python_code
stringlengths
0
258k
"""Training algorithm track submission functions for LibriSpeech.""" from typing import Dict, Iterator, List, Tuple import numpy as np import torch import torch.distributed.nn as dist_nn from algorithmic_efficiency import spec from algorithmic_efficiency.pytorch_utils import pytorch_setup USE_PYTORCH_DDP = pytorch_setup()[0] def get_batch_size(workload_name): # Return the global batch size. del workload_name return 256 def get_learning_rate(step, hyperparams): warmup_steps = hyperparams.warmup_steps if step < warmup_steps: current_lr = (step * hyperparams.base_lr) / warmup_steps else: decay_factor = (1 + np.cos(step / hyperparams.training_steps * np.pi)) * 0.5 current_lr = hyperparams.base_lr * decay_factor return current_lr def init_optimizer_state(workload: spec.Workload, model_params: spec.ParameterContainer, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, rng: spec.RandomState) -> spec.OptimizerState: del workload del model_state del rng optimizer = torch.optim.AdamW( params=model_params.parameters(), lr=0.0, betas=(hyperparameters.beta1, hyperparameters.beta2), eps=hyperparameters.epsilon, weight_decay=hyperparameters.weight_decay) return {'optimizer': optimizer} def update_params(workload: spec.Workload, current_param_container: spec.ParameterContainer, current_params_types: spec.ParameterTypeTree, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, batch: Dict[str, spec.Tensor], loss_type: spec.LossType, optimizer_state: spec.OptimizerState, eval_results: List[Tuple[int, float]], global_step: int, rng: spec.RandomState) -> spec.UpdateReturn: """Return (updated_optimizer_state, updated_params).""" del current_params_types del eval_results del model_state del loss_type optimizer = optimizer_state['optimizer'] optimizer.zero_grad() current_model = current_param_container (logits, logits_padding), _ = workload.model_fn( current_model, batch, None, spec.ForwardPassMode.TRAIN, rng, update_batch_norm=True) loss_dict = workload.loss_fn(batch['targets'], (logits, logits_padding)) summed_loss = loss_dict['summed'] n_valid_examples = loss_dict['n_valid_examples'] if USE_PYTORCH_DDP: # Use dist_nn.all_reduce to ensure correct loss and gradient scaling. summed_loss = dist_nn.all_reduce(summed_loss) n_valid_examples = dist_nn.all_reduce(n_valid_examples) loss = summed_loss / n_valid_examples loss.backward() for g in optimizer.param_groups: g['lr'] = get_learning_rate(global_step, hyperparameters) if hasattr(hyperparameters, 'grad_clip'): torch.nn.utils.clip_grad_norm_( current_model.parameters(), max_norm=hyperparameters.grad_clip) optimizer.step() return optimizer_state, current_param_container, None # Not allowed to update the model parameters, hyperparameters, global step, or # optimzier state. def data_selection(workload: spec.Workload, input_queue: Iterator[Dict[str, spec.Tensor]], optimizer_state: spec.OptimizerState, current_param_container: spec.ParameterContainer, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, global_step: int, rng: spec.RandomState) -> Dict[str, spec.Tensor]: """Select data from the infinitely repeating, pre-shuffled input queue. Each element of the queue is a batch of training examples and labels. """ del workload del optimizer_state del current_param_container del model_state del hyperparameters del global_step del rng return next(input_queue)
from typing import Dict, Iterator, List, Tuple import numpy as np import torch import torch.distributed.nn as dist_nn from algorithmic_efficiency import spec from algorithmic_efficiency.pytorch_utils import pytorch_setup USE_PYTORCH_DDP = pytorch_setup()[0] def get_batch_size(workload_name): batch_sizes = {'wmt': 128} return batch_sizes[workload_name] def create_learning_rate_scheduler( factors='constant * linear_warmup * rsqrt_decay', base_learning_rate=0.5, warmup_steps=1000, decay_factor=0.5, steps_per_decay=20000, steps_per_cycle=100000): """Creates learning rate schedule. Interprets factors in the factors string which can consist of: * constant: interpreted as the constant value, * linear_warmup: interpreted as linear warmup until warmup_steps, * rsqrt_decay: divide by square root of max(step, warmup_steps) * rsqrt_normalized_decay: divide by square root of max(step/warmup_steps, 1) * decay_every: Every k steps decay the learning rate by decay_factor. * cosine_decay: Cyclic cosine decay, uses steps_per_cycle parameter. Args: factors: string, factors separated by "*" that defines the schedule. base_learning_rate: float, the starting constant for the lr schedule. warmup_steps: int, how many steps to warm up for in the warmup schedule. decay_factor: float, the amount to decay the learning rate by. steps_per_decay: int, how often to decay the learning rate. steps_per_cycle: int, steps per cycle when using cosine decay. Returns: a function learning_rate(step): float -> {"learning_rate": float}, the step-dependent lr. """ factors = [n.strip() for n in factors.split('*')] def step_fn(step): """Step to learning rate function.""" ret = 1.0 for name in factors: if name == 'constant': ret *= base_learning_rate elif name == 'linear_warmup': ret *= np.minimum(1.0, step / warmup_steps) elif name == 'rsqrt_decay': ret /= np.sqrt(np.maximum(step, warmup_steps)) elif name == 'rsqrt_normalized_decay': ret *= np.sqrt(warmup_steps) ret /= np.sqrt(np.maximum(step, warmup_steps)) elif name == 'decay_every': ret *= (decay_factor**(step // steps_per_decay)) elif name == 'cosine_decay': progress = np.maximum(0.0, (step - warmup_steps) / float(steps_per_cycle)) ret *= np.maximum(0.0, 0.5 * (1.0 + np.cos(np.pi * (progress % 1.0)))) else: raise ValueError(f'Unknown factor {name}.') return ret return step_fn def init_optimizer_state(workload: spec.Workload, model_params: spec.ParameterContainer, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, rng: spec.RandomState) -> spec.OptimizerState: del workload del model_state del rng optimizer_state = { 'optimizer': torch.optim.Adam( model_params.parameters(), lr=hyperparameters.learning_rate, betas=(1.0 - hyperparameters.one_minus_beta_1, 0.98), eps=hyperparameters.epsilon), } optimizer_state['scheduler'] = create_learning_rate_scheduler( base_learning_rate=hyperparameters.learning_rate) return optimizer_state def update_params(workload: spec.Workload, current_param_container: spec.ParameterContainer, current_params_types: spec.ParameterTypeTree, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, batch: Dict[str, spec.Tensor], loss_type: spec.LossType, optimizer_state: spec.OptimizerState, eval_results: List[Tuple[int, float]], global_step: int, rng: spec.RandomState) -> spec.UpdateReturn: """Return (updated_optimizer_state, updated_params).""" del current_params_types del hyperparameters del loss_type del eval_results current_model = current_param_container current_param_container.train() optimizer = optimizer_state['optimizer'] optimizer.zero_grad() logits, _ = workload.model_fn( params=current_model, augmented_and_preprocessed_input_batch=batch, model_state=model_state, mode=spec.ForwardPassMode.TRAIN, rng=rng, update_batch_norm=False) targets = batch['targets'] weights = batch['weights'] loss_dict = workload.loss_fn(targets, logits, weights, label_smoothing=0.1) summed_loss = loss_dict['summed'] n_valid_examples = loss_dict['n_valid_examples'] if USE_PYTORCH_DDP: # Use dist_nn.all_reduce to ensure correct loss and gradient scaling. summed_loss = dist_nn.all_reduce(summed_loss) n_valid_examples = dist_nn.all_reduce(n_valid_examples) loss = summed_loss / n_valid_examples loss.backward() lr = optimizer_state['scheduler'](global_step).item() for g in optimizer.param_groups: g['lr'] = lr optimizer.step() return (optimizer_state, current_param_container, None) # Not allowed to update the model parameters, hyperparameters, global step, or # optimzier state. def data_selection(workload: spec.Workload, input_queue: Iterator[Dict[str, spec.Tensor]], optimizer_state: spec.OptimizerState, current_param_container: spec.ParameterContainer, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, global_step: int, rng: spec.RandomState) -> Dict[str, spec.Tensor]: """Select data from the infinitely repeating, pre-shuffled input queue. Each element of the queue is a batch of training examples and labels. """ del workload del optimizer_state del current_param_container del model_state del hyperparameters del global_step del rng return next(input_queue)
"""Training algorithm track submission functions for WMT.""" import functools from typing import Dict, Iterator, List, Tuple from flax import jax_utils import jax import jax.numpy as jnp import optax from algorithmic_efficiency import spec def get_batch_size(workload_name): batch_sizes = {'wmt': 128} return batch_sizes[workload_name] def create_learning_rate_scheduler( factors='constant * linear_warmup * rsqrt_decay', base_learning_rate=0.5, warmup_steps=1000, decay_factor=0.5, steps_per_decay=20000, steps_per_cycle=100000): """Creates learning rate schedule. Interprets factors in the factors string which can consist of: * constant: interpreted as the constant value, * linear_warmup: interpreted as linear warmup until warmup_steps, * rsqrt_decay: divide by square root of max(step, warmup_steps) * rsqrt_normalized_decay: divide by square root of max(step/warmup_steps, 1) * decay_every: Every k steps decay the learning rate by decay_factor. * cosine_decay: Cyclic cosine decay, uses steps_per_cycle parameter. Args: factors: string, factors separated by "*" that defines the schedule. base_learning_rate: float, the starting constant for the lr schedule. warmup_steps: int, how many steps to warm up for in the warmup schedule. decay_factor: float, the amount to decay the learning rate by. steps_per_decay: int, how often to decay the learning rate. steps_per_cycle: int, steps per cycle when using cosine decay. Returns: a function learning_rate(step): float -> {"learning_rate": float}, the step-dependent lr. """ factors = [n.strip() for n in factors.split('*')] def step_fn(step): """Step to learning rate function.""" ret = 1.0 for name in factors: if name == 'constant': ret *= base_learning_rate elif name == 'linear_warmup': ret *= jnp.minimum(1.0, step / warmup_steps) elif name == 'rsqrt_decay': ret /= jnp.sqrt(jnp.maximum(step, warmup_steps)) elif name == 'rsqrt_normalized_decay': ret *= jnp.sqrt(warmup_steps) ret /= jnp.sqrt(jnp.maximum(step, warmup_steps)) elif name == 'decay_every': ret *= (decay_factor**(step // steps_per_decay)) elif name == 'cosine_decay': progress = jnp.maximum(0.0, (step - warmup_steps) / float(steps_per_cycle)) ret *= jnp.maximum(0.0, 0.5 * (1.0 + jnp.cos(jnp.pi * (progress % 1.0)))) else: raise ValueError(f'Unknown factor {name}.') return jnp.asarray(ret, dtype=jnp.float32) return step_fn def init_optimizer_state(workload: spec.Workload, model_params: spec.ParameterContainer, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, rng: spec.RandomState) -> spec.OptimizerState: del model_params del model_state del rng learning_rate_fn = create_learning_rate_scheduler( base_learning_rate=hyperparameters.learning_rate, warmup_steps=1000) opt_init_fn, opt_update_fn = optax.adam( b1=1.0 - hyperparameters.one_minus_beta_1, b2=0.98, eps=hyperparameters.epsilon, learning_rate=learning_rate_fn) params_zeros_like = jax.tree_map(lambda s: jnp.zeros(s.shape_tuple), workload.param_shapes) optimizer_state = opt_init_fn(params_zeros_like) return jax_utils.replicate(optimizer_state), opt_update_fn @functools.partial( jax.pmap, in_axes=(None, None, 0, 0, 0, 0, None), axis_name='batch', static_broadcasted_argnums=(0, 1, 6)) def pmapped_train_step(workload, opt_update_fn, optimizer_state, current_param_container, batch, dropout_rng, hyperparameters): """Perform a single training step.""" del hyperparameters def _loss_fn(params): """Loss function used for training.""" logits, _ = workload.model_fn( params, batch, model_state=None, mode=spec.ForwardPassMode.TRAIN, rng=dropout_rng, update_batch_norm=False) targets = batch['targets'] weights = batch['weights'] loss_dict = workload.loss_fn(targets, logits, weights, label_smoothing=0.1) summed_loss = loss_dict['summed'] n_valid_examples = loss_dict['n_valid_examples'] return summed_loss, n_valid_examples grad_fn = jax.value_and_grad(_loss_fn, has_aux=True) (summed_loss, n_valid_examples), grad = grad_fn(current_param_container) # Get correct global mean loss and grad. (summed_loss, n_valid_examples, grad) = jax.lax.psum( (summed_loss, n_valid_examples, grad), axis_name='batch') grad = jax.tree_map(lambda x: x / n_valid_examples, grad) updates, new_optimizer_state = opt_update_fn( grad, optimizer_state, current_param_container) updated_params = optax.apply_updates(current_param_container, updates) return new_optimizer_state, updated_params def update_params(workload: spec.Workload, current_param_container: spec.ParameterContainer, current_params_types: spec.ParameterTypeTree, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, batch: Dict[str, spec.Tensor], loss_type: spec.LossType, optimizer_state: spec.OptimizerState, eval_results: List[Tuple[int, float]], global_step: int, rng: spec.RandomState) -> spec.UpdateReturn: """Return (updated_optimizer_state, updated_params).""" del current_params_types del eval_results del global_step del model_state del loss_type optimizer_state, opt_update_fn = optimizer_state dropout_rngs = jax.random.split(rng, jax.local_device_count()) new_optimizer_state, updated_params = pmapped_train_step( workload, opt_update_fn, optimizer_state, current_param_container, batch, dropout_rngs, hyperparameters) return (new_optimizer_state, opt_update_fn), updated_params, None # Not allowed to update the model parameters, hyperparameters, global step, or # optimzier state. def data_selection(workload: spec.Workload, input_queue: Iterator[Dict[str, spec.Tensor]], optimizer_state: spec.OptimizerState, current_param_container: spec.ParameterContainer, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, global_step: int, rng: spec.RandomState) -> Dict[str, spec.Tensor]: """Select data from the infinitely repeating, pre-shuffled input queue. Each element of the queue is a batch of training examples and labels. """ del workload del optimizer_state del current_param_container del model_state del hyperparameters del global_step del rng return next(input_queue)
"""Training algorithm track submission functions for ImageNet.""" from typing import Dict, Iterator, List, Tuple import torch from torch.optim.lr_scheduler import CosineAnnealingLR from torch.optim.lr_scheduler import LinearLR from torch.optim.lr_scheduler import SequentialLR from algorithmic_efficiency import spec def get_batch_size(workload_name): # Return the global batch size. del workload_name return 1024 def init_optimizer_state(workload: spec.Workload, model_params: spec.ParameterContainer, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, rng: spec.RandomState) -> spec.OptimizerState: del model_state del rng batch_size = get_batch_size('imagenet_vit') base_lr = hyperparameters.learning_rate * batch_size / 1024. optimizer_state = { 'optimizer': torch.optim.Adam( model_params.parameters(), lr=base_lr, betas=(hyperparameters.beta1, hyperparameters.beta2), eps=hyperparameters.epsilon), } steps_per_epoch = workload.num_train_examples // batch_size scheduler1 = LinearLR( optimizer_state['optimizer'], start_factor=1e-10, end_factor=1., total_iters=hyperparameters.warmup_epochs * steps_per_epoch) cosine_epochs = max( hyperparameters.num_epochs - hyperparameters.warmup_epochs, 1) scheduler2 = CosineAnnealingLR( optimizer_state['optimizer'], T_max=cosine_epochs * steps_per_epoch) optimizer_state['scheduler'] = SequentialLR( optimizer_state['optimizer'], schedulers=[scheduler1, scheduler2], milestones=[hyperparameters.warmup_epochs * steps_per_epoch]) return optimizer_state def update_params(workload: spec.Workload, current_param_container: spec.ParameterContainer, current_params_types: spec.ParameterTypeTree, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, batch: Dict[str, spec.Tensor], loss_type: spec.LossType, optimizer_state: spec.OptimizerState, eval_results: List[Tuple[int, float]], global_step: int, rng: spec.RandomState) -> spec.UpdateReturn: """Return (updated_optimizer_state, updated_params).""" del current_params_types del loss_type del eval_results del global_step current_model = current_param_container current_param_container.train() optimizer_state['optimizer'].zero_grad() logits_batch, new_model_state = workload.model_fn( params=current_model, augmented_and_preprocessed_input_batch=batch, model_state=model_state, mode=spec.ForwardPassMode.TRAIN, rng=rng, update_batch_norm=True) loss_dict = workload.loss_fn( label_batch=batch['targets'], logits_batch=logits_batch) loss = loss_dict['summed'] / loss_dict['n_valid_examples'] loss.backward() optimizer_state['optimizer'].step() optimizer_state['scheduler'].step() return (optimizer_state, current_param_container, new_model_state) # Not allowed to update the model parameters, hyperparameters, global step, or # optimzier state. def data_selection(workload: spec.Workload, input_queue: Iterator[Dict[str, spec.Tensor]], optimizer_state: spec.OptimizerState, current_param_container: spec.ParameterContainer, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, global_step: int, rng: spec.RandomState) -> Dict[str, spec.Tensor]: """Select data from the infinitely repeating, pre-shuffled input queue. Each element of the queue is a batch of training examples and labels. """ del workload del optimizer_state del current_param_container del model_state del hyperparameters del global_step del rng return next(input_queue)
"""Training algorithm track submission functions for ImageNet.""" import functools from typing import Dict, Iterator, List, Tuple from flax import jax_utils import jax from jax import lax import jax.numpy as jnp import optax from algorithmic_efficiency import spec def get_batch_size(workload_name): # Return the global batch size. del workload_name return 1024 def create_learning_rate_fn(hparams: spec.Hyperparameters, steps_per_epoch: int): """Create learning rate schedule.""" base_learning_rate = hparams.learning_rate * \ get_batch_size('imagenet_vit') / 1024. warmup_fn = optax.linear_schedule( init_value=0., end_value=base_learning_rate, transition_steps=hparams.warmup_epochs * steps_per_epoch) cosine_epochs = max(hparams.num_epochs - hparams.warmup_epochs, 1) cosine_fn = optax.cosine_decay_schedule( init_value=base_learning_rate, decay_steps=cosine_epochs * steps_per_epoch) schedule_fn = optax.join_schedules( schedules=[warmup_fn, cosine_fn], boundaries=[hparams.warmup_epochs * steps_per_epoch]) return schedule_fn def optimizer(hyperparameters: spec.Hyperparameters, num_train_examples: int): steps_per_epoch = num_train_examples // get_batch_size('imagenet_vit') learning_rate_fn = create_learning_rate_fn(hyperparameters, steps_per_epoch) opt_init_fn, opt_update_fn = optax.adam( b1=hyperparameters.beta1, b2=hyperparameters.beta2, eps=hyperparameters.epsilon, learning_rate=learning_rate_fn) return opt_init_fn, opt_update_fn def init_optimizer_state(workload: spec.Workload, model_params: spec.ParameterContainer, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, rng: spec.RandomState) -> spec.OptimizerState: del model_params del model_state del rng params_zeros_like = jax.tree_map(lambda s: jnp.zeros(s.shape_tuple), workload.param_shapes) opt_init_fn, opt_update_fn = optimizer(hyperparameters, workload.num_train_examples) optimizer_state = opt_init_fn(params_zeros_like) return jax_utils.replicate(optimizer_state), opt_update_fn @functools.partial( jax.pmap, axis_name='batch', in_axes=(None, None, 0, 0, 0, None, 0, 0), static_broadcasted_argnums=(0, 1)) def pmapped_train_step(workload, opt_update_fn, model_state, optimizer_state, current_param_container, hyperparameters, batch, rng): def _loss_fn(params): """loss function used for training.""" logits, new_model_state = workload.model_fn( params, batch, model_state, spec.ForwardPassMode.TRAIN, rng, update_batch_norm=True) loss_dict = workload.loss_fn(batch['targets'], logits) loss = loss_dict['summed'] / loss_dict['n_valid_examples'] weight_penalty_params = jax.tree_util.tree_leaves(params) weight_l2 = sum(jnp.sum(x**2) for x in weight_penalty_params if x.ndim > 1) weight_penalty = hyperparameters.l2 * 0.5 * weight_l2 loss = loss + weight_penalty return loss, (new_model_state, logits) grad_fn = jax.value_and_grad(_loss_fn, has_aux=True) aux, grad = grad_fn(current_param_container) grad = lax.pmean(grad, axis_name='batch') new_model_state, _ = aux[1] updates, new_optimizer_state = opt_update_fn(grad, optimizer_state, current_param_container) updated_params = optax.apply_updates(current_param_container, updates) return new_model_state, new_optimizer_state, updated_params def update_params(workload: spec.Workload, current_param_container: spec.ParameterContainer, current_params_types: spec.ParameterTypeTree, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, batch: Dict[str, spec.Tensor], loss_type: spec.LossType, optimizer_state: spec.OptimizerState, eval_results: List[Tuple[int, float]], global_step: int, rng: spec.RandomState) -> spec.UpdateReturn: """Return (updated_optimizer_state, updated_params, updated_model_state).""" del current_params_types del loss_type del eval_results del global_step optimizer_state, opt_update_fn = optimizer_state per_device_rngs = jax.random.split(rng, jax.local_device_count()) new_model_state, new_optimizer_state, new_params = pmapped_train_step( workload, opt_update_fn, model_state, optimizer_state, current_param_container, hyperparameters, batch, per_device_rngs) return (new_optimizer_state, opt_update_fn), new_params, new_model_state def data_selection(workload: spec.Workload, input_queue: Iterator[Dict[str, spec.Tensor]], optimizer_state: spec.OptimizerState, current_param_container: spec.ParameterContainer, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, global_step: int, rng: spec.RandomState) -> Dict[str, spec.Tensor]: """Select data from the infinitely repeating, pre-shuffled input queue. Each element of the queue is a batch of training examples and labels. """ del workload del optimizer_state del current_param_container del model_state del hyperparameters del global_step del rng return next(input_queue)
"""Training algorithm track submission functions for LibriSpeech.""" import functools from typing import Dict, Iterator, List, Tuple from absl import logging from flax import jax_utils import jax from jax import lax import jax.numpy as jnp import numpy as np import optax from algorithmic_efficiency import spec _GRAD_CLIP_EPS = 1e-6 def get_batch_size(workload_name): # Return the global batch size. del workload_name return 256 def get_learning_rate(step, hyperparams): warmup_steps = hyperparams.warmup_steps if step < warmup_steps: current_lr = (step * hyperparams.base_lr) / warmup_steps else: decay_factor = (1 + np.cos(step / hyperparams.training_steps * np.pi)) * 0.5 current_lr = hyperparams.base_lr * decay_factor return current_lr def optimizer(hyperparameters: spec.Hyperparameters, num_train_examples: int): opt_init_fn, opt_update_fn = optax.inject_hyperparams(optax.adamw)( b1=hyperparameters.beta1, b2=hyperparameters.beta2, eps=hyperparameters.epsilon, weight_decay=hyperparameters.weight_decay, learning_rate=0.0) return opt_init_fn, opt_update_fn def init_optimizer_state(workload: spec.Workload, model_params: spec.ParameterContainer, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, rng: spec.RandomState) -> spec.OptimizerState: del model_state del rng params_zeros_like = jax.tree_map(lambda s: jnp.zeros(s.shape_tuple), workload.param_shapes) opt_init_fn, opt_update_fn = optimizer(hyperparameters, workload.num_train_examples) optimizer_state = opt_init_fn(params_zeros_like) return jax_utils.replicate(optimizer_state), opt_update_fn def l2_regularization(params, l2_decay_rank_threshold): """Computes the squared l2 norm of the given parameters. This function will only filter for parameters with rank >= l2_decay_rank_threshold. So if this threshold is set to 2, then all 1d (and lower) parameter arrays, including all bias and batch norm params, will be ignored in this computation. Args: params: Pytree containing parameters. l2_decay_rank_threshold: The calculation will only include parameters with param.ndim >= l2_decay_rank_threshold. Set to 2 to ignore all bias and batch_norm params in the model. Returns: weight_l2: the squared l2 norm of all params matching the threshold. """ weight_penalty_params = jax.tree_util.tree_leaves(params) weight_l2 = sum( jnp.sum(x**2) for x in weight_penalty_params if x.ndim >= l2_decay_rank_threshold) return weight_l2 @functools.partial( jax.pmap, axis_name='batch', in_axes=(None, None, 0, 0, 0, None, 0, 0, None), static_broadcasted_argnums=(0, 1)) def pmapped_train_step(workload, opt_update_fn, model_state, optimizer_state, current_param_container, hyperparameters, batch, rng, lr): optimizer_state.hyperparams['learning_rate'] = lr def _loss_fn(params): """loss function used for training.""" (logits, logit_paddings), new_model_state = workload.model_fn( params, batch, model_state, mode=spec.ForwardPassMode.TRAIN, rng=rng, update_batch_norm=True) loss_dict = workload.loss_fn(batch['targets'], (logits, logit_paddings)) summed_loss = loss_dict['summed'] n_valid_examples = loss_dict['n_valid_examples'] return summed_loss, (n_valid_examples, new_model_state) grad_fn = jax.value_and_grad(_loss_fn, has_aux=True) (summed_loss, (n_valid_examples, new_model_state)), grad = grad_fn( current_param_container) # Get correct global mean loss and grad. (summed_loss, n_valid_examples, grad) = lax.psum( (summed_loss, n_valid_examples, grad), axis_name='batch') loss = summed_loss / n_valid_examples grad = jax.tree_map(lambda x: x / n_valid_examples, grad) grad_clip = hyperparameters.grad_clip grad_norm = jnp.sqrt(l2_regularization(grad, 0)) scaled_grad = jax.tree_map( lambda x: x / (grad_norm + _GRAD_CLIP_EPS) * grad_clip, grad) grad = jax.lax.cond(grad_norm > grad_clip, lambda _: scaled_grad, lambda _: grad, None) updates, new_optimizer_state = opt_update_fn(grad, optimizer_state, current_param_container) updated_params = optax.apply_updates(current_param_container, updates) return new_model_state, new_optimizer_state, updated_params, loss, grad_norm def update_params(workload: spec.Workload, current_param_container: spec.ParameterContainer, current_params_types: spec.ParameterTypeTree, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, batch: Dict[str, spec.Tensor], loss_type: spec.LossType, optimizer_state: spec.OptimizerState, eval_results: List[Tuple[int, float]], global_step: int, rng: spec.RandomState) -> spec.UpdateReturn: """Return (updated_optimizer_state, updated_params).""" del current_params_types del eval_results del loss_type lr = get_learning_rate(global_step, hyperparameters) optimizer_state, opt_update_fn = optimizer_state per_device_rngs = jax.random.split(rng, jax.local_device_count()) outputs = pmapped_train_step(workload, opt_update_fn, model_state, optimizer_state, current_param_container, hyperparameters, batch, per_device_rngs, lr) new_model_state, new_optimizer_state, new_params, loss, grad_norm = outputs if global_step <= 1000 or global_step % 100 == 0: logging.info('%d) loss = %0.3f, grad_norm = %0.3f lr = %0.6f', global_step, loss.mean(), grad_norm.mean(), lr) if workload.metrics_logger is not None: workload.metrics_logger.append_scalar_metrics( { 'train_step_ctc_loss': loss.mean(), 'grad_norm': grad_norm.mean(), 'learning_rate': lr, }, global_step) return (new_optimizer_state, opt_update_fn), new_params, new_model_state # Not allowed to update the model parameters, hyperparameters, global step, or # optimzier state. def data_selection(workload: spec.Workload, input_queue: Iterator[Dict[str, spec.Tensor]], optimizer_state: spec.OptimizerState, current_param_container: spec.ParameterContainer, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, global_step: int, rng: spec.RandomState) -> Dict[str, spec.Tensor]: """Select data from the infinitely repeating, pre-shuffled input queue. Each element of the queue is a batch of training examples and labels. """ del workload del optimizer_state del current_param_container del model_state del hyperparameters del global_step del rng return next(input_queue)
"""Training algorithm track submission functions for LibriSpeech.""" from typing import Dict, Iterator, List, Tuple import numpy as np import torch import torch.distributed.nn as dist_nn from algorithmic_efficiency import spec from algorithmic_efficiency.pytorch_utils import pytorch_setup USE_PYTORCH_DDP = pytorch_setup()[0] device = torch.device('cuda:0' if torch.cuda.is_available() else "cpu") ctc_loss = torch.nn.CTCLoss(blank=0, reduction='none') def get_batch_size(workload_name): # Return the global batch size. del workload_name return 256 def get_learning_rate(step, hyperparams): warmup_steps = hyperparams.warmup_steps if step < warmup_steps: current_lr = (step * hyperparams.base_lr) / warmup_steps else: decay_factor = (1 + np.cos(step / hyperparams.training_steps * np.pi)) * 0.5 current_lr = hyperparams.base_lr * decay_factor return current_lr def init_optimizer_state(workload: spec.Workload, model_params: spec.ParameterContainer, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, rng: spec.RandomState) -> spec.OptimizerState: del workload del model_state del rng optimizer = torch.optim.AdamW( params=model_params.parameters(), lr=0.0, betas=(hyperparameters.beta1, hyperparameters.beta2), eps=hyperparameters.epsilon, weight_decay=hyperparameters.weight_decay) return {'optimizer': optimizer} def update_params(workload: spec.Workload, current_param_container: spec.ParameterContainer, current_params_types: spec.ParameterTypeTree, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, batch: Dict[str, spec.Tensor], loss_type: spec.LossType, optimizer_state: spec.OptimizerState, eval_results: List[Tuple[int, float]], global_step: int, rng: spec.RandomState) -> spec.UpdateReturn: """Return (updated_optimizer_state, updated_params).""" del current_params_types del eval_results del model_state del loss_type optimizer = optimizer_state['optimizer'] optimizer.zero_grad() current_model = current_param_container (logits, logits_padding), _ = workload.model_fn( current_model, batch, None, spec.ForwardPassMode.TRAIN, rng, update_batch_norm=True) loss_dict = workload.loss_fn(batch['targets'], (logits, logits_padding)) summed_loss = loss_dict['summed'] n_valid_examples = loss_dict['n_valid_examples'] if USE_PYTORCH_DDP: # Use dist_nn.all_reduce to ensure correct loss and gradient scaling. summed_loss = dist_nn.all_reduce(summed_loss) n_valid_examples = dist_nn.all_reduce(n_valid_examples) loss = summed_loss / n_valid_examples loss.backward() for g in optimizer.param_groups: g['lr'] = get_learning_rate(global_step, hyperparameters) if hasattr(hyperparameters, 'grad_clip'): torch.nn.utils.clip_grad_norm_( current_model.parameters(), max_norm=hyperparameters.grad_clip) optimizer.step() return optimizer_state, current_param_container, None # Not allowed to update the model parameters, hyperparameters, global step, or # optimzier state. def data_selection(workload: spec.Workload, input_queue: Iterator[Dict[str, spec.Tensor]], optimizer_state: spec.OptimizerState, current_param_container: spec.ParameterContainer, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, global_step: int, rng: spec.RandomState) -> Dict[str, spec.Tensor]: """Select data from the infinitely repeating, pre-shuffled input queue. Each element of the queue is a batch of training examples and labels. """ del workload del optimizer_state del current_param_container del model_state del hyperparameters del global_step del rng return next(input_queue)
from typing import Dict, Iterator, List, Tuple import torch import torch.distributed.nn as dist_nn from algorithmic_efficiency import spec from algorithmic_efficiency.pytorch_utils import pytorch_setup USE_PYTORCH_DDP = pytorch_setup()[0] def get_batch_size(workload_name): # Return the global batch size. batch_sizes = {'ogbg': 32768} return batch_sizes[workload_name] def init_optimizer_state(workload: spec.Workload, model_params: spec.ParameterContainer, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, rng: spec.RandomState) -> spec.OptimizerState: """Creates an Adam optimizer.""" del workload del model_state del rng optimizer_state = { 'optimizer': torch.optim.Adam( model_params.parameters(), lr=hyperparameters.learning_rate), } return optimizer_state def update_params(workload: spec.Workload, current_param_container: spec.ParameterContainer, current_params_types: spec.ParameterTypeTree, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, batch: Dict[str, spec.Tensor], loss_type: spec.LossType, optimizer_state: spec.OptimizerState, eval_results: List[Tuple[int, float]], global_step: int, rng: spec.RandomState) -> spec.UpdateReturn: """Return (updated_optimizer_state, updated_params, updated_model_state).""" del current_params_types del hyperparameters del loss_type del eval_results del global_step current_model = current_param_container current_model.train() optimizer_state['optimizer'].zero_grad() logits, new_model_state = workload.model_fn( params=current_model, augmented_and_preprocessed_input_batch=batch, model_state=model_state, mode=spec.ForwardPassMode.TRAIN, rng=rng, update_batch_norm=True) loss_dict = workload.loss_fn(batch['targets'], logits, batch['weights']) summed_loss = loss_dict['summed'] n_valid_examples = loss_dict['n_valid_examples'] if USE_PYTORCH_DDP: # Use dist_nn.all_reduce to ensure correct loss and gradient scaling. summed_loss = dist_nn.all_reduce(summed_loss) n_valid_examples = dist_nn.all_reduce(n_valid_examples) loss = summed_loss / n_valid_examples loss.backward() optimizer_state['optimizer'].step() return optimizer_state, current_param_container, new_model_state def data_selection(workload: spec.Workload, input_queue: Iterator[Dict[str, spec.Tensor]], optimizer_state: spec.OptimizerState, current_param_container: spec.ParameterContainer, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, global_step: int, rng: spec.RandomState) -> Dict[str, spec.Tensor]: """Select data from the infinitely repeating, pre-shuffled input queue. Each element of the queue is a batch of training examples and labels. """ del workload del optimizer_state del current_param_container del model_state del hyperparameters del global_step del rng return next(input_queue)
from typing import Dict, Iterator, List, Tuple from flax import jax_utils import jax from jax import lax import jax.numpy as jnp import optax from algorithmic_efficiency import spec def get_batch_size(workload_name): # Return the global batch size. batch_sizes = {'ogbg': 2048} return batch_sizes[workload_name] def init_optimizer_state(workload: spec.Workload, model_params: spec.ParameterContainer, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, rng: spec.RandomState) -> spec.OptimizerState: """Creates an Adam optimizer.""" del model_params del model_state del rng params_zeros_like = jax.tree_map(lambda s: jnp.zeros(s.shape_tuple), workload.param_shapes) opt_init_fn, opt_update_fn = opt_init_fn, opt_update_fn = optax.adam( learning_rate=hyperparameters.learning_rate) optimizer_state = opt_init_fn(params_zeros_like) return jax_utils.replicate(optimizer_state), opt_update_fn def train_step(workload, opt_update_fn, model_state, optimizer_state, current_param_container, hyperparameters, batch, rng): del hyperparameters def _loss_fn(params): logits_batch, new_model_state = workload.model_fn( params, batch, model_state, spec.ForwardPassMode.TRAIN, rng, update_batch_norm=True) mask_batch = batch['weights'] loss_dict = workload.loss_fn(batch['targets'], logits_batch, mask_batch) summed_loss = loss_dict['summed'] n_valid_examples = loss_dict['n_valid_examples'] return summed_loss, (n_valid_examples, new_model_state) grad_fn = jax.value_and_grad(_loss_fn, has_aux=True) (summed_loss, (n_valid_examples, new_model_state)), grad = grad_fn( current_param_container) # Get correct global mean grad. (summed_loss, n_valid_examples, grad) = lax.psum( (summed_loss, n_valid_examples, grad), axis_name='batch') grad = jax.tree_map(lambda x: x / n_valid_examples, grad) updates, new_optimizer_state = opt_update_fn( grad, optimizer_state, current_param_container) updated_params = optax.apply_updates(current_param_container, updates) return new_model_state, new_optimizer_state, updated_params def update_params(workload: spec.Workload, current_param_container: spec.ParameterContainer, current_params_types: spec.ParameterTypeTree, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, batch: Dict[str, spec.Tensor], loss_type: spec.LossType, optimizer_state: spec.OptimizerState, eval_results: List[Tuple[int, float]], global_step: int, rng: spec.RandomState) -> spec.UpdateReturn: """Return (updated_optimizer_state, updated_params, updated_model_state).""" del current_params_types del loss_type del eval_results del global_step optimizer_state, opt_update_fn = optimizer_state pmapped_train_step = jax.pmap( train_step, axis_name='batch', in_axes=(None, None, 0, 0, 0, None, 0, 0), static_broadcasted_argnums=(0, 1)) dropout_rngs = jax.random.split(rng, jax.local_device_count()) new_model_state, new_optimizer_state, new_params = pmapped_train_step( workload, opt_update_fn, model_state, optimizer_state, current_param_container, hyperparameters, batch, dropout_rngs) return (new_optimizer_state, opt_update_fn), new_params, new_model_state def data_selection(workload: spec.Workload, input_queue: Iterator[Dict[str, spec.Tensor]], optimizer_state: spec.OptimizerState, current_param_container: spec.ParameterContainer, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, global_step: int, rng: spec.RandomState) -> Dict[str, spec.Tensor]: """Select data from the infinitely repeating, pre-shuffled input queue. Each element of the queue is a batch of training examples and labels. """ del workload del optimizer_state del current_param_container del model_state del hyperparameters del global_step del rng return next(input_queue)
"""Training algorithm track submission functions for ImageNet.""" from typing import Dict, Iterator, List, Tuple import torch from torch.optim.lr_scheduler import CosineAnnealingLR from torch.optim.lr_scheduler import LinearLR from torch.optim.lr_scheduler import SequentialLR from algorithmic_efficiency import spec def get_batch_size(workload_name): # Return the global batch size. del workload_name return 1024 def init_optimizer_state(workload: spec.Workload, model_params: spec.ParameterContainer, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, rng: spec.RandomState) -> spec.OptimizerState: del model_state del rng batch_size = get_batch_size('imagenet_resnet') base_lr = hyperparameters.learning_rate * batch_size / 256. optimizer_state = { 'optimizer': torch.optim.SGD( model_params.parameters(), lr=base_lr, momentum=hyperparameters.momentum, weight_decay=hyperparameters.l2, nesterov=True), } steps_per_epoch = workload.num_train_examples // batch_size scheduler1 = LinearLR( optimizer_state['optimizer'], start_factor=1e-10, end_factor=1., total_iters=hyperparameters.warmup_epochs * steps_per_epoch) cosine_epochs = max( hyperparameters.num_epochs - hyperparameters.warmup_epochs, 1) scheduler2 = CosineAnnealingLR( optimizer_state['optimizer'], T_max=cosine_epochs * steps_per_epoch) optimizer_state['scheduler'] = SequentialLR( optimizer_state['optimizer'], schedulers=[scheduler1, scheduler2], milestones=[hyperparameters.warmup_epochs * steps_per_epoch]) return optimizer_state def update_params(workload: spec.Workload, current_param_container: spec.ParameterContainer, current_params_types: spec.ParameterTypeTree, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, batch: Dict[str, spec.Tensor], loss_type: spec.LossType, optimizer_state: spec.OptimizerState, eval_results: List[Tuple[int, float]], global_step: int, rng: spec.RandomState) -> spec.UpdateReturn: """Return (updated_optimizer_state, updated_params).""" del current_params_types del hyperparameters del loss_type del eval_results del global_step current_model = current_param_container current_param_container.train() optimizer_state['optimizer'].zero_grad() logits_batch, new_model_state = workload.model_fn( params=current_model, augmented_and_preprocessed_input_batch=batch, model_state=model_state, mode=spec.ForwardPassMode.TRAIN, rng=rng, update_batch_norm=True) loss_dict = workload.loss_fn( label_batch=batch['targets'], logits_batch=logits_batch) loss = loss_dict['summed'] / loss_dict['n_valid_examples'] loss.backward() optimizer_state['optimizer'].step() optimizer_state['scheduler'].step() return (optimizer_state, current_param_container, new_model_state) # Not allowed to update the model parameters, hyperparameters, global step, or # optimzier state. def data_selection(workload: spec.Workload, input_queue: Iterator[Dict[str, spec.Tensor]], optimizer_state: spec.OptimizerState, current_param_container: spec.ParameterContainer, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, global_step: int, rng: spec.RandomState) -> Dict[str, spec.Tensor]: """Select data from the infinitely repeating, pre-shuffled input queue. Each element of the queue is a batch of training examples and labels. """ del workload del optimizer_state del current_param_container del model_state del hyperparameters del global_step del rng return next(input_queue)
"""Training algorithm track submission functions for ImageNet.""" import functools from typing import Dict, Iterator, List, Tuple from flax import jax_utils import jax from jax import lax import jax.numpy as jnp import optax from algorithmic_efficiency import spec def get_batch_size(workload_name): # Return the global batch size. del workload_name return 1024 def create_learning_rate_fn(hparams: spec.Hyperparameters, steps_per_epoch: int): """Create learning rate schedule.""" base_learning_rate = hparams.learning_rate * \ get_batch_size('imagenet_resnet') / 256. warmup_fn = optax.linear_schedule( init_value=0., end_value=base_learning_rate, transition_steps=hparams.warmup_epochs * steps_per_epoch) cosine_epochs = max(hparams.num_epochs - hparams.warmup_epochs, 1) cosine_fn = optax.cosine_decay_schedule( init_value=base_learning_rate, decay_steps=cosine_epochs * steps_per_epoch) schedule_fn = optax.join_schedules( schedules=[warmup_fn, cosine_fn], boundaries=[hparams.warmup_epochs * steps_per_epoch]) return schedule_fn def optimizer(hyperparameters: spec.Hyperparameters, num_train_examples: int): steps_per_epoch = num_train_examples // get_batch_size('imagenet_resnet') learning_rate_fn = create_learning_rate_fn(hyperparameters, steps_per_epoch) opt_init_fn, opt_update_fn = optax.sgd( nesterov=True, momentum=hyperparameters.momentum, learning_rate=learning_rate_fn) return opt_init_fn, opt_update_fn def init_optimizer_state(workload: spec.Workload, model_params: spec.ParameterContainer, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, rng: spec.RandomState) -> spec.OptimizerState: del model_params del model_state del rng params_zeros_like = jax.tree_map(lambda s: jnp.zeros(s.shape_tuple), workload.param_shapes) opt_init_fn, opt_update_fn = optimizer(hyperparameters, workload.num_train_examples) optimizer_state = opt_init_fn(params_zeros_like) return jax_utils.replicate(optimizer_state), opt_update_fn @functools.partial( jax.pmap, axis_name='batch', in_axes=(None, None, 0, 0, 0, None, 0, 0), static_broadcasted_argnums=(0, 1)) def pmapped_train_step(workload, opt_update_fn, model_state, optimizer_state, current_param_container, hyperparameters, batch, rng): def _loss_fn(params): """loss function used for training.""" variables = {'params': params, **model_state} logits, new_model_state = workload.model_fn( params, batch, model_state, spec.ForwardPassMode.TRAIN, rng, update_batch_norm=True) loss_dict = workload.loss_fn(batch['targets'], logits) loss = loss_dict['summed'] / loss_dict['n_valid_examples'] weight_penalty_params = jax.tree_util.tree_leaves(variables['params']) weight_l2 = sum(jnp.sum(x**2) for x in weight_penalty_params if x.ndim > 1) weight_penalty = hyperparameters.l2 * 0.5 * weight_l2 loss = loss + weight_penalty return loss, (new_model_state, logits) grad_fn = jax.value_and_grad(_loss_fn, has_aux=True) aux, grad = grad_fn(current_param_container) grad = lax.pmean(grad, axis_name='batch') new_model_state, _ = aux[1] updates, new_optimizer_state = opt_update_fn(grad, optimizer_state, current_param_container) updated_params = optax.apply_updates(current_param_container, updates) return new_model_state, new_optimizer_state, updated_params def update_params(workload: spec.Workload, current_param_container: spec.ParameterContainer, current_params_types: spec.ParameterTypeTree, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, batch: Dict[str, spec.Tensor], loss_type: spec.LossType, optimizer_state: spec.OptimizerState, eval_results: List[Tuple[int, float]], global_step: int, rng: spec.RandomState) -> spec.UpdateReturn: """Return (updated_optimizer_state, updated_params, updated_model_state).""" del current_params_types del loss_type del eval_results del global_step optimizer_state, opt_update_fn = optimizer_state per_device_rngs = jax.random.split(rng, jax.local_device_count()) new_model_state, new_optimizer_state, new_params = pmapped_train_step( workload, opt_update_fn, model_state, optimizer_state, current_param_container, hyperparameters, batch, per_device_rngs) return (new_optimizer_state, opt_update_fn), new_params, new_model_state def data_selection(workload: spec.Workload, input_queue: Iterator[Dict[str, spec.Tensor]], optimizer_state: spec.OptimizerState, current_param_container: spec.ParameterContainer, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, global_step: int, rng: spec.RandomState) -> Dict[str, spec.Tensor]: """Select data from the infinitely repeating, pre-shuffled input queue. Each element of the queue is a batch of training examples and labels. """ del workload del optimizer_state del current_param_container del model_state del hyperparameters del global_step del rng return next(input_queue)
from typing import Dict, Iterator, List, Tuple import torch from torch.optim.lr_scheduler import CosineAnnealingLR from torch.optim.lr_scheduler import LinearLR from torch.optim.lr_scheduler import SequentialLR from algorithmic_efficiency import spec def get_batch_size(workload_name): batch_sizes = {'criteo1tb': 524_288} return batch_sizes[workload_name] def init_optimizer_state(workload: spec.Workload, model_params: spec.ParameterContainer, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, rng: spec.RandomState) -> spec.OptimizerState: del rng del model_state base_lr = hyperparameters.learning_rate optimizer_state = { 'optimizer': torch.optim.AdamW( model_params.parameters(), lr=base_lr, weight_decay=hyperparameters.weight_decay, betas=(hyperparameters.beta1, 0.999)), } scheduler1 = LinearLR( optimizer_state['optimizer'], start_factor=1e-12, end_factor=1., total_iters=hyperparameters.warmup_steps) scheduler2 = CosineAnnealingLR( optimizer_state['optimizer'], T_max=(workload.step_hint - hyperparameters.warmup_steps), ) optimizer_state['scheduler'] = SequentialLR( optimizer_state['optimizer'], schedulers=[scheduler1, scheduler2], milestones=[hyperparameters.warmup_steps]) return optimizer_state def update_params(workload: spec.Workload, current_param_container: spec.ParameterContainer, current_params_types: spec.ParameterTypeTree, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, batch: Dict[str, spec.Tensor], loss_type: spec.LossType, optimizer_state: spec.OptimizerState, eval_results: List[Tuple[int, float]], global_step: int, rng: spec.RandomState) -> spec.UpdateReturn: """Return (updated_optimizer_state, updated_params).""" current_model = current_param_container current_param_container.train() optimizer_state['optimizer'].zero_grad() logits_batch, new_model_state = workload.model_fn( params=current_model, augmented_and_preprocessed_input_batch=batch, model_state=model_state, mode=spec.ForwardPassMode.TRAIN, rng=rng, dropout_rate=None, aux_dropout_rate=None, update_batch_norm=False) loss_dict = workload.loss_fn( label_batch=batch['targets'], logits_batch=logits_batch) loss = loss_dict['summed'] / loss_dict['n_valid_examples'] loss.backward() optimizer_state['optimizer'].step() optimizer_state['scheduler'].step() return (optimizer_state, current_param_container, new_model_state) def data_selection(workload: spec.Workload, input_queue: Iterator[Dict[str, spec.Tensor]], optimizer_state: spec.OptimizerState, current_param_container: spec.ParameterContainer, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, global_step: int, rng: spec.RandomState) -> Dict[str, spec.Tensor]: """Select data from the infinitely repeating, pre-shuffled input queue. Each element of the queue is a batch of training examples and labels. """ del workload del optimizer_state del current_param_container del model_state del hyperparameters del global_step del rng return next(input_queue)
"""Training algorithm track submission functions for Criteo1TB DLRM-Small.""" import functools from typing import Dict, Iterator, List, Tuple from flax import jax_utils import jax from jax import lax import jax.numpy as jnp import optax from algorithmic_efficiency import spec def get_batch_size(workload_name): # Return the global batch size. del workload_name return 524_288 // 2 def create_learning_rate_fn(workload: spec.Workload, hparams: spec.Hyperparameters): """Create learning rate schedule.""" warmup_fn = optax.linear_schedule( init_value=0., end_value=hparams.learning_rate, transition_steps=hparams.warmup_steps) cosine_fn = optax.cosine_decay_schedule( init_value=hparams.learning_rate, decay_steps=(workload.step_hint - hparams.warmup_steps)) schedule_fn = optax.join_schedules( schedules=[warmup_fn, cosine_fn], boundaries=[hparams.warmup_steps]) return schedule_fn def init_optimizer_state(workload: spec.Workload, model_params: spec.ParameterContainer, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, rng: spec.RandomState) -> spec.OptimizerState: del model_params del model_state del rng learning_rate_fn = create_learning_rate_fn(workload, hyperparameters) opt_init_fn, opt_update_fn = optax.adamw( learning_rate=learning_rate_fn, b1=hyperparameters.beta1, weight_decay=hyperparameters.weight_decay) params_zeros_like = jax.tree_map(lambda s: jnp.zeros(s.shape_tuple), workload.param_shapes) optimizer_state = opt_init_fn(params_zeros_like) return jax_utils.replicate(optimizer_state), opt_update_fn @functools.partial( jax.pmap, axis_name='batch', in_axes=(None, None, 0, 0, 0, 0, 0), static_broadcasted_argnums=(0, 1)) def pmapped_train_step(workload, opt_update_fn, model_state, optimizer_state, current_param_container, batch, rng): def _loss_fn(params): """loss function used for training.""" logits, new_model_state = workload.model_fn( params, batch, model_state, spec.ForwardPassMode.TRAIN, rng, update_batch_norm=False) loss_dict = workload.loss_fn(batch['targets'], logits) loss = loss_dict['summed'] / loss_dict['n_valid_examples'] return loss, new_model_state grad_fn = jax.value_and_grad(_loss_fn, has_aux=True) (loss, new_model_state), grad = grad_fn(current_param_container) (loss, grad) = lax.pmean((loss, grad), axis_name='batch') grad_norm = jnp.sqrt( sum(jnp.sum(g**2) for g in jax.tree_util.tree_leaves(grad))) updates, new_optimizer_state = opt_update_fn(grad, optimizer_state, current_param_container) updated_params = optax.apply_updates(current_param_container, updates) return new_model_state, new_optimizer_state, updated_params, loss, grad_norm def update_params(workload: spec.Workload, current_param_container: spec.ParameterContainer, current_params_types: spec.ParameterTypeTree, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, batch: Dict[str, spec.Tensor], loss_type: spec.LossType, optimizer_state: spec.OptimizerState, eval_results: List[Tuple[int, float]], global_step: int, rng: spec.RandomState) -> spec.UpdateReturn: """Return (updated_optimizer_state, updated_params, updated_model_state).""" del current_params_types del loss_type del eval_results # del global_step optimizer_state, opt_update_fn = optimizer_state per_device_rngs = jax.random.split(rng, jax.local_device_count()) new_model_state, new_optimizer_state, new_params, loss, grad_norm = pmapped_train_step( workload, opt_update_fn, model_state, optimizer_state, current_param_container, batch, per_device_rngs) if workload.metrics_logger is not None: workload.metrics_logger.append_scalar_metrics( { 'loss': loss[0], 'grad_norm': grad_norm[0], }, global_step) return (new_optimizer_state, opt_update_fn), new_params, new_model_state def data_selection(workload: spec.Workload, input_queue: Iterator[Dict[str, spec.Tensor]], optimizer_state: spec.OptimizerState, current_param_container: spec.ParameterContainer, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, global_step: int, rng: spec.RandomState) -> Dict[str, spec.Tensor]: """Select data from the infinitely repeating, pre-shuffled input queue. Each element of the queue is a batch of training examples and labels. """ del workload del optimizer_state del current_param_container del model_state del hyperparameters del global_step del rng return next(input_queue)
"""Training algorithm track submission functions for FastMRI.""" from typing import Dict, Iterator, List, Tuple import torch from torch.optim.lr_scheduler import StepLR from algorithmic_efficiency import spec def get_batch_size(workload_name): # Return the global batch size. batch_sizes = {'fastmri': 8} return batch_sizes[workload_name] def init_optimizer_state(workload: spec.Workload, model_params: spec.ParameterContainer, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, rng: spec.RandomState) -> spec.OptimizerState: del workload del model_state del rng base_lr = hyperparameters.learning_rate * get_batch_size('fastmri') optimizer_state = { 'optimizer': torch.optim.RMSprop( model_params.parameters(), lr=base_lr, weight_decay=hyperparameters.l2), } optimizer_state['scheduler'] = StepLR( optimizer_state['optimizer'], step_size=hyperparameters.lr_step_size, gamma=hyperparameters.lr_gamma) return optimizer_state def update_params(workload: spec.Workload, current_param_container: spec.ParameterContainer, current_params_types: spec.ParameterTypeTree, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, batch: Dict[str, spec.Tensor], loss_type: spec.LossType, optimizer_state: spec.OptimizerState, eval_results: List[Tuple[int, float]], global_step: int, rng: spec.RandomState) -> spec.UpdateReturn: """Return (updated_optimizer_state, updated_params).""" del current_params_types del loss_type del eval_results current_model = current_param_container current_param_container.train() optimizer_state['optimizer'].zero_grad() outputs_batch, new_model_state = workload.model_fn( params=current_model, augmented_and_preprocessed_input_batch=batch, model_state=model_state, mode=spec.ForwardPassMode.TRAIN, rng=rng, update_batch_norm=True) loss_dict = workload.loss_fn( label_batch=batch['targets'], logits_batch=outputs_batch) loss = loss_dict['summed'] / loss_dict['n_valid_examples'] loss.backward() optimizer_state['optimizer'].step() steps_per_epoch = workload.num_train_examples // get_batch_size('fastmri') if (global_step + 1) % steps_per_epoch == 0: optimizer_state['scheduler'].step() return (optimizer_state, current_param_container, new_model_state) # Not allowed to update the model parameters, hyperparameters, global step, or # optimzier state. def data_selection(workload: spec.Workload, input_queue: Iterator[Dict[str, spec.Tensor]], optimizer_state: spec.OptimizerState, current_param_container: spec.ParameterContainer, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, global_step: int, rng: spec.RandomState) -> Dict[str, spec.Tensor]: """Select data from the infinitely repeating, pre-shuffled input queue. Each element of the queue is a batch of training examples and labels. """ del workload del optimizer_state del current_param_container del model_state del hyperparameters del global_step del rng return next(input_queue)
"""Training algorithm track submission functions for FastMRI in Jax.""" import functools from typing import Dict, Iterator, List, Tuple from flax import jax_utils import jax from jax import lax import jax.numpy as jnp import optax from algorithmic_efficiency import spec def get_batch_size(workload_name): # Return the global batch size. del workload_name return 64 def create_learning_rate_fn(hparams: spec.Hyperparameters, steps_per_epoch: int): """Create learning rate schedule.""" max_num_train_steps = 500 * steps_per_epoch decay_epoch_period = hparams.lr_step_size * steps_per_epoch decay_events = range(decay_epoch_period, max_num_train_steps, decay_epoch_period) schedule_fn = optax.piecewise_constant_schedule( init_value=hparams.learning_rate, boundaries_and_scales={t: hparams.lr_gamma for t in decay_events}) return schedule_fn def optimizer(hyperparameters: spec.Hyperparameters, num_train_examples: int): steps_per_epoch = num_train_examples // get_batch_size('imagenet_resnet') learning_rate_fn = create_learning_rate_fn(hyperparameters, steps_per_epoch) opt_init_fn, opt_update_fn = optax.rmsprop( learning_rate=learning_rate_fn, decay=0.99) return opt_init_fn, opt_update_fn def init_optimizer_state(workload: spec.Workload, model_params: spec.ParameterContainer, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, rng: spec.RandomState) -> spec.OptimizerState: del model_params del model_state del rng params_zeros_like = jax.tree_map(lambda s: jnp.zeros(s.shape_tuple), workload.param_shapes) opt_init_fn, opt_update_fn = optimizer(hyperparameters, workload.num_train_examples) optimizer_state = opt_init_fn(params_zeros_like) return jax_utils.replicate(optimizer_state), opt_update_fn @functools.partial( jax.pmap, axis_name='batch', in_axes=(None, None, 0, 0, None, 0, 0), static_broadcasted_argnums=(0, 1, 4)) def pmapped_train_step(workload, opt_update_fn, optimizer_state, current_param_container, hyperparameters, batch, rng): def _loss_fn(params): """loss function used for training.""" logits, _ = workload.model_fn( params, batch, model_state=None, mode=spec.ForwardPassMode.TRAIN, rng=rng, update_batch_norm=True) loss_dict = workload.loss_fn(batch['targets'], logits) loss = loss_dict['summed'] / loss_dict['n_valid_examples'] weight_penalty_params = jax.tree_util.tree_leaves(params) weight_l2 = sum(jnp.sum(x**2) for x in weight_penalty_params if x.ndim > 1) weight_penalty = hyperparameters.l2 * 0.5 * weight_l2 loss = loss + weight_penalty return loss grad_fn = jax.grad(_loss_fn) grad = grad_fn(current_param_container) grad = lax.pmean(grad, axis_name='batch') updates, new_optimizer_state = opt_update_fn(grad, optimizer_state, current_param_container) updated_params = optax.apply_updates(current_param_container, updates) return new_optimizer_state, updated_params def update_params(workload: spec.Workload, current_param_container: spec.ParameterContainer, current_params_types: spec.ParameterTypeTree, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, batch: Dict[str, spec.Tensor], loss_type: spec.LossType, optimizer_state: spec.OptimizerState, eval_results: List[Tuple[int, float]], global_step: int, rng: spec.RandomState) -> spec.UpdateReturn: """Return (updated_optimizer_state, updated_params, updated_model_state).""" del current_params_types del model_state del loss_type del eval_results del global_step optimizer_state, opt_update_fn = optimizer_state per_device_rngs = jax.random.split(rng, jax.local_device_count()) new_optimizer_state, new_params = pmapped_train_step( workload, opt_update_fn, optimizer_state, current_param_container, hyperparameters, batch, per_device_rngs) return (new_optimizer_state, opt_update_fn), new_params, None def data_selection(workload: spec.Workload, input_queue: Iterator[Dict[str, spec.Tensor]], optimizer_state: spec.OptimizerState, current_param_container: spec.ParameterContainer, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, global_step: int, rng: spec.RandomState) -> Dict[str, spec.Tensor]: """Select data from the infinitely repeating, pre-shuffled input queue. Each element of the queue is a batch of training examples and labels. """ del workload del optimizer_state del current_param_container del model_state del hyperparameters del global_step del rng return next(input_queue)
"""Training algorithm track submission functions for CIFAR10.""" import functools from typing import Dict, Iterator, List, Tuple from flax import jax_utils import jax from jax import lax import jax.numpy as jnp import optax from algorithmic_efficiency import spec def get_batch_size(workload_name): # Return the global batch size. batch_sizes = {'cifar': 128} return batch_sizes[workload_name] def cosine_decay(lr, step, total_steps): ratio = jnp.maximum(0., step / total_steps) mult = 0.5 * (1. + jnp.cos(jnp.pi * ratio)) return mult * lr def create_learning_rate_fn(hparams: spec.Hyperparameters, steps_per_epoch: int): """Create learning rate schedule.""" base_learning_rate = hparams.learning_rate * get_batch_size('cifar') / 128. warmup_fn = optax.linear_schedule( init_value=0., end_value=base_learning_rate, transition_steps=hparams.warmup_epochs * steps_per_epoch) cosine_epochs = max(hparams.num_epochs - hparams.warmup_epochs, 1) cosine_fn = optax.cosine_decay_schedule( init_value=base_learning_rate, decay_steps=cosine_epochs * steps_per_epoch) schedule_fn = optax.join_schedules( schedules=[warmup_fn, cosine_fn], boundaries=[hparams.warmup_epochs * steps_per_epoch]) return schedule_fn def optimizer(hyperparameters: spec.Hyperparameters, num_train_examples: int): steps_per_epoch = num_train_examples // get_batch_size('cifar') learning_rate_fn = create_learning_rate_fn(hyperparameters, steps_per_epoch) opt_init_fn, opt_update_fn = optax.sgd( nesterov=True, momentum=hyperparameters.momentum, learning_rate=learning_rate_fn) return opt_init_fn, opt_update_fn def init_optimizer_state(workload: spec.Workload, model_params: spec.ParameterContainer, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, rng: spec.RandomState) -> spec.OptimizerState: del model_params del model_state del rng params_zeros_like = jax.tree_map(lambda s: jnp.zeros(s.shape_tuple), workload.param_shapes) opt_init_fn, opt_update_fn = optimizer(hyperparameters, workload.num_train_examples) optimizer_state = opt_init_fn(params_zeros_like) return jax_utils.replicate(optimizer_state), opt_update_fn @functools.partial( jax.pmap, axis_name='batch', in_axes=(None, None, 0, 0, 0, None, 0, 0), static_broadcasted_argnums=(0, 1)) def pmapped_train_step(workload, opt_update_fn, model_state, optimizer_state, current_param_container, hyperparameters, batch, rng): def _loss_fn(params): """loss function used for training.""" logits, new_model_state = workload.model_fn( params, batch, model_state, spec.ForwardPassMode.TRAIN, rng, update_batch_norm=True) loss_dict = workload.loss_fn(batch['targets'], logits) loss = loss_dict['summed'] / loss_dict['n_valid_examples'] weight_penalty_params = jax.tree_util.tree_leaves(params) weight_l2 = sum(jnp.sum(x**2) for x in weight_penalty_params if x.ndim > 1) weight_penalty = hyperparameters.l2 * 0.5 * weight_l2 loss = loss + weight_penalty return loss, new_model_state grad_fn = jax.value_and_grad(_loss_fn, has_aux=True) (_, new_model_state), grad = grad_fn(current_param_container) grad = lax.pmean(grad, axis_name='batch') updates, new_optimizer_state = opt_update_fn(grad, optimizer_state, current_param_container) updated_params = optax.apply_updates(current_param_container, updates) return new_optimizer_state, updated_params, new_model_state # Not allowed to update the model parameters, hyperparameters, global step, or # optimzier state. def update_params(workload: spec.Workload, current_param_container: spec.ParameterContainer, current_params_types: spec.ParameterTypeTree, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, batch: Dict[str, spec.Tensor], loss_type: spec.LossType, optimizer_state: spec.OptimizerState, eval_results: List[Tuple[int, float]], global_step: int, rng: spec.RandomState) -> spec.UpdateReturn: """Return (updated_optimizer_state, updated_params, updated_model_state).""" del current_params_types del loss_type del global_step del eval_results optimizer_state, opt_update_fn = optimizer_state per_device_rngs = jax.random.split(rng, jax.local_device_count()) new_optimizer_state, new_params, new_model_state = pmapped_train_step( workload, opt_update_fn, model_state, optimizer_state, current_param_container, hyperparameters, batch, per_device_rngs) return (new_optimizer_state, opt_update_fn), new_params, new_model_state def data_selection(workload: spec.Workload, input_queue: Iterator[Dict[str, spec.Tensor]], optimizer_state: spec.OptimizerState, current_param_container: spec.ParameterContainer, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, global_step: int, rng: spec.RandomState) -> Dict[str, spec.Tensor]: """Select data from the infinitely repeating, pre-shuffled input queue. Each element of the queue is a batch of training examples and labels. """ del workload del optimizer_state del current_param_container del model_state del hyperparameters del global_step del rng return next(input_queue)
"""Training algorithm track submission functions for CIFAR10.""" from typing import Dict, Iterator, List, Tuple import torch from torch.optim.lr_scheduler import CosineAnnealingLR from torch.optim.lr_scheduler import LinearLR from torch.optim.lr_scheduler import SequentialLR from algorithmic_efficiency import spec def get_batch_size(workload_name): # Return the global batch size. batch_sizes = {'cifar': 128} return batch_sizes[workload_name] def init_optimizer_state(workload: spec.Workload, model_params: spec.ParameterContainer, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, rng: spec.RandomState) -> spec.OptimizerState: del workload del model_state del rng base_lr = hyperparameters.learning_rate * get_batch_size('cifar') / 128. optimizer_state = { 'optimizer': torch.optim.SGD( model_params.parameters(), lr=base_lr, momentum=hyperparameters.momentum, weight_decay=hyperparameters.l2), } scheduler1 = LinearLR( optimizer_state['optimizer'], start_factor=1e-5, end_factor=1., total_iters=hyperparameters.warmup_epochs) cosine_epochs = max( hyperparameters.num_epochs - hyperparameters.warmup_epochs, 1) scheduler2 = CosineAnnealingLR( optimizer_state['optimizer'], T_max=cosine_epochs) optimizer_state['scheduler'] = SequentialLR( optimizer_state['optimizer'], schedulers=[scheduler1, scheduler2], milestones=[hyperparameters.warmup_epochs]) return optimizer_state def update_params(workload: spec.Workload, current_param_container: spec.ParameterContainer, current_params_types: spec.ParameterTypeTree, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, batch: Dict[str, spec.Tensor], loss_type: spec.LossType, optimizer_state: spec.OptimizerState, eval_results: List[Tuple[int, float]], global_step: int, rng: spec.RandomState) -> spec.UpdateReturn: """Return (updated_optimizer_state, updated_params).""" del current_params_types del hyperparameters del loss_type del eval_results current_model = current_param_container current_param_container.train() optimizer_state['optimizer'].zero_grad() logits_batch, new_model_state = workload.model_fn( params=current_model, augmented_and_preprocessed_input_batch=batch, model_state=model_state, mode=spec.ForwardPassMode.TRAIN, rng=rng, update_batch_norm=True) loss_dict = workload.loss_fn( label_batch=batch['targets'], logits_batch=logits_batch) loss = loss_dict['summed'] / loss_dict['n_valid_examples'] loss.backward() optimizer_state['optimizer'].step() steps_per_epoch = workload.num_train_examples // get_batch_size('cifar') if (global_step + 1) % steps_per_epoch == 0: optimizer_state['scheduler'].step() return (optimizer_state, current_param_container, new_model_state) # Not allowed to update the model parameters, hyperparameters, global step, or # optimzier state. def data_selection(workload: spec.Workload, input_queue: Iterator[Dict[str, spec.Tensor]], optimizer_state: spec.OptimizerState, current_param_container: spec.ParameterContainer, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, global_step: int, rng: spec.RandomState) -> Dict[str, spec.Tensor]: """Select data from the infinitely repeating, pre-shuffled input queue. Each element of the queue is a batch of training examples and labels. """ del workload del optimizer_state del current_param_container del model_state del hyperparameters del global_step del rng return next(input_queue)
"""Template submission module. See https://github.com/mlcommons/algorithmic-efficiency/blob/main/RULES.md#allowed-submissions and https://github.com/mlcommons/algorithmic-efficiency/blob/main/RULES.md#disallowed-submissions for guidelines. """ def init_optimizer_state(workload: spec.Workload, model_params: spec.ParameterContainer, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, rng: spec.RandomState) -> spec.OptimizerState: """Creates a Nesterov optimizer and a learning rate schedule. Returns: optimizer state optimizer_update_fn """ pass def update_params(workload: spec.Workload, current_param_container: spec.ParameterContainer, current_params_types: spec.ParameterTypeTree, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, batch: Dict[str, spec.Tensor], loss_type: spec.LossType, optimizer_state: spec.OptimizerState, eval_results: List[Tuple[int, float]], global_step: int, rng: spec.RandomState) -> spec.UpdateReturn: """ Returns: (new_optimizer_state, update_fn) new_params new_model_state """ pass def get_batch_size(workload_name): """ Returns batch size for each workload. Valid workload_name values are in ["wmt", "ogbg", "criteo1tb", "fastmri", "imagenet_resnet", "imagenet_vit", "librispeech_deepspeech", "librispeech_conformer"] Returns: batch_size """ pass def data_selection(workload: spec.Workload, input_queue: Iterator[Dict[str, spec.Tensor]], optimizer_state: spec.OptimizerState, current_param_container: spec.ParameterContainer, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, global_step: int, rng: spec.RandomState) -> Dict[str, spec.Tensor]: """Select data from the infinitely repeating, pre-shuffled input queue. Each element of the queue is a batch of training examples and labels. Tip: If you would just like the next batch from the input queue return next(input_queue). Returns: batch: next batch of input data """ pass
import json import os import re from absl import logging import pandas as pd TRIAL_LINE_REGEX = '(.*) --- Tuning run (\d+)/(\d+) ---' METRICS_LINE_REGEX = '(.*) Metrics: ({.*})' TRIAL_DIR_REGEX = 'trial_(\d+)' MEASUREMENTS_FILENAME = 'eval_measurements.csv' #### File IO helper functions ### def get_logfile_paths(logdir): """Gets all files ending in .log in logdir """ filenames = os.listdir(logdir) logfile_paths = [] for f in filenames: if f.endswith(".log"): f = os.path.join(logdir, f) logfile_paths.append(f) return logfile_paths ### Logfile reading helper functions ### def decode_metrics_line(line): """Convert metrics line to dict. Args: line: str Returns: dict_of_lists: dict where keys are metric names and vals are lists of values. e.g. {'loss':[5.1, 3.2, 1.0], 'step':[100, 200, 300]} """ eval_results = [] dict_str = re.match(METRICS_LINE_REGEX, line).group(2) dict_str = dict_str.replace("'", "\"") dict_str = dict_str.replace("(", "") dict_str = dict_str.replace(")", "") dict_str = dict_str.replace("DeviceArray", "") dict_str = dict_str.replace(", dtype=float32", "") dict_str = dict_str.replace("nan", "0") metrics_dict = json.loads(dict_str) for item in metrics_dict['eval_results']: if isinstance(item, dict): eval_results.append(item) keys = eval_results[0].keys() dict_of_lists = {} for key in keys: dict_of_lists[key] = [] for eval_results_dict in eval_results: for key in eval_results_dict.keys(): val = eval_results_dict[key] dict_of_lists[key].append(val) return dict_of_lists def get_trials_dict(logfile): """Get a dict of dicts with metrics for each tuning run. Returns: trials_dict: Dict of dicts where outer dict keys are trial indices and inner dict key-value pairs are metrics and list of values. e.g. {'trial_0': {'loss':[5.1, 3.2, 1.0], 'step':[100, 200, 300]}, 'trial_1': {'loss':[5.1, 3.2, 1.0], 'step':[100, 200, 300]}} """ trial = 0 metrics_lines = {} with open(logfile, 'r') as f: for line in f: if re.match(TRIAL_LINE_REGEX, line): trial = re.match(TRIAL_LINE_REGEX, line).group(2) if re.match(METRICS_LINE_REGEX, line): metrics_lines[trial] = decode_metrics_line(line) if len(metrics_lines) == 0: raise ValueError(f'Log file does not have a metrics line {logfile}') return metrics_lines ### Results formatting helper functions ### def get_trials_df_dict(logfile): """Get a dict with dataframes with metrics for each tuning run. Preferable format for saving dataframes for tables. Args: logfile: str path to logfile. Returns: DataFrame where indices are index of eval and columns are metric names. """ trials_dict = get_trials_dict(logfile) trials_df_dict = {} for trial in trials_dict.keys(): metrics = trials_dict[trial] trials_df_dict[trial] = pd.DataFrame(metrics) return trials_df_dict def get_trials_df(logfile): """Gets a df of per trial results from a logfile. Args: experiment_dir: str Returns: df: DataFrame where indices are trials, columns are metric names and values are lists. e.g +---------+-----------------+-----------------+ | | loss | step | |---------+-----------------+-----------------| | trial_0 | [5.1, 3.2, 1.0] | [100, 200, 300] | | trial_1 | [5.1, 3.2, 1.0] | [100, 200, 300] | +---------+-----------------+-----------------+ """ trials_dict = get_trials_dict(logfile) df = pd.DataFrame(trials_dict).transpose() return df ## Get scoring code def get_experiment_df(experiment_dir): """Gets a df of per trial results from an experiment dir. The output df can be provided as input to scoring.compute_performance_profiles. Args: experiment_dir: path to experiment directory containing results for workloads. The directory structure is assumed to be: + experiment_dir + <workload> + <trial> - eval_measurements.csv Returns: df: DataFrame where indices are trials, columns are metric names and values are lists. e.g +----+-----------+---------+--------------------+--------------------+ | | workload | trial | validation/accuracy| score | |----+-----------+---------+--------------------+--------------------| | 0 | mnist_jax | trial_1 | [0.0911, 0.0949] | [10.6396, 10.6464] | +----+-----------+---------+--------------------+--------------------+ """ df = pd.DataFrame() workload_dirs = os.listdir(experiment_dir) for workload in workload_dirs: data = { 'workload': workload, } trial_dirs = [ t for t in os.listdir(os.path.join(experiment_dir, workload)) if re.match(TRIAL_DIR_REGEX, t) ] for trial in trial_dirs: eval_measurements_filepath = os.path.join( experiment_dir, workload, trial, MEASUREMENTS_FILENAME, ) try: trial_df = pd.read_csv(eval_measurements_filepath) except FileNotFoundError as e: logging.info(f'Could not read {eval_measurements_filepath}') continue data['trial'] = trial for column in trial_df.columns: values = trial_df[column].to_numpy() data[column] = values trial_df = pd.DataFrame([data]) df = pd.concat([df, trial_df], ignore_index=True) return df
from absl.testing import absltest import scoring_utils TEST_LOGFILE = 'test_data/adamw_fastmri_jax_04-18-2023-13-10-58.log' TEST_DIR = 'test_data/experiment_dir' NUM_EVALS = 18 class Test(absltest.TestCase): def test_get_trials_dict(self): trials_dict = scoring_utils.get_trials_dict(TEST_LOGFILE) self.assertEqual(len(trials_dict['1']['global_step']), NUM_EVALS) def test_get_trials_df_dict(self): trials_dict = scoring_utils.get_trials_df_dict(TEST_LOGFILE) for trial in trials_dict: df = trials_dict[trial] self.assertEqual(len(df.index), NUM_EVALS) def test_get_trials_df(self): df = scoring_utils.get_trials_df(TEST_LOGFILE) for column in df.columns: self.assertEqual(len(df.at['1', column]), NUM_EVALS) def test_get_experiment_df(self): df = scoring_utils.get_experiment_df(TEST_DIR) if __name__ == '__main__': absltest.main()
"""Performance and scoring code. The three primary methods exposed by the `scoring` module are: - `compute_performance_profiles`: generates performance profiles for a set of submissions over all workloads as defined in the scoring rules: https://github.com/mlcommons/algorithmic-efficiency/blob/main/RULES.md - `compute_leaderboard_score`: computes final scores from performance profiles. - `plot_performance_profiles`: plot performance profiles for a set of submissions. The two primary inputs to `compute_performance_profiles` are 1. A dictionary of pandas DataFrames, where each key is a globally unique identifier for a submission and each value is a DataFrame containing one row per trial per workload in that submission. At minimum, this DataFrame should include a column of np.arrays indicating time (e.g., 'global_step'), a column of np.arrays indicating performance (e.g., 'validation/accuracy') for each workload and a column 'workload' that indicates the workload identifier. 2. A dictionary of workload metadata describing each workload in the form: { 'workload_identifier': { 'target': VALUE, 'metric': 'validation/error_rate', } } The keys in this dictionary should match the workload identifiers used in the dictionary of submissions. """ import itertools import operator import os import re import matplotlib.pyplot as plt import numpy as np import pandas as pd import algorithmic_efficiency.workloads.workloads as workloads_registry WORKLOADS = workloads_registry.WORKLOADS WORKLOAD_NAME_PATTERN = '(.*)(_jax|_pytorch)' BASE_WORKLOADS_DIR = 'algorithmic_efficiency/workloads/' MIN_EVAL_METRICS = [ 'ce_loss', 'error_rate', 'ctc_loss', 'wer', 'l1_loss', ] MAX_EVAL_METRICS = ['average_precision', 'ssim', 'accuracy', 'bleu_score'] def generate_eval_cols(metrics): splits = ['train', 'validation', 'test'] return [f'{split}/{col}' for split, col in itertools.product(splits, metrics)] MINIMIZE_REGISTRY = {k: True for k in generate_eval_cols(MIN_EVAL_METRICS)} MINIMIZE_REGISTRY.update( {k: False for k in generate_eval_cols(MAX_EVAL_METRICS)}) MINIMIZE_REGISTRY['train_cost'] = True def check_if_minimized(col_name): """Guess if the eval metric column name should be minimized or not.""" for prefix in ['best_', 'final_']: col_name = col_name.replace(prefix, '') for col in MINIMIZE_REGISTRY: if col in col_name: return MINIMIZE_REGISTRY[col] raise ValueError(f'Column {col_name} not found in `MINIMIZE_REGISTRY` as ' 'either a column name or a substring of a column name.') def get_index_that_reaches_best(workload_df, metric_col): """Get the eval index in which a workload reaches the best on metric_col. Args: workload_df: A subset of a submission's trials DataFrame that includes only the trials in a single workload. metric_col: Name of array column in workload_df (e.g., `validation/l1_loss`). Returns: Tuple of trial index, time index, and best value where the workload reached the best metric_col. Return (-1, -1, -1) if no undiverged trials. """ is_minimized = check_if_minimized(metric_col) series = workload_df[metric_col] series = series[series != np.nan] op = np.min if is_minimized else np.max best = series.apply(op) op_idx = np.argmin if is_minimized else np.argmax best_idx = series.apply(op_idx) if best.empty: return -1, -1, -1 else: trial = best.idxmin() if is_minimized else best.idxmax() return trial, best_idx[trial], best[trial] def get_index_that_reaches_target(workload_df, validation_metric, test_metric, validation_target, test_target): """Get the eval index in which a workload reaches the target metric_col. Args: workload_df: A subset of a submission's trials DataFrame that includes only the trials in a single workload. metric_col: Name of array column in workload_df (e.g., `validation/l1_loss`). target: Target value for metric_col. Returns: Tuple of trial index and time index where the workload reached the target metric_col. Return (-1, -1) if not reached. """ is_minimized = check_if_minimized(validation_metric) validation_series = workload_df[validation_metric] test_series = workload_df[test_metric] validation_series = validation_series[validation_series != np.nan] validation_series = validation_series[test_series != np.nan] test_series = test_series[validation_series != np.nan] test_series = test_series[test_series != np.nan] op = operator.le if is_minimized else operator.ge validation_target_reached = validation_series.apply( lambda x: op(x, validation_target)) test_target_reached = test_series.apply(lambda x: op(x, test_target)) target_reached = pd.Series(validation_target_reached[0] & test_target_reached[0]) # Remove trials that never reach the target target_reached = target_reached[target_reached.apply(np.any)] # If we have no trials that have reached the target, return -1. Else, return # the eval index of the earliest point the target is reached. if target_reached.empty: return -1, -1 else: index_reached = target_reached.apply(np.argmax) trial = index_reached.idxmin() return trial, index_reached[trial] def get_times_for_submission(submission, submission_tag, time_col='global_step', verbosity=1): """Get times to target for each workload in a submission. Args: submission: A DataFrame containing one row for each trial in each workload for a given submission. submission_tag: Globally unique identified for a submission. time_col: A string indicating which column to use for time. verbosity: Debug level of information; choice of (1, 2, 3). Returns: DataFrame with columns `submission`, `workload`, and time_col. """ workloads = [] submission_name = submission_tag.split('.')[1] for workload, group in submission.groupby('workload'): workload_name = re.match(WORKLOAD_NAME_PATTERN, workload).group(1) framework = re.match(WORKLOAD_NAME_PATTERN, workload).group(2) workload_metadata = WORKLOADS[workload_name] # Extend path according to framework. workload_metadata['workload_path'] = os.path.join( BASE_WORKLOADS_DIR, workload_metadata['workload_path'] + f'{framework}', 'workload.py') workload_init_kwargs = {} workload_obj = workloads_registry.import_workload( workload_path=workload_metadata['workload_path'], workload_class_name=workload_metadata['workload_class_name'], workload_init_kwargs=workload_init_kwargs) metric_name = workload_obj.target_metric_name validation_metric = f'validation/{metric_name}' test_metric = f'test/{metric_name}' validation_target = workload_obj.validation_target_value test_target = workload_obj.test_target_value trial_idx, time_idx = get_index_that_reaches_target( group, validation_metric, test_metric, validation_target, test_target) if time_idx > -1: time_val = group[time_col].loc[trial_idx][time_idx] else: time_val = float('inf') workloads.append({ 'submission': submission_name, 'workload': workload, time_col: time_val, }) if verbosity > 0: print(' hparams:') if time_idx > -1: hparams = group.loc[trial_idx, 'hparams'] for key, val in hparams.items(): print(f' - {key}: {val}') else: print('Submission did not reach target') df = pd.DataFrame.from_records(workloads) df = df.pivot(index='submission', columns='workload', values=time_col) return df def compute_performance_profiles(results, time_col='global_step', min_tau=1.0, max_tau=None, reference_submission_tag=None, num_points=100, scale='linear', verbosity=0): """Compute performance profiles for a set of submission by some time column. Args: results: Dict where keys are submission names and values are a DataFrame of trials where each row is a trial and each column is a field for a given trial. Results should contain keys for each workload's metric, time_col, 'workload'. See file header comment for more details. time_col: A string indicating which column to use for time. min_tau: Minimum tau to use for plotting. max_tau: Maximum tau to use for plotting. reference_submission_tag: If specified, must be an element of `submission_tags`. Used as the denominator for computing tau. Otherwise, the minimum time to target is computed per-workload and used as the denominator for tau. num_points: Number of points to use for plotting. scale: Linear or log scale for the x-axis. verbosity: Debug level of information; choice of (1, 2, 3). Returns: A DataFrame of performance profiles for the set of submissions given in `results` based on `time_col`. Each row represents a submission and each column represents rho(tau) for some value of tau (df.volumns are the different values of tau). """ dfs = [] for submission_tag, result in results.items(): print(f'\nComputing performance profile with respect to `{time_col}` for ' f'{submission_tag}') dfs.append( get_times_for_submission(result, submission_tag, time_col, verbosity)) df = pd.concat(dfs) if verbosity > 0: print(f'\n`{time_col}` to reach target:') with pd.option_context('display.max_rows', None, 'display.max_columns', None, 'display.width', 1000): print(df) # Divide by the fastest. if reference_submission_tag is None: df.update(df.div(df.min(axis=0), axis=1)) else: df.update(df.div(df.loc[reference_submission_tag, :], axis=1)) if verbosity > 0: print(f'\n`{time_col}` to reach target normalized to best:') with pd.option_context('display.max_rows', None, 'display.max_columns', None, 'display.width', 1000): print(df) # If no max_tau is supplied, choose the value of tau that would plot all non # inf or nan data. if max_tau is None: max_tau = df.replace(float('inf'), -1).replace(np.nan, -1).values.max() if scale == 'linear': points = np.linspace(min_tau, max_tau, num=num_points) elif scale == 'log': points = np.logspace( np.log10(min_tau), np.log10(max_tau), num=num_points, base=10.0) def rho(r, tau): return (r <= tau).sum(axis=1) / len(r.columns) perf_df = pd.concat([rho(df, tau) for tau in points], axis=1) cols = points if scale == 'log': cols = np.log10(points) perf_df.columns = cols return perf_df def compute_leaderboard_score(df, normalize=False): """Compute leaderboard score by taking integral of performance profile. Args: df: pd.DataFrame returned from `compute_performance_profiles`. normalize: divide by the range of the performance profile's tau. Returns: pd.DataFrame with one column of scores indexed by submission. """ scores = np.trapz(df, x=df.columns) if normalize: scores /= df.columns.max() - df.columns.min() return pd.DataFrame(scores, columns=['score'], index=df.index) def maybe_save_figure(save_dir, name, ext='pdf'): """Maybe save the current matplotlib.pyplot figure.""" if save_dir: path = os.path.join(save_dir, f'{name}.{ext}') with open(path, 'wb') as fout: plt.savefig(fout, format=ext) def maybe_save_df_to_csv(save_dir, df, path, **to_csv_kwargs): if save_dir: path = os.path.join(save_dir, path) with open(path, 'w') as fout: df.to_csv(fout, **to_csv_kwargs) def plot_performance_profiles(perf_df, df_col, scale='linear', save_dir=None, figsize=(30, 10), font_size=18): """Plot performance profiles. Args: perf_df: A DataFrame of performance profiles where each row represents a submission and each column represents rho(tau) for some value of tau (df.volumns are the different values of tau). df_col: The column in the original submission results DataFrame used to compute the performance profile. This argument is only used for axis and file naming. scale: Whether or not the data in perf_df is on a linear or log scale. This argument is only used for axis and file naming. save_dir: If a valid directory is provided, save both the plot and perf_df to the provided directory. figsize: The size of the plot. font_size: The font size to use for the legend. Returns: None. If a valid save_dir is provided, save both the plot and perf_df. """ fig = perf_df.T.plot(figsize=figsize) df_col_display = f'log10({df_col})' if scale == 'log' else df_col fig.set_xlabel( f'Ratio of `{df_col_display}` to best submission', size=font_size) fig.set_ylabel('Proportion of workloads', size=font_size) fig.legend(prop={'size': font_size}, bbox_to_anchor=(1.0, 1.0)) maybe_save_figure(save_dir, f'performance_profile_by_{df_col_display}') maybe_save_df_to_csv(save_dir, perf_df, f'performance_profile_{df_col_display}.csv')
import os from absl import app from absl import flags from absl import logging import scoring_utils from algorithmic_efficiency import workloads import scoring flags.DEFINE_string( 'experiment_path', None, 'Path to experiment directory containing workload directories.') flags.DEFINE_string('submission_tag', 'my.submission', 'Submission tag.') flags.DEFINE_string('output_dir', 'scoring_results', 'Path to save performance profile table and plot.') FLAGS = flags.FLAGS def main(_): df = scoring_utils.get_experiment_df(FLAGS.experiment_path) results = { FLAGS.submission_tag: df, } performance_profile_df = scoring.compute_performance_profiles( results, time_col='score', min_tau=1.0, max_tau=None, reference_submission_tag=None, num_points=100, scale='linear', verbosity=0) if not os.path.exists(FLAGS.output_dir): os.mkdir(FLAGS.output_dir) scoring.plot_performance_profiles( performance_profile_df, 'score', save_dir=FLAGS.output_dir) logging.info(performance_profile_df) if __name__ == '__main__': flags.mark_flag_as_required('experiment_path') app.run(main)
"""Submission file for a LAMB optimizer with warmup+cosine LR in PyTorch.""" import math from typing import Dict, Iterator, List, Tuple from absl import logging import torch from torch import Tensor from torch.optim.lr_scheduler import CosineAnnealingLR from torch.optim.lr_scheduler import LinearLR from torch.optim.lr_scheduler import SequentialLR from algorithmic_efficiency import spec # Modified from github.com/pytorch/pytorch/blob/v1.12.1/torch/optim/adamw.py class LAMB(torch.optim.Optimizer): def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0.0): if not 0.0 <= lr: raise ValueError(f'Invalid learning rate: {lr}') if not 0.0 <= eps: raise ValueError(f'Invalid epsilon value: {eps}') if not 0.0 <= betas[0] < 1.0: raise ValueError(f'Invalid beta parameter at index 0: {betas[0]}') if not 0.0 <= betas[1] < 1.0: raise ValueError(f'Invalid beta parameter at index 1: {betas[1]}') if not 0.0 <= weight_decay: raise ValueError(f'Invalid weight_decay value: {weight_decay}') defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay) super().__init__(params, defaults) def __setstate__(self, state): super().__setstate__(state) state_values = list(self.state.values()) step_is_tensor = (len(state_values) != 0) and torch.is_tensor( state_values[0]['step']) if not step_is_tensor: for s in state_values: s['step'] = torch.tensor(float(s['step'])) @torch.no_grad() def step(self, closure=None): """Performs a single optimization step.""" self._cuda_graph_capture_health_check() loss = None if closure is not None: with torch.enable_grad(): loss = closure() for group in self.param_groups: params_with_grad = [] grads = [] exp_avgs = [] exp_avg_sqs = [] state_steps = [] beta1, beta2 = group['betas'] for p in group['params']: if p.grad is None: continue params_with_grad.append(p) if p.grad.is_sparse: raise RuntimeError('NAdamW does not support sparse gradients') grads.append(p.grad) state = self.state[p] # State initialization if len(state) == 0: state['step'] = torch.tensor(0.) # Exponential moving average of gradient values state['exp_avg'] = torch.zeros_like( p, memory_format=torch.preserve_format) # Exponential moving average of squared gradient values state['exp_avg_sq'] = torch.zeros_like( p, memory_format=torch.preserve_format) exp_avgs.append(state['exp_avg']) exp_avg_sqs.append(state['exp_avg_sq']) state_steps.append(state['step']) lamb( params_with_grad, grads, exp_avgs, exp_avg_sqs, state_steps, beta1=beta1, beta2=beta2, lr=group['lr'], weight_decay=group['weight_decay'], eps=group['eps']) return loss def lamb(params: List[Tensor], grads: List[Tensor], exp_avgs: List[Tensor], exp_avg_sqs: List[Tensor], state_steps: List[Tensor], beta1: float, beta2: float, lr: float, weight_decay: float, eps: float): if not all(isinstance(t, torch.Tensor) for t in state_steps): raise RuntimeError( 'API has changed, `state_steps` argument must contain a list of' + ' singleton tensors') for i, param in enumerate(params): grad = grads[i] exp_avg = exp_avgs[i] exp_avg_sq = exp_avg_sqs[i] step_t = state_steps[i] # Update step. step_t += 1 # Decay the first and second moment running average coefficient. exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2) step = step_t.item() bias_correction1 = 1 - beta1**step bias_correction2 = 1 - beta2**step bias_correction2_sqrt = math.sqrt(bias_correction2) denom = (exp_avg_sq.sqrt() / bias_correction2_sqrt).add_(eps) update = exp_avg / denom update.div_(bias_correction1) update.add_(weight_decay * param) # Scale updates by trust ratio. param_norm = torch.linalg.norm(param) update_norm = torch.linalg.norm(update) # Set trust_ratio to 1 in case where parameters would never be updated. if param_norm == 0. or update_norm == 0.: trust_ratio = 1. else: trust_ratio = param_norm / update_norm param.add_(update, alpha=-lr * trust_ratio) def init_optimizer_state(workload: spec.Workload, model_params: spec.ParameterContainer, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, rng: spec.RandomState) -> spec.OptimizerState: """Creates a LAMB optimizer and a learning rate schedule.""" del model_state del rng optimizer_state = { 'optimizer': LAMB( model_params.parameters(), lr=hyperparameters.learning_rate, betas=(hyperparameters.beta1, hyperparameters.beta2), eps=1e-8, weight_decay=hyperparameters.weight_decay) } def pytorch_cosine_warmup(step_hint: int, hyperparameters, optimizer): warmup_steps = int(hyperparameters.warmup_factor * step_hint) warmup = LinearLR( optimizer, start_factor=1e-10, end_factor=1., total_iters=warmup_steps) cosine_steps = max(step_hint - warmup_steps, 1) cosine_decay = CosineAnnealingLR(optimizer, T_max=cosine_steps) return SequentialLR( optimizer, schedulers=[warmup, cosine_decay], milestones=[warmup_steps]) optimizer_state['scheduler'] = pytorch_cosine_warmup( workload.step_hint, hyperparameters, optimizer_state['optimizer']) return optimizer_state def update_params(workload: spec.Workload, current_param_container: spec.ParameterContainer, current_params_types: spec.ParameterTypeTree, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, batch: Dict[str, spec.Tensor], loss_type: spec.LossType, optimizer_state: spec.OptimizerState, eval_results: List[Tuple[int, float]], global_step: int, rng: spec.RandomState) -> spec.UpdateReturn: """Return (updated_optimizer_state, updated_params, updated_model_state).""" del current_params_types del loss_type del eval_results current_model = current_param_container current_model.train() optimizer_state['optimizer'].zero_grad() logits_batch, new_model_state = workload.model_fn( params=current_model, augmented_and_preprocessed_input_batch=batch, model_state=model_state, mode=spec.ForwardPassMode.TRAIN, rng=rng, update_batch_norm=True) label_smoothing = ( hyperparameters.label_smoothing if hasattr(hyperparameters, 'label_smoothing') else 0.0) if hasattr(hyperparameters, 'grad_clip'): grad_clip = hyperparameters.grad_clip else: grad_clip = None loss, _ = workload.loss_fn( label_batch=batch['targets'], logits_batch=logits_batch, mask_batch=batch.get('weights'), label_smoothing=label_smoothing) loss.backward() if grad_clip is not None: torch.nn.utils.clip_grad_norm_( current_model.parameters(), max_norm=grad_clip) optimizer_state['optimizer'].step() optimizer_state['scheduler'].step() # Log training metrics - loss, grad_norm, batch_size. if global_step <= 100 or global_step % 500 == 0: with torch.no_grad(): parameters = [p for p in current_model.parameters() if p.grad is not None] grad_norm = torch.norm( torch.stack([torch.norm(p.grad.detach(), 2) for p in parameters]), 2) if workload.metrics_logger is not None: workload.metrics_logger.append_scalar_metrics( { 'loss': loss.item(), 'grad_norm': grad_norm.item(), }, global_step) logging.info('%d) loss = %0.3f, grad_norm = %0.3f', global_step, loss.item(), grad_norm.item()) return (optimizer_state, current_param_container, new_model_state) def get_batch_size(workload_name): # Return the global batch size. if workload_name == 'criteo1tb': return 262_144 elif workload_name == 'fastmri': return 32 elif workload_name == 'imagenet_resnet': return 1024 elif workload_name == 'imagenet_vit': return 1024 elif workload_name == 'librispeech_conformer': return 256 elif workload_name == 'librispeech_deepspeech': return 256 elif workload_name == 'ogbg': return 512 elif workload_name == 'wmt': return 128 elif workload_name == 'mnist': return 16 else: raise ValueError(f'Unsupported workload name: {workload_name}.') def data_selection(workload: spec.Workload, input_queue: Iterator[Dict[str, spec.Tensor]], optimizer_state: spec.OptimizerState, current_param_container: spec.ParameterContainer, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, global_step: int, rng: spec.RandomState) -> Dict[str, spec.Tensor]: """Select data from the infinitely repeating, pre-shuffled input queue. Each element of the queue is a batch of training examples and labels. """ del workload del optimizer_state del current_param_container del model_state del hyperparameters del global_step del rng batch = next(input_queue) return batch
"""Submission file for a LAMB optimizer with warmup+cosine LR in Jax.""" import functools from typing import Dict, Iterator, List, Tuple from flax import jax_utils import jax from jax import lax import jax.numpy as jnp import optax from algorithmic_efficiency import spec _GRAD_CLIP_EPS = 1e-6 def scale_by_learning_rate(learning_rate, flip_sign=True): m = -1 if flip_sign else 1 if callable(learning_rate): return optax.scale_by_schedule(lambda count: m * learning_rate(count)) return optax.scale(m * learning_rate) def init_optimizer_state(workload: spec.Workload, model_params: spec.ParameterContainer, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, rng: spec.RandomState) -> spec.OptimizerState: """Creates a LAMB optimizer and a learning rate schedule.""" del model_params del model_state del rng def jax_cosine_warmup(step_hint: int, hyperparameters): # Create learning rate schedule. warmup_steps = int(hyperparameters.warmup_factor * step_hint) warmup_fn = optax.linear_schedule( init_value=0., end_value=hyperparameters.learning_rate, transition_steps=warmup_steps) cosine_steps = max(step_hint - warmup_steps, 1) cosine_fn = optax.cosine_decay_schedule( init_value=hyperparameters.learning_rate, decay_steps=cosine_steps) schedule_fn = optax.join_schedules( schedules=[warmup_fn, cosine_fn], boundaries=[warmup_steps]) return schedule_fn # Create optimizer + LR schedule. lr_schedule_fn = jax_cosine_warmup(workload.step_hint, hyperparameters) opt_init_fn, opt_update_fn = optax.lamb( learning_rate=lr_schedule_fn, b1=1 - hyperparameters.one_minus_beta1, b2=hyperparameters.beta2, eps=1e-8, weight_decay=hyperparameters.weight_decay) params_zeros_like = jax.tree_map(lambda s: jnp.zeros(s.shape_tuple), workload.param_shapes) optimizer_state = opt_init_fn(params_zeros_like) return jax_utils.replicate(optimizer_state), opt_update_fn @functools.partial( jax.pmap, axis_name='batch', in_axes=(None, None, 0, 0, 0, 0, 0, None, None), static_broadcasted_argnums=(0, 1), donate_argnums=(2, 3, 4)) def pmapped_train_step(workload, opt_update_fn, model_state, optimizer_state, current_param_container, batch, rng, grad_clip, label_smoothing): def _loss_fn(params): """Loss function used for training.""" logits, new_model_state = workload.model_fn( params, batch, model_state, spec.ForwardPassMode.TRAIN, rng, update_batch_norm=True) loss_dict = workload.loss_fn( label_batch=batch['targets'], logits_batch=logits, mask_batch=batch.get('weights'), label_smoothing=label_smoothing) summed_loss = loss_dict['summed'] n_valid_examples = loss_dict['n_valid_examples'] return summed_loss, (n_valid_examples, new_model_state) grad_fn = jax.value_and_grad(_loss_fn, has_aux=True) (summed_loss, (n_valid_examples, new_model_state)), grad = grad_fn( current_param_container) # Get correct global mean loss and grad. (summed_loss, n_valid_examples, grad) = lax.psum( (summed_loss, n_valid_examples, grad), axis_name='batch') loss = summed_loss / n_valid_examples grad = jax.tree_map(lambda x: x / n_valid_examples, grad) grad_norm = jnp.sqrt( sum(jnp.sum(g**2) for g in jax.tree_util.tree_leaves(grad))) if grad_clip is not None: grad_scaling_factor = grad_clip / (grad_norm + _GRAD_CLIP_EPS) grad_scaling_factor = jax.lax.clamp(min=0.0, x=grad_scaling_factor, max=1.0) grad = jax.tree_map(lambda x: x * grad_scaling_factor, grad) updates, new_optimizer_state = opt_update_fn(grad, optimizer_state, current_param_container) updated_params = optax.apply_updates(current_param_container, updates) return new_optimizer_state, updated_params, new_model_state, loss, grad_norm def update_params(workload: spec.Workload, current_param_container: spec.ParameterContainer, current_params_types: spec.ParameterTypeTree, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, batch: Dict[str, spec.Tensor], loss_type: spec.LossType, optimizer_state: spec.OptimizerState, eval_results: List[Tuple[int, float]], global_step: int, rng: spec.RandomState) -> spec.UpdateReturn: """Return (updated_optimizer_state, updated_params, updated_model_state).""" del current_params_types del loss_type del eval_results optimizer_state, opt_update_fn = optimizer_state per_device_rngs = jax.random.split(rng, jax.local_device_count()) if hasattr(hyperparameters, 'label_smoothing'): label_smoothing = hyperparameters.label_smoothing else: label_smoothing = 0.0 if hasattr(hyperparameters, 'grad_clip'): grad_clip = hyperparameters.grad_clip else: grad_clip = None outputs = pmapped_train_step(workload, opt_update_fn, model_state, optimizer_state, current_param_container, batch, per_device_rngs, grad_clip, label_smoothing) new_optimizer_state, new_params, new_model_state, loss, grad_norm = outputs # Log loss, grad_norm. if global_step % 100 == 0 and workload.metrics_logger is not None: workload.metrics_logger.append_scalar_metrics( { 'loss': loss[0], 'grad_norm': grad_norm[0], }, global_step) return (new_optimizer_state, opt_update_fn), new_params, new_model_state def get_batch_size(workload_name): # Return the global batch size. if workload_name == 'criteo1tb': return 262_144 elif workload_name == 'fastmri': return 32 elif workload_name == 'imagenet_resnet': return 1024 elif workload_name == 'imagenet_vit': return 1024 elif workload_name == 'librispeech_conformer': return 256 elif workload_name == 'librispeech_deepspeech': return 256 elif workload_name == 'ogbg': return 512 elif workload_name == 'wmt': return 128 elif workload_name == 'mnist': return 16 else: raise ValueError(f'Unsupported workload name: {workload_name}.') def data_selection(workload: spec.Workload, input_queue: Iterator[Dict[str, spec.Tensor]], optimizer_state: spec.OptimizerState, current_param_container: spec.ParameterContainer, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, global_step: int, rng: spec.RandomState) -> Dict[str, spec.Tensor]: """Select data from the infinitely repeating, pre-shuffled input queue. Each element of the queue is a batch of training examples and labels. """ del workload del optimizer_state del current_param_container del model_state del hyperparameters del global_step del rng batch = next(input_queue) return batch
"""Submission file for an NAdamW optimizer with warmup+cosine LR in PyTorch.""" import math from typing import Dict, Iterator, List, Tuple from absl import logging import torch from torch import Tensor import torch.distributed.nn as dist_nn from torch.optim.lr_scheduler import CosineAnnealingLR from torch.optim.lr_scheduler import LinearLR from torch.optim.lr_scheduler import SequentialLR from algorithmic_efficiency import spec from algorithmic_efficiency.pytorch_utils import pytorch_setup USE_PYTORCH_DDP = pytorch_setup()[0] # Modified from github.com/pytorch/pytorch/blob/v1.12.1/torch/optim/adamw.py. class NAdamW(torch.optim.Optimizer): r"""Implements NAdamW algorithm. See Table 1 in https://arxiv.org/abs/1910.05446 for the implementation of the NAdam algorithm (there is also a comment in the code which highlights the only difference of NAdamW and AdamW). For further details regarding the algorithm we refer to `Decoupled Weight Decay Regularization`_. Args: params (iterable): iterable of parameters to optimize or dicts defining parameter groups lr (float, optional): learning rate (default: 1e-3) betas (Tuple[float, float], optional): coefficients used for computing running averages of gradient and its square (default: (0.9, 0.999)) eps (float, optional): term added to the denominator to improve numerical stability (default: 1e-8) weight_decay (float, optional): weight decay coefficient (default: 1e-2) .. _Decoupled Weight Decay Regularization: https://arxiv.org/abs/1711.05101 .. _On the Convergence of Adam and Beyond: https://openreview.net/forum?id=ryQu7f-RZ """ def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=1e-2): if not 0.0 <= lr: raise ValueError(f'Invalid learning rate: {lr}') if not 0.0 <= eps: raise ValueError(f'Invalid epsilon value: {eps}') if not 0.0 <= betas[0] < 1.0: raise ValueError(f'Invalid beta parameter at index 0: {betas[0]}') if not 0.0 <= betas[1] < 1.0: raise ValueError(f'Invalid beta parameter at index 1: {betas[1]}') if not 0.0 <= weight_decay: raise ValueError(f'Invalid weight_decay value: {weight_decay}') defaults = { 'lr': lr, 'betas': betas, 'eps': eps, 'weight_decay': weight_decay } super().__init__(params, defaults) def __setstate__(self, state): super().__setstate__(state) state_values = list(self.state.values()) step_is_tensor = (len(state_values) != 0) and torch.is_tensor( state_values[0]['step']) if not step_is_tensor: for s in state_values: s['step'] = torch.tensor(float(s['step'])) @torch.no_grad() def step(self, closure=None): """Performs a single optimization step. Args: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ self._cuda_graph_capture_health_check() loss = None if closure is not None: with torch.enable_grad(): loss = closure() for group in self.param_groups: params_with_grad = [] grads = [] exp_avgs = [] exp_avg_sqs = [] state_steps = [] beta1, beta2 = group['betas'] for p in group['params']: if p.grad is None: continue params_with_grad.append(p) if p.grad.is_sparse: raise RuntimeError('NAdamW does not support sparse gradients') grads.append(p.grad) state = self.state[p] # State initialization if len(state) == 0: state['step'] = torch.tensor(0.) # Exponential moving average of gradient values state['exp_avg'] = torch.zeros_like( p, memory_format=torch.preserve_format) # Exponential moving average of squared gradient values state['exp_avg_sq'] = torch.zeros_like( p, memory_format=torch.preserve_format) exp_avgs.append(state['exp_avg']) exp_avg_sqs.append(state['exp_avg_sq']) state_steps.append(state['step']) nadamw( params_with_grad, grads, exp_avgs, exp_avg_sqs, state_steps, beta1=beta1, beta2=beta2, lr=group['lr'], weight_decay=group['weight_decay'], eps=group['eps']) return loss def nadamw(params: List[Tensor], grads: List[Tensor], exp_avgs: List[Tensor], exp_avg_sqs: List[Tensor], state_steps: List[Tensor], beta1: float, beta2: float, lr: float, weight_decay: float, eps: float) -> None: r"""Functional API that performs NAdamW algorithm computation. See NAdamW class for details. """ if not all(isinstance(t, torch.Tensor) for t in state_steps): raise RuntimeError( 'API has changed, `state_steps` argument must contain a list of' + ' singleton tensors') for i, param in enumerate(params): grad = grads[i] exp_avg = exp_avgs[i] exp_avg_sq = exp_avg_sqs[i] step_t = state_steps[i] # Update step. step_t += 1 # Perform stepweight decay. param.mul_(1 - lr * weight_decay) # Decay the first and second moment running average coefficient. exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2) # Only difference between NAdamW and AdamW in this implementation. # The official PyTorch implementation of NAdam uses a different algorithm. # We undo these ops later on, which could cause numerical issues but saves # us from having to make an extra copy of the gradients. exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) step = step_t.item() bias_correction1 = 1 - beta1**step bias_correction2 = 1 - beta2**step step_size = lr / bias_correction1 bias_correction2_sqrt = math.sqrt(bias_correction2) denom = (exp_avg_sq.sqrt() / bias_correction2_sqrt).add_(eps) param.addcdiv_(exp_avg, denom, value=-step_size) exp_avg.sub_(grad, alpha=1 - beta1).div_(beta1) def init_optimizer_state(workload: spec.Workload, model_params: spec.ParameterContainer, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, rng: spec.RandomState) -> spec.OptimizerState: """Creates a NAdamW optimizer and a learning rate schedule.""" del model_state del rng optimizer_state = { 'optimizer': NAdamW( model_params.parameters(), lr=hyperparameters.learning_rate, betas=(1.0 - hyperparameters.one_minus_beta1, hyperparameters.beta2), eps=1e-8, weight_decay=hyperparameters.weight_decay), } def pytorch_cosine_warmup(step_hint: int, hyperparameters, optimizer): warmup_steps = int(hyperparameters.warmup_factor * step_hint) warmup = LinearLR( optimizer, start_factor=1e-10, end_factor=1., total_iters=warmup_steps) cosine_steps = max(step_hint - warmup_steps, 1) cosine_decay = CosineAnnealingLR(optimizer, T_max=cosine_steps) return SequentialLR( optimizer, schedulers=[warmup, cosine_decay], milestones=[warmup_steps]) optimizer_state['scheduler'] = pytorch_cosine_warmup( workload.step_hint, hyperparameters, optimizer_state['optimizer']) return optimizer_state def update_params(workload: spec.Workload, current_param_container: spec.ParameterContainer, current_params_types: spec.ParameterTypeTree, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, batch: Dict[str, spec.Tensor], loss_type: spec.LossType, optimizer_state: spec.OptimizerState, eval_results: List[Tuple[int, float]], global_step: int, rng: spec.RandomState) -> spec.UpdateReturn: """Return (updated_optimizer_state, updated_params, updated_model_state).""" del current_params_types del loss_type del eval_results current_model = current_param_container current_model.train() optimizer_state['optimizer'].zero_grad() logits_batch, new_model_state = workload.model_fn( params=current_model, augmented_and_preprocessed_input_batch=batch, model_state=model_state, mode=spec.ForwardPassMode.TRAIN, rng=rng, update_batch_norm=True) label_smoothing = ( hyperparameters.label_smoothing if hasattr(hyperparameters, 'label_smoothing') else 0.0) if hasattr(hyperparameters, 'grad_clip'): grad_clip = hyperparameters.grad_clip else: grad_clip = None loss_dict = workload.loss_fn( label_batch=batch['targets'], logits_batch=logits_batch, mask_batch=batch.get('weights'), label_smoothing=label_smoothing) summed_loss = loss_dict['summed'] n_valid_examples = loss_dict['n_valid_examples'] if USE_PYTORCH_DDP: # Use dist_nn.all_reduce to ensure correct loss and gradient scaling. summed_loss = dist_nn.all_reduce(summed_loss) n_valid_examples = dist_nn.all_reduce(n_valid_examples) loss = summed_loss / n_valid_examples loss.backward() if grad_clip is not None: torch.nn.utils.clip_grad_norm_( current_model.parameters(), max_norm=grad_clip) optimizer_state['optimizer'].step() optimizer_state['scheduler'].step() # Log training metrics - loss, grad_norm, batch_size. if global_step <= 100 or global_step % 500 == 0: with torch.no_grad(): parameters = [p for p in current_model.parameters() if p.grad is not None] grad_norm = torch.norm( torch.stack([torch.norm(p.grad.detach(), 2) for p in parameters]), 2) if workload.metrics_logger is not None: workload.metrics_logger.append_scalar_metrics( { 'loss': loss.item(), 'grad_norm': grad_norm.item(), }, global_step) logging.info('%d) loss = %0.3f, grad_norm = %0.3f', global_step, loss.item(), grad_norm.item()) return (optimizer_state, current_param_container, new_model_state) def get_batch_size(workload_name): # Return the global batch size. if workload_name == 'criteo1tb': return 262_144 elif workload_name == 'fastmri': return 32 elif workload_name == 'imagenet_resnet': return 1024 elif workload_name == 'imagenet_vit': return 1024 elif workload_name == 'librispeech_conformer': return 256 elif workload_name == 'librispeech_deepspeech': return 256 elif workload_name == 'ogbg': return 512 elif workload_name == 'wmt': return 128 elif workload_name == 'mnist': return 16 else: raise ValueError(f'Unsupported workload name: {workload_name}.') def data_selection(workload: spec.Workload, input_queue: Iterator[Dict[str, spec.Tensor]], optimizer_state: spec.OptimizerState, current_param_container: spec.ParameterContainer, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, global_step: int, rng: spec.RandomState) -> Dict[str, spec.Tensor]: """Select data from the infinitely repeating, pre-shuffled input queue. Each element of the queue is a batch of training examples and labels. """ del workload del optimizer_state del current_param_container del model_state del hyperparameters del global_step del rng batch = next(input_queue) return batch
"""Submission file for an NAdamW optimizer with warmup+cosine LR in Jax.""" import functools # isort: off # We have to turn off isort here to resolve a conflict between isort and yapf. from typing import (Any, Callable, Dict, Iterator, List, NamedTuple, Optional, Tuple, Union) # isort: on import chex from flax import jax_utils import jax from jax import lax import jax.numpy as jnp import optax from algorithmic_efficiency import spec _GRAD_CLIP_EPS = 1e-6 # Forked from # github.com/google/init2winit/blob/master/init2winit/optimizer_lib/alias.py def nadamw( learning_rate: Union[float, optax.Schedule], b1: float = 0.9, b2: float = 0.999, eps: float = 1e-8, eps_root: float = 0.0, debias: bool = True, weight_decay: float = 0.0, weight_decay_mask: Optional[Union[Any, Callable[[optax.Params], Any]]] = None, ) -> optax.GradientTransformation: """Rescale updates according to the NAdam algorithm. References: There seem to be multiple versions of NAdam. The original version is here https://openreview.net/forum?id=OM0jvwB8jIp57ZJjtNEZ (the official PyTorch implementation also follows this). Current code implements a simpler version with no momentum decay and slightly different bias correction terms. The exact description can be found here https://arxiv.org/pdf/1910.05446.pdf (Table 1). Args: learning_rate: A fixed global scaling factor. b1: Decay rate for the exponentially weighted average of grads. b2: Decay rate for the exponentially weighted average of squared grads. eps: Term added to the denominator to improve numerical stability. eps_root: Term added to the denominator inside the square-root to improve numerical stability when backpropagating gradients through the rescaling. debias: Whether to use bias correction. weight_decay: Strength of the weight decay regularization. Note that this weight decay is multiplied with the learning rate. This is consistent with other frameworks such as PyTorch, but different from (Loshchilov et al, 2019) where the weight decay is only multiplied with the "schedule multiplier", but not the base learning rate. weight_decay_mask: A tree with same structure as (or a prefix of) the params PyTree, or a Callable that returns such a pytree given the params/updates. The leaves should be booleans, `True` for leaves/subtrees you want to apply the weight decay to, and `False` for those you want to skip. Note that the Nadam gradient transformations are applied to all parameters. Returns: An (init_fn, update_fn) tuple. """ return optax.chain( scale_by_nadam(b1, b2, eps, eps_root, debias), optax.add_decayed_weights(weight_decay, weight_decay_mask), scale_by_learning_rate(learning_rate)) # All functions below are forked from # github.com/google/init2winit/blob/master/init2winit/optimizer_lib/transform.py def scale_by_nadam(b1: float = 0.9, b2: float = 0.999, eps: float = 1e-8, eps_root: float = 0.0, debias: bool = True, power: float = 0.5) -> optax.GradientTransformation: """Rescale updates according to the NAdam algorithm. References: There seem to be multiple versions of NAdam. The original version is here https://openreview.net/forum?id=OM0jvwB8jIp57ZJjtNEZ (the pytorch imp. also follows this). Current code implements a simpler version with no momentum decay and slightly different (standard Adam) bias correction terms. The exact description can be found here https://arxiv.org/pdf/1910.05446.pdf (Table 1) Args: b1: Decay rate for the exponentially weighted average of grads. b2: Decay rate for the exponentially weighted average of squared grads. eps: Term added to the denominator to improve numerical stability. eps_root: Term added to the denominator inside the square-root to improve numerical stability when backpropagating gradients through the rescaling. debias: Whether to use bias correction. power: The power to use in the preconditioner (0.5 in default adam). Returns: An (init_fn, update_fn) tuple. """ raise_power = jnp.sqrt if power == 0.5 else lambda x: jnp.power(x, power) def init_fn(params): mu = jax.tree_map(jnp.zeros_like, params) # First moment nu = jax.tree_map(jnp.zeros_like, params) # Second moment return ScaleByAdamState(count=jnp.zeros([], jnp.int32), mu=mu, nu=nu) def update_fn(updates, state, params=None): del params mu = _update_moment(updates, state.mu, b1, 1) nu = _update_moment(updates, state.nu, b2, 2) count = state.count + jnp.array(1, dtype=jnp.int32) mu_hat = _update_moment(updates, mu, b1, 1) mu_hat = mu_hat if not debias else _bias_correction(mu_hat, b1, count) nu_hat = nu if not debias else _bias_correction(nu, b2, count) updates = jax.tree_map( lambda m, v: m / (raise_power(v + eps_root) + eps), mu_hat, nu_hat) return updates, ScaleByAdamState(count=count, mu=mu, nu=nu) return optax.GradientTransformation(init_fn, update_fn) class ScaleByAdamState(NamedTuple): """State for the NAdam algorithm.""" count: chex.Array # shape=(), dtype=jnp.int32. mu: optax.Updates nu: optax.Updates def _update_moment(updates, moments, decay, order): """Compute the exponential moving average of the `order-th` moment.""" return jax.tree_map( lambda g, t: (1 - decay) * (g**order) + decay * t, updates, moments) def _bias_correction(moment, decay, count): """Perform bias correction. This becomes a no-op as count goes to infinity.""" beta = 1 - decay**count return jax.tree_map(lambda t: t / beta.astype(t.dtype), moment) def scale_by_learning_rate(learning_rate, flip_sign=True): m = -1 if flip_sign else 1 if callable(learning_rate): return optax.scale_by_schedule(lambda count: m * learning_rate(count)) return optax.scale(m * learning_rate) def init_optimizer_state(workload: spec.Workload, model_params: spec.ParameterContainer, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, rng: spec.RandomState) -> spec.OptimizerState: """Creates a NAdamW optimizer and a learning rate schedule.""" del model_params del model_state del rng def jax_cosine_warmup(step_hint: int, hyperparameters): # Create learning rate schedule. warmup_steps = int(hyperparameters.warmup_factor * step_hint) warmup_fn = optax.linear_schedule( init_value=0., end_value=hyperparameters.learning_rate, transition_steps=warmup_steps) cosine_steps = max(step_hint - warmup_steps, 1) cosine_fn = optax.cosine_decay_schedule( init_value=hyperparameters.learning_rate, decay_steps=cosine_steps) schedule_fn = optax.join_schedules( schedules=[warmup_fn, cosine_fn], boundaries=[warmup_steps]) return schedule_fn # Create optimizer + LR schedule. lr_schedule_fn = jax_cosine_warmup(workload.step_hint, hyperparameters) opt_init_fn, opt_update_fn = nadamw( learning_rate=lr_schedule_fn, b1=1.0 - hyperparameters.one_minus_beta1, b2=hyperparameters.beta2, eps=1e-8, weight_decay=hyperparameters.weight_decay) params_zeros_like = jax.tree_map(lambda s: jnp.zeros(s.shape_tuple), workload.param_shapes) optimizer_state = opt_init_fn(params_zeros_like) return jax_utils.replicate(optimizer_state), opt_update_fn @functools.partial( jax.pmap, axis_name='batch', in_axes=(None, None, 0, 0, 0, 0, 0, None, None), static_broadcasted_argnums=(0, 1), donate_argnums=(2, 3, 4)) def pmapped_train_step(workload, opt_update_fn, model_state, optimizer_state, current_param_container, batch, rng, grad_clip, label_smoothing): def _loss_fn(params): """Loss function used for training.""" logits, new_model_state = workload.model_fn( params, batch, model_state, spec.ForwardPassMode.TRAIN, rng, update_batch_norm=True) loss_dict = workload.loss_fn( label_batch=batch['targets'], logits_batch=logits, mask_batch=batch.get('weights'), label_smoothing=label_smoothing) summed_loss = loss_dict['summed'] n_valid_examples = loss_dict['n_valid_examples'] return summed_loss, (n_valid_examples, new_model_state) grad_fn = jax.value_and_grad(_loss_fn, has_aux=True) (summed_loss, (n_valid_examples, new_model_state)), grad = grad_fn( current_param_container) # Get correct global mean loss and grad. (summed_loss, n_valid_examples, grad) = lax.psum( (summed_loss, n_valid_examples, grad), axis_name='batch') loss = summed_loss / n_valid_examples grad = jax.tree_map(lambda x: x / n_valid_examples, grad) grad_norm = jnp.sqrt( sum(jnp.sum(g**2) for g in jax.tree_util.tree_leaves(grad))) if grad_clip is not None: grad_scaling_factor = grad_clip / (grad_norm + _GRAD_CLIP_EPS) grad_scaling_factor = jax.lax.clamp(min=0.0, x=grad_scaling_factor, max=1.0) grad = jax.tree_map(lambda x: x * grad_scaling_factor, grad) updates, new_optimizer_state = opt_update_fn(grad, optimizer_state, current_param_container) updated_params = optax.apply_updates(current_param_container, updates) return new_optimizer_state, updated_params, new_model_state, loss, grad_norm def update_params(workload: spec.Workload, current_param_container: spec.ParameterContainer, current_params_types: spec.ParameterTypeTree, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, batch: Dict[str, spec.Tensor], loss_type: spec.LossType, optimizer_state: spec.OptimizerState, eval_results: List[Tuple[int, float]], global_step: int, rng: spec.RandomState) -> spec.UpdateReturn: """Return (updated_optimizer_state, updated_params, updated_model_state).""" del current_params_types del loss_type del eval_results optimizer_state, opt_update_fn = optimizer_state per_device_rngs = jax.random.split(rng, jax.local_device_count()) if hasattr(hyperparameters, 'label_smoothing'): label_smoothing = hyperparameters.label_smoothing else: label_smoothing = 0.0 if hasattr(hyperparameters, 'grad_clip'): grad_clip = hyperparameters.grad_clip else: grad_clip = None outputs = pmapped_train_step(workload, opt_update_fn, model_state, optimizer_state, current_param_container, batch, per_device_rngs, grad_clip, label_smoothing) new_optimizer_state, new_params, new_model_state, loss, grad_norm = outputs # Log loss, grad_norm. if global_step % 100 == 0 and workload.metrics_logger is not None: workload.metrics_logger.append_scalar_metrics( { 'loss': loss[0], 'grad_norm': grad_norm[0], }, global_step) return (new_optimizer_state, opt_update_fn), new_params, new_model_state def get_batch_size(workload_name): # Return the global batch size. if workload_name == 'criteo1tb': return 262_144 elif workload_name == 'fastmri': return 32 elif workload_name == 'imagenet_resnet': return 1024 elif workload_name == 'imagenet_vit': return 1024 elif workload_name == 'librispeech_conformer': return 256 elif workload_name == 'librispeech_deepspeech': return 256 elif workload_name == 'ogbg': return 512 elif workload_name == 'wmt': return 128 elif workload_name == 'mnist': return 16 else: raise ValueError(f'Unsupported workload name: {workload_name}.') def data_selection(workload: spec.Workload, input_queue: Iterator[Dict[str, spec.Tensor]], optimizer_state: spec.OptimizerState, current_param_container: spec.ParameterContainer, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, global_step: int, rng: spec.RandomState) -> Dict[str, spec.Tensor]: """Select data from the infinitely repeating, pre-shuffled input queue. Each element of the queue is a batch of training examples and labels. """ del workload del optimizer_state del current_param_container del model_state del hyperparameters del global_step del rng batch = next(input_queue) return batch
"""Submission file for an AdamW optimizer with warmup+cosine LR in PyTorch.""" from typing import Dict, Iterator, List, Tuple from absl import logging import torch import torch.distributed.nn as dist_nn from torch.optim.lr_scheduler import CosineAnnealingLR from torch.optim.lr_scheduler import LinearLR from torch.optim.lr_scheduler import SequentialLR from algorithmic_efficiency import spec from algorithmic_efficiency.pytorch_utils import pytorch_setup USE_PYTORCH_DDP = pytorch_setup()[0] def init_optimizer_state(workload: spec.Workload, model_params: spec.ParameterContainer, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, rng: spec.RandomState) -> spec.OptimizerState: """Creates an AdamW optimizer and a learning rate schedule.""" del model_state del rng optimizer_state = { 'optimizer': torch.optim.AdamW( model_params.parameters(), lr=hyperparameters.learning_rate, betas=(1.0 - hyperparameters.one_minus_beta1, hyperparameters.beta2), eps=1e-8, weight_decay=hyperparameters.weight_decay, fused=False), } def pytorch_cosine_warmup(step_hint: int, hyperparameters, optimizer): warmup_steps = hyperparameters.warmup_factor * step_hint warmup = LinearLR( optimizer, start_factor=1e-10, end_factor=1., total_iters=warmup_steps) cosine_steps = max(step_hint - warmup_steps, 1) cosine_decay = CosineAnnealingLR(optimizer, T_max=cosine_steps) return SequentialLR( optimizer, schedulers=[warmup, cosine_decay], milestones=[warmup_steps]) optimizer_state['scheduler'] = pytorch_cosine_warmup( workload.step_hint, hyperparameters, optimizer_state['optimizer']) return optimizer_state def update_params(workload: spec.Workload, current_param_container: spec.ParameterContainer, current_params_types: spec.ParameterTypeTree, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, batch: Dict[str, spec.Tensor], loss_type: spec.LossType, optimizer_state: spec.OptimizerState, eval_results: List[Tuple[int, float]], global_step: int, rng: spec.RandomState) -> spec.UpdateReturn: """Return (updated_optimizer_state, updated_params, updated_model_state).""" del current_params_types del loss_type del eval_results current_model = current_param_container current_model.train() optimizer_state['optimizer'].zero_grad() logits_batch, new_model_state = workload.model_fn( params=current_model, augmented_and_preprocessed_input_batch=batch, model_state=model_state, mode=spec.ForwardPassMode.TRAIN, rng=rng, update_batch_norm=True) label_smoothing = ( hyperparameters.label_smoothing if hasattr(hyperparameters, 'label_smoothing') else 0.0) loss_dict = workload.loss_fn( label_batch=batch['targets'], logits_batch=logits_batch, mask_batch=batch.get('weights'), label_smoothing=label_smoothing) summed_loss = loss_dict['summed'] n_valid_examples = loss_dict['n_valid_examples'] if USE_PYTORCH_DDP: # Use dist_nn.all_reduce to ensure correct loss and gradient scaling. summed_loss = dist_nn.all_reduce(summed_loss) n_valid_examples = dist_nn.all_reduce(n_valid_examples) loss = summed_loss / n_valid_examples loss.backward() if hasattr(hyperparameters, 'grad_clip'): grad_clip = hyperparameters.grad_clip torch.nn.utils.clip_grad_norm_( current_model.parameters(), max_norm=grad_clip) optimizer_state['optimizer'].step() optimizer_state['scheduler'].step() # Log training metrics - loss, grad_norm, batch_size. if global_step <= 100 or global_step % 500 == 0: with torch.no_grad(): parameters = [p for p in current_model.parameters() if p.grad is not None] grad_norm = torch.norm( torch.stack([torch.norm(p.grad.detach(), 2) for p in parameters]), 2) if workload.metrics_logger is not None: workload.metrics_logger.append_scalar_metrics( { 'loss': loss.item(), 'grad_norm': grad_norm.item(), }, global_step) logging.info('%d) loss = %0.3f, grad_norm = %0.3f', global_step, loss.item(), grad_norm.item()) return (optimizer_state, current_param_container, new_model_state) def get_batch_size(workload_name): # Return the global batch size. if workload_name == 'criteo1tb': return 262_144 elif workload_name == 'fastmri': return 32 elif workload_name == 'imagenet_resnet': return 1024 elif workload_name == 'imagenet_vit': return 1024 elif workload_name == 'librispeech_conformer': return 256 elif workload_name == 'librispeech_deepspeech': return 256 elif workload_name == 'ogbg': return 512 elif workload_name == 'wmt': return 128 elif workload_name == 'mnist': return 16 else: raise ValueError(f'Unsupported workload name: {workload_name}.') def data_selection(workload: spec.Workload, input_queue: Iterator[Dict[str, spec.Tensor]], optimizer_state: spec.OptimizerState, current_param_container: spec.ParameterContainer, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, global_step: int, rng: spec.RandomState) -> Dict[str, spec.Tensor]: """Select data from the infinitely repeating, pre-shuffled input queue. Each element of the queue is a batch of training examples and labels. """ del workload del optimizer_state del current_param_container del model_state del hyperparameters del global_step del rng batch = next(input_queue) return batch
"""Submission file for an AdamW optimizer with warmup+cosine LR in Jax.""" import functools from typing import Dict, Iterator, List, Tuple from flax import jax_utils import jax from jax import lax import jax.numpy as jnp import optax from algorithmic_efficiency import spec _GRAD_CLIP_EPS = 1e-6 def init_optimizer_state(workload: spec.Workload, model_params: spec.ParameterContainer, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, rng: spec.RandomState) -> spec.OptimizerState: """Creates an AdamW optimizer and a learning rate schedule.""" del model_params del model_state del rng def jax_cosine_warmup(step_hint: int, hyperparameters): # Create learning rate schedule. warmup_steps = int(hyperparameters.warmup_factor * step_hint) warmup_fn = optax.linear_schedule( init_value=0., end_value=hyperparameters.learning_rate, transition_steps=warmup_steps) cosine_steps = max(step_hint - warmup_steps, 1) cosine_fn = optax.cosine_decay_schedule( init_value=hyperparameters.learning_rate, decay_steps=cosine_steps) schedule_fn = optax.join_schedules( schedules=[warmup_fn, cosine_fn], boundaries=[warmup_steps]) return schedule_fn # Create optimizer + LR schedule. lr_schedule_fn = jax_cosine_warmup(workload.step_hint, hyperparameters) opt_init_fn, opt_update_fn = optax.adamw( learning_rate=lr_schedule_fn, b1=1.0 - hyperparameters.one_minus_beta1, b2=hyperparameters.beta2, eps=1e-8, weight_decay=hyperparameters.weight_decay) params_zeros_like = jax.tree_map(lambda s: jnp.zeros(s.shape_tuple), workload.param_shapes) optimizer_state = opt_init_fn(params_zeros_like) return jax_utils.replicate(optimizer_state), opt_update_fn @functools.partial( jax.pmap, axis_name='batch', in_axes=(None, None, 0, 0, 0, 0, 0, None, None), static_broadcasted_argnums=(0, 1), donate_argnums=(2, 3, 4)) def pmapped_train_step(workload, opt_update_fn, model_state, optimizer_state, current_param_container, batch, rng, grad_clip, label_smoothing): def _loss_fn(params): """Loss function used for training.""" logits, new_model_state = workload.model_fn( params, batch, model_state, spec.ForwardPassMode.TRAIN, rng, update_batch_norm=True) loss_dict = workload.loss_fn( label_batch=batch['targets'], logits_batch=logits, mask_batch=batch.get('weights'), label_smoothing=label_smoothing) summed_loss = loss_dict['summed'] n_valid_examples = loss_dict['n_valid_examples'] return summed_loss, (n_valid_examples, new_model_state) grad_fn = jax.value_and_grad(_loss_fn, has_aux=True) (summed_loss, (n_valid_examples, new_model_state)), grad = grad_fn( current_param_container) # Get correct global mean loss and grad. (summed_loss, n_valid_examples, grad) = lax.psum( (summed_loss, n_valid_examples, grad), axis_name='batch') loss = summed_loss / n_valid_examples grad = jax.tree_map(lambda x: x / n_valid_examples, grad) grad_norm = jnp.sqrt( sum(jnp.sum(g**2) for g in jax.tree_util.tree_leaves(grad))) if grad_clip is not None: grad_scaling_factor = grad_clip / (grad_norm + _GRAD_CLIP_EPS) grad_scaling_factor = jax.lax.clamp(min=0.0, x=grad_scaling_factor, max=1.0) grad = jax.tree_map(lambda x: x * grad_scaling_factor, grad) updates, new_optimizer_state = opt_update_fn(grad, optimizer_state, current_param_container) updated_params = optax.apply_updates(current_param_container, updates) return new_optimizer_state, updated_params, new_model_state, loss, grad_norm def update_params(workload: spec.Workload, current_param_container: spec.ParameterContainer, current_params_types: spec.ParameterTypeTree, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, batch: Dict[str, spec.Tensor], loss_type: spec.LossType, optimizer_state: spec.OptimizerState, eval_results: List[Tuple[int, float]], global_step: int, rng: spec.RandomState) -> spec.UpdateReturn: """Return (updated_optimizer_state, updated_params, updated_model_state).""" del current_params_types del loss_type del eval_results optimizer_state, opt_update_fn = optimizer_state per_device_rngs = jax.random.split(rng, jax.local_device_count()) if hasattr(hyperparameters, 'label_smoothing'): label_smoothing = hyperparameters.label_smoothing else: label_smoothing = 0.0 if hasattr(hyperparameters, 'grad_clip'): grad_clip = hyperparameters.grad_clip else: grad_clip = None outputs = pmapped_train_step(workload, opt_update_fn, model_state, optimizer_state, current_param_container, batch, per_device_rngs, grad_clip, label_smoothing) new_optimizer_state, new_params, new_model_state, loss, grad_norm = outputs # Log loss, grad_norm. if global_step % 100 == 0 and workload.metrics_logger is not None: workload.metrics_logger.append_scalar_metrics( { 'loss': loss[0], 'grad_norm': grad_norm[0], }, global_step) return (new_optimizer_state, opt_update_fn), new_params, new_model_state def get_batch_size(workload_name): # Return the global batch size. if workload_name == 'criteo1tb': return 262_144 elif workload_name == 'fastmri': return 32 elif workload_name == 'imagenet_resnet': return 1024 elif workload_name == 'imagenet_vit': return 1024 elif workload_name == 'librispeech_conformer': return 256 elif workload_name == 'librispeech_deepspeech': return 256 elif workload_name == 'ogbg': return 512 elif workload_name == 'wmt': return 128 elif workload_name == 'mnist': return 16 else: raise ValueError(f'Unsupported workload name: {workload_name}.') def data_selection(workload: spec.Workload, input_queue: Iterator[Dict[str, spec.Tensor]], optimizer_state: spec.OptimizerState, current_param_container: spec.ParameterContainer, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, global_step: int, rng: spec.RandomState) -> Dict[str, spec.Tensor]: """Select data from the infinitely repeating, pre-shuffled input queue. Each element of the queue is a batch of training examples and labels. """ del workload del optimizer_state del current_param_container del model_state del hyperparameters del global_step del rng batch = next(input_queue) return batch
"""Submission file for Adafactor in PyTorch.""" from functools import partial from typing import Dict, Iterator, List, Tuple from absl import logging import torch import torch.distributed.nn as dist_nn from torch.optim.lr_scheduler import CosineAnnealingLR from torch.optim.lr_scheduler import LinearLR from torch.optim.lr_scheduler import SequentialLR from algorithmic_efficiency import spec from algorithmic_efficiency.pytorch_utils import pytorch_setup USE_PYTORCH_DDP = pytorch_setup()[0] def init_optimizer_state(workload: spec.Workload, model_params: spec.ParameterContainer, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, rng: spec.RandomState) -> spec.OptimizerState: """Creates an Adafactor optimizer and a learning rate schedule.""" del model_state del rng # Create optimizer. optimizer_state = { 'optimizer': Adafactor( model_params.parameters(), lr=hyperparameters.learning_rate, beta1=1 - hyperparameters.one_minus_beta1, weight_decay=hyperparameters.weight_decay), } optimizer = optimizer_state['optimizer'] warmup = LinearLR( optimizer, start_factor=1e-10, end_factor=1., total_iters=hyperparameters.warmup_steps) cosine_steps = max(workload.step_hint - hyperparameters.warmup_steps, 1) cosine_decay = CosineAnnealingLR(optimizer, T_max=cosine_steps) optimizer_state['scheduler'] = SequentialLR( optimizer, schedulers=[warmup, cosine_decay], milestones=[hyperparameters.warmup_steps]) return optimizer_state class Adafactor(torch.optim.Optimizer): """Adapted from https://github.com/huggingface/transformers/blob/main/ src/transformers/optimization.py#L386""" def __init__( self, params, lr=None, beta1=0.9, decay_adam=0.99, weight_decay=0.0, ): defaults = dict( lr=lr, beta1=beta1, decay_adam=decay_adam, weight_decay=weight_decay, decay_pow=0.0, layerwise_adaptation=False, decay_method='adam', clip_threshold=1.0, factored=True, epsilon1_grad_sq_reg=1e-30, respect_skip_lp_regularization=False, exclude_from_layerwise_adaptation=None, per_var_learning_summary=False, sort_factored_second_moment_dims=False, # Unused because sort_factored_second_moment_dims=False. min_dim_size_to_factor=128, multiply_by_parameter_scale=False, # Unused because multiply_by_parameter_scale=False. epsilon2_param_scale_reg=1e-3, maybe_inf_to_nan=True, ) super().__init__(params, defaults) def inf_to_nan(self, group, x): if group["maybe_inf_to_nan"]: x = torch.nan_to_num(x, nan=torch.nan, posinf=torch.nan, neginf=torch.nan) return x def step(self, closure=None): """ Performs a single optimization step Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() for group in self.param_groups: inf_to_nan = partial(self.inf_to_nan, group) for p in group["params"]: if p.grad is None: continue grad = p.grad.data grad = inf_to_nan(grad) if grad.dtype in {torch.float16, torch.bfloat16}: grad = grad.float() if grad.is_sparse: raise RuntimeError("Adafactor does not support sparse gradients.") state = self.state[p] grad_shape = grad.shape factored = len(grad_shape) >= 2 # State Initialization if len(state) == 0: state["step"] = 0 state["exp_avg"] = torch.zeros_like(grad) if factored: state["exp_avg_sq_row"] = torch.zeros(grad_shape[:-1]).to(grad) state["exp_avg_sq_col"] = torch.zeros(grad_shape[:-2] + grad_shape[-1:]).to(grad) else: state["exp_avg_sq"] = torch.zeros_like(grad) else: state["exp_avg"] = state["exp_avg"].to(grad) if factored: state["exp_avg_sq_row"] = state["exp_avg_sq_row"].to(grad) state["exp_avg_sq_col"] = state["exp_avg_sq_col"].to(grad) else: state["exp_avg_sq"] = state["exp_avg_sq"].to(grad) p_data_fp32 = p.data if p.data.dtype in {torch.float16, torch.bfloat16}: p_data_fp32 = p_data_fp32.float() state["step"] += 1 lr = group["lr"] beta1 = group["beta1"] beta2 = group["decay_adam"] t = state["step"] beta2t = beta2 * (1. - beta2**(t - 1.)) / (1. - beta2**t) exp_avg_sq_update = (grad**2) + group["epsilon1_grad_sq_reg"] if factored: exp_avg_sq_row = state["exp_avg_sq_row"] exp_avg_sq_col = state["exp_avg_sq_col"] exp_avg_sq_row.mul_(beta2t).add_( exp_avg_sq_update.mean(dim=-1), alpha=1.0 - beta2t) exp_avg_sq_col.mul_(beta2t).add_( exp_avg_sq_update.mean(dim=-2), alpha=1.0 - beta2t) r_factor = inf_to_nan( exp_avg_sq_row / exp_avg_sq_row.mean(dim=-1, keepdim=True)).unsqueeze(-1) c_factor = inf_to_nan(exp_avg_sq_col).unsqueeze(-2) denom = r_factor * c_factor else: exp_avg_sq = state["exp_avg_sq"] exp_avg_sq.mul_(beta2t).add_(exp_avg_sq_update, alpha=1.0 - beta2t) denom = exp_avg_sq denom = denom.sqrt() update = grad / denom # Clip the update based on RMS. clipping_denom = inf_to_nan(torch.square(update).mean().sqrt() \ /group["clip_threshold"]).clamp(min=1.0) update = update / clipping_denom * lr # Momentum exp_avg = state["exp_avg"] exp_avg.mul_(beta1).add_(update, alpha=1 - beta1) if group["weight_decay"] != 0: p_data_fp32.add_(p_data_fp32, alpha=-group["weight_decay"] * lr) p_data_fp32.add_(-exp_avg) if p.data.dtype in {torch.float16, torch.bfloat16}: p.data.copy_(p_data_fp32) return loss def update_params(workload: spec.Workload, current_param_container: spec.ParameterContainer, current_params_types: spec.ParameterTypeTree, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, batch: Dict[str, spec.Tensor], loss_type: spec.LossType, optimizer_state: spec.OptimizerState, eval_results: List[Tuple[int, float]], global_step: int, rng: spec.RandomState) -> spec.UpdateReturn: """Return (updated_optimizer_state, updated_params, updated_model_state).""" del current_params_types del loss_type del eval_results current_model = current_param_container current_model.train() optimizer_state['optimizer'].zero_grad() logits_batch, new_model_state = workload.model_fn( params=current_model, augmented_and_preprocessed_input_batch=batch, model_state=model_state, mode=spec.ForwardPassMode.TRAIN, rng=rng, update_batch_norm=True) label_smoothing = ( hyperparameters.label_smoothing if hasattr(hyperparameters, 'label_smoothing') else 0.0) loss_dict = workload.loss_fn( label_batch=batch['targets'], logits_batch=logits_batch, mask_batch=batch.get('weights'), label_smoothing=label_smoothing) summed_loss = loss_dict['summed'] n_valid_examples = loss_dict['n_valid_examples'] if USE_PYTORCH_DDP: # Use dist_nn.all_reduce to ensure correct loss and gradient scaling. summed_loss = dist_nn.all_reduce(summed_loss) n_valid_examples = dist_nn.all_reduce(n_valid_examples) loss = summed_loss / n_valid_examples loss.backward() with torch.no_grad(): parameters = [p for p in current_model.parameters() if p.grad is not None] grad_norm = torch.norm( torch.stack([torch.norm(p.grad.detach(), 2) for p in parameters]), 2) if hasattr(hyperparameters, 'grad_clip'): grad_clip = hyperparameters.grad_clip torch.nn.utils.clip_grad_norm_( current_model.parameters(), max_norm=grad_clip) optimizer_state['optimizer'].step() optimizer_state['scheduler'].step() # Log training metrics - loss, grad_norm, batch_size. if global_step <= 100 or global_step % 500 == 0: if workload.metrics_logger is not None: workload.metrics_logger.append_scalar_metrics( { 'loss': loss.item(), 'grad_norm': grad_norm.item(), }, global_step) logging.info('%d) loss = %0.3f, grad_norm = %0.3f', global_step, loss.item(), grad_norm.item()) return (optimizer_state, current_param_container, new_model_state) def get_batch_size(workload_name): # Return the global batch size. if workload_name == 'criteo1tb': return 262_144 elif workload_name == 'fastmri': return 32 elif workload_name == 'imagenet_resnet': return 1024 elif workload_name == 'imagenet_vit': return 1024 elif workload_name == 'librispeech_conformer': return 256 elif workload_name == 'librispeech_deepspeech': return 256 elif workload_name == 'ogbg': return 512 elif workload_name == 'wmt': return 128 elif workload_name == 'mnist': return 16 else: raise ValueError(f'Unsupported workload name: {workload_name}.') def data_selection( workload: spec.Workload, input_queue: Iterator[Dict[str, spec.Tensor]], optimizer_state: spec.OptimizerState, current_param_container: spec.ParameterContainer, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, global_step: int, rng: spec.RandomState) -> Tuple[spec.Tensor, spec.Tensor, spec.Tensor]: """Select data from the infinitely repeating, pre-shuffled input queue. Each element of the queue is a batch of training examples and labels. """ del workload del optimizer_state del current_param_container del model_state del hyperparameters del global_step del rng batch = next(input_queue) return batch
"""Submission file for an Adafactor optimizer with warmup+cosine LR in Jax.""" import functools from typing import Dict, Iterator, List, Tuple from flax import jax_utils import jax from jax import lax import jax.numpy as jnp import optax from algorithmic_efficiency import spec from baselines.adafactor.jax.sharded_adafactor import sharded_adafactor _GRAD_CLIP_EPS = 1e-6 def init_optimizer_state(workload: spec.Workload, model_params: spec.ParameterContainer, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, rng: spec.RandomState) -> spec.OptimizerState: """Creates an Adafactor optimizer and a learning rate schedule.""" del model_params del model_state del rng def jax_cosine_warmup(step_hint: int, hyperparameters): # Create learning rate schedule. warmup_steps = int(hyperparameters.warmup_factor * step_hint) warmup_fn = optax.linear_schedule( init_value=0., end_value=hyperparameters.learning_rate, transition_steps=warmup_steps) cosine_steps = max(step_hint - warmup_steps, 1) cosine_fn = optax.cosine_decay_schedule( init_value=hyperparameters.learning_rate, decay_steps=cosine_steps) schedule_fn = optax.join_schedules( schedules=[warmup_fn, cosine_fn], boundaries=[warmup_steps]) return schedule_fn # Create optimizer + LR schedule. lr_schedule_fn = jax_cosine_warmup(workload.step_hint, hyperparameters) opt_init_fn, opt_update_fn = sharded_adafactor( learning_rate=lr_schedule_fn, beta1=1.0 - hyperparameters.one_minus_beta1, weight_decay=hyperparameters.weight_decay) params_zeros_like = jax.tree_map(lambda s: jnp.zeros(s.shape_tuple), workload.param_shapes) optimizer_state = opt_init_fn(params_zeros_like) return jax_utils.replicate(optimizer_state), opt_update_fn @functools.partial( jax.pmap, axis_name='batch', in_axes=(None, None, 0, 0, 0, 0, 0, None, None), static_broadcasted_argnums=(0, 1), donate_argnums=(2, 3, 4)) def pmapped_train_step(workload, opt_update_fn, model_state, optimizer_state, current_param_container, batch, rng, grad_clip, label_smoothing): def _loss_fn(params): """Loss function used for training.""" logits, new_model_state = workload.model_fn( params, batch, model_state, spec.ForwardPassMode.TRAIN, rng, update_batch_norm=True) loss_dict = workload.loss_fn( label_batch=batch['targets'], logits_batch=logits, mask_batch=batch.get('weights'), label_smoothing=label_smoothing) summed_loss = loss_dict['summed'] n_valid_examples = loss_dict['n_valid_examples'] return summed_loss, (n_valid_examples, new_model_state) grad_fn = jax.value_and_grad(_loss_fn, has_aux=True) (summed_loss, (n_valid_examples, new_model_state)), grad = grad_fn( current_param_container) # Get correct global mean loss and grad. (summed_loss, n_valid_examples, grad) = lax.psum( (summed_loss, n_valid_examples, grad), axis_name='batch') loss = summed_loss / n_valid_examples grad = jax.tree_map(lambda x: x / n_valid_examples, grad) grad_norm = jnp.sqrt( sum(jnp.sum(g**2) for g in jax.tree_util.tree_leaves(grad))) if grad_clip is not None: grad_scaling_factor = grad_clip / (grad_norm + _GRAD_CLIP_EPS) grad_scaling_factor = jax.lax.clamp(min=0.0, x=grad_scaling_factor, max=1.0) grad = jax.tree_map(lambda x: x * grad_scaling_factor, grad) updates, new_optimizer_state = opt_update_fn(grad, optimizer_state, current_param_container) updated_params = optax.apply_updates(current_param_container, updates) return new_optimizer_state, updated_params, new_model_state, loss, grad_norm def update_params(workload: spec.Workload, current_param_container: spec.ParameterContainer, current_params_types: spec.ParameterTypeTree, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, batch: Dict[str, spec.Tensor], loss_type: spec.LossType, optimizer_state: spec.OptimizerState, eval_results: List[Tuple[int, float]], global_step: int, rng: spec.RandomState) -> spec.UpdateReturn: """Return (updated_optimizer_state, updated_params, updated_model_state).""" del current_params_types del loss_type del eval_results optimizer_state, opt_update_fn = optimizer_state per_device_rngs = jax.random.split(rng, jax.local_device_count()) if hasattr(hyperparameters, 'label_smoothing'): label_smoothing = hyperparameters.label_smoothing else: label_smoothing = 0.0 if hasattr(hyperparameters, 'grad_clip'): grad_clip = hyperparameters.grad_clip else: grad_clip = None outputs = pmapped_train_step(workload, opt_update_fn, model_state, optimizer_state, current_param_container, batch, per_device_rngs, grad_clip, label_smoothing) new_optimizer_state, new_params, new_model_state, loss, grad_norm = outputs # Log loss, grad_norm. if global_step % 100 == 0 and workload.metrics_logger is not None: workload.metrics_logger.append_scalar_metrics( { 'loss': loss[0], 'grad_norm': grad_norm[0], }, global_step) return (new_optimizer_state, opt_update_fn), new_params, new_model_state def get_batch_size(workload_name): # Return the global batch size. if workload_name == 'criteo1tb': return 262_144 elif workload_name == 'fastmri': return 32 elif workload_name == 'imagenet_resnet': return 1024 elif workload_name == 'imagenet_vit': return 1024 elif workload_name == 'librispeech_conformer': return 256 elif workload_name == 'librispeech_deepspeech': return 256 elif workload_name == 'ogbg': return 512 elif workload_name == 'wmt': return 128 elif workload_name == 'mnist': return 16 else: raise ValueError(f'Unsupported workload name: {workload_name}.') def data_selection(workload: spec.Workload, input_queue: Iterator[Dict[str, spec.Tensor]], optimizer_state: spec.OptimizerState, current_param_container: spec.ParameterContainer, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, global_step: int, rng: spec.RandomState) -> Dict[str, spec.Tensor]: """Select data from the infinitely repeating, pre-shuffled input queue. Each element of the queue is a batch of training examples and labels. """ del workload del optimizer_state del current_param_container del model_state del hyperparameters del global_step del rng batch = next(input_queue) return batch
# coding=utf-8 # Copyright 2023 The init2winit Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PAX/Praxis implementation of Adafactor. Copied from Praxis's `sharded_adafactor`, removing unnecessary sharding-related code and dependencies on Praxis. Code: https://github.com/google/praxis/blob/516a96bce6f03090c5903531038f8f8af6212250/praxis/optimizers.py#L2308 Forked from: https://github.com/google/init2winit/master/init2winit/optimizer_lib/pax_adafactor.py """ import dataclasses import functools import re from typing import Any, Dict, List, NamedTuple, Optional, Tuple, Union import jax from jax import numpy as jnp import optax JTensor = Any NestedJTensor = Any NestedHParams = Any def to_quantized(fvalue: JTensor, quantized_dtype: jnp.dtype) -> Tuple[JTensor, JTensor]: """Converts floating point values `fvalues` to quantized values. We use a very simple quantization scheme where the range is symmetric around 0.0, and we simply map 0 to 0.0. Let x = bucket_size We map [-0.5x, 0.5x] to 0 [-1.5x, -0.5x] to -1 [0.5x, 1.5x] to 1 and so on so forth. Some properties: a1, a2 = to_quantized(x, quantized_dtype) b1 = to_float(a1, a2) c1, c2 = to_quantized(b1, quantized_dtype) then a1 == c1, a2 == c2 Args: fvalue: Values in floating point. quantized_dtype: Quantized dtype, can be either jnp.int8, or jnp.int16. Returns: A (quantized_values, bucket_size) 2-tuple. `quantized_values * bucket_size[jnp.newaxis, ...]` are the quantized values on the floating value axis. """ float_dtype = fvalue.dtype if quantized_dtype == jnp.int8: # value -128 is not used. num_buckets = jnp.array(127.0, dtype=float_dtype) elif quantized_dtype == jnp.int16: # value -32768 is not used. num_buckets = jnp.array(32767.0, dtype=float_dtype) else: raise ValueError(f'Quantized dtype {quantized_dtype} not supported.') # max value is mapped to num_buckets # We first decide the scale. if fvalue.ndim < 1: raise ValueError( f'Input array {fvalue} must have a strictly positive number of ' 'dimensions.') max_abs = jnp.max(jnp.abs(fvalue), axis=0) bucket_size = max_abs / num_buckets bs_expanded = bucket_size[jnp.newaxis, ...] # To avoid divide by 0.0 bs_nonzero = jnp.where(bs_expanded > 0.0, bs_expanded, jnp.ones_like(bs_expanded)) ratio = fvalue / bs_nonzero # We use rounding to remove bias. quantized = jnp.round(ratio) return quantized.astype(quantized_dtype), bucket_size def to_float(quantized: JTensor, bucket_size: JTensor) -> JTensor: """Converts quantized values to float values. Args: quantized: Quantized values, of type either jnp.int8 or jnp.int16. bucket_size: The size of each bucket on the floating-point axis. bucket_size is of rank tf.rank(quantized) - 1. For example, if quantized is of shape [x, ...], bucket_size is of shape [...]. Returns: Unquantized values of type bucket_size.dtype. """ float_dtype = bucket_size.dtype bucket_size = bucket_size[jnp.newaxis, ...] return quantized.astype(float_dtype) * bucket_size def adafactor_decay_rate_adam(beta2: float, step_counter: JTensor) -> JTensor: """Second-moment decay rate like Adam, subsuming the correction factor. Args: beta2: A floating point value between 0 and 1. step_counter: A scalar tensor keeping track of the number of steps performed. Returns: The decay rate as a scalar JTensor. """ step = step_counter beta2 = jnp.array(beta2, dtype=jnp.float32) t = step + 1. return beta2 * (1. - jnp.power(beta2, t - 1.)) / (1. - jnp.power(beta2, t)) def adafactor_decay_rate_pow(exponent: float, step_counter: JTensor) -> JTensor: """Second moment decay rate where memory-length grows as step_num^exponent. Args: exponent: A floating point value between 0 and 1. step_counter: A scalar tensor keeping track of the number of steps performed. Returns: The decay rate as a scalar JTensor. """ step = step_counter exponent = jnp.array(exponent, dtype=jnp.float32) return 1. - jnp.power((step + 1.), -exponent) def reduce_mean(array: JTensor) -> JTensor: """Computes the mean of `array` in a more numerically stable way. Args: array: Input array. Returns: The mean of the input array as a scalar array. """ num_elements = array.size if num_elements > 1e8: # When x is too large, simple jnp.mean() can result in nan or inf values. # TODO(bf-jax): The following code snippet is consistent with the TensorFlow # implementation. This can be simplified into `jnp.mean(jnp.mean(x, -1))`. # Update to using mean() after verifying consistency. array_sum = jnp.sum(array, axis=-1) array_sum = jnp.sum(array_sum) return array_sum / jnp.array(num_elements, dtype=array_sum.dtype) else: return jnp.mean(array) def reduce_rms(array: JTensor) -> JTensor: """Computes the RMS of `array` (in a numerically stable way). Args: array: Input array. Returns: The root mean square of the input array as a scalar array. """ sq = jnp.square(array) sq_mean = reduce_mean(sq) return jnp.sqrt(sq_mean) @dataclasses.dataclass(frozen=True) class _ShardedAdafactorUpdateResult: """Structure containing per-variable info for Adafactor.""" update: Optional[Any] m: Optional[Any] m_scale: Optional[Any] vr: Optional[Any] vc: Optional[Any] v: Optional[Any] class ShardedAdafactorState(NamedTuple): """Overall state of the ShardedAdafactor optimizer.""" count: JTensor m: Optional[NestedJTensor] m_scale: Optional[NestedJTensor] vr: Optional[NestedJTensor] vc: Optional[NestedJTensor] v: Optional[NestedJTensor] class _ShardedAdafactorHelper: """Helper class to implement optax-based sharded Adafactor.""" def __init__(self, learning_rate: optax.Schedule, weight_decay: Optional[float], layerwise_adaptation: bool, decay_method: str, decay_adam: float, decay_pow: float, beta1: float, clip_threshold: Optional[float], factored: bool, epsilon1_grad_sq_reg: float, quantized_dtype: jnp.dtype, respect_skip_lp_regularization: bool, exclude_from_layerwise_adaptation: Optional[List[str]], per_var_learning_summary: bool, sort_factored_second_moment_dims: bool, min_dim_size_to_factor: int, multiply_by_parameter_scale: bool, epsilon2_param_scale_reg: float, maybe_inf_to_nan: bool, nesterov: bool) -> None: """Constructor. See ShardedAdafactor() below.""" self._learning_rate = learning_rate self._weight_decay = weight_decay self._layerwise_adaptation = layerwise_adaptation self._decay_method = decay_method self._decay_adam = decay_adam self._decay_pow = decay_pow self._beta1 = beta1 self._clip_threshold = clip_threshold self._factored = factored self._epsilon1 = epsilon1_grad_sq_reg self._quantized_dtype = quantized_dtype self._respect_skip_lp_regularization = respect_skip_lp_regularization self._exclude_from_layerwise_adaptation = exclude_from_layerwise_adaptation self._per_var_learning_summary = per_var_learning_summary self._sort_factored_second_moment_dims = sort_factored_second_moment_dims self._min_dim_size_to_factor = min_dim_size_to_factor self._multiply_by_parameter_scale = multiply_by_parameter_scale self._epsilon2 = epsilon2_param_scale_reg self._maybe_inf_to_nan = maybe_inf_to_nan self._nesterov = nesterov def should_use_factored_second_moment_estimate(self, shape): """Should we use a factored second moment estimator. Based on the shape of the variable. Args: shape: a list of integers. Returns: A boolean. """ return self.factored_second_moment_dims(shape) is not None def factored_second_moment_dims(self, shape): """Should we use a factored second moment estimator. We select largest and second largest var dims as row and colum dims. Default list of factored dims is -1, -2. Args: shape: a list of integers. Returns: either a list of 2 Dimension indices for row and col or None """ if not self._factored: return None if len(shape) < 2: return None if not self._sort_factored_second_moment_dims: return len(shape) - 1, len(shape) - 2 def largest_two_dim_indices(): s = [(s, i) for i, s in enumerate(shape)] sorted_dims = sorted(s, key=lambda d: -d[0]) return sorted_dims[0][1], sorted_dims[1][1] r_idx, c_idx = largest_two_dim_indices() if shape[c_idx] < self._min_dim_size_to_factor: return None return r_idx, c_idx def should_store_momentum_in_qint(self, shape): """Should we store momentum as quantized integers. Based on the shape of the variable. Args: shape: a list of integers Returns: A boolean. """ if jnp.issubdtype(self._quantized_dtype, jnp.floating): return False if self._quantized_dtype is None: return False return len(shape) >= 1 def to_state(self, count, result_tree): """Maps from a tree of (factored) values to separate trees of values.""" return ShardedAdafactorState( count=count, m=jax.tree_map(lambda o: o.m, result_tree), m_scale=jax.tree_map(lambda o: o.m_scale, result_tree), vr=jax.tree_map(lambda o: o.vr, result_tree), vc=jax.tree_map(lambda o: o.vc, result_tree), v=jax.tree_map(lambda o: o.v, result_tree)) def init(self, param): """Initializes the optimizer state for a given param.""" # The actually value that will be added to a variable for updating it. output_update = jnp.zeros((1,)) output_m = jnp.zeros((1,)) output_m_scale = jnp.zeros((1,)) output_vr = jnp.zeros((1,)) output_vc = jnp.zeros((1,)) output_v = jnp.zeros((1,)) shape = param.shape if self._beta1: if jnp.issubdtype(self._quantized_dtype, jnp.floating): output_m = jnp.zeros(shape, dtype=self._quantized_dtype) elif self.should_store_momentum_in_qint(shape): output_m = jnp.zeros(shape, dtype=self._quantized_dtype) scale_shape = shape[1:] output_m_scale = jnp.zeros(scale_shape, dtype=jnp.float32) else: output_m = jnp.zeros(shape, dtype=jnp.float32) if self.should_use_factored_second_moment_estimate(shape): factored_dims = self.factored_second_moment_dims(shape) vr_axis, vc_axis = factored_dims output_vr_shape = list(shape).copy() del output_vr_shape[vr_axis] output_vc_shape = list(shape).copy() del output_vc_shape[vc_axis] output_vr = jnp.zeros(output_vr_shape, dtype=jnp.float32) output_vc = jnp.zeros(output_vc_shape, dtype=jnp.float32) else: output_v = jnp.zeros(shape, dtype=jnp.float32) return _ShardedAdafactorUpdateResult( update=output_update, m=output_m, m_scale=output_m_scale, vr=output_vr, vc=output_vc, v=output_v) def inf_to_nan(self, array): """Converting Infinity values to the more sticky NaN.""" # For example, when we have y = 1.0 / x in code and x == inf, y will become # 0. Therefore the infinite value of x is hidden in the calculation, # leading to silent omission of numerical issues. if not self._maybe_inf_to_nan: return array return jnp.nan_to_num(array, nan=jnp.nan, posinf=jnp.nan, neginf=jnp.nan) def parameter_scale(self, var): """Estimate the scale of the parameters from the current values. We include a minimum value of 0.001 to give it a chance to escape 0 if it was zero-initialized. Instead of using the value, we could impute the scale from the shape, as initializers do. Args: var: a variable or Tensor. Returns: a Scalar """ return jnp.maximum(reduce_rms(var), jnp.asarray(self._epsilon2, var.dtype)) def compute_var_and_slot_update(self, count, grad, m, m_scale, vr, vc, v, param, var_name=None): """Computes the var and optimizer slots updates for a single variable.""" # We can probably skip this step grad = grad.astype(jnp.float32) grad = self.inf_to_nan(grad) grad_squared = jnp.square(grad) # Add epsilon1_grad_sq_reg as per Algorithm 4 # of https://arxiv.org/pdf/1804.04235.pdf grad_squared += self._epsilon1 grad_squared_mean = self.inf_to_nan(reduce_mean(grad_squared)) if self._decay_method == 'adam': assert self._decay_adam > 0 decay_rate = adafactor_decay_rate_adam(self._decay_adam, count) elif self._decay_method == 'pow': assert self._decay_pow > 0 decay_rate = adafactor_decay_rate_pow(self._decay_pow, count) else: raise ValueError(f'decay_method {self._decay_method} not supported.') learning_rate = self._learning_rate if callable(learning_rate): learning_rate = learning_rate(count) update_scale = learning_rate old_val = param if self._multiply_by_parameter_scale: update_scale *= self.parameter_scale(old_val).astype(update_scale.dtype) # Q(yonghui): Can we remove the hack now? # HACK: Make things dependent on grad. # This confounds the XLA rewriter and keeps it from fusing computations # across different variables. This fusion is a bad for HBM usage, since # it causes the gradients to persist in memory. decay_rate += grad_squared_mean * 1e-30 update_scale += grad_squared_mean * 1e-30 # END HACK mixing_rate = 1. - decay_rate shape = param.shape output_m = jnp.zeros((1,)) output_m_scale = jnp.zeros((1,)) output_vr = jnp.zeros((1,)) output_vc = jnp.zeros((1,)) output_v = jnp.zeros((1,)) factored_second_moment_dims = self.factored_second_moment_dims(shape) if factored_second_moment_dims is not None: # Q(shafey): Should we use the more numerically stable version # reduce_mean(). vr_axis, vc_axis = factored_second_moment_dims grad_squared_row_mean = self.inf_to_nan( jnp.mean(grad_squared, axis=vr_axis)) grad_squared_col_mean = self.inf_to_nan( jnp.mean(grad_squared, axis=vc_axis)) new_vr = decay_rate * vr + mixing_rate * grad_squared_row_mean new_vc = decay_rate * vc + mixing_rate * grad_squared_col_mean output_vr = new_vr output_vc = new_vc long_term_mean = jnp.mean(new_vr, axis=-1, keepdims=True) r_factor = 1. / jnp.sqrt(new_vr / long_term_mean) c_factor = 1. / jnp.sqrt(new_vc) x = grad * jnp.expand_dims(r_factor, vr_axis) * jnp.expand_dims( c_factor, vc_axis) else: # v with sharding annotation. new_v = decay_rate * v + mixing_rate * grad_squared output_v = new_v x = grad / jnp.sqrt(new_v) if self._clip_threshold is not None: clipping_denom = jnp.maximum(1., reduce_rms(x) / self._clip_threshold) clipping_denom = self.inf_to_nan(clipping_denom) x /= clipping_denom subtrahend = update_scale * x if self._beta1: if jnp.issubdtype(self._quantized_dtype, jnp.floating): m = m.astype(jnp.float32) elif self.should_store_momentum_in_qint(shape): m_init_dtype = m.dtype m = to_float(m, m_scale) if self._nesterov: subtrahend_original = subtrahend subtrahend = self._beta1 * m + (1. - self._beta1) * subtrahend subtrahend = self.inf_to_nan(subtrahend) if self._quantized_dtype == jnp.bfloat16: new_m = subtrahend.astype(jnp.bfloat16) output_m = new_m elif self.should_store_momentum_in_qint(shape): # Update the momentum values. new_m_val, new_m_scale = to_quantized(subtrahend, m_init_dtype) output_m = new_m_val output_m_scale = new_m_scale else: output_m = subtrahend if self._nesterov: subtrahend = ( self._beta1 * subtrahend + (1.0 - self._beta1) * subtrahend_original) if self._weight_decay is not None: # Apply decoupled weight decay to be consistent with AdamW. var_weight_decay = None if isinstance(self._weight_decay, dict): for scope_pattern in self._weight_decay.keys(): regex_pattern = re.compile(scope_pattern) if regex_pattern.match(var_name): var_weight_decay = self._weight_decay[scope_pattern] else: var_weight_decay = self._weight_decay if var_weight_decay is not None: weight_decay = var_weight_decay * learning_rate subtrahend += weight_decay * old_val if self._layerwise_adaptation: include = True if self._exclude_from_layerwise_adaptation is not None: for scope_pattern in self._exclude_from_layerwise_adaptation: regex_pattern = re.compile(scope_pattern) if regex_pattern.match(var_name): include = False break if include: w_norm = reduce_rms(old_val) g_norm = reduce_rms(subtrahend / update_scale) + self._epsilon1 ratio = w_norm / g_norm ratio = jnp.where( jnp.greater(w_norm, 0), jnp.where(jnp.greater(g_norm, 0), (w_norm / g_norm), 1.0), 1.0) subtrahend *= ratio return _ShardedAdafactorUpdateResult( update=-subtrahend, m=output_m, m_scale=output_m_scale, vr=output_vr, vc=output_vc, v=output_v) def sharded_adafactor( learning_rate: optax.Schedule, weight_decay: Optional[Union[float, Dict[str, float]]] = None, layerwise_adaptation: bool = False, decay_method: str = 'adam', decay_adam: float = 0.99, decay_pow: float = 0., beta1: float = 0.9, clip_threshold: Optional[float] = 1., factored: bool = True, epsilon1_grad_sq_reg: float = 1e-30, quantized_dtype: jnp.dtype = jnp.int8, respect_skip_lp_regularization: bool = False, exclude_from_layerwise_adaptation: Optional[List[str]] = None, per_var_learning_summary: bool = False, sort_factored_second_moment_dims: bool = False, # min_dim_size_to_factor is only used when # sort_factored_second_moment_dims=True. min_dim_size_to_factor: int = 128, multiply_by_parameter_scale: bool = False, epsilon2_param_scale_reg: float = 1e-3, maybe_inf_to_nan: bool = True, nesterov: bool = False, ) -> optax.GradientTransformation: """AdaFactor optimizer that supports SPMD sharding. Reference: Shazeer et al, 2018: https://arxiv.org/abs/1804.04235 Adafactor is very similar to Adam (Kingma and Ba, 2019), the major differences being: 1. For a two-dimensional AxB weight matrix, Adafactor uses only A+B auxiliary parameters to maintain the second-moment estimator, instead of AB. This is advantageous on memory-limited systems. In addition, beta1 (momentum) is set to zero by default, saving an additional auxiliary parameter per weight. Variables with >=3 dimensions are treated as collections of two-dimensional matrices - factorization is over the final two dimensions. 2. Adafactor incorporates "update-clipping" - a scale-invariant analog of gradient clipping. This improves stability. 3. Adafactor does not require an external "learning rate". By default, it incorporates a relative-update-scale schedule, corresponding to inverse-square-root learning-rate-decay in Adam. We hope this works well for most applications. Args: learning_rate: a callable that given the current training step, returns the learning rate to apply. weight_decay: an optional float tensor as decoupled weight decay value, or a dictionary with key as regex scope pattern and value as corresponding weight decay float tensor. The value will apply to all variables under that scope name. layerwise_adaptation: a boolean, whether or not to use layer-wise adaptive moments (LAMB) https://arxiv.org/abs/1904.00962. decay_method: a string, deciding how decay_rate should be computed. Permitted values are 'adam' and 'pow'. decay_adam: a float, decay if decay_method == 'adam'. decay_pow: a float, decay if decay_method == 'pow'. beta1: a float value between 0 and 1 for momentum. clip_threshold: an optional float >= 1 factored: a boolean, whether or not to use factored second order momentum. epsilon1_grad_sq_reg: Regularization constant for squared gradient. quantized_dtype: type of the quantized input. Allowed options are jnp.int8, jnp.int16, jnp.bfloat16 and jnp.float32. If floating-point type is specified, accumulators are stored as such type, instead of quantized integers. respect_skip_lp_regularization: whether or not to respect lingvo SKIP_LP_REGULARIZATION var collection that skips decoupled weight decay. exclude_from_layerwise_adaptation: A dictionary with key as regex scope pattern for variables to be skipped. per_var_learning_summary: a bool, whether or not to export per-var learning summaries. sort_factored_second_moment_dims: a bool, whether to select dims to factor by size, for the factored second moment. min_dim_size_to_factor: an integer, only factor the statistics if two array dimensions have at least this size. NOTE min_dim_size_to_factor is only used when sort_factored_second_moment_dims=True. multiply_by_parameter_scale: a boolean, if True, then scale learning_rate by parameter scale. if False provided learning_rate is absolute step size. NOTE False by default. epsilon2_param_scale_reg: Regularization constant for parameter scale. Only used when multiply_by_parameter_scale is True. maybe_inf_to_nan: Will use jax.nan_to_num during update when True. nesterov: Will use Nesterov momentum when True. Returns: A `ShardedGradientTransformation`. """ assert not respect_skip_lp_regularization assert decay_adam >= 0 assert decay_pow >= 0 assert learning_rate is not None assert decay_method == 'adam' or decay_method == 'pow', ( f'decay_method: {decay_method} not supported. Supported methods are ' '"pow", or "adam".') sharded_adafactor_helper = _ShardedAdafactorHelper( learning_rate=learning_rate, weight_decay=weight_decay, layerwise_adaptation=layerwise_adaptation, decay_method=decay_method, decay_adam=decay_adam, decay_pow=decay_pow, beta1=beta1, clip_threshold=clip_threshold, factored=factored, epsilon1_grad_sq_reg=epsilon1_grad_sq_reg, quantized_dtype=quantized_dtype, respect_skip_lp_regularization=respect_skip_lp_regularization, exclude_from_layerwise_adaptation=exclude_from_layerwise_adaptation, per_var_learning_summary=per_var_learning_summary, sort_factored_second_moment_dims=sort_factored_second_moment_dims, min_dim_size_to_factor=min_dim_size_to_factor, multiply_by_parameter_scale=multiply_by_parameter_scale, epsilon2_param_scale_reg=epsilon2_param_scale_reg, maybe_inf_to_nan=maybe_inf_to_nan, nesterov=nesterov) def init_fn(params): """Initializes the optimizer's state.""" return sharded_adafactor_helper.to_state( jnp.zeros([], jnp.int32), jax.tree_map(sharded_adafactor_helper.init, params)) def update_fn(updates, state, params=None): if params is None: raise ValueError( 'You are using a transformation that requires the current value of ' 'parameters, but you are not passing `params` when calling `update`.') compute_var_and_slot_update_fn = functools.partial( sharded_adafactor_helper.compute_var_and_slot_update, state.count) output = jax.tree_map(compute_var_and_slot_update_fn, updates, state.m, state.m_scale, state.vr, state.vc, state.v, params) updates = jax.tree_map(lambda o: o.update, output) count_plus_one = state.count + jnp.array(1, jnp.int32) updated_states = sharded_adafactor_helper.to_state(count_plus_one, output) return updates, updated_states return optax.GradientTransformation(init=init_fn, update=update_fn)
"""Submission file for a SAM optimizer with warmup+cosine LR in PyTorch.""" from typing import Callable, Dict, Iterator, List, Tuple from absl import logging import torch import torch.distributed.nn as dist_nn from torch.optim.lr_scheduler import CosineAnnealingLR from torch.optim.lr_scheduler import LinearLR from torch.optim.lr_scheduler import SequentialLR from algorithmic_efficiency import spec from algorithmic_efficiency.pytorch_utils import pytorch_setup USE_PYTORCH_DDP = pytorch_setup()[0] # Modified from https://github.com/davda54/sam. class SAM(torch.optim.Optimizer): def __init__(self, params: spec.ParameterContainer, base_optimizer: torch.optim.Optimizer, rho: float = 0.05, adaptive: bool = False, **kwargs): if rho < 0.0: raise ValueError(f'Invalid rho, should be non-negative: {rho}') defaults = dict(rho=rho, adaptive=adaptive, **kwargs) super().__init__(params, defaults) self.base_optimizer = base_optimizer(self.param_groups, **kwargs) self.param_groups = self.base_optimizer.param_groups self.defaults.update(self.base_optimizer.defaults) @torch.no_grad() def first_step(self, zero_grad: bool = False): grad_norm = self._grad_norm() for group in self.param_groups: scale = group['rho'] / grad_norm for p in group['params']: if p.grad is None: continue self.state[p]['old_p'] = p.data.clone() factor = torch.pow(p, 2) if group['adaptive'] else 1.0 e_w = factor * p.grad * scale.to(p) p.add_(e_w) # Climb to the local maximum 'w + e(w)'. if zero_grad: self.zero_grad() @torch.no_grad() def second_step(self, zero_grad: bool = False): for group in self.param_groups: for p in group['params']: if p.grad is None: continue p.data = self.state[p]['old_p'] # Get back to 'w' from 'w + e(w)'. self.base_optimizer.step() # Do the actual 'sharpness-aware' update. if zero_grad: self.zero_grad() @torch.no_grad() def step(self, closure: Callable = None): if closure is None: raise ValueError('SAM requires closure, but it was not provided.') # The closure should do a full forward-backward pass. closure = torch.enable_grad()(closure) self.first_step(zero_grad=True) closure() self.second_step() def _grad_norm(self): # In case of model parallelism, put everything on the same device. shared_device = self.param_groups[0]['params'][0].device norm = torch.norm( torch.stack([((torch.abs(p) if group['adaptive'] else 1.0) * p.grad).norm(p=2).to(shared_device) for group in self.param_groups for p in group['params'] if p.grad is not None]), p=2) return norm def load_state_dict(self, state_dict: Dict): super().load_state_dict(state_dict) self.base_optimizer.param_groups = self.param_groups def init_optimizer_state(workload: spec.Workload, model_params: spec.ParameterContainer, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, rng: spec.RandomState) -> spec.OptimizerState: """Creates an AdamW optimizer and a learning rate schedule.""" del model_state del rng # Create SAM optimizer with AdamW base. base_optimizer = torch.optim.AdamW optimizer_state = { 'optimizer': SAM(model_params.parameters(), base_optimizer=base_optimizer, rho=hyperparameters.rho, lr=hyperparameters.learning_rate, betas=(1.0 - hyperparameters.one_minus_beta1, hyperparameters.beta2), eps=1e-8, weight_decay=hyperparameters.weight_decay), } def pytorch_cosine_warmup(step_hint: int, hyperparameters, optimizer): warmup_steps = int(hyperparameters.warmup_factor * step_hint) warmup = LinearLR( optimizer, start_factor=1e-10, end_factor=1., total_iters=warmup_steps) cosine_steps = max(step_hint - warmup_steps, 1) cosine_decay = CosineAnnealingLR(optimizer, T_max=cosine_steps) return SequentialLR( optimizer, schedulers=[warmup, cosine_decay], milestones=[warmup_steps]) # Create learning rate schedule. optimizer_state['scheduler'] = pytorch_cosine_warmup( workload.step_hint, hyperparameters, optimizer_state['optimizer']) return optimizer_state def update_params(workload: spec.Workload, current_param_container: spec.ParameterContainer, current_params_types: spec.ParameterTypeTree, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, batch: Dict[str, spec.Tensor], loss_type: spec.LossType, optimizer_state: spec.OptimizerState, eval_results: List[Tuple[int, float]], global_step: int, rng: spec.RandomState) -> spec.UpdateReturn: """Return (updated_optimizer_state, updated_params, updated_model_state).""" del current_params_types del loss_type del eval_results current_model = current_param_container current_model.train() def _loss_fn(params, update_batch_norm=True): """Loss function used for training.""" logits_batch, new_model_state = workload.model_fn( params=params, augmented_and_preprocessed_input_batch=batch, model_state=model_state, mode=spec.ForwardPassMode.TRAIN, rng=rng, update_batch_norm=update_batch_norm) label_smoothing = ( hyperparameters.label_smoothing if hasattr(hyperparameters, 'label_smoothing') else 0.0) loss_dict = workload.loss_fn( label_batch=batch['targets'], logits_batch=logits_batch, mask_batch=batch.get('weights'), label_smoothing=label_smoothing) summed_loss = loss_dict['summed'] n_valid_examples = loss_dict['n_valid_examples'] if USE_PYTORCH_DDP: # Use dist_nn.all_reduce to ensure correct loss and gradient scaling. summed_loss = dist_nn.all_reduce(summed_loss) n_valid_examples = dist_nn.all_reduce(n_valid_examples) loss = summed_loss / n_valid_examples return loss, new_model_state # First backward pass. loss, _ = _loss_fn(current_model, update_batch_norm=True) loss.backward() logging_loss = loss.clone().detach() with torch.no_grad(): parameters = [p for p in current_model.parameters() if p.grad is not None] grad_norm = torch.norm( torch.stack([torch.norm(p.grad.detach(), 2) for p in parameters]), 2) optimizer_state['optimizer'].first_step(zero_grad=True) # Second forward-backward pass. loss, new_model_state = _loss_fn(current_model, update_batch_norm=False) loss.backward() if hasattr(hyperparameters, 'grad_clip'): grad_clip = hyperparameters.grad_clip torch.nn.utils.clip_grad_norm_( current_model.parameters(), max_norm=grad_clip) optimizer_state['optimizer'].second_step(zero_grad=True) optimizer_state['scheduler'].step() # Log training metrics - loss, grad_norm, batch_size. if global_step <= 100 or global_step % 500 == 0: if workload.metrics_logger is not None: workload.metrics_logger.append_scalar_metrics( { 'loss': logging_loss.item(), 'grad_norm': grad_norm.item(), }, global_step) logging.info('%d) loss = %0.3f, grad_norm = %0.3f', global_step, logging_loss.item(), grad_norm.item()) return (optimizer_state, current_param_container, new_model_state) def get_batch_size(workload_name): # Return the global batch size. if workload_name == 'criteo1tb': return 262_144 elif workload_name == 'fastmri': return 32 elif workload_name == 'imagenet_resnet': return 1024 elif workload_name == 'imagenet_vit': return 1024 elif workload_name == 'librispeech_conformer': return 256 elif workload_name == 'librispeech_deepspeech': return 256 elif workload_name == 'ogbg': return 512 elif workload_name == 'wmt': return 128 elif workload_name == 'mnist': return 16 else: raise ValueError(f'Unsupported workload name: {workload_name}.') def data_selection( workload: spec.Workload, input_queue: Iterator[Dict[str, spec.Tensor]], optimizer_state: spec.OptimizerState, current_param_container: spec.ParameterContainer, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, global_step: int, rng: spec.RandomState) -> Tuple[spec.Tensor, spec.Tensor, spec.Tensor]: """Select data from the infinitely repeating, pre-shuffled input queue. Each element of the queue is a batch of training examples and labels. """ del workload del optimizer_state del current_param_container del model_state del hyperparameters del global_step del rng batch = next(input_queue) return batch
"""Submission file for a SAM optimizer with warmup+cosine LR in Jax.""" import functools from typing import Dict, Iterator, List, Optional, Tuple from flax import jax_utils import jax from jax import lax import jax.numpy as jnp import optax from algorithmic_efficiency import spec _GRAD_CLIP_EPS = 1e-6 # Copied from the official SAM GitHub repository. Note how it doesn't add an # epsilon to the gradient norm before normalizing the gradients. def dual_vector(y: jnp.ndarray) -> jnp.ndarray: """Returns the solution of max_x y^T x s.t. ||x||_2 <= 1. Args: y: A pytree of numpy ndarray, vector y in the equation above. """ gradient_norm = jnp.sqrt( sum(jnp.sum(jnp.square(e)) for e in jax.tree_util.tree_leaves(y))) normalized_gradient = jax.tree_map(lambda x: x / gradient_norm, y) return normalized_gradient # github.com/google/init2winit/blob/master/init2winit/optimizer_lib/ # sharpness_aware_minimization.py def sharpness_aware_minimization( rho: float, grad_clip: Optional[float], batch_axis_name: str, base_opt_init_fn, base_opt_update_fn, ) -> optax.GradientTransformation: """Implementation of Sharpness Aware Minimization (SAM). Paper: https://arxiv.org/abs/2010.01412 Code: https://github.com/google-research/sam References: Foret et al, 2021: https://arxiv.org/abs/2010.01412 Args: rho: The size of the neighborhood for the sharpness aware minimization gradient updates. Defaults to 0.1. grad_clip: The optional value to clip the updates by. Defaults to None. batch_axis_name: the name of the axis to pmap over. Used to run a pmean before applying the optimizer update. base_opt_init_fn: The initialization function for the base optimizer used to generate updates given the total gradient. base_opt_update_fn: The update function for the base optimizer used to generate updates given the total gradient. Returns: The corresponding `GradientTransformation`. """ def init_fn(params): return base_opt_init_fn(params) def update_fn(updates, state, grad_fn_params_tuple): (grad_fn, params) = grad_fn_params_tuple # Updates here have been synced (mean) across devices before being sent to # the optimizer. We again take the correct mean of the gradients computed on # the noised parameters in the same order as on the original gradients and # with the same 1e-6 epsilon that is used when clipping the gradients. updates = dual_vector(updates) noised_params = jax.tree_util.tree_map( lambda p, u: p + rho * u, params, updates) (_, (n_valid_examples, _)), updates = grad_fn(noised_params) # Get correct global mean grad. (n_valid_examples, updates) = lax.psum((n_valid_examples, updates), axis_name=batch_axis_name) updates = jax.tree_map(lambda x: x / n_valid_examples, updates) if grad_clip: updates_norm = jnp.sqrt( sum(jnp.sum(g**2) for g in jax.tree_util.tree_leaves(updates))) scaled_updates = jax.tree_map( lambda x: x / (updates_norm + _GRAD_CLIP_EPS) * grad_clip, updates) updates = jax.lax.cond(updates_norm > grad_clip, lambda _: scaled_updates, lambda _: updates, None) updates, state = base_opt_update_fn(updates, state, params) return updates, state return optax.GradientTransformation(init_fn, update_fn) def init_optimizer_state(workload: spec.Workload, model_params: spec.ParameterContainer, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, rng: spec.RandomState) -> spec.OptimizerState: """Creates a SAM optimizer (with AdamW base) and a learning rate schedule.""" del model_params del model_state del rng def jax_cosine_warmup(step_hint: int, hyperparameters): # Create learning rate schedule. warmup_steps = int(hyperparameters.warmup_factor * step_hint) warmup_fn = optax.linear_schedule( init_value=0., end_value=hyperparameters.learning_rate, transition_steps=warmup_steps) cosine_steps = max(step_hint - warmup_steps, 1) cosine_fn = optax.cosine_decay_schedule( init_value=hyperparameters.learning_rate, decay_steps=cosine_steps) schedule_fn = optax.join_schedules( schedules=[warmup_fn, cosine_fn], boundaries=[warmup_steps]) return schedule_fn # Create base optimizer + LR schedule. lr_schedule_fn = jax_cosine_warmup(workload.step_hint, hyperparameters) opt_init_fn, opt_update_fn = optax.adamw( learning_rate=lr_schedule_fn, b1=1.0 - hyperparameters.one_minus_beta1, b2=hyperparameters.beta2, eps=1e-8, weight_decay=hyperparameters.weight_decay) # Create SAM update fn. grad_clip = ( hyperparameters.grad_clip if hasattr(hyperparameters, 'grad_clip') else None) opt_init_fn, opt_update_fn = sharpness_aware_minimization( rho=hyperparameters.rho, grad_clip=grad_clip, batch_axis_name='batch', base_opt_init_fn=opt_init_fn, base_opt_update_fn=opt_update_fn) # Initialize optimizer state. params_zeros_like = jax.tree_map(lambda s: jnp.zeros(s.shape_tuple), workload.param_shapes) optimizer_state = opt_init_fn(params_zeros_like) return jax_utils.replicate(optimizer_state), opt_update_fn @functools.partial( jax.pmap, axis_name='batch', in_axes=(None, None, 0, 0, 0, 0, 0, None, None), static_broadcasted_argnums=(0, 1), donate_argnums=(2, 3, 4)) def pmapped_train_step(workload, opt_update_fn, model_state, optimizer_state, current_param_container, batch, rng, grad_clip, label_smoothing): def _loss_fn(params, update_batch_norm=True): """Loss function used for training.""" logits, new_model_state = workload.model_fn( params, batch, model_state, spec.ForwardPassMode.TRAIN, rng, update_batch_norm=update_batch_norm) loss_dict = workload.loss_fn( label_batch=batch['targets'], logits_batch=logits, mask_batch=batch.get('weights'), label_smoothing=label_smoothing) summed_loss = loss_dict['summed'] n_valid_examples = loss_dict['n_valid_examples'] return summed_loss, (n_valid_examples, new_model_state) grad_fn = jax.value_and_grad(_loss_fn, has_aux=True) second_grad_fn = jax.value_and_grad( functools.partial(_loss_fn, update_batch_norm=False), has_aux=True) (summed_loss, (n_valid_examples, new_model_state)), grad = grad_fn( current_param_container) # Get correct global mean loss and grad. (summed_loss, n_valid_examples, grad) = lax.psum( (summed_loss, n_valid_examples, grad), axis_name='batch') loss = summed_loss / n_valid_examples grad = jax.tree_map(lambda x: x / n_valid_examples, grad) grad_norm = jnp.sqrt( sum(jnp.sum(g**2) for g in jax.tree_util.tree_leaves(grad))) updates, new_optimizer_state = opt_update_fn( grad, optimizer_state, (second_grad_fn, current_param_container)) updated_params = optax.apply_updates(current_param_container, updates) return new_optimizer_state, updated_params, new_model_state, loss, grad_norm def update_params(workload: spec.Workload, current_param_container: spec.ParameterContainer, current_params_types: spec.ParameterTypeTree, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, batch: Dict[str, spec.Tensor], loss_type: spec.LossType, optimizer_state: spec.OptimizerState, eval_results: List[Tuple[int, float]], global_step: int, rng: spec.RandomState) -> spec.UpdateReturn: """Return (updated_optimizer_state, updated_params, updated_model_state).""" del current_params_types del loss_type del eval_results optimizer_state, opt_update_fn = optimizer_state per_device_rngs = jax.random.split(rng, jax.local_device_count()) if hasattr(hyperparameters, 'label_smoothing'): label_smoothing = hyperparameters.label_smoothing else: label_smoothing = 0.0 if hasattr(hyperparameters, 'grad_clip'): grad_clip = hyperparameters.grad_clip else: grad_clip = None outputs = pmapped_train_step(workload, opt_update_fn, model_state, optimizer_state, current_param_container, batch, per_device_rngs, grad_clip, label_smoothing) new_optimizer_state, new_params, new_model_state, loss, grad_norm = outputs # Log loss, grad_norm. if global_step % 100 == 0 and workload.metrics_logger is not None: workload.metrics_logger.append_scalar_metrics( { 'loss': loss[0], 'grad_norm': grad_norm[0], }, global_step) return (new_optimizer_state, opt_update_fn), new_params, new_model_state def get_batch_size(workload_name): # Return the global batch size. if workload_name == 'criteo1tb': return 262_144 elif workload_name == 'fastmri': return 32 elif workload_name == 'imagenet_resnet': return 1024 elif workload_name == 'imagenet_vit': return 1024 elif workload_name == 'librispeech_conformer': return 256 elif workload_name == 'librispeech_deepspeech': return 256 elif workload_name == 'ogbg': return 512 elif workload_name == 'wmt': return 128 elif workload_name == 'mnist': return 16 else: raise ValueError(f'Unsupported workload name: {workload_name}.') def data_selection( workload: spec.Workload, input_queue: Iterator[Dict[str, spec.Tensor]], optimizer_state: spec.OptimizerState, current_param_container: spec.ParameterContainer, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, global_step: int, rng: spec.RandomState) -> Tuple[spec.Tensor, spec.Tensor, spec.Tensor]: """Select data from the infinitely repeating, pre-shuffled input queue. Each element of the queue is a batch of training examples and labels. """ del workload del optimizer_state del current_param_container del model_state del hyperparameters del global_step del rng batch = next(input_queue) return batch
"""Submission file for a SGD with HeavyBall momentum optimizer in PyTorch.""" from typing import Callable, Dict, Iterator, List, Tuple from absl import logging import optax import torch import torch.distributed.nn as dist_nn from torch.optim.lr_scheduler import LambdaLR from algorithmic_efficiency import spec from algorithmic_efficiency.pytorch_utils import pytorch_setup USE_PYTORCH_DDP = pytorch_setup()[0] def init_optimizer_state(workload: spec.Workload, model_params: spec.ParameterContainer, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, rng: spec.RandomState) -> spec.OptimizerState: """Creates a Nesterov optimizer and a learning rate schedule.""" del model_state del rng # Create optimizer. optimizer_state = { 'optimizer': torch.optim.SGD( model_params.parameters(), lr=hyperparameters.learning_rate, momentum=1.0 - hyperparameters.one_minus_beta1, weight_decay=hyperparameters.weight_decay, nesterov=False), } # Create learning rate schedule. lr_schedule_fn = create_lr_schedule_fn(workload.step_hint, hyperparameters) # PyTorch's LambdaLR expects the lr_lambda fn to return a factor which will # be multiplied with the base lr, so we have to divide by it here. def _lr_lambda(step: int) -> float: return lr_schedule_fn(step).item() / hyperparameters.learning_rate optimizer_state['scheduler'] = LambdaLR( optimizer_state['optimizer'], lr_lambda=_lr_lambda) return optimizer_state def create_lr_schedule_fn( step_hint: int, hyperparameters: spec.Hyperparameters) -> Callable[[int], float]: warmup_steps = int(hyperparameters.warmup_factor * step_hint) warmup_fn = optax.linear_schedule( init_value=0., end_value=hyperparameters.learning_rate, transition_steps=warmup_steps) decay_steps = step_hint - warmup_steps polynomial_schedule_fn = optax.polynomial_schedule( init_value=hyperparameters.learning_rate, end_value=hyperparameters.learning_rate * hyperparameters.end_factor, power=1, transition_steps=int(decay_steps * hyperparameters.decay_steps_factor)) lr_schedule_fn = optax.join_schedules( schedules=[warmup_fn, polynomial_schedule_fn], boundaries=[warmup_steps]) return lr_schedule_fn def update_params(workload: spec.Workload, current_param_container: spec.ParameterContainer, current_params_types: spec.ParameterTypeTree, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, batch: Dict[str, spec.Tensor], loss_type: spec.LossType, optimizer_state: spec.OptimizerState, eval_results: List[Tuple[int, float]], global_step: int, rng: spec.RandomState) -> spec.UpdateReturn: """Return (updated_optimizer_state, updated_params, updated_model_state).""" del current_params_types del loss_type del eval_results current_model = current_param_container current_model.train() optimizer_state['optimizer'].zero_grad() logits_batch, new_model_state = workload.model_fn( params=current_model, augmented_and_preprocessed_input_batch=batch, model_state=model_state, mode=spec.ForwardPassMode.TRAIN, rng=rng, update_batch_norm=True) label_smoothing = ( hyperparameters.label_smoothing if hasattr(hyperparameters, 'label_smoothing') else 0.0) if hasattr(hyperparameters, 'grad_clip'): grad_clip = hyperparameters.grad_clip else: grad_clip = None loss_dict = workload.loss_fn( label_batch=batch['targets'], logits_batch=logits_batch, mask_batch=batch.get('weights'), label_smoothing=label_smoothing) summed_loss = loss_dict['summed'] n_valid_examples = loss_dict['n_valid_examples'] if USE_PYTORCH_DDP: # Use dist_nn.all_reduce to ensure correct loss and gradient scaling. summed_loss = dist_nn.all_reduce(summed_loss) n_valid_examples = dist_nn.all_reduce(n_valid_examples) loss = summed_loss / n_valid_examples loss.backward() if grad_clip is not None: torch.nn.utils.clip_grad_norm_( current_model.parameters(), max_norm=grad_clip) optimizer_state['optimizer'].step() optimizer_state['scheduler'].step() # Log training metrics - loss, grad_norm, batch_size. if global_step <= 100 or global_step % 500 == 0: with torch.no_grad(): parameters = [p for p in current_model.parameters() if p.grad is not None] grad_norm = torch.norm( torch.stack([torch.norm(p.grad.detach(), 2) for p in parameters]), 2) if workload.metrics_logger is not None: workload.metrics_logger.append_scalar_metrics( { 'loss': loss.item(), 'grad_norm': grad_norm.item(), }, global_step) logging.info('%d) loss = %0.3f, grad_norm = %0.3f', global_step, loss.item(), grad_norm.item()) return (optimizer_state, current_param_container, new_model_state) def get_batch_size(workload_name): # Return the global batch size. if workload_name == 'criteo1tb': return 262_144 elif workload_name == 'fastmri': return 32 elif workload_name == 'imagenet_resnet': return 1024 elif workload_name == 'imagenet_vit': return 1024 elif workload_name == 'librispeech_conformer': return 256 elif workload_name == 'librispeech_deepspeech': return 256 elif workload_name == 'ogbg': return 512 elif workload_name == 'wmt': return 128 elif workload_name == 'mnist': return 16 else: raise ValueError(f'Unsupported workload name: {workload_name}.') def data_selection(workload: spec.Workload, input_queue: Iterator[Dict[str, spec.Tensor]], optimizer_state: spec.OptimizerState, current_param_container: spec.ParameterContainer, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, global_step: int, rng: spec.RandomState) -> Dict[str, spec.Tensor]: """Select data from the infinitely repeating, pre-shuffled input queue. Each element of the queue is a batch of training examples and labels. """ del workload del optimizer_state del current_param_container del model_state del hyperparameters del global_step del rng batch = next(input_queue) return batch
"""Submission file for a SGD with HeavyBall momentum optimizer in Jax.""" import functools from typing import Callable, Dict, Iterator, List, Tuple from flax import jax_utils import jax from jax import lax import jax.numpy as jnp import optax from algorithmic_efficiency import spec _GRAD_CLIP_EPS = 1e-6 def init_optimizer_state(workload: spec.Workload, model_params: spec.ParameterContainer, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, rng: spec.RandomState) -> spec.OptimizerState: """Creates a Nesterov optimizer and a learning rate schedule.""" del model_params del model_state del rng # Create learning rate schedule. lr_schedule_fn = create_lr_schedule_fn(workload.step_hint, hyperparameters) # Create optimizer. params_zeros_like = jax.tree_map(lambda s: jnp.zeros(s.shape_tuple), workload.param_shapes) opt_init_fn, opt_update_fn = sgd( learning_rate=lr_schedule_fn, weight_decay=hyperparameters.weight_decay, momentum=1.0 - hyperparameters.one_minus_beta1, nesterov=False) optimizer_state = opt_init_fn(params_zeros_like) return jax_utils.replicate(optimizer_state), opt_update_fn def create_lr_schedule_fn( step_hint: int, hyperparameters: spec.Hyperparameters) -> Callable[[int], float]: warmup_steps = int(hyperparameters.warmup_factor * step_hint) warmup_fn = optax.linear_schedule( init_value=0., end_value=hyperparameters.learning_rate, transition_steps=warmup_steps) decay_steps = step_hint - warmup_steps polynomial_schedule_fn = optax.polynomial_schedule( init_value=hyperparameters.learning_rate, end_value=hyperparameters.learning_rate * hyperparameters.end_factor, power=1, transition_steps=int(decay_steps * hyperparameters.decay_steps_factor)) lr_schedule_fn = optax.join_schedules( schedules=[warmup_fn, polynomial_schedule_fn], boundaries=[warmup_steps]) return lr_schedule_fn # Forked from github.com/google/init2winit/blob/master/init2winit/ (cont. below) # optimizer_lib/optimizers.py. def sgd(learning_rate, weight_decay, momentum=None, nesterov=False): r"""A customizable gradient descent optimizer. NOTE: We apply weight decay **before** computing the momentum update. This is equivalent to applying WD after for heavy-ball momentum, but slightly different when using Nesterov acceleration. This is the same as how the Flax optimizers handle weight decay https://flax.readthedocs.io/en/latest/_modules/flax/optim/momentum.html. Args: learning_rate: The learning rate. Expected as the positive learning rate, for example `\alpha` in `w -= \alpha * u` (as opposed to `\alpha`). weight_decay: The weight decay hyperparameter. momentum: The momentum hyperparameter. nesterov: Whether or not to use Nesterov momentum. Returns: An optax gradient transformation that applies weight decay and then one of a {SGD, Momentum, Nesterov} update. """ return optax.chain( optax.add_decayed_weights(weight_decay), optax.sgd( learning_rate=learning_rate, momentum=momentum, nesterov=nesterov)) @functools.partial( jax.pmap, axis_name='batch', in_axes=(None, None, 0, 0, 0, 0, 0, None, None), static_broadcasted_argnums=(0, 1), donate_argnums=(2, 3, 4)) def pmapped_train_step(workload, opt_update_fn, model_state, optimizer_state, current_param_container, batch, rng, grad_clip, label_smoothing): def _loss_fn(params): """Loss function used for training.""" logits, new_model_state = workload.model_fn( params, batch, model_state, spec.ForwardPassMode.TRAIN, rng, update_batch_norm=True) loss_dict = workload.loss_fn( label_batch=batch['targets'], logits_batch=logits, mask_batch=batch.get('weights'), label_smoothing=label_smoothing) summed_loss = loss_dict['summed'] n_valid_examples = loss_dict['n_valid_examples'] return summed_loss, (n_valid_examples, new_model_state) grad_fn = jax.value_and_grad(_loss_fn, has_aux=True) (summed_loss, (n_valid_examples, new_model_state)), grad = grad_fn( current_param_container) # Get correct global mean loss and grad. (summed_loss, n_valid_examples, grad) = lax.psum( (summed_loss, n_valid_examples, grad), axis_name='batch') loss = summed_loss / n_valid_examples grad = jax.tree_map(lambda x: x / n_valid_examples, grad) grad_norm = jnp.sqrt( sum(jnp.sum(g**2) for g in jax.tree_util.tree_leaves(grad))) if grad_clip is not None: grad_scaling_factor = grad_clip / (grad_norm + _GRAD_CLIP_EPS) grad_scaling_factor = jax.lax.clamp(min=0.0, x=grad_scaling_factor, max=1.0) grad = jax.tree_map(lambda x: x * grad_scaling_factor, grad) updates, new_optimizer_state = opt_update_fn(grad, optimizer_state, current_param_container) updated_params = optax.apply_updates(current_param_container, updates) return new_optimizer_state, updated_params, new_model_state, loss, grad_norm def update_params(workload: spec.Workload, current_param_container: spec.ParameterContainer, current_params_types: spec.ParameterTypeTree, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, batch: Dict[str, spec.Tensor], loss_type: spec.LossType, optimizer_state: spec.OptimizerState, eval_results: List[Tuple[int, float]], global_step: int, rng: spec.RandomState) -> spec.UpdateReturn: """Return (updated_optimizer_state, updated_params, updated_model_state).""" del current_params_types del loss_type del eval_results optimizer_state, opt_update_fn = optimizer_state per_device_rngs = jax.random.split(rng, jax.local_device_count()) if hasattr(hyperparameters, 'label_smoothing'): label_smoothing = hyperparameters.label_smoothing else: label_smoothing = 0.0 if hasattr(hyperparameters, 'grad_clip'): grad_clip = hyperparameters.grad_clip else: grad_clip = None outputs = pmapped_train_step(workload, opt_update_fn, model_state, optimizer_state, current_param_container, batch, per_device_rngs, grad_clip, label_smoothing) new_optimizer_state, new_params, new_model_state, loss, grad_norm = outputs # Log loss, grad_norm. if global_step % 100 == 0 and workload.metrics_logger is not None: workload.metrics_logger.append_scalar_metrics( { 'loss': loss[0], 'grad_norm': grad_norm[0], }, global_step) return (new_optimizer_state, opt_update_fn), new_params, new_model_state def get_batch_size(workload_name): # Return the global batch size. if workload_name == 'criteo1tb': return 262_144 elif workload_name == 'fastmri': return 32 elif workload_name == 'imagenet_resnet': return 1024 elif workload_name == 'imagenet_vit': return 1024 elif workload_name == 'librispeech_conformer': return 256 elif workload_name == 'librispeech_deepspeech': return 256 elif workload_name == 'ogbg': return 512 elif workload_name == 'wmt': return 128 elif workload_name == 'mnist': return 16 else: raise ValueError(f'Unsupported workload name: {workload_name}.') def data_selection(workload: spec.Workload, input_queue: Iterator[Dict[str, spec.Tensor]], optimizer_state: spec.OptimizerState, current_param_container: spec.ParameterContainer, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, global_step: int, rng: spec.RandomState) -> Dict[str, spec.Tensor]: """Select data from the infinitely repeating, pre-shuffled input queue. Each element of the queue is a batch of training examples and labels. """ del workload del optimizer_state del current_param_container del model_state del hyperparameters del global_step del rng batch = next(input_queue) return batch
"""Submission file for a SGD with Nesterov momentum optimizer in PyTorch.""" from typing import Callable, Dict, Iterator, List, Tuple from absl import logging import optax import torch import torch.distributed.nn as dist_nn from torch.optim.lr_scheduler import LambdaLR from algorithmic_efficiency import spec from algorithmic_efficiency.pytorch_utils import pytorch_setup USE_PYTORCH_DDP = pytorch_setup()[0] def init_optimizer_state(workload: spec.Workload, model_params: spec.ParameterContainer, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, rng: spec.RandomState) -> spec.OptimizerState: """Creates a Nesterov optimizer and a learning rate schedule.""" del model_state del rng # Create optimizer. optimizer_state = { 'optimizer': torch.optim.SGD( model_params.parameters(), lr=hyperparameters.learning_rate, momentum=1.0 - hyperparameters.one_minus_beta1, weight_decay=hyperparameters.weight_decay, nesterov=True), } # Create learning rate schedule. lr_schedule_fn = create_lr_schedule_fn(workload.step_hint, hyperparameters) # PyTorch's LambdaLR expects the lr_lambda fn to return a factor which will # be multiplied with the base lr, so we have to divide by it here. def _lr_lambda(step: int) -> float: return lr_schedule_fn(step).item() / hyperparameters.learning_rate optimizer_state['scheduler'] = LambdaLR( optimizer_state['optimizer'], lr_lambda=_lr_lambda) return optimizer_state def create_lr_schedule_fn( step_hint: int, hyperparameters: spec.Hyperparameters) -> Callable[[int], float]: warmup_steps = int(hyperparameters.warmup_factor * step_hint) warmup_fn = optax.linear_schedule( init_value=0., end_value=hyperparameters.learning_rate, transition_steps=warmup_steps) decay_steps = step_hint - warmup_steps polynomial_schedule_fn = optax.polynomial_schedule( init_value=hyperparameters.learning_rate, end_value=hyperparameters.learning_rate * hyperparameters.end_factor, power=1, transition_steps=int(decay_steps * hyperparameters.decay_steps_factor)) lr_schedule_fn = optax.join_schedules( schedules=[warmup_fn, polynomial_schedule_fn], boundaries=[warmup_steps]) return lr_schedule_fn def update_params(workload: spec.Workload, current_param_container: spec.ParameterContainer, current_params_types: spec.ParameterTypeTree, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, batch: Dict[str, spec.Tensor], loss_type: spec.LossType, optimizer_state: spec.OptimizerState, eval_results: List[Tuple[int, float]], global_step: int, rng: spec.RandomState) -> spec.UpdateReturn: """Return (updated_optimizer_state, updated_params, updated_model_state).""" del current_params_types del loss_type del eval_results current_model = current_param_container current_model.train() optimizer_state['optimizer'].zero_grad() logits_batch, new_model_state = workload.model_fn( params=current_model, augmented_and_preprocessed_input_batch=batch, model_state=model_state, mode=spec.ForwardPassMode.TRAIN, rng=rng, update_batch_norm=True) label_smoothing = ( hyperparameters.label_smoothing if hasattr(hyperparameters, 'label_smoothing') else 0.0) if hasattr(hyperparameters, 'grad_clip'): grad_clip = hyperparameters.grad_clip else: grad_clip = None loss_dict = workload.loss_fn( label_batch=batch['targets'], logits_batch=logits_batch, mask_batch=batch.get('weights'), label_smoothing=label_smoothing) summed_loss = loss_dict['summed'] n_valid_examples = loss_dict['n_valid_examples'] if USE_PYTORCH_DDP: # Use dist_nn.all_reduce to ensure correct loss and gradient scaling. summed_loss = dist_nn.all_reduce(summed_loss) n_valid_examples = dist_nn.all_reduce(n_valid_examples) loss = summed_loss / n_valid_examples loss.backward() if grad_clip is not None: torch.nn.utils.clip_grad_norm_( current_model.parameters(), max_norm=grad_clip) optimizer_state['optimizer'].step() optimizer_state['scheduler'].step() # Log training metrics - loss, grad_norm, batch_size. if global_step <= 100 or global_step % 500 == 0: with torch.no_grad(): parameters = [p for p in current_model.parameters() if p.grad is not None] grad_norm = torch.norm( torch.stack([torch.norm(p.grad.detach(), 2) for p in parameters]), 2) if workload.metrics_logger is not None: workload.metrics_logger.append_scalar_metrics( { 'loss': loss.item(), 'grad_norm': grad_norm.item(), }, global_step) logging.info('%d) loss = %0.3f, grad_norm = %0.3f', global_step, loss.item(), grad_norm.item()) return (optimizer_state, current_param_container, new_model_state) def get_batch_size(workload_name): # Return the global batch size. if workload_name == 'criteo1tb': return 262_144 elif workload_name == 'fastmri': return 32 elif workload_name == 'imagenet_resnet': return 1024 elif workload_name == 'imagenet_vit': return 1024 elif workload_name == 'librispeech_conformer': return 256 elif workload_name == 'librispeech_deepspeech': return 256 elif workload_name == 'ogbg': return 512 elif workload_name == 'wmt': return 128 elif workload_name == 'mnist': return 16 else: raise ValueError(f'Unsupported workload name: {workload_name}.') def data_selection(workload: spec.Workload, input_queue: Iterator[Dict[str, spec.Tensor]], optimizer_state: spec.OptimizerState, current_param_container: spec.ParameterContainer, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, global_step: int, rng: spec.RandomState) -> Dict[str, spec.Tensor]: """Select data from the infinitely repeating, pre-shuffled input queue. Each element of the queue is a batch of training examples and labels. """ del workload del optimizer_state del current_param_container del model_state del hyperparameters del global_step del rng batch = next(input_queue) return batch
"""Submission file for a SGD with Nesterov momentum optimizer in Jax.""" import functools from typing import Callable, Dict, Iterator, List, Tuple from flax import jax_utils import jax from jax import lax import jax.numpy as jnp import optax from algorithmic_efficiency import spec _GRAD_CLIP_EPS = 1e-6 def init_optimizer_state(workload: spec.Workload, model_params: spec.ParameterContainer, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, rng: spec.RandomState) -> spec.OptimizerState: """Creates a Nesterov optimizer and a learning rate schedule.""" del model_params del model_state del rng # Create learning rate schedule. lr_schedule_fn = create_lr_schedule_fn(workload.step_hint, hyperparameters) # Create optimizer. params_zeros_like = jax.tree_map(lambda s: jnp.zeros(s.shape_tuple), workload.param_shapes) opt_init_fn, opt_update_fn = sgd( learning_rate=lr_schedule_fn, weight_decay=hyperparameters.weight_decay, momentum=1.0 - hyperparameters.one_minus_beta1, nesterov=True) optimizer_state = opt_init_fn(params_zeros_like) return jax_utils.replicate(optimizer_state), opt_update_fn def create_lr_schedule_fn( step_hint: int, hyperparameters: spec.Hyperparameters) -> Callable[[int], float]: warmup_steps = int(hyperparameters.warmup_factor * step_hint) warmup_fn = optax.linear_schedule( init_value=0., end_value=hyperparameters.learning_rate, transition_steps=warmup_steps) decay_steps = step_hint - warmup_steps polynomial_schedule_fn = optax.polynomial_schedule( init_value=hyperparameters.learning_rate, end_value=hyperparameters.learning_rate * hyperparameters.end_factor, power=1, transition_steps=int(decay_steps * hyperparameters.decay_steps_factor)) lr_schedule_fn = optax.join_schedules( schedules=[warmup_fn, polynomial_schedule_fn], boundaries=[warmup_steps]) return lr_schedule_fn # Forked from github.com/google/init2winit/blob/master/init2winit/ (cont. below) # optimizer_lib/optimizers.py. def sgd(learning_rate, weight_decay, momentum=None, nesterov=False): r"""A customizable gradient descent optimizer. NOTE: We apply weight decay **before** computing the momentum update. This is equivalent to applying WD after for heavy-ball momentum, but slightly different when using Nesterov acceleration. This is the same as how the Flax optimizers handle weight decay https://flax.readthedocs.io/en/latest/_modules/flax/optim/momentum.html. Args: learning_rate: The learning rate. Expected as the positive learning rate, for example `\alpha` in `w -= \alpha * u` (as opposed to `\alpha`). weight_decay: The weight decay hyperparameter. momentum: The momentum hyperparameter. nesterov: Whether or not to use Nesterov momentum. Returns: An optax gradient transformation that applies weight decay and then one of a {SGD, Momentum, Nesterov} update. """ return optax.chain( optax.add_decayed_weights(weight_decay), optax.sgd( learning_rate=learning_rate, momentum=momentum, nesterov=nesterov)) @functools.partial( jax.pmap, axis_name='batch', in_axes=(None, None, 0, 0, 0, 0, 0, None, None), static_broadcasted_argnums=(0, 1), donate_argnums=(2, 3, 4)) def pmapped_train_step(workload, opt_update_fn, model_state, optimizer_state, current_param_container, batch, rng, grad_clip, label_smoothing): def _loss_fn(params): """Loss function used for training.""" logits, new_model_state = workload.model_fn( params, batch, model_state, spec.ForwardPassMode.TRAIN, rng, update_batch_norm=True) loss_dict = workload.loss_fn( label_batch=batch['targets'], logits_batch=logits, mask_batch=batch.get('weights'), label_smoothing=label_smoothing) summed_loss = loss_dict['summed'] n_valid_examples = loss_dict['n_valid_examples'] return summed_loss, (n_valid_examples, new_model_state) grad_fn = jax.value_and_grad(_loss_fn, has_aux=True) (summed_loss, (n_valid_examples, new_model_state)), grad = grad_fn( current_param_container) # Get correct global mean loss and grad. (summed_loss, n_valid_examples, grad) = lax.psum( (summed_loss, n_valid_examples, grad), axis_name='batch') loss = summed_loss / n_valid_examples grad = jax.tree_map(lambda x: x / n_valid_examples, grad) grad_norm = jnp.sqrt( sum(jnp.sum(g**2) for g in jax.tree_util.tree_leaves(grad))) if grad_clip is not None: grad_scaling_factor = grad_clip / (grad_norm + _GRAD_CLIP_EPS) grad_scaling_factor = jax.lax.clamp(min=0.0, x=grad_scaling_factor, max=1.0) grad = jax.tree_map(lambda x: x * grad_scaling_factor, grad) updates, new_optimizer_state = opt_update_fn(grad, optimizer_state, current_param_container) updated_params = optax.apply_updates(current_param_container, updates) return new_optimizer_state, updated_params, new_model_state, loss, grad_norm def update_params(workload: spec.Workload, current_param_container: spec.ParameterContainer, current_params_types: spec.ParameterTypeTree, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, batch: Dict[str, spec.Tensor], loss_type: spec.LossType, optimizer_state: spec.OptimizerState, eval_results: List[Tuple[int, float]], global_step: int, rng: spec.RandomState) -> spec.UpdateReturn: """Return (updated_optimizer_state, updated_params, updated_model_state).""" del current_params_types del loss_type del eval_results optimizer_state, opt_update_fn = optimizer_state per_device_rngs = jax.random.split(rng, jax.local_device_count()) if hasattr(hyperparameters, 'label_smoothing'): label_smoothing = hyperparameters.label_smoothing else: label_smoothing = 0.0 if hasattr(hyperparameters, 'grad_clip'): grad_clip = hyperparameters.grad_clip else: grad_clip = None outputs = pmapped_train_step(workload, opt_update_fn, model_state, optimizer_state, current_param_container, batch, per_device_rngs, grad_clip, label_smoothing) new_optimizer_state, new_params, new_model_state, loss, grad_norm = outputs # Log loss, grad_norm. if global_step % 100 == 0 and workload.metrics_logger is not None: workload.metrics_logger.append_scalar_metrics( { 'loss': loss[0], 'grad_norm': grad_norm[0], }, global_step) return (new_optimizer_state, opt_update_fn), new_params, new_model_state def get_batch_size(workload_name): # Return the global batch size. if workload_name == 'criteo1tb': return 262_144 elif workload_name == 'fastmri': return 32 elif workload_name == 'imagenet_resnet': return 1024 elif workload_name == 'imagenet_vit': return 1024 elif workload_name == 'librispeech_conformer': return 256 elif workload_name == 'librispeech_deepspeech': return 256 elif workload_name == 'ogbg': return 512 elif workload_name == 'wmt': return 128 elif workload_name == 'mnist': return 16 else: raise ValueError(f'Unsupported workload name: {workload_name}.') def data_selection(workload: spec.Workload, input_queue: Iterator[Dict[str, spec.Tensor]], optimizer_state: spec.OptimizerState, current_param_container: spec.ParameterContainer, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, global_step: int, rng: spec.RandomState) -> Dict[str, spec.Tensor]: """Select data from the infinitely repeating, pre-shuffled input queue. Each element of the queue is a batch of training examples and labels. """ del workload del optimizer_state del current_param_container del model_state del hyperparameters del global_step del rng batch = next(input_queue) return batch
"""Submission file for a Shampoo optimizer with warmup+cosine LR in Jax.""" import functools from typing import Dict, Iterator, List, Tuple from flax import jax_utils import jax from jax import lax import jax.numpy as jnp import optax from algorithmic_efficiency import spec from baselines.shampoo.jax.distributed_shampoo import distributed_shampoo _GRAD_CLIP_EPS = 1e-6 def init_optimizer_state(workload: spec.Workload, model_params: spec.ParameterContainer, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, rng: spec.RandomState) -> spec.OptimizerState: """Creates a Shampoo optimizer and a learning rate schedule.""" del model_params del model_state del rng def jax_cosine_warmup(step_hint: int, hyperparameters): # Create learning rate schedule. warmup_steps = int(hyperparameters.warmup_factor * step_hint) warmup_fn = optax.linear_schedule( init_value=0., end_value=hyperparameters.learning_rate, transition_steps=warmup_steps) cosine_steps = max(step_hint - warmup_steps, 1) cosine_fn = optax.cosine_decay_schedule( init_value=hyperparameters.learning_rate, decay_steps=cosine_steps) schedule_fn = optax.join_schedules( schedules=[warmup_fn, cosine_fn], boundaries=[warmup_steps]) return schedule_fn # Create optimizer + LR schedule. lr_schedule_fn = jax_cosine_warmup(workload.step_hint, hyperparameters) opt_init_fn, opt_update_fn = distributed_shampoo( learning_rate=lr_schedule_fn, beta1=1.0 - hyperparameters.one_minus_beta1, beta2=hyperparameters.beta2, weight_decay=hyperparameters.weight_decay, batch_axis_name='batch', eigh=False) params_zeros_like = jax.tree_map(lambda s: jnp.zeros(s.shape_tuple), workload.param_shapes) optimizer_state = opt_init_fn(params_zeros_like) return jax_utils.replicate(optimizer_state), opt_update_fn @functools.partial( jax.pmap, axis_name='batch', in_axes=(None, None, 0, 0, 0, 0, 0, None, None), static_broadcasted_argnums=(0, 1), donate_argnums=(2, 3, 4)) def pmapped_train_step(workload, opt_update_fn, model_state, optimizer_state, current_param_container, batch, rng, grad_clip, label_smoothing): def _loss_fn(params): """Loss function used for training.""" logits, new_model_state = workload.model_fn( params, batch, model_state, spec.ForwardPassMode.TRAIN, rng, update_batch_norm=True) loss_dict = workload.loss_fn( label_batch=batch['targets'], logits_batch=logits, mask_batch=batch.get('weights'), label_smoothing=label_smoothing) summed_loss = loss_dict['summed'] n_valid_examples = loss_dict['n_valid_examples'] return summed_loss, (n_valid_examples, new_model_state) grad_fn = jax.value_and_grad(_loss_fn, has_aux=True) (summed_loss, (n_valid_examples, new_model_state)), grad = grad_fn( current_param_container) # Get correct global mean loss and grad. (summed_loss, n_valid_examples, grad) = lax.psum( (summed_loss, n_valid_examples, grad), axis_name='batch') loss = summed_loss / n_valid_examples grad = jax.tree_map(lambda x: x / n_valid_examples, grad) grad_norm = jnp.sqrt( sum(jnp.sum(g**2) for g in jax.tree_util.tree_leaves(grad))) if grad_clip is not None: grad_scaling_factor = grad_clip / (grad_norm + _GRAD_CLIP_EPS) grad_scaling_factor = jax.lax.clamp(min=0.0, x=grad_scaling_factor, max=1.0) grad = jax.tree_map(lambda x: x * grad_scaling_factor, grad) updates, new_optimizer_state = opt_update_fn(grad, optimizer_state, current_param_container) updated_params = optax.apply_updates(current_param_container, updates) return new_optimizer_state, updated_params, new_model_state, loss, grad_norm def update_params(workload: spec.Workload, current_param_container: spec.ParameterContainer, current_params_types: spec.ParameterTypeTree, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, batch: Dict[str, spec.Tensor], loss_type: spec.LossType, optimizer_state: spec.OptimizerState, eval_results: List[Tuple[int, float]], global_step: int, rng: spec.RandomState) -> spec.UpdateReturn: """Return (updated_optimizer_state, updated_params, updated_model_state).""" del current_params_types del loss_type del eval_results optimizer_state, opt_update_fn = optimizer_state per_device_rngs = jax.random.split(rng, jax.local_device_count()) if hasattr(hyperparameters, 'label_smoothing'): label_smoothing = hyperparameters.label_smoothing else: label_smoothing = 0.0 if hasattr(hyperparameters, 'grad_clip'): grad_clip = hyperparameters.grad_clip else: grad_clip = None outputs = pmapped_train_step(workload, opt_update_fn, model_state, optimizer_state, current_param_container, batch, per_device_rngs, grad_clip, label_smoothing) new_optimizer_state, new_params, new_model_state, loss, grad_norm = outputs # Log loss, grad_norm. if global_step % 100 == 0 and workload.metrics_logger is not None: workload.metrics_logger.append_scalar_metrics( { 'loss': loss[0], 'grad_norm': grad_norm[0], }, global_step) return (new_optimizer_state, opt_update_fn), new_params, new_model_state def get_batch_size(workload_name): # Return the global batch size. if workload_name == 'criteo1tb': return 262_144 elif workload_name == 'fastmri': return 32 elif workload_name == 'imagenet_resnet': return 1024 elif workload_name == 'imagenet_vit': return 1024 elif workload_name == 'librispeech_conformer': return 256 elif workload_name == 'librispeech_deepspeech': return 256 elif workload_name == 'ogbg': return 512 elif workload_name == 'wmt': return 128 elif workload_name == 'mnist': return 16 else: raise ValueError(f'Unsupported workload name: {workload_name}.') def data_selection(workload: spec.Workload, input_queue: Iterator[Dict[str, spec.Tensor]], optimizer_state: spec.OptimizerState, current_param_container: spec.ParameterContainer, model_state: spec.ModelAuxiliaryState, hyperparameters: spec.Hyperparameters, global_step: int, rng: spec.RandomState) -> Dict[str, spec.Tensor]: """Select data from the infinitely repeating, pre-shuffled input queue. Each element of the queue is a batch of training examples and labels. """ del workload del optimizer_state del current_param_container del model_state del hyperparameters del global_step del rng batch = next(input_queue) return batch
# coding=utf-8 # Copyright 2022 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # An implementation of distributed Shampoo optimizer from: # # Scalable Second Order Optimization for Deep Learning # Rohan Anil, Vineet Gupta, Tomer Koren, Kevin Regan, Yoram Singer # Preprint Paper: https://arxiv.org/abs/2002.09018 # # This implementation moves computation of inverse pth root back to the # accelerator (if higher precision is available). # # Authors: Rohan Anil (rohananil at google dot com) # Vineet Gupta (vineet at google dot com) # James Lottes (jlottes at google dot com) # Anudhyan Boral (anudhyan at google dot com) # # Forked with minor modifications from: # github.com/google-research/google-research/blob/master/scalable_shampoo/ (...) # optax/distributed_shampoo.py """Distributed Shampoo Implementation.""" import enum import functools import itertools import logging from typing import Any, cast, List, NamedTuple, Optional, TypeVar, Union import chex from flax import struct import jax from jax import lax from jax.experimental import pjit from jax.experimental.sparse import linalg import jax.numpy as jnp import numpy as np import optax # Dtype for inverse-pth root routine # Switch to f64 if you have hardware that supports it. Enable the jax flag # jax_enable_x64 for this to work, otherwise it will default to float32. _MAT_INV_PTH_ROOT_DTYPE = jnp.float64 # pylint: disable=invalid-name # Small epsilon to avoid divide by zero. _EPSILON = 1e-25 # pylint:disable=no-value-for-parameter @struct.dataclass class QuantizedValue: """State associated with quantized value.""" quantized: chex.Array diagonal: chex.Array # Diagonal (if extract_diagonal is set) bucket_size: chex.Array quantized_dtype: jnp.dtype = struct.field( pytree_node=False) # Dtype for the quantized value. extract_diagonal: bool = struct.field( pytree_node=False) # In case its centered. shape: Any = struct.field(pytree_node=False) # Shape of the tensor. @classmethod def from_float_value(cls, fvalue, quantized_dtype, extract_diagonal=False): if isinstance(fvalue, list) and not fvalue: return QuantizedValue([], [], [], quantized_dtype, extract_diagonal, []) quantized, diagonal_fvalue, bucket_size = QuantizedValue.quantize( fvalue, quantized_dtype, extract_diagonal) return QuantizedValue(quantized, diagonal_fvalue, bucket_size, quantized_dtype, extract_diagonal, list(quantized.shape)) # Quantization is from Lingvo JAX optimizers. # We extend it for int16 quantization of PSD matrices. @classmethod def quantize(cls, fvalue, quantized_dtype, extract_diagonal=False): """Returns quantized value and the bucket.""" if quantized_dtype == jnp.float32: return fvalue, [], [] elif quantized_dtype == jnp.bfloat16: return fvalue.astype(jnp.bfloat16), [], [] float_dtype = fvalue.dtype if quantized_dtype == jnp.int8: # value -128 is not used. num_buckets = jnp.array(127.0, dtype=float_dtype) elif quantized_dtype == jnp.int16: # value -32768 is not used. num_buckets = jnp.array(32767.0, dtype=float_dtype) else: raise ValueError(f'Quantized dtype {quantized_dtype} not supported.') # max value is mapped to num_buckets if extract_diagonal and fvalue.ndim != 2: raise ValueError( f'Input array {fvalue} must be 2D to work with extract_diagonal.') diagonal_fvalue = [] if extract_diagonal: diagonal_fvalue = jnp.diag(fvalue) # Remove the diagonal entries. fvalue = fvalue - jnp.diag(diagonal_fvalue) # TODO(rohananil): Extend this by making use of information about the blocks # SM3 style which will be useful for diagonal statistics # We first decide the scale. if fvalue.ndim < 1: raise ValueError( f'Input array {fvalue} must have a strictly positive number of ' 'dimensions.') max_abs = jnp.max(jnp.abs(fvalue), axis=0) bucket_size = max_abs / num_buckets bs_expanded = bucket_size[jnp.newaxis, Ellipsis] # To avoid divide by 0.0 bs_nonzero = jnp.where(bs_expanded > 0.0, bs_expanded, jnp.ones_like(bs_expanded)) ratio = fvalue / bs_nonzero # We use rounding to remove bias. quantized = jnp.round(ratio) return quantized.astype(quantized_dtype), diagonal_fvalue, bucket_size def to_float(self): """Returns the float value.""" if isinstance(self.quantized, list) and not self.quantized: return self.quantized if self.quantized_dtype == jnp.float32: return self.quantized if self.quantized_dtype == jnp.bfloat16: return self.quantized.astype(jnp.float32) float_dtype = self.bucket_size.dtype bucket_size = self.bucket_size[jnp.newaxis, Ellipsis] val = self.quantized.astype(float_dtype) * bucket_size if self.extract_diagonal: val += jnp.diag(self.diagonal) return val def _default_zero_field(): return struct.field( default_factory=functools.partial(jnp.array, 0, jnp.float32)) T = TypeVar("T") def _maybe_ix(ls, ix): """Return ls[ix] if not None else None.""" if ls is None: return None return ls[ix] def _maybe(f): """Lifts f to Maybe monad; ie return None if first arg is.""" def wrap_f(x, *args, **kwargs): if x is None: return None return f(x, *args, **kwargs) return wrap_f InversePthRootDiagnosticsSubtype = TypeVar( "InversePthRootDiagnosticsSubtype", bound="InversePthRootDiagnostics") @struct.dataclass class InversePthRootDiagnostics: """Diagnostics for inverse p-th root iterative procedure. Given an inverse pth root B = A^(-1/p), contains the average and maximum diagonal and off diagonal absolute entrywise errors between (B^p A) and I. """ max_diag_error: chex.Array = _default_zero_field() avg_diag_error: chex.Array = _default_zero_field() max_off_diag_error: chex.Array = _default_zero_field() avg_off_diag_error: chex.Array = _default_zero_field() p: chex.Array = _default_zero_field() @classmethod def create(cls, pth_inverse_root, matrix, p): """Generates a diagnostics struct from (-1/p) root result.""" mat_m = jnp.matmul( mat_power(pth_inverse_root, p), matrix, precision=jax.lax.Precision.HIGHEST) num_off_diag_entries = mat_m.size - jnp.diag(mat_m).size diag_error = jnp.abs(jnp.diag(mat_m) - 1).astype(jnp.float32) off_diag_error = jnp.abs(mat_m - jnp.diag(jnp.diag(mat_m))).astype( jnp.float32) return cls( max_diag_error=jnp.max(diag_error).astype(jnp.float32), avg_diag_error=jnp.mean(diag_error).astype(jnp.float32), max_off_diag_error=jnp.max(off_diag_error).astype(jnp.float32), avg_off_diag_error=(jnp.sum(off_diag_error) / num_off_diag_entries).astype(jnp.float32), p=jnp.array(p, jnp.float32)) LOBPCGDiagnosticsSubtype = TypeVar( "LOBPCGDiagnosticsSubtype", bound="LOBPCGDiagnostics") @struct.dataclass class LOBPCGDiagnostics: """Diagnostics for iterative LOBPCG eigenvalue routine. Contains consistency error for LOBPCG eigenvalue routine, which refers to |A v - lambda v| / (lambda + |A v|) for a proposed eigenpair (v, lambda). This metics dataclass retains consistency error and other useful LOBPCG values. """ lobpcg_iters: chex.Array = _default_zero_field() max_consistency_error: chex.Array = _default_zero_field() avg_consistency_error: chex.Array = _default_zero_field() # Average of absolute value of off-diagonal of V^T V for eigenvalues V. avg_orthogonality_error: chex.Array = _default_zero_field() max_eigenvalue: chex.Array = _default_zero_field() min_eigenvalue: chex.Array = _default_zero_field() num_topk_eigenvectors: chex.Array = _default_zero_field() @classmethod def create(cls, matrix, eigvals, eigvecs, lobpcg_iters): """Generates LOBPCG diagnostics from the result of the routine.""" num_topk = len(eigvals) num_off_diag = num_topk * (num_topk - 1) precision = jax.lax.Precision.HIGHEST mat_eigvecs = matrix.dot(eigvecs, precision=precision) consistency_error_unnormalized = jnp.linalg.norm( mat_eigvecs - eigvals * eigvecs, ord=2, axis=0) normalization = jnp.linalg.norm(mat_eigvecs, ord=2, axis=0) + eigvals consistency_error = consistency_error_unnormalized / normalization orthogonality_error = eigvecs.T.dot(eigvecs, precision=precision) orthogonality_error -= jnp.diag(jnp.diag(orthogonality_error)) return cls( lobpcg_iters=jnp.array(lobpcg_iters, jnp.float32), max_consistency_error=jnp.max(consistency_error).astype(jnp.float32), avg_consistency_error=jnp.mean(consistency_error).astype(jnp.float32), avg_orthogonality_error=(jnp.sum(orthogonality_error) / num_off_diag).astype(jnp.float32), max_eigenvalue=jnp.max(eigvals).astype(jnp.float32), min_eigenvalue=jnp.min(eigvals).astype(jnp.float32), num_topk_eigenvectors=jnp.array(num_topk, jnp.float32), ) @struct.dataclass class TrainingMetrics: """Diagnostic metrics from training.""" # Error for inverse-pth roots. inverse_pth_root_errors: chex.Array = _default_zero_field() # Iteration count for inverse-pth roots. inverse_pth_root_iters: chex.Array = _default_zero_field() # If final iteration error increases sufficiently, iteration terminates early. # This field records the ratio of the final iteration error. final_error_ratio: chex.Array = _default_zero_field() # Max eigen value from either the power iteration or from LOBPCG. max_eigen_value: chex.Array = _default_zero_field() # Total retries of inverse pth root iterative method. total_retries: chex.Array = _default_zero_field() lobpcg_diagnostics: LOBPCGDiagnostics = struct.field( default_factory=LOBPCGDiagnostics) # Rich matrix entrywise error diagnostics, if enabled. inverse_pth_root_diagnostics: InversePthRootDiagnostics = struct.field( default_factory=InversePthRootDiagnostics) # Diagnostics applied to the conditioned p-th root problem, after top # eigenvectors are removed, if LOBPCG is being applied. conditioned_inverse_pth_root_diagnostics: InversePthRootDiagnostics = ( struct.field(default_factory=InversePthRootDiagnostics)) # TODO(rohananil): Add more important metrics to track during training. # Per parameter optimizer state used in data-parallel training. class ParameterStats(NamedTuple): """State associated to each parameter of the model being trained.""" diagonal_statistics: QuantizedValue # Accumulator for diagonal preconditioner statistics: Optional[List[Any]] # Statistics (QuantizedValue, chex.Array) preconditioners: List[Any] # Preconditioners (QuantizedValue, chex.Array) diagonal_momentum: QuantizedValue # Momentum for the diagonal preconditioner momentum: QuantizedValue # Momentum for the shampoo preconditioner training_metrics: Union[TrainingMetrics, optax.MaskedNode] # Optional. # For training extremely large model; We keep a global state with a concatenated # statistics and preconditioner states for all vars. This is so that we can # annotate the leading axis to be sharded to save memory at the cost of # communication. @struct.dataclass class GlobalShardedParameterStats: statistics: chex.Array # Statistics preconditioners: chex.Array # Preconditioners exponents: chex.Array # exponents # These are per-parameter local states; All statistics here mirror the parameter # Thus the sharding is copied over from the param specification. @struct.dataclass class LocalShardedParameterStats: """State associated to each parameter of the model being trained.""" diagonal_statistics: QuantizedValue # Accumulator for diagonal preconditioner diagonal_momentum: QuantizedValue # Momentum for the diagonal preconditioner momentum: QuantizedValue # Momentum for the shampoo preconditioner training_metrics: Union[TrainingMetrics, optax.MaskedNode] index_start: Union[np.int32, int] = struct.field( pytree_node=False) # Index into global statistics array sizes: Any = struct.field(pytree_node=False) # Sizes of the statistics. def default_training_metrics(): """Create a default TrainingMetrics.""" return TrainingMetrics() def init_training_metrics( num_statistics, generate_training_metrics, ): """Initialize TrainingMetrics, masked if disabled.""" if not generate_training_metrics: return optax.MaskedNode() return jax.tree_map( functools.partial(jnp.repeat, repeats=num_statistics), default_training_metrics()) def init_training_metrics_shapes( num_statistics, generate_training_metrics, ): """Initialize training metrics shape/dtype.""" seed = init_training_metrics( num_statistics, generate_training_metrics, ) return jax.tree_map(lambda arr: [list(arr.shape), arr.dtype], seed) def init_training_metrics_pspec(generate_training_metrics,): """Initialize training metrics partition specification.""" if not generate_training_metrics: return optax.MaskedNode() return jax.tree_map(lambda _: jax.sharding.PartitionSpec(), default_training_metrics()) class ShardedShampooStats(NamedTuple): """Shampoo state in sharded mode.""" global_stats: Any local_stats: Any class ShampooState(NamedTuple): count: chex.Array stats: Any class InitFnState(NamedTuple): init_fn: Any pspec_fn: Any shape_and_dtype_fn: Any class GraftingType(enum.IntEnum): NONE = 0 SGD = 1 ADAGRAD = 2 RMSPROP = 3 RMSPROP_NORMALIZED = 4 SQRT_N = 5 ADAGRAD_NORMALIZED = 6 class PreconditionerType(enum.IntEnum): # Default, computes preconditioner for each dim ALL = 1 # One sided Shampoo, in this cases only on input dim. # Assumes last dim is always the output dim and everything else input dim. INPUT = 2 # One sided Shampoo, in this cases only on output dim. # Assumes last dim is always the output dim and everything else input dim. OUTPUT = 3 def power_iteration( matrix, num_iters=100, error_tolerance=1e-6, precision=lax.Precision.HIGHEST, padding_start=None, ): r"""Power iteration algorithm. The power iteration algorithm takes a symmetric PSD matrix `A`, and produces a scalar `\lambda` , which is the greatest (in absolute value) eigenvalue of `A`, and a vector v, which is the corresponding eigenvector of `A`. References: [Wikipedia, 2021](https://en.wikipedia.org/wiki/Power_iteration) Args: matrix: the symmetric PSD matrix. num_iters: Number of iterations. error_tolerance: Iterative exit condition. precision: precision XLA related flag, the available options are: a) lax.Precision.DEFAULT (better step time, but not precise) b) lax.Precision.HIGH (increased precision, slower) c) lax.Precision.HIGHEST (best possible precision, slowest) padding_start: if set, assumes rows and columns after padding_start are zero. Returns: eigen vector, eigen value """ matrix_size = matrix.shape[-1] def _iter_condition(state): i, unused_v, unused_s, unused_s_v, run_step = state return jnp.logical_and(i < num_iters, run_step) def _iter_body(state): """One step of power iteration.""" i, new_v, s, s_v, unused_run_step = state new_v = new_v / jnp.linalg.norm(new_v) s_v = jnp.einsum("ij,j->i", matrix, new_v, precision=precision) s_new = jnp.einsum("i,i->", new_v, s_v, precision=precision) return (i + 1, s_v, s_new, s_v, jnp.greater(jnp.abs(s_new - s), error_tolerance)) # Figure out how to use step as seed for random. v_0 = np.random.RandomState(1729).uniform(-1.0, 1.0, matrix_size).astype(matrix.dtype) v_0 = jnp.array(v_0) if padding_start is not None: v_0 *= (jnp.arange(len(v_0), dtype=jnp.int32) < padding_start) init_state = tuple([0, v_0, jnp.zeros([], dtype=matrix.dtype), v_0, True]) _, v_out, s_out, _, _ = lax.while_loop(_iter_condition, _iter_body, init_state) v_out = v_out / jnp.linalg.norm(v_out) return v_out, s_out def mat_power( mat_m, p, precision=lax.Precision.HIGHEST, ): """A simple matrix power method. M^p where p can be TracedValue.""" power = jnp.eye(mat_m.shape[0], dtype=_MAT_INV_PTH_ROOT_DTYPE) def _iter_condition(state): i, _, _ = state return i > 0 def _iter_body(state): i, power, mat = state power = jax.lax.cond(i % 2 == 1, lambda: jnp.matmul(mat, power, precision=precision), lambda: power) i //= 2 mat = jnp.matmul(mat, mat, precision=precision) return i, power, mat _, result, _ = lax.while_loop(_iter_condition, _iter_body, (p, power, mat_m)) return result def _pth_root_difference(w, alpha, beta, p): """Computes (w+alpha)^(-1/p)-(w+beta)^(-1/p).""" a = w + alpha b = w + beta a_minus_b = alpha - beta exp = -1 / p def _stable_subtract(b, a_minus_b): # Mathematically identical to the target expression, with (w+beta)^(-1/p) # term factored out and w cancellation in the subtraction. return (b**exp) * jnp.expm1(exp * jnp.log1p(a_minus_b / b)) return jnp.where( # Choose the branch with the best log1p approximation. jnp.abs(a_minus_b / b) < jnp.abs(a_minus_b / a), -_stable_subtract(a, -a_minus_b), _stable_subtract(b, a_minus_b)) def matrix_inverse_pth_root( matrix, p, num_iters=100, ridge_epsilon=1e-6, error_tolerance=1e-6, precision=lax.Precision.HIGHEST, relative_matrix_epsilon=True, lobpcg_topk_precondition=0, lobpcg_max_iter=0, padding_start=None, prev=None, eigh=False, ): """Computes `matrix^(-1/p)`, where `p` is a positive integer. This function uses the Eigh or Coupled newton iterations algorithm for the computation of a matrix's inverse pth root. References: [Functions of Matrices, Theory and Computation, Nicholas J Higham, Pg 184, Eq 7.18]( https://epubs.siam.org/doi/book/10.1137/1.9780898717778) Args: matrix: the symmetric PSD matrix whose power it to be computed p: exponent, for p a positive integer. num_iters: Maximum number of iterations. ridge_epsilon: Ridge epsilon added to make the matrix positive definite. error_tolerance: Error indicator, useful for early termination. precision: precision XLA related flag, the available options are: a) lax.Precision.DEFAULT (better step time, but not precise) b) lax.Precision.HIGH (increased precision, slower) c) lax.Precision.HIGHEST (best possible precision, slowest) relative_matrix_epsilon: Whether to use relative epsilon to the max eigen value when computing inverse-pth root. lobpcg_topk_precondition: If nonzero, specifies the number of top eigenvectors to subtract out before performing LOBPCG. Note this makes relative_matrix_epsilon essentially free. lobpcg_max_iter: Maximum iteration count for LOBPCG, defaults to `lobpcg_topk_precondition`. padding_start: If the input matrix was padded, then zeros out columns and rows at the padding start. prev: previous iteration's solution, zero-padded (unused) eigh: If True, uses eigh for inverse-pth root computation. Returns: `(matrix + eps)^(-1/p)` and error metrics. Note `eps` is not added to zeroed out padding rows and columns. `eps` is just `ridge_epsilon` if `relative_matrix_epsilon` is set to `False`, otherwise, it is the ridge epsilon value scaled by the derived maximum eigenvalue of the input matrix. """ if eigh: return matrix_inverse_pth_root_eigh(matrix, p, ridge_epsilon, error_tolerance, precision, relative_matrix_epsilon, padding_start, prev) del prev assert matrix.shape[0] == matrix.shape[1] # We use _MAT_INV_PTH_ROOT_DTYPE for the matrix inverse pth root. # Switch to f64 if you have hardware that supports it. Enable the jax flag # jax_enable_x64 for this to work. matrix_size = matrix.shape[0] orig_dtype = matrix.dtype matrix = matrix.astype(_MAT_INV_PTH_ROOT_DTYPE) alpha = jnp.asarray(-1.0 / p, _MAT_INV_PTH_ROOT_DTYPE) identity = jnp.eye(matrix_size, dtype=_MAT_INV_PTH_ROOT_DTYPE) if padding_start is not None: # Zero out padding in identity as well for convergence checks. ix = (jnp.arange(matrix_size, dtype=jnp.int32) < padding_start).astype( matrix.dtype) matrix *= ix[jnp.newaxis, :] matrix *= ix[:, jnp.newaxis] identity *= ix original_matrix = matrix # Only used in lobpcg branches, but required by pytype. eigvals, eigvecs, lobpcg_diagnostics = None, None, None if lobpcg_topk_precondition > 0: # TODO(vladf): reuse previous top-k as the initial search directions pad_shape = (matrix_size - lobpcg_topk_precondition, lobpcg_topk_precondition) search_dirs = jnp.concatenate( (jnp.eye(lobpcg_topk_precondition), jnp.zeros(pad_shape)), axis=0) eigvals, eigvecs, lobpcg_iters = linalg.lobpcg_standard( # pylint: disable=unbalanced-tuple-unpacking matrix, search_dirs, lobpcg_topk_precondition if lobpcg_max_iter == 0 else lobpcg_max_iter) lobpcg_diagnostics = LOBPCGDiagnostics.create( matrix, eigvals, eigvecs, lobpcg_iters, ) # The minimal eigenvalue among top-k becomes the maximal one in the whole # matrix after deflation. deflation = eigvals - jnp.min(eigvals) scaled_vecs = eigvecs * jnp.sqrt(deflation) # Deflate out top eigenvectors to reduce matrix condition number. matrix -= scaled_vecs.dot( scaled_vecs.T, precision=jax.lax.Precision.HIGHEST) if relative_matrix_epsilon: if eigvals is not None: max_ev = jnp.max(eigvals) else: # Only use power iteration if lobpcg wasn't already used to derive the # top eigenvalue. _, max_ev = power_iteration( matrix=matrix, num_iters=100, error_tolerance=1e-6, precision=precision, padding_start=padding_start) else: # Use absolute matrix epsilon scaling otherwise. max_ev = 1.0 ridge_epsilon = ridge_epsilon * jnp.maximum(max_ev, _EPSILON) # Sometimes error increases after an iteration before decreasing and # converging. 1.2 factor is used to bound the maximal allowed increase. max_error_ratio = 1.2 def _iter_condition(state): i, unused_mat_m, unused_mat_h, unused_old_mat_h, error, error_ratio = state error_above_threshold = jnp.logical_and(error > error_tolerance, error_ratio < max_error_ratio) return jnp.logical_and(i < num_iters, error_above_threshold) def _iter_body(state): (i, mat_m, mat_h, unused_old_mat_h, error, unused_error_ratio) = state mat_m_i = (1 - alpha) * identity + alpha * mat_m new_mat_m = jnp.matmul(mat_power(mat_m_i, p), mat_m, precision=precision) new_mat_h = jnp.matmul(mat_h, mat_m_i, precision=precision) new_error = jnp.max(jnp.abs(new_mat_m - identity)) return (i + 1, new_mat_m, new_mat_h, mat_h, new_error, new_error / error) if matrix_size == 1: damped_matrix = matrix + ridge_epsilon resultant_mat_h = damped_matrix**alpha error = jnp.array(0, jnp.float32) iters = 0 error_ratio = 0.0 else: retry_loop_error_threshold = 0.05 num_tries = 6 init_outer_state = tuple([0, identity, 1000.0, 100, 1.0, True]) def _outer_iter_condition_fn(state): i, _, _, _, _, iter_failed = state return jnp.logical_and(iter_failed, i < num_tries) def _outer_body_fn(state): i, _, _, _, _, _ = state # Update the epsilon based on the loop iteration. damped_matrix = matrix + (ridge_epsilon * (10**i) * identity) z = (1 + p) / (2 * jnp.linalg.norm(damped_matrix)) new_mat_m_0 = damped_matrix * z new_error = jnp.max(jnp.abs(new_mat_m_0 - identity)) new_mat_h_0 = identity * jnp.power(z, 1.0 / p) init_state = tuple( [0, new_mat_m_0, new_mat_h_0, new_mat_h_0, new_error, 1.0]) iters, mat_m, mat_h, old_mat_h, error, error_ratio = lax.while_loop( _iter_condition, _iter_body, init_state) error = jnp.max(jnp.abs(mat_m - identity)).astype(jnp.float32) is_converged = jnp.asarray(error_ratio < max_error_ratio, old_mat_h.dtype) resultant_mat_h = is_converged * \ mat_h + (1 - is_converged) * old_mat_h return (i + 1, resultant_mat_h, error, iters, error_ratio, error > retry_loop_error_threshold) loop_outputs = jax.lax.while_loop(_outer_iter_condition_fn, _outer_body_fn, init_outer_state) total_retries, resultant_mat_h, error, iters, error_ratio, _ = loop_outputs conditioned_resultant_mat = resultant_mat_h if lobpcg_topk_precondition > 0: # Since we deflated the top eigenvectors prior to p-th root inverse, # the resultant matrix has larger eigenvalues associated with those # same eigenvectors, which we need to now re-deflate. # # Note that _pth_root_difference returns positive values for this # particular argument ordering as min(eigvals) <= eigvals for the # jnp.sqrt below. pth_diff = _pth_root_difference(ridge_epsilon, jnp.min(eigvals), eigvals, p) scaled_vecs = eigvecs * jnp.sqrt(pth_diff) resultant_mat_h = conditioned_resultant_mat - scaled_vecs.dot( scaled_vecs.T, precision=jax.lax.Precision.HIGHEST) error_metrics = TrainingMetrics( inverse_pth_root_errors=jnp.array(error, jnp.float32), inverse_pth_root_iters=jnp.array(iters, jnp.float32), final_error_ratio=jnp.array(error_ratio, jnp.float32), max_eigen_value=jnp.array(max_ev, jnp.float32), total_retries=jnp.array(total_retries, jnp.float32)) if lobpcg_topk_precondition > 0: damped_matrix = matrix + \ (ridge_epsilon * (10**total_retries) * identity) conditioned_diagnostics = InversePthRootDiagnostics.create( conditioned_resultant_mat, damped_matrix, p) unconditioned_damped_matrix = original_matrix + ridge_epsilon * identity unconditioned_diagnostics = InversePthRootDiagnostics.create( resultant_mat_h, unconditioned_damped_matrix, p) # The max entrywise error in error_metrics.inverse_pth_root_errors refers # to what was derived from the inverse pth root iteration, which with # LOBPCG refers to the conditioned problem. Make sure to use the error # from the unconditioned problem. unconditional_errors = jnp.maximum( unconditioned_diagnostics.max_diag_error, unconditioned_diagnostics.max_off_diag_error) error_metrics = error_metrics.replace( inverse_pth_root_errors=unconditional_errors, lobpcg_diagnostics=lobpcg_diagnostics, conditioned_inverse_pth_root_diagnostics=conditioned_diagnostics, inverse_pth_root_diagnostics=unconditioned_diagnostics, ) if padding_start is not None: # Occasionally, pure-padding matrices are handed to the inversion routine # due to some TPU hosts not having the same number of preconditioning # matrices. resultant_mat_h = jnp.where(padding_start == 0, 0.0, resultant_mat_h) error = jnp.where(padding_start == 0, 0.0, error_metrics.inverse_pth_root_errors) error_metrics = error_metrics.replace(inverse_pth_root_errors=error) resultant_mat_h = jnp.asarray(resultant_mat_h, orig_dtype) return resultant_mat_h, error_metrics def matrix_inverse_pth_root_eigh( matrix, p, ridge_epsilon=1e-6, error_tolerance=1e-6, precision=lax.Precision.HIGHEST, relative_matrix_epsilon=True, padding_start=None, prev=None, ): """Computes `matrix^(-1/p)`, where `p` is a positive integer. This function uses eigh for the computation of a matrix's inverse pth root. Args: matrix: the symmetric PSD matrix whose power it to be computed p: exponent, for p a positive integer. ridge_epsilon: Ridge epsilon added to make the matrix positive definite. error_tolerance: Error indicator, useful for early termination. precision: precision XLA related flag, the available options are: a) lax.Precision.DEFAULT (better step time, but not precise) b) lax.Precision.HIGH (increased precision, slower) c) lax.Precision.HIGHEST (best possible precision, slowest) relative_matrix_epsilon: Whether to use relative epsilon to the max eigen value when computing inverse-pth root. padding_start: If the input matrix was padded, then zeros out columns and rows at the padding start. prev: previous iteration's solution, zero-padded (unused) Returns: `(matrix + eps)^(-1/p)` and error metrics. Note `eps` is not added to zeroed out padding rows and columns. `eps` is just `ridge_epsilon` if `relative_matrix_epsilon` is set to `False`, otherwise, it is the ridge epsilon value scaled by the derived maximum eigenvalue of the input matrix. """ del prev assert matrix.shape[0] == matrix.shape[1] matrix_size = matrix.shape[0] orig_dtype = matrix.dtype matrix = matrix.astype(_MAT_INV_PTH_ROOT_DTYPE) alpha = jnp.asarray(-1.0 / p, _MAT_INV_PTH_ROOT_DTYPE) identity = jnp.eye(matrix_size, dtype=_MAT_INV_PTH_ROOT_DTYPE) if padding_start is not None: ix = (jnp.arange(matrix_size, dtype=jnp.int32) < padding_start).astype( matrix.dtype) matrix *= ix[jnp.newaxis, :] matrix *= ix[:, jnp.newaxis] identity *= ix if relative_matrix_epsilon: _, max_ev = power_iteration( matrix=matrix, num_iters=100, error_tolerance=error_tolerance, precision=precision, padding_start=padding_start) else: # Use absolute matrix epsilon scaling otherwise. max_ev = 1.0 ridge_epsilon = ridge_epsilon * jnp.maximum(max_ev, error_tolerance) regularized_input = matrix + ridge_epsilon * identity e, u = jnp.linalg.eigh(regularized_input) # Due to padding, we may have to zero out eigenvalues. if padding_start is not None: e *= jnp.flip(ix) mm = functools.partial(jnp.matmul, precision=precision) inv_e = jnp.where(e == 0.0, 0.0, jnp.power(jnp.maximum(e, ridge_epsilon), alpha)) val = mm(mm(u, jnp.diag(inv_e)), u.T) root = u * jnp.sqrt(inv_e) val = mm(root, root.T) recovered_e = mm(u.T, mm(regularized_input, u)) eig_error = recovered_e - jnp.diag(e) if padding_start is not None: eig_error *= jnp.flip(ix) error = jnp.max(jnp.abs(eig_error)) error_metrics = TrainingMetrics( inverse_pth_root_errors=jnp.array(error, jnp.float32)) if padding_start is not None: val = jnp.where(padding_start == 0, 0.0, val) error = jnp.where(padding_start == 0, 0.0, error_metrics.inverse_pth_root_errors) error_metrics = error_metrics.replace(inverse_pth_root_errors=error) val = jnp.asarray(val, orig_dtype) return val, error_metrics def merge_small_dims(shape_to_merge, max_dim): """Merge small dimensions. If there are some small dimensions, we collapse them: e.g. [1, 2, 512, 1, 2048, 1, 3, 4] --> [1024, 2048, 12] if max_dim = 1024 [1, 2, 768, 1, 2048] --> [2, 768, 2048] Args: shape_to_merge: Shape to merge small dimensions. max_dim: Maximal dimension of output shape used in merging. Returns: Merged shape. """ if shape_to_merge and np.all(np.array(shape_to_merge) == 1): return [1] resulting_shape = [] product = 1 for d in shape_to_merge: if product * d <= max_dim: product *= d else: if product > 1: resulting_shape.append(product) product = d if product > 1: resulting_shape.append(product) return resulting_shape def pad_square_matrix(mat, max_size): """Pad a square matrix up to max_size. Args: mat: a matrix to pad. max_size: matrix size requested. Returns: Given M returns [[M, 0], [0, I]] """ rows, cols = mat.shape if rows != cols: raise ValueError("Must have rows == cols, instead got " f"rows={rows}, cols={cols}") if cols > max_size: raise ValueError("Must have cols <= max_size. Instead got " f"cols={cols}, max_size={max_size}.") if rows == max_size: return mat pad_size = max_size - rows zs1 = jnp.zeros([rows, pad_size], dtype=mat.dtype) zs2 = jnp.zeros([pad_size, rows], dtype=mat.dtype) eye = jnp.eye(pad_size, dtype=mat.dtype) mat = jnp.concatenate([mat, zs1], 1) mat = jnp.concatenate([mat, jnp.concatenate([zs2, eye], 1)], 0) return mat def pad_vector(vec, max_size): """Pad a vector to a max_size. Args: vec: a vector to pad. max_size: matrix size requested. Returns: Given V returns [V, 0] """ size = vec.shape[0] assert size <= max_size if size == max_size: return vec pad_size = max_size - size zs1 = jnp.zeros([pad_size], dtype=vec.dtype) return jnp.concatenate([vec, zs1], 0) def efficient_cond(predicate, compute_fn, init_state, *args, **kwargs): """Avoids wasteful buffer allocation with XLA.""" def _iter_body(unused_state): results = compute_fn(*args, **kwargs) return tuple([False] + list(results)) def _iter_condition(state): return state[0] results = jax.lax.while_loop(_iter_condition, _iter_body, tuple([predicate] + init_state)) return tuple(results[1:]) class BlockPartitioner: """Partitions a tensor into smaller tensors.""" def __init__(self, param, block_size): self._shape = param.shape self._splits = [] split_sizes = [] # We split params into smaller blocks. Here we store the metadata to make # that split. for i, d in enumerate(param.shape): if 0 < block_size < d: # d-1, otherwise split appends a 0-size array. nsplit = (d - 1) // block_size indices = (np.arange(nsplit, dtype=np.int32) + 1) * block_size sizes = np.ones(nsplit + 1, dtype=np.int32) * block_size sizes[-1] = d - indices[-1] self._splits.append((i, indices)) split_sizes.append(sizes) else: split_sizes.append(np.array([d], dtype=np.int32)) self._split_sizes = split_sizes def split_sizes(self): return self._split_sizes def partition(self, tensor): """Partition tensor into blocks.""" assert tensor.shape == self._shape tensors = [tensor] for (i, indices) in self._splits: tensors_local = [] for t in tensors: tensors_local.extend(jnp.split(t, indices_or_sections=indices, axis=i)) tensors = tensors_local return tensors def merge_partitions(self, partitions): """Merge partitions back to original shape.""" for (i, indices) in reversed(self._splits): n = len(indices) + 1 partial_merged_tensors = [] ind = 0 while ind < len(partitions): partial_merged_tensors.append( jnp.concatenate(partitions[ind:ind + n], axis=i)) ind += n partitions = partial_merged_tensors assert len(partitions) == 1 return partitions[0] def gram_weighted_update(old_stats, g, axis, w1, w2, precision=None): """Updated statistics via weighted average with new Gram matrix. Returns w₁ R + w₂ Gᵀ G where R is `old_stats` and G is the matrix whose columns are the flattened slices of the tensor `g` along the given `axis`. (So, `old_stats` and the returned matrix have dimensions n x n where n = `g.shape[axis]`). Args: old_stats: Old statistics. g: Gradient tensor. axis: Axis along which to slice `g`. w1: Scalar weight for old statistics. w2: Scalar weight for new Gram matrix. precision: Optional precision XLA related flag, the available options are: a) lax.Precision.DEFAULT (better step time, but not precise) b) lax.Precision.HIGH (increased precision, slower) c) lax.Precision.HIGHEST (best possible precision, slowest) Returns: Weighted average of old and new statistics. """ axes = [i for i in range(g.ndim) if i != axis] gram_matrix = jnp.tensordot(g, g, axes=(axes, axes), precision=precision) return w1 * old_stats + w2 * gram_matrix class Preconditioner: """Compute statistics/shape from gradients for preconditioning.""" def __init__( self, param, block_size, merge_small_dims_block_size, best_effort_shape_interpretation, preconditioner_type=PreconditionerType.ALL, ): """Initializes the preconditioner. Args: param: parameter to precondition. block_size: Block size used to split param. merge_small_dims_block_size: Block size for merging dims. best_effort_shape_interpretation: Whether to collapse/merge dims together. preconditioner_type: Type of preconditioner to use. """ self._original_shape = param.shape self._transformed_shape = param.shape if best_effort_shape_interpretation: self._transformed_shape = merge_small_dims(self._original_shape, merge_small_dims_block_size) reshaped_param = jnp.reshape(param, self._transformed_shape) self._partitioner = BlockPartitioner(reshaped_param, block_size) self._preconditioner_type = preconditioner_type def updated_statistics_from_grad( self, stats, grad, w1, w2, to_float=None, from_float=None, precision=None, ): """Update statistics from gradients. Args: stats: Old statistics or its Cholesky factor if `cholesky` is True. grad: Gradient to compute statistics from. w1: Weight for old statistics. w2: Weight for new statistics. to_float: Optional function for converting stats to floating point. from_float: Optional function for converting from floating point. precision: Optional precision XLA related flag, the available options are: a) lax.Precision.DEFAULT (better step time, but not precise) b) lax.Precision.HIGH (increased precision, slower) c) lax.Precision.HIGHEST (best possible precision, slowest) Returns: A list of updated gradient statistics for each partition. """ to_float = to_float if to_float is not None else (lambda x: x) from_float = from_float if from_float is not None else (lambda x: x) reshaped_grad = jnp.reshape(grad, self._transformed_shape) partitioned_grads = self._partitioner.partition(reshaped_grad) should_preconditioned_dims = self.should_precondition_dims() preconditioned_dims = [ i for i, p in enumerate(should_preconditioned_dims) if p ] new_stats = [] index = 0 for g in partitioned_grads: for axis in preconditioned_dims: update = functools.partial(gram_weighted_update, precision=precision) new_stat = update(to_float(stats[index]), g, axis, w1, w2) new_stats.append(from_float(new_stat)) index += 1 return new_stats def should_precondition_dims(self): """A vector containing indicator indicating if the dim is preconditioned.""" split_sizes = self._partitioner.split_sizes() rank = len(split_sizes) if self._preconditioner_type == PreconditionerType.ALL or rank <= 1: return [True] * rank elif self._preconditioner_type == PreconditionerType.INPUT: return [True] * (rank - 1) + [False] elif self._preconditioner_type == PreconditionerType.OUTPUT: return [False] * (rank - 1) + [True] def _preconditioner_shape(self, dim): """Returns possibly rank-compressed preconditioner shape.""" return [dim, dim] def _preconds_for_grad(self, preconditioners, rank, start, end): """Returns a slice of preconditioners of length rank.""" preconditioners_for_grad = preconditioners[start:end] if self._preconditioner_type == PreconditionerType.INPUT: # When _preconditioner_type is INPUT, we append a None value to the end of # the list to handle the False index. preconditioners_for_grad = preconditioners_for_grad + [None] elif self._preconditioner_type == PreconditionerType.OUTPUT: # When _preconditioner_type is OUTPUT, we append (rank - 1) many None # values to the beginning of the list to handle the False indices. preconditioners_for_grad = [None] * \ (rank - 1) + preconditioners_for_grad assert len(preconditioners_for_grad) == rank return preconditioners_for_grad def shapes_for_preconditioners(self): """Returns shape from statistics.""" split_sizes = self._partitioner.split_sizes() rank = len(split_sizes) # We ignore preconditioner types if rank == 1 preconditioner_shapes = [] for t in itertools.product(*split_sizes): if self._preconditioner_type == PreconditionerType.ALL or rank <= 1: preconditioner_shapes.extend(map(self._preconditioner_shape, t)) elif self._preconditioner_type == PreconditionerType.INPUT: preconditioner_shapes.extend(map(self._preconditioner_shape, t[:-1])) elif self._preconditioner_type == PreconditionerType.OUTPUT: preconditioner_shapes.extend(map(self._preconditioner_shape, t[-1:])) return preconditioner_shapes def exponent_for_preconditioner(self): """Returns exponent to use for inverse-pth root M^{-1/p}.""" should_preconditioned_dims = self.should_precondition_dims() num_preconditioners = sum(should_preconditioned_dims) return 2 * num_preconditioners def preconditioned_grad(self, grad, preconditioners): """Precondition the gradient. Args: grad: A gradient tensor to precondition. preconditioners: A list of preconditioners to apply. Returns: A preconditioned gradient. """ reshaped_grad = jnp.reshape(grad, self._transformed_shape) partitioned_grads = self._partitioner.partition(reshaped_grad) should_preconditioned_dims = self.should_precondition_dims() num_preconditioners = sum(should_preconditioned_dims) preconditioned_partitioned_grads = [] for i, g in enumerate(partitioned_grads): preconditioners_for_grad = self._preconds_for_grad( preconditioners, rank=len(should_preconditioned_dims), start=i * num_preconditioners, end=(i + 1) * num_preconditioners, ) precond_g = self._precondition_block(g, should_preconditioned_dims, preconditioners_for_grad) preconditioned_partitioned_grads.append(precond_g) merged_grad = self._partitioner.merge_partitions( preconditioned_partitioned_grads) return jnp.reshape(merged_grad, self._original_shape) def _precondition_block(self, g, should_precondition_dim, preconditioners): """Perform a preconditioning op on a single gradient block.""" for j, should_precondition in enumerate(should_precondition_dim): # Loop invariant: the dimension to be preconditioned is first; we keep # all axes in the same cyclic order they were originally. # Case: skip preconditioning this dimension. rank = len(g.shape) roll = tuple(range(1, rank)) + (0,) if not should_precondition: g = jnp.transpose(g, axes=roll) continue # Case: full Shampoo matrix precondition this dimension g = jnp.tensordot(g, preconditioners[j], axes=[[0], [0]]) return g def _convert_to_parameter_stats(global_stats, local_stat, convert_statistics=True): """Creates parameter stats from sharded stats.""" index_start = int(local_stat.index_start) index_end = int(len(local_stat.sizes)) + index_start statistics = global_stats.statistics[index_start:index_end, :, :] preconditioners = global_stats.preconditioners[index_start:index_end, :, :] new_statistics = [] new_preconditioners = [] for i, size in enumerate(local_stat.sizes): new_statistics.append(statistics[i][:size, :size]) pd = size new_preconditioners.append(preconditioners[i][:size, :pd]) if not convert_statistics: new_statistics = None return ParameterStats( local_stat.diagonal_statistics, new_statistics, new_preconditioners, local_stat.diagonal_momentum, local_stat.momentum, local_stat.training_metrics, ) def _convert_from_parameter_stats(parameter_stats, local_stats): """Creates sharded stats from paramter stats.""" return LocalShardedParameterStats( parameter_stats.diagonal_statistics, parameter_stats.diagonal_momentum, parameter_stats.momentum, parameter_stats.training_metrics, local_stats.index_start, local_stats.sizes, ) def _add_metrics_into_local_stats(local_stats, metrics, keep_old): """Adds errors back into local statistics.""" new_local_stats = [] for local_stat in local_stats: index_start = int(local_stat.index_start) index_end = int(len(local_stat.sizes)) + index_start # pylint:disable=cell-var-from-loop Used immediately. per_stat_metrics = jax.tree_map(lambda x: x[index_start:index_end], metrics) # We don't want to update the metrics if we didn't do a new inverse p-th # root calculation to find a new preconditioner, so that TensorBoard curves # look consistent (otherwise they'd oscillate between NaN and measured # values). per_stat_metrics = efficient_cond(keep_old, lambda: [local_stat.training_metrics], [per_stat_metrics])[0] # pylint:enable=cell-var-from-loop new_local_stats.append( local_stat.replace(training_metrics=per_stat_metrics)) return new_local_stats def batch(x, num_devices): """Batch `x` so that so that leading axis is num_devices.""" n = len(x) b = int(n / num_devices) return jnp.stack([jnp.stack(x[idx:idx + b]) for idx in range(0, n, b)]) def unbatch(batched_values): """Unbatch values across leading axis and return a list of elements.""" b1, b2 = batched_values.shape[0], batched_values.shape[1] results = [] for v_array in jnp.split(batched_values, indices_or_sections=b1, axis=0): v_array = jnp.squeeze(v_array) # b2 = batches (number of preconditioner computation) per core. if b2 > 1: for v in jnp.split(v_array, indices_or_sections=b2, axis=0): results.append(jnp.squeeze(v)) else: results.append(v_array) return results def distributed_shampoo( learning_rate, block_size=1024, beta1=0.9, beta2=0.999, diagonal_epsilon=1e-8, matrix_epsilon=1e-6, weight_decay=0.0, start_preconditioning_step=101, preconditioning_compute_steps=20, statistics_compute_steps=1, best_effort_shape_interpretation=True, graft_type=GraftingType.RMSPROP_NORMALIZED, nesterov=True, exponent_override=0, # Pass pmap 'batch axis name' in pmap mode. batch_axis_name=None, # Only set following 3 params in pjit/spmd mode. # WARNING: Experimental statistics_partition_spec=None, preconditioner_partition_spec=None, num_devices_for_pjit=None, shard_optimizer_states=False, ### # Experimental memory reduction mode best_effort_memory_usage_reduction=True, ### inverse_failure_threshold=0.1, moving_average_for_momentum=True, skip_preconditioning_dim_size_gt=0, clip_by_scaled_gradient_norm=None, precision=lax.Precision.HIGHEST, tensordot_precision=None, relative_matrix_epsilon=True, merge_small_dims_block_size=4096, lobpcg_topk_precondition=0, lobpcg_max_iter=0, precondtioner_type=PreconditionerType.ALL, custom_preconditioner=False, skip_preconditioning_rank_lt=1, decoupled_learning_rate=True, decoupled_weight_decay=False, generate_training_metrics=True, reuse_preconditioner=False, eigh=True, ): """Distributed Shampoo optimizer. Distributed Shampoo is a second-order preconditioned method (concretely, a variant of full-matrix Adagrad), that provides significant convergence and wall-clock time improvements compared to conventional first-order methods, and that has been shown to scale to large state-of-the-art deep learning models. References: Scalable Second Order Optimization for Deep Learning, Rohan Anil, Vineet Gupta, Tomer Koren, Kevin Regan, Yoram Singer Preprint: https://arxiv.org/abs/2002.09018 Args: learning_rate: the step size used to update the parameters. block_size: Block size for large layers (if > 0). Preconditioning compute operation is cubic in the dimension of the tensor. Block size allows us to chunk the layers into sub-layers of maximal dimension dictated by this value. Use 128 as default (increase if you have compute budget). beta1: momentum parameter. beta2: second moment averaging parameter. diagonal_epsilon: epsilon for diagonal adagrad (only if layerwise grafting to AdaGrad is enabled). matrix_epsilon: epsilon to add to statistics before computing inverse pth root. If you are running in f32 precision for inverse pth root (recommended today) this can go upto 1e-6. If you have latest hardware with native f64 precision, set this upto 1e-12. weight_decay: Weight decay for regularization. start_preconditioning_step: When to start Shampoo update before which diagonal update is used. This is because we dont have enough information to do stable inverse. preconditioning_compute_steps: How often to compute preconditioner. Performance tuning params for controlling memory and compute requirements. Ideally set this and statistics_compute_steps params to 1. statistics_compute_steps: How often to compute statistics. best_effort_shape_interpretation: If there are some small dimensions, collapse them e.g. [1, 2, 512, 1, 2048, 1, 3, 4] --> [1024, 2048, 12] if block = 1024, [1, 2, 768, 1, 2048] --> [2, 768, 2048] graft_type: Grafting is a technique to fix the layerwise scale of Shampoo optimizer. This allows us to plugin the Shampoo optimizer into settings where SGD/AdaGrad is already well tuned. nesterov: Nesterov momentum. exponent_override: Override the exponent used in matrix inverse. batch_axis_name: labeled axis over pmap for data-parallel training the optimizer used for. statistics_partition_spec: PartitionSpec to be used in sharded mode. preconditioner_partition_spec: PartitionSpec to be used in sharded mode. num_devices_for_pjit: Number of devices to parallelize over when using pjit. shard_optimizer_states: Shard optimizer states to save memory in model parallel training. best_effort_memory_usage_reduction: Best effort memory usage reduction. - diagonal_statistics -> jnp.bfloat16 - momentum buffers (2x) -> jnp.int8 - statistics, preconditioners -> jnp.int16 + diagonals inverse_failure_threshold: numerics are hard and inverses fail sometimes; we determine that using this threshold. moving_average_for_momentum: Whether to use moving average for momentum instead of exponential moving average. skip_preconditioning_dim_size_gt: Skip if preconditioning dim size is greater than this value. clip_by_scaled_gradient_norm: Clip by scaled gradient norm (only useful when using RMSProp Grafting). precision: precision XLA related flag, the available options are: a) lax.Precision.DEFAULT (better step time, but not precise) b) lax.Precision.HIGH (increased precision, slower) c) lax.Precision.HIGHEST (best possible precision, slowest) tensordot_precision: Optional precision to use for the tensordot operation when computing statistics (e.g., G Gᵀ). Same options as `precision` above. relative_matrix_epsilon: Whether to use relative epsilon to the max eigen value when computing inverse-pth root. merge_small_dims_block_size: Used as the maximum block size to merge the shapes. lobpcg_topk_precondition: If nonzero, specifies the number of top eigenvectors to subtract out before performing LOBPCG. Note this makes relative_matrix_epsilon essentially free. lobpcg_max_iter: Number of LOBPCG iterations, if zero defaults to `lobpcg_topk_precondition`. precondtioner_type: Preconditioner type to select all, left only or right only preconditioners. skip_preconditioning_rank_lt: Skips preconditioning for parameters with rank less than this value. decoupled_learning_rate: If True, use decoupled learning rate, otherwise couple it with preconditioned gradient computation. (Default True) decoupled_weight_decay: If True, use decoupled weight decay, otherwise couple with weight decay. (Default False) generate_training_metrics: If True, gather training metrics, otherwise avoid generating them (to reduce memory usage). reuse_preconditioner: If True, pass the previous derived preconditioner as a warm start to the next iteratin's inverse pth root computation. eigh: If True, and uses eigen decomposition for inverse-pth root. Returns: a GradientTransformation. """ reset_frequency = None def _graft_type_has_diagonal_statistics(): """Returns True if using diagonal firt order method for grafting.""" return graft_type not in [ GraftingType.SGD, GraftingType.SQRT_N, GraftingType.NONE ] def quantized_dtype_for_momentum_buffers(var): return jnp.int8 if best_effort_memory_usage_reduction and len( var.shape) > 1 else jnp.float32 quantize_second_moment = ( best_effort_memory_usage_reduction and batch_axis_name) # Preconditioner and statistics are both stores as int16 in this mode. # We take out the diagonal to make quantization easier. def quantized_dtype_for_second_moment_statistics_buffers(): return jnp.int16 if quantize_second_moment else jnp.float32 # Preconditioner and statistics are both stores as int16 in this mode. # We take out the diagonal to make quantization easier. def quantized_dtype_for_second_moment_preconditioner_buffers(): return jnp.int16 if quantize_second_moment else jnp.float32 # _quantized_matrix_inverse_pth_root_vmap implementation assumes # that preconditioner is quantized if and only if stats is quantized. qdt_precond = quantized_dtype_for_second_moment_preconditioner_buffers() qdt_stat = quantized_dtype_for_second_moment_statistics_buffers() assert qdt_precond == qdt_stat def _to_float(maybe_quantized): if isinstance(maybe_quantized, QuantizedValue): return maybe_quantized.to_float() else: return maybe_quantized def preconditioner_from_params(param): """Returns a Preconditioner object for given param.""" return Preconditioner( param, block_size, merge_small_dims_block_size, best_effort_shape_interpretation, precondtioner_type, ) def precond_dim(max_size): """Derives largest preconditioner dimension.""" return max_size def pad_and_maybe_zero_preconditioners(preconditioners, total, max_size, step): """Pad preconditioners up to total x max_size x precond_dim(max_size).""" pd = precond_dim(max_size) def maybe_reset_preconditioner(step, preconditioner): if reset_frequency is None: return preconditioner return jnp.where(step % reset_frequency == 0, 0.0, 1.0) * preconditioner def _pad_preconditioner(preconditioner): assert preconditioner.ndim == 2 r, c = preconditioner.shape assert r <= max_size assert c <= pd pad_rows = [(0, max_size - r)] pad_cols = [(0, pd - c)] padding = pad_rows + pad_cols preconditioner = maybe_reset_preconditioner(step, preconditioner) return jnp.pad(preconditioner, padding) last_dims_padded = [_pad_preconditioner(p) for p in preconditioners] dt = preconditioners[0].dtype if preconditioners else jnp.float32 num_extra = total - len(last_dims_padded) extra = [jnp.zeros([max_size, pd], dtype=dt)] * num_extra return last_dims_padded + extra def sharded_init_fn(params): """Returns optimizer state (for PJIT mode). Args: params: the parameters that should be updated. """ params_flat, treedef = jax.tree_util.tree_flatten(params) # Find max size to pad to. max_size = 0 for param in params_flat: preconditioner = preconditioner_from_params(param) if not _skip_preconditioning(param): shapes = preconditioner.shapes_for_preconditioners() sizes = [s[0] for s in shapes] max_size = max(*sizes, max_size) padded_statistics = [] padded_preconditioners = [] local_stats_flat = [] exponents = [] for param in params_flat: preconditioner = preconditioner_from_params(param) shapes = preconditioner.shapes_for_preconditioners() sizes = [] statistics = [] preconditioners = [] index_start = len(padded_statistics) if not _skip_preconditioning(param): sizes = [s[0] for s in shapes] shapes = preconditioner.shapes_for_preconditioners() statistics = [ matrix_epsilon * jnp.eye(max_size, dtype=jnp.float32) for s in shapes ] pd = precond_dim(max_size) # If the preconditioner is using a low-rank representation, initialize # it to zero instead of an invalid eye. preconditioners = [ jnp.eye(max_size, pd, dtype=jnp.float32) * (pd == max_size) for s in shapes ] padded_statistics.extend(statistics) padded_preconditioners.extend(preconditioners) exponent = ( preconditioner.exponent_for_preconditioner() if exponent_override == 0 else exponent_override) exponents.extend([exponent] * len(shapes)) diagonal_statistics = jnp.zeros_like(param) diagonal_momentum = jnp.zeros_like(param) momentum = jnp.zeros_like(param) local_stats_flat.append( LocalShardedParameterStats( diagonal_statistics, diagonal_momentum, momentum, init_training_metrics( len(sizes), generate_training_metrics, ), index_start, sizes)) local_stats = jax.tree_util.tree_unflatten(treedef, local_stats_flat) to_pad = -len(padded_statistics) % num_devices_for_pjit if max_size == 0: to_pad = num_devices_for_pjit max_size = block_size stat_dtype = jnp.float32 else: stat_dtype = padded_statistics[0].dtype # Pad the statistics and preconditioner matrices to be a multiple of # num devices. # TODO(rohananil): Relax to only the size of the mesh axis where the dim # is split on. padded_statistics.extend( [jnp.eye(max_size, dtype=stat_dtype) for _ in range(to_pad)]) pd = precond_dim(max_size) # If the preconditioner is using a low-rank representation, initialize # it to zero instead of an invalid eye. padded_preconditioners.extend([ jnp.eye(max_size, pd, dtype=stat_dtype) * (pd == max_size) for _ in range(to_pad) ]) exponents.extend([1 for _ in range(to_pad)]) global_stats = GlobalShardedParameterStats( jnp.stack(padded_statistics), jnp.stack(padded_preconditioners), jnp.stack(exponents)) return ShampooState( count=jnp.zeros([], jnp.int32), stats=ShardedShampooStats(global_stats, local_stats)) def _max_statistics_size_from_params(params): max_size = 0 for param in params: param_clone = jnp.zeros(param.shape, dtype=param.dtype) preconditioner = preconditioner_from_params(param_clone) if not _skip_preconditioning(param): shapes = preconditioner.shapes_for_preconditioners() sizes = [s[0] for s in shapes] max_size = max(*sizes, max_size) return max_size def _remove_leading_sharding_annotation(pspec): """Mapping from N-d to (N-1)-d, used for quantization, factoring etc.""" # None and PSpec(None) are valid PSpecs. if pspec and len(pspec) > 1: return jax.sharding.PartitionSpec(*pspec[1:]) else: return [] def sharded_init_partition_spec_fn(params, params_partition_spec, partition_spec_for_statistics): """Returns a parallel state tree with PartitionSpec associated with state. Args: params: A pytree with params. params_partition_spec: A pytree with PartitionSpec for params. partition_spec_for_statistics: PartitionSpec for the statistics. """ # Parallel lists of spec, and params. param_pspec_flat, _ = jax.tree_util.tree_flatten( params_partition_spec, is_leaf=lambda x: x is None) params_flat, treedef = jax.tree_util.tree_flatten(params) assert param_pspec_flat assert params_flat # Step is replicated across cores. # None means cores. local_stats_flat = [] num_statistics = 0 for param, param_pspec in zip(params_flat, param_pspec_flat): param_clone = jnp.zeros(param.shape, dtype=param.dtype) preconditioner = preconditioner_from_params(param_clone) shapes = preconditioner.shapes_for_preconditioners() sizes = [] index_start = num_statistics if not _skip_preconditioning(param): sizes = [s[0] for s in shapes] shapes = preconditioner.shapes_for_preconditioners() num_statistics += len(shapes) qdtype = quantized_dtype_for_momentum_buffers(param) m1_pspec = param_pspec m2_pspec = param_pspec m1_scale_pspec = [] m2_scale_pspec = [] if qdtype != jnp.float32: m1_scale_pspec = _remove_leading_sharding_annotation(m1_pspec) m2_scale_pspec = _remove_leading_sharding_annotation(m2_pspec) local_stats_flat.append( LocalShardedParameterStats( QuantizedValue( param_pspec, [], [], jnp.float32, False, # pytype: disable=wrong-arg-types # numpy-scalars list(param.shape)), QuantizedValue( m1_pspec, [], m1_scale_pspec, qdtype, False, # pytype: disable=wrong-arg-types # numpy-scalars list(param.shape)), QuantizedValue( m2_pspec, [], m2_scale_pspec, qdtype, False, # pytype: disable=wrong-arg-types # numpy-scalars list(param.shape)), init_training_metrics_pspec(generate_training_metrics,), index_start, sizes)) local_stats = jax.tree_util.tree_unflatten(treedef, local_stats_flat) global_stats = GlobalShardedParameterStats(partition_spec_for_statistics, partition_spec_for_statistics, jax.sharding.PartitionSpec()) count_pspec = jax.sharding.PartitionSpec() return ShampooState( # pytype: disable=wrong-arg-types # numpy-scalars count=count_pspec, stats=ShardedShampooStats(global_stats, local_stats)) def sharded_init_shape_and_dtype_fn(params): """Returns a parallel state tree with shape, dtype associated with state. Args: params: A pytree with params. """ # Parallel lists of spec, and params. params_flat, treedef = jax.tree_util.tree_flatten(params) assert params_flat # Step is replicated across cores. # None means cores. local_stats_flat = [] num_statistics = 0 for param in params_flat: param_clone = jnp.zeros(param.shape, dtype=param.dtype) preconditioner = preconditioner_from_params(param_clone) shapes = preconditioner.shapes_for_preconditioners() sizes = [] index_start = num_statistics if not _skip_preconditioning(param): sizes = [s[0] for s in shapes] shapes = preconditioner.shapes_for_preconditioners() num_statistics += len(shapes) qdtype = quantized_dtype_for_momentum_buffers(param) m1_shape_and_dtype = [list(param.shape), param.dtype] m2_shape_and_dtype = [list(param.shape), param.dtype] m1_scale_shape_and_dtype = [] m2_scale_shape_and_dtype = [] if qdtype != jnp.float32: m1_scale_shape_and_dtype = [list(param.shape)[1:], qdtype] m2_scale_shape_and_dtype = [list(param.shape)[1:], qdtype] diagonal_statistics_shape_and_dtype = [list(param.shape), param.dtype] local_stats_flat.append( LocalShardedParameterStats( QuantizedValue( diagonal_statistics_shape_and_dtype, [], [], # pytype: disable=wrong-arg-types # numpy-scalars jnp.float32, False, list(param.shape)), QuantizedValue(m1_shape_and_dtype, [], m1_scale_shape_and_dtype, qdtype, False, list(param.shape)), QuantizedValue(m2_shape_and_dtype, [], m2_scale_shape_and_dtype, qdtype, False, list(param.shape)), init_training_metrics_shapes( len(sizes), generate_training_metrics, ), index_start, sizes, )) local_stats = jax.tree_util.tree_unflatten(treedef, local_stats_flat) max_statistics_size = _max_statistics_size_from_params(params_flat) to_pad = -num_statistics % num_devices_for_pjit num_statistics += to_pad if num_statistics == 0: num_statistics = num_devices_for_pjit max_statistics_size = block_size statistics_shape = [ num_statistics, max_statistics_size, max_statistics_size ] preconditioners_shape = [ num_statistics, max_statistics_size, precond_dim(max_statistics_size) ] global_stats = GlobalShardedParameterStats( [statistics_shape, jnp.float32], [preconditioners_shape, jnp.float32], [[num_statistics], jnp.int32]) return ShampooState( # pytype: disable=wrong-arg-types # numpy-scalars count=[[], jnp.float32], stats=ShardedShampooStats(global_stats, local_stats)) def sharded_update_fn(grads, state, params): """Transform the input gradient and update all statistics in sharded mode. Args: grads: the gradient tensors for the parameters. state: a named tuple containing the state of the optimizer params: the parameters that should be updated. Returns: A tuple containing the new parameters and the new optimizer state. """ params_flat, treedef = jax.tree_util.tree_flatten(params) grads_flat = treedef.flatten_up_to(grads) global_stats = state.stats.global_stats local_stats_flat = treedef.flatten_up_to(state.stats.local_stats) stats_flat = [] for local_stat in local_stats_flat: stats_flat.append(_convert_to_parameter_stats( global_stats, local_stat, )) new_stats_flat = jax.tree_map( lambda g, s, p: _compute_stats(g, s, p, state.count), grads_flat, stats_flat, params_flat) outputs = jax.tree_map( lambda g, s, p: _transform_grad(g, s, p, state.count), grads_flat, new_stats_flat, params_flat) updates_flat, new_stats_flat = list(zip(*outputs)) if outputs else ((), ()) updates = jax.tree_util.tree_unflatten(treedef, updates_flat) new_local_stats_flat = [] for new_stat, local_stat in zip(new_stats_flat, local_stats_flat): new_local_stats_flat.append( _convert_from_parameter_stats( new_stat, local_stat, )) max_size = global_stats.statistics.shape[1] new_padded_statistics = [] padding_starts = [] for stat in new_stats_flat: new_padded_statistics.extend( [pad_square_matrix(stat, max_size) for stat in stat.statistics]) padding_starts.extend([len(stat) for stat in stat.statistics]) # Create global stats # TODO(rohananil): Preconditioner is not updated every step, so cost of # stack/pad can be obviated away. # Pad the statistics and preconditioner matrices to be a multiple of # num devices. # TODO(rohananil): Relax to only the size of the mesh axis where the dim # is split on. to_pad = -len(new_padded_statistics) % num_devices_for_pjit if not new_padded_statistics: to_pad = num_devices_for_pjit stat_dtype = jnp.float32 else: stat_dtype = new_padded_statistics[0].dtype new_padded_statistics.extend( [jnp.eye(max_size, dtype=stat_dtype) for _ in range(to_pad)]) padding_starts += [0] * to_pad if reuse_preconditioner: prev_preconditioners = [] for stat in new_stats_flat: prev_preconditioners.extend(stat.preconditioners) prev_padded_preconditioners = pad_and_maybe_zero_preconditioners( prev_preconditioners, len(new_padded_statistics), max_size, state.count) else: prev_padded_preconditioners = None new_stacked_padded_statistics = jnp.stack(new_padded_statistics) new_stacked_padded_statistics = pjit.with_sharding_constraint( new_stacked_padded_statistics, statistics_partition_spec) stacked_padding_starts = jnp.array(padding_starts, jnp.int32) prev_stacked_padded_preconditioners = _maybe(jnp.stack)( prev_padded_preconditioners) prev_stacked_padded_preconditioners = _maybe(pjit.with_sharding_constraint)( prev_padded_preconditioners, statistics_partition_spec) def _internal_inverse_pth_root_all(): preconditioners, metrics = _matrix_inverse_pth_root_pjit( new_stacked_padded_statistics, global_stats.exponents, stacked_padding_starts, prev_stacked_padded_preconditioners, statistics_partition_spec, ) return preconditioners, metrics perform_step = state.count % preconditioning_compute_steps == 0 if preconditioning_compute_steps == 1: new_preconditioners, metrics = _internal_inverse_pth_root_all() else: # Passing statistics instead of preconditioners as they are similarly # shaped tensors. Note statistics will be ignored as we are passing in # a large error value. pd = precond_dim(new_stacked_padded_statistics.shape[2]) preconditioners_init = new_stacked_padded_statistics[:, :, :pd] n = new_stacked_padded_statistics.shape[0] metrics_init = cast( TrainingMetrics, init_training_metrics( n, generate_training_metrics=True, )) new_errors = jnp.ones_like(metrics_init.inverse_pth_root_errors) * ( inverse_failure_threshold) metrics_init = metrics_init.replace(inverse_pth_root_errors=new_errors) init_state = [preconditioners_init, metrics_init] new_preconditioners, metrics = efficient_cond( perform_step, _internal_inverse_pth_root_all, init_state) if generate_training_metrics: new_local_stats_flat = _add_metrics_into_local_stats( new_local_stats_flat, metrics, ~perform_step) new_local_stats = jax.tree_util.tree_unflatten(treedef, new_local_stats_flat) errors = metrics.inverse_pth_root_errors errors = errors.reshape((-1, 1, 1)) predicate = jnp.logical_or( jnp.isnan(errors), errors >= inverse_failure_threshold).astype(new_preconditioners.dtype) # TODO(rohananil): Check for numerical instabilities. new_conditional_preconditioners = ( predicate * global_stats.preconditioners + (1.0 - predicate) * new_preconditioners) new_global_stats = GlobalShardedParameterStats( new_stacked_padded_statistics, new_conditional_preconditioners, global_stats.exponents) new_shampoo_state = ShampooState( count=state.count + 1, stats=ShardedShampooStats(new_global_stats, new_local_stats)) return updates, new_shampoo_state def init_fn(params): """Initialise the optimiser's state.""" def _init(param): preconditioner = preconditioner_from_params(param) statistics = [] preconditioners = [] if not _skip_preconditioning(param): shapes = preconditioner.shapes_for_preconditioners() statistics = [ matrix_epsilon * jnp.eye(s[0], dtype=jnp.float32) for s in shapes ] # If the preconditioner is using a low-rank representation, initialize # it to zero instead of an invalid eye. preconditioners = [ jnp.eye(s[0], s[1], dtype=jnp.float32) * (s[0] == s[1]) for s in shapes ] diagonal_statistics = [] if _graft_type_has_diagonal_statistics(): diagonal_statistics = jnp.zeros_like(param) # diagonal_momentum = _quantize_momentum(jnp.zeros_like(param)) # momentum = _quantize_momentum(jnp.zeros_like(param)) diagonal_momentum = jnp.zeros_like(param) momentum = jnp.zeros_like(param) return ParameterStats( diagonal_statistics, statistics, preconditioners, # _quantize_diagonal_statistics(diagonal_statistics), # _maybe_quantize_statistics(statistics), # _maybe_quantize_preconditioners(preconditioners), diagonal_momentum, momentum, init_training_metrics( len(statistics), generate_training_metrics, )) return ShampooState( count=jnp.zeros([], jnp.int32), stats=jax.tree_map(_init, params)) def _skip_preconditioning(param): return len(param.shape) < skip_preconditioning_rank_lt or any( s > skip_preconditioning_dim_size_gt for s in param.shape) def _compute_stats(grad, state, param, step): """Compute per-parameter statistics.""" preconditioner = preconditioner_from_params(param) new_statistics = [[]] * len(state.statistics) w1 = beta2 w2 = jnp.where(beta2 == 1.0, beta2, 1.0 - beta2) if not _skip_preconditioning(param): def compute_updated_statistics(): return preconditioner.updated_statistics_from_grad( state.statistics, grad, w1=w1, w2=w2, to_float=_to_float, from_float=lambda x: x, # from_float=lambda x: _maybe_quantize_statistics([x])[0], precision=tensordot_precision, ) if statistics_compute_steps > 1: perform_step = step % statistics_compute_steps == 0 init_state = state.statistics new_statistics = list( efficient_cond(perform_step, compute_updated_statistics, init_state)) else: new_statistics = compute_updated_statistics() return ParameterStats(state.diagonal_statistics, new_statistics, state.preconditioners, state.diagonal_momentum, state.momentum, state.training_metrics) mi_pth_root = functools.partial( matrix_inverse_pth_root, ridge_epsilon=matrix_epsilon, precision=precision, relative_matrix_epsilon=relative_matrix_epsilon, lobpcg_topk_precondition=lobpcg_topk_precondition, lobpcg_max_iter=lobpcg_max_iter, eigh=eigh) def _matrix_inverse_pth_root_vmap(xs, ps, padding_starts, prev): return jax.vmap(mi_pth_root)( xs, ps, padding_start=padding_starts, prev=prev) def _matrix_inverse_pth_root_pjit(xs, ps, padding_starts, prev_preconds=None, statistics_partition_spec=None): # Partition the concatenated statistics matrix across all cores. pspec_for_partition = preconditioner_partition_spec partitioned_xs = pjit.with_sharding_constraint(xs, pspec_for_partition) if preconditioner_partition_spec: partitioned_ps_spec = jax.sharding.PartitionSpec( preconditioner_partition_spec[0]) else: partitioned_ps_spec = None partitioned_ps = pjit.with_sharding_constraint(ps, partitioned_ps_spec) partitioned_prev_preconds = _maybe(pjit.with_sharding_constraint)( prev_preconds, preconditioner_partition_spec) partitioned_padding_starts = pjit.with_sharding_constraint( padding_starts, partitioned_ps_spec) # paddings are scalars like ps. # Run matrix inverse pth root on each shard. partitioned_preconditioners, partitioned_metrics = ( _matrix_inverse_pth_root_vmap( partitioned_xs, partitioned_ps, partitioned_padding_starts, prev=partitioned_prev_preconds)) # Reshard output to have the same PSpec as input. This is required to avoid # vmap seeing the full set of statistics. partitioned_preconditioners = pjit.with_sharding_constraint( partitioned_preconditioners, pspec_for_partition) # Recombine the outputs at each core. preconditioners = pjit.with_sharding_constraint(partitioned_preconditioners, statistics_partition_spec) metrics = pjit.with_sharding_constraint(partitioned_metrics, jax.sharding.PartitionSpec()) return preconditioners, metrics def _pmap_compute_preconditioners(states, step, statistics, num_statistics_per_state, original_shapes, exponents, max_size, prev_preconditioners): """Computes preconditioners for given statistics in states in PMAP mode. Args: states: A list of optimizer states. step: Current step number statistics: A list of statistics for all variables (for every dim) num_statistics_per_state: Number of statistis per state to reconstruct output states. original_shapes: A list of shapes of the statistics. exponents: Exponent power to use for inverse-pth roots. max_size: Maximum dim of the statistics to pad. prev_preconditioners: Previously available preconditioner. Returns: New optimizer states after computing the preconditioner. """ if batch_axis_name: num_devices = lax.psum(1, batch_axis_name) else: num_devices = 1 num_statistics = len(statistics) # Pad statistics and exponents to next multiple of num_devices. packed_statistics = [ pad_square_matrix(stat, max_size) for stat in statistics ] to_pad = -num_statistics % num_devices packed_statistics.extend([ jnp.eye(max_size, dtype=packed_statistics[0].dtype) for _ in range(to_pad) ]) exponents.extend([1 for _ in range(to_pad)]) paddings = [len(stat) for stat in statistics] + [0] * to_pad if not packed_statistics: return states if reuse_preconditioner: assert len(prev_preconditioners) == num_statistics packed_preconditioners = pad_and_maybe_zero_preconditioners( prev_preconditioners, len(packed_statistics), max_size, step) else: packed_preconditioners = None all_statistics = batch(packed_statistics, num_devices) all_exponents = batch(exponents, num_devices) all_paddings = batch(paddings, num_devices) all_preconditioners = _maybe(batch)(packed_preconditioners, num_devices) def _internal_inverse_pth_root_all(): if batch_axis_name: current_replica = lax.axis_index(batch_axis_name) preconditioners, metrics = _matrix_inverse_pth_root_vmap( all_statistics[current_replica], all_exponents[current_replica], all_paddings[current_replica], _maybe_ix(all_preconditioners, current_replica), ) preconditioners = jax.lax.all_gather(preconditioners, batch_axis_name) metrics = jax.lax.all_gather(metrics, batch_axis_name) preconditioners_flat = unbatch(preconditioners) metrics_flat = jax.tree_map(unbatch, metrics) else: preconditioners, metrics = _matrix_inverse_pth_root_vmap( all_statistics[0], all_exponents[0], all_paddings[0], _maybe_ix(all_preconditioners, 0), ) preconditioners_flat = unbatch(jnp.stack([preconditioners])) metrics = jax.tree_map( functools.partial(jnp.expand_dims, axis=0), metrics) metrics_flat = jax.tree_map(unbatch, metrics) return preconditioners_flat, metrics_flat perform_step = step % preconditioning_compute_steps == 0 if preconditioning_compute_steps == 1: preconditioners_flat, metrics_flat = _internal_inverse_pth_root_all() else: # Passing statistics instead of preconditioners as they are similarly # shaped tensors. Note statistics will be ignored as we are passing in # a large error value. preconditioners_init = [ s[:, :precond_dim(s.shape[0])] for s in packed_statistics ] n = len(packed_statistics) metrics_init = jax.tree_map( lambda x: [x] * n, default_training_metrics().replace( inverse_pth_root_errors=inverse_failure_threshold)) init_state = [preconditioners_init, metrics_init] preconditioners_flat, metrics_flat = efficient_cond( perform_step, _internal_inverse_pth_root_all, init_state) def _skip(error): condition = jnp.logical_or( jnp.isnan(error), error >= inverse_failure_threshold) return condition.astype(error.dtype) def _select_preconditioner(error, new_p, old_p): return lax.cond( _skip(error), lambda _: old_p, lambda _: new_p, operand=None) new_preconditioners_flat = [] new_errors_flat = metrics_flat.inverse_pth_root_errors for p, shape, prev_p, error in zip(preconditioners_flat, original_shapes, prev_preconditioners, new_errors_flat): new_preconditioners_flat.append( _select_preconditioner(error, p[:shape[0], :shape[1]], prev_p)) assert len(states) == (len(num_statistics_per_state), f"{len(states)} vs {len(num_statistics_per_state)}") assert len(new_preconditioners_flat) == num_statistics assert len(new_errors_flat) == len(packed_statistics), ( len(new_errors_flat), len(packed_statistics)) assert len(new_errors_flat) == num_statistics + to_pad, ( len(new_errors_flat), num_statistics, to_pad) # Add back empty preconditioners so we that we can set the optimizer state. preconditioners_for_states = [] idx = 0 metrics_for_states = [] for num_statistics, state in zip(num_statistics_per_state, states): if num_statistics == 0: preconditioners_for_states.append([]) metrics_for_states.append( init_training_metrics(0, generate_training_metrics)) else: preconditioners_for_state = new_preconditioners_flat[idx:idx + num_statistics] assert len(state.statistics) == len(preconditioners_for_state) preconditioners_for_states.append(preconditioners_for_state) if generate_training_metrics: # pylint:disable=cell-var-from-loop Used immediately. metrics_for_state = jax.tree_map( lambda x: jnp.stack(x[idx:idx + num_statistics]), metrics_flat, is_leaf=lambda x: isinstance(x, list)) assert jax.tree_util.tree_all( jax.tree_map(lambda x: len(state.statistics) == len(x), metrics_for_state)) # If we skipped preconditioner computation, record old metrics. metrics_for_state = efficient_cond(perform_step, lambda: [metrics_for_state], [state.training_metrics])[0] # pylint:enable=cell-var-from-loop else: metrics_for_state = optax.MaskedNode() metrics_for_states.append(metrics_for_state) idx += num_statistics new_states = [] for state, new_preconditioners, new_metrics in zip( states, preconditioners_for_states, metrics_for_states): # Note the preconditioner may have been skipped, but we still update the # metrics with the new error values; whether the preconditioner that's # actively being used is stale can be derived from the new_metrics # being greater than the failure threshold. new_states.append( ParameterStats(state.diagonal_statistics, state.statistics, new_preconditioners, state.diagonal_momentum, state.momentum, new_metrics)) return new_states def _compute_preconditioners(states, params, step): """Computes preconditioners for given statistics in states. Args: states: A list of optimizer states. params: A list of params. step: Current step number Returns: New optimizer states after computing the preconditioner. """ statistics = [] num_statistics_per_state = [] original_shapes = [] exponents = [] max_size = 0 prev_preconditioners = [] for state, param in zip(states, params): num_statistics = len(state.statistics) num_statistics_per_state.append(num_statistics) original_shapes_for_state = [] if num_statistics > 0: preconditioner = preconditioner_from_params(param) for statistic in state.statistics: exponents.append(preconditioner.exponent_for_preconditioner( ) if exponent_override == 0 else exponent_override) original_shapes_for_state.append(statistic.shape) max_size = max(max_size, statistic.shape[0]) statistics.extend(state.statistics) prev_preconditioners.extend(state.preconditioners) original_shapes.extend(original_shapes_for_state) return _pmap_compute_preconditioners(states, step, statistics, num_statistics_per_state, original_shapes, exponents, max_size, prev_preconditioners) def _transform_grad(grad, state, param, step): """Transform per-parameter gradients.""" preconditioner = preconditioner_from_params(param) sgd_update = grad new_diagonal_statistics = state.diagonal_statistics if (graft_type == GraftingType.ADAGRAD or graft_type == GraftingType.ADAGRAD_NORMALIZED): scaled_grad = grad if graft_type == GraftingType.ADAGRAD_NORMALIZED: scaled_grad = grad / (jnp.linalg.norm(grad) + _EPSILON) new_diagonal_statistics = ( state.diagonal_statistics.to_float() + jnp.square(scaled_grad)) adagrad_update = scaled_grad / ( jnp.sqrt(new_diagonal_statistics) + diagonal_epsilon) grafting_update = adagrad_update elif (graft_type == GraftingType.RMSPROP or graft_type == GraftingType.RMSPROP_NORMALIZED): scaled_grad = grad if graft_type == GraftingType.RMSPROP_NORMALIZED: scaled_grad = grad / (jnp.linalg.norm(grad) + _EPSILON) w1 = beta2 w2 = jnp.where(beta2 == 1.0, beta2, 1.0 - beta2) new_diagonal_statistics = ( w1 * state.diagonal_statistics + w2 * jnp.square(scaled_grad)) rmsprop_update = scaled_grad / ( jnp.sqrt(new_diagonal_statistics) + diagonal_epsilon) if clip_by_scaled_gradient_norm: scaled_grad_norm = jnp.linalg.norm(rmsprop_update) / ( jnp.sqrt(float(rmsprop_update.size))) clipping_denom = jnp.maximum( 1., scaled_grad_norm / clip_by_scaled_gradient_norm) rmsprop_update /= clipping_denom grafting_update = rmsprop_update elif graft_type == GraftingType.SGD: grafting_update = sgd_update elif graft_type == GraftingType.NONE: grafting_update = sgd_update # Use SGD during warmup. else: grafting_update = jnp.ones_like(sgd_update) * jnp.sign(sgd_update) lr = learning_rate if callable(learning_rate): lr = learning_rate(step) preconditioner_multiplier = lr if not decoupled_learning_rate else 1.0 grafting_update = grafting_update * preconditioner_multiplier precond_grad = grad if not _skip_preconditioning(param): precond_grad = preconditioner.preconditioned_grad(precond_grad, state.preconditioners) else: if graft_type == GraftingType.NONE: logging.error("skipping preconditioning without grafting for param %s", param) precond_grad = grafting_update grafting_update_norm = jnp.linalg.norm(grafting_update) precond_grad_norm = jnp.linalg.norm(precond_grad) if graft_type is not GraftingType.NONE: multiplier = grafting_update_norm / (precond_grad_norm + _EPSILON) else: multiplier = 1.0 shampoo_update = precond_grad * multiplier shampoo_update_with_wd = shampoo_update grafting_update_with_wd = grafting_update if (weight_decay != 0 and weight_decay is not None and not decoupled_weight_decay): shampoo_update_with_wd = shampoo_update + weight_decay * param grafting_update_with_wd = grafting_update + weight_decay * param w = (1.0 - beta1) if moving_average_for_momentum else 1.0 shampoo_update_with_wd_momentum = ( state.momentum * beta1 + w * shampoo_update_with_wd) grafting_update_with_wd_momentum = ( state.diagonal_momentum * beta1 + w * grafting_update_with_wd) run_shampoo = (step >= start_preconditioning_step).astype( grafting_update_with_wd_momentum.dtype) momentum_update = ( run_shampoo * shampoo_update_with_wd_momentum + (1.0 - run_shampoo) * grafting_update_with_wd_momentum) wd_update = ( run_shampoo * shampoo_update_with_wd + (1.0 - run_shampoo) * grafting_update_with_wd) nesterov_momentum_update = momentum_update if nesterov: nesterov_momentum_update = w * wd_update + beta1 * momentum_update if (weight_decay != 0 and weight_decay is not None and decoupled_weight_decay): nesterov_momentum_update = ( nesterov_momentum_update + lr * weight_decay * param) momentum_multiplier = lr if decoupled_learning_rate else 1.0 transformed_update = -1.0 * momentum_multiplier * nesterov_momentum_update new_diagonal_momentum = grafting_update_with_wd_momentum new_momentum = shampoo_update_with_wd_momentum param_stats = ParameterStats(new_diagonal_statistics, state.statistics, state.preconditioners, new_diagonal_momentum, new_momentum, state.training_metrics) return transformed_update, param_stats def update_fn(grads, state, params): """Transform the input gradient and update all statistics. Args: grads: the gradient tensors for the parameters and any custom gradients for preconditioners. state: a named tuple containing the state of the optimizer params: the parameters that should be updated. Returns: A tuple containing the new parameters and the new optimizer state. """ grads_custom = None if custom_preconditioner and isinstance(grads, tuple): grads, grads_custom = grads params_flat, treedef = jax.tree_util.tree_flatten(params) stats_flat = treedef.flatten_up_to(state.stats) grads_flat = treedef.flatten_up_to(grads) stats_grads = grads_flat if custom_preconditioner and grads_custom is not None: stats_grads = treedef.flatten_up_to(grads_custom) new_stats_flat = jax.tree_map( lambda g, s, p: _compute_stats(g, s, p, state.count), stats_grads, stats_flat, params_flat) new_stats_flat = _compute_preconditioners(new_stats_flat, params_flat, state.count) outputs = jax.tree_map( lambda g, s, p: _transform_grad(g, s, p, state.count), grads_flat, new_stats_flat, params_flat) updates_flat, new_stats_flat = list(zip(*outputs)) if outputs else ((), ()) updates = jax.tree_util.tree_unflatten(treedef, updates_flat) new_stats = jax.tree_util.tree_unflatten(treedef, new_stats_flat) new_state = ShampooState(count=state.count + 1, stats=new_stats) return updates, new_state if shard_optimizer_states: # Hijacks the init_fn signature so we can return an OptState with # appropriate init_fns. opt_init_fn = sharded_init_fn def _init_fns(unused_params): return InitFnState( init_fn=opt_init_fn, pspec_fn=sharded_init_partition_spec_fn, shape_and_dtype_fn=sharded_init_shape_and_dtype_fn) opt_update_fn = sharded_update_fn return optax.GradientTransformation(_init_fns, opt_update_fn) else: return optax.GradientTransformation(init_fn, update_fn)
import argparse import os import yaml from collections import OrderedDict import cwrap_parser import nn_parse import native_parse import preprocess_declarations import function_wrapper import copy_wrapper from code_template import CodeTemplate # This file is the top-level entry point for code generation in ATen. # It takes an arbitrary number of arguments specifying metadata files to # process (.cwrap, .yaml and .h) and outputs a number generated header # and cpp files in ATen/ (see invocations of 'write' for each file that # is written.) It is invoked from cmake; look for the 'cwrap_files' # variable for an up-to-date list of files which are passed. parser = argparse.ArgumentParser(description='Generate ATen source files') parser.add_argument('files', help='cwrap files', nargs='+') parser.add_argument( '-s', '--source-path', help='path to source directory for ATen', default='.') parser.add_argument( '-o', '--output-dependencies', help='output a list of dependencies into the given file and exit') parser.add_argument( '-n', '--no-cuda', action='store_true', help='disable generation of cuda files') parser.add_argument( '-d', '--output-dir', help='output directory', default='ATen') options = parser.parse_args() if options.output_dir is not None and not os.path.exists(options.output_dir): os.makedirs(options.output_dir) class FileManager(object): def __init__(self): self.filenames = set() self.outputs_written = False self.undeclared_files = [] def will_write(self, filename): filename = '{}/{}'.format(options.output_dir, filename) if self.outputs_written: raise Exception("'will_write' can only be called before " + "the call to write_outputs, refactor so outputs are registered " + "before running the generators") self.filenames.add(filename) def _write_if_changed(self, filename, contents): try: with open(filename, 'r') as f: old_contents = f.read() except IOError: old_contents = None if contents != old_contents: with open(filename, 'w') as f: f.write(contents) def write_outputs(self, filename): """Write a file containing the list of all outputs which are generated by this script.""" self._write_if_changed( filename, ''.join(name + ";" for name in sorted(self.filenames))) self.outputs_written = True def write(self, filename, s): filename = '{}/{}'.format(options.output_dir, filename) self._write_if_changed(filename, s) if filename not in self.filenames: self.undeclared_files.append(filename) else: self.filenames.remove(filename) def check_all_files_written(self): if len(self.undeclared_files) > 0: raise Exception( "trying to write files {} which are not ".format(self.undeclared_files) + "in the list of outputs this script produces. " + "use will_write to add them.") if len(self.filenames) > 0: raise Exception("Outputs declared with 'will_write' were " + "never written: {}".format(self.filenames)) TEMPLATE_PATH = options.source_path + "/templates" GENERATOR_DERIVED = CodeTemplate.from_file( TEMPLATE_PATH + "/GeneratorDerived.h") STORAGE_DERIVED_CPP = CodeTemplate.from_file( TEMPLATE_PATH + "/StorageDerived.cpp") STORAGE_DERIVED_H = CodeTemplate.from_file(TEMPLATE_PATH + "/StorageDerived.h") TYPE_DERIVED_CPP = CodeTemplate.from_file(TEMPLATE_PATH + "/TypeDerived.cpp") TYPE_DERIVED_H = CodeTemplate.from_file(TEMPLATE_PATH + "/TypeDerived.h") TYPE_H = CodeTemplate.from_file(TEMPLATE_PATH + "/Type.h") TYPE_CPP = CodeTemplate.from_file(TEMPLATE_PATH + "/Type.cpp") TENSOR_DERIVED_CPP = CodeTemplate.from_file( TEMPLATE_PATH + "/TensorDerived.cpp") TENSOR_SPARSE_CPP = CodeTemplate.from_file( TEMPLATE_PATH + "/TensorSparse.cpp") TENSOR_DENSE_CPP = CodeTemplate.from_file( TEMPLATE_PATH + "/TensorDense.cpp") TENSOR_DERIVED_H = CodeTemplate.from_file(TEMPLATE_PATH + "/TensorDerived.h") TENSOR_H = CodeTemplate.from_file(TEMPLATE_PATH + "/Tensor.h") TENSOR_METHODS_H = CodeTemplate.from_file(TEMPLATE_PATH + "/TensorMethods.h") FUNCTIONS_H = CodeTemplate.from_file(TEMPLATE_PATH + "/Functions.h") NATIVE_FUNCTIONS_H = CodeTemplate.from_file(TEMPLATE_PATH + "/NativeFunctions.h") file_manager = FileManager() generators = { 'CPUGenerator.h': { 'name': 'CPU', 'th_generator': 'THGenerator * generator;', 'header': 'TH/TH.h', }, 'CUDAGenerator.h': { 'name': 'CUDA', 'th_generator': 'THCGenerator * generator;', 'header': 'THC/THC.h' }, } backends = ['CPU'] if not options.no_cuda: backends.append('CUDA') densities = ['Dense', 'Sparse'] # scalar_name, c_type, accreal, th_scalar_type, is_floating_type scalar_types = [ ('Byte', 'uint8_t', 'Long', 'uint8_t', False), ('Char', 'int8_t', 'Long', 'int8_t', False), ('Double', 'double', 'Double', 'double', True), ('Float', 'float', 'Double', 'float', True), ('Int', 'int', 'Long', 'int32_t', False), ('Long', 'int64_t', 'Long', 'int64_t', False), ('Short', 'int16_t', 'Long', 'int16_t', False), ('Half', 'Half', 'Double', 'THHalf', True), ] # shared environment for non-derived base classes Type.h Tensor.h Storage.h top_env = { 'type_registrations': [], 'type_headers': [], 'type_method_declarations': [], 'type_method_definitions': [], 'type_method_inline_definitions': [], 'tensor_method_declarations': [], 'tensor_method_definitions': [], 'function_declarations': [], 'function_definitions': [], 'type_ids': [], 'native_function_declarations': [], } def dict_representer(dumper, data): return dumper.represent_dict(data.items()) def postprocess_output_declarations(output_declarations): # ensure each return has a name associated with it for decl in output_declarations: has_named_ret = False for n, ret in enumerate(decl.returns): if 'name' not in ret: assert not has_named_ret if decl.inplace: ret['name'] = 'self' elif len(decl.returns) == 1: ret['name'] = 'result' else: ret['name'] = 'result' + str(n) else: has_named_ret = True def remove_key_if_none(dictionary, key): if key in dictionary.keys() and dictionary[key] is None: del dictionary[key] return dictionary return [remove_key_if_none(decl._asdict(), 'buffers') for decl in output_declarations] def format_yaml(data): if options.output_dependencies: # yaml formatting is slow so don't do it if we will ditch it. return "" noalias_dumper = yaml.dumper.SafeDumper noalias_dumper.ignore_aliases = lambda self, data: True # Support serializing OrderedDict noalias_dumper.add_representer(OrderedDict, dict_representer) return yaml.dump(data, default_flow_style=False, Dumper=noalias_dumper) def generate_storage_type_and_tensor(backend, density, scalar_type, declarations): scalar_name, c_type, accreal, th_scalar_type, is_floating_type = scalar_type env = {} density_tag = 'Sparse' if density == 'Sparse' else '' th_density_tag = 'S' if density == 'Sparse' else '' env['Density'] = density env['ScalarName'] = scalar_name env['ScalarType'] = c_type env['THScalarType'] = th_scalar_type env['AccScalarName'] = accreal env['isFloatingType'] = is_floating_type env['isIntegralType'] = not is_floating_type env['Storage'] = "{}{}Storage".format(backend, scalar_name) env['Type'] = "{}{}{}Type".format(density_tag, backend, scalar_name) env['Tensor'] = "{}{}{}Tensor".format(density_tag, backend, scalar_name) env['DenseTensor'] = "{}{}Tensor".format(backend, scalar_name) env['SparseTensor'] = "Sparse{}{}Tensor".format(backend, scalar_name) env['Backend'] = density_tag + backend env['DenseBackend'] = backend # used for generating switch logic for external functions tag = density_tag + backend + scalar_name env['TypeID'] = 'TypeID::' + tag top_env['type_ids'].append(tag + ',') if backend == 'CUDA': env['th_headers'] = [ '#include <THC/THC.h>', '#include <THCUNN/THCUNN.h>', '#undef THNN_', '#undef THCIndexTensor_', '#include <THCS/THCS.h>', '#undef THCIndexTensor_', ] env['extra_cuda_headers'] = ['#include <ATen/cuda/CUDAHalf.cuh>'] sname = '' if scalar_name == "Float" else scalar_name env['THType'] = 'Cuda{}'.format(sname) env['THStorage'] = 'THCuda{}Storage'.format(sname) if density == 'Dense': env['THTensor'] = 'THCuda{}Tensor'.format(sname) else: env['THTensor'] = 'THCS{}Tensor'.format(scalar_name) env['THIndexTensor'] = 'THCudaLongTensor' env['state'] = ['context->thc_state'] env['isCUDA'] = 'true' env['storage_device'] = 'return storage->device;' env['Generator'] = 'CUDAGenerator' else: env['th_headers'] = [ '#include <TH/TH.h>', '#include <THNN/THNN.h>', '#undef THNN_', '#include <THS/THS.h>', ] env['extra_cuda_headers'] = [] env['THType'] = scalar_name env['THStorage'] = "TH{}Storage".format(scalar_name) env['THTensor'] = 'TH{}{}Tensor'.format(th_density_tag, scalar_name) env['THIndexTensor'] = 'THLongTensor' env['state'] = [] env['isCUDA'] = 'false' env['storage_device'] = 'throw std::runtime_error("CPU storage has no device");' env['Generator'] = 'CPUGenerator' env['AS_REAL'] = env['ScalarType'] if scalar_name == "Half": env['SparseTensor'] = 'Tensor' if backend == "CUDA": env['to_th_type'] = 'HalfFix<__half,Half>' env['to_at_type'] = 'HalfFix<Half,__half>' env['AS_REAL'] = 'convert<half,double>' env['THScalarType'] = 'half' else: env['to_th_type'] = 'HalfFix<THHalf,Half>' env['to_at_type'] = 'HalfFix<Half,THHalf>' elif scalar_name == 'Long': env['to_th_type'] = 'long' env['to_at_type'] = 'int64_t' else: env['to_th_type'] = '' env['to_at_type'] = '' declarations, definitions = function_wrapper.create_derived( env, declarations) env['type_derived_method_declarations'] = declarations env['type_derived_method_definitions'] = definitions if density != 'Sparse': # there are no special storage types for Sparse, they are composed # of Dense tensors file_manager.write(env['Storage'] + ".cpp", STORAGE_DERIVED_CPP.substitute(env)) file_manager.write(env['Storage'] + ".h", STORAGE_DERIVED_H.substitute(env)) env['TensorDenseOrSparse'] = TENSOR_DENSE_CPP.substitute(env) env['THTensor_nDimension'] = 'tensor->nDimension' else: env['TensorDenseOrSparse'] = TENSOR_SPARSE_CPP.substitute(env) env['THTensor_nDimension'] = 'tensor->nDimensionI + tensor->nDimensionV' file_manager.write(env['Type'] + ".cpp", TYPE_DERIVED_CPP.substitute(env)) file_manager.write(env['Type'] + ".h", TYPE_DERIVED_H.substitute(env)) file_manager.write(env['Tensor'] + ".cpp", TENSOR_DERIVED_CPP.substitute(env)) file_manager.write(env['Tensor'] + ".h", TENSOR_DERIVED_H.substitute(env)) type_register = (('context->type_registry[static_cast<int>(Backend::{})]' + '[static_cast<int>(ScalarType::{})].reset(new {}(context));') .format(env['Backend'], scalar_name, env['Type'])) top_env['type_registrations'].append(type_register) top_env['type_headers'].append( '#include "ATen/{}.h"'.format(env['Type'])) return env def iterate_types(): for backend in backends: for density in densities: for scalar_type in scalar_types: if density == 'Sparse' and scalar_type[0] == 'Half': # THS does not do half type yet. continue yield (backend, density, scalar_type) ################### # declare what files will be output _before_ we do any work # so that the script runs quickly when we are just querying the # outputs def declare_outputs(): files = ['Declarations.yaml', 'Type.h', 'Type.cpp', 'Tensor.h', 'TensorMethods.h', 'Functions.h', 'Copy.cpp', 'NativeFunctions.h'] for f in files: file_manager.will_write(f) for fname in sorted(generators.keys()): if generators[fname]['name'] in backends: file_manager.will_write(fname) for backend, density, scalar_types in iterate_types(): scalar_name = scalar_types[0] full_backend = "Sparse" + backend if density == "Sparse" else backend for kind in ["Storage", "Type", "Tensor"]: if kind == 'Storage' and density == "Sparse": continue file_manager.will_write("{}{}{}.h".format(full_backend, scalar_name, kind)) file_manager.will_write("{}{}{}.cpp".format(full_backend, scalar_name, kind)) def filter_by_extension(files, *extensions): filtered_files = [] for file in files: for extension in extensions: if file.endswith(extension): filtered_files.append(file) return filtered_files def generate_outputs(): cwrap_files = filter_by_extension(options.files, '.cwrap') nn_files = filter_by_extension(options.files, 'nn.yaml', '.h') native_files = filter_by_extension(options.files, 'native_functions.yaml') declarations = [d for file in cwrap_files for d in cwrap_parser.parse(file)] declarations += nn_parse.run(nn_files) declarations += native_parse.run(native_files) declarations = preprocess_declarations.run(declarations) for fname, env in generators.items(): if env['name'] in backends: file_manager.write(fname, GENERATOR_DERIVED.substitute(env)) # note: this will fill in top_env['type/tensor_method_declarations/definitions'] # and modify the declarations to include any information that will all_backends # be used by function_wrapper.create_derived output_declarations = function_wrapper.create_generic(top_env, declarations) output_declarations = postprocess_output_declarations(output_declarations) file_manager.write("Declarations.yaml", format_yaml(output_declarations)) # populated by generate_storage_type_and_tensor all_types = [] for backend, density, scalar_type in iterate_types(): all_types.append(generate_storage_type_and_tensor( backend, density, scalar_type, declarations)) file_manager.write('Type.h', TYPE_H.substitute(top_env)) file_manager.write('Type.cpp', TYPE_CPP.substitute(top_env)) file_manager.write('Tensor.h', TENSOR_H.substitute(top_env)) file_manager.write('TensorMethods.h', TENSOR_METHODS_H.substitute(top_env)) file_manager.write('Functions.h', FUNCTIONS_H.substitute(top_env)) file_manager.write('Copy.cpp', copy_wrapper.create(all_types)) file_manager.write('NativeFunctions.h', NATIVE_FUNCTIONS_H.substitute(top_env)) file_manager.check_all_files_written() declare_outputs() if options.output_dependencies is not None: file_manager.write_outputs(options.output_dependencies) else: generate_outputs()
# this code should be common among cwrap and ATen preprocessing # for now, I have put it in one place but right now is copied out of cwrap from copy import deepcopy from itertools import product def parse_arguments(args): new_args = [] for arg in args: # Simple arg declaration of form "<type> <name>" if isinstance(arg, str): t, _, name = arg.partition(' ') new_args.append({'type': t, 'name': name}) elif isinstance(arg, dict): if 'arg' in arg: arg['type'], _, arg['name'] = arg['arg'].partition(' ') del arg['arg'] new_args.append(arg) else: assert False return new_args def set_declaration_defaults(declaration): declaration.setdefault('arguments', []) declaration.setdefault('return', 'void') if 'cname' not in declaration: declaration['cname'] = declaration['name'] if 'backends' not in declaration: declaration['backends'] = ['CPU', 'CUDA'] if 'api_name' not in declaration: declaration['api_name'] = (declaration['python_name'] if 'python_name' in declaration else declaration['name']) # Simulate multiple dispatch, even if it's not necessary if 'options' not in declaration: declaration['options'] = [{'arguments': declaration['arguments']}] del declaration['arguments'] # Parse arguments (some of them can be strings) for option in declaration['options']: option['arguments'] = parse_arguments(option['arguments']) # Propagate defaults from declaration to options for option in declaration['options']: for k, v in declaration.items(): # TODO(zach): why does cwrap not propagate 'name'? I need it # propagaged for ATen if k != 'options': option.setdefault(k, v) # TODO(zach): added option to remove keyword handling for C++ which cannot # support it. def filter_unique_options(options, allow_kwarg, type_to_signature, remove_self): def exclude_arg(arg): return arg.get('ignore_check') or arg['type'] == 'CONSTANT' def exclude_arg_with_self_check(arg): return exclude_arg(arg) or (remove_self and arg['name'] == 'self') def signature(option, kwarg_only_count): if kwarg_only_count == 0: kwarg_only_count = None else: kwarg_only_count = -kwarg_only_count arg_signature = '#'.join( type_to_signature.get(arg['type'], arg['type']) for arg in option['arguments'][:kwarg_only_count] if not exclude_arg_with_self_check(arg)) if kwarg_only_count is None: return arg_signature kwarg_only_signature = '#'.join( arg['name'] + '#' + arg['type'] for arg in option['arguments'][kwarg_only_count:] if not exclude_arg(arg)) return arg_signature + "#-#" + kwarg_only_signature seen_signatures = set() unique = [] for option in options: # if only check num_kwarg_only == 0 if allow_kwarg == False limit = len(option['arguments']) if allow_kwarg else 0 for num_kwarg_only in range(0, limit + 1): sig = signature(option, num_kwarg_only) if sig not in seen_signatures: if num_kwarg_only > 0: for arg in option['arguments'][-num_kwarg_only:]: arg['kwarg_only'] = True unique.append(option) seen_signatures.add(sig) break return unique def enumerate_options_due_to_default(declaration, allow_kwarg=True, type_to_signature=[], remove_self=True): # Checks to see if an argument with a default keyword is a Tensor that # by default can be NULL. In this case, instead of generating another # option that excludes this argument, we will instead generate a single # function call that allows for the Tensor to be NULL def is_nullable_tensor_arg(arg): return arg['type'] == 'THTensor*' and arg['default'] == 'nullptr' # TODO(zach): in cwrap this is shared among all declarations # but seems to assume that all declarations will have the same new_options = [] for option in declaration['options']: optional_args = [] for i, arg in enumerate(option['arguments']): if 'default' in arg: optional_args.append(i) for permutation in product((True, False), repeat=len(optional_args)): option_copy = deepcopy(option) option_copy['has_full_argument_list'] = sum(permutation) == len(optional_args) for i, bit in zip(optional_args, permutation): arg = option_copy['arguments'][i] # PyYAML interprets NULL as None... arg['default'] = 'NULL' if arg['default'] is None else arg['default'] if not bit: arg['declared_type'] = arg['type'] arg['type'] = 'CONSTANT' arg['ignore_check'] = True new_options.append(option_copy) declaration['options'] = filter_unique_options(new_options, allow_kwarg, type_to_signature, remove_self) def sort_by_number_of_options(declaration, reverse=True): def num_checked_args(option): return sum(map(lambda a: not a.get('ignore_check', False), option['arguments'])) declaration['options'].sort(key=num_checked_args, reverse=reverse) class Function(object): def __init__(self, name): self.name = name self.arguments = [] def add_argument(self, arg): assert isinstance(arg, Argument) self.arguments.append(arg) def __repr__(self): return self.name + '(' + ', '.join(map(lambda a: a.__repr__(), self.arguments)) + ')' class Argument(object): def __init__(self, _type, name, is_optional): self.type = _type self.name = name self.is_optional = is_optional def __repr__(self): return self.type + ' ' + self.name def parse_header(path): with open(path, 'r') as f: lines = f.read().split('\n') # Remove empty lines and prebackend directives lines = filter(lambda l: l and not l.startswith('#'), lines) # Remove line comments lines = map(lambda l: l.partition('//'), lines) # Select line and comment part lines = map(lambda l: (l[0].strip(), l[2].strip()), lines) # Remove trailing special signs lines = map(lambda l: (l[0].rstrip(');').rstrip(','), l[1]), lines) # Split arguments lines = map(lambda l: (l[0].split(','), l[1]), lines) # Flatten lines new_lines = [] for l, c in lines: for split in l: new_lines.append((split, c)) lines = new_lines del new_lines # Remove unnecessary whitespace lines = map(lambda l: (l[0].strip(), l[1]), lines) # Remove empty lines lines = filter(lambda l: l[0], lines) generic_functions = [] for l, c in lines: if l.startswith('TH_API void THNN_'): fn_name = l.lstrip('TH_API void THNN_') if fn_name[0] == '(' and fn_name[-2] == ')': fn_name = fn_name[1:-2] else: fn_name = fn_name[:-1] generic_functions.append(Function(fn_name)) elif l: t, name = l.split() if '*' in name: t = t + '*' name = name[1:] generic_functions[-1].add_argument( Argument(t, name, '[OPTIONAL]' in c)) return generic_functions
import re from copy import deepcopy from function_wrapper import TYPE_FORMAL_GENERIC import common_with_cwrap type_map = { 'floating_point': [ 'Float', 'Double', 'Half', ], 'integral': [ 'Byte', 'Char', 'Short', 'Int', 'Long' ], } all_types = type_map['floating_point'] + type_map['integral'] type_map['all'] = all_types all_backends = ['CPU', 'CUDA', 'SparseCPU', 'SparseCUDA'] default_backends = ['CPU', 'CUDA'] sparse_map = { 'CPU': 'SparseCPU', 'CUDA': 'SparseCUDA', } def process_types_and_backends(option): # if specific pairs were not listed, then enumerate them # based on the backend and type attributes # if backend or type is not defined, it is assumed to be all of them if 'backend_type_pairs' not in option: backends = option.get('backends', default_backends) if option.get('aten_sparse', False): backends.extend([sparse_map[p] for p in backends if p in sparse_map]) backends = set(backends) types = option.get('types', all_types) pairs = [[p, t] for p in backends for t in types] else: pairs = option['backend_type_pairs'] # expand type alias (integral, floating_point, all) def expand(pair): p, t = pair assert(p in all_backends) if t in type_map: return [(p, tt) for tt in type_map[t]] assert(t in all_types) return [(p, t)] pairs = set(p for pair in pairs for p in expand(pair)) # disable CUDA Half if there is a Sparse argument for arg in option.get('arguments', []): if arg['type'] == 'THSTensor*': pairs.discard(('CUDA', 'Half')) # special case remove Half for cpu unless it is explicitly enabled, if not option.get('cpu_half', False): pairs.discard(('CPU', 'Half')) # sort the result for easy reading option['backend_type_pairs'] = sorted([p for p in pairs]) def exclude(declaration): return 'only_register' in declaration or declaration.get('python_name') == 'ndimension' def add_variants(option): option.setdefault('variants', ['method']) # if we have 'output' arguments, generate a variant where # we mark oututs as allocate = True, and where the method variant # is disabled... def handle_outputs_taken_as_arguments(options): new_options = [] def is_nullable(arg): return (arg['type'] in {'THIntegerTensor*', 'THTensor*'} and arg.get('default', '') in {None, 'NULL', 'nullptr'}) def should_generate_out_variant(option): if 'function' in option['variants'] and option['mode'] != 'native': # don't generate _out variants for in-place functions return re.search('(^__i|[^_]_$)', option['api_name']) is None return False for option in options: for arg in option['arguments']: # mark arguments which can be null if is_nullable(arg): arg['is_nullable'] = True if any('output' in arg for arg in option['arguments']): allocate_option = deepcopy(option) # the allocating option needs to be marked for arg in allocate_option['arguments']: if 'output' in arg: arg['allocate'] = True # the original option, which takes arguments for the results, # is no longer a method, and has _out added to indicte it takes # output arguments if should_generate_out_variant(option): if 'method' in option['variants']: option['variants'].remove('method') option['api_name'] += '_out' new_options.append(option) new_options.append(allocate_option) else: new_options.append(option) return new_options def sanitize_return(option): ret = option['return'] m = re.match('argument (\d+(,\d+)*)', ret) if m is not None: arguments = [int(x) for x in m.group(1).split(',')] option['return'] = {'kind': 'arguments', 'arguments': arguments} elif ret == 'self': option['return'] = {'kind': 'arguments', 'arguments': []} for i, x in enumerate(option['arguments']): if x['name'] == 'self': option['return']['arguments'].append(i) break else: option['return'] = {'kind': 'type', 'type': option['return']} def set_mode(option): option['mode'] = option.get('mode', 'TH') # To enable 0-dim support in TH operations # we find all places where a single Scalar replaced with a Tensor # as an argument is still a valid function # we then mark the tensor variant with a key zero_dim_dispatch_when_scalar: name # where 'name' is the name of the argument that should be a scalar # during dispatch, if that argument is marked internally as holding a scalar # then the method will dispatch to that function. def discover_zero_dim_tensor_operations(declaration): def exclude(arg): return arg.get('ignore_check') def signature(option, i=None, value=None): elements = [TYPE_FORMAL_GENERIC.get(arg['type'], arg['type']) if i is None or j != i else value for j, arg in enumerate(option['arguments']) if not exclude(arg)] return '#'.join(elements) signature_to_option = {signature(option): option for option in declaration['options']} for option in declaration['options']: for i, arg in enumerate(option['arguments']): if arg['type'] == 'real': signature_of_tensor_version = signature(option, i, 'Tensor &') if signature_of_tensor_version in signature_to_option: tensor_version = \ signature_to_option[signature_of_tensor_version] names = [arg['name'] for arg in tensor_version['arguments'] if not exclude(arg)] tensor_version['zero_dim_dispatch_when_scalar'] = names[i] # print("FOUND "+str(i) ) # print("Scalar Version ===== ") # print(yaml.dump(option)) # print("Tensor Version ===== ") # print(yaml.dump(tensor_version)) # print("SHARED "+names[i]) def discover_sparse_tensor_operations(declaration): def exclude(arg): return arg.get('ignore_check') def signature(option, i=None, value=None): elements = [TYPE_FORMAL_GENERIC.get(arg['type'], arg['type']) if i is None or j != i else value for j, arg in enumerate(option['arguments']) if not exclude(arg)] return '#'.join(elements) # Determine if any options have the 'aten_dense_sparse' flag dense_sparse_options = [option for option in declaration['options'] if option.get('aten_dense_sparse', False)] if len(dense_sparse_options) > 0: signature_to_option = {signature(option): option for option in declaration['options']} for option in declaration['options']: for i, arg in enumerate(option['arguments']): if (arg['type'] == 'THSTensor*' and option.get('aten_dense_sparse', False)): signature_of_tensor_version = signature( option, i, 'Tensor &') if signature_of_tensor_version in signature_to_option: tensor_version = \ signature_to_option[signature_of_tensor_version] raw_args = len(tensor_version['arguments']) names = [arg['name'] for arg in tensor_version['arguments'] if not exclude(arg)] filtered_args = len(names) tensor_version['when_sparse_dispatch'] = names[i - (raw_args - filtered_args)] def run(declarations): declarations = [d for d in declarations if not exclude(d)] for declaration in declarations: common_with_cwrap.set_declaration_defaults(declaration) declaration['options'] = [deepcopy(o) for o in declaration['options']] declaration['options'] = common_with_cwrap.filter_unique_options( declaration['options'], allow_kwarg=False, type_to_signature=TYPE_FORMAL_GENERIC, remove_self=True) common_with_cwrap.sort_by_number_of_options(declaration) discover_zero_dim_tensor_operations(declaration) discover_sparse_tensor_operations(declaration) for option in declaration['options']: set_mode(option) if option['mode'] != 'native': sanitize_return(option) process_types_and_backends(option) add_variants(option) declaration['options'] = handle_outputs_taken_as_arguments( declaration['options']) return declarations
import re # match $identifier or ${identifier} and replace with value in env # If this identifier is at the beginning of whitespace on a line # and its value is a list then it is treated as # block subsitution by indenting to that depth and putting each element # of the list on its own line # if the identifier is on a line starting with non-whitespace and a list # then it is comma separated ${,foo} will insert a comma before the list # if this list is not empty and ${foo,} will insert one after. class CodeTemplate(object): substitution_str = '(^[^\n\S]*)?\$([^\d\W]\w*|\{,?[^\d\W]\w*\,?})' # older versions of Python have a bug where \w* does not work, # so we need to replace with the non-shortened version [a-zA-Z0-9_]* # https://bugs.python.org/issue18647 substitution_str = substitution_str.replace('\w', '[a-zA-Z0-9_]') subtitution = re.compile(substitution_str, re.MULTILINE) @staticmethod def from_file(filename): with open(filename, 'r') as f: return CodeTemplate(f.read()) def __init__(self, pattern): self.pattern = pattern def substitute(self, env={}, **kwargs): def lookup(v): return kwargs[v] if v in kwargs else env[v] def indent_lines(indent, v): return "".join([indent + l + "\n" for e in v for l in str(e).splitlines()]).rstrip() def replace(match): indent = match.group(1) key = match.group(2) comma_before = '' comma_after = '' if key[0] == "{": key = key[1:-1] if key[0] == ",": comma_before = ', ' key = key[1:] if key[-1] == ',': comma_after = ', ' key = key[:-1] v = lookup(key) if indent is not None and isinstance(v, list): return indent_lines(indent, v) elif isinstance(v, list): middle = ', '.join([str(x) for x in v]) if len(v) == 0: return middle return comma_before + middle + comma_after else: return (indent or '') + str(v) return self.subtitution.sub(replace, self.pattern) if __name__ == "__main__": c = CodeTemplate("""\ int foo($args) { $bar $bar $a+$b } int commatest(int a${,stuff}) int notest(int a${,empty,}) """) print(c.substitute(args=["hi", 8], bar=["what", 7], a=3, b=4, stuff=["things...", "others"], empty=[]))
import copy import re import common_with_cwrap import yaml from collections import OrderedDict, defaultdict try: # use faster C loader if available from yaml import CLoader as Loader except ImportError: from yaml import Loader # matches `name`, `params` in `name(params)` NAME_PARAM_REGEX = r'(\w+)\((.*)\)' def argument_to_declaration(param, func=None): arg = {} arg['type'], name = param.split(' ') if arg['type'] == 'Tensor': arg['type'] = 'THTensor*' elif arg['type'] == 'LongTensor': arg['type'] = 'THIndexTensor*' elif arg['type'] == 'Scalar': arg['type'] = 'accreal' elif arg['type'] == 'Generator*': arg['type'] = 'THGenerator*' match = re.match(r'IntList\[(\d+)\]', arg['type']) if match: arg['type'] = 'IntList' arg['size'] = int(match.group(1)) if '=' in name: name, default = name.split('=') arg['optional'] = True arg['default'] = default arg['name'] = name if func is not None: default_inits = func.get('default_init', {}) wrap_dims = func.get('wrap_dim', {}) if name in default_inits: # non constexpr defaults arg['default_init'] = default_inits[name] if name in wrap_dims: arg['wrap_dim'] = wrap_dims[name] return arg def output_arguments(thnn_function): cname = thnn_function.name output_args = [] # function_wrapper expects everything in a declaration to be in # the base type (i.e. THTensor*), but if we pull a THCUNN only # implementation, it will have THCTensor* as the arg type. So we # strip the THC here before returning def map_to_th_type(t): if t.startswith('THC'): t = t.replace('THC', 'TH') return t def is_output_arg(arg_name, func_name): if arg_name == 'output' and 'updateOutput' in cname: return True if name in {'gradInput', 'gradWeight', 'gradBias'}: return True if arg_name == 'indices' and 'updateOutput' in cname and 'Unpool' not in cname: # indices is an output argument in pooling and an input in unpooling return True return False for arg in thnn_function.arguments: name = arg.name if is_output_arg(name, cname): desc = { 'type': map_to_th_type(arg.type), 'name': camel_to_snake(name), 'output': True, } if name.startswith('grad_'): desc['is_nullable'] = True output_args.append(desc) return output_args def get_return(args): indices = [str(idx) for idx, arg in enumerate(args) if arg.get('output')] return 'argument {}'.format(','.join(indices)) ARGUMENT_MAPPINGS = { 'k': 'kernel_size', 'd': 'stride', 'pad': 'padding', 'p': 'padding', 'o': 'output_size', 'osize': 'output_size', 'output': 'output_size', # as a prefix e.g. outputW 'isize': 'input_size', 'dilation': 'dilation', 'adj': 'output_padding', 'a': 'output_padding', } DIMENSION_OFFSET = { 'width': -1, 'height': -2, 'B': 0, 'C': 1, 'W': -1, 'H': -2, 'T': -3, 'left': 0, 'right': 1, 'top': 2, 'bottom': 3, 'front': 4, 'back': 5, } SUBSTITUTIONS = { 'input': 'self', 'weights': 'weight', 'train': 'training', 'val': 'value', 'lambda': 'lambd', 'negval': 'negative_slope', } def camel_to_snake(name): # from https://stackoverflow.com/questions/1175208/elegant-python-function-to-convert-camelcase-to-snake-case s1 = re.sub('(.)([A-Z][a-z]+)', r'\1_\2', name) return re.sub('([a-z0-9])([A-Z])', r'\1_\2', s1).lower() def get_thnn_args(thnn_function, params, inplace): params_by_name = {p['name']: p for p in params} def arg_expr(prefix, suffix): # e.g kW, kH name = ARGUMENT_MAPPINGS[prefix] if name not in params_by_name: raise RuntimeError('missing arg "{}" in {}'.format(name, thnn_function.name)) param = params_by_name[name] if param['type'] == 'IntList' and 'size' in param: name = name + '_' index = DIMENSION_OFFSET[suffix] if index < 0: index += param['size'] expr = '{}[{}]'.format(name, index) return {'type': 'EXPRESSION', 'name': expr} thnn_args = [] for arg in thnn_function.arguments: name = arg.name if name == 'state': continue if inplace and name == 'output': name = 'self' aten_name = camel_to_snake(SUBSTITUTIONS.get(name, name)) parts = aten_name.split('_') if aten_name in params_by_name: param = params_by_name[aten_name] if arg.is_optional: param['is_nullable'] = True thnn_args.append(copy.deepcopy(param)) elif len(parts) == 2 and parts[0] in ARGUMENT_MAPPINGS and parts[1] in DIMENSION_OFFSET: # e.g. pad_left thnn_args.append(arg_expr(parts[0], parts[1])) elif name[-1] in DIMENSION_OFFSET and name[:-1] in ARGUMENT_MAPPINGS: # e.g kW, kH thnn_args.append(arg_expr(name[:-1], name[-1])) elif name == 'owidth' or name == 'oheight': thnn_args.append(arg_expr(name[0], name[1:])) elif name == 'scale': thnn_args.append({'type': 'EXPRESSION', 'name': '1'}) elif name == 'inplace': thnn_args.append({'type': 'EXPRESSION', 'name': str(inplace).lower()}) else: raise RuntimeError("{}: can't find binding for '{}'" .format(thnn_function.name, name)) return thnn_args def remove_unused_args(args, thnn_args): """Returns the subset of args whose name appears in thnn_args""" def clean_name(name): name = name[:name.index('[')] if '[' in name else name if name.endswith('_'): name = name[:-1] return name uses = set([clean_name(arg['name']) for arg in thnn_args]) uses.add('output_mask') args = [arg for arg in args if arg['name'] in uses] for arg in args: if 'default' in arg: del arg['default'] return args def unique_args(argslist): result = [] seen = set() for args in argslist: for arg in args: if arg['name'] in seen: continue seen.add(arg['name']) result.append(arg) return result def function_info(name, arguments, cimpls, buffers, backends, inplace, scalar_check): """ cimpls contains information use to call into THNN: cname: THNN function name arguments: arguments to functional call condition: [optional] guard around call """ return { 'mode': 'NN', 'name': name, 'types': ['Float', 'Double', 'Half'], # Half will be stripped for CPU backend 'arguments': arguments, 'return': 'argument 0' if inplace else get_return(arguments), 'buffers': buffers, 'backends': backends, 'cimpls': cimpls, 'scalar_check': scalar_check, 'variants': ['function'], } def base_declaration(func, thnn_function, backends, inplace=False): """Creates the NN function without any buffers in it's signature""" name, params = re.match(NAME_PARAM_REGEX, func['name']).groups() if inplace: name += '_' params = params.split(', ') arguments = [argument_to_declaration(a, func) for a in params] if not inplace: arguments += output_arguments(thnn_function) buffers = [argument_to_declaration('Tensor ' + buf) for buf in func.get('buffers', [])] return function_info(name, arguments, None, buffers, backends, inplace, func.get('scalar_check')) def forward_declaration(base, thnn_function, inplace=False): name = '{}_forward'.format(base['name']) if inplace: name += '_' arguments = [copy.deepcopy(arg) for arg in base['arguments'] if not arg.get('output')] arguments += output_arguments(thnn_function) for buffer in base['buffers']: buffer = copy.deepcopy(buffer) buffer['output'] = True arguments.append(buffer) thnn_args = get_thnn_args(thnn_function, arguments, inplace) arguments = remove_unused_args(arguments, thnn_args) cimpl = {'cname': thnn_function.name, 'arguments': thnn_args} scalar_check = base['scalar_check'] if scalar_check is not None: output_arg_names = [arg['name'] for arg in arguments if arg.get('output', False)] scalar_check = {k: v for (k, v) in scalar_check.items() if k in output_arg_names} return function_info(name, arguments, [cimpl], [], base['backends'], inplace, scalar_check) def backward_declaration(base, thnn_functions): name = '{}_backward'.format(base['name']) arguments = [] arguments.append({'type': 'THTensor*', 'name': 'grad_output'}) arguments += [copy.deepcopy(arg) for arg in base['arguments'] if arg['name'] != 'inplace'] arguments += base['buffers'] if 'upsample' in base['name']: # Add input_size as parameter to upsample backwards functions # Note that input_size is 4-dim for upsample_xxx2d size = 2 + int(re.search(r'(\d+)d', base['name']).group(1)) input_size_arg = {'type': 'IntList', 'name': 'input_size', 'size': size} for output_size_idx, arg in enumerate(arguments): if arg['name'] == 'output_size': break arguments.insert(output_size_idx + 1, input_size_arg) # outputs from the forward may be inputs to the backwards for arg in arguments: if 'output' in arg: del arg['output'] arguments += unique_args([output_arguments(f) for f in thnn_functions]) def initialize_output_arg(arg): # the mask array<bool, N> specifies which return values to compute arg['mask'] = True arg['is_nullable'] = True # grad_weight and grad_bias need to be resized and zeroed if arg['name'] == 'grad_weight': arg['resize'] = 'weight' arg['zero'] = True if arg['name'] == 'grad_bias': dim = 1 if 'transpose' in name else 0 arg['resize'] = [('weight', dim)] arg['zero'] = True is_batch_norm_backward = '_backward' in thnn_functions[0].name grad_params = [] if len(thnn_functions) > 1 or is_batch_norm_backward: for arg in arguments: if arg.get('output', False): initialize_output_arg(arg) if 'Tensor' in arg['type'] and arg['name'].startswith('grad_') and \ 'input' not in arg['name'] and 'output' not in arg['name']: grad_params.append(arg['name']) thnn_args = [get_thnn_args(f, arguments, False) for f in thnn_functions] arguments = remove_unused_args(arguments, unique_args(thnn_args)) cimpls = [] def get_condition(func): # only call into the THNN functions if the output args are not null if '_updateGradInput' in func.name: return 'grad_input_' if '_accGradParameters' in func.name: return ' || '.join(p + '_' for p in grad_params) return None for func, args in zip(thnn_functions, thnn_args): cimpl = {'cname': func.name, 'arguments': args} if len(thnn_functions) > 1: cimpl['condition'] = get_condition(func) cimpls.append(cimpl) output_args = [arg for arg in arguments if arg.get('output', False)] scalar_check_arg = base['scalar_check'] if base['scalar_check'] is not None else dict() scalar_check = {k: v for (k, v) in scalar_check_arg.items() if k in [a['name'] for a in output_args]} for arg in output_args: # resize automatically sets scalar_check if scalar_check.get(arg['name']) is not None or arg.get('resize', False): pass else: base_name = arg['name'][len('grad_'):] if arg['name'] != 'grad_input' else 'self' if base_name in [a['name'] for a in arguments]: scalar_check[arg['name']] = base_name + '_->isScalar()' else: raise ValueError(("Could not infer scalar_check for {} argument of func {} because {} " "does not exist. Please explicitly specify scalar_check." .format(arg['name'], name, base_name))) return function_info(name, arguments, cimpls, [], base['backends'], False, scalar_check) def parse_nn_yaml(filename): with open(filename, 'r') as f: return yaml.load(f, Loader=Loader) include_only = '(updateOutput|updateGradInput|accGradParameters|backward)$' exclude = 'LookupTable' def run(paths): function_backends = defaultdict(list) header_functions = OrderedDict() headers = [p for p in paths if p.endswith('.h')] yamls = [p for p in paths if p.endswith('.yaml')] for path in headers: backend = 'CUDA' if re.search('THCU', path) else 'CPU' for func in common_with_cwrap.parse_header(path): if re.search(include_only, func.name) is None or re.search(exclude, func.name) is not None: continue function_backends[func.name].append(backend) if func.name not in header_functions: header_functions[func.name] = func bwd_suffixes = ['_updateGradInput', '_accGradParameters', '_backward'] declarations = [] for path in yamls: for func in parse_nn_yaml(path): cname = func['cname'] backends = function_backends[cname + '_updateOutput'] fwd_function = header_functions[cname + '_updateOutput'] bwd_functions = [] for suffix in bwd_suffixes: if cname + suffix in header_functions: bwd_functions.append(header_functions[cname + suffix]) base = base_declaration(func, fwd_function, backends) declarations.append(base) declarations.append(forward_declaration(base, fwd_function)) declarations.append(backward_declaration(base, bwd_functions)) if func.get('has_inplace', False): declarations.append(base_declaration(func, fwd_function, backends, True)) declarations.append(forward_declaration(base, fwd_function, True)) return declarations
# HEY! Trying to understand what this file does? Read # "what has to be done to add a Operation ..." first! import re from code_template import CodeTemplate try: import typing # noqa: F401 except ImportError: raise RuntimeError( 'Missing build dependency: Unable to import the `typing` module. ' 'Please install it via `conda install typing` or `pip install typing`') # flake8 doesn't take into account usages in type annotations. from typing import Union, Set # noqa: F401 from typing import Any, Dict, List, Optional, Tuple, NamedTuple try: from mypy_extensions import TypedDict except ImportError: # Avoid the dependency on the mypy_extensions package. # It is required, however, for type checking. def TypedDict(name, attrs, total=True): # type: ignore return Dict[Any, Any] import sys if sys.version_info[0] == 3: string_type = str else: string_type = basestring # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # what has to be done to add a Operation ... # # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # 1. if broadcasting or without the full list of arguments, add a non-virtual # declaration under Type.h (right now, we call this template # BROADCAST but it also handles default arguments) TYPE_METHOD_DECLARATION_BROADCAST = CodeTemplate("""\ ${return_type} ${api_name}(${type_method_formals_with_defaults}) const; """) # 2. broadcasting functions are implemented in Type.cpp TYPE_METHOD_DEFINITION_BROADCAST = CodeTemplate("""\ ${return_type} Type::${api_name}(${type_method_formals}) const { Tensor ${broadcast_returns}; std::tie(${broadcast_returns}) = ${broadcast_function}(${broadcast_actuals}, "${api_name}"); return ${method_prefix_derived}${api_name}(${broadcast_modified_actuals}); } """) # 3. add virtual dispatch declaration to Type.h and impl to Type.cpp; method_prefix_derived # is present for providing a base-class definition for a derived-type method with a prefix. # # If the declaration is abstract, then the actual implementation will # be in a derived type; we put in a simple default "not implemented" # stub. However, if the declaration is concrete, we dispatch to the # actual implementation. At the moment, this situation *only* occurs # for 'native' declarations (so the native dispatch is hardcoded into # the template here.) TYPE_METHOD_DECLARATION_ABSTRACT = CodeTemplate("""\ virtual ${return_type} ${method_prefix_derived}${api_name}(${type_method_formals_with_defaults}) const; """) TYPE_METHOD_DEFINITION_ABSTRACT = CodeTemplate("""\ ${return_type} Type::${method_prefix_derived}${api_name}(${type_method_formals}) const { AT_ERROR("${method_prefix_derived}${api_name} is not implemented for type %s", toString()); } """) TYPE_METHOD_DECLARATION_CONCRETE = CodeTemplate("""\ virtual ${return_type} ${api_name}(${type_method_formals_with_defaults}) const; """) TYPE_METHOD_DEFINITION_CONCRETE = CodeTemplate("""\ ${return_type} Type::${api_name}(${type_method_formals}) const { ${type_definition_body} } """) # 4. add virtual override to TypeDerived.h TYPE_DERIVED_DECLARATION = CodeTemplate("""\ virtual ${return_type} ${method_prefix_derived}${api_name}(${type_method_formals}) const override; """) # 5. add override definition to TypeDerived.cpp TYPE_DERIVED_DEFINITION = CodeTemplate("""\ ${return_type} ${Type}::${method_prefix_derived}${api_name}(${type_method_formals}) const { ${type_definition_body} } """) # NB: As far as ezyang can tell, we don't *have* to codegen this, # because we will inherit it from the TYPE_METHOD_DEFINITION_CONCRETE in # the superclass. But it doesn't seem to be harmful. TYPE_DERIVED_DEFINITION_NATIVE = CodeTemplate("""\ ${return_type} ${Type}::${api_name}(${type_method_formals}) const { ${return_call} at::native::${native_type_method_dispatch}(${actuals}); } """) TYPE_DEFINITION_BODY_NATIVE = CodeTemplate("""\ ${return_call} at::native::${native_type_method_dispatch}(${native_actuals}); """) # 6. add non-virtual declaration to Tensor.h TENSOR_METHOD_DECLARATION = CodeTemplate("""\ ${return_type} ${api_name}(${method_formals_with_defaults})${const_mark}; """) # 7. add non-virtual declaration to Tensor.cpp TENSOR_METHOD_DEFINITION = CodeTemplate("""\ inline ${return_type} Tensor::${api_name}(${method_formals})${const_mark} { return type().${api_name}(${method_actuals}); } """) # 8. add a method declaration in Functions.h FUNCTION_DECLARATION = CodeTemplate("""\ static inline ${return_type} ${api_name}(${formals_with_defaults}); """) # 9. add method definition in Functions.h FUNCTION_DEFINITION = CodeTemplate("""\ static inline ${return_type} ${api_name}(${formals}) { return ${inferred_type}.${api_name}(${type_method_actuals}); } """) # 10. add a native declaration for a native function NATIVE_DECLARATION = CodeTemplate("""\ ${return_type} ${native_type_method_dispatch}(${formals_with_defaults}); """) # We need to cast to the base type because C++ may hide the base class # implementation of ${api_name} if we have overloaded a function with # the same name (but different signature) already ZERO_DIM_CHECK = CodeTemplate("""\ if (${check_name}.dim() == 0) { return static_cast<const Type*>(this)->${api_name}(${zero_dim_actuals}); }""") ZERO_DIM_ONLY = CodeTemplate("""\ AT_ERROR("${api_name} only supports a 0-dimensional ${check_name} tensor, but got tensor " "with %" PRId64 " dimension(s)", ${check_name}.dim()); """) SPARSE_CHECK = CodeTemplate("""\ if(${check_name}.type().is_sparse()) { return static_cast<const Type*>(this)->${api_name}(${sparse_actuals}); }""") BUFFER_DEFINITION = CodeTemplate("""\ auto ${name}_ = new ${Tensor}(context); auto ${name} = Tensor(${name}_, false);""") CONDITIONAL_INITIALIZER = CodeTemplate("""\ if (${name}.defined()) { ${initializer} }""") CALL_TEMPLATE = CodeTemplate("${cname}(${actuals})") HALF_CONVERSION = CodeTemplate("convert<half>(${value})") class NYIError(Exception): """Indicates we don't support this declaration yet""" def __init__(self, reason): self.reason = reason TYPE_FORMAL_GENERIC = { 'THTensor*': 'Tensor &', 'THSTensor*': 'SparseTensor', 'THBoolTensor*': 'Tensor &', 'THIndexTensor*': 'Tensor &', 'THIntegerTensor*': 'Tensor &', 'THDenseTensor*': 'Tensor &', 'THDenseIndexTensor*': 'Tensor &', 'THStorage*': 'Storage &', 'THGenerator*': 'Generator *', 'THSize*': 'IntList', 'THStride*': 'IntList', 'accreal': 'Scalar', 'real': 'Scalar', 'long': 'int64_t', } DYNAMIC_TYPE = { 'THTensor*': 'Tensor', 'THSTensor*': 'SparseTensor', 'THBoolTensor*': 'BoolTensor', 'THIndexTensor*': 'IndexTensor', 'THIntegerTensor*': 'IntegerTensor', 'THDenseTensor*': 'Tensor', 'THDenseIndexTensor*': 'IndexTensor', 'THStorage*': 'Storage', 'THGenerator*': 'Generator*', 'THSize*': 'IntList', 'THStride*': 'IntList', 'accreal': 'accreal', 'real': 'real', 'long': 'int64_t', } TYPE_RETURN = { 'THTensor*': 'Tensor', 'THIndexTensor*': 'Tensor', 'THBoolTensor*': 'Tensor', 'THIntegerTensor*': 'Tensor', 'THSTensor*': 'Tensor', 'THDenseTensor*': 'Tensor', 'THDenseIndexTensor*': 'Tensor', 'real': 'Tensor', 'accreal': 'Tensor', 'long': 'int64_t', } CHECKED_CAST = { 'THTensor*': CodeTemplate( 'checked_cast_tensor<${Tensor}>(${arg_name}.pImpl,"${arg_name}",${arg_pos}, ${null_okay})'), 'THSTensor*': CodeTemplate( 'checked_cast_tensor<Sparse${Tensor}>(${arg_name}.tref.pImpl,"${arg_name}",${arg_pos},false)'), 'THBoolTensor*': CodeTemplate( 'checked_cast_tensor<${Backend}ByteTensor>(${arg_name}.pImpl,"${arg_name}",${arg_pos}, ${null_okay})'), 'THIndexTensor*': CodeTemplate( 'checked_cast_tensor<${Backend}LongTensor>(${arg_name}.pImpl,"${arg_name}",${arg_pos}, ${null_okay})'), 'THIntegerTensor*': CodeTemplate( 'checked_cast_tensor<${Backend}IntTensor>(${arg_name}.pImpl,"${arg_name}",${arg_pos}, ${null_okay})'), 'THDenseTensor*': CodeTemplate( 'checked_cast_tensor<${DenseTensor}>(${arg_name}.pImpl,"${arg_name}",${arg_pos}, ${null_okay})'), 'THDenseIndexTensor*': CodeTemplate( 'checked_cast_tensor<${DenseBackend}LongTensor>(${arg_name}.pImpl,"${arg_name}",${arg_pos}, ${null_okay})'), 'THStorage*': CodeTemplate('checked_cast_storage<${Storage}>(&${arg_name},"${arg_name}",${arg_pos})'), 'THGenerator*': CodeTemplate( 'check_generator<${Backend}Generator>(${arg_name}, &context->defaultGenerator(backend()))'), 'THSize*': CodeTemplate('THLongStorageView::makeFromSize(${arg_name})'), 'THStride*': CodeTemplate('THLongStorageView::makeFromStride(${arg_name}, ${noelem_to_empty})'), 'real': CodeTemplate('${arg_name}.to${ScalarName}()'), 'accreal': CodeTemplate('${arg_name}.to${AccScalarName}()'), 'TensorList': CodeTemplate('tensor_list_checked_cast<${Tensor}, Tensor, ' '${THTensor}>(${arg_name},"${arg_name}",${arg_pos})'), 'IntList': CodeTemplate('check_intlist<${size}>(${arg_name}, "${arg_name}", ${arg_pos}${,default_init})') } CHECKED_USE = { 'THTensor*': '{}_->tensor', 'THSTensor*': '{}_->tensor', 'THIndexTensor*': '{}_->tensor', 'THBoolTensor*': '{}_->tensor', 'THIntegerTensor*': '{}_->tensor', 'THDenseTensor*': '{}_->tensor', 'THDenseIndexTensor*': '{}_->tensor', 'THStorage*': '{}_->storage', 'THGenerator*': '{}_->generator', 'TensorList': "{0}_.data(), {0}_.size()", } CHECKED_USE_NULLABLE = CodeTemplate('${arg_name}_ ? ${usage} : NULL') ALLOC_WRAP = { 'THTensor*': 'new ${Tensor}(context${,arguments})', 'THBoolTensor*': 'new ${Backend}ByteTensor(context${,arguments})', 'THIndexTensor*': 'new ${Backend}LongTensor(context${,arguments})', 'THIntegerTensor*': 'new ${Backend}IntTensor(context${,arguments})', 'THSTensor*': 'new Sparse${Tensor}(context${,arguments})', 'THDenseTensor*': 'new ${DenseTensor}(context${,arguments})', 'THDenseIndexTensor*': 'new ${DenseBackend}LongTensor(context${,arguments})', } # Replacements for constants when calling into TH CONSTANT_REPLACEMENTS = [ ('AS_REAL', '${AS_REAL}'), ('__storage_size.get\\(\\)', 'THLongStorageView::makeFromLength(static_cast<int64_t>(storage.size()))'), ('__last_dim', 'self.ndimension()-1'), ] # Replacements for constants in header file function definitions HEADER_CONSTANT_REPLACEMENTS = [ (r'AS_REAL\((.*)\)', r'\1'), ('__last_dim', '-1'), ] class nested_dict(object): def __init__(self, base, parent): self.base, self.parent = base, parent def __getitem__(self, x): r = self.base.get(x) if r is not None: return r return self.parent[x] Environment = TypedDict('Environment', { 'ScalarName': str, 'THTensor': str, 'THType': str, 'THTensor': str, 'Backend': str, 'AccScalarName': str, }) TopEnvironment = TypedDict('TopEnvironment', { 'type_registrations': List[str], 'type_headers': List[str], 'type_method_declarations': List[str], 'type_method_definitions': List[str], 'type_method_inline_definitions': List[str], 'tensor_method_declarations': List[str], 'tensor_method_definitions': List[str], 'function_declarations': List[str], 'function_definitions': List[str], 'type_ids': List[str], 'native_function_declarations': List[str], }) # A Declarations.cwrap formal argument # type can contain THTensor* types THFormal = TypedDict('THFormal', { 'name': str, 'type': str, 'dynamic_type': str, 'kwarg_only': bool, 'is_nullable': bool, 'default': str, 'default_init': str, 'python_default_init': str, 'output': bool, 'size': int, 'declared_type': str, 'ignore_check': bool, 'allocate': bool, 'mask': bool, 'if_true': bool, 'if_false': bool, 'wrap_dim': str, # Broadcast is originally a str but gets unwrapped to a List or Dict in-place 'broadcast': Any, 'resize': str, 'cpu_zero': bool, 'zero': bool, 'is_type_dispatched': bool, }, total=False) # Generic ATen formal or native_functions.yaml formal argument. # type can contain Tensor& reference types. AtFormal = TypedDict('AtFormal', { 'name': str, 'type': str, 'dynamic_type': str, 'kwarg_only': bool, 'is_nullable': bool, 'default': str, 'default_init': str, 'python_default_init': str, 'output': bool, 'size': int, 'is_type_dispatched': bool, }, total=False) ReturnType = TypedDict('ReturnType', { 'name': str, 'type': str, 'dynamic_type': str, }, total=False) ReturnDecl = TypedDict('ReturnDecl', { 'kind': str, 'type': str, 'arguments': List[int], }, total=False) # Represents a buffer in nn.yaml NNBuffer = TypedDict('NNBuffer', { 'name': str, }) FunctionOption = TypedDict('FunctionOption', { 'arguments': List[THFormal], 'mode': str, 'name': str, 'return': ReturnDecl, 'variants': str, 'type_method_definition_dispatch': str, 'type_method_formals': List[str], 'type_method_formals_with_defaults': List[str], 'type_method_actuals': List[str], 'cname': str, 'backends': List[str], 'api_name': str, 'backend_type_pairs': List[Tuple[str, str]], 'inplace': bool, 'aten_dense_sparse': bool, 'sparse': bool, 'scalar_check': str, 'aten_custom_call': str, 'type_definition_body': List[str], # cimpls is really a List[FunctionOption] 'cimpls': List[Any], 'when_spares_dispatch': str, 'actuals': List[str], 'buffers': List[NNBuffer], 'zero_dim_dispatch_when_scalar': str, 'zero_dim_tensor_only': bool, 'when_sparse_dispatch': str, 'formals_list': List[AtFormal], 'condition': str, 'auto_gpu': bool, 'cpu_half': bool, # options should be List[FunctionOption] 'options': Any, 'formals': List[str], 'formals_with_defaults': List[str], 'returns': List[ReturnType], 'return_type': str, 'return_call': str, 'method_formals': List[str], 'method_formals_with_defaults': List[str], 'method_actuals': List[str], 'const_mark': str, 'method_prefix_derived': str, 'broadcast_actuals': List[str], 'broadcast_returns': List[str], 'inferred_type': str, 'broadcast_function': str, 'broadcast_modified_actuals': List[str], 'native_type_method_dispatch': str, 'native_actuals': List[str], }) OutputDeclaration = NamedTuple('OutputDeclaration', [ ('name', str), ('method_prefix_derived', str), ('arguments', List[AtFormal]), ('method_of', List[str]), ('mode', str), ('buffers', Optional[List[str]]), ('returns', List[ReturnType]), ('inplace', bool), ('abstract', bool), ]) def is_real_argument_to_wrapper(argument): # type: (THFormal) -> bool return not argument.get('output', False) and\ argument['type'] != 'CONSTANT' and\ argument['type'] != 'argument' def is_mutable_formal_argument(argument, option): # type: (THFormal, FunctionOption) -> bool return argument.get('output') or option['inplace'] and argument['name'] == 'self' def to_return_type(arg, option): # type: (THFormal, FunctionOption) -> ReturnType t = arg['type'] rt = TYPE_RETURN.get(t, t) if rt == 'Tensor' and not arg.get('allocate'): rt = rt + ' &' if not is_mutable_formal_argument(arg, option): rt = 'const ' + rt return { 'name': arg['name'], 'type': rt, 'dynamic_type': DYNAMIC_TYPE.get(arg['type'], arg['type']), } def create_generic(top_env, declarations): # type: (TopEnvironment, List[FunctionOption]) -> List[OutputDeclaration] # translates defaults from cwrap types to C++ values def translate_default(argument, type_str, default): # type: (THFormal, str, Any) -> Any if default is None: # cause the default constructor for the object to run return '{}' if 'if_true' in argument: return argument['default'] == argument['if_true'] for pattern, replacement in HEADER_CONSTANT_REPLACEMENTS: default = re.sub(pattern, replacement, str(default)) if type_str in {'Scalar', 'int64_t', 'double'}: return float(default) if '.' in default else int(default) elif type_str == 'bool': assert default.lower() in ['true', 'false'] return default.lower() == 'true' else: return default # change from THTensor* to Tensor & so we get how it will appear # in the aten argument list... def translate_formal(argument, option): # type: (THFormal, FunctionOption) -> AtFormal type_str = TYPE_FORMAL_GENERIC.get(argument['type'], argument['type']) if type_str == 'Tensor &' and not is_mutable_formal_argument(argument, option): type_str = 'const ' + type_str translated = { 'name': argument['name'], 'type': type_str, 'dynamic_type': DYNAMIC_TYPE.get(argument['type'], argument['type']), } # type: AtFormal if 'kwarg_only' in argument: translated['kwarg_only'] = argument['kwarg_only'] if 'default' in argument: default = translate_default(argument, type_str, argument['default']) translated['default'] = default translated['default_init'] = argument.get('default_init', default) if 'python_default_init' in argument: assert 'default' not in argument default = translate_default(argument, type_str, argument['python_default_init']) translated['python_default_init'] = default if argument.get('output'): translated['output'] = True if argument.get('size'): translated['size'] = argument['size'] if argument.get('is_nullable') is not None: translated['is_nullable'] = argument['is_nullable'] return translated def get_formals(option, include_constants=False): # type: (FunctionOption, bool) -> List[AtFormal] seen = set() # type: Set[str] pos_args = [] # type: List[THFormal] kwd_args = [] # type: List[THFormal] def insert(argument): # type: (THFormal) -> None if argument['name'] not in seen: seen.add(argument['name']) if argument.get('kwarg_only', False): kwd_args.append(argument) else: pos_args.append(argument) def has_output_mask(argument): # type: (THFormal) -> bool return argument.get('allocate', False) and argument.get('mask', False) for argument in option['arguments']: if argument.get('output') and not argument.get('allocate', False): insert(argument) for argument in option['arguments']: if argument['type'] == 'THSTensor*': # only enable for a subset of Dense/Sparse ops if not (option.get('aten_dense_sparse', False)): raise NYIError("Sparse Tensor") if include_constants and argument['type'] == 'CONSTANT': insert(argument) elif is_real_argument_to_wrapper(argument): insert(argument) if any(has_output_mask(arg) for arg in option['arguments']): mask_size = sum(has_output_mask(arg) for arg in option['arguments']) insert({ 'name': 'output_mask', # NB: Lack of space in comma works around parsing # problem in gen_variable_type.py 'type': 'std::array<bool,{}>'.format(mask_size), 'default': '{{' + ', '.join(['true'] * mask_size) + '}}', }) result = pos_args + kwd_args return [translate_formal(argument, option) for argument in result] def get_return_types(option): # type: (FunctionOption) -> List[ReturnType] ret = option['return'] if ret['kind'] == 'arguments': argument_indices = ret['arguments'] if len(argument_indices) == 1: the_arg = option['arguments'][argument_indices[0]] return [to_return_type(the_arg, option)] else: return [to_return_type(option['arguments'][idx], option) for idx in argument_indices] elif ret['kind'] == 'type': return [{ 'type': TYPE_RETURN.get(ret['type'], ret['type']), 'dynamic_type': DYNAMIC_TYPE.get(ret['type'], ret['type']), }] else: raise Exception("format_return_type") def format_return_type(return_types): # type: (List[ReturnType]) -> str if len(return_types) == 1: return return_types[0]['type'] return "std::tuple<{}>".format(','.join(r['type'] for r in return_types)) def find_dispatch_tensor(formals): # type: (List[AtFormal]) -> Optional[str] # dispatch to self if it's a parameter for formal in formals: if formal['name'] == 'self' and formal['dynamic_type'] == 'Tensor': return formal['name'] # otherwise dispatch to the first Tensor or TensorList for formal in formals: if 'TensorList' == formal['dynamic_type'] or formal['dynamic_type'] == 'Tensor': return formal['name'] return None def format_formal(f): # type: (AtFormal) -> str return '{} {}'.format(f['type'], f['name']) def formal_with_default(f): # type: (AtFormal) -> str s = format_formal(f) v = f.get('default') if v is None: return s if isinstance(v, bool): v = str(v).lower() return '{}={}'.format(s, v) def get_broadcast_argument(option): # type: (FunctionOption) -> Optional[THFormal] for argument in option['arguments']: if argument.get('broadcast'): return argument return None def get_broadcast_actuals(broadcast_arg, broadcast_inplace, broadcast_dims): # type: (THFormal, bool, bool) -> List[str] # Note: broadcast_dims can change type... # return the actuals that will be passed to the broadcast function. # 1) in the common case, this is the broadcasted argument (e.g. "self") followed by the tensors # that it is broadcasted against (comma-separated) (e.g. "self, tensor1, tensor2"). # 2) in the broadcast_dims case, this is the broadcasted argument (e.g. "self") followed by the sizes # it is broadcasted to (as an initializer list), so e.g. the specification # "mat1.dim0,mat2.dim1" gets transformed to "self, {mat1.size(0),mat2.size(1)}" if not broadcast_dims: broadcast_actuals = [broadcast_arg['name']] + broadcast_arg['broadcast'].split()[0].split(",") else: broadcast_dims_spec = broadcast_arg['broadcast'].split()[1].split(':')[1].split(',') # generate size call for each dimension broadcast_dims = ([x.split('.')[0] + '.size(' + x.split('.')[1].replace('dim', '') + ')' # type: ignore for x in broadcast_dims_spec]) broadcast_dims_init_list = '{' + ','.join(broadcast_dims) + '}' # type: ignore broadcast_actuals = [broadcast_arg['name'], broadcast_dims_init_list] return broadcast_actuals def emit_nn_body(option): # type: (FunctionOption) -> Union[str, List[str]] # Concrete definition on Type.cpp for NN functions. Delegates to the # xxx_forward variant variant after creating any necessary buffers. actuals = option['actuals'] base_name = option['name'][:-1] if option['inplace'] else option['name'] fwd_name = option['api_name'].replace(base_name, base_name + '_forward') if len(option['buffers']) == 0: return 'return {}({});'.format(fwd_name, ', '.join(actuals)) body = [] # type: List[str] if option['api_name'].endswith('_out'): # _out variants must create buffers and insert them in the # arguments list between output and input arguments for buffer in option['buffers']: body.append('Tensor {} = tensor();'.format(buffer['name'])) actuals = [arg['name'] for arg in option['arguments'] if arg.get('output')] actuals += [buffer['name'] for buffer in option['buffers']] actuals += [arg['name'] for arg in option['arguments'] if not arg.get('output')] body.append('return std::get<0>({}({}));'.format(fwd_name, ', '.join(actuals))) return body def process_option(option, output_options): # type: (FunctionOption, List[OutputDeclaration]) -> None option['inplace'] = re.search( '(^__i|[^_]_$)', option['api_name']) is not None # print(yaml.dump(option)) formals = get_formals(option) option['formals_list'] = formals option['formals'] = [format_formal(f) for f in formals] option['formals_with_defaults'] = [formal_with_default(f) for f in formals] option['returns'] = get_return_types(option) option['return_type'] = format_return_type(option['returns']) option['return_call'] = 'return ' if option['return_type'] != 'void' else '' option['actuals'] = [f['name'] for f in formals] option['method_formals'] = [format_formal(f) for f in formals if f['name'] != 'self'] option['method_formals_with_defaults'] = ( [formal_with_default(f) for f in formals if f['name'] != 'self']) option['method_actuals'] = [ f['name'] if f['name'] != 'self' else '*this' for f in formals] # There are no cases where these differ, but they do in native_functions option['type_method_formals'] = option['formals'] option['type_method_formals_with_defaults'] = option['formals_with_defaults'] option['type_method_actuals'] = option['actuals'] option['const_mark'] = '' if option['inplace'] else ' const' is_method = 'method' in option['variants'] is_function = 'function' in option['variants'] dispatch_tensor = find_dispatch_tensor(formals) is_namespace_function = is_function and dispatch_tensor is not None broadcast_arg = get_broadcast_argument(option) # "s_" for "same size". option['method_prefix_derived'] = '' if broadcast_arg is None else 's_' env = nested_dict(option, top_env) mode = option['mode'] abstract = True if mode == 'NN' and option.get('cimpls') is None: # NN function with no _forward/_backward suffix don't have cimpls. # They call the _forward function and discard any buffer returns abstract = False top_env['type_method_declarations'].append( TYPE_METHOD_DECLARATION_CONCRETE.substitute(env)) body = emit_nn_body(option) top_env['type_method_definitions'].append( TYPE_METHOD_DEFINITION_CONCRETE.substitute( env, type_definition_body=body)) elif broadcast_arg is None: top_env['type_method_declarations'].append( TYPE_METHOD_DECLARATION_ABSTRACT.substitute(env)) top_env['type_method_definitions'].append( TYPE_METHOD_DEFINITION_ABSTRACT.substitute(env)) else: top_env['type_method_declarations'].append( TYPE_METHOD_DECLARATION_BROADCAST.substitute(env)) top_env['type_method_declarations'].append( TYPE_METHOD_DECLARATION_ABSTRACT.substitute(env)) top_env['type_method_definitions'].append( TYPE_METHOD_DEFINITION_ABSTRACT.substitute(env)) broadcast_inplace = 'inplace' in broadcast_arg['broadcast'] broadcast_dims = 'dims:' in broadcast_arg['broadcast'] option['broadcast_actuals'] = get_broadcast_actuals(broadcast_arg, broadcast_inplace, broadcast_dims) if not broadcast_dims: option['broadcast_returns'] = (["b_" + x for x in option['broadcast_actuals'] if x != broadcast_arg['name'] or not broadcast_inplace]) else: option['broadcast_returns'] = ["b_" + broadcast_arg['name']] option['broadcast_function'] = 'expand_' + ('inplace' if broadcast_inplace else 'size' if broadcast_dims else 'outplace') option['broadcast_modified_actuals'] = ['b_' + y if 'b_' + y in option['broadcast_returns'] else y for y in option['actuals']] top_env['type_method_definitions'].append( TYPE_METHOD_DEFINITION_BROADCAST.substitute(env)) method_of = ['Type'] if is_method: top_env['tensor_method_declarations'].append( TENSOR_METHOD_DECLARATION.substitute(env)) top_env['tensor_method_definitions'].append( TENSOR_METHOD_DEFINITION.substitute(env)) method_of.append('Tensor') if is_namespace_function: option['inferred_type'] = 'infer_type({})'.format(dispatch_tensor) top_env['function_declarations'].append( FUNCTION_DECLARATION.substitute(env)) top_env['function_definitions'].append( FUNCTION_DEFINITION.substitute(env)) method_of.append('namespace') buffer_names = [buffer['name'] for buffer in option.get('buffers', [])] output_options.append(OutputDeclaration( name=option['api_name'], method_prefix_derived=option['method_prefix_derived'], arguments=formals, method_of=method_of, mode=mode, buffers=buffer_names, returns=option['returns'], inplace=option['inplace'], # See Note [Abstract ATen methods] abstract=abstract, )) def native_get_formals(option, include_constants=False): # type: (FunctionOption, bool) -> List[AtFormal] seen = set() # type: Set[str] pos_args = [] kwd_args = [] def insert(argument): # type: (AtFormal) -> None if argument['name'] not in seen: seen.add(argument['name']) if argument.get('kwarg_only', False): kwd_args.append(argument) else: pos_args.append(argument) for argument in option['arguments']: insert(argument) # not clear we need dynamic_type translation as we can specify the correct type # directly in native functions def add_type_as_dynamic_type(argument, option): # type: (AtFormal, FunctionOption) -> AtFormal argument['dynamic_type'] = argument['type'] return argument result = pos_args + kwd_args result = [add_type_as_dynamic_type(argument, option) for argument in result] # ensure we get reference-type formals when appropriate def native_translate_formals(argument, option): # type: (AtFormal, FunctionOption) -> AtFormal def translate_map(const): # type: (bool) -> Dict[str, str] return { 'Tensor': 'const Tensor &' if const else 'Tensor &', 'BoolTensor': 'const Tensor &' if const else 'Tensor &', 'IndexTensor': 'const Tensor &' if const else 'Tensor &', 'Type': 'const Type &' if const else 'Type &', } if (option['inplace'] and argument['name'] == 'self') or argument.get('output', False): argument['type'] = translate_map(False).get(argument['type'], argument['type']) else: argument['type'] = translate_map(True).get(argument['type'], argument['type']) return argument result = [native_translate_formals(argument, option) for argument in result] return result # this can return multiple return types in a list, e.g. ['Tensor', 'Tensor'] def native_get_return_types(option): # type: (FunctionOption) -> List[ReturnType] ret = option['return'] return_types = [] # List[ReturnType] for t_raw in ret: if isinstance(t_raw, string_type): t = t_raw name = None else: t = t_raw['type'] name = t_raw['name'] # can't actually return a TensorList (since it's a reference object) actual_return_type = {'TensorList': 'std::vector<Tensor>'}.get(t, t) if actual_return_type == 'Tensor' and (option['inplace'] or option['api_name'].endswith('_out')): # follow normal ATen convention of returning Tensor & for inplace functions. actual_return_type = 'Tensor &' rtype = { 'type': actual_return_type, 'dynamic_type': t, } # type: ReturnType if name is not None: rtype['name'] = name return_types.append(rtype) return return_types def process_native(option, output_options): # type: (FunctionOption, List[OutputDeclaration]) -> None option['inplace'] = re.search( '(^__i|[^_]_$)', option['api_name']) is not None formals = native_get_formals(option) option['formals_list'] = formals option['formals'] = [format_formal(f) for f in formals] option['formals_with_defaults'] = [formal_with_default(f) for f in formals] option['returns'] = native_get_return_types(option) option['return_type'] = format_return_type(option['returns']) option['return_call'] = 'return ' if option['return_type'] != 'void' else '' option['actuals'] = [f['name'] for f in formals] option['method_formals'] = [format_formal(f) for f in formals if f['name'] != 'self'] option['method_formals_with_defaults'] = ( [formal_with_default(f) for f in formals if f['name'] != 'self']) option['method_actuals'] = [ f['name'] if f['name'] != 'self' else '*this' for f in formals] def find_dispatch_type(formals): for formal in formals: if 'Type' == formal['dynamic_type']: return formal return None dispatch_tensor = find_dispatch_tensor(formals) dispatch_type = None if dispatch_tensor else find_dispatch_type(formals) if dispatch_type: dispatch_type['is_type_dispatched'] = True option['type_method_formals'] = [format_formal(f) for f in formals if f != dispatch_type] option['type_method_formals_with_defaults'] = [formal_with_default(f) for f in formals if f != dispatch_type] option['type_method_actuals'] = [f['name'] for f in formals if f != dispatch_type] option['native_actuals'] = [f['name'] if f != dispatch_type else '*this' for f in formals] option['const_mark'] = '' if option['inplace'] else ' const' is_method = 'method' in option['variants'] is_function = 'function' in option['variants'] is_namespace_function = is_function and (dispatch_tensor or dispatch_type) option['method_prefix_derived'] = '' env = nested_dict(option, top_env) broadcast_arg = get_broadcast_argument(option) if broadcast_arg is not None: raise Exception("broadcasting is not yet supported for native functions, " "but specified for function {}", option['name']) top_env['type_method_declarations'].append( TYPE_METHOD_DECLARATION_CONCRETE.substitute(env)) dispatch = option['type_method_definition_dispatch'] option['native_type_method_dispatch'] = dispatch # Note [Abstract ATen methods] # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # An abstract ATen method is one whose dispatch differs between # types. These are implemented in derived types (with a # standard (throwing) definition in Type). A concrete ATen # method is one which has the same dispatch for all types; # we just implement it in the base Type. This is exposed # in Declarations.yaml via a field named 'abstract'. if isinstance(dispatch, dict): abstract = True top_env['type_method_definitions'].append( TYPE_METHOD_DEFINITION_ABSTRACT.substitute(env)) else: abstract = False body = TYPE_DEFINITION_BODY_NATIVE.substitute(env) top_env['type_method_definitions'].append( TYPE_METHOD_DEFINITION_CONCRETE.substitute( env, type_definition_body=body)) # generate the at::native function declarations (i.e. what the user will implement) if isinstance(dispatch, dict): generated_native_functions = [] # type: List[str] for key in sorted(dispatch.keys()): value = dispatch[key] if value not in generated_native_functions: option['native_type_method_dispatch'] = value top_env['native_function_declarations'].append( NATIVE_DECLARATION.substitute(env)) generated_native_functions.append(value) else: top_env['native_function_declarations'].append( NATIVE_DECLARATION.substitute(env)) method_of = ['Type'] if is_method: top_env['tensor_method_declarations'].append( TENSOR_METHOD_DECLARATION.substitute(env)) top_env['tensor_method_definitions'].append( TENSOR_METHOD_DEFINITION.substitute(env)) method_of.append('Tensor') if is_namespace_function: if dispatch_type: option['inferred_type'] = dispatch_type['name'] else: option['inferred_type'] = 'infer_type({})'.format(dispatch_tensor) top_env['function_declarations'].append( FUNCTION_DECLARATION.substitute(env)) top_env['function_definitions'].append( FUNCTION_DEFINITION.substitute(env)) method_of.append('namespace') output_options.append(OutputDeclaration( name=option['api_name'], method_prefix_derived=option['method_prefix_derived'], arguments=formals, method_of=method_of, mode=option['mode'], buffers=None, returns=option['returns'], inplace=option['inplace'], # See Note [Abstract ATen methods] abstract=abstract, )) output_declarations = [] # type: List[OutputDeclaration] for declaration in declarations: output_options = [] # type: List[OutputDeclaration] for option in declaration['options']: try: if option['mode'] != 'native': process_option(option, output_options) else: process_native(option, output_options) except NYIError: option['skip'] = True output_declarations.extend(output_options) return output_declarations def create_derived(backend_type_env, declarations): # type: (Environment, List[FunctionOption]) -> Tuple[List[str], List[str]] type_object_declarations = [] type_object_definitions = [] is_cuda = 'CUDA' in backend_type_env['Backend'] real_is_half = backend_type_env['ScalarName'] == 'Half' def replace_with_null(argument): # type: (THFormal) -> bool return (argument['type'] == 'THGenerator*' and backend_type_env['Backend'] == 'CUDA') def requires_checked_cast(argument): # type: (THFormal) -> bool if argument['type'] == 'IntList': return 'size' in argument return argument['type'] in CHECKED_CAST def nullable_argument(argument): # type: (THFormal) -> bool return argument.get('is_nullable', False) def bool_option_is_string(argument): # type: (THFormal) -> bool return 'if_true' in argument and isinstance(argument['if_true'], string_type) def get_argument(argument, option): # type: (THFormal, FunctionOption) -> str if replace_with_null(argument): return 'NULL' elif requires_checked_cast(argument): checked_use = CHECKED_USE.get( argument['type'], '{}_').format(argument['name']) if real_is_half and argument['type'] == 'real': checked_use = HALF_CONVERSION.substitute(value=checked_use) if nullable_argument(argument): checked_use = CHECKED_USE_NULLABLE.substitute( env={}, arg_name=argument['name'], usage=checked_use) return checked_use elif argument['type'] == 'bool' and 'if_true' in argument: if bool_option_is_string(argument): tpl = '({}) ? "{}" : "{}"' else: tpl = '({}) ? {} : {}' return tpl.format(argument['name'], argument['if_true'], argument['if_false']) elif argument['type'] == 'CONSTANT': # this is a bool that is actually a string... if bool_option_is_string(argument): return '"{}"'.format(argument['name']) v = str(argument.get('default', argument['name'])) for pattern, replacement in CONSTANT_REPLACEMENTS: v = re.sub(pattern, replacement, v) return CodeTemplate(v).substitute(backend_type_env) # e.g. argument 0, i.e. repeat the 0th argument in this position... elif argument['type'] == 'argument': index = int(argument['name']) return get_argument(option['arguments'][index], option) else: return argument['name'] def drop_argument(argument, option): # type: (THFormal, FunctionOption) -> bool return 'CUDA' in backend_type_env['Backend'] and ( option['mode'] == 'TH' and argument['type'] == 'THGenerator*') def get_arguments(arguments, option): # type: (List[THFormal], FunctionOption) -> List[str] return [get_argument(argument, option) for argument in arguments if not drop_argument(argument, option)] def is_actual_return_long(ret): # type: (ReturnDecl) -> bool if ret['type'] == 'long': return True if ret['type'] == 'real': return backend_type_env['ScalarName'] == 'Long' if ret['type'] == 'accreal': return backend_type_env['AccScalarName'] == 'Long' return False def handle_zero_dim(env, option): # type: (Environment, FunctionOption) -> List[str] zero_dim_dispatch = option.get('zero_dim_dispatch_when_scalar', '') if not zero_dim_dispatch: return [] broadcasts_arg = zero_dim_dispatch in option.get('broadcast_actuals', '') zero_dim_only = option.get('zero_dim_tensor_only', False) # this combination doesn't seem to make sense assert not (broadcasts_arg and zero_dim_only) # if the argument broadcasts, then this would only affect cases where all broadcasted # tensors were zero-dim, which is inconsistent with the scalar handling. if broadcasts_arg: return [] zero_dim_actuals = [arg['name'] if arg['name'] != zero_dim_dispatch else "Scalar({})".format(arg['name']) for arg in option['formals_list']] return [ZERO_DIM_CHECK.substitute(env, check_name=zero_dim_dispatch, zero_dim_actuals=zero_dim_actuals)] def handle_only_zero_dim(env, option): # type: (Environment, FunctionOption) -> List[str] if option.get('zero_dim_tensor_only', False): check_name = option['zero_dim_dispatch_when_scalar'] return [ZERO_DIM_ONLY.substitute(env, check_name=check_name)] else: return None def handle_sparse(env, option): # type: (Environment, FunctionOption) -> List[str] if 'when_sparse_dispatch' not in option or 'Sparse' in backend_type_env['Backend']: return [] check_name = option['when_sparse_dispatch'] sparse_actuals = [arg['name'] if arg['name'] != check_name else "SparseTensor({})".format(arg['name']) for arg in option['formals_list']] return [SPARSE_CHECK.substitute(env, check_name=check_name, sparse_actuals=sparse_actuals)] def allocate_arg(env, arg, output_count): # type: (Environment, THFormal, int) -> List[str] name = arg['name'] allocation = CodeTemplate(ALLOC_WRAP[arg['type']]).substitute(env, arguments=[]) tensor_arg = '{}_'.format(name) if arg.get('mask', False): allocation = 'output_mask[{}] ? {} : nullptr'.format(output_count, allocation) tensor_arg = ('{}_ == nullptr ? (TensorImpl*)UndefinedTensor::singleton() : (TensorImpl*){}_' .format(name, name)) return [ 'auto {}_ = {};'.format(name, allocation), 'auto {} = Tensor({}, false);'.format(name, tensor_arg), ] def resize_arg(arg): # type: (THFormal) -> str resize = arg['resize'] if isinstance(resize, str): return "{}.resize_({}.sizes());".format(arg['name'], resize) else: resize_scalar = arg.get('resize_scalar', False) if resize_scalar: dims = ['{}.dim() == 0 ? 1 : {}.size({})'.format(name, name, dim) for name, dim in resize] else: dims = ['{}.size({})'.format(name, dim) for name, dim in resize] return "{}.resize_({{ {} }});".format(arg['name'], ','.join(dims)) def handle_call(env, option, cimpl): # type: (Environment, FunctionOption, FunctionOption) -> str is_nn = option['mode'] == 'NN' actuals = get_arguments(cimpl['arguments'], option) if is_cuda or is_nn: actuals = ['context->thc_state'] + actuals cname = cimpl['cname'] if option.get('sparse', False): if is_cuda: cname = 'THCS' + env['ScalarName'] + "Tensor_" + cname else: cname = env['THTensor'].replace('TH', 'THS') + '_' + cname elif is_nn: cname = 'THNN_{}'.format(env['THType']) + cname else: cname = env['THTensor'] + '_' + cname call = CALL_TEMPLATE.substitute(actuals=actuals, cname=cname) if cimpl.get('condition') is not None: call = 'if ({}) {}'.format(cimpl['condition'], call) return call def emit_body(env, option): # type: (Environment, FunctionOption) -> List[str] body = [] # type: List[str] body += handle_sparse(env, option) body += handle_zero_dim(env, option) only_zero_dim_check = handle_only_zero_dim(env, option) if only_zero_dim_check is not None: # code below only_zero_dim_check is unreachable so we do not need to generate the rest. body += only_zero_dim_check return body # arguments are potentially duplicated because of one argument # referencing another seen_names = set() # type: Set[str] seen_tensorlists = set() # type: Set[str] count = 0 output_count = 0 # scalar_check is the heuristic conditions when a result may be a scalar_check # if there is a THSize* argument, then its dimensions are used to determine scalar. # otherwise, it is true if all the input tensors are scalars, scalar_check_is_from_size = False scalar_check_is_from_option = False scalar_check = None scalar_check_opt = option.get('scalar_check') if scalar_check_opt is not None: if isinstance(scalar_check_opt, bool): scalar_check = str(scalar_check_opt).lower() else: scalar_check = scalar_check_opt scalar_check_is_from_option = True for arg in option['arguments']: if is_real_argument_to_wrapper(arg): count += 1 if arg['type'] == 'THSize*' and not scalar_check_is_from_option: scalar_check_is_from_size = True scalar_check = '{}.size() == 0'.format(arg['name']) if arg['type'] == 'TensorList': seen_tensorlists.add(arg['name']) wrap_dim_target = arg.get('wrap_dim', None) if wrap_dim_target is not None: # for Tensors, "name_" is the TensorImpl, but for TensorLists, it is an # std::vector of TH*s. Since TH*s have different dimension rules, we used # "name" instead, but keep "name_" for tensor to avoid an extra function call. if wrap_dim_target not in seen_tensorlists: wrap_dim_target = wrap_dim_target + "_" body.append("{} = maybe_wrap_dim({}, {});" .format(arg['name'], arg['name'], wrap_dim_target)) # only generated checked casts the first time we see it if arg['name'] not in seen_names and requires_checked_cast(arg): seen_names.add(arg['name']) # make a new allocation of TensorImpl, then wrap a Tensor around it. if arg.get('allocate', False): body += allocate_arg(env, arg, output_count) output_count += 1 # extract the TensorImpl from an existing tensor (or Storage, etc.) else: # special case where we allow undefined Tensors, and thus # the checked cast succeeds even if the Tensor is not # defined null_okay = 'true' if nullable_argument(arg) else 'false' default_init = [] if 'default_init' in arg: default_init.append(arg['default_init']) noelem_to_empty = 'is_noelem_tensor_size(size)' if 'size' in seen_names else 'false' check_cast = CHECKED_CAST[arg['type']].substitute( env, arg_name=arg['name'], arg_pos=count, null_okay=null_okay, default_init=default_init, size=arg.get('size'), noelem_to_empty=noelem_to_empty) body.append("auto {}_ = {};".format( arg['name'], check_cast)) if drop_argument(arg, option) or replace_with_null(arg): body.append( "(void) {}_; //silence unused warning".format(arg['name'])) initializers = [] # resize tensors for special ops that require it if 'resize' in arg: initializers.append(resize_arg(arg)) # also special handling where we zero some outputs. if arg.get('zero', False) or (arg.get('cpu_zero', False) and not is_cuda): initializers.append("{}.zero_();".format(arg['name'])) # only initialize non-null arguments if nullable_argument(arg) and len(initializers) > 0: body.append(CONDITIONAL_INITIALIZER.substitute({ 'name': arg['name'], 'initializer': initializers })) else: body += initializers # for out-of-place: isScalar() for all input tensors is and'd to form # the test for whether the output is also a scalar # for in-place: isScalar() shouldn't change as a result of the operation if (not arg.get('output') and 'Tensor' in arg['type'] and 'TensorList' not in arg['type'] and 'THS' not in arg['type'] and not scalar_check_is_from_size and not scalar_check_is_from_option and not option['inplace']): check = '{}->isScalar()'.format(arg['name'] + '_') if nullable_argument(arg): check = '(!{} || {})'.format(arg['name'] + '_', check) scalar_check = (check if scalar_check is None else scalar_check + ' && ' + check) # cimpls, if it exists, contains the underlying C function names and # arguments. Otherwise use option cimpls = option.get('cimpls', [option]) calls = [handle_call(env, option, cimpl) for cimpl in cimpls] ret = option['return'] if ret['kind'] == 'arguments': if 'aten_custom_call' in option: # all aten_custom_call bodies handle settings on their own. scalar_check = None body.append(CodeTemplate( option['aten_custom_call']).substitute(env)) else: body.extend([call + ';' for call in calls]) arguments_indices = ret['arguments'] arguments = [option['arguments'][argi] for argi in arguments_indices] if scalar_check is not None: if not isinstance(scalar_check, dict): if len(arguments) > 1: body.append("bool maybe_scalar = {};".format(scalar_check)) scalar_check = 'maybe_scalar' for arg in arguments: scalar_check_arg = (scalar_check if not isinstance(scalar_check, dict) else scalar_check.get(arg['name'])) # type: ignore if scalar_check_arg is not None: stmt = "{}_->maybeScalar({});".format(arg['name'], scalar_check_arg) if nullable_argument(arg): stmt = "if ({}_) {}".format(arg['name'], stmt) body.append(stmt) if len(arguments_indices) == 1: arg = arguments[0] body.append("return {};".format(arg['name'])) else: types = [to_return_type(arg, option)['type'] for arg in arguments] # TODO: check for move semantics... names = [arg['name'] for arg in arguments] body.append(CodeTemplate("return std::tuple<${types}>(${names});").substitute( types=types, names=names)) elif ret['kind'] == 'type': assert len(calls) == 1 call = calls[0] if 'aten_custom_call' in option: # all aten_custom_call bodies handle settings on their own. scalar_check = None body.append(CodeTemplate( option['aten_custom_call']).substitute(env)) if ret['type'] in ALLOC_WRAP.keys(): maybe_scalar = "->maybeScalar({})".format(scalar_check) \ if scalar_check is not None \ else "" wrapped_tensor = CodeTemplate(ALLOC_WRAP[ret['type']]).substitute( env, arguments=[call]) return_tensor = "return Tensor((${wrapped_tensor})${maybe_scalar},false);" body.append(CodeTemplate(return_tensor).substitute( env, wrapped_tensor=wrapped_tensor, maybe_scalar=maybe_scalar)) # return the same underlying Tensor type for both real and accreal; this ensures # e.g. x.sum(0) and x.sum() return the same type. We explicitly cast to the # ScalarType before constructing the scalarTensor to avoid overflow checking. elif ret['type'] == 'accreal' or ret['type'] == 'real': return_scalar = 'return scalarTensor(convert<${ScalarType}>(${call}));' body.append(CodeTemplate(return_scalar).substitute(env, call=call)) else: # we using int64_t for long in the API, so correct it here... if is_actual_return_long(ret): call = "static_cast<int64_t>({})".format(call) body.append("return {};".format(call)) else: raise Exception("NYI - return handling") return body def process_option(option): # type: (FunctionOption) -> None pair = (backend_type_env['Backend'], backend_type_env['ScalarName']) if pair in option['backend_type_pairs']: env = nested_dict(option, backend_type_env) body = emit_body(env, option) # type: ignore option['type_definition_body'] = body type_object_declarations.append( TYPE_DERIVED_DECLARATION.substitute(env)) type_object_definitions.append( TYPE_DERIVED_DEFINITION.substitute(env)) def process_native(option): # type: (FunctionOption) -> None dispatch = option['type_method_definition_dispatch'] env = nested_dict(option, backend_type_env) if isinstance(dispatch, dict): pair = (backend_type_env['Backend'], backend_type_env['ScalarName']) if pair in option['backend_type_pairs']: native_dispatch = dispatch.get(pair[0]) if native_dispatch is None: raise Exception('could not find backend {} in native function dispatch specification {}' .format(pair[0], dispatch)) option['native_type_method_dispatch'] = native_dispatch type_object_declarations.append( TYPE_DERIVED_DECLARATION.substitute(env)) type_object_definitions.append( TYPE_DERIVED_DEFINITION_NATIVE.substitute(env)) for declaration in declarations: for option in declaration['options']: if not option.get('skip', False): try: if option['mode'] == 'NN' and option.get('cimpls') is None: continue if option['mode'] != 'native': process_option(option) else: process_native(option) except NYIError: pass return type_object_declarations, type_object_definitions
import yaml # follows similar logic to cwrap, ignores !inc, and just looks for [[]] def parse(filename): with open(filename, 'r') as file: declaration_lines = [] declarations = [] in_declaration = False for line in file.readlines(): line = line.rstrip() if line == '[[': declaration_lines = [] in_declaration = True elif line == ']]': in_declaration = False declaration = yaml.load('\n'.join(declaration_lines)) declarations.append(declaration) elif in_declaration: declaration_lines.append(line) return declarations
from optparse import OptionParser parser = OptionParser() parser.add_option('-o', '--output', help='where to write the result file.', action='store', default='.') options, _ = parser.parse_args() files = [ # '../../csrc/cudnn/cuDNN.cwrap', '../../csrc/generic/TensorMethods.cwrap', # '../../csrc/generic/methods/SparseTensor.cwrap', '../../csrc/generic/methods/Tensor.cwrap', '../../csrc/generic/methods/TensorApply.cwrap', '../../csrc/generic/methods/TensorCompare.cwrap', '../../csrc/generic/methods/TensorCuda.cwrap', '../../csrc/generic/methods/TensorMath.cwrap', '../../csrc/generic/methods/TensorRandom.cwrap', # '../../csrc/generic/methods/TensorSerialization.cwrap', ] declaration_lines = [] for filename in files: with open(filename, 'r') as file: in_declaration = False for line in file.readlines(): line = line.rstrip() if line == '[[': in_declaration = True declaration_lines.append(line) elif line == ']]': in_declaration = False declaration_lines.append(line) elif in_declaration: declaration_lines.append(line) with open(options.output, 'w') as output: output.write('\n'.join(declaration_lines) + '\n')
import re import yaml try: # use faster C loader if available from yaml import CLoader as Loader except ImportError: from yaml import Loader def parse_default(s): if s.lower() == 'true': return True elif s.lower() == 'false': return False elif s == 'nullptr': return s elif s == '{}': return '{}' elif s == 'nullopt': return s try: return int(s) except Exception: return float(s) def sanitize_types(typ): # split tuples into constituent list if typ[0] == '(' and typ[-1] == ')': return [x.strip() for x in typ[1:-1].split(',')] elif typ == 'Generator*': return ['Generator *'] return [typ] def parse_arguments(args, func_decl, func_name, func_return): arguments = [] python_default_inits = func_decl.get('python_default_init', {}) is_out_fn = func_name.endswith('_out') kwarg_only = False # TODO: Use a real parser here; this will get bamboozled # by signatures that contain things like std::array<bool, 2> (note the space) for arg_idx, arg in enumerate(args.split(', ')): type_and_name = [a.strip() for a in arg.rsplit(' ', 1)] if type_and_name == ['*']: assert not kwarg_only kwarg_only = True continue t, name = type_and_name default = None python_default_init = None if '=' in name: ns = name.split('=', 1) name, default = ns[0], parse_default(ns[1]) if name in python_default_inits: assert default is None python_default_init = python_default_inits[name] typ = sanitize_types(t) assert len(typ) == 1 argument_dict = {'type': typ[0].rstrip('?'), 'name': name, 'is_nullable': typ[0].endswith('?')} match = re.match(r'IntList\[(\d+)\]', argument_dict['type']) if match: argument_dict['type'] = 'IntList' argument_dict['size'] = int(match.group(1)) if default is not None: argument_dict['default'] = default if python_default_init is not None: argument_dict['python_default_init'] = python_default_init # TODO: convention is that the ith-argument correspond to the i-th return, but it would # be better if we just named everything and matched by name. if is_out_fn and arg_idx < len(func_return): argument_dict['output'] = True if kwarg_only: argument_dict['kwarg_only'] = True arguments.append(argument_dict) return arguments def has_sparse_dispatches(dispatches): for dispatch in dispatches: if 'Sparse' in dispatch: return True return False def parse_native_yaml(path): with open(path, 'r') as f: return yaml.load(f, Loader=Loader) def run(paths): declarations = [] for path in paths: for func in parse_native_yaml(path): declaration = {'mode': 'native'} if '->' in func['func']: func_decl, return_type = [x.strip() for x in func['func'].split('->')] return_type = sanitize_types(return_type) else: func_decl = func['func'] return_type = None fn_name, arguments = func_decl.split('(') arguments = arguments.split(')')[0] declaration['name'] = func.get('name', fn_name) declaration['return'] = list(func.get('return', return_type)) declaration['variants'] = func.get('variants', ['method', 'function']) declaration['arguments'] = func.get('arguments', parse_arguments(arguments, func, declaration['name'], declaration['return'])) declaration['type_method_definition_dispatch'] = func.get('dispatch', declaration['name']) declaration['aten_sparse'] = has_sparse_dispatches( declaration['type_method_definition_dispatch']) declarations.append(declaration) return declarations
from code_template import CodeTemplate from function_wrapper import nested_dict FILE = CodeTemplate("""\ #include "ATen/Config.h" #include "TH/TH.h" #if AT_CUDA_ENABLED() #undef THNN_ #include "THC/THC.h" #endif #include "ATen/Utils.h" ${copy_includes} namespace at { ${copy_functions} } """) COPY = CodeTemplate("""\ ${THTensor}_copy${cuda}${src_scalar_name}(${state,}self_->tensor, static_cast<${src_tensor}*>(src.pImpl)->tensor); """) COPY_ASYNC_CPU = CodeTemplate("""\ if (non_blocking) { ${THTensor}_copyAsyncCPU(${state,}self_->tensor, static_cast<${src_tensor}*>(src.pImpl)->tensor); break; } """) COPY_ASYNC_CUDA = CodeTemplate("""\ if (non_blocking) { ${THTensor}_copyAsyncCuda(${state,}self_->tensor, static_cast<${src_tensor}*>(src.pImpl)->tensor); break; } """) CASE = CodeTemplate("""\ case ${src_id}: ${copies} break; """) FUNCTION = CodeTemplate("""\ Tensor & ${Type}::s_copy_(Tensor & self, const Tensor & src, bool non_blocking) const { // code generated by function_wrapper auto self_ = checked_cast_tensor<${Tensor}>(self.pImpl, "self", 0,false); (void) self_; //silence unused warning switch (src.type().ID()) { ${copy_body} default: AT_ERROR("copy does not support %s to %s copy.", src.type().toString(), toString()); break; } self.pImpl->setScalar(src.pImpl->isScalar()); return self; } """) def create_one(env, all_types): copy_body = [] for src_type in all_types: if env['Density'] == 'Sparse' or src_type['Density'] == 'Sparse': # skip sparse copies, which are not yet implemented continue state = [] cuda = '' if src_type['Backend'] == 'CUDA': cuda = 'Cuda' if env['Backend'] == 'CUDA' or src_type['Backend'] == 'CUDA': state.append('context->thc_state') combined = nested_dict({ 'src_scalar_name': src_type['ScalarName'], 'src_id': src_type['TypeID'], 'src_tensor': src_type['Tensor'], 'cuda': cuda, 'state': state, }, env) copies = [] if env['ScalarType'] == src_type['ScalarType']: if env['Backend'] == 'CUDA' and src_type['Backend'] == 'CPU': copies.append(COPY_ASYNC_CPU.substitute(combined)) if env['Backend'] == 'CPU' and src_type['Backend'] == 'CUDA': copies.append(COPY_ASYNC_CUDA.substitute(combined)) copies.append(COPY.substitute(combined)) copy_body.append(CASE.substitute(combined, copies=copies)) return FUNCTION.substitute(env, copy_body=copy_body) def create(all_types): top_env = { 'copy_includes': [], 'copy_functions': [], } for dst_type in all_types: top_env['copy_includes'].append( '#include "ATen/{}.h"'.format(dst_type['Type'])) top_env['copy_includes'].append( '#include "ATen/{}.h"'.format(dst_type['Tensor'])) top_env['copy_functions'].append(create_one(dst_type, all_types)) return FILE.substitute(top_env)