', arg] = specs.Array((num_unit_tags, num_logits), jnp.bool_) spec['action', arg] = specs.Array((num_unit_tags,), jnp.int32) else: spec['logits', arg] = specs.Array((num_logits,), jnp.float32) spec['masks', arg] = specs.Array((num_logits,), jnp.bool_) spec['action', arg] = specs.Array((), jnp.int32) return spec def _single_arg_loss(self, logits: chex.Array, action: chex.Array, mask: chex.Array, global_mask: chex.Array, weight: float, ) -> Tuple[chex.Array, Dict[str, chex.Array]]: """Returns the loss for a single argument of the action.""" chex.assert_rank([action, global_mask, logits, mask], [0, 0, 1, 1]) chex.assert_equal_shape([logits, mask]) xentropy = -jax.nn.log_softmax(logits)[action] # correct_argmax is the MAP of the logits, used for metrics (logging) only correct_argmax = jnp.equal(jnp.argmax(logits), action).astype(jnp.float32) # Masking # If the target action is masked, this means the data is not consistent. # We set the loss to zero in this case to avoid divergence. target_mask = mask[action] xentropy_mask = jnp.logical_and(target_mask, global_mask) xentropy = jnp.where(xentropy_mask, xentropy, 0) loss = weight * xentropy log = {} log['xentropy'] = loss_util.get_masked_log(xentropy, global_mask) log['loss'] = loss_util.get_masked_log(loss, global_mask) log['argmax_accuracy'] = loss_util.get_masked_log(correct_argmax, global_mask) log['unmasked_ratio'] = loss_util.get_masked_log(global_mask, jnp.ones_like(global_mask)) log['wrong_mask_ratio'] = loss_util.get_masked_log(1. - target_mask, global_mask) return loss, log def _loss(self, inputs: types.StreamDict) -> loss_base.LossOutputType: """The loss function.""" global_masks = loss_util.get_global_loss_masks( step_type=inputs['step_type'], argument_masks=inputs.get('argument_masks'), num_first_steps_to_ignore=self._burnin_len, num_last_steps_to_ignore=self._overlap_len) # Compute all the losses losses, logs = [], {} # Reduce functions used for unit_tags, reducing over axis 1 (see below): unit_tags_reduce_fns = {k: functools.partial(fn, axis=1) for k, fn in log_utils.REDUCE_FUNCTIONS.items()} unit_tags_reduce_fns[log_utils.ReduceType.NON_REDUCED] = lambda x: x[:, 0] for arg in self._action_spec: single_arg_loss = jax.vmap(self._single_arg_loss, [0, 0, 0, 0, None]) if arg == arch_util.Argument.UNIT_TAGS: # Unlike all other arguments, of size [unroll_len, ...], unit_tags have # size [unroll_len, max_num_selected_units, ...] representing # max_num_selected_units independent actions. We use a vmap to compute # the loss independently over this axis: single_arg_loss = jax.vmap( single_arg_loss, [1, 1, 1, None, None], (1, 1)) arg_loss, arg_log = single_arg_loss( inputs['logits', arg], inputs['action', arg], inputs['masks', arg], global_masks[arg], self._weights[arg]) if arg == arch_util.Argument.UNIT_TAGS: # We now reduce the unit_tags loss and logs over axis 1, so that they # have the same shape as other arguments: arg_loss = jnp.mean(arg_loss, axis=1) arg_log = log_utils.reduce_logs(arg_log, unit_tags_reduce_fns) losses.append(arg_loss) for log_name, log in arg_log.items(): logs[f'[{self.name}] {arg}_{log_name}'] = log total_loss = sum(losses) logs[f'[{self.name}] loss'] = {log_utils.ReduceType.MEAN: total_loss} return total_loss, logs
alphastar-main
alphastar/unplugged/losses/supervised.py
# Copyright 2021 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Base class for Alphastar losses.""" import abc from typing import Callable from typing import Mapping from typing import Optional from typing import Tuple from alphastar import types from alphastar.commons import log_utils import chex import jax from jax import numpy as jnp LossOutputType = Tuple[chex.Array, log_utils.Log] class Loss(abc.ABC): """Basic AlphaStar loss function.""" def __init__(self, name: Optional[str] = "Loss"): self._name = name or "Loss" @property def name(self) -> str: return self._name @property @abc.abstractmethod def input_spec(self) -> types.SpecDict: """Returns the spec of the input of this loss.""" @abc.abstractmethod def _loss(self, inputs: types.StreamDict) -> LossOutputType: """Computes the output of the loss over unroll_len timesteps. Args: inputs: A StreamDict containing [unroll_len, ...] tensors. Returns: loss: A float tensor of shape [unroll_len] containing the loss per timestep. logs: Per-timestep logs (shape [unroll_len]). This is a dict containing, for each entry, a dict with reduce functions as keys. """ def loss(self, inputs: types.StreamDict) -> LossOutputType: """Computes loss on unbatched unrolled inputs. See _loss too. Inputs to this function are expected to be of the shape unroll_len and are not expected to be batched further. For batched version of the loss, check batched_loss. Args: inputs: Inputs used for loss computation, a StreamDict with elements of shape [unroll_len, ...]. Returns: loss: A float tensor of shape [unroll_len] containing the loss per timestep. logs: Per-timestep logs (shape [unroll_len]). This is a dict containing, for each entry, a dict with reduce functions as keys. Raises: ValueError: when not all tree leaves are of the shape of unroll length. """ if not inputs: raise ValueError("Losses must have at least one input.") unroll_len = jax.tree_leaves(inputs)[0].shape[0] try: chex.assert_tree_shape_prefix(inputs, (unroll_len,)) except AssertionError as e: raise ValueError( f"All inputs should have same size as unroll length ({unroll_len}) " f"-- {self.name}: {e}") from e self.input_spec.validate(inputs, num_leading_dims_to_ignore=1, error_prefix=f"{self.name} inputs") # We hide inputs not specified in input_spec to prevent accidental use. inputs = inputs.filter(self.input_spec) outputs, logs = self._loss(inputs) chex.assert_shape(outputs, [unroll_len]) chex.assert_type(outputs, jnp.float32) for k, v in logs.items(): if not isinstance(v, Mapping): raise ValueError("Logs must be depth 2 nested dicts, " f"but log {k} has type {type(v)}.") for inner_k, inner_v in v.items(): if not isinstance(inner_v, chex.Array): raise ValueError("Logs must be depth 2 nested dicts, " f"but log {k}/{inner_k} has type {type(inner_v)}.") if inner_v.shape != (unroll_len,): raise ValueError( f"Logs must have shape [unroll_len] ({unroll_len},), " f" but {k}/{inner_k} has shape {inner_v.shape}.") return outputs, logs def batched_loss(self, inputs: types.StreamDict) -> LossOutputType: """Computes loss on inputs with a batch dimension. Unless the loss explicitely needs access to the batch dimension, use _loss instead, which applies a vmap to hide the batch dimension. Args: inputs: Inputs used for loss computation, a StreamDict with elements of shape [batch_size, unroll_len, ...]. Returns: loss: A float tensor of shape [batch_size, unroll_len] containing the loss per timestep. logs: Per-timestep logs (shape [batch_size, unroll_len]). This is a dict containing, for each entry, a dict with reduce functions as keys. Raises: ValueError: when not all tree leaves are of the shape of (batch size, unroll length). """ batch_size, unroll_len = jax.tree_leaves(inputs)[0].shape[:2] try: chex.assert_tree_shape_prefix(inputs, (batch_size, unroll_len)) except AssertionError as e: raise ValueError( "All inputs should have same size as (batch_size, unroll length) " f"({batch_size}, {unroll_len}) " f"-- {self.name}: {e}") from e outputs, logs = jax.vmap(self.loss)(inputs) chex.assert_shape(outputs, [batch_size, unroll_len]) return outputs, logs LossBuilder = Callable[[types.ActionSpec], Loss]
alphastar-main
alphastar/unplugged/losses/loss_base.py
# Copyright 2021 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
alphastar-main
alphastar/unplugged/configs/__init__.py
# Copyright 2021 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Configuration for the supervised StarCraft II JaxCraft pipeline.""" import datetime from typing import Optional from alphastar.architectures import architectures as arch_util from alphastar.modules import optimizers import ml_collections from pysc2.env.converter.proto import converter_pb2 from s2clientprotocol import common_pb2 _EVAL_MAP_NAMES = ("KairosJunction", "KingsCove", "CyberForest", "NewRepugnancy") _EVAL_COMPETITORS = ( # Built-in AI "very_easy", "very_hard", ) _DEFAULT_REPLAY_VERSIONS = ("4.8.2", "4.8.3", "4.8.4", "4.8.6", "4.9.0", "4.9.1", "4.9.2",) # These parameters are only used internally in this config: _NUM_UPGRADES = 90 # v3 _NUM_BUFFS = 46 # v2 _USE_CAMERA = True _NUM_UNIT_FEATURES = 46 # v7 _USE_PLACEHOLDER = True _SHOW_BURROWED_SHADOWS = True _MAX_NUM_SELECTED_UNITS = 64 _SCREEN_DIM = 1 _MINIMAP_DIM = 128 _WORLD_DIM = 256 # These parameters are used outside: NUM_UNIT_TYPES = 243 # v4 NUM_RAW_FUNCTIONS = 556 # v4 def get_converter_settings( use_supervised: bool,) -> converter_pb2.ConverterSettings: return converter_pb2.ConverterSettings( raw_settings=converter_pb2.ConverterSettings.RawSettings( resolution=common_pb2.Size2DI(x=_WORLD_DIM, y=_WORLD_DIM), max_unit_count=512, num_unit_features=_NUM_UNIT_FEATURES, max_unit_selection_size=_MAX_NUM_SELECTED_UNITS, shuffle_unit_tags=True, enable_action_repeat=True, use_camera_position=_USE_CAMERA, camera=_USE_CAMERA, use_virtual_camera=_USE_CAMERA, virtual_camera_dimensions=converter_pb2.ConverterSettings.RawSettings .CameraDimensions(left=16, right=16, top=13, bottom=7), add_effects_to_units=True, add_cargo_to_units=True, mask_offscreen_enemies=_USE_CAMERA), minimap=common_pb2.Size2DI(x=_MINIMAP_DIM, y=_MINIMAP_DIM), minimap_features=[ "height_map", "visibility_map", "creep", "player_relative", "alerts", "pathable", "buildable" ], num_action_types=NUM_RAW_FUNCTIONS, num_unit_types=NUM_UNIT_TYPES, num_upgrade_types=_NUM_UPGRADES, max_num_upgrades=40, camera_width_world_units=24, mmr=6000, supervised=use_supervised, crop_to_playable_area=False) SUPERVISED_CONVERTER_SETTINGS = get_converter_settings(use_supervised=True) EVAL_CONVERTER_SETTINGS = get_converter_settings(use_supervised=False) def get_config(arch_str: str) -> ml_collections.ConfigDict: """Sets up base config which can be overridden.""" config = ml_collections.ConfigDict() # EVALUATION SETTINGS config.eval = ml_collections.ConfigDict() # We use common_pb2 instead of sc2_env to avoid depending on pygame. config.eval.home_races = [ common_pb2.Protoss, common_pb2.Terran, common_pb2.Zerg ] config.eval.away_races = [ common_pb2.Protoss, common_pb2.Terran, common_pb2.Zerg ] config.eval.genrl_env_prob = 0.5 config.eval.map_names = _EVAL_MAP_NAMES config.eval.competitor_names = _EVAL_COMPETITORS # Specify the directory and the latest checkpoint from the directory will be # evaluated. config.eval.eval_checkpoint_dir = "" config.eval.eval_checkpoint_path = "" # Number of steps to run the eval module for each episode. Use for debugging. config.eval.max_num_steps: Optional[int] = 1_000_000 config.eval.log_to_csv: bool = True config.eval.evaluator_name: str = "EvalActor" config.eval.evaluator_type: str = "checkpoint" config.eval.num_threads_per_inference_device: int = 1 # Use this to set number of learner frames per learner step. Only used for # logging purposes. config.eval.default_learner_frames_per_step: int = 1 config.eval.rng_seed: int = 42 # TRAINING SETTINGS config.train = ml_collections.ConfigDict() config.train.learner_kwargs = ml_collections.ConfigDict( dict( unroll_len=1, overlap_len=0, batch_size=1024, log_every_n_seconds=60, reduce_metrics_all_devices=True, log_to_csv=True)) config.train.max_number_of_frames: float = 1e10 config.train.init_checkpoint_path: Optional[str] = None # All valid Kwargs for Checkpointer() in acme/tf/savers.py config.train.checkpoint_kwargs = ml_collections.ConfigDict( dict( subdirectory="learner", checkpoint_ttl_seconds=int( datetime.timedelta(days=90).total_seconds()), time_delta_minutes=5, add_uid=True, max_to_keep=5)) config.train.datasource = ml_collections.ConfigDict( dict( name="OfflineTFRecordDataSource", kwargs=dict( replay_versions=_DEFAULT_REPLAY_VERSIONS, player_min_mmr=3500, # This file is dynamically imported during training using # importlib. dataset_paths_fname="", home_race=None, away_race=None, use_prev_features=True, shuffle_buffer_size=1024, extra_replay_filters=dict())), convert_dict=True) config.train.optimizer_kwargs = ml_collections.ConfigDict( dict( extra_weight_decay_mask_fn=None, learning_rate=5e-4, learning_rate_schedule_type=optimizers.LearningRateScheduleType .COSINE, lr_frames_before_decay=0, lr_num_warmup_frames=0, adam_b1=0.9, adam_b2=0.98, adam_eps=1e-8, weight_decay=1e-5, use_adamw=False, before_adam_gradient_clipping_norm=10.0, after_adam_gradient_clipping_norm=None, weight_decay_filter_out=[], staircase_lr_drop_factor=0.2)) config.train.loss = ml_collections.ConfigDict( dict( name="Supervised", kwargs=dict( weights=dict( function=40., delay=9., queued=1., repeat=0.1, target_unit_tag=30., unit_tags=320., world=11.), burnin_len=0, overlap_len=0, name="supervised_loss"))) # ARCHITECTURE SETTINGS config.architecture = ml_collections.ConfigDict( dict( name=arch_str, kwargs=ml_collections.ConfigDict(dict(overlap_len=0, burnin_len=0)))) # TODO(b/207760816) : Make arch config shorter to call for ease of use. config.architecture.kwargs.config = arch_util.get_default_config(arch_str) config.converter_settings = ml_collections.ConfigDict( dict(train=SUPERVISED_CONVERTER_SETTINGS, eval=EVAL_CONVERTER_SETTINGS)) return config
alphastar-main
alphastar/unplugged/configs/alphastar_supervised.py
# Copyright 2021 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. r"""An example script that trains an Alphastar agent and saves checkpoints. The default arguments in the config will run a full-fledged training of an AlphaStar agent -- it does training, stores checkpoints and logs training details such as different losses, gradients etc. to CSV by default. This script does not do any evaluation during training. Please run `scripts/evaluate.py` in parallel to evaluate from the stored checkpoints. More instructions on how to run evaluation can be found in the docstring of `scripts/evaluate.py`. To run training with small batch size over 16 frames (real data consists of billions of frames) for debugging purposes, run: ```shell python alphastar/scripts/train.py \ --config=${PWD}/configs/alphastar_supervised.py:alphastar.dummy \ --config.train.max_number_of_frames=16 \ --config.train.learner_kwargs.batch_size=4 \ --config.train.datasource.kwargs.shuffle_buffer_size=16 \ --config.train.optimizer_kwargs.lr_frames_before_decay=4 \ --config.train.learner_kwargs.unroll_len=3 \ --config.train.datasource.name=DummyDataSource ``` Information about different architecture names can be found in `architectures/README.md`. * For full fledged training, adjust the config kwargs accordingly or use the defaults provided in the config. * To warmstart from a checkpoint, set config.train.init_checkpoint_path * Set config.train.checkpoint_kwargs.add_uid = True for getting the new checkpoints in a unique directory. A UID is appended to the directory path upon new instantiation. Set this to False if you want to write in a directory without the UID (note that this could lead to overriding an existing checkpoint if the checkpoint directory already exists.) """ import functools from absl import app from absl import flags from absl import logging from acme.jax import utils from alphastar.architectures import architectures from alphastar.modules import common as acme_common from alphastar.modules import optimizers from alphastar.unplugged import losses from alphastar.unplugged.data import data_source from alphastar.unplugged.data import data_source_base from alphastar.unplugged.modules import learner import jax from ml_collections import config_flags FLAGS = flags.FLAGS _CONFIG = config_flags.DEFINE_config_file( 'config', help_string='Configuration file') def main(_): config = _CONFIG.value num_devices = 1 # Number of devices over which training is run. frames_per_step = int(config.train.learner_kwargs.batch_size * config.train.learner_kwargs.unroll_len) * num_devices architecture = architectures.get_architecture(config.architecture.name) architecture = functools.partial(architecture, **config.architecture.kwargs) loss = functools.partial( getattr(losses, config.train.loss.name), **config.train.loss.kwargs) optimizer, optimizer_logs_fn = optimizers.get_optimizer( num_frames_per_learner_update=frames_per_step, total_num_training_frames=config.train.max_number_of_frames, **config.train.optimizer_kwargs) data_source_kwargs = dict( data_split=data_source_base.DataSplit.DEBUG, converter_settings=config.converter_settings.train, batch_size=config.train.learner_kwargs.batch_size, unroll_len=config.train.learner_kwargs.unroll_len, overlap_len=config.train.learner_kwargs.overlap_len, **config.train.datasource.kwargs) train_data_source = getattr(data_source, config.train.datasource.name)( **data_source_kwargs) logger = acme_common.make_default_logger( 'learner', log_to_csv=config.train.learner_kwargs.log_to_csv, time_delta=config.train.learner_kwargs.log_every_n_seconds, asynchronous=True, serialize_fn=utils.fetch_devicearray) learner_node = learner.SupervisedLearner( data_source=train_data_source, architecture_builder=architecture, loss_builder=loss, optimizer=optimizer, optimizer_logs_fn=optimizer_logs_fn, logger=logger, rng_key=jax.random.PRNGKey(22), frames_per_step=frames_per_step, increment_counts=False, **config.train.learner_kwargs) checkpointed_learner_node = acme_common.FramesLimitedCheckpointingRunner( max_number_of_frames=config.train.max_number_of_frames, num_frames_per_step=frames_per_step, wrapped=learner_node, **config.train.checkpoint_kwargs ) checkpointed_learner_node.run() logging.info('Finished training. GG!') if __name__ == '__main__': app.run(main)
alphastar-main
alphastar/unplugged/scripts/train.py
# Copyright 2021 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. r"""Script to run an evaluator for alphastar. Running this script sets up an architecture, loads any associated checkpoints if specified, spins up a game against a bot (with a randomly chosen map and home+opponent races) at random using the PySC2 environment wrappers. In this script, we run one full episode for a chosen setting. At the end of the episode, the game outcome and useful stats are logged to a CSV file by ACME loggers (in ~/acme). To get noise-free results that can be reported for comparison across SOTA benchmarks, we need to average results across these maps and races and to do that, we recommend running the script across several CPU workers (~50 per setting) with different random seeds (`config.eval.rng_seed`). We list a few ways in which you could use this script. Information about different architecture names can be found in architectures/README.md. To use this script just to check if an evaluator is working correctly, run it with random parameters for a few steps (This plays a hundred steps only and not a full episode): ```shell python alphastar/scripts/evaluate.py \ --config=${PWD}/configs/alphastar_supervised.py:alphastar.dummy \ --config.eval.log_to_csv=False \ --config.eval.max_num_steps=100 \ --config.eval.evaluator_type='random_params' ``` To run evaluation on an existing checkpoint for one full episode, run: ```shell python alphastar/scripts/evaluate.py \ --config=${PWD}/configs/alphastar_supervised.py:<ARCHITECTURE_NAME> \ --config.eval.eval_checkpoint_path=<EVAL_CHECKPOINT_PATH> ``` where `<ARCHITECTURE_NAME>` is the architecture that the checkpoint was trained with and `<EVAL_CHECKPOINT_PATH>` is the path to the checkpoint to evaluate. To run evaluation on the most recent checkpoint existing in a directory (which is usually done when evaluation is done in parallel to training) ```shell python alphastar/scripts/evaluate.py \ --config=${PWD}/configs/alphastar_supervised.py:<ARCHITECTURE_NAME> \ --config.eval.eval_checkpoint_dir=<EVAL_CHECKPOINT_DIR> ``` """ import functools from absl import app from alphastar.architectures import architectures from alphastar.loggers import eval_episode_logger from alphastar.modules import evaluator from ml_collections import config_flags _CONFIG = config_flags.DEFINE_config_file( 'config', help_string='Configuration file') def main(_): config = _CONFIG.value architecture = architectures.get_architecture(config.architecture.name) architecture = functools.partial(architecture, **config.architecture.kwargs) eval_actor = evaluator.EvalActor( architecture=architecture, learner_frames_per_step=config.eval.default_learner_frames_per_step, episode_logger=eval_episode_logger.EvalEpisodeLogger( log_name='eval', log_to_csv=config.eval.log_to_csv), learner_node=None, converter_settings=config.converter_settings.eval, competitor_name='very_easy', **config.eval) eval_actor.run_episode(eval_actor.setup_agent()) if __name__ == '__main__': app.run(main)
alphastar-main
alphastar/unplugged/scripts/evaluate.py
# Copyright 2021 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
alphastar-main
alphastar/unplugged/modules/__init__.py
# Copyright 2021 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for learner.""" import functools from absl.testing import absltest from absl.testing import parameterized from alphastar.architectures import architectures from alphastar.commons import jax_utils from alphastar.modules import optimizers from alphastar.unplugged import losses from alphastar.unplugged.configs import alphastar_supervised as expt_config_module from alphastar.unplugged.data import data_source from alphastar.unplugged.data import data_source_base from alphastar.unplugged.modules import learner import jax def setUpModule(): # Disable JAX optimizations in order to speed up compilation. jax_utils.disable_jax_optimizations() def tearDownModule(): jax_utils.restore_jax_config() class DistributedAgentLearnerTest(parameterized.TestCase): """Simple integration/smoke test for the distributed agent.""" # Evaluator needs to be tested separately as guitar test. @parameterized.parameters('alphastar.dummy', 'alphastar.lite') def test_agent_learner(self, architecture): expt_config = expt_config_module.get_config(architecture) expt_config.train.learner_kwargs.batch_size = 4 expt_config.train.learner_kwargs.unroll_len = 3 expt_config.train.learner_kwargs.log_to_csv = False expt_config.train.datasource.kwargs.shuffle_buffer_size = 16 expt_config.train.max_number_of_frames = 96 expt_config.architecture.name = architecture expt_config.train.optimizer_kwargs.lr_frames_before_decay = 12 expt_config.train.datasource.name = 'DummyDataSource' frames_per_step = int(expt_config.train.learner_kwargs.batch_size * expt_config.train.learner_kwargs.unroll_len) architecture = architectures.get_architecture(expt_config.architecture.name) architecture = functools.partial(architecture, **expt_config.architecture.kwargs) loss = functools.partial( getattr(losses, expt_config.train.loss.name), **expt_config.train.loss.kwargs) optimizer, optimizer_logs_fn = optimizers.get_optimizer( num_frames_per_learner_update=frames_per_step, total_num_training_frames=expt_config.train.max_number_of_frames, **expt_config.train.optimizer_kwargs) train_data_source = getattr(data_source, expt_config.train.datasource.name)( data_split=data_source_base.DataSplit.DEBUG, converter_settings=expt_config.converter_settings.train, batch_size=expt_config.train.learner_kwargs.batch_size, unroll_len=expt_config.train.learner_kwargs.unroll_len, overlap_len=expt_config.train.learner_kwargs.overlap_len, **expt_config.train.datasource.kwargs) learner_node = learner.SupervisedLearner( data_source=train_data_source, architecture_builder=architecture, loss_builder=loss, optimizer=optimizer, optimizer_logs_fn=optimizer_logs_fn, counter=None, logger=None, rng_key=jax.random.PRNGKey(22), frames_per_step=frames_per_step, increment_counts=False, **expt_config.train.learner_kwargs) for _ in range(2): learner_node.step() if __name__ == '__main__': absltest.main()
alphastar-main
alphastar/unplugged/modules/learner_test.py
# Copyright 2021 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ACME based learner for Alphastar. """ # pylint: disable=logging-fstring-interpolation import time from typing import Any, Mapping, Optional, Sequence, Tuple from absl import logging import acme from acme.jax import utils from acme.utils import counting from acme.utils import loggers from alphastar.architectures import modular from alphastar.commons import log_utils from alphastar.commons import metrics from alphastar.modules import agent as agent_lib from alphastar.modules import common from alphastar.unplugged import losses from alphastar.unplugged.data import data_source_base from alphastar.unplugged.data import util as data_util import chex import haiku as hk import jax import jax.numpy as jnp import numpy as np import optax import reverb import tree _PMAP_AXIS_NAME = 'data' @chex.dataclass class TrainingState: """Training state consists of network parameters and optimiser state.""" params: hk.Params opt_state: optax.OptState net_state: Any step: int rng: chex.PRNGKey class SupervisedLearner(acme.Learner): """Supervised Learner module for newer style architectures (eg. v3).""" def __init__(self, architecture_builder: modular.ArchitectureBuilder, loss_builder: losses.LossBuilder, batch_size: int, unroll_len: int, overlap_len: int, frames_per_step: int, data_source: data_source_base.DataSource, optimizer: optax.GradientTransformation, optimizer_logs_fn, rng_key: chex.PRNGKey, counter: Optional[counting.Counter] = None, logger: Optional[loggers.Logger] = None, devices: Optional[Sequence[jax.xla.Device]] = None, increment_counts: bool = True, reduce_metrics_all_devices: bool = False, log_every_n_seconds: int = 60, log_to_csv: bool = True): """Initializes a supervised learner. Args: architecture_builder : A builder that constructs the agent architecture. loss_builder : A builder function that constructs the training loss. batch_size : Training batch size used per host. unroll_len : Unroll length (sequence length) for the inputs. overlap_len : Overlap length between successful sequences. frames_per_step : Number of frames used per training step. data_source : Data source that is used as data iterator for training. optimizer: An optax optimizer module. optimizer_logs_fn : Helper function that logs optimizer statistics. rng_key: A JAX random number generator. counter: An ACME counter object that keeps counts of different ordinal statistcs in training. logger: An ACME logger object that logs training metrics. devices: XLA devices for the learner model. increment_counts: Boolean to decide if the learner needs to increment counts. This can be True for a primary learner and False for other learners in multi-host training. reduce_metrics_all_devices: Boolean to decide if metrics needed to be reduced across all hosts in multi-host training. log_every_n_seconds: Interval between logs in seconds. log_to_csv: Boolean to decide if logging to CSV is necessary. By default, training stats are logged to the terminal. """ local_devices = jax.local_devices() devices = devices or jax.devices() local_devices = [d for d in devices if d in local_devices] logging.info(f'In total, there are {devices} devices and ' f'{local_devices} local devices. \n Devices are ' f' : {devices} and local devices are {local_devices}') # Error checks. if batch_size % len(local_devices) != 0: raise ValueError( f'Batch size ({batch_size}) must always be a multiple of number of ' f'training devices on each host ({local_devices}).') # Setup and initialization. action_spec = data_source.action_spec input_spec = data_source.input_spec agent = agent_lib.AlphaStarAgent( architecture_builder(input_spec, action_spec, True)) training_loss = loss_builder(action_spec) def _loss(params, state, key, data): if 'prev_features' in data: logging.log_first_n(logging.INFO, 'Using prev_features', n=1) state.update(jax.tree_map(lambda x: x[:, 0], data.get('prev_features'))) del data['prev_features'] outputs, next_state, _ = agent.apply(params, key, data, state) loss_inputs = data.copy() loss_inputs.update(outputs) loss, logs = training_loss.batched_loss(loss_inputs) mean_loss = jnp.mean(loss, axis=[0, 1]) reduced_logs = log_utils.reduce_logs(logs) return mean_loss, (reduced_logs, next_state) def update_step( state: TrainingState, sample: reverb.ReplaySample ) -> Tuple[TrainingState, Mapping[str, jnp.ndarray]]: """Computes an SGD step, returning new state and metrics for logging.""" # Compute gradients. grad_fn = jax.value_and_grad(_loss, has_aux=True) loss_key, new_key = jax.random.split(state.rng) (loss_value, (logs, net_state)), gradients = grad_fn(state.params, state.net_state, loss_key, sample) # Average gradients over pmap replicas before optimizer update. gradients = jax.lax.pmean(gradients, _PMAP_AXIS_NAME) # Apply updates. updates, new_opt_state = optimizer.update(gradients, state.opt_state, state.params) new_params = optax.apply_updates(state.params, updates) if reduce_metrics_all_devices: loss_value = jax.lax.pmean(loss_value, _PMAP_AXIS_NAME) logs = metrics.reduce_metrics(logs, axis_name=_PMAP_AXIS_NAME) training_metrics = { 'loss': loss_value, 'gradient_norm': optax.global_norm(gradients), 'param_norm': optax.global_norm(new_params), 'param_updates_norm': optax.global_norm(updates), } training_metrics.update(common.flatten_metrics(logs)) training_metrics.update( common.flatten_metrics(optimizer_logs_fn(new_opt_state))) new_steps = state.step + 1 new_state = TrainingState( params=new_params, opt_state=new_opt_state, net_state=net_state, step=new_steps, rng=new_key, ) return new_state, training_metrics def make_initial_state(key: jnp.ndarray) -> TrainingState: """Initialises the training state (parameters and optimiser state).""" key, new_key = jax.random.split(key) per_local_device_batch_size = int(batch_size / len(local_devices)) dummy_obs = data_util.get_dummy_observation( input_spec=data_source.input_spec, batch_size=per_local_device_batch_size, unroll_len=unroll_len) initial_state_key, params_key = jax.random.split(key) initial_state = agent.initial_state( initial_state_key, per_local_device_batch_size) params = agent.init(params_key, dummy_obs, initial_state) params_log_lines = ['All params:'] tree.map_structure_with_path( lambda path, v: params_log_lines.append(f'{path} {v.shape}'), params) logging.info('\n'.join(params_log_lines)) initial_opt_state = optimizer.init(params) return TrainingState( params=params, net_state=initial_state, opt_state=initial_opt_state, step=0, rng=new_key) # Initialize state. rng_key, init_rng = jax.random.split(rng_key) state = make_initial_state(init_rng) self._local_devices = local_devices self._frames_per_step = frames_per_step self._state = utils.replicate_in_all_devices(state, local_devices) self._prefetched_data_iterator = data_source.get_generator() self._update_step = jax.pmap( update_step, axis_name=_PMAP_AXIS_NAME, devices=devices) # Set up logging/counting. self._counter = counter self._logger = logger or common.make_default_logger( 'learner', time_delta=log_every_n_seconds, log_to_csv=log_to_csv) self._increment_counts = increment_counts def _preprocess(self, data): """Reshapes input so that it can be distributed across multiple cores.""" def add_core_dimension(x): num_devices = len(self._local_devices) if x.shape[0] % num_devices != 0: raise ValueError(f'The batch size must be a multiple of the number of' f' devices. Got batch size = {x.shape[0]} and number' f' of devices = {num_devices}.') prefix = (num_devices, x.shape[0] // num_devices) return np.reshape(x, prefix + x.shape[1:]) multi_inputs = jax.tree_map(add_core_dimension, data) return multi_inputs def step(self): """Does a step of SGD and logs the results.""" # Do a batch of SGD. start = time.time() samples = self._preprocess(next(self._prefetched_data_iterator)) self._state, results = self._update_step(self._state, samples) # Take results from first replica. results = utils.get_from_first_device(results, as_numpy=False) if self._counter: if self._increment_counts: counts = self._counter.increment( steps=1, num_frames=self._frames_per_step, time_elapsed=time.time() - start) else: counts = self._counter.get_counts() if 'learner_steps' in counts: results['steps_per_second'] = counts['learner_steps'] / counts[ 'learner_time_elapsed'] results['frames_per_second'] = counts['learner_num_frames'] / counts[ 'learner_time_elapsed'] else: counts = {} # Snapshot and attempt to write logs. Logger already throttles the logging. self._logger.write({**results, **counts}) def get_variables(self, names: Sequence[str]) -> Sequence[hk.Params]: # Return first replica of parameters. return [utils.get_from_first_device(self._state.params, as_numpy=False)] def save(self) -> TrainingState: # Serialize only the first replica of parameters and optimizer state. return jax.tree_map(utils.get_from_first_device, self._state) def restore(self, state: TrainingState): self._state = utils.replicate_in_all_devices(state, self._local_devices)
alphastar-main
alphastar/unplugged/modules/learner.py
# Copyright 2021 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Data source for Riegeli-based datasets used in Alphastar offline training.""" import functools from typing import Any, Generator, Mapping, Optional, Sequence, Tuple from alphastar import types from alphastar.unplugged.data import data_source_base from alphastar.unplugged.data import util as data_utils from alphastar.unplugged.data import path_utils from pysc2.env import converted_env from pysc2.env import enums as sc2_enums from pysc2.env.converter.proto import converter_pb2 import tensorflow as tf def make_episodes_dataset( dataset_pattern, features, training=True, ): """Makes episodes dataset from files. Args: dataset_pattern: File path pattern for the dataset. features: TF Example features in the dataset. training: Boolean to indicate whether in training mode. Returns: TF Dataset for the episodes data. """ files_ds = tf.data.Dataset.list_files(dataset_pattern, shuffle=training) ds = files_ds.interleave( tf.data.TFRecordDataset, num_parallel_calls=tf.data.AUTOTUNE) serializer = data_utils.TFExampleCoder(features=features, compress=True) ds = ds.map(serializer.decode, num_parallel_calls=tf.data.AUTOTUNE) ds = ds.repeat() return ds def make_unrolls_dataset(episode_ds: tf.data.Dataset, batch_size: int, unroll_len: int, shuffle_buffer_size: int): """Makes unrolls dataset from episodes. Args: episode_ds: TF Dataset of episodes. batch_size: Batch size used in the dataset. unroll_len: Length of unroll for each sequence in the batch. shuffle_buffer_size : Size of the shuffle buffer used for the unrolls. Returns: TF Dataset object with unrolled batched sequences. """ ds = episode_ds.flat_map(tf.data.Dataset.from_tensor_slices) ds = ds.batch(unroll_len) ds = ds.shuffle( buffer_size=shuffle_buffer_size, reshuffle_each_iteration=True) ds = ds.batch(batch_size) ds = ds.prefetch(buffer_size=tf.data.AUTOTUNE) return ds class OfflineTFRecordDataSource(data_source_base.DataSource): """A data source that runs the environment to read replays.""" def __init__(self, unroll_len: int, overlap_len: int, batch_size: int, data_split: data_source_base.DataSplit, converter_settings: converter_pb2.ConverterSettings, replay_versions: Sequence[str], player_min_mmr: int, dataset_paths_fname: str, home_race: Optional[sc2_enums.Race], away_race: Optional[sc2_enums.Race], use_prev_features: bool, max_times_sampled: int = 1, shuffle_buffer_size: int = 1024, extra_replay_filters: Optional[Mapping[str, Any]] = None): """Initializes the offline TF Record data source. Args: unroll_len: Unroll length (sequence length) for the inputs. overlap_len: Overlap length between successful sequences. batch_size: Batch size for the data. data_split: Data split (train or test data) converter_settings: Settings used for the converter that transforms the observations and actions. replay_versions: Sequence of replay files that are used as part of the dataset. player_min_mmr: Minimum MMR for the games to be a part of the dataset. dataset_paths_fname: Filename of the python file that contains the path information for different replay versions and MMR combinations. home_race: Race of the player. away_race: Race of the opponent. use_prev_features: Whether to add the prev_feature field to the agent inputs. They contain the actions taken at the step immediately before the first time step of the rollout. max_times_sampled: Maximum number of times to sample. shuffle_buffer_size: Size of the shuffle buffer for the dataset. extra_replay_filters: Map of further filters to be applied on the replay data. """ super().__init__(unroll_len=unroll_len, overlap_len=overlap_len, batch_size=batch_size, home_race=home_race, away_race=away_race) self._data_split = data_split self._converter_settings = converter_settings self._player_min_mmr = player_min_mmr self._shuffle_buffer_size = shuffle_buffer_size self._use_prev_features = use_prev_features self._obs_spec, self._action_spec = converted_env.get_environment_spec( self._converter_settings) if extra_replay_filters: # TODO(b/208419046): Add filtering support. raise ValueError('Filtering is not supported yet.') self._replay_versions = tuple(replay_versions) dataset_pattern = path_utils.get_dataset_pattern( self._replay_versions, self._data_split, self._player_min_mmr, dataset_paths_fname) if dataset_pattern is None: raise ValueError( f'Dataset not found matching ' f'replay_versions: {self._replay_versions}, ' f'data_split: {self._data_split}, ' f'player_min_mmr: {self._player_min_mmr}' ) self._dataset_pattern = dataset_pattern def get_generator(self) -> Generator[types.StreamDict, None, None]: """Get generator which yields training batches for the learner.""" features = data_utils.get_dataset_specs(self._obs_spec) episodes_ds = make_episodes_dataset(self._dataset_pattern, features) unrolls_ds = make_unrolls_dataset( episodes_ds, self._batch_size, self._unroll_len + (1 if self._use_prev_features else 0), shuffle_buffer_size=self._shuffle_buffer_size) ds = unrolls_ds.prefetch(1) yield from map(functools.partial(data_utils.as_learner_input, use_prev_features=self._use_prev_features), data_utils.iterate(ds)) @property def env_spec(self) -> Tuple[types.ObsSpec, types.ActionSpec]: _, obs_spec = data_utils.split_behaviour_actions(self._obs_spec) obs_spec = types.SpecDict(obs_spec) action_spec = types.SpecDict(self._action_spec) return obs_spec, action_spec @property def input_spec(self) -> types.SpecDict: behaviour_action_spec, obs_spec = data_utils.split_behaviour_actions( self._obs_spec) behaviour_features_spec = types.SpecDict(dict(action=behaviour_action_spec)) if self._use_prev_features: prev_features_spec = behaviour_features_spec else: prev_features_spec = None return data_utils.get_input_spec( obs_spec, behaviour_features_spec=behaviour_features_spec, prev_features_spec=prev_features_spec) class DummyDataSource(data_source_base.DataSource): """Data source that outputs dummy observations all the time (for testing).""" def __init__( self, unroll_len: int, batch_size: int, converter_settings: converter_pb2.ConverterSettings, **unused_kwargs): """Initializes the dummy data source. Args: unroll_len: Unroll length (sequence length) for the inputs. batch_size: Batch size for the data. converter_settings: Settings used for the converter that transforms the observations and actions. """ self._unroll_len = unroll_len self._batch_size = batch_size self._obs_spec, self._action_spec = converted_env.get_environment_spec( converter_settings) def get_generator(self) -> Generator[types.StreamDict, None, None]: dummy_obs = data_utils.get_dummy_observation( self.input_spec, batch_size=self._batch_size, unroll_len=self._unroll_len) while True: yield dummy_obs @property def env_spec(self) -> Tuple[types.ObsSpec, types.ActionSpec]: _, obs_spec = data_utils.split_behaviour_actions(self._obs_spec) obs_spec = types.SpecDict(obs_spec) action_spec = types.SpecDict(self._action_spec) return obs_spec, action_spec @property def input_spec(self) -> types.SpecDict: behaviour_action_spec, obs_spec = data_utils.split_behaviour_actions( self._obs_spec) behaviour_features_spec = types.SpecDict(dict(action=behaviour_action_spec)) return data_utils.get_input_spec(obs_spec, behaviour_features_spec)
alphastar-main
alphastar/unplugged/data/data_source.py
# Copyright 2022 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Generates tfrecords containing converted replay data. Takes as input a partition file, as generated by generate_partitions.py, plus a ConverterSettings proto file (in text format), e.g. alphastar_supervised_converter_settings.pbtxt, converting all replays listed in the partition from .SC2Replay to .tfrecord. Note that replays expect the correct version of the StarCraft2 binary. It is recommended that replays are stored in version-specific directories and processed a version at a time. The `SC2PATH` environment variable can be used to control the active SC2 version for each run. """ import os from typing import Mapping from absl import app from absl import flags from absl import logging from alphastar.unplugged.data import util import chex import dm_env import jax import numpy as np from pysc2.env import converted_env from pysc2.env.converter.proto import converter_pb2 from pysc2.lib import protocol as sc2_protocol from pysc2.lib import remote_controller from pysc2.lib import sc_process from pysc2.lib.replay import replay_converter import tensorflow as tf import websocket from google.protobuf import text_format FLAGS = flags.FLAGS flags.DEFINE_string( 'sc2_replay_path', None, 'Path to .SC2Replay files.', required=True) flags.DEFINE_string( 'converted_path', None, 'Path to .tfrecord files.', required=True) flags.DEFINE_string( 'partition_file', None, 'Path to partition file to be processed.', required=True) flags.DEFINE_string( 'converter_settings', None, 'Converter settings to apply (pbtxt, using text_format).', required=True) flags.DEFINE_integer( 'max_retries', 3, 'Maximum number of times to retry parsing of a replay (which may be foiled ' 'by websocket errors or similar) before moving on.') def _generate_episode(replay_file_path: str, player_id: int, replay_data, converter_settings) -> Mapping[str, chex.Array]: """Returns an episode as a tree of stacked converted observations.""" for attempt in range(FLAGS.max_retries + 1): try: logging.info('Converting %s, player %d.%s', replay_file_path, player_id, ' Attempt {attempt}.' if attempt else '') observations = replay_converter.converted_observation_stream( replay_data, player_id, converter_settings) episode = jax.tree_map(lambda *xs: np.stack(xs), *observations) except ( sc_process.SC2LaunchError, remote_controller.ConnectError, sc2_protocol.ConnectionError, websocket.WebSocketTimeoutException, ) as e: logging.warning('Ephemeral(?) exception while converting replay %s: %s.', replay_file_path, e) except AttributeError as e: logging.warning( 'Giving up on converting replay %s for player %d due to ' 'exception: %s.', replay_file_path, player_id, e) return None else: return episode logging.warning( 'Giving up on converting replay %s for player %d, max retries (%d) ' 'reached.', replay_file_path, player_id, FLAGS.max_retries) def _step_type_array(length: int): step_type = np.full((length,), fill_value=dm_env.StepType.MID, dtype=np.int32) step_type[0] = dm_env.StepType.FIRST step_type[-1] = dm_env.StepType.LAST return step_type def _process(replay_file_path: str, converter_settings, serializer): """Yields ({replay_hash}_{player_id}, serialized episode). 0, 1 or 2 elements may be yielded, depending on whether the replay is successfully parsed and on the number of players present in the replay. Args: replay_file_path: Path to an .SC2Replay file. converter_settings: ConverterSettings proto. serializer: For encoding episodes in serialized form. """ with tf.io.gfile.GFile(replay_file_path, 'rb') as f: replay_data = f.read() replay_hash = os.path.basename(replay_file_path).replace('.SC2Replay', '') for player_id in [1, 2]: # Player IDs in a 2-player SC2 game. episode = _generate_episode(replay_file_path, player_id, replay_data, converter_settings) if not episode: # Skip failed replays. continue length = episode['player'].shape[0] if length == 0: # Skip empty replays. continue episode = dict(observation=episode, step_type=_step_type_array(length)) serialized_episode = serializer.encode(episode) if serialized_episode: episode_hash = f'{replay_hash}_{player_id}' yield episode_hash, serialized_episode def _write(episode_hash: str, serialized_episode): """Writes a serialized episode to file using TFRecordWriter.""" filename = episode_hash + '.tfrecord' tmp_name = os.path.join(FLAGS.converted_path, '~' + filename) final_name = os.path.join(FLAGS.converted_path, filename) tf.io.gfile.makedirs(os.path.dirname(tmp_name)) tf.io.gfile.makedirs(os.path.dirname(final_name)) # Write to temp file first, and move only after writing is finished, # to minimize the chances of partially-written files. with tf.io.TFRecordWriter(tmp_name, options=None) as writer: writer.write(serialized_episode) tf.io.gfile.rename(tmp_name, final_name, overwrite=True) def main(argv): del argv with tf.io.gfile.GFile(FLAGS.converter_settings, 'r') as f: converter_settings = text_format.Parse(f.read(), converter_pb2.ConverterSettings()) obs_spec, _ = converted_env.get_environment_spec(converter_settings) features = util.get_dataset_specs(obs_spec) serializer = util.TFExampleCoder(features=features, compress=True) with tf.io.gfile.GFile(FLAGS.partition_file, 'r') as f: replay_hashes = [l.strip() for l in f.readlines()] for h in replay_hashes: logging.info('Processing replay with hash %s.', h) for episode_hash, serialized_episode in _process( replay_file_path=os.path.join(FLAGS.sc2_replay_path, f'{h}.SC2Replay'), converter_settings=converter_settings, serializer=serializer): logging.info('Writing episode hash %s.', episode_hash) _write(episode_hash, serialized_episode) if __name__ == '__main__': app.run(main)
alphastar-main
alphastar/unplugged/data/generate_dataset.py
# Copyright 2021 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utility functions for data.""" import queue import threading from typing import Any, Callable, Generator, Iterable, Mapping, List, Optional, TypeVar, Union import zlib from absl import logging from alphastar import types import apache_beam as beam from apache_beam import coders import chex import dm_env from dm_env import specs import jax import jax.numpy as jnp import numpy as np import tensorflow as tf import tensorflow_datasets as tfds import tree def get_input_spec( obs_spec: types.ObsSpec, behaviour_features_spec: Optional[types.SpecDict] = None, prev_features_spec: Optional[types.SpecDict] = None ) -> types.SpecDict: """Get full input spec given obs_spec and optional behaviour_action_spec.""" spec = types.SpecDict() spec['step_type'] = specs.BoundedArray( (), jnp.int32, minimum=0, maximum=int(max(dm_env.StepType))) spec['observation'] = obs_spec if behaviour_features_spec: spec['behaviour_features'] = behaviour_features_spec if prev_features_spec: spec['prev_features'] = prev_features_spec return spec def get_dummy_observation(input_spec: types.SpecDict, batch_size: int, unroll_len: Optional[int]) -> types.StreamDict: """Return a dummy observation matching the spec.""" if unroll_len is None: def zeros_like_spec(spec): return jnp.zeros((batch_size,) + spec.shape, spec.dtype) else: def zeros_like_spec(spec): return jnp.zeros((batch_size, unroll_len) + spec.shape, spec.dtype) return jax.tree_map(zeros_like_spec, input_spec) class FeatureSpec: """A description of the features used in the dataset. Feature values are numpy arrays which are serialized as bytes. """ def __init__(self, dtype, shape): """Initializes a FeatureSpec. Args: dtype: dtype convertible with tf.as_dtype shape: shape convertible with tf.TensorShape.Make sure at most one dimension is None as features can be reshaped at most along one unknown dimension. """ self._dtype = tf.as_dtype(dtype) self._numpy_scalar_type = self.dtype.as_numpy_dtype self._numpy_dtype = np.dtype(self._numpy_scalar_type).newbyteorder('<') self._shape = tf.TensorShape(shape) self._reshape_arg = [ d.value if d.value is not None else -1 for d in self.shape.dims ] @property def dtype(self): """Tf datatype for this feature.""" return self._dtype @property def shape(self): """Tensorshape for this feature.""" return self._shape def _check_shape(self, array): if not self.shape.is_compatible_with(array.shape): raise ValueError('Incompatible shape between what is expected :' f' {self.shape} and that of the array : {array.shape}.') def value_to_string(self, value) -> str: """Serializes value according to the spec for this feature. Args: value: The value to serialize. Returns: A string/bytes. Raises: TypeError: if valus cannot be cast into the specified type. """ array = np.asarray(value) self._check_shape(array) if array.dtype != self._numpy_dtype: raise ValueError('Dtype {} do not match {}'.format( array.dtype, self._numpy_dtype)) return array.tobytes() def string_to_value(self, byte_string): """Deserializes a byte string according to the spec of the feature. Args: byte_string: byte_string to deserialize Returns: A value. """ raw_value = tf.io.decode_raw(byte_string, self.dtype) return tf.reshape(raw_value, self._reshape_arg) def _bytes_feature(value): """Returns a bytes_list from a string / byte.""" if not isinstance(value, List): value = [value] return tf.train.Feature(bytes_list=tf.train.BytesList(value=value)) class TFExampleCoder(coders.Coder): """Helps encodes/decode rows of the dataset to/from numpy arrays/scalars.""" def __init__(self, features: Mapping[str, Any], compress: bool): self._features = features self._compress = compress self._flat_features_with_paths = tree.flatten_with_path(features) self._flat_features = [feat for _, feat in self._flat_features_with_paths] flat_feature_paths = [path for path, _ in self._flat_features_with_paths] self._string_flat_features = { '/'.join(path): tf.io.FixedLenFeature((), tf.string) for path in flat_feature_paths } self._success_counter = beam.metrics.Metrics.counter( 'SerializeFn', 'Success') self._failure_counter = beam.metrics.Metrics.counter( 'SerializeFn', 'Failure') def convert_to_proto(self, row: Mapping[str, Any]) -> tf.train.Example: """Encodes a nest of numpy scalars/arrays to a byte string.""" tree.assert_same_structure(row, self._features) flat_row = tree.flatten(row) features = {} for (path, feature), value in zip(self._flat_features_with_paths, flat_row): try: value_str = feature.value_to_string(value) if self._compress: value_str = zlib.compress(value_str) value_feature = _bytes_feature(value_str) features['/'.join(path)] = value_feature except (TypeError, ValueError) as e: e.args = (f'Incompatible data when encoding feature at path {path}. ' 'Value : {value}') raise example_proto = tf.train.Example( features=tf.train.Features(feature=features)) return example_proto def serialize(self, proto: tf.train.Example) -> Optional[str]: """Serializes a given example to a proto string.""" try: serialized_proto = proto.SerializeToString() self._success_counter.inc() except ValueError as e: self._failure_counter.inc() logging.info('2 GB Protobuf limit hit : %s', e) serialized_proto = None return serialized_proto def encode(self, row: Mapping[str, Any]) -> Optional[str]: """Serializes a row of data into a proto.""" serialized_proto = self.serialize(self.convert_to_proto(row)) if len(serialized_proto) > 1: # Until b/203641663 is fixed, we skip episodes which fail to reconstruct. # TODO(b/208420811): Skip if any array is >2gb instead. try: recons = self.decode(serialized_proto) chex.assert_trees_all_close(row, recons) except tf.errors.InvalidArgumentError as e: logging.info('Failed to compress episode correctly. %s', e.message) serialized_proto = None return serialized_proto def decode(self, example_string: str) -> Mapping[str, Any]: parsed_example = tf.io.parse_single_example(example_string, self._string_flat_features) values = [] for (byte_string, feature) in zip(parsed_example.values(), self._flat_features): if self._compress: byte_string = tf.io.decode_compressed( byte_string, compression_type='ZLIB') value_str = feature.string_to_value(byte_string) values.append(value_str) return tree.unflatten_as(self._features, values) class Log(beam.DoFn): """Identity with logging. Useful for debugging.""" def __init__(self, prefix): self._prefix = prefix def process(self, item): logging.info('%s: %s', self._prefix, repr(item)) yield item def spec_to_feature(x: Union[np.ndarray, chex.Array]) -> FeatureSpec: # Ensure scalars are stored as arrays of shape (1,) and not as scalars of # shape (), so that they can be batched into proper arrays later. if len(x.shape) == 1 and x.shape[0] == 1: shape = (None,) else: shape = (None,) + x.shape return FeatureSpec(dtype=x.dtype, shape=shape) def get_dataset_specs( obs_spec, make_spec: Callable[..., FeatureSpec] = FeatureSpec ) -> Mapping[str, FeatureSpec]: """Generates dataset feature specs from SC2 observation specs.""" obs_features = jax.tree_map(spec_to_feature, obs_spec) return dict( step_type=make_spec(dtype=np.int32, shape=(None,)), observation=obs_features) T = TypeVar('T') def prefetch(iterable: Iterable[T], buffer_size: int) -> Generator[T, None, None]: """Performs prefetching of elements from an iterable in a separate thread. Args: iterable: An iterable to prefetch. buffer_size: Maximum number of items to prefetch. Yields: Prefetched elements from the original iterable. Raises: Any error thrown by the iterable. Note this is not raised inside the producer, but after it finishes executing. """ if not buffer_size >= 1: raise ValueError('buffer_size should be at least 1.') buffer = queue.Queue(maxsize=buffer_size) producer_error = [] end = object() def producer(): """Enques items from iterable on a given thread.""" try: # Build a new iterable for each thread. This is crucial if working with # tensorflow datasets because tf.graph objects are thread local. for item in iterable: buffer.put(item) except Exception as e: # pylint: disable=broad-except logging.exception('Error in producer thread and will be raised in ' 'the main thread.') producer_error.append(e) finally: buffer.put(end) threading.Thread(target=producer, daemon=True).start() # Consumer. while True: value = buffer.get() if value is end: break yield value if producer_error: raise producer_error[0] def iterate(ds: tf.data.Dataset): yield from prefetch(iter(tfds.as_numpy(ds)), 1) def split_behaviour_actions(observation: Mapping[str, Any]): """Extracts out behaviour actions from the observation.""" behaviour_action_keys = [ key for key in observation.keys() if key.startswith('action/') ] behaviour_actions = { key.replace('action/', ''): observation[key] for key in behaviour_action_keys } other_keys = set(observation.keys()) - set(behaviour_action_keys) observation = {key: observation[key] for key in other_keys} return behaviour_actions, observation def as_learner_input(raw_input: Mapping[str, Any], use_prev_features: bool = False) -> types.StreamDict: """Transform the raw_input into a StreamDict type usable by the learner. If use_prev_features is set, the first timestep is used to generate the previous features and is discarded from the main data. This means that the output will have one less timestep than the input. Args: raw_input: The raw input to process. use_prev_features: Whether to use the first timestep to generate the prev_features field. Returns: A StreamDict containing data usable by the learner. """ behaviour_actions, observation = split_behaviour_actions( raw_input['observation']) output = types.StreamDict() output['step_type'] = raw_input['step_type'] output['observation'] = types.StreamDict(observation) output['behaviour_features', 'action'] = types.StreamDict(behaviour_actions) if use_prev_features: prev_output = jax.tree_map(lambda x: x[:, :-1], output) output = jax.tree_map(lambda x: x[:, 1:], output) output['prev_features', 'action'] = prev_output.get( ('behaviour_features', 'action')) return output
alphastar-main
alphastar/unplugged/data/util.py
# Copyright 2021 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
alphastar-main
alphastar/unplugged/data/__init__.py
# Copyright 2021 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Test for data/util.py.""" from absl.testing import parameterized from alphastar.unplugged.data import util import chex import numpy as np import tensorflow as tf import tree class TFCoderTest(tf.test.TestCase, parameterized.TestCase): @parameterized.parameters([ [False,], [True,], ]) def test_tf_coder(self, compress): foo = np.asarray([[1., 2., 3.], [4., 5., 6.]], dtype=np.float32) bar = np.asarray([1, 2, 3], dtype=np.int32) baz = np.asarray(5, dtype=np.int32) qux = np.asarray([50., 44.], dtype=np.float32) bla = np.random.randint(-100, 100, size=[256, 53, 1]) blu = np.random.randn(64, 128, 128) data = dict( foo=foo, bar=bar, foo_bar=dict(baz=baz, qux=qux), bla_blu=dict(bla=bla, blu=blu)) features = tree.map_structure( lambda x: util.FeatureSpec(dtype=x.dtype, shape=x.shape), data) coder = util.TFExampleCoder(features=features, compress=compress) encoded_feature_str = coder.encode(data) decoded_features = coder.decode(encoded_feature_str) decoded_features_np = tree.map_structure(lambda x: x.numpy(), decoded_features) chex.assert_trees_all_close(decoded_features_np, data) if __name__ == '__main__': tf.test.main()
alphastar-main
alphastar/unplugged/data/util_test.py
# Copyright 2022 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Generates replay dataset partition files. Given a directory containing .SC2Replay files and a directory which contains (or will contain) converted .tfrecord files, determines which replays have yet to be converted and partitions them, with each partition containing roughly the same total replay file bytes. Partitions are represented as text files containing newline-separated replay hashes. The intention is that generate_dataset.py is instantiated multiple times, with each instance being passed a separate partition to process. """ import collections import os from typing import Iterable, List, Sequence from absl import app from absl import flags from absl import logging import tensorflow as tf FLAGS = flags.FLAGS flags.DEFINE_string( 'sc2_replay_path', None, 'Path to .SC2Replay files.', required=True) flags.DEFINE_string( 'converted_path', None, 'Path to .tfrecord files.', required=True) flags.DEFINE_integer( 'num_partitions', None, 'Number of partitions to create', required=True) flags.DEFINE_string( 'partition_path', None, 'Path to write partition files to.', required=True) def _enumerate_replays(sc2_replay_path: str, converted_path: str) -> Iterable[str]: """Determines which replays remain to be converted. Args: sc2_replay_path: Source directory containing .SC2Replay files to convert. converted_path: Destination directory, possibly containing converted versions of replays that have already been processed. Returns: An iterable of replay hashes that still require conversion. """ src = set( f.replace('.SC2Replay', '') for f in tf.io.gfile.listdir(sc2_replay_path)) if tf.io.gfile.isdir(converted_path): counts = collections.Counter( f.replace('.tfrecord', '')[:-2] # -2 strips off player id. for f in tf.io.gfile.listdir(converted_path)) # We expect all replays to be 2 player. Any that don't have a .tfrecord # file for each player are marked for conversion. dst = set(k for k, v in counts.items() if v == 2) else: logging.warning('converted_path %s does not exist.', converted_path) dst = set() return sorted(src - dst) def _partition_replays_by_size( sc2_replay_path: str, replay_hashes: List[str], num_partitions: int) -> Sequence[List[str]]: """Partitions a set of replays, taking into account file sizes. Args: sc2_replay_path: Source directory containing .SC2Replay files. replay_hashes: List of hashes of replays to partition. num_partitions: How many partitions to create. Yields: A sequence of lists of hashes, the original list partitioned such that each is of roughly equal total file size. """ sizes = [] total_size = 0 for h in replay_hashes: name = os.path.join(sc2_replay_path, f'{h}.SC2Replay') size = tf.io.gfile.stat(name).length sizes.append(size) total_size = sum(sizes) target_size = total_size // num_partitions cumulative_size = 0 partition = 1 hashes = [] for h, size in zip(replay_hashes, sizes): hashes.append(h) cumulative_size += size if cumulative_size // partition >= target_size: yield hashes hashes.clear() partition += 1 if hashes: yield hashes def _write_partition_files(partitions: Sequence[List[str]], partition_path: str) -> Sequence[str]: """Writes a text file for each partition, of newline-separated strings. Args: partitions: A sequence of string lists. partition_path: Directory to write partition files to. Yields: Sequence of partition filenames written. """ if not tf.io.gfile.isdir(partition_path): tf.io.gfile.makedirs(partition_path) for i, partition in enumerate(partitions): name = os.path.join(partition_path, f'partition_{i}') with tf.io.gfile.GFile(name, 'w') as f: f.write('\n'.join(map(str, partition))) yield name def main(argv: Sequence[str]) -> None: del argv for p in _write_partition_files( partitions=_partition_replays_by_size( sc2_replay_path=FLAGS.sc2_replay_path, replay_hashes=_enumerate_replays( sc2_replay_path=FLAGS.sc2_replay_path, converted_path=FLAGS.converted_path), num_partitions=FLAGS.num_partitions), partition_path=FLAGS.partition_path): logging.info('Created %s.', p) if __name__ == '__main__': app.run(main)
alphastar-main
alphastar/unplugged/data/generate_partitions.py
# Copyright 2021 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Base data source class for AlphaStar data.""" import abc import enum from alphastar import types from typing import Generator, Optional, Tuple from alphastar import collections from pysc2.env import enums as sc2_enums class DataSplit(str, enum.Enum): TRAIN = "train" TEST = "test" DEBUG = "debug" class DataSource(abc.ABC): """Abstract class for data sources.""" def __init__(self, unroll_len: int, overlap_len: int, batch_size: int, home_race: Optional[sc2_enums.Race], away_race: Optional[sc2_enums.Race]): self._unroll_len = unroll_len self._overlap_len = overlap_len if self._overlap_len >= self._unroll_len: raise ValueError("Rollout length must be larger than overlap.") self._batch_size = batch_size if home_race == sc2_enums.Race.random or away_race == sc2_enums.Race.random: # We raise an error here as using random can either mean only the random # race, or any race, depending on the parts of the code. raise ValueError("Filtering random race is not supported. " "Use None to disable filtering.") self._home_race = home_race self._away_race = away_race @property @abc.abstractmethod def env_spec(self) -> Tuple[types.ObsSpec, types.ActionSpec]: """The environment spec.""" @property @abc.abstractmethod def input_spec(self) -> types.SpecDict: """The full spec of the input to the agent.""" @property def obs_spec(self) -> types.ObsSpec: return self.env_spec[0] @property def action_spec(self) -> types.ActionSpec: return self.env_spec[1] @abc.abstractmethod def get_generator(self) -> Generator[collections.Struct, None, None]: """Returns a data generator."""
alphastar-main
alphastar/unplugged/data/data_source_base.py
# Copyright 2021 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utility functions for AlphaStar dataset paths.""" import importlib.util import os from typing import Mapping, Optional, Tuple _RelativePaths = Mapping[Tuple[Tuple[str, ...], str, int], str] def _read_config(config_path: str) -> Tuple[str, _RelativePaths]: """Dynamically imports dataset paths config file and extracts key info.""" spec = importlib.util.spec_from_file_location('_paths', config_path) if spec is None: raise ValueError( f'No module loader found for {config_path!r}. ' 'This probably means that the file has an invalid extension. ' 'The configuration file is expected to be a Python module.') paths_module = importlib.util.module_from_spec(spec) try: spec.loader.exec_module(paths_module) except FileNotFoundError as e: raise ValueError(f'File {config_path} not found.') from e return paths_module.BASE_PATH, paths_module.RELATIVE_PATHS def get_dataset_pattern( replay_versions: Tuple[str, ...], data_split: str, player_min_mmr: int, dataset_paths_fname: str, ) -> Optional[str]: """Gets the dataset file pattern from replay versions.""" if dataset_paths_fname is None: raise ValueError(f'Dataset paths file is trivial : {dataset_paths_fname} .') base_path, relative_paths = _read_config(dataset_paths_fname) if not base_path: raise ValueError(f'Base path ({base_path}) for data cannot be None.') pattern_key = (replay_versions, data_split, player_min_mmr) pattern = relative_paths.get(pattern_key, None) if not pattern: return None return os.path.join(base_path, pattern)
alphastar-main
alphastar/unplugged/data/path_utils.py
# Copyright 2021 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for match_generator.py.""" from pysc2.env import sc2_env from alphastar.modules import match_generator from absl.testing import absltest class MatchGeneratorTest(absltest.TestCase): def test_error_cases(self): with self.assertRaisesRegex(ValueError, 'must be non-empty'): match_generator.MatchGenerator([], [sc2_env.Race.terran], ['Acropolis']) with self.assertRaisesRegex(ValueError, 'must be non-empty'): match_generator.MatchGenerator([sc2_env.Race.terran], None, ['Acropolis']) with self.assertRaisesRegex(ValueError, 'must be non-empty'): match_generator.MatchGenerator([sc2_env.Race.zerg], [sc2_env.Race.terran], []) def test_build_in_bot(self): gen = match_generator.MatchGenerator([sc2_env.Race.zerg], [sc2_env.Race.zerg], ['Acropolis']) match = gen.generate('very_easy') self.assertEqual( match, match_generator.Match(sc2_env.Race.zerg, sc2_env.Race.zerg, 'Acropolis')) if __name__ == '__main__': absltest.main()
alphastar-main
alphastar/modules/match_generator_test.py
# Copyright 2021 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Launches and tests the evaluator for a few steps. The test spins up the evaluator with a v3 architecture and runs just 100 steps (config.eval.max_num_steps = 100) of one episode to make sure that the evaluation pipeline is mistake free. """ import functools from absl.testing import absltest from absl.testing import parameterized from alphastar.architectures import architectures from alphastar.loggers import eval_episode_logger from alphastar.modules import evaluator from alphastar.unplugged.configs import alphastar_supervised as expt_config_module import jax class EvaluatorTest(parameterized.TestCase): """Simple integration/smoke test for the ACME Evaluator.""" # Evaluator needs to be tested separately as guitar test. # TODO(b/206426779) : Add a variant with a checkpoint trained in TP with v3. @parameterized.parameters( ['alphastar.lite', 'EvalActor'], ['alphastar.dummy', 'EvalActor'], ['alphastar.dummy', 'ThreadedUnbatchedEvalActor']) def test_evaluator_with_random_params(self, architecture, evaluator_type): expt_config = expt_config_module.get_config(architecture) expt_config.eval.max_num_steps = 100 architecture = architectures.get_architecture(expt_config.architecture.name) architecture = functools.partial(architecture, **expt_config.architecture.kwargs) expt_config.eval.eval_checkpoint_dir = None expt_config.eval.log_to_csv = False expt_config.eval.evaluator_type = 'random_params' expt_config.eval.evaluator_name = evaluator_type expt_config.eval.num_threads_per_inference_device = 3 eval_actor = getattr(evaluator, expt_config.eval.evaluator_name)( rng=jax.random.PRNGKey(42), learner_frames_per_step=expt_config.eval .default_learner_frames_per_step, architecture=architecture, episode_logger=eval_episode_logger.EvalEpisodeLogger( log_name='eval', log_to_csv=expt_config.eval.log_to_csv), learner_node=None, converter_settings=expt_config.converter_settings.eval, competitor_name='very_easy', total_num_episodes_per_thread=1, **expt_config.eval) if evaluator_type == 'ThreadedUnbatchedEvalActor': eval_actor.run() else: eval_actor.run_episode(eval_actor.setup_agent()) if __name__ == '__main__': absltest.main()
alphastar-main
alphastar/modules/evaluator_test.py
# Copyright 2021 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for common.""" import functools import os from absl.testing import absltest from acme.tf import savers as tf_savers from alphastar.architectures import architectures from alphastar.commons import jax_utils from alphastar.modules import common from alphastar.modules import optimizers from alphastar.unplugged import losses from alphastar.unplugged.configs import alphastar_supervised as expt_config_module from alphastar.unplugged.data import data_source from alphastar.unplugged.modules import learner as supervised_learner import chex import jax def setUpModule(): # Disable JAX optimizations in order to speed up compilation. jax_utils.disable_jax_optimizations() def tearDownModule(): jax_utils.restore_jax_config() class CommonTest(absltest.TestCase): """Simple tests for common.py.""" def test_checkpoint(self): expt_config = expt_config_module.get_config('alphastar.dummy') expt_config.train.learner_kwargs.batch_size = 4 expt_config.train.learner_kwargs.unroll_len = 3 expt_config.train.learner_kwargs.log_to_csv = False expt_config.train.datasource.kwargs.shuffle_buffer_size = 16 expt_config.train.max_number_of_frames = 96 expt_config.architecture.name = 'alphastar.dummy' expt_config.train.optimizer_kwargs.lr_frames_before_decay = 12 expt_config.train.datasource.name = 'DummyDataSource' frames_per_step = int(expt_config.train.learner_kwargs.batch_size * expt_config.train.learner_kwargs.unroll_len) architecture = architectures.get_architecture(expt_config.architecture.name) architecture = functools.partial(architecture, **expt_config.architecture.kwargs) loss = functools.partial( getattr(losses, expt_config.train.loss.name), **expt_config.train.loss.kwargs) optimizer, optimizer_logs_fn = optimizers.get_optimizer( num_frames_per_learner_update=frames_per_step, total_num_training_frames=expt_config.train.max_number_of_frames, **expt_config.train.optimizer_kwargs) train_data_source = data_source.DummyDataSource( batch_size=expt_config.train.learner_kwargs.batch_size, unroll_len=expt_config.train.learner_kwargs.unroll_len, converter_settings=expt_config.converter_settings.train) learner = supervised_learner.SupervisedLearner( data_source=train_data_source, architecture_builder=architecture, loss_builder=loss, optimizer=optimizer, optimizer_logs_fn=optimizer_logs_fn, counter=None, logger=None, rng_key=jax.random.PRNGKey(42), frames_per_step=frames_per_step, increment_counts=False, **expt_config.train.learner_kwargs) checkpointer = tf_savers.Checkpointer( {'wrapped': learner}, directory=f'{self.create_tempdir().full_path}/alphastar') checkpointer.save(force=True) restored_learner = supervised_learner.SupervisedLearner( data_source=train_data_source, architecture_builder=architecture, loss_builder=loss, optimizer=optimizer, optimizer_logs_fn=optimizer_logs_fn, counter=None, logger=None, rng_key=jax.random.PRNGKey(21), frames_per_step=frames_per_step, increment_counts=False, **expt_config.train.learner_kwargs) checkpoint_path = os.path.join(checkpointer.directory, 'ckpt-1') common.restore_from_checkpoint( restored_learner, checkpoint_path) chex.assert_trees_all_close(restored_learner.save(), learner.save()) ckpt_gen = common.get_checkpoint_generator(checkpointer.directory) state, _ = next(ckpt_gen) chex.assert_trees_all_close(state, learner.save()) ckpt_gen_path = common.get_checkpoint_generator_for_path(checkpoint_path) state, _ = next(ckpt_gen_path) chex.assert_trees_all_close(state, learner.save()) if __name__ == '__main__': absltest.main()
alphastar-main
alphastar/modules/common_test.py
# Copyright 2021 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for optimizers.""" from absl.testing import absltest from absl.testing import parameterized from alphastar.modules import optimizers import chex import haiku as hk import jax.numpy as jnp class OptimizersTest(parameterized.TestCase): """Optimizer Tests.""" def get_params(self): return hk.data_structures.to_haiku_dict( dict( module_1=dict( layer_norm=jnp.array([1., 2.]), weight=jnp.array([3., 4.])))) def get_gradients(self): return hk.data_structures.to_haiku_dict( dict( module_1=dict( layer_norm=jnp.array([10., 20.]), weight=jnp.array([30., 40. ])))) @parameterized.parameters( (optimizers.LearningRateScheduleType.STAIRCASE, True, 0.4, 1.0, 1.0, [[-0.0642, -0.1176], [-0.1657, -0.2111]]), (optimizers.LearningRateScheduleType.COSINE, True, 0.4, 1.0, 1.0, [[-0.1480, -0.2710], [-0.3820, -0.4864]]), (optimizers.LearningRateScheduleType.COSINE, False, 0.4, 1.0, 1.0, [[-0.1849, -0.2917], [-0.3614, -0.4103]]), (optimizers.LearningRateScheduleType.COSINE, False, 0.4, 1.0, 0.03, [[-0.1849, -0.2917], [-0.3614, -0.4103]]), ) def test_get_optimizer(self, lr_schedule, use_adamw, weight_decay, before_norm, after_norm, results): optimizer, _ = optimizers.get_optimizer( num_frames_per_learner_update=8, total_num_training_frames=100, extra_weight_decay_mask_fn=None, weight_decay_filter_out=['layer_norm'], learning_rate=1.0, learning_rate_schedule_type=lr_schedule, lr_frames_before_decay=32, lr_num_warmup_frames=16, adam_b1=0.99, adam_b2=0.99, adam_eps=0.5, use_adamw=use_adamw, weight_decay=weight_decay, staircase_lr_drop_factor=0.3, before_adam_gradient_clipping_norm=before_norm, after_adam_gradient_clipping_norm=after_norm) state = optimizer.init(self.get_params()) for _ in range(8): updates, state = optimizer.update(self.get_gradients(), state, self.get_params()) chex.assert_trees_all_equal_structs( hk.data_structures.to_haiku_dict({ 'module_1': { 'layer_norm': jnp.array(results[0]), 'weight': jnp.array(results[1]) } }), updates) if __name__ == '__main__': absltest.main()
alphastar-main
alphastar/modules/optimizers_test.py
# Copyright 2021 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Initializes modules used in AlphaStar."""
alphastar-main
alphastar/modules/__init__.py
# Copyright 2021 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Custom Types used in ACME Jaxcraft.""" from typing import Any, Callable import acme from acme import core AgentNetwork = Any LearnerFactory = Callable[..., acme.Learner] EvaluatorFactory = Callable[..., core.Worker]
alphastar-main
alphastar/modules/types.py
# Copyright 2021 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Episode run loop utilities.""" from typing import Any, Dict, Optional from alphastar import types from alphastar.loggers import episode_logger as episode_logger_lib from alphastar.modules import evaluator_base import dm_env import jax import numpy as np def play_episode( env: dm_env.Environment, agent: evaluator_base.Evaluator, player: int, episode_logger: episode_logger_lib.EpisodeLogger, static_log: Dict[str, Any], max_num_steps: Optional[int] = None): """Plays out an episode against an environment using the specified evaluator. Args: env: dm_env that will accept PySC2 actions and return PySC2 observations. agent: An agent evaluator. player: Index of the player in the game (0 or 1). episode_logger: Logger for step output. static_log: Static log output for the episode logger. max_num_steps: Maximum number of steps befpre termination. Returns: Replay bytes. Raises: RuntimeError: if the agent output has a wrong format. """ timestep = env.step({}) step_counter = 0 while timestep.step_type != dm_env.StepType.LAST: first_step = timestep.step_type == dm_env.StepType.FIRST agent_output, logs = agent.step(timestep) episode_logger.register_step( player=player, step_type=timestep.step_type, prev_reward=timestep.reward if not first_step else 0.0, observation=timestep.observation, agent_output=agent_output, log=logs, static_log=static_log) # Can this be done by the evaluator(s)? if 'action' not in agent_output: raise RuntimeError( 'The agent must provide an "action" key in its output.') try: timestep = env.step(jax.tree_map(np.squeeze, agent_output.get('action'))) except TypeError as e: raise RuntimeError( f'Action issue in stepping : {agent_output["action"]}') from e step_counter += 1 if max_num_steps and step_counter >= max_num_steps: break # Register the final step. episode_logger.register_step( player=player, step_type=timestep.step_type, prev_reward=timestep.reward, observation=types.StreamDict(timestep.observation), agent_output=None, log=None, static_log=static_log)
alphastar-main
alphastar/modules/run_loop.py
# Copyright 2021 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Optimizers for the learner.""" import enum import functools from typing import Any, Callable, List, Optional, Tuple from absl import logging import haiku as hk import jax import jax.numpy as jnp import numpy as np import optax class LearningRateScheduleType(str, enum.Enum): STAIRCASE = 'staircase' COSINE = 'cosine' class WeightDecayFilterType(str, enum.Enum): LAYER_NORM = 'layer_norm' BIAS = 'bias' WeightDecayFilter = Callable[[optax.Params], Any] # Schedules: def get_staircase_schedule( num_updates_before_decay: int, drop_factor: float, num_decays_cutoff: int = 9) -> optax.Schedule: """Gets a staircase style schedule for learning rate.""" if num_updates_before_decay * num_decays_cutoff > np.iinfo(np.int32).max: raise ValueError('num_updates_before_decay is too large to fit into int32. ' 'Decrease it or increase batch_size and/or unroll_len.') return optax.piecewise_constant_schedule( init_value=1.0, boundaries_and_scales={ k * num_updates_before_decay: drop_factor for k in range(1, num_decays_cutoff+1)}) def get_cosine_schedule( num_updates_before_decay: int, total_num_training_updates: int) -> optax.Schedule: """Gets a cosine decay schedule for learning rate.""" num_decayed_updates = total_num_training_updates - num_updates_before_decay def schedule(count): offset_count = jnp.maximum(count - num_updates_before_decay, 0) return optax.cosine_decay_schedule( init_value=1, decay_steps=num_decayed_updates)(offset_count) return schedule def add_warmup_to_schedule( num_warmup_updates: int, wrapped_schedule: optax.Schedule) -> optax.Schedule: """Wrapper module to add warmup to any schedule.""" def schedule(count): factor = jnp.minimum(count / num_warmup_updates, 1.) return wrapped_schedule(count) * factor return schedule # Weight decay: def layer_norm_weight_filter(params): def f(module_name, name, value): del name, value return 'layer_norm' not in module_name return hk.data_structures.map(f, params) def bias_weight_filter(params): def f(module_name, name, value): del module_name, value return name != 'b' return hk.data_structures.map(f, params) weight_decay_filters = { WeightDecayFilterType.LAYER_NORM: layer_norm_weight_filter, WeightDecayFilterType.BIAS: bias_weight_filter, } def _logging_fn(opt_state, lr_schedule, scale_index: int, learning_rate: float): """A logging function that extracts logs fom optimizer state. Args: opt_state: Optimizer state. lr_schedule: Learning rate schedule function. scale_index: Index of learning rate scale in optimizer state. learning_rate: Learning Rate fed into optimizer. Returns: Logs from the optimizer state. """ log = {} learning_rate_scale = jnp.squeeze(lr_schedule(opt_state[scale_index].count)) log['learning_rate_scale'] = learning_rate_scale log['learning_rate'] = learning_rate * learning_rate_scale return log def get_optimizer( num_frames_per_learner_update: int, extra_weight_decay_mask_fn: Optional[WeightDecayFilter], total_num_training_frames: int, weight_decay_filter_out: List[str], learning_rate: float, learning_rate_schedule_type: LearningRateScheduleType, lr_frames_before_decay: float, lr_num_warmup_frames: float, adam_b1: float, adam_b2: float, adam_eps: float, use_adamw: bool, weight_decay: float, staircase_lr_drop_factor: float, before_adam_gradient_clipping_norm: Optional[float] = None, after_adam_gradient_clipping_norm: Optional[float] = None, ) -> Tuple[optax.GradientTransformation, Any]: """Build the optimizer from the flags. Args: num_frames_per_learner_update: The number of frames processed per learner update. extra_weight_decay_mask_fn: A function which takes params and returns a tree with boolean leaves stating whether we should apply weight decay to this weight vector. total_num_training_frames : Total number of training frames weight_decay_filter_out: Specify which parameters are ignored by weight decay. Must be part of {"|".join(list(optimizers.WeightDecayFilterType))}].' learning_rate: Initial learning rate learning_rate_schedule_type: Type of learning rate schedule. lr_frames_before_decay: Number of training frames before the learning rate starts being reduced lr_num_warmup_frames: Number of steps for learning rate warmup adam_b1: Adam b1 parameter adam_b2: Adam b2 parameter adam_eps: Adam epsilon parameter use_adamw: Whether to use AdamW. If not, weight decay is applied before Adam weight_decay: Co-efficient of weight decay, staircase_lr_drop_factor: Multiply the learning rate by this when decaying before_adam_gradient_clipping_norm: Global gradient norm for clipping before Adam. after_adam_gradient_clipping_norm: Global gradient norm for clipping after Adam Returns: A tuple containing the optax optimizer and a logging function which take the optimizer state as an input and return dict to log. """ optimizers = [] if weight_decay: mask_fns = [weight_decay_filters[x] for x in weight_decay_filter_out] if extra_weight_decay_mask_fn: mask_fns.append(extra_weight_decay_mask_fn) def mask_fn(params): all_masks = [f(params) for f in mask_fns] if all_masks: output = jax.tree_map(lambda *masks: all(masks), *all_masks) else: output = jax.tree_map(lambda _: True, params) logging.info('Using weight decay filter:\n%s', output) return output weight_decay = optax.masked( inner=optax.additive_weight_decay(weight_decay), mask=mask_fn) else: weight_decay = None if weight_decay and not use_adamw: optimizers.append(weight_decay) if before_adam_gradient_clipping_norm: optimizers.append(optax.clip_by_global_norm( before_adam_gradient_clipping_norm)) optimizers.append(optax.scale_by_adam( b1=adam_b1, b2=adam_b2, eps=adam_eps)) if weight_decay and use_adamw: optimizers.append(weight_decay) if after_adam_gradient_clipping_norm: optimizers.append(optax.clip_by_global_norm( after_adam_gradient_clipping_norm)) num_updates_before_decay = int( lr_frames_before_decay / num_frames_per_learner_update) total_num_training_updates = int( total_num_training_frames / num_frames_per_learner_update) if learning_rate_schedule_type == LearningRateScheduleType.STAIRCASE: lr_schedule = get_staircase_schedule( num_updates_before_decay=num_updates_before_decay, drop_factor=staircase_lr_drop_factor) elif learning_rate_schedule_type == LearningRateScheduleType.COSINE: lr_schedule = get_cosine_schedule( num_updates_before_decay=num_updates_before_decay, total_num_training_updates=total_num_training_updates) else: raise ValueError(f'Unknown schedule {learning_rate_schedule_type}.') if lr_num_warmup_frames: num_warmup_updates = int( lr_num_warmup_frames / num_frames_per_learner_update) lr_schedule = add_warmup_to_schedule(num_warmup_updates, lr_schedule) logging_fn = functools.partial( _logging_fn, lr_schedule=lr_schedule, scale_index=len(optimizers), learning_rate=learning_rate) optimizers.append(optax.scale_by_schedule(lr_schedule)) optimizers.append(optax.scale(-learning_rate)) return optax.chain(*optimizers), logging_fn
alphastar-main
alphastar/modules/optimizers.py
# Copyright 2021 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and """Tests for agent.""" from absl.testing import absltest from absl.testing import parameterized from alphastar.architectures import architectures from alphastar.commons import jax_utils from alphastar.modules import agent from alphastar.unplugged.data import util as data_util from dm_env import specs import jax.numpy as jnp def setUpModule(): # Disable JAX optimizations in order to speed up compilation. jax_utils.disable_jax_optimizations() def tearDownModule(): jax_utils.restore_jax_config() def get_test_specs(): max_num_selected_units = 4 obs_spec = { 'away_race_observed': specs.Array((), jnp.int32), 'away_race_requested': specs.Array((), jnp.int32), 'camera': specs.Array((256, 256), jnp.int32), 'camera_position': specs.Array((2,), jnp.int32), 'camera_size': specs.Array((2,), jnp.int32), 'game_loop': specs.Array((), jnp.int32), 'home_race_requested': specs.Array((), jnp.int32), 'minimap_alerts': specs.BoundedArray( (128, 128), jnp.int32, minimum=0, maximum=5), 'minimap_buildable': specs.BoundedArray( (128, 128), jnp.int32, minimum=0, maximum=1), 'minimap_creep': specs.BoundedArray( (128, 128), jnp.int32, minimum=0, maximum=2), 'minimap_height_map': specs.BoundedArray( (128, 128), jnp.int32, minimum=0, maximum=255), 'minimap_pathable': specs.BoundedArray( (128, 128), jnp.int32, minimum=0, maximum=1), 'minimap_player_relative': specs.BoundedArray( (128, 128), jnp.int32, minimum=0, maximum=3), 'minimap_visibility_map': specs.BoundedArray( (128, 128), jnp.int32, minimum=0, maximum=2), 'mmr': specs.Array((), jnp.int32), 'player': specs.Array((7,), jnp.int32), 'raw_units': specs.Array((10, 47), jnp.int32), 'unit_counts_bow': specs.Array((5,), jnp.int32), 'upgrades_fixed_length': specs.BoundedArray( (8,), jnp.int32, minimum=0, maximum=13)} action_spec = { 'function': specs.BoundedArray((), jnp.int32, minimum=0, maximum=10), 'delay': specs.BoundedArray((), jnp.int32, minimum=0, maximum=6), 'queued': specs.BoundedArray((), jnp.int32, minimum=0, maximum=2), 'repeat': specs.BoundedArray((), jnp.int32, minimum=0, maximum=4), 'unit_tags': specs.BoundedArray( (max_num_selected_units,), jnp.int32, minimum=0, maximum=10), 'target_unit_tag': specs.BoundedArray( (), jnp.int32, minimum=0, maximum=9), 'world': specs.BoundedArray( (), jnp.int32, minimum=0, maximum=256**2 - 1)} return obs_spec, action_spec class EvaluatorTest(parameterized.TestCase): @parameterized.parameters(('alphastar.dummy', False), ('alphastar.dummy', True), ('alphastar.lite', False), ('alphastar.lite', True)) def test_no_recompilation(self, architecture: str, is_training: bool): builder = architectures.get_architecture(architecture) obs_spec, action_spec = get_test_specs() behaviour_features_spec = {'action': action_spec} if is_training else None input_spec = data_util.get_input_spec( obs_spec=obs_spec, behaviour_features_spec=behaviour_features_spec) component = builder(input_spec, action_spec, is_training, 0, 0) alphastar_agent = agent.AlphaStarAgent(component) alphastar_agent.warmup() with jax_utils.no_jax_compilation_allowed(): alphastar_agent.warmup() if __name__ == '__main__': absltest.main()
alphastar-main
alphastar/modules/agent_test.py
# Copyright 2021 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Common modules used in training and evaluation.""" # pylint: disable=logging-fstring-interpolation import re import threading import time from typing import Any, Callable, Iterator, List, Mapping, Optional, Sequence from typing import Tuple from absl import logging from acme import core from acme.tf import savers as tf_savers from acme.utils import loggers as acme_loggers from alphastar.collections import jax as jax_collections import chex import ml_collections import pandas as pd import tensorflow as tf jax_collections.register_struct() class FramesLimitedCheckpointingRunner(tf_savers.CheckpointingRunner): """Extension of CheckpointingRunner terminating on number of frames.""" def __init__(self, num_frames_per_step: int, max_number_of_frames: int, **kwargs): super().__init__(**kwargs) self._max_number_of_frames = max_number_of_frames self._num_frames_per_step = num_frames_per_step def run(self): state = self.save() while state.step * self._num_frames_per_step < self._max_number_of_frames: self.step() state = self.save() class LockedIterator(object): """Wrapper around an iterator to guarantee thread-safety.""" def __init__(self, iterator): self._lock = threading.Lock() self._iterator = iter(iterator) def __iter__(self): return self def __next__(self): with self._lock: return next(self._iterator) class MockSaveableLearner(core.Saveable): def __init__(self, state: Optional[chex.Array] = None): self._state = state def save(self): return self._state def restore(self, state): self._state = state def get_standard_loggers( label: str, log_to_csv: bool = True, print_fn: Optional[Callable[[str], None]] = None, ) -> List[acme_loggers.Logger]: """Makes default Acme logger. This is a logger that will write to logs, the terminal, and to bigtable if running a deepmind job under xmanager. This implementation is similar to `acme.utils.loggers.make_default_logger()` Args: label: Name to give to the logger. log_to_csv : Where to log expt data to CSV.local: print_fn: How to print to terminal (defaults to absl.logging). Returns: A list of standard acme logger objects. """ if not print_fn: print_fn = print terminal_logger = acme_loggers.TerminalLogger(label, print_fn=print_fn) loggers = [terminal_logger] if log_to_csv: logging.info('logging CSV files under (%s)', label) loggers.append(acme_loggers.CSVLogger(label=label)) return loggers def aggregate_and_filter_logs( loggers: List[acme_loggers.Logger], asynchronous: bool, time_delta: float, serialize_fn: Optional[Callable[[Mapping[str, Any]], str]] = acme_loggers.to_numpy ) -> acme_loggers.Logger: """Aggregates and filters logs. Args: loggers: A list of acme logger objects asynchronous: Whether the write function should block or not. time_delta: Time (in seconds) between logging events. serialize_fn: An optional function to apply to the write inputs before passing them to the various loggers. Returns: An ACME logger object. """ # Dispatch to all writers and filter Nones and by time. logger = acme_loggers.aggregators.Dispatcher(loggers, serialize_fn) logger = acme_loggers.NoneFilter(logger) if asynchronous: logger = acme_loggers.AsyncLogger(logger) logger = acme_loggers.TimeFilter(logger, time_delta) return logger def make_default_logger( label: str, log_to_csv: bool = True, time_delta: float = 1.0, asynchronous: bool = False, print_fn: Optional[Callable[[str], None]] = None, serialize_fn: Optional[Callable[[Mapping[str, Any]], str]] = acme_loggers.to_numpy, ) -> acme_loggers.Logger: """Make a default Acme logger. This is a logger that will write to logs, the terminal, and to bigtable if running a deepmind job under xmanager. This implementation is similar to `acme.utils.loggers.make_default_logger()` Args: label: Name to give to the logger. log_to_csv : Where to log expt data to CSV. time_delta: Time (in seconds) between logging events. asynchronous: Whether the write function should block or not. print_fn: How to print to terminal (defaults to absl.logging). serialize_fn: An optional function to apply to the write inputs before passing them to the various loggers. Returns: A logger object that responds to logger.write(some_dict). """ loggers = get_standard_loggers( label=label, log_to_csv=log_to_csv, print_fn=print_fn) logger = aggregate_and_filter_logs( loggers=loggers, asynchronous=asynchronous, time_delta=time_delta, serialize_fn=serialize_fn) return logger def restore_from_checkpoint(wrapped: core.Saveable, checkpoint_to_restore: Optional[str] = None, fields_to_restore: Optional[Sequence[str]] = None): """Restore specified fields for the state from a checkpoint.""" # This will output the learner's state. if isinstance(fields_to_restore, Sequence) and not fields_to_restore: return wrapped if checkpoint_to_restore: wrapped_object_state = wrapped.save() checkpointable_wrapped = tf_savers.SaveableAdapter(wrapped) objects_to_save = {'wrapped': checkpointable_wrapped} ckpt = tf.train.Checkpoint(**objects_to_save) logging.info('Restoring from checkpoint %s', checkpoint_to_restore) ckpt.restore(checkpoint_to_restore) if fields_to_restore is not None and wrapped_object_state is not None: wrapped_object_state_from_ckpt = wrapped.save() # Replace only those fields of the state from checkpoint which you need. modified_fields = { field: getattr(wrapped_object_state_from_ckpt, field) for field in fields_to_restore } wrapped_object_state = wrapped_object_state._replace(**modified_fields) wrapped.restore(wrapped_object_state) return wrapped def _get_ckpt_index(ckpt_path_str: str) -> int: if ckpt_path_str is None: return 0 else: # checkpoints are of the form {dir}/ckpt-{index} return int(ckpt_path_str.split('/')[-1].split('-')[-1]) def get_checkpoint_generator( checkpoint_dir: str,) -> Iterator[Tuple[Any, int]]: """Generator that returns the latest checkpoint, blocks if there are none.""" # ACME uses TF Checkpoint Manager and hence we need to use the same here to # obtain checkpoints and do the necessary indexing. directory, subdirectory = re.split(r'/checkpoints/', checkpoint_dir) logging.log_first_n( logging.INFO, f'Searching for checkpoints in directory : {directory} ' f'and subdirectory: {subdirectory}', 1) latest_checkpoint = tf.train.latest_checkpoint(checkpoint_dir) last_index = _get_ckpt_index(latest_checkpoint) while last_index == 0: logging.info('Waiting for a checkpoint in %s', checkpoint_dir) time.sleep(10) latest_checkpoint = tf.train.latest_checkpoint(checkpoint_dir) last_index = _get_ckpt_index(latest_checkpoint) cached_index, cached_state = 0, None num_ckpt_restore_attempts = 0 saveable_learner = MockSaveableLearner() while True: if num_ckpt_restore_attempts > 10: raise RuntimeError('Tried restoring checkpoint 10 times. Failing.') latest_checkpoint = tf.train.latest_checkpoint(checkpoint_dir) last_index = _get_ckpt_index(latest_checkpoint) if last_index > cached_index: logging.info(f'Found new checkpoint {last_index} in ' f'{checkpoint_dir}, reloading') try: restore_from_checkpoint(saveable_learner, latest_checkpoint) logging.info(f'Restored checkpoint {latest_checkpoint} successfully.') cached_state = saveable_learner._state # pylint: disable=protected-access cached_index = last_index num_ckpt_restore_attempts = 0 except Exception as e: # pylint: disable=broad-except num_ckpt_restore_attempts += 1 logging.warning(f'Caught exception while loading checkpoint : {e}. ' 'Sleeping for 10 seconds and retrying.') time.sleep(10) else: time.sleep(10) if cached_state is None: raise RuntimeError(f'State from {latest_checkpoint} cannot be None.') yield cached_state, cached_index def get_checkpoint_generator_for_path( checkpoint_path: str,) -> Iterator[Tuple[Any, int]]: """Given a full checkpoint path, generates cached state and index.""" saveable_learner = MockSaveableLearner() cached_state = None # ACME Checkpoint is of the form dir/subdir/ckpt-<index> _, cached_index = re.split(r'/ckpt-', checkpoint_path) while True: if cached_state is None: restore_from_checkpoint(saveable_learner, checkpoint_path) logging.info(f'Restored checkpoint {checkpoint_path} successfully.') cached_state = saveable_learner._state # pylint: disable=protected-access if cached_state is None: raise RuntimeError(f'State from {checkpoint_path} cannot be None.') yield cached_state, int(cached_index) def flatten_metrics(metrics_nest): return pd.json_normalize(metrics_nest, sep='_').to_dict(orient='records')[0] def validate_config(config: ml_collections.ConfigDict, launch_args: Sequence[str]): """Validates a config.""" args_as_dict = dict( [arg.split('=', maxsplit=1) for arg in launch_args if '=' in arg]) arch_str = args_as_dict['--config'].split(':')[-1] if arch_str != config.architecture.name: raise ValueError(f'Architecture string in config tag [{arch_str}] and ' f'config.architecture.name [{config.architecture.name}] ' 'need to be consistent.')
alphastar-main
alphastar/modules/common.py
# Copyright 2021 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Evaluator abstraction, for performing inference.""" import abc import enum from typing import Mapping, Tuple from alphastar.commons import log_utils import chex import dm_env class EvaluatorType(enum.IntEnum): """Defines different types of evaluation.""" CHECKPOINT = 0 RANDOM_PARAMS = 1 class Evaluator(abc.ABC): """Evaluator abstraction.""" @abc.abstractmethod def reset(self) -> Mapping[str, chex.Array]: """Resets the evaluator in preparation for a new episode. Returns: Dict of data reflecting the current state of the evaluator. """ @abc.abstractmethod def step( self, timestep: dm_env.TimeStep ) -> Tuple[chex.ArrayTree, log_utils.Log]: """Steps the evaluator. Args: timestep: The latest environment step. Returns: (agent output (must have an `action` attribute), output_logs). """
alphastar-main
alphastar/modules/evaluator_base.py
# Copyright 2021 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """The AlphaStar agent interface.""" import abc import functools from typing import Any, Optional from absl import logging from alphastar import types from alphastar.architectures import modular from alphastar.unplugged.data import util as data_util import haiku as hk import jax class Agent(abc.ABC): """An agent interface used for AlphaStar.""" @abc.abstractmethod def initial_state(self, rng_key, batch_size: int): """Initial internal state of the agent.""" @abc.abstractmethod def init(self, rng_key, inputs, prev_state): """Get the initial parameters.""" @abc.abstractmethod def apply(self, params, rng_key, inputs, prev_state): """Forward pass.""" @property @abc.abstractmethod def input_spec(self): """The spec of the input of the agent.""" @property @abc.abstractmethod def state_spec(self): """The spec of the prev_state and next_state of the agent.""" @property @abc.abstractmethod def output_spec(self): """The spec of the output of the agent.""" @abc.abstractmethod def warmup(self, obs: types.StreamDict) -> hk.Params: """Warmup the agent haiku modules.""" class AlphaStarAgent(Agent): """AlphaStar agent.""" def __init__( self, component: modular.Component, jit_agent_functions: bool = True, jit_device: Optional[Any] = None, jit_backend: Optional[str] = None): """Initializes an AlphaStar agent. Args: component : Stateful architecture of the agent as a component. jit_agent_functions : Whether to JIT compile agent reset and step functions. Usually, do not set it to False as this may trigger recompilation of some modules such as hk.scan. If you want un-jitted agent functions, set it to False and turn off the recompilation check simultaneously. jit_device: Device if for JIT. jit_backend: Backend used for JIT (cou, tpu etc.) """ self._component = component self._component.prev_state_spec.validate( self._component.next_state_spec, error_prefix='Agent next_state must contain prev state') if jit_agent_functions: self._agent_function_wrapper = functools.partial( jax.jit, device=jit_device, backend=jit_backend) else: self._agent_function_wrapper = lambda fun: fun @hk.transform def initial_state_fun(batch_size: int) -> types.StreamDict: return jax.vmap(component.initial_state, axis_size=batch_size)() self._initial_state_fun = initial_state_fun @hk.transform def unroll_fun(inputs: types.StreamDict, prev_state: types.StreamDict) -> modular.UnrollOutputType: return jax.vmap(component.unroll)(inputs, prev_state) self._unroll_fun = unroll_fun def initial_state(self, rng_key: jax.random.KeyArray, batch_size: int) -> types.StreamDict: """Sets initial state for the agent.""" init_params = self._initial_state_fun.init(rng_key, batch_size) return self._initial_state_fun.apply(init_params, rng_key, batch_size) def init(self, rng_key: jax.random.KeyArray, inputs: types.StreamDict, prev_state: types.StreamDict) -> hk.Params: """Returns the initial parameters for the agent.""" inputs = inputs.filter(self.input_spec) unroll_init = self._agent_function_wrapper(self._unroll_fun.init) return unroll_init(rng_key, inputs, prev_state) def apply(self, params: hk.Params, rng_key: jax.random.KeyArray, inputs: types.StreamDict, prev_state: types.StreamDict) -> modular.UnrollOutputType: """Performs forward step of an agent.""" inputs = inputs.filter(self.input_spec) unroll_apply = self._agent_function_wrapper(self._unroll_fun.apply) return unroll_apply(params, rng_key, inputs, prev_state) @property def input_spec(self) -> types.SpecDict: return self._component.input_spec @property def state_spec(self) -> types.SpecDict: return self._component.prev_state_spec @property def output_spec(self) -> types.SpecDict: return self._component.output_spec def warmup(self, batch_size: int = 1, unroll_len: int = 1) -> hk.Params: """Warms up an agent by doing a forward pass.""" obs = data_util.get_dummy_observation( self.input_spec, batch_size=batch_size, unroll_len=unroll_len) rng = jax.random.PRNGKey(0) initial_state_key, params_key, key = jax.random.split(rng, 3) state = self.initial_state(initial_state_key, batch_size=batch_size) logging.info('Warming up the agent.') logging.info('Inputs: %s', jax.tree_map(lambda x: (x.shape, x.dtype), obs)) logging.info('State: %s', jax.tree_map(lambda x: (x.shape, x.dtype), state)) params = self.init(params_key, obs, state) self.apply(params, key, obs, state) return params
alphastar-main
alphastar/modules/agent.py
# Copyright 2021 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Generates match setups, given race and map constraints and an opponent.""" import collections import random from typing import Sequence from absl import logging from alphastar.commons import competitors from pysc2.env import sc2_env Match = collections.namedtuple('Match', ['home_race', 'away_race', 'map_name']) class MatchGenerator: """Generates match setups, given race and map constraints and an opponent.""" def __init__(self, home_races: Sequence[sc2_env.Race], away_races: Sequence[sc2_env.Race], map_names: Sequence[str]): """Initializer. Args: home_races: Races which the home (first) player may select. away_races: Races which the away (second) player may select. map_names: Maps which may be selected from. """ if not home_races: raise ValueError('home_races must be non-empty') if not away_races: raise ValueError('away_races must be non-empty') if not map_names: raise ValueError('map_names must be non-empty') self._home_races = home_races self._away_races = away_races self._map_names = map_names def generate(self, opponent_name: str) -> Match: """Returns a random Match, taking into account opponent constraints. Args: opponent_name: Built-in bot difficulty name, else a competitor name. """ if competitors.is_built_in_bot(opponent_name): home_races_available = self._home_races away_races_available = self._away_races map_names_available = self._map_names else: raise ValueError('Only games against built-in bots are supported at ' 'the moment.') home_race = sc2_env.Race(random.choice(home_races_available)) away_race = sc2_env.Race(random.choice(away_races_available)) map_name = random.choice(map_names_available) logging.info('Match setup: Agent as %s, %s as %s - on %s.', home_race.name, opponent_name, away_race.name, map_name) return Match(home_race, away_race, map_name)
alphastar-main
alphastar/modules/match_generator.py
# Copyright 2021 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Actors used for evaluation.""" # pylint: disable=logging-fstring-interpolation import concurrent import contextlib import sys import traceback from typing import Any, Iterator, Mapping, Optional, Sequence, Tuple, Union from absl import logging import acme from acme.jax import savers from alphastar import types from alphastar.architectures import modular from alphastar.commons import competitors from alphastar.commons import jax_utils from alphastar.commons import log_utils from alphastar.loggers import episode_logger as episode_logger_lib from alphastar.modules import agent as agent_lib from alphastar.modules import common as acme_common from alphastar.modules import evaluator_base from alphastar.modules import match_generator from alphastar.modules import run_loop from alphastar.unplugged.data import util as data_utils from alphastar.unplugged.modules import learner # pylint: disable=unused-import import chex import dm_env import haiku as hk import jax import numpy as np from pysc2.env import converted_env from pysc2.env import sc2_env from pysc2.env.converter import derive_interface_options from pysc2.env.converter.proto import converter_pb2 from pysc2.maps import ladder as sc2_ladder from pysc2.maps import lib as sc2_map_lib # Needed to load learner checkpoints: EvaluatorType = evaluator_base.EvaluatorType # TODO(b/208422091): Cleanup. if 'Automaton_v2' not in sc2_map_lib.get_maps(): # Inject custom battle net maps into pysc2. custom_ladder_maps = [ ('Automaton_v2', 'Ladder2019Season1May', 'AutomatonLE', 2), ('CyberForest_v2', 'Ladder2019Season1May', 'CyberForestLE', 2), ('PortAleksander_v2', 'Ladder2019Season1May', 'PortAleksanderLE', 2), ('KairosJunction_v2', 'Ladder2019Season1May', 'KairosJunctionLE', 2), ('KingsCove_v2', 'Ladder2019Season1May', 'KingsCoveLE', 2), ('NewRepugnancy_v2', 'Ladder2019Season1May', 'NewRepugnancyLE', 2), ('YearZero_v2', 'Ladder2019Season1May', 'YearZeroLE', 2), ] # PySC2 finds maps by looking at subclasses of its map class. # We inject the new maps into the global namespace of this file so that a # reference is kept to them. for name_, directory_, map_file_, players_ in custom_ladder_maps: globals()[name_] = type( name_, (sc2_ladder.Ladder,), dict(filename=map_file_, directory=directory_, players=players_)) def _tree_has_nan(x): return any(jax.tree_leaves(jax.tree_map(lambda y: np.isnan(np.sum(y)), x))) class StepEvaluationMixin(object): """A mixin that steps an agent with a model and a params getter.""" def __init__( self, agent: agent_lib.AlphaStarAgent, rng: chex.PRNGKey, output_features: Sequence[str] = ('action',), warmup_agent: bool = True, # Try not to set this to False as compilation is costly. prohibit_recompilation: bool = True ): """Initializes a one-step evaluation mixin. Args: agent : An Alphastar agent object. rng : A jax random number generator. output_features : Sequence of output features for the agent. warmup_agent: Boolean to decide if an agent needs a warmup step. prohibit_recompilation : Boolean to decide whether to prohibit any recompilation of the model. """ self._agent = agent self._rng = rng self._expand_fn = lambda x: np.expand_dims(x, axis=(0, 1)) self._output_features = output_features self._state = None self._warmup_params = None self._prohibit_recompilation = prohibit_recompilation if warmup_agent: self._warmup_params = agent.warmup() def set_warmup_params(self, params): self._warmup_params = params def _step( self, timestep: dm_env.TimeStep, agent_params: hk.Params, ) -> Tuple[chex.ArrayTree, log_utils.Log]: """Step through the environment for one step.""" agent_obs = types.StreamDict() agent_obs['step_type'] = np.array([[timestep.step_type]], dtype=np.int32) agent_obs['observation'] = types.StreamDict( jax.tree_map(self._expand_fn, timestep.observation)) if timestep.step_type == dm_env.StepType.FIRST: self._rng, rng = jax.random.split(self._rng) self._state = self._agent.initial_state(rng, batch_size=1) self._rng, rng = jax.random.split(self._rng) # Get only online params for inference. online_params = hk.data_structures.filter( lambda module, name, value: 'target_network' not in module, agent_params) chex.assert_trees_all_equal_shapes(online_params, self._warmup_params) with jax_utils.no_jax_compilation_allowed( ) if self._prohibit_recompilation else contextlib.suppress(): output, self._state, logs = self._agent.apply(online_params, rng, agent_obs, self._state) for k, v in output.items(): if _tree_has_nan(v): logging.info('Output[%s]: %s', k, v) raise ValueError(f'Architecture output {k} has NaNs.') filtered_output = output.filter(self._output_features) squeeze_batch_and_time = lambda x: np.squeeze(x, axis=(0, 1)) filtered_output = jax.tree_map(squeeze_batch_and_time, filtered_output) return filtered_output, logs class CheckpointEvaluator(evaluator_base.Evaluator, StepEvaluationMixin): """Performs inference step based on a model checkpoint.""" def __init__( self, agent: agent_lib.AlphaStarAgent, checkpoint_generator: Iterator[Tuple[Any, int]], learner_frames_per_step: int, rng: Optional[chex.PRNGKey] = None, warmup_agent: bool = True, prohibit_recompilation: bool = True, output_features: Sequence[str] = ('action',), ): """Initializes an evaluator that evaluates a checkpoint. Args: agent : An Alphastar agent object. checkpoint_generator : An iterator for checkpoint state and checkpoint index. learner_frames_per_step : Number of frames per step of training used in the learner. rng : A jax random number generator. warmup_agent: Boolean to decide if an agent needs a warmup step. prohibit_recompilation : Boolean to decide whether to prohibit any recompilation of the model. output_features : Sequence of output features for the agent. """ super().__init__( agent=agent, rng=rng, warmup_agent=warmup_agent, prohibit_recompilation=prohibit_recompilation, output_features=output_features) self._checkpoint_generator = checkpoint_generator self._checkpoint_state = None self._checkpoint_index = None self._learner_frames_per_step = learner_frames_per_step def reset(self) -> Mapping[str, chex.Array]: self._checkpoint_state, checkpoint_index = next(self._checkpoint_generator) if _tree_has_nan(self._checkpoint_state.params): raise ValueError( f'NaN found in checkpoint parameters (index={checkpoint_index}).') return dict( checkpoint_index=checkpoint_index, learner_step=int(self._checkpoint_state.step), home_steps=int(self._checkpoint_state.step) * self._learner_frames_per_step) def _get_params(self): if self._checkpoint_state is None: raise RuntimeError('Params retrieval called before checkpoint is ready.') return self._checkpoint_state.params def step( self, timestep: dm_env.TimeStep ) -> Tuple[chex.ArrayTree, log_utils.Log]: return self._step(timestep, self._get_params()) class RandomParamsEvaluator(evaluator_base.Evaluator, StepEvaluationMixin): """Performs inference step based on randomly initialized model params.""" def __init__( self, agent: agent_lib.AlphaStarAgent, learner_frames_per_step: int, rng: Optional[chex.PRNGKey] = None, warmup_agent: bool = True, prohibit_recompilation: bool = True, output_features: Sequence[str] = ('action',), ): """Initializes an evaluator that uses random params. Args: agent : An Alphastar agent object. learner_frames_per_step : Number of frames per step of training used in the learner. rng : A jax random number generator. warmup_agent: Boolean to decide if an agent needs a warmup step. prohibit_recompilation : Boolean to decide whether to prohibit any recompilation of the model. output_features : Sequence of output features for the agent. """ super().__init__( agent=agent, rng=rng, warmup_agent=warmup_agent, prohibit_recompilation=prohibit_recompilation, output_features=output_features) self._learner_frames_per_step = learner_frames_per_step def reset(self) -> Mapping[str, chex.Array]: return dict(checkpoint_index=-1, learner_step=-1, home_steps=-1) def _get_params(self): if self._warmup_params is None: raise RuntimeError('Params retrieval called before warmup') return self._warmup_params def step( self, timestep: dm_env.TimeStep ) -> Tuple[chex.ArrayTree, log_utils.Log]: return self._step(timestep, self._get_params()) def _make_environment_factory(game_steps_per_episode: int): """Returns a factory for agent vs built-in bot environments.""" def _environment_factory( my_race: sc2_env.Race, my_converter_settings: converter_pb2.ConverterSettings, opponent: str, opponent_race: sc2_env.Race, map_name: str): return converted_env.make_streams( converted_env.ConvertedEnvironment( env=sc2_env.SC2Env( map_name=map_name, players=[ sc2_env.Agent(my_race), sc2_env.Bot(opponent_race, competitors.difficulty_string_to_enum(opponent)) ], game_steps_per_episode=game_steps_per_episode, agent_interface_format=derive_interface_options.from_settings( my_converter_settings)), converter_factories=converted_env.make_converter_factories( [my_converter_settings])))[0] return _environment_factory class EvalActor(acme.Worker): """Evaluation actor used for evaluating a given agent.""" def __init__( self, home_races: Sequence[sc2_env.Race], away_races: Sequence[sc2_env.Race], map_names: Sequence[str], competitor_name: str, converter_settings: converter_pb2.ConverterSettings, architecture: modular.ArchitectureBuilder, episode_logger: episode_logger_lib.EpisodeLogger, learner_frames_per_step: int, learner_node: Optional[savers.CheckpointingRunner] = None, eval_checkpoint_dir: Optional[str] = None, eval_checkpoint_path: Optional[str] = None, agent_output_features: Sequence[str] = ('action',), game_steps_per_episode: Optional[int] = None, rng: Optional[chex.PRNGKey] = None, rng_seed: Optional[int] = None, max_num_steps: Optional[int] = None, evaluator_type: Union[str, EvaluatorType] = EvaluatorType.CHECKPOINT, warmup_agent: bool = True, prohibit_recompilation: bool = True, **unused_kwargs): """Initializes the evaluation actor. Args: home_races : Sequence of SC2 races that can be used for our agent to be selected randomly. away_races : Sequence of SC2 races that can be used for the opponent to be selected randomly. map_names : Sequence of SC2 maps that are used randomly for the game. competitor_name : Name of the competitor -- for example, very_easy converter_settings : Settings used for the converter that transforms the observations and actions. architecture : Architecture used in the agent. episode_logger : Logger used to log episode stats and other evaluation metrics. learner_frames_per_step : Number of learner frames that are used per step of training in the learner. learner_node : Learner object(node) that can be used to query the checkpoint directory to evaluate from. eval_checkpoint_dir : Directory to evaluate checkpoints from. The most recent checkpoint is evaluated if this field is set and it supersedes the checkpoint directory obtained from the learner node. eval_checkpoint_path : Checkpoint path to evaluate. This supersedes all other checkpoint related path information. agent_output_features : Sequence of features that the agent needs to output during evaluation. game_steps_per_episode : Number of games steps per episode set as part of initializing the environment. rng: A jax Random number generator key. rng_seed : Seed used to create the random number generator. This is used incase a rng is not passed directly. max_num_steps: Number of steps per episode to run the evaluation for. evaluator_type: Type of the evaluator used. Currently supports checkpoint evaluator and random params evaluator. warmup_agent : Boolean to decide if we need to warm-up the agent. prohibit_recompilation : Boolean to decide if we need to prohibit any recompilation of the model graph. """ if isinstance(evaluator_type, str): evaluator_type = getattr(EvaluatorType, evaluator_type.upper()) self._opponent_name = competitor_name self._match_generator = match_generator.MatchGenerator( home_races=home_races, away_races=away_races, map_names=map_names) self._episode_logger = episode_logger self._converter_settings = converter_settings self._mmr = self._converter_settings.mmr self._learner_frames_per_step = learner_frames_per_step self._eval_checkpoint_dir = eval_checkpoint_dir self._eval_checkpoint_path = eval_checkpoint_path self._checkpointed_learner = learner_node self._agent_output_features = agent_output_features self._game_steps_per_episode = game_steps_per_episode self._architecture = architecture if rng is None: rng = jax.random.PRNGKey(rng_seed) self._rng = rng self._environment_factory = _make_environment_factory( game_steps_per_episode=game_steps_per_episode) self._max_num_steps = max_num_steps self._evaluator_type = evaluator_type self._warmup_agent = warmup_agent self._prohibit_recompilation = prohibit_recompilation self._checkpoint_generator = None @property def evaluator_type(self): return self._evaluator_type def get_agent_architecture(self): obs_spec, action_spec = converted_env.get_environment_spec( self._converter_settings) input_spec = data_utils.get_input_spec(obs_spec) # pytype: disable=wrong-arg-types # strict_namedtuple_checks return self._architecture(input_spec, action_spec, False) def build_evaluator( self, agent, checkpoint_generator: Optional[Iterator[Tuple[Any, int]]] ) -> evaluator_base.Evaluator: if self._evaluator_type == EvaluatorType.CHECKPOINT: evaluator = CheckpointEvaluator( agent=agent, rng=self._rng, learner_frames_per_step=self._learner_frames_per_step, checkpoint_generator=checkpoint_generator, warmup_agent=self._warmup_agent, prohibit_recompilation=self._prohibit_recompilation, output_features=self._agent_output_features) elif self._evaluator_type == EvaluatorType.RANDOM_PARAMS: evaluator = RandomParamsEvaluator( agent=agent, rng=self._rng, warmup_agent=self._warmup_agent, prohibit_recompilation=self._prohibit_recompilation, learner_frames_per_step=self._learner_frames_per_step, output_features=self._agent_output_features) return evaluator def build_checkpoint_generator(self): if self.evaluator_type == EvaluatorType.RANDOM_PARAMS: return None elif self._eval_checkpoint_path: return acme_common.get_checkpoint_generator_for_path( self._eval_checkpoint_path) else: eval_checkpoint_dir = self._eval_checkpoint_dir if not eval_checkpoint_dir and self._checkpointed_learner: eval_checkpoint_dir = self._checkpointed_learner.get_directory() if eval_checkpoint_dir is None: raise ValueError('Checkpoint directory cannot be ''None') logging.info(f'Eval Checkpoint directory is set as {eval_checkpoint_dir}') return acme_common.get_checkpoint_generator(eval_checkpoint_dir) def setup_agent(self): agent_architecture = self.get_agent_architecture() agent = agent_lib.AlphaStarAgent(agent_architecture) checkpoint_generator = self.build_checkpoint_generator() return self.build_evaluator(agent, checkpoint_generator) def run(self) -> None: eval_agent = self.setup_agent() while True: self.run_episode(eval_agent) def run_episode(self, agent: evaluator_base.Evaluator): home_race, away_race, map_name = self._match_generator.generate( self._opponent_name) agent_info = agent.reset() home_static_logs = dict( agent_info, competitor_name=self._opponent_name, mmr=self._mmr, map_name=map_name, home_race=home_race.name, away_race=away_race.name, competitor_type='bot', actor_type=(f'{self._opponent_name}:{self._mmr}:{map_name}:' f'{home_race.name}_v_{away_race.name}')) with self._environment_factory( my_race=home_race, my_converter_settings=self._converter_settings, opponent=self._opponent_name, opponent_race=away_race, map_name=map_name) as env: run_loop.play_episode( env=env, agent=agent, player=0, episode_logger=self._episode_logger, static_log=home_static_logs, max_num_steps=self._max_num_steps) def _traceback_exception(): return traceback.print_exception(*sys.exc_info()) class ThreadedUnbatchedEvalActor(acme.Worker): """Multiple actor threads on a CPU with unbatched evaluation.""" def __init__(self, num_threads_per_inference_device: int, competitor_name: str, competitor_names: Sequence[str], use_warmup: bool = False, total_num_episodes_per_thread: Optional[int] = None, **eval_actor_kwargs): """Initializes a threaded unbatched evaluation actor. Args: num_threads_per_inference_device : Number of actor threads per inference device. competitor_name: Name of competitor (unused and kept only for interface compatibility between different evaluator actors.) competitor_names : Sequence of competitor names to choose from for each actor thread. use_warmup : Boolean to decide if actor thread needs to be warmed up. total_num_episodes_per_thread : Number of episodes to be run on each actor thread. **eval_actor_kwargs : Keyword args passed on to each `EvalActor` thread. """ del competitor_name self._num_agents = jax.device_count() self._eval_actors = [] self._agents = [] self._total_num_episodes_per_thread = total_num_episodes_per_thread self._num_evaluation_threads = int( num_threads_per_inference_device * self._num_agents) num_competitors = len(competitor_names) for evaluator_id in range(self._num_evaluation_threads): self._eval_actors.append( EvalActor( **eval_actor_kwargs, competitor_name=competitor_names[evaluator_id % num_competitors], warmup_agent=False, prohibit_recompilation=False)) architecture = self._eval_actors[0].get_agent_architecture() # JIT a model on each device core. for device in jax.devices(): self._agents.append( agent_lib.AlphaStarAgent( architecture, jit_device=device)) logging.info(f'Jitted {self._num_agents} agents -- one per core.') self._warmup_params = None self._warmup_all_agents() logging.info('All cores warmed up. Agents ready for inference.') self._checkpoint_generator = None def _warmup_all_agents(self): warmup_fn = lambda agent: agent.warmup() future_map = {} with concurrent.futures.ThreadPoolExecutor(self._num_agents) as executor: for agent_num, agent in enumerate(self._agents): future_map[agent_num] = executor.submit(warmup_fn, agent) results = {} for agent_id, future in future_map.items(): try: results[agent_id] = future.result() # pylint: disable=broad-except except Exception as e: logging.info(f'Error occurred in warmup for agent id {agent_id}: {e}') # pylint: enable=broad-except self._warmup_params = results[0] def _play_agents(self, actor_id): """Plays agents on an episode loop until termination.""" # Assignment is done such that task 0 goes to core 0, task 1 to core 1 # and so on. Tasks are executed in the order which they are submitted. eval_actor = self._eval_actors[actor_id] device_id = actor_id % self._num_agents agent = self._agents[device_id] logging.info(f'Setting up agent of actor {actor_id} on device {device_id}') if eval_actor.evaluator_type == EvaluatorType.CHECKPOINT: if self._checkpoint_generator is None: raise ValueError('Checkpoint generator cannot be None.') # Use same checkpoint generator across different threads. Guarantee thread # safety with locked iterators. eval_agent = eval_actor.build_evaluator(agent, self._checkpoint_generator) # Since we disabled warmup when the evaluator was built, # we are allowing for warmup params to be set. eval_agent.set_warmup_params(self._warmup_params) episode_count = 0 while True: logging.info(f'Running new episode on actor {actor_id}') try: eval_actor.run_episode(eval_agent) episode_count += 1 if episode_count > self._total_num_episodes_per_thread: break # pylint: disable=broad-except except Exception: logging.error( 'Error occurred while running the episode on actor ' f'{actor_id}:: {_traceback_exception()}') def _set_checkpoint_generator(self): generator = self._eval_actors[0].build_checkpoint_generator() # Use checkpoint generator as a locked iterator to make sure it is # thread-safe when multiple actor threads query it. if generator: self._checkpoint_generator = acme_common.LockedIterator(generator) def run(self): future_map = {} self._set_checkpoint_generator() with concurrent.futures.ThreadPoolExecutor( self._num_evaluation_threads) as executor: for thread_id in range(self._num_evaluation_threads): future = executor.submit(self._play_agents, thread_id) future_map[thread_id] = future for thread_id, future in future_map.items(): try: _ = future.result() # pylint: disable=broad-except except Exception: logging.error( f'Error in thread {thread_id} :: ' f' {_traceback_exception()}')
alphastar-main
alphastar/modules/evaluator.py
# Copyright 2021 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Initialize modules under the alphastar.collections library. We expose Structure, an immutable dict with sorted keys, used to hold nested observations, actions and state. We also expose utilities to register this structure as a jax pytree node. """ from alphastar.collections.structure import Struct
alphastar-main
alphastar/collections/__init__.py
# Copyright 2021 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Test for alphastar.collections.structure.py.""" import copy import pickle from absl.testing import absltest from alphastar.collections import structure import tree class TestStruct(absltest.TestCase): def testPrettyPrinting(self): result = str(structure.Struct(a=1, b=structure.Struct(c=2, d=[1, 2, 3]))) self.assertEqual( result, "Struct(\n a=1,\n b=Struct(\n c=2,\n d=[1, 2, 3],\n ),\n)") def testAttributeAccess(self): data = structure.Struct(x=1, y=2) self.assertEqual(data.x, 1) self.assertEqual(data.y, 2) self.assertEqual(data["x"], 1) self.assertEqual(data["y"], 2) with self.assertRaisesRegex(AttributeError, "z"): print(data.z) with self.assertRaisesRegex(KeyError, "'z'"): print(data["z"]) def testHasAttr(self): data = structure.Struct(x=1, y=2) self.assertTrue(hasattr(data, "x")) self.assertFalse(hasattr(data, "z")) def testGetAttr(self): data = structure.Struct(x=1, y=2) self.assertEqual(getattr(data, "x", None), 1) self.assertIsNone(getattr(data, "z", None)) def testIn(self): data = structure.Struct(x=1, y=2) self.assertIn("x", data) self.assertIn("y", data) self.assertNotIn("z", data) def testConstructionFromDict(self): data_dict = dict(x=1, y=2) data = structure.Struct(data_dict) data_dict["x"] = 3 del data_dict["y"] self.assertEqual(data["x"], 1) self.assertEqual(data["y"], 2) def testExtension(self): data1 = structure.Struct(x=1, y=2) data2 = structure.Struct(data1, z=3) self.assertEqual(data2.x, 1) self.assertEqual(data2.y, 2) self.assertEqual(data2.z, 3) def testReduction(self): data1 = structure.Struct(x=1, y=2, z=3) data2 = structure.Struct({k: v for k, v in data1.items() if k != "z"}) self.assertEqual(data2.x, 1) self.assertEqual(data2.y, 2) with self.assertRaisesRegex(AttributeError, "z"): print(data2.z) def testExtensionWithOverrideAllowed(self): data1 = structure.Struct(x=1, y=2) data2 = structure.Struct(data1, x=3, z=4) self.assertEqual(data2.x, 3) self.assertEqual(data2.y, 2) self.assertEqual(data2.z, 4) def testExtensionWithOverrideDisallowed(self): data = structure.Struct(x=1, y=2) with self.assertRaisesRegex(TypeError, ".*multiple values.*"): structure.Struct(x=3, z=4, **data) def testImmutability(self): data = structure.Struct(x=1, y=2) with self.assertRaisesRegex(RuntimeError, "Modifications.*not permitted"): data["x"] = 5 with self.assertRaisesRegex(RuntimeError, "Modifications.*not permitted"): data.x = 5 with self.assertRaisesRegex(RuntimeError, "Modifications.*not permitted"): data.pop() with self.assertRaisesRegex(RuntimeError, "Modifications.*not permitted"): data.popitem() with self.assertRaisesRegex(RuntimeError, "Modifications.*not permitted"): data.clear() with self.assertRaisesRegex(RuntimeError, "Modifications.*not permitted"): data.update(dict(z=3)) with self.assertRaisesRegex(RuntimeError, "Modifications.*not permitted"): data.setdefault("z", 3) with self.assertRaisesRegex(RuntimeError, "Modifications.*not permitted"): del data["x"] def testMutability(self): data = structure.Struct() data["x"] = 5 with self.assertRaisesRegex(RuntimeError, "Modifications.*not permitted"): data.x = 5 with self.assertRaisesRegex(RuntimeError, "Modifications.*not permitted"): data.pop() with self.assertRaisesRegex(RuntimeError, "Modifications.*not permitted"): data.popitem() with self.assertRaisesRegex(RuntimeError, "Modifications.*not permitted"): data.clear() with self.assertRaisesRegex(RuntimeError, "Modifications.*not permitted"): data.update(dict(z=3)) with self.assertRaisesRegex(RuntimeError, "Modifications.*not permitted"): data.setdefault("z", 3) with self.assertRaisesRegex(RuntimeError, "Modifications.*not permitted"): del data["x"] def testIncrementalBuildingSortsCorrectly(self): data = structure.Struct() data["c"] = 1 self.assertEqual(list(data.values()), [1]) data["b"] = 7 self.assertEqual(list(data.values()), [7, 1]) data["d"] = 4 self.assertEqual(list(data.values()), [7, 1, 4]) data["a"] = 3 self.assertEqual(list(data.values()), [3, 7, 1, 4]) def testIteratesInSortedKeyOrder(self): data = structure.Struct(e=3, d=4, f=5, a=1, b=2, c=17) self.assertEqual(list(data.keys()), ["a", "b", "c", "d", "e", "f"]) self.assertEqual(list(data.values()), [1, 2, 17, 4, 3, 5]) def testFlatten(self): data = structure.Struct(e=3, d=4, f=5, a=1, b=2, c=17) flattened = tree.flatten(data) self.assertEqual(flattened, [1, 2, 17, 4, 3, 5]) def testReduced(self): data = structure.Struct(e=3, d=4) reduced = data.__reduce__() self.assertEqual(reduced, (structure.Struct, (None, [("d", 4), ("e", 3)]))) def testShallowCopy(self): struct = structure.Struct(a=1, b=dict(c=2)) copied = copy.copy(struct) self.assertEqual(struct, copied) struct.b["c"] = 3 self.assertEqual(struct, copied) def testDeepCopy(self): struct = structure.Struct(a=1, b=dict(c=2)) copied = copy.deepcopy(struct) self.assertEqual(struct, copied) struct.b["c"] = 3 self.assertNotEqual(struct, copied) def testViewGetitem(self): data = structure.Struct(e=3, d=4, f=5, a=1, b=2, c=17) self.assertEqual(data.values()[2], 17) self.assertEqual(data.keys()[2], "c") self.assertEqual(data.items()[2], ("c", 17)) def testPickle(self): original = structure.Struct(a=1, b=2.0, c=structure.Struct(d="hi", e=5)) data = pickle.dumps(original) reconstructed = pickle.loads(data) self.assertEqual(original, reconstructed) if __name__ == "__main__": absltest.main()
alphastar-main
alphastar/collections/structure_test.py
# Copyright 2021 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Functions for using collections in JAX.""" from absl import logging from alphastar import collections import jax def register_struct(): """Register `structure.Struct` so pytree/tracer knows how to handle it.""" try: jax.tree_util.register_pytree_node( collections.Struct, flatten_func=lambda s: (tuple(s.values()), tuple(s.keys())), unflatten_func=lambda k, xs: collections.Struct(zip(k, xs))) except ValueError: logging.info('Struct is already registered as JAX PyTree Node.')
alphastar-main
alphastar/collections/jax.py
# Copyright 2021 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Immutable dict with sorted keys, access-as-attribute & pretty printing.""" import bisect from collections import abc from typing import Mapping, TypeVar Value = TypeVar("Value") class Struct(dict, Mapping[str, Value]): """Immutable dict with sorted keys, access-as-attribute & pretty printing. Inherits from dict explicitly for tensor flow encoding (which uses isinstance directly...) and py tree flattening (which is in C++ and ignores method overrides). Note that the immutability of the dict is valid only when the dict is non-empty. Note that to override existing fields one can call: Struct(existing_struct, existing_1=new_value, existing_2=new_value_2). To create new fields, checking that they don't duplicate existing fields: Struct(new_1=new_value, new_2=new_value_2, **existing_struct). """ def __init__(self, *args, **kwargs): super().__init__(*(_ignore_none(args) if args else []), **kwargs) self._sorted_keys = sorted(super(Struct, self).keys()) # Note that if our dict is empty we set immutable to false. This is # a workaround for the fact that tensorflow/python/client/session.py's # _DictFetchMapper constructs an empty dict and assigns rather than # constructing from a list of key-values. In that case users of this # class lose protection against mutation via __setitem__. self._immutable = bool(self._sorted_keys) def __getattr__(self, name): """Permits item-as-attribute lookup.""" try: return self[name] except Exception: raise AttributeError(name) def __iter__(self): """Iterates over the sorted keys list.""" return self._sorted_keys.__iter__() def __repr__(self): """Pretty-prints the Struct's contents.""" ret = ["Struct("] for k in self: v_repr = "\n ".join(repr(self[k]).split("\n")) ret.append(" {}={},".format(k, v_repr)) ret.append(")") return "\n".join(ret) def __setattr__(self, k, v): """Allows only the setting of our private attributes.""" if k in ["_sorted_keys", "_immutable"]: super(Struct, self).__setattr__(k, v) else: self._defined_as_read_only() def __setitem__(self, k, v): """Allows setting items only if the Struct is mutable (see init).""" if not self._immutable: super(Struct, self).__setitem__(k, v) bisect.insort(self._sorted_keys, k) else: self._defined_as_read_only() def __hash__(self): """Protects against mutability, *but only in this object*.""" if not self._immutable: raise TypeError("Can only hash immutable Structs") return hash(tuple(self.items())) def __reduce__(self): """Explicit pickling support is required due to the class' evolution. Note that code exists which expects the 'None' here (which is superfluous now). For the time being, meet those expectations. Returns: Reduced representation of this Struct instance. """ return self.__class__, (None, list(self.items()),) def keys(self): """Uses the sorted key list.""" return self._sorted_keys def items(self): """Returns a view onto items, sorted by key.""" return SortedItemsView(self) def values(self): """Returns a view onto values, sorted by key.""" return SortedValuesView(self) def _defined_as_read_only(self, *args, **kwargs): raise RuntimeError("Modifications to Struct instances are not permitted") __delitem__ = _defined_as_read_only pop = _defined_as_read_only popitem = _defined_as_read_only clear = _defined_as_read_only update = _defined_as_read_only setdefault = _defined_as_read_only def _not_supported(self, *args, **kwargs): raise RuntimeError("Method unsupported by Struct") __reversed__ = _not_supported class SortedItemsView(abc.ItemsView, abc.Sequence): def __init__(self, struct: Struct): self._struct = struct super().__init__(struct) def __getitem__(self, i: int): key = self._struct._sorted_keys[i] return key, self._struct[key] class SortedValuesView(abc.ValuesView, abc.Sequence): def __init__(self, struct: Struct): self._struct = struct super().__init__(struct) def __getitem__(self, i: int): key = self._struct._sorted_keys[i] return self._struct[key] def _ignore_none(args): """Ignore superfluous None args when reconstructing from copies.""" if args and args[0] is None: args = args[1:] return args
alphastar-main
alphastar/collections/structure.py
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Minimal data reader for GQN TFRecord datasets.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import os import tensorflow as tf nest = tf.contrib.framework.nest DatasetInfo = collections.namedtuple( 'DatasetInfo', ['basepath', 'train_size', 'test_size', 'frame_size', 'sequence_size'] ) Context = collections.namedtuple('Context', ['frames', 'cameras']) Query = collections.namedtuple('Query', ['context', 'query_camera']) TaskData = collections.namedtuple('TaskData', ['query', 'target']) _DATASETS = dict( jaco=DatasetInfo( basepath='jaco', train_size=3600, test_size=400, frame_size=64, sequence_size=11), mazes=DatasetInfo( basepath='mazes', train_size=1080, test_size=120, frame_size=84, sequence_size=300), rooms_free_camera_with_object_rotations=DatasetInfo( basepath='rooms_free_camera_with_object_rotations', train_size=2034, test_size=226, frame_size=128, sequence_size=10), rooms_ring_camera=DatasetInfo( basepath='rooms_ring_camera', train_size=2160, test_size=240, frame_size=64, sequence_size=10), rooms_free_camera_no_object_rotations=DatasetInfo( basepath='rooms_free_camera_no_object_rotations', train_size=2160, test_size=240, frame_size=64, sequence_size=10), shepard_metzler_5_parts=DatasetInfo( basepath='shepard_metzler_5_parts', train_size=900, test_size=100, frame_size=64, sequence_size=15), shepard_metzler_7_parts=DatasetInfo( basepath='shepard_metzler_7_parts', train_size=900, test_size=100, frame_size=64, sequence_size=15) ) _NUM_CHANNELS = 3 _NUM_RAW_CAMERA_PARAMS = 5 _MODES = ('train', 'test') def _get_dataset_files(dateset_info, mode, root): """Generates lists of files for a given dataset version.""" basepath = dateset_info.basepath base = os.path.join(root, basepath, mode) if mode == 'train': num_files = dateset_info.train_size else: num_files = dateset_info.test_size length = len(str(num_files)) template = '{:0%d}-of-{:0%d}.tfrecord' % (length, length) return [os.path.join(base, template.format(i + 1, num_files)) for i in range(num_files)] def _convert_frame_data(jpeg_data): decoded_frames = tf.image.decode_jpeg(jpeg_data) return tf.image.convert_image_dtype(decoded_frames, dtype=tf.float32) class DataReader(object): """Minimal queue based TFRecord reader. You can use this reader to load the datasets used to train Generative Query Networks (GQNs) in the 'Neural Scene Representation and Rendering' paper. See README.md for a description of the datasets and an example of how to use the reader. """ def __init__(self, dataset, context_size, root, mode='train', # Optionally reshape frames custom_frame_size=None, # Queue params num_threads=4, capacity=256, min_after_dequeue=128, seed=None): """Instantiates a DataReader object and sets up queues for data reading. Args: dataset: string, one of ['jaco', 'mazes', 'rooms_ring_camera', 'rooms_free_camera_no_object_rotations', 'rooms_free_camera_with_object_rotations', 'shepard_metzler_5_parts', 'shepard_metzler_7_parts']. context_size: integer, number of views to be used to assemble the context. root: string, path to the root folder of the data. mode: (optional) string, one of ['train', 'test']. custom_frame_size: (optional) integer, required size of the returned frames, defaults to None. num_threads: (optional) integer, number of threads used to feed the reader queues, defaults to 4. capacity: (optional) integer, capacity of the underlying RandomShuffleQueue, defualts to 256. min_after_dequeue: (optional) integer, min_after_dequeue of the underlying RandomShuffleQueue, defualts to 128. seed: (optional) integer, seed for the random number generators used in the reader. Raises: ValueError: if the required version does not exist; if the required mode is not supported; if the requested context_size is bigger than the maximum supported for the given dataset version. """ if dataset not in _DATASETS: raise ValueError('Unrecognized dataset {} requested. Available datasets ' 'are {}'.format(dataset, _DATASETS.keys())) if mode not in _MODES: raise ValueError('Unsupported mode {} requested. Supported modes ' 'are {}'.format(mode, _MODES)) self._dataset_info = _DATASETS[dataset] if context_size >= self._dataset_info.sequence_size: raise ValueError( 'Maximum support context size for dataset {} is {}, but ' 'was {}.'.format( dataset, self._dataset_info.sequence_size-1, context_size)) self._context_size = context_size # Number of views in the context + target view self._example_size = context_size + 1 self._custom_frame_size = custom_frame_size with tf.device('/cpu'): file_names = _get_dataset_files(self._dataset_info, mode, root) filename_queue = tf.train.string_input_producer(file_names, seed=seed) reader = tf.TFRecordReader() read_ops = [self._make_read_op(reader, filename_queue) for _ in range(num_threads)] dtypes = nest.map_structure(lambda x: x.dtype, read_ops[0]) shapes = nest.map_structure(lambda x: x.shape[1:], read_ops[0]) self._queue = tf.RandomShuffleQueue( capacity=capacity, min_after_dequeue=min_after_dequeue, dtypes=dtypes, shapes=shapes, seed=seed) enqueue_ops = [self._queue.enqueue_many(op) for op in read_ops] tf.train.add_queue_runner(tf.train.QueueRunner(self._queue, enqueue_ops)) def read(self, batch_size): """Reads batch_size (query, target) pairs.""" frames, cameras = self._queue.dequeue_many(batch_size) context_frames = frames[:, :-1] context_cameras = cameras[:, :-1] target = frames[:, -1] query_camera = cameras[:, -1] context = Context(cameras=context_cameras, frames=context_frames) query = Query(context=context, query_camera=query_camera) return TaskData(query=query, target=target) def _make_read_op(self, reader, filename_queue): """Instantiates the ops used to read and parse the data into tensors.""" _, raw_data = reader.read_up_to(filename_queue, num_records=16) feature_map = { 'frames': tf.FixedLenFeature( shape=self._dataset_info.sequence_size, dtype=tf.string), 'cameras': tf.FixedLenFeature( shape=[self._dataset_info.sequence_size * _NUM_RAW_CAMERA_PARAMS], dtype=tf.float32) } example = tf.parse_example(raw_data, feature_map) indices = self._get_randomized_indices(seed) frames = self._preprocess_frames(example, indices) cameras = self._preprocess_cameras(example, indices) return frames, cameras def _get_randomized_indices(self, seed): """Generates randomized indices into a sequence of a specific length.""" indices = tf.range(0, self._dataset_info.sequence_size) indices = tf.random_shuffle(indices, seed=seed) indices = tf.slice(indices, begin=[0], size=[self._example_size]) return indices def _preprocess_frames(self, example, indices): """Instantiates the ops used to preprocess the frames data.""" frames = tf.concat(example['frames'], axis=0) frames = tf.gather(frames, indices, axis=1) frames = tf.map_fn( _convert_frame_data, tf.reshape(frames, [-1]), dtype=tf.float32, back_prop=False) dataset_image_dimensions = tuple( [self._dataset_info.frame_size] * 2 + [_NUM_CHANNELS]) frames = tf.reshape( frames, (-1, self._example_size) + dataset_image_dimensions) if (self._custom_frame_size and self._custom_frame_size != self._dataset_info.frame_size): frames = tf.reshape(frames, (-1,) + dataset_image_dimensions) new_frame_dimensions = (self._custom_frame_size,) * 2 + (_NUM_CHANNELS,) frames = tf.image.resize_bilinear( frames, new_frame_dimensions[:2], align_corners=True) frames = tf.reshape( frames, (-1, self._example_size) + new_frame_dimensions) return frames def _preprocess_cameras(self, example, indices): """Instantiates the ops used to preprocess the cameras data.""" raw_pose_params = example['cameras'] raw_pose_params = tf.reshape( raw_pose_params, [-1, self._dataset_info.sequence_size, _NUM_RAW_CAMERA_PARAMS]) raw_pose_params = tf.gather(raw_pose_params, indices, axis=1) pos = raw_pose_params[:, :, 0:3] yaw = raw_pose_params[:, :, 3:4] pitch = raw_pose_params[:, :, 4:5] cameras = tf.concat( [pos, tf.sin(yaw), tf.cos(yaw), tf.sin(pitch), tf.cos(pitch)], axis=2) return cameras
gqn-datasets-master
data_reader.py
#!/usr/bin/env python3 # Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A script for running step_benchmark_test for a variety of build settings.""" import argparse import os import re import shutil import subprocess import sys from typing import NamedTuple, Tuple class _Setting(NamedTuple): name: str cmake_args: Tuple[str] def run_benchmark_variants(output_directory: str, build_directory: str, benchmark_repetitions: int, delete_build: bool): """Builds different variants of the benchmark test, and runs them.""" # For each of the settings, the first option is what we use as a baseline. # We chose to pick the settings that were likely best (so this is an ablation # study), so interactions between settings are tested. settings_ranges = { "avx": [ _Setting("on", ("-DMUJOCO_ENABLE_AVX=ON",)), _Setting("off", ("-DMUJOCO_ENABLE_AVX=OFF",)) ], "avx_intrinsics": [ _Setting("on", ("-DMUJOCO_ENABLE_AVX_INTRINSICS=ON",)), _Setting("off", ("-DMUJOCO_ENABLE_AVX_INTRINSICS=OFF",)) ], "lto": [ _Setting("on", ("-DCMAKE_INTERPROCEDURAL_OPTIMIZATION=ON",)), _Setting("off", ("-DCMAKE_INTERPROCEDURAL_OPTIMIZATION=OFF",)), ], "compiler": compiler_cmake_flags_variants(), } baseline_settings = { key: value[0] for key, value in settings_ranges.items() } run_benchmark( f"{sys.platform}_baseline", baseline_settings, output_directory=output_directory, build_directory=f"{build_directory}_baseline", benchmark_repetitions=benchmark_repetitions, delete_build=delete_build, ) for key in sorted(settings_ranges): settings = baseline_settings.copy() for setting in settings_ranges[key][1:]: settings[key] = setting run_benchmark( f"{sys.platform}_{key}_{setting.name}", settings, output_directory=output_directory, build_directory=f"{build_directory}_{key}_{setting.name}", benchmark_repetitions=benchmark_repetitions, delete_build=delete_build, ) def run_benchmark(name, settings, output_directory: str, build_directory: str, benchmark_repetitions: int, delete_build: bool): """Builds and runs a single benchmark.""" current_dir = os.getcwd() try: if delete_build: shutil.rmtree(build_directory, ignore_errors=True) os.makedirs(build_directory, exist_ok=True) os.makedirs(output_directory, exist_ok=True) os.chdir(build_directory) cmake_args = [ "cmake", "..", "-DMUJOCO_BUILD_TESTS=ON", "-DCMAKE_BUILD_TYPE=Release" ] cmake_args.extend(os_specific_cmake_flags()) for _, setting in sorted(settings.items()): cmake_args.extend(setting.cmake_args) print(f"Running ({name}):", " ".join(cmake_args)) subprocess.check_call(cmake_args) subprocess.check_call([ "cmake", "--build", ".", "-j8", "--config=Release", "-t", "step_benchmark_test" ]) output_path = os.path.join(output_directory, f"{name}.json") os.chdir("../mujoco/test") if sys.platform == "win32": cygwin_run_benchmark(build_directory, output_path, benchmark_repetitions) else: binary_path = os.path.join(build_directory, "bin", "step_benchmark_test") subprocess.check_call([ binary_path, "--benchmark_filter=all", "--benchmark_enable_random_interleaving=true", "--benchmark_min_time=0.5", f"--benchmark_repetitions={benchmark_repetitions}", "--benchmark_format=json", f"--benchmark_out={output_path}", ]) finally: os.chdir(current_dir) def os_specific_cmake_flags(): """CMake args that should be passed to all benchmarks on current OS.""" if sys.platform == "win32": return ("-A", "x64", "-Thost=x86", "-DCMAKE_MSVC_RUNTIME_LIBRARY=MultiThreaded", "-DCMAKE_SYSTEM_VERSION=10.0.19041.0") elif sys.platform.startswith("linux"): return () elif sys.platform == "darwin": # macOS return () else: raise ValueError(f"Unknown OS: {sys.platform}") def compiler_cmake_flags_variants(): """Returns a list of benchmark settings for different compilers.""" if sys.platform == "win32": return [ _Setting("VS2022", ("-G", "Visual Studio 17 2022")), # MSVC 2017 doesn't seem to support C17 standard. # _Setting("VS2017", ("-G", "Visual Studio 15 2017")), ] elif sys.platform.startswith("linux"): return [ _Setting("clang-11", ("-DCMAKE_C_COMPILER=clang-11", "-DCMAKE_CXX_COMPILER=clang++-11", "-DCMAKE_LINKER=lld-11")), _Setting("clang-8", ("-DCMAKE_C_COMPILER=clang-8", "-DCMAKE_CXX_COMPILER=clang++-8", "-DCMAKE_LINKER=lld-8")), ] elif sys.platform == "darwin": # macOS return [_Setting("clang", ())] else: raise ValueError(f"Unknown OS: {sys.platform}") def cygwin_run_benchmark(build_directory, output_path, benchmark_repetitions): """Runs the benchmark command under the cygwin environment.""" # The subprocess module interacts badly with cygwin. # Rather than trying to run the binary directly through Popen, use bash on # cygwin. lib_path = cygwin_path(os.path.join(build_directory, "lib", "Release")) binary_path = cygwin_path( os.path.join(build_directory, "bin", "Release", "step_benchmark_test")) cygwin = subprocess.Popen(["bash"], stdin=subprocess.PIPE) command = ( f'PATH="$PATH:{lib_path}" {binary_path} --benchmark_filter=all ' "--benchmark_enable_random_interleaving=true ", "--benchmark_min_time=0.5 " f"--benchmark_repetitions={benchmark_repetitions} " "--benchmark_format=json " f"--benchmark_out='{output_path}'") cygwin.communicate(input=bytes(command, "utf-8")) if cygwin.returncode: raise ValueError(f"Benchmark returned error code: {cygwin.returncode}") def cygwin_path(windows_path): path = windows_path.replace("\\", "/") path = re.sub(r".*cygwin64", "", path) return path def main(argv): parser = argparse.ArgumentParser() parser.add_argument("-o", "--output_directory", default="benchmark_results") parser.add_argument( "-b", "--build_directory", default="build", help="Base path for build directories. Benchmark names will be appended." ) parser.add_argument("-n", "--repetitions", type=int, default=30) parser.add_argument( "-d", "--delete_build", nargs="?", type=bool, const=True, default=False, help="Delete the build directory before building benchmark.") args = parser.parse_args(argv[1:]) run_benchmark_variants( output_directory=os.path.abspath(args.output_directory), build_directory=os.path.abspath(args.build_directory), delete_build=args.delete_build, benchmark_repetitions=args.repetitions) if __name__ == "__main__": main(sys.argv)
mujoco-main
test/benchmark/run_ablation.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Provides information about MuJoCo API functions. DO NOT EDIT. THIS FILE IS AUTOMATICALLY GENERATED. """ from typing import Mapping from .ast_nodes import ArrayType from .ast_nodes import FunctionDecl from .ast_nodes import FunctionParameterDecl from .ast_nodes import PointerType from .ast_nodes import ValueType FUNCTIONS: Mapping[str, FunctionDecl] = dict([ ('mj_defaultVFS', FunctionDecl( name='mj_defaultVFS', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='vfs', type=PointerType( inner_type=ValueType(name='mjVFS'), ), ), ), doc='Initialize VFS to empty (no deallocation).', )), ('mj_addFileVFS', FunctionDecl( name='mj_addFileVFS', return_type=ValueType(name='int'), parameters=( FunctionParameterDecl( name='vfs', type=PointerType( inner_type=ValueType(name='mjVFS'), ), ), FunctionParameterDecl( name='directory', type=PointerType( inner_type=ValueType(name='char', is_const=True), ), ), FunctionParameterDecl( name='filename', type=PointerType( inner_type=ValueType(name='char', is_const=True), ), ), ), doc='Add file to VFS, return 0: success, 1: full, 2: repeated name, -1: failed to load.', # pylint: disable=line-too-long )), ('mj_makeEmptyFileVFS', FunctionDecl( name='mj_makeEmptyFileVFS', return_type=ValueType(name='int'), parameters=( FunctionParameterDecl( name='vfs', type=PointerType( inner_type=ValueType(name='mjVFS'), ), ), FunctionParameterDecl( name='filename', type=PointerType( inner_type=ValueType(name='char', is_const=True), ), ), FunctionParameterDecl( name='filesize', type=ValueType(name='int'), ), ), doc='Make empty file in VFS, return 0: success, 1: full, 2: repeated name.', # pylint: disable=line-too-long )), ('mj_findFileVFS', FunctionDecl( name='mj_findFileVFS', return_type=ValueType(name='int'), parameters=( FunctionParameterDecl( name='vfs', type=PointerType( inner_type=ValueType(name='mjVFS', is_const=True), ), ), FunctionParameterDecl( name='filename', type=PointerType( inner_type=ValueType(name='char', is_const=True), ), ), ), doc='Return file index in VFS, or -1 if not found in VFS.', )), ('mj_deleteFileVFS', FunctionDecl( name='mj_deleteFileVFS', return_type=ValueType(name='int'), parameters=( FunctionParameterDecl( name='vfs', type=PointerType( inner_type=ValueType(name='mjVFS'), ), ), FunctionParameterDecl( name='filename', type=PointerType( inner_type=ValueType(name='char', is_const=True), ), ), ), doc='Delete file from VFS, return 0: success, -1: not found in VFS.', )), ('mj_deleteVFS', FunctionDecl( name='mj_deleteVFS', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='vfs', type=PointerType( inner_type=ValueType(name='mjVFS'), ), ), ), doc='Delete all files from VFS.', )), ('mj_loadXML', FunctionDecl( name='mj_loadXML', return_type=PointerType( inner_type=ValueType(name='mjModel'), ), parameters=( FunctionParameterDecl( name='filename', type=PointerType( inner_type=ValueType(name='char', is_const=True), ), ), FunctionParameterDecl( name='vfs', type=PointerType( inner_type=ValueType(name='mjVFS', is_const=True), ), ), FunctionParameterDecl( name='error', type=PointerType( inner_type=ValueType(name='char'), ), ), FunctionParameterDecl( name='error_sz', type=ValueType(name='int'), ), ), doc='Parse XML file in MJCF or URDF format, compile it, return low-level model. If vfs is not NULL, look up files in vfs before reading from disk. If error is not NULL, it must have size error_sz.', # pylint: disable=line-too-long )), ('mj_saveLastXML', FunctionDecl( name='mj_saveLastXML', return_type=ValueType(name='int'), parameters=( FunctionParameterDecl( name='filename', type=PointerType( inner_type=ValueType(name='char', is_const=True), ), ), FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='error', type=PointerType( inner_type=ValueType(name='char'), ), ), FunctionParameterDecl( name='error_sz', type=ValueType(name='int'), ), ), doc='Update XML data structures with info from low-level model, save as MJCF. If error is not NULL, it must have size error_sz.', # pylint: disable=line-too-long )), ('mj_freeLastXML', FunctionDecl( name='mj_freeLastXML', return_type=ValueType(name='void'), parameters=(), doc='Free last XML model if loaded. Called internally at each load.', )), ('mj_printSchema', FunctionDecl( name='mj_printSchema', return_type=ValueType(name='int'), parameters=( FunctionParameterDecl( name='filename', type=PointerType( inner_type=ValueType(name='char', is_const=True), ), ), FunctionParameterDecl( name='buffer', type=PointerType( inner_type=ValueType(name='char'), ), ), FunctionParameterDecl( name='buffer_sz', type=ValueType(name='int'), ), FunctionParameterDecl( name='flg_html', type=ValueType(name='int'), ), FunctionParameterDecl( name='flg_pad', type=ValueType(name='int'), ), ), doc='Print internal XML schema as plain text or HTML, with style-padding or &nbsp;.', # pylint: disable=line-too-long )), ('mj_step', FunctionDecl( name='mj_step', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData'), ), ), ), doc='Advance simulation, use control callback to obtain external force and control.', # pylint: disable=line-too-long )), ('mj_step1', FunctionDecl( name='mj_step1', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData'), ), ), ), doc='Advance simulation in two steps: before external force and control is set by user.', # pylint: disable=line-too-long )), ('mj_step2', FunctionDecl( name='mj_step2', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData'), ), ), ), doc='Advance simulation in two steps: after external force and control is set by user.', # pylint: disable=line-too-long )), ('mj_forward', FunctionDecl( name='mj_forward', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData'), ), ), ), doc='Forward dynamics: same as mj_step but do not integrate in time.', )), ('mj_inverse', FunctionDecl( name='mj_inverse', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData'), ), ), ), doc='Inverse dynamics: qacc must be set before calling.', )), ('mj_forwardSkip', FunctionDecl( name='mj_forwardSkip', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData'), ), ), FunctionParameterDecl( name='skipstage', type=ValueType(name='int'), ), FunctionParameterDecl( name='skipsensor', type=ValueType(name='int'), ), ), doc='Forward dynamics with skip; skipstage is mjtStage.', )), ('mj_inverseSkip', FunctionDecl( name='mj_inverseSkip', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData'), ), ), FunctionParameterDecl( name='skipstage', type=ValueType(name='int'), ), FunctionParameterDecl( name='skipsensor', type=ValueType(name='int'), ), ), doc='Inverse dynamics with skip; skipstage is mjtStage.', )), ('mj_defaultLROpt', FunctionDecl( name='mj_defaultLROpt', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='opt', type=PointerType( inner_type=ValueType(name='mjLROpt'), ), ), ), doc='Set default options for length range computation.', )), ('mj_defaultSolRefImp', FunctionDecl( name='mj_defaultSolRefImp', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='solref', type=PointerType( inner_type=ValueType(name='mjtNum'), ), ), FunctionParameterDecl( name='solimp', type=PointerType( inner_type=ValueType(name='mjtNum'), ), ), ), doc='Set solver parameters to default values.', )), ('mj_defaultOption', FunctionDecl( name='mj_defaultOption', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='opt', type=PointerType( inner_type=ValueType(name='mjOption'), ), ), ), doc='Set physics options to default values.', )), ('mj_defaultVisual', FunctionDecl( name='mj_defaultVisual', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='vis', type=PointerType( inner_type=ValueType(name='mjVisual'), ), ), ), doc='Set visual options to default values.', )), ('mj_copyModel', FunctionDecl( name='mj_copyModel', return_type=PointerType( inner_type=ValueType(name='mjModel'), ), parameters=( FunctionParameterDecl( name='dest', type=PointerType( inner_type=ValueType(name='mjModel'), ), ), FunctionParameterDecl( name='src', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), ), doc='Copy mjModel, allocate new if dest is NULL.', )), ('mj_saveModel', FunctionDecl( name='mj_saveModel', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='filename', type=PointerType( inner_type=ValueType(name='char', is_const=True), ), ), FunctionParameterDecl( name='buffer', type=PointerType( inner_type=ValueType(name='void'), ), ), FunctionParameterDecl( name='buffer_sz', type=ValueType(name='int'), ), ), doc='Save model to binary MJB file or memory buffer; buffer has precedence when given.', # pylint: disable=line-too-long )), ('mj_loadModel', FunctionDecl( name='mj_loadModel', return_type=PointerType( inner_type=ValueType(name='mjModel'), ), parameters=( FunctionParameterDecl( name='filename', type=PointerType( inner_type=ValueType(name='char', is_const=True), ), ), FunctionParameterDecl( name='vfs', type=PointerType( inner_type=ValueType(name='mjVFS', is_const=True), ), ), ), doc='Load model from binary MJB file. If vfs is not NULL, look up file in vfs before reading from disk.', # pylint: disable=line-too-long )), ('mj_deleteModel', FunctionDecl( name='mj_deleteModel', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel'), ), ), ), doc='Free memory allocation in model.', )), ('mj_sizeModel', FunctionDecl( name='mj_sizeModel', return_type=ValueType(name='int'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), ), doc='Return size of buffer needed to hold model.', )), ('mj_makeData', FunctionDecl( name='mj_makeData', return_type=PointerType( inner_type=ValueType(name='mjData'), ), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), ), doc='Allocate mjData corresponding to given model. If the model buffer is unallocated the initial configuration will not be set.', # pylint: disable=line-too-long )), ('mj_copyData', FunctionDecl( name='mj_copyData', return_type=PointerType( inner_type=ValueType(name='mjData'), ), parameters=( FunctionParameterDecl( name='dest', type=PointerType( inner_type=ValueType(name='mjData'), ), ), FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='src', type=PointerType( inner_type=ValueType(name='mjData', is_const=True), ), ), ), doc='Copy mjData. m is only required to contain the size fields from MJMODEL_INTS.', # pylint: disable=line-too-long )), ('mj_resetData', FunctionDecl( name='mj_resetData', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData'), ), ), ), doc='Reset data to defaults.', )), ('mj_resetDataDebug', FunctionDecl( name='mj_resetDataDebug', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData'), ), ), FunctionParameterDecl( name='debug_value', type=ValueType(name='unsigned char'), ), ), doc='Reset data to defaults, fill everything else with debug_value.', )), ('mj_resetDataKeyframe', FunctionDecl( name='mj_resetDataKeyframe', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData'), ), ), FunctionParameterDecl( name='key', type=ValueType(name='int'), ), ), doc='Reset data, set fields from specified keyframe.', )), ('mj_markStack', FunctionDecl( name='mj_markStack', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData'), ), ), ), doc='Mark a new frame on the mjData stack.', )), ('mj_freeStack', FunctionDecl( name='mj_freeStack', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData'), ), ), ), doc='Free the current mjData stack frame. All pointers returned by mj_stackAlloc since the last call to mj_markStack must no longer be used afterwards.', # pylint: disable=line-too-long )), ('mj_stackAlloc', FunctionDecl( name='mj_stackAlloc', return_type=PointerType( inner_type=ValueType(name='void'), ), parameters=( FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData'), ), ), FunctionParameterDecl( name='bytes', type=ValueType(name='size_t'), ), FunctionParameterDecl( name='alignment', type=ValueType(name='size_t'), ), ), doc='Allocate a number of bytes on mjData stack at a specific alignment. Call mju_error on stack overflow.', # pylint: disable=line-too-long )), ('mj_stackAllocNum', FunctionDecl( name='mj_stackAllocNum', return_type=PointerType( inner_type=ValueType(name='mjtNum'), ), parameters=( FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData'), ), ), FunctionParameterDecl( name='size', type=ValueType(name='int'), ), ), doc='Allocate array of mjtNums on mjData stack. Call mju_error on stack overflow.', # pylint: disable=line-too-long )), ('mj_stackAllocInt', FunctionDecl( name='mj_stackAllocInt', return_type=PointerType( inner_type=ValueType(name='int'), ), parameters=( FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData'), ), ), FunctionParameterDecl( name='size', type=ValueType(name='int'), ), ), doc='Allocate array of ints on mjData stack. Call mju_error on stack overflow.', # pylint: disable=line-too-long )), ('mj_deleteData', FunctionDecl( name='mj_deleteData', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData'), ), ), ), doc='Free memory allocation in mjData.', )), ('mj_resetCallbacks', FunctionDecl( name='mj_resetCallbacks', return_type=ValueType(name='void'), parameters=(), doc='Reset all callbacks to NULL pointers (NULL is the default).', )), ('mj_setConst', FunctionDecl( name='mj_setConst', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel'), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData'), ), ), ), doc='Set constant fields of mjModel, corresponding to qpos0 configuration.', # pylint: disable=line-too-long )), ('mj_setLengthRange', FunctionDecl( name='mj_setLengthRange', return_type=ValueType(name='int'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel'), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData'), ), ), FunctionParameterDecl( name='index', type=ValueType(name='int'), ), FunctionParameterDecl( name='opt', type=PointerType( inner_type=ValueType(name='mjLROpt', is_const=True), ), ), FunctionParameterDecl( name='error', type=PointerType( inner_type=ValueType(name='char'), ), ), FunctionParameterDecl( name='error_sz', type=ValueType(name='int'), ), ), doc='Set actuator_lengthrange for specified actuator; return 1 if ok, 0 if error.', # pylint: disable=line-too-long )), ('mj_printFormattedModel', FunctionDecl( name='mj_printFormattedModel', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='filename', type=PointerType( inner_type=ValueType(name='char', is_const=True), ), ), FunctionParameterDecl( name='float_format', type=PointerType( inner_type=ValueType(name='char', is_const=True), ), ), ), doc='Print mjModel to text file, specifying format. float_format must be a valid printf-style format string for a single float value.', # pylint: disable=line-too-long )), ('mj_printModel', FunctionDecl( name='mj_printModel', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='filename', type=PointerType( inner_type=ValueType(name='char', is_const=True), ), ), ), doc='Print model to text file.', )), ('mj_printFormattedData', FunctionDecl( name='mj_printFormattedData', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData'), ), ), FunctionParameterDecl( name='filename', type=PointerType( inner_type=ValueType(name='char', is_const=True), ), ), FunctionParameterDecl( name='float_format', type=PointerType( inner_type=ValueType(name='char', is_const=True), ), ), ), doc='Print mjData to text file, specifying format. float_format must be a valid printf-style format string for a single float value', # pylint: disable=line-too-long )), ('mj_printData', FunctionDecl( name='mj_printData', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData'), ), ), FunctionParameterDecl( name='filename', type=PointerType( inner_type=ValueType(name='char', is_const=True), ), ), ), doc='Print data to text file.', )), ('mju_printMat', FunctionDecl( name='mju_printMat', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='mat', type=PointerType( inner_type=ValueType(name='mjtNum', is_const=True), ), ), FunctionParameterDecl( name='nr', type=ValueType(name='int'), ), FunctionParameterDecl( name='nc', type=ValueType(name='int'), ), ), doc='Print matrix to screen.', )), ('mju_printMatSparse', FunctionDecl( name='mju_printMatSparse', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='mat', type=PointerType( inner_type=ValueType(name='mjtNum', is_const=True), ), ), FunctionParameterDecl( name='nr', type=ValueType(name='int'), ), FunctionParameterDecl( name='rownnz', type=PointerType( inner_type=ValueType(name='int', is_const=True), ), ), FunctionParameterDecl( name='rowadr', type=PointerType( inner_type=ValueType(name='int', is_const=True), ), ), FunctionParameterDecl( name='colind', type=PointerType( inner_type=ValueType(name='int', is_const=True), ), ), ), doc='Print sparse matrix to screen.', )), ('mj_fwdPosition', FunctionDecl( name='mj_fwdPosition', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData'), ), ), ), doc='Run position-dependent computations.', )), ('mj_fwdVelocity', FunctionDecl( name='mj_fwdVelocity', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData'), ), ), ), doc='Run velocity-dependent computations.', )), ('mj_fwdActuation', FunctionDecl( name='mj_fwdActuation', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData'), ), ), ), doc='Compute actuator force qfrc_actuator.', )), ('mj_fwdAcceleration', FunctionDecl( name='mj_fwdAcceleration', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData'), ), ), ), doc='Add up all non-constraint forces, compute qacc_smooth.', )), ('mj_fwdConstraint', FunctionDecl( name='mj_fwdConstraint', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData'), ), ), ), doc='Run selected constraint solver.', )), ('mj_Euler', FunctionDecl( name='mj_Euler', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData'), ), ), ), doc='Euler integrator, semi-implicit in velocity.', )), ('mj_RungeKutta', FunctionDecl( name='mj_RungeKutta', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData'), ), ), FunctionParameterDecl( name='N', type=ValueType(name='int'), ), ), doc='Runge-Kutta explicit order-N integrator.', )), ('mj_invPosition', FunctionDecl( name='mj_invPosition', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData'), ), ), ), doc='Run position-dependent computations in inverse dynamics.', )), ('mj_invVelocity', FunctionDecl( name='mj_invVelocity', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData'), ), ), ), doc='Run velocity-dependent computations in inverse dynamics.', )), ('mj_invConstraint', FunctionDecl( name='mj_invConstraint', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData'), ), ), ), doc='Apply the analytical formula for inverse constraint dynamics.', )), ('mj_compareFwdInv', FunctionDecl( name='mj_compareFwdInv', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData'), ), ), ), doc='Compare forward and inverse dynamics, save results in fwdinv.', )), ('mj_sensorPos', FunctionDecl( name='mj_sensorPos', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData'), ), ), ), doc='Evaluate position-dependent sensors.', )), ('mj_sensorVel', FunctionDecl( name='mj_sensorVel', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData'), ), ), ), doc='Evaluate velocity-dependent sensors.', )), ('mj_sensorAcc', FunctionDecl( name='mj_sensorAcc', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData'), ), ), ), doc='Evaluate acceleration and force-dependent sensors.', )), ('mj_energyPos', FunctionDecl( name='mj_energyPos', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData'), ), ), ), doc='Evaluate position-dependent energy (potential).', )), ('mj_energyVel', FunctionDecl( name='mj_energyVel', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData'), ), ), ), doc='Evaluate velocity-dependent energy (kinetic).', )), ('mj_checkPos', FunctionDecl( name='mj_checkPos', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData'), ), ), ), doc='Check qpos, reset if any element is too big or nan.', )), ('mj_checkVel', FunctionDecl( name='mj_checkVel', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData'), ), ), ), doc='Check qvel, reset if any element is too big or nan.', )), ('mj_checkAcc', FunctionDecl( name='mj_checkAcc', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData'), ), ), ), doc='Check qacc, reset if any element is too big or nan.', )), ('mj_kinematics', FunctionDecl( name='mj_kinematics', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData'), ), ), ), doc='Run forward kinematics.', )), ('mj_comPos', FunctionDecl( name='mj_comPos', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData'), ), ), ), doc='Map inertias and motion dofs to global frame centered at CoM.', )), ('mj_camlight', FunctionDecl( name='mj_camlight', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData'), ), ), ), doc='Compute camera and light positions and orientations.', )), ('mj_tendon', FunctionDecl( name='mj_tendon', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData'), ), ), ), doc='Compute tendon lengths, velocities and moment arms.', )), ('mj_transmission', FunctionDecl( name='mj_transmission', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData'), ), ), ), doc='Compute actuator transmission lengths and moments.', )), ('mj_crb', FunctionDecl( name='mj_crb', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData'), ), ), ), doc='Run composite rigid body inertia algorithm (CRB).', )), ('mj_factorM', FunctionDecl( name='mj_factorM', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData'), ), ), ), doc="Compute sparse L'*D*L factorizaton of inertia matrix.", )), ('mj_solveM', FunctionDecl( name='mj_solveM', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData'), ), ), FunctionParameterDecl( name='x', type=PointerType( inner_type=ValueType(name='mjtNum'), ), ), FunctionParameterDecl( name='y', type=PointerType( inner_type=ValueType(name='mjtNum', is_const=True), ), ), FunctionParameterDecl( name='n', type=ValueType(name='int'), ), ), doc="Solve linear system M * x = y using factorization: x = inv(L'*D*L)*y", # pylint: disable=line-too-long )), ('mj_solveM2', FunctionDecl( name='mj_solveM2', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData'), ), ), FunctionParameterDecl( name='x', type=PointerType( inner_type=ValueType(name='mjtNum'), ), ), FunctionParameterDecl( name='y', type=PointerType( inner_type=ValueType(name='mjtNum', is_const=True), ), ), FunctionParameterDecl( name='n', type=ValueType(name='int'), ), ), doc="Half of linear solve: x = sqrt(inv(D))*inv(L')*y", )), ('mj_comVel', FunctionDecl( name='mj_comVel', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData'), ), ), ), doc='Compute cvel, cdof_dot.', )), ('mj_passive', FunctionDecl( name='mj_passive', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData'), ), ), ), doc='Compute qfrc_passive from spring-dampers, viscosity and density.', )), ('mj_subtreeVel', FunctionDecl( name='mj_subtreeVel', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData'), ), ), ), doc='subtree linear velocity and angular momentum', )), ('mj_rne', FunctionDecl( name='mj_rne', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData'), ), ), FunctionParameterDecl( name='flg_acc', type=ValueType(name='int'), ), FunctionParameterDecl( name='result', type=PointerType( inner_type=ValueType(name='mjtNum'), ), ), ), doc='RNE: compute M(qpos)*qacc + C(qpos,qvel); flg_acc=0 removes inertial term.', # pylint: disable=line-too-long )), ('mj_rnePostConstraint', FunctionDecl( name='mj_rnePostConstraint', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData'), ), ), ), doc='RNE with complete data: compute cacc, cfrc_ext, cfrc_int.', )), ('mj_collision', FunctionDecl( name='mj_collision', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData'), ), ), ), doc='Run collision detection.', )), ('mj_makeConstraint', FunctionDecl( name='mj_makeConstraint', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData'), ), ), ), doc='Construct constraints.', )), ('mj_island', FunctionDecl( name='mj_island', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData'), ), ), ), doc='Find constraint islands.', )), ('mj_projectConstraint', FunctionDecl( name='mj_projectConstraint', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData'), ), ), ), doc='Compute inverse constraint inertia efc_AR.', )), ('mj_referenceConstraint', FunctionDecl( name='mj_referenceConstraint', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData'), ), ), ), doc='Compute efc_vel, efc_aref.', )), ('mj_constraintUpdate', FunctionDecl( name='mj_constraintUpdate', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData'), ), ), FunctionParameterDecl( name='jar', type=PointerType( inner_type=ValueType(name='mjtNum', is_const=True), ), ), FunctionParameterDecl( name='cost', type=ArrayType( inner_type=ValueType(name='mjtNum'), extents=(1,), ), ), FunctionParameterDecl( name='flg_coneHessian', type=ValueType(name='int'), ), ), doc='Compute efc_state, efc_force, qfrc_constraint, and (optionally) cone Hessians. If cost is not NULL, set *cost = s(jar) where jar = Jac*qacc-aref.', # pylint: disable=line-too-long )), ('mj_stateSize', FunctionDecl( name='mj_stateSize', return_type=ValueType(name='int'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='spec', type=ValueType(name='unsigned int'), ), ), doc='Return size of state specification.', )), ('mj_getState', FunctionDecl( name='mj_getState', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData', is_const=True), ), ), FunctionParameterDecl( name='state', type=PointerType( inner_type=ValueType(name='mjtNum'), ), ), FunctionParameterDecl( name='spec', type=ValueType(name='unsigned int'), ), ), doc='Get state.', )), ('mj_setState', FunctionDecl( name='mj_setState', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData'), ), ), FunctionParameterDecl( name='state', type=PointerType( inner_type=ValueType(name='mjtNum', is_const=True), ), ), FunctionParameterDecl( name='spec', type=ValueType(name='unsigned int'), ), ), doc='Set state.', )), ('mj_addContact', FunctionDecl( name='mj_addContact', return_type=ValueType(name='int'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData'), ), ), FunctionParameterDecl( name='con', type=PointerType( inner_type=ValueType(name='mjContact', is_const=True), ), ), ), doc='Add contact to d->contact list; return 0 if success; 1 if buffer full.', # pylint: disable=line-too-long )), ('mj_isPyramidal', FunctionDecl( name='mj_isPyramidal', return_type=ValueType(name='int'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), ), doc='Determine type of friction cone.', )), ('mj_isSparse', FunctionDecl( name='mj_isSparse', return_type=ValueType(name='int'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), ), doc='Determine type of constraint Jacobian.', )), ('mj_isDual', FunctionDecl( name='mj_isDual', return_type=ValueType(name='int'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), ), doc='Determine type of solver (PGS is dual, CG and Newton are primal).', # pylint: disable=line-too-long )), ('mj_mulJacVec', FunctionDecl( name='mj_mulJacVec', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData', is_const=True), ), ), FunctionParameterDecl( name='res', type=PointerType( inner_type=ValueType(name='mjtNum'), ), ), FunctionParameterDecl( name='vec', type=PointerType( inner_type=ValueType(name='mjtNum', is_const=True), ), ), ), doc='Multiply dense or sparse constraint Jacobian by vector.', )), ('mj_mulJacTVec', FunctionDecl( name='mj_mulJacTVec', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData', is_const=True), ), ), FunctionParameterDecl( name='res', type=PointerType( inner_type=ValueType(name='mjtNum'), ), ), FunctionParameterDecl( name='vec', type=PointerType( inner_type=ValueType(name='mjtNum', is_const=True), ), ), ), doc='Multiply dense or sparse constraint Jacobian transpose by vector.', # pylint: disable=line-too-long )), ('mj_jac', FunctionDecl( name='mj_jac', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData', is_const=True), ), ), FunctionParameterDecl( name='jacp', type=PointerType( inner_type=ValueType(name='mjtNum'), ), ), FunctionParameterDecl( name='jacr', type=PointerType( inner_type=ValueType(name='mjtNum'), ), ), FunctionParameterDecl( name='point', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(3,), ), ), FunctionParameterDecl( name='body', type=ValueType(name='int'), ), ), doc='Compute 3/6-by-nv end-effector Jacobian of global point attached to given body.', # pylint: disable=line-too-long )), ('mj_jacBody', FunctionDecl( name='mj_jacBody', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData', is_const=True), ), ), FunctionParameterDecl( name='jacp', type=PointerType( inner_type=ValueType(name='mjtNum'), ), ), FunctionParameterDecl( name='jacr', type=PointerType( inner_type=ValueType(name='mjtNum'), ), ), FunctionParameterDecl( name='body', type=ValueType(name='int'), ), ), doc='Compute body frame end-effector Jacobian.', )), ('mj_jacBodyCom', FunctionDecl( name='mj_jacBodyCom', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData', is_const=True), ), ), FunctionParameterDecl( name='jacp', type=PointerType( inner_type=ValueType(name='mjtNum'), ), ), FunctionParameterDecl( name='jacr', type=PointerType( inner_type=ValueType(name='mjtNum'), ), ), FunctionParameterDecl( name='body', type=ValueType(name='int'), ), ), doc='Compute body center-of-mass end-effector Jacobian.', )), ('mj_jacSubtreeCom', FunctionDecl( name='mj_jacSubtreeCom', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData'), ), ), FunctionParameterDecl( name='jacp', type=PointerType( inner_type=ValueType(name='mjtNum'), ), ), FunctionParameterDecl( name='body', type=ValueType(name='int'), ), ), doc='Compute subtree center-of-mass end-effector Jacobian.', )), ('mj_jacGeom', FunctionDecl( name='mj_jacGeom', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData', is_const=True), ), ), FunctionParameterDecl( name='jacp', type=PointerType( inner_type=ValueType(name='mjtNum'), ), ), FunctionParameterDecl( name='jacr', type=PointerType( inner_type=ValueType(name='mjtNum'), ), ), FunctionParameterDecl( name='geom', type=ValueType(name='int'), ), ), doc='Compute geom end-effector Jacobian.', )), ('mj_jacSite', FunctionDecl( name='mj_jacSite', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData', is_const=True), ), ), FunctionParameterDecl( name='jacp', type=PointerType( inner_type=ValueType(name='mjtNum'), ), ), FunctionParameterDecl( name='jacr', type=PointerType( inner_type=ValueType(name='mjtNum'), ), ), FunctionParameterDecl( name='site', type=ValueType(name='int'), ), ), doc='Compute site end-effector Jacobian.', )), ('mj_jacPointAxis', FunctionDecl( name='mj_jacPointAxis', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData'), ), ), FunctionParameterDecl( name='jacPoint', type=PointerType( inner_type=ValueType(name='mjtNum'), ), ), FunctionParameterDecl( name='jacAxis', type=PointerType( inner_type=ValueType(name='mjtNum'), ), ), FunctionParameterDecl( name='point', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(3,), ), ), FunctionParameterDecl( name='axis', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(3,), ), ), FunctionParameterDecl( name='body', type=ValueType(name='int'), ), ), doc='Compute translation end-effector Jacobian of point, and rotation Jacobian of axis.', # pylint: disable=line-too-long )), ('mj_name2id', FunctionDecl( name='mj_name2id', return_type=ValueType(name='int'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='type', type=ValueType(name='int'), ), FunctionParameterDecl( name='name', type=PointerType( inner_type=ValueType(name='char', is_const=True), ), ), ), doc='Get id of object with the specified mjtObj type and name, returns -1 if id not found.', # pylint: disable=line-too-long )), ('mj_id2name', FunctionDecl( name='mj_id2name', return_type=PointerType( inner_type=ValueType(name='char', is_const=True), ), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='type', type=ValueType(name='int'), ), FunctionParameterDecl( name='id', type=ValueType(name='int'), ), ), doc='Get name of object with the specified mjtObj type and id, returns NULL if name not found.', # pylint: disable=line-too-long )), ('mj_fullM', FunctionDecl( name='mj_fullM', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='dst', type=PointerType( inner_type=ValueType(name='mjtNum'), ), ), FunctionParameterDecl( name='M', type=PointerType( inner_type=ValueType(name='mjtNum', is_const=True), ), ), ), doc='Convert sparse inertia matrix M into full (i.e. dense) matrix.', )), ('mj_mulM', FunctionDecl( name='mj_mulM', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData', is_const=True), ), ), FunctionParameterDecl( name='res', type=PointerType( inner_type=ValueType(name='mjtNum'), ), ), FunctionParameterDecl( name='vec', type=PointerType( inner_type=ValueType(name='mjtNum', is_const=True), ), ), ), doc='Multiply vector by inertia matrix.', )), ('mj_mulM2', FunctionDecl( name='mj_mulM2', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData', is_const=True), ), ), FunctionParameterDecl( name='res', type=PointerType( inner_type=ValueType(name='mjtNum'), ), ), FunctionParameterDecl( name='vec', type=PointerType( inner_type=ValueType(name='mjtNum', is_const=True), ), ), ), doc='Multiply vector by (inertia matrix)^(1/2).', )), ('mj_addM', FunctionDecl( name='mj_addM', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData'), ), ), FunctionParameterDecl( name='dst', type=PointerType( inner_type=ValueType(name='mjtNum'), ), ), FunctionParameterDecl( name='rownnz', type=PointerType( inner_type=ValueType(name='int'), ), ), FunctionParameterDecl( name='rowadr', type=PointerType( inner_type=ValueType(name='int'), ), ), FunctionParameterDecl( name='colind', type=PointerType( inner_type=ValueType(name='int'), ), ), ), doc='Add inertia matrix to destination matrix. Destination can be sparse uncompressed, or dense when all int* are NULL', # pylint: disable=line-too-long )), ('mj_applyFT', FunctionDecl( name='mj_applyFT', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData'), ), ), FunctionParameterDecl( name='force', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(3,), ), ), FunctionParameterDecl( name='torque', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(3,), ), ), FunctionParameterDecl( name='point', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(3,), ), ), FunctionParameterDecl( name='body', type=ValueType(name='int'), ), FunctionParameterDecl( name='qfrc_target', type=PointerType( inner_type=ValueType(name='mjtNum'), ), ), ), doc='Apply Cartesian force and torque (outside xfrc_applied mechanism).', # pylint: disable=line-too-long )), ('mj_objectVelocity', FunctionDecl( name='mj_objectVelocity', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData', is_const=True), ), ), FunctionParameterDecl( name='objtype', type=ValueType(name='int'), ), FunctionParameterDecl( name='objid', type=ValueType(name='int'), ), FunctionParameterDecl( name='res', type=ArrayType( inner_type=ValueType(name='mjtNum'), extents=(6,), ), ), FunctionParameterDecl( name='flg_local', type=ValueType(name='int'), ), ), doc='Compute object 6D velocity (rot:lin) in object-centered frame, world/local orientation.', # pylint: disable=line-too-long )), ('mj_objectAcceleration', FunctionDecl( name='mj_objectAcceleration', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData', is_const=True), ), ), FunctionParameterDecl( name='objtype', type=ValueType(name='int'), ), FunctionParameterDecl( name='objid', type=ValueType(name='int'), ), FunctionParameterDecl( name='res', type=ArrayType( inner_type=ValueType(name='mjtNum'), extents=(6,), ), ), FunctionParameterDecl( name='flg_local', type=ValueType(name='int'), ), ), doc='Compute object 6D acceleration (rot:lin) in object-centered frame, world/local orientation.', # pylint: disable=line-too-long )), ('mj_contactForce', FunctionDecl( name='mj_contactForce', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData', is_const=True), ), ), FunctionParameterDecl( name='id', type=ValueType(name='int'), ), FunctionParameterDecl( name='result', type=ArrayType( inner_type=ValueType(name='mjtNum'), extents=(6,), ), ), ), doc='Extract 6D force:torque given contact id, in the contact frame.', )), ('mj_differentiatePos', FunctionDecl( name='mj_differentiatePos', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='qvel', type=PointerType( inner_type=ValueType(name='mjtNum'), ), ), FunctionParameterDecl( name='dt', type=ValueType(name='mjtNum'), ), FunctionParameterDecl( name='qpos1', type=PointerType( inner_type=ValueType(name='mjtNum', is_const=True), ), ), FunctionParameterDecl( name='qpos2', type=PointerType( inner_type=ValueType(name='mjtNum', is_const=True), ), ), ), doc='Compute velocity by finite-differencing two positions.', )), ('mj_integratePos', FunctionDecl( name='mj_integratePos', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='qpos', type=PointerType( inner_type=ValueType(name='mjtNum'), ), ), FunctionParameterDecl( name='qvel', type=PointerType( inner_type=ValueType(name='mjtNum', is_const=True), ), ), FunctionParameterDecl( name='dt', type=ValueType(name='mjtNum'), ), ), doc='Integrate position with given velocity.', )), ('mj_normalizeQuat', FunctionDecl( name='mj_normalizeQuat', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='qpos', type=PointerType( inner_type=ValueType(name='mjtNum'), ), ), ), doc='Normalize all quaternions in qpos-type vector.', )), ('mj_local2Global', FunctionDecl( name='mj_local2Global', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData'), ), ), FunctionParameterDecl( name='xpos', type=ArrayType( inner_type=ValueType(name='mjtNum'), extents=(3,), ), ), FunctionParameterDecl( name='xmat', type=ArrayType( inner_type=ValueType(name='mjtNum'), extents=(9,), ), ), FunctionParameterDecl( name='pos', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(3,), ), ), FunctionParameterDecl( name='quat', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(4,), ), ), FunctionParameterDecl( name='body', type=ValueType(name='int'), ), FunctionParameterDecl( name='sameframe', type=ValueType(name='mjtByte'), ), ), doc='Map from body local to global Cartesian coordinates.', )), ('mj_getTotalmass', FunctionDecl( name='mj_getTotalmass', return_type=ValueType(name='mjtNum'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), ), doc='Sum all body masses.', )), ('mj_setTotalmass', FunctionDecl( name='mj_setTotalmass', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel'), ), ), FunctionParameterDecl( name='newmass', type=ValueType(name='mjtNum'), ), ), doc='Scale body masses and inertias to achieve specified total mass.', )), ('mj_getPluginConfig', FunctionDecl( name='mj_getPluginConfig', return_type=PointerType( inner_type=ValueType(name='char', is_const=True), ), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='plugin_id', type=ValueType(name='int'), ), FunctionParameterDecl( name='attrib', type=PointerType( inner_type=ValueType(name='char', is_const=True), ), ), ), doc='Return a config attribute value of a plugin instance; NULL: invalid plugin instance ID or attribute name', # pylint: disable=line-too-long )), ('mj_loadPluginLibrary', FunctionDecl( name='mj_loadPluginLibrary', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='path', type=PointerType( inner_type=ValueType(name='char', is_const=True), ), ), ), doc='Load a dynamic library. The dynamic library is assumed to register one or more plugins.', # pylint: disable=line-too-long )), ('mj_loadAllPluginLibraries', FunctionDecl( name='mj_loadAllPluginLibraries', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='directory', type=PointerType( inner_type=ValueType(name='char', is_const=True), ), ), FunctionParameterDecl( name='callback', type=ValueType(name='mjfPluginLibraryLoadCallback'), ), ), doc='Scan a directory and load all dynamic libraries. Dynamic libraries in the specified directory are assumed to register one or more plugins. Optionally, if a callback is specified, it is called for each dynamic library encountered that registers plugins.', # pylint: disable=line-too-long )), ('mj_version', FunctionDecl( name='mj_version', return_type=ValueType(name='int'), parameters=(), doc='Return version number: 1.0.2 is encoded as 102.', )), ('mj_versionString', FunctionDecl( name='mj_versionString', return_type=PointerType( inner_type=ValueType(name='char', is_const=True), ), parameters=(), doc='Return the current version of MuJoCo as a null-terminated string.', # pylint: disable=line-too-long )), ('mj_multiRay', FunctionDecl( name='mj_multiRay', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData'), ), ), FunctionParameterDecl( name='pnt', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(3,), ), ), FunctionParameterDecl( name='vec', type=PointerType( inner_type=ValueType(name='mjtNum', is_const=True), ), ), FunctionParameterDecl( name='geomgroup', type=PointerType( inner_type=ValueType(name='mjtByte', is_const=True), ), ), FunctionParameterDecl( name='flg_static', type=ValueType(name='mjtByte'), ), FunctionParameterDecl( name='bodyexclude', type=ValueType(name='int'), ), FunctionParameterDecl( name='geomid', type=PointerType( inner_type=ValueType(name='int'), ), ), FunctionParameterDecl( name='dist', type=PointerType( inner_type=ValueType(name='mjtNum'), ), ), FunctionParameterDecl( name='nray', type=ValueType(name='int'), ), FunctionParameterDecl( name='cutoff', type=ValueType(name='mjtNum'), ), ), doc='Intersect multiple rays emanating from a single point. Similar semantics to mj_ray, but vec is an array of (nray x 3) directions.', # pylint: disable=line-too-long )), ('mj_ray', FunctionDecl( name='mj_ray', return_type=ValueType(name='mjtNum'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData', is_const=True), ), ), FunctionParameterDecl( name='pnt', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(3,), ), ), FunctionParameterDecl( name='vec', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(3,), ), ), FunctionParameterDecl( name='geomgroup', type=PointerType( inner_type=ValueType(name='mjtByte', is_const=True), ), ), FunctionParameterDecl( name='flg_static', type=ValueType(name='mjtByte'), ), FunctionParameterDecl( name='bodyexclude', type=ValueType(name='int'), ), FunctionParameterDecl( name='geomid', type=ArrayType( inner_type=ValueType(name='int'), extents=(1,), ), ), ), doc='Intersect ray (pnt+x*vec, x>=0) with visible geoms, except geoms in bodyexclude. Return distance (x) to nearest surface, or -1 if no intersection and output geomid. geomgroup, flg_static are as in mjvOption; geomgroup==NULL skips group exclusion.', # pylint: disable=line-too-long )), ('mj_rayHfield', FunctionDecl( name='mj_rayHfield', return_type=ValueType(name='mjtNum'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData', is_const=True), ), ), FunctionParameterDecl( name='geomid', type=ValueType(name='int'), ), FunctionParameterDecl( name='pnt', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(3,), ), ), FunctionParameterDecl( name='vec', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(3,), ), ), ), doc='Intersect ray with hfield, return nearest distance or -1 if no intersection.', # pylint: disable=line-too-long )), ('mj_rayMesh', FunctionDecl( name='mj_rayMesh', return_type=ValueType(name='mjtNum'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData', is_const=True), ), ), FunctionParameterDecl( name='geomid', type=ValueType(name='int'), ), FunctionParameterDecl( name='pnt', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(3,), ), ), FunctionParameterDecl( name='vec', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(3,), ), ), ), doc='Intersect ray with mesh, return nearest distance or -1 if no intersection.', # pylint: disable=line-too-long )), ('mju_rayGeom', FunctionDecl( name='mju_rayGeom', return_type=ValueType(name='mjtNum'), parameters=( FunctionParameterDecl( name='pos', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(3,), ), ), FunctionParameterDecl( name='mat', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(9,), ), ), FunctionParameterDecl( name='size', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(3,), ), ), FunctionParameterDecl( name='pnt', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(3,), ), ), FunctionParameterDecl( name='vec', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(3,), ), ), FunctionParameterDecl( name='geomtype', type=ValueType(name='int'), ), ), doc='Intersect ray with pure geom, return nearest distance or -1 if no intersection.', # pylint: disable=line-too-long )), ('mju_raySkin', FunctionDecl( name='mju_raySkin', return_type=ValueType(name='mjtNum'), parameters=( FunctionParameterDecl( name='nface', type=ValueType(name='int'), ), FunctionParameterDecl( name='nvert', type=ValueType(name='int'), ), FunctionParameterDecl( name='face', type=PointerType( inner_type=ValueType(name='int', is_const=True), ), ), FunctionParameterDecl( name='vert', type=PointerType( inner_type=ValueType(name='float', is_const=True), ), ), FunctionParameterDecl( name='pnt', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(3,), ), ), FunctionParameterDecl( name='vec', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(3,), ), ), FunctionParameterDecl( name='vertid', type=ArrayType( inner_type=ValueType(name='int'), extents=(1,), ), ), ), doc='Intersect ray with skin, return nearest distance or -1 if no intersection, and also output nearest vertex id.', # pylint: disable=line-too-long )), ('mjv_defaultCamera', FunctionDecl( name='mjv_defaultCamera', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='cam', type=PointerType( inner_type=ValueType(name='mjvCamera'), ), ), ), doc='Set default camera.', )), ('mjv_defaultFreeCamera', FunctionDecl( name='mjv_defaultFreeCamera', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='cam', type=PointerType( inner_type=ValueType(name='mjvCamera'), ), ), ), doc='Set default free camera.', )), ('mjv_defaultPerturb', FunctionDecl( name='mjv_defaultPerturb', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='pert', type=PointerType( inner_type=ValueType(name='mjvPerturb'), ), ), ), doc='Set default perturbation.', )), ('mjv_room2model', FunctionDecl( name='mjv_room2model', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='modelpos', type=ArrayType( inner_type=ValueType(name='mjtNum'), extents=(3,), ), ), FunctionParameterDecl( name='modelquat', type=ArrayType( inner_type=ValueType(name='mjtNum'), extents=(4,), ), ), FunctionParameterDecl( name='roompos', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(3,), ), ), FunctionParameterDecl( name='roomquat', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(4,), ), ), FunctionParameterDecl( name='scn', type=PointerType( inner_type=ValueType(name='mjvScene', is_const=True), ), ), ), doc='Transform pose from room to model space.', )), ('mjv_model2room', FunctionDecl( name='mjv_model2room', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='roompos', type=ArrayType( inner_type=ValueType(name='mjtNum'), extents=(3,), ), ), FunctionParameterDecl( name='roomquat', type=ArrayType( inner_type=ValueType(name='mjtNum'), extents=(4,), ), ), FunctionParameterDecl( name='modelpos', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(3,), ), ), FunctionParameterDecl( name='modelquat', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(4,), ), ), FunctionParameterDecl( name='scn', type=PointerType( inner_type=ValueType(name='mjvScene', is_const=True), ), ), ), doc='Transform pose from model to room space.', )), ('mjv_cameraInModel', FunctionDecl( name='mjv_cameraInModel', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='headpos', type=ArrayType( inner_type=ValueType(name='mjtNum'), extents=(3,), ), ), FunctionParameterDecl( name='forward', type=ArrayType( inner_type=ValueType(name='mjtNum'), extents=(3,), ), ), FunctionParameterDecl( name='up', type=ArrayType( inner_type=ValueType(name='mjtNum'), extents=(3,), ), ), FunctionParameterDecl( name='scn', type=PointerType( inner_type=ValueType(name='mjvScene', is_const=True), ), ), ), doc='Get camera info in model space; average left and right OpenGL cameras.', # pylint: disable=line-too-long )), ('mjv_cameraInRoom', FunctionDecl( name='mjv_cameraInRoom', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='headpos', type=ArrayType( inner_type=ValueType(name='mjtNum'), extents=(3,), ), ), FunctionParameterDecl( name='forward', type=ArrayType( inner_type=ValueType(name='mjtNum'), extents=(3,), ), ), FunctionParameterDecl( name='up', type=ArrayType( inner_type=ValueType(name='mjtNum'), extents=(3,), ), ), FunctionParameterDecl( name='scn', type=PointerType( inner_type=ValueType(name='mjvScene', is_const=True), ), ), ), doc='Get camera info in room space; average left and right OpenGL cameras.', # pylint: disable=line-too-long )), ('mjv_frustumHeight', FunctionDecl( name='mjv_frustumHeight', return_type=ValueType(name='mjtNum'), parameters=( FunctionParameterDecl( name='scn', type=PointerType( inner_type=ValueType(name='mjvScene', is_const=True), ), ), ), doc='Get frustum height at unit distance from camera; average left and right OpenGL cameras.', # pylint: disable=line-too-long )), ('mjv_alignToCamera', FunctionDecl( name='mjv_alignToCamera', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='res', type=ArrayType( inner_type=ValueType(name='mjtNum'), extents=(3,), ), ), FunctionParameterDecl( name='vec', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(3,), ), ), FunctionParameterDecl( name='forward', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(3,), ), ), ), doc='Rotate 3D vec in horizontal plane by angle between (0,1) and (forward_x,forward_y).', # pylint: disable=line-too-long )), ('mjv_moveCamera', FunctionDecl( name='mjv_moveCamera', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='action', type=ValueType(name='int'), ), FunctionParameterDecl( name='reldx', type=ValueType(name='mjtNum'), ), FunctionParameterDecl( name='reldy', type=ValueType(name='mjtNum'), ), FunctionParameterDecl( name='scn', type=PointerType( inner_type=ValueType(name='mjvScene', is_const=True), ), ), FunctionParameterDecl( name='cam', type=PointerType( inner_type=ValueType(name='mjvCamera'), ), ), ), doc='Move camera with mouse; action is mjtMouse.', )), ('mjv_moveCameraFromState', FunctionDecl( name='mjv_moveCameraFromState', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='scnstate', type=PointerType( inner_type=ValueType(name='mjvSceneState', is_const=True), ), ), FunctionParameterDecl( name='action', type=ValueType(name='int'), ), FunctionParameterDecl( name='reldx', type=ValueType(name='mjtNum'), ), FunctionParameterDecl( name='reldy', type=ValueType(name='mjtNum'), ), FunctionParameterDecl( name='scn', type=PointerType( inner_type=ValueType(name='mjvScene', is_const=True), ), ), FunctionParameterDecl( name='cam', type=PointerType( inner_type=ValueType(name='mjvCamera'), ), ), ), doc='Move camera with mouse given a scene state; action is mjtMouse.', )), ('mjv_movePerturb', FunctionDecl( name='mjv_movePerturb', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData', is_const=True), ), ), FunctionParameterDecl( name='action', type=ValueType(name='int'), ), FunctionParameterDecl( name='reldx', type=ValueType(name='mjtNum'), ), FunctionParameterDecl( name='reldy', type=ValueType(name='mjtNum'), ), FunctionParameterDecl( name='scn', type=PointerType( inner_type=ValueType(name='mjvScene', is_const=True), ), ), FunctionParameterDecl( name='pert', type=PointerType( inner_type=ValueType(name='mjvPerturb'), ), ), ), doc='Move perturb object with mouse; action is mjtMouse.', )), ('mjv_movePerturbFromState', FunctionDecl( name='mjv_movePerturbFromState', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='scnstate', type=PointerType( inner_type=ValueType(name='mjvSceneState', is_const=True), ), ), FunctionParameterDecl( name='action', type=ValueType(name='int'), ), FunctionParameterDecl( name='reldx', type=ValueType(name='mjtNum'), ), FunctionParameterDecl( name='reldy', type=ValueType(name='mjtNum'), ), FunctionParameterDecl( name='scn', type=PointerType( inner_type=ValueType(name='mjvScene', is_const=True), ), ), FunctionParameterDecl( name='pert', type=PointerType( inner_type=ValueType(name='mjvPerturb'), ), ), ), doc='Move perturb object with mouse given a scene state; action is mjtMouse.', # pylint: disable=line-too-long )), ('mjv_moveModel', FunctionDecl( name='mjv_moveModel', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='action', type=ValueType(name='int'), ), FunctionParameterDecl( name='reldx', type=ValueType(name='mjtNum'), ), FunctionParameterDecl( name='reldy', type=ValueType(name='mjtNum'), ), FunctionParameterDecl( name='roomup', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(3,), ), ), FunctionParameterDecl( name='scn', type=PointerType( inner_type=ValueType(name='mjvScene'), ), ), ), doc='Move model with mouse; action is mjtMouse.', )), ('mjv_initPerturb', FunctionDecl( name='mjv_initPerturb', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData'), ), ), FunctionParameterDecl( name='scn', type=PointerType( inner_type=ValueType(name='mjvScene', is_const=True), ), ), FunctionParameterDecl( name='pert', type=PointerType( inner_type=ValueType(name='mjvPerturb'), ), ), ), doc='Copy perturb pos,quat from selected body; set scale for perturbation.', # pylint: disable=line-too-long )), ('mjv_applyPerturbPose', FunctionDecl( name='mjv_applyPerturbPose', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData'), ), ), FunctionParameterDecl( name='pert', type=PointerType( inner_type=ValueType(name='mjvPerturb', is_const=True), ), ), FunctionParameterDecl( name='flg_paused', type=ValueType(name='int'), ), ), doc='Set perturb pos,quat in d->mocap when selected body is mocap, and in d->qpos otherwise. Write d->qpos only if flg_paused and subtree root for selected body has free joint.', # pylint: disable=line-too-long )), ('mjv_applyPerturbForce', FunctionDecl( name='mjv_applyPerturbForce', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData'), ), ), FunctionParameterDecl( name='pert', type=PointerType( inner_type=ValueType(name='mjvPerturb', is_const=True), ), ), ), doc='Set perturb force,torque in d->xfrc_applied, if selected body is dynamic.', # pylint: disable=line-too-long )), ('mjv_averageCamera', FunctionDecl( name='mjv_averageCamera', return_type=ValueType(name='mjvGLCamera'), parameters=( FunctionParameterDecl( name='cam1', type=PointerType( inner_type=ValueType(name='mjvGLCamera', is_const=True), ), ), FunctionParameterDecl( name='cam2', type=PointerType( inner_type=ValueType(name='mjvGLCamera', is_const=True), ), ), ), doc='Return the average of two OpenGL cameras.', )), ('mjv_select', FunctionDecl( name='mjv_select', return_type=ValueType(name='int'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData', is_const=True), ), ), FunctionParameterDecl( name='vopt', type=PointerType( inner_type=ValueType(name='mjvOption', is_const=True), ), ), FunctionParameterDecl( name='aspectratio', type=ValueType(name='mjtNum'), ), FunctionParameterDecl( name='relx', type=ValueType(name='mjtNum'), ), FunctionParameterDecl( name='rely', type=ValueType(name='mjtNum'), ), FunctionParameterDecl( name='scn', type=PointerType( inner_type=ValueType(name='mjvScene', is_const=True), ), ), FunctionParameterDecl( name='selpnt', type=ArrayType( inner_type=ValueType(name='mjtNum'), extents=(3,), ), ), FunctionParameterDecl( name='geomid', type=ArrayType( inner_type=ValueType(name='int'), extents=(1,), ), ), FunctionParameterDecl( name='skinid', type=ArrayType( inner_type=ValueType(name='int'), extents=(1,), ), ), ), doc='Select geom or skin with mouse, return bodyid; -1: none selected.', # pylint: disable=line-too-long )), ('mjv_defaultOption', FunctionDecl( name='mjv_defaultOption', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='opt', type=PointerType( inner_type=ValueType(name='mjvOption'), ), ), ), doc='Set default visualization options.', )), ('mjv_defaultFigure', FunctionDecl( name='mjv_defaultFigure', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='fig', type=PointerType( inner_type=ValueType(name='mjvFigure'), ), ), ), doc='Set default figure.', )), ('mjv_initGeom', FunctionDecl( name='mjv_initGeom', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='geom', type=PointerType( inner_type=ValueType(name='mjvGeom'), ), ), FunctionParameterDecl( name='type', type=ValueType(name='int'), ), FunctionParameterDecl( name='size', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(3,), ), ), FunctionParameterDecl( name='pos', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(3,), ), ), FunctionParameterDecl( name='mat', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(9,), ), ), FunctionParameterDecl( name='rgba', type=ArrayType( inner_type=ValueType(name='float', is_const=True), extents=(4,), ), ), ), doc='Initialize given geom fields when not NULL, set the rest to their default values.', # pylint: disable=line-too-long )), ('mjv_makeConnector', FunctionDecl( name='mjv_makeConnector', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='geom', type=PointerType( inner_type=ValueType(name='mjvGeom'), ), ), FunctionParameterDecl( name='type', type=ValueType(name='int'), ), FunctionParameterDecl( name='width', type=ValueType(name='mjtNum'), ), FunctionParameterDecl( name='a0', type=ValueType(name='mjtNum'), ), FunctionParameterDecl( name='a1', type=ValueType(name='mjtNum'), ), FunctionParameterDecl( name='a2', type=ValueType(name='mjtNum'), ), FunctionParameterDecl( name='b0', type=ValueType(name='mjtNum'), ), FunctionParameterDecl( name='b1', type=ValueType(name='mjtNum'), ), FunctionParameterDecl( name='b2', type=ValueType(name='mjtNum'), ), ), doc='Set (type, size, pos, mat) for connector-type geom between given points. Assume that mjv_initGeom was already called to set all other properties. Width of mjGEOM_LINE is denominated in pixels. Deprecated: use mjv_connector.', # pylint: disable=line-too-long )), ('mjv_connector', FunctionDecl( name='mjv_connector', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='geom', type=PointerType( inner_type=ValueType(name='mjvGeom'), ), ), FunctionParameterDecl( name='type', type=ValueType(name='int'), ), FunctionParameterDecl( name='width', type=ValueType(name='mjtNum'), ), FunctionParameterDecl( name='from', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(3,), ), ), FunctionParameterDecl( name='to', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(3,), ), ), ), doc='Set (type, size, pos, mat) for connector-type geom between given points. Assume that mjv_initGeom was already called to set all other properties. Width of mjGEOM_LINE is denominated in pixels.', # pylint: disable=line-too-long )), ('mjv_defaultScene', FunctionDecl( name='mjv_defaultScene', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='scn', type=PointerType( inner_type=ValueType(name='mjvScene'), ), ), ), doc='Set default abstract scene.', )), ('mjv_makeScene', FunctionDecl( name='mjv_makeScene', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='scn', type=PointerType( inner_type=ValueType(name='mjvScene'), ), ), FunctionParameterDecl( name='maxgeom', type=ValueType(name='int'), ), ), doc='Allocate resources in abstract scene.', )), ('mjv_freeScene', FunctionDecl( name='mjv_freeScene', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='scn', type=PointerType( inner_type=ValueType(name='mjvScene'), ), ), ), doc='Free abstract scene.', )), ('mjv_updateScene', FunctionDecl( name='mjv_updateScene', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData'), ), ), FunctionParameterDecl( name='opt', type=PointerType( inner_type=ValueType(name='mjvOption', is_const=True), ), ), FunctionParameterDecl( name='pert', type=PointerType( inner_type=ValueType(name='mjvPerturb', is_const=True), ), ), FunctionParameterDecl( name='cam', type=PointerType( inner_type=ValueType(name='mjvCamera'), ), ), FunctionParameterDecl( name='catmask', type=ValueType(name='int'), ), FunctionParameterDecl( name='scn', type=PointerType( inner_type=ValueType(name='mjvScene'), ), ), ), doc='Update entire scene given model state.', )), ('mjv_updateSceneFromState', FunctionDecl( name='mjv_updateSceneFromState', return_type=ValueType(name='int'), parameters=( FunctionParameterDecl( name='scnstate', type=PointerType( inner_type=ValueType(name='mjvSceneState', is_const=True), ), ), FunctionParameterDecl( name='opt', type=PointerType( inner_type=ValueType(name='mjvOption', is_const=True), ), ), FunctionParameterDecl( name='pert', type=PointerType( inner_type=ValueType(name='mjvPerturb', is_const=True), ), ), FunctionParameterDecl( name='cam', type=PointerType( inner_type=ValueType(name='mjvCamera'), ), ), FunctionParameterDecl( name='catmask', type=ValueType(name='int'), ), FunctionParameterDecl( name='scn', type=PointerType( inner_type=ValueType(name='mjvScene'), ), ), ), doc='Update entire scene from a scene state, return the number of new mjWARN_VGEOMFULL warnings.', # pylint: disable=line-too-long )), ('mjv_defaultSceneState', FunctionDecl( name='mjv_defaultSceneState', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='scnstate', type=PointerType( inner_type=ValueType(name='mjvSceneState'), ), ), ), doc='Set default scene state.', )), ('mjv_makeSceneState', FunctionDecl( name='mjv_makeSceneState', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData', is_const=True), ), ), FunctionParameterDecl( name='scnstate', type=PointerType( inner_type=ValueType(name='mjvSceneState'), ), ), FunctionParameterDecl( name='maxgeom', type=ValueType(name='int'), ), ), doc='Allocate resources and initialize a scene state object.', )), ('mjv_freeSceneState', FunctionDecl( name='mjv_freeSceneState', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='scnstate', type=PointerType( inner_type=ValueType(name='mjvSceneState'), ), ), ), doc='Free scene state.', )), ('mjv_updateSceneState', FunctionDecl( name='mjv_updateSceneState', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData'), ), ), FunctionParameterDecl( name='opt', type=PointerType( inner_type=ValueType(name='mjvOption', is_const=True), ), ), FunctionParameterDecl( name='scnstate', type=PointerType( inner_type=ValueType(name='mjvSceneState'), ), ), ), doc='Update a scene state from model and data.', )), ('mjv_addGeoms', FunctionDecl( name='mjv_addGeoms', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData'), ), ), FunctionParameterDecl( name='opt', type=PointerType( inner_type=ValueType(name='mjvOption', is_const=True), ), ), FunctionParameterDecl( name='pert', type=PointerType( inner_type=ValueType(name='mjvPerturb', is_const=True), ), ), FunctionParameterDecl( name='catmask', type=ValueType(name='int'), ), FunctionParameterDecl( name='scn', type=PointerType( inner_type=ValueType(name='mjvScene'), ), ), ), doc='Add geoms from selected categories.', )), ('mjv_makeLights', FunctionDecl( name='mjv_makeLights', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData'), ), ), FunctionParameterDecl( name='scn', type=PointerType( inner_type=ValueType(name='mjvScene'), ), ), ), doc='Make list of lights.', )), ('mjv_updateCamera', FunctionDecl( name='mjv_updateCamera', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData'), ), ), FunctionParameterDecl( name='cam', type=PointerType( inner_type=ValueType(name='mjvCamera'), ), ), FunctionParameterDecl( name='scn', type=PointerType( inner_type=ValueType(name='mjvScene'), ), ), ), doc='Update camera.', )), ('mjv_updateSkin', FunctionDecl( name='mjv_updateSkin', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData'), ), ), FunctionParameterDecl( name='scn', type=PointerType( inner_type=ValueType(name='mjvScene'), ), ), ), doc='Update skins.', )), ('mjr_defaultContext', FunctionDecl( name='mjr_defaultContext', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='con', type=PointerType( inner_type=ValueType(name='mjrContext'), ), ), ), doc='Set default mjrContext.', )), ('mjr_makeContext', FunctionDecl( name='mjr_makeContext', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='con', type=PointerType( inner_type=ValueType(name='mjrContext'), ), ), FunctionParameterDecl( name='fontscale', type=ValueType(name='int'), ), ), doc='Allocate resources in custom OpenGL context; fontscale is mjtFontScale.', # pylint: disable=line-too-long )), ('mjr_changeFont', FunctionDecl( name='mjr_changeFont', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='fontscale', type=ValueType(name='int'), ), FunctionParameterDecl( name='con', type=PointerType( inner_type=ValueType(name='mjrContext'), ), ), ), doc='Change font of existing context.', )), ('mjr_addAux', FunctionDecl( name='mjr_addAux', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='index', type=ValueType(name='int'), ), FunctionParameterDecl( name='width', type=ValueType(name='int'), ), FunctionParameterDecl( name='height', type=ValueType(name='int'), ), FunctionParameterDecl( name='samples', type=ValueType(name='int'), ), FunctionParameterDecl( name='con', type=PointerType( inner_type=ValueType(name='mjrContext'), ), ), ), doc='Add Aux buffer with given index to context; free previous Aux buffer.', # pylint: disable=line-too-long )), ('mjr_freeContext', FunctionDecl( name='mjr_freeContext', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='con', type=PointerType( inner_type=ValueType(name='mjrContext'), ), ), ), doc='Free resources in custom OpenGL context, set to default.', )), ('mjr_resizeOffscreen', FunctionDecl( name='mjr_resizeOffscreen', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='width', type=ValueType(name='int'), ), FunctionParameterDecl( name='height', type=ValueType(name='int'), ), FunctionParameterDecl( name='con', type=PointerType( inner_type=ValueType(name='mjrContext'), ), ), ), doc='Resize offscreen buffers.', )), ('mjr_uploadTexture', FunctionDecl( name='mjr_uploadTexture', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='con', type=PointerType( inner_type=ValueType(name='mjrContext', is_const=True), ), ), FunctionParameterDecl( name='texid', type=ValueType(name='int'), ), ), doc='Upload texture to GPU, overwriting previous upload if any.', )), ('mjr_uploadMesh', FunctionDecl( name='mjr_uploadMesh', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='con', type=PointerType( inner_type=ValueType(name='mjrContext', is_const=True), ), ), FunctionParameterDecl( name='meshid', type=ValueType(name='int'), ), ), doc='Upload mesh to GPU, overwriting previous upload if any.', )), ('mjr_uploadHField', FunctionDecl( name='mjr_uploadHField', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='con', type=PointerType( inner_type=ValueType(name='mjrContext', is_const=True), ), ), FunctionParameterDecl( name='hfieldid', type=ValueType(name='int'), ), ), doc='Upload height field to GPU, overwriting previous upload if any.', )), ('mjr_restoreBuffer', FunctionDecl( name='mjr_restoreBuffer', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='con', type=PointerType( inner_type=ValueType(name='mjrContext', is_const=True), ), ), ), doc='Make con->currentBuffer current again.', )), ('mjr_setBuffer', FunctionDecl( name='mjr_setBuffer', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='framebuffer', type=ValueType(name='int'), ), FunctionParameterDecl( name='con', type=PointerType( inner_type=ValueType(name='mjrContext'), ), ), ), doc='Set OpenGL framebuffer for rendering: mjFB_WINDOW or mjFB_OFFSCREEN. If only one buffer is available, set that buffer and ignore framebuffer argument.', # pylint: disable=line-too-long )), ('mjr_readPixels', FunctionDecl( name='mjr_readPixels', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='rgb', type=PointerType( inner_type=ValueType(name='unsigned char'), ), ), FunctionParameterDecl( name='depth', type=PointerType( inner_type=ValueType(name='float'), ), ), FunctionParameterDecl( name='viewport', type=ValueType(name='mjrRect'), ), FunctionParameterDecl( name='con', type=PointerType( inner_type=ValueType(name='mjrContext', is_const=True), ), ), ), doc='Read pixels from current OpenGL framebuffer to client buffer. Viewport is in OpenGL framebuffer; client buffer starts at (0,0).', # pylint: disable=line-too-long )), ('mjr_drawPixels', FunctionDecl( name='mjr_drawPixels', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='rgb', type=PointerType( inner_type=ValueType(name='unsigned char', is_const=True), ), ), FunctionParameterDecl( name='depth', type=PointerType( inner_type=ValueType(name='float', is_const=True), ), ), FunctionParameterDecl( name='viewport', type=ValueType(name='mjrRect'), ), FunctionParameterDecl( name='con', type=PointerType( inner_type=ValueType(name='mjrContext', is_const=True), ), ), ), doc='Draw pixels from client buffer to current OpenGL framebuffer. Viewport is in OpenGL framebuffer; client buffer starts at (0,0).', # pylint: disable=line-too-long )), ('mjr_blitBuffer', FunctionDecl( name='mjr_blitBuffer', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='src', type=ValueType(name='mjrRect'), ), FunctionParameterDecl( name='dst', type=ValueType(name='mjrRect'), ), FunctionParameterDecl( name='flg_color', type=ValueType(name='int'), ), FunctionParameterDecl( name='flg_depth', type=ValueType(name='int'), ), FunctionParameterDecl( name='con', type=PointerType( inner_type=ValueType(name='mjrContext', is_const=True), ), ), ), doc='Blit from src viewpoint in current framebuffer to dst viewport in other framebuffer. If src, dst have different size and flg_depth==0, color is interpolated with GL_LINEAR.', # pylint: disable=line-too-long )), ('mjr_setAux', FunctionDecl( name='mjr_setAux', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='index', type=ValueType(name='int'), ), FunctionParameterDecl( name='con', type=PointerType( inner_type=ValueType(name='mjrContext', is_const=True), ), ), ), doc='Set Aux buffer for custom OpenGL rendering (call restoreBuffer when done).', # pylint: disable=line-too-long )), ('mjr_blitAux', FunctionDecl( name='mjr_blitAux', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='index', type=ValueType(name='int'), ), FunctionParameterDecl( name='src', type=ValueType(name='mjrRect'), ), FunctionParameterDecl( name='left', type=ValueType(name='int'), ), FunctionParameterDecl( name='bottom', type=ValueType(name='int'), ), FunctionParameterDecl( name='con', type=PointerType( inner_type=ValueType(name='mjrContext', is_const=True), ), ), ), doc='Blit from Aux buffer to con->currentBuffer.', )), ('mjr_text', FunctionDecl( name='mjr_text', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='font', type=ValueType(name='int'), ), FunctionParameterDecl( name='txt', type=PointerType( inner_type=ValueType(name='char', is_const=True), ), ), FunctionParameterDecl( name='con', type=PointerType( inner_type=ValueType(name='mjrContext', is_const=True), ), ), FunctionParameterDecl( name='x', type=ValueType(name='float'), ), FunctionParameterDecl( name='y', type=ValueType(name='float'), ), FunctionParameterDecl( name='r', type=ValueType(name='float'), ), FunctionParameterDecl( name='g', type=ValueType(name='float'), ), FunctionParameterDecl( name='b', type=ValueType(name='float'), ), ), doc='Draw text at (x,y) in relative coordinates; font is mjtFont.', )), ('mjr_overlay', FunctionDecl( name='mjr_overlay', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='font', type=ValueType(name='int'), ), FunctionParameterDecl( name='gridpos', type=ValueType(name='int'), ), FunctionParameterDecl( name='viewport', type=ValueType(name='mjrRect'), ), FunctionParameterDecl( name='overlay', type=PointerType( inner_type=ValueType(name='char', is_const=True), ), ), FunctionParameterDecl( name='overlay2', type=PointerType( inner_type=ValueType(name='char', is_const=True), ), ), FunctionParameterDecl( name='con', type=PointerType( inner_type=ValueType(name='mjrContext', is_const=True), ), ), ), doc='Draw text overlay; font is mjtFont; gridpos is mjtGridPos.', )), ('mjr_maxViewport', FunctionDecl( name='mjr_maxViewport', return_type=ValueType(name='mjrRect'), parameters=( FunctionParameterDecl( name='con', type=PointerType( inner_type=ValueType(name='mjrContext', is_const=True), ), ), ), doc='Get maximum viewport for active buffer.', )), ('mjr_rectangle', FunctionDecl( name='mjr_rectangle', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='viewport', type=ValueType(name='mjrRect'), ), FunctionParameterDecl( name='r', type=ValueType(name='float'), ), FunctionParameterDecl( name='g', type=ValueType(name='float'), ), FunctionParameterDecl( name='b', type=ValueType(name='float'), ), FunctionParameterDecl( name='a', type=ValueType(name='float'), ), ), doc='Draw rectangle.', )), ('mjr_label', FunctionDecl( name='mjr_label', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='viewport', type=ValueType(name='mjrRect'), ), FunctionParameterDecl( name='font', type=ValueType(name='int'), ), FunctionParameterDecl( name='txt', type=PointerType( inner_type=ValueType(name='char', is_const=True), ), ), FunctionParameterDecl( name='r', type=ValueType(name='float'), ), FunctionParameterDecl( name='g', type=ValueType(name='float'), ), FunctionParameterDecl( name='b', type=ValueType(name='float'), ), FunctionParameterDecl( name='a', type=ValueType(name='float'), ), FunctionParameterDecl( name='rt', type=ValueType(name='float'), ), FunctionParameterDecl( name='gt', type=ValueType(name='float'), ), FunctionParameterDecl( name='bt', type=ValueType(name='float'), ), FunctionParameterDecl( name='con', type=PointerType( inner_type=ValueType(name='mjrContext', is_const=True), ), ), ), doc='Draw rectangle with centered text.', )), ('mjr_figure', FunctionDecl( name='mjr_figure', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='viewport', type=ValueType(name='mjrRect'), ), FunctionParameterDecl( name='fig', type=PointerType( inner_type=ValueType(name='mjvFigure'), ), ), FunctionParameterDecl( name='con', type=PointerType( inner_type=ValueType(name='mjrContext', is_const=True), ), ), ), doc='Draw 2D figure.', )), ('mjr_render', FunctionDecl( name='mjr_render', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='viewport', type=ValueType(name='mjrRect'), ), FunctionParameterDecl( name='scn', type=PointerType( inner_type=ValueType(name='mjvScene'), ), ), FunctionParameterDecl( name='con', type=PointerType( inner_type=ValueType(name='mjrContext', is_const=True), ), ), ), doc='Render 3D scene.', )), ('mjr_finish', FunctionDecl( name='mjr_finish', return_type=ValueType(name='void'), parameters=(), doc='Call glFinish.', )), ('mjr_getError', FunctionDecl( name='mjr_getError', return_type=ValueType(name='int'), parameters=(), doc='Call glGetError and return result.', )), ('mjr_findRect', FunctionDecl( name='mjr_findRect', return_type=ValueType(name='int'), parameters=( FunctionParameterDecl( name='x', type=ValueType(name='int'), ), FunctionParameterDecl( name='y', type=ValueType(name='int'), ), FunctionParameterDecl( name='nrect', type=ValueType(name='int'), ), FunctionParameterDecl( name='rect', type=PointerType( inner_type=ValueType(name='mjrRect', is_const=True), ), ), ), doc='Find first rectangle containing mouse, -1: not found.', )), ('mjui_themeSpacing', FunctionDecl( name='mjui_themeSpacing', return_type=ValueType(name='mjuiThemeSpacing'), parameters=( FunctionParameterDecl( name='ind', type=ValueType(name='int'), ), ), doc='Get builtin UI theme spacing (ind: 0-1).', )), ('mjui_themeColor', FunctionDecl( name='mjui_themeColor', return_type=ValueType(name='mjuiThemeColor'), parameters=( FunctionParameterDecl( name='ind', type=ValueType(name='int'), ), ), doc='Get builtin UI theme color (ind: 0-3).', )), ('mjui_add', FunctionDecl( name='mjui_add', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='ui', type=PointerType( inner_type=ValueType(name='mjUI'), ), ), FunctionParameterDecl( name='def', type=PointerType( inner_type=ValueType(name='mjuiDef', is_const=True), ), ), ), doc='Add definitions to UI.', )), ('mjui_addToSection', FunctionDecl( name='mjui_addToSection', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='ui', type=PointerType( inner_type=ValueType(name='mjUI'), ), ), FunctionParameterDecl( name='sect', type=ValueType(name='int'), ), FunctionParameterDecl( name='def', type=PointerType( inner_type=ValueType(name='mjuiDef', is_const=True), ), ), ), doc='Add definitions to UI section.', )), ('mjui_resize', FunctionDecl( name='mjui_resize', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='ui', type=PointerType( inner_type=ValueType(name='mjUI'), ), ), FunctionParameterDecl( name='con', type=PointerType( inner_type=ValueType(name='mjrContext', is_const=True), ), ), ), doc='Compute UI sizes.', )), ('mjui_update', FunctionDecl( name='mjui_update', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='section', type=ValueType(name='int'), ), FunctionParameterDecl( name='item', type=ValueType(name='int'), ), FunctionParameterDecl( name='ui', type=PointerType( inner_type=ValueType(name='mjUI', is_const=True), ), ), FunctionParameterDecl( name='state', type=PointerType( inner_type=ValueType(name='mjuiState', is_const=True), ), ), FunctionParameterDecl( name='con', type=PointerType( inner_type=ValueType(name='mjrContext', is_const=True), ), ), ), doc='Update specific section/item; -1: update all.', )), ('mjui_event', FunctionDecl( name='mjui_event', return_type=PointerType( inner_type=ValueType(name='mjuiItem'), ), parameters=( FunctionParameterDecl( name='ui', type=PointerType( inner_type=ValueType(name='mjUI'), ), ), FunctionParameterDecl( name='state', type=PointerType( inner_type=ValueType(name='mjuiState'), ), ), FunctionParameterDecl( name='con', type=PointerType( inner_type=ValueType(name='mjrContext', is_const=True), ), ), ), doc='Handle UI event, return pointer to changed item, NULL if no change.', # pylint: disable=line-too-long )), ('mjui_render', FunctionDecl( name='mjui_render', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='ui', type=PointerType( inner_type=ValueType(name='mjUI'), ), ), FunctionParameterDecl( name='state', type=PointerType( inner_type=ValueType(name='mjuiState', is_const=True), ), ), FunctionParameterDecl( name='con', type=PointerType( inner_type=ValueType(name='mjrContext', is_const=True), ), ), ), doc='Copy UI image to current buffer.', )), ('mju_error', FunctionDecl( name='mju_error', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='msg', type=PointerType( inner_type=ValueType(name='char', is_const=True), ), ), ), doc='Main error function; does not return to caller.', )), ('mju_error_i', FunctionDecl( name='mju_error_i', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='msg', type=PointerType( inner_type=ValueType(name='char', is_const=True), ), ), FunctionParameterDecl( name='i', type=ValueType(name='int'), ), ), doc='Deprecated: use mju_error.', )), ('mju_error_s', FunctionDecl( name='mju_error_s', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='msg', type=PointerType( inner_type=ValueType(name='char', is_const=True), ), ), FunctionParameterDecl( name='text', type=PointerType( inner_type=ValueType(name='char', is_const=True), ), ), ), doc='Deprecated: use mju_error.', )), ('mju_warning', FunctionDecl( name='mju_warning', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='msg', type=PointerType( inner_type=ValueType(name='char', is_const=True), ), ), ), doc='Main warning function; returns to caller.', )), ('mju_warning_i', FunctionDecl( name='mju_warning_i', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='msg', type=PointerType( inner_type=ValueType(name='char', is_const=True), ), ), FunctionParameterDecl( name='i', type=ValueType(name='int'), ), ), doc='Deprecated: use mju_warning.', )), ('mju_warning_s', FunctionDecl( name='mju_warning_s', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='msg', type=PointerType( inner_type=ValueType(name='char', is_const=True), ), ), FunctionParameterDecl( name='text', type=PointerType( inner_type=ValueType(name='char', is_const=True), ), ), ), doc='Deprecated: use mju_warning.', )), ('mju_clearHandlers', FunctionDecl( name='mju_clearHandlers', return_type=ValueType(name='void'), parameters=(), doc='Clear user error and memory handlers.', )), ('mju_malloc', FunctionDecl( name='mju_malloc', return_type=PointerType( inner_type=ValueType(name='void'), ), parameters=( FunctionParameterDecl( name='size', type=ValueType(name='size_t'), ), ), doc='Allocate memory; byte-align on 64; pad size to multiple of 64.', )), ('mju_free', FunctionDecl( name='mju_free', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='ptr', type=PointerType( inner_type=ValueType(name='void'), ), ), ), doc='Free memory, using free() by default.', )), ('mj_warning', FunctionDecl( name='mj_warning', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData'), ), ), FunctionParameterDecl( name='warning', type=ValueType(name='int'), ), FunctionParameterDecl( name='info', type=ValueType(name='int'), ), ), doc='High-level warning function: count warnings in mjData, print only the first.', # pylint: disable=line-too-long )), ('mju_writeLog', FunctionDecl( name='mju_writeLog', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='type', type=PointerType( inner_type=ValueType(name='char', is_const=True), ), ), FunctionParameterDecl( name='msg', type=PointerType( inner_type=ValueType(name='char', is_const=True), ), ), ), doc='Write [datetime, type: message] to MUJOCO_LOG.TXT.', )), ('mju_zero3', FunctionDecl( name='mju_zero3', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='res', type=ArrayType( inner_type=ValueType(name='mjtNum'), extents=(3,), ), ), ), doc='Set res = 0.', )), ('mju_copy3', FunctionDecl( name='mju_copy3', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='res', type=ArrayType( inner_type=ValueType(name='mjtNum'), extents=(3,), ), ), FunctionParameterDecl( name='data', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(3,), ), ), ), doc='Set res = vec.', )), ('mju_scl3', FunctionDecl( name='mju_scl3', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='res', type=ArrayType( inner_type=ValueType(name='mjtNum'), extents=(3,), ), ), FunctionParameterDecl( name='vec', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(3,), ), ), FunctionParameterDecl( name='scl', type=ValueType(name='mjtNum'), ), ), doc='Set res = vec*scl.', )), ('mju_add3', FunctionDecl( name='mju_add3', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='res', type=ArrayType( inner_type=ValueType(name='mjtNum'), extents=(3,), ), ), FunctionParameterDecl( name='vec1', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(3,), ), ), FunctionParameterDecl( name='vec2', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(3,), ), ), ), doc='Set res = vec1 + vec2.', )), ('mju_sub3', FunctionDecl( name='mju_sub3', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='res', type=ArrayType( inner_type=ValueType(name='mjtNum'), extents=(3,), ), ), FunctionParameterDecl( name='vec1', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(3,), ), ), FunctionParameterDecl( name='vec2', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(3,), ), ), ), doc='Set res = vec1 - vec2.', )), ('mju_addTo3', FunctionDecl( name='mju_addTo3', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='res', type=ArrayType( inner_type=ValueType(name='mjtNum'), extents=(3,), ), ), FunctionParameterDecl( name='vec', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(3,), ), ), ), doc='Set res = res + vec.', )), ('mju_subFrom3', FunctionDecl( name='mju_subFrom3', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='res', type=ArrayType( inner_type=ValueType(name='mjtNum'), extents=(3,), ), ), FunctionParameterDecl( name='vec', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(3,), ), ), ), doc='Set res = res - vec.', )), ('mju_addToScl3', FunctionDecl( name='mju_addToScl3', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='res', type=ArrayType( inner_type=ValueType(name='mjtNum'), extents=(3,), ), ), FunctionParameterDecl( name='vec', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(3,), ), ), FunctionParameterDecl( name='scl', type=ValueType(name='mjtNum'), ), ), doc='Set res = res + vec*scl.', )), ('mju_addScl3', FunctionDecl( name='mju_addScl3', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='res', type=ArrayType( inner_type=ValueType(name='mjtNum'), extents=(3,), ), ), FunctionParameterDecl( name='vec1', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(3,), ), ), FunctionParameterDecl( name='vec2', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(3,), ), ), FunctionParameterDecl( name='scl', type=ValueType(name='mjtNum'), ), ), doc='Set res = vec1 + vec2*scl.', )), ('mju_normalize3', FunctionDecl( name='mju_normalize3', return_type=ValueType(name='mjtNum'), parameters=( FunctionParameterDecl( name='vec', type=ArrayType( inner_type=ValueType(name='mjtNum'), extents=(3,), ), ), ), doc='Normalize vector, return length before normalization.', )), ('mju_norm3', FunctionDecl( name='mju_norm3', return_type=ValueType(name='mjtNum'), parameters=( FunctionParameterDecl( name='vec', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(3,), ), ), ), doc='Return vector length (without normalizing the vector).', )), ('mju_dot3', FunctionDecl( name='mju_dot3', return_type=ValueType(name='mjtNum'), parameters=( FunctionParameterDecl( name='vec1', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(3,), ), ), FunctionParameterDecl( name='vec2', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(3,), ), ), ), doc='Return dot-product of vec1 and vec2.', )), ('mju_dist3', FunctionDecl( name='mju_dist3', return_type=ValueType(name='mjtNum'), parameters=( FunctionParameterDecl( name='pos1', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(3,), ), ), FunctionParameterDecl( name='pos2', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(3,), ), ), ), doc='Return Cartesian distance between 3D vectors pos1 and pos2.', )), ('mju_rotVecMat', FunctionDecl( name='mju_rotVecMat', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='res', type=ArrayType( inner_type=ValueType(name='mjtNum'), extents=(3,), ), ), FunctionParameterDecl( name='vec', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(3,), ), ), FunctionParameterDecl( name='mat', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(9,), ), ), ), doc='Multiply vector by 3D rotation matrix: res = mat * vec.', )), ('mju_rotVecMatT', FunctionDecl( name='mju_rotVecMatT', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='res', type=ArrayType( inner_type=ValueType(name='mjtNum'), extents=(3,), ), ), FunctionParameterDecl( name='vec', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(3,), ), ), FunctionParameterDecl( name='mat', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(9,), ), ), ), doc="Multiply vector by transposed 3D rotation matrix: res = mat' * vec.", # pylint: disable=line-too-long )), ('mju_cross', FunctionDecl( name='mju_cross', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='res', type=ArrayType( inner_type=ValueType(name='mjtNum'), extents=(3,), ), ), FunctionParameterDecl( name='a', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(3,), ), ), FunctionParameterDecl( name='b', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(3,), ), ), ), doc='Compute cross-product: res = cross(a, b).', )), ('mju_zero4', FunctionDecl( name='mju_zero4', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='res', type=ArrayType( inner_type=ValueType(name='mjtNum'), extents=(4,), ), ), ), doc='Set res = 0.', )), ('mju_unit4', FunctionDecl( name='mju_unit4', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='res', type=ArrayType( inner_type=ValueType(name='mjtNum'), extents=(4,), ), ), ), doc='Set res = (1,0,0,0).', )), ('mju_copy4', FunctionDecl( name='mju_copy4', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='res', type=ArrayType( inner_type=ValueType(name='mjtNum'), extents=(4,), ), ), FunctionParameterDecl( name='data', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(4,), ), ), ), doc='Set res = vec.', )), ('mju_normalize4', FunctionDecl( name='mju_normalize4', return_type=ValueType(name='mjtNum'), parameters=( FunctionParameterDecl( name='vec', type=ArrayType( inner_type=ValueType(name='mjtNum'), extents=(4,), ), ), ), doc='Normalize vector, return length before normalization.', )), ('mju_zero', FunctionDecl( name='mju_zero', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='res', type=PointerType( inner_type=ValueType(name='mjtNum'), ), ), FunctionParameterDecl( name='n', type=ValueType(name='int'), ), ), doc='Set res = 0.', )), ('mju_fill', FunctionDecl( name='mju_fill', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='res', type=PointerType( inner_type=ValueType(name='mjtNum'), ), ), FunctionParameterDecl( name='val', type=ValueType(name='mjtNum'), ), FunctionParameterDecl( name='n', type=ValueType(name='int'), ), ), doc='Set res = val.', )), ('mju_copy', FunctionDecl( name='mju_copy', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='res', type=PointerType( inner_type=ValueType(name='mjtNum'), ), ), FunctionParameterDecl( name='vec', type=PointerType( inner_type=ValueType(name='mjtNum', is_const=True), ), ), FunctionParameterDecl( name='n', type=ValueType(name='int'), ), ), doc='Set res = vec.', )), ('mju_sum', FunctionDecl( name='mju_sum', return_type=ValueType(name='mjtNum'), parameters=( FunctionParameterDecl( name='vec', type=PointerType( inner_type=ValueType(name='mjtNum', is_const=True), ), ), FunctionParameterDecl( name='n', type=ValueType(name='int'), ), ), doc='Return sum(vec).', )), ('mju_L1', FunctionDecl( name='mju_L1', return_type=ValueType(name='mjtNum'), parameters=( FunctionParameterDecl( name='vec', type=PointerType( inner_type=ValueType(name='mjtNum', is_const=True), ), ), FunctionParameterDecl( name='n', type=ValueType(name='int'), ), ), doc='Return L1 norm: sum(abs(vec)).', )), ('mju_scl', FunctionDecl( name='mju_scl', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='res', type=PointerType( inner_type=ValueType(name='mjtNum'), ), ), FunctionParameterDecl( name='vec', type=PointerType( inner_type=ValueType(name='mjtNum', is_const=True), ), ), FunctionParameterDecl( name='scl', type=ValueType(name='mjtNum'), ), FunctionParameterDecl( name='n', type=ValueType(name='int'), ), ), doc='Set res = vec*scl.', )), ('mju_add', FunctionDecl( name='mju_add', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='res', type=PointerType( inner_type=ValueType(name='mjtNum'), ), ), FunctionParameterDecl( name='vec1', type=PointerType( inner_type=ValueType(name='mjtNum', is_const=True), ), ), FunctionParameterDecl( name='vec2', type=PointerType( inner_type=ValueType(name='mjtNum', is_const=True), ), ), FunctionParameterDecl( name='n', type=ValueType(name='int'), ), ), doc='Set res = vec1 + vec2.', )), ('mju_sub', FunctionDecl( name='mju_sub', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='res', type=PointerType( inner_type=ValueType(name='mjtNum'), ), ), FunctionParameterDecl( name='vec1', type=PointerType( inner_type=ValueType(name='mjtNum', is_const=True), ), ), FunctionParameterDecl( name='vec2', type=PointerType( inner_type=ValueType(name='mjtNum', is_const=True), ), ), FunctionParameterDecl( name='n', type=ValueType(name='int'), ), ), doc='Set res = vec1 - vec2.', )), ('mju_addTo', FunctionDecl( name='mju_addTo', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='res', type=PointerType( inner_type=ValueType(name='mjtNum'), ), ), FunctionParameterDecl( name='vec', type=PointerType( inner_type=ValueType(name='mjtNum', is_const=True), ), ), FunctionParameterDecl( name='n', type=ValueType(name='int'), ), ), doc='Set res = res + vec.', )), ('mju_subFrom', FunctionDecl( name='mju_subFrom', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='res', type=PointerType( inner_type=ValueType(name='mjtNum'), ), ), FunctionParameterDecl( name='vec', type=PointerType( inner_type=ValueType(name='mjtNum', is_const=True), ), ), FunctionParameterDecl( name='n', type=ValueType(name='int'), ), ), doc='Set res = res - vec.', )), ('mju_addToScl', FunctionDecl( name='mju_addToScl', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='res', type=PointerType( inner_type=ValueType(name='mjtNum'), ), ), FunctionParameterDecl( name='vec', type=PointerType( inner_type=ValueType(name='mjtNum', is_const=True), ), ), FunctionParameterDecl( name='scl', type=ValueType(name='mjtNum'), ), FunctionParameterDecl( name='n', type=ValueType(name='int'), ), ), doc='Set res = res + vec*scl.', )), ('mju_addScl', FunctionDecl( name='mju_addScl', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='res', type=PointerType( inner_type=ValueType(name='mjtNum'), ), ), FunctionParameterDecl( name='vec1', type=PointerType( inner_type=ValueType(name='mjtNum', is_const=True), ), ), FunctionParameterDecl( name='vec2', type=PointerType( inner_type=ValueType(name='mjtNum', is_const=True), ), ), FunctionParameterDecl( name='scl', type=ValueType(name='mjtNum'), ), FunctionParameterDecl( name='n', type=ValueType(name='int'), ), ), doc='Set res = vec1 + vec2*scl.', )), ('mju_normalize', FunctionDecl( name='mju_normalize', return_type=ValueType(name='mjtNum'), parameters=( FunctionParameterDecl( name='res', type=PointerType( inner_type=ValueType(name='mjtNum'), ), ), FunctionParameterDecl( name='n', type=ValueType(name='int'), ), ), doc='Normalize vector, return length before normalization.', )), ('mju_norm', FunctionDecl( name='mju_norm', return_type=ValueType(name='mjtNum'), parameters=( FunctionParameterDecl( name='res', type=PointerType( inner_type=ValueType(name='mjtNum', is_const=True), ), ), FunctionParameterDecl( name='n', type=ValueType(name='int'), ), ), doc='Return vector length (without normalizing vector).', )), ('mju_dot', FunctionDecl( name='mju_dot', return_type=ValueType(name='mjtNum'), parameters=( FunctionParameterDecl( name='vec1', type=PointerType( inner_type=ValueType(name='mjtNum', is_const=True), ), ), FunctionParameterDecl( name='vec2', type=PointerType( inner_type=ValueType(name='mjtNum', is_const=True), ), ), FunctionParameterDecl( name='n', type=ValueType(name='int'), ), ), doc='Return dot-product of vec1 and vec2.', )), ('mju_mulMatVec', FunctionDecl( name='mju_mulMatVec', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='res', type=PointerType( inner_type=ValueType(name='mjtNum'), ), ), FunctionParameterDecl( name='mat', type=PointerType( inner_type=ValueType(name='mjtNum', is_const=True), ), ), FunctionParameterDecl( name='vec', type=PointerType( inner_type=ValueType(name='mjtNum', is_const=True), ), ), FunctionParameterDecl( name='nr', type=ValueType(name='int'), ), FunctionParameterDecl( name='nc', type=ValueType(name='int'), ), ), doc='Multiply matrix and vector: res = mat * vec.', )), ('mju_mulMatTVec', FunctionDecl( name='mju_mulMatTVec', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='res', type=PointerType( inner_type=ValueType(name='mjtNum'), ), ), FunctionParameterDecl( name='mat', type=PointerType( inner_type=ValueType(name='mjtNum', is_const=True), ), ), FunctionParameterDecl( name='vec', type=PointerType( inner_type=ValueType(name='mjtNum', is_const=True), ), ), FunctionParameterDecl( name='nr', type=ValueType(name='int'), ), FunctionParameterDecl( name='nc', type=ValueType(name='int'), ), ), doc="Multiply transposed matrix and vector: res = mat' * vec.", )), ('mju_mulVecMatVec', FunctionDecl( name='mju_mulVecMatVec', return_type=ValueType(name='mjtNum'), parameters=( FunctionParameterDecl( name='vec1', type=PointerType( inner_type=ValueType(name='mjtNum', is_const=True), ), ), FunctionParameterDecl( name='mat', type=PointerType( inner_type=ValueType(name='mjtNum', is_const=True), ), ), FunctionParameterDecl( name='vec2', type=PointerType( inner_type=ValueType(name='mjtNum', is_const=True), ), ), FunctionParameterDecl( name='n', type=ValueType(name='int'), ), ), doc="Multiply square matrix with vectors on both sides: returns vec1' * mat * vec2.", # pylint: disable=line-too-long )), ('mju_transpose', FunctionDecl( name='mju_transpose', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='res', type=PointerType( inner_type=ValueType(name='mjtNum'), ), ), FunctionParameterDecl( name='mat', type=PointerType( inner_type=ValueType(name='mjtNum', is_const=True), ), ), FunctionParameterDecl( name='nr', type=ValueType(name='int'), ), FunctionParameterDecl( name='nc', type=ValueType(name='int'), ), ), doc="Transpose matrix: res = mat'.", )), ('mju_symmetrize', FunctionDecl( name='mju_symmetrize', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='res', type=PointerType( inner_type=ValueType(name='mjtNum'), ), ), FunctionParameterDecl( name='mat', type=PointerType( inner_type=ValueType(name='mjtNum', is_const=True), ), ), FunctionParameterDecl( name='n', type=ValueType(name='int'), ), ), doc="Symmetrize square matrix res = (mat + mat')/2.", )), ('mju_eye', FunctionDecl( name='mju_eye', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='mat', type=PointerType( inner_type=ValueType(name='mjtNum'), ), ), FunctionParameterDecl( name='n', type=ValueType(name='int'), ), ), doc='Set mat to the identity matrix.', )), ('mju_mulMatMat', FunctionDecl( name='mju_mulMatMat', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='res', type=PointerType( inner_type=ValueType(name='mjtNum'), ), ), FunctionParameterDecl( name='mat1', type=PointerType( inner_type=ValueType(name='mjtNum', is_const=True), ), ), FunctionParameterDecl( name='mat2', type=PointerType( inner_type=ValueType(name='mjtNum', is_const=True), ), ), FunctionParameterDecl( name='r1', type=ValueType(name='int'), ), FunctionParameterDecl( name='c1', type=ValueType(name='int'), ), FunctionParameterDecl( name='c2', type=ValueType(name='int'), ), ), doc='Multiply matrices: res = mat1 * mat2.', )), ('mju_mulMatMatT', FunctionDecl( name='mju_mulMatMatT', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='res', type=PointerType( inner_type=ValueType(name='mjtNum'), ), ), FunctionParameterDecl( name='mat1', type=PointerType( inner_type=ValueType(name='mjtNum', is_const=True), ), ), FunctionParameterDecl( name='mat2', type=PointerType( inner_type=ValueType(name='mjtNum', is_const=True), ), ), FunctionParameterDecl( name='r1', type=ValueType(name='int'), ), FunctionParameterDecl( name='c1', type=ValueType(name='int'), ), FunctionParameterDecl( name='r2', type=ValueType(name='int'), ), ), doc="Multiply matrices, second argument transposed: res = mat1 * mat2'.", # pylint: disable=line-too-long )), ('mju_mulMatTMat', FunctionDecl( name='mju_mulMatTMat', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='res', type=PointerType( inner_type=ValueType(name='mjtNum'), ), ), FunctionParameterDecl( name='mat1', type=PointerType( inner_type=ValueType(name='mjtNum', is_const=True), ), ), FunctionParameterDecl( name='mat2', type=PointerType( inner_type=ValueType(name='mjtNum', is_const=True), ), ), FunctionParameterDecl( name='r1', type=ValueType(name='int'), ), FunctionParameterDecl( name='c1', type=ValueType(name='int'), ), FunctionParameterDecl( name='c2', type=ValueType(name='int'), ), ), doc="Multiply matrices, first argument transposed: res = mat1' * mat2.", # pylint: disable=line-too-long )), ('mju_sqrMatTD', FunctionDecl( name='mju_sqrMatTD', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='res', type=PointerType( inner_type=ValueType(name='mjtNum'), ), ), FunctionParameterDecl( name='mat', type=PointerType( inner_type=ValueType(name='mjtNum', is_const=True), ), ), FunctionParameterDecl( name='diag', type=PointerType( inner_type=ValueType(name='mjtNum', is_const=True), ), ), FunctionParameterDecl( name='nr', type=ValueType(name='int'), ), FunctionParameterDecl( name='nc', type=ValueType(name='int'), ), ), doc="Set res = mat' * diag * mat if diag is not NULL, and res = mat' * mat otherwise.", # pylint: disable=line-too-long )), ('mju_transformSpatial', FunctionDecl( name='mju_transformSpatial', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='res', type=ArrayType( inner_type=ValueType(name='mjtNum'), extents=(6,), ), ), FunctionParameterDecl( name='vec', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(6,), ), ), FunctionParameterDecl( name='flg_force', type=ValueType(name='int'), ), FunctionParameterDecl( name='newpos', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(3,), ), ), FunctionParameterDecl( name='oldpos', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(3,), ), ), FunctionParameterDecl( name='rotnew2old', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(9,), ), ), ), doc='Coordinate transform of 6D motion or force vector in rotation:translation format. rotnew2old is 3-by-3, NULL means no rotation; flg_force specifies force or motion type.', # pylint: disable=line-too-long )), ('mju_rotVecQuat', FunctionDecl( name='mju_rotVecQuat', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='res', type=ArrayType( inner_type=ValueType(name='mjtNum'), extents=(3,), ), ), FunctionParameterDecl( name='vec', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(3,), ), ), FunctionParameterDecl( name='quat', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(4,), ), ), ), doc='Rotate vector by quaternion.', )), ('mju_negQuat', FunctionDecl( name='mju_negQuat', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='res', type=ArrayType( inner_type=ValueType(name='mjtNum'), extents=(4,), ), ), FunctionParameterDecl( name='quat', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(4,), ), ), ), doc='Conjugate quaternion, corresponding to opposite rotation.', )), ('mju_mulQuat', FunctionDecl( name='mju_mulQuat', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='res', type=ArrayType( inner_type=ValueType(name='mjtNum'), extents=(4,), ), ), FunctionParameterDecl( name='quat1', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(4,), ), ), FunctionParameterDecl( name='quat2', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(4,), ), ), ), doc='Multiply quaternions.', )), ('mju_mulQuatAxis', FunctionDecl( name='mju_mulQuatAxis', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='res', type=ArrayType( inner_type=ValueType(name='mjtNum'), extents=(4,), ), ), FunctionParameterDecl( name='quat', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(4,), ), ), FunctionParameterDecl( name='axis', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(3,), ), ), ), doc='Multiply quaternion and axis.', )), ('mju_axisAngle2Quat', FunctionDecl( name='mju_axisAngle2Quat', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='res', type=ArrayType( inner_type=ValueType(name='mjtNum'), extents=(4,), ), ), FunctionParameterDecl( name='axis', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(3,), ), ), FunctionParameterDecl( name='angle', type=ValueType(name='mjtNum'), ), ), doc='Convert axisAngle to quaternion.', )), ('mju_quat2Vel', FunctionDecl( name='mju_quat2Vel', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='res', type=ArrayType( inner_type=ValueType(name='mjtNum'), extents=(3,), ), ), FunctionParameterDecl( name='quat', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(4,), ), ), FunctionParameterDecl( name='dt', type=ValueType(name='mjtNum'), ), ), doc='Convert quaternion (corresponding to orientation difference) to 3D velocity.', # pylint: disable=line-too-long )), ('mju_subQuat', FunctionDecl( name='mju_subQuat', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='res', type=ArrayType( inner_type=ValueType(name='mjtNum'), extents=(3,), ), ), FunctionParameterDecl( name='qa', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(4,), ), ), FunctionParameterDecl( name='qb', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(4,), ), ), ), doc='Subtract quaternions, express as 3D velocity: qb*quat(res) = qa.', )), ('mju_quat2Mat', FunctionDecl( name='mju_quat2Mat', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='res', type=ArrayType( inner_type=ValueType(name='mjtNum'), extents=(9,), ), ), FunctionParameterDecl( name='quat', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(4,), ), ), ), doc='Convert quaternion to 3D rotation matrix.', )), ('mju_mat2Quat', FunctionDecl( name='mju_mat2Quat', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='quat', type=ArrayType( inner_type=ValueType(name='mjtNum'), extents=(4,), ), ), FunctionParameterDecl( name='mat', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(9,), ), ), ), doc='Convert 3D rotation matrix to quaternion.', )), ('mju_derivQuat', FunctionDecl( name='mju_derivQuat', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='res', type=ArrayType( inner_type=ValueType(name='mjtNum'), extents=(4,), ), ), FunctionParameterDecl( name='quat', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(4,), ), ), FunctionParameterDecl( name='vel', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(3,), ), ), ), doc='Compute time-derivative of quaternion, given 3D rotational velocity.', # pylint: disable=line-too-long )), ('mju_quatIntegrate', FunctionDecl( name='mju_quatIntegrate', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='quat', type=ArrayType( inner_type=ValueType(name='mjtNum'), extents=(4,), ), ), FunctionParameterDecl( name='vel', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(3,), ), ), FunctionParameterDecl( name='scale', type=ValueType(name='mjtNum'), ), ), doc='Integrate quaternion given 3D angular velocity.', )), ('mju_quatZ2Vec', FunctionDecl( name='mju_quatZ2Vec', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='quat', type=ArrayType( inner_type=ValueType(name='mjtNum'), extents=(4,), ), ), FunctionParameterDecl( name='vec', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(3,), ), ), ), doc='Construct quaternion performing rotation from z-axis to given vector.', # pylint: disable=line-too-long )), ('mju_mulPose', FunctionDecl( name='mju_mulPose', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='posres', type=ArrayType( inner_type=ValueType(name='mjtNum'), extents=(3,), ), ), FunctionParameterDecl( name='quatres', type=ArrayType( inner_type=ValueType(name='mjtNum'), extents=(4,), ), ), FunctionParameterDecl( name='pos1', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(3,), ), ), FunctionParameterDecl( name='quat1', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(4,), ), ), FunctionParameterDecl( name='pos2', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(3,), ), ), FunctionParameterDecl( name='quat2', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(4,), ), ), ), doc='Multiply two poses.', )), ('mju_negPose', FunctionDecl( name='mju_negPose', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='posres', type=ArrayType( inner_type=ValueType(name='mjtNum'), extents=(3,), ), ), FunctionParameterDecl( name='quatres', type=ArrayType( inner_type=ValueType(name='mjtNum'), extents=(4,), ), ), FunctionParameterDecl( name='pos', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(3,), ), ), FunctionParameterDecl( name='quat', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(4,), ), ), ), doc='Conjugate pose, corresponding to the opposite spatial transformation.', # pylint: disable=line-too-long )), ('mju_trnVecPose', FunctionDecl( name='mju_trnVecPose', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='res', type=ArrayType( inner_type=ValueType(name='mjtNum'), extents=(3,), ), ), FunctionParameterDecl( name='pos', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(3,), ), ), FunctionParameterDecl( name='quat', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(4,), ), ), FunctionParameterDecl( name='vec', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(3,), ), ), ), doc='Transform vector by pose.', )), ('mju_cholFactor', FunctionDecl( name='mju_cholFactor', return_type=ValueType(name='int'), parameters=( FunctionParameterDecl( name='mat', type=PointerType( inner_type=ValueType(name='mjtNum'), ), ), FunctionParameterDecl( name='n', type=ValueType(name='int'), ), FunctionParameterDecl( name='mindiag', type=ValueType(name='mjtNum'), ), ), doc="Cholesky decomposition: mat = L*L'; return rank, decomposition performed in-place into mat.", # pylint: disable=line-too-long )), ('mju_cholSolve', FunctionDecl( name='mju_cholSolve', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='res', type=PointerType( inner_type=ValueType(name='mjtNum'), ), ), FunctionParameterDecl( name='mat', type=PointerType( inner_type=ValueType(name='mjtNum', is_const=True), ), ), FunctionParameterDecl( name='vec', type=PointerType( inner_type=ValueType(name='mjtNum', is_const=True), ), ), FunctionParameterDecl( name='n', type=ValueType(name='int'), ), ), doc="Solve (mat*mat') * res = vec, where mat is a Cholesky factor.", )), ('mju_cholUpdate', FunctionDecl( name='mju_cholUpdate', return_type=ValueType(name='int'), parameters=( FunctionParameterDecl( name='mat', type=PointerType( inner_type=ValueType(name='mjtNum'), ), ), FunctionParameterDecl( name='x', type=PointerType( inner_type=ValueType(name='mjtNum'), ), ), FunctionParameterDecl( name='n', type=ValueType(name='int'), ), FunctionParameterDecl( name='flg_plus', type=ValueType(name='int'), ), ), doc="Cholesky rank-one update: L*L' +/- x*x'; return rank.", )), ('mju_cholFactorBand', FunctionDecl( name='mju_cholFactorBand', return_type=ValueType(name='mjtNum'), parameters=( FunctionParameterDecl( name='mat', type=PointerType( inner_type=ValueType(name='mjtNum'), ), ), FunctionParameterDecl( name='ntotal', type=ValueType(name='int'), ), FunctionParameterDecl( name='nband', type=ValueType(name='int'), ), FunctionParameterDecl( name='ndense', type=ValueType(name='int'), ), FunctionParameterDecl( name='diagadd', type=ValueType(name='mjtNum'), ), FunctionParameterDecl( name='diagmul', type=ValueType(name='mjtNum'), ), ), doc='Band-dense Cholesky decomposition. Returns minimum value in the factorized diagonal, or 0 if rank-deficient. mat has (ntotal-ndense) x nband + ndense x ntotal elements. The first (ntotal-ndense) x nband store the band part, left of diagonal, inclusive. The second ndense x ntotal store the band part as entire dense rows. Add diagadd+diagmul*mat_ii to diagonal before factorization.', # pylint: disable=line-too-long )), ('mju_cholSolveBand', FunctionDecl( name='mju_cholSolveBand', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='res', type=PointerType( inner_type=ValueType(name='mjtNum'), ), ), FunctionParameterDecl( name='mat', type=PointerType( inner_type=ValueType(name='mjtNum', is_const=True), ), ), FunctionParameterDecl( name='vec', type=PointerType( inner_type=ValueType(name='mjtNum', is_const=True), ), ), FunctionParameterDecl( name='ntotal', type=ValueType(name='int'), ), FunctionParameterDecl( name='nband', type=ValueType(name='int'), ), FunctionParameterDecl( name='ndense', type=ValueType(name='int'), ), ), doc="Solve (mat*mat')*res = vec where mat is a band-dense Cholesky factor.", # pylint: disable=line-too-long )), ('mju_band2Dense', FunctionDecl( name='mju_band2Dense', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='res', type=PointerType( inner_type=ValueType(name='mjtNum'), ), ), FunctionParameterDecl( name='mat', type=PointerType( inner_type=ValueType(name='mjtNum', is_const=True), ), ), FunctionParameterDecl( name='ntotal', type=ValueType(name='int'), ), FunctionParameterDecl( name='nband', type=ValueType(name='int'), ), FunctionParameterDecl( name='ndense', type=ValueType(name='int'), ), FunctionParameterDecl( name='flg_sym', type=ValueType(name='mjtByte'), ), ), doc='Convert banded matrix to dense matrix, fill upper triangle if flg_sym>0.', # pylint: disable=line-too-long )), ('mju_dense2Band', FunctionDecl( name='mju_dense2Band', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='res', type=PointerType( inner_type=ValueType(name='mjtNum'), ), ), FunctionParameterDecl( name='mat', type=PointerType( inner_type=ValueType(name='mjtNum', is_const=True), ), ), FunctionParameterDecl( name='ntotal', type=ValueType(name='int'), ), FunctionParameterDecl( name='nband', type=ValueType(name='int'), ), FunctionParameterDecl( name='ndense', type=ValueType(name='int'), ), ), doc='Convert dense matrix to banded matrix.', )), ('mju_bandMulMatVec', FunctionDecl( name='mju_bandMulMatVec', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='res', type=PointerType( inner_type=ValueType(name='mjtNum'), ), ), FunctionParameterDecl( name='mat', type=PointerType( inner_type=ValueType(name='mjtNum', is_const=True), ), ), FunctionParameterDecl( name='vec', type=PointerType( inner_type=ValueType(name='mjtNum', is_const=True), ), ), FunctionParameterDecl( name='ntotal', type=ValueType(name='int'), ), FunctionParameterDecl( name='nband', type=ValueType(name='int'), ), FunctionParameterDecl( name='ndense', type=ValueType(name='int'), ), FunctionParameterDecl( name='nvec', type=ValueType(name='int'), ), FunctionParameterDecl( name='flg_sym', type=ValueType(name='mjtByte'), ), ), doc='Multiply band-diagonal matrix with nvec vectors, include upper triangle if flg_sym>0.', # pylint: disable=line-too-long )), ('mju_bandDiag', FunctionDecl( name='mju_bandDiag', return_type=ValueType(name='int'), parameters=( FunctionParameterDecl( name='i', type=ValueType(name='int'), ), FunctionParameterDecl( name='ntotal', type=ValueType(name='int'), ), FunctionParameterDecl( name='nband', type=ValueType(name='int'), ), FunctionParameterDecl( name='ndense', type=ValueType(name='int'), ), ), doc='Address of diagonal element i in band-dense matrix representation.', # pylint: disable=line-too-long )), ('mju_eig3', FunctionDecl( name='mju_eig3', return_type=ValueType(name='int'), parameters=( FunctionParameterDecl( name='eigval', type=ArrayType( inner_type=ValueType(name='mjtNum'), extents=(3,), ), ), FunctionParameterDecl( name='eigvec', type=ArrayType( inner_type=ValueType(name='mjtNum'), extents=(9,), ), ), FunctionParameterDecl( name='quat', type=ArrayType( inner_type=ValueType(name='mjtNum'), extents=(4,), ), ), FunctionParameterDecl( name='mat', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(9,), ), ), ), doc='Eigenvalue decomposition of symmetric 3x3 matrix.', )), ('mju_boxQP', FunctionDecl( name='mju_boxQP', return_type=ValueType(name='int'), parameters=( FunctionParameterDecl( name='res', type=PointerType( inner_type=ValueType(name='mjtNum'), ), ), FunctionParameterDecl( name='R', type=PointerType( inner_type=ValueType(name='mjtNum'), ), ), FunctionParameterDecl( name='index', type=PointerType( inner_type=ValueType(name='int'), ), ), FunctionParameterDecl( name='H', type=PointerType( inner_type=ValueType(name='mjtNum', is_const=True), ), ), FunctionParameterDecl( name='g', type=PointerType( inner_type=ValueType(name='mjtNum', is_const=True), ), ), FunctionParameterDecl( name='n', type=ValueType(name='int'), ), FunctionParameterDecl( name='lower', type=PointerType( inner_type=ValueType(name='mjtNum', is_const=True), ), ), FunctionParameterDecl( name='upper', type=PointerType( inner_type=ValueType(name='mjtNum', is_const=True), ), ), ), doc="minimize 0.5*x'*H*x + x'*g s.t. lower <= x <= upper, return rank or -1 if failed inputs: n - problem dimension H - SPD matrix n*n g - bias vector n lower - lower bounds n upper - upper bounds n res - solution warmstart n return value: nfree <= n - rank of unconstrained subspace, -1 if failure outputs (required): res - solution n R - subspace Cholesky factor nfree*nfree allocated: n*(n+7) outputs (optional): index - set of free dimensions nfree allocated: n notes: the initial value of res is used to warmstart the solver R must have allocatd size n*(n+7), but only nfree*nfree values are used in output index (if given) must have allocated size n, but only nfree values are used in output only the lower triangles of H and R and are read from and written to, respectively the convenience function mju_boxQPmalloc allocates the required data structures", # pylint: disable=line-too-long )), ('mju_boxQPmalloc', FunctionDecl( name='mju_boxQPmalloc', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='res', type=PointerType( inner_type=PointerType( inner_type=ValueType(name='mjtNum'), ), ), ), FunctionParameterDecl( name='R', type=PointerType( inner_type=PointerType( inner_type=ValueType(name='mjtNum'), ), ), ), FunctionParameterDecl( name='index', type=PointerType( inner_type=PointerType( inner_type=ValueType(name='int'), ), ), ), FunctionParameterDecl( name='H', type=PointerType( inner_type=PointerType( inner_type=ValueType(name='mjtNum'), ), ), ), FunctionParameterDecl( name='g', type=PointerType( inner_type=PointerType( inner_type=ValueType(name='mjtNum'), ), ), ), FunctionParameterDecl( name='n', type=ValueType(name='int'), ), FunctionParameterDecl( name='lower', type=PointerType( inner_type=PointerType( inner_type=ValueType(name='mjtNum'), ), ), ), FunctionParameterDecl( name='upper', type=PointerType( inner_type=PointerType( inner_type=ValueType(name='mjtNum'), ), ), ), ), doc='allocate heap memory for box-constrained Quadratic Program as in mju_boxQP, index, lower, and upper are optional free all pointers with mju_free()', # pylint: disable=line-too-long )), ('mju_muscleGain', FunctionDecl( name='mju_muscleGain', return_type=ValueType(name='mjtNum'), parameters=( FunctionParameterDecl( name='len', type=ValueType(name='mjtNum'), ), FunctionParameterDecl( name='vel', type=ValueType(name='mjtNum'), ), FunctionParameterDecl( name='lengthrange', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(2,), ), ), FunctionParameterDecl( name='acc0', type=ValueType(name='mjtNum'), ), FunctionParameterDecl( name='prm', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(9,), ), ), ), doc='Muscle active force, prm = (range[2], force, scale, lmin, lmax, vmax, fpmax, fvmax).', # pylint: disable=line-too-long )), ('mju_muscleBias', FunctionDecl( name='mju_muscleBias', return_type=ValueType(name='mjtNum'), parameters=( FunctionParameterDecl( name='len', type=ValueType(name='mjtNum'), ), FunctionParameterDecl( name='lengthrange', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(2,), ), ), FunctionParameterDecl( name='acc0', type=ValueType(name='mjtNum'), ), FunctionParameterDecl( name='prm', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(9,), ), ), ), doc='Muscle passive force, prm = (range[2], force, scale, lmin, lmax, vmax, fpmax, fvmax).', # pylint: disable=line-too-long )), ('mju_muscleDynamics', FunctionDecl( name='mju_muscleDynamics', return_type=ValueType(name='mjtNum'), parameters=( FunctionParameterDecl( name='ctrl', type=ValueType(name='mjtNum'), ), FunctionParameterDecl( name='act', type=ValueType(name='mjtNum'), ), FunctionParameterDecl( name='prm', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(3,), ), ), ), doc='Muscle activation dynamics, prm = (tau_act, tau_deact, smoothing_width).', # pylint: disable=line-too-long )), ('mju_encodePyramid', FunctionDecl( name='mju_encodePyramid', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='pyramid', type=PointerType( inner_type=ValueType(name='mjtNum'), ), ), FunctionParameterDecl( name='force', type=PointerType( inner_type=ValueType(name='mjtNum', is_const=True), ), ), FunctionParameterDecl( name='mu', type=PointerType( inner_type=ValueType(name='mjtNum', is_const=True), ), ), FunctionParameterDecl( name='dim', type=ValueType(name='int'), ), ), doc='Convert contact force to pyramid representation.', )), ('mju_decodePyramid', FunctionDecl( name='mju_decodePyramid', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='force', type=PointerType( inner_type=ValueType(name='mjtNum'), ), ), FunctionParameterDecl( name='pyramid', type=PointerType( inner_type=ValueType(name='mjtNum', is_const=True), ), ), FunctionParameterDecl( name='mu', type=PointerType( inner_type=ValueType(name='mjtNum', is_const=True), ), ), FunctionParameterDecl( name='dim', type=ValueType(name='int'), ), ), doc='Convert pyramid representation to contact force.', )), ('mju_springDamper', FunctionDecl( name='mju_springDamper', return_type=ValueType(name='mjtNum'), parameters=( FunctionParameterDecl( name='pos0', type=ValueType(name='mjtNum'), ), FunctionParameterDecl( name='vel0', type=ValueType(name='mjtNum'), ), FunctionParameterDecl( name='Kp', type=ValueType(name='mjtNum'), ), FunctionParameterDecl( name='Kv', type=ValueType(name='mjtNum'), ), FunctionParameterDecl( name='dt', type=ValueType(name='mjtNum'), ), ), doc='Integrate spring-damper analytically, return pos(dt).', )), ('mju_min', FunctionDecl( name='mju_min', return_type=ValueType(name='mjtNum'), parameters=( FunctionParameterDecl( name='a', type=ValueType(name='mjtNum'), ), FunctionParameterDecl( name='b', type=ValueType(name='mjtNum'), ), ), doc='Return min(a,b) with single evaluation of a and b.', )), ('mju_max', FunctionDecl( name='mju_max', return_type=ValueType(name='mjtNum'), parameters=( FunctionParameterDecl( name='a', type=ValueType(name='mjtNum'), ), FunctionParameterDecl( name='b', type=ValueType(name='mjtNum'), ), ), doc='Return max(a,b) with single evaluation of a and b.', )), ('mju_clip', FunctionDecl( name='mju_clip', return_type=ValueType(name='mjtNum'), parameters=( FunctionParameterDecl( name='x', type=ValueType(name='mjtNum'), ), FunctionParameterDecl( name='min', type=ValueType(name='mjtNum'), ), FunctionParameterDecl( name='max', type=ValueType(name='mjtNum'), ), ), doc='Clip x to the range [min, max].', )), ('mju_sign', FunctionDecl( name='mju_sign', return_type=ValueType(name='mjtNum'), parameters=( FunctionParameterDecl( name='x', type=ValueType(name='mjtNum'), ), ), doc='Return sign of x: +1, -1 or 0.', )), ('mju_round', FunctionDecl( name='mju_round', return_type=ValueType(name='int'), parameters=( FunctionParameterDecl( name='x', type=ValueType(name='mjtNum'), ), ), doc='Round x to nearest integer.', )), ('mju_type2Str', FunctionDecl( name='mju_type2Str', return_type=PointerType( inner_type=ValueType(name='char', is_const=True), ), parameters=( FunctionParameterDecl( name='type', type=ValueType(name='int'), ), ), doc='Convert type id (mjtObj) to type name.', )), ('mju_str2Type', FunctionDecl( name='mju_str2Type', return_type=ValueType(name='int'), parameters=( FunctionParameterDecl( name='str', type=PointerType( inner_type=ValueType(name='char', is_const=True), ), ), ), doc='Convert type name to type id (mjtObj).', )), ('mju_writeNumBytes', FunctionDecl( name='mju_writeNumBytes', return_type=PointerType( inner_type=ValueType(name='char', is_const=True), ), parameters=( FunctionParameterDecl( name='nbytes', type=ValueType(name='size_t'), ), ), doc='Return human readable number of bytes using standard letter suffix.', # pylint: disable=line-too-long )), ('mju_warningText', FunctionDecl( name='mju_warningText', return_type=PointerType( inner_type=ValueType(name='char', is_const=True), ), parameters=( FunctionParameterDecl( name='warning', type=ValueType(name='int'), ), FunctionParameterDecl( name='info', type=ValueType(name='size_t'), ), ), doc='Construct a warning message given the warning type and info.', )), ('mju_isBad', FunctionDecl( name='mju_isBad', return_type=ValueType(name='int'), parameters=( FunctionParameterDecl( name='x', type=ValueType(name='mjtNum'), ), ), doc='Return 1 if nan or abs(x)>mjMAXVAL, 0 otherwise. Used by check functions.', # pylint: disable=line-too-long )), ('mju_isZero', FunctionDecl( name='mju_isZero', return_type=ValueType(name='int'), parameters=( FunctionParameterDecl( name='vec', type=PointerType( inner_type=ValueType(name='mjtNum'), ), ), FunctionParameterDecl( name='n', type=ValueType(name='int'), ), ), doc='Return 1 if all elements are 0.', )), ('mju_standardNormal', FunctionDecl( name='mju_standardNormal', return_type=ValueType(name='mjtNum'), parameters=( FunctionParameterDecl( name='num2', type=PointerType( inner_type=ValueType(name='mjtNum'), ), ), ), doc='Standard normal random number generator (optional second number).', # pylint: disable=line-too-long )), ('mju_f2n', FunctionDecl( name='mju_f2n', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='res', type=PointerType( inner_type=ValueType(name='mjtNum'), ), ), FunctionParameterDecl( name='vec', type=PointerType( inner_type=ValueType(name='float', is_const=True), ), ), FunctionParameterDecl( name='n', type=ValueType(name='int'), ), ), doc='Convert from float to mjtNum.', )), ('mju_n2f', FunctionDecl( name='mju_n2f', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='res', type=PointerType( inner_type=ValueType(name='float'), ), ), FunctionParameterDecl( name='vec', type=PointerType( inner_type=ValueType(name='mjtNum', is_const=True), ), ), FunctionParameterDecl( name='n', type=ValueType(name='int'), ), ), doc='Convert from mjtNum to float.', )), ('mju_d2n', FunctionDecl( name='mju_d2n', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='res', type=PointerType( inner_type=ValueType(name='mjtNum'), ), ), FunctionParameterDecl( name='vec', type=PointerType( inner_type=ValueType(name='double', is_const=True), ), ), FunctionParameterDecl( name='n', type=ValueType(name='int'), ), ), doc='Convert from double to mjtNum.', )), ('mju_n2d', FunctionDecl( name='mju_n2d', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='res', type=PointerType( inner_type=ValueType(name='double'), ), ), FunctionParameterDecl( name='vec', type=PointerType( inner_type=ValueType(name='mjtNum', is_const=True), ), ), FunctionParameterDecl( name='n', type=ValueType(name='int'), ), ), doc='Convert from mjtNum to double.', )), ('mju_insertionSort', FunctionDecl( name='mju_insertionSort', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='list', type=PointerType( inner_type=ValueType(name='mjtNum'), ), ), FunctionParameterDecl( name='n', type=ValueType(name='int'), ), ), doc='Insertion sort, resulting list is in increasing order.', )), ('mju_insertionSortInt', FunctionDecl( name='mju_insertionSortInt', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='list', type=PointerType( inner_type=ValueType(name='int'), ), ), FunctionParameterDecl( name='n', type=ValueType(name='int'), ), ), doc='Integer insertion sort, resulting list is in increasing order.', )), ('mju_Halton', FunctionDecl( name='mju_Halton', return_type=ValueType(name='mjtNum'), parameters=( FunctionParameterDecl( name='index', type=ValueType(name='int'), ), FunctionParameterDecl( name='base', type=ValueType(name='int'), ), ), doc='Generate Halton sequence.', )), ('mju_strncpy', FunctionDecl( name='mju_strncpy', return_type=PointerType( inner_type=ValueType(name='char'), ), parameters=( FunctionParameterDecl( name='dst', type=PointerType( inner_type=ValueType(name='char'), ), ), FunctionParameterDecl( name='src', type=PointerType( inner_type=ValueType(name='char', is_const=True), ), ), FunctionParameterDecl( name='n', type=ValueType(name='int'), ), ), doc='Call strncpy, then set dst[n-1] = 0.', )), ('mju_sigmoid', FunctionDecl( name='mju_sigmoid', return_type=ValueType(name='mjtNum'), parameters=( FunctionParameterDecl( name='x', type=ValueType(name='mjtNum'), ), ), doc='Sigmoid function over 0<=x<=1 using quintic polynomial.', )), ('mjd_transitionFD', FunctionDecl( name='mjd_transitionFD', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData'), ), ), FunctionParameterDecl( name='eps', type=ValueType(name='mjtNum'), ), FunctionParameterDecl( name='flg_centered', type=ValueType(name='mjtByte'), ), FunctionParameterDecl( name='A', type=PointerType( inner_type=ValueType(name='mjtNum'), ), ), FunctionParameterDecl( name='B', type=PointerType( inner_type=ValueType(name='mjtNum'), ), ), FunctionParameterDecl( name='C', type=PointerType( inner_type=ValueType(name='mjtNum'), ), ), FunctionParameterDecl( name='D', type=PointerType( inner_type=ValueType(name='mjtNum'), ), ), ), doc='Finite differenced transition matrices (control theory notation) d(x_next) = A*dx + B*du d(sensor) = C*dx + D*du required output matrix dimensions: A: (2*nv+na x 2*nv+na) B: (2*nv+na x nu) D: (nsensordata x 2*nv+na) C: (nsensordata x nu)', # pylint: disable=line-too-long )), ('mjd_inverseFD', FunctionDecl( name='mjd_inverseFD', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='m', type=PointerType( inner_type=ValueType(name='mjModel', is_const=True), ), ), FunctionParameterDecl( name='d', type=PointerType( inner_type=ValueType(name='mjData'), ), ), FunctionParameterDecl( name='eps', type=ValueType(name='mjtNum'), ), FunctionParameterDecl( name='flg_actuation', type=ValueType(name='mjtByte'), ), FunctionParameterDecl( name='DfDq', type=PointerType( inner_type=ValueType(name='mjtNum'), ), ), FunctionParameterDecl( name='DfDv', type=PointerType( inner_type=ValueType(name='mjtNum'), ), ), FunctionParameterDecl( name='DfDa', type=PointerType( inner_type=ValueType(name='mjtNum'), ), ), FunctionParameterDecl( name='DsDq', type=PointerType( inner_type=ValueType(name='mjtNum'), ), ), FunctionParameterDecl( name='DsDv', type=PointerType( inner_type=ValueType(name='mjtNum'), ), ), FunctionParameterDecl( name='DsDa', type=PointerType( inner_type=ValueType(name='mjtNum'), ), ), FunctionParameterDecl( name='DmDq', type=PointerType( inner_type=ValueType(name='mjtNum'), ), ), ), doc='Finite differenced Jacobians of (force, sensors) = mj_inverse(state, acceleration) All outputs are optional. Output dimensions (transposed w.r.t Control Theory convention): DfDq: (nv x nv) DfDv: (nv x nv) DfDa: (nv x nv) DsDq: (nv x nsensordata) DsDv: (nv x nsensordata) DsDa: (nv x nsensordata) DmDq: (nv x nM) single-letter shortcuts: inputs: q=qpos, v=qvel, a=qacc outputs: f=qfrc_inverse, s=sensordata, m=qM notes: optionally computes mass matrix Jacobian DmDq flg_actuation specifies whether to subtract qfrc_actuator from qfrc_inverse', # pylint: disable=line-too-long )), ('mjd_subQuat', FunctionDecl( name='mjd_subQuat', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='qa', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(4,), ), ), FunctionParameterDecl( name='qb', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(4,), ), ), FunctionParameterDecl( name='Da', type=ArrayType( inner_type=ValueType(name='mjtNum'), extents=(9,), ), ), FunctionParameterDecl( name='Db', type=ArrayType( inner_type=ValueType(name='mjtNum'), extents=(9,), ), ), ), doc='Derivatives of mju_subQuat.', )), ('mjd_quatIntegrate', FunctionDecl( name='mjd_quatIntegrate', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='vel', type=ArrayType( inner_type=ValueType(name='mjtNum', is_const=True), extents=(3,), ), ), FunctionParameterDecl( name='scale', type=ValueType(name='mjtNum'), ), FunctionParameterDecl( name='Dquat', type=ArrayType( inner_type=ValueType(name='mjtNum'), extents=(9,), ), ), FunctionParameterDecl( name='Dvel', type=ArrayType( inner_type=ValueType(name='mjtNum'), extents=(9,), ), ), FunctionParameterDecl( name='Dscale', type=ArrayType( inner_type=ValueType(name='mjtNum'), extents=(3,), ), ), ), doc='Derivatives of mju_quatIntegrate.', )), ('mjp_defaultPlugin', FunctionDecl( name='mjp_defaultPlugin', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='plugin', type=PointerType( inner_type=ValueType(name='mjpPlugin'), ), ), ), doc='Set default plugin definition.', )), ('mjp_registerPlugin', FunctionDecl( name='mjp_registerPlugin', return_type=ValueType(name='int'), parameters=( FunctionParameterDecl( name='plugin', type=PointerType( inner_type=ValueType(name='mjpPlugin', is_const=True), ), ), ), doc='Globally register a plugin. This function is thread-safe. If an identical mjpPlugin is already registered, this function does nothing. If a non-identical mjpPlugin with the same name is already registered, an mju_error is raised. Two mjpPlugins are considered identical if all member function pointers and numbers are equal, and the name and attribute strings are all identical, however the char pointers to the strings need not be the same.', # pylint: disable=line-too-long )), ('mjp_pluginCount', FunctionDecl( name='mjp_pluginCount', return_type=ValueType(name='int'), parameters=(), doc='Return the number of globally registered plugins.', )), ('mjp_getPlugin', FunctionDecl( name='mjp_getPlugin', return_type=PointerType( inner_type=ValueType(name='mjpPlugin', is_const=True), ), parameters=( FunctionParameterDecl( name='name', type=PointerType( inner_type=ValueType(name='char', is_const=True), ), ), FunctionParameterDecl( name='slot', type=PointerType( inner_type=ValueType(name='int'), ), ), ), doc='Look up a plugin by name. If slot is not NULL, also write its registered slot number into it.', # pylint: disable=line-too-long )), ('mjp_getPluginAtSlot', FunctionDecl( name='mjp_getPluginAtSlot', return_type=PointerType( inner_type=ValueType(name='mjpPlugin', is_const=True), ), parameters=( FunctionParameterDecl( name='slot', type=ValueType(name='int'), ), ), doc='Look up a plugin by the registered slot number that was returned by mjp_registerPlugin.', # pylint: disable=line-too-long )), ('mjp_defaultResourceProvider', FunctionDecl( name='mjp_defaultResourceProvider', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='provider', type=PointerType( inner_type=ValueType(name='mjpResourceProvider'), ), ), ), doc='Set default resource provider definition.', )), ('mjp_registerResourceProvider', FunctionDecl( name='mjp_registerResourceProvider', return_type=ValueType(name='int'), parameters=( FunctionParameterDecl( name='provider', type=PointerType( inner_type=ValueType(name='mjpResourceProvider', is_const=True), # pylint: disable=line-too-long ), ), ), doc='Globally register a resource provider in a thread-safe manner. The provider must have a prefix that is not a sub-prefix or super-prefix of any current registered providers. This function returns a slot number > 0 on success.', # pylint: disable=line-too-long )), ('mjp_resourceProviderCount', FunctionDecl( name='mjp_resourceProviderCount', return_type=ValueType(name='int'), parameters=(), doc='Return the number of globally registered resource providers.', )), ('mjp_getResourceProvider', FunctionDecl( name='mjp_getResourceProvider', return_type=PointerType( inner_type=ValueType(name='mjpResourceProvider', is_const=True), ), parameters=( FunctionParameterDecl( name='resource_name', type=PointerType( inner_type=ValueType(name='char', is_const=True), ), ), ), doc='Return the resource provider with the prefix that matches against the resource name. If no match, return NULL.', # pylint: disable=line-too-long )), ('mjp_getResourceProviderAtSlot', FunctionDecl( name='mjp_getResourceProviderAtSlot', return_type=PointerType( inner_type=ValueType(name='mjpResourceProvider', is_const=True), ), parameters=( FunctionParameterDecl( name='slot', type=ValueType(name='int'), ), ), doc='Look up a resource provider by slot number returned by mjp_registerResourceProvider. If invalid slot number, return NULL.', # pylint: disable=line-too-long )), ('mju_threadPoolCreate', FunctionDecl( name='mju_threadPoolCreate', return_type=PointerType( inner_type=ValueType(name='mjThreadPool'), ), parameters=( FunctionParameterDecl( name='number_of_threads', type=ValueType(name='size_t'), ), ), doc='Create a thread pool with the specified number of threads running.', # pylint: disable=line-too-long )), ('mju_threadPoolEnqueue', FunctionDecl( name='mju_threadPoolEnqueue', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='thread_pool', type=PointerType( inner_type=ValueType(name='mjThreadPool'), ), ), FunctionParameterDecl( name='task', type=PointerType( inner_type=ValueType(name='mjTask'), ), ), ), doc='Enqueue a task in a thread pool.', )), ('mju_threadPoolDestroy', FunctionDecl( name='mju_threadPoolDestroy', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='thread_pool', type=PointerType( inner_type=ValueType(name='mjThreadPool'), ), ), ), doc='Destroy a thread pool.', )), ('mju_defaultTask', FunctionDecl( name='mju_defaultTask', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='task', type=PointerType( inner_type=ValueType(name='mjTask'), ), ), ), doc='Initialize an mjTask.', )), ('mju_taskJoin', FunctionDecl( name='mju_taskJoin', return_type=ValueType(name='void'), parameters=( FunctionParameterDecl( name='task', type=PointerType( inner_type=ValueType(name='mjTask'), ), ), ), doc='Wait for a task to complete.', )), ])
mujoco-main
introspect/functions.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Provides information about MuJoCo API enums. DO NOT EDIT. THIS FILE IS AUTOMATICALLY GENERATED. """ from typing import Mapping from .ast_nodes import EnumDecl ENUMS: Mapping[str, EnumDecl] = dict([ ('mjtDisableBit', EnumDecl( name='mjtDisableBit', declname='enum mjtDisableBit_', values=dict([ ('mjDSBL_CONSTRAINT', 1), ('mjDSBL_EQUALITY', 2), ('mjDSBL_FRICTIONLOSS', 4), ('mjDSBL_LIMIT', 8), ('mjDSBL_CONTACT', 16), ('mjDSBL_PASSIVE', 32), ('mjDSBL_GRAVITY', 64), ('mjDSBL_CLAMPCTRL', 128), ('mjDSBL_WARMSTART', 256), ('mjDSBL_FILTERPARENT', 512), ('mjDSBL_ACTUATION', 1024), ('mjDSBL_REFSAFE', 2048), ('mjDSBL_SENSOR', 4096), ('mjDSBL_MIDPHASE', 8192), ('mjDSBL_EULERDAMP', 16384), ('mjNDISABLE', 15), ]), )), ('mjtEnableBit', EnumDecl( name='mjtEnableBit', declname='enum mjtEnableBit_', values=dict([ ('mjENBL_OVERRIDE', 1), ('mjENBL_ENERGY', 2), ('mjENBL_FWDINV', 4), ('mjENBL_INVDISCRETE', 8), ('mjENBL_SENSORNOISE', 16), ('mjENBL_MULTICCD', 32), ('mjENBL_ISLAND', 64), ('mjNENABLE', 7), ]), )), ('mjtJoint', EnumDecl( name='mjtJoint', declname='enum mjtJoint_', values=dict([ ('mjJNT_FREE', 0), ('mjJNT_BALL', 1), ('mjJNT_SLIDE', 2), ('mjJNT_HINGE', 3), ]), )), ('mjtGeom', EnumDecl( name='mjtGeom', declname='enum mjtGeom_', values=dict([ ('mjGEOM_PLANE', 0), ('mjGEOM_HFIELD', 1), ('mjGEOM_SPHERE', 2), ('mjGEOM_CAPSULE', 3), ('mjGEOM_ELLIPSOID', 4), ('mjGEOM_CYLINDER', 5), ('mjGEOM_BOX', 6), ('mjGEOM_MESH', 7), ('mjGEOM_SDF', 8), ('mjNGEOMTYPES', 9), ('mjGEOM_ARROW', 100), ('mjGEOM_ARROW1', 101), ('mjGEOM_ARROW2', 102), ('mjGEOM_LINE', 103), ('mjGEOM_SKIN', 104), ('mjGEOM_LABEL', 105), ('mjGEOM_NONE', 1001), ]), )), ('mjtCamLight', EnumDecl( name='mjtCamLight', declname='enum mjtCamLight_', values=dict([ ('mjCAMLIGHT_FIXED', 0), ('mjCAMLIGHT_TRACK', 1), ('mjCAMLIGHT_TRACKCOM', 2), ('mjCAMLIGHT_TARGETBODY', 3), ('mjCAMLIGHT_TARGETBODYCOM', 4), ]), )), ('mjtTexture', EnumDecl( name='mjtTexture', declname='enum mjtTexture_', values=dict([ ('mjTEXTURE_2D', 0), ('mjTEXTURE_CUBE', 1), ('mjTEXTURE_SKYBOX', 2), ]), )), ('mjtIntegrator', EnumDecl( name='mjtIntegrator', declname='enum mjtIntegrator_', values=dict([ ('mjINT_EULER', 0), ('mjINT_RK4', 1), ('mjINT_IMPLICIT', 2), ('mjINT_IMPLICITFAST', 3), ]), )), ('mjtCollision', EnumDecl( name='mjtCollision', declname='enum mjtCollision_', values=dict([ ('mjCOL_ALL', 0), ('mjCOL_PAIR', 1), ('mjCOL_DYNAMIC', 2), ]), )), ('mjtCone', EnumDecl( name='mjtCone', declname='enum mjtCone_', values=dict([ ('mjCONE_PYRAMIDAL', 0), ('mjCONE_ELLIPTIC', 1), ]), )), ('mjtJacobian', EnumDecl( name='mjtJacobian', declname='enum mjtJacobian_', values=dict([ ('mjJAC_DENSE', 0), ('mjJAC_SPARSE', 1), ('mjJAC_AUTO', 2), ]), )), ('mjtSolver', EnumDecl( name='mjtSolver', declname='enum mjtSolver_', values=dict([ ('mjSOL_PGS', 0), ('mjSOL_CG', 1), ('mjSOL_NEWTON', 2), ]), )), ('mjtEq', EnumDecl( name='mjtEq', declname='enum mjtEq_', values=dict([ ('mjEQ_CONNECT', 0), ('mjEQ_WELD', 1), ('mjEQ_JOINT', 2), ('mjEQ_TENDON', 3), ('mjEQ_DISTANCE', 4), ]), )), ('mjtWrap', EnumDecl( name='mjtWrap', declname='enum mjtWrap_', values=dict([ ('mjWRAP_NONE', 0), ('mjWRAP_JOINT', 1), ('mjWRAP_PULLEY', 2), ('mjWRAP_SITE', 3), ('mjWRAP_SPHERE', 4), ('mjWRAP_CYLINDER', 5), ]), )), ('mjtTrn', EnumDecl( name='mjtTrn', declname='enum mjtTrn_', values=dict([ ('mjTRN_JOINT', 0), ('mjTRN_JOINTINPARENT', 1), ('mjTRN_SLIDERCRANK', 2), ('mjTRN_TENDON', 3), ('mjTRN_SITE', 4), ('mjTRN_BODY', 5), ('mjTRN_UNDEFINED', 1000), ]), )), ('mjtDyn', EnumDecl( name='mjtDyn', declname='enum mjtDyn_', values=dict([ ('mjDYN_NONE', 0), ('mjDYN_INTEGRATOR', 1), ('mjDYN_FILTER', 2), ('mjDYN_FILTEREXACT', 3), ('mjDYN_MUSCLE', 4), ('mjDYN_USER', 5), ]), )), ('mjtGain', EnumDecl( name='mjtGain', declname='enum mjtGain_', values=dict([ ('mjGAIN_FIXED', 0), ('mjGAIN_AFFINE', 1), ('mjGAIN_MUSCLE', 2), ('mjGAIN_USER', 3), ]), )), ('mjtBias', EnumDecl( name='mjtBias', declname='enum mjtBias_', values=dict([ ('mjBIAS_NONE', 0), ('mjBIAS_AFFINE', 1), ('mjBIAS_MUSCLE', 2), ('mjBIAS_USER', 3), ]), )), ('mjtObj', EnumDecl( name='mjtObj', declname='enum mjtObj_', values=dict([ ('mjOBJ_UNKNOWN', 0), ('mjOBJ_BODY', 1), ('mjOBJ_XBODY', 2), ('mjOBJ_JOINT', 3), ('mjOBJ_DOF', 4), ('mjOBJ_GEOM', 5), ('mjOBJ_SITE', 6), ('mjOBJ_CAMERA', 7), ('mjOBJ_LIGHT', 8), ('mjOBJ_MESH', 9), ('mjOBJ_SKIN', 10), ('mjOBJ_HFIELD', 11), ('mjOBJ_TEXTURE', 12), ('mjOBJ_MATERIAL', 13), ('mjOBJ_PAIR', 14), ('mjOBJ_EXCLUDE', 15), ('mjOBJ_EQUALITY', 16), ('mjOBJ_TENDON', 17), ('mjOBJ_ACTUATOR', 18), ('mjOBJ_SENSOR', 19), ('mjOBJ_NUMERIC', 20), ('mjOBJ_TEXT', 21), ('mjOBJ_TUPLE', 22), ('mjOBJ_KEY', 23), ('mjOBJ_PLUGIN', 24), ]), )), ('mjtConstraint', EnumDecl( name='mjtConstraint', declname='enum mjtConstraint_', values=dict([ ('mjCNSTR_EQUALITY', 0), ('mjCNSTR_FRICTION_DOF', 1), ('mjCNSTR_FRICTION_TENDON', 2), ('mjCNSTR_LIMIT_JOINT', 3), ('mjCNSTR_LIMIT_TENDON', 4), ('mjCNSTR_CONTACT_FRICTIONLESS', 5), ('mjCNSTR_CONTACT_PYRAMIDAL', 6), ('mjCNSTR_CONTACT_ELLIPTIC', 7), ]), )), ('mjtConstraintState', EnumDecl( name='mjtConstraintState', declname='enum mjtConstraintState_', values=dict([ ('mjCNSTRSTATE_SATISFIED', 0), ('mjCNSTRSTATE_QUADRATIC', 1), ('mjCNSTRSTATE_LINEARNEG', 2), ('mjCNSTRSTATE_LINEARPOS', 3), ('mjCNSTRSTATE_CONE', 4), ]), )), ('mjtSensor', EnumDecl( name='mjtSensor', declname='enum mjtSensor_', values=dict([ ('mjSENS_TOUCH', 0), ('mjSENS_ACCELEROMETER', 1), ('mjSENS_VELOCIMETER', 2), ('mjSENS_GYRO', 3), ('mjSENS_FORCE', 4), ('mjSENS_TORQUE', 5), ('mjSENS_MAGNETOMETER', 6), ('mjSENS_RANGEFINDER', 7), ('mjSENS_CAMPROJECTION', 8), ('mjSENS_JOINTPOS', 9), ('mjSENS_JOINTVEL', 10), ('mjSENS_TENDONPOS', 11), ('mjSENS_TENDONVEL', 12), ('mjSENS_ACTUATORPOS', 13), ('mjSENS_ACTUATORVEL', 14), ('mjSENS_ACTUATORFRC', 15), ('mjSENS_JOINTACTFRC', 16), ('mjSENS_BALLQUAT', 17), ('mjSENS_BALLANGVEL', 18), ('mjSENS_JOINTLIMITPOS', 19), ('mjSENS_JOINTLIMITVEL', 20), ('mjSENS_JOINTLIMITFRC', 21), ('mjSENS_TENDONLIMITPOS', 22), ('mjSENS_TENDONLIMITVEL', 23), ('mjSENS_TENDONLIMITFRC', 24), ('mjSENS_FRAMEPOS', 25), ('mjSENS_FRAMEQUAT', 26), ('mjSENS_FRAMEXAXIS', 27), ('mjSENS_FRAMEYAXIS', 28), ('mjSENS_FRAMEZAXIS', 29), ('mjSENS_FRAMELINVEL', 30), ('mjSENS_FRAMEANGVEL', 31), ('mjSENS_FRAMELINACC', 32), ('mjSENS_FRAMEANGACC', 33), ('mjSENS_SUBTREECOM', 34), ('mjSENS_SUBTREELINVEL', 35), ('mjSENS_SUBTREEANGMOM', 36), ('mjSENS_CLOCK', 37), ('mjSENS_PLUGIN', 38), ('mjSENS_USER', 39), ]), )), ('mjtStage', EnumDecl( name='mjtStage', declname='enum mjtStage_', values=dict([ ('mjSTAGE_NONE', 0), ('mjSTAGE_POS', 1), ('mjSTAGE_VEL', 2), ('mjSTAGE_ACC', 3), ]), )), ('mjtDataType', EnumDecl( name='mjtDataType', declname='enum mjtDataType_', values=dict([ ('mjDATATYPE_REAL', 0), ('mjDATATYPE_POSITIVE', 1), ('mjDATATYPE_AXIS', 2), ('mjDATATYPE_QUATERNION', 3), ]), )), ('mjtLRMode', EnumDecl( name='mjtLRMode', declname='enum mjtLRMode_', values=dict([ ('mjLRMODE_NONE', 0), ('mjLRMODE_MUSCLE', 1), ('mjLRMODE_MUSCLEUSER', 2), ('mjLRMODE_ALL', 3), ]), )), ('mjtState', EnumDecl( name='mjtState', declname='enum mjtState_', values=dict([ ('mjSTATE_TIME', 1), ('mjSTATE_QPOS', 2), ('mjSTATE_QVEL', 4), ('mjSTATE_ACT', 8), ('mjSTATE_WARMSTART', 16), ('mjSTATE_CTRL', 32), ('mjSTATE_QFRC_APPLIED', 64), ('mjSTATE_XFRC_APPLIED', 128), ('mjSTATE_MOCAP_POS', 256), ('mjSTATE_MOCAP_QUAT', 512), ('mjSTATE_USERDATA', 1024), ('mjSTATE_PLUGIN', 2048), ('mjNSTATE', 12), ('mjSTATE_PHYSICS', 14), ('mjSTATE_FULLPHYSICS', 2063), ('mjSTATE_USER', 2016), ('mjSTATE_INTEGRATION', 4095), ]), )), ('mjtWarning', EnumDecl( name='mjtWarning', declname='enum mjtWarning_', values=dict([ ('mjWARN_INERTIA', 0), ('mjWARN_CONTACTFULL', 1), ('mjWARN_CNSTRFULL', 2), ('mjWARN_VGEOMFULL', 3), ('mjWARN_BADQPOS', 4), ('mjWARN_BADQVEL', 5), ('mjWARN_BADQACC', 6), ('mjWARN_BADCTRL', 7), ('mjNWARNING', 8), ]), )), ('mjtTimer', EnumDecl( name='mjtTimer', declname='enum mjtTimer_', values=dict([ ('mjTIMER_STEP', 0), ('mjTIMER_FORWARD', 1), ('mjTIMER_INVERSE', 2), ('mjTIMER_POSITION', 3), ('mjTIMER_VELOCITY', 4), ('mjTIMER_ACTUATION', 5), ('mjTIMER_ACCELERATION', 6), ('mjTIMER_CONSTRAINT', 7), ('mjTIMER_POS_KINEMATICS', 8), ('mjTIMER_POS_INERTIA', 9), ('mjTIMER_POS_COLLISION', 10), ('mjTIMER_POS_MAKE', 11), ('mjTIMER_POS_PROJECT', 12), ('mjNTIMER', 13), ]), )), ('mjtCatBit', EnumDecl( name='mjtCatBit', declname='enum mjtCatBit_', values=dict([ ('mjCAT_STATIC', 1), ('mjCAT_DYNAMIC', 2), ('mjCAT_DECOR', 4), ('mjCAT_ALL', 7), ]), )), ('mjtMouse', EnumDecl( name='mjtMouse', declname='enum mjtMouse_', values=dict([ ('mjMOUSE_NONE', 0), ('mjMOUSE_ROTATE_V', 1), ('mjMOUSE_ROTATE_H', 2), ('mjMOUSE_MOVE_V', 3), ('mjMOUSE_MOVE_H', 4), ('mjMOUSE_ZOOM', 5), ('mjMOUSE_SELECT', 6), ]), )), ('mjtPertBit', EnumDecl( name='mjtPertBit', declname='enum mjtPertBit_', values=dict([ ('mjPERT_TRANSLATE', 1), ('mjPERT_ROTATE', 2), ]), )), ('mjtCamera', EnumDecl( name='mjtCamera', declname='enum mjtCamera_', values=dict([ ('mjCAMERA_FREE', 0), ('mjCAMERA_TRACKING', 1), ('mjCAMERA_FIXED', 2), ('mjCAMERA_USER', 3), ]), )), ('mjtLabel', EnumDecl( name='mjtLabel', declname='enum mjtLabel_', values=dict([ ('mjLABEL_NONE', 0), ('mjLABEL_BODY', 1), ('mjLABEL_JOINT', 2), ('mjLABEL_GEOM', 3), ('mjLABEL_SITE', 4), ('mjLABEL_CAMERA', 5), ('mjLABEL_LIGHT', 6), ('mjLABEL_TENDON', 7), ('mjLABEL_ACTUATOR', 8), ('mjLABEL_CONSTRAINT', 9), ('mjLABEL_SKIN', 10), ('mjLABEL_SELECTION', 11), ('mjLABEL_SELPNT', 12), ('mjLABEL_CONTACTPOINT', 13), ('mjLABEL_CONTACTFORCE', 14), ('mjLABEL_ISLAND', 15), ('mjNLABEL', 16), ]), )), ('mjtFrame', EnumDecl( name='mjtFrame', declname='enum mjtFrame_', values=dict([ ('mjFRAME_NONE', 0), ('mjFRAME_BODY', 1), ('mjFRAME_GEOM', 2), ('mjFRAME_SITE', 3), ('mjFRAME_CAMERA', 4), ('mjFRAME_LIGHT', 5), ('mjFRAME_CONTACT', 6), ('mjFRAME_WORLD', 7), ('mjNFRAME', 8), ]), )), ('mjtVisFlag', EnumDecl( name='mjtVisFlag', declname='enum mjtVisFlag_', values=dict([ ('mjVIS_CONVEXHULL', 0), ('mjVIS_TEXTURE', 1), ('mjVIS_JOINT', 2), ('mjVIS_CAMERA', 3), ('mjVIS_ACTUATOR', 4), ('mjVIS_ACTIVATION', 5), ('mjVIS_LIGHT', 6), ('mjVIS_TENDON', 7), ('mjVIS_RANGEFINDER', 8), ('mjVIS_CONSTRAINT', 9), ('mjVIS_INERTIA', 10), ('mjVIS_SCLINERTIA', 11), ('mjVIS_PERTFORCE', 12), ('mjVIS_PERTOBJ', 13), ('mjVIS_CONTACTPOINT', 14), ('mjVIS_ISLAND', 15), ('mjVIS_CONTACTFORCE', 16), ('mjVIS_CONTACTSPLIT', 17), ('mjVIS_TRANSPARENT', 18), ('mjVIS_AUTOCONNECT', 19), ('mjVIS_COM', 20), ('mjVIS_SELECT', 21), ('mjVIS_STATIC', 22), ('mjVIS_SKIN', 23), ('mjVIS_MIDPHASE', 24), ('mjVIS_MESHBVH', 25), ('mjVIS_SDFITER', 26), ('mjNVISFLAG', 27), ]), )), ('mjtRndFlag', EnumDecl( name='mjtRndFlag', declname='enum mjtRndFlag_', values=dict([ ('mjRND_SHADOW', 0), ('mjRND_WIREFRAME', 1), ('mjRND_REFLECTION', 2), ('mjRND_ADDITIVE', 3), ('mjRND_SKYBOX', 4), ('mjRND_FOG', 5), ('mjRND_HAZE', 6), ('mjRND_SEGMENT', 7), ('mjRND_IDCOLOR', 8), ('mjRND_CULL_FACE', 9), ('mjNRNDFLAG', 10), ]), )), ('mjtStereo', EnumDecl( name='mjtStereo', declname='enum mjtStereo_', values=dict([ ('mjSTEREO_NONE', 0), ('mjSTEREO_QUADBUFFERED', 1), ('mjSTEREO_SIDEBYSIDE', 2), ]), )), ('mjtPluginCapabilityBit', EnumDecl( name='mjtPluginCapabilityBit', declname='enum mjtPluginCapabilityBit_', values=dict([ ('mjPLUGIN_ACTUATOR', 1), ('mjPLUGIN_SENSOR', 2), ('mjPLUGIN_PASSIVE', 4), ('mjPLUGIN_SDF', 8), ]), )), ('mjtGridPos', EnumDecl( name='mjtGridPos', declname='enum mjtGridPos_', values=dict([ ('mjGRID_TOPLEFT', 0), ('mjGRID_TOPRIGHT', 1), ('mjGRID_BOTTOMLEFT', 2), ('mjGRID_BOTTOMRIGHT', 3), ]), )), ('mjtFramebuffer', EnumDecl( name='mjtFramebuffer', declname='enum mjtFramebuffer_', values=dict([ ('mjFB_WINDOW', 0), ('mjFB_OFFSCREEN', 1), ]), )), ('mjtFontScale', EnumDecl( name='mjtFontScale', declname='enum mjtFontScale_', values=dict([ ('mjFONTSCALE_50', 50), ('mjFONTSCALE_100', 100), ('mjFONTSCALE_150', 150), ('mjFONTSCALE_200', 200), ('mjFONTSCALE_250', 250), ('mjFONTSCALE_300', 300), ]), )), ('mjtFont', EnumDecl( name='mjtFont', declname='enum mjtFont_', values=dict([ ('mjFONT_NORMAL', 0), ('mjFONT_SHADOW', 1), ('mjFONT_BIG', 2), ]), )), ('mjtTaskStatus', EnumDecl( name='mjtTaskStatus', declname='enum mjtTaskStatus_', values=dict([ ('mjTASK_NEW', 0), ('mjTASK_QUEUED', 1), ('mjTASK_COMPLETED', 2), ]), )), ('mjtButton', EnumDecl( name='mjtButton', declname='enum mjtButton_', values=dict([ ('mjBUTTON_NONE', 0), ('mjBUTTON_LEFT', 1), ('mjBUTTON_RIGHT', 2), ('mjBUTTON_MIDDLE', 3), ]), )), ('mjtEvent', EnumDecl( name='mjtEvent', declname='enum mjtEvent_', values=dict([ ('mjEVENT_NONE', 0), ('mjEVENT_MOVE', 1), ('mjEVENT_PRESS', 2), ('mjEVENT_RELEASE', 3), ('mjEVENT_SCROLL', 4), ('mjEVENT_KEY', 5), ('mjEVENT_RESIZE', 6), ('mjEVENT_REDRAW', 7), ('mjEVENT_FILESDROP', 8), ]), )), ('mjtItem', EnumDecl( name='mjtItem', declname='enum mjtItem_', values=dict([ ('mjITEM_END', -2), ('mjITEM_SECTION', -1), ('mjITEM_SEPARATOR', 0), ('mjITEM_STATIC', 1), ('mjITEM_BUTTON', 2), ('mjITEM_CHECKINT', 3), ('mjITEM_CHECKBYTE', 4), ('mjITEM_RADIO', 5), ('mjITEM_RADIOLINE', 6), ('mjITEM_SELECT', 7), ('mjITEM_SLIDERINT', 8), ('mjITEM_SLIDERNUM', 9), ('mjITEM_EDITINT', 10), ('mjITEM_EDITNUM', 11), ('mjITEM_EDITFLOAT', 12), ('mjITEM_EDITTXT', 13), ('mjNITEM', 14), ]), )), ])
mujoco-main
introspect/enums.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for enums.py.""" from absl.testing import absltest from . import enums class EnumsTest(absltest.TestCase): # "simple" enum that just starts at zero and increment by one. def test_mjtJoint(self): # pylint: disable=invalid-name enum_decl = enums.ENUMS['mjtJoint'] self.assertEqual(enum_decl.name, 'mjtJoint') self.assertEqual(enum_decl.declname, 'enum mjtJoint_') self.assertEqual( tuple(enum_decl.values.items()), (('mjJNT_FREE', 0), ('mjJNT_BALL', 1), ('mjJNT_SLIDE', 2), ('mjJNT_HINGE', 3))) # all values explicitly specified def test_mjtEnableBit(self): # pylint: disable=invalid-name enum_decl = enums.ENUMS['mjtEnableBit'] self.assertEqual(enum_decl.name, 'mjtEnableBit') self.assertEqual(enum_decl.declname, 'enum mjtEnableBit_') self.assertEqual( tuple(enum_decl.values.items()), (('mjENBL_OVERRIDE', 1<<0), ('mjENBL_ENERGY', 1<<1), ('mjENBL_FWDINV', 1<<2), ('mjENBL_INVDISCRETE', 1<<3), ('mjENBL_SENSORNOISE', 1<<4), ('mjENBL_MULTICCD', 1<<5), ('mjENBL_ISLAND', 1<<6), ('mjNENABLE', 7))) # values mostly increment by one with occasional overrides def test_mjtGeom(self): # pylint: disable=invalid-name enum_decl = enums.ENUMS['mjtGeom'] self.assertEqual(enum_decl.name, 'mjtGeom') self.assertEqual(enum_decl.declname, 'enum mjtGeom_') self.assertEqual(enum_decl.values['mjGEOM_PLANE'], 0) self.assertEqual(enum_decl.values['mjGEOM_HFIELD'], 1) self.assertEqual(enum_decl.values['mjGEOM_SPHERE'], 2) # Skip a few... self.assertEqual(enum_decl.values['mjGEOM_ARROW'], 100) self.assertEqual(enum_decl.values['mjGEOM_ARROW1'], 101) self.assertEqual(enum_decl.values['mjGEOM_ARROW2'], 102) # Skip a few... self.assertEqual(enum_decl.values['mjGEOM_NONE'], 1001) if __name__ == '__main__': absltest.main()
mujoco-main
introspect/enums_test.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for type_parsing.py.""" from absl.testing import absltest from . import ast_nodes from . import type_parsing class TypeParsingTest(absltest.TestCase): def test_parse_complex_type(self): parsed_type = type_parsing.parse_type( 'int unsigned volatile long const long'+ '(**const(*const restrict*[9])[7])[3][4]') expected_type = ast_nodes.ArrayType( extents=[9], inner_type=ast_nodes.PointerType( ast_nodes.PointerType( is_const=True, is_restrict=True, inner_type=ast_nodes.ArrayType( extents=[7], inner_type=ast_nodes.PointerType( is_const=True, inner_type=ast_nodes.PointerType( ast_nodes.ArrayType( extents=(3, 4), inner_type=ast_nodes.ValueType( 'int unsigned long long', is_const=True, is_volatile=True) ) ) ) ) ) ) ) self.assertEqual(parsed_type, expected_type) if __name__ == '__main__': absltest.main()
mujoco-main
introspect/type_parsing_test.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for ast_nodes.py.""" from absl.testing import absltest from . import ast_nodes class AstNodesTest(absltest.TestCase): def test_value_type(self): value_type = ast_nodes.ValueType('int') self.assertEqual(str(value_type), 'int') self.assertEqual(value_type.decl('var'), 'int var') const_value_type = ast_nodes.ValueType('double', is_const=True) self.assertEqual(str(const_value_type), 'const double') self.assertEqual(const_value_type.decl('var2'), 'const double var2') def test_pointer_type(self): pointer_type = ast_nodes.PointerType(ast_nodes.ValueType('int')) self.assertEqual(str(pointer_type), 'int *') self.assertEqual(pointer_type.decl('var'), 'int * var') const_pointer_type = ast_nodes.PointerType( ast_nodes.ValueType('double'), is_const=True) self.assertEqual(str(const_pointer_type), 'double * const') self.assertEqual(const_pointer_type.decl('var2'), 'double * const var2') pointer_to_const_type = ast_nodes.PointerType( ast_nodes.ValueType('float', is_const=True)) self.assertEqual(str(pointer_to_const_type), 'const float *') self.assertEqual(pointer_to_const_type.decl('var3'), 'const float * var3') restrict_volatile_pointer_to_const_type = ast_nodes.PointerType( ast_nodes.ValueType('char', is_const=True), is_volatile=True, is_restrict=True) self.assertEqual(str(restrict_volatile_pointer_to_const_type), 'const char * volatile restrict') self.assertEqual( restrict_volatile_pointer_to_const_type.decl('var4'), 'const char * volatile restrict var4') pointer_to_array_type = ast_nodes.PointerType( ast_nodes.ArrayType(ast_nodes.ValueType('long'), (3,))) self.assertEqual(str(pointer_to_array_type), 'long (*)[3]') self.assertEqual(pointer_to_array_type.decl('var5'), 'long (* var5)[3]') const_pointer_to_array_type = ast_nodes.PointerType( ast_nodes.ArrayType(ast_nodes.ValueType('unsigned int'), (4,)), is_const=True) self.assertEqual( str(const_pointer_to_array_type), 'unsigned int (* const)[4]') self.assertEqual( const_pointer_to_array_type.decl('var6'), 'unsigned int (* const var6)[4]') def test_array_type(self): array_type = ast_nodes.ArrayType(ast_nodes.ValueType('int'), (4,)) self.assertEqual(str(array_type), 'int [4]') self.assertEqual(array_type.decl('var'), 'int var[4]') array_2d_type = ast_nodes.ArrayType( ast_nodes.ValueType('double', is_const=True), (2, 3)) self.assertEqual(str(array_2d_type), 'const double [2][3]') self.assertEqual(array_2d_type.decl('var2'), 'const double var2[2][3]') array_to_pointer_type = ast_nodes.ArrayType( ast_nodes.PointerType(ast_nodes.ValueType('char', is_const=True)), (5,)) self.assertEqual(str(array_to_pointer_type), 'const char * [5]') self.assertEqual(array_to_pointer_type.decl('var3'), 'const char * var3[5]') array_to_const_pointer_type = ast_nodes.ArrayType( ast_nodes.PointerType(ast_nodes.ValueType('float'), is_const=True), (7,)) self.assertEqual(str(array_to_const_pointer_type), 'float * const [7]') self.assertEqual( array_to_const_pointer_type.decl('var4'), 'float * const var4[7]') def test_complex_type(self): complex_type = ast_nodes.ArrayType( extents=[9], inner_type=ast_nodes.PointerType( ast_nodes.PointerType( is_const=True, inner_type=ast_nodes.ArrayType( extents=[7], inner_type=ast_nodes.PointerType( is_const=True, inner_type=ast_nodes.PointerType( ast_nodes.ArrayType( extents=(3, 4), inner_type=ast_nodes.ValueType( 'unsigned int', is_const=True) ) ) ) ) ) ) ) self.assertEqual(str(complex_type), 'const unsigned int (* * const (* const * [9])[7])[3][4]') self.assertEqual( complex_type.decl('var'), 'const unsigned int (* * const (* const * var[9])[7])[3][4]') def test_struct_decl(self): struct = ast_nodes.StructDecl( name='mystruct', declname='struct mystruct_', fields=[ ast_nodes.StructFieldDecl( name='foo', type=ast_nodes.ValueType('int'), doc='', ) ], ) self.assertEqual(struct.decl('var'), 'mystruct var') def test_anonymous_struct_decl(self): struct = ast_nodes.AnonymousStructDecl( fields=[ ast_nodes.StructFieldDecl( name='foo', type=ast_nodes.ValueType('int'), doc='', ), ast_nodes.StructFieldDecl( name='bar', type=ast_nodes.ArrayType( inner_type=ast_nodes.ValueType('float'), extents=(3,) ), doc='', ), ], ) self.assertEqual(str(struct), 'struct {int foo; float bar[3];}') self.assertEqual(struct.decl('var'), 'struct {int foo; float bar[3];} var') self.assertEqual(struct.fields[0].decltype, 'int') self.assertEqual(struct.fields[1].decltype, 'float [3]') def test_anonymous_union_decl(self): union = ast_nodes.AnonymousUnionDecl( fields=[ ast_nodes.StructFieldDecl( name='foo', type=ast_nodes.ValueType('int'), doc='', ), ast_nodes.StructFieldDecl( name='bar', type=ast_nodes.ArrayType( inner_type=ast_nodes.ValueType('float'), extents=(3,) ), doc='', ), ], ) self.assertEqual(str(union), 'union {int foo; float bar[3];}') self.assertEqual(union.decl('var'), 'union {int foo; float bar[3];} var') if __name__ == '__main__': absltest.main()
mujoco-main
introspect/ast_nodes_test.py
# Copyright 2023 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for structs.py.""" import re from absl.testing import absltest from . import ast_nodes from . import structs from . import type_parsing class StructsTest(absltest.TestCase): def test_mjData(self): # pylint: disable=invalid-name struct_decl = structs.STRUCTS['mjData'] self.assertEqual(struct_decl.name, 'mjData') self.assertEqual(struct_decl.declname, 'struct mjData_') field_names = set() for field in struct_decl.fields: self.assertNotIn(field.name, field_names) field_names.add(field.name) if field.name == 'warning': self.assertEqual(field.type, type_parsing.parse_type('mjWarningStat[8]')) self.assertEqual(field.doc, 'warning statistics') elif field.name == 'qpos': self.assertEqual(field.type, type_parsing.parse_type('mjtNum*')) self.assertEqual(re.sub(r'\s+', ' ', field.doc), 'position (nq x 1)') self.assertIn('warning', field_names) self.assertIn('qpos', field_names) def test_mjVisual(self): # pylint: disable=invalid-name struct_decl = structs.STRUCTS['mjVisual'] self.assertEqual(struct_decl.name, 'mjVisual') self.assertEqual(struct_decl.declname, 'struct mjVisual_') outer_fields = set() for outer_field in struct_decl.fields: self.assertNotIn(outer_field.name, outer_fields) outer_fields.add(outer_field.name) self.assertIsInstance(outer_field.type, ast_nodes.AnonymousStructDecl) inner_fields = set() if outer_field.name == 'global': for inner_field in outer_field.type.fields: self.assertNotIn(inner_field.name, inner_fields) inner_fields.add(inner_field.name) if inner_field.name == 'ipd': self.assertEqual(inner_field.type, type_parsing.parse_type('float')) self.assertEqual( inner_field.doc, 'inter-pupilary distance for free camera' ) elif inner_field.name == 'offwidth': self.assertEqual(inner_field.type, type_parsing.parse_type('int')) self.assertEqual(inner_field.doc, 'width of offscreen buffer') self.assertIn('ipd', inner_fields) self.assertIn('offwidth', inner_fields) elif outer_field.name == 'headlight': for inner_field in outer_field.type.fields: self.assertNotIn(inner_field.name, inner_fields) inner_fields.add(inner_field.name) if inner_field.name in {'ambient', 'diffuse', 'specular'}: self.assertEqual(inner_field.type, type_parsing.parse_type('float[3]')) self.assertEqual(inner_field.doc, f'{inner_field.name} rgb (alpha=1)') elif inner_field.name == 'active': self.assertEqual(inner_field.type, type_parsing.parse_type('int')) self.assertEqual(inner_field.doc, 'is headlight active') self.assertIn('ambient', inner_fields) self.assertIn('diffuse', inner_fields) self.assertIn('specular', inner_fields) self.assertIn('active', inner_fields) self.assertIn('global', outer_fields) self.assertIn('headlight', outer_fields) def test_mjuiItem(self): # pylint: disable=invalid-name struct_decl = structs.STRUCTS['mjuiItem'] self.assertEqual(struct_decl.name, 'mjuiItem') self.assertEqual(struct_decl.declname, 'struct mjuiItem_') found_anonymous_union = False outer_fields = set() for outer_field in struct_decl.fields: if isinstance(outer_field, ast_nodes.AnonymousUnionDecl): self.assertFalse(found_anonymous_union) found_anonymous_union = True inner_fields = set() for inner_field in outer_field.fields: self.assertNotIn(inner_field.name, inner_fields) inner_fields.add(inner_field.name) if inner_field.name == 'single': self.assertEqual(inner_field.type, type_parsing.parse_type('struct mjuiItemSingle_')) self.assertEqual(inner_field.doc, 'check and button') elif inner_field.name == 'multi': self.assertEqual(inner_field.type, type_parsing.parse_type('struct mjuiItemMulti_')) self.assertEqual(inner_field.doc, 'static, radio and select') self.assertIn('single', inner_fields) self.assertIn('multi', inner_fields) else: self.assertNotIn(outer_field.name, outer_fields) outer_fields.add(outer_field.name) if outer_field.name == 'pdata': self.assertEqual(outer_field.type, type_parsing.parse_type('void*')) self.assertEqual(outer_field.doc, 'data pointer (type-specific)') self.assertTrue(found_anonymous_union) self.assertIn('pdata', outer_fields) if __name__ == '__main__': absltest.main()
mujoco-main
introspect/structs_test.py
# Copyright 2023 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Provides information about MuJoCo API structs. DO NOT EDIT. THIS FILE IS AUTOMATICALLY GENERATED. """ from typing import Mapping from .ast_nodes import AnonymousStructDecl from .ast_nodes import AnonymousUnionDecl from .ast_nodes import ArrayType from .ast_nodes import PointerType from .ast_nodes import StructDecl from .ast_nodes import StructFieldDecl from .ast_nodes import ValueType STRUCTS: Mapping[str, StructDecl] = dict([ ('mjLROpt', StructDecl( name='mjLROpt', declname='struct mjLROpt_', fields=( StructFieldDecl( name='mode', type=ValueType(name='int'), doc='which actuators to process (mjtLRMode)', ), StructFieldDecl( name='useexisting', type=ValueType(name='int'), doc='use existing length range if available', ), StructFieldDecl( name='uselimit', type=ValueType(name='int'), doc='use joint and tendon limits if available', ), StructFieldDecl( name='accel', type=ValueType(name='mjtNum'), doc='target acceleration used to compute force', ), StructFieldDecl( name='maxforce', type=ValueType(name='mjtNum'), doc='maximum force; 0: no limit', ), StructFieldDecl( name='timeconst', type=ValueType(name='mjtNum'), doc='time constant for velocity reduction; min 0.01', ), StructFieldDecl( name='timestep', type=ValueType(name='mjtNum'), doc='simulation timestep; 0: use mjOption.timestep', ), StructFieldDecl( name='inttotal', type=ValueType(name='mjtNum'), doc='total simulation time interval', ), StructFieldDecl( name='interval', type=ValueType(name='mjtNum'), doc='evaluation time interval (at the end)', ), StructFieldDecl( name='tolrange', type=ValueType(name='mjtNum'), doc='convergence tolerance (relative to range)', ), ), )), ('mjVFS', StructDecl( name='mjVFS', declname='struct mjVFS_', fields=( StructFieldDecl( name='nfile', type=ValueType(name='int'), doc='number of files present', ), StructFieldDecl( name='filename', type=ArrayType( inner_type=ValueType(name='char'), extents=(2000, 1000), ), doc='file name without path', ), StructFieldDecl( name='filesize', type=ArrayType( inner_type=ValueType(name='size_t'), extents=(2000,), ), doc='file size in bytes', ), StructFieldDecl( name='filedata', type=ArrayType( inner_type=PointerType( inner_type=ValueType(name='void'), ), extents=(2000,), ), doc='buffer with file data', ), ), )), ('mjOption', StructDecl( name='mjOption', declname='struct mjOption_', fields=( StructFieldDecl( name='timestep', type=ValueType(name='mjtNum'), doc='timestep', ), StructFieldDecl( name='apirate', type=ValueType(name='mjtNum'), doc='update rate for remote API (Hz)', ), StructFieldDecl( name='impratio', type=ValueType(name='mjtNum'), doc='ratio of friction-to-normal contact impedance', ), StructFieldDecl( name='tolerance', type=ValueType(name='mjtNum'), doc='main solver tolerance', ), StructFieldDecl( name='ls_tolerance', type=ValueType(name='mjtNum'), doc='CG/Newton linesearch tolerance', ), StructFieldDecl( name='noslip_tolerance', type=ValueType(name='mjtNum'), doc='noslip solver tolerance', ), StructFieldDecl( name='mpr_tolerance', type=ValueType(name='mjtNum'), doc='MPR solver tolerance', ), StructFieldDecl( name='gravity', type=ArrayType( inner_type=ValueType(name='mjtNum'), extents=(3,), ), doc='gravitational acceleration', ), StructFieldDecl( name='wind', type=ArrayType( inner_type=ValueType(name='mjtNum'), extents=(3,), ), doc='wind (for lift, drag and viscosity)', ), StructFieldDecl( name='magnetic', type=ArrayType( inner_type=ValueType(name='mjtNum'), extents=(3,), ), doc='global magnetic flux', ), StructFieldDecl( name='density', type=ValueType(name='mjtNum'), doc='density of medium', ), StructFieldDecl( name='viscosity', type=ValueType(name='mjtNum'), doc='viscosity of medium', ), StructFieldDecl( name='o_margin', type=ValueType(name='mjtNum'), doc='margin', ), StructFieldDecl( name='o_solref', type=ArrayType( inner_type=ValueType(name='mjtNum'), extents=(2,), ), doc='solref', ), StructFieldDecl( name='o_solimp', type=ArrayType( inner_type=ValueType(name='mjtNum'), extents=(5,), ), doc='solimp', ), StructFieldDecl( name='integrator', type=ValueType(name='int'), doc='integration mode (mjtIntegrator)', ), StructFieldDecl( name='collision', type=ValueType(name='int'), doc='collision mode (mjtCollision)', ), StructFieldDecl( name='cone', type=ValueType(name='int'), doc='type of friction cone (mjtCone)', ), StructFieldDecl( name='jacobian', type=ValueType(name='int'), doc='type of Jacobian (mjtJacobian)', ), StructFieldDecl( name='solver', type=ValueType(name='int'), doc='solver algorithm (mjtSolver)', ), StructFieldDecl( name='iterations', type=ValueType(name='int'), doc='maximum number of main solver iterations', ), StructFieldDecl( name='ls_iterations', type=ValueType(name='int'), doc='maximum number of CG/Newton linesearch iterations', ), StructFieldDecl( name='noslip_iterations', type=ValueType(name='int'), doc='maximum number of noslip solver iterations', ), StructFieldDecl( name='mpr_iterations', type=ValueType(name='int'), doc='maximum number of MPR solver iterations', ), StructFieldDecl( name='disableflags', type=ValueType(name='int'), doc='bit flags for disabling standard features', ), StructFieldDecl( name='enableflags', type=ValueType(name='int'), doc='bit flags for enabling optional features', ), StructFieldDecl( name='sdf_initpoints', type=ValueType(name='int'), doc='number of starting points for gradient descent', ), StructFieldDecl( name='sdf_iterations', type=ValueType(name='int'), doc='max number of iterations for gradient descent', ), ), )), ('mjVisual', StructDecl( name='mjVisual', declname='struct mjVisual_', fields=( StructFieldDecl( name='global', type=AnonymousStructDecl( fields=( StructFieldDecl( name='fovy', type=ValueType(name='float'), doc='y-field of view for free camera (degrees)', ), StructFieldDecl( name='ipd', type=ValueType(name='float'), doc='inter-pupilary distance for free camera', ), StructFieldDecl( name='azimuth', type=ValueType(name='float'), doc='initial azimuth of free camera (degrees)', ), StructFieldDecl( name='elevation', type=ValueType(name='float'), doc='initial elevation of free camera (degrees)', ), StructFieldDecl( name='linewidth', type=ValueType(name='float'), doc='line width for wireframe and ray rendering', ), StructFieldDecl( name='glow', type=ValueType(name='float'), doc='glow coefficient for selected body', ), StructFieldDecl( name='realtime', type=ValueType(name='float'), doc='initial real-time factor (1: real time)', ), StructFieldDecl( name='offwidth', type=ValueType(name='int'), doc='width of offscreen buffer', ), StructFieldDecl( name='offheight', type=ValueType(name='int'), doc='height of offscreen buffer', ), StructFieldDecl( name='ellipsoidinertia', type=ValueType(name='int'), doc='geom for inertia visualization (0: box, 1: ellipsoid)', # pylint: disable=line-too-long ), ), ), doc='', ), StructFieldDecl( name='quality', type=AnonymousStructDecl( fields=( StructFieldDecl( name='shadowsize', type=ValueType(name='int'), doc='size of shadowmap texture', ), StructFieldDecl( name='offsamples', type=ValueType(name='int'), doc='number of multisamples for offscreen rendering', # pylint: disable=line-too-long ), StructFieldDecl( name='numslices', type=ValueType(name='int'), doc='number of slices for builtin geom drawing', ), StructFieldDecl( name='numstacks', type=ValueType(name='int'), doc='number of stacks for builtin geom drawing', ), StructFieldDecl( name='numquads', type=ValueType(name='int'), doc='number of quads for box rendering', ), ), ), doc='', ), StructFieldDecl( name='headlight', type=AnonymousStructDecl( fields=( StructFieldDecl( name='ambient', type=ArrayType( inner_type=ValueType(name='float'), extents=(3,), ), doc='ambient rgb (alpha=1)', ), StructFieldDecl( name='diffuse', type=ArrayType( inner_type=ValueType(name='float'), extents=(3,), ), doc='diffuse rgb (alpha=1)', ), StructFieldDecl( name='specular', type=ArrayType( inner_type=ValueType(name='float'), extents=(3,), ), doc='specular rgb (alpha=1)', ), StructFieldDecl( name='active', type=ValueType(name='int'), doc='is headlight active', ), ), ), doc='', ), StructFieldDecl( name='map', type=AnonymousStructDecl( fields=( StructFieldDecl( name='stiffness', type=ValueType(name='float'), doc='mouse perturbation stiffness (space->force)', ), StructFieldDecl( name='stiffnessrot', type=ValueType(name='float'), doc='mouse perturbation stiffness (space->torque)', ), StructFieldDecl( name='force', type=ValueType(name='float'), doc='from force units to space units', ), StructFieldDecl( name='torque', type=ValueType(name='float'), doc='from torque units to space units', ), StructFieldDecl( name='alpha', type=ValueType(name='float'), doc='scale geom alphas when transparency is enabled', # pylint: disable=line-too-long ), StructFieldDecl( name='fogstart', type=ValueType(name='float'), doc='OpenGL fog starts at fogstart * mjModel.stat.extent', # pylint: disable=line-too-long ), StructFieldDecl( name='fogend', type=ValueType(name='float'), doc='OpenGL fog ends at fogend * mjModel.stat.extent', # pylint: disable=line-too-long ), StructFieldDecl( name='znear', type=ValueType(name='float'), doc='near clipping plane = znear * mjModel.stat.extent', # pylint: disable=line-too-long ), StructFieldDecl( name='zfar', type=ValueType(name='float'), doc='far clipping plane = zfar * mjModel.stat.extent', # pylint: disable=line-too-long ), StructFieldDecl( name='haze', type=ValueType(name='float'), doc='haze ratio', ), StructFieldDecl( name='shadowclip', type=ValueType(name='float'), doc='directional light: shadowclip * mjModel.stat.extent', # pylint: disable=line-too-long ), StructFieldDecl( name='shadowscale', type=ValueType(name='float'), doc='spot light: shadowscale * light.cutoff', ), StructFieldDecl( name='actuatortendon', type=ValueType(name='float'), doc='scale tendon width', ), ), ), doc='', ), StructFieldDecl( name='scale', type=AnonymousStructDecl( fields=( StructFieldDecl( name='forcewidth', type=ValueType(name='float'), doc='width of force arrow', ), StructFieldDecl( name='contactwidth', type=ValueType(name='float'), doc='contact width', ), StructFieldDecl( name='contactheight', type=ValueType(name='float'), doc='contact height', ), StructFieldDecl( name='connect', type=ValueType(name='float'), doc='autoconnect capsule width', ), StructFieldDecl( name='com', type=ValueType(name='float'), doc='com radius', ), StructFieldDecl( name='camera', type=ValueType(name='float'), doc='camera object', ), StructFieldDecl( name='light', type=ValueType(name='float'), doc='light object', ), StructFieldDecl( name='selectpoint', type=ValueType(name='float'), doc='selection point', ), StructFieldDecl( name='jointlength', type=ValueType(name='float'), doc='joint length', ), StructFieldDecl( name='jointwidth', type=ValueType(name='float'), doc='joint width', ), StructFieldDecl( name='actuatorlength', type=ValueType(name='float'), doc='actuator length', ), StructFieldDecl( name='actuatorwidth', type=ValueType(name='float'), doc='actuator width', ), StructFieldDecl( name='framelength', type=ValueType(name='float'), doc='bodyframe axis length', ), StructFieldDecl( name='framewidth', type=ValueType(name='float'), doc='bodyframe axis width', ), StructFieldDecl( name='constraint', type=ValueType(name='float'), doc='constraint width', ), StructFieldDecl( name='slidercrank', type=ValueType(name='float'), doc='slidercrank width', ), ), ), doc='', ), StructFieldDecl( name='rgba', type=AnonymousStructDecl( fields=( StructFieldDecl( name='fog', type=ArrayType( inner_type=ValueType(name='float'), extents=(4,), ), doc='fog', ), StructFieldDecl( name='haze', type=ArrayType( inner_type=ValueType(name='float'), extents=(4,), ), doc='haze', ), StructFieldDecl( name='force', type=ArrayType( inner_type=ValueType(name='float'), extents=(4,), ), doc='external force', ), StructFieldDecl( name='inertia', type=ArrayType( inner_type=ValueType(name='float'), extents=(4,), ), doc='inertia box', ), StructFieldDecl( name='joint', type=ArrayType( inner_type=ValueType(name='float'), extents=(4,), ), doc='joint', ), StructFieldDecl( name='actuator', type=ArrayType( inner_type=ValueType(name='float'), extents=(4,), ), doc='actuator, neutral', ), StructFieldDecl( name='actuatornegative', type=ArrayType( inner_type=ValueType(name='float'), extents=(4,), ), doc='actuator, negative limit', ), StructFieldDecl( name='actuatorpositive', type=ArrayType( inner_type=ValueType(name='float'), extents=(4,), ), doc='actuator, positive limit', ), StructFieldDecl( name='com', type=ArrayType( inner_type=ValueType(name='float'), extents=(4,), ), doc='center of mass', ), StructFieldDecl( name='camera', type=ArrayType( inner_type=ValueType(name='float'), extents=(4,), ), doc='camera object', ), StructFieldDecl( name='light', type=ArrayType( inner_type=ValueType(name='float'), extents=(4,), ), doc='light object', ), StructFieldDecl( name='selectpoint', type=ArrayType( inner_type=ValueType(name='float'), extents=(4,), ), doc='selection point', ), StructFieldDecl( name='connect', type=ArrayType( inner_type=ValueType(name='float'), extents=(4,), ), doc='auto connect', ), StructFieldDecl( name='contactpoint', type=ArrayType( inner_type=ValueType(name='float'), extents=(4,), ), doc='contact point', ), StructFieldDecl( name='contactforce', type=ArrayType( inner_type=ValueType(name='float'), extents=(4,), ), doc='contact force', ), StructFieldDecl( name='contactfriction', type=ArrayType( inner_type=ValueType(name='float'), extents=(4,), ), doc='contact friction force', ), StructFieldDecl( name='contacttorque', type=ArrayType( inner_type=ValueType(name='float'), extents=(4,), ), doc='contact torque', ), StructFieldDecl( name='contactgap', type=ArrayType( inner_type=ValueType(name='float'), extents=(4,), ), doc='contact point in gap', ), StructFieldDecl( name='rangefinder', type=ArrayType( inner_type=ValueType(name='float'), extents=(4,), ), doc='rangefinder ray', ), StructFieldDecl( name='constraint', type=ArrayType( inner_type=ValueType(name='float'), extents=(4,), ), doc='constraint', ), StructFieldDecl( name='slidercrank', type=ArrayType( inner_type=ValueType(name='float'), extents=(4,), ), doc='slidercrank', ), StructFieldDecl( name='crankbroken', type=ArrayType( inner_type=ValueType(name='float'), extents=(4,), ), doc='used when crank must be stretched/broken', ), ), ), doc='', ), ), )), ('mjStatistic', StructDecl( name='mjStatistic', declname='struct mjStatistic_', fields=( StructFieldDecl( name='meaninertia', type=ValueType(name='mjtNum'), doc='mean diagonal inertia', ), StructFieldDecl( name='meanmass', type=ValueType(name='mjtNum'), doc='mean body mass', ), StructFieldDecl( name='meansize', type=ValueType(name='mjtNum'), doc='mean body size', ), StructFieldDecl( name='extent', type=ValueType(name='mjtNum'), doc='spatial extent', ), StructFieldDecl( name='center', type=ArrayType( inner_type=ValueType(name='mjtNum'), extents=(3,), ), doc='center of model', ), ), )), ('mjModel', StructDecl( name='mjModel', declname='struct mjModel_', fields=( StructFieldDecl( name='nq', type=ValueType(name='int'), doc='number of generalized coordinates = dim(qpos)', ), StructFieldDecl( name='nv', type=ValueType(name='int'), doc='number of degrees of freedom = dim(qvel)', ), StructFieldDecl( name='nu', type=ValueType(name='int'), doc='number of actuators/controls = dim(ctrl)', ), StructFieldDecl( name='na', type=ValueType(name='int'), doc='number of activation states = dim(act)', ), StructFieldDecl( name='nbody', type=ValueType(name='int'), doc='number of bodies', ), StructFieldDecl( name='nbvh', type=ValueType(name='int'), doc='number of bounding volumes in all bodies', ), StructFieldDecl( name='njnt', type=ValueType(name='int'), doc='number of joints', ), StructFieldDecl( name='ngeom', type=ValueType(name='int'), doc='number of geoms', ), StructFieldDecl( name='nsite', type=ValueType(name='int'), doc='number of sites', ), StructFieldDecl( name='ncam', type=ValueType(name='int'), doc='number of cameras', ), StructFieldDecl( name='nlight', type=ValueType(name='int'), doc='number of lights', ), StructFieldDecl( name='nmesh', type=ValueType(name='int'), doc='number of meshes', ), StructFieldDecl( name='nmeshvert', type=ValueType(name='int'), doc='number of vertices in all meshes', ), StructFieldDecl( name='nmeshnormal', type=ValueType(name='int'), doc='number of normals in all meshes', ), StructFieldDecl( name='nmeshtexcoord', type=ValueType(name='int'), doc='number of texcoords in all meshes', ), StructFieldDecl( name='nmeshface', type=ValueType(name='int'), doc='number of triangular faces in all meshes', ), StructFieldDecl( name='nmeshgraph', type=ValueType(name='int'), doc='number of ints in mesh auxiliary data', ), StructFieldDecl( name='nskin', type=ValueType(name='int'), doc='number of skins', ), StructFieldDecl( name='nskinvert', type=ValueType(name='int'), doc='number of vertices in all skins', ), StructFieldDecl( name='nskintexvert', type=ValueType(name='int'), doc='number of vertiex with texcoords in all skins', ), StructFieldDecl( name='nskinface', type=ValueType(name='int'), doc='number of triangular faces in all skins', ), StructFieldDecl( name='nskinbone', type=ValueType(name='int'), doc='number of bones in all skins', ), StructFieldDecl( name='nskinbonevert', type=ValueType(name='int'), doc='number of vertices in all skin bones', ), StructFieldDecl( name='nhfield', type=ValueType(name='int'), doc='number of heightfields', ), StructFieldDecl( name='nhfielddata', type=ValueType(name='int'), doc='number of data points in all heightfields', ), StructFieldDecl( name='ntex', type=ValueType(name='int'), doc='number of textures', ), StructFieldDecl( name='ntexdata', type=ValueType(name='int'), doc='number of bytes in texture rgb data', ), StructFieldDecl( name='nmat', type=ValueType(name='int'), doc='number of materials', ), StructFieldDecl( name='npair', type=ValueType(name='int'), doc='number of predefined geom pairs', ), StructFieldDecl( name='nexclude', type=ValueType(name='int'), doc='number of excluded geom pairs', ), StructFieldDecl( name='neq', type=ValueType(name='int'), doc='number of equality constraints', ), StructFieldDecl( name='ntendon', type=ValueType(name='int'), doc='number of tendons', ), StructFieldDecl( name='nwrap', type=ValueType(name='int'), doc='number of wrap objects in all tendon paths', ), StructFieldDecl( name='nsensor', type=ValueType(name='int'), doc='number of sensors', ), StructFieldDecl( name='nnumeric', type=ValueType(name='int'), doc='number of numeric custom fields', ), StructFieldDecl( name='nnumericdata', type=ValueType(name='int'), doc='number of mjtNums in all numeric fields', ), StructFieldDecl( name='ntext', type=ValueType(name='int'), doc='number of text custom fields', ), StructFieldDecl( name='ntextdata', type=ValueType(name='int'), doc='number of mjtBytes in all text fields', ), StructFieldDecl( name='ntuple', type=ValueType(name='int'), doc='number of tuple custom fields', ), StructFieldDecl( name='ntupledata', type=ValueType(name='int'), doc='number of objects in all tuple fields', ), StructFieldDecl( name='nkey', type=ValueType(name='int'), doc='number of keyframes', ), StructFieldDecl( name='nmocap', type=ValueType(name='int'), doc='number of mocap bodies', ), StructFieldDecl( name='nplugin', type=ValueType(name='int'), doc='number of plugin instances', ), StructFieldDecl( name='npluginattr', type=ValueType(name='int'), doc='number of chars in all plugin config attributes', ), StructFieldDecl( name='nuser_body', type=ValueType(name='int'), doc='number of mjtNums in body_user', ), StructFieldDecl( name='nuser_jnt', type=ValueType(name='int'), doc='number of mjtNums in jnt_user', ), StructFieldDecl( name='nuser_geom', type=ValueType(name='int'), doc='number of mjtNums in geom_user', ), StructFieldDecl( name='nuser_site', type=ValueType(name='int'), doc='number of mjtNums in site_user', ), StructFieldDecl( name='nuser_cam', type=ValueType(name='int'), doc='number of mjtNums in cam_user', ), StructFieldDecl( name='nuser_tendon', type=ValueType(name='int'), doc='number of mjtNums in tendon_user', ), StructFieldDecl( name='nuser_actuator', type=ValueType(name='int'), doc='number of mjtNums in actuator_user', ), StructFieldDecl( name='nuser_sensor', type=ValueType(name='int'), doc='number of mjtNums in sensor_user', ), StructFieldDecl( name='nnames', type=ValueType(name='int'), doc='number of chars in all names', ), StructFieldDecl( name='nnames_map', type=ValueType(name='int'), doc='number of slots in the names hash map', ), StructFieldDecl( name='nM', type=ValueType(name='int'), doc='number of non-zeros in sparse inertia matrix', ), StructFieldDecl( name='nD', type=ValueType(name='int'), doc='number of non-zeros in sparse dof-dof matrix', ), StructFieldDecl( name='nB', type=ValueType(name='int'), doc='number of non-zeros in sparse body-dof matrix', ), StructFieldDecl( name='ntree', type=ValueType(name='int'), doc='number of kinematic trees under world body', ), StructFieldDecl( name='nemax', type=ValueType(name='int'), doc='number of potential equality-constraint rows', ), StructFieldDecl( name='njmax', type=ValueType(name='int'), doc='number of available rows in constraint Jacobian', ), StructFieldDecl( name='nconmax', type=ValueType(name='int'), doc='number of potential contacts in contact list', ), StructFieldDecl( name='nuserdata', type=ValueType(name='int'), doc='number of extra fields in mjData', ), StructFieldDecl( name='nsensordata', type=ValueType(name='int'), doc='number of fields in sensor data vector', ), StructFieldDecl( name='npluginstate', type=ValueType(name='int'), doc='number of fields in plugin state vector', ), StructFieldDecl( name='narena', type=ValueType(name='size_t'), doc='number of bytes in the mjData arena (inclusive of stack)', ), StructFieldDecl( name='nbuffer', type=ValueType(name='size_t'), doc='number of bytes in buffer', ), StructFieldDecl( name='opt', type=ValueType(name='mjOption'), doc='physics options', ), StructFieldDecl( name='vis', type=ValueType(name='mjVisual'), doc='visualization options', ), StructFieldDecl( name='stat', type=ValueType(name='mjStatistic'), doc='model statistics', ), StructFieldDecl( name='buffer', type=PointerType( inner_type=ValueType(name='void'), ), doc='main buffer; all pointers point in it (nbuffer)', ), StructFieldDecl( name='qpos0', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='qpos values at default pose (nq x 1)', ), StructFieldDecl( name='qpos_spring', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='reference pose for springs (nq x 1)', ), StructFieldDecl( name='body_parentid', type=PointerType( inner_type=ValueType(name='int'), ), doc="id of body's parent (nbody x 1)", ), StructFieldDecl( name='body_rootid', type=PointerType( inner_type=ValueType(name='int'), ), doc='id of root above body (nbody x 1)', ), StructFieldDecl( name='body_weldid', type=PointerType( inner_type=ValueType(name='int'), ), doc='id of body that this body is welded to (nbody x 1)', ), StructFieldDecl( name='body_mocapid', type=PointerType( inner_type=ValueType(name='int'), ), doc='id of mocap data; -1: none (nbody x 1)', ), StructFieldDecl( name='body_jntnum', type=PointerType( inner_type=ValueType(name='int'), ), doc='number of joints for this body (nbody x 1)', ), StructFieldDecl( name='body_jntadr', type=PointerType( inner_type=ValueType(name='int'), ), doc='start addr of joints; -1: no joints (nbody x 1)', ), StructFieldDecl( name='body_dofnum', type=PointerType( inner_type=ValueType(name='int'), ), doc='number of motion degrees of freedom (nbody x 1)', ), StructFieldDecl( name='body_dofadr', type=PointerType( inner_type=ValueType(name='int'), ), doc='start addr of dofs; -1: no dofs (nbody x 1)', ), StructFieldDecl( name='body_treeid', type=PointerType( inner_type=ValueType(name='int'), ), doc="id of body's kinematic tree; -1: static (nbody x 1)", ), StructFieldDecl( name='body_geomnum', type=PointerType( inner_type=ValueType(name='int'), ), doc='number of geoms (nbody x 1)', ), StructFieldDecl( name='body_geomadr', type=PointerType( inner_type=ValueType(name='int'), ), doc='start addr of geoms; -1: no geoms (nbody x 1)', ), StructFieldDecl( name='body_simple', type=PointerType( inner_type=ValueType(name='mjtByte'), ), doc='body is simple (has diagonal M) (nbody x 1)', ), StructFieldDecl( name='body_sameframe', type=PointerType( inner_type=ValueType(name='mjtByte'), ), doc='inertial frame is same as body frame (nbody x 1)', ), StructFieldDecl( name='body_pos', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='position offset rel. to parent body (nbody x 3)', ), StructFieldDecl( name='body_quat', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='orientation offset rel. to parent body (nbody x 4)', ), StructFieldDecl( name='body_ipos', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='local position of center of mass (nbody x 3)', ), StructFieldDecl( name='body_iquat', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='local orientation of inertia ellipsoid (nbody x 4)', ), StructFieldDecl( name='body_mass', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='mass (nbody x 1)', ), StructFieldDecl( name='body_subtreemass', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='mass of subtree starting at this body (nbody x 1)', ), StructFieldDecl( name='body_inertia', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='diagonal inertia in ipos/iquat frame (nbody x 3)', ), StructFieldDecl( name='body_invweight0', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='mean inv inert in qpos0 (trn, rot) (nbody x 2)', ), StructFieldDecl( name='body_gravcomp', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='antigravity force, units of body weight (nbody x 1)', ), StructFieldDecl( name='body_user', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='user data (nbody x nuser_body)', # pylint: disable=line-too-long ), StructFieldDecl( name='body_plugin', type=PointerType( inner_type=ValueType(name='int'), ), doc='plugin instance id; -1: not in use (nbody x 1)', ), StructFieldDecl( name='body_bvhadr', type=PointerType( inner_type=ValueType(name='int'), ), doc='address of bvh root (nbody x 1)', ), StructFieldDecl( name='body_bvhnum', type=PointerType( inner_type=ValueType(name='int'), ), doc='number of bounding volumes (nbody x 1)', ), StructFieldDecl( name='bvh_depth', type=PointerType( inner_type=ValueType(name='int'), ), doc='depth in the bounding volume hierarchy (nbvh x 1)', ), StructFieldDecl( name='bvh_child', type=PointerType( inner_type=ValueType(name='int'), ), doc='left and right children in tree (nbvh x 2)', ), StructFieldDecl( name='bvh_geomid', type=PointerType( inner_type=ValueType(name='int'), ), doc='geom id of the node; -1: non-leaf (nbvh x 1)', ), StructFieldDecl( name='bvh_aabb', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='bounding box of node (center, size) (nbvh x 6)', ), StructFieldDecl( name='jnt_type', type=PointerType( inner_type=ValueType(name='int'), ), doc='type of joint (mjtJoint) (njnt x 1)', ), StructFieldDecl( name='jnt_qposadr', type=PointerType( inner_type=ValueType(name='int'), ), doc="start addr in 'qpos' for joint's data (njnt x 1)", ), StructFieldDecl( name='jnt_dofadr', type=PointerType( inner_type=ValueType(name='int'), ), doc="start addr in 'qvel' for joint's data (njnt x 1)", ), StructFieldDecl( name='jnt_bodyid', type=PointerType( inner_type=ValueType(name='int'), ), doc="id of joint's body (njnt x 1)", ), StructFieldDecl( name='jnt_group', type=PointerType( inner_type=ValueType(name='int'), ), doc='group for visibility (njnt x 1)', ), StructFieldDecl( name='jnt_limited', type=PointerType( inner_type=ValueType(name='mjtByte'), ), doc='does joint have limits (njnt x 1)', ), StructFieldDecl( name='jnt_actfrclimited', type=PointerType( inner_type=ValueType(name='mjtByte'), ), doc='does joint have actuator force limits (njnt x 1)', ), StructFieldDecl( name='jnt_solref', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='constraint solver reference: limit (njnt x mjNREF)', ), StructFieldDecl( name='jnt_solimp', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='constraint solver impedance: limit (njnt x mjNIMP)', ), StructFieldDecl( name='jnt_pos', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='local anchor position (njnt x 3)', ), StructFieldDecl( name='jnt_axis', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='local joint axis (njnt x 3)', ), StructFieldDecl( name='jnt_stiffness', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='stiffness coefficient (njnt x 1)', ), StructFieldDecl( name='jnt_range', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='joint limits (njnt x 2)', ), StructFieldDecl( name='jnt_actfrcrange', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='range of total actuator force (njnt x 2)', ), StructFieldDecl( name='jnt_margin', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='min distance for limit detection (njnt x 1)', ), StructFieldDecl( name='jnt_user', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='user data (njnt x nuser_jnt)', # pylint: disable=line-too-long ), StructFieldDecl( name='dof_bodyid', type=PointerType( inner_type=ValueType(name='int'), ), doc="id of dof's body (nv x 1)", ), StructFieldDecl( name='dof_jntid', type=PointerType( inner_type=ValueType(name='int'), ), doc="id of dof's joint (nv x 1)", ), StructFieldDecl( name='dof_parentid', type=PointerType( inner_type=ValueType(name='int'), ), doc="id of dof's parent; -1: none (nv x 1)", ), StructFieldDecl( name='dof_treeid', type=PointerType( inner_type=ValueType(name='int'), ), doc="id of dof's kinematic tree (nv x 1)", ), StructFieldDecl( name='dof_Madr', type=PointerType( inner_type=ValueType(name='int'), ), doc='dof address in M-diagonal (nv x 1)', ), StructFieldDecl( name='dof_simplenum', type=PointerType( inner_type=ValueType(name='int'), ), doc='number of consecutive simple dofs (nv x 1)', ), StructFieldDecl( name='dof_solref', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='constraint solver reference:frictionloss (nv x mjNREF)', ), StructFieldDecl( name='dof_solimp', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='constraint solver impedance:frictionloss (nv x mjNIMP)', ), StructFieldDecl( name='dof_frictionloss', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='dof friction loss (nv x 1)', ), StructFieldDecl( name='dof_armature', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='dof armature inertia/mass (nv x 1)', ), StructFieldDecl( name='dof_damping', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='damping coefficient (nv x 1)', ), StructFieldDecl( name='dof_invweight0', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='diag. inverse inertia in qpos0 (nv x 1)', ), StructFieldDecl( name='dof_M0', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='diag. inertia in qpos0 (nv x 1)', ), StructFieldDecl( name='geom_type', type=PointerType( inner_type=ValueType(name='int'), ), doc='geometric type (mjtGeom) (ngeom x 1)', ), StructFieldDecl( name='geom_contype', type=PointerType( inner_type=ValueType(name='int'), ), doc='geom contact type (ngeom x 1)', ), StructFieldDecl( name='geom_conaffinity', type=PointerType( inner_type=ValueType(name='int'), ), doc='geom contact affinity (ngeom x 1)', ), StructFieldDecl( name='geom_condim', type=PointerType( inner_type=ValueType(name='int'), ), doc='contact dimensionality (1, 3, 4, 6) (ngeom x 1)', ), StructFieldDecl( name='geom_bodyid', type=PointerType( inner_type=ValueType(name='int'), ), doc="id of geom's body (ngeom x 1)", ), StructFieldDecl( name='geom_dataid', type=PointerType( inner_type=ValueType(name='int'), ), doc="id of geom's mesh/hfield; -1: none (ngeom x 1)", ), StructFieldDecl( name='geom_matid', type=PointerType( inner_type=ValueType(name='int'), ), doc='material id for rendering; -1: none (ngeom x 1)', ), StructFieldDecl( name='geom_group', type=PointerType( inner_type=ValueType(name='int'), ), doc='group for visibility (ngeom x 1)', ), StructFieldDecl( name='geom_priority', type=PointerType( inner_type=ValueType(name='int'), ), doc='geom contact priority (ngeom x 1)', ), StructFieldDecl( name='geom_plugin', type=PointerType( inner_type=ValueType(name='int'), ), doc='plugin instance id; -1: not in use (ngeom x 1)', ), StructFieldDecl( name='geom_sameframe', type=PointerType( inner_type=ValueType(name='mjtByte'), ), doc='same as body frame (1) or iframe (2) (ngeom x 1)', ), StructFieldDecl( name='geom_solmix', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='mixing coef for solref/imp in geom pair (ngeom x 1)', ), StructFieldDecl( name='geom_solref', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='constraint solver reference: contact (ngeom x mjNREF)', # pylint: disable=line-too-long ), StructFieldDecl( name='geom_solimp', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='constraint solver impedance: contact (ngeom x mjNIMP)', # pylint: disable=line-too-long ), StructFieldDecl( name='geom_size', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='geom-specific size parameters (ngeom x 3)', ), StructFieldDecl( name='geom_aabb', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='bounding box, (center, size) (ngeom x 6)', ), StructFieldDecl( name='geom_rbound', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='radius of bounding sphere (ngeom x 1)', ), StructFieldDecl( name='geom_pos', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='local position offset rel. to body (ngeom x 3)', ), StructFieldDecl( name='geom_quat', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='local orientation offset rel. to body (ngeom x 4)', ), StructFieldDecl( name='geom_friction', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='friction for (slide, spin, roll) (ngeom x 3)', ), StructFieldDecl( name='geom_margin', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='detect contact if dist<margin(ngeom x 1)', ), StructFieldDecl( name='geom_gap', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='include in solver if dist<margin-gap (ngeom x 1)', ), StructFieldDecl( name='geom_fluid', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='fluid interaction parameters (ngeom x mjNFLUID)', # pylint: disable=line-too-long ), StructFieldDecl( name='geom_user', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='user data (ngeom x nuser_geom)', # pylint: disable=line-too-long ), StructFieldDecl( name='geom_rgba', type=PointerType( inner_type=ValueType(name='float'), ), doc='rgba when material is omitted (ngeom x 4)', ), StructFieldDecl( name='site_type', type=PointerType( inner_type=ValueType(name='int'), ), doc='geom type for rendering (mjtGeom) (nsite x 1)', ), StructFieldDecl( name='site_bodyid', type=PointerType( inner_type=ValueType(name='int'), ), doc="id of site's body (nsite x 1)", ), StructFieldDecl( name='site_matid', type=PointerType( inner_type=ValueType(name='int'), ), doc='material id for rendering; -1: none (nsite x 1)', ), StructFieldDecl( name='site_group', type=PointerType( inner_type=ValueType(name='int'), ), doc='group for visibility (nsite x 1)', ), StructFieldDecl( name='site_sameframe', type=PointerType( inner_type=ValueType(name='mjtByte'), ), doc='same as body frame (1) or iframe (2) (nsite x 1)', ), StructFieldDecl( name='site_size', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='geom size for rendering (nsite x 3)', ), StructFieldDecl( name='site_pos', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='local position offset rel. to body (nsite x 3)', ), StructFieldDecl( name='site_quat', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='local orientation offset rel. to body (nsite x 4)', ), StructFieldDecl( name='site_user', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='user data (nsite x nuser_site)', # pylint: disable=line-too-long ), StructFieldDecl( name='site_rgba', type=PointerType( inner_type=ValueType(name='float'), ), doc='rgba when material is omitted (nsite x 4)', ), StructFieldDecl( name='cam_mode', type=PointerType( inner_type=ValueType(name='int'), ), doc='camera tracking mode (mjtCamLight) (ncam x 1)', ), StructFieldDecl( name='cam_bodyid', type=PointerType( inner_type=ValueType(name='int'), ), doc="id of camera's body (ncam x 1)", ), StructFieldDecl( name='cam_targetbodyid', type=PointerType( inner_type=ValueType(name='int'), ), doc='id of targeted body; -1: none (ncam x 1)', ), StructFieldDecl( name='cam_pos', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='position rel. to body frame (ncam x 3)', ), StructFieldDecl( name='cam_quat', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='orientation rel. to body frame (ncam x 4)', ), StructFieldDecl( name='cam_poscom0', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='global position rel. to sub-com in qpos0 (ncam x 3)', ), StructFieldDecl( name='cam_pos0', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='global position rel. to body in qpos0 (ncam x 3)', ), StructFieldDecl( name='cam_mat0', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='global orientation in qpos0 (ncam x 9)', ), StructFieldDecl( name='cam_resolution', type=PointerType( inner_type=ValueType(name='int'), ), doc='[width, height] in pixels (ncam x 2)', ), StructFieldDecl( name='cam_fovy', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='y-field of view (deg) (ncam x 1)', ), StructFieldDecl( name='cam_ipd', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='inter-pupilary distance (ncam x 1)', ), StructFieldDecl( name='cam_user', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='user data (ncam x nuser_cam)', # pylint: disable=line-too-long ), StructFieldDecl( name='light_mode', type=PointerType( inner_type=ValueType(name='int'), ), doc='light tracking mode (mjtCamLight) (nlight x 1)', ), StructFieldDecl( name='light_bodyid', type=PointerType( inner_type=ValueType(name='int'), ), doc="id of light's body (nlight x 1)", ), StructFieldDecl( name='light_targetbodyid', type=PointerType( inner_type=ValueType(name='int'), ), doc='id of targeted body; -1: none (nlight x 1)', ), StructFieldDecl( name='light_directional', type=PointerType( inner_type=ValueType(name='mjtByte'), ), doc='directional light (nlight x 1)', ), StructFieldDecl( name='light_castshadow', type=PointerType( inner_type=ValueType(name='mjtByte'), ), doc='does light cast shadows (nlight x 1)', ), StructFieldDecl( name='light_active', type=PointerType( inner_type=ValueType(name='mjtByte'), ), doc='is light on (nlight x 1)', ), StructFieldDecl( name='light_pos', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='position rel. to body frame (nlight x 3)', ), StructFieldDecl( name='light_dir', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='direction rel. to body frame (nlight x 3)', ), StructFieldDecl( name='light_poscom0', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='global position rel. to sub-com in qpos0 (nlight x 3)', ), StructFieldDecl( name='light_pos0', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='global position rel. to body in qpos0 (nlight x 3)', ), StructFieldDecl( name='light_dir0', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='global direction in qpos0 (nlight x 3)', ), StructFieldDecl( name='light_attenuation', type=PointerType( inner_type=ValueType(name='float'), ), doc='OpenGL attenuation (quadratic model) (nlight x 3)', ), StructFieldDecl( name='light_cutoff', type=PointerType( inner_type=ValueType(name='float'), ), doc='OpenGL cutoff (nlight x 1)', ), StructFieldDecl( name='light_exponent', type=PointerType( inner_type=ValueType(name='float'), ), doc='OpenGL exponent (nlight x 1)', ), StructFieldDecl( name='light_ambient', type=PointerType( inner_type=ValueType(name='float'), ), doc='ambient rgb (alpha=1) (nlight x 3)', ), StructFieldDecl( name='light_diffuse', type=PointerType( inner_type=ValueType(name='float'), ), doc='diffuse rgb (alpha=1) (nlight x 3)', ), StructFieldDecl( name='light_specular', type=PointerType( inner_type=ValueType(name='float'), ), doc='specular rgb (alpha=1) (nlight x 3)', ), StructFieldDecl( name='mesh_vertadr', type=PointerType( inner_type=ValueType(name='int'), ), doc='first vertex address (nmesh x 1)', ), StructFieldDecl( name='mesh_vertnum', type=PointerType( inner_type=ValueType(name='int'), ), doc='number of vertices (nmesh x 1)', ), StructFieldDecl( name='mesh_faceadr', type=PointerType( inner_type=ValueType(name='int'), ), doc='first face address (nmesh x 1)', ), StructFieldDecl( name='mesh_facenum', type=PointerType( inner_type=ValueType(name='int'), ), doc='number of faces (nmesh x 1)', ), StructFieldDecl( name='mesh_bvhadr', type=PointerType( inner_type=ValueType(name='int'), ), doc='address of bvh root (nmesh x 1)', ), StructFieldDecl( name='mesh_bvhnum', type=PointerType( inner_type=ValueType(name='int'), ), doc='number of bvh (nmesh x 1)', ), StructFieldDecl( name='mesh_normaladr', type=PointerType( inner_type=ValueType(name='int'), ), doc='first normal address (nmesh x 1)', ), StructFieldDecl( name='mesh_normalnum', type=PointerType( inner_type=ValueType(name='int'), ), doc='number of normals (nmesh x 1)', ), StructFieldDecl( name='mesh_texcoordadr', type=PointerType( inner_type=ValueType(name='int'), ), doc='texcoord data address; -1: no texcoord (nmesh x 1)', ), StructFieldDecl( name='mesh_texcoordnum', type=PointerType( inner_type=ValueType(name='int'), ), doc='number of texcoord (nmesh x 1)', ), StructFieldDecl( name='mesh_graphadr', type=PointerType( inner_type=ValueType(name='int'), ), doc='graph data address; -1: no graph (nmesh x 1)', ), StructFieldDecl( name='mesh_pos', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='translation applied to asset vertices (nmesh x 3)', ), StructFieldDecl( name='mesh_quat', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='rotation applied to asset vertices (nmesh x 4)', ), StructFieldDecl( name='mesh_vert', type=PointerType( inner_type=ValueType(name='float'), ), doc='vertex positions for all meshes (nmeshvert x 3)', ), StructFieldDecl( name='mesh_normal', type=PointerType( inner_type=ValueType(name='float'), ), doc='normals for all meshes (nmeshnormal x 3)', # pylint: disable=line-too-long ), StructFieldDecl( name='mesh_texcoord', type=PointerType( inner_type=ValueType(name='float'), ), doc='vertex texcoords for all meshes (nmeshtexcoord x 2)', # pylint: disable=line-too-long ), StructFieldDecl( name='mesh_face', type=PointerType( inner_type=ValueType(name='int'), ), doc='vertex face data (nmeshface x 3)', ), StructFieldDecl( name='mesh_facenormal', type=PointerType( inner_type=ValueType(name='int'), ), doc='normal face data (nmeshface x 3)', ), StructFieldDecl( name='mesh_facetexcoord', type=PointerType( inner_type=ValueType(name='int'), ), doc='texture face data (nmeshface x 3)', ), StructFieldDecl( name='mesh_graph', type=PointerType( inner_type=ValueType(name='int'), ), doc='convex graph data (nmeshgraph x 1)', # pylint: disable=line-too-long ), StructFieldDecl( name='skin_matid', type=PointerType( inner_type=ValueType(name='int'), ), doc='skin material id; -1: none (nskin x 1)', ), StructFieldDecl( name='skin_group', type=PointerType( inner_type=ValueType(name='int'), ), doc='group for visibility (nskin x 1)', ), StructFieldDecl( name='skin_rgba', type=PointerType( inner_type=ValueType(name='float'), ), doc='skin rgba (nskin x 4)', ), StructFieldDecl( name='skin_inflate', type=PointerType( inner_type=ValueType(name='float'), ), doc='inflate skin in normal direction (nskin x 1)', ), StructFieldDecl( name='skin_vertadr', type=PointerType( inner_type=ValueType(name='int'), ), doc='first vertex address (nskin x 1)', ), StructFieldDecl( name='skin_vertnum', type=PointerType( inner_type=ValueType(name='int'), ), doc='number of vertices (nskin x 1)', ), StructFieldDecl( name='skin_texcoordadr', type=PointerType( inner_type=ValueType(name='int'), ), doc='texcoord data address; -1: no texcoord (nskin x 1)', ), StructFieldDecl( name='skin_faceadr', type=PointerType( inner_type=ValueType(name='int'), ), doc='first face address (nskin x 1)', ), StructFieldDecl( name='skin_facenum', type=PointerType( inner_type=ValueType(name='int'), ), doc='number of faces (nskin x 1)', ), StructFieldDecl( name='skin_boneadr', type=PointerType( inner_type=ValueType(name='int'), ), doc='first bone in skin (nskin x 1)', ), StructFieldDecl( name='skin_bonenum', type=PointerType( inner_type=ValueType(name='int'), ), doc='number of bones in skin (nskin x 1)', ), StructFieldDecl( name='skin_vert', type=PointerType( inner_type=ValueType(name='float'), ), doc='vertex positions for all skin meshes (nskinvert x 3)', ), StructFieldDecl( name='skin_texcoord', type=PointerType( inner_type=ValueType(name='float'), ), doc='vertex texcoords for all skin meshes (nskintexvert x 2)', # pylint: disable=line-too-long ), StructFieldDecl( name='skin_face', type=PointerType( inner_type=ValueType(name='int'), ), doc='triangle faces for all skin meshes (nskinface x 3)', ), StructFieldDecl( name='skin_bonevertadr', type=PointerType( inner_type=ValueType(name='int'), ), doc='first vertex in each bone (nskinbone x 1)', ), StructFieldDecl( name='skin_bonevertnum', type=PointerType( inner_type=ValueType(name='int'), ), doc='number of vertices in each bone (nskinbone x 1)', ), StructFieldDecl( name='skin_bonebindpos', type=PointerType( inner_type=ValueType(name='float'), ), doc='bind pos of each bone (nskinbone x 3)', ), StructFieldDecl( name='skin_bonebindquat', type=PointerType( inner_type=ValueType(name='float'), ), doc='bind quat of each bone (nskinbone x 4)', ), StructFieldDecl( name='skin_bonebodyid', type=PointerType( inner_type=ValueType(name='int'), ), doc='body id of each bone (nskinbone x 1)', ), StructFieldDecl( name='skin_bonevertid', type=PointerType( inner_type=ValueType(name='int'), ), doc='mesh ids of vertices in each bone (nskinbonevert x 1)', # pylint: disable=line-too-long ), StructFieldDecl( name='skin_bonevertweight', type=PointerType( inner_type=ValueType(name='float'), ), doc='weights of vertices in each bone (nskinbonevert x 1)', # pylint: disable=line-too-long ), StructFieldDecl( name='hfield_size', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='(x, y, z_top, z_bottom) (nhfield x 4)', ), StructFieldDecl( name='hfield_nrow', type=PointerType( inner_type=ValueType(name='int'), ), doc='number of rows in grid (nhfield x 1)', ), StructFieldDecl( name='hfield_ncol', type=PointerType( inner_type=ValueType(name='int'), ), doc='number of columns in grid (nhfield x 1)', ), StructFieldDecl( name='hfield_adr', type=PointerType( inner_type=ValueType(name='int'), ), doc='address in hfield_data (nhfield x 1)', ), StructFieldDecl( name='hfield_data', type=PointerType( inner_type=ValueType(name='float'), ), doc='elevation data (nhfielddata x 1)', # pylint: disable=line-too-long ), StructFieldDecl( name='tex_type', type=PointerType( inner_type=ValueType(name='int'), ), doc='texture type (mjtTexture) (ntex x 1)', ), StructFieldDecl( name='tex_height', type=PointerType( inner_type=ValueType(name='int'), ), doc='number of rows in texture image (ntex x 1)', ), StructFieldDecl( name='tex_width', type=PointerType( inner_type=ValueType(name='int'), ), doc='number of columns in texture image (ntex x 1)', ), StructFieldDecl( name='tex_adr', type=PointerType( inner_type=ValueType(name='int'), ), doc='address in rgb (ntex x 1)', ), StructFieldDecl( name='tex_rgb', type=PointerType( inner_type=ValueType(name='mjtByte'), ), doc='rgb (alpha = 1) (ntexdata x 1)', ), StructFieldDecl( name='mat_texid', type=PointerType( inner_type=ValueType(name='int'), ), doc='texture id; -1: none (nmat x 1)', ), StructFieldDecl( name='mat_texuniform', type=PointerType( inner_type=ValueType(name='mjtByte'), ), doc='make texture cube uniform (nmat x 1)', ), StructFieldDecl( name='mat_texrepeat', type=PointerType( inner_type=ValueType(name='float'), ), doc='texture repetition for 2d mapping (nmat x 2)', ), StructFieldDecl( name='mat_emission', type=PointerType( inner_type=ValueType(name='float'), ), doc='emission (x rgb) (nmat x 1)', ), StructFieldDecl( name='mat_specular', type=PointerType( inner_type=ValueType(name='float'), ), doc='specular (x white) (nmat x 1)', ), StructFieldDecl( name='mat_shininess', type=PointerType( inner_type=ValueType(name='float'), ), doc='shininess coef (nmat x 1)', ), StructFieldDecl( name='mat_reflectance', type=PointerType( inner_type=ValueType(name='float'), ), doc='reflectance (0: disable) (nmat x 1)', ), StructFieldDecl( name='mat_rgba', type=PointerType( inner_type=ValueType(name='float'), ), doc='rgba (nmat x 4)', ), StructFieldDecl( name='pair_dim', type=PointerType( inner_type=ValueType(name='int'), ), doc='contact dimensionality (npair x 1)', ), StructFieldDecl( name='pair_geom1', type=PointerType( inner_type=ValueType(name='int'), ), doc='id of geom1 (npair x 1)', ), StructFieldDecl( name='pair_geom2', type=PointerType( inner_type=ValueType(name='int'), ), doc='id of geom2 (npair x 1)', ), StructFieldDecl( name='pair_signature', type=PointerType( inner_type=ValueType(name='int'), ), doc='(body1+1)<<16 + body2+1 (npair x 1)', ), StructFieldDecl( name='pair_solref', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='solver reference: contact normal (npair x mjNREF)', # pylint: disable=line-too-long ), StructFieldDecl( name='pair_solreffriction', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='solver reference: contact friction (npair x mjNREF)', # pylint: disable=line-too-long ), StructFieldDecl( name='pair_solimp', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='solver impedance: contact (npair x mjNIMP)', # pylint: disable=line-too-long ), StructFieldDecl( name='pair_margin', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='detect contact if dist<margin(npair x 1)', ), StructFieldDecl( name='pair_gap', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='include in solver if dist<margin-gap (npair x 1)', ), StructFieldDecl( name='pair_friction', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='tangent1, 2, spin, roll1, 2 (npair x 5)', ), StructFieldDecl( name='exclude_signature', type=PointerType( inner_type=ValueType(name='int'), ), doc='(body1+1)<<16 + body2+1 (nexclude x 1)', ), StructFieldDecl( name='eq_type', type=PointerType( inner_type=ValueType(name='int'), ), doc='constraint type (mjtEq) (neq x 1)', ), StructFieldDecl( name='eq_obj1id', type=PointerType( inner_type=ValueType(name='int'), ), doc='id of object 1 (neq x 1)', ), StructFieldDecl( name='eq_obj2id', type=PointerType( inner_type=ValueType(name='int'), ), doc='id of object 2 (neq x 1)', ), StructFieldDecl( name='eq_active', type=PointerType( inner_type=ValueType(name='mjtByte'), ), doc='enable/disable constraint (neq x 1)', ), StructFieldDecl( name='eq_solref', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='constraint solver reference (neq x mjNREF)', ), StructFieldDecl( name='eq_solimp', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='constraint solver impedance (neq x mjNIMP)', ), StructFieldDecl( name='eq_data', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='numeric data for constraint (neq x mjNEQDATA)', # pylint: disable=line-too-long ), StructFieldDecl( name='tendon_adr', type=PointerType( inner_type=ValueType(name='int'), ), doc="address of first object in tendon's path (ntendon x 1)", ), StructFieldDecl( name='tendon_num', type=PointerType( inner_type=ValueType(name='int'), ), doc="number of objects in tendon's path (ntendon x 1)", ), StructFieldDecl( name='tendon_matid', type=PointerType( inner_type=ValueType(name='int'), ), doc='material id for rendering (ntendon x 1)', ), StructFieldDecl( name='tendon_group', type=PointerType( inner_type=ValueType(name='int'), ), doc='group for visibility (ntendon x 1)', ), StructFieldDecl( name='tendon_limited', type=PointerType( inner_type=ValueType(name='mjtByte'), ), doc='does tendon have length limits (ntendon x 1)', ), StructFieldDecl( name='tendon_width', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='width for rendering (ntendon x 1)', ), StructFieldDecl( name='tendon_solref_lim', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='constraint solver reference: limit (ntendon x mjNREF)', # pylint: disable=line-too-long ), StructFieldDecl( name='tendon_solimp_lim', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='constraint solver impedance: limit (ntendon x mjNIMP)', # pylint: disable=line-too-long ), StructFieldDecl( name='tendon_solref_fri', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='constraint solver reference: friction (ntendon x mjNREF)', # pylint: disable=line-too-long ), StructFieldDecl( name='tendon_solimp_fri', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='constraint solver impedance: friction (ntendon x mjNIMP)', # pylint: disable=line-too-long ), StructFieldDecl( name='tendon_range', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='tendon length limits (ntendon x 2)', ), StructFieldDecl( name='tendon_margin', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='min distance for limit detection (ntendon x 1)', ), StructFieldDecl( name='tendon_stiffness', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='stiffness coefficient (ntendon x 1)', ), StructFieldDecl( name='tendon_damping', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='damping coefficient (ntendon x 1)', ), StructFieldDecl( name='tendon_frictionloss', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='loss due to friction (ntendon x 1)', ), StructFieldDecl( name='tendon_lengthspring', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='spring resting length range (ntendon x 2)', ), StructFieldDecl( name='tendon_length0', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='tendon length in qpos0 (ntendon x 1)', ), StructFieldDecl( name='tendon_invweight0', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='inv. weight in qpos0 (ntendon x 1)', ), StructFieldDecl( name='tendon_user', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='user data (ntendon x nuser_tendon)', # pylint: disable=line-too-long ), StructFieldDecl( name='tendon_rgba', type=PointerType( inner_type=ValueType(name='float'), ), doc='rgba when material is omitted (ntendon x 4)', ), StructFieldDecl( name='wrap_type', type=PointerType( inner_type=ValueType(name='int'), ), doc='wrap object type (mjtWrap) (nwrap x 1)', ), StructFieldDecl( name='wrap_objid', type=PointerType( inner_type=ValueType(name='int'), ), doc='object id: geom, site, joint (nwrap x 1)', ), StructFieldDecl( name='wrap_prm', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='divisor, joint coef, or site id (nwrap x 1)', ), StructFieldDecl( name='actuator_trntype', type=PointerType( inner_type=ValueType(name='int'), ), doc='transmission type (mjtTrn) (nu x 1)', ), StructFieldDecl( name='actuator_dyntype', type=PointerType( inner_type=ValueType(name='int'), ), doc='dynamics type (mjtDyn) (nu x 1)', ), StructFieldDecl( name='actuator_gaintype', type=PointerType( inner_type=ValueType(name='int'), ), doc='gain type (mjtGain) (nu x 1)', ), StructFieldDecl( name='actuator_biastype', type=PointerType( inner_type=ValueType(name='int'), ), doc='bias type (mjtBias) (nu x 1)', ), StructFieldDecl( name='actuator_trnid', type=PointerType( inner_type=ValueType(name='int'), ), doc='transmission id: joint, tendon, site (nu x 2)', ), StructFieldDecl( name='actuator_actadr', type=PointerType( inner_type=ValueType(name='int'), ), doc='first activation address; -1: stateless (nu x 1)', ), StructFieldDecl( name='actuator_actnum', type=PointerType( inner_type=ValueType(name='int'), ), doc='number of activation variables (nu x 1)', ), StructFieldDecl( name='actuator_group', type=PointerType( inner_type=ValueType(name='int'), ), doc='group for visibility (nu x 1)', ), StructFieldDecl( name='actuator_ctrllimited', type=PointerType( inner_type=ValueType(name='mjtByte'), ), doc='is control limited (nu x 1)', ), StructFieldDecl( name='actuator_forcelimited', type=PointerType( inner_type=ValueType(name='mjtByte'), ), doc='is force limited (nu x 1)', ), StructFieldDecl( name='actuator_actlimited', type=PointerType( inner_type=ValueType(name='mjtByte'), ), doc='is activation limited (nu x 1)', ), StructFieldDecl( name='actuator_dynprm', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='dynamics parameters (nu x mjNDYN)', ), StructFieldDecl( name='actuator_gainprm', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='gain parameters (nu x mjNGAIN)', ), StructFieldDecl( name='actuator_biasprm', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='bias parameters (nu x mjNBIAS)', ), StructFieldDecl( name='actuator_actearly', type=PointerType( inner_type=ValueType(name='mjtByte'), ), doc='step activation before force (nu x 1)', ), StructFieldDecl( name='actuator_ctrlrange', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='range of controls (nu x 2)', ), StructFieldDecl( name='actuator_forcerange', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='range of forces (nu x 2)', ), StructFieldDecl( name='actuator_actrange', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='range of activations (nu x 2)', ), StructFieldDecl( name='actuator_gear', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='scale length and transmitted force (nu x 6)', ), StructFieldDecl( name='actuator_cranklength', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='crank length for slider-crank (nu x 1)', ), StructFieldDecl( name='actuator_acc0', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='acceleration from unit force in qpos0 (nu x 1)', ), StructFieldDecl( name='actuator_length0', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='actuator length in qpos0 (nu x 1)', ), StructFieldDecl( name='actuator_lengthrange', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='feasible actuator length range (nu x 2)', ), StructFieldDecl( name='actuator_user', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='user data (nu x nuser_actuator)', # pylint: disable=line-too-long ), StructFieldDecl( name='actuator_plugin', type=PointerType( inner_type=ValueType(name='int'), ), doc='plugin instance id; -1: not a plugin (nu x 1)', ), StructFieldDecl( name='sensor_type', type=PointerType( inner_type=ValueType(name='int'), ), doc='sensor type (mjtSensor) (nsensor x 1)', ), StructFieldDecl( name='sensor_datatype', type=PointerType( inner_type=ValueType(name='int'), ), doc='numeric data type (mjtDataType) (nsensor x 1)', ), StructFieldDecl( name='sensor_needstage', type=PointerType( inner_type=ValueType(name='int'), ), doc='required compute stage (mjtStage) (nsensor x 1)', ), StructFieldDecl( name='sensor_objtype', type=PointerType( inner_type=ValueType(name='int'), ), doc='type of sensorized object (mjtObj) (nsensor x 1)', ), StructFieldDecl( name='sensor_objid', type=PointerType( inner_type=ValueType(name='int'), ), doc='id of sensorized object (nsensor x 1)', ), StructFieldDecl( name='sensor_reftype', type=PointerType( inner_type=ValueType(name='int'), ), doc='type of reference frame (mjtObj) (nsensor x 1)', ), StructFieldDecl( name='sensor_refid', type=PointerType( inner_type=ValueType(name='int'), ), doc='id of reference frame; -1: global frame (nsensor x 1)', ), StructFieldDecl( name='sensor_dim', type=PointerType( inner_type=ValueType(name='int'), ), doc='number of scalar outputs (nsensor x 1)', ), StructFieldDecl( name='sensor_adr', type=PointerType( inner_type=ValueType(name='int'), ), doc='address in sensor array (nsensor x 1)', ), StructFieldDecl( name='sensor_cutoff', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='cutoff for real and positive; 0: ignore (nsensor x 1)', ), StructFieldDecl( name='sensor_noise', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='noise standard deviation (nsensor x 1)', ), StructFieldDecl( name='sensor_user', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='user data (nsensor x nuser_sensor)', # pylint: disable=line-too-long ), StructFieldDecl( name='sensor_plugin', type=PointerType( inner_type=ValueType(name='int'), ), doc='plugin instance id; -1: not a plugin (nsensor x 1)', ), StructFieldDecl( name='plugin', type=PointerType( inner_type=ValueType(name='int'), ), doc='globally registered plugin slot number (nplugin x 1)', ), StructFieldDecl( name='plugin_stateadr', type=PointerType( inner_type=ValueType(name='int'), ), doc='address in the plugin state array (nplugin x 1)', ), StructFieldDecl( name='plugin_statenum', type=PointerType( inner_type=ValueType(name='int'), ), doc='number of states in the plugin instance (nplugin x 1)', ), StructFieldDecl( name='plugin_attr', type=PointerType( inner_type=ValueType(name='char'), ), doc='config attributes of plugin instances (npluginattr x 1)', # pylint: disable=line-too-long ), StructFieldDecl( name='plugin_attradr', type=PointerType( inner_type=ValueType(name='int'), ), doc="address to each instance's config attrib (nplugin x 1)", ), StructFieldDecl( name='numeric_adr', type=PointerType( inner_type=ValueType(name='int'), ), doc='address of field in numeric_data (nnumeric x 1)', ), StructFieldDecl( name='numeric_size', type=PointerType( inner_type=ValueType(name='int'), ), doc='size of numeric field (nnumeric x 1)', ), StructFieldDecl( name='numeric_data', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='array of all numeric fields (nnumericdata x 1)', # pylint: disable=line-too-long ), StructFieldDecl( name='text_adr', type=PointerType( inner_type=ValueType(name='int'), ), doc='address of text in text_data (ntext x 1)', ), StructFieldDecl( name='text_size', type=PointerType( inner_type=ValueType(name='int'), ), doc='size of text field (strlen+1) (ntext x 1)', ), StructFieldDecl( name='text_data', type=PointerType( inner_type=ValueType(name='char'), ), doc='array of all text fields (0-terminated) (ntextdata x 1)', ), StructFieldDecl( name='tuple_adr', type=PointerType( inner_type=ValueType(name='int'), ), doc='address of text in text_data (ntuple x 1)', ), StructFieldDecl( name='tuple_size', type=PointerType( inner_type=ValueType(name='int'), ), doc='number of objects in tuple (ntuple x 1)', ), StructFieldDecl( name='tuple_objtype', type=PointerType( inner_type=ValueType(name='int'), ), doc='array of object types in all tuples (ntupledata x 1)', # pylint: disable=line-too-long ), StructFieldDecl( name='tuple_objid', type=PointerType( inner_type=ValueType(name='int'), ), doc='array of object ids in all tuples (ntupledata x 1)', # pylint: disable=line-too-long ), StructFieldDecl( name='tuple_objprm', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='array of object params in all tuples (ntupledata x 1)', # pylint: disable=line-too-long ), StructFieldDecl( name='key_time', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='key time (nkey x 1)', ), StructFieldDecl( name='key_qpos', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='key position (nkey x nq)', ), StructFieldDecl( name='key_qvel', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='key velocity (nkey x nv)', ), StructFieldDecl( name='key_act', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='key activation (nkey x na)', ), StructFieldDecl( name='key_mpos', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='key mocap position (nkey x 3*nmocap)', # pylint: disable=line-too-long ), StructFieldDecl( name='key_mquat', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='key mocap quaternion (nkey x 4*nmocap)', # pylint: disable=line-too-long ), StructFieldDecl( name='key_ctrl', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='key control (nkey x nu)', ), StructFieldDecl( name='name_bodyadr', type=PointerType( inner_type=ValueType(name='int'), ), doc='body name pointers (nbody x 1)', ), StructFieldDecl( name='name_jntadr', type=PointerType( inner_type=ValueType(name='int'), ), doc='joint name pointers (njnt x 1)', ), StructFieldDecl( name='name_geomadr', type=PointerType( inner_type=ValueType(name='int'), ), doc='geom name pointers (ngeom x 1)', ), StructFieldDecl( name='name_siteadr', type=PointerType( inner_type=ValueType(name='int'), ), doc='site name pointers (nsite x 1)', ), StructFieldDecl( name='name_camadr', type=PointerType( inner_type=ValueType(name='int'), ), doc='camera name pointers (ncam x 1)', ), StructFieldDecl( name='name_lightadr', type=PointerType( inner_type=ValueType(name='int'), ), doc='light name pointers (nlight x 1)', ), StructFieldDecl( name='name_meshadr', type=PointerType( inner_type=ValueType(name='int'), ), doc='mesh name pointers (nmesh x 1)', ), StructFieldDecl( name='name_skinadr', type=PointerType( inner_type=ValueType(name='int'), ), doc='skin name pointers (nskin x 1)', ), StructFieldDecl( name='name_hfieldadr', type=PointerType( inner_type=ValueType(name='int'), ), doc='hfield name pointers (nhfield x 1)', ), StructFieldDecl( name='name_texadr', type=PointerType( inner_type=ValueType(name='int'), ), doc='texture name pointers (ntex x 1)', ), StructFieldDecl( name='name_matadr', type=PointerType( inner_type=ValueType(name='int'), ), doc='material name pointers (nmat x 1)', ), StructFieldDecl( name='name_pairadr', type=PointerType( inner_type=ValueType(name='int'), ), doc='geom pair name pointers (npair x 1)', ), StructFieldDecl( name='name_excludeadr', type=PointerType( inner_type=ValueType(name='int'), ), doc='exclude name pointers (nexclude x 1)', ), StructFieldDecl( name='name_eqadr', type=PointerType( inner_type=ValueType(name='int'), ), doc='equality constraint name pointers (neq x 1)', ), StructFieldDecl( name='name_tendonadr', type=PointerType( inner_type=ValueType(name='int'), ), doc='tendon name pointers (ntendon x 1)', ), StructFieldDecl( name='name_actuatoradr', type=PointerType( inner_type=ValueType(name='int'), ), doc='actuator name pointers (nu x 1)', ), StructFieldDecl( name='name_sensoradr', type=PointerType( inner_type=ValueType(name='int'), ), doc='sensor name pointers (nsensor x 1)', ), StructFieldDecl( name='name_numericadr', type=PointerType( inner_type=ValueType(name='int'), ), doc='numeric name pointers (nnumeric x 1)', ), StructFieldDecl( name='name_textadr', type=PointerType( inner_type=ValueType(name='int'), ), doc='text name pointers (ntext x 1)', ), StructFieldDecl( name='name_tupleadr', type=PointerType( inner_type=ValueType(name='int'), ), doc='tuple name pointers (ntuple x 1)', ), StructFieldDecl( name='name_keyadr', type=PointerType( inner_type=ValueType(name='int'), ), doc='keyframe name pointers (nkey x 1)', ), StructFieldDecl( name='name_pluginadr', type=PointerType( inner_type=ValueType(name='int'), ), doc='plugin instance name pointers (nplugin x 1)', ), StructFieldDecl( name='names', type=PointerType( inner_type=ValueType(name='char'), ), doc='names of all objects, 0-terminated (nnames x 1)', ), StructFieldDecl( name='names_map', type=PointerType( inner_type=ValueType(name='int'), ), doc='internal hash map of names (nnames_map x 1)', # pylint: disable=line-too-long ), ), )), ('mjContact', StructDecl( name='mjContact', declname='struct mjContact_', fields=( StructFieldDecl( name='dist', type=ValueType(name='mjtNum'), doc='distance between nearest points; neg: penetration', ), StructFieldDecl( name='pos', type=ArrayType( inner_type=ValueType(name='mjtNum'), extents=(3,), ), doc='position of contact point: midpoint between geoms', ), StructFieldDecl( name='frame', type=ArrayType( inner_type=ValueType(name='mjtNum'), extents=(9,), ), doc='normal is in [0-2]', ), StructFieldDecl( name='includemargin', type=ValueType(name='mjtNum'), doc='include if dist<includemargin=margin-gap', ), StructFieldDecl( name='friction', type=ArrayType( inner_type=ValueType(name='mjtNum'), extents=(5,), ), doc='tangent1, 2, spin, roll1, 2', ), StructFieldDecl( name='solref', type=ArrayType( inner_type=ValueType(name='mjtNum'), extents=(2,), ), doc='constraint solver reference, normal direction', ), StructFieldDecl( name='solreffriction', type=ArrayType( inner_type=ValueType(name='mjtNum'), extents=(2,), ), doc='constraint solver reference, friction directions', ), StructFieldDecl( name='solimp', type=ArrayType( inner_type=ValueType(name='mjtNum'), extents=(5,), ), doc='constraint solver impedance', ), StructFieldDecl( name='mu', type=ValueType(name='mjtNum'), doc='friction of regularized cone, set by mj_makeConstraint', ), StructFieldDecl( name='H', type=ArrayType( inner_type=ValueType(name='mjtNum'), extents=(36,), ), doc='cone Hessian, set by mj_updateConstraint', ), StructFieldDecl( name='dim', type=ValueType(name='int'), doc='contact space dimensionality: 1, 3, 4 or 6', ), StructFieldDecl( name='geom1', type=ValueType(name='int'), doc='id of geom 1', ), StructFieldDecl( name='geom2', type=ValueType(name='int'), doc='id of geom 2', ), StructFieldDecl( name='exclude', type=ValueType(name='int'), doc='0: include, 1: in gap, 2: fused, 3: no dofs', ), StructFieldDecl( name='efc_address', type=ValueType(name='int'), doc='address in efc; -1: not included', ), ), )), ('mjWarningStat', StructDecl( name='mjWarningStat', declname='struct mjWarningStat_', fields=( StructFieldDecl( name='lastinfo', type=ValueType(name='int'), doc='info from last warning', ), StructFieldDecl( name='number', type=ValueType(name='int'), doc='how many times was warning raised', ), ), )), ('mjTimerStat', StructDecl( name='mjTimerStat', declname='struct mjTimerStat_', fields=( StructFieldDecl( name='duration', type=ValueType(name='mjtNum'), doc='cumulative duration', ), StructFieldDecl( name='number', type=ValueType(name='int'), doc='how many times was timer called', ), ), )), ('mjSolverStat', StructDecl( name='mjSolverStat', declname='struct mjSolverStat_', fields=( StructFieldDecl( name='improvement', type=ValueType(name='mjtNum'), doc='cost reduction, scaled by 1/trace(M(qpos0))', ), StructFieldDecl( name='gradient', type=ValueType(name='mjtNum'), doc='gradient norm (primal only, scaled)', ), StructFieldDecl( name='lineslope', type=ValueType(name='mjtNum'), doc='slope in linesearch', ), StructFieldDecl( name='nactive', type=ValueType(name='int'), doc='number of active constraints', ), StructFieldDecl( name='nchange', type=ValueType(name='int'), doc='number of constraint state changes', ), StructFieldDecl( name='neval', type=ValueType(name='int'), doc='number of cost evaluations in line search', ), StructFieldDecl( name='nupdate', type=ValueType(name='int'), doc='number of Cholesky updates in line search', ), ), )), ('mjData', StructDecl( name='mjData', declname='struct mjData_', fields=( StructFieldDecl( name='narena', type=ValueType(name='size_t'), doc='size of the arena in bytes (inclusive of the stack)', ), StructFieldDecl( name='nbuffer', type=ValueType(name='size_t'), doc='size of main buffer in bytes', ), StructFieldDecl( name='nplugin', type=ValueType(name='int'), doc='number of plugin instances', ), StructFieldDecl( name='pstack', type=ValueType(name='size_t'), doc='first available mjtNum address in stack', ), StructFieldDecl( name='pbase', type=ValueType(name='size_t'), doc='value of pstack when mj_markStack was last called', ), StructFieldDecl( name='parena', type=ValueType(name='size_t'), doc='first available byte in arena', ), StructFieldDecl( name='maxuse_stack', type=ValueType(name='size_t'), doc='maximum stack allocation', ), StructFieldDecl( name='maxuse_arena', type=ValueType(name='size_t'), doc='maximum arena allocation', ), StructFieldDecl( name='maxuse_con', type=ValueType(name='int'), doc='maximum number of contacts', ), StructFieldDecl( name='maxuse_efc', type=ValueType(name='int'), doc='maximum number of scalar constraints', ), StructFieldDecl( name='warning', type=ArrayType( inner_type=ValueType(name='mjWarningStat'), extents=(8,), ), doc='warning statistics', ), StructFieldDecl( name='timer', type=ArrayType( inner_type=ValueType(name='mjTimerStat'), extents=(13,), ), doc='timer statistics', ), StructFieldDecl( name='solver', type=ArrayType( inner_type=ValueType(name='mjSolverStat'), extents=(4000,), ), doc='solver statistics per island, per iteration', ), StructFieldDecl( name='solver_nisland', type=ValueType(name='int'), doc='number of islands processed by solver', ), StructFieldDecl( name='solver_niter', type=ArrayType( inner_type=ValueType(name='int'), extents=(20,), ), doc='number of solver iterations, per island', ), StructFieldDecl( name='solver_nnz', type=ArrayType( inner_type=ValueType(name='int'), extents=(20,), ), doc='number of non-zeros in Hessian or efc_AR, per island', ), StructFieldDecl( name='solver_fwdinv', type=ArrayType( inner_type=ValueType(name='mjtNum'), extents=(2,), ), doc='forward-inverse comparison: qfrc, efc', ), StructFieldDecl( name='nbodypair_broad', type=ValueType(name='int'), doc='number of body pairs in collision according to the broad-phase', # pylint: disable=line-too-long ), StructFieldDecl( name='nbodypair_narrow', type=ValueType(name='int'), doc='number of body pairs actually in collision in the narrow-phase', # pylint: disable=line-too-long ), StructFieldDecl( name='ngeompair_mid', type=ValueType(name='int'), doc='number of geom pairs in collision according to the mid-phase', # pylint: disable=line-too-long ), StructFieldDecl( name='ngeompair_narrow', type=ValueType(name='int'), doc='number of geom pairs actually in collision in the narrow-phase', # pylint: disable=line-too-long ), StructFieldDecl( name='ne', type=ValueType(name='int'), doc='number of equality constraints', ), StructFieldDecl( name='nf', type=ValueType(name='int'), doc='number of friction constraints', ), StructFieldDecl( name='nl', type=ValueType(name='int'), doc='number of limit constraints', ), StructFieldDecl( name='nefc', type=ValueType(name='int'), doc='number of constraints', ), StructFieldDecl( name='nnzJ', type=ValueType(name='int'), doc='number of non-zeros in constraint Jacobian', ), StructFieldDecl( name='ncon', type=ValueType(name='int'), doc='number of detected contacts', ), StructFieldDecl( name='nisland', type=ValueType(name='int'), doc='number of detected constraint islands', ), StructFieldDecl( name='time', type=ValueType(name='mjtNum'), doc='simulation time', ), StructFieldDecl( name='energy', type=ArrayType( inner_type=ValueType(name='mjtNum'), extents=(2,), ), doc='potential, kinetic energy', ), StructFieldDecl( name='buffer', type=PointerType( inner_type=ValueType(name='void'), ), doc='main buffer; all pointers point in it (nbuffer bytes)', # pylint: disable=line-too-long ), StructFieldDecl( name='arena', type=PointerType( inner_type=ValueType(name='void'), ), doc='arena+stack buffer (nstack*sizeof(mjtNum) bytes)', # pylint: disable=line-too-long ), StructFieldDecl( name='qpos', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='position (nq x 1)', # pylint: disable=line-too-long ), StructFieldDecl( name='qvel', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='velocity (nv x 1)', # pylint: disable=line-too-long ), StructFieldDecl( name='act', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='actuator activation (na x 1)', # pylint: disable=line-too-long ), StructFieldDecl( name='qacc_warmstart', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='acceleration used for warmstart (nv x 1)', # pylint: disable=line-too-long ), StructFieldDecl( name='plugin_state', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='plugin state (npluginstate x 1)', # pylint: disable=line-too-long ), StructFieldDecl( name='ctrl', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='control (nu x 1)', # pylint: disable=line-too-long ), StructFieldDecl( name='qfrc_applied', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='applied generalized force (nv x 1)', # pylint: disable=line-too-long ), StructFieldDecl( name='xfrc_applied', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='applied Cartesian force/torque (nbody x 6)', # pylint: disable=line-too-long ), StructFieldDecl( name='mocap_pos', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='positions of mocap bodies (nmocap x 3)', # pylint: disable=line-too-long ), StructFieldDecl( name='mocap_quat', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='orientations of mocap bodies (nmocap x 4)', # pylint: disable=line-too-long ), StructFieldDecl( name='qacc', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='acceleration (nv x 1)', # pylint: disable=line-too-long ), StructFieldDecl( name='act_dot', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='time-derivative of actuator activation (na x 1)', # pylint: disable=line-too-long ), StructFieldDecl( name='userdata', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='user data, not touched by engine (nuserdata x 1)', # pylint: disable=line-too-long ), StructFieldDecl( name='sensordata', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='sensor data array (nsensordata x 1)', # pylint: disable=line-too-long ), StructFieldDecl( name='plugin', type=PointerType( inner_type=ValueType(name='int'), ), doc='copy of m->plugin, required for deletion (nplugin x 1)', # pylint: disable=line-too-long ), StructFieldDecl( name='plugin_data', type=PointerType( inner_type=ValueType(name='uintptr_t'), ), doc='pointer to plugin-managed data structure (nplugin x 1)', # pylint: disable=line-too-long ), StructFieldDecl( name='xpos', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='Cartesian position of body frame (nbody x 3)', # pylint: disable=line-too-long ), StructFieldDecl( name='xquat', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='Cartesian orientation of body frame (nbody x 4)', # pylint: disable=line-too-long ), StructFieldDecl( name='xmat', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='Cartesian orientation of body frame (nbody x 9)', # pylint: disable=line-too-long ), StructFieldDecl( name='xipos', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='Cartesian position of body com (nbody x 3)', # pylint: disable=line-too-long ), StructFieldDecl( name='ximat', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='Cartesian orientation of body inertia (nbody x 9)', # pylint: disable=line-too-long ), StructFieldDecl( name='xanchor', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='Cartesian position of joint anchor (njnt x 3)', # pylint: disable=line-too-long ), StructFieldDecl( name='xaxis', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='Cartesian joint axis (njnt x 3)', # pylint: disable=line-too-long ), StructFieldDecl( name='geom_xpos', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='Cartesian geom position (ngeom x 3)', # pylint: disable=line-too-long ), StructFieldDecl( name='geom_xmat', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='Cartesian geom orientation (ngeom x 9)', # pylint: disable=line-too-long ), StructFieldDecl( name='site_xpos', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='Cartesian site position (nsite x 3)', # pylint: disable=line-too-long ), StructFieldDecl( name='site_xmat', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='Cartesian site orientation (nsite x 9)', # pylint: disable=line-too-long ), StructFieldDecl( name='cam_xpos', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='Cartesian camera position (ncam x 3)', # pylint: disable=line-too-long ), StructFieldDecl( name='cam_xmat', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='Cartesian camera orientation (ncam x 9)', # pylint: disable=line-too-long ), StructFieldDecl( name='light_xpos', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='Cartesian light position (nlight x 3)', # pylint: disable=line-too-long ), StructFieldDecl( name='light_xdir', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='Cartesian light direction (nlight x 3)', # pylint: disable=line-too-long ), StructFieldDecl( name='subtree_com', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='center of mass of each subtree (nbody x 3)', # pylint: disable=line-too-long ), StructFieldDecl( name='cdof', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='com-based motion axis of each dof (nv x 6)', # pylint: disable=line-too-long ), StructFieldDecl( name='cinert', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='com-based body inertia and mass (nbody x 10)', # pylint: disable=line-too-long ), StructFieldDecl( name='ten_wrapadr', type=PointerType( inner_type=ValueType(name='int'), ), doc="start address of tendon's path (ntendon x 1)", # pylint: disable=line-too-long ), StructFieldDecl( name='ten_wrapnum', type=PointerType( inner_type=ValueType(name='int'), ), doc='number of wrap points in path (ntendon x 1)', # pylint: disable=line-too-long ), StructFieldDecl( name='ten_J_rownnz', type=PointerType( inner_type=ValueType(name='int'), ), doc='number of non-zeros in Jacobian row (ntendon x 1)', # pylint: disable=line-too-long ), StructFieldDecl( name='ten_J_rowadr', type=PointerType( inner_type=ValueType(name='int'), ), doc='row start address in colind array (ntendon x 1)', # pylint: disable=line-too-long ), StructFieldDecl( name='ten_J_colind', type=PointerType( inner_type=ValueType(name='int'), ), doc='column indices in sparse Jacobian (ntendon x nv)', # pylint: disable=line-too-long ), StructFieldDecl( name='ten_length', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='tendon lengths (ntendon x 1)', # pylint: disable=line-too-long ), StructFieldDecl( name='ten_J', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='tendon Jacobian (ntendon x nv)', # pylint: disable=line-too-long ), StructFieldDecl( name='wrap_obj', type=PointerType( inner_type=ValueType(name='int'), ), doc='geom id; -1: site; -2: pulley (nwrap*2 x 1)', # pylint: disable=line-too-long ), StructFieldDecl( name='wrap_xpos', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='Cartesian 3D points in all path (nwrap*2 x 3)', # pylint: disable=line-too-long ), StructFieldDecl( name='actuator_length', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='actuator lengths (nu x 1)', # pylint: disable=line-too-long ), StructFieldDecl( name='actuator_moment', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='actuator moments (nu x nv)', # pylint: disable=line-too-long ), StructFieldDecl( name='crb', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='com-based composite inertia and mass (nbody x 10)', # pylint: disable=line-too-long ), StructFieldDecl( name='qM', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='total inertia (sparse) (nM x 1)', # pylint: disable=line-too-long ), StructFieldDecl( name='qLD', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc="L'*D*L factorization of M (sparse) (nM x 1)", # pylint: disable=line-too-long ), StructFieldDecl( name='qLDiagInv', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='1/diag(D) (nv x 1)', # pylint: disable=line-too-long ), StructFieldDecl( name='qLDiagSqrtInv', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='1/sqrt(diag(D)) (nv x 1)', # pylint: disable=line-too-long ), StructFieldDecl( name='bvh_active', type=PointerType( inner_type=ValueType(name='mjtByte'), ), doc='volume has been added to collisions (nbvh x 1)', # pylint: disable=line-too-long ), StructFieldDecl( name='ten_velocity', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='tendon velocities (ntendon x 1)', # pylint: disable=line-too-long ), StructFieldDecl( name='actuator_velocity', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='actuator velocities (nu x 1)', # pylint: disable=line-too-long ), StructFieldDecl( name='cvel', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='com-based velocity [3D rot; 3D tran] (nbody x 6)', # pylint: disable=line-too-long ), StructFieldDecl( name='cdof_dot', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='time-derivative of cdof (nv x 6)', # pylint: disable=line-too-long ), StructFieldDecl( name='qfrc_bias', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='C(qpos,qvel) (nv x 1)', # pylint: disable=line-too-long ), StructFieldDecl( name='qfrc_passive', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='passive force (nv x 1)', # pylint: disable=line-too-long ), StructFieldDecl( name='subtree_linvel', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='linear velocity of subtree com (nbody x 3)', # pylint: disable=line-too-long ), StructFieldDecl( name='subtree_angmom', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='angular momentum about subtree com (nbody x 3)', # pylint: disable=line-too-long ), StructFieldDecl( name='qH', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc="L'*D*L factorization of modified M (nM x 1)", # pylint: disable=line-too-long ), StructFieldDecl( name='qHDiagInv', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='1/diag(D) of modified M (nv x 1)', # pylint: disable=line-too-long ), StructFieldDecl( name='D_rownnz', type=PointerType( inner_type=ValueType(name='int'), ), doc='non-zeros in each row (nv x 1)', # pylint: disable=line-too-long ), StructFieldDecl( name='D_rowadr', type=PointerType( inner_type=ValueType(name='int'), ), doc='address of each row in D_colind (nv x 1)', # pylint: disable=line-too-long ), StructFieldDecl( name='D_colind', type=PointerType( inner_type=ValueType(name='int'), ), doc='column indices of non-zeros (nD x 1)', # pylint: disable=line-too-long ), StructFieldDecl( name='B_rownnz', type=PointerType( inner_type=ValueType(name='int'), ), doc='non-zeros in each row (nbody x 1)', # pylint: disable=line-too-long ), StructFieldDecl( name='B_rowadr', type=PointerType( inner_type=ValueType(name='int'), ), doc='address of each row in B_colind (nbody x 1)', # pylint: disable=line-too-long ), StructFieldDecl( name='B_colind', type=PointerType( inner_type=ValueType(name='int'), ), doc='column indices of non-zeros (nB x 1)', # pylint: disable=line-too-long ), StructFieldDecl( name='qDeriv', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='d (passive + actuator - bias) / d qvel (nD x 1)', # pylint: disable=line-too-long ), StructFieldDecl( name='qLU', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='sparse LU of (qM - dt*qDeriv) (nD x 1)', # pylint: disable=line-too-long ), StructFieldDecl( name='actuator_force', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='actuator force in actuation space (nu x 1)', # pylint: disable=line-too-long ), StructFieldDecl( name='qfrc_actuator', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='actuator force (nv x 1)', # pylint: disable=line-too-long ), StructFieldDecl( name='qfrc_smooth', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='net unconstrained force (nv x 1)', # pylint: disable=line-too-long ), StructFieldDecl( name='qacc_smooth', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='unconstrained acceleration (nv x 1)', # pylint: disable=line-too-long ), StructFieldDecl( name='qfrc_constraint', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='constraint force (nv x 1)', # pylint: disable=line-too-long ), StructFieldDecl( name='qfrc_inverse', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc="net external force; should equal: (nv x 1)qfrc_applied + J'*xfrc_applied + qfrc_actuator", # pylint: disable=line-too-long ), StructFieldDecl( name='cacc', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='com-based acceleration (nbody x 6)', # pylint: disable=line-too-long ), StructFieldDecl( name='cfrc_int', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='com-based interaction force with parent (nbody x 6)', # pylint: disable=line-too-long ), StructFieldDecl( name='cfrc_ext', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='com-based external force on body (nbody x 6)', # pylint: disable=line-too-long ), StructFieldDecl( name='contact', type=PointerType( inner_type=ValueType(name='mjContact'), ), doc='list of all detected contacts (ncon x 1)', # pylint: disable=line-too-long ), StructFieldDecl( name='efc_type', type=PointerType( inner_type=ValueType(name='int'), ), doc='constraint type (mjtConstraint) (nefc x 1)', # pylint: disable=line-too-long ), StructFieldDecl( name='efc_id', type=PointerType( inner_type=ValueType(name='int'), ), doc='id of object of specified type (nefc x 1)', # pylint: disable=line-too-long ), StructFieldDecl( name='efc_J_rownnz', type=PointerType( inner_type=ValueType(name='int'), ), doc='number of non-zeros in constraint Jacobian row (nefc x 1)', # pylint: disable=line-too-long ), StructFieldDecl( name='efc_J_rowadr', type=PointerType( inner_type=ValueType(name='int'), ), doc='row start address in colind array (nefc x 1)', # pylint: disable=line-too-long ), StructFieldDecl( name='efc_J_rowsuper', type=PointerType( inner_type=ValueType(name='int'), ), doc='number of subsequent rows in supernode (nefc x 1)', # pylint: disable=line-too-long ), StructFieldDecl( name='efc_J_colind', type=PointerType( inner_type=ValueType(name='int'), ), doc='column indices in constraint Jacobian (nnzJ x 1)', # pylint: disable=line-too-long ), StructFieldDecl( name='efc_JT_rownnz', type=PointerType( inner_type=ValueType(name='int'), ), doc='number of non-zeros in constraint Jacobian row T (nv x 1)', # pylint: disable=line-too-long ), StructFieldDecl( name='efc_JT_rowadr', type=PointerType( inner_type=ValueType(name='int'), ), doc='row start address in colind array T (nv x 1)', # pylint: disable=line-too-long ), StructFieldDecl( name='efc_JT_rowsuper', type=PointerType( inner_type=ValueType(name='int'), ), doc='number of subsequent rows in supernode T (nv x 1)', # pylint: disable=line-too-long ), StructFieldDecl( name='efc_JT_colind', type=PointerType( inner_type=ValueType(name='int'), ), doc='column indices in constraint Jacobian T (nnzJ x 1)', # pylint: disable=line-too-long ), StructFieldDecl( name='efc_J', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='constraint Jacobian (nnzJ x 1)', # pylint: disable=line-too-long ), StructFieldDecl( name='efc_JT', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='constraint Jacobian transposed (nnzJ x 1)', # pylint: disable=line-too-long ), StructFieldDecl( name='efc_pos', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='constraint position (equality, contact) (nefc x 1)', # pylint: disable=line-too-long ), StructFieldDecl( name='efc_margin', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='inclusion margin (contact) (nefc x 1)', # pylint: disable=line-too-long ), StructFieldDecl( name='efc_frictionloss', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='frictionloss (friction) (nefc x 1)', # pylint: disable=line-too-long ), StructFieldDecl( name='efc_diagApprox', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='approximation to diagonal of A (nefc x 1)', # pylint: disable=line-too-long ), StructFieldDecl( name='efc_KBIP', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc="stiffness, damping, impedance, imp' (nefc x 4)", # pylint: disable=line-too-long ), StructFieldDecl( name='efc_D', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='constraint mass (nefc x 1)', # pylint: disable=line-too-long ), StructFieldDecl( name='efc_R', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='inverse constraint mass (nefc x 1)', # pylint: disable=line-too-long ), StructFieldDecl( name='tendon_efcadr', type=PointerType( inner_type=ValueType(name='int'), ), doc='first efc address involving tendon; -1: none (ntendon x 1)', # pylint: disable=line-too-long ), StructFieldDecl( name='dof_island', type=PointerType( inner_type=ValueType(name='int'), ), doc='island id of this dof; -1: none (nv x 1)', # pylint: disable=line-too-long ), StructFieldDecl( name='island_dofnum', type=PointerType( inner_type=ValueType(name='int'), ), doc='number of dofs in island (nisland x 1)', # pylint: disable=line-too-long ), StructFieldDecl( name='island_dofadr', type=PointerType( inner_type=ValueType(name='int'), ), doc='start address in island_dofind (nisland x 1)', # pylint: disable=line-too-long ), StructFieldDecl( name='island_dofind', type=PointerType( inner_type=ValueType(name='int'), ), doc='island dof indices; -1: none (nv x 1)', # pylint: disable=line-too-long ), StructFieldDecl( name='dof_islandind', type=PointerType( inner_type=ValueType(name='int'), ), doc='dof island indices; -1: none (nv x 1)', # pylint: disable=line-too-long ), StructFieldDecl( name='efc_island', type=PointerType( inner_type=ValueType(name='int'), ), doc='island id of this constraint (nefc x 1)', # pylint: disable=line-too-long ), StructFieldDecl( name='island_efcnum', type=PointerType( inner_type=ValueType(name='int'), ), doc='number of constraints in island (nisland x 1)', # pylint: disable=line-too-long ), StructFieldDecl( name='island_efcadr', type=PointerType( inner_type=ValueType(name='int'), ), doc='start address in island_efcind (nisland x 1)', # pylint: disable=line-too-long ), StructFieldDecl( name='island_efcind', type=PointerType( inner_type=ValueType(name='int'), ), doc='island constraint indices (nefc x 1)', # pylint: disable=line-too-long ), StructFieldDecl( name='efc_AR_rownnz', type=PointerType( inner_type=ValueType(name='int'), ), doc='number of non-zeros in AR (nefc x 1)', # pylint: disable=line-too-long ), StructFieldDecl( name='efc_AR_rowadr', type=PointerType( inner_type=ValueType(name='int'), ), doc='row start address in colind array (nefc x 1)', # pylint: disable=line-too-long ), StructFieldDecl( name='efc_AR_colind', type=PointerType( inner_type=ValueType(name='int'), ), doc='column indices in sparse AR (nefc x nefc)', # pylint: disable=line-too-long ), StructFieldDecl( name='efc_AR', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc="J*inv(M)*J' + R (nefc x nefc)", # pylint: disable=line-too-long ), StructFieldDecl( name='efc_vel', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='velocity in constraint space: J*qvel (nefc x 1)', # pylint: disable=line-too-long ), StructFieldDecl( name='efc_aref', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='reference pseudo-acceleration (nefc x 1)', # pylint: disable=line-too-long ), StructFieldDecl( name='efc_b', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='linear cost term: J*qacc_smooth - aref (nefc x 1)', # pylint: disable=line-too-long ), StructFieldDecl( name='efc_force', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='constraint force in constraint space (nefc x 1)', # pylint: disable=line-too-long ), StructFieldDecl( name='efc_state', type=PointerType( inner_type=ValueType(name='int'), ), doc='constraint state (mjtConstraintState) (nefc x 1)', # pylint: disable=line-too-long ), StructFieldDecl( name='threadpool', type=ValueType(name='uintptr_t'), doc='ThreadPool for multithreaded operations', ), ), )), ('mjvPerturb', StructDecl( name='mjvPerturb', declname='struct mjvPerturb_', fields=( StructFieldDecl( name='select', type=ValueType(name='int'), doc='selected body id; non-positive: none', ), StructFieldDecl( name='skinselect', type=ValueType(name='int'), doc='selected skin id; negative: none', ), StructFieldDecl( name='active', type=ValueType(name='int'), doc='perturbation bitmask (mjtPertBit)', ), StructFieldDecl( name='active2', type=ValueType(name='int'), doc='secondary perturbation bitmask (mjtPertBit)', ), StructFieldDecl( name='refpos', type=ArrayType( inner_type=ValueType(name='mjtNum'), extents=(3,), ), doc='reference position for selected object', ), StructFieldDecl( name='refquat', type=ArrayType( inner_type=ValueType(name='mjtNum'), extents=(4,), ), doc='reference orientation for selected object', ), StructFieldDecl( name='refselpos', type=ArrayType( inner_type=ValueType(name='mjtNum'), extents=(3,), ), doc='reference position for selection point', ), StructFieldDecl( name='localpos', type=ArrayType( inner_type=ValueType(name='mjtNum'), extents=(3,), ), doc='selection point in object coordinates', ), StructFieldDecl( name='localmass', type=ValueType(name='mjtNum'), doc='spatial inertia at selection point', ), StructFieldDecl( name='scale', type=ValueType(name='mjtNum'), doc='relative mouse motion-to-space scaling (set by initPerturb)', # pylint: disable=line-too-long ), ), )), ('mjvCamera', StructDecl( name='mjvCamera', declname='struct mjvCamera_', fields=( StructFieldDecl( name='type', type=ValueType(name='int'), doc='camera type (mjtCamera)', ), StructFieldDecl( name='fixedcamid', type=ValueType(name='int'), doc='fixed camera id', ), StructFieldDecl( name='trackbodyid', type=ValueType(name='int'), doc='body id to track', ), StructFieldDecl( name='lookat', type=ArrayType( inner_type=ValueType(name='mjtNum'), extents=(3,), ), doc='lookat point', ), StructFieldDecl( name='distance', type=ValueType(name='mjtNum'), doc='distance to lookat point or tracked body', ), StructFieldDecl( name='azimuth', type=ValueType(name='mjtNum'), doc='camera azimuth (deg)', ), StructFieldDecl( name='elevation', type=ValueType(name='mjtNum'), doc='camera elevation (deg)', ), ), )), ('mjvGLCamera', StructDecl( name='mjvGLCamera', declname='struct mjvGLCamera_', fields=( StructFieldDecl( name='pos', type=ArrayType( inner_type=ValueType(name='float'), extents=(3,), ), doc='position', ), StructFieldDecl( name='forward', type=ArrayType( inner_type=ValueType(name='float'), extents=(3,), ), doc='forward direction', ), StructFieldDecl( name='up', type=ArrayType( inner_type=ValueType(name='float'), extents=(3,), ), doc='up direction', ), StructFieldDecl( name='frustum_center', type=ValueType(name='float'), doc='hor. center (left,right set to match aspect)', ), StructFieldDecl( name='frustum_bottom', type=ValueType(name='float'), doc='bottom', ), StructFieldDecl( name='frustum_top', type=ValueType(name='float'), doc='top', ), StructFieldDecl( name='frustum_near', type=ValueType(name='float'), doc='near', ), StructFieldDecl( name='frustum_far', type=ValueType(name='float'), doc='far', ), ), )), ('mjvGeom', StructDecl( name='mjvGeom', declname='struct mjvGeom_', fields=( StructFieldDecl( name='type', type=ValueType(name='int'), doc='geom type (mjtGeom)', ), StructFieldDecl( name='dataid', type=ValueType(name='int'), doc='mesh, hfield or plane id; -1: none', ), StructFieldDecl( name='objtype', type=ValueType(name='int'), doc='mujoco object type; mjOBJ_UNKNOWN for decor', ), StructFieldDecl( name='objid', type=ValueType(name='int'), doc='mujoco object id; -1 for decor', ), StructFieldDecl( name='category', type=ValueType(name='int'), doc='visual category', ), StructFieldDecl( name='texid', type=ValueType(name='int'), doc='texture id; -1: no texture', ), StructFieldDecl( name='texuniform', type=ValueType(name='int'), doc='uniform cube mapping', ), StructFieldDecl( name='texcoord', type=ValueType(name='int'), doc='mesh geom has texture coordinates', ), StructFieldDecl( name='segid', type=ValueType(name='int'), doc='segmentation id; -1: not shown', ), StructFieldDecl( name='texrepeat', type=ArrayType( inner_type=ValueType(name='float'), extents=(2,), ), doc='texture repetition for 2D mapping', ), StructFieldDecl( name='size', type=ArrayType( inner_type=ValueType(name='float'), extents=(3,), ), doc='size parameters', ), StructFieldDecl( name='pos', type=ArrayType( inner_type=ValueType(name='float'), extents=(3,), ), doc='Cartesian position', ), StructFieldDecl( name='mat', type=ArrayType( inner_type=ValueType(name='float'), extents=(9,), ), doc='Cartesian orientation', ), StructFieldDecl( name='rgba', type=ArrayType( inner_type=ValueType(name='float'), extents=(4,), ), doc='color and transparency', ), StructFieldDecl( name='emission', type=ValueType(name='float'), doc='emission coef', ), StructFieldDecl( name='specular', type=ValueType(name='float'), doc='specular coef', ), StructFieldDecl( name='shininess', type=ValueType(name='float'), doc='shininess coef', ), StructFieldDecl( name='reflectance', type=ValueType(name='float'), doc='reflectance coef', ), StructFieldDecl( name='label', type=ArrayType( inner_type=ValueType(name='char'), extents=(100,), ), doc='text label', ), StructFieldDecl( name='camdist', type=ValueType(name='float'), doc='distance to camera (used by sorter)', ), StructFieldDecl( name='modelrbound', type=ValueType(name='float'), doc='geom rbound from model, 0 if not model geom', ), StructFieldDecl( name='transparent', type=ValueType(name='mjtByte'), doc='treat geom as transparent', ), ), )), ('mjvLight', StructDecl( name='mjvLight', declname='struct mjvLight_', fields=( StructFieldDecl( name='pos', type=ArrayType( inner_type=ValueType(name='float'), extents=(3,), ), doc='position rel. to body frame', ), StructFieldDecl( name='dir', type=ArrayType( inner_type=ValueType(name='float'), extents=(3,), ), doc='direction rel. to body frame', ), StructFieldDecl( name='attenuation', type=ArrayType( inner_type=ValueType(name='float'), extents=(3,), ), doc='OpenGL attenuation (quadratic model)', ), StructFieldDecl( name='cutoff', type=ValueType(name='float'), doc='OpenGL cutoff', ), StructFieldDecl( name='exponent', type=ValueType(name='float'), doc='OpenGL exponent', ), StructFieldDecl( name='ambient', type=ArrayType( inner_type=ValueType(name='float'), extents=(3,), ), doc='ambient rgb (alpha=1)', ), StructFieldDecl( name='diffuse', type=ArrayType( inner_type=ValueType(name='float'), extents=(3,), ), doc='diffuse rgb (alpha=1)', ), StructFieldDecl( name='specular', type=ArrayType( inner_type=ValueType(name='float'), extents=(3,), ), doc='specular rgb (alpha=1)', ), StructFieldDecl( name='headlight', type=ValueType(name='mjtByte'), doc='headlight', ), StructFieldDecl( name='directional', type=ValueType(name='mjtByte'), doc='directional light', ), StructFieldDecl( name='castshadow', type=ValueType(name='mjtByte'), doc='does light cast shadows', ), ), )), ('mjvOption', StructDecl( name='mjvOption', declname='struct mjvOption_', fields=( StructFieldDecl( name='label', type=ValueType(name='int'), doc='what objects to label (mjtLabel)', ), StructFieldDecl( name='frame', type=ValueType(name='int'), doc='which frame to show (mjtFrame)', ), StructFieldDecl( name='geomgroup', type=ArrayType( inner_type=ValueType(name='mjtByte'), extents=(6,), ), doc='geom visualization by group', ), StructFieldDecl( name='sitegroup', type=ArrayType( inner_type=ValueType(name='mjtByte'), extents=(6,), ), doc='site visualization by group', ), StructFieldDecl( name='jointgroup', type=ArrayType( inner_type=ValueType(name='mjtByte'), extents=(6,), ), doc='joint visualization by group', ), StructFieldDecl( name='tendongroup', type=ArrayType( inner_type=ValueType(name='mjtByte'), extents=(6,), ), doc='tendon visualization by group', ), StructFieldDecl( name='actuatorgroup', type=ArrayType( inner_type=ValueType(name='mjtByte'), extents=(6,), ), doc='actuator visualization by group', ), StructFieldDecl( name='skingroup', type=ArrayType( inner_type=ValueType(name='mjtByte'), extents=(6,), ), doc='skin visualization by group', ), StructFieldDecl( name='flags', type=ArrayType( inner_type=ValueType(name='mjtByte'), extents=(27,), ), doc='visualization flags (indexed by mjtVisFlag)', ), StructFieldDecl( name='bvh_depth', type=ValueType(name='int'), doc='depth of the bounding volume hierarchy to be visualized', ), ), )), ('mjvScene', StructDecl( name='mjvScene', declname='struct mjvScene_', fields=( StructFieldDecl( name='maxgeom', type=ValueType(name='int'), doc='size of allocated geom buffer', ), StructFieldDecl( name='ngeom', type=ValueType(name='int'), doc='number of geoms currently in buffer', ), StructFieldDecl( name='geoms', type=PointerType( inner_type=ValueType(name='mjvGeom'), ), doc='buffer for geoms (ngeom)', ), StructFieldDecl( name='geomorder', type=PointerType( inner_type=ValueType(name='int'), ), doc='buffer for ordering geoms by distance to camera (ngeom)', ), StructFieldDecl( name='nskin', type=ValueType(name='int'), doc='number of skins', ), StructFieldDecl( name='skinfacenum', type=PointerType( inner_type=ValueType(name='int'), ), doc='number of faces in skin (nskin)', ), StructFieldDecl( name='skinvertadr', type=PointerType( inner_type=ValueType(name='int'), ), doc='address of skin vertices (nskin)', ), StructFieldDecl( name='skinvertnum', type=PointerType( inner_type=ValueType(name='int'), ), doc='number of vertices in skin (nskin)', ), StructFieldDecl( name='skinvert', type=PointerType( inner_type=ValueType(name='float'), ), doc='skin vertex data (nskin)', ), StructFieldDecl( name='skinnormal', type=PointerType( inner_type=ValueType(name='float'), ), doc='skin normal data (nskin)', ), StructFieldDecl( name='nlight', type=ValueType(name='int'), doc='number of lights currently in buffer', ), StructFieldDecl( name='lights', type=ArrayType( inner_type=ValueType(name='mjvLight'), extents=(100,), ), doc='buffer for lights (nlight)', ), StructFieldDecl( name='camera', type=ArrayType( inner_type=ValueType(name='mjvGLCamera'), extents=(2,), ), doc='left and right camera', ), StructFieldDecl( name='enabletransform', type=ValueType(name='mjtByte'), doc='enable model transformation', ), StructFieldDecl( name='translate', type=ArrayType( inner_type=ValueType(name='float'), extents=(3,), ), doc='model translation', ), StructFieldDecl( name='rotate', type=ArrayType( inner_type=ValueType(name='float'), extents=(4,), ), doc='model quaternion rotation', ), StructFieldDecl( name='scale', type=ValueType(name='float'), doc='model scaling', ), StructFieldDecl( name='stereo', type=ValueType(name='int'), doc='stereoscopic rendering (mjtStereo)', ), StructFieldDecl( name='flags', type=ArrayType( inner_type=ValueType(name='mjtByte'), extents=(10,), ), doc='rendering flags (indexed by mjtRndFlag)', ), StructFieldDecl( name='framewidth', type=ValueType(name='int'), doc='frame pixel width; 0: disable framing', ), StructFieldDecl( name='framergb', type=ArrayType( inner_type=ValueType(name='float'), extents=(3,), ), doc='frame color', ), ), )), ('mjvFigure', StructDecl( name='mjvFigure', declname='struct mjvFigure_', fields=( StructFieldDecl( name='flg_legend', type=ValueType(name='int'), doc='show legend', ), StructFieldDecl( name='flg_ticklabel', type=ArrayType( inner_type=ValueType(name='int'), extents=(2,), ), doc='show grid tick labels (x,y)', ), StructFieldDecl( name='flg_extend', type=ValueType(name='int'), doc='automatically extend axis ranges to fit data', ), StructFieldDecl( name='flg_barplot', type=ValueType(name='int'), doc='isolated line segments (i.e. GL_LINES)', ), StructFieldDecl( name='flg_selection', type=ValueType(name='int'), doc='vertical selection line', ), StructFieldDecl( name='flg_symmetric', type=ValueType(name='int'), doc='symmetric y-axis', ), StructFieldDecl( name='linewidth', type=ValueType(name='float'), doc='line width', ), StructFieldDecl( name='gridwidth', type=ValueType(name='float'), doc='grid line width', ), StructFieldDecl( name='gridsize', type=ArrayType( inner_type=ValueType(name='int'), extents=(2,), ), doc='number of grid points in (x,y)', ), StructFieldDecl( name='gridrgb', type=ArrayType( inner_type=ValueType(name='float'), extents=(3,), ), doc='grid line rgb', ), StructFieldDecl( name='figurergba', type=ArrayType( inner_type=ValueType(name='float'), extents=(4,), ), doc='figure color and alpha', ), StructFieldDecl( name='panergba', type=ArrayType( inner_type=ValueType(name='float'), extents=(4,), ), doc='pane color and alpha', ), StructFieldDecl( name='legendrgba', type=ArrayType( inner_type=ValueType(name='float'), extents=(4,), ), doc='legend color and alpha', ), StructFieldDecl( name='textrgb', type=ArrayType( inner_type=ValueType(name='float'), extents=(3,), ), doc='text color', ), StructFieldDecl( name='linergb', type=ArrayType( inner_type=ValueType(name='float'), extents=(100, 3), ), doc='line colors', ), StructFieldDecl( name='range', type=ArrayType( inner_type=ValueType(name='float'), extents=(2, 2), ), doc='axis ranges; (min>=max) automatic', ), StructFieldDecl( name='xformat', type=ArrayType( inner_type=ValueType(name='char'), extents=(20,), ), doc='x-tick label format for sprintf', ), StructFieldDecl( name='yformat', type=ArrayType( inner_type=ValueType(name='char'), extents=(20,), ), doc='y-tick label format for sprintf', ), StructFieldDecl( name='minwidth', type=ArrayType( inner_type=ValueType(name='char'), extents=(20,), ), doc='string used to determine min y-tick width', ), StructFieldDecl( name='title', type=ArrayType( inner_type=ValueType(name='char'), extents=(1000,), ), doc='figure title; subplots separated with 2+ spaces', ), StructFieldDecl( name='xlabel', type=ArrayType( inner_type=ValueType(name='char'), extents=(100,), ), doc='x-axis label', ), StructFieldDecl( name='linename', type=ArrayType( inner_type=ValueType(name='char'), extents=(100, 100), ), doc='line names for legend', ), StructFieldDecl( name='legendoffset', type=ValueType(name='int'), doc='number of lines to offset legend', ), StructFieldDecl( name='subplot', type=ValueType(name='int'), doc='selected subplot (for title rendering)', ), StructFieldDecl( name='highlight', type=ArrayType( inner_type=ValueType(name='int'), extents=(2,), ), doc='if point is in legend rect, highlight line', ), StructFieldDecl( name='highlightid', type=ValueType(name='int'), doc='if id>=0 and no point, highlight id', ), StructFieldDecl( name='selection', type=ValueType(name='float'), doc='selection line x-value', ), StructFieldDecl( name='linepnt', type=ArrayType( inner_type=ValueType(name='int'), extents=(100,), ), doc='number of points in line; (0) disable', ), StructFieldDecl( name='linedata', type=ArrayType( inner_type=ValueType(name='float'), extents=(100, 2000), ), doc='line data (x,y)', ), StructFieldDecl( name='xaxispixel', type=ArrayType( inner_type=ValueType(name='int'), extents=(2,), ), doc='range of x-axis in pixels', ), StructFieldDecl( name='yaxispixel', type=ArrayType( inner_type=ValueType(name='int'), extents=(2,), ), doc='range of y-axis in pixels', ), StructFieldDecl( name='xaxisdata', type=ArrayType( inner_type=ValueType(name='float'), extents=(2,), ), doc='range of x-axis in data units', ), StructFieldDecl( name='yaxisdata', type=ArrayType( inner_type=ValueType(name='float'), extents=(2,), ), doc='range of y-axis in data units', ), ), )), ('mjvSceneState', StructDecl( name='mjvSceneState', declname='struct mjvSceneState_', fields=( StructFieldDecl( name='nbuffer', type=ValueType(name='int'), doc='size of the buffer in bytes', ), StructFieldDecl( name='buffer', type=PointerType( inner_type=ValueType(name='void'), ), doc='heap-allocated memory for all arrays in this struct', ), StructFieldDecl( name='maxgeom', type=ValueType(name='int'), doc='maximum number of mjvGeom supported by this state object', ), StructFieldDecl( name='plugincache', type=ValueType(name='mjvScene'), doc='scratch space for vis geoms inserted by plugins', ), StructFieldDecl( name='model', type=AnonymousStructDecl( fields=( StructFieldDecl( name='nv', type=ValueType(name='int'), doc='', ), StructFieldDecl( name='nu', type=ValueType(name='int'), doc='', ), StructFieldDecl( name='na', type=ValueType(name='int'), doc='', ), StructFieldDecl( name='nbody', type=ValueType(name='int'), doc='', ), StructFieldDecl( name='nbvh', type=ValueType(name='int'), doc='', ), StructFieldDecl( name='njnt', type=ValueType(name='int'), doc='', ), StructFieldDecl( name='ngeom', type=ValueType(name='int'), doc='', ), StructFieldDecl( name='nsite', type=ValueType(name='int'), doc='', ), StructFieldDecl( name='ncam', type=ValueType(name='int'), doc='', ), StructFieldDecl( name='nlight', type=ValueType(name='int'), doc='', ), StructFieldDecl( name='nmesh', type=ValueType(name='int'), doc='', ), StructFieldDecl( name='nskin', type=ValueType(name='int'), doc='', ), StructFieldDecl( name='nskinvert', type=ValueType(name='int'), doc='', ), StructFieldDecl( name='nskinface', type=ValueType(name='int'), doc='', ), StructFieldDecl( name='nskinbone', type=ValueType(name='int'), doc='', ), StructFieldDecl( name='nskinbonevert', type=ValueType(name='int'), doc='', ), StructFieldDecl( name='nmat', type=ValueType(name='int'), doc='', ), StructFieldDecl( name='neq', type=ValueType(name='int'), doc='', ), StructFieldDecl( name='ntendon', type=ValueType(name='int'), doc='', ), StructFieldDecl( name='ntree', type=ValueType(name='int'), doc='', ), StructFieldDecl( name='nwrap', type=ValueType(name='int'), doc='', ), StructFieldDecl( name='nsensor', type=ValueType(name='int'), doc='', ), StructFieldDecl( name='nnames', type=ValueType(name='int'), doc='', ), StructFieldDecl( name='nsensordata', type=ValueType(name='int'), doc='', ), StructFieldDecl( name='opt', type=ValueType(name='mjOption'), doc='', ), StructFieldDecl( name='vis', type=ValueType(name='mjVisual'), doc='', ), StructFieldDecl( name='stat', type=ValueType(name='mjStatistic'), doc='', ), StructFieldDecl( name='body_parentid', type=PointerType( inner_type=ValueType(name='int'), ), doc='', ), StructFieldDecl( name='body_rootid', type=PointerType( inner_type=ValueType(name='int'), ), doc='', ), StructFieldDecl( name='body_weldid', type=PointerType( inner_type=ValueType(name='int'), ), doc='', ), StructFieldDecl( name='body_mocapid', type=PointerType( inner_type=ValueType(name='int'), ), doc='', ), StructFieldDecl( name='body_jntnum', type=PointerType( inner_type=ValueType(name='int'), ), doc='', ), StructFieldDecl( name='body_jntadr', type=PointerType( inner_type=ValueType(name='int'), ), doc='', ), StructFieldDecl( name='body_dofnum', type=PointerType( inner_type=ValueType(name='int'), ), doc='', ), StructFieldDecl( name='body_dofadr', type=PointerType( inner_type=ValueType(name='int'), ), doc='', ), StructFieldDecl( name='body_geomnum', type=PointerType( inner_type=ValueType(name='int'), ), doc='', ), StructFieldDecl( name='body_geomadr', type=PointerType( inner_type=ValueType(name='int'), ), doc='', ), StructFieldDecl( name='body_iquat', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='', ), StructFieldDecl( name='body_mass', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='', ), StructFieldDecl( name='body_inertia', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='', ), StructFieldDecl( name='body_bvhadr', type=PointerType( inner_type=ValueType(name='int'), ), doc='', ), StructFieldDecl( name='body_bvhnum', type=PointerType( inner_type=ValueType(name='int'), ), doc='', ), StructFieldDecl( name='bvh_depth', type=PointerType( inner_type=ValueType(name='int'), ), doc='', ), StructFieldDecl( name='bvh_child', type=PointerType( inner_type=ValueType(name='int'), ), doc='', ), StructFieldDecl( name='bvh_geomid', type=PointerType( inner_type=ValueType(name='int'), ), doc='', ), StructFieldDecl( name='bvh_aabb', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='', ), StructFieldDecl( name='jnt_type', type=PointerType( inner_type=ValueType(name='int'), ), doc='', ), StructFieldDecl( name='jnt_bodyid', type=PointerType( inner_type=ValueType(name='int'), ), doc='', ), StructFieldDecl( name='jnt_group', type=PointerType( inner_type=ValueType(name='int'), ), doc='', ), StructFieldDecl( name='geom_type', type=PointerType( inner_type=ValueType(name='int'), ), doc='', ), StructFieldDecl( name='geom_bodyid', type=PointerType( inner_type=ValueType(name='int'), ), doc='', ), StructFieldDecl( name='geom_contype', type=PointerType( inner_type=ValueType(name='int'), ), doc='', ), StructFieldDecl( name='geom_conaffinity', type=PointerType( inner_type=ValueType(name='int'), ), doc='', ), StructFieldDecl( name='geom_dataid', type=PointerType( inner_type=ValueType(name='int'), ), doc='', ), StructFieldDecl( name='geom_matid', type=PointerType( inner_type=ValueType(name='int'), ), doc='', ), StructFieldDecl( name='geom_group', type=PointerType( inner_type=ValueType(name='int'), ), doc='', ), StructFieldDecl( name='geom_size', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='', ), StructFieldDecl( name='geom_aabb', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='', ), StructFieldDecl( name='geom_rbound', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='', ), StructFieldDecl( name='geom_rgba', type=PointerType( inner_type=ValueType(name='float'), ), doc='', ), StructFieldDecl( name='site_type', type=PointerType( inner_type=ValueType(name='int'), ), doc='', ), StructFieldDecl( name='site_bodyid', type=PointerType( inner_type=ValueType(name='int'), ), doc='', ), StructFieldDecl( name='site_matid', type=PointerType( inner_type=ValueType(name='int'), ), doc='', ), StructFieldDecl( name='site_group', type=PointerType( inner_type=ValueType(name='int'), ), doc='', ), StructFieldDecl( name='site_size', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='', ), StructFieldDecl( name='site_rgba', type=PointerType( inner_type=ValueType(name='float'), ), doc='', ), StructFieldDecl( name='cam_fovy', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='', ), StructFieldDecl( name='cam_ipd', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='', ), StructFieldDecl( name='light_directional', type=PointerType( inner_type=ValueType(name='mjtByte'), ), doc='', ), StructFieldDecl( name='light_castshadow', type=PointerType( inner_type=ValueType(name='mjtByte'), ), doc='', ), StructFieldDecl( name='light_active', type=PointerType( inner_type=ValueType(name='mjtByte'), ), doc='', ), StructFieldDecl( name='light_attenuation', type=PointerType( inner_type=ValueType(name='float'), ), doc='', ), StructFieldDecl( name='light_cutoff', type=PointerType( inner_type=ValueType(name='float'), ), doc='', ), StructFieldDecl( name='light_exponent', type=PointerType( inner_type=ValueType(name='float'), ), doc='', ), StructFieldDecl( name='light_ambient', type=PointerType( inner_type=ValueType(name='float'), ), doc='', ), StructFieldDecl( name='light_diffuse', type=PointerType( inner_type=ValueType(name='float'), ), doc='', ), StructFieldDecl( name='light_specular', type=PointerType( inner_type=ValueType(name='float'), ), doc='', ), StructFieldDecl( name='mesh_bvhadr', type=PointerType( inner_type=ValueType(name='int'), ), doc='', ), StructFieldDecl( name='mesh_bvhnum', type=PointerType( inner_type=ValueType(name='int'), ), doc='', ), StructFieldDecl( name='mesh_texcoordadr', type=PointerType( inner_type=ValueType(name='int'), ), doc='', ), StructFieldDecl( name='mesh_graphadr', type=PointerType( inner_type=ValueType(name='int'), ), doc='', ), StructFieldDecl( name='skin_matid', type=PointerType( inner_type=ValueType(name='int'), ), doc='', ), StructFieldDecl( name='skin_group', type=PointerType( inner_type=ValueType(name='int'), ), doc='', ), StructFieldDecl( name='skin_rgba', type=PointerType( inner_type=ValueType(name='float'), ), doc='', ), StructFieldDecl( name='skin_inflate', type=PointerType( inner_type=ValueType(name='float'), ), doc='', ), StructFieldDecl( name='skin_vertadr', type=PointerType( inner_type=ValueType(name='int'), ), doc='', ), StructFieldDecl( name='skin_vertnum', type=PointerType( inner_type=ValueType(name='int'), ), doc='', ), StructFieldDecl( name='skin_texcoordadr', type=PointerType( inner_type=ValueType(name='int'), ), doc='', ), StructFieldDecl( name='skin_faceadr', type=PointerType( inner_type=ValueType(name='int'), ), doc='', ), StructFieldDecl( name='skin_facenum', type=PointerType( inner_type=ValueType(name='int'), ), doc='', ), StructFieldDecl( name='skin_boneadr', type=PointerType( inner_type=ValueType(name='int'), ), doc='', ), StructFieldDecl( name='skin_bonenum', type=PointerType( inner_type=ValueType(name='int'), ), doc='', ), StructFieldDecl( name='skin_vert', type=PointerType( inner_type=ValueType(name='float'), ), doc='', ), StructFieldDecl( name='skin_face', type=PointerType( inner_type=ValueType(name='int'), ), doc='', ), StructFieldDecl( name='skin_bonevertadr', type=PointerType( inner_type=ValueType(name='int'), ), doc='', ), StructFieldDecl( name='skin_bonevertnum', type=PointerType( inner_type=ValueType(name='int'), ), doc='', ), StructFieldDecl( name='skin_bonebindpos', type=PointerType( inner_type=ValueType(name='float'), ), doc='', ), StructFieldDecl( name='skin_bonebindquat', type=PointerType( inner_type=ValueType(name='float'), ), doc='', ), StructFieldDecl( name='skin_bonebodyid', type=PointerType( inner_type=ValueType(name='int'), ), doc='', ), StructFieldDecl( name='skin_bonevertid', type=PointerType( inner_type=ValueType(name='int'), ), doc='', ), StructFieldDecl( name='skin_bonevertweight', type=PointerType( inner_type=ValueType(name='float'), ), doc='', ), StructFieldDecl( name='mat_texid', type=PointerType( inner_type=ValueType(name='int'), ), doc='', ), StructFieldDecl( name='mat_texuniform', type=PointerType( inner_type=ValueType(name='mjtByte'), ), doc='', ), StructFieldDecl( name='mat_texrepeat', type=PointerType( inner_type=ValueType(name='float'), ), doc='', ), StructFieldDecl( name='mat_emission', type=PointerType( inner_type=ValueType(name='float'), ), doc='', ), StructFieldDecl( name='mat_specular', type=PointerType( inner_type=ValueType(name='float'), ), doc='', ), StructFieldDecl( name='mat_shininess', type=PointerType( inner_type=ValueType(name='float'), ), doc='', ), StructFieldDecl( name='mat_reflectance', type=PointerType( inner_type=ValueType(name='float'), ), doc='', ), StructFieldDecl( name='mat_rgba', type=PointerType( inner_type=ValueType(name='float'), ), doc='', ), StructFieldDecl( name='eq_type', type=PointerType( inner_type=ValueType(name='int'), ), doc='', ), StructFieldDecl( name='eq_obj1id', type=PointerType( inner_type=ValueType(name='int'), ), doc='', ), StructFieldDecl( name='eq_obj2id', type=PointerType( inner_type=ValueType(name='int'), ), doc='', ), StructFieldDecl( name='eq_active', type=PointerType( inner_type=ValueType(name='mjtByte'), ), doc='', ), StructFieldDecl( name='eq_data', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='', ), StructFieldDecl( name='tendon_num', type=PointerType( inner_type=ValueType(name='int'), ), doc='', ), StructFieldDecl( name='tendon_matid', type=PointerType( inner_type=ValueType(name='int'), ), doc='', ), StructFieldDecl( name='tendon_group', type=PointerType( inner_type=ValueType(name='int'), ), doc='', ), StructFieldDecl( name='tendon_limited', type=PointerType( inner_type=ValueType(name='mjtByte'), ), doc='', ), StructFieldDecl( name='tendon_width', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='', ), StructFieldDecl( name='tendon_range', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='', ), StructFieldDecl( name='tendon_stiffness', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='', ), StructFieldDecl( name='tendon_damping', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='', ), StructFieldDecl( name='tendon_frictionloss', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='', ), StructFieldDecl( name='tendon_lengthspring', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='', ), StructFieldDecl( name='tendon_rgba', type=PointerType( inner_type=ValueType(name='float'), ), doc='', ), StructFieldDecl( name='actuator_trntype', type=PointerType( inner_type=ValueType(name='int'), ), doc='', ), StructFieldDecl( name='actuator_dyntype', type=PointerType( inner_type=ValueType(name='int'), ), doc='', ), StructFieldDecl( name='actuator_trnid', type=PointerType( inner_type=ValueType(name='int'), ), doc='', ), StructFieldDecl( name='actuator_actadr', type=PointerType( inner_type=ValueType(name='int'), ), doc='', ), StructFieldDecl( name='actuator_actnum', type=PointerType( inner_type=ValueType(name='int'), ), doc='', ), StructFieldDecl( name='actuator_group', type=PointerType( inner_type=ValueType(name='int'), ), doc='', ), StructFieldDecl( name='actuator_ctrllimited', type=PointerType( inner_type=ValueType(name='mjtByte'), ), doc='', ), StructFieldDecl( name='actuator_actlimited', type=PointerType( inner_type=ValueType(name='mjtByte'), ), doc='', ), StructFieldDecl( name='actuator_ctrlrange', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='', ), StructFieldDecl( name='actuator_actrange', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='', ), StructFieldDecl( name='actuator_cranklength', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='', ), StructFieldDecl( name='sensor_type', type=PointerType( inner_type=ValueType(name='int'), ), doc='', ), StructFieldDecl( name='sensor_objid', type=PointerType( inner_type=ValueType(name='int'), ), doc='', ), StructFieldDecl( name='sensor_adr', type=PointerType( inner_type=ValueType(name='int'), ), doc='', ), StructFieldDecl( name='name_bodyadr', type=PointerType( inner_type=ValueType(name='int'), ), doc='', ), StructFieldDecl( name='name_jntadr', type=PointerType( inner_type=ValueType(name='int'), ), doc='', ), StructFieldDecl( name='name_geomadr', type=PointerType( inner_type=ValueType(name='int'), ), doc='', ), StructFieldDecl( name='name_siteadr', type=PointerType( inner_type=ValueType(name='int'), ), doc='', ), StructFieldDecl( name='name_camadr', type=PointerType( inner_type=ValueType(name='int'), ), doc='', ), StructFieldDecl( name='name_lightadr', type=PointerType( inner_type=ValueType(name='int'), ), doc='', ), StructFieldDecl( name='name_eqadr', type=PointerType( inner_type=ValueType(name='int'), ), doc='', ), StructFieldDecl( name='name_tendonadr', type=PointerType( inner_type=ValueType(name='int'), ), doc='', ), StructFieldDecl( name='name_actuatoradr', type=PointerType( inner_type=ValueType(name='int'), ), doc='', ), StructFieldDecl( name='names', type=PointerType( inner_type=ValueType(name='char'), ), doc='', ), ), ), doc='', ), StructFieldDecl( name='data', type=AnonymousStructDecl( fields=( StructFieldDecl( name='warning', type=ArrayType( inner_type=ValueType(name='mjWarningStat'), extents=(8,), ), doc='', ), StructFieldDecl( name='nefc', type=ValueType(name='int'), doc='', ), StructFieldDecl( name='ncon', type=ValueType(name='int'), doc='', ), StructFieldDecl( name='nisland', type=ValueType(name='int'), doc='', ), StructFieldDecl( name='time', type=ValueType(name='mjtNum'), doc='', ), StructFieldDecl( name='act', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='', ), StructFieldDecl( name='ctrl', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='', ), StructFieldDecl( name='xfrc_applied', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='', ), StructFieldDecl( name='sensordata', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='', ), StructFieldDecl( name='xpos', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='', ), StructFieldDecl( name='xquat', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='', ), StructFieldDecl( name='xmat', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='', ), StructFieldDecl( name='xipos', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='', ), StructFieldDecl( name='ximat', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='', ), StructFieldDecl( name='xanchor', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='', ), StructFieldDecl( name='xaxis', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='', ), StructFieldDecl( name='geom_xpos', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='', ), StructFieldDecl( name='geom_xmat', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='', ), StructFieldDecl( name='site_xpos', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='', ), StructFieldDecl( name='site_xmat', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='', ), StructFieldDecl( name='cam_xpos', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='', ), StructFieldDecl( name='cam_xmat', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='', ), StructFieldDecl( name='light_xpos', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='', ), StructFieldDecl( name='light_xdir', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='', ), StructFieldDecl( name='subtree_com', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='', ), StructFieldDecl( name='ten_wrapadr', type=PointerType( inner_type=ValueType(name='int'), ), doc='', ), StructFieldDecl( name='ten_wrapnum', type=PointerType( inner_type=ValueType(name='int'), ), doc='', ), StructFieldDecl( name='wrap_obj', type=PointerType( inner_type=ValueType(name='int'), ), doc='', ), StructFieldDecl( name='ten_length', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='', ), StructFieldDecl( name='wrap_xpos', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='', ), StructFieldDecl( name='bvh_active', type=PointerType( inner_type=ValueType(name='mjtByte'), ), doc='', ), StructFieldDecl( name='island_dofadr', type=PointerType( inner_type=ValueType(name='int'), ), doc='', ), StructFieldDecl( name='island_dofind', type=PointerType( inner_type=ValueType(name='int'), ), doc='', ), StructFieldDecl( name='dof_island', type=PointerType( inner_type=ValueType(name='int'), ), doc='', ), StructFieldDecl( name='efc_island', type=PointerType( inner_type=ValueType(name='int'), ), doc='', ), StructFieldDecl( name='tendon_efcadr', type=PointerType( inner_type=ValueType(name='int'), ), doc='', ), StructFieldDecl( name='contact', type=PointerType( inner_type=ValueType(name='mjContact'), ), doc='', ), StructFieldDecl( name='efc_force', type=PointerType( inner_type=ValueType(name='mjtNum'), ), doc='', ), ), ), doc='', ), ), )), ('mjrRect', StructDecl( name='mjrRect', declname='struct mjrRect_', fields=( StructFieldDecl( name='left', type=ValueType(name='int'), doc='left (usually 0)', ), StructFieldDecl( name='bottom', type=ValueType(name='int'), doc='bottom (usually 0)', ), StructFieldDecl( name='width', type=ValueType(name='int'), doc='width (usually buffer width)', ), StructFieldDecl( name='height', type=ValueType(name='int'), doc='height (usually buffer height)', ), ), )), ('mjrContext', StructDecl( name='mjrContext', declname='struct mjrContext_', fields=( StructFieldDecl( name='lineWidth', type=ValueType(name='float'), doc='line width for wireframe rendering', ), StructFieldDecl( name='shadowClip', type=ValueType(name='float'), doc='clipping radius for directional lights', ), StructFieldDecl( name='shadowScale', type=ValueType(name='float'), doc='fraction of light cutoff for spot lights', ), StructFieldDecl( name='fogStart', type=ValueType(name='float'), doc='fog start = stat.extent * vis.map.fogstart', ), StructFieldDecl( name='fogEnd', type=ValueType(name='float'), doc='fog end = stat.extent * vis.map.fogend', ), StructFieldDecl( name='fogRGBA', type=ArrayType( inner_type=ValueType(name='float'), extents=(4,), ), doc='fog rgba', ), StructFieldDecl( name='shadowSize', type=ValueType(name='int'), doc='size of shadow map texture', ), StructFieldDecl( name='offWidth', type=ValueType(name='int'), doc='width of offscreen buffer', ), StructFieldDecl( name='offHeight', type=ValueType(name='int'), doc='height of offscreen buffer', ), StructFieldDecl( name='offSamples', type=ValueType(name='int'), doc='number of offscreen buffer multisamples', ), StructFieldDecl( name='fontScale', type=ValueType(name='int'), doc='font scale', ), StructFieldDecl( name='auxWidth', type=ArrayType( inner_type=ValueType(name='int'), extents=(10,), ), doc='auxiliary buffer width', ), StructFieldDecl( name='auxHeight', type=ArrayType( inner_type=ValueType(name='int'), extents=(10,), ), doc='auxiliary buffer height', ), StructFieldDecl( name='auxSamples', type=ArrayType( inner_type=ValueType(name='int'), extents=(10,), ), doc='auxiliary buffer multisamples', ), StructFieldDecl( name='offFBO', type=ValueType(name='unsigned int'), doc='offscreen framebuffer object', ), StructFieldDecl( name='offFBO_r', type=ValueType(name='unsigned int'), doc='offscreen framebuffer for resolving multisamples', ), StructFieldDecl( name='offColor', type=ValueType(name='unsigned int'), doc='offscreen color buffer', ), StructFieldDecl( name='offColor_r', type=ValueType(name='unsigned int'), doc='offscreen color buffer for resolving multisamples', ), StructFieldDecl( name='offDepthStencil', type=ValueType(name='unsigned int'), doc='offscreen depth and stencil buffer', ), StructFieldDecl( name='offDepthStencil_r', type=ValueType(name='unsigned int'), doc='offscreen depth and stencil buffer for resolving multisamples', # pylint: disable=line-too-long ), StructFieldDecl( name='shadowFBO', type=ValueType(name='unsigned int'), doc='shadow map framebuffer object', ), StructFieldDecl( name='shadowTex', type=ValueType(name='unsigned int'), doc='shadow map texture', ), StructFieldDecl( name='auxFBO', type=ArrayType( inner_type=ValueType(name='unsigned int'), extents=(10,), ), doc='auxiliary framebuffer object', ), StructFieldDecl( name='auxFBO_r', type=ArrayType( inner_type=ValueType(name='unsigned int'), extents=(10,), ), doc='auxiliary framebuffer object for resolving', ), StructFieldDecl( name='auxColor', type=ArrayType( inner_type=ValueType(name='unsigned int'), extents=(10,), ), doc='auxiliary color buffer', ), StructFieldDecl( name='auxColor_r', type=ArrayType( inner_type=ValueType(name='unsigned int'), extents=(10,), ), doc='auxiliary color buffer for resolving', ), StructFieldDecl( name='ntexture', type=ValueType(name='int'), doc='number of allocated textures', ), StructFieldDecl( name='textureType', type=ArrayType( inner_type=ValueType(name='int'), extents=(100,), ), doc='type of texture (mjtTexture) (ntexture)', ), StructFieldDecl( name='texture', type=ArrayType( inner_type=ValueType(name='unsigned int'), extents=(100,), ), doc='texture names', ), StructFieldDecl( name='basePlane', type=ValueType(name='unsigned int'), doc='all planes from model', ), StructFieldDecl( name='baseMesh', type=ValueType(name='unsigned int'), doc='all meshes from model', ), StructFieldDecl( name='baseHField', type=ValueType(name='unsigned int'), doc='all hfields from model', ), StructFieldDecl( name='baseBuiltin', type=ValueType(name='unsigned int'), doc='all buildin geoms, with quality from model', ), StructFieldDecl( name='baseFontNormal', type=ValueType(name='unsigned int'), doc='normal font', ), StructFieldDecl( name='baseFontShadow', type=ValueType(name='unsigned int'), doc='shadow font', ), StructFieldDecl( name='baseFontBig', type=ValueType(name='unsigned int'), doc='big font', ), StructFieldDecl( name='rangePlane', type=ValueType(name='int'), doc='all planes from model', ), StructFieldDecl( name='rangeMesh', type=ValueType(name='int'), doc='all meshes from model', ), StructFieldDecl( name='rangeHField', type=ValueType(name='int'), doc='all hfields from model', ), StructFieldDecl( name='rangeBuiltin', type=ValueType(name='int'), doc='all builtin geoms, with quality from model', ), StructFieldDecl( name='rangeFont', type=ValueType(name='int'), doc='all characters in font', ), StructFieldDecl( name='nskin', type=ValueType(name='int'), doc='number of skins', ), StructFieldDecl( name='skinvertVBO', type=PointerType( inner_type=ValueType(name='unsigned int'), ), doc='skin vertex position VBOs (nskin)', ), StructFieldDecl( name='skinnormalVBO', type=PointerType( inner_type=ValueType(name='unsigned int'), ), doc='skin vertex normal VBOs (nskin)', ), StructFieldDecl( name='skintexcoordVBO', type=PointerType( inner_type=ValueType(name='unsigned int'), ), doc='skin vertex texture coordinate VBOs (nskin)', ), StructFieldDecl( name='skinfaceVBO', type=PointerType( inner_type=ValueType(name='unsigned int'), ), doc='skin face index VBOs (nskin)', ), StructFieldDecl( name='charWidth', type=ArrayType( inner_type=ValueType(name='int'), extents=(127,), ), doc='character widths: normal and shadow', ), StructFieldDecl( name='charWidthBig', type=ArrayType( inner_type=ValueType(name='int'), extents=(127,), ), doc='chacarter widths: big', ), StructFieldDecl( name='charHeight', type=ValueType(name='int'), doc='character heights: normal and shadow', ), StructFieldDecl( name='charHeightBig', type=ValueType(name='int'), doc='character heights: big', ), StructFieldDecl( name='glInitialized', type=ValueType(name='int'), doc='is OpenGL initialized', ), StructFieldDecl( name='windowAvailable', type=ValueType(name='int'), doc='is default/window framebuffer available', ), StructFieldDecl( name='windowSamples', type=ValueType(name='int'), doc='number of samples for default/window framebuffer', ), StructFieldDecl( name='windowStereo', type=ValueType(name='int'), doc='is stereo available for default/window framebuffer', ), StructFieldDecl( name='windowDoublebuffer', type=ValueType(name='int'), doc='is default/window framebuffer double buffered', ), StructFieldDecl( name='currentBuffer', type=ValueType(name='int'), doc='currently active framebuffer: mjFB_WINDOW or mjFB_OFFSCREEN', # pylint: disable=line-too-long ), StructFieldDecl( name='readPixelFormat', type=ValueType(name='int'), doc='default color pixel format for mjr_readPixels', ), ), )), ('mjThreadPool', StructDecl( name='mjThreadPool', declname='struct mjThreadPool_', fields=( StructFieldDecl( name='nworker', type=ValueType(name='int'), doc='number of workers in the pool', ), ), )), ('mjTask', StructDecl( name='mjTask', declname='struct mjTask_', fields=( StructFieldDecl( name='func', type=ValueType(name='mjfTask'), doc='pointer to the function that implements the task', ), StructFieldDecl( name='args', type=PointerType( inner_type=ValueType(name='void'), ), doc='arguments to func', ), StructFieldDecl( name='status', type=ValueType(name='int', is_volatile=True), doc='status of the task', ), ), )), ('mjuiState', StructDecl( name='mjuiState', declname='struct mjuiState_', fields=( StructFieldDecl( name='nrect', type=ValueType(name='int'), doc='number of rectangles used', ), StructFieldDecl( name='rect', type=ArrayType( inner_type=ValueType(name='mjrRect'), extents=(25,), ), doc='rectangles (index 0: entire window)', ), StructFieldDecl( name='userdata', type=PointerType( inner_type=ValueType(name='void'), ), doc='pointer to user data (for callbacks)', ), StructFieldDecl( name='type', type=ValueType(name='int'), doc='(type mjtEvent)', ), StructFieldDecl( name='left', type=ValueType(name='int'), doc='is left button down', ), StructFieldDecl( name='right', type=ValueType(name='int'), doc='is right button down', ), StructFieldDecl( name='middle', type=ValueType(name='int'), doc='is middle button down', ), StructFieldDecl( name='doubleclick', type=ValueType(name='int'), doc='is last press a double click', ), StructFieldDecl( name='button', type=ValueType(name='int'), doc='which button was pressed (mjtButton)', ), StructFieldDecl( name='buttontime', type=ValueType(name='double'), doc='time of last button press', ), StructFieldDecl( name='x', type=ValueType(name='double'), doc='x position', ), StructFieldDecl( name='y', type=ValueType(name='double'), doc='y position', ), StructFieldDecl( name='dx', type=ValueType(name='double'), doc='x displacement', ), StructFieldDecl( name='dy', type=ValueType(name='double'), doc='y displacement', ), StructFieldDecl( name='sx', type=ValueType(name='double'), doc='x scroll', ), StructFieldDecl( name='sy', type=ValueType(name='double'), doc='y scroll', ), StructFieldDecl( name='control', type=ValueType(name='int'), doc='is control down', ), StructFieldDecl( name='shift', type=ValueType(name='int'), doc='is shift down', ), StructFieldDecl( name='alt', type=ValueType(name='int'), doc='is alt down', ), StructFieldDecl( name='key', type=ValueType(name='int'), doc='which key was pressed', ), StructFieldDecl( name='keytime', type=ValueType(name='double'), doc='time of last key press', ), StructFieldDecl( name='mouserect', type=ValueType(name='int'), doc='which rectangle contains mouse', ), StructFieldDecl( name='dragrect', type=ValueType(name='int'), doc='which rectangle is dragged with mouse', ), StructFieldDecl( name='dragbutton', type=ValueType(name='int'), doc='which button started drag (mjtButton)', ), StructFieldDecl( name='dropcount', type=ValueType(name='int'), doc='number of files dropped', ), StructFieldDecl( name='droppaths', type=PointerType( inner_type=PointerType( inner_type=ValueType(name='char', is_const=True), ), ), doc='paths to files dropped', ), ), )), ('mjuiThemeSpacing', StructDecl( name='mjuiThemeSpacing', declname='struct mjuiThemeSpacing_', fields=( StructFieldDecl( name='total', type=ValueType(name='int'), doc='total width', ), StructFieldDecl( name='scroll', type=ValueType(name='int'), doc='scrollbar width', ), StructFieldDecl( name='label', type=ValueType(name='int'), doc='label width', ), StructFieldDecl( name='section', type=ValueType(name='int'), doc='section gap', ), StructFieldDecl( name='itemside', type=ValueType(name='int'), doc='item side gap', ), StructFieldDecl( name='itemmid', type=ValueType(name='int'), doc='item middle gap', ), StructFieldDecl( name='itemver', type=ValueType(name='int'), doc='item vertical gap', ), StructFieldDecl( name='texthor', type=ValueType(name='int'), doc='text horizontal gap', ), StructFieldDecl( name='textver', type=ValueType(name='int'), doc='text vertical gap', ), StructFieldDecl( name='linescroll', type=ValueType(name='int'), doc='number of pixels to scroll', ), StructFieldDecl( name='samples', type=ValueType(name='int'), doc='number of multisamples', ), ), )), ('mjuiThemeColor', StructDecl( name='mjuiThemeColor', declname='struct mjuiThemeColor_', fields=( StructFieldDecl( name='master', type=ArrayType( inner_type=ValueType(name='float'), extents=(3,), ), doc='master background', ), StructFieldDecl( name='thumb', type=ArrayType( inner_type=ValueType(name='float'), extents=(3,), ), doc='scrollbar thumb', ), StructFieldDecl( name='secttitle', type=ArrayType( inner_type=ValueType(name='float'), extents=(3,), ), doc='section title', ), StructFieldDecl( name='sectfont', type=ArrayType( inner_type=ValueType(name='float'), extents=(3,), ), doc='section font', ), StructFieldDecl( name='sectsymbol', type=ArrayType( inner_type=ValueType(name='float'), extents=(3,), ), doc='section symbol', ), StructFieldDecl( name='sectpane', type=ArrayType( inner_type=ValueType(name='float'), extents=(3,), ), doc='section pane', ), StructFieldDecl( name='shortcut', type=ArrayType( inner_type=ValueType(name='float'), extents=(3,), ), doc='shortcut background', ), StructFieldDecl( name='fontactive', type=ArrayType( inner_type=ValueType(name='float'), extents=(3,), ), doc='font active', ), StructFieldDecl( name='fontinactive', type=ArrayType( inner_type=ValueType(name='float'), extents=(3,), ), doc='font inactive', ), StructFieldDecl( name='decorinactive', type=ArrayType( inner_type=ValueType(name='float'), extents=(3,), ), doc='decor inactive', ), StructFieldDecl( name='decorinactive2', type=ArrayType( inner_type=ValueType(name='float'), extents=(3,), ), doc='inactive slider color 2', ), StructFieldDecl( name='button', type=ArrayType( inner_type=ValueType(name='float'), extents=(3,), ), doc='button', ), StructFieldDecl( name='check', type=ArrayType( inner_type=ValueType(name='float'), extents=(3,), ), doc='check', ), StructFieldDecl( name='radio', type=ArrayType( inner_type=ValueType(name='float'), extents=(3,), ), doc='radio', ), StructFieldDecl( name='select', type=ArrayType( inner_type=ValueType(name='float'), extents=(3,), ), doc='select', ), StructFieldDecl( name='select2', type=ArrayType( inner_type=ValueType(name='float'), extents=(3,), ), doc='select pane', ), StructFieldDecl( name='slider', type=ArrayType( inner_type=ValueType(name='float'), extents=(3,), ), doc='slider', ), StructFieldDecl( name='slider2', type=ArrayType( inner_type=ValueType(name='float'), extents=(3,), ), doc='slider color 2', ), StructFieldDecl( name='edit', type=ArrayType( inner_type=ValueType(name='float'), extents=(3,), ), doc='edit', ), StructFieldDecl( name='edit2', type=ArrayType( inner_type=ValueType(name='float'), extents=(3,), ), doc='edit invalid', ), StructFieldDecl( name='cursor', type=ArrayType( inner_type=ValueType(name='float'), extents=(3,), ), doc='edit cursor', ), ), )), ('mjuiItem', StructDecl( name='mjuiItem', declname='struct mjuiItem_', fields=( StructFieldDecl( name='type', type=ValueType(name='int'), doc='type (mjtItem)', ), StructFieldDecl( name='name', type=ArrayType( inner_type=ValueType(name='char'), extents=(40,), ), doc='name', ), StructFieldDecl( name='state', type=ValueType(name='int'), doc='0: disable, 1: enable, 2+: use predicate', ), StructFieldDecl( name='pdata', type=PointerType( inner_type=ValueType(name='void'), ), doc='data pointer (type-specific)', ), StructFieldDecl( name='sectionid', type=ValueType(name='int'), doc='id of section containing item', ), StructFieldDecl( name='itemid', type=ValueType(name='int'), doc='id of item within section', ), AnonymousUnionDecl( fields=( StructFieldDecl( name='single', type=ValueType(name='struct mjuiItemSingle_'), doc='check and button', ), StructFieldDecl( name='multi', type=ValueType(name='struct mjuiItemMulti_'), doc='static, radio and select', ), StructFieldDecl( name='slider', type=ValueType(name='struct mjuiItemSlider_'), doc='slider', ), StructFieldDecl( name='edit', type=ValueType(name='struct mjuiItemEdit_'), doc='edit', ), ), ), StructFieldDecl( name='rect', type=ValueType(name='mjrRect'), doc='rectangle occupied by item', ), ), )), ('mjuiSection', StructDecl( name='mjuiSection', declname='struct mjuiSection_', fields=( StructFieldDecl( name='name', type=ArrayType( inner_type=ValueType(name='char'), extents=(40,), ), doc='name', ), StructFieldDecl( name='state', type=ValueType(name='int'), doc='0: closed, 1: open', ), StructFieldDecl( name='modifier', type=ValueType(name='int'), doc='0: none, 1: control, 2: shift; 4: alt', ), StructFieldDecl( name='shortcut', type=ValueType(name='int'), doc='shortcut key; 0: undefined', ), StructFieldDecl( name='nitem', type=ValueType(name='int'), doc='number of items in use', ), StructFieldDecl( name='item', type=ArrayType( inner_type=ValueType(name='mjuiItem'), extents=(100,), ), doc='preallocated array of items', ), StructFieldDecl( name='rtitle', type=ValueType(name='mjrRect'), doc='rectangle occupied by title', ), StructFieldDecl( name='rcontent', type=ValueType(name='mjrRect'), doc='rectangle occupied by content', ), ), )), ('mjUI', StructDecl( name='mjUI', declname='struct mjUI_', fields=( StructFieldDecl( name='spacing', type=ValueType(name='mjuiThemeSpacing'), doc='UI theme spacing', ), StructFieldDecl( name='color', type=ValueType(name='mjuiThemeColor'), doc='UI theme color', ), StructFieldDecl( name='predicate', type=ValueType(name='mjfItemEnable'), doc='callback to set item state programmatically', ), StructFieldDecl( name='userdata', type=PointerType( inner_type=ValueType(name='void'), ), doc='pointer to user data (passed to predicate)', ), StructFieldDecl( name='rectid', type=ValueType(name='int'), doc='index of this ui rectangle in mjuiState', ), StructFieldDecl( name='auxid', type=ValueType(name='int'), doc='aux buffer index of this ui', ), StructFieldDecl( name='radiocol', type=ValueType(name='int'), doc='number of radio columns (0 defaults to 2)', ), StructFieldDecl( name='width', type=ValueType(name='int'), doc='width', ), StructFieldDecl( name='height', type=ValueType(name='int'), doc='current heigth', ), StructFieldDecl( name='maxheight', type=ValueType(name='int'), doc='height when all sections open', ), StructFieldDecl( name='scroll', type=ValueType(name='int'), doc='scroll from top of UI', ), StructFieldDecl( name='mousesect', type=ValueType(name='int'), doc='0: none, -1: scroll, otherwise 1+section', ), StructFieldDecl( name='mouseitem', type=ValueType(name='int'), doc='item within section', ), StructFieldDecl( name='mousehelp', type=ValueType(name='int'), doc='help button down: print shortcuts', ), StructFieldDecl( name='editsect', type=ValueType(name='int'), doc='0: none, otherwise 1+section', ), StructFieldDecl( name='edititem', type=ValueType(name='int'), doc='item within section', ), StructFieldDecl( name='editcursor', type=ValueType(name='int'), doc='cursor position', ), StructFieldDecl( name='editscroll', type=ValueType(name='int'), doc='horizontal scroll', ), StructFieldDecl( name='edittext', type=ArrayType( inner_type=ValueType(name='char'), extents=(300,), ), doc='current text', ), StructFieldDecl( name='editchanged', type=PointerType( inner_type=ValueType(name='mjuiItem'), ), doc='pointer to changed edit in last mjui_event', ), StructFieldDecl( name='nsect', type=ValueType(name='int'), doc='number of sections in use', ), StructFieldDecl( name='sect', type=ArrayType( inner_type=ValueType(name='mjuiSection'), extents=(10,), ), doc='preallocated array of sections', ), ), )), ('mjuiDef', StructDecl( name='mjuiDef', declname='struct mjuiDef_', fields=( StructFieldDecl( name='type', type=ValueType(name='int'), doc='type (mjtItem); -1: section', ), StructFieldDecl( name='name', type=ArrayType( inner_type=ValueType(name='char'), extents=(40,), ), doc='name', ), StructFieldDecl( name='state', type=ValueType(name='int'), doc='state', ), StructFieldDecl( name='pdata', type=PointerType( inner_type=ValueType(name='void'), ), doc='pointer to data', ), StructFieldDecl( name='other', type=ArrayType( inner_type=ValueType(name='char'), extents=(300,), ), doc='string with type-specific properties', ), ), )), ])
mujoco-main
introspect/structs.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for functions.py.""" from absl.testing import absltest from . import ast_nodes from . import functions from . import type_parsing class FunctionsTest(absltest.TestCase): def test_mj_copyData(self): # pylint: disable=invalid-name func_decl = functions.FUNCTIONS['mj_copyData'] self.assertEqual(func_decl.name, 'mj_copyData') self.assertEqual(func_decl.return_type, type_parsing.parse_type('mjData*')) self.assertEqual( func_decl.parameters, (ast_nodes.FunctionParameterDecl( name='dest', type=type_parsing.parse_type('mjData*')), ast_nodes.FunctionParameterDecl( name='m', type=type_parsing.parse_type('const mjModel*')), ast_nodes.FunctionParameterDecl( name='src', type=type_parsing.parse_type('const mjData*')))) self.assertEqual( func_decl.doc, 'Copy mjData. ' 'm is only required to contain the size fields from MJMODEL_INTS.') def test_mju_transformSpatial(self): # pylint: disable=invalid-name func_decl = functions.FUNCTIONS['mju_transformSpatial'] self.assertEqual(func_decl.name, 'mju_transformSpatial') self.assertEqual(func_decl.return_type, type_parsing.parse_type('void')) self.assertEqual( func_decl.parameters, (ast_nodes.FunctionParameterDecl( name='res', type=type_parsing.parse_type('mjtNum[6]')), ast_nodes.FunctionParameterDecl( name='vec', type=type_parsing.parse_type('const mjtNum[6]')), ast_nodes.FunctionParameterDecl( name='flg_force', type=type_parsing.parse_type('int')), ast_nodes.FunctionParameterDecl( name='newpos', type=type_parsing.parse_type('const mjtNum[3]')), ast_nodes.FunctionParameterDecl( name='oldpos', type=type_parsing.parse_type('const mjtNum[3]')), ast_nodes.FunctionParameterDecl( name='rotnew2old', type=type_parsing.parse_type('const mjtNum[9]')))) self.assertEqual( func_decl.doc, 'Coordinate transform of 6D motion or force vector in ' + 'rotation:translation format. rotnew2old is 3-by-3, ' + 'NULL means no rotation; flg_force specifies force or motion type.') if __name__ == '__main__': absltest.main()
mujoco-main
introspect/functions_test.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Classes that roughly correspond to Clang AST node types.""" import collections import dataclasses import re from typing import Dict, Optional, Sequence, Tuple, Union # We are relying on Clang to do the actual source parsing and are only doing # a little bit of extra parsing of function parameter type declarations here. # These patterns are here for sanity checking rather than actual parsing. VALID_TYPE_NAME_PATTERN = re.compile('(struct )?[A-Za-z_][A-Za-z0-9_]*') C_INVALID_TYPE_NAMES = frozenset([ 'auto', 'break', 'case', 'const', 'continue', 'default', 'do', 'else', 'enum', 'extern', 'for', 'goto', 'if', 'inline', 'register', 'restrict', 'return', 'sizeof', 'static', 'struct', 'switch', 'typedef', 'union', 'volatile', 'while', '_Alignas', '_Atomic', '_Generic', '_Imaginary', '_Noreturn', '_Static_assert', '_Thread_local', '__attribute__', '_Pragma']) def _is_valid_integral_type(type_str: str): """Checks if a string is a valid integral type.""" parts = re.split(r'\s+', type_str) counter = collections.defaultdict(lambda: 0) wildcard_counter = 0 for part in parts: if part in ('signed', 'unsigned', 'short', 'long', 'int', 'char'): counter[part] += 1 elif VALID_TYPE_NAME_PATTERN.fullmatch(part): # a non-keyword can be a typedef for int wildcard_counter += 1 else: return False if (counter['signed'] + counter['unsigned'] > 1 or counter['short'] > 1 or counter['long'] > 2 or (counter['short'] and counter['long']) or ((counter['short'] or counter['long']) and counter['char']) or counter['char'] + counter['int'] + wildcard_counter > 1): return False else: return True @dataclasses.dataclass class ValueType: """Represents a C type that is neither a pointer type nor an array type.""" name: str is_const: bool = False is_volatile: bool = False def __init__(self, name: str, is_const: bool = False, is_volatile: bool = False): is_valid_type_name = ( name == 'void *(*)(void *)' or VALID_TYPE_NAME_PATTERN.fullmatch(name) or _is_valid_integral_type(name)) and name not in C_INVALID_TYPE_NAMES if not is_valid_type_name: raise ValueError(f'{name!r} is not a valid value type name') self.name = name self.is_const = is_const self.is_volatile = is_volatile def decl(self, name_or_decl: Optional[str] = None) -> str: parts = [] if self.is_const: parts.append('const') if self.is_volatile: parts.append('volatile') parts.append(self.name) if name_or_decl: parts.append(name_or_decl) return ' '.join(parts) def __str__(self): return self.decl() @dataclasses.dataclass class ArrayType: """Represents a C array type.""" inner_type: Union[ValueType, 'PointerType'] extents: Tuple[int, ...] def __init__(self, inner_type: Union[ValueType, 'PointerType'], extents: Sequence[int]): self.inner_type = inner_type self.extents = tuple(extents) @property def _extents_str(self) -> str: return ''.join(f'[{n}]' for n in self.extents) def decl(self, name_or_decl: Optional[str] = None) -> str: name_or_decl = name_or_decl or '' return self.inner_type.decl(f'{name_or_decl}{self._extents_str}') def __str__(self): return self.decl() @dataclasses.dataclass class PointerType: """Represents a C pointer type.""" inner_type: Union[ValueType, ArrayType, 'PointerType'] is_const: bool = False is_volatile: bool = False is_restrict: bool = False def decl(self, name_or_decl: Optional[str] = None) -> str: """Creates a string that declares an object of this type.""" parts = ['*'] if self.is_const: parts.append('const') if self.is_volatile: parts.append('volatile') if self.is_restrict: parts.append('restrict') if name_or_decl: parts.append(name_or_decl) ptr_decl = ' '.join(parts) if isinstance(self.inner_type, ArrayType): ptr_decl = f'({ptr_decl})' return self.inner_type.decl(ptr_decl) def __str__(self): return self.decl() @dataclasses.dataclass class FunctionParameterDecl: """Represents a parameter in a function declaration. Note that according to the C language rule, a function parameter of array type undergoes array-to-pointer decay, and therefore appears as a pointer parameter in an actual C AST. We retain the arrayness of a parameter here since the array's extents are informative. """ name: str type: Union[ValueType, ArrayType, PointerType] def __str__(self): return self.type.decl(self.name) @property def decltype(self) -> str: return self.type.decl() @dataclasses.dataclass class FunctionDecl: """Represents a function declaration.""" name: str return_type: Union[ValueType, ArrayType, PointerType] parameters: Tuple[FunctionParameterDecl, ...] doc: str def __init__(self, name: str, return_type: Union[ValueType, ArrayType, PointerType], parameters: Sequence[FunctionParameterDecl], doc: str): self.name = name self.return_type = return_type self.parameters = tuple(parameters) self.doc = doc def __str__(self): param_str = ', '.join(str(p) for p in self.parameters) return f'{self.return_type} {self.name}({param_str})' @property def decltype(self) -> str: param_str = ', '.join(str(p.decltype) for p in self.parameters) return f'{self.return_type} ({param_str})' class _EnumDeclValues(Dict[str, int]): """A dict with modified stringified representation. The __repr__ method of this class adds a trailing comma to the list of values. This is done as a hint for code formatters to place one item per line when the stringified OrderedDict is used in generated Python code. """ def __repr__(self): out = super().__repr__() if self: out = re.sub(r'\(\[(.+)\]\)\Z', r'([\1,])', out) return re.sub(r'\A_EnumDeclValues', 'dict', out) @dataclasses.dataclass class EnumDecl: """Represents an enum declaration.""" name: str declname: str values: Dict[str, int] def __init__(self, name: str, declname: str, values: Dict[str, int]): self.name = name self.declname = declname self.values = _EnumDeclValues(values) @dataclasses.dataclass class StructFieldDecl: """Represents a field in a struct or union declaration.""" name: str type: Union[ ValueType, ArrayType, PointerType, 'AnonymousStructDecl', 'AnonymousUnionDecl', ] doc: str def __str__(self): return self.type.decl(self.name) @property def decltype(self) -> str: return self.type.decl() @dataclasses.dataclass class AnonymousStructDecl: """Represents an anonymous struct declaration.""" fields: Tuple[Union[StructFieldDecl, 'AnonymousUnionDecl'], ...] def __init__(self, fields: Sequence[StructFieldDecl]): self.fields = tuple(fields) def __str__(self): return self.decl() def _inner_decl(self): return '; '.join(str(field) for field in self.fields) + ';' def decl(self, name_or_decl: Optional[str] = None): parts = ['struct', f'{{{self._inner_decl()}}}'] if name_or_decl: parts.append(name_or_decl) return ' '.join(parts) class AnonymousUnionDecl(AnonymousStructDecl): """Represents an anonymous union declaration.""" def decl(self, name_or_decl: Optional[str] = None): parts = ['union', f'{{{self._inner_decl()}}}'] if name_or_decl: parts.append(name_or_decl) return ' '.join(parts) @dataclasses.dataclass class StructDecl: """Represents a struct declaration.""" name: str declname: str fields: Tuple[Union[StructFieldDecl, AnonymousUnionDecl], ...] def __init__(self, name: str, declname: str, fields: Sequence[Union[StructFieldDecl, AnonymousUnionDecl]]): self.name = name self.declname = declname self.fields = tuple(fields) def decl(self, name_or_decl: Optional[str] = None) -> str: parts = [self.name] if name_or_decl: parts.append(name_or_decl) return ' '.join(parts)
mujoco-main
introspect/ast_nodes.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Functions for parsing C type declarations.""" import collections import re from typing import Mapping, MutableSequence, Optional, Sequence, Tuple, Union from . import ast_nodes ARRAY_EXTENTS_PATTERN = re.compile(r'(\[[^\]]+\]\s*)+\Z') ARRAY_N_PATTERN = re.compile(r'\[([^\]]+)\]') STARTS_WITH_CONST_PATTERN = re.compile(r'\Aconst(?![A-Za-z0-9_])') ENDS_WITH_CONST_PATTERN = re.compile(r'(?<![A-Za-z0-9_])const\Z') def _parse_qualifiers( type_name: str, qualifiers: Sequence[str]) -> Tuple[str, Mapping[str, bool]]: """Separates qualifiers from the rest of the type name.""" parts = re.split(r'\s+', type_name) counter = collections.defaultdict(lambda: 0) non_qualifiers = [] for part in parts: if part in qualifiers: counter[part] += 1 if counter[part] > 1: raise ValueError('duplicate qualifier: {part!r}') else: non_qualifiers.append(part) is_qualifier = dict() for qualifier in qualifiers: is_qualifier[f'is_{qualifier}'] = bool(counter[qualifier]) return ' '.join(non_qualifiers), is_qualifier def _parse_maybe_array( type_name: str, innermost_type: Optional[Union[ast_nodes.ValueType, ast_nodes.PointerType]] ) -> Union[ast_nodes.ValueType, ast_nodes.PointerType, ast_nodes.ArrayType]: """Internal-only helper that parses a type that may be an array type.""" array_match = ARRAY_EXTENTS_PATTERN.search(type_name) if array_match: extents = tuple( int(s.strip()) for s in ARRAY_N_PATTERN.findall(array_match.group(0))) inner_type_str = type_name[:array_match.start()] return ast_nodes.ArrayType( inner_type=_parse_maybe_pointer(inner_type_str.strip(), innermost_type), extents=extents) else: return _parse_maybe_pointer(type_name, innermost_type) def _parse_maybe_pointer( type_name: str, innermost_type: Optional[Union[ast_nodes.ValueType, ast_nodes.PointerType]] ) -> Union[ast_nodes.ValueType, ast_nodes.PointerType, ast_nodes.ArrayType]: """Internal-only helper that parses a type that may be a pointer type.""" if type_name == 'void *(*)(void *)': return ast_nodes.ValueType(name=type_name) p = type_name.rfind('*') if p != -1: leftover, is_qualifier = _parse_qualifiers( type_name[p + 1:].strip(), ('const', 'volatile', 'restrict')) if leftover: raise ValueError('invalid qualifier for pointer: {leftover!r}') inner_type_str = type_name[:p].strip() if inner_type_str: inner_type = _parse_maybe_pointer(inner_type_str, innermost_type) else: assert innermost_type is not None inner_type = innermost_type return ast_nodes.PointerType(inner_type=inner_type, **is_qualifier) else: assert innermost_type is None # value type should be innermost type_name, is_qualifier = _parse_qualifiers( type_name.strip(), ('const', 'volatile')) return ast_nodes.ValueType(name=type_name, **is_qualifier) def _peel_nested_parens(input_str: str) -> MutableSequence[str]: """Extracts substrings from a string with nested parentheses. The returned sequence starts from the substring enclosed in the innermost parentheses and moves subsequently outwards. The contents of the inner substrings are removed from the outer ones. For example, given the string 'lorem ipsum(dolor sit (consectetur adipiscing) amet)sed do eiusmod', this function produces the sequence ['consectetur adipiscing', 'dolor sit amet', 'lorem ipsumsed do eiusmod']. Args: input_str: An input_str string consisting of zero or more nested parentheses. Returns: A sequence of substrings enclosed with in respective parentheses. See the description above for the precise detail of the output. """ if input_str == 'void *(*)(void *)': return ['void *(*)(void *)'] start = input_str.find('(') end = input_str.rfind(')') if start == -1 and end == -1: return [input_str] else: # Assertions to be re-raised into a meaningful error by the caller. assert start != -1 # '(' should be present if there is a ')' assert end != -1 # ')' should be present if there is a '(' assert start < end # '(' should come before ')' out = _peel_nested_parens(input_str[start + 1:end]) out.append(input_str[:start] + input_str[end + 1:]) return out def parse_type( type_name: str ) -> Union[ast_nodes.ValueType, ast_nodes.PointerType, ast_nodes.ArrayType]: """Parses a string that represents a C type into an AST node.""" try: type_str_stack = _peel_nested_parens(type_name.strip()) except AssertionError as e: raise ValueError(f'{type_name!r} contains incorrectly nested ' f'parentheses') from e result = None while type_str_stack: try: result = _parse_maybe_array(type_str_stack.pop(), result) except AssertionError as e: raise ValueError(f'invalid type name {type_name!r}') from e assert result # hint for pytype that `result` isn't None return result def parse_function_return_type( type_name: str ) -> Union[ast_nodes.ValueType, ast_nodes.PointerType, ast_nodes.ArrayType]: return parse_type(type_name[:type_name.find('(')])
mujoco-main
introspect/type_parsing.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Utility for formatting AST node as Python code.""" import contextlib import dataclasses from typing import Any, Iterable, Mapping, Sequence INDENT_WIDTH = 4 MAX_LINE_WIDTH = 80 SIMPLE_TYPES = frozenset([int, float, str, bool, bytes, type(None)]) def format_as_python_code(obj: Any) -> str: """Formats an AST node object as well-indented Python code.""" formatter = _Formatter() formatter.add(obj) return str(formatter) def _is_all_simple(seq: Iterable[Any]) -> bool: return all(type(obj) in SIMPLE_TYPES for obj in seq) class _Formatter: """A helper for pretty-printing AST nodes as Python code.""" def __init__(self): self._line_prefix = '' self._lines = [] self._add_to_last_line = False @contextlib.contextmanager def _indent(self, width: int = INDENT_WIDTH): self._line_prefix += ' ' * width yield self._line_prefix = self._line_prefix[:-width] @contextlib.contextmanager def _append_at_end(self, s): yield self._lines[-1] += s def _add_line(self, line: str, no_break: bool = False): if self._add_to_last_line: self._lines[-1] += line else: self._lines.append(self._line_prefix + line) self._add_to_last_line = no_break def _add_dict(self, obj: Mapping[Any, Any]): """Adds a dict to the formatted output.""" self._add_line('dict([') with self._indent(): for k, v in obj.items(): # Try to fit everything into a single line first. if _is_all_simple((k, v)): single_line = f'({k!r}, {v!r}),' if len(self._line_prefix) + len(single_line) <= MAX_LINE_WIDTH: self._add_line(single_line) continue self._add_line(f"('{k}',") with self._append_at_end('),'): with self._indent(1): self.add(v) self._add_line('])') def _add_dataclass(self, obj: Any): """Adds a dataclass object to the formatted output.""" # Filter out default values. kv_pairs = [] for k in dataclasses.fields(obj): v = getattr(obj, k.name) if v != k.default: kv_pairs.append((k, v)) # Try to fit everything into a single line first. if _is_all_simple(v for _, v in kv_pairs): single_line = ', '.join(f'{k.name}={v!r}' for k, v in kv_pairs) single_line = f'{obj.__class__.__name__}({single_line})' if len(self._line_prefix) + len(single_line) <= MAX_LINE_WIDTH: self._add_line(single_line) return self._add_line(obj.__class__.__name__ + '(') with self._indent(): for k, v in kv_pairs: self._add_line(k.name + '=', no_break=True) with self._append_at_end(','): self.add(v) self._add_line(')') def _add_sequence(self, obj: Sequence[Any]) -> None: """Adds a sequence to the formatted output.""" default_str = repr(obj) open_token, close_token = default_str[0], default_str[-1] # Try to fit everything into a single line first. if _is_all_simple(obj): single_line = ( f"{open_token}{', '.join(repr(o) for o in obj)}{close_token}") if close_token == ')' and len(obj) == 1: single_line = f'{single_line[:-1]},)' if len(self._line_prefix) + len(single_line) <= MAX_LINE_WIDTH: self._add_line(single_line) return self._add_line(open_token) with self._indent(): for v in obj: with self._append_at_end(','): self.add(v) self._add_line(close_token) def add(self, obj: Any) -> None: """Adds an object to the formatted output.""" if _is_all_simple((obj,)): self._add_line(repr(obj)) elif dataclasses.is_dataclass(obj): self._add_dataclass(obj) elif isinstance(obj, Mapping): self._add_dict(obj) elif isinstance(obj, Sequence): self._add_sequence(obj) else: raise NotImplementedError def __str__(self): lines = [] for line in self._lines: if len(line) > MAX_LINE_WIDTH: lines.append(f'{line} # pylint: disable=line-too-long') else: lines.append(line) return '\n'.join(lines)
mujoco-main
introspect/codegen/formatter.py
# Copyright 2023 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Generates structs.py. The JSON input can be generated via: clang -Xclang -ast-dump=json -fsyntax-only -fparse-all-comments -x c mujoco.h """ import itertools import json import os import re from typing import Any, Mapping, Sequence, Union from absl import app from absl import flags from introspect import ast_nodes from introspect import type_parsing from . import formatter _JSON_PATH = flags.DEFINE_string( 'json_path', None, 'Path to the JSON file representing the Clang AST for mujoco.h') ClangJsonNode = Mapping[str, Any] _ANONYMOUS_KEY_PATTERN = re.compile(r'\d+:\d+(?=\))') _EXCLUDED = ( 'mjpPlugin', 'mjpPlugin_', 'mjpResourceProvider', 'mjpResourceProvider_', 'mjResource', 'mjResource_', ) def traverse(node, visitor): visitor.visit(node) children = node.get('inner', []) for child in children: traverse(child, visitor) class _AnonymousTypePlaceholder(ast_nodes.ValueType): def __init__(self, anonymous_key: str): self.name = anonymous_key self.is_const = False self.is_volatile = False class MjStructVisitor: """A Clang AST JSON node visitor for MuJoCo API struct declarations.""" def __init__(self): self._structs = {} self._anonymous = {} self._typedefs = {} def _normalize_type( self, declname: str ) -> Union[ ast_nodes.ValueType, ast_nodes.PointerType, ast_nodes.ArrayType]: """Resolves anonymous structs/unions and looks up existing typedefs.""" # Check for anonymous struct/union. if '(unnamed ' in declname: m = _ANONYMOUS_KEY_PATTERN.search(declname) if not m: raise RuntimeError('cannot parse anonymous key from {m!r}') return _AnonymousTypePlaceholder(m.group(0)) # Lookup typedef name and use it instead if one exists. for k, v in self._typedefs.items(): if declname == v.declname: return type_parsing.parse_type(k) # No valid normalization, just parse the declname. return type_parsing.parse_type(declname) def _make_comment(self, node: ClangJsonNode) -> str: """Makes a comment string from a Clang AST FullComment node.""" kind = node.get('kind') if kind == 'TextComment': return node['text'].replace('\N{NO-BREAK SPACE}', '&nbsp;').strip() else: strings = [] for child in node['inner']: strings.append(self._make_comment(child)) return ''.join(strings).strip() def _make_field( self, node: ClangJsonNode ) -> Union[ast_nodes.StructFieldDecl, _AnonymousTypePlaceholder]: """Makes a StructFieldDecl object from a Clang AST FieldDecl node.""" doc = '' for child in node.get('inner', ()): if child['kind'] == 'FullComment': doc = self._make_comment(child) if 'name' in node: field_type = self._normalize_type(node['type']['qualType']) return ast_nodes.StructFieldDecl( name=node['name'], type=field_type, doc=doc) else: return _AnonymousTypePlaceholder(self._make_anonymous_key(node)) def _make_struct( self, node: ClangJsonNode ) -> Union[ast_nodes.AnonymousStructDecl, ast_nodes.StructDecl]: """Makes a Decl object from a Clang AST RecordDecl node.""" name = f"{node['tagUsed']} {node['name']}" if 'name' in node else '' fields = [] for child in node['inner']: child_kind = child.get('kind') if child_kind == 'FieldDecl': fields.append(self._make_field(child)) if name: return ast_nodes.StructDecl(name=name, declname=name, fields=fields) elif node['tagUsed'] == 'union': return ast_nodes.AnonymousUnionDecl(fields=fields) else: return ast_nodes.AnonymousStructDecl(fields=fields) def _is_mujoco_type(self, node: ClangJsonNode) -> bool: node_name = node.get('name', '') included_from = os.path.basename( node['loc'].get('includedFrom', {}).get('file', '') ) return node_name not in _EXCLUDED and ( node_name.startswith('mj') or included_from == 'mujoco.h' or included_from.startswith('mj') ) def _make_anonymous_key(self, node: ClangJsonNode) -> str: line = node['loc']['line'] col = node['loc']['col'] return f'{line}:{col}' def visit(self, node: ClangJsonNode) -> None: """Visits a JSON node.""" if node.get('kind') == 'RecordDecl' and self._is_mujoco_type(node): struct_decl = self._make_struct(node) if hasattr(struct_decl, 'name'): self._structs[struct_decl.name] = struct_decl else: anonymous_key = self._make_anonymous_key(node) if anonymous_key in self._anonymous: raise RuntimeError( f'duplicate key for anonymous struct: {anonymous_key}') self._anonymous[anonymous_key] = struct_decl elif (node.get('kind') == 'TypedefDecl' and node['type']['qualType'].startswith('struct mj') and node['name'] not in _EXCLUDED): struct = self._structs[node['type']['qualType']] self._typedefs[node['name']] = ast_nodes.StructDecl( name=node['name'], declname=struct.declname, fields=struct.fields) def resolve_all_anonymous(self) -> None: """Replaces anonymous struct placeholders with corresponding decl.""" for struct in itertools.chain( self._structs.values(), self._typedefs.values() ): fields = [] for field in struct.fields: if isinstance(field, _AnonymousTypePlaceholder): fields.append(self._anonymous[field.name]) elif isinstance(field.type, _AnonymousTypePlaceholder): fields.append( ast_nodes.StructFieldDecl( name=field.name, type=self._anonymous[field.type.name], doc=field.doc, ) ) else: fields.append(field) struct.fields = tuple(fields) @property def structs(self) -> Mapping[str, ast_nodes.StructDecl]: return self._structs @property def typedefs(self) -> Mapping[str, ast_nodes.StructDecl]: return self._typedefs def main(argv: Sequence[str]) -> None: if len(argv) > 1: raise app.UsageError('Too many command-line arguments.') with open(_JSON_PATH.value, 'r', encoding='utf-8') as f: root = json.load(f) visitor = MjStructVisitor() traverse(root, visitor) visitor.resolve_all_anonymous() structs_str = formatter.format_as_python_code(visitor.typedefs) print(f''' # Copyright 2023 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Provides information about MuJoCo API structs. DO NOT EDIT. THIS FILE IS AUTOMATICALLY GENERATED. """ from typing import Mapping from .ast_nodes import AnonymousStructDecl from .ast_nodes import AnonymousUnionDecl from .ast_nodes import ArrayType from .ast_nodes import PointerType from .ast_nodes import StructDecl from .ast_nodes import StructFieldDecl from .ast_nodes import ValueType STRUCTS: Mapping[str, StructDecl] = {structs_str} '''.strip()) # `print` adds a trailing newline if __name__ == '__main__': app.run(main)
mujoco-main
introspect/codegen/generate_structs.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Generates enums.py. The JSON input can be generated via: clang -Xclang -ast-dump=json -fsyntax-only -fparse-all-comments -x c mujoco.h """ import json from typing import Any, Mapping, Sequence from absl import app from absl import flags from introspect import ast_nodes from . import formatter _JSON_PATH = flags.DEFINE_string( 'json_path', None, 'Path to the JSON file representing the Clang AST for mujoco.h') ClangJsonNode = Mapping[str, Any] def traverse(node, visitor): visitor.visit(node) children = node.get('inner', []) for child in children: traverse(child, visitor) class MjEnumVisitor: """A Clang AST JSON node visitor for MuJoCo API enum declarations.""" def __init__(self): self._enums = {} self._typedefs = {} def _make_enum(self, node: ClangJsonNode) -> ast_nodes.EnumDecl: """Makes a EnumDecl from a Clang AST EnumDecl node.""" name = f"enum {node['name']}" values = [] for child in node['inner']: child_kind = child.get('kind') if child_kind == 'EnumConstantDecl': next_idx = values[-1][1] + 1 if values else 0 if 'inner' in child: value = int(child['inner'][0].get('value', next_idx)) else: value = next_idx values.append((child['name'], value)) return ast_nodes.EnumDecl(name=name, declname=name, values=dict(values)) def visit(self, node: ClangJsonNode) -> None: if (node.get('kind') == 'EnumDecl' and node.get('name', '').startswith('mj')): enum_decl = self._make_enum(node) self._enums[enum_decl.name] = enum_decl elif (node.get('kind') == 'TypedefDecl' and node['type']['qualType'].startswith('enum mj')): enum = self._enums[node['type']['qualType']] self._typedefs[node['name']] = ast_nodes.EnumDecl( name=node['name'], declname=enum.declname, values=dict(enum.values)) @property def enums(self) -> Mapping[str, ast_nodes.EnumDecl]: return self._enums @property def typedefs(self) -> Mapping[str, ast_nodes.EnumDecl]: return self._typedefs def main(argv: Sequence[str]) -> None: if len(argv) > 1: raise app.UsageError('Too many command-line arguments.') with open(_JSON_PATH.value, 'r', encoding='utf-8') as f: root = json.load(f) visitor = MjEnumVisitor() traverse(root, visitor) enums_str = formatter.format_as_python_code(visitor.typedefs) print(f''' # Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Provides information about MuJoCo API enums. DO NOT EDIT. THIS FILE IS AUTOMATICALLY GENERATED. """ from typing import Mapping from .ast_nodes import EnumDecl ENUMS: Mapping[str, EnumDecl] = {enums_str} '''.strip()) # `print` adds a trailing newline if __name__ == '__main__': app.run(main)
mujoco-main
introspect/codegen/generate_enums.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Generates functions.py. The JSON input can be generated via: clang -Xclang -ast-dump=json -fsyntax-only -fparse-all-comments -x c mujoco.h """ import json from typing import Any, Mapping, Sequence from absl import app from absl import flags from introspect import ast_nodes from introspect import type_parsing from . import formatter _HEADER_PATH = flags.DEFINE_string( 'header_path', None, 'Path to the original mujoco.h') _JSON_PATH = flags.DEFINE_string( 'json_path', None, 'Path to the JSON file representing the Clang AST for mujoco.h') ClangJsonNode = Mapping[str, Any] def traverse(node, visitor): visitor.visit(node) children = node.get('inner', []) for child in children: traverse(child, visitor) class MjFunctionVisitor: """A Clang AST JSON node visitor for MuJoCo API function declarations.""" def __init__(self, raw_header): self._raw_header = raw_header self._functions = {} def _make_function(self, node: ClangJsonNode) -> ast_nodes.FunctionDecl: """Makes a FunctionDecl from a Clang AST FunctionDecl node.""" name = node['name'] return_type = type_parsing.parse_function_return_type( node['type']['qualType']) parameters = [] comments = [] for child in node['inner']: child_kind = child.get('kind') if child_kind == 'ParmVarDecl': parameters.append(self._make_parameter(child)) if child_kind == 'FullComment': comments.append(self._make_comment(child)) comment = ' '.join(comments).strip() return ast_nodes.FunctionDecl( name=name, return_type=return_type, parameters=parameters, doc=comment) def _make_parameter( self, node: ClangJsonNode) -> ast_nodes.FunctionParameterDecl: """Makes a ParameterDecl from a Clang AST ParmVarDecl node.""" name = node['name'] type_name = node['type']['qualType'] # For a pointer parameters, look up in the original header to see if # n array extent was declared there. if type_name.endswith('*'): decl_begin = node['range']['begin']['offset'] decl_end = node['range']['end']['offset'] + node['range']['end']['tokLen'] decl = self._raw_header[decl_begin:decl_end] name_begin = node['loc']['offset'] - decl_begin name_end = name_begin + node['loc']['tokLen'] type_name = decl[:name_begin] + decl[name_end:] return ast_nodes.FunctionParameterDecl( name=name, type=type_parsing.parse_type(type_name)) def _make_comment(self, node: ClangJsonNode) -> str: """Makes a comment string from a Clang AST FullComment node.""" kind = node.get('kind') if kind == 'TextComment': return node['text'].replace('\N{NO-BREAK SPACE}', '&nbsp;') else: strings = [] for child in node['inner']: strings.append(self._make_comment(child)) return ''.join(strings) def visit(self, node: ClangJsonNode) -> None: if (node.get('kind') == 'FunctionDecl' and node.get('name', '').startswith('mj')): func_decl = self._make_function(node) self._functions[func_decl.name] = func_decl @property def functions(self) -> Mapping[str, ast_nodes.FunctionDecl]: return self._functions def main(argv: Sequence[str]) -> None: if len(argv) > 1: raise app.UsageError('Too many command-line arguments.') with open(_JSON_PATH.value, 'r', encoding='utf-8') as f: root = json.load(f) with open(_HEADER_PATH.value, 'r') as f: visitor = MjFunctionVisitor(f.read()) traverse(root, visitor) functions_str = formatter.format_as_python_code(visitor.functions) print(f''' # Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Provides information about MuJoCo API functions. DO NOT EDIT. THIS FILE IS AUTOMATICALLY GENERATED. """ from typing import Mapping from .ast_nodes import ArrayType from .ast_nodes import FunctionDecl from .ast_nodes import FunctionParameterDecl from .ast_nodes import PointerType from .ast_nodes import ValueType FUNCTIONS: Mapping[str, FunctionDecl] = {functions_str} '''.strip()) # `print` adds a trailing newline if __name__ == '__main__': app.run(main)
mujoco-main
introspect/codegen/generate_functions.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Install script for MuJoCo.""" import fnmatch import logging import os import platform import random import re import shutil import string import subprocess import sys import sysconfig import setuptools from setuptools import find_packages from setuptools import setup from setuptools.command import build_ext from setuptools.command import install_scripts __version__ = '2.3.8' MUJOCO_CMAKE = 'MUJOCO_CMAKE' MUJOCO_CMAKE_ARGS = 'MUJOCO_CMAKE_ARGS' MUJOCO_PATH = 'MUJOCO_PATH' MUJOCO_PLUGIN_PATH = 'MUJOCO_PLUGIN_PATH' EXT_PREFIX = 'mujoco.' def get_long_description(): """Creates a long description for the package from bundled markdown files.""" current_dir = os.path.dirname('__file__') with open(os.path.join(current_dir, 'README.md')) as f: description = f.read() try: with open(os.path.join(current_dir, 'LICENSES_THIRD_PARTY.md')) as f: description = f'{description}\n{f.read()}' except FileNotFoundError: pass return description def get_mujoco_lib_pattern(): if platform.system() == 'Windows': return 'mujoco.lib' elif platform.system() == 'Darwin': return 'libmujoco.*.dylib' else: return 'libmujoco.so.*' def get_external_lib_patterns(): if platform.system() == 'Windows': return ['mujoco.dll'] elif platform.system() == 'Darwin': return ['libmujoco.*.dylib'] else: return ['libmujoco.so.*'] def get_plugin_lib_patterns(): if platform.system() == 'Windows': return ['*.dll'] elif platform.system() == 'Darwin': return ['lib*.dylib'] else: return ['lib*'] def start_and_end(iterable): it = iter(iterable) while True: try: first = next(it) second = next(it) yield first, second except StopIteration: return def tokenize_quoted_substr(input_string, quote_char, placeholders=None): """Replace quoted substrings with random text placeholders with no spaces.""" # Matches quote characters not proceded with a backslash. pattern = re.compile(r'(?<!\\)' + quote_char) quote_positions = [m.start() for m in pattern.finditer(input_string)] if len(quote_positions) % 2: raise ValueError(f'unbalanced quotes {quote_char}...{quote_char}') output_string = '' placeholders = placeholders if placeholders is not None else dict() prev_end = -1 for start, end in start_and_end(quote_positions): output_string += input_string[prev_end+1:start] while True: placeholder = ''.join(random.choices(string.ascii_lowercase, k=5)) if placeholder not in input_string and placeholder not in output_string: break output_string += placeholder placeholders[placeholder] = input_string[start+1:end] prev_end = end output_string += input_string[prev_end+1:] return output_string, placeholders def parse_cmake_args_from_environ(env_var_name=MUJOCO_CMAKE_ARGS): """Parses CMake arguments from an environment variable.""" raw_args = os.environ.get(env_var_name, '').strip() unquoted, placeholders = tokenize_quoted_substr(raw_args, '"') unquoted, placeholders = tokenize_quoted_substr(unquoted, "'", placeholders) parts = re.split(r'\s+', unquoted.strip()) out = [] for part in parts: for k, v in placeholders.items(): part = part.replace(k, v) part = part.replace('\\"', '"').replace("\\'", "'") if part: out.append(part) return out class CMakeExtension(setuptools.Extension): """A Python extension that has been prebuilt by CMake. We do not want distutils to handle the build process for our extensions, so so we pass an empty list to the super constructor. """ def __init__(self, name): super().__init__(name, sources=[]) class BuildCMakeExtension(build_ext.build_ext): """Uses CMake to build extensions.""" def run(self): self._is_apple = (platform.system() == 'Darwin') (self._mujoco_library_path, self._mujoco_include_path, self._mujoco_plugins_path, self._mujoco_framework_path) = self._find_mujoco() self._configure_cmake() for ext in self.extensions: assert ext.name.startswith(EXT_PREFIX) assert '.' not in ext.name[len(EXT_PREFIX):] self.build_extension(ext) self._copy_external_libraries() self._copy_mujoco_headers() self._copy_plugin_libraries() if self._is_apple: self._copy_mjpython() def _find_mujoco(self): if MUJOCO_PATH not in os.environ: raise RuntimeError( f'{MUJOCO_PATH} environment variable is not set') if MUJOCO_PLUGIN_PATH not in os.environ: raise RuntimeError( f'{MUJOCO_PLUGIN_PATH} environment variable is not set') library_path = None include_path = None plugin_path = os.environ[MUJOCO_PLUGIN_PATH] for directory, subdirs, filenames in os.walk(os.environ[MUJOCO_PATH]): if self._is_apple and 'mujoco.framework' in subdirs: return (os.path.join(directory, 'mujoco.framework/Versions/A'), os.path.join(directory, 'mujoco.framework/Headers'), plugin_path, directory) if fnmatch.filter(filenames, get_mujoco_lib_pattern()): library_path = directory if os.path.exists(os.path.join(directory, 'mujoco/mujoco.h')): include_path = directory if library_path and include_path: return library_path, include_path, plugin_path, None raise RuntimeError('Cannot find MuJoCo library and/or include paths') def _copy_external_libraries(self): dst = os.path.dirname(self.get_ext_fullpath(self.extensions[0].name)) for directory, _, filenames in os.walk(os.environ[MUJOCO_PATH]): for pattern in get_external_lib_patterns(): for filename in fnmatch.filter(filenames, pattern): shutil.copyfile(os.path.join(directory, filename), os.path.join(dst, filename)) def _copy_plugin_libraries(self): dst = os.path.join( os.path.dirname(self.get_ext_fullpath(self.extensions[0].name)), 'plugin') os.makedirs(dst) for directory, _, filenames in os.walk(self._mujoco_plugins_path): for pattern in get_plugin_lib_patterns(): for filename in fnmatch.filter(filenames, pattern): shutil.copyfile(os.path.join(directory, filename), os.path.join(dst, filename)) def _copy_mujoco_headers(self): dst = os.path.join( os.path.dirname(self.get_ext_fullpath(self.extensions[0].name)), 'include/mujoco') os.makedirs(dst) for directory, _, filenames in os.walk(self._mujoco_include_path): for filename in fnmatch.filter(filenames, '*.h'): shutil.copyfile(os.path.join(directory, filename), os.path.join(dst, filename)) def _copy_mjpython(self): src_dir = os.path.join(os.path.dirname(__file__), 'mujoco/mjpython') dst_contents_dir = os.path.join( os.path.dirname(self.get_ext_fullpath(self.extensions[0].name)), 'MuJoCo (mjpython).app/Contents') os.makedirs(dst_contents_dir) shutil.copyfile(os.path.join(src_dir, 'Info.plist'), os.path.join(dst_contents_dir, 'Info.plist')) dst_bin_dir = os.path.join(dst_contents_dir, 'MacOS') os.makedirs(dst_bin_dir) shutil.copyfile(os.path.join(self.build_temp, 'mjpython'), os.path.join(dst_bin_dir, 'mjpython')) os.chmod(os.path.join(dst_bin_dir, 'mjpython'), 0o755) dst_resources_dir = os.path.join(dst_contents_dir, 'Resources') os.makedirs(dst_resources_dir) shutil.copyfile(os.path.join(src_dir, 'mjpython.icns'), os.path.join(dst_resources_dir, 'mjpython.icns')) def _configure_cmake(self): """Check for CMake.""" cmake = os.environ.get(MUJOCO_CMAKE, 'cmake') build_cfg = 'Debug' if self.debug else 'Release' cmake_module_path = os.path.join(os.path.dirname(__file__), 'cmake') cmake_args = [ f'-DPython3_ROOT_DIR:PATH={sys.prefix}', f'-DPython3_EXECUTABLE:STRING={sys.executable}', f'-DCMAKE_MODULE_PATH:PATH={cmake_module_path}', f'-DCMAKE_BUILD_TYPE:STRING={build_cfg}', f'-DCMAKE_LIBRARY_OUTPUT_DIRECTORY:PATH={self.build_temp}', f'-DCMAKE_INTERPROCEDURAL_OPTIMIZATION:BOOL={"OFF" if self.debug else "ON"}', '-DCMAKE_Fortran_COMPILER:STRING=', '-DBUILD_TESTING:BOOL=OFF', ] if self._mujoco_framework_path is not None: cmake_args.extend([ f'-DMUJOCO_FRAMEWORK_DIR:PATH={self._mujoco_framework_path}', ]) else: cmake_args.extend([ f'-DMUJOCO_LIBRARY_DIR:PATH={self._mujoco_library_path}', f'-DMUJOCO_INCLUDE_DIR:PATH={self._mujoco_include_path}', ]) if platform.system() != 'Windows': cmake_args.extend([ f'-DPython3_LIBRARY={sysconfig.get_paths()["stdlib"]}', f'-DPython3_INCLUDE_DIR={sysconfig.get_paths()["include"]}', ]) if platform.system() == 'Darwin' and os.environ.get('ARCHFLAGS'): osx_archs = [] if '-arch x86_64' in os.environ['ARCHFLAGS']: osx_archs.append('x86_64') if '-arch arm64' in os.environ['ARCHFLAGS']: osx_archs.append('arm64') cmake_args.append(f'-DCMAKE_OSX_ARCHITECTURES={";".join(osx_archs)}') cmake_args.extend(parse_cmake_args_from_environ()) os.makedirs(self.build_temp, exist_ok=True) if platform.system() == 'Windows': cmake_args = [arg.replace('\\', '/') for arg in cmake_args] print('Configuring CMake with the following arguments:') for arg in cmake_args: print(f' {arg}') subprocess.check_call( [cmake] + cmake_args + [os.path.join(os.path.dirname(__file__), 'mujoco')], cwd=self.build_temp) print('Building all extensions with CMake') subprocess.check_call( [cmake, '--build', '.', f'-j{os.cpu_count()}', '--config', build_cfg], cwd=self.build_temp) def build_extension(self, ext): dest_path = self.get_ext_fullpath(ext.name) build_path = os.path.join(self.build_temp, os.path.basename(dest_path)) shutil.copyfile(build_path, dest_path) class InstallScripts(install_scripts.install_scripts): """Strips file extension from executable scripts whose names end in `.py`.""" def run(self): super().run() oldfiles = self.outfiles files = set(oldfiles) self.outfiles = [] for oldfile in oldfiles: if oldfile.endswith('.py'): newfile = oldfile[:-3] else: newfile = oldfile renamed = False if newfile not in files and not os.path.exists(newfile): if not self.dry_run: os.rename(oldfile, newfile) renamed = True if renamed: logging.info( 'Renaming %s script to %s', os.path.basename(oldfile), os.path.basename(newfile), ) self.outfiles.append(newfile) files.remove(oldfile) files.add(newfile) else: self.outfiles.append(oldfile) def find_data_files(package_dir, patterns): """Recursively finds files whose names match the given shell patterns.""" paths = set() for directory, _, filenames in os.walk(package_dir): for pattern in patterns: for filename in fnmatch.filter(filenames, pattern): # NB: paths must be relative to the package directory. relative_dirpath = os.path.relpath(directory, package_dir) paths.add(os.path.join(relative_dirpath, filename)) return list(paths) SETUP_KWARGS = dict( name='mujoco', version=__version__, author='Google DeepMind', author_email='[email protected]', description='MuJoCo Physics Simulator', long_description=get_long_description(), long_description_content_type='text/markdown', url='https://github.com/google-deepmind/mujoco', license='Apache License 2.0', classifiers=[ 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Developers', 'Intended Audience :: Science/Research', 'License :: OSI Approved :: Apache Software License', 'Natural Language :: English', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', 'Programming Language :: Python :: 3.10', 'Programming Language :: Python :: 3.11', 'Topic :: Scientific/Engineering', ], cmdclass=dict( build_ext=BuildCMakeExtension, install_scripts=InstallScripts, ), ext_modules=[ CMakeExtension('mujoco._callbacks'), CMakeExtension('mujoco._constants'), CMakeExtension('mujoco._enums'), CMakeExtension('mujoco._errors'), CMakeExtension('mujoco._functions'), CMakeExtension('mujoco._render'), CMakeExtension('mujoco._rollout'), CMakeExtension('mujoco._simulate'), CMakeExtension('mujoco._structs'), ], python_requires='>=3.8', install_requires=[ 'absl-py', 'glfw', 'numpy', 'pyopengl', ], tests_require=[ 'absl-py', 'glfw', 'numpy', 'pyopengl', ], test_suite='mujoco', packages=find_packages(), package_data={ 'mujoco': find_data_files( package_dir='mujoco', patterns=[ 'libmujoco.*.dylib', 'libmujoco*.so.*', 'mujoco.dll', 'include/mujoco/*.h', ]), }, ) if platform.system() == 'Darwin': SETUP_KWARGS['scripts'] = ['mujoco/mjpython/mjpython.py'] setup(**SETUP_KWARGS)
mujoco-main
python/setup.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Interactive GUI viewer for MuJoCo.""" import abc import atexit import contextlib import math import os import queue import sys import threading import time from typing import Callable, Optional, Tuple, Union import weakref import glfw import mujoco from mujoco import _simulate import numpy as np if not glfw._glfw: # pylint: disable=protected-access raise RuntimeError('GLFW dynamic library handle is not available') else: _simulate.set_glfw_dlhandle(glfw._glfw._handle) # pylint: disable=protected-access # Logarithmically spaced realtime slow-down coefficients (percent). PERCENT_REALTIME = ( 100, 80, 66, 50, 40, 33, 25, 20, 16, 13, 10, 8, 6.6, 5, 4, 3.3, 2.5, 2, 1.6, 1.3, 1, 0.8, 0.66, 0.5, 0.4, 0.33, 0.25, 0.2, 0.16, 0.13, 0.1 ) # Maximum time mis-alignment before re-sync. MAX_SYNC_MISALIGN = 0.1 # Fraction of refresh available for simulation. SIM_REFRESH_FRACTION = 0.7 CallbackType = Callable[[mujoco.MjModel, mujoco.MjData], None] LoaderType = Callable[[], Tuple[mujoco.MjModel, mujoco.MjData]] KeyCallbackType = Callable[[int], None] # Loader function that also returns a file path for the GUI to display. _LoaderWithPathType = Callable[[], Tuple[mujoco.MjModel, mujoco.MjData, str]] _InternalLoaderType = Union[LoaderType, _LoaderWithPathType] _Simulate = _simulate.Simulate class Handle: """A handle for interacting with a MuJoCo viewer.""" def __init__( self, sim: _Simulate, scn: mujoco.MjvScene, cam: mujoco.MjvCamera, opt: mujoco.MjvOption, pert: mujoco.MjvPerturb, ): self._sim = weakref.ref(sim) self._scn = scn self._cam = cam self._opt = opt self._pert = pert @property def scn(self): return self._scn @property def cam(self): return self._cam @property def opt(self): return self._opt @property def perturb(self): return self._pert def close(self): sim = self._sim() if sim is not None: sim.exit() def is_running(self) -> bool: sim = self._sim() if sim is not None: return sim.exitrequest < 2 return False def lock(self): sim = self._sim() if sim is not None: return sim.lock() return contextlib.nullcontext() def sync(self): sim = self._sim() if sim is not None: sim.sync() # locks internally def update_hfield(self, hfieldid: int): sim = self._sim() if sim is not None: sim.update_hfield(hfieldid) # locks internally and blocks until done def update_mesh(self, meshid: int): sim = self._sim() if sim is not None: sim.update_mesh(meshid) # locks internally and blocks until done def update_texture(self, texid: int): sim = self._sim() if sim is not None: sim.update_texture(texid) # locks internally and blocks until done def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): self.close() # Abstract base dispatcher class for systems that require UI calls to be made # on a specific thread (e.g. macOS). This is subclassed by system-specific # Python launcher (mjpython) to implement the required dispatching mechanism. class _MjPythonBase(metaclass=abc.ABCMeta): def launch_on_ui_thread( self, model: mujoco.MjModel, data: mujoco.MjData, handle_return: Optional['queue.Queue[Handle]'], key_callback: Optional[KeyCallbackType], ): pass # When running under mjpython, the launcher initializes this object. _MJPYTHON: Optional[_MjPythonBase] = None def _file_loader(path: str) -> _LoaderWithPathType: """Loads an MJCF model from file path.""" def load(path=path) -> Tuple[mujoco.MjModel, mujoco.MjData, str]: m = mujoco.MjModel.from_xml_path(path) d = mujoco.MjData(m) return m, d, path return load def _reload( simulate: _Simulate, loader: _InternalLoaderType, notify_loaded: Optional[Callable[[], None]] = None ) -> Optional[Tuple[mujoco.MjModel, mujoco.MjData]]: """Internal function for reloading a model in the viewer.""" try: load_tuple = loader() except Exception as e: # pylint: disable=broad-except simulate.load_error = str(e) else: m, d = load_tuple[:2] # If the loader does not raise an exception then we assume that it # successfully created mjModel and mjData. This is specified in the type # annotation, but we perform a runtime assertion here as well to prevent # possible segmentation faults. assert m is not None and d is not None path = load_tuple[2] if len(load_tuple) == 3 else '' simulate.load(m, d, path) if notify_loaded: notify_loaded() return m, d def _physics_loop(simulate: _Simulate, loader: Optional[_InternalLoaderType]): """Physics loop for the GUI, to be run in a separate thread.""" m: mujoco.MjModel = None d: mujoco.MjData = None ctrl_noise = np.array([]) reload = True # CPU-sim synchronization point. synccpu = 0.0 syncsim = 0.0 # Run until asked to exit. while not simulate.exitrequest: if simulate.droploadrequest: simulate.droploadrequest = 0 loader = _file_loader(simulate.dropfilename) reload = True if simulate.uiloadrequest: simulate.uiloadrequest_decrement() reload = True if reload and loader is not None: result = _reload(simulate, loader) if result is not None: m, d = result ctrl_noise = np.zeros((m.nu,)) reload = False # Sleep for 1 ms or yield, to let main thread run. if simulate.run != 0 and simulate.busywait != 0: time.sleep(0) else: time.sleep(0.001) with simulate.lock(): if m is not None: assert d is not None if simulate.run: # Record CPU time at start of iteration. startcpu = time.time() elapsedcpu = startcpu - synccpu elapsedsim = d.time - syncsim # Inject noise. if simulate.ctrl_noise_std != 0.0: # Convert rate and scale to discrete time (Ornstein–Uhlenbeck). rate = math.exp(-m.opt.timestep / max(simulate.ctrl_noise_rate, mujoco.mjMINVAL)) scale = simulate.ctrl_noise_std * math.sqrt(1 - rate * rate) for i in range(m.nu): # Update noise. ctrl_noise[i] = (rate * ctrl_noise[i] + scale * mujoco.mju_standardNormal(None)) # Apply noise. d.ctrl[i] = ctrl_noise[i] # Requested slow-down factor. slowdown = 100 / PERCENT_REALTIME[simulate.real_time_index] # Misalignment: distance from target sim time > MAX_SYNC_MISALIGN. misaligned = abs(elapsedcpu / slowdown - elapsedsim) > MAX_SYNC_MISALIGN # Out-of-sync (for any reason): reset sync times, step. if (elapsedsim < 0 or elapsedcpu < 0 or synccpu == 0 or misaligned or simulate.speed_changed): # Re-sync. synccpu = startcpu syncsim = d.time simulate.speed_changed = False # Run single step, let next iteration deal with timing. mujoco.mj_step(m, d) # In-sync: step until ahead of cpu. else: measured = False prevsim = d.time refreshtime = SIM_REFRESH_FRACTION / simulate.refresh_rate # Step while sim lags behind CPU and within refreshtime. while (((d.time - syncsim) * slowdown < (time.time() - synccpu)) and ((time.time() - startcpu) < refreshtime)): # Measure slowdown before first step. if not measured and elapsedsim: simulate.measured_slowdown = elapsedcpu / elapsedsim measured = True # Call mj_step. mujoco.mj_step(m, d) # Break if reset. if d.time < prevsim: break else: # simulate.run is False: GUI is paused. # Run mj_forward, to update rendering and joint sliders. mujoco.mj_forward(m, d) def _launch_internal( model: Optional[mujoco.MjModel] = None, data: Optional[mujoco.MjData] = None, *, run_physics_thread: bool, loader: Optional[_InternalLoaderType] = None, handle_return: Optional['queue.Queue[Handle]'] = None, key_callback: Optional[KeyCallbackType] = None, ) -> None: """Internal API, so that the public API has more readable type annotations.""" if model is None and data is not None: raise ValueError('mjData is specified but mjModel is not') elif callable(model) and data is not None: raise ValueError( 'mjData should not be specified when an mjModel loader is used') elif loader is not None and model is not None: raise ValueError('model and loader are both specified') elif run_physics_thread and handle_return is not None: raise ValueError('run_physics_thread and handle_return are both specified') if loader is None and model is not None: def _loader(m=model, d=data) -> Tuple[mujoco.MjModel, mujoco.MjData]: if d is None: d = mujoco.MjData(m) return m, d loader = _loader if model and not run_physics_thread: scn = mujoco.MjvScene(model, _Simulate.MAX_GEOM) else: scn = mujoco.MjvScene() cam = mujoco.MjvCamera() opt = mujoco.MjvOption() pert = mujoco.MjvPerturb() simulate = _Simulate(scn, cam, opt, pert, run_physics_thread, key_callback) # Initialize GLFW if not using mjpython. if _MJPYTHON is None: if not glfw.init(): raise mujoco.FatalError('could not initialize GLFW') atexit.register(glfw.terminate) notify_loaded = None if handle_return: notify_loaded = ( lambda: handle_return.put_nowait(Handle(simulate, scn, cam, opt, pert))) if run_physics_thread: side_thread = threading.Thread( target=_physics_loop, args=(simulate, loader)) else: side_thread = threading.Thread( target=_reload, args=(simulate, loader, notify_loaded)) def make_exit(simulate): def exit_simulate(): simulate.exit() return exit_simulate exit_simulate = make_exit(simulate) atexit.register(exit_simulate) side_thread.start() simulate.render_loop() atexit.unregister(exit_simulate) side_thread.join() simulate.destroy() def launch(model: Optional[mujoco.MjModel] = None, data: Optional[mujoco.MjData] = None, *, loader: Optional[LoaderType] = None) -> None: """Launches the Simulate GUI.""" _launch_internal( model, data, run_physics_thread=True, loader=loader) def launch_from_path(path: str) -> None: """Launches the Simulate GUI from file path.""" _launch_internal(run_physics_thread=True, loader=_file_loader(path)) def launch_passive( model: mujoco.MjModel, data: mujoco.MjData, *, key_callback: Optional[KeyCallbackType] = None, ) -> Handle: """Launches a passive Simulate GUI without blocking the running thread.""" if not isinstance(model, mujoco.MjModel): raise ValueError(f'`model` is not a mujoco.MjModel: got {model!r}') if not isinstance(data, mujoco.MjData): raise ValueError(f'`data` is not a mujoco.MjData: got {data!r}') if key_callback is not None and not callable(key_callback): raise ValueError( f'`key_callback` is not callable: got {key_callback!r}') mujoco.mj_forward(model, data) handle_return = queue.Queue(1) if sys.platform != 'darwin': thread = threading.Thread( target=_launch_internal, args=(model, data), kwargs=dict( run_physics_thread=False, handle_return=handle_return, key_callback=key_callback, ), ) thread.daemon = True thread.start() else: if not isinstance(_MJPYTHON, _MjPythonBase): raise RuntimeError( '`launch_passive` requires that the Python script be run under ' '`mjpython` on macOS') _MJPYTHON.launch_on_ui_thread(model, data, handle_return, key_callback) return handle_return.get() if __name__ == '__main__': # pylint: disable=g-bad-import-order from absl import app # pylint: disable=g-import-not-at-top from absl import flags # pylint: disable=g-import-not-at-top _MJCF_PATH = flags.DEFINE_string('mjcf', None, 'Path to MJCF file.') def main(argv) -> None: del argv if _MJCF_PATH.value is not None: launch_from_path(os.path.expanduser(_MJCF_PATH.value)) else: launch() app.run(main)
mujoco-main
python/mujoco/viewer.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Defines a renderer class for the MuJoCo Python native bindings.""" from typing import Optional, Union from mujoco import _enums from mujoco import _functions from mujoco import _render from mujoco import _structs from mujoco import gl_context import numpy as np class Renderer: """Renders MuJoCo scenes.""" def __init__( self, model: _structs.MjModel, height: int = 240, width: int = 320, max_geom: int = 10000 ) -> None: """Initializes a new `Renderer`. Args: model: an MjModel instance. height: image height in pixels. width: image width in pixels. max_geom: Optional integer specifying the maximum number of geoms that can be rendered in the same scene. If None this will be chosen automatically based on the estimated maximum number of renderable geoms in the model. Raises: ValueError: If `camera_id` is outside the valid range, or if `width` or `height` exceed the dimensions of MuJoCo's offscreen framebuffer. """ buffer_width = model.vis.global_.offwidth buffer_height = model.vis.global_.offheight if width > buffer_width: raise ValueError(f""" Image width {width} > framebuffer width {buffer_width}. Either reduce the image width or specify a larger offscreen framebuffer in the model XML using the clause: <visual> <global offwidth="my_width"/> </visual>""".lstrip()) if height > buffer_height: raise ValueError(f""" Image height {height} > framebuffer height {buffer_height}. Either reduce the image height or specify a larger offscreen framebuffer in the model XML using the clause: <visual> <global offheight="my_height"/> </visual>""".lstrip()) self._width = width self._height = height self._model = model self._scene = _structs.MjvScene(model=model, maxgeom=max_geom) self._scene_option = _structs.MjvOption() self._rect = _render.MjrRect(0, 0, self._width, self._height) # Create render contexts. # TODO(nimrod): Figure out why pytype doesn't like gl_context.GLContext self._gl_context = gl_context.GLContext(width, height) # type: ignore self._gl_context.make_current() self._mjr_context = _render.MjrContext( model, _enums.mjtFontScale.mjFONTSCALE_150.value ) _render.mjr_setBuffer( _enums.mjtFramebuffer.mjFB_OFFSCREEN.value, self._mjr_context ) # Default render flags. self._depth_rendering = False self._segmentation_rendering = False @property def model(self): return self._model @property def scene(self) -> _structs.MjvScene: return self._scene @property def height(self): return self._height @property def width(self): return self._width def enable_depth_rendering(self): self._segmentation_rendering = False self._depth_rendering = True def disable_depth_rendering(self): self._depth_rendering = False def enable_segmentation_rendering(self): self._segmentation_rendering = True self._depth_rendering = False def disable_segmentation_rendering(self): self._segmentation_rendering = False def render(self, *, out: Optional[np.ndarray] = None) -> np.ndarray: """Renders the scene as a numpy array of pixel values. Args: out: Alternative output array in which to place the resulting pixels. It must have the same shape as the expected output but the type will be cast if necessary. The expted shape depends on the value of `self._depth_rendering`: when `True`, we expect `out.shape == (width, height)`, and `out.shape == (width, height, 3)` when `False`. Returns: A new numpy array holding the pixels with shape `(H, W)` or `(H, W, 3)`, depending on the value of `self._depth_rendering` unless `out is None`, in which case a reference to `out` is returned. """ original_flags = self._scene.flags.copy() if self._segmentation_rendering: self._scene.flags[_enums.mjtRndFlag.mjRND_SEGMENT] = True self._scene.flags[_enums.mjtRndFlag.mjRND_IDCOLOR] = True self._gl_context.make_current() if self._depth_rendering: out_shape = (self._height, self._width) out_dtype = np.float32 else: out_shape = (self._height, self._width, 3) out_dtype = np.uint8 if out is None: out = np.empty(out_shape, dtype=out_dtype) else: if out.shape != out_shape: raise ValueError( f'Expected `out.shape == {out_shape}`. Got `out.shape={out.shape}`' ' instead. When using depth rendering, the out array should be of' ' shape `(width, height)` and otherwise (width, height, 3).' f' Got `(self.height, self.width)={(self.height, self.width)}` and' f' `self._depth_rendering={self._depth_rendering}`.' ) # Render scene and read contents of RGB and depth buffers. _render.mjr_render(self._rect, self._scene, self._mjr_context) if self._depth_rendering: _render.mjr_readPixels(None, out, self._rect, self._mjr_context) # Get the distances to the near and far clipping planes. extent = self._model.stat.extent near = self._model.vis.map.znear * extent far = self._model.vis.map.zfar * extent # Convert from [0 1] to depth in units of length, see links below: # http://stackoverflow.com/a/6657284/1461210 # https://www.khronos.org/opengl/wiki/Depth_Buffer_Precision out = near / (1 - out * (1 - near / far)) elif self._segmentation_rendering: _render.mjr_readPixels(out, None, self._rect, self._mjr_context) # Convert 3-channel uint8 to 1-channel uint32. image3 = out.astype(np.uint32) segimage = ( image3[:, :, 0] + image3[:, :, 1] * (2**8) + image3[:, :, 2] * (2**16) ) # Remap segid to 2-channel (object ID, object type) pair. # Seg ID 0 is background -- will be remapped to (-1, -1). ngeoms = self._scene.ngeom segid2output = np.full( (ngeoms + 1, 2), fill_value=-1, dtype=np.int32 ) # Seg id cannot be > ngeom + 1. visible_geoms = [g for g in self._scene.geoms[:ngeoms] if g.segid != -1] visible_segids = np.array([g.segid + 1 for g in visible_geoms], np.int32) visible_objid = np.array([g.objid for g in visible_geoms], np.int32) visible_objtype = np.array([g.objtype for g in visible_geoms], np.int32) segid2output[visible_segids, 0] = visible_objid segid2output[visible_segids, 1] = visible_objtype out = segid2output[segimage] # Reset scene flags. np.copyto(self._scene.flags, original_flags) else: _render.mjr_readPixels(out, None, self._rect, self._mjr_context) out[:] = np.flipud(out) return out def update_scene( self, data: _structs.MjData, camera: Union[int, str, _structs.MjvCamera] = -1, scene_option: Optional[_structs.MjvOption] = None ): """Updates geometry used for rendering. Args: data: An instance of `MjData`. camera: An instance of `MjvCamera`, a string or an integer scene_option: A custom `MjvOption` instance to use to render the scene instead of the default. Raises: ValueError: If `camera_id` is outside the valid range, or if camera does not exist. """ if not isinstance(camera, _structs.MjvCamera): camera_id = camera if isinstance(camera_id, str): camera_id = _functions.mj_name2id( self._model, _enums.mjtObj.mjOBJ_CAMERA.value, camera_id ) if camera_id == -1: raise ValueError(f'The camera "{camera}" does not exist.') if camera_id < -1 or camera_id >= self._model.ncam: raise ValueError(f'The camera id {camera_id} is out of' f' range [-1, {self._model.ncam}).') # Render camera. camera = _structs.MjvCamera() camera.fixedcamid = camera_id # Defaults to mjCAMERA_FREE, otherwise mjCAMERA_FIXED refers to a # camera explicitly defined in the model. if camera_id == -1: camera.type = _enums.mjtCamera.mjCAMERA_FREE _functions.mjv_defaultFreeCamera(self._model, camera) else: camera.type = _enums.mjtCamera.mjCAMERA_FIXED scene_option = scene_option or self._scene_option _functions.mjv_updateScene( self._model, data, scene_option, None, camera, _enums.mjtCatBit.mjCAT_ALL.value, self._scene, )
mujoco-main
python/mujoco/renderer.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for the MuJoCo renderer.""" from absl.testing import absltest from absl.testing import parameterized import mujoco import numpy as np @absltest.skipUnless(hasattr(mujoco, 'GLContext'), 'MuJoCo rendering is disabled') class MuJoCoRendererTest(parameterized.TestCase): def test_renderer_unknown_camera_name(self): xml = """ <mujoco> <worldbody> <camera name="a"/> </worldbody> </mujoco> """ model = mujoco.MjModel.from_xml_string(xml) data = mujoco.MjData(model) renderer = mujoco.Renderer(model, 50, 50) mujoco.mj_forward(model, data) with self.assertRaisesRegex(ValueError, r'camera "b" does not exist'): renderer.update_scene(data, 'b') def test_renderer_camera_under_range(self): xml = """ <mujoco> <worldbody> <camera name="a"/> </worldbody> </mujoco> """ model = mujoco.MjModel.from_xml_string(xml) data = mujoco.MjData(model) renderer = mujoco.Renderer(model, 50, 50) mujoco.mj_forward(model, data) with self.assertRaisesRegex(ValueError, '-2 is out of range'): renderer.update_scene(data, -2) def test_renderer_camera_over_range(self): xml = """ <mujoco> <worldbody> <camera name="a"/> </worldbody> </mujoco> """ model = mujoco.MjModel.from_xml_string(xml) data = mujoco.MjData(model) renderer = mujoco.Renderer(model, 50, 50) mujoco.mj_forward(model, data) with self.assertRaisesRegex(ValueError, '1 is out of range'): renderer.update_scene(data, 1) def test_renderer_renders_scene(self): xml = """ <mujoco> <worldbody> <camera name="closeup" pos="0 -6 0" xyaxes="1 0 0 0 1 100"/> <geom name="white_box" type="box" size="1 1 1" rgba="1 1 1 1"/> </worldbody> </mujoco> """ model = mujoco.MjModel.from_xml_string(xml) data = mujoco.MjData(model) renderer = mujoco.Renderer(model, 50, 50) mujoco.mj_forward(model, data) renderer.update_scene(data, 'closeup') pixels = renderer.render().flatten() not_all_black = False # Pixels should all be a neutral color. for pixel in pixels: if pixel > 0: not_all_black = True break self.assertTrue(not_all_black) def test_renderer_output_without_out(self): xml = """ <mujoco> <worldbody> <camera name="closeup" pos="0 -6 0" xyaxes="1 0 0 0 1 100"/> <geom name="white_box" type="box" size="1 1 1" rgba="1 1 1 1"/> </worldbody> </mujoco> """ model = mujoco.MjModel.from_xml_string(xml) data = mujoco.MjData(model) mujoco.mj_forward(model, data) renderer = mujoco.Renderer(model, 50, 50) renderer.update_scene(data, 'closeup') pixels = [renderer.render()] colors = ( (1.0, 0.0, 0.0, 1.0), (0.0, 1.0, 0.0, 1.0), (0.0, 0.0, 1.0, 1.0), ) for i, color in enumerate(colors): model.geom_rgba[0, :] = color mujoco.mj_forward(model, data) renderer.update_scene(data, 'closeup') pixels.append(renderer.render()) self.assertIsNot(pixels[-2], pixels[-1]) # Pixels should change over steps. self.assertFalse((pixels[i + 1] == pixels[i]).all()) def test_renderer_output_with_out(self): xml = """ <mujoco> <worldbody> <camera name="closeup" pos="0 -6 0" xyaxes="1 0 0 0 1 100"/> <geom name="white_box" type="box" size="1 1 1" rgba="1 1 1 1"/> </worldbody> </mujoco> """ render_size = (50, 50) render_out = np.zeros((*render_size, 3), np.uint8) model = mujoco.MjModel.from_xml_string(xml) data = mujoco.MjData(model) mujoco.mj_forward(model, data) renderer = mujoco.Renderer(model, *render_size) renderer.update_scene(data, 'closeup') self.assertTrue(np.all(render_out == 0)) pixels = renderer.render(out=render_out) # Pixels should always refer to the same `render_out` array. self.assertIs(pixels, render_out) self.assertFalse(np.all(render_out == 0)) failing_render_size = (10, 10) self.assertNotEqual(failing_render_size, render_size) with self.assertRaises(ValueError): pixels = renderer.render( out=np.zeros((*failing_render_size, 3), np.uint8) ) if __name__ == '__main__': absltest.main()
mujoco-main
python/mujoco/renderer_test.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Python bindings for MuJoCo.""" import ctypes import ctypes.util import os import platform import subprocess import warnings _SYSTEM = platform.system() if _SYSTEM == 'Windows': ctypes.WinDLL(os.path.join(os.path.dirname(__file__), 'mujoco.dll')) elif _SYSTEM == 'Darwin': proc_translated = subprocess.run( ['sysctl', '-n', 'sysctl.proc_translated'], capture_output=True).stdout try: is_rosetta = bool(int(proc_translated)) except ValueError: is_rosetta = False if is_rosetta and platform.machine() == 'x86_64': raise ImportError( 'You are running an x86_64 build of Python on an Apple Silicon ' 'machine. This is not supported by MuJoCo. Please install and run a ' 'native, arm64 build of Python.') from mujoco._callbacks import * from mujoco._constants import * from mujoco._enums import * from mujoco._errors import * from mujoco._functions import * from mujoco._render import * from mujoco._structs import * from mujoco.gl_context import * from mujoco.renderer import Renderer HEADERS_DIR = os.path.join(os.path.dirname(__file__), 'include/mujoco') PLUGINS_DIR = os.path.join(os.path.dirname(__file__), 'plugin') PLUGIN_HANDLES = [] def _load_all_bundled_plugins(): for directory, _, filenames in os.walk(PLUGINS_DIR): for filename in filenames: if os.path.splitext(filename)[-1] in [".dll", ".dylib", ".so"]: PLUGIN_HANDLES.append(ctypes.CDLL(os.path.join(directory, filename))) elif filename == "__init__.py": pass else: warnings.warn('Ignoring non-library in plugin directory: ' f'{os.path.join(directory, filename)}', ImportWarning) _load_all_bundled_plugins() __version__ = mj_versionString() # pylint: disable=undefined-variable
mujoco-main
python/mujoco/__init__.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Roll out open-loop trajectories from initial states, get subsequent states and sensor values.""" from mujoco import _rollout import numpy as np def rollout(model, data, initial_state=None, ctrl=None, *, # require following arguments to be named skip_checks=False, nstate=None, nstep=None, initial_time=None, initial_warmstart=None, qfrc_applied=None, xfrc_applied=None, mocap=None, state=None, sensordata=None): """Roll out open-loop trajectories from initial states, get subsequent states and sensor values. This function serves as a Python wrapper for the C++ functionality in `rollout.cc`, please see documentation therein. This python funtion will infer `nstate` and `nstep`, tile input arguments with singleton dimensions, and allocate output arguments if none are given. """ # don't infer nstate/nstep, don't support singleton expansion, don't allocate # output arrays, just call rollout if skip_checks: _rollout.rollout(model, data, nstate, nstep, initial_state, initial_time, initial_warmstart, ctrl, qfrc_applied, xfrc_applied, mocap, state, sensordata) return state, sensordata # check types if nstate and not isinstance(nstate, int): raise ValueError('nstate must be an integer') if nstep and not isinstance(nstep, int): raise ValueError('nstep must be an integer') _check_must_be_numeric( initial_state=initial_state, initial_time=initial_time, initial_warmstart=initial_warmstart, ctrl=ctrl, qfrc_applied=qfrc_applied, xfrc_applied=xfrc_applied, mocap=mocap, state=state, sensordata=sensordata) # check number of dimensions _check_number_of_dimensions(2, initial_state=initial_state, initial_time=initial_time, initial_warmstart=initial_warmstart) _check_number_of_dimensions(3, ctrl=ctrl, qfrc_applied=qfrc_applied, xfrc_applied=xfrc_applied, mocap=mocap, state=state, sensordata=sensordata) # ensure 2D, make contiguous, row-major (C ordering) initial_state = _ensure_2d(initial_state) initial_time = _ensure_2d(initial_time) initial_warmstart = _ensure_2d(initial_warmstart) # ensure 3D, make contiguous, row-major (C ordering) ctrl = _ensure_3d(ctrl) qfrc_applied = _ensure_3d(qfrc_applied) xfrc_applied = _ensure_3d(xfrc_applied) mocap = _ensure_3d(mocap) state = _ensure_3d(state) sensordata = _ensure_3d(sensordata) # check trailing dimensions _check_trailing_dimension(model.nq + model.nv + model.na, initial_state=initial_state, state=state) _check_trailing_dimension(1, initial_time=initial_time) _check_trailing_dimension(model.nu, ctrl=ctrl) _check_trailing_dimension(model.nv, qfrc_applied=qfrc_applied) _check_trailing_dimension(model.nbody*6, xfrc_applied=xfrc_applied) _check_trailing_dimension(model.nmocap*7, mocap=mocap) _check_trailing_dimension(model.nsensordata, sensordata=sensordata) # infer nstate, check for incompatibilities nstate = _infer_dimension(0, nstate or 1, initial_state=initial_state, initial_time=initial_time, initial_warmstart=initial_warmstart, ctrl=ctrl, qfrc_applied=qfrc_applied, xfrc_applied=xfrc_applied, mocap=mocap, state=state, sensordata=sensordata) # infer nstep, check for incompatibilities nstep = _infer_dimension(1, nstep or 1, ctrl=ctrl, qfrc_applied=qfrc_applied, xfrc_applied=xfrc_applied, mocap=mocap, state=state, sensordata=sensordata) # tile input arrays if required (singleton expansion) initial_state = _tile_if_required(initial_state, nstate) initial_time = _tile_if_required(initial_time, nstate) initial_warmstart = _tile_if_required(initial_warmstart, nstate) ctrl = _tile_if_required(ctrl, nstate, nstep) qfrc_applied = _tile_if_required(qfrc_applied, nstate, nstep) xfrc_applied = _tile_if_required(xfrc_applied, nstate, nstep) mocap = _tile_if_required(mocap, nstate, nstep) # allocate output if not provided if state is None: state = np.empty((nstate, nstep, model.nq + model.nv + model.na)) if sensordata is None: sensordata = np.empty((nstate, nstep, model.nsensordata)) # call rollout _rollout.rollout(model, data, nstate, nstep, initial_state, initial_time, initial_warmstart, ctrl, qfrc_applied, xfrc_applied, mocap, state, sensordata) # return squeezed outputs return state.squeeze(), sensordata.squeeze() def _check_must_be_numeric(**kwargs): for key, value in kwargs.items(): if value is None: continue if not isinstance(value, np.ndarray) and not isinstance(value, float): raise ValueError(f'{key} must be a numpy array or float') def _check_number_of_dimensions(ndim, **kwargs): for key, value in kwargs.items(): if value is None: continue if value.ndim > ndim: raise ValueError(f'{key} can have at most {ndim} dimensions') def _check_trailing_dimension(dim, **kwargs): for key, value in kwargs.items(): if value is None: continue if value.shape[-1] != dim: raise ValueError(f'trailing dimension of {key} must be {dim}, got {value.shape[-1]}') def _ensure_2d(arg): if arg is None: return None else: return np.ascontiguousarray(np.atleast_2d(arg), dtype=np.float64) def _ensure_3d(arg): if arg is None: return None else: # np.atleast_3d adds both leading and trailing dims, we want only leading if arg.ndim == 0: arg = arg[np.newaxis, np.newaxis, np.newaxis, ...] elif arg.ndim == 1: arg = arg[np.newaxis, np.newaxis, ...] elif arg.ndim == 2: arg = arg[np.newaxis, ...] return np.ascontiguousarray(arg, dtype=np.float64) def _infer_dimension(dim, value, **kwargs): for name, array in kwargs.items(): if array is None: continue if array.shape[dim] != value: if value == 1: value = array.shape[dim] elif array.shape[dim] != 1: raise ValueError( f'dimension {dim} inferred as {value} but {name} has {array.shape[dim]}' ) return value def _tile_if_required(array, dim0, dim1=None): if array is None: return reps = np.ones(array.ndim, dtype=int) if array.shape[0] == 1: reps[0] = dim0 if dim1 is not None and array.shape[1] == 1: reps[1] = dim1 return np.tile(array, reps)
mujoco-main
python/mujoco/rollout.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """tests for rollout function.""" from absl.testing import absltest from absl.testing import parameterized import mujoco import numpy as np import concurrent.futures import threading from mujoco import rollout #--------------------------- models used for testing --------------------------- TEST_XML = r""" <mujoco> <worldbody> <light pos="0 0 2"/> <geom type="plane" size="5 5 .1"/> <body pos="0 0 .1"> <joint name="yaw" axis="0 0 1"/> <joint name="pitch" axis="0 1 0"/> <geom type="capsule" size=".02" fromto="0 0 0 1 0 0"/> <geom type="box" pos="1 0 0" size=".1 .1 .1"/> <site name="site" pos="1 0 0"/> </body> </worldbody> <actuator> <general joint="pitch" gainprm="100"/> <general joint="yaw" dyntype="filter" dynprm="1" gainprm="100"/> </actuator> <sensor> <accelerometer site="site"/> </sensor> </mujoco> """ TEST_XML_NO_SENSORS = r""" <mujoco> <worldbody> <light pos="0 0 2"/> <geom type="plane" size="5 5 .1"/> <body pos="0 0 .1"> <joint name="yaw" axis="0 0 1"/> <joint name="pitch" axis="0 1 0"/> <geom type="capsule" size=".02" fromto="0 0 0 1 0 0"/> <geom type="box" pos="1 0 0" size=".1 .1 .1"/> <site name="site" pos="1 0 0"/> </body> </worldbody> <actuator> <general joint="pitch" gainprm="100"/> <general joint="yaw" dyntype="filter" dynprm="1" gainprm="100"/> </actuator> </mujoco> """ TEST_XML_NO_ACTUATORS = r""" <mujoco> <worldbody> <light pos="0 0 2"/> <geom type="plane" size="5 5 .1"/> <body pos="0 0 .1"> <joint name="yaw" axis="0 0 1"/> <joint name="pitch" axis="0 1 0"/> <geom type="capsule" size=".02" fromto="0 0 0 1 0 0"/> <geom type="box" pos="1 0 0" size=".1 .1 .1"/> <site name="site" pos="1 0 0"/> </body> </worldbody> <sensor> <accelerometer site="site"/> </sensor> </mujoco> """ TEST_XML_MOCAP = r""" <mujoco> <worldbody> <body name="1" mocap="true"> </body> <body name="2" mocap="true"> </body> </worldbody> <sensor> <framepos objtype="xbody" objname="1"/> <framequat objtype="xbody" objname="2"/> </sensor> </mujoco> """ TEST_XML_EMPTY = r""" <mujoco> </mujoco> """ ALL_MODELS = {'TEST_XML': TEST_XML, 'TEST_XML_NO_SENSORS': TEST_XML_NO_SENSORS, 'TEST_XML_NO_ACTUATORS': TEST_XML_NO_ACTUATORS, 'TEST_XML_EMPTY': TEST_XML_EMPTY} #------------------------------- tests ----------------------------------------- class MuJoCoRolloutTest(parameterized.TestCase): def setUp(self): super().setUp() np.random.seed(42) #----------------------------- test basic operation @parameterized.parameters(ALL_MODELS.keys()) def test_single_step(self, model_name): model = mujoco.MjModel.from_xml_string(ALL_MODELS[model_name]) data = mujoco.MjData(model) initial_state = np.random.randn(model.nq + model.nv + model.na) ctrl = np.random.randn(model.nu) state, sensordata = rollout.rollout(model, data, initial_state, ctrl) mujoco.mj_resetData(model, data) py_state, py_sensordata = step(model, data, initial_state, ctrl=ctrl) np.testing.assert_array_equal(state, py_state) np.testing.assert_array_equal(sensordata, py_sensordata) @parameterized.parameters(ALL_MODELS.keys()) def test_single_rollout(self, model_name): nstep = 3 # number of timesteps model = mujoco.MjModel.from_xml_string(ALL_MODELS[model_name]) data = mujoco.MjData(model) initial_state = np.random.randn(model.nq + model.nv + model.na) ctrl = np.random.randn(nstep, model.nu) state, sensordata = rollout.rollout(model, data, initial_state, ctrl) py_state, py_sensordata = single_rollout(model, data, initial_state, ctrl=ctrl) np.testing.assert_array_equal(state, np.asarray(py_state)) np.testing.assert_array_equal(sensordata, np.asarray(py_sensordata)) @parameterized.parameters(ALL_MODELS.keys()) def test_multi_step(self, model_name): model = mujoco.MjModel.from_xml_string(ALL_MODELS[model_name]) data = mujoco.MjData(model) nstate = 5 # number of initial states initial_state = np.random.randn(nstate, model.nq + model.nv + model.na) ctrl = np.random.randn(nstate, 1, model.nu) state, sensordata = rollout.rollout(model, data, initial_state, ctrl) mujoco.mj_resetData(model, data) py_state, py_sensordata = multi_rollout(model, data, initial_state, ctrl=ctrl) np.testing.assert_array_equal(state, py_state) np.testing.assert_array_equal(sensordata, py_sensordata) @parameterized.parameters(ALL_MODELS.keys()) def test_single_rollout_fixed_ctrl(self, model_name): nstep = 3 model = mujoco.MjModel.from_xml_string(ALL_MODELS[model_name]) data = mujoco.MjData(model) initial_state = np.random.randn(model.nq + model.nv + model.na) ctrl = np.random.randn(model.nu) state = np.empty((nstep, model.nq + model.nv + model.na)) sensordata = np.empty((nstep, model.nsensordata)) rollout.rollout(model, data, initial_state, ctrl, state=state, sensordata=sensordata) ctrl = np.tile(ctrl, (nstep, 1)) # repeat?? py_state, py_sensordata = single_rollout(model, data, initial_state, ctrl=ctrl) np.testing.assert_array_equal(state, py_state) np.testing.assert_array_equal(sensordata, py_sensordata) @parameterized.parameters(ALL_MODELS.keys()) def test_multi_rollout(self, model_name): model = mujoco.MjModel.from_xml_string(ALL_MODELS[model_name]) data = mujoco.MjData(model) nstate = 2 # number of initial states nstep = 3 # number of timesteps initial_state = np.random.randn(nstate, model.nq + model.nv + model.na) ctrl = np.random.randn(nstate, nstep, model.nu) state, sensordata = rollout.rollout(model, data, initial_state, ctrl) py_state, py_sensordata = multi_rollout(model, data, initial_state, ctrl=ctrl) np.testing.assert_array_equal(py_state, py_state) np.testing.assert_array_equal(py_sensordata, py_sensordata) @parameterized.parameters(ALL_MODELS.keys()) def test_multi_rollout_fixed_ctrl_infer_from_output(self, model_name): model = mujoco.MjModel.from_xml_string(ALL_MODELS[model_name]) data = mujoco.MjData(model) nstate = 2 # number of initial states nstep = 3 # number of timesteps initial_state = np.random.randn(nstate, model.nq + model.nv + model.na) ctrl = np.random.randn(nstate, 1, model.nu) # 1 control in the time dimension state = np.empty((nstate, nstep, model.nq + model.nv + model.na)) state, sensordata = rollout.rollout(model, data, initial_state, ctrl, state=state) ctrl = np.repeat(ctrl, nstep, axis=1) py_state, py_sensordata = multi_rollout(model, data, initial_state, ctrl=ctrl) np.testing.assert_array_equal(state, py_state) np.testing.assert_array_equal(sensordata, py_sensordata) @parameterized.product(arg_nstep=[[3, 1, 1], [3, 3, 1], [3, 1, 3]], model_name=list(ALL_MODELS.keys())) def test_multi_rollout_multiple_inputs(self, arg_nstep, model_name): model = mujoco.MjModel.from_xml_string(ALL_MODELS[model_name]) data = mujoco.MjData(model) nstate = 4 # number of initial states initial_state = np.random.randn(nstate, model.nq + model.nv + model.na) # arg_nstep is the horizon for {ctrl, qfrc_applied, xfrc_applied}, respectively ctrl = np.random.randn(nstate, arg_nstep[0], model.nu) qfrc_applied = np.random.randn(nstate, arg_nstep[1], model.nv) xfrc_applied = np.random.randn(nstate, arg_nstep[2], model.nbody*6) state, sensordata = rollout.rollout(model, data, initial_state, ctrl, qfrc_applied=qfrc_applied, xfrc_applied=xfrc_applied) # tile singleton arguments nstep = max(arg_nstep) if arg_nstep[0] == 1: ctrl = np.repeat(ctrl, nstep, axis=1) if arg_nstep[1] == 1: qfrc_applied = np.repeat(qfrc_applied, nstep, axis=1) if arg_nstep[2] == 1: xfrc_applied = np.repeat(xfrc_applied, nstep, axis=1) py_state, py_sensordata = multi_rollout(model, data, initial_state, ctrl=ctrl, qfrc_applied=qfrc_applied, xfrc_applied=xfrc_applied) np.testing.assert_array_equal(state, py_state) np.testing.assert_array_equal(sensordata, py_sensordata) #----------------------------- test threaded operation def test_threading(self): model = mujoco.MjModel.from_xml_string(TEST_XML) num_workers = 32 nstate = 10000 nstep = 5 initial_state = np.random.randn(nstate, model.nq+model.nv+model.na) state = np.zeros((nstate, nstep, model.nq+model.nv+model.na)) sensordata = np.zeros((nstate, nstep, model.nsensordata)) ctrl = np.random.randn(nstate, nstep, model.nu) thread_local = threading.local() def thread_initializer(): thread_local.data = mujoco.MjData(model) def call_rollout(initial_state, ctrl, state): rollout.rollout(model, thread_local.data, skip_checks=True, nstate=initial_state.shape[0], nstep=nstep, initial_state=initial_state, ctrl=ctrl, state=state) n = initial_state.shape[0] // num_workers # integer division chunks = [] # a list of tuples, one per worker for i in range(num_workers-1): chunks.append( (initial_state[i*n:(i+1)*n], ctrl[i*n:(i+1)*n], state[i*n:(i+1)*n])) # last chunk, absorbing the remainder: chunks.append( (initial_state[(num_workers-1)*n:], ctrl[(num_workers-1)*n:], state[(num_workers-1)*n:])) with concurrent.futures.ThreadPoolExecutor( max_workers=num_workers, initializer=thread_initializer) as executor: futures = [] for chunk in chunks: futures.append(executor.submit(call_rollout, *chunk)) for future in concurrent.futures.as_completed(futures): future.result() data = mujoco.MjData(model) py_state, py_sensordata = multi_rollout(model, data, initial_state, ctrl=ctrl) np.testing.assert_array_equal(state, py_state) #----------------------------- test advanced operation def test_time(self): model = mujoco.MjModel.from_xml_string(TEST_XML) data = mujoco.MjData(model) nstate = 1 nstep = 3 initial_time = np.array([[2.]]) initial_state = np.random.randn(nstate, model.nq + model.nv + model.na) ctrl = np.random.randn(nstate, nstep, model.nu) state, sensordata = rollout.rollout(model, data, initial_state, ctrl, initial_time=initial_time) self.assertAlmostEqual(data.time, 2 + nstep*model.opt.timestep) def test_warmstart(self): model = mujoco.MjModel.from_xml_string(TEST_XML) data = mujoco.MjData(model) state0 = np.zeros(model.nq + model.nv + model.na) ctrl = np.zeros(model.nu) state1, _ = step(model, data, state0, ctrl=ctrl) initial_warmstart = data.qacc_warmstart.copy() state2, _ = step(model, data, state1, ctrl=ctrl) state, _ = rollout.rollout(model, data, state1, ctrl) assert np.linalg.norm(state-state2) > 0 state, _ = rollout.rollout(model, data, state1, ctrl, initial_warmstart=initial_warmstart) np.testing.assert_array_equal(state, state2) def test_mocap(self): model = mujoco.MjModel.from_xml_string(TEST_XML_MOCAP) data = mujoco.MjData(model) initial_state = np.zeros(model.nq + model.nv + model.na) pos1 = np.array((1., 2., 3.)) quat1 = np.array((1., 2., 3., 4.)) quat1 /= np.linalg.norm(quat1) pos2 = np.array((2., 3., 4.)) quat2 = np.array((2., 3., 4., 5.)) quat2 /= np.linalg.norm(quat2) mocap = np.hstack((pos1, quat1, pos2, quat2)) state, sensordata = rollout.rollout(model, data, initial_state, mocap=mocap) np.testing.assert_array_almost_equal(sensordata[:3], pos1) np.testing.assert_array_almost_equal(sensordata[3:], quat2) #----------------------------- test correctness def test_intercept_mj_errors(self): model = mujoco.MjModel.from_xml_string(TEST_XML) data = mujoco.MjData(model) initial_state = np.zeros(model.nq + model.nv + model.na) ctrl = np.zeros((3, model.nu)) model.opt.solver = 10 # invalid solver type with self.assertRaisesWithLiteralMatch( mujoco.FatalError, 'mj_fwdConstraint: unknown solver type 10'): state, sensordata = rollout.rollout(model, data, initial_state, ctrl) def test_invalid(self): model = mujoco.MjModel.from_xml_string(TEST_XML) data = mujoco.MjData(model) initial_state = np.zeros(model.nq + model.nv + model.na) ctrl = 'string' with self.assertRaisesWithLiteralMatch( ValueError, 'ctrl must be a numpy array or float'): state, sensordata = rollout.rollout(model, data, initial_state, ctrl) qfrc_applied = np.zeros((2, 3, 4, 5)) with self.assertRaisesWithLiteralMatch( ValueError, 'qfrc_applied can have at most 3 dimensions'): state, sensordata = rollout.rollout(model, data, initial_state, qfrc_applied=qfrc_applied) def test_bad_sizes(self): model = mujoco.MjModel.from_xml_string(TEST_XML) data = mujoco.MjData(model) initial_state = np.random.randn(model.nq + model.nv + model.na+1) with self.assertRaisesWithLiteralMatch( ValueError, 'trailing dimension of initial_state must be 5, got 6'): state, sensordata = rollout.rollout(model, data, initial_state) initial_state = np.random.randn(model.nq + model.nv + model.na) ctrl = np.random.randn(model.nu+1) with self.assertRaisesWithLiteralMatch( ValueError, 'trailing dimension of ctrl must be 2, got 3'): state, sensordata = rollout.rollout(model, data, initial_state, ctrl) ctrl = np.random.randn(2, model.nu) qfrc_applied = np.random.randn(3, model.nv) # incompatible horizon with self.assertRaisesWithLiteralMatch( ValueError, 'dimension 1 inferred as 2 but qfrc_applied has 3'): state, sensordata = rollout.rollout(model, data, initial_state, ctrl, qfrc_applied=qfrc_applied) def test_stateless(self): model = mujoco.MjModel.from_xml_string(TEST_XML) model.opt.disableflags |= mujoco.mjtDisableBit.mjDSBL_WARMSTART.value data = mujoco.MjData(model) # call step with a clean mjData initial_state = np.random.randn(model.nq + model.nv + model.na) ctrl = np.random.randn(model.nu) state, sensordata = rollout.rollout(model, data, initial_state, ctrl) # fill mjData with some debug value, see that we still get the same outputs mujoco.mj_resetDataDebug(model, data, 255) debug_state, debug_sensordata = rollout.rollout(model, data, initial_state, ctrl) np.testing.assert_array_equal(state, debug_state) np.testing.assert_array_equal(sensordata, debug_sensordata) #--------------- Python implementation of rollout functionality ---------------- def get_state(data): return np.hstack((data.qpos, data.qvel, data.act)) def set_state(model, data, state): data.qpos = state[:model.nq] data.qvel = state[model.nq:model.nq+model.nv] data.act = state[model.nq+model.nv:model.nq+model.nv+model.na] def step(model, data, state, **kwargs): if state is not None: set_state(model, data, state) for key, value in kwargs.items(): if value is not None: setattr(data, key, np.reshape(value, getattr(data, key).shape)) mujoco.mj_step(model, data) return (get_state(data), data.sensordata) def single_rollout(model, data, initial_state, **kwargs): arg_nstep = set([a.shape[0] for a in kwargs.values()]) assert len(arg_nstep) == 1 # nstep dimensions must match nstep = arg_nstep.pop() state = np.empty((nstep, model.nq + model.nv + model.na)) sensordata = np.empty((nstep, model.nsensordata)) mujoco.mj_resetData(model, data) for t in range(nstep): kwargs_t = {} for key, value in kwargs.items(): kwargs_t[key] = value[0 if value.ndim == 1 else t] state[t], sensordata[t] = step(model, data, initial_state if t==0 else None, **kwargs_t) return state, sensordata def multi_rollout(model, data, initial_state, **kwargs): nstate = initial_state.shape[0] arg_nstep = set([a.shape[1] for a in kwargs.values()]) assert len(arg_nstep) == 1 # nstep dimensions must match nstep = arg_nstep.pop() state = np.empty((nstate, nstep, model.nq + model.nv + model.na)) sensordata = np.empty((nstate, nstep, model.nsensordata)) for s in range(nstate): kwargs_s = {key : value[s] for key, value in kwargs.items()} state_s, sensordata_s = single_rollout(model, data, initial_state[s], **kwargs_s) state[s] = state_s sensordata[s] = sensordata_s return state.squeeze(), sensordata.squeeze() if __name__ == '__main__': absltest.main()
mujoco-main
python/mujoco/rollout_test.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for MuJoCo Python bindings.""" import contextlib import copy import pickle import sys from absl.testing import absltest from absl.testing import parameterized import mujoco import numpy as np TEST_XML = r""" <mujoco model="test"> <compiler coordinate="local" angle="radian" eulerseq="xyz"/> <option timestep="0.002" gravity="0 0 -9.81"/> <visual> <global fovy="50" /> <quality shadowsize="51" /> </visual> <worldbody> <geom name="myplane" type="plane" size="10 10 1"/> <body name="mybox" pos="0 0 0.1"> <geom name="mybox" type="box" size="0.1 0.1 0.1" mass="0.25"/> <freejoint name="myfree"/> </body> <body> <inertial pos="0 0 0" mass="1" diaginertia="1 1 1"/> <site pos="0 0 -1" name="mysite" type="sphere"/> <joint name="myhinge" type="hinge" axis="0 1 0" damping="1"/> </body> <body> <inertial pos="0 0 0" mass="1" diaginertia="1 1 1"/> <joint name="myball" type="ball"/> </body> <body mocap="true" pos="42 0 42"> <geom type="sphere" size="0.1"/> </body> </worldbody> <actuator> <position name="myactuator" joint="myhinge"/> </actuator> <sensor> <jointvel name="myjointvel" joint="myhinge"/> <accelerometer name="myaccelerometer" site="mysite"/> </sensor> </mujoco> """ TEST_XML_SENSOR = r""" <mujoco model="test"> <worldbody> <geom name="myplane" type="plane" size="10 10 1"/> </worldbody> <sensor> <user objtype="geom" objname="myplane" datatype="real" needstage="vel" dim="1"/> </sensor> </mujoco> """ TEST_XML_PLUGIN = r""" <mujoco model="test"> <extension> <plugin plugin="mujoco.elasticity.cable"/> </extension> </mujoco> """ @contextlib.contextmanager def temporary_callback(setter, callback): setter(callback) yield setter(None) class MuJoCoBindingsTest(parameterized.TestCase): def setUp(self): super().setUp() self.model: mujoco.MjModel = mujoco.MjModel.from_xml_string(TEST_XML) self.data = mujoco.MjData(self.model) def test_load_xml_can_handle_name_clash(self): xml_1 = r""" <mujoco> <worldbody> <geom name="plane" type="plane" size="1 1 1"/> <include file="model_.xml"/> <include file="model__.xml"/> </worldbody> </mujoco>""" xml_2 = rb"""<mujoco><geom name="box" type="box" size="1 1 1"/></mujoco>""" xml_3 = rb"""<mujoco><geom name="ball" type="sphere" size="1"/></mujoco>""" model = mujoco.MjModel.from_xml_string( xml_1, {'model_.xml': xml_2, 'model__.xml': xml_3}) self.assertEqual( mujoco.mj_name2id(model, mujoco.mjtObj.mjOBJ_GEOM, 'plane'), 0) self.assertEqual( mujoco.mj_name2id(model, mujoco.mjtObj.mjOBJ_GEOM, 'box'), 1) self.assertEqual( mujoco.mj_name2id(model, mujoco.mjtObj.mjOBJ_GEOM, 'ball'), 2) def test_can_read_array(self): np.testing.assert_array_equal( self.model.body_pos, [[0, 0, 0], [0, 0, 0.1], [0, 0, 0], [0, 0, 0], [42.0, 0, 42.0]]) def test_can_set_array(self): self.data.qpos = 0.12345 np.testing.assert_array_equal( self.data.qpos, [0.12345]*len(self.data.qpos)) def test_array_is_a_view(self): qpos_ref = self.data.qpos self.data.qpos = 0.789 np.testing.assert_array_equal( qpos_ref, [0.789]*len(self.data.qpos)) # This test is disabled on PyPy as it uses sys.getrefcount # However PyPy is not officially supported by MuJoCo @absltest.skipIf(sys.implementation.name == 'pypy', reason='requires sys.getrefcount') def test_array_keeps_struct_alive(self): model = mujoco.MjModel.from_xml_string(TEST_XML) qpos0 = model.qpos0 qpos_spring = model.qpos_spring # This only fails reliably under ASAN, which detects heap-use-after-free. # However, often the assertEqual is enough since the memory block is # already reused between mjModel deallocation and the subsequent read. qpos0[:] = 1 del model self.assertEqual(qpos0[0], 1) # When running under test coverage tools, the refcount of objects can be # higher than normal. To take this into account, we first measure the # refcount of a dummy object with no other referrer. dummy = [] base_refcount = sys.getrefcount(dummy) - 1 # Here `base` is actually a PyCapsule that holds the raw mjModel* rather # than the actual MjModel wrapper object itself. capsule = qpos0.base self.assertEqual(sys.getrefcount(capsule) - base_refcount, 3) del qpos0 self.assertEqual(sys.getrefcount(capsule) - base_refcount, 2) del qpos_spring self.assertEqual(sys.getrefcount(capsule) - base_refcount, 1) def test_named_indexing_actuator_ctrl(self): actuator_id = mujoco.mj_name2id( self.model, mujoco.mjtObj.mjOBJ_ACTUATOR, 'myactuator') self.assertIs(self.data.actuator('myactuator'), self.data.actuator(actuator_id)) self.assertIs(self.data.actuator('myactuator').ctrl, self.data.actuator(actuator_id).ctrl) self.assertEqual(self.data.actuator('myactuator').ctrl.shape, (1,)) # Test that the indexer is returning a view into the underlying struct. ctrl_from_indexer = self.data.actuator('myactuator').ctrl self.data.ctrl[actuator_id] = 5 np.testing.assert_array_equal(ctrl_from_indexer, [5]) self.data.actuator('myactuator').ctrl = 7 np.testing.assert_array_equal(self.data.ctrl[actuator_id], [7]) def test_named_indexing_invalid_names_in_model(self): with self.assertRaisesRegex( KeyError, r"Invalid name 'badgeom'\. Valid names: \['mybox', 'myplane'\]"): self.model.geom('badgeom') def test_named_indexing_no_name_argument_in_model(self): with self.assertRaisesRegex( KeyError, r"Invalid name ''\. Valid names: \['myball', 'myfree', 'myhinge'\]"): self.model.joint() def test_named_indexing_invalid_names_in_data(self): with self.assertRaisesRegex( KeyError, r"Invalid name 'badgeom'\. Valid names: \['mybox', 'myplane'\]"): self.data.geom('badgeom') def test_named_indexing_no_name_argument_in_data(self): with self.assertRaisesRegex( KeyError, r"Invalid name ''\. Valid names: \['myball', 'myfree', 'myhinge'\]"): self.data.jnt() def test_named_indexing_invalid_index_in_model(self): with self.assertRaisesRegex( IndexError, r'Invalid index 3\. Valid indices from 0 to 2'): self.model.geom(3) with self.assertRaisesRegex( IndexError, r'Invalid index -1\. Valid indices from 0 to 2'): self.model.geom(-1) def test_named_indexing_invalid_index_in_data(self): with self.assertRaisesRegex( IndexError, r'Invalid index 3\. Valid indices from 0 to 2'): self.data.geom(3) with self.assertRaisesRegex( IndexError, r'Invalid index -1\. Valid indices from 0 to 2'): self.data.geom(-1) def test_named_indexing_geom_size(self): box_id = mujoco.mj_name2id(self.model, mujoco.mjtObj.mjOBJ_GEOM, 'mybox') self.assertIs(self.model.geom('mybox'), self.model.geom(box_id)) self.assertIs(self.model.geom('mybox').size, self.model.geom(box_id).size) self.assertEqual(self.model.geom('mybox').size.shape, (3,)) # Test that the indexer is returning a view into the underlying struct. size_from_indexer = self.model.geom('mybox').size self.model.geom_size[box_id] = [7, 11, 13] np.testing.assert_array_equal(size_from_indexer, [7, 11, 13]) self.model.geom('mybox').size = [5, 3, 2] np.testing.assert_array_equal(self.model.geom_size[box_id], [5, 3, 2]) def test_named_indexing_geom_quat(self): box_id = mujoco.mj_name2id(self.model, mujoco.mjtObj.mjOBJ_GEOM, 'mybox') self.assertIs(self.model.geom('mybox'), self.model.geom(box_id)) self.assertIs(self.model.geom('mybox').quat, self.model.geom(box_id).quat) self.assertEqual(self.model.geom('mybox').quat.shape, (4,)) # Test that the indexer is returning a view into the underlying struct. quat_from_indexer = self.model.geom('mybox').quat self.model.geom_quat[box_id] = [5, 10, 15, 20] np.testing.assert_array_equal(quat_from_indexer, [5, 10, 15, 20]) self.model.geom('mybox').quat = [12, 9, 6, 3] np.testing.assert_array_equal(self.model.geom_quat[box_id], [12, 9, 6, 3]) def test_named_indexing_ragged_qpos(self): balljoint_id = mujoco.mj_name2id( self.model, mujoco.mjtObj.mjOBJ_JOINT, 'myball') self.assertIs(self.data.joint('myball'), self.data.joint(balljoint_id)) self.assertIs(self.data.joint('myball').qpos, self.data.joint(balljoint_id).qpos) self.assertEqual(self.data.joint('myball').qpos.shape, (4,)) # Test that the indexer is returning a view into the underlying struct. qpos_from_indexer = self.data.joint('myball').qpos qpos_idx = self.model.jnt_qposadr[balljoint_id] self.data.qpos[qpos_idx:qpos_idx+4] = [4, 5, 6, 7] np.testing.assert_array_equal(qpos_from_indexer, [4, 5, 6, 7]) self.data.joint('myball').qpos = [9, 8, 7, 6] np.testing.assert_array_equal(self.data.qpos[qpos_idx:qpos_idx+4], [9, 8, 7, 6]) def test_named_indexing_ragged2d_cdof(self): freejoint_id = mujoco.mj_name2id( self.model, mujoco.mjtObj.mjOBJ_JOINT, 'myfree') self.assertIs(self.data.joint('myfree'), self.data.joint(freejoint_id)) self.assertIs(self.data.joint('myfree').cdof, self.data.joint(freejoint_id).cdof) self.assertEqual(self.data.joint('myfree').cdof.shape, (6, 6)) # Test that the indexer is returning a view into the underlying struct. cdof_from_indexer = self.data.joint('myfree').cdof dof_idx = self.model.jnt_dofadr[freejoint_id] self.data.cdof[dof_idx:dof_idx+6, :] = np.reshape(range(36), (6, 6)) np.testing.assert_array_equal(cdof_from_indexer, np.reshape(range(36), (6, 6))) self.data.joint('myfree').cdof = 42 np.testing.assert_array_equal(self.data.cdof[dof_idx:dof_idx+6], [[42]*6]*6) def test_named_indexing_repr_in_data(self): expected_repr = '''<_MjDataGeomViews id: 1 name: 'mybox' xmat: array([0., 0., 0., 0., 0., 0., 0., 0., 0.]) xpos: array([0., 0., 0.]) >''' self.assertEqual(expected_repr, repr(self.data.geom('mybox'))) def test_named_indexing_body_repr_in_data(self): view_repr = repr(self.data.body('mybox')) self.assertStartsWith(view_repr, '<_MjDataBodyViews') self.assertIn('xpos: array([0., 0., 0.])', view_repr) self.assertEndsWith(view_repr, '>') def test_named_indexing_repr_in_model(self): view_repr = repr(self.model.geom('mybox')) self.assertStartsWith(view_repr, '<_MjModelGeomViews') self.assertIn('size: array([0.1, 0.1, 0.1])', view_repr) self.assertEndsWith(view_repr, '>') def test_addresses_differ_between_structs(self): model2 = mujoco.MjModel.from_xml_string(TEST_XML) data2 = mujoco.MjData(model2) self.assertGreater(self.model._address, 0) self.assertGreater(self.data._address, 0) self.assertGreater(model2._address, 0) self.assertGreater(data2._address, 0) self.assertLen({self.model._address, self.data._address, model2._address, data2._address}, 4) def test_mjmodel_can_read_and_write_opt(self): self.assertEqual(self.model.opt.timestep, 0.002) np.testing.assert_array_equal(self.model.opt.gravity, [0, 0, -9.81]) opt = self.model.opt self.model.opt.timestep = 0.001 self.assertEqual(opt.timestep, 0.001) gravity = opt.gravity self.model.opt.gravity[1] = 0.1 np.testing.assert_array_equal(gravity, [0, 0.1, -9.81]) self.model.opt.gravity = 0.2 np.testing.assert_array_equal(gravity, [0.2, 0.2, 0.2]) def test_mjmodel_can_read_and_write_stat(self): self.assertNotEqual(self.model.stat.meanmass, 0) stat = self.model.stat self.model.stat.meanmass = 1.2 self.assertEqual(stat.meanmass, 1.2) def test_mjmodel_can_read_and_write_vis(self): self.assertEqual(self.model.vis.quality.shadowsize, 51) self.model.vis.quality.shadowsize = 100 self.assertEqual(self.model.vis.quality.shadowsize, 100) def test_mjmodel_can_access_names_directly(self): # mjModel offers direct access to names array, to allow usecases other than # id2name model_name = str(self.model.names[0:self.model.names.find(b'\0')], 'utf-8') self.assertEqual(model_name, 'test') start_index = self.model.name_geomadr[0] end_index = self.model.names.find(b'\0', start_index) geom_name = str(self.model.names[start_index:end_index], 'utf-8') self.assertEqual(geom_name, 'myplane') def test_mjmodel_names_doesnt_copy(self): names = self.model.names self.assertIs(names, self.model.names) def test_vis_global_exposed_as_global_(self): self.assertEqual(self.model.vis.global_.fovy, 50) self.model.vis.global_.fovy = 100 self.assertEqual(self.model.vis.global_.fovy, 100) def test_mjoption_can_make_default(self): opt = mujoco.MjOption() self.assertEqual(opt.timestep, 0.002) np.testing.assert_array_equal(opt.gravity, [0, 0, -9.81]) def test_mjoption_can_copy(self): opt1 = mujoco.MjOption() opt1.timestep = 0.001 opt1.gravity = 2 opt2 = copy.copy(opt1) self.assertEqual(opt2.timestep, 0.001) np.testing.assert_array_equal(opt2.gravity, [2, 2, 2]) # Make sure opt2 is actually a copy. opt1.timestep = 0.005 opt1.gravity = 5 self.assertEqual(opt2.timestep, 0.001) np.testing.assert_array_equal(opt2.gravity, [2, 2, 2]) def test_mjmodel_can_copy(self): model_copy = copy.copy(self.model) self.assertEqual( mujoco.mj_id2name(model_copy, mujoco.mjtObj.mjOBJ_JOINT, 0), 'myfree') self.assertEqual( mujoco.mj_id2name(model_copy, mujoco.mjtObj.mjOBJ_GEOM, 0), 'myplane') self.assertEqual( mujoco.mj_id2name(model_copy, mujoco.mjtObj.mjOBJ_GEOM, 1), 'mybox') # Make sure it's a copy. self.model.geom_size[1] = 0.5 np.testing.assert_array_equal(self.model.geom_size[1], [0.5, 0.5, 0.5]) np.testing.assert_array_equal(model_copy.geom_size[1], [0.1, 0.1, 0.1]) def test_assets_array_filename_too_long(self): # Longest allowed filename (excluding null byte) limit = mujoco.mjMAXVFSNAME - 1 contents = b'<mujoco/>' valid_filename = 'a' * limit mujoco.MjModel.from_xml_path(valid_filename, {valid_filename: contents}) invalid_filename = 'a' * (limit + 1) expected_message = ( f'Filename length 1000 exceeds 999 character limit: {invalid_filename}') with self.assertRaisesWithLiteralMatch(ValueError, expected_message): mujoco.MjModel.from_xml_path(invalid_filename, {invalid_filename: contents}) def test_mjdata_can_copy(self): self.data.qpos = [0, 0, 0.1*np.sqrt(2) - 0.001, np.cos(np.pi/8), np.sin(np.pi/8), 0, 0, 0, 1, 0, 0, 0] mujoco.mj_forward(self.model, self.data) data_copy = copy.copy(self.data) self.assertEqual(data_copy.ncon, 2) # Make sure it's a copy. mujoco.mj_resetData(self.model, self.data) mujoco.mj_forward(self.model, self.data) mujoco.mj_forward(self.model, data_copy) self.assertEqual(self.data.ncon, 4) self.assertEqual(data_copy.ncon, 2) mujoco.mj_resetData(self.model, data_copy) mujoco.mj_forward(self.model, data_copy) self.assertEqual(data_copy.ncon, 4) def test_mjdata_can_read_warning_array(self): warnings = self.data.warning self.assertLen(warnings, mujoco.mjtWarning.mjNWARNING) self.data.qpos[0] = float('NaN') mujoco.mj_checkPos(self.model, self.data) self.assertEqual(warnings[mujoco.mjtWarning.mjWARN_BADQPOS].number, 1) def test_mjcontact_can_copy(self): mujoco.mj_forward(self.model, self.data) contact_copy = [] for i in range(4): contact_copy.append(copy.copy(self.data.contact[i])) # Sort contacts in anticlockwise order contact_copy = sorted( contact_copy, key=lambda x: np.arctan2(x.pos[1], x.pos[0])) np.testing.assert_allclose(contact_copy[0].pos[:2], [-0.1, -0.1]) np.testing.assert_allclose(contact_copy[1].pos[:2], [0.1, -0.1]) np.testing.assert_allclose(contact_copy[2].pos[:2], [0.1, 0.1]) np.testing.assert_allclose(contact_copy[3].pos[:2], [-0.1, 0.1]) # Make sure they're actually copies. for i in range(4): self.data.contact[i].pos[:2] = 55 np.testing.assert_allclose(self.data.contact[0].pos[:2], [55, 55]) np.testing.assert_allclose(self.data.contact[1].pos[:2], [55, 55]) np.testing.assert_allclose(self.data.contact[2].pos[:2], [55, 55]) np.testing.assert_allclose(self.data.contact[3].pos[:2], [55, 55]) np.testing.assert_allclose(contact_copy[0].pos[:2], [-0.1, -0.1]) np.testing.assert_allclose(contact_copy[1].pos[:2], [0.1, -0.1]) np.testing.assert_allclose(contact_copy[2].pos[:2], [0.1, 0.1]) np.testing.assert_allclose(contact_copy[3].pos[:2], [-0.1, 0.1]) def test_mj_step(self): displacement = 0.25 self.data.qpos[2] += displacement mujoco.mj_forward(self.model, self.data) gravity = -self.model.opt.gravity[2] expected_contact_time = np.sqrt(2 * displacement / gravity) # Grab a reference to the contacts upfront so that we know that they're # a view into mjData rather than a copy. contact = self.data.contact self.model.opt.timestep = 2**-9 # 0.001953125; allows exact comparisons self.assertEqual(self.data.time, 0) while self.data.time < expected_contact_time: self.assertEqual(self.data.ncon, 0) self.assertEmpty(self.data.efc_type) self.assertTrue(self.data.efc_type.flags['OWNDATA']) prev_time = self.data.time mujoco.mj_step(self.model, self.data) self.assertEqual(self.data.time, prev_time + self.model.opt.timestep) mujoco.mj_forward(self.model, self.data) self.assertEqual(self.data.ncon, 4) self.assertLen(self.data.efc_type, 16) self.assertFalse(self.data.efc_type.flags['OWNDATA']) # Sort contacts in anticlockwise order sorted_contact = sorted( contact, key=lambda x: np.arctan2(x.pos[1], x.pos[0])) np.testing.assert_allclose(sorted_contact[0].pos[:2], [-0.1, -0.1]) np.testing.assert_allclose(sorted_contact[1].pos[:2], [0.1, -0.1]) np.testing.assert_allclose(sorted_contact[2].pos[:2], [0.1, 0.1]) np.testing.assert_allclose(sorted_contact[3].pos[:2], [-0.1, 0.1]) mujoco.mj_resetData(self.model, self.data) self.assertEqual(self.data.ncon, 0) self.assertEmpty(self.data.efc_type) self.assertTrue(self.data.efc_type.flags['OWNDATA']) def test_mj_step_multiple(self): self.model.opt.timestep = 2**-9 # 0.001953125; allows exact comparisons self.assertEqual(self.data.time, 0) for _ in range(10): prev_time = self.data.time mujoco.mj_step(self.model, self.data, nstep=7) self.assertEqual(self.data.time, prev_time + 7 * self.model.opt.timestep) self.assertIn('Optionally, repeat nstep times.', mujoco.mj_step.__doc__) def test_mj_contact_list(self): self.assertEmpty(self.data.contact) expected_ncon = 4 mujoco.mj_forward(self.model, self.data) self.assertLen(self.data.contact, expected_ncon) expected_pos = [] for contact in self.data.contact: expected_pos.append(np.random.uniform(size=3)) contact.pos = expected_pos[-1] self.assertLen(expected_pos, expected_ncon) np.testing.assert_array_equal(self.data.contact.pos, expected_pos) expected_friction = [] for contact in self.data.contact: expected_friction.append(np.random.uniform(size=5)) contact.friction = expected_friction[-1] self.assertLen(expected_friction, expected_ncon) np.testing.assert_array_equal(self.data.contact.friction, expected_friction) expected_H = [] # pylint: disable=invalid-name for contact in self.data.contact: expected_H.append(np.random.uniform(size=36)) contact.H = expected_H[-1] self.assertLen(expected_H, expected_ncon) np.testing.assert_array_equal(self.data.contact.H, expected_H) def test_realloc_con_efc(self): self.assertEmpty(self.data.contact) ncon = 9 nefc = 11 mujoco._functions._realloc_con_efc(self.data, ncon, nefc) ncon = 13 nefc = 17 mujoco._functions._realloc_con_efc(self.data, ncon=ncon, nefc=nefc) self.assertLen(self.data.contact, ncon) self.assertEqual(self.data.efc_id.shape, (nefc,)) self.assertEqual(self.data.efc_KBIP.shape, (nefc, 4)) expected_error = 'insufficient arena memory available' with self.assertRaisesWithLiteralMatch(mujoco.FatalError, expected_error): mujoco._functions._realloc_con_efc(self.data, 100000000, 100000000) self.assertEmpty(self.data.contact) self.assertEmpty(self.data.efc_id) def test_mj_struct_list_equality(self): model2 = mujoco.MjModel.from_xml_string(TEST_XML) data2 = mujoco.MjData(model2) mujoco.mj_forward(self.model, self.data) self.assertEqual(self.data.ncon, 4) mujoco.mj_forward(model2, data2) self.assertEqual(data2.ncon, 4) self.assertEqual(data2.contact, self.data.contact) self.data.qpos[3:7] = [np.cos(np.pi/8), np.sin(np.pi/8), 0, 0] self.data.qpos[2] *= (np.sqrt(2) - 1) * 0.1 - 1e-6 mujoco.mj_forward(self.model, self.data) self.assertEqual(self.data.ncon, 2) self.assertNotEqual(data2.contact, self.data.contact) # Check that we can compare slices of different lengths self.assertNotEqual(data2.contact, self.data.contact) # Check that comparing things of different types do not raise an error self.assertNotEqual(self.data.contact, self.data.warning) self.assertNotEqual(self.data.contact, 5) @parameterized.named_parameters([ ('MjOption', mujoco.MjOption, 'tolerance'), ('MjWarningStat', mujoco.MjWarningStat, 'number'), ('MjTimerStat', mujoco.MjTimerStat, 'number'), ('MjSolverStat', mujoco.MjSolverStat, 'neval'), ('MjContact', mujoco.MjContact, 'dist'), ('MjStatistic', mujoco.MjStatistic, 'extent'), ('MjLROpt', mujoco.MjLROpt, 'maxforce'), ('MjvPerturb', mujoco.MjvPerturb, 'select'), ('MjvCamera', mujoco.MjvCamera, 'fixedcamid'), ]) def test_mj_struct_equality(self, cls, attr): struct = cls() struct2 = cls() setattr(struct, attr, 1) self.assertNotEqual(struct, struct2) setattr(struct2, attr, 1) self.assertEqual(struct, struct2) self.assertNotEqual(struct, 3) self.assertNotEqual(struct, None) # mutable structs shouldn't declare __hash__ with self.assertRaises(TypeError): hash(struct) def test_mj_struct_equality_array(self): contact1 = mujoco.MjContact() contact2 = mujoco.MjContact() contact1.H[3] = 1 self.assertNotEqual(contact1, contact2) contact2.H[3] = 1 self.assertEqual(contact1, contact2) @parameterized.named_parameters([ ('MjOption', mujoco.MjOption, 'tolerance'), ('MjWarningStat', mujoco.MjWarningStat, 'number'), ('MjTimerStat', mujoco.MjTimerStat, 'number'), ('MjSolverStat', mujoco.MjSolverStat, 'neval'), ('MjContact', mujoco.MjContact, 'dist'), ('MjStatistic', mujoco.MjStatistic, 'extent'), ('MjLROpt', mujoco.MjLROpt, 'maxforce'), ('MjvPerturb', mujoco.MjvPerturb, 'select'), ('MjvCamera', mujoco.MjvCamera, 'fixedcamid'), ]) def test_mj_struct_repr(self, cls, attr): struct = cls() setattr(struct, attr, 1) representation = repr(struct) self.assertStartsWith(representation, f'<{cls.__name__}') self.assertIn(f'{attr}: 1', representation) self.assertEqual(str(struct), repr(struct)) def test_mj_struct_repr_for_subclass(self): class MjWarningStatSubclass(mujoco.MjWarningStat): # ptr attribute could cause an infinite recursion, if the repr # implementation simply looked at all attributes. @property def ptr(self): return self # repr should include name of subclass. expected_repr = """<MjWarningStatSubclass lastinfo: 0 number: 0 >""" self.assertEqual(repr(MjWarningStatSubclass()), expected_repr) def test_mju_rotVecQuat(self): # pylint: disable=invalid-name vec = [1, 0, 0] quat = [np.cos(np.pi/8), 0, 0, np.sin(np.pi/8)] expected = np.array([1, 1, 0]) / np.sqrt(2) # Check that the output argument works, and that the binding returns None. res = np.empty(3, np.float64) self.assertIsNone(mujoco.mju_rotVecQuat(res, vec, quat)) np.testing.assert_allclose(res, expected) # Check that the function can be called via keyword arguments. mujoco.mju_rotVecQuat(vec=vec, quat=quat, res=res) np.testing.assert_allclose(res, expected) # Check that the res argument must have the right size. with self.assertRaises(TypeError): mujoco.mju_rotVecQuat(np.zeros(4, np.float64), vec, quat) # Check that the vec argument must have the right size. with self.assertRaises(TypeError): mujoco.mju_rotVecQuat(res, [1, 2, 3, 4], quat) # Check that the quat argument must have the right size. with self.assertRaises(TypeError): mujoco.mju_rotVecQuat(res, vec, [1, 2, 3]) # The following check needs to be done with a fully initialized array, # since pybind11 prints out the array's contents when generating TypeErrors. # Using `np.empty` here results in msan errors. # Check that the output argument must have the correct dtype. with self.assertRaises(TypeError): mujoco.mju_rotVecQuat(vec, quat, res=np.zeros(3, int)) def test_getsetstate(self): # pylint: disable=invalid-name mujoco.mj_step(self.model, self.data) # Test for invalid state spec invalid_spec = 2**mujoco.mjtState.mjNSTATE.value expected_message = ( f'mj_stateSize: invalid state spec {invalid_spec} >= 2^mjNSTATE' ) with self.assertRaisesWithLiteralMatch(mujoco.FatalError, expected_message): mujoco.mj_stateSize(self.model, invalid_spec) spec = mujoco.mjtState.mjSTATE_INTEGRATION size = mujoco.mj_stateSize(self.model, spec) state_bad_size = np.empty(size + 1, np.float64) expected_message = ('state size should equal mj_stateSize(m, spec)') with self.assertRaisesWithLiteralMatch(TypeError, expected_message): mujoco.mj_getState(self.model, self.data, state_bad_size, spec) # Get initial state. state0 = np.empty(size, np.float64) mujoco.mj_getState(self.model, self.data, state0, spec) # Step, get next state. mujoco.mj_step(self.model, self.data) state1a = np.empty(size, np.float64) mujoco.mj_getState(self.model, self.data, state1a, spec) # Reset to initial state, step again, get state again. mujoco.mj_setState(self.model, self.data, state0, spec) mujoco.mj_step(self.model, self.data) state1b = np.empty(size, np.float64) mujoco.mj_getState(self.model, self.data, state1b, spec) # Expect next states to be equal. np.testing.assert_array_equal(state1a, state1b) def test_mj_jacSite(self): # pylint: disable=invalid-name mujoco.mj_forward(self.model, self.data) site_id = mujoco.mj_name2id(self.model, mujoco.mjtObj.mjOBJ_SITE, 'mysite') # Call mj_jacSite with only jacp. jacp = np.empty((3, 10), np.float64) mujoco.mj_jacSite(self.model, self.data, jacp, None, site_id) expected_jacp = np.array( [[0, 0, 0, 0, 0, 0, -1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]) np.testing.assert_array_equal(jacp, expected_jacp) # Call mj_jacSite with only jacr. jacr = np.empty((3, 10), np.float64) mujoco.mj_jacSite(self.model, self.data, None, jacr, site_id) expected_jacr = np.array( [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]) np.testing.assert_array_equal(jacr, expected_jacr) # Call mj_jacSite with both jacp and jacr. jacp[:] = 0 jacr[:] = 0 mujoco.mj_jacSite(self.model, self.data, jacp, jacr, site_id) np.testing.assert_array_equal(jacp, expected_jacp) np.testing.assert_array_equal(jacr, expected_jacr) # Check that the jacp argument must have the right size. with self.assertRaises(TypeError): mujoco.mj_jacSite( self.model, self.data, np.empty((3, 6), jacp.dtype), None, site_id) # Check that the jacr argument must have the right size. with self.assertRaises(TypeError): mujoco.mj_jacSite( self.model, self.data, None, np.empty((4, 7), jacr.dtype), site_id) # The following two checks need to be done with fully initialized arrays, # since pybind11 prints out the array's contents when generating TypeErrors. # Using `np.empty` here results in msan errors. # Check that the jacp argument must have the right dtype. with self.assertRaises(TypeError): mujoco.mj_jacSite( self.model, self.data, np.zeros(jacp.shape, int), None, site_id) # Check that the jacr argument must have the right dtype. with self.assertRaises(TypeError): mujoco.mj_jacSite( self.model, self.data, None, np.zeros(jacr.shape, int), site_id) def test_docstrings(self): # pylint: disable=invalid-name self.assertEqual( mujoco.mj_versionString.__doc__, """mj_versionString() -> str Return the current version of MuJoCo as a null-terminated string. """) self.assertEqual( mujoco.mj_Euler.__doc__, """mj_Euler(m: mujoco._structs.MjModel, d: mujoco._structs.MjData) -> None Euler integrator, semi-implicit in velocity. """) def test_int_constant(self): self.assertEqual(mujoco.mjMAXVFSNAME, 1000) def test_float_constant(self): self.assertEqual(mujoco.mjMAXVAL, 1e10) self.assertEqual(mujoco.mjMINVAL, 1e-15) def test_string_constants(self): self.assertLen(mujoco.mjDISABLESTRING, mujoco.mjtDisableBit.mjNDISABLE) self.assertLen(mujoco.mjENABLESTRING, mujoco.mjtEnableBit.mjNENABLE) self.assertLen(mujoco.mjTIMERSTRING, mujoco.mjtTimer.mjNTIMER) self.assertLen(mujoco.mjLABELSTRING, mujoco.mjtLabel.mjNLABEL) self.assertLen(mujoco.mjFRAMESTRING, mujoco.mjtFrame.mjNFRAME) self.assertLen(mujoco.mjVISSTRING, mujoco.mjtVisFlag.mjNVISFLAG) self.assertLen(mujoco.mjRNDSTRING, mujoco.mjtRndFlag.mjNRNDFLAG) self.assertEqual(mujoco.mjDISABLESTRING[11], 'Refsafe') self.assertEqual(mujoco.mjVISSTRING[mujoco.mjtVisFlag.mjVIS_INERTIA], ('&Inertia', '0', 'I')) def test_enum_values(self): self.assertEqual(mujoco.mjtJoint.mjJNT_FREE, 0) self.assertEqual(mujoco.mjtJoint.mjJNT_BALL, 1) self.assertEqual(mujoco.mjtJoint.mjJNT_SLIDE, 2) self.assertEqual(mujoco.mjtJoint.mjJNT_HINGE, 3) self.assertEqual(mujoco.mjtEnableBit.mjENBL_OVERRIDE, 1<<0) self.assertEqual(mujoco.mjtEnableBit.mjENBL_ENERGY, 1<<1) self.assertEqual(mujoco.mjtEnableBit.mjENBL_FWDINV, 1<<2) self.assertEqual(mujoco.mjtEnableBit.mjENBL_SENSORNOISE, 1<<4) self.assertEqual(mujoco.mjtEnableBit.mjNENABLE, 7) self.assertEqual(mujoco.mjtGeom.mjGEOM_PLANE, 0) self.assertEqual(mujoco.mjtGeom.mjGEOM_HFIELD, 1) self.assertEqual(mujoco.mjtGeom.mjGEOM_SPHERE, 2) self.assertEqual(mujoco.mjtGeom.mjGEOM_ARROW, 100) self.assertEqual(mujoco.mjtGeom.mjGEOM_ARROW1, 101) self.assertEqual(mujoco.mjtGeom.mjGEOM_ARROW2, 102) self.assertEqual(mujoco.mjtGeom.mjGEOM_NONE, 1001) def test_enum_from_int(self): self.assertEqual(mujoco.mjtJoint.mjJNT_FREE, mujoco.mjtJoint(0)) self.assertEqual(mujoco.mjtGeom.mjGEOM_ARROW, mujoco.mjtGeom(value=100)) with self.assertRaises(ValueError): mujoco.mjtJoint(1000) with self.assertRaises(ValueError): mujoco.mjtJoint(-1) def test_enum_as_index(self): x = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k'] self.assertEqual(x[mujoco.mjtFrame.mjFRAME_WORLD], 'h') self.assertEqual( x[mujoco.mjtFrame.mjFRAME_GEOM:mujoco.mjtFrame.mjFRAME_CAMERA], ['c', 'd']) def test_enum_ops(self): # Note: when modifying this test, make sure the enum value is an odd number # so that the division tests are correctly exercised. self.assertEqual(mujoco.mjtFrame.mjFRAME_WORLD, 7) self.assertEqual(mujoco.mjtFrame.mjFRAME_WORLD, 7.0) self.assertEqual(7, mujoco.mjtFrame.mjFRAME_WORLD) self.assertEqual(7.0, mujoco.mjtFrame.mjFRAME_WORLD) self.assertEqual(mujoco.mjtFrame.mjFRAME_WORLD, mujoco.mjtFrame.mjFRAME_WORLD) self.assertNotEqual(mujoco.mjtFrame.mjFRAME_WORLD, mujoco.mjtFrame.mjFRAME_NONE) self.assertEqual(-mujoco.mjtFrame.mjFRAME_WORLD, -7) self.assertIsInstance(-mujoco.mjtFrame.mjFRAME_WORLD, int) self.assertEqual(mujoco.mjtFrame.mjFRAME_WORLD + 1, 8) self.assertIsInstance(mujoco.mjtFrame.mjFRAME_WORLD + 1, int) self.assertEqual(2 + mujoco.mjtFrame.mjFRAME_WORLD, 9) self.assertIsInstance(2 + mujoco.mjtFrame.mjFRAME_WORLD, int) self.assertEqual(mujoco.mjtFrame.mjFRAME_WORLD + 1.75, 8.75) self.assertEqual(2.75 + mujoco.mjtFrame.mjFRAME_WORLD, 9.75) self.assertEqual(mujoco.mjtFrame.mjFRAME_WORLD - 2, 5) self.assertIsInstance(mujoco.mjtFrame.mjFRAME_WORLD - 2, int) self.assertEqual(8 - mujoco.mjtFrame.mjFRAME_WORLD, 1) self.assertIsInstance(8 - mujoco.mjtFrame.mjFRAME_WORLD, int) self.assertEqual(mujoco.mjtFrame.mjFRAME_WORLD - 2.25, 4.75) self.assertEqual(8.25 - mujoco.mjtFrame.mjFRAME_WORLD, 1.25) self.assertEqual(mujoco.mjtFrame.mjFRAME_WORLD * 3, 21) self.assertIsInstance(mujoco.mjtFrame.mjFRAME_WORLD * 3, int) self.assertEqual(3 * mujoco.mjtFrame.mjFRAME_WORLD, 21) self.assertIsInstance(3 * mujoco.mjtFrame.mjFRAME_WORLD, int) self.assertEqual(mujoco.mjtFrame.mjFRAME_WORLD * 3.5, 24.5) self.assertEqual(3.5 * mujoco.mjtFrame.mjFRAME_WORLD, 24.5) self.assertEqual(mujoco.mjtFrame.mjFRAME_WORLD / 2, 3.5) self.assertEqual(17.5 / mujoco.mjtFrame.mjFRAME_WORLD, 2.5) self.assertEqual(mujoco.mjtFrame.mjFRAME_WORLD // 2, 3) self.assertIsInstance(mujoco.mjtFrame.mjFRAME_WORLD // 2, int) self.assertEqual(-mujoco.mjtFrame.mjFRAME_WORLD // 2, -4) self.assertIsInstance(-mujoco.mjtFrame.mjFRAME_WORLD // 2, int) self.assertEqual(20 // mujoco.mjtFrame.mjFRAME_WORLD, 2) self.assertIsInstance(20 // mujoco.mjtFrame.mjFRAME_WORLD, int) self.assertEqual(-20 // mujoco.mjtFrame.mjFRAME_WORLD, -3) self.assertIsInstance(-20 // mujoco.mjtFrame.mjFRAME_WORLD, int) self.assertEqual(mujoco.mjtFrame.mjFRAME_WORLD // 2.0, 3) self.assertIsInstance(mujoco.mjtFrame.mjFRAME_WORLD // 2.0, float) self.assertEqual(-mujoco.mjtFrame.mjFRAME_WORLD // 2.0, -4) self.assertIsInstance(-mujoco.mjtFrame.mjFRAME_WORLD // 2.0, float) self.assertEqual(20.0 // mujoco.mjtFrame.mjFRAME_WORLD, 2) self.assertIsInstance(20.0 // mujoco.mjtFrame.mjFRAME_WORLD, float) self.assertEqual(-20 // mujoco.mjtFrame.mjFRAME_WORLD, -3) self.assertIsInstance(-20.0 // mujoco.mjtFrame.mjFRAME_WORLD, float) self.assertEqual(mujoco.mjtFrame.mjFRAME_WORLD % 4, 3) self.assertIsInstance(mujoco.mjtFrame.mjFRAME_WORLD % 4, int) self.assertEqual(-mujoco.mjtFrame.mjFRAME_WORLD % -4, -3) self.assertIsInstance(-mujoco.mjtFrame.mjFRAME_WORLD % -4, int) self.assertEqual(-mujoco.mjtFrame.mjFRAME_WORLD % 4, 1) self.assertIsInstance(-mujoco.mjtFrame.mjFRAME_WORLD % 4, int) self.assertEqual(mujoco.mjtFrame.mjFRAME_WORLD % -4, -1) self.assertIsInstance(mujoco.mjtFrame.mjFRAME_WORLD % -4, int) self.assertEqual(9 % mujoco.mjtFrame.mjFRAME_WORLD, 2) self.assertIsInstance(9 % mujoco.mjtFrame.mjFRAME_WORLD, int) self.assertEqual(-9 % -mujoco.mjtFrame.mjFRAME_WORLD, -2) self.assertIsInstance(-9 % -mujoco.mjtFrame.mjFRAME_WORLD, int) self.assertEqual(-9 % mujoco.mjtFrame.mjFRAME_WORLD, 5) self.assertIsInstance(-9 % mujoco.mjtFrame.mjFRAME_WORLD, int) self.assertEqual(9 % -mujoco.mjtFrame.mjFRAME_WORLD, -5) self.assertIsInstance(9 % -mujoco.mjtFrame.mjFRAME_WORLD, int) with self.assertRaises(ZeroDivisionError): _ = mujoco.mjtFrame.mjFRAME_WORLD / 0 with self.assertRaises(ZeroDivisionError): _ = 1 / mujoco.mjtFrame.mjFRAME_NONE with self.assertRaises(ZeroDivisionError): _ = mujoco.mjtFrame.mjFRAME_WORLD // 0 with self.assertRaises(ZeroDivisionError): _ = 1 // mujoco.mjtFrame.mjFRAME_NONE with self.assertRaises(ZeroDivisionError): _ = mujoco.mjtFrame.mjFRAME_WORLD % 0 with self.assertRaises(ZeroDivisionError): _ = 1 % mujoco.mjtFrame.mjFRAME_NONE self.assertEqual( mujoco.mjtDisableBit.mjDSBL_GRAVITY | mujoco.mjtDisableBit.mjDSBL_LIMIT, 72) self.assertEqual(mujoco.mjtDisableBit.mjDSBL_PASSIVE | 33, 33) self.assertEqual(mujoco.mjtDisableBit.mjDSBL_PASSIVE & 33, 32) self.assertEqual(mujoco.mjtDisableBit.mjDSBL_PASSIVE ^ 33, 1) self.assertEqual(33 | mujoco.mjtDisableBit.mjDSBL_PASSIVE, 33) self.assertEqual(33 & mujoco.mjtDisableBit.mjDSBL_PASSIVE, 32) self.assertEqual(33 ^ mujoco.mjtDisableBit.mjDSBL_PASSIVE, 1) self.assertEqual(mujoco.mjtDisableBit.mjDSBL_CLAMPCTRL << 1, mujoco.mjtDisableBit.mjDSBL_WARMSTART) self.assertEqual(mujoco.mjtDisableBit.mjDSBL_CLAMPCTRL >> 3, mujoco.mjtDisableBit.mjDSBL_CONTACT) def test_can_raise_error(self): self.data.pstack = self.data.narena with self.assertRaisesRegex(mujoco.FatalError, r'\Amj_stackAlloc: insufficient memory:'): mujoco.mj_forward(self.model, self.data) def test_mjcb_time(self): class CallCounter: def __init__(self): self.count = 0 def __call__(self): self.count += 1 return self.count - 1 call_counter = CallCounter() with temporary_callback(mujoco.set_mjcb_time, call_counter): self.assertIs(mujoco.get_mjcb_time(), call_counter) # Check that the callback setter and getter aren't callin g the function. self.assertEqual(call_counter.count, 0) mujoco.mj_forward(self.model, self.data) self.assertGreater(call_counter.count, 0) self.assertIsNone(mujoco.get_mjcb_time()) def test_mjcb_time_exception(self): class TestError(RuntimeError): pass def raises_exception(): raise TestError('string', (1, 2, 3), {'a': 1, 'b': 2}) with temporary_callback(mujoco.set_mjcb_time, raises_exception): with self.assertRaises(TestError) as e: mujoco.mj_forward(self.model, self.data) self.assertEqual( e.exception.args, ('string', (1, 2, 3), {'a': 1, 'b': 2})) # Should not raise now that we've cleared the callback. mujoco.mj_forward(self.model, self.data) def test_mjcb_time_wrong_return_type(self): with temporary_callback(mujoco.set_mjcb_time, lambda: 'string'): with self.assertRaisesWithLiteralMatch( TypeError, 'mjcb_time callback did not return a number'): mujoco.mj_forward(self.model, self.data) def test_mjcb_time_not_callable(self): with self.assertRaisesWithLiteralMatch( TypeError, 'callback is not an Optional[Callable]'): mujoco.set_mjcb_time(1) def test_mjcb_sensor(self): class SensorCallback: def __init__(self, test, expected_model, expected_data): self.test = test self.expected_model = expected_model self.expected_data = expected_data self.count = 0 def __call__(self, m, d, stage): self.test.assertIs(m, self.expected_model) self.test.assertIs(d, self.expected_data) self.test.assertEqual(stage, mujoco.mjtStage.mjSTAGE_VEL) d.sensordata[0] = 17 self.count += 1 model_with_sensor = mujoco.MjModel.from_xml_string(TEST_XML_SENSOR) data_with_sensor = mujoco.MjData(model_with_sensor) sensor_callback = SensorCallback(self, model_with_sensor, data_with_sensor) self.assertEqual(sensor_callback.count, 0) with temporary_callback(mujoco.set_mjcb_sensor, sensor_callback): mujoco.mj_forward(model_with_sensor, data_with_sensor) self.assertEqual(sensor_callback.count, 1) self.assertEqual(data_with_sensor.sensordata[0], 17) # This test is disabled on PyPy as it uses sys.getrefcount # However PyPy is not officially supported by MuJoCo @absltest.skipIf(sys.implementation.name == 'pypy', reason='requires sys.getrefcount') def test_mjcb_control_not_leak_memory(self): model_instances = [] data_instances = [] for _ in range(10): mujoco.set_mjcb_control(None) model_instances.append(mujoco.MjModel.from_xml_string('<mujoco/>')) data_instances.append(mujoco.MjData(model_instances[-1])) mujoco.set_mjcb_control(lambda m, d: None) mujoco.mj_step(model_instances[-1], data_instances[-1]) mujoco.set_mjcb_control(None) while data_instances: d = data_instances.pop() self.assertEqual(sys.getrefcount(d), 2) while model_instances: m = model_instances.pop() self.assertEqual(sys.getrefcount(m), 2) def test_can_initialize_mjv_structs(self): self.assertIsInstance(mujoco.MjvScene(), mujoco.MjvScene) self.assertIsInstance(mujoco.MjvCamera(), mujoco.MjvCamera) self.assertIsInstance(mujoco.MjvGLCamera(), mujoco.MjvGLCamera) self.assertIsInstance(mujoco.MjvGeom(), mujoco.MjvGeom) self.assertIsInstance(mujoco.MjvLight(), mujoco.MjvLight) self.assertIsInstance(mujoco.MjvOption(), mujoco.MjvOption) self.assertIsInstance(mujoco.MjvScene(), mujoco.MjvScene) self.assertIsInstance(mujoco.MjvScene(self.model, 100), mujoco.MjvScene) self.assertIsInstance(mujoco.MjvFigure(), mujoco.MjvFigure) def test_mjv_camera(self): camera = mujoco.MjvCamera() camera.type = mujoco.mjtCamera.mjCAMERA_TRACKING # IDs should be integers camera.fixedcamid = 2**31 - 1 self.assertEqual(camera.fixedcamid, 2**31 - 1) with self.assertRaises(TypeError): camera.fixedcamid = 0.5 def test_mjv_scene(self): scene = mujoco.MjvScene(model=self.model, maxgeom=100) # scene.geoms is a fixed-length tuple of length maxgeom. self.assertEqual(scene.ngeom, 0) self.assertEqual(scene.maxgeom, 100) self.assertLen(scene.geoms, scene.maxgeom) # When the scene is updated, geoms are added to the scene # (ngeom is incremented) mujoco.mj_forward(self.model, self.data) mujoco.mjv_updateScene(self.model, self.data, mujoco.MjvOption(), None, mujoco.MjvCamera(), mujoco.mjtCatBit.mjCAT_ALL, scene) self.assertGreater(scene.ngeom, 0) def test_mjv_scene_without_model(self): scene = mujoco.MjvScene() self.assertEqual(scene.scale, 1.0) self.assertEqual(scene.maxgeom, 0) def test_mj_ray(self): # mj_ray has tricky argument types geomid = np.zeros(1, np.int32) mujoco.mj_forward(self.model, self.data) mujoco.mj_ray(self.model, self.data, [0, 0, 0], [0, 0, 1], None, 0, 0, geomid) mujoco.mj_ray(self.model, self.data, [0, 0, 0], [0, 0, 1], [0, 0, 0, 0, 0, 0], 0, 0, geomid) # Check that named arguments work mujoco.mj_ray( m=self.model, d=self.data, pnt=[0, 0, 0], vec=[0, 0, 1], geomgroup=None, flg_static=0, bodyexclude=0, geomid=geomid) def test_inverse_fd_none(self): eps = 1e-6 flg_centered = 0 mujoco.mjd_inverseFD(self.model, self.data, eps, flg_centered, None, None, None, None, None, None, None) def test_inverse_fd(self): eps = 1e-6 flg_centered = 0 df_dq = np.zeros((self.model.nv, self.model.nv)) df_dv = np.zeros((self.model.nv, self.model.nv)) df_da = np.zeros((self.model.nv, self.model.nv)) ds_dq = np.zeros((self.model.nv, self.model.nsensordata)) ds_dv = np.zeros((self.model.nv, self.model.nsensordata)) ds_da = np.zeros((self.model.nv, self.model.nsensordata)) dm_dq = np.zeros((self.model.nv, self.model.nM)) mujoco.mjd_inverseFD(self.model, self.data, eps, flg_centered, df_dq, df_dv, df_da, ds_dq, ds_dv, ds_da, dm_dq) self.assertGreater(np.linalg.norm(df_dq), eps) self.assertGreater(np.linalg.norm(df_dv), eps) self.assertGreater(np.linalg.norm(df_da), eps) self.assertGreater(np.linalg.norm(ds_dq), eps) self.assertGreater(np.linalg.norm(ds_dv), eps) self.assertGreater(np.linalg.norm(ds_da), eps) def test_mjd_sub_quat(self): quat1 = np.array((0.2, 0.3, 0.3, 0.4)) quat2 = np.array((0.2, 0.3, 0.3, 0.4)) d1 = np.empty(9, np.float64) d2 = np.empty(9, np.float64) mujoco.mjd_subQuat(quat1, quat2, d1, d2) def test_mjd_quat_intergrate(self): scale = 0.1 vel = np.array((0.2, 0.3, 0.3)) d_quat = np.empty(9, np.float64) d_vel = np.empty(9, np.float64) d_h = np.empty(3, np.float64) mujoco.mjd_quatIntegrate(vel, scale, d_quat, d_vel, d_h) def test_banded(self): n_total = 4 n_band = 1 n_dense = 1 dense = np.array([[1.0, 0, 0, 0.1], [0, 2.0, 0, 0.2], [0, 0, 3.0, 0.3], [0.1, 0.2, 0.3, 4.0]]) band = np.zeros(n_band*(n_total-n_dense) + n_dense*n_total) mujoco.mju_dense2Band(band, dense, n_total, n_band, n_dense) for i in range(4): index = mujoco.mju_bandDiag(i, n_total, n_band, n_dense) self.assertEqual(band[index], i+1) dense2 = np.zeros((n_total, n_total)) flg_sym = 1 mujoco.mju_band2Dense(dense2, band, n_total, n_band, n_dense, flg_sym) np.testing.assert_array_equal(dense, dense2) vec = np.array([[2.0], [2.0], [3.0], [4.0]]) res = np.zeros_like(vec) n_vec = 1 mujoco.mju_bandMulMatVec(res, band, vec, n_total, n_band, n_dense, n_vec, flg_sym) np.testing.assert_array_equal(res, dense @ vec) diag_add = 0 diag_mul = 0 mujoco.mju_cholFactorBand(band, n_total, n_band, n_dense, diag_add, diag_mul) mujoco.mju_cholSolveBand(res, band, vec, n_total, n_band, n_dense) np.testing.assert_almost_equal(res, np.linalg.solve(dense, vec)) def test_mju_box_qp(self): n = 5 res = np.zeros(n) r = np.zeros((n, n+7)) index = np.zeros(n, np.int32) h = np.eye(n) g = np.ones((n,)) lower = -np.ones((n,)) upper = np.ones((n,)) rank = mujoco.mju_boxQP(res, r, index, h, g, lower, upper) self.assertGreater(rank, -1) def test_mju_fill(self): res = np.empty(3, np.float64) mujoco.mju_fill(res, 1.5) np.testing.assert_array_equal(res, np.full(3, 1.5)) def test_mju_eye(self): eye4 = np.empty((4, 4), np.float64) mujoco.mju_eye(eye4) np.testing.assert_array_equal(eye4, np.eye(4)) def test_mju_symmetrize(self): mat = np.linspace(0, 1, 16).reshape(4, 4) res = np.empty((4, 4), np.float64) mujoco.mju_symmetrize(res, mat) np.testing.assert_array_equal(res, 0.5*(mat + mat.T)) def test_mju_clip(self): self.assertEqual(mujoco.mju_clip(1.5, 1.0, 2.0), 1.5) self.assertEqual(mujoco.mju_clip(1.5, 2.0, 3.0), 2.0) self.assertEqual(mujoco.mju_clip(1.5, 0.0, 1.0), 1.0) def test_mju_mul_vec_mat_vec(self): vec1 = np.array([1., 2., 3.]) vec2 = np.array([3., 2., 1.]) mat = np.array([[1., 2., 3.], [4., 5., 6.], [7., 8., 9.]]) self.assertEqual(mujoco.mju_mulVecMatVec(vec1, mat, vec2), 204.) @parameterized.product(flg_html=(False, True), flg_pad=(False, True)) def test_mj_printSchema(self, flg_html, flg_pad): # pylint: disable=invalid-name # Make sure that mj_printSchema doesn't raise an exception # (e.g. because the internal output buffer is too small) self.assertIn('mujoco', mujoco.mj_printSchema(flg_html, flg_pad)) def test_pickle_mjdata(self): mujoco.mj_step(self.model, self.data) data2 = pickle.loads(pickle.dumps(self.data)) attr_to_compare = ( 'time', 'qpos', 'qvel', 'qacc', 'xpos', 'mocap_pos', 'warning', 'energy' ) self._assert_attributes_equal(data2, self.data, attr_to_compare) for _ in range(10): mujoco.mj_step(self.model, self.data) mujoco.mj_step(self.model, data2) self._assert_attributes_equal(data2, self.data, attr_to_compare) def test_pickle_mjmodel(self): model2 = pickle.loads(pickle.dumps(self.model)) attr_to_compare = ( 'nq', 'nmat', 'body_pos', 'names', ) self._assert_attributes_equal(model2, self.model, attr_to_compare) def test_indexer_name_id(self): xml = r""" <mujoco> <worldbody> <geom name="mygeom" size="1" pos="0 0 1"/> <geom size="2" pos="0 0 2"/> <geom size="3" pos="0 0 3"/> <geom name="myothergeom" size="4" pos="0 0 4"/> <geom size="5" pos="0 0 5"/> </worldbody> </mujoco> """ model = mujoco.MjModel.from_xml_string(xml) self.assertEqual(model.geom('mygeom').id, 0) self.assertEqual(model.geom('myothergeom').id, 3) self.assertEqual(model.geom(0).name, 'mygeom') self.assertEqual(model.geom(1).name, '') self.assertEqual(model.geom(2).name, '') self.assertEqual(model.geom(3).name, 'myothergeom') self.assertEqual(model.geom(4).name, '') self.assertEqual(model.geom(0).size[0], 1) self.assertEqual(model.geom(1).size[0], 2) self.assertEqual(model.geom(2).size[0], 3) self.assertEqual(model.geom(3).size[0], 4) self.assertEqual(model.geom(4).size[0], 5) data = mujoco.MjData(model) mujoco.mj_forward(model, data) self.assertEqual(data.geom('mygeom').id, 0) self.assertEqual(data.geom('myothergeom').id, 3) self.assertEqual(data.geom(0).name, 'mygeom') self.assertEqual(data.geom(1).name, '') self.assertEqual(data.geom(2).name, '') self.assertEqual(data.geom(3).name, 'myothergeom') self.assertEqual(data.geom(4).name, '') self.assertEqual(data.geom(0).xpos[2], 1) self.assertEqual(data.geom(1).xpos[2], 2) self.assertEqual(data.geom(2).xpos[2], 3) self.assertEqual(data.geom(3).xpos[2], 4) self.assertEqual(data.geom(4).xpos[2], 5) def _assert_attributes_equal(self, actual_obj, expected_obj, attr_to_compare): for name in attr_to_compare: actual_value = getattr(actual_obj, name) expected_value = getattr(expected_obj, name) try: if isinstance(expected_value, np.ndarray): np.testing.assert_array_equal(actual_value, expected_value) else: self.assertEqual(actual_value, expected_value) except AssertionError as e: self.fail("Attribute '{}' differs from expected value: {}".format( name, str(e))) def test_load_plugin(self): mujoco.MjModel.from_xml_string(TEST_XML_PLUGIN) if __name__ == '__main__': absltest.main()
mujoco-main
python/mujoco/bindings_test.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Extremely minimal test of mujoco.viewer that just tries to import it.""" from absl.testing import absltest from mujoco import viewer class ViewerTest(absltest.TestCase): def test_launch_function_exists(self): self.assertIsNotNone(viewer.launch) if __name__ == '__main__': absltest.main()
mujoco-main
python/mujoco/viewer_test.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for MuJoCo Python rendering.""" from absl.testing import absltest import mujoco import numpy as np @absltest.skipUnless(hasattr(mujoco, 'GLContext'), 'MuJoCo rendering is disabled') class MuJoCoRenderTest(absltest.TestCase): def setUp(self): super().setUp() self.gl = mujoco.GLContext(640, 480) self.gl.make_current() def tearDown(self): super().tearDown() del self.gl def test_can_render(self): """Test that the bindings can successfully render a simple image. This test sets up a basic MuJoCo rendering context similar to the example in https://mujoco.readthedocs.io/en/latest/programming#visualization It calls `mjr_rectangle` rather than `mjr_render` so that we can assert an exact rendered image without needing golden data. The purpose of this test is to ensure that the bindings can correctly return pixels in Python, rather than to test MuJoCo's rendering pipeline itself. """ self.model = mujoco.MjModel.from_xml_string('<mujoco><worldbody/></mujoco>') self.data = mujoco.MjData(self.model) scene = mujoco.MjvScene(self.model, maxgeom=0) mujoco.mjv_updateScene( self.model, self.data, mujoco.MjvOption(), mujoco.MjvPerturb(), mujoco.MjvCamera(), mujoco.mjtCatBit.mjCAT_ALL, scene) context = mujoco.MjrContext(self.model, mujoco.mjtFontScale.mjFONTSCALE_150) mujoco.mjr_setBuffer(mujoco.mjtFramebuffer.mjFB_OFFSCREEN, context) # MuJoCo's default render buffer size is 640x480. full_rect = mujoco.MjrRect(0, 0, 640, 480) mujoco.mjr_rectangle(full_rect, 0, 0, 0, 1) blue_rect = mujoco.MjrRect(56, 67, 234, 123) mujoco.mjr_rectangle(blue_rect, 0, 0, 1, 1) expected_upside_down_image = np.zeros((480, 640, 3), dtype=np.uint8) expected_upside_down_image[67:67+123, 56:56+234, 2] = 255 upside_down_image = np.empty((480, 640, 3), dtype=np.uint8) mujoco.mjr_readPixels(upside_down_image, None, full_rect, context) np.testing.assert_array_equal(upside_down_image, expected_upside_down_image) # Check that mjr_readPixels can accept a flattened array. upside_down_image[:] = 0 mujoco.mjr_readPixels( np.reshape(upside_down_image, -1), None, full_rect, context) np.testing.assert_array_equal(upside_down_image, expected_upside_down_image) context.free() def test_safe_to_free_context_twice(self): self.model = mujoco.MjModel.from_xml_string('<mujoco><worldbody/></mujoco>') self.data = mujoco.MjData(self.model) scene = mujoco.MjvScene(self.model, maxgeom=0) mujoco.mjv_updateScene( self.model, self.data, mujoco.MjvOption(), None, mujoco.MjvCamera(), mujoco.mjtCatBit.mjCAT_ALL, scene) context = mujoco.MjrContext(self.model, mujoco.mjtFontScale.mjFONTSCALE_150) mujoco.mjr_setBuffer(mujoco.mjtFramebuffer.mjFB_OFFSCREEN, context) context.free() context.free() def test_mjrrect_repr(self): rect = mujoco.MjrRect(1, 2, 3, 4) rect_repr = repr(rect) self.assertIn('MjrRect', rect_repr) self.assertIn('left: 1', rect_repr) if __name__ == '__main__': absltest.main()
mujoco-main
python/mujoco/render_test.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Exports GLContext for MuJoCo Python bindings.""" import ctypes import ctypes.util import os import platform # pylint: disable=g-import-not-at-top _SYSTEM = platform.system() _MUJOCO_GL = os.environ.get('MUJOCO_GL', '').lower().strip() if _MUJOCO_GL not in ('disable', 'disabled', 'off', 'false', '0'): _VALID_MUJOCO_GL = ('enable', 'enabled', 'on', 'true', '1' , 'glfw', '') if _SYSTEM == 'Linux': _VALID_MUJOCO_GL += ('glx', 'egl', 'osmesa') elif _SYSTEM == 'Windows': _VALID_MUJOCO_GL += ('wgl',) elif _SYSTEM == 'Darwin': _VALID_MUJOCO_GL += ('cgl',) if _MUJOCO_GL not in _VALID_MUJOCO_GL: raise RuntimeError( f'invalid value for environment variable MUJOCO_GL: {_MUJOCO_GL}') if _SYSTEM == 'Linux' and _MUJOCO_GL == 'osmesa': from mujoco.osmesa import GLContext as _GLContext GLContext = _GLContext elif _SYSTEM == 'Linux' and _MUJOCO_GL == 'egl': from mujoco.egl import GLContext as _GLContext GLContext = _GLContext elif _SYSTEM == 'Darwin': from mujoco.cgl import GLContext as _GLContext GLContext = _GLContext else: from mujoco.glfw import GLContext as _GLContext GLContext = _GLContext
mujoco-main
python/mujoco/gl_context.py
# Copyright 2023 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Bindings for Apple CGL.""" import ctypes import enum _CGL = ctypes.CDLL('/System/Library/OpenGL.framework/OpenGL') CGLContextObj = ctypes.c_void_p CGLPixelFormatObj = ctypes.c_void_p GLint = ctypes.c_int _CGLChoosePixelFormat = _CGL.CGLChoosePixelFormat _CGLChoosePixelFormat.argtypes = ( ctypes.POINTER(ctypes.c_int), ctypes.POINTER(CGLPixelFormatObj), ctypes.POINTER(GLint), ) _CGLCreateContext = _CGL.CGLCreateContext _CGLCreateContext.argtypes = ( CGLPixelFormatObj, ctypes.c_int, CGLContextObj, ) _CGLErrorString = _CGL.CGLErrorString _CGLErrorString.restype = ctypes.c_char_p _CGLErrorString.argtype = (ctypes.c_int,) _CGLLockContext = _CGL.CGLLockContext _CGLLockContext.argtypes = (CGLContextObj,) _CGLReleaseContext = _CGL.CGLReleaseContext _CGLReleaseContext.restype = None _CGLReleaseContext.argtypes = (CGLContextObj,) _CGLReleasePixelFormat = _CGL.CGLReleasePixelFormat _CGLReleasePixelFormat.restype = None _CGLReleasePixelFormat.argtypes = (CGLPixelFormatObj,) _CGLSetCurrentContext = _CGL.CGLSetCurrentContext _CGLSetCurrentContext.argtypes = (CGLContextObj,) _CGLUnlockContext = _CGL.CGLUnlockContext _CGLUnlockContext.argtypes = (CGLContextObj,) # pylint: disable=invalid-name class CGLOpenGLProfile(enum.IntEnum): CGLOGLPVersion_Legacy = 0x1000 # renderer compatible with GL1.0 CGLOGLPVersion_3_2_Core = 0x3200 # renderer capable of GL3.2 or later CGLOGLPVersion_GL3_Core = 0x3200 # renderer capable of GL3.2 or later CGLOGLPVersion_GL4_Core = 0x4100 # renderer capable of GL4.1 or later class CGLPixelFormatAttribute(enum.IntEnum): """CGLPixelFormatAttribute enum values.""" CGLPFAAllRenderers = 1 # choose from all available renderers CGLPFATripleBuffer = 3 # choose a triple buffered pixel format CGLPFADoubleBuffer = 5 # choose a double buffered pixel format CGLPFAColorSize = 8 # number of color buffer bits CGLPFAAlphaSize = 11 # number of alpha component bits CGLPFADepthSize = 12 # number of depth buffer bits CGLPFAStencilSize = 13 # number of stencil buffer bits CGLPFAMinimumPolicy = 51 # never choose smaller buffers than requested CGLPFAMaximumPolicy = 52 # choose largest buffers of type requested CGLPFASampleBuffers = 55 # number of multi sample buffers CGLPFASample = 56 # number of samples per multi sample buffer CGLPFAColorFloat = 58 # color buffers store floating point pixels CGLPFAMultisample = 59 # choose multisampling CGLPFASupersample = 60 # choose supersampling CGLPFASampleAlpha = 61 # request alpha filtering CGLPFARendererID = 70 # request renderer by ID CGLPFANoRecovery = 72 # disable all failure recovery systems CGLPFAAccelerated = 73 # choose a hardware accelerated renderer CGLPFAClosestPolicy = 74 # choose the closest color buffer to request CGLPFABackingStore = 76 # back buffer contents are valid after swap CGLPFABackingVolatile = 77 # back buffer contents are volatile after swap CGLPFADisplayMask = 84 # mask limiting supported displays CGLPFAAllowOfflineRenderers = 96 # show offline renderers in pixel formats CGLPFAAcceleratedCompute = 97 # choose a hardware accelerated compute device CGLPFAOpenGLProfile = 99 # specify an OpenGL Profile to use CGLPFASupportsAutomaticGraphicsSwitching = 101 # responds to display changes CGLPFAVirtualScreenCount = 128 # number of virtual screens in this format # Note: the following attributes are deprecated in Core Profile CGLPFAAuxBuffers = 7 # number of aux buffers CGLPFAAccumSize = 14 # number of accum buffer bits CGLPFAAuxDepthStencil = 57 # each aux buffer has its own depth stencil CGLPFAStereo = 6 CGLPFAOffScreen = 53 CGLPFAWindow = 80 CGLPFACompliant = 83 CGLPFAPBuffer = 90 CGLPFARemotePBuffer = 91 CGLPFASingleRenderer = 71 CGLPFARobust = 75 CGLPFAMPSafe = 78 CGLPFAMultiScreen = 81 CGLPFAFullScreen = 54 # pylint: enable=invalid-name class CGLError(RuntimeError): # pylint: disable=g-bad-exception-name pass def _make_checked(func): def checked_func(*args): err = func(*args) if err: raise CGLError(_CGLErrorString(err).decode()) return checked_func CGLChoosePixelFormat = _make_checked(_CGLChoosePixelFormat) CGLCreateContext = _make_checked(_CGLCreateContext) CGLLockContext = _make_checked(_CGLLockContext) CGLReleaseContext = _CGLReleaseContext CGLReleasePixelFormat = _CGLReleasePixelFormat CGLSetCurrentContext = _make_checked(_CGLSetCurrentContext) CGLUnlockContext = _make_checked(_CGLUnlockContext)
mujoco-main
python/mujoco/cgl/cgl.py
# Copyright 2023 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """An Apple CGL context for offscreen rendering on macOS.""" import atexit import ctypes import os from mujoco.cgl import cgl _ATTRIB = cgl.CGLPixelFormatAttribute _PROFILE = cgl.CGLOpenGLProfile class GLContext: """An EGL context for headless accelerated OpenGL rendering on GPU devices.""" def __init__(self, max_width, max_height): del max_width, max_height # unused attrib_values = ( _ATTRIB.CGLPFAOpenGLProfile, _PROFILE.CGLOGLPVersion_Legacy, _ATTRIB.CGLPFAColorSize, 24, _ATTRIB.CGLPFAAlphaSize, 8, _ATTRIB.CGLPFADepthSize, 24, _ATTRIB.CGLPFAStencilSize, 8, _ATTRIB.CGLPFAMultisample, _ATTRIB.CGLPFASampleBuffers, 1, _ATTRIB.CGLPFASample, 4, _ATTRIB.CGLPFAAccelerated, 0, ) attribs = (ctypes.c_int * len(attrib_values))(*attrib_values) self._pix = cgl.CGLPixelFormatObj() npix = cgl.GLint() cgl.CGLChoosePixelFormat( attribs, ctypes.byref(self._pix), ctypes.byref(npix) ) self._context = cgl.CGLContextObj() cgl.CGLCreateContext(self._pix, 0, ctypes.byref(self._context)) def make_current(self): cgl.CGLSetCurrentContext(self._context) cgl.CGLLockContext(self._context) def free(self): """Frees resources associated with this context.""" if self._context: cgl.CGLUnlockContext(self._context) cgl.CGLSetCurrentContext(None) cgl.CGLReleaseContext(self._context) self._context = None if self._pix: cgl.CGLReleasePixelFormat(self._pix) self._context = None def __del__(self): self.free()
mujoco-main
python/mujoco/cgl/__init__.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Code generator for function_traits.h.""" import keyword from typing import Mapping, Sequence from absl import app from introspect import ast_nodes from introspect import functions FUNCTIONS: Mapping[str, ast_nodes.FunctionDecl] = functions.FUNCTIONS def _sanitize_keyword(s: str) -> str: if keyword.iskeyword(s): return s + '_' return s def main(argv: Sequence[str]) -> None: if len(argv) > 1: raise app.UsageError('Too many command-line arguments.') struct_decls = [] for func in FUNCTIONS.values(): # Skip mju_error_{i,s} and mju_warning_{i,s} as these are not # supported in the Python bindings, and Introspect currently # doesn't support variadic functions. if func.name.startswith('mju_error') or func.name == 'mju_warning': continue # Modify some parameter types. parameters = [] modified = False for p in func.parameters: # Expose array parameters as pointer-to-arrays so that we can determine # array extents in C++ templates. if isinstance(p.type, ast_nodes.ArrayType): parameters.append(ast_nodes.FunctionParameterDecl( name=p.name, type=ast_nodes.PointerType( ast_nodes.ArrayType( inner_type=p.type.inner_type, extents=p.type.extents)))) modified = True else: parameters.append(p) if modified: func = ast_nodes.FunctionDecl( name=func.name, return_type=func.return_type, parameters=parameters, doc=func.doc) getfunc = f'*reinterpret_cast<type*>(&::{func.name})' else: getfunc = f'::{func.name}' param_names = ', '.join( f'"{_sanitize_keyword(p.name)}"' for p in parameters ) struct_decls.append(f""" struct {func.name} {{ static constexpr char name[] = "{func.name}"; static constexpr char doc[] = "{func.doc}"; using type = {func.decltype}; static constexpr auto param_names = std::make_tuple({param_names}); MUJOCO_ALWAYS_INLINE static type& GetFunc() {{ return {getfunc}; }} }}; """.strip()) all_structs = '\n\n'.join(struct_decls) print(f""" // Copyright 2022 DeepMind Technologies Limited // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #ifndef MUJOCO_PYTHON_CODEGEN_FUNCTION_TRAITS_H_ #define MUJOCO_PYTHON_CODEGEN_FUNCTION_TRAITS_H_ #include <tuple> #include <mujoco/mujoco.h> #include "util/crossplatform.h" namespace mujoco::python_traits {{ {all_structs} }} // namespace mujoco::python_traits #endif // MUJOCO_PYTHON_CODEGEN_FUNCTION_TRAITS_H_ """.lstrip()) if __name__ == '__main__': app.run(main)
mujoco-main
python/mujoco/codegen/generate_function_traits.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Code generator for function_traits.h.""" from typing import Mapping, Sequence from absl import app from introspect import ast_nodes from introspect import enums ENUMS: Mapping[str, ast_nodes.EnumDecl] = enums.ENUMS def main(argv: Sequence[str]) -> None: if len(argv) > 1: raise app.UsageError('Too many command-line arguments.') struct_decls = [] for enum in ENUMS.values(): value_decls = [] for k in enum.values: value_decls.append(f'std::make_pair("{k}", ::{enum.name}::{k})') if len(value_decls) < 2: value_decls = ''.join(value_decls) else: value_decls = '\n ' + ',\n '.join(value_decls) struct_decls.append(f""" struct {enum.name} {{ static constexpr char name[] = "{enum.name}"; using type = ::{enum.name}; static constexpr auto values = std::array{{{value_decls}}}; }}; """.strip()) all_structs = '\n\n'.join(struct_decls) all_enum_inits = '\n ' + '{},\n '.join(ENUMS.keys()) + '{}' print(f""" // Copyright 2022 DeepMind Technologies Limited // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #ifndef MUJOCO_PYTHON_CODEGEN_ENUM_TRAITS_H_ #define MUJOCO_PYTHON_CODEGEN_ENUM_TRAITS_H_ #include <array> #include <tuple> #include <utility> #include <mujoco/mujoco.h> namespace mujoco::python_traits {{ {all_structs} static constexpr auto kAllEnums = std::make_tuple({all_enum_inits}); }} // namespace mujoco::python_traits #endif // MUJOCO_PYTHON_CODEGEN_ENUM_TRAITS_H_ """.lstrip()) if __name__ == '__main__': app.run(main)
mujoco-main
python/mujoco/codegen/generate_enum_traits.py
# Copyright 2018 The dm_control Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """An EGL context for headless accelerated OpenGL rendering on GPU devices.""" import atexit import ctypes import os PYOPENGL_PLATFORM = os.environ.get('PYOPENGL_PLATFORM') if not PYOPENGL_PLATFORM: os.environ['PYOPENGL_PLATFORM'] = 'egl' elif PYOPENGL_PLATFORM.lower() != 'egl': raise ImportError( 'Cannot use EGL rendering platform. ' 'The PYOPENGL_PLATFORM environment variable is set to {!r} ' '(should be either unset or \'egl\').') from mujoco.egl import egl_ext as EGL from OpenGL import error def create_initialized_egl_device_display(): """Creates an initialized EGL display directly on a device.""" all_devices = EGL.eglQueryDevicesEXT() selected_device = os.environ.get('MUJOCO_EGL_DEVICE_ID', None) if selected_device is None: candidates = all_devices else: device_idx = int(selected_device) if not 0 <= device_idx < len(all_devices): raise RuntimeError( f'The MUJOCO_EGL_DEVICE_ID environment variable must be an integer ' f'between 0 and {len(all_devices)-1} (inclusive), got {device_idx}.') candidates = all_devices[device_idx:device_idx + 1] for device in candidates: display = EGL.eglGetPlatformDisplayEXT( EGL.EGL_PLATFORM_DEVICE_EXT, device, None) if display != EGL.EGL_NO_DISPLAY and EGL.eglGetError() == EGL.EGL_SUCCESS: # `eglInitialize` may or may not raise an exception on failure depending # on how PyOpenGL is configured. We therefore catch a `GLError` and also # manually check the output of `eglGetError()` here. try: initialized = EGL.eglInitialize(display, None, None) except error.GLError: pass else: if initialized == EGL.EGL_TRUE and EGL.eglGetError() == EGL.EGL_SUCCESS: return display return EGL.EGL_NO_DISPLAY EGL_DISPLAY = create_initialized_egl_device_display() if EGL_DISPLAY == EGL.EGL_NO_DISPLAY: raise ImportError( 'Cannot initialize a EGL device display. This likely means that your EGL ' 'driver does not support the PLATFORM_DEVICE extension, which is ' 'required for creating a headless rendering context.') atexit.register(EGL.eglTerminate, EGL_DISPLAY) EGL_ATTRIBUTES = ( EGL.EGL_RED_SIZE, 8, EGL.EGL_GREEN_SIZE, 8, EGL.EGL_BLUE_SIZE, 8, EGL.EGL_ALPHA_SIZE, 8, EGL.EGL_DEPTH_SIZE, 24, EGL.EGL_STENCIL_SIZE, 8, EGL.EGL_COLOR_BUFFER_TYPE, EGL.EGL_RGB_BUFFER, EGL.EGL_SURFACE_TYPE, EGL.EGL_PBUFFER_BIT, EGL.EGL_RENDERABLE_TYPE, EGL.EGL_OPENGL_BIT, EGL.EGL_NONE ) class GLContext: """An EGL context for headless accelerated OpenGL rendering on GPU devices.""" def __init__(self, max_width, max_height): del max_width, max_height # unused num_configs = ctypes.c_long() config_size = 1 config = EGL.EGLConfig() EGL.eglReleaseThread() EGL.eglChooseConfig( EGL_DISPLAY, EGL_ATTRIBUTES, ctypes.byref(config), config_size, num_configs) if num_configs.value < 1: raise RuntimeError( 'EGL failed to find a framebuffer configuration that matches the ' 'desired attributes: {}'.format(EGL_ATTRIBUTES)) EGL.eglBindAPI(EGL.EGL_OPENGL_API) self._context = EGL.eglCreateContext( EGL_DISPLAY, config, EGL.EGL_NO_CONTEXT, None) if not self._context: raise RuntimeError('Cannot create an EGL context.') def make_current(self): if not EGL.eglMakeCurrent( EGL_DISPLAY, EGL.EGL_NO_SURFACE, EGL.EGL_NO_SURFACE, self._context): raise RuntimeError('Failed to make the EGL context current.') def free(self): """Frees resources associated with this context.""" if self._context: current_context = EGL.eglGetCurrentContext() if current_context and self._context.address == current_context.address: EGL.eglMakeCurrent(EGL_DISPLAY, EGL.EGL_NO_SURFACE, EGL.EGL_NO_SURFACE, EGL.EGL_NO_CONTEXT) EGL.eglDestroyContext(EGL_DISPLAY, self._context) EGL.eglReleaseThread() self._context = None def __del__(self): self.free()
mujoco-main
python/mujoco/egl/__init__.py
# Copyright 2018 The dm_control Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Extends OpenGL.EGL with definitions necessary for headless rendering.""" import ctypes from OpenGL.platform import ctypesloader # pylint: disable=g-bad-import-order try: # Nvidia driver seems to need libOpenGL.so (as opposed to libGL.so) # for multithreading to work properly. We load this in before everything else. ctypesloader.loadLibrary(ctypes.cdll, 'OpenGL', mode=ctypes.RTLD_GLOBAL) except OSError: pass # pylint: disable=g-import-not-at-top from OpenGL import EGL from OpenGL import error # From the EGL_EXT_device_enumeration extension. PFNEGLQUERYDEVICESEXTPROC = ctypes.CFUNCTYPE( EGL.EGLBoolean, EGL.EGLint, ctypes.POINTER(EGL.EGLDeviceEXT), ctypes.POINTER(EGL.EGLint), ) try: _eglQueryDevicesEXT = PFNEGLQUERYDEVICESEXTPROC( # pylint: disable=invalid-name EGL.eglGetProcAddress('eglQueryDevicesEXT')) except TypeError as e: raise ImportError('eglQueryDevicesEXT is not available.') from e # From the EGL_EXT_platform_device extension. EGL_PLATFORM_DEVICE_EXT = 0x313F PFNEGLGETPLATFORMDISPLAYEXTPROC = ctypes.CFUNCTYPE( EGL.EGLDisplay, EGL.EGLenum, ctypes.c_void_p, ctypes.POINTER(EGL.EGLint)) try: eglGetPlatformDisplayEXT = PFNEGLGETPLATFORMDISPLAYEXTPROC( # pylint: disable=invalid-name EGL.eglGetProcAddress('eglGetPlatformDisplayEXT')) except TypeError as e: raise ImportError('eglGetPlatformDisplayEXT is not available.') from e # Wrap raw _eglQueryDevicesEXT function into something more Pythonic. def eglQueryDevicesEXT(max_devices=10): # pylint: disable=invalid-name devices = (EGL.EGLDeviceEXT * max_devices)() num_devices = EGL.EGLint() success = _eglQueryDevicesEXT(max_devices, devices, num_devices) if success == EGL.EGL_TRUE: return [devices[i] for i in range(num_devices.value)] else: raise error.GLError(err=EGL.eglGetError(), baseOperation=eglQueryDevicesEXT, result=success) # Expose everything from upstream so that # we can use this as a drop-in replacement for OpenGL.EGL. # pylint: disable=wildcard-import,g-bad-import-order from OpenGL.EGL import *
mujoco-main
python/mujoco/egl/egl_ext.py
# Copyright 2018 The dm_control Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """An OSMesa context for software-based OpenGL rendering.""" import os PYOPENGL_PLATFORM = os.environ.get('PYOPENGL_PLATFORM') if not PYOPENGL_PLATFORM: os.environ['PYOPENGL_PLATFORM'] = 'osmesa' elif PYOPENGL_PLATFORM.lower() != 'osmesa': raise ImportError( 'Cannot use OSMesa rendering platform. ' 'The PYOPENGL_PLATFORM environment variable is set to {!r} ' '(should be either unset or \'osmesa\').' .format(PYOPENGL_PLATFORM)) # pylint: disable=g-import-not-at-top from OpenGL import GL from OpenGL import osmesa from OpenGL.GL import arrays _DEPTH_BITS = 24 _STENCIL_BITS = 8 _ACCUM_BITS = 0 class GLContext: """An OSMesa context for software-based OpenGL rendering.""" def __init__(self, max_width, max_height): """Initializes this OSMesa context.""" self._context = osmesa.OSMesaCreateContextExt( osmesa.OSMESA_RGBA, _DEPTH_BITS, _STENCIL_BITS, _ACCUM_BITS, None, # sharelist ) if not self._context: raise RuntimeError('Failed to create OSMesa GL context.') self._height = max_height self._width = max_width # Allocate a buffer to render into. self._buffer = arrays.GLfloatArray.zeros((max_height, max_width, 4)) def make_current(self): if self._context: success = osmesa.OSMesaMakeCurrent( self._context, self._buffer, GL.GL_FLOAT, self._width, self._height) if not success: raise RuntimeError('Failed to make OSMesa context current.') def free(self): """Frees resources associated with this context.""" if self._context and self._context == osmesa.OSMesaGetCurrentContext(): osmesa.OSMesaMakeCurrent(None, None, GL.GL_FLOAT, 0, 0) osmesa.OSMesaDestroyContext(self._context) self._buffer = None self._context = None def __del__(self): self.free()
mujoco-main
python/mujoco/osmesa/__init__.py
#!/usr/bin/env python # Copyright 2023 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Python interpreter trampoline for macOS to support non-block Cocoa GUI. This script executes a native binary that runs the CPython interpreter entry point in a separate thread, thus leaving the macOS main thread free for Cocoa GUI calls without blocking the user's Python script. In other words, Python's idea of the "main thread" is different from the thread that holds the com.apple.main-thread DispatchQueue. """ import ctypes import importlib.util import os import platform import sys if platform.system() != 'Darwin': raise RuntimeError('This script only works on macOS') _NSGetExecutablePath = getattr(ctypes.CDLL(None), '_NSGetExecutablePath') def get_executable_path(): c_path_size = ctypes.c_int32(0) _NSGetExecutablePath(None, ctypes.byref(c_path_size)) c_path = (ctypes.c_char * c_path_size.value)() _NSGetExecutablePath(ctypes.byref(c_path), ctypes.byref(c_path_size)) return c_path.value.decode() def main(argv): module_dir = os.path.dirname(importlib.util.find_spec('mujoco').origin) os.environ['MJPYTHON_BIN'] = os.path.join( module_dir, 'MuJoCo (mjpython).app/Contents/MacOS/mjpython') # Conda doesn't create a separate shared library for Python. # We instead use the Python binary itself, which can be dlopened just as well. os.environ['MJPYTHON_LIBPYTHON'] = get_executable_path() # argv[0] is currently the path to this script. # Replace it with sys.executable to preserve e.g. virtualenv path. argv[0] = sys.executable os.execve(os.environ['MJPYTHON_BIN'], argv, os.environ) if __name__ == '__main__': main(sys.argv)
mujoco-main
python/mujoco/mjpython/mjpython.py
# Copyright 2017 The dm_control Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """An OpenGL context created via GLFW.""" import glfw class GLContext: """An OpenGL context created via GLFW.""" def __init__(self, max_width, max_height): glfw.init() glfw.window_hint(glfw.VISIBLE, 0) self._context = glfw.create_window(width=max_width, height=max_height, title='Invisible window', monitor=None, share=None) def make_current(self): glfw.make_context_current(self._context) def free(self): if self._context: if glfw.get_current_context() == self._context: glfw.make_context_current(None) glfw.destroy_window(self._context) self._context = None def __del__(self): self.free()
mujoco-main
python/mujoco/glfw/__init__.py
# Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Configuration file for the Sphinx documentation builder.""" import os import sys # -- Path setup -------------------------------------------------------------- # # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. sys.path.insert(0, os.path.abspath('../')) sys.path.append(os.path.abspath('ext')) from sphinxcontrib import katex # pylint: disable=g-import-not-at-top from sphinxcontrib import youtube # pylint: disable=g-import-not-at-top,unused-import # -- Project information ----------------------------------------------------- project = 'MuJoCo' copyright = 'DeepMind Technologies Limited' # pylint: disable=redefined-builtin author = 'Google DeepMind' # -- General configuration --------------------------------------------------- master_doc = 'index' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinxcontrib.katex', 'sphinxcontrib.youtube', 'sphinx_copybutton', 'sphinx_favicon', 'sphinx_reredirects', 'sphinx_toolbox.collapse', 'mujoco_include', ] # Add any paths that contain templates here, relative to this directory. templates_path = ['templates'] # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = [ '_build', 'Thumbs.db', '.DS_Store', 'includes/*', 'APIreference/functions.rst', 'APIreference/functions_override.rst', 'XMLschema.rst', ] redirects = { # index.rst just contains the table of contents definition. 'index': 'overview.html', } rst_prolog = """ .. include:: /includes/macros.rst .. include:: /includes/roles.rst .. include:: <isonum.txt> """ # -- Options for autodoc ----------------------------------------------------- autodoc_default_options = { 'member-order': 'bysource', 'special-members': True, 'exclude-members': '__repr__, __str__, __weakref__', } # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'furo' html_title = 'MuJoCo Documentation' html_logo = 'images/banner.svg' SHARED_CSS_VARIABLES = { 'admonition-font-size': '1rem', 'admonition-title-font-size': '1rem', 'sidebar-item-font-size': '115%', } # font-stack--monospace used in code blocks, Inconsolata fits in 100 chars. html_theme_options = { 'light_css_variables': { 'font-stack--monospace': 'Inconsolata,Consolas,ui-monospace,monospace', 'at-color': '#bc103e', 'at-val-color': '#bc103e', 'body-color': '#14234b', 'color-highlight-on-target': '#e5e8ed', 'primary-header-color': '#0053d6', 'row-odd-background-color': '#f0f3f7', 'rst-content-a-color': '#2980b9', 'secondary-header-color': '#123693', 'wy-menu-vertical-background-color': '#0053d6', 'wy-menu-vertical-color': 'white', 'wy-nav-side-background-color': '#0053d6', }, 'dark_css_variables': { 'at-color': '#ff95a6', 'at-val-color': '#ff95a6', 'body-color': '#14234b', 'color-admonition-background': '#1e1e21', 'color-highlight-on-target': '#3d4045', 'primary-header-color': '#a8caff', 'row-odd-background-color': '#222326', 'rst-content-a-color': '#2980b9', 'secondary-header-color': '#458dff', 'wy-menu-vertical-background-color': '#0053d6', 'wy-menu-vertical-color': 'white', 'wy-nav-side-background-color': '#0053d6', }, } for v in html_theme_options.values(): if isinstance(v, dict): v.update(SHARED_CSS_VARIABLES) pygments_style = 'default' pygments_dark_style = 'monokai' # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = [ '_static', 'css', ] html_css_files = [ 'theme_overrides.css', ] favicons = [ { 'sizes': '16x16', 'href': 'favicons/favicon-16x16.png', }, { 'sizes': '32x32', 'href': 'favicons/favicon-32x32.png', }, { 'rel': 'apple-touch-icon', 'sizes': '180x180', 'href': 'favicons/favicon-180x180.png', }, { 'sizes': '180x180', 'href': 'favicons/favicon-180x180.png', }, { 'sizes': '192x192', 'href': 'favicons/favicon-192x192.png', }, ] # -- Options for katex ------------------------------------------------------ # See: https://sphinxcontrib-katex.readthedocs.io/en/0.4.1/macros.html latex_macros = r""" \def \d #1{\operatorname{#1}} """ # Translate LaTeX macros to KaTeX and add to options for HTML builder katex_macros = katex.latex_defs_to_katex_macros(latex_macros) katex_options = 'macros: {' + katex_macros + '}' # Add LaTeX macros for LATEX builder latex_elements = {'preamble': latex_macros}
mujoco-main
doc/conf.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Sphinx extension for the mujoco-include directive.""" import header_reader from sphinx.application import Sphinx from sphinx.directives.code import LiteralInclude from sphinx.util.console import red _FILENAME = 'includes/references.h' _ERROR_LINE = 16 class MujocoInclude(LiteralInclude): """Extension to LiteralInclude directive for MuJoCo.""" def run(self): mujoco_api = self.env.app.config['mujoco_include_header'] token = self.arguments[0] source = mujoco_api.get(token) start_line = _ERROR_LINE end_line = _ERROR_LINE if source is None: print(red(f'Warning: C reference \'{token}\' not found.')) else: start_line = source.start end_line = source.end # Config arguments and options for LiteralInclude. self.arguments[0] = f'../{_FILENAME}' self.options['language'] = 'C' self.options['lines'] = f'{start_line}-{end_line}' return list(LiteralInclude.run(self)) def setup(app: Sphinx) -> None: api = {} with open(_FILENAME, 'r') as file: api = header_reader.read(file.readlines()) app.add_config_value('mujoco_include_header', api, '') app.add_directive('mujoco-include', MujocoInclude)
mujoco-main
doc/ext/mujoco_include.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for MuJoCo API header reader.""" from absl.testing import absltest from absl.testing import parameterized import header_reader _EXAMPLE = """ //------- My favorite section -------- // My function MJAPI void mj_function(int a, int b); // My other function // This one has multiple lines MJAPI const char* mj_other_function(int a, int b, const char* a); typedef enum mjEnum_ { mjVALUE1 // Some value mjVALUE2 // Some other value } mjEnum; struct mjStruct_ { int value1 // Some value int value2 // Some other value }; typedef struct mjStruct_ mjStruct; // My favorite struct typedef struct mjStruct2_ { int value1 // Another value int value2 // More more value } mjStruct2; MJAPI void mj_no_doc(int a, void* b); //------------ MJAPI FUNCTIONS -------------- void mj_stripped(int a, int b, int c); """ _API = header_reader.read([f'{line}\n' for line in _EXAMPLE.split('\n')]) class MuJoCoApiGeneratorTest(parameterized.TestCase): def test_enums_line_numbers(self): self.assertEqual(_API['mjEnum'].start, 12) self.assertEqual(_API['mjEnum'].end, 15) def test_structs_line_numbers(self): self.assertEqual(_API['mjStruct'].start, 17) self.assertEqual(_API['mjStruct'].end, 21) def test_structs2_line_numbers(self): self.assertEqual(_API['mjStruct2'].start, 23) self.assertEqual(_API['mjStruct2'].end, 26) def test_function_line_numbers(self): self.assertEqual(_API['mj_function'].start, 5) self.assertEqual(_API['mj_function'].end, 5) def test_function_code(self): self.assertEqual(_API['mj_function'].code, 'void mj_function(int a, int b);\n') def test_function_section(self): self.assertEqual(_API['mj_function'].section, 'My favorite section') def test_function_doc(self): self.assertEqual(_API['mj_function'].doc, 'My function\n') def test_multi_line_doc(self): self.assertEqual(_API['mj_other_function'].doc, 'My other function\nThis one has multiple lines\n') def test_multi_line_function(self): self.assertEqual(_API['mj_other_function'].start, 9) self.assertEqual(_API['mj_other_function'].end, 10) def test_no_doc_function(self): self.assertEqual(_API['mj_no_doc'].start, 28) self.assertEqual(_API['mj_no_doc'].end, 28) def test_stripped_functions(self): self.assertEqual(_API['mj_stripped'].start, 32) if __name__ == '__main__': absltest.main()
mujoco-main
doc/ext/header_reader_test.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Reads MuJoCo header files and generates a doc-friendly data structure.""" import dataclasses import re from typing import Optional, List, Dict # Precompiled regex for matching a section. _SECTION_REGEX = re.compile(r'^//-+ (?P<section>.+) -+$') # Precompiled regex for matching a C function definition. _FUNCTION_REGEX = re.compile(r'(?P<token>mj\w+)\s*\(') # Precompiled regex for matching a C function ending. _FUNCTION_ENDING_REGEX = re.compile(r'\);\s$') # Precompiled regex for matching a C struct ending. _STRUCT_END_REGEX_1 = re.compile(r'^typedef\s+struct\s+\w+\s+(?P<token>mj\w+);') # Precompiled regex for matching a C struct ending (version 2). _STRUCT_END_REGEX_2 = re.compile(r'^}\s+(?P<token>mj\w+);') # Precompiled regex for matching a C enum ending. _ENUM_END_REGEX = re.compile(r'^}\s+(?P<token>mj\w+);') @dataclasses.dataclass class ApiDefinition: """Defines a C reference parsed from a C header file.""" token: str c_type: str code: str start: int end: int section: str doc: str class ApiState: """Internal state of the reader used for parsing header files.""" def __init__(self): self.token = '' self.section = '' self.code = '' self.doc = '' self._state = None self._start = 0 self._end = 0 @property def state(self): return self._state def export_definition(self): return ApiDefinition(self.token, self._state, self.code, self._start, self._end, self.section, self.doc) def start(self, state): self._state = state self._start = self._end def iterate(self): self._end += 1 def end(self): self.token = '' self._state = None self.code = '' self.doc = '' def read(lines: List[str]) -> Dict[str, ApiDefinition]: """Reads header lines and returns a maps of ApiDefinition's.""" api = {} stripped_functions = False s = ApiState() for line in lines: s.iterate() section = _find_section(line) if section is not None: if 'MJAPI FUNCTIONS' in section: # Stripped functions do not begin with MJAPI, and must be under the # predefiend section 'MJAPI FUNCTIONS'. This is because the docs don't # include this prefix, and so we need to read such functions from the # reference header. stripped_functions = True s.section = section s.end() continue if s.state == 'DOC': token = _find_function_start(line, stripped_functions) if token is not None: if stripped_functions: s.code = f'{s.code}{line}' else: s.code = f'{s.code}{line[6:]}' s.token = token s.start('FUNCTION') if _is_function_end(line): api[token] = s.export_definition() s.end() continue elif line.startswith('//'): s.doc = f'{s.doc}{line[3:]}' else: s.end() if s.state == 'FUNCTION': if stripped_functions: s.code = f'{s.code}{line}' else: s.code = f'{s.code}{line[6:]}' if _is_function_end(line): api[s.token] = s.export_definition() s.end() elif s.state == 'ENUM': match = _ENUM_END_REGEX.search(line) if match is not None: s.code = f'{s.code}{line}' s.token = match.group('token') api[s.token] = s.export_definition() s.end() else: s.code = f'{s.code}{line}' elif s.state == 'STRUCT': match = _STRUCT_END_REGEX_1.search(line) if match is None: match = _STRUCT_END_REGEX_2.search(line) if match is not None: s.code = f'{s.code}{line}' s.token = match.group('token') api[s.token] = s.export_definition() s.end() else: s.code = f'{s.code}{line}' elif s.state is None: if line.startswith('typedef enum'): s.start('ENUM') s.code = f'{s.code}{line}' if line.startswith('struct') or line.startswith('typedef struct'): s.start('STRUCT') s.code = f'{s.code}{line}' if line.startswith('//'): s.doc = f'{s.doc}{line[3:]}' s.start('DOC') token = _find_function_start(line, stripped_functions) if token is not None: if stripped_functions: s.code = f'{s.code}{line}' else: s.code = f'{s.code}{line[6:]}' s.token = token s.start('FUNCTION') if _is_function_end(line): api[token] = s.export_definition() s.end() return api def _find_section(line) -> Optional[str]: match = _SECTION_REGEX.search(line) if match is not None: return match.group('section').strip() return None def _find_function_start(line, stripped) -> Optional[str]: if (line.startswith('MJAPI') and 'extern' not in line) or stripped: match = _FUNCTION_REGEX.search(line) if match is not None: return match.group('token') return None def _is_function_end(line): match = _FUNCTION_ENDING_REGEX.search(line) return match is not None
mujoco-main
doc/ext/header_reader.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Generates the sorting network dataset.""" import os from typing import Sequence, Tuple from absl import app from absl import flags from absl import logging import jraph import networkx as nx import numpy as np import tqdm from script_postcompute_eigedecomp import precalc_and_append np.random.seed(42) _OUT_PATH = flags.DEFINE_string('out_path', '~/distance', 'The path to write datasets to.') _SHARD_SIZE = flags.DEFINE_integer( 'shard_size', 10_000, 'The number of times to store in each file.') _WEIGHTED = flags.DEFINE_bool('weighted', False, 'If the dataset should contain weighted graphs.') _CONNECTED = flags.DEFINE_bool( 'connected', True, 'If the dataset should contain only (weakly) connected graphs.') _ACYCLIC = flags.DEFINE_bool( 'acyclic', False, 'If the dataset should contain only acyclic graphs.') _TARGET = flags.DEFINE_enum( 'target', 'directed', ['directed', 'undirected', 'signed'], 'How the distance should be calculated.') _N_TRAIN = flags.DEFINE_list( 'n_train', [16, 18], 'Range `(min, max+1)` of number of nodes for train') _N_VALID = flags.DEFINE_list( 'n_valid', [18, 20], 'Range `(min, max+1)` of number of nodes for validation') _N_TEST = flags.DEFINE_list( 'n_test', [20, 28], 'Range `(min, max+1)` of number of nodes for test') maglap_configs = [ dict(k=16, k_excl=0, q=0.1, q_absolute=False, norm_comps_sep=False, sign_rotate=True, use_symmetric_norm=True), dict(k=16, k_excl=0, q=0, q_absolute=False, norm_comps_sep=False, sign_rotate=True, use_symmetric_norm=True) ] AVERAGE_DEGREE = { 'acyclic': (1, 1.5, 2, 2.5, 3), 'regular': (1, 1.5, 2) } def _random_er_graph(nb_nodes, p=0.5, directed=True, acyclic=False, weighted=False, low=0.1, high=1.0): """Random Erdos-Renyi graph.""" mat = np.random.binomial(1, p, size=(nb_nodes, nb_nodes)) if not directed: mat *= np.transpose(mat) elif acyclic: mat = np.triu(mat, k=1) p = np.random.permutation(nb_nodes) # To allow nontrivial solutions mat = mat[p, :][:, p] if weighted: weights = np.random.uniform(low=low, high=high, size=(nb_nodes, nb_nodes)) if not directed: weights *= np.transpose(weights) weights = np.sqrt(weights + 1e-3) # Add epsilon to protect underflow mat = mat.astype(float) * weights return mat def generate_sample(**random_er_graph_kwargs) -> Tuple[jraph.GraphsTuple, np.ndarray]: adj = _random_er_graph(**random_er_graph_kwargs) G = nx.from_numpy_array(adj, create_using=nx.DiGraph) if _CONNECTED.value: G = G.subgraph(max(nx.weakly_connected_components(G), key=len)) adj = nx.to_numpy_array(G) if _TARGET.value == 'undirected': G = G.to_undirected() elif _TARGET.value == 'signed': adj_signed = adj[:] adj_signed -= ~adj_signed.astype(bool) & adj_signed.T G = nx.from_numpy_array(adj_signed, create_using=nx.DiGraph) distances = nx.floyd_warshall_numpy(G) senders, receivers = np.where(adj) graph = jraph.GraphsTuple( n_node=np.array([adj.shape[0]], dtype=np.int32), n_edge=np.array(senders.shape, dtype=np.int32), senders=senders, receivers=receivers, nodes=np.array([], dtype=np.float32), edges=np.array([], dtype=np.float32), globals=np.array([], dtype=np.float32)) graph = precalc_and_append(graph, maglap_configs) return graph, distances def main(argv: Sequence[str]) -> None: if len(argv) > 1: raise app.UsageError('Too many command-line arguments.') assert len(_N_TRAIN.value) == 2, '`n_train` must be of length 2' assert len(_N_VALID.value) == 2, '`n_valid` must be of length 2' assert len(_N_TEST.value) == 2, '`n_test` must be of length 2' n_train = tuple(int(v) for v in _N_TRAIN.value) n_valid = tuple(int(v) for v in _N_VALID.value) n_test = tuple(int(v) for v in _N_TEST.value) # Instructions with lengths to put in which dataset and how many sorting # networks shall be generated (excluding random sampling over topo. orders) splits = [ # (split, nb_nodes_list, n_generation_trials) ('train', list(range(*n_train)), 400_000), ('valid', list(range(*n_valid)), 5_000), ('test', list(range(*n_test)), 20_000) ] dataset_name = f'{n_train[0]}to{n_train[1] - 1}_{n_valid[0]}to{n_valid[1] - 1}_{n_test[0]}to{n_test[1] - 1}' if _WEIGHTED.value or _CONNECTED.value or _ACYCLIC.value: dataset_name += '_' if _WEIGHTED.value: dataset_name += 'w' if _CONNECTED.value: dataset_name += 'c' if _ACYCLIC.value: dataset_name += 'a' if _TARGET.value == 'undirected': dataset_name += '_u' elif _TARGET.value == 'signed': dataset_name += '_s' base_path = os.path.join(_OUT_PATH.value, dataset_name) os.makedirs(base_path, exist_ok=True) average_degree = ( AVERAGE_DEGREE['acyclic'] if _ACYCLIC.value else AVERAGE_DEGREE['regular']) id_ = 0 for split, nb_nodes_list, n_generation_trials in splits: file_path = os.path.join(base_path, split) os.makedirs(file_path, exist_ok=True) sample_count = 0 buffer = [] start_id = id_ for trial in tqdm.tqdm(range(n_generation_trials), desc=split): nb_nodes = np.random.choice(nb_nodes_list, 1).item() deg = np.random.choice(average_degree, 1).item() p = deg / (nb_nodes - 1) graph, distances = generate_sample( nb_nodes=nb_nodes, p=p, directed=True, acyclic=_ACYCLIC.value, weighted=_WEIGHTED.value) sample_count += 1 buffer.append(( graph, distances.flatten(), distances.flatten(), np.array(id_))) id_ += 1 if len(buffer) >= _SHARD_SIZE.value or trial == n_generation_trials - 1: file_name = os.path.join(file_path, f'{start_id}_{id_ - 1}.npz') np.savez_compressed(file_name, data=np.array(buffer, dtype='object')) logging.info('Wrote %d to %s', len(buffer), file_name) buffer = [] start_id = id_ logging.info('Wrote %d instances in `%s`', sample_count, split) if __name__ == '__main__': app.run(main)
digraph_transformer-main
script_generate_distance_np.py
# Copyright 2023 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Naive implementation of MagNet (Zhang et al. 2021) using dense matrices.""" from typing import Any, Callable, Optional, Tuple, Union from absl import logging import haiku as hk import jax import jax.numpy as jnp import jraph # pylint: disable=g-bad-import-order import layers import utils # Inline important classes and methods CallArgs = layers.CallArgs mlp, MLP = layers.mlp, layers.MLP Tensor = utils.Tensor def magnetic_laplacian( graph: jraph.GraphsTuple, q: float = 0.25, q_absolute: bool = False, use_symmetric_norm: bool = False) -> Tuple[Tensor]: """k *complex* eigenvectors of the smallest k eigenvectors of the magnetic laplacian. Args: graph: the explicitly batched graph (i.e. nodes are of shape [b, n, d]). q: Factor in magnetic laplacian. Default 0.25. q_absolute: If true `q` will be used, otherwise `q / m_imag / 2`. use_symmetric_norm: symmetric (True) or row normalization (False). Returns: tensor of shape [b, n, n] the laplacian. """ batch, n_nodes = (next(iter(graph.nodes.items()))[1] if isinstance( graph.nodes, dict) else graph.nodes).shape[:2] assign = jax.vmap(lambda a, s, r, d: a.at[s, r].add(d[s])) # Handle -1 padding edges_padding_mask = graph.senders >= 0 adj = jnp.zeros((batch, n_nodes, n_nodes), dtype=jnp.float32) adj = assign(adj, graph.senders, graph.receivers, edges_padding_mask) adj = jnp.where(adj > 1, 1., adj) transpose_idx = tuple(range(adj.ndim - 2)) + (adj.ndim - 1, adj.ndim - 2) adj_transposed = adj.transpose(*transpose_idx) symmetric_adj = adj + adj_transposed symmetric_adj = jnp.where((adj != 0) & (adj_transposed != 0), symmetric_adj / 2, symmetric_adj) symmetric_deg = symmetric_adj.sum(-2) if not q_absolute: m_imag = (adj != adj_transposed).sum((-2, -1)) / 2 m_imag = jnp.where(m_imag > graph.n_node[..., 0], graph.n_node[..., 0], m_imag) q = q / jnp.where(m_imag > 0, m_imag, 1) else: q = jnp.full(batch, q) theta = 1j * 2 * jnp.pi * q[..., None, None] * (adj - adj_transposed) if use_symmetric_norm: inv_deg = jnp.zeros((batch, n_nodes, n_nodes), dtype=jnp.float32) inv_deg_diag = inv_deg.at[:, jnp.arange(n_nodes), jnp.arange(n_nodes)] inv_deg = inv_deg_diag.set(jax.lax.rsqrt(jnp.clip(symmetric_deg, 1))) laplacian = jnp.eye( n_nodes) - (inv_deg @ symmetric_adj @ inv_deg) * jnp.exp(theta) idx = jnp.tile(jnp.arange(n_nodes)[None, :], [batch, 1]) mask = idx < graph.n_node[:, :1] mask = mask[..., None] * mask[..., None, :] laplacian = mask * laplacian else: deg = jnp.zeros((batch, n_nodes, n_nodes), dtype=jnp.float32) deg_diag = deg.at[:, jnp.arange(n_nodes), jnp.arange(n_nodes)] deg = deg_diag.set(symmetric_deg) laplacian = deg - symmetric_adj * jnp.exp(theta) return laplacian def complex_relu(value): mask = 1.0 * (value.real >= 0) return mask * value class MagNet(hk.Module): """MagNet. Attributes: d_model: number of hidden dimensions. activation: The activation function. gnn_type: Either `gcn` or `gnn` use_edge_attr: If True also the edge attributes are considered. Must be True for `gnn_type=gcn`. k_hop: Number of message passing steps. mlp_layers: Number of layers in MLP (only relevant for `gnn_type=gnn`). tightening_factor: The factor of dimensionality reduction for message passing in contrast to `d_model`. norm: The batch/layer norm. concat: If True all intermediate node embeddings are concatenated and then mapped to `d_model` in the output MLP. residual: If True the GNN embeddings bidirectional: If True, edhes in both directions are considered (only relevant for `gnn_type=gnn`). q: potential of magnetic laplacian. q_absolute: if False we use the graph specific normalizer. name: Name of module. **kwargs: """ def __init__(self, d_model: int = 256, activation: Callable[[Tensor], Tensor] = jax.nn.relu, gnn_type='gcn', use_edge_attr=True, k_hop=2, mlp_layers: int = 2, tightening_factor: int = 1, norm=None, concat: bool = False, residual: bool = True, bidirectional: bool = True, name: Optional[str] = None, q: float = 0.25, q_absolute: float = 0.25, **kwargs): super().__init__(name=name) self.d_model = d_model self.mlp_layers = mlp_layers self.tightening_factor = tightening_factor self.activation = activation self.gnn_type = gnn_type self.use_edge_attr = use_edge_attr self.k_hop = k_hop self.norm = norm self.concat = concat self.residual = residual self.bidirectional = bidirectional self.q = q self.q_absolute = q_absolute if kwargs: logging.info('GNN.__init__() received unexpected kwargs: %s', kwargs) def _update_fn(self, features: Tensor, sender_features: Tensor, receiver_features: Tensor, globals_: Any, exclude_features: bool, name: str): stack = [features, sender_features, receiver_features] if exclude_features: stack = stack[1:] if not self.bidirectional: stack = stack[:-1] concat_features = jnp.concatenate(stack, axis=-1) return mlp( concat_features, self.d_model // self.tightening_factor, activation=self.activation, with_norm=False, final_activation=True, n_layers=self.mlp_layers, name=name) def __call__(self, graph: jraph.GraphsTuple, call_args: CallArgs, mask: Optional[Tensor] = None, in_axes: int = 0, **kwargs): if self.k_hop == 0: return graph x = graph.nodes maglap = magnetic_laplacian( graph, q=self.q, q_absolute=self.q_absolute, use_symmetric_norm=True) max_eigenvalue = jnp.linalg.eigvalsh(maglap).max() t_0 = jnp.eye(x.shape[-2]) t_1 = 2 / max_eigenvalue * maglap - t_0[None, ...] for _ in range(self.k_hop): l_0 = hk.Linear(self.d_model) x_0 = t_0 @ x x_0 = l_0(x_0.real) + 1j * l_0(x_0.imag) l_1 = hk.Linear(self.d_model, with_bias=False) x_1 = t_1 @ x x_1 = l_1(x_1.real) + 1j * l_1(x_1.imag) x = complex_relu(x_0 + x_1) graph = graph._replace(nodes=jnp.concatenate((x.real, x.imag), axis=-1)) return graph
digraph_transformer-main
magnet.py
# Copyright 2023 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial import os from multiprocessing import Pool from typing import Sequence import numpy as np from absl import app from absl import flags from tqdm import tqdm from utils import eigv_magnetic_laplacian_numba _SPLITS = flags.DEFINE_list( name="splits", default=["train", "valid", "test"], help="Data splits for which to precompute the eigenvectors.", ) _DATA_ROOT = flags.DEFINE_string( name="data_root", default="data/sorting_network/7to11_12_13to16", help="Data root for the new dataset that contains the eigenvectors." ) _NUM_CPU = flags.DEFINE_integer( name="num_cpu", default=1, help="Number of CPUs to use for the eigenvector calculation." ) configs = [ dict(k=25, k_excl=0, q=0.25, q_absolute=False, norm_comps_sep=False, sign_rotate=True, use_symmetric_norm=True), dict(k=25, k_excl=0, q=0, q_absolute=False, norm_comps_sep=False, sign_rotate=True, use_symmetric_norm=True) ] def process_graph(graph_tuple, k, k_excl, q, q_absolute, norm_comps_sep, sign_rotate, use_symmetric_norm, l2_norm=True): """Compute the first `k` maglap eigenvectors and values for a graph.""" n_node = graph_tuple.n_node[0] eigenvalues = np.zeros(shape=(k), dtype=np.float32) eigenvectors = np.zeros( shape=(n_node, k), dtype=np.complex64) n_eigv = min(k, n_node) eigenvalues[:n_eigv], eigenvectors[:, :n_eigv], _ = eigv_magnetic_laplacian_numba( senders=graph_tuple.senders.astype(np.int64), receivers=graph_tuple.receivers.astype(np.int64), n_node=np.array([graph_tuple.n_node[0], 0]), padded_nodes_size=graph_tuple.n_node[0], k=k, k_excl=k_excl, q=q, q_absolute=q_absolute, norm_comps_sep=norm_comps_sep, l2_norm=l2_norm, sign_rotate=sign_rotate, use_symmetric_norm=use_symmetric_norm ) if q == 0: eigenvectors = eigenvectors.real return eigenvalues, eigenvectors def precalc_and_append(graph, configs): precomputed = tuple( (config, *process_graph(graph[0], **config)) for config in configs) if not isinstance(graph[0].globals, dict): graph[0] = graph[0]._replace( globals={'eigendecomposition': precomputed}) else: graph[0].globals['eigendecomposition'] = precomputed return graph def main(argv: Sequence[str]) -> None: for split in _SPLITS.value: base_path = os.path.join(_DATA_ROOT.value, split) for file in tqdm(os.listdir(os.path.join(base_path))): file_path = os.path.join(base_path, file) buffer = list(np.load(file_path, allow_pickle=True)["data"]) with Pool(_NUM_CPU.value) as p: buffer = p.map(partial(precalc_and_append, configs=configs), buffer) np.savez_compressed(file_path, data=np.array(buffer, dtype='object')) if __name__ == '__main__': app.run(main)
digraph_transformer-main
script_postcompute_eigedecomp.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Graph Property Prediction Config oor OGB Code2 and Sorting Network Task.""" import collections import dataclasses from typing import Mapping, Optional from jaxline import base_config from ml_collections import config_dict import presets @dataclasses.dataclass class Dataset: """For all important information that are dataset specific. Attributes: name: unique name of dataset. This name determines e.g. the behavior of how the model encodes the data and how data is preprocessed. path: relative storage location. sequence_length: number of predictions in target sequence. num_classes: number of classes per prediction in target sequence. ast_depth: maximal distance from root node to leaf node that will be considered (OGB specific). num_nodetypes: number of node types (OGB specific). num_nodeattributes: number of node attributes. edge_df_types: number of edge types (OGB data-flow specific). edge_ast_types: number of edge types (OGB data-flow specific). num_train_samples: number of training samples (i.e., samples per epoch). idx2vocab: maps id in target vocabulary to ids. vocab2idx: maps id in target vocabulary to ids. """ name: str path: str sequence_length: int num_classes: int ast_depth: int num_nodetypes: int num_nodeattributes: int edge_df_types: Optional[int] edge_ast_types: Optional[int] num_train_samples: int idx2vocab: Optional[Mapping[int, str]] vocab2idx: Optional[Mapping[str, int]] # Standard OGB Code2 dataset OGBG_CODE2 = Dataset('ogbg-code2', 'ogbg-code2', 5, 5002, 20, 98, 10030, None, None, 407_976, None, None) # Standard OGB Code2 dataset with edges only in one direction OGBG_CODE2_NOREV = Dataset('ogbg-code2-norev', 'ogbg-code2-norev', 5, 5002, 20, 98, 10030, None, None, 407_976, None, None) # Data-Flow centric OGB Code2 dataset OGBG_CODE2_NOREV_DF = Dataset('ogbg-code2-norev-df', 'ogbg-code2-norev-df', 5, 5002, 20, 91, 11973, 12, 49, 407_976, None, None) # Sorting network dataset SORTING_NETWORKS = Dataset('sn', '7to11_12_13to16', 1, 2, -1, -1, 26, None, None, 800_000, None, None) # Playground tasks ## Adjacency dataset ADJACENCY_C = Dataset('dist_adj', '16to17_18to19_20to27_c', -1, 2, -1, -1, -1, None, None, 400_000, None, None) ADJACENCY_CA = Dataset('dist_adj', '16to17_18to19_20to27_ca', -1, 2, -1, -1, -1, None, None, 400_000, None, None) ADJACENCY_C_U = Dataset('dist_adj', '16to17_18to19_20to27_c_u', -1, 2, -1, -1, -1, None, None, 400_000, None, None) ## Connected dataset CONNECTED_C = Dataset('dist_con', '16to17_18to19_20to27_c', -1, 2, -1, -1, -1, None, None, 400_000, None, None) CONNECTED_CA = Dataset('dist_adj', '16to17_18to19_20to27_ca', -1, 2, -1, -1, -1, None, None, 400_000, None, None) CONNECTED_C_U = Dataset('dist_adj', '16to17_18to19_20to27_c_u', -1, 2, -1, -1, -1, None, None, 400_000, None, None) ## Distance dataset DISTANCE_C = Dataset('dist', '16to63_64to71_72to83_c', -1, -1, -1, -1, -1, None, None, 400_000, None, None) DISTANCE_CA = Dataset('dist', '16to63_64to71_72to83_ca', -1, -1, -1, -1, -1, None, None, 400_000, None, None) DISTANCE_C_U = Dataset('dist_u', '16to63_64to71_72to83_c_u', -1, -1, -1, -1, -1, None, None, 400_000, None, None) DISTANCE_CA_U = Dataset('dist_u', '16to63_64to71_72to83_ca_u', -1, -1, -1, -1, -1, None, None, 400_000, None, None) # After init this should be equivalent to `jax.device_count()`. We used 8 # devices in our experiments with TPUs (OGB Code2). train_devices = 1 # 8 datasets = { 'ogbg-code2': OGBG_CODE2, 'ogbg-code2-norev': OGBG_CODE2_NOREV, 'ogbg-code2-norev-df': OGBG_CODE2_NOREV_DF, 'sn-7to11-12-13to16': SORTING_NETWORKS, 'adj_c': ADJACENCY_C, 'adj_ca': ADJACENCY_CA, 'adj_c_u': ADJACENCY_C_U, 'con_c': CONNECTED_C, 'con_ca': CONNECTED_CA, 'con_c_u': CONNECTED_C_U, 'dist_c': DISTANCE_C, 'dist_ca': DISTANCE_CA, 'dist_c_u': DISTANCE_C_U, 'dist_ca_u': DISTANCE_CA_U } def get_config(preset=''): """Return config object for training.""" config = get_default_config() # E.g. '/data/pretrained_models' config.restore_path = config_dict.placeholder(str) if preset: unique_presets = list(collections.OrderedDict.fromkeys(preset.split(','))) config = presets.apply_presets(config, unique_presets) config.experiment_kwargs.config.dataset = datasets[ config.experiment_kwargs.config.dataset_name] # Adjust for presets effective_batch_size = config.experiment_kwargs.config.training.batch_size if config.experiment_kwargs.config.dataset_config.do_bucket_by_size: # Manually determined constant for OGB effective_batch_size *= 3.5 steps_per_epoch = int( config.experiment_kwargs.config.dataset.num_train_samples / effective_batch_size / train_devices) config.training_steps = config.epochs * steps_per_epoch optimizer = config.experiment_kwargs.config.optimizer k_accum = max(optimizer.accumulate_gradient_k, 1) lr_schedule = optimizer.lr_schedule lr_schedule.warmup_steps = int( config.warmup_epochs * steps_per_epoch / k_accum) lr_schedule.decay_steps = int(config.training_steps / k_accum) batch_size = config.experiment_kwargs.config.training.batch_size lr_schedule.init_value *= batch_size lr_schedule.peak_value *= batch_size lr_schedule.end_value *= batch_size return config def get_default_config(): """Return config object for reproducing SAT on ogbn-code2.""" config = base_config.get_base_config() training_batch_size = 48 eval_batch_size = 48 # Experiment config. loss_kwargs = dict(only_punish_first_end_of_sequence_token=False) posenc_config = dict( posenc_type='', exclude_canonical=False, relative_positional_encodings=True, # RW/PPR do_also_reverse=True, ppr_restart_probability=0.2, random_walk_steps=3, top_k_eigenvectors=10, # MagLap excl_k_eigenvectors=1, concatenate_eigenvalues=False, maglap_q=0.25, maglap_q_absolute=True, maglap_symmetric_norm=False, maglap_transformer=False, maglap_use_signnet=True, maglap_use_gnn=False, maglap_norm_comps_sep=False, maglap_l2_norm=True, maglap_dropout_p=0., maglap_sign_rotate=True, maglap_net_type='default') dataset_config = dict( do_bucket_by_size=False, bucket_boundaries=(255, 511), # For bucketing by size bucket_batch_size_factors=(4, 2, 1), # For bucketing by size exclude_control_flow_edges=True, # Only relevant with df graph exclude_next_syntax_edges=True # Only relevant with df graph, ) gnn_config = dict( gnn_type='gcn', k_hop=2, mlp_layers=2, # Does not have any effect on the GCN se='gnn', tightening_factor=1, use_edge_attr=True, bidirectional=False, # has not effect on `gcn`` residual=False, concat=True) attention_config = dict( num_heads=4, dense_widening_factor=4, with_bias=False, dropout_p=0.2, with_attn_dropout=True, re_im_separate_projection=False) encoder_config = dict(attribute_dropout=0.) model_config = dict( model_type='sat', num_layers=4, d_model=256, global_readout='mean', # other options 'sum_n', 1 (func def node) activation='relu', batch_norm=False, # Use LayerNorm otherwise deg_sensitive_residual=True, attention_config=attention_config, encoder_config=encoder_config, loss_kwargs=loss_kwargs, posenc_config=posenc_config, with_pre_gnn=False, gnn_config=gnn_config) evaluation_config = dict( eval_also_on_test=True, batch_size=eval_batch_size, max_number_of_instances=-1, unk_offset=0., eos_offset=0.) # Training loop config. config.warmup_epochs = 2 config.epochs = 32 steps_per_epoch = int(405_000 / training_batch_size / train_devices) config.training_steps = config.epochs * steps_per_epoch optimizer_config = dict( name='adamw', optimizer_kwargs=dict(b1=.9, b2=.999, weight_decay=1e-6), lr_schedule=dict( warmup_steps=config.warmup_epochs, decay_steps=config.training_steps, init_value=0., peak_value=1e-4 / 32, end_value=0., ), use_agc=False, # adaptive gradient clipping accumulate_gradient_k=8, agc_kwargs=dict(clipping=0.1), ) config.log_train_data_interval = 120 config.log_tensors_interval = 120 config.save_checkpoint_interval = 600 config.save_initial_train_checkpoint = False config.checkpoint_dir = '/tmp/checkpoint/digraph_transformer' config.eval_specific_checkpoint_dir = '' config.best_model_eval_metric = 'F1' config.best_model_eval_metric_higher_is_better = True config.wandb = config_dict.ConfigDict(dict( project='digt-playground', tags=tuple(), settings=dict(code_dir='.') )) config.experiment_kwargs = config_dict.ConfigDict( dict( config=dict( # Must be set data_root=config_dict.placeholder(str), debug=False, # Gets overwritten later dataset_name='ogbg-code2', pmap_axis='i', optimizer=optimizer_config, model=model_config, dataset_config=dataset_config, training=dict(batch_size=training_batch_size), evaluation=evaluation_config))) return config
digraph_transformer-main
config.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Contains top level models as well as important custom components.""" import dataclasses import functools from typing import Any, Callable, Optional, Sequence, Tuple, Union import warnings from absl import logging import haiku as hk import jax import jax.numpy as jnp import jraph import numpy as np # pylint: disable=g-bad-import-order import config import layers import magnet import utils from ogb_utils import ASTNodeEncoder # Inline important classes and methods CallArgs = layers.CallArgs BatchNorm, LayerNorm = layers.BatchNorm, layers.LayerNorm mlp, MLP = layers.mlp, layers.MLP MultiHeadAttention = layers.MultiHeadAttention GraphConvolution = layers.GraphConvolution Tensor = utils.Tensor softmax_cross_entropy_loss = utils.softmax_cross_entropy_loss count_edges = utils.count_edges exact_ppr, k_step_random_walk = utils.exact_ppr, utils.k_step_random_walk svd_encodings = utils.svd_encodings sinusoid_position_encoding = utils.sinusoid_position_encoding @dataclasses.dataclass class PositionalEncodingsParams: """Parameters for positional encodings.""" # Options: '', 'rw', 'ppr', 'maglap' # Random Walk, Personalized Page Rank, Magnetic Laplacian posenc_type: Optional[str] = None # For absolute we use aggregation for global position according to Pan Li et # al., 2020 or the real value of the (magnetic) laplacian eigenvectors # If using maglap, this implies that we have complex queries and key in attn. relative_positional_encodings: bool = True # Exclude AST depth in OGB or sinusoidal for sorting networks exclude_canonical: bool = False ### 'rw', 'ppr' # Not only consider the position in the direction of the graph do_also_reverse: bool = True # If using ppr/rw, the restart probability for the ppr ppr_restart_probability: float = 0.2 # If using rw, the number of random walk steps ### 'maglap' random_walk_steps: int = 3 # If using maglap, the k eigenvecotrs to use starting from excl_k_eigenvectors top_k_eigenvectors: int = 10 # If using maglap, exclude the excl_k_eigenvectors most top eigenvectors excl_k_eigenvectors: int = 0 # If using maglap and true, also the eigenvalues are considered concatenate_eigenvalues: bool = False # If using maglap, the q factor for directionality maglap_q: float = 0.25 # If using maglap, if true `q` will be used, otherwise `q / n_node`. maglap_q_absolute: bool = True # If using maglap, True for symmetric and otherwise row normalization maglap_symmetric_norm: bool = False # If using maglap, True for a transformer or False for the MLP SignNet maglap_transformer: bool = False # If using maglap and `maglap_transformer`= True, use gnn for raw eigenvec. maglap_use_gnn: bool = False # If using maglap and `maglap_transformer`= True and if true, real and imag # components are separately normalized. maglap_norm_comps_sep: bool = False # If using maglap and False, we normalize the eigenvectors to span [0,1] # (ignoring eigenvectors of very low magnitude) maglap_l2_norm: bool = True # To force the network to work also with a subset of vectors maglap_dropout_p: float = 0.0 # If using maglap, we can either use a SignNet (True) approach or scale as # well as rotate eigenvectors according to a convention. maglap_use_signnet: bool = True # Use the sign convention and rotation (i.e. the absolute largest real value # is positive and phase shift starts at 0) maglap_sign_rotate: bool = True # Rotation invariant MagLapNet maglap_net_type: str = 'signnet' @dataclasses.dataclass class LossConfig: """Config for the loss.""" # Only punish first EOS token only_punish_first_end_of_sequence_token: bool = False class DataFlowASTEncoder(hk.Module): """Encodes the AST for our graph construction procedure.""" def __init__(self, emb_dim, num_nodetypes, num_nodeattributes, max_depth, num_edge_df_types, num_edge_ast_types, attribute_dropout: float = 0.0, name=None): super().__init__(name=name) self.emb_dim = emb_dim self.num_nodetypes = num_nodetypes self.num_nodeattributes = num_nodeattributes self.max_depth = max_depth self.num_edge_df_types = num_edge_df_types self.num_edge_ast_types = num_edge_ast_types self.attribute_dropout = attribute_dropout def __call__( self, graph: jraph.GraphsTuple, depth: Optional[Tensor] = None, call_args: CallArgs = CallArgs(True) ) -> jraph.GraphsTuple: nodes, edges = graph.nodes, graph.edges node_type_encoder = hk.Embed(self.num_nodetypes, self.emb_dim) node_attribute_encoder = hk.Embed(self.num_nodeattributes, self.emb_dim) node_type = nodes[..., 0] node_attribute = nodes[..., 1] if call_args.is_training: mask = hk.dropout(hk.next_rng_key(), self.attribute_dropout, jnp.ones_like(node_attribute)) node_attribute = jnp.where(mask > 0, node_attribute, self.num_nodeattributes - 1) # set to unknown nodes = ( node_type_encoder(node_type) + node_attribute_encoder(node_attribute)) if depth is not None: depth_encoder = hk.Embed(self.max_depth + 1, self.emb_dim) depth = jnp.where(depth > self.max_depth, self.max_depth, depth) nodes += depth_encoder(depth[..., 0]) edge_df_type_encoder = hk.Embed(self.num_edge_df_types, self.emb_dim) edge_ast_type_encoder = hk.Embed(self.num_edge_ast_types, self.emb_dim) edges = ( edge_df_type_encoder(edges['edge_type']) + edge_ast_type_encoder(edges['edge_name'])) graph = graph._replace(nodes=nodes, edges=edges) return graph class SortingNetworkEncoder(hk.Module): """Encodes the Sorting Network graph.""" def __init__(self, emb_dim: int, encode_order: bool = True, num_nodeattributes: int = 26, name: Optional[str] = None): super().__init__(name=name) self.emb_dim = emb_dim self.encode_order = encode_order self.num_nodeattributes = num_nodeattributes def __call__( self, graph: jraph.GraphsTuple, depth: Any = None, call_args: CallArgs = CallArgs(True)) -> jraph.GraphsTuple: assert depth is None nodes_int = graph.nodes.astype(jnp.int32) argument_1 = sinusoid_position_encoding( nodes_int[..., 1], max_timescale=int(self.num_nodeattributes), hidden_size=self.emb_dim // 2) argument_2 = sinusoid_position_encoding( nodes_int[..., 2], max_timescale=int(self.num_nodeattributes), hidden_size=self.emb_dim // 2) nodes = jnp.concatenate((argument_1, argument_2), axis=-1) nodes = hk.Linear(self.emb_dim)(nodes) if self.encode_order: node_id = sinusoid_position_encoding(nodes_int[..., 0], self.emb_dim) nodes += node_id graph = graph._replace(nodes=nodes) return graph class DistanceEncoder(hk.Module): """Encodes the Positional Encoding Playground graph.""" def __init__(self, emb_dim: int, encode_order: bool = True, num_nodeattributes: int = 11, name: Optional[str] = None): super().__init__(name=name) self.emb_dim = emb_dim self.encode_order = encode_order self.num_nodeattributes = num_nodeattributes def __call__( self, graph: jraph.GraphsTuple, depth: Any = None, call_args: CallArgs = CallArgs(True)) -> jraph.GraphsTuple: assert depth is None nodes = jnp.zeros((*graph.nodes.shape, self.emb_dim), dtype=jnp.float32) if self.encode_order: node_id = sinusoid_position_encoding(nodes[..., 0], self.emb_dim) nodes += node_id graph = graph._replace(nodes=nodes) return graph class NaiveMagLapNet(hk.Module): """For the Magnetic Laplacian's or Combinatorial Laplacian's eigenvectors. Args: d_model_elem: Dimension to map each eigenvector. d_model_aggr: Output dimension. num_heads: Number of heads for optional attention. n_layers: Number of layers for MLP/GNN. dropout_p: Dropout for attention as well as eigenvector embeddings. activation: Element-wise non-linearity. concatenate_eigenvalues: If True also concatenate the eigenvalues. norm: Optional norm. name: Name of the layer. """ def __init__( self, d_model_aggr: int = 256, name: Optional[str] = None, *args, **kwargs): super().__init__(name=name) self.d_model_aggr = d_model_aggr def __call__(self, graph: jraph.GraphsTuple, eigenvalues: Tensor, eigenvectors: Tensor, call_args: CallArgs, mask: Optional[Tensor] = None) -> Tensor: # Naive version re = hk.Linear(self.d_model_aggr)(jnp.real(eigenvectors)) im = hk.Linear(self.d_model_aggr)(jnp.imag(eigenvectors)) return re + im class MagLapNet(hk.Module): """For the Magnetic Laplacian's or Combinatorial Laplacian's eigenvectors. Args: d_model_elem: Dimension to map each eigenvector. d_model_aggr: Output dimension. num_heads: Number of heads for optional attention. n_layers: Number of layers for MLP/GNN. dropout_p: Dropout for attention as well as eigenvector embeddings. activation: Element-wise non-linearity. return_real_output: True for a real number (otherwise complex). consider_im_part: Ignore the imaginary part of the eigenvectors. use_signnet: If using the sign net idea f(v) + f(-v). use_gnn: If True use GNN in signnet, otherwise MLP. use_attention: If true apply attention between eigenvector embeddings for same node. concatenate_eigenvalues: If True also concatenate the eigenvalues. norm: Optional norm. name: Name of the layer. """ def __init__(self, d_model_elem: int = 32, d_model_aggr: int = 256, num_heads: int = 4, n_layers: int = 1, dropout_p: float = 0.2, activation: Callable[[Tensor], Tensor] = jax.nn.relu, return_real_output: bool = True, consider_im_part: bool = True, use_signnet: bool = True, use_gnn: bool = False, use_attention: bool = False, concatenate_eigenvalues: bool = False, norm: Optional[Any] = None, name: Optional[str] = None): super().__init__(name=name) self.concatenate_eigenvalues = concatenate_eigenvalues self.consider_im_part = consider_im_part self.use_signnet = use_signnet self.use_gnn = use_gnn self.use_attention = use_attention self.num_heads = num_heads self.dropout_p = dropout_p self.norm = norm if self.use_gnn: self.element_gnn = GNN( int(2 * d_model_elem) if self.consider_im_part else d_model_elem, gnn_type='gnn', k_hop=n_layers, mlp_layers=n_layers, activation=activation, use_edge_attr=False, concat=True, residual=False, name='re_element') else: self.element_mlp = MLP( int(2 * d_model_elem) if self.consider_im_part else d_model_elem, n_layers=n_layers, activation=activation, with_norm=False, final_activation=True, name='re_element') self.re_aggregate_mlp = MLP( d_model_aggr, n_layers=n_layers, activation=activation, with_norm=False, final_activation=True, name='re_aggregate') self.im_aggregate_mlp = None if not return_real_output and self.consider_im_part: self.im_aggregate_mlp = MLP( d_model_aggr, n_layers=n_layers, activation=activation, with_norm=False, final_activation=True, name='im_aggregate') def __call__(self, graph: jraph.GraphsTuple, eigenvalues: Tensor, eigenvectors: Tensor, call_args: CallArgs, mask: Optional[Tensor] = None) -> Tensor: padding_mask = (eigenvalues > 0)[..., None, :] padding_mask = padding_mask.at[..., 0].set(True) attn_padding_mask = padding_mask[..., None] & padding_mask[..., None, :] trans_eig = jnp.real(eigenvectors)[..., None] if self.consider_im_part and jnp.iscomplexobj(eigenvectors): trans_eig_im = jnp.imag(eigenvectors)[..., None] trans_eig = jnp.concatenate((trans_eig, trans_eig_im), axis=-1) else: if not self.use_signnet: # Like to Dwivedi & Bresson (2021) rand_sign_shape = (*trans_eig.shape[:-3], 1, *trans_eig.shape[-2:]) rand_sign = jax.random.rademacher(hk.next_rng_key(), rand_sign_shape) trans_eig = rand_sign * trans_eig # Lower impact of numerical issues, assumes `k_excl` = 0 trans_eig = trans_eig.at[..., 0, :].set( jnp.absolute(trans_eig[..., 0, :])) eigenvalues = eigenvalues.at[..., 0].set(0) if self.use_gnn: trans = self.element_gnn( graph._replace(nodes=trans_eig, edges=None), call_args).nodes if self.use_signnet: trans_neg = self.element_gnn( graph._replace(nodes=-trans_eig, edges=None), call_args).nodes # assumes `k_excl` = 0 if self.consider_im_part and jnp.iscomplexobj(eigenvectors): trans_neg = trans_neg.at[..., 0, :].set(0) trans += trans_neg else: trans = self.element_mlp(trans_eig) if self.use_signnet: trans_neg = self.element_mlp(-trans_eig) # assumes `k_excl` = 0 if self.consider_im_part and jnp.iscomplexobj(eigenvectors): trans_neg = trans_neg.at[..., 0, :].set(0) trans += trans_neg if self.concatenate_eigenvalues: eigenvalues_ = jnp.broadcast_to(eigenvalues[..., None, :], trans.shape[:-1]) trans = jnp.concatenate((eigenvalues_[..., None], trans), axis=-1) if self.use_attention: if self.norm is not None: trans = self.norm()(trans) attn = MultiHeadAttention( self.num_heads, key_size=trans.shape[-1] // self.num_heads, value_size=trans.shape[-1] // self.num_heads, model_size=trans.shape[-1], w_init=None, dropout_p=self.dropout_p, with_bias=False) trans += attn( trans, trans, trans, mask=attn_padding_mask, is_training=call_args.is_training) padding_mask = padding_mask[..., None] trans = trans * padding_mask trans = trans.reshape(trans.shape[:-2] + (-1,)) if self.dropout_p and call_args.is_training: trans = hk.dropout(hk.next_rng_key(), self.dropout_p, trans) output = self.re_aggregate_mlp(trans) if self.im_aggregate_mlp is None: return output output_im = self.im_aggregate_mlp(trans) output = output + 1j * output_im return output class GNN(hk.Module): """Standard GNN that supersedes a GCN implementation os used by the Open Graph Benchmark Code2 dataset and a standard bidirectional GNN. Attributes: d_model: number of hidden dimensions. activation: The activation function. gnn_type: Either `gcn` or `gnn` use_edge_attr: If True also the edge attributes are considered. Must be True for `gnn_type=gcn`. k_hop: Number of message passing steps. mlp_layers: Number of layers in MLP (only relevant for `gnn_type=gnn`). tightening_factor: The factor of dimensionality reduction for message passing in contrast to `d_model`. norm: The batch/layer norm. concat: If True all intermediate node embeddings are concatenated and then mapped to `d_model` in the output MLP. residual: If True the GNN embeddings bidirectional: If True, edges in both directions are considered (only relevant for `gnn_type=gnn`). name: Name of module. **kwargs: """ def __init__(self, d_model: int = 256, activation: Callable[[Tensor], Tensor] = jax.nn.relu, gnn_type='gcn', use_edge_attr=True, k_hop=2, mlp_layers: int = 2, tightening_factor: int = 1, norm=None, concat: bool = False, residual: bool = True, bidirectional: bool = True, name: Optional[str] = None, **kwargs): super().__init__(name=name) self.d_model = d_model self.mlp_layers = mlp_layers self.tightening_factor = tightening_factor self.activation = activation self.gnn_type = gnn_type self.use_edge_attr = use_edge_attr self.k_hop = k_hop self.norm = norm self.concat = concat self.residual = residual self.bidirectional = bidirectional if kwargs: logging.info('GNN.__init__() received unexpected kwargs: %s', kwargs) def _layer(self, idx: int) -> Callable[[jraph.GraphsTuple], jraph.GraphsTuple]: if self.gnn_type == 'gcn': assert self.use_edge_attr, 'For GCN we must include edge features' def update_fn(x): return hk.Linear(self.d_model // self.tightening_factor)(x) backw_update_node_fn = backw_update_edge_fn = None if self.bidirectional: backw_update_node_fn = backw_update_edge_fn = update_fn layer = GraphConvolution( forw_update_node_fn=update_fn, forw_update_edge_fn=update_fn, backw_update_node_fn=backw_update_node_fn, backw_update_edge_fn=backw_update_edge_fn, activation=self.activation, add_self_edges=False) elif self.gnn_type == 'gnn': layer = jraph.GraphNetwork( update_edge_fn=functools.partial( self._update_fn, exclude_features=not self.use_edge_attr, name=f'edge_mlp{idx}'), update_node_fn=functools.partial( self._update_fn, exclude_features=False, name=f'node_mlp{idx}')) else: raise ValueError(f'`gnn_type` {self.gnn_type} is not supported') return layer def _update_fn(self, features: Tensor, sender_features: Tensor, receiver_features: Tensor, globals_: Any, exclude_features: bool, name: str): if self.bidirectional: stack = [features, sender_features, receiver_features] else: stack = [features, sender_features + receiver_features] if exclude_features: stack = stack[1:] concat_features = jnp.concatenate(stack, axis=-1) return mlp( concat_features, self.d_model // self.tightening_factor, activation=self.activation, with_norm=False, final_activation=True, n_layers=self.mlp_layers, name=name) def __call__(self, graph: jraph.GraphsTuple, call_args: CallArgs, mask: Optional[Tensor] = None, in_axes: int = 0, **kwargs): if self.k_hop == 0: return graph nodes_list = [graph.nodes] for idx in range(self.k_hop): new_graph = jax.vmap(self._layer(idx), in_axes=in_axes)(graph) if self.residual and self.tightening_factor == 1: graph = graph._replace( nodes=graph.nodes + new_graph.nodes, edges=graph.edges + new_graph.edges, ) else: graph = new_graph if self.concat: nodes_list.append(graph.nodes) if self.concat: graph = graph._replace(nodes=jnp.concatenate(nodes_list, axis=-1)) if self.norm: graph = graph._replace(nodes=self.norm()(graph.nodes, call_args, mask)) if self.concat or self.tightening_factor > 1: graph = graph._replace(nodes=hk.Linear(self.d_model)(graph.nodes)) return graph class TransformerEncoderLayer(hk.Module): """The transformer encoder layer. Main differences to the common implementation is the option to apply a GNN to query and key, as well as handling complex valued positional encodings. Attributes: d_model: number of hidden dimensions. num_heads: in multi head attention. dense_widening_factor: factor to enlarge MLP after attention. dropout_p: Probability dropout. with_bias: If the linear projections shall have a bias. re_im_separate_projection: Apply a joint (False) or separate projection (True) for complex values query and key. se: If to apply a structural encoding to query and key (either `gnn` or ``). norm: The batch/layer norm. pre_norm: If applying norm before attention. activation: The activation function. gnn_config: Config for GNN. name: Name of the layer. """ def __init__( # pylint: disable=dangerous-default-value self, d_model=256, num_heads=4, dense_widening_factor=4, dropout_p=0.2, with_attn_dropout=True, re_im_separate_projection=False, with_bias=False, activation=jax.nn.relu, norm: Any = LayerNorm, pre_norm: bool = False, gnn_config=dict(), name=None): super().__init__(name=name) self.d_model = d_model self.num_heads = num_heads self.dense_widening_factor = dense_widening_factor self.dropout_p = dropout_p self.with_bias = with_bias self.re_im_separate_projection = re_im_separate_projection if not isinstance(gnn_config, dict): gnn_config = gnn_config.to_dict() else: gnn_config = gnn_config.copy() self.se = gnn_config.pop('se', 'gnn') self.norm = norm self.pre_norm = pre_norm self.activation = activation if self.se == 'gnn': self.se = GNN(self.d_model, self.activation, norm=self.norm, **gnn_config) elif self.se: raise ValueError(f'unexpected structure extractor value {self.se}') self.linear_dm = functools.partial(hk.Linear, self.d_model) self.linear_ff = functools.partial( hk.Linear, int(self.d_model * self.dense_widening_factor)) self.attn = MultiHeadAttention( self.num_heads, key_size=self.d_model // self.num_heads, value_size=self.d_model // self.num_heads, model_size=self.d_model, w_init=None, dropout_p=self.dropout_p if with_attn_dropout else 0., with_bias=self.with_bias, re_im_separate_projection=self.re_im_separate_projection) def __call__(self, graph: jraph.GraphsTuple, call_args: CallArgs, invnorm_degree: Optional[Tensor] = None, posenc: Optional[Tensor] = None, mask: Optional[Tensor] = None): if mask is not None: bn_mask = mask[..., :1] else: bn_mask = None if self.pre_norm: graph = graph._replace(nodes=self.norm()(graph.nodes, call_args, bn_mask)) value = graph.nodes if posenc is not None and posenc.ndim <= value.ndim: value = jnp.real(value + posenc) graph = graph._replace(nodes=value) if not self.se: query = key = graph.nodes else: graph_se = self.se(graph, call_args, mask=bn_mask) query = key = graph_se.nodes logit_offset = None if posenc is not None: if posenc.ndim > query.ndim: logit_offset = posenc posenc = None else: query = key = query + posenc attn_emb = self.attn( query=query, key=key, value=value, is_training=call_args.is_training, logit_offset=logit_offset, mask=mask) if invnorm_degree is not None: attn_emb = invnorm_degree[..., None] * attn_emb if call_args.is_training: attn_emb = hk.dropout(hk.next_rng_key(), self.dropout_p, attn_emb) value = value + attn_emb value = self.norm()(value, call_args, bn_mask) fwd_emb = self.activation(self.linear_ff()(value)) if call_args.is_training: fwd_emb = hk.dropout(hk.next_rng_key(), self.dropout_p, fwd_emb) fwd_emb = self.linear_dm()(fwd_emb) if call_args.is_training: fwd_emb = hk.dropout(hk.next_rng_key(), self.dropout_p, fwd_emb) value = value + fwd_emb if not self.pre_norm: value = self.norm()(value, call_args, bn_mask) return graph._replace(nodes=value) class GraphTransformerEncoder(hk.Module): """Wrapper for multiple encoder layers.""" def __init__( self, layer_sequence: Sequence[TransformerEncoderLayer], name: Optional[str] = None, ): super().__init__(name=name) self.layer_sequence = layer_sequence def __call__(self, x, *args, **kwargs): output = x for layer in self.layer_sequence: output = layer(output, *args, **kwargs) return output class StructureAwareTransformer(hk.Module): """Our implementation/extension of the Structure Aware Transformer, ICML22. Attributes: model_type: Either `sat` or `gnn`. num_class: Number of classes for graph classification. d_model: number of hidden dimensions. input_embedder: an embedder for the raw graph's features. gnn_config: Config for GNN attention_config: Config for Attention max_seq_len: number of prediction to be made per graph. global_readout: how to aggregate the node embeddings. One of `1`, `cls`, `mean`, `sum_n`. activation: The activation function. batch_norm: If True use BatchNorm, otherwise use LayerNorm. deg_sensitive_residual: If True normalize residual by node degree. with_pre_gnn: If True apply a GNN before the transformer. posenc_config: Configuration of positional encodings. loss_config: Configuration for loss. eps: a small constant. pmap_axis: Relevant for hk.BatchNorm to work within `pmap`. name: Name of the layer. """ # pylint: disable=dangerous-default-value def __init__(self, model_type: str, num_class: int, d_model: int, input_embedder: Optional[Union[ASTNodeEncoder, DataFlowASTEncoder]] = None, num_layers=4, gnn_config=dict(), attention_config=dict(), max_seq_len=5, global_readout='mean', activation: str = 'relu', batch_norm: bool = False, deg_sensitive_residual: bool = True, with_pre_gnn: bool = False, posenc_config=PositionalEncodingsParams(), loss_config=LossConfig(), eps: float = 1e-7, pmap_axis: Optional[str] = None, name: Optional[str] = None): super().__init__(name=name) self.d_model = d_model self.deg_sensitive_residual = deg_sensitive_residual self.eps = eps self.embedding = input_embedder self.global_readout = global_readout self.posenc_config = posenc_config self.loss_config = loss_config self.max_seq_len = max_seq_len self.num_class = num_class self.activation = self.activation_fn(activation) if batch_norm: self.norm = functools.partial( BatchNorm, create_scale=True, create_offset=True, decay_rate=0.9, eps=1e-5, cross_replica_axis=pmap_axis) else: self.norm = functools.partial(LayerNorm, axis=-1, eps=1e-5) if model_type == 'sat': layer = functools.partial( TransformerEncoderLayer, d_model=d_model, activation=self.activation, gnn_config=gnn_config, norm=self.norm, **attention_config) self.encoder = GraphTransformerEncoder( [layer() for idx in range(num_layers)]) elif model_type == 'magnet': self.encoder = magnet.MagNet( d_model, activation=self.activation, q=posenc_config.maglap_q, q_absolute=posenc_config.maglap_q_absolute, **gnn_config) else: warnings.warn(f'Falling back to `gnn` model (given type {model_type})') self.encoder = GNN(d_model, activation=self.activation, **gnn_config) self.pre_gnn = None if with_pre_gnn: # pylint: disable=unused-argument def update_edge_fn(features: Tensor, sender_features: Tensor, receiver_features: Tensor, globals_: Any) -> Tensor: return mlp( features, self.d_model, activation=self.activation, with_norm=False, final_activation=True, n_layers=1, name='pre_gnn_update_edge_fn') def update_node_fn(features: Tensor, sender_features: Tensor, receiver_features: Tensor, globals_: Any) -> Tensor: concat_features = jnp.concatenate( [features, sender_features, receiver_features], axis=-1) return mlp( concat_features, self.d_model, activation=self.activation, with_norm=False, final_activation=True, n_layers=1, name='pre_gnn_update_node_fn') self.pre_gnn = jraph.GraphNetwork( update_edge_fn=update_edge_fn, update_node_fn=update_node_fn) if self.posenc_config.posenc_type == 'maglap': use_rel_posenc = self.posenc_config.relative_positional_encodings if self.posenc_config.maglap_net_type == 'naive': self.maglap_net = NaiveMagLapNet(self.d_model) else: self.maglap_net = MagLapNet( self.d_model // 32, self.d_model, num_heads=attention_config.get('num_heads', 4), n_layers=1, dropout_p=self.posenc_config.maglap_dropout_p, concatenate_eigenvalues=self.posenc_config.concatenate_eigenvalues, consider_im_part=self.posenc_config.maglap_q != 0., activation=self.activation, use_signnet=self.posenc_config.maglap_use_signnet, use_gnn=self.posenc_config.maglap_use_gnn, use_attention=self.posenc_config.maglap_transformer, norm=self.norm if self.posenc_config.maglap_transformer else None, return_real_output=not use_rel_posenc) def activation_fn(self, activation: str): """Get activation function from name.""" if activation == 'relu': return jax.nn.relu elif activation == 'gelu': return jax.nn.gelu else: raise ValueError(f'unexpected activation {activation}') def positional_encodings( self, graph: jraph.GraphsTuple, eigenvalues: Optional[Tensor] = None, eigenvectors: Optional[Tensor] = None, call_args: CallArgs = CallArgs(True), mask: Optional[Tensor] = None ) -> Tuple[jraph.GraphsTuple, Optional[Tensor]]: """Adds the positional encodings.""" if not self.posenc_config.posenc_type: return graph, None if self.posenc_config.posenc_type == 'ppr': ppr = exact_ppr( graph, restart_p=self.posenc_config.ppr_restart_probability) if self.posenc_config.do_also_reverse: backward_ppr = exact_ppr( graph, restart_p=self.posenc_config.ppr_restart_probability, reverse=True) posenc = jnp.stack((ppr, backward_ppr), axis=-1) else: posenc = ppr[..., None] elif self.posenc_config.posenc_type == 'rw': posenc = k_step_random_walk( graph, k=self.posenc_config.random_walk_steps, ppr_restart_p=self.posenc_config.ppr_restart_probability) if self.posenc_config.do_also_reverse: backward_rw = k_step_random_walk( graph, k=self.posenc_config.random_walk_steps, ppr_restart_p=self.posenc_config.ppr_restart_probability, reverse=True) posenc = jnp.concatenate((posenc, backward_rw), axis=-1) elif self.posenc_config.posenc_type == 'svd': posenc = svd_encodings(graph, rank=self.posenc_config.top_k_eigenvectors) # Like to Hussain (2022) rand_sign_shape = (*posenc.shape[:-2], 1, *posenc.shape[-1:]) rand_sign = jax.random.rademacher(hk.next_rng_key(), rand_sign_shape) posenc = rand_sign * posenc posenc = mlp( posenc, self.d_model, activation=self.activation, n_layers=1, with_norm=False, final_activation=True, name='posenc_mlp') graph = graph._replace(nodes=graph.nodes + posenc) # Otherwise, we interpret the encoding as relative posenc = None elif self.posenc_config.posenc_type == 'maglap': # We might have already loaded the eigenvalues, -vectors if eigenvalues is None or eigenvectors is None: raise RuntimeError('Eigenvectors and eigenvalues were not provided.') posenc = self.maglap_net( graph, eigenvalues, eigenvectors, call_args=call_args, mask=mask) if not self.posenc_config.relative_positional_encodings: graph = graph._replace(nodes=graph.nodes + posenc) # Otherwise, we interpret the encoding as relative posenc = None else: raise ValueError( f'unexpected positional encoding type {self.posenc_config.posenc_type}' ) if (not self.posenc_config.relative_positional_encodings and self.posenc_config.posenc_type in ['ppr', 'rw']): posenc = hk.Linear(posenc.shape[-1], name='posenc_linear')(posenc) posenc = (self.activation(posenc) * mask[..., None]).sum(axis=-3) posenc = mlp( posenc, self.d_model, activation=self.activation, n_layers=1, with_norm=False, final_activation=True, name='posenc_mlp') graph = graph._replace(nodes=graph.nodes + posenc) # Otherwise, we interpret the encoding as relative posenc = None return graph, posenc def readout(self, graph: jraph.GraphsTuple) -> Tensor: """For the aggregate prediction over for the graph.""" if self.global_readout == 1 or self.global_readout == '1': return graph.nodes[..., 1, :] elif self.global_readout == 'cls': return graph.nodes[jnp.arange(graph.n_node.shape[0]), graph.n_node[..., 0].astype(jnp.int32) - 1] batch, n_node = graph.nodes.shape[:2] indices = jnp.tile(jnp.arange(n_node), (batch, 1)) padding_mask = indices < graph.n_node[:, 0, None] if self.global_readout == 'mean': output = (graph.nodes * padding_mask[..., None]).sum(-2) output /= (graph.n_node[:, 0, None] + self.eps) elif self.global_readout == 'sum_n': output = (graph.nodes * padding_mask[..., None]).sum(-2) n = graph.n_node[:, 0, None] output = jnp.concatenate((output, n), axis=-1) return output def get_padding_mask(self, graph: jraph.GraphsTuple) -> Tensor: batch, n_node = graph.nodes.shape[:2] indices = jnp.tile(jnp.arange(n_node), (batch, 1)) padding_mask = indices < graph.n_node[:, 0, None] padding_mask = padding_mask[:, :, None] * padding_mask[:, None, :] return padding_mask def __call__(self, graph: jraph.GraphsTuple, call_args: CallArgs = CallArgs(False)): node_depth = None if 'node_depth' in graph.nodes and not self.posenc_config.exclude_canonical: node_depth = graph.nodes['node_depth'] eigenvalues = eigenvectors = None if 'eigenvalues' in graph.nodes and 'eigenvectors' in graph.nodes: eigenvalues = graph.nodes['eigenvalues'] eigenvectors = graph.nodes['eigenvectors'] # Either nodes.['node_feat'] or the `nodes` represent the features if 'node_feat' in graph.nodes: graph = graph._replace(nodes=graph.nodes['node_feat']) if self.deg_sensitive_residual: sender_degree = count_edges(graph.senders, n_nodes=graph.nodes.shape[1]) invnorm_degree = jax.lax.rsqrt((sender_degree + 1.)) else: invnorm_degree = None if self.embedding is not None: graph = self.embedding(graph, node_depth, call_args) if self.pre_gnn is not None: graph = graph._replace(nodes=jax.vmap(self.pre_gnn)(graph).nodes) padding_mask = self.get_padding_mask(graph) graph, posenc = self.positional_encodings(graph, eigenvalues, eigenvectors, call_args, mask=padding_mask) if self.global_readout == 'cls': cls_token = hk.get_parameter('cls_token', (1, self.d_model), jnp.float32, hk.initializers.RandomNormal()) n_node = graph.n_node.astype(jnp.int32) nodes = graph.nodes.at[jnp.arange(graph.nodes.shape[0]), n_node[..., 0].astype(jnp.int32)].set(cls_token) n_node = n_node.at[..., 0].add(1) n_node = n_node.at[..., 1].add(-1) graph = graph._replace(nodes=nodes, n_node=n_node) # New padding mask due to added node padding_mask = self.get_padding_mask(graph) graph = self.encoder( graph, call_args=call_args, posenc=posenc, invnorm_degree=invnorm_degree, mask=padding_mask) output = self.readout(graph) if self.num_class <= 0 or self.max_seq_len <= 0: lead = len(graph.nodes.shape[:-2]) * (1,) nodes = graph.nodes.shape[-2] x_senders = jnp.tile(graph.nodes[..., :, None, :], lead + (1, nodes, 1)) x_receivers = jnp.tile(graph.nodes[..., None, :, :], lead + (nodes, 1, 1)) x_global = jnp.tile(output[..., None, None, :], lead + (nodes, nodes, 1)) x = jnp.concatenate((x_senders, x_receivers, x_global), axis=-1) x = MLP(self.d_model, n_layers=2, activation=self.activation, with_norm=True, final_activation=True, name='adj_mlp')(x) dim_out = 1 if self.num_class <= 0 else self.num_class output = hk.Linear(dim_out, name='adj_out')(x) return output classifier = hk.Linear(self.num_class * self.max_seq_len) prediction = classifier(output).reshape( list(output.shape[:-1]) + [self.max_seq_len, self.num_class]) return prediction def loss(self, graph: jraph.GraphsTuple, is_training=True): prediction = self.__call__( graph._replace(globals=None), call_args=CallArgs(is_training)) if self.num_class > 0 and self.max_seq_len > 0: loss = softmax_cross_entropy_loss( prediction, graph.globals['target'][..., 0, :].astype(jnp.int32), self.num_class, self.loss_config.only_punish_first_end_of_sequence_token) else: if isinstance(graph.nodes, dict): graph = graph._replace(nodes=graph.nodes['node_feat']) target = graph.globals['target'] mask = target >= 0 if self.num_class > 0: target = jnp.where(mask, target, 0) targets_one_hot = jax.nn.one_hot(target, self.num_class) logits = jax.nn.log_softmax(prediction, axis=-1) loss = -jnp.sum(targets_one_hot * logits, axis=-1) else: prediction = jax.nn.softplus(prediction[..., 0]) loss = (prediction - target) ** 2 loss = (loss * mask).sum(axis=(-2, -1)) / mask.sum(axis=(-2, -1)) return loss, prediction def get_model( # pylint: disable=dangerous-default-value dataset: config.Dataset, # For batch norm pmap_axis: str, model_type: str = 'sat', num_layers=4, d_model=256, activation: str = 'relu', batch_norm: bool = False, deg_sensitive_residual: bool = True, with_pre_gnn: bool = False, encoder_config=dict(), loss_kwargs=dict(), posenc_config=dict(), attention_config=dict(), gnn_config=dict(), global_readout='mean', **kwargs): """Creates the model for the given configuration.""" if kwargs: logging.info('get_model() received kwargs: %s', kwargs) posenc_config = PositionalEncodingsParams(**posenc_config) if '-df' in dataset.name: input_encoder = DataFlowASTEncoder(d_model, dataset.num_nodetypes, dataset.num_nodeattributes, dataset.ast_depth, dataset.edge_df_types, dataset.edge_ast_types, **encoder_config) elif dataset.name.startswith('sn'): input_encoder = SortingNetworkEncoder( d_model, num_nodeattributes=dataset.num_nodeattributes, encode_order=not posenc_config.exclude_canonical) elif dataset.name.startswith('dist'): input_encoder = DistanceEncoder( d_model, encode_order=not posenc_config.exclude_canonical) else: edge_dim = d_model if gnn_config.get('residual', False) else d_model // 2 input_encoder = ASTNodeEncoder( d_model, dataset.num_nodetypes, dataset.num_nodeattributes, dataset.ast_depth, edge_dim=edge_dim) model = StructureAwareTransformer( model_type, dataset.num_classes, d_model, input_encoder, attention_config=attention_config, num_layers=num_layers, max_seq_len=dataset.sequence_length, gnn_config=gnn_config, pmap_axis=pmap_axis, with_pre_gnn=with_pre_gnn, deg_sensitive_residual=deg_sensitive_residual, posenc_config=posenc_config, loss_config=LossConfig(**loss_kwargs), global_readout=global_readout, activation=activation, batch_norm=batch_norm, **kwargs) return model
digraph_transformer-main
models.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """All the important shortcuts to ease configuration of experiments.""" from typing import Text, List from ml_collections import config_dict def apply_presets(config: config_dict.ConfigDict, unique_presets: List[Text]) -> config_dict.ConfigDict: """Applies the defined presets.""" all_presets = { # Select dataset 'norevogb': norevogb_preset, 'dfogb': dfogb_preset, 'sn': sorting_network_preset, 'adj': adjacency_preset, 'adja': adjacency_acyclic_preset, 'adju': adjacency_undirected_preset, 'con': is_connected_preset, 'cona': is_connected_acyclic_preset, 'conu': is_connected_undirected_preset, 'dist': distance_preset, 'dista': distance_acyclic_preset, 'distu': distance_undirected_preset, 'distau': distance_acyclic_undirected_preset, # Basic architecture and positional encodings 'bignn': bignn_preset, 'pprpos': ppr_posenc_preset, 'rwpos': random_walk_posenc_preset, 'maglappos': magnetic_laplacian_preset, 'lappos': laplacian_preset, 'bbs': bucket_by_size_preset } for preset in unique_presets: if preset in all_presets: all_presets[preset](config) else: raise ValueError(f'Invalid preset value `{preset}`') return config def norevogb_preset(config: config_dict.ConfigDict) -> config_dict.ConfigDict: """Params for the vanilla OGB (without reversed edges).""" config_ = config.experiment_kwargs.config config_.dataset_name = 'ogbg-code2-norev' # General hyperparams (With tuning batch size 56) config_.optimizer.use_agc = True config_.optimizer.optimizer_kwargs.weight_decay = 6e-5 config_.optimizer.optimizer_kwargs.b1 = 0.9 config_.optimizer.optimizer_kwargs.b2 = 0.95 config_.optimizer.lr_schedule.peak_value = 3e-3 / 56 config_.optimizer.lr_schedule.init_value = 5e-6 / 56 config_.optimizer.lr_schedule.end_value = 6e-9 / 56 config_.optimizer.agc_kwargs.clipping = 0.05 # Model params config_.model.attention_config.with_attn_dropout = False config_.model.activation = 'gelu' config_.model.attention_config.with_bias = True config_.model.global_readout = 'cls' config_.model.encoder_config.attribute_dropout = 0.15 config_.model.attention_config.dropout_p = 0.18 config_.model.gnn_config.bidirectional = True config_.model.gnn_config.k_hop = 3 config_.model.gnn_config.mlp_layers = 1 # Offset config_.evaluation.unk_offset = 0.75 config_.evaluation.eos_offset = 0.3 return config def dfogb_preset(config: config_dict.ConfigDict) -> config_dict.ConfigDict: """Params for the data-flow centric OGB (without reversed edges).""" config_ = config.experiment_kwargs.config config_.dataset_name = 'ogbg-code2-norev-df' config_.dataset_config.exclude_control_flow_edges = False config_.dataset_config.exclude_next_syntax_edges = True # General hyperparams (With tuning batch size 56) config_.optimizer.use_agc = True config_.optimizer.optimizer_kwargs.weight_decay = 7.5e-5 config_.optimizer.optimizer_kwargs.b1 = 0.75 config_.optimizer.optimizer_kwargs.b2 = 0.935 config_.optimizer.lr_schedule.peak_value = 3e-3 / 56 config_.optimizer.lr_schedule.init_value = 4.5e-6 / 56 config_.optimizer.lr_schedule.end_value = 6.5e-9 / 56 config_.optimizer.agc_kwargs.clipping = 0.1 # Model params config_.model.attention_config.with_attn_dropout = False config_.model.activation = 'gelu' config_.model.attention_config.with_bias = True config_.model.global_readout = 'cls' config_.model.encoder_config.attribute_dropout = 0.15 config_.model.attention_config.dropout_p = 0.185 config_.model.gnn_config.bidirectional = True config_.model.gnn_config.k_hop = 3 config_.model.gnn_config.mlp_layers = 1 # offset config_.evaluation.unk_offset = 0.75 config_.evaluation.eos_offset = 0.45 # Adaptions to save memory in comparison to TPU setup config_.optimizer.accumulate_gradient_k = 12 config_.training.batch_size = 32 # config_.evaluation.batch_size = 32 return config def sorting_network_preset( config: config_dict.ConfigDict) -> config_dict.ConfigDict: """Params for the sorting network dataset.""" config = dfogb_preset(config) # Reverse adaptions to save memory in comparison to TPU setup config.experiment_kwargs.config.optimizer.accumulate_gradient_k = 8 config.experiment_kwargs.config.training.batch_size = 48 # config.experiment_kwargs.config.evaluation.batch_size = 48 config.epochs = 15 config.experiment_kwargs.config.dataset_name = 'sn-7to11-12-13to16' config.experiment_kwargs.config.model.gnn_config.use_edge_attr = False config.experiment_kwargs.config.evaluation.max_number_of_instances = 40_000 config.best_model_eval_metric = 'accuracy' config.experiment_kwargs.config.optimizer.agc_kwargs.clipping = 0.075 config.experiment_kwargs.config.optimizer.optimizer_kwargs.weight_decay = 6e-5 config.experiment_kwargs.config.optimizer.optimizer_kwargs.b1 = 0.7 config.experiment_kwargs.config.optimizer.optimizer_kwargs.b2 = 0.9 config.experiment_kwargs.config.optimizer.lr_schedule.peak_value = 4e-4 / 48 config.experiment_kwargs.config.optimizer.lr_schedule.init_value = 2e-6 / 48 config.experiment_kwargs.config.optimizer.lr_schedule.end_value = 2e-9 / 48 config.experiment_kwargs.config.model.deg_sensitive_residual = False config.experiment_kwargs.config.model.posenc_config.exclude_canonical = True # offset config.experiment_kwargs.config.evaluation.unk_offset = 0 config.experiment_kwargs.config.evaluation.eos_offset = 0 return config def adjacency_preset( config: config_dict.ConfigDict) -> config_dict.ConfigDict: """Params for the sorting network dataset.""" config = sorting_network_preset(config) config.save_checkpoint_interval = 240 config.epochs = 15 # Due to the more aggressive bucketing, this is roughly 30 config_ = config.experiment_kwargs.config config_.dataset_name = 'adj_c' config_.evaluation.max_number_of_instances = -1 config.best_model_eval_metric = 'f1' config_.optimizer.accumulate_gradient_k = 1 config_.model.posenc_config.exclude_canonical = True # config_.model.global_readout = 'sum_n' config_.dataset_config.bucket_boundaries = (127, 255, 511) config_.dataset_config.bucket_batch_size_factors = (8, 4, 2, 1) # Offset - will be auto tuned # config_.training.batch_size = 24 config_.evaluation.unk_offset = 0.0 config_.evaluation.eos_offset = 0.0 config_.evaluation.batch_size = 128 # config_.evaluation.batch_size = 24 return config def adjacency_acyclic_preset( config: config_dict.ConfigDict) -> config_dict.ConfigDict: """Params for the sorting network dataset.""" config = adjacency_preset(config) config.experiment_kwargs.config.dataset_name = 'adj_ca' return config def adjacency_undirected_preset( config: config_dict.ConfigDict) -> config_dict.ConfigDict: """Params for the sorting network dataset.""" config = adjacency_preset(config) config.experiment_kwargs.config.dataset_name = 'adj_c_u' return config def is_connected_preset( config: config_dict.ConfigDict) -> config_dict.ConfigDict: """Params for the sorting network dataset.""" config = adjacency_preset(config) config.experiment_kwargs.config.dataset_name = 'con_c' return config def is_connected_acyclic_preset( config: config_dict.ConfigDict) -> config_dict.ConfigDict: """Params for the sorting network dataset.""" config = is_connected_preset(config) config.experiment_kwargs.config.dataset_name = 'con_ca' return config def is_connected_undirected_preset( config: config_dict.ConfigDict) -> config_dict.ConfigDict: """Params for the sorting network dataset.""" config = is_connected_preset(config) config.experiment_kwargs.config.dataset_name = 'con_c_u' return config def distance_preset( config: config_dict.ConfigDict) -> config_dict.ConfigDict: """Params for the sorting network dataset.""" config = adjacency_preset(config) config.save_checkpoint_interval = 600 config_ = config.experiment_kwargs.config config_.dataset_name = 'dist_c' config_.evaluation.batch_size = 64 config.best_model_eval_metric = 'rmse' config.best_model_eval_metric_higher_is_better = False return config def distance_acyclic_preset( config: config_dict.ConfigDict) -> config_dict.ConfigDict: """Params for the sorting network dataset.""" config = distance_preset(config) config.experiment_kwargs.config.dataset_name = 'dist_ca' return config def distance_undirected_preset( config: config_dict.ConfigDict) -> config_dict.ConfigDict: """Params for the sorting network dataset.""" config = distance_preset(config) config.experiment_kwargs.config.dataset_name = 'dist_c_u' return config def distance_acyclic_undirected_preset( config: config_dict.ConfigDict) -> config_dict.ConfigDict: """Params for the sorting network dataset.""" config = distance_preset(config) config.experiment_kwargs.config.dataset_name = 'dist_ca_u' return config def bignn_preset(config: config_dict.ConfigDict) -> config_dict.ConfigDict: """Params for the bidirectional GNN.""" config_ = config.experiment_kwargs.config.model.gnn_config config_.gnn_type = 'gnn' config_.k_hop = 3 config_.se = 'gnn' config_.mlp_layers = 1 config_.tightening_factor = 2 config_.bidirectional = True config_.concat = True config_.residual = True return config def ppr_posenc_preset(config: config_dict.ConfigDict) -> config_dict.ConfigDict: """Personalized Page Rank positional encodings.""" exclude_canonical = 'ogb' not in config.experiment_kwargs.config.dataset_name posenc_config = config_dict.ConfigDict( dict( posenc_type='ppr', do_also_reverse=True, ppr_restart_probability=0.1, relative_positional_encodings=True, exclude_canonical=exclude_canonical, random_walk_steps=-1)) config.experiment_kwargs.config.model.posenc_config = posenc_config return config def random_walk_posenc_preset( config: config_dict.ConfigDict) -> config_dict.ConfigDict: """Random Walk positional encodings.""" exclude_canonical = 'ogb' not in config.experiment_kwargs.config.dataset_name posenc_config = config_dict.ConfigDict( dict( posenc_type='rw', do_also_reverse=True, ppr_restart_probability=0.05, relative_positional_encodings=False, exclude_canonical=exclude_canonical, random_walk_steps=3)) config.experiment_kwargs.config.model.posenc_config = posenc_config return config def magnetic_laplacian_preset( config: config_dict.ConfigDict) -> config_dict.ConfigDict: config_ = config.experiment_kwargs.config posenc_config = config_.model.posenc_config posenc_config.posenc_type = 'maglap' # posenc_config.exclude_canonical = False posenc_config.relative_positional_encodings = False posenc_config.top_k_eigenvectors = 15 posenc_config.maglap_q = 0.1 posenc_config.maglap_q_absolute = False posenc_config.excl_k_eigenvectors = 0 posenc_config.concatenate_eigenvalues = True posenc_config.maglap_symmetric_norm = True posenc_config.maglap_transformer = True posenc_config.maglap_use_signnet = True posenc_config.maglap_use_gnn = True posenc_config.maglap_norm_comps_sep = False posenc_config.maglap_l2_norm = True posenc_config.maglap_dropout_p = 0.10 posenc_config.maglap_sign_rotate = False if 'sn-' in config.experiment_kwargs.config.dataset_name: config_.optimizer.use_agc = True config_.optimizer.optimizer_kwargs.weight_decay = 6e-5 config_.optimizer.optimizer_kwargs.b1 = 0.6 config_.optimizer.optimizer_kwargs.b2 = 0.9 config_.optimizer.lr_schedule.peak_value = 5e-4 / 48 config_.optimizer.lr_schedule.init_value = 1.5e-7 / 48 config_.optimizer.lr_schedule.end_value = 1.5e-9 / 48 config_.optimizer.agc_kwargs.clipping = 0.005 posenc_config.top_k_eigenvectors = 25 posenc_config.relative_positional_encodings = False posenc_config.maglap_q = 0.25 posenc_config.maglap_q_absolute = False posenc_config.maglap_transformer = True posenc_config.maglap_use_gnn = False posenc_config.maglap_norm_comps_sep = False posenc_config.maglap_l2_norm = True posenc_config.maglap_dropout_p = 0.15 posenc_config.maglap_use_signnet = False posenc_config.maglap_sign_rotate = True if ('adj' in config.experiment_kwargs.config.dataset_name or 'con' in config.experiment_kwargs.config.dataset_name or 'dist' in config.experiment_kwargs.config.dataset_name): posenc_config.top_k_eigenvectors = 16 config_.model.global_readout = 'sum_n' # Avoid adding a new virtual node posenc_config.maglap_use_gnn = False posenc_config.maglap_l2_norm = True posenc_config.maglap_sign_rotate = True posenc_config.maglap_use_signnet = False return config def laplacian_preset(config: config_dict.ConfigDict) -> config_dict.ConfigDict: """Regular Laplacian positional encodings.""" config = magnetic_laplacian_preset(config) config_ = config.experiment_kwargs.config config_.model.posenc_config.maglap_q = 0 config_.model.posenc_config.relative_positional_encodings = False return config def bucket_by_size_preset( config: config_dict.ConfigDict) -> config_dict.ConfigDict: """To batch graphs of similar size together.""" config.experiment_kwargs.config.dataset_config.do_bucket_by_size = True return config def model_size_preset(config: config_dict.ConfigDict, layers: int) -> config_dict.ConfigDict: """To adjust model size and batch size accordingly.""" config_ = config.experiment_kwargs.config inflate_factor = layers / config_.model.num_layers config_.training.batch_size = int(config_.training.batch_size / inflate_factor) config_.model.attention_config.num_heads = int( config_.model.attention_config.num_heads / inflate_factor) config_.model.num_layers = int(config_.model.num_layers / inflate_factor) return config
digraph_transformer-main
presets.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Dataset utility functions for the graph property prediction task.""" import functools import multiprocessing import os from typing import Any, Dict, Optional, Sequence from absl import logging import jax import jax.numpy as jnp import jraph import numba import numpy as np import tensorflow as tf # pylint: disable=g-bad-import-order import config import utils # This param should be chosen to be reasonable for the pipeline/hardware NUM_THREADS_EIGENVECTORS = 96 @jax.curry(jax.tree_map) def _downcast_ints(x): if x.dtype == tf.int64: return tf.cast(x, tf.int32) return x @jax.curry(jax.tree_map) def _make_writable(x): if not x.flags["WRITEABLE"]: return np.array(x) return x def _add_target_to_globals(dataset_config: config.Dataset, graph: jraph.GraphsTuple, target: tf.Tensor, target_raw: Optional[tf.Tensor], graph_index: Optional[int], is_training: bool): """Adds the labels to globals of the graph for convenience.""" def set_global_shape(x): if dataset_config.sequence_length < 0: return x return tf.ensure_shape(x, [1, dataset_config.sequence_length]) globals_dict = { "target": set_global_shape(tf.expand_dims(target, axis=0)), **(graph.globals if isinstance(graph.globals, dict) else {}) } if graph_index is not None: globals_dict["graph_index"] = tf.expand_dims(graph_index, axis=0) if not is_training and target_raw is not None: globals_dict["target_raw"] = tf.expand_dims(target_raw, axis=0) return graph._replace(globals=globals_dict) def _pad_to_next_power_of_two(graph: jraph.GraphsTuple, cfg: config.Dataset) -> jraph.GraphsTuple: """Pads GraphsTuple nodes and edges to next power of two.""" graph = _make_writable(graph) n_node_max = graph.n_node.max() n_edge_max = graph.n_edge.max() n_node = np.power(2, np.ceil(np.log2(n_node_max + 1))) n_edge = np.power(2, np.ceil(np.log2(n_edge_max + 1))) # Handle a trailing dimension of size 1 if len(graph.n_edge.shape) == 3 and graph.n_edge.shape[-1] == 1: graph = graph._replace(n_edge=graph.n_edge[..., 0]) batch = graph.n_node.shape[0] pad_n_node = int(n_node - n_node_max) pad_n_edge = int(n_edge - n_edge_max) pad_n_empty_graph = 1 def pad(leaf, n_pad: int): padding = np.zeros( ( batch, n_pad, ) + leaf.shape[2:], dtype=leaf.dtype) padded = np.concatenate([leaf, padding], axis=1) return padded if cfg.name.startswith('dist'): def tree_nodes_pad(nodes): if nodes.shape[-1] == 0: return pad(nodes, n_pad=int(n_node)) return pad(nodes, n_pad=pad_n_node) tree_edges_pad = functools.partial(pad, n_pad=int(n_edge)) def tree_globs_pad(globals_): if globals_.shape[-1] == 1: return pad(globals_, n_pad=pad_n_empty_graph) indices = jnp.tile(jnp.arange(n_node), (batch, 1)) padding_mask = indices < graph.n_node[:, 0, None] padding_mask = padding_mask[:, :, None] * padding_mask[:, None, :] if cfg.num_classes > 0 and not cfg.name.endswith('con'): # adj = np.zeros((batch, int(n_node), int(n_node)), dtype=np.int32) adj = np.full((batch, int(n_node), int(n_node)), -1, dtype=np.int32) adj[padding_mask] = 0 batch_idx = np.arange(batch)[:, None] batch_idx = np.tile(batch_idx, (1, graph.senders.shape[-1])) adj[batch_idx, graph.senders, graph.receivers] = 1 adj[:, jnp.arange(int(n_node)), jnp.arange(int(n_node))] = -1 return adj else: sq_globals = np.full((batch, int(n_node), int(n_node)), -1.) for idx_batch, nb_nodes in enumerate(graph.n_node[:, 0]): idx = np.arange(nb_nodes) idx = np.stack(np.meshgrid(idx, idx)).reshape((2, -1)) sq_globals[idx_batch, idx[0], idx[1]] = globals_[ idx_batch, 0, :int(nb_nodes ** 2)] sq_globals[:, np.arange(int(n_node)), np.arange(int(n_node))] = -1 if cfg.name.endswith('con'): sq_globals[~np.isfinite(sq_globals)] = 0 sq_globals[sq_globals > 0] = 1 else: sq_globals[~np.isfinite(sq_globals)] = -1 return sq_globals else: tree_nodes_pad = functools.partial(pad, n_pad=pad_n_node) tree_edges_pad = functools.partial(pad, n_pad=pad_n_edge) def tree_globs_pad(globals_): return pad(globals_, n_pad=pad_n_empty_graph) # Correct zero padding of senders and receivers edge_pad_idx = np.tile( np.arange(graph.senders.shape[1]), (graph.senders.shape[0], 1)) >= graph.n_edge senders = graph.senders senders[edge_pad_idx] = -1 receivers = graph.receivers receivers[edge_pad_idx] = -1 # Only OGB hast edge features, while Sorting Networks has not edges = graph.edges if isinstance(edges, dict) or (edges.shape[-1] > 1): edges = jax.tree_map(tree_edges_pad, edges) padded_graph = jraph.GraphsTuple( n_node=np.concatenate([graph.n_node, n_node - graph.n_node], axis=1), n_edge=np.concatenate([graph.n_edge, n_edge - graph.n_edge], axis=1), nodes=jax.tree_map(tree_nodes_pad, graph.nodes), edges=edges, globals=jax.tree_map(tree_globs_pad, graph.globals), senders=np.concatenate( [senders, np.full([batch, pad_n_edge], -1, dtype=np.int32)], axis=1), receivers=np.concatenate( [receivers, np.full([batch, pad_n_edge], -1, dtype=np.int32)], axis=1)) return padded_graph def build_dataset_iterator(dataset_config: config.Dataset, ds: tf.data.Dataset, batch_size: int, debug: bool = False, do_bucket_by_size: bool = False, bucket_boundaries: Sequence[int] = (255, 511), bucket_batch_size_factors: Sequence[int] = ( 4, 2, 1), is_training: bool = True, max_token_length: int = 1023, max_number_of_instances: int = -1, exclude_control_flow_edges: bool = True, exclude_next_syntax_edges: bool = False, num_parallel_batchers: Optional[int] = None, posenc_config: Optional[Dict[str, Any]] = None): """Creates a dataset generator and does the important preprocessing steps.""" num_local_devices = jax.local_device_count() if debug: max_items_to_read_from_dataset = int(num_local_devices * batch_size) prefetch_buffer_size = 1 shuffle_buffer_size = 1 num_parallel_batchers = 1 drop_remainder = False else: max_items_to_read_from_dataset = -1 # < 0 means no limit. prefetch_buffer_size = 64 # It can take a while to fill the shuffle buffer with k fold splits. shuffle_buffer_size = int(1e6) if is_training and num_parallel_batchers is None: num_parallel_batchers = 4 drop_remainder = is_training ds = ds.filter( lambda graph, *args: tf.math.reduce_any(graph.n_node < max_token_length)) if is_training: logging.info("Shard dataset %d / %d", jax.process_index() + 1, jax.process_count()) ds = ds.shard(jax.process_count(), jax.process_index()) ds = ds.take(max_items_to_read_from_dataset) ds = ds.cache() if is_training: ds = ds.shuffle(shuffle_buffer_size) # Only take a random subset (must be after shuffle) if max_number_of_instances > 0: ds = ds.take(max_number_of_instances) def map_fn(graph, target, target_raw=None, graph_index=None): graph = _add_target_to_globals(dataset_config, graph, target, target_raw, graph_index, is_training) graph = _downcast_ints(graph) if "-raw" in dataset_config.name: graph.nodes["node_feat"] = graph.nodes["node_feat_orig"] if "-df" in dataset_config.name: mask = tf.ones_like(graph.edges["edge_type"], dtype=tf.bool) if exclude_control_flow_edges: # These edges are our data-flow centric control flow edges mask = graph.edges["edge_type"] != 1 if exclude_next_syntax_edges: # These edges are the original control flow edges of python_graphs mask = mask & (graph.edges["edge_type"] != 9) edges = jax.tree_util.tree_map(lambda x: tf.boolean_mask(x, mask, axis=0), graph.edges) senders = tf.boolean_mask(graph.senders, mask[:, 0], axis=0) receivers = tf.boolean_mask(graph.receivers, mask[:, 0], axis=0) n_dropped_edges = tf.reduce_sum( tf.cast(tf.math.logical_not(mask), tf.int32)) n_edge = graph.n_edge - n_dropped_edges graph = graph._replace( edges=edges, senders=senders, receivers=receivers, n_edge=n_edge) return graph ds = ds.map(map_fn, num_parallel_calls=tf.data.AUTOTUNE) ### Explicit static batching due to self-attention over nodes. ### if not do_bucket_by_size or not is_training: ds = ds.padded_batch( num_local_devices * batch_size, drop_remainder=drop_remainder) else: full_batch_size = num_local_devices * batch_size ds = ds.bucket_by_sequence_length( lambda graph: tf.reduce_max(graph.n_node), bucket_boundaries=bucket_boundaries, # This is a rather pessimistic linear scaling bucket_batch_sizes=[ factor * full_batch_size for factor in bucket_batch_size_factors ], drop_remainder=drop_remainder) if is_training: ds = ds.repeat() ds = ds.prefetch(prefetch_buffer_size) # tf.data.experimental.AUTOTUNE) def reshape(leaf): return leaf.reshape((num_local_devices, leaf.shape[0] // num_local_devices) + leaf.shape[1:]) calc_eigenvals_and_vecs = ( posenc_config is not None and posenc_config.get("posenc_type", "") == "maglap") if calc_eigenvals_and_vecs: eigv_magnetic_config = dict( k=posenc_config.get("top_k_eigenvectors", 5), k_excl=posenc_config.get("excl_k_eigenvectors", 1), q=posenc_config.get("maglap_q", 0.25), q_absolute=posenc_config.get("maglap_q_absolute", True), use_symmetric_norm=posenc_config.get("maglap_symmetric_norm", False), norm_comps_sep=posenc_config.get("maglap_norm_comps_sep", False), sign_rotate=posenc_config.get("maglap_sign_rotate", True)) eigv_magnetic_laplacian = functools.partial( utils.eigv_magnetic_laplacian_numba_batch, **eigv_magnetic_config) if "-df" in dataset_config.name: eigv_magnetic_config['l2_norm'] = posenc_config.get("maglap_l2_norm", True) eigv_magnetic_config['exclude_cfg'] = exclude_control_flow_edges eigv_magnetic_config['exclude_ns'] = exclude_next_syntax_edges numba.set_num_threads( min(NUM_THREADS_EIGENVECTORS, numba.get_num_threads())) logging.info("Numba uses %d threads for eigenvector calculation", numba.get_num_threads()) logging.info("Number of cores %d", multiprocessing.cpu_count()) for sample in ds.as_numpy_iterator(): # Precomputed eigenvectors need to be added prior to final padding eigenvalues, eigenvectors = None, None if 'eigendecomposition' in sample.globals: eigendecomposition = sample.globals.pop('eigendecomposition') if calc_eigenvals_and_vecs: for entry, val, vec in eigendecomposition: # Assuming that the elements are always in the same order entry = jax.tree_map(lambda x: x[0], entry) if all([k in entry and np.isclose(v, entry[k]) for k, v in eigv_magnetic_config.items()]): eigenvalues, eigenvectors = val, vec if eigenvectors is not None: if not isinstance(sample.nodes, dict): sample = sample._replace(nodes={"node_feat": sample.nodes}) sample.nodes["eigenvectors"] = eigenvectors # Doing these preprocessing here is not optimal, however, it is a simple # approach to maneuvers around some limitations of TFDS etc. sample = _pad_to_next_power_of_two(sample, dataset_config) if calc_eigenvals_and_vecs and eigenvalues is None: logging.debug("Start eigenvalues and vectors calculation") try: eigenvalues, eigenvectors = eigv_magnetic_laplacian( sample.senders, sample.receivers, sample.n_node) except: logging.warning("MagLap calculation error in %s", str(sample.globals["graph_index"])) raise eigenvalues = eigenvalues.astype(np.float32) if np.iscomplexobj(eigenvectors): eigenvectors = eigenvectors.astype(np.complex64) else: eigenvectors = eigenvectors.astype(np.float32) if not isinstance(sample.nodes, dict): sample = sample._replace(nodes={"node_feat": sample.nodes}) sample.nodes["eigenvectors"] = eigenvectors # This is not accurate, but globals are treated differently sample.nodes["eigenvalues"] = eigenvalues logging.debug("Finished eigenvalues and vectors calculation") if calc_eigenvals_and_vecs: # This is not accurate, but globals are treated differently later on sample.nodes["eigenvalues"] = eigenvalues sample = jax.tree_map( lambda x: jnp.array(x) if x.dtype != object else x, sample) if jax.device_count() > 1 and is_training: sample = jax.tree_map(reshape, sample) yield sample def dataset_generator(path: str, split: str): """Loads the data from a folder stored as `npz` files, assuming the data is located in `$path/$split`. """ base_path = os.path.join(path, split) for file in os.listdir(base_path): if not file.endswith('.npz') or 'meta' in file: continue for instance in np.load( os.path.join(base_path, file), allow_pickle=True)["data"]: yield tuple(instance)
digraph_transformer-main
dataset_utils.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Generates the sorting network dataset.""" import os from typing import List, Sequence, Tuple, Union from absl import app from absl import flags from absl import logging import jraph import numba import numpy as np import tqdm from script_postcompute_eigedecomp import precalc_and_append np.random.seed(42) _OUT_PATH = flags.DEFINE_string('out_path', '~/data/sorting_network', 'The path to write datasets to.') _SHARD_SIZE = flags.DEFINE_integer( 'shard_size', 10_000, 'The number of times to store in each file.') _REVERSE = flags.DEFINE_boolean('reverse', True, 'If true also reverse test samples') # Instructions with lengths to put in which dataset and how many sorting # networks shall be generated (2x for train, 3x for valid and test) SPLITS = [ # (split, seq_lens, n_generation_trials) ('train', [7, 8, 9, 10, 11], 400_000), ('valid', [12], 20_000), ('test', [13, 14, 15, 16], 20_000) ] DATASET_NAME = '7to11_12_13to16' # How many random sorting networks are sampled in parallel (multithreaded) BATCH_SIZE = 500 # Upper limit on operators MAX_OPERATORS = 512 maglap_configs = [ dict(k=25, k_excl=0, q=0.25, q_absolute=False, norm_comps_sep=False, sign_rotate=True, use_symmetric_norm=True), dict(k=25, k_excl=0, q=0, q_absolute=False, norm_comps_sep=False, sign_rotate=True, use_symmetric_norm=True) ] @numba.jit(nopython=False) def get_test_cases(seq_len: int) -> np.ndarray: """Generates all possible 0-1 perturbations (aka truth table).""" true_false = np.array((True, False)) return np.stack(np.meshgrid(*((true_false,) * seq_len))).reshape(seq_len, -1) @numba.jit(nopython=False) def generate_sorting_network(seq_len: int, max_operators: int = 512): """Generates a valid sorting network.""" test_cases = get_test_cases(seq_len) operators = [] last_operator = (-1, -1) unsorted_locations = np.arange(seq_len) while True: i, j = sorted(np.random.choice(unsorted_locations, size=2, replace=False)) if (i, j) == last_operator: continue if i not in unsorted_locations and j not in unsorted_locations: continue last_operator = (i, j) operators.append((i, j)) test_cases[(i, j), :] = np.sort(test_cases[(i, j), :], axis=0) test_cases = np.unique(test_cases, axis=1) unsorted_locations_ = np.arange(seq_len)[(np.sort(test_cases, axis=0) != test_cases).any(1)] # Sometime numba has issues with tracking variables through loops unsorted_locations = unsorted_locations_ if test_cases.shape[1] == seq_len + 1: return True, operators, test_cases if len(operators) == max_operators: return False, operators, test_cases @numba.jit(nopython=False) def test_network(operators, seq_len): test_cases = get_test_cases(seq_len) for i, j in operators.astype(np.int64): test_cases[(i, j), :] = np.sort(test_cases[(i, j), :], axis=0) test_cases = np.unique(test_cases, axis=1) if test_cases.shape[1] == seq_len + 1: return True, test_cases return False, test_cases def operators_to_graphstuple(operators: Union[List[Tuple[int, int]], np.ndarray], seq_len: int) -> jraph.GraphsTuple: """Converts the list of "operators" to a jraph.graphstuple.""" num_nodes = len(operators) senders = np.zeros(int(2 * len(operators)) - seq_len, dtype=np.int32) receivers = np.zeros(int(2 * len(operators)) - seq_len, dtype=np.int32) # Node features: (order_idx, location_i, location_j) nodes = np.zeros((num_nodes, 3), dtype=np.float32) loc = {i: -1 for i in range(seq_len)} edge_idx = 0 for idx, (i, j) in enumerate(operators): # Add edges if loc[i] >= 0: senders[edge_idx] = loc[i] receivers[edge_idx] = idx edge_idx += 1 if loc[j] >= 0: senders[edge_idx] = loc[j] receivers[edge_idx] = idx edge_idx += 1 # Update node features nodes[idx, 0] = idx nodes[idx, 1] = i nodes[idx, 2] = j # Update mapping from location to node loc[i] = idx loc[j] = idx return jraph.GraphsTuple( n_node=np.array([num_nodes], dtype=np.int32), n_edge=np.array(senders.shape, dtype=np.int32), senders=senders, receivers=receivers, nodes=dict(node_feat=nodes), edges=np.array([], dtype=np.float32), globals=np.array([], dtype=np.float32)) def generate_sorting_network_batch( seq_len: int, batch: int, max_operators: int = 512 ) -> List[jraph.GraphsTuple]: """Generates batch graphs in parallel.""" graph_tuples = [] for _ in numba.prange(batch): success, operators, _ = generate_sorting_network( seq_len, max_operators=max_operators) if success: graph_tuples.append(operators_to_graphstuple(operators, seq_len)) graph_tuples[-1] = precalc_and_append(graph_tuples[-1], maglap_configs) return graph_tuples def main(argv: Sequence[str]) -> None: if len(argv) > 1: raise app.UsageError('Too many command-line arguments.') base_path = os.path.join(_OUT_PATH.value, DATASET_NAME) os.makedirs(base_path, exist_ok=True) id_ = 0 for split, seq_lens, n_generation_trials in SPLITS: file_path = os.path.join(base_path, split) os.makedirs(file_path, exist_ok=True) sample_count = 0 buffer = [] start_id = id_ n_batches = n_generation_trials // BATCH_SIZE for batch_idx in tqdm.tqdm(range(n_batches), desc=split): seq_len = np.random.choice(seq_lens, 1).item() graphs = generate_sorting_network_batch( seq_len, BATCH_SIZE, MAX_OPERATORS) sample_count += (3 if _REVERSE.value and split != 'train' else 2) * len(graphs) for graph in graphs: buffer.append( (graph, np.array([True]), np.array([True]), np.array(id_))) id_ += 1 # Remove last operation to generate an incorrect sorting network graph_ = jraph.GraphsTuple( nodes=dict(node_feat=graph.nodes['node_feat'][:-1]), edges=np.array([], dtype=np.float32), # It is very unlikely that last operation still operates on inputs senders=graph.senders[:-2], receivers=graph.receivers[:-2], n_node=graph.n_node - 1, n_edge=graph.n_edge - 2, globals=np.array([], dtype=np.float32)) buffer.append( (graph_, np.array([False]), np.array([False]), np.array(id_))) id_ += 1 if _REVERSE.value and split != 'train': operators = graph.nodes['node_feat'][::-1, 1:] is_correct, _ = test_network(operators, seq_len) graph_ = operators_to_graphstuple(operators, seq_len) buffer.append((graph_, np.array([is_correct]), np.array([is_correct]), np.array(id_))) id_ += 1 if len(buffer) >= _SHARD_SIZE.value or batch_idx == n_batches - 1: file_name = os.path.join(file_path, f'{start_id}_{id_ - 1}.npz') np.savez_compressed(file_name, data=np.array(buffer, dtype='object')) logging.info('Wrote %d to %s', len(buffer), file_name) buffer = [] start_id = id_ logging.info('Wrote %d instances in `%s`', sample_count, split) if __name__ == '__main__': app.run(main)
digraph_transformer-main
script_generate_sorting_network_np.py
# MIT License # Copyright (c) 2019 OGB Team # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. """Adapted to jax, source: https://github.com/snap-stanford/ogb/blob/c8efe8ec99d11279c80f2bcdbe1567675c1c5666/examples/graphproppred/code2/utils.py and converted to jax. """ # pylint: skip-file import os import haiku as hk import jax.numpy as jnp import jraph import numpy as np import pandas as pd from sklearn import metrics roc_auc_score, average_precision_score = metrics.roc_auc_score, metrics.average_precision_score class ASTNodeEncoder(hk.Module): """Adapted from OGB. Input: x: default node feature. the first and second column represents node type and node attributes. depth: The depth of the node in the AST. Output: emb_dim-dimensional vector """ def __init__(self, emb_dim: int, num_nodetypes: int, num_nodeattributes: int, max_depth: int, edge_dim: int, dtype=jnp.float32, name=None): super().__init__() self.emb_dim = emb_dim self.num_nodetypes = num_nodetypes self.num_nodeattributes = num_nodeattributes self.max_depth = max_depth self.edge_dim = edge_dim self.dtype = dtype def __call__(self, graph: jraph.GraphsTuple, depth: int, *args, **kwargs): x = graph.nodes type_encoder = hk.get_parameter( 'type_encoder', shape=[self.num_nodetypes, self.emb_dim], dtype=self.dtype, init=hk.initializers.RandomNormal()) attribute_encoder = hk.get_parameter( 'attribute_encoder', shape=[self.num_nodeattributes, self.emb_dim], dtype=self.dtype, init=hk.initializers.RandomNormal()) nodes = type_encoder[x[..., 0]] + attribute_encoder[x[..., 1]] if depth is not None: depth_encoder = hk.get_parameter( 'depth_encoder', shape=[self.max_depth + 1, self.emb_dim], dtype=self.dtype, init=hk.initializers.RandomNormal()) depth = jnp.where(depth > self.max_depth, self.max_depth, depth) nodes = nodes + depth_encoder[depth[..., 0]] edges = hk.Linear(self.edge_dim, with_bias=False)(graph.edges) graph = graph._replace(nodes=nodes, edges=edges) return graph def get_vocab_mapping(seq_list, num_vocab): """Adapted from OGB. Input: seq_list: a list of sequences num_vocab: vocabulary size Output: vocab2idx: A dictionary that maps vocabulary into integer index. Additioanlly, we also index '__UNK__' and '__EOS__' '__UNK__' : out-of-vocabulary term '__EOS__' : end-of-sentence idx2vocab: A list that maps idx to actual vocabulary. """ vocab_cnt = {} vocab_list = [] for seq in seq_list: for w in seq: if w in vocab_cnt: vocab_cnt[w] += 1 else: vocab_cnt[w] = 1 vocab_list.append(w) cnt_list = np.array([vocab_cnt[w] for w in vocab_list]) topvocab = np.argsort(-cnt_list, kind='stable')[:num_vocab] print('Coverage of top {} vocabulary:'.format(num_vocab)) print(float(np.sum(cnt_list[topvocab])) / np.sum(cnt_list)) vocab2idx = { vocab_list[vocab_idx]: idx for idx, vocab_idx in enumerate(topvocab) } idx2vocab = [vocab_list[vocab_idx] for vocab_idx in topvocab] # print(topvocab) # print([vocab_list[v] for v in topvocab[:10]]) # print([vocab_list[v] for v in topvocab[-10:]]) vocab2idx['__UNK__'] = num_vocab idx2vocab.append('__UNK__') vocab2idx['__EOS__'] = num_vocab + 1 idx2vocab.append('__EOS__') # test the correspondence between vocab2idx and idx2vocab for idx, vocab in enumerate(idx2vocab): assert (idx == vocab2idx[vocab]) # test that the idx of '__EOS__' is len(idx2vocab) - 1. # This fact will be used in decode_arr_to_seq, when finding __EOS__ assert (vocab2idx['__EOS__'] == len(idx2vocab) - 1) return vocab2idx, idx2vocab def augment_edge(edge_index, node_is_attributed, reverse: bool = True): """Adapted from OGB. Input: edge_index: senders and receivers stacked node_is_attributed: node attributes reverse: if true also reverse edges are added Output: data (edges are augmented in the following ways): data.edge_index: Added next-token edge. The inverse edges were also added. data.edge_attr (torch.Long): data.edge_attr[:,0]: whether it is AST edge (0) for next-token edge (1) data.edge_attr[:,1]: whether it is original direction (0) or inverse direction (1) """ ##### AST edge edge_index_ast = edge_index edge_attr_ast = np.zeros((edge_index_ast.shape[1], 2)) ##### Inverse AST edge if reverse: edge_index_ast_inverse = np.stack([edge_index_ast[1], edge_index_ast[0]], axis=0) edge_attr_ast_inverse = [ np.zeros((edge_index_ast_inverse.shape[1], 1)), np.ones((edge_index_ast_inverse.shape[1], 1)) ] edge_attr_ast_inverse = np.concatenate(edge_attr_ast_inverse, axis=1) ##### Next-token edge ## Obtain attributed nodes and get their indices in dfs order # attributed_node_idx = torch.where(data.node_is_attributed.view(-1,) == 1)[0] # attributed_node_idx_in_dfs_order = attributed_node_idx[torch.argsort(data.node_dfs_order[attributed_node_idx].view(-1,))] ## Since the nodes are already sorted in dfs ordering in our case, we can just do the following. attributed_node_idx_in_dfs_order = np.where(node_is_attributed[:, 0] == 1)[0] ## build next token edge # Given: attributed_node_idx_in_dfs_order # [1, 3, 4, 5, 8, 9, 12] # Output: # [[1, 3, 4, 5, 8, 9] # [3, 4, 5, 8, 9, 12] edge_index_nextoken = [ attributed_node_idx_in_dfs_order[:-1], attributed_node_idx_in_dfs_order[1:] ] edge_index_nextoken = np.stack(edge_index_nextoken, axis=0) edge_attr_nextoken = [ np.ones((edge_index_nextoken.shape[1], 1)), np.zeros((edge_index_nextoken.shape[1], 1)) ] edge_attr_nextoken = np.concatenate(edge_attr_nextoken, axis=1) ##### Inverse next-token edge if reverse: edge_index_nextoken_inverse = np.stack( [edge_index_nextoken[1], edge_index_nextoken[0]], axis=0) edge_attr_nextoken_inverse = np.ones((edge_index_nextoken.shape[1], 2)) edge_index = [ edge_index_ast, edge_index_ast_inverse, edge_index_nextoken, edge_index_nextoken_inverse ] edge_index = np.concatenate(edge_index, axis=1) edge_attr = [ edge_attr_ast, edge_attr_ast_inverse, edge_attr_nextoken, edge_attr_nextoken_inverse ] edge_attr = np.concatenate(edge_attr, axis=0) else: edge_index = np.concatenate([edge_index_ast, edge_index_nextoken], axis=1) edge_attr = np.concatenate([edge_attr_ast, edge_attr_nextoken], axis=0) return edge_index, edge_attr def encode_y_to_arr(seq, vocab2idx, max_seq_len): """Adapted from OGB. Input: data: PyG graph object output: add y_arr to data """ y_arr = encode_seq_to_arr(seq, vocab2idx, max_seq_len) return y_arr def encode_seq_to_arr(seq, vocab2idx, max_seq_len): """Adapted from OGB. Input: seq: A list of words output: add y_arr (jnp.array) """ padded_seq = ( seq[:max_seq_len] + ['__EOS__'] * max(0, max_seq_len - len(seq))) augmented_seq = [ vocab2idx[w] if w in vocab2idx else vocab2idx['__UNK__'] for w in padded_seq ] return jnp.array(augmented_seq) def decode_arr_to_seq(arr, idx2vocab): """Adapted from OGB. Input: jnp.array 1d: y_arr Output: a sequence of words. IMPORTANT: we now filter for the unknown token to avoid inflating the FPs """ # find the position of __EOS__ (the last vocab in idx2vocab) eos_idx_list = jnp.nonzero(arr == len(idx2vocab) - 1)[0] if len(eos_idx_list) > 0: clippted_arr = arr[:jnp.min(eos_idx_list)] # find the smallest __EOS__ else: clippted_arr = arr # Otherwise the UNK tokens are counted as a False Positive! clippted_arr = clippted_arr[clippted_arr != len(idx2vocab) - 2] return list(map(lambda x: idx2vocab[x], clippted_arr))
digraph_transformer-main
ogb_utils.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A jaxline experiment for predicting the correctness of sorting networks or for graph property prediction on OGB Code2 dataset. https://ogb.stanford.edu/docs/graphprop/ """ import datetime import functools import os import threading import traceback from typing import Dict, NamedTuple, Optional, Tuple from absl import app from absl import flags from absl import logging import chex import dill import haiku as hk import jax import jax.numpy as jnp from jaxline import experiment from jaxline import platform from jaxline import utils as jutils import jraph import numpy as np from ogb.graphproppred import GraphPropPredDataset, Evaluator import optax import tensorflow as tf import tree # pylint: disable=g-bad-import-order import dataset_utils import models import ogb_utils from utils import tp_fn_fp, prec_rec_f1 try: import wandb except: wandb = None hk.experimental.profiler_name_scopes(enabled=True) jax.config.parse_flags_with_absl() FLAGS = flags.FLAGS class _Predictions(NamedTuple): predictions: np.ndarray indices: np.ndarray target: Optional[np.ndarray] def _sort_predictions_by_indices(predictions: _Predictions): sorted_order = np.argsort(predictions.indices) return _Predictions( predictions=predictions.predictions[sorted_order], indices=predictions.indices[sorted_order], target=(None if predictions.target is None else predictions.target[sorted_order])) def _disable_gpu_for_tf(): tf.config.set_visible_devices([], "GPU") # Hide local GPUs. os.environ["CUDA_VISIBLE_DEVICES"] = "" def maybe_get_first(xs): if jax.device_count() == 1: return xs return jutils.get_first(xs) def maybe_bcast_local_devices(xs): if jax.device_count() == 1: return xs return jutils.bcast_local_devices(xs) class Experiment(experiment.AbstractExperiment): """OGB Graph Property Prediction GraphNet experiment.""" # Holds a map from object properties that will be checkpointed to their name # within a checkpoint. Currently it is assumed that these are all sharded # device arrays. CHECKPOINT_ATTRS = { "_params": "params", "_opt_state": "opt_state", "_network_state": "network_state" } NON_BROADCAST_CHECKPOINT_ATTRS = { # Predictions are written by the evaluator and hence are # present only in 'best' ckpt. "_test_predictions": "test_predictions", "_valid_predictions": "valid_predictions", } def __init__(self, mode, init_rng, config): """Initializes experiment.""" super(Experiment, self).__init__(mode=mode, init_rng=init_rng) self.mode = mode self.init_rng = init_rng self.config = config self.dataset_config = config.dataset self._test_predictions: _Predictions = None self._valid_predictions: _Predictions = None if mode not in ("train", "eval", "train_eval_multithreaded"): raise ValueError(f"Invalid mode {mode}.") self.loss = None self.forward = None # Needed for checkpoint restore. self._params = None self._network_state = None self._opt_state = None # For eval on ogb self.ogb_targets = None self.ogb_evaluator = None # _ _ # | |_ _ __ __ _(_)_ __ # | __| "__/ _` | | "_ \ # | |_| | | (_| | | | | | # \__|_| \__,_|_|_| |_| # def _loss(self, *graph) -> chex.ArrayTree: assert self.mode == "train" graph = jraph.GraphsTuple(*graph) model_instance = models.get_model(self.config.dataset, self.config.pmap_axis, **self.config.model) loss, prediction = model_instance.loss(graph) target = graph.globals["target"] scalars = {"loss": loss.mean()} if self.dataset_config.num_classes > 0: prediction = jnp.argmax(prediction, axis=-1) if self.dataset_config.name.startswith("dist"): mask = target >= 0 else: target = target[..., 0, :] mask = jnp.ones_like(target, dtype=jnp.bool_) accuracy = ((prediction == target) & mask).sum() / mask.sum() scalars["accuracy"] = accuracy if self.dataset_config.num_classes == 2: scalars["tp"], scalars["fn"], scalars["fp"] = tp_fn_fp( prediction, target, mask) scalars["precision"], scalars["recall"], scalars["f1"] = prec_rec_f1( scalars["tp"], scalars["fn"], scalars["fp"] ) return loss.sum(), scalars def _grads_stats(self, grads: chex.ArrayTree, divisor=1) -> Dict[str, jnp.DeviceArray]: def stack(x: chex.ArrayTree) -> jnp.DeviceArray: return jnp.array(jax.tree_util.tree_leaves(x)) return { "gradient_mean": jnp.mean(stack(jax.tree_map(jnp.mean, grads))) / divisor, "gradient_absmean": jnp.mean(stack(jax.tree_map(lambda x: jnp.abs(x).mean(), grads))) / divisor, "gradient_min": jnp.min(stack(jax.tree_map(jnp.min, grads))) / divisor, "gradient_max": jnp.max(stack(jax.tree_map(jnp.max, grads))) / divisor, } def _update_parameters(self, params, network_state, opt_state, global_step, rng, graph): """Updates parameters.""" def get_loss(params, network_state, rng, *graph): (loss, scalars), network_state = self.loss.apply(params, network_state, rng, *graph) loss = loss.mean() return loss, (scalars, network_state) grad_loss_fn = jax.grad(get_loss, has_aux=True) out = grad_loss_fn(params, network_state, rng, *graph) grads, (scalars, network_state) = out if jax.device_count() > 1: grads = jax.lax.psum(grads, axis_name=self.config.pmap_axis) updates, opt_state = self.optimizer.update(grads, opt_state, params) params = optax.apply_updates(params, updates) scalars.update(self._grads_stats(grads, 1)) return params, network_state, opt_state, scalars def _train_init(self): self.loss = hk.transform_with_state(self._loss) self._train_input = jutils.py_prefetch( lambda: self._build_numpy_dataset_iterator("train"), buffer_size=5) init_stacked_graphs = next(self._train_input) if jax.device_count() > 1: init_key = jutils.bcast_local_devices(self.init_rng) p_init = jax.pmap(self.loss.init, axis_name=self.config.pmap_axis) else: init_key = self.init_rng p_init = self.loss.init self._params, self._network_state = p_init(init_key, *init_stacked_graphs) # Learning rate scheduling. lr_schedule = optax.warmup_cosine_decay_schedule( **self.config.optimizer.lr_schedule) # @optax.inject_hyperparams def build_optimizer(learning_rate, kwargs): optimizer = getattr(optax, self.config.optimizer.name)( learning_rate=learning_rate, **kwargs) if not self.config.optimizer.use_agc: return optimizer else: return optax.chain( optimizer, optax.adaptive_grad_clip(**self.config.optimizer.agc_kwargs), ) self.optimizer = build_optimizer(lr_schedule, self.config.optimizer.optimizer_kwargs) if self.config.optimizer.accumulate_gradient_k > 1: g_k = self.config.optimizer.accumulate_gradient_k self.optimizer = optax.MultiSteps( self.optimizer, use_grad_mean=False, every_k_schedule=g_k) if jax.device_count() > 1: self._opt_state = jax.pmap(self.optimizer.init)(self._params) self.update_parameters = jax.pmap( self._update_parameters, axis_name=self.config.pmap_axis, donate_argnums=(0, 1, 2)) else: self._opt_state = jax.jit(self.optimizer.init)(self._params) self.update_parameters = jax.jit( self._update_parameters, donate_argnums=(0, 1, 2)) def step(self, global_step, rng, **unused_args): """See base class.""" if self.loss is None: self._train_init() graph = next(self._train_input) if jax.device_count() == 1: rng = rng[0] out = self.update_parameters(self._params, self._network_state, self._opt_state, global_step, rng, graph) (self._params, self._network_state, self._opt_state, scalars) = out scalars = maybe_get_first(scalars) scalars = jax.tree_map(lambda x: x.item(), scalars) scalars["local_device_count"] = jax.local_device_count() scalars["device_count"] = jax.device_count() scalars["process_count"] = jax.process_count() scalars["process_index"] = jax.process_index() return scalars def _build_numpy_dataset_iterator(self, split: str): """See base class.""" batch_size = ( self.config.training.batch_size if self.mode == "train" else self.config.evaluation.batch_size) max_number_of_instances = -1 if split != "train": max_number_of_instances = self.config.evaluation.max_number_of_instances path = os.path.join(self.config.data_root, self.dataset_config.path) data_generator = functools.partial(dataset_utils.dataset_generator, path, split) example = next(data_generator()) signature_from_example = tree.map_structure(_numpy_to_tensor_spec, example) dataset = tf.data.Dataset.from_generator( data_generator, output_signature=signature_from_example) return dataset_utils.build_dataset_iterator( self.dataset_config, dataset, batch_size=batch_size, debug=self.config.debug, is_training=self.mode == "train", posenc_config=self.config.model.posenc_config, max_number_of_instances=max_number_of_instances, **self.config.dataset_config) # _ # _____ ____ _| | # / _ \ \ / / _` | | # | __/\ V / (_| | | # \___| \_/ \__,_|_| # def _forward(self, *graph) -> Tuple[np.ndarray, np.ndarray]: assert "eval" in self.mode graph = jraph.GraphsTuple(*graph) model_instance = models.get_model(self.dataset_config, self.config.pmap_axis, **self.config.model) loss, prediction = model_instance.loss(graph, is_training=False) return loss, prediction def _eval_init(self): self.forward = hk.transform_with_state(self._forward) self.eval_apply = jax.jit(self.forward.apply) def _ogb_performance_metrics(self, loss: np.ndarray, prediction: np.ndarray, target: np.ndarray, target_raw: np.ndarray): """Creates unnormalised values for accumulation.""" prediction_ = np.argmax(prediction, axis=-1) accuracy = prediction_ == target values = {"accuracy": accuracy.sum(), "loss": loss.sum()} counts = {"accuracy": accuracy.size, "loss": loss.size} scalars = {"values": values, "counts": counts} if self.dataset_config.idx2vocab is None: meta = np.load(os.path.join(self.config.data_root, self.config.dataset.path, 'meta.npz'), allow_pickle=True)['data'].item() self.dataset_config.idx2vocab = meta['idx2vocab'] self.dataset_config.vocab2idx = meta['vocab2idx'] arr_to_seq = functools.partial( ogb_utils.decode_arr_to_seq, idx2vocab=self.dataset_config.idx2vocab) seq_pred = [arr_to_seq(seq) for seq in prediction_] seq_ref = [[el for el in seq if el] for seq in target_raw[:, 0].astype("U")] return scalars, seq_ref, seq_pred def _sn_performance_metrics(self, loss: np.ndarray, prediction: np.ndarray, target: np.ndarray, seq_len: int): """Creates unnormalised values for accumulation.""" prediction_ = np.argmax(prediction, axis=-1) target = target[..., 0, :] accuracy = prediction_ == target accuracy_sum = accuracy.sum() values = { "accuracy": accuracy_sum, f"accuracy_{seq_len}": accuracy_sum, "loss": loss.sum() } tp, fn, fp = tp_fn_fp(prediction_, target) values["tp"] = values[f"tp_{seq_len}"] = tp values["fn"] = values[f"fn_{seq_len}"] = fn values["fp"] = values[f"fp_{seq_len}"] = fp counts = { "tp": 0, "fn": 0, "fp": 0, f"tp_{seq_len}": 0, f"fn_{seq_len}": 0, f"fp_{seq_len}": 0, "accuracy": accuracy.size, f"accuracy_{seq_len}": accuracy.size, "loss": loss.size } scalars = {"values": values, "counts": counts} return scalars, target, [] def _dist_performance_metrics(self, loss: np.ndarray, prediction: np.ndarray, target: np.ndarray, skip=True): """Creates unnormalised values for accumulation.""" if skip: return {"values": {}, "counts": {}}, target, loss mask = target >= 0 if self.dataset_config.num_classes > 0: prediction_ = np.argmax(prediction, axis=-1) accuracy = (prediction_ == target) & mask accuracy_sum = accuracy.sum() values = {"loss": loss.sum(), "accuracy": accuracy_sum} values["tp"], values["fn"], values["fp"] = tp_fn_fp( prediction_, target, mask) counts = { "tp": 0, "fn": 0, "fp": 0, "loss": loss.size, "accuracy": mask.sum(), } nb_nodes = mask[..., 0].sum(-1) + 1 for nb in np.unique(nb_nodes): inst_mask = nb_nodes == nb values[f"loss_{nb}"] = loss[inst_mask].sum() values[f"accuracy_{nb}"] = accuracy[inst_mask].sum() values[f"tp_{nb}"], values[f"fn_{nb}"], values[f"fp_{nb}"] = tp_fn_fp( prediction_[inst_mask], target[inst_mask], mask[inst_mask]) counts.update({ f"tp_{nb}": 0, f"fn_{nb}": 0, f"fp_{nb}": 0, f"loss_{nb}": inst_mask.sum(), f"accuracy_{nb}": mask[inst_mask].sum(), }) else: values = { "loss": loss.sum(), } counts = { "loss": loss.size, } nb_nodes = mask[..., 0].sum(-1) + 1 for nb in np.unique(nb_nodes): inst_mask = nb_nodes == nb values.update({ f"loss_{nb}": loss[inst_mask].sum(), }) counts.update({ f"loss_{nb}": inst_mask.sum(), }) scalars = {"values": values, "counts": counts} return scalars, target, [] # return scalars, target.flatten(), prediction[..., 0].flatten() def _get_prediction(self, params, state, rng, graph) -> Tuple[np.ndarray, np.ndarray]: """Returns predictions for all the graphs in the dataset split.""" model_output, _ = self.eval_apply(params, state, rng, *graph) return model_output def _sum_agg_two_level_struct_with_default(self, structure, default=0): """Two level version of `tree.map_structure(lambda *l: sum(l), *all_scalars)` that handles missing keys. """ accum = {} for element in structure: for ckey, container in element.items(): if ckey not in accum: accum[ckey] = {} for vkey, values in container.items(): if vkey not in accum[ckey]: accum[ckey][vkey] = default accum[ckey][vkey] += values return accum def _get_predictions(self, params, state, rng, m2_offest, m1_offset, split): graph_iterator = jutils.py_prefetch( lambda: self._build_numpy_dataset_iterator(split), buffer_size=5) all_scalars = [] all_seq_refs = [] all_seq_preds = [] predictions = [] graph_indices = [] for i, graph in enumerate(graph_iterator): # Since jax does not support strings we cannot pass it to the model target_raw = None if "target_raw" in graph.globals: target_raw = graph.globals["target_raw"] del graph.globals["target_raw"] loss, prediction = self._get_prediction(params, state, rng, graph) if self.dataset_config.num_classes > 0: prediction = jax.nn.softmax(prediction, axis=-1) prediction = prediction.at[..., -2].add(-m2_offest) prediction = prediction.at[..., -1].add(-m1_offset) if "target" in graph.globals and not jnp.isnan( graph.globals["target"]).any(): if self.dataset_config.name.startswith("dist"): scalars, seq_ref, seq_pred = self._dist_performance_metrics( loss, prediction, graph.globals["target"]) elif self.dataset_config.name.startswith("sn"): scalars, seq_ref, seq_pred = self._sn_performance_metrics( loss, prediction, graph.globals["target"], int(graph.nodes["node_feat"][..., 1:3].max().item()) + 1) else: scalars, seq_ref, seq_pred = self._ogb_performance_metrics( loss, prediction, graph.globals["target"][..., 0, :], target_raw) all_scalars.append(scalars) all_seq_refs.extend(seq_ref) all_seq_preds.extend(seq_pred) predictions.append(prediction) graph_indices.append(graph.globals["graph_index"][:, 0]) if i % 50 == 0: logging.info("Generated predictions for %d batches so far", i + 1) if "dist" in self.dataset_config.name: with jax.default_device(jax.devices("cpu")[0]): all_scalars = [ self._dist_performance_metrics( np.stack(all_seq_preds), np.concatenate(predictions), np.stack(all_seq_refs), skip=False)[0] ] target = None if isinstance(all_seq_refs[0], jnp.ndarray): target = np.stack(all_seq_refs) predictions = _sort_predictions_by_indices( _Predictions(predictions=np.concatenate(predictions), indices=np.concatenate(graph_indices), target=target)) if all_scalars: # Sum over graphs in the dataset. accum_scalars = self._sum_agg_two_level_struct_with_default(all_scalars) scalars = tree.map_structure(lambda x, y: x / max(y, 1), accum_scalars["values"], accum_scalars["counts"]) if "ogbg-code2" in self.dataset_config.name: if self.ogb_targets is None: ds = GraphPropPredDataset("ogbg-code2", root=self.config.data_root) self.ogb_targets = {} for split_ in ["valid", "test"]: self.ogb_targets[split_] = { id_: ds[id_][1] for id_ in ds.get_idx_split()[split_]} if self.ogb_evaluator is None: self.ogb_evaluator = Evaluator("ogbg-code2") # De-bias filtering out large graphs (> 1023 nodes) indices = np.concatenate(graph_indices) seq_pred = { id_: prediction for id_, prediction in zip(indices, all_seq_preds) } seq_pred = [seq_pred[id_] if id_ in seq_pred else [] for id_ in self.ogb_targets[split].keys()] scalars.update( self.ogb_evaluator.eval({ "seq_ref": list(self.ogb_targets[split].values()), "seq_pred": seq_pred })) elif (("dist" in self.dataset_config.name and self.dataset_config.num_classes == 2) or self.dataset_config.name.startswith("sn")): scalars["precision"], scalars["recall"], scalars["f1"] = prec_rec_f1( scalars["tp"], scalars["fn"], scalars["fp"] ) for nb in np.unique([ int(k.split('_')[-1]) for k in scalars.keys() if '_' in k]): prec_rec_f1_ = prec_rec_f1( scalars[f"tp_{nb}"], scalars[f"fn_{nb}"], scalars[f"fp_{nb}"] ) scalars.update({ f"precision_{nb}": prec_rec_f1_[0], f"recall_{nb}": prec_rec_f1_[1], f"f1_{nb}": prec_rec_f1_[2] }) elif ("dist" in self.dataset_config.name and self.dataset_config.num_classes < 0): with jax.default_device(jax.devices("cpu")[0]): scalars["rmse"] = jnp.sqrt(scalars["loss"]) for nb in np.unique([ int(k.split('_')[-1]) for k in scalars.keys() if '_' in k]): scalars[f"rmse_{nb}"] = jnp.sqrt(scalars[f"loss_{nb}"]) scalars["local_device_count"] = jax.local_device_count() scalars["device_count"] = jax.device_count() scalars["process_count"] = jax.process_count() scalars["process_index"] = jax.process_index() else: scalars = {} return predictions, scalars def evaluate(self, global_step, rng, **unused_kwargs): """See base class.""" if self.forward is None: self._eval_init() global_step = maybe_get_first(global_step).item() params = maybe_get_first(self._params) state = maybe_get_first(self._network_state) if rng.ndim == 2: rng = rng[0] params = jax.tree_map(lambda x: x.copy(), params) m2_offset = self.config.evaluation.unk_offset m1_offset = self.config.evaluation.eos_offset self._valid_predictions, scalars = self._get_predictions( params, state, rng, m2_offset, m1_offset, "valid") scalars["num_valid_predictions"] = len(self._valid_predictions.predictions) if self.config.evaluation.eval_also_on_test: self._test_predictions, test_scalars = self._get_predictions( params, state, rng, m2_offset, m1_offset, "test") scalars["num_test_predictions"] = len(self._test_predictions.predictions) scalars.update({f"test_{k}": v for k, v in test_scalars.items()}) scalars = jax.tree_map( lambda x: x.item() if isinstance(x, jnp.ndarray) else x, scalars) logging.info("evaluate() - global_step: %d, %s", global_step, scalars) return scalars def _numpy_to_tensor_spec(arr: np.ndarray) -> tf.TensorSpec: if not isinstance(arr, np.ndarray) and not isinstance(arr, jnp.ndarray): return tf.TensorSpec([], dtype=tf.int32 if isinstance(arr, int) else tf.float32) elif arr.shape: return tf.TensorSpec((None,) + arr.shape[1:], arr.dtype) else: return tf.TensorSpec([], arr.dtype) def _get_step_date_label(global_step: int): # Date removing microseconds. date_str = datetime.datetime.now().isoformat().split(".")[0] return f"step_{global_step}_{date_str}" def _restore_state_to_in_memory_checkpointer(restore_path): """Initializes experiment state from a checkpoint.""" # Load pretrained experiment state. python_state_path = os.path.join(restore_path, "checkpoint.dill") with open(python_state_path, "rb") as f: pretrained_state = dill.load(f) logging.info("Restored checkpoint from %s", python_state_path) # Assign state to a dummy experiment instance for the in-memory checkpointer, # broadcasting to devices. dummy_experiment = Experiment( mode="train", init_rng=0, config=FLAGS.config.experiment_kwargs.config) for attribute, key in Experiment.CHECKPOINT_ATTRS.items(): setattr(dummy_experiment, attribute, maybe_bcast_local_devices(pretrained_state[key])) jaxline_state = dict( global_step=pretrained_state["global_step"], experiment_module=dummy_experiment) snapshot = jutils.SnapshotNT(0, jaxline_state) # Finally, seed the jaxline `jutils.InMemoryCheckpointer` global dict. jutils.GLOBAL_CHECKPOINT_DICT["latest"] = jutils.CheckpointNT( threading.local(), [snapshot]) def _save_state_from_in_memory_checkpointer( save_path, experiment_class: experiment.AbstractExperiment): """Saves experiment state to a checkpoint.""" logging.info("Saving model.") for checkpoint_name, checkpoint in jutils.GLOBAL_CHECKPOINT_DICT.items(): if not checkpoint.history: logging.info('Nothing to save in "%s"', checkpoint_name) continue for entry in reversed(checkpoint.history): try: pickle_nest = entry.pickle_nest global_step = pickle_nest["global_step"] state_dict = {"global_step": global_step} for attribute, key in experiment_class.CHECKPOINT_ATTRS.items(): state_dict[key] = maybe_get_first( getattr(pickle_nest["experiment_module"], attribute)) save_dir = os.path.join(save_path, checkpoint_name, _get_step_date_label(global_step)) python_state_path = os.path.join(save_dir, "checkpoint.dill") os.makedirs(save_dir, exist_ok=True) with open(python_state_path, "wb") as f: dill.dump(state_dict, f) logging.info('Saved %s checkpoint to %s', checkpoint_name, python_state_path) break except Exception as e: print(e) def main(argv, experiment_class: experiment.AbstractExperiment): # Maybe restore a model. restore_path = FLAGS.config.restore_path if restore_path: _restore_state_to_in_memory_checkpointer(restore_path) # Maybe save a model. save_dir = os.path.join(FLAGS.config.checkpoint_dir, "models") os.makedirs(save_dir, exist_ok=True) if FLAGS.config.one_off_evaluate: # No need to save checkpoint in this case. def save_model_fn(): return None else: save_model_fn = functools.partial(_save_state_from_in_memory_checkpointer, save_dir, experiment_class) try: platform.main(experiment_class, argv) except Exception as e: logging.error(traceback.format_exc()) finally: save_model_fn() # Save at the end of training or in case of exception. if __name__ == "__main__": _disable_gpu_for_tf() flags.mark_flag_as_required("config") # pytype: disable=wrong-arg-types app.run(lambda argv: main(argv, Experiment))
digraph_transformer-main
experiment.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Misc utils covering helper function and positional encodings.""" import functools from typing import Optional, Tuple, Union import jax import jax.numpy as jnp import jraph import numba import numpy as np # set the threading layer before any parallel target compilation numba.config.THREADING_LAYER = 'safe' numba.set_num_threads(max(int(3 / 4 * numba.get_num_threads()), 1)) Tensor = Union[np.ndarray, jnp.DeviceArray] # Constant required for numerical reasons EPS = 1e-8 def tp_fn_fp(prediction, target, mask=None): if mask is None: mask = jnp.ones_like(target) tp = ((prediction == target) & (prediction == 1) & mask).sum() fn = ((prediction != target) & (prediction == 0) & mask).sum() fp = ((prediction != target) & (prediction == 1) & mask).sum() return tp, fn, fp def prec_rec_f1(tp, fn, fp): precision = tp / jnp.clip(tp + fp, a_min=1) recall = tp / jnp.clip(tp + fn, a_min=1) f1 = 2 * precision * recall / jnp.clip(precision + recall, a_min=1) return precision, recall, f1 def softmax_cross_entropy_loss( logits: Tensor, targets: Tensor, n_classes: int, only_punish_first_end_of_sequence_token: bool = False) -> jnp.DeviceArray: """Calculation of softmax loss for sequence of predictions/tokens.""" targets_one_hot = jax.nn.one_hot(targets, n_classes) logits = jax.nn.log_softmax(logits) elem_loss = -jnp.sum(targets_one_hot * logits, axis=-1) if not only_punish_first_end_of_sequence_token: return jnp.mean(elem_loss, axis=-1) mask = jnp.cumsum(targets == n_classes - 1, axis=-1) < 2 elem_loss *= mask return jnp.sum(elem_loss, axis=-1) / jnp.sum(mask, axis=-1) def count_edges(idx, n_nodes): segment_sum = functools.partial( jraph.segment_sum, data=jnp.ones(1, dtype=jnp.int32), num_segments=n_nodes) return jax.vmap(segment_sum)(segment_ids=idx) def dense_random_walk_matrix(graph: jraph.GraphsTuple, reverse: bool = False) -> Tensor: """Returns the dense random walk matrix `A D^(-1)`. Args: graph: the explicitly batched graph (i.e. nodes are of shape [b, n, d]). reverse: If True the the graph is reversed. Default False. Returns: tensor of shape [b, n, n] containing the random walk probabilities """ batch, n_nodes = graph.nodes.shape[:2] if reverse: senders = graph.receivers receivers = graph.senders else: senders = graph.senders receivers = graph.receivers deg = count_edges(senders, n_nodes) inv_deg = jnp.where(deg < 1, 0., 1. / deg) adj = jnp.zeros((batch, n_nodes, n_nodes), dtype=jnp.float32) assign = jax.vmap(lambda a, s, r, d: a.at[s, r].add(d[s])) adj = assign(adj, senders, receivers, inv_deg) # Once implemented swap next line with: adj = jnp.fill_diagonal(adj, deg < 1) adj = adj.at[:, jnp.arange(n_nodes), jnp.arange(n_nodes)].add(deg < 1) return adj def k_step_random_walk(graph: jraph.GraphsTuple, k: int = 3, ppr_restart_p: Optional[float] = None, reverse: bool = False) -> Tensor: """Returns the random walk matrices for k' in {1, ..., k} `I (A D^(-1))^k'`. Args: graph: the explicitly batched graph (i.e. nodes are of shape [b, n, d]). k: number of random walk steps. ppr_restart_p: if set, also the ppr is returned at `k + 1`-th dimension. reverse: If True the the graph is reversed. Default False. Returns: tensor of shape [b, n, n, k {+1}] containing the random walk probabilities """ transition_probabilities = dense_random_walk_matrix(graph, reverse) rw_probabilities = transition_probabilities output = [rw_probabilities] for _ in range(k - 1): rw_probabilities = rw_probabilities @ transition_probabilities output.append(rw_probabilities) if ppr_restart_p: output.append(exact_ppr_from_trans(transition_probabilities, ppr_restart_p)) output = jnp.stack(output, axis=-1) return output def exact_ppr(graph: jraph.GraphsTuple, restart_p: float = 0.2, reverse: bool = False) -> Tensor: """Calculates the personalized page rank via matrix inversion. Args: graph: the explicitly batched graph (i.e. nodes are of shape [b, n, d]). restart_p: the personalized page rank restart probability. Default 0.2. reverse: If True the the graph is reversed. Default False. Returns: tensor of shape [b, n, n] containing the random walk probabilities """ assert restart_p >= 0 and restart_p <= 1, 'Restart prob. must be in [0, 1]' transition_probabilities = dense_random_walk_matrix(graph, reverse) return exact_ppr_from_trans(transition_probabilities, restart_p) def exact_ppr_from_trans(transition_prob: Tensor, restart_p: float = 0.2) -> Tensor: """Calculates the personalized page rank via matrix inversion. Args: transition_prob: tensor of shape [b, n, n] containing transition probabilities. restart_p: the personalized page rank restart probability. Default 0.2. Returns: tensor of shape [b, n, n] containing the random walk probabilities """ n_nodes = transition_prob.shape[-1] rw_matrix = jnp.eye(n_nodes) + (restart_p - 1) * transition_prob return restart_p * jnp.linalg.inv(rw_matrix) def svd_encodings(graph: jraph.GraphsTuple, rank: int) -> Tensor: """SVD encodings following Hussain et al., Global Self-Attention as a Replacement for Graph Convolution, KDD 2022. Args: graph (jraph.GraphsTuple): to obtain the adjacency matrix. rank (int): for low rank approximation. Returns: Tensor: positional encodings. """ batch, n_nodes = graph.nodes.shape[:2] senders = graph.senders receivers = graph.receivers adj = jnp.zeros((batch, n_nodes, n_nodes), dtype=jnp.float32) assign = jax.vmap(lambda a, s, r, d: a.at[s, r].add(d[s])) adj = assign(adj, senders, receivers, jnp.ones_like(senders)) U, S, Vh = jax.lax.linalg.svd(adj) V = jnp.conjugate(jnp.transpose(Vh, axes=(0, 2, 1))) UV = jnp.stack((U, V), axis=-2) S = S[..., :rank] UV = UV[..., :rank] UV = UV * jnp.sqrt(S)[:, None, None, :] return UV.reshape(adj.shape[:-1] + (-1,)) # Necessary to work around numbas limitations with specifying axis in norm and # braodcasting in parallel loops. @numba.njit('float64[:, :](float64[:, :])', parallel=False) def _norm_2d_along_first_dim_and_broadcast(array): """Equivalent to `linalg.norm(array, axis=0)[None, :] * ones_like(array)`.""" output = np.zeros(array.shape, dtype=array.dtype) for i in numba.prange(array.shape[-1]): output[:, i] = np.linalg.norm(array[:, i]) return output # Necessary to work around numbas limitations with specifying axis in norm and # braodcasting in parallel loops. @numba.njit('float64[:, :](float64[:, :])', parallel=False) def _max_2d_along_first_dim_and_broadcast(array): """Equivalent to `array.max(0)[None, :] * ones_like(array)`.""" output = np.zeros(array.shape, dtype=array.dtype) for i in numba.prange(array.shape[-1]): output[:, i] = array[:, i].max() return output @numba.njit([ 'Tuple((float64[::1], complex128[:, :], complex128[:, ::1]))(int64[:], ' + 'int64[:], int64[:], int64, int64, int64, float64, b1, b1, b1, b1, b1)' ]) def eigv_magnetic_laplacian_numba( senders: np.ndarray, receivers: np.ndarray, n_node: np.ndarray, padded_nodes_size: int, k: int, k_excl: int, q: float, q_absolute: bool, norm_comps_sep: bool, l2_norm: bool, sign_rotate: bool, use_symmetric_norm: bool) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: """k *complex* eigenvectors of the smallest k eigenvectors of the magnetic laplacian. Args: senders: Origin of the edges of shape [m]. receivers: Target of the edges of shape [m]. n_node: array shape [2] padded_nodes_size: int the number of nodes including padding. k: Returns top k eigenvectors. k_excl: The top (trivial) eigenvalues / -vectors to exclude. q: Factor in magnetic laplacian. Default 0.25. q_absolute: If true `q` will be used, otherwise `q / m_imag / 2`. norm_comps_sep: If true first imaginary part is separately normalized. l2_norm: If true we use l2 normalization and otherwise the abs max value. sign_rotate: If true we decide on the sign based on max real values and rotate the imaginary part. use_symmetric_norm: symmetric (True) or row normalization (False). Returns: array of shape [<= k] containing the k eigenvalues. array of shape [n, <= k] containing the k eigenvectors. array of shape [n, n] the laplacian. """ # Handle -1 padding edges_padding_mask = senders >= 0 adj = np.zeros(int(padded_nodes_size * padded_nodes_size), dtype=np.float64) linear_index = receivers + (senders * padded_nodes_size).astype(senders.dtype) adj[linear_index] = edges_padding_mask.astype(adj.dtype) adj = adj.reshape(padded_nodes_size, padded_nodes_size) # TODO(simongeisler): maybe also allow weighted matrices etc. adj = np.where(adj > 1, 1, adj) symmetric_adj = adj + adj.T symmetric_adj = np.where((adj != 0) & (adj.T != 0), symmetric_adj / 2, symmetric_adj) symmetric_deg = symmetric_adj.sum(-2) if not q_absolute: m_imag = (adj != adj.T).sum() / 2 m_imag = min(m_imag, n_node[0]) q = q / (m_imag if m_imag > 0 else 1) theta = 1j * 2 * np.pi * q * (adj - adj.T) if use_symmetric_norm: inv_deg = np.zeros((padded_nodes_size, padded_nodes_size), dtype=np.float64) np.fill_diagonal( inv_deg, 1. / np.sqrt(np.where(symmetric_deg < 1, 1, symmetric_deg))) eye = np.eye(padded_nodes_size) inv_deg = inv_deg.astype(adj.dtype) deg = inv_deg @ symmetric_adj.astype(adj.dtype) @ inv_deg laplacian = eye - deg * np.exp(theta) mask = np.arange(padded_nodes_size) < n_node[:1] mask = np.expand_dims(mask, -1) & np.expand_dims(mask, 0) laplacian = mask.astype(adj.dtype) * laplacian else: deg = np.zeros((padded_nodes_size, padded_nodes_size), dtype=np.float64) np.fill_diagonal(deg, symmetric_deg) laplacian = deg - symmetric_adj * np.exp(theta) if q == 0: laplacian_r = np.real(laplacian) assert (laplacian_r == laplacian_r.T).all() # Avoid rounding errors of any sort eigenvalues, eigenvectors = np.linalg.eigh(laplacian_r) eigenvalues = eigenvalues[..., k_excl:k_excl + k] eigenvectors = eigenvectors[..., :, k_excl:k_excl + k] return eigenvalues.real, eigenvectors.astype(np.complex128), laplacian eigenvalues, eigenvectors = np.linalg.eigh(laplacian) eigenvalues = eigenvalues[..., k_excl:k_excl + k] eigenvectors = eigenvectors[..., k_excl:k_excl + k] if sign_rotate: sign = np.zeros((eigenvectors.shape[1],), dtype=eigenvectors.dtype) for i in range(eigenvectors.shape[1]): argmax_i = np.abs(eigenvectors[:, i].real).argmax() sign[i] = np.sign(eigenvectors[argmax_i, i].real) eigenvectors = np.expand_dims(sign, 0) * eigenvectors argmax_imag_0 = eigenvectors[:, 0].imag.argmax() rotation = np.angle(eigenvectors[argmax_imag_0:argmax_imag_0 + 1]) eigenvectors = eigenvectors * np.exp(-1j * rotation) if norm_comps_sep: # Only scale eigenvectors that seems to be more than numerical errors eps = EPS / np.sqrt(eigenvectors.shape[0]) if l2_norm: scale_real = _norm_2d_along_first_dim_and_broadcast(np.real(eigenvectors)) real = np.real(eigenvectors) / scale_real else: scale_real = _max_2d_along_first_dim_and_broadcast( np.abs(np.real(eigenvectors))) real = np.real(eigenvectors) / scale_real scale_mask = np.abs( np.real(eigenvectors)).sum(0) / eigenvectors.shape[0] > eps eigenvectors[:, scale_mask] = ( real[:, scale_mask] + 1j * np.imag(eigenvectors)[:, scale_mask]) if l2_norm: scale_imag = _norm_2d_along_first_dim_and_broadcast(np.imag(eigenvectors)) imag = np.imag(eigenvectors) / scale_imag else: scale_imag = _max_2d_along_first_dim_and_broadcast( np.abs(np.imag(eigenvectors))) imag = np.imag(eigenvectors) / scale_imag scale_mask = np.abs( np.imag(eigenvectors)).sum(0) / eigenvectors.shape[0] > eps eigenvectors[:, scale_mask] = ( np.real(eigenvectors)[:, scale_mask] + 1j * imag[:, scale_mask]) elif not l2_norm: scale = _max_2d_along_first_dim_and_broadcast(np.absolute(eigenvectors)) eigenvectors = eigenvectors / scale return eigenvalues.real, eigenvectors, laplacian _eigv_magnetic_laplacian_numba_parallel_signature = [ 'Tuple((float64[:, :], complex128[:, :, :]))(int64[:, :], ' + 'int64[:, :], int64[:, :], int64, int64, int64, float64, b1, b1, b1, b1, b1)' ] @numba.njit(_eigv_magnetic_laplacian_numba_parallel_signature, parallel=True) def eigv_magnetic_laplacian_numba_parallel( senders: np.ndarray, receivers: np.ndarray, n_node: np.ndarray, batch_size: int, k: int, k_excl: int, q: float, q_absolute: bool, norm_comps_sep: bool, l2_norm: bool, sign_rotate: bool, use_symmetric_norm: bool, # ) -> Tuple[List[np.ndarray], List[np.ndarray]]: ) -> Tuple[np.ndarray, np.ndarray]: """k *complex* eigenvectors of the smallest k eigenvectors of the magnetic laplacian. Args: senders: Origin of the edges of shape [b, m]. receivers: Target of the edges of shape [b, m]. n_node: array shape [b, 2] batch_size: batch size b. k: Returns top k eigenvectors. k_excl: The top (trivial) eigenvalues / -vectors to exclude. q: Factor in magnetic laplacian. Default 0.25. q_absolute: If true `q` will be used, otherwise `q / m_imag / 2`. norm_comps_sep: If true first imaginary part is separately normalized. l2_norm: If true we use l2 normalization and otherwise the abs max value. Will be treated as false if `norm_comps_sep` is true. sign_rotate: If true we decide on the sign based on max real values and rotate the imaginary part. use_symmetric_norm: symmetric (True) or row normalization (False). Returns: list with arrays of shape [<= k] containing the k eigenvalues. list with arrays of shape [n_i, <= k] containing the k eigenvectors. """ n = n_node.sum(-1).max() eigenvalues = np.zeros((batch_size, k), dtype=np.float64) eigenvectors = np.zeros((batch_size, n, k), dtype=np.complex128) n_node_wo_padding = n_node[:, 0] padding_maks = senders >= 0 for i in numba.prange(0, batch_size, 1): eigenvalue, eigenvector, _ = eigv_magnetic_laplacian_numba( senders[i][padding_maks[i]], receivers[i][padding_maks[i]], n_node[i], padded_nodes_size=n_node_wo_padding[i], k=k, k_excl=k_excl, q=q, q_absolute=q_absolute, norm_comps_sep=norm_comps_sep, l2_norm=l2_norm, sign_rotate=sign_rotate, use_symmetric_norm=use_symmetric_norm) eigenvalues[i, :eigenvalue.shape[0]] = eigenvalue eigenvectors[i, :eigenvector.shape[0], :eigenvector.shape[1]] = eigenvector return eigenvalues, eigenvectors def eigv_magnetic_laplacian_numba_batch( senders: np.ndarray, receivers: np.ndarray, n_node: np.ndarray, k: int = 10, k_excl: int = 1, q: float = 0.25, q_absolute: bool = True, norm_comps_sep: bool = False, l2_norm: bool = True, sign_rotate: bool = False, use_symmetric_norm: bool = False, ) -> Tuple[np.ndarray, np.ndarray]: """k *complex* eigenvectors of the smallest k eigenvectors of the magnetic laplacian. Args: senders: Origin of the edges of shape [m]. receivers: Target of the edges of shape [m]. n_node: array shape [b, 2] k: Returns top k eigenvectors. k_excl: The top (trivial) eigenvalues / -vectors to exclude. q: Factor in magnetic laplacian. Default 0.25. q_absolute: If true `q` will be used, otherwise `q / n_node`. norm_comps_sep: If true real and imaginary part are separately normalized. l2_norm: If true we use l2 normalization and otherwise the abs max value. sign_rotate: If true we decide on the sign based on max real values and rotate the imaginary part. use_symmetric_norm: symmetric (True) or row normalization (False). Returns: array of shape [k] containing the k eigenvalues. array of shape [n, k] containing the k eigenvectors. """ eigenvalues, eigenvectors = eigv_magnetic_laplacian_numba_parallel( senders.astype(np.int64), receivers.astype(np.int64), n_node.astype(np.int64), senders.shape[0], int(k), int(k_excl), float(q), q_absolute, norm_comps_sep, l2_norm, sign_rotate, use_symmetric_norm) return eigenvalues, eigenvectors def sinusoid_position_encoding( pos_seq: Tensor, hidden_size: int, max_timescale: float = 1e4, min_timescale: float = 2., ) -> Tensor: """Creates sinusoidal encodings. Args: pos_seq: Tensor with positional ids. hidden_size: `int` dimension of the positional encoding vectors, D max_timescale: `int` maximum timescale for the frequency min_timescale: `int` minimum timescale for the frequency Returns: An array of shape [L, D] """ freqs = np.arange(0, hidden_size, min_timescale) inv_freq = max_timescale**(-freqs / hidden_size) sinusoid_inp = jnp.einsum('bi,j->bij', pos_seq, inv_freq) pos_emb = jnp.concatenate( [jnp.sin(sinusoid_inp), jnp.cos(sinusoid_inp)], axis=-1) return pos_emb
digraph_transformer-main
utils.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Mostly standard comnponents or adaptions to mimic PyTorch's behaviour.""" import dataclasses from typing import Callable, Optional, Union import warnings import haiku as hk import jax import jax.numpy as jnp import jraph import numpy as np Tensor = Union[np.ndarray, jnp.DeviceArray] @dataclasses.dataclass class CallArgs: """Common arguments to __call__ for most modules.""" # Whether this is training or inference. is_training: bool # Whether local stats are used for batch norm when is_training=False. test_local_stats: bool = False class ExponentialMovingAverage(hk.Module): """Maintains an exponential moving average. This uses the Adam debiasing procedure. See https://arxiv.org/pdf/1412.6980.pdf for details. """ def __init__( self, decay, zero_debias: bool = True, warmup_length: int = 0, init_value: float = 0, name: Optional[str] = None, ): """Initializes an ExponentialMovingAverage module. Args: decay: The chosen decay. Must in ``[0, 1)``. Values close to 1 result in slow decay; values close to ``0`` result in fast decay. zero_debias: Whether to run with zero-debiasing. warmup_length: A positive integer, EMA has no effect until the internal counter has reached `warmup_length` at which point the initial value for the decaying average is initialized to the input value after `warmup_length` iterations. init_value: Value to warm start the moving average. name: The name of the module. """ super().__init__(name=name) self.decay = decay self.warmup_length = warmup_length self.zero_debias = zero_debias self.init_value = init_value self.init = hk.initializers.Constant(init_value) if warmup_length < 0: raise ValueError( f'`warmup_length` is {warmup_length}, but should be non-negative.') if warmup_length and zero_debias: raise ValueError( 'Zero debiasing does not make sense when warming up the value of the ' 'average to an initial value. Set zero_debias=False if setting ' 'warmup_length to a non-zero value.') if init_value != 0 and zero_debias: raise ValueError( 'Do not set an inti value and zero_debias at the same time') def initialize(self, shape, dtype=jnp.float32): """If uninitialized sets the average to ``zeros`` of the given shape/dtype. """ if hasattr(shape, 'shape'): warnings.warn( 'Passing a value into initialize instead of a shape/dtype ' 'is deprecated. Update your code to use: ' '`ema.initialize(v.shape, v.dtype)`.', category=DeprecationWarning) shape, dtype = shape.shape, shape.dtype hk.get_state('hidden', shape, dtype, init=self.init) hk.get_state('average', shape, dtype, init=self.init) def __call__( self, value: jnp.ndarray, update_stats: bool = True, ) -> jnp.ndarray: """Updates the EMA and returns the new value. Args: value: The array-like object for which you would like to perform an exponential decay on. update_stats: A Boolean, whether to update the internal state of this object to reflect the input value. When `update_stats` is False the internal stats will remain unchanged. Returns: The exponentially weighted average of the input value. """ if not isinstance(value, jnp.ndarray): value = jnp.asarray(value) counter = hk.get_state( 'counter', (), jnp.int32, init=hk.initializers.Constant(-self.warmup_length)) counter = counter + 1 decay = jax.lax.convert_element_type(self.decay, value.dtype) if self.warmup_length > 0: decay = jax.lax.select(counter <= 0, 0.0, decay) one = jnp.ones([], value.dtype) hidden = hk.get_state('hidden', value.shape, value.dtype, init=self.init) hidden = hidden * decay + value * (one - decay) average = hidden if self.zero_debias: average /= (one - jnp.power(decay, counter)) if update_stats: hk.set_state('counter', counter) hk.set_state('hidden', hidden) hk.set_state('average', average) return average @property def average(self): return hk.get_state('average') class LayerNorm(hk.LayerNorm): """Wrapper to allow for same interface as BatchNorm.""" def __init__(self, **kwargs): kwargs.setdefault('create_scale', True) kwargs.setdefault('create_offset', True) super().__init__(**kwargs) def __call__(self, x: Tensor, call_args: Optional[CallArgs] = None, mask: Optional[Tensor] = None) -> Tensor: return super().__call__(x) class BatchNorm(hk.BatchNorm): """Makes a BatchNorm Module that can be called with CallArgs.""" def __init__(self, create_scale=False, create_offset=True, decay_rate=0.999, eps: float = 1e-3, initialize_running_stats: bool = True, name: Optional[str] = None, **kwargs): super().__init__( create_scale=create_scale, create_offset=create_offset, decay_rate=decay_rate, eps=eps, name=name, **kwargs) if initialize_running_stats: self.mean_ema = ExponentialMovingAverage( decay_rate, name='mean_ema', zero_debias=False, init_value=0., warmup_length=0) self.var_ema = ExponentialMovingAverage( decay_rate, name='var_ema', zero_debias=False, init_value=1., warmup_length=0) def __call__(self, x: Tensor, call_args: CallArgs, mask: Optional[Tensor] = None): return self.forward( x, is_training=call_args.is_training, test_local_stats=call_args.test_local_stats, mask=mask) def forward( self, inputs: Tensor, is_training: bool, mask: Optional[Tensor] = None, test_local_stats: bool = False, scale: Optional[Tensor] = None, offset: Optional[Tensor] = None, ) -> Tensor: """Computes the normalized version of the input with optional masking. Args: inputs: An array, where the data format is ``[..., C]``. is_training: Whether this is during training. mask: If provided, mask must broadcast to inputs where `false` elements are masked out for calculating the running statistics. test_local_stats: Whether local stats are used when is_training=False. scale: An array up to n-D. The shape of this tensor must be broadcastable to the shape of ``inputs``. This is the scale applied to the normalized inputs. This cannot be passed in if the module was constructed with ``create_scale=True``. offset: An array up to n-D. The shape of this tensor must be broadcastable to the shape of ``inputs``. This is the offset applied to the normalized inputs. This cannot be passed in if the module was constructed with ``create_offset=True``. Returns: The array, normalized across all but the last dimension. """ if self.create_scale and scale is not None: raise ValueError( 'Cannot pass `scale` at call time if `create_scale=True`.') if self.create_offset and offset is not None: raise ValueError( 'Cannot pass `offset` at call time if `create_offset=True`.') channel_index = self.channel_index if channel_index < 0: channel_index += inputs.ndim if self.axis is not None: axis = self.axis else: axis = [i for i in range(inputs.ndim) if i != channel_index] if is_training or test_local_stats: if mask is None: mask = jnp.ones_like(inputs) n_elements = jnp.sum(mask, axis, keepdims=True) inputs *= mask isum = jnp.sum(inputs, axis, keepdims=True) isum_of_squares = jnp.sum(jnp.square(inputs), axis, keepdims=True) if self.cross_replica_axis and jax.device_count() > 1: isum = jax.lax.psum( isum, axis_name=self.cross_replica_axis, axis_index_groups=self.cross_replica_axis_index_groups) isum_of_squares = jax.lax.psum( isum_of_squares, axis_name=self.cross_replica_axis, axis_index_groups=self.cross_replica_axis_index_groups) n_elements = jax.lax.psum( n_elements, axis_name=self.cross_replica_axis, axis_index_groups=self.cross_replica_axis_index_groups) mean = isum / n_elements mean_of_squares = isum_of_squares / n_elements var = mean_of_squares - jnp.square(mean) else: mean = self.mean_ema.average.astype(inputs.dtype) var = self.var_ema.average.astype(inputs.dtype) if is_training: self.mean_ema(mean) self.var_ema(var) w_shape = [1 if i in axis else inputs.shape[i] for i in range(inputs.ndim)] w_dtype = inputs.dtype if self.create_scale: scale = hk.get_parameter('scale', w_shape, w_dtype, self.scale_init) elif scale is None: scale = np.ones([], dtype=w_dtype) if self.create_offset: offset = hk.get_parameter('offset', w_shape, w_dtype, self.offset_init) elif offset is None: offset = np.zeros([], dtype=w_dtype) eps = jax.lax.convert_element_type(self.eps, var.dtype) inv = jax.lax.rsqrt(var + eps) scaled = scale * (inputs - mean) * inv + offset # It is technically not required to enforce zeros in the output scaled *= mask return scaled UpdateFn = Callable[[jraph.NodeFeatures], jraph.NodeFeatures] class GraphConvolution(hk.Module): """Returns a method that applies a Graph Convolution layer. This implementation also allows for edge features like the OGB sample code. Graph Convolutional layer as in https://arxiv.org/abs/1609.02907, NOTE: This implementation does not add an activation after aggregation. If you are stacking layers, you may want to add an activation between each layer. Attributes: update_node_fn: function used to update the nodes. In the paper a single layer MLP is used. update_edge_fn: function used to aggregates the edge features. aggregate_nodes_fn: function used to aggregates the sender nodes. activation: to be applied. Default is relu. add_self_edges: whether to add self edges to nodes in the graph as in the paper definition of GCN. The number of graph.edges must match in either case Defaults to False. bidirectional: if True also messages in opposite edge direction are passed Returns: A method that applies a Graph Convolution layer. """ def __init__( self, forw_update_node_fn: UpdateFn, forw_update_edge_fn: UpdateFn, backw_update_node_fn: Optional[UpdateFn] = None, backw_update_edge_fn: Optional[UpdateFn] = None, aggregate_nodes_fn: jraph.AggregateEdgesToNodesFn = jraph.segment_sum, activation: Callable[[Tensor], Tensor] = jax.nn.relu, add_self_edges: bool = False, name: Optional[str] = None): super().__init__(name) self.forw_update_node_fn = forw_update_node_fn self.forw_update_edge_fn = forw_update_edge_fn self.backw_update_node_fn = backw_update_node_fn self.backw_update_edge_fn = backw_update_edge_fn self.aggregate_nodes_fn = aggregate_nodes_fn self.activation = activation self.add_self_edges = add_self_edges def __call__(self, graph: jraph.GraphsTuple): """Applies a Graph Convolution layer.""" orig_nodes, orig_edges, receivers, senders, _, _, _ = graph # Equivalent to jnp.sum(n_node), but jittable total_num_nodes = jax.tree_util.tree_leaves(orig_nodes)[0].shape[0] if self.add_self_edges: # We add self edges to the senders and receivers so that each node # includes itself in aggregation. # In principle, a `GraphsTuple` should partition by n_edge, but in # this case it is not required since a GCN is agnostic to whether # the `GraphsTuple` is a batch of graphs or a single large graph. conv_receivers = jnp.concatenate((receivers, jnp.arange(total_num_nodes)), axis=0) conv_senders = jnp.concatenate((senders, jnp.arange(total_num_nodes)), axis=0) else: conv_senders = senders conv_receivers = receivers # First pass nodes through the node updater. transf_nodes = self.forw_update_node_fn(orig_nodes) edges = self.forw_update_edge_fn(orig_edges) # Calculate the normalization values. def count_edges(x): return jraph.segment_sum( # pylint: disable=g-long-lambda jnp.ones_like(conv_senders), x, total_num_nodes) sender_degree = count_edges(conv_senders) + 1. receiver_degree = count_edges(conv_receivers) + 1. norm = (jax.lax.rsqrt(sender_degree)[conv_senders] * jax.lax.rsqrt(receiver_degree)[conv_receivers])[:, None] # Aggregate the pre normalized nodes. nodes = self.aggregate_nodes_fn( norm * self.activation(transf_nodes[conv_senders] + edges), conv_receivers, total_num_nodes) if self.backw_update_node_fn and self.backw_update_edge_fn: backw_nodes = self.backw_update_node_fn(orig_nodes) edges = self.backw_update_edge_fn(orig_edges) backw_nodes = self.aggregate_nodes_fn( norm * self.activation(transf_nodes[conv_receivers] + edges), conv_senders, total_num_nodes) nodes += backw_nodes root_emb = hk.get_parameter( 'root_emb', shape=[1, transf_nodes.shape[-1]], dtype=jnp.float32, init=hk.initializers.RandomNormal()).astype(transf_nodes.dtype) nodes += self.activation(transf_nodes + root_emb) / \ receiver_degree[:, None] # pylint: enable=g-long-lambda return graph._replace(nodes=self.activation(nodes)) class MLP(hk.Module): """A simple MLP implementation.""" def __init__(self, dim: int, activation=jax.nn.relu, n_layers: int = 2, with_norm: bool = True, final_activation: bool = True, name: Optional[str] = None): super().__init__(name=name) self.dim = dim self.activation = activation self.n_layers = n_layers self.with_norm = with_norm self.final_activation = final_activation def __call__(self, x: Tensor) -> Tensor: return mlp( x, dim=self.dim, activation=self.activation, n_layers=self.n_layers, with_norm=self.with_norm, final_activation=self.final_activation) def mlp(x: Tensor, dim: int, activation=jax.nn.relu, n_layers: int = 2, with_norm: bool = True, final_activation: bool = True, name: Optional[str] = None): """Simple MLP layer with LayerNorm. Args: x: tensor of shape [b, *]. dim: hidden and output dimensions, D. activation: a non-linearity. Default jax.nn.relu. n_layers: `int` number of layers. Default 2. with_norm: `bool` include LayerNorm. Default True. final_activation: `bool` include activation as last layer. Default True. name: name of the Sequential/MLP module. Returns: A tensor of shape [b, D] """ layers = [] for idx in range(n_layers): layers.append(hk.Linear(dim, name=f'{name}_linear{idx}' if name else None)) if with_norm: norm = LayerNorm( axis=-1, name=f'{name}_layer_norm{idx}' if name else None) layers.append(norm) layers.append(activation) if not final_activation: layers = layers[:-1] return hk.Sequential(layers, name=name)(x) class MultiHeadAttention(hk.Module): """Multi-headed attention (MHA) module. This module extends the haiku implementation by optional biases in the linear transformations and dropout_p on the attention matrix. Rough sketch: - Compute keys (K), queries (Q), and values (V) as projections of inputs. - Attention weights are computed as W = softmax(QK^T / sqrt(key_size)). - Output is another projection of WV^T. For more detail, see the original Transformer paper: "Attention is all you need" https://arxiv.org/abs/1706.03762. Glossary of shapes: - T: Sequence length. - D: Vector (embedding) size. - H: Number of attention heads. """ def __init__( self, num_heads: int, key_size: int, w_init: Optional[hk.initializers.Initializer] = None, value_size: Optional[int] = None, model_size: Optional[int] = None, dropout_p: float = 0.2, with_bias: bool = False, re_im_separate_projection: bool = False, name: Optional[str] = None, ): """Initialises the module. Args: num_heads: Number of independent attention heads (H). key_size: The size of keys (K) and queries used for attention. w_init: Initialiser for weights in the linear map. value_size: Optional size of the value projection (V). If None, defaults to the key size (K). model_size: Optional size of the output embedding (D'). If None, defaults to the key size multiplied by the number of heads (K * H). dropout_p: dropout_p after softmax of attention matrix. with_bias: if false (default), the linear projects will not have a bias. re_im_separate_projection: if true real and imaginary components are projected without weight sharing. name: Optional name for this module. """ super().__init__(name=name) self.num_heads = num_heads self.key_size = key_size self.value_size = value_size or key_size self.model_size = model_size or key_size * num_heads self.dropout_p = dropout_p self.with_bias = with_bias self.re_im_separate_projection = re_im_separate_projection self.w_init = w_init def __call__( self, query: Tensor, key: Tensor, value: Tensor, is_training: bool, logit_offset: Optional[Tensor] = None, mask: Optional[Tensor] = None, ) -> Tensor: """Computes (optionally masked) MHA with queries, keys & values. This module broadcasts over zero or more 'batch-like' leading dimensions. Args: query: Embeddings sequence used to compute queries; shape [..., T', D_q]. key: Embeddings sequence used to compute keys; shape [..., T, D_k]. value: Embeddings sequence used to compute values; shape [..., T, D_v]. is_training: if True (not the default), dropout will not be applied. # # logit_offset: Optional offset/bias that is applied right before applying the softmax and before the mask for the attention scores (broadcast to [..., T', T, D_o]). A head specific linear transformation is applied. mask: Optional mask applied to attention weights; shape [..., H=1, T', T] or [..., T', T]. Returns: A new sequence of embeddings, consisting of a projection of the attention-weighted value projections; shape [..., T', D']. """ # In shape hints below, we suppress the leading dims [...] for brevity. # Hence e.g. [A, B] should be read in every case as [..., A, B]. *leading_dims, sequence_length, _ = query.shape projection = self._linear_projection # Compute key/query/values (overload K/Q/V to denote the respective sizes). query_heads = projection(query, self.key_size, 'query') # [T', H, Q=K] key_heads = projection(key, self.key_size, 'key') # [T, H, K] value_heads = projection(value, self.value_size, 'value') # [T, H, V] # Compute attention weights. attn_logits = jnp.einsum('...thd,...Thd->...htT', query_heads, key_heads) attn_logits = jnp.real(attn_logits) # In case the logits are complex attn_logits = attn_logits / jnp.sqrt(self.key_size).astype(value.dtype) # E.g. to apply relative positional encodings or add edge bias if logit_offset is not None: logit_offset = hk.Linear(self.num_heads)(logit_offset) new_order = list(range(logit_offset.ndim - 3)) + [ logit_offset.ndim - 1, logit_offset.ndim - 3, logit_offset.ndim - 2 ] logit_offset = logit_offset.transpose(*new_order) attn_logits = attn_logits + logit_offset if mask is not None: if mask.ndim == attn_logits.ndim - 1: mask = mask[..., None, :, :] elif mask.ndim != attn_logits.ndim: raise ValueError( f'Mask dimensionality {mask.ndim} must match logits dimensionality ' f'{attn_logits.ndim}.') attn_logits = jnp.where(mask, attn_logits, -1e30) attn_weights = jax.nn.softmax(attn_logits) # [H, T', T] if is_training and self.dropout_p > 0: attn_weights = hk.dropout( hk.next_rng_key(), self.dropout_p, attn_weights) # Weight the values by the attention and flatten the head vectors. attn = jnp.einsum('...htT,...Thd->...thd', attn_weights, value_heads) attn = jnp.reshape(attn, (*leading_dims, sequence_length, -1)) # [T', H*V] # Apply another projection to get the final embeddings. final_projection = hk.Linear(self.model_size, w_init=self.w_init) return final_projection(attn) # [T', D'] @hk.transparent def _linear_projection( self, x: Tensor, head_size: int, name: Optional[str] = None, ) -> Tensor: lin = hk.Linear( self.num_heads * head_size, w_init=self.w_init, name=name, with_bias=self.with_bias) if jnp.iscomplexobj(x): if self.re_im_separate_projection: y_re = lin(jnp.real(x)) lin_im = hk.Linear( self.num_heads * head_size, w_init=self.w_init, name=name, with_bias=self.with_bias) y_im = lin_im(jnp.imag(x)) else: y_re = lin(jnp.real(x)) y_im = lin(jnp.imag(x)) y = y_re + 1j * y_im else: y = lin(x) *leading_dims, _ = x.shape return y.reshape((*leading_dims, self.num_heads, head_size))
digraph_transformer-main
layers.py
# Copyright 2022 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Parses python *function* into an AST with data and control flow edges. This file is intentionally left to be as close as possible to `python-graphs`. """ from typing import Any, Dict, List, Set, Tuple, Union import uuid from absl import logging import astunparse import gast as ast import numpy as np from python_graphs import control_flow from python_graphs import data_flow from python_graphs import instruction as instruction_module from python_graphs import program_graph as pg from python_graphs import program_graph_dataclasses as pb from six.moves import builtins NEWLINE_TOKEN = '#NEWLINE#' UNINDENT_TOKEN = '#UNINDENT#' INDENT_TOKEN = '#INDENT#' # Using the same names as OGBN-Code2 MASK_TOKEN = '_mask_' NONE_TOKEN = '__NONE__' UNKNOWN_TOKEN = '__UNK__' # Aligned with OGB. Perhaps not all needed, but we keep them to avoid edge cases FEATURE_FIELD_ORDER = ('name', 'arg', 'value', 's', 'n', 'id', 'attr') # Some operations with commutative properties # Exclude And as well as Or if you want to detect exceptions (e.g. and does # not resolve subsequent argument if resolves to false) COMMUTATIVE_OPERATORS = ('And', 'Or', 'Add', 'Mult', 'BitOr', 'BitXor', 'BitAnd') COMMUTATIVE_EDGE_TYPES = ('body', 'finalbody', 'orelse') FUNC_DEf = (ast.FunctionDef, ast.AsyncFunctionDef) def py2ogbgraph(program: str, attr2idx: Dict[str, int], type2idx: Dict[str, int], mask_function_name: bool = True, max_characters_token: int = 100) -> Tuple[Dict[str, Any], str]: """The main function that converts a function into a graph. This is done similarly to the OGB Code2 dataset with the notable exception that nodes are not connected sequentially. Specifically, we construct the graph in a data-centric manner to achieve certain properties. Args: program: The function as string. attr2idx: maps attribute values to ids (OGB default). type2idx: maps attribute types to ids (OGB default). mask_function_name: If True, we mask out the function name (including recursive calls). max_characters_token: Limit on the maximum number of characters for values. Returns: A dictionary that (Imostly) contains np.ndarrays with the values required to construct the graph. This data structure is intentionally chosen to be as close as possible to the OGB data. """ program_node = ast.parse(program, mode='exec') graph = get_program_graph(program_node) ast_nodes = list(ast.walk(program_node)) assert all([not edge.has_back_edge for edge in graph.edges]) assert len(ast_nodes) == len(graph.nodes) # Mask out target function name if mask_function_name: function_name = ast_nodes[1].name assert isinstance(ast_nodes[1], ast.FunctionDef) or isinstance( ast_nodes[1], ast.AsyncFunctionDef), ( 'To mask method name, 1st node in AST must be of type FunctionDef') node = graph.get_node_by_ast_node(ast_nodes[1]) assert hasattr(node, 'fields') assert 'name' in node.fields assert node.fields['name'] == function_name ast_nodes[1].name = node.fields['name'] = MASK_TOKEN # Check for recursive calls for ast_node in ast_nodes: if isinstance(ast_node, ast.Call) and isinstance(ast_node.func, ast.Name): func_defs = list(graph.get_nodes_by_function_name(MASK_TOKEN)) if not func_defs: continue ast_node.func.id = MASK_TOKEN for child in graph.children(graph.get_node_by_ast_node(ast_node)): if isinstance(child, ast.Name) and child.ast_node.id == function_name: child.ast_node.id = MASK_TOKEN if 'name' in child.fields and child.fields['name'] == function_name: child.fields['name'] = MASK_TOKEN ogb_walker = OGB_ASTWalker() ogb_walker.visit(program_node) graph2dataset_id = dict() dataset2graph_id = dict() for id_dataset, attributed_node in enumerate(ogb_walker.nodes): id_graph = graph.get_node_by_ast_node(attributed_node['node']) assert id_graph not in graph2dataset_id, f'Found id_graph={id_graph} twice' assert id_graph not in dataset2graph_id, f'Found id_dataset={id_dataset} twice' graph2dataset_id[id_graph.id] = id_dataset dataset2graph_id[id_dataset] = id_graph.id edge_index = [] edges_deduplicated = list({(edge.id1, edge.id2, edge.field_name, edge.type.value) for edge in graph.edges}) for id1, id2, _, _ in edges_deduplicated: edge_index.append((graph2dataset_id[id1], graph2dataset_id[id2])) edge_index = np.array(edge_index).transpose() edge_coalesced_order = np.lexsort(np.flip(edge_index, axis=0)) edge_index = edge_index[:, edge_coalesced_order] edge_type = [] # Similarly to the labels, the encodings need to be handled at runtime edge_name = [] edge_order = [] for edge_idx in edge_coalesced_order: id1, id2, field_name, type_ = edges_deduplicated[edge_idx] order = 0 if field_name is None: field_name = NONE_TOKEN elif ':' in field_name: splitted_name = field_name.split(':') field_name = ':'.join(splitted_name[:-1]) if field_name not in COMMUTATIVE_EDGE_TYPES: order = int(splitted_name[-1]) elif field_name == 'left': field_name = 'inputs' elif field_name == 'right': field_name = 'inputs' if not any([ c for c in graph.children(graph.get_node_by_id(id1)) if c.ast_type in COMMUTATIVE_OPERATORS ]): order = 1 edge_type.append(type_) edge_name.append(field_name.encode('utf-8')) edge_order.append(order) node_feat_raw = [] node_feat = [] dfs_order = [] depth = [] attributed = [] for idx, attributed_node in enumerate(ogb_walker.nodes): ast_node = attributed_node['node'] node_type = attributed_node['type'] fields = graph.get_node_by_ast_node(ast_node).fields for field in FEATURE_FIELD_ORDER: if field in fields: attribute = fields[field] break else: if fields.values(): attribute = list(fields.values())[0] else: attribute = None is_attributed = attribute is not None if is_attributed: node_attr = str(attribute)[:max_characters_token] node_attr = node_attr.replace('\n', '').replace('\r', '') else: node_attr = NONE_TOKEN node_feat_raw.append( (str(node_type).encode('utf-8'), str(node_attr).encode('utf-8'))) node_feat.append((type2idx.get(node_type, len(type2idx) - 1), attr2idx.get(node_attr, len(attr2idx) - 1))) dfs_order.append(idx) depth.append(attributed_node['depth']) attributed.append(is_attributed) data = dict() # Nodes data['node_feat_raw'] = np.array(node_feat_raw, dtype='object') data['node_feat'] = np.array(node_feat, dtype=np.int64) data['node_dfs_order'] = np.array(dfs_order, dtype=np.int64).reshape(-1, 1) data['node_depth'] = np.array(depth, dtype=np.int64).reshape(-1, 1) data['node_is_attributed'] = np.array( attributed, dtype=np.int64).reshape(-1, 1) # Edges data['edge_index'] = edge_index data['edge_type'] = np.array(edge_type, dtype=np.int64).reshape(-1, 1) data['edge_name'] = np.array(edge_name, dtype='object').reshape(-1, 1) data['edge_order'] = np.array(edge_order, dtype=np.int64).reshape(-1, 1) # Sizes data['num_nodes'] = len(data['node_feat']) data['num_edges'] = len(data['edge_index'][0]) return data, function_name class OGB_ASTWalker(ast.NodeVisitor): # pylint: disable=invalid-name """Minimal version of the Open Graph Benchmark ASTWalker.""" def __init__(self): self.node_id = 0 self.stack = [] self.nodes = [] def generic_visit(self, node: ast.AST): # encapsulate all node features in a dict self.nodes.append({ 'type': type(node).__name__, 'node': node, 'depth': len(self.stack) }) # DFS traversal logic self.stack.append(node) super().generic_visit(node) self.stack.pop() def get_program_graph(program: Union[str, ast.AST]): """Constructs a program graph to represent the given program.""" if isinstance(program, ast.AST): program_node = program else: program_node = ast.parse(program, mode='exec') program_graph = pg.ProgramGraph() # Perform control flow analysis. control_flow_graph = control_flow.get_control_flow_graph(program_node) # Add AST_NODE program graph nodes corresponding to Instructions in the # control flow graph. for control_flow_node in control_flow_graph.get_control_flow_nodes(): program_graph.add_node_from_instruction(control_flow_node.instruction) # Add AST_NODE program graph nodes corresponding to AST nodes. for ast_node in ast.walk(program_node): if not program_graph.contains_ast_node(ast_node): pg_node = pg.make_node_from_ast_node(ast_node) program_graph.add_node(pg_node) root = program_graph.get_node_by_ast_node(program_node) program_graph.root_id = root.id # Add AST edges (FIELD). Also add AST_LIST and AST_VALUE program graph nodes. for ast_node in ast.walk(program_node): node = program_graph.get_node_by_ast_node(ast_node) setattr(node, 'fields', {}) for field_name, value in list(ast.iter_fields(ast_node)): if isinstance(value, list): last_item = None for index, item in enumerate(value): list_field_name = make_list_field_name(field_name, index) if isinstance(item, ast.AST): if last_item is not None: assert isinstance(item, ast.AST) program_graph.add_new_edge(ast_node, item, pb.EdgeType.FIELD, list_field_name) else: if last_item is not None: assert not isinstance(item, ast.AST) node.fields[list_field_name] = item last_item = item elif isinstance(value, ast.AST): program_graph.add_new_edge(ast_node, value, pb.EdgeType.FIELD, field_name) else: node.fields[field_name] = value # Perform data flow analysis. analysis = data_flow.LastAccessAnalysis() for node in control_flow_graph.get_enter_control_flow_nodes(): analysis.visit(node) # Add control flow edges (NEXT_SYNTAX) - as originally done by python graphs # for CFG_NEXT. for control_flow_node in control_flow_graph.get_control_flow_nodes(): instruction = control_flow_node.instruction for next_control_flow_node in control_flow_node.next: next_instruction = next_control_flow_node.instruction program_graph.add_new_edge( instruction.node, next_instruction.node, edge_type=pb.EdgeType.NEXT_SYNTAX) # edge_type=pb.EdgeType.CFG_NEXT) # Add data flow edges (LAST_READ and LAST_WRITE). for control_flow_node in control_flow_graph.get_control_flow_nodes(): # Start with the most recent accesses before this instruction. last_accesses = control_flow_node.get_label('last_access_in').copy() for access in control_flow_node.instruction.accesses: # Extract the node and identifiers for the current access. pg_node = program_graph.get_node_by_access(access) access_name = instruction_module.access_name(access) write_identifier = instruction_module.access_identifier( access_name, 'write') for write in last_accesses.get(write_identifier, []): write_pg_node = program_graph.get_node_by_access(write) program_graph.add_new_edge( write_pg_node, pg_node, edge_type=pb.EdgeType.LAST_WRITE) # Update the state to refer to this access as the most recent one. if instruction_module.access_is_write(access): last_accesses[write_identifier] = [access] # Add COMPUTED_FROM edges. for node in ast.walk(program_node): if isinstance(node, ast.Assign): for value_node in ast.walk(node.value): if isinstance(value_node, ast.Name): # TODO(dbieber): If possible, improve precision of these edges. for target in node.targets: program_graph.add_new_edge( value_node, target, edge_type=pb.EdgeType.COMPUTED_FROM) # Add CALLS, FORMAL_ARG_NAME and RETURNS_TO edges. for node in ast.walk(program_node): if isinstance(node, ast.Call): if isinstance(node.func, ast.Name): # TODO(dbieber): Use data flow analysis instead of all function defs. func_defs = list(program_graph.get_nodes_by_function_name(node.func.id)) # For any possible last writes that are a function definition, add the # formal_arg_name and returns_to edges. if not func_defs: # TODO(dbieber): Add support for additional classes of functions, # such as attributes of known objects and builtins. if node.func.id in dir(builtins): message = 'Function is builtin.' else: message = 'Cannot statically determine the function being called.' logging.debug('%s (%s)', message, node.func.id) for func_def in func_defs: fn_node = func_def.node # Add calls edge from the call node to the function definition. program_graph.add_new_edge(node, fn_node, edge_type=pb.EdgeType.CALLS) # Add returns_to edges from the function's return statements to the # call node. for inner_node in ast.walk(func_def.node): # TODO(dbieber): Determine if the returns_to should instead go to # the next instruction after the Call node instead. if isinstance(inner_node, ast.Return): program_graph.add_new_edge( inner_node, node, edge_type=pb.EdgeType.RETURNS_TO) # Add formal_arg_name edges from the args of the Call node to the # args in the FunctionDef. for index, arg in enumerate(node.args): formal_arg = None if index < len(fn_node.args.args): formal_arg = fn_node.args.args[index] elif fn_node.args.vararg: # Since args.vararg is a string, we use the arguments node. # TODO(dbieber): Use a node specifically for the vararg. formal_arg = fn_node.args if formal_arg is not None: # Note: formal_arg can be an AST node or a string. program_graph.add_new_edge( arg, formal_arg, edge_type=pb.EdgeType.FORMAL_ARG_NAME) else: # TODO(dbieber): If formal_arg is None, then remove all # formal_arg_name edges for this FunctionDef. logging.debug('formal_arg is None') for keyword in node.keywords: name = keyword.arg formal_arg = None for arg in fn_node.args.args: if isinstance(arg, ast.Name) and arg.id == name: formal_arg = arg break else: if fn_node.args.kwarg: # Since args.kwarg is a string, we use the arguments node. # TODO(dbieber): Use a node specifically for the kwarg. formal_arg = fn_node.args if formal_arg is not None: program_graph.add_new_edge( keyword.value, formal_arg, edge_type=pb.EdgeType.FORMAL_ARG_NAME) else: # TODO(dbieber): If formal_arg is None, then remove all # formal_arg_name edges for this FunctionDef. logging.debug('formal_arg is None') else: # TODO(dbieber): Add a special case for Attributes. logging.debug( 'Cannot statically determine the function being called. (%s)', astunparse.unparse(node.func).strip()) refined_cf_visitor = ControlFlowVisitor(program_graph, control_flow_graph) refined_cf_visitor.run(root) for control_flow_node in refined_cf_visitor.graph.get_control_flow_nodes(): instruction = control_flow_node.instruction for next_control_flow_node in control_flow_node.next: next_instruction = next_control_flow_node.instruction program_graph.add_new_edge( instruction.node, next_instruction.node, edge_type=pb.EdgeType.CFG_NEXT) return program_graph class CustomControlFlowWalker(ast.NodeVisitor): """This additional control flow walker, analyzes the possible orders in which the instructions can be executed. """ def __init__(self, program_graph: pg.ProgramGraph, cfg_graph: control_flow.ControlFlowGraph): self.program_graph = program_graph self.cfg_graph = cfg_graph self.children_order: Dict[int, List[int]] = dict() self.node_with_id_visited = set() def return_exceptional_cf_node(self, node: pg.ProgramGraphNode) -> Set[ast.AST]: if (type(node.ast_node) in [ ast.Assert, ast.Break, ast.Raise, ast.Continue, ast.Return, ast.Yield ]): return {node.ast_node} else: return set() def prune_exceptional_cf_nodes( self, node: pg.ProgramGraphNode, exceptional_nodes: Set[ast.AST]) -> Set[ast.AST]: if type(node.ast_node) in [ast.For, ast.While]: return exceptional_nodes - {ast.Break, ast.Continue} elif isinstance(node.ast_node, ast.If): return exceptional_nodes - {ast.Assert, ast.Raise} else: return exceptional_nodes def generic_visit(self, node) -> Tuple[Set[int], Set[int], Set[int]]: neighbors = self.program_graph.neighbors_map[node.id] children = [] for edge, _ in neighbors: # Look at outgoing ast edges for the children if edge.id1 != node.id or edge.type != pb.EdgeType.FIELD: continue child = self.program_graph.get_node_by_id(edge.id2) descendants, depends_on, exceptional_nodes = super().visit(child) children.append( (edge.id2, edge, descendants, depends_on, exceptional_nodes)) node_depends_on = set() for edge, _ in neighbors: # Look at incoming data flow dependencies if (edge.id2 == node.id and edge.type in [pb.EdgeType.LAST_WRITE, pb.EdgeType.COMPUTED_FROM] and # Only allow edge dependence in sequential order edge.id1 in self.node_with_id_visited): node_depends_on.add(edge.id1) self.node_with_id_visited.add(node.id) if not children: return {node.id}, node_depends_on, self.return_exceptional_cf_node(node) blocks = { field: [child for child in children if child[1].field_name.startswith(field)] for field in COMMUTATIVE_EDGE_TYPES } self.children_order[node.id] = {} for field, block in blocks.items(): current_parent = -1 predecessor_list = list() successor_list = list() if block: entry_node_id = block[0][0] else: entry_node_id = None # Required to determine if exceptional node overrules dataflow children_order = [] exceptional_node_order = 0 for idx, (_, _, descendants, depends_on, exceptional_nodes) in enumerate(block): children_order.append(exceptional_node_order) predecessor_list.append(set()) successor_list.append(set()) if not depends_on and not exceptional_nodes: if current_parent >= 0: predecessor_list[idx].add(current_parent) successor_list[current_parent].add(idx) continue for previous_child_idx in reversed(range(idx)): if children_order[previous_child_idx] < exceptional_node_order: break for dependence in depends_on: if dependence in block[previous_child_idx][2]: predecessor_list[idx].add(previous_child_idx) successor_list[previous_child_idx].add(idx) children_order[idx] = max(children_order[-1], children_order[previous_child_idx] + 1) if exceptional_nodes: current_parent = idx for previous_child_idx in range(idx): if not successor_list[previous_child_idx]: successor_list[previous_child_idx].add(idx) predecessor_list[idx].add(previous_child_idx) exceptional_node_order = max(children_order) + 1 children_order[idx] = exceptional_node_order elif not predecessor_list[idx] and current_parent >= 0: predecessor_list[idx].add(current_parent) successor_list[current_parent].add(idx) self.children_order[node.id][field] = [ entry_node_id, predecessor_list, successor_list ] agg_descendants = set().union( *[descendants for _, _, descendants, _, _ in children]) agg_descendants |= {node.id} agg_depends_on = set().union( *[depends_on for _, _, _, depends_on, _ in children]) agg_depends_on |= node_depends_on agg_depends_on -= agg_descendants agg_exceptional_nodes = set().union( *[exceptional_nodes for _, _, _, _, exceptional_nodes in children]) agg_exceptional_nodes |= self.return_exceptional_cf_node(node) agg_exceptional_nodes = self.prune_exceptional_cf_nodes( node, agg_exceptional_nodes) return agg_descendants, agg_depends_on, agg_exceptional_nodes class ControlFlowVisitor(control_flow.ControlFlowVisitor): """Here we overwrite the way how `bodies` in the AST are ordered based on the insights in which order instructions can be executed. """ def __init__(self, program_graph: pg.ProgramGraph, cfg_graph: control_flow.ControlFlowGraph): super().__init__() self.program_graph = program_graph self.refined_cf_walker = CustomControlFlowWalker(program_graph, cfg_graph) def run(self, root: pg.ProgramGraphNode): self.refined_cf_walker.visit(root) start_block = self.graph.start_block end_block = self.visit(root.ast_node, start_block) exit_block = self.new_block( node=root.ast_node, label='<exit>', prunable=False) end_block.add_exit(exit_block) self.graph.compact() def visit_list(self, items, current_block): """Visit each of the items in a list from the AST.""" if len(items) < 2: for item in items: current_block = self.visit(item, current_block) return current_block parent = self.program_graph.parent( self.program_graph.get_node_by_ast_node(items[0])) children_order = self.refined_cf_walker.children_order[parent.id] children_order = [ (field, co) for field, co in children_order.items() if co[0] == self.program_graph.get_node_by_ast_node(items[0]).id ][0] field, (_, predecessor_list, successor_list) = children_order assert not predecessor_list[0], 'First entry cannot have predecessor' assert not successor_list[-1], 'Last entry cannot have successor' entry_block = current_block item_idx_to_block = [] for item_idx, predecessors in enumerate(predecessor_list): item = items[item_idx] current_block = self.new_block( node=item if predecessors else entry_block.node, # For consistency label=f'field_{item_idx}') if not predecessors: entry_block.add_exit(current_block) else: for pred_idx in predecessors: item_idx_to_block[pred_idx].add_exit(current_block) current_block = self.visit(item, current_block) item_idx_to_block.append(current_block) after_block = self.new_block(node=entry_block.node, label='after_block') for item_idx, successor in enumerate(successor_list): if not successor: item_idx_to_block[item_idx].add_exit(after_block) return after_block def make_list_field_name(field_name, index): return '{}:{}'.format(field_name, index) def parse_list_field_name(list_field_name): field_name, index = list_field_name.split(':') index = int(index) return field_name, index def unique_id(): """Returns a unique id that is suitable for identifying graph nodes.""" return uuid.uuid4().int & ((1 << 64) - 1)
digraph_transformer-main
dataflow_parser.py