python_code
stringlengths
0
229k
import atexit import collections import contextlib import copy import cProfile import dataclasses import datetime import dis import enum import functools import gc import inspect import itertools import linecache import logging import math import operator import os import pstats import sys import textwrap import time import types import typing import weakref from contextlib import contextmanager from functools import lru_cache, wraps from typing import Any, Dict, Optional, Tuple, Union import numpy as np # import torch._logging # import torch._numpy as tnp # from torch._guards import detect_fake_mode # noqa: F401 from torch._dynamo import config # NOTE: Make sure `NP_SUPPORTED_MODULES` and `NP_TO_TNP_MODULE` are in sync. NP_SUPPORTED_MODULES = (np, np.fft, np.linalg, np.random) # NP_TO_TNP_MODULE = { # np: tnp, # np.fft: tnp.fft, # np.linalg: tnp.linalg, # np.random: tnp.random, # } import importlib import torch import torch._functorch.config import torch.fx.experimental.symbolic_shapes from torch import fx from torch._dispatch.python import enable_python_dispatcher from torch._subclasses.fake_tensor import FakeTensor from torch.nn.modules.lazy import LazyModuleMixin from torch.utils._pytree import tree_map counters = collections.defaultdict(collections.Counter) troubleshooting_url = "https://pytorch.org/docs/master/compile/troubleshooting.html" nnmodule_doc_url = "https://pytorch.org/docs/master/compile/nn-module.html" nnmodule_doc_url_msg = f"See {nnmodule_doc_url} for more information and limitations." log = logging.getLogger(__name__) # profiling compilation time by function compilation_time_metrics = collections.OrderedDict() # profiling compilation time by frame phase frame_phase_timing = collections.OrderedDict() timer_counter = itertools.count() def tabulate(rows, headers): try: import tabulate return tabulate.tabulate(rows, headers=headers) except ImportError: return "\n".join( ", ".join(map(str, row)) for row in itertools.chain([headers], rows) ) def dynamo_profiled(func): @wraps(func) def profile_wrapper(*args, **kwargs): global timer_counter datafn = ( func.__name__ + f"{next(timer_counter)}.profile" ) # Name the data file sensibly prof = cProfile.Profile() prof.enable() retval = prof.runcall(func, *args, **kwargs) prof.disable() print(f"### Cprofile for {func.__name__} iter {next(timer_counter)} ###") ps = pstats.Stats(prof) ps.sort_stats(pstats.SortKey.TIME).print_stats(20) ps.sort_stats(pstats.SortKey.CUMULATIVE).print_stats(20) prof.dump_stats(datafn) return retval return profile_wrapper curr_frame = 0 # Note: Called for you by dynamo - you almost never ever want to invoke this yourself. def increment_frame(): global curr_frame curr_frame = curr_frame + 1 # Note: Called for you by dynamo - you almost never ever want to invoke this yourself. def reset_frame_count(): global curr_frame frame_phase_timing.clear() compilation_time_metrics.clear() curr_frame = 0 op_count = 0 def increment_op_count(cnt): global op_count op_count += cnt # Print a report of time spent so far # Ex: # TIMING: # entire_frame_compile:8.574629999999999 # backend_compile:5.26806 def print_time_report(): total = 0 total_by_key = {} for timings in frame_phase_timing.values(): for key, timing in timings.items(): total += timing if key not in total_by_key: total_by_key[key] = timing else: total_by_key[key] += timing out = "TIMING:" for key, value in total_by_key.items(): out = f"{out} {key}:{round(value, 5)}" print(out) # dynamo_timed API works as a function decorator # By wrapping a function in dynamo_timed, we can store a record in compilation_time_metrics # where the key is the functions name. # For example: # # @dynamo_timed # def _foo(...): # # Would show up as an entry in our timing dict: # OrderedDict([('bar.<locals>._foo', [0.083690, 0.23949, 3.1425e-05])]) # This is extremely useful for granular debugging. # # For a higher-level mode, pass a phase_name into dynamo_timed # phase_names record an extra record into a separate compilation timing structure, # one keyed on frame+name rather than function. # The frame is incremented outside of this function, in def increment_frame() above. def dynamo_timed(original_function=None, phase_name=None): def dynamo_timed_inner(func): @wraps(func) def time_wrapper(*args, **kwargs): key = func.__qualname__ if key not in compilation_time_metrics: compilation_time_metrics[key] = [] with torch.profiler.record_function(f"{key} (dynamo_timed)"): t0 = time.time() r = func(*args, **kwargs) time_spent = time.time() - t0 compilation_time_metrics[key].append(time_spent) if phase_name: frame_key = str(curr_frame) if frame_key not in frame_phase_timing: frame_phase_timing[frame_key] = {} assert ( phase_name not in frame_phase_timing[frame_key] ), f"Duplicate phase name {phase_name} for frame {frame_key}" frame_phase_timing[frame_key][phase_name] = time_spent return r return time_wrapper if original_function: return dynamo_timed_inner(original_function) return dynamo_timed_inner def compile_times(repr="str", aggregate=False): """ Get metrics about torchdynamo frontend/backend compilation times. Accumulates information from functions tagged with `@dynamo_timed`. repr='str' returns a printable string for user interaction, and 'csv' returns headers, rows which can be logged for output aggregate causes values from multiple compilations (e.g. split graphs) to be accumulated into one value. If false, expect more than one value per metric. """ def fmt_fn(values, item_fn=lambda x: x): if aggregate: return item_fn(sum(values)) return ", ".join(map(item_fn, values)) if repr == "str": rows = [ (k, fmt_fn(compilation_time_metrics[k], item_fn=lambda x: f"{x:.4f}")) for k in compilation_time_metrics ] out = "TorchDynamo compilation metrics:\n" out += tabulate(rows, headers=("Function", "Runtimes (s)")) return out elif repr == "csv": values = [ fmt_fn(v, item_fn=lambda x: f"{x:.6f}") for v in compilation_time_metrics.values() ] headers = list(compilation_time_metrics.keys()) return headers, values @atexit.register def dump_compile_times(): log.info(compile_times(repr="str", aggregate=True)) tensortype_to_dtype = { torch.FloatTensor: (torch.float32, torch.float), torch.DoubleTensor: (torch.float64, torch.double), torch.HalfTensor: (torch.float16, torch.half), torch.BFloat16Tensor: (torch.bfloat16,), torch.ByteTensor: (torch.uint8,), torch.CharTensor: (torch.int8,), torch.LongTensor: (torch.int64, torch.long), torch.IntTensor: (torch.int32, torch.int), torch.ShortTensor: (torch.int16, torch.short), torch.BoolTensor: (torch.bool,), } class DuplicateWarningChecker: def __init__(self, maxsize=4096): self.maxsize = maxsize self.reset() def reset(self): self.set = collections.OrderedDict() def add(self, key): if key in self.set: self.set.move_to_end(key, last=True) if not config.verbose: return False else: self.set[key] = None while len(self.set) > self.maxsize: self.set.popitem(last=False) return True graph_break_dup_warning_checker = DuplicateWarningChecker() def setup_compile_debug(): compile_debug = os.environ.get("TORCH_COMPILE_DEBUG", "0") == "1" if compile_debug: torch._logging.set_logs( dynamo=logging.DEBUG, aot=logging.DEBUG, inductor=logging.DEBUG, output_code=True, # this is off by default ) return add_file_handler() return contextlib.ExitStack() def reset_graph_break_dup_checker(): graph_break_dup_warning_checker.reset() def add_file_handler(): log_path = os.path.join(get_debug_dir(), "torchdynamo") if not os.path.exists(log_path): os.makedirs(log_path) log_file_handler = logging.FileHandler(os.path.join(log_path, "debug.log")) logger = logging.getLogger("torch._dynamo") logger.addHandler(log_file_handler) exitstack = contextlib.ExitStack() exitstack.callback(lambda: logger.removeHandler(log_file_handler)) return exitstack def setup_log_file(): exitstack = contextlib.ExitStack() if config.log_file_name is not None: log_file_handler = logging.FileHandler(config.log_file_name) for logger in logging.get_loggers(): logger.addHandler(log_file_handler) exitstack.callback(lambda: logger.removeHandler(log_file_handler)) return exitstack return exitstack def gen_record_file_name(exc, code): return f"{get_debug_dir()}/error_recordings/\ {code.co_name}_{type(exc).__name__}_{code.co_firstlineno}.rec" def write_record_to_file(filename, exec_record): try: if os.path.exists(filename): log.warning( "Unable to write execution record %s; file already exists.", filename ) else: os.makedirs(os.path.dirname(filename), exist_ok=True) with open(filename, "wb") as f: exec_record.dump(f) except Exception: log.error("Unable to write execution record %s", filename, exc_info=1) def count_calls(g: fx.Graph): c = 0 for n in g.nodes: if "call" in n.op: c += 1 return c def identity(x): return x def nothing(*args, **kwargs): pass class ExactWeakKeyDictionary: """Similar to weakref.WeakKeyDictionary, but use `is`/`id` rather than `==` to compare equality""" def __init__(self): self.values = dict() self.refs = dict() def __getitem__(self, key): return self.values[id(key)] def get(self, key, default=None): return self.values.get(id(key), default) def __contains__(self, key): return id(key) in self.values def __setitem__(self, key, value): idx = id(key) if idx not in self.refs: self.refs[idx] = weakref.ref(key, lambda ref: self._remove_id(idx)) self.values[idx] = value def _remove_id(self, idx): if idx in self.values: del self.values[idx] if idx in self.refs: del self.refs[idx] def clear(self): self.refs.clear() self.values.clear() def istype(obj, allowed_types): """isinstance() without subclasses""" if isinstance(allowed_types, (tuple, list, set)): return type(obj) in allowed_types return type(obj) is allowed_types def is_typing(value): if sys.version_info < (3, 9): return isinstance(value, typing._GenericAlias) else: return isinstance( value, (typing._SpecialGenericAlias, typing._UnionGenericAlias) ) def is_numpy_int_type(value): return istype( value, ( np.int8, np.int16, np.int32, np.int64, np.uint8, np.uint16, np.uint32, np.uint64, ), ) def is_numpy_float_type(value): return istype( value, ( np.float16, np.float32, np.float64, ), ) def is_numpy_ndarray(value): return istype(value, np.ndarray) def istensor(obj): """Check of obj is a tensor""" tensor_list = ( torch.Tensor, torch.nn.Parameter, *config.traceable_tensor_subclasses, ) tensor_list = tensor_list + (torch._subclasses.FakeTensor,) return istype(obj, tensor_list) def is_lazy_module(mod): return isinstance(mod, LazyModuleMixin) @functools.lru_cache(4096) def print_once(*args): print(*args) def make_cell(val=None): """Some black magic to create a cell object that usually only exists in a closure""" x = val def f(): return x assert len(f.__closure__) == 1 return f.__closure__[0] def proxy_args_kwargs(args, kwargs): try: proxy_args = tuple(arg.as_proxy() for arg in args) proxy_kwargs = {key: arg.as_proxy() for key, arg in kwargs.items()} return proxy_args, proxy_kwargs except NotImplementedError as e: from .exc import unimplemented from .variables.base import typestr raise unimplemented( f"call_function args: {typestr(*args)} {typestr(*list(kwargs.values()))}" ) from e @dataclasses.dataclass class CompilationMetrics: frame_key: str co_name: str co_filename: str co_firstlineno: int cache_size: int guard_count: Optional[int] graph_op_count: Optional[int] graph_node_count: Optional[int] graph_input_count: Optional[int] entire_frame_compile_time_s: Optional[float] backend_compile_time_s: Optional[float] fail_reason: Optional[str] @dataclasses.dataclass class CleanupHook: """Remove a global variable when hook is called""" scope: Dict[str, Any] name: str def __call__(self, *args): CleanupManager.count -= 1 del self.scope[self.name] @staticmethod def create(scope, name, val): assert name not in scope CleanupManager.count += 1 scope[name] = val return CleanupHook(scope, name) class CleanupManager(ExactWeakKeyDictionary): count = 0 def _remove_id(self, idx): for hook in self.values[idx]: hook() super()._remove_id(idx) CleanupManager.instance = CleanupManager() def clone_tensor(x): """Clone the tensor and its gradient""" y = x.clone().requires_grad_(x.requires_grad) if x.is_leaf and x.grad is not None: y.grad = x.grad.clone() return y def clone_input(x, *, dtype=None): """copy while preserving strides""" # TODO: this is questionable if isinstance(x, torch._subclasses.FakeTensor): # this func fails on fake tensors in __torch_dispatch__ return x def torch_clone(x): y = torch.clone(x) if x.is_leaf: y.requires_grad_(x.requires_grad) if x.is_leaf and x.grad is not None: y.grad = clone_input(x.grad, dtype=dtype) if hasattr(x, "_dynamo_dynamic_indices"): y._dynamo_dynamic_indices = x._dynamo_dynamic_indices.copy() return y with torch.no_grad(): if x.device.type == "xla": # Access data_ptr() for a xla tensor will cause crash return torch_clone(x) needed_size = sum( (shape - 1) * stride for shape, stride in zip(x.size(), x.stride()) ) if x.is_quantized: result = torch.empty_quantized((needed_size + 32,), x) else: result = torch.empty( needed_size + 32, dtype=dtype or x.dtype, device=x.device ) cache_line_offset = ( (x.data_ptr() - result.data_ptr()) % 32 ) // x.element_size() result.as_strided_(x.size(), x.stride(), cache_line_offset) try: result.copy_(x.clone()) if x.is_leaf: result.requires_grad_(x.requires_grad) if x.is_leaf and x.grad is not None: result.grad = clone_input(x.grad, dtype=dtype) except RuntimeError: # RuntimeError: unsupported operation: more than one element of the written-to # tensor refers to a single memory location. Please clone() the tensor before # performing the operation. return torch_clone(x) if hasattr(x, "_dynamo_dynamic_indices"): result._dynamo_dynamic_indices = x._dynamo_dynamic_indices.copy() return result def clone_inputs(example_inputs): if type(example_inputs) is dict: res = dict(example_inputs) for key, value in res.items(): if isinstance(value, tuple): res[key] = clone_inputs(value) else: assert isinstance(value, torch.Tensor), type(value) res[key] = clone_input(value) return res res = list(example_inputs) for i in range(len(res)): if isinstance(res[i], torch.Tensor): res[i] = clone_input(res[i]) return res @contextmanager def preserve_rng_state(): with torch.utils._python_dispatch._disable_current_modes(): rng_state = torch.clone(torch.random.get_rng_state()) if torch.cuda.is_available(): cuda_rng_state = torch.clone(torch.cuda.get_rng_state()) try: yield finally: with torch.utils._python_dispatch._disable_current_modes(): torch.random.set_rng_state(rng_state) if torch.cuda.is_available(): torch.cuda.set_rng_state(cuda_rng_state) def is_jit_model(model0): return isinstance( model0, ( torch.jit._trace.TopLevelTracedModule, torch.jit._script.RecursiveScriptModule, torch.jit.ScriptFunction, torch.jit.ScriptModule, ), ) def torchscript(model, example_inputs, verbose=False): if is_jit_model(model): # already done? return model try: return torch.jit.trace(model, example_inputs) except Exception: try: return torch.jit.script(model) except Exception: if verbose: log.exception("jit error") else: log.error("Both torch.jit.trace and torch.jit.script failed") return None def getfile(obj): try: return inspect.getfile(obj) except TypeError: return None def is_namedtuple(obj): """Test if an object is a namedtuple or a torch.return_types.* quasi-namedtuple""" return is_namedtuple_cls(type(obj)) def is_namedtuple_cls(cls): """Test if an object is a namedtuple or a torch.return_types.* quasi-namedtuple""" try: if issubclass(cls, tuple): bases = getattr(cls, "__bases__", []) or [None] module = getattr(cls, "__module__", None) return module == "torch.return_types" or ( bases[0] is tuple and hasattr(cls, "_make") and hasattr(cls, "_fields") ) except TypeError: pass return False @functools.lru_cache(1) def namedtuple_fields(cls): """Get the fields of a namedtuple or a torch.return_types.* quasi-namedtuple""" if cls is slice: return ["start", "stop", "step"] assert issubclass(cls, tuple) if hasattr(cls, "_fields"): # normal namedtuples return cls._fields @dataclasses.dataclass class Marker: index: int # frustrating ones e.g. torch.return_types.max assert cls.__module__ == "torch.return_types" obj = cls(map(Marker, range(cls.n_fields))) fields = [None] * cls.n_fields for name in dir(obj): if name[0] != "_" and isinstance(getattr(obj, name), Marker): fields[getattr(obj, name).index] = name return fields def checkpoint_params(gm): with torch.no_grad(): rng_state = torch.clone(torch.random.get_rng_state()) if torch.cuda.is_available(): cuda_rng_state = torch.clone(torch.cuda.get_rng_state()) saved_state = [] for param in itertools.chain(gm.parameters(), gm.buffers()): saved_state.append((param, param._version, torch.clone(param))) def restore(): with torch.no_grad(): torch.random.set_rng_state(rng_state) if torch.cuda.is_available(): torch.cuda.set_rng_state(cuda_rng_state) for param, version, original_value in saved_state: if param._version != version: param.copy_(original_value) return restore def timed(model, example_inputs, times=1): if torch.cuda.is_available(): synchronize = torch.cuda.synchronize else: synchronize = nothing synchronize() gc.collect() torch.manual_seed(1337) t0 = time.perf_counter() for _ in range(times): result = model(*example_inputs) synchronize() t1 = time.perf_counter() return result, t1 - t0 def check_is_cuda(gm, example_inputs): return all(x.is_cuda for x in itertools.chain(example_inputs, gm.parameters(True))) @lru_cache(32) def rot_n_helper(n): assert n > 1 vars = [f"v{i}" for i in range(n)] rotated = reversed(vars[-1:] + vars[:-1]) fn = eval(f"lambda {','.join(vars)}: ({','.join(rotated)})") fn.__name__ = f"rot_{n}_helper" return fn def is_safe_constant(v): if istype(v, (tuple, frozenset)): return all(map(is_safe_constant, v)) return isinstance(v, (enum.Enum, type)) or istype( v, ( types.CodeType, int, float, bool, str, bytes, type(None), slice, type(type), torch.device, torch.dtype, ), ) def guard_if_dyn(arg): from .variables import ConstantVariable, SymNodeVariable if isinstance(arg, SymNodeVariable): # This is because SymNodeVariable intentionally doesn't define # as_python_constant to avoid shunting down some codepaths # that expect consts. In this case, we know we definitely # want to specialize though. return arg.evaluate_expr() elif isinstance(arg, ConstantVariable): return arg.as_python_constant() return arg def check_constant_args(args, kwargs): return all(x.is_python_constant() for x in itertools.chain(args, kwargs.values())) def check_unspec_python_args(args, kwargs): from torch._dynamo.variables.constant import ConstantVariable from torch._dynamo.variables.tensor import UnspecializedPythonVariable unspec_count = 0 for x in itertools.chain(args, kwargs.values()): if isinstance(x, UnspecializedPythonVariable): unspec_count += 1 elif not isinstance(x, (UnspecializedPythonVariable, ConstantVariable)): return False else: pass return unspec_count > 0 def check_numpy_ndarray_args(args, kwargs): from torch._dynamo.variables.tensor import NumpyNdarrayVariable return any( isinstance(x, NumpyNdarrayVariable) for x in itertools.chain(args, kwargs.values()) ) def specialize_args_kwargs(tx, args, kwargs): specialized_args = [] specialized_kwargs = {} for x in args: specialized_args.append(x.as_specialized(tx)) for k, v in kwargs.items(): specialized_kwargs.update({k: v.as_specialized(tx)}) return specialized_args, specialized_kwargs dict_values = type(dict().values()) odict_values = type(collections.OrderedDict().values()) tuple_iterator = type(iter(tuple())) tuple_iterator_len = tuple_iterator.__length_hint__ object_new = object.__new__ def nn_module_new(cls): obj = object_new(cls) torch.nn.Module.__init__(obj) return obj def product(it): return functools.reduce(operator.mul, it, 1) def tuple_iterator_getitem(it, index): _, (obj,), start = it.__reduce__() return obj[start + index] def enum_repr(value, local): # enum class can override __str__ method. Use __class__ and name attribute # to extract the class name and key name. name = value.__class__.__name__ val = value.name scope = "L" if local else "G" local_name = f'{scope}["{name}"].{val}' return local_name def dict_param_key_ids(value): return { id(k) for k in value.keys() if isinstance(k, (torch.nn.Parameter, torch.Tensor)) } def dict_const_keys(value): return { k for k in value.keys() if not isinstance(k, (torch.nn.Parameter, torch.Tensor)) } def dict_const_keys_repr(const_keys, *, local): if any(isinstance(k, enum.Enum) for k in const_keys): # To workaround repr(Enum) returning invalid global reference before python 3.11 # by calling enum_repr and removing quotes to render enum in guard code. const_keys_str = f"{ {enum_repr(k, local=local) if isinstance(k, enum.Enum) else repr(k) for k in const_keys} }".replace( "'", "" ) else: const_keys_str = f"{const_keys!r}" return const_keys_str def global_key_name(key): return f"__dict_key_{id(key)}" from torch._subclasses import ( # noqa: F401 FakeTensorMode, UnsupportedFakeTensorException, ) def wrap_fake_exception(fn): try: return fn() except UnsupportedFakeTensorException as e: from .exc import unimplemented msg = f"Unsupported: {e.reason} with fake tensor propagation." log.warning(msg) raise unimplemented(msg) from e def deepcopy_to_fake_tensor(obj, fake_mode): with torch._subclasses.fake_tensor.FakeCopyMode(fake_mode): return wrap_fake_exception(lambda: copy.deepcopy(obj)) def rmse(ref, res): """ Calculate root mean squared error """ return torch.sqrt(torch.mean(torch.square(ref - res))) def same( ref, res, fp64_ref=None, cos_similarity=False, tol=1e-4, equal_nan=False, exact_dtype=True, relax_numpy_equality=False, ignore_non_fp=False, log_error=log.error, ): """Check correctness to see if ref and res match""" if fp64_ref is None: fp64_ref = ref if isinstance(ref, (list, tuple, torch.nn.ParameterList, torch.Size)): assert isinstance(res, (list, tuple)), f"type mismatch {type(ref)} {type(res)}" if len(ref) != len(res): log_error("Length mismatch") return False return len(ref) == len(res) and all( same( ai, bi, fp64_refi, cos_similarity, tol, equal_nan, exact_dtype, relax_numpy_equality, ignore_non_fp, log_error=log_error, ) for ai, bi, fp64_refi in zip(ref, res, fp64_ref) ) elif isinstance(ref, dict): assert isinstance(res, dict) assert set(ref.keys()) == set( res.keys() ), f"keys mismatch {set(ref.keys())} == {set(res.keys())}" for k in sorted(ref.keys()): if not ( same( ref[k], res[k], fp64_ref[k], cos_similarity=cos_similarity, tol=tol, equal_nan=equal_nan, exact_dtype=exact_dtype, relax_numpy_equality=relax_numpy_equality, ignore_non_fp=ignore_non_fp, log_error=log_error, ) ): log_error("Accuracy failed for key name %s", k) return False return True elif isinstance(ref, torch.Tensor): assert not isinstance(ref, torch._subclasses.FakeTensor) assert not isinstance(res, torch._subclasses.FakeTensor) if ref.is_sparse: assert res.is_sparse ref = ref.to_dense() res = res.to_dense() assert isinstance(res, torch.Tensor), f"type mismatch {type(ref)} {type(res)}" if exact_dtype: if ref.dtype != res.dtype: log_error("dtype mismatch %s, %s", ref.dtype, res.dtype) return False if ref.dtype == torch.bool: if ignore_non_fp: return True # triton stores bool as int8, so add this for more accurate checking r = torch.allclose( ref.to(dtype=torch.uint8), res.to(dtype=torch.uint8), atol=tol, rtol=tol, equal_nan=equal_nan, ) if not r: log_error("Accuracy failed: uint8 tensor did not match") return r if cos_similarity: ref = ref.flatten().to(torch.float32) res = res.flatten().to(torch.float32) if torch.allclose(ref, res, atol=tol, rtol=tol, equal_nan=True): # early exit that handles zero/nan better # cosine_similarity(zeros(10), zeros(10), dim=0) is 0 return True score = torch.nn.functional.cosine_similarity(ref, res, dim=0, eps=1e-6) if score < 0.99: log.warning("Similarity score=%s", score.cpu().detach().item()) return score >= 0.99 else: if not exact_dtype: ref = ref.to(res.dtype) # First try usual allclose if torch.allclose(ref, res, atol=tol, rtol=tol, equal_nan=equal_nan): return True # Check error from fp64 version if fp64_ref.dtype == torch.float64: ref_error = rmse(fp64_ref, ref).item() res_error = rmse(fp64_ref, res).item() multiplier = 2.0 if ( fp64_ref.numel() < 1000 or (ref.ndim == 4 and ref.shape[-1] == ref.shape[-2] == 1) # large tol means a benchmark has been specified as REQUIRE_HIGHER_TOLERANCE or tol >= 2 * 1e-2 ): # In the presence of noise, noise might dominate our error # metric for smaller tensors. # Similary, for 1x1 kernels, there seems to be high noise with amp. multiplier = 3.0 passes_test = res_error <= (multiplier * ref_error + tol / 10.0) if not passes_test: log_error( "RMSE (res-fp64): %.5f, (ref-fp64): %.5f and shape=%s", res_error, ref_error, res.size(), ) # import pdb; pdb.set_trace() return passes_test if ignore_non_fp: return True log_error("Accuracy failed: allclose not within tol=%s", tol) return False elif isinstance(ref, (str, int, type(None), bool, torch.device)): if ignore_non_fp: return True r = ref == res if not r: log_error("Accuracy failed (%s): %s != %s", type(ref), ref, res) return r elif isinstance(ref, float): r = math.isclose(ref, res, rel_tol=tol, abs_tol=tol) if not r: log_error( "Accuracy failed (float): %s != %s (within tol=%s)", ref, res, tol ) return r elif is_numpy_int_type(ref) or is_numpy_float_type(ref): if relax_numpy_equality and not ( is_numpy_int_type(res) or is_numpy_float_type(res) ): ref = ref.item() r = (type(ref) is type(res)) and (ref == res) if not r: log_error("Accuracy failed (numpy): %s != %s", ref, res) return r elif is_numpy_ndarray(ref): return (type(ref) is type(res)) and same( torch.as_tensor(ref), torch.as_tensor(res), fp64_ref, cos_similarity=cos_similarity, tol=tol, equal_nan=equal_nan, exact_dtype=exact_dtype, relax_numpy_equality=relax_numpy_equality, ignore_non_fp=ignore_non_fp, log_error=log_error, ) elif type(ref).__name__ in ( "MaskedLMOutput", "Seq2SeqLMOutput", "CausalLMOutputWithCrossAttentions", "LongformerMaskedLMOutput", "Instances", "SquashedNormal", "Boxes", "Normal", "TanhTransform", "Foo", "Variable", ): assert type(ref) is type(res) return all( same( getattr(ref, key), getattr(res, key), getattr(fp64_ref, key), cos_similarity=cos_similarity, tol=tol, equal_nan=equal_nan, exact_dtype=exact_dtype, relax_numpy_equality=relax_numpy_equality, ignore_non_fp=ignore_non_fp, log_error=log_error, ) for key in ref.__dict__.keys() ) else: raise RuntimeError(f"unsupported type: {type(ref).__name__}") def format_func_info(code): short_filename = code.co_filename.split("/")[-1] return f"'{code.co_name}' ({short_filename}:{code.co_firstlineno})" @contextlib.contextmanager def disable_cache_limit(): prior = config.cache_size_limit config.cache_size_limit = sys.maxsize try: yield finally: config.cache_size_limit = prior # map from transformed code back to original user code orig_code_map = ExactWeakKeyDictionary() # keep a record of code_obj -> list of guard failure reasons for logging guard_failures = collections.defaultdict(list) # Keep a record of graph break reasons for logging graph_break_reasons = list() # keep record of compiled code, if we are in "error if recompile" # to track code that dynamo has compiled previously seen_code_map = ExactWeakKeyDictionary() class CompileProfiler: """Utility for profiling how and what dynamo would compile. Can be used for * diagnosing recompilation issues * determining an appropriate compile cache limit * (TODO)confirming which functions got compiled/skipped """ def __init__(self): self.frame_count = 0 self.op_count = 0 self.backend_ctx_ctor = lambda: disable_cache_limit() def __call__(self, gm: torch.fx.GraphModule, example_inputs): self.frame_count += 1 for node in gm.graph.nodes: if "call" in node.op: self.op_count += 1 return gm.forward def __enter__(self): self.old_report_guard_failure = config.report_guard_failures config.report_guard_failures = True return self def __exit__(self, typ, val, traceback): config.report_guard_failures = self.old_report_guard_failure def get_metrics(self): return {"guard_failures": guard_failures} def report(self): metrics = self.get_metrics() gf = metrics["guard_failures"] def num_recompiles(code): return len(gf[code]) def recompile_reasons(code): return "\n".join([str(x) for x in gf[code]]) summarized_gf = [ [format_func_info(code), num_recompiles(code), recompile_reasons(code)] for code in gf ] def graph_break_report(): if "graph_break" in counters: graph_breaks = counters["graph_break"] return tabulate( [[msg, graph_breaks[msg]] for msg in graph_breaks], headers=["Graph Break Reason", "Count"], ) def recompilation_report(): if len(gf): max_recompiles = max([num_recompiles(code) for code in gf]) recomp_table = tabulate( summarized_gf, headers=["Function", "Recompiles", "Recompile Reasons"], ) return recomp_table + textwrap.dedent( f""" Set torch._dynamo.config.cache_size_limit to {max_recompiles} to avoid being cache limited. """ ) report = textwrap.dedent( """ Torchdynamo Profiler Report =========================== Graph Breaks ------------ Graph breaks happen when torchdynamo encounters code it can't safely trace. If you want to find out why breaks are happening, check below for each break reason You may gain additional insight by passing `fullgraph=True` to torch.compile, to stop at the first break. """ ) report += graph_break_report() or "No graph breaks detected." report += textwrap.dedent( """ Recompilation ------------- These subgraphs were recompiled more than once due to guard failures Guard failures indicate some condition assumed to be static by the tracer changed, making it unsafe to reuse the compiled program. """ ) report += recompilation_report() or "No recompilation detected.\n" return report # return same dir unless user changes config between calls @functools.lru_cache(None) def _get_debug_dir(root_dir): dir_name = ( "run_" + datetime.datetime.now().strftime("%Y_%m_%d_%H_%M_%S_%f") # use pid to avoid conflicts among ranks + "-pid_" + str(os.getpid()) ) return os.path.join(root_dir, dir_name) def get_debug_dir(): debug_root = config.debug_dir_root return _get_debug_dir(debug_root) def get_fake_value(node, tx): """ Run the computation represented by `node` using fake tensors and return the result. """ from .exc import ( TorchRuntimeError, unimplemented, Unsupported, UserError, UserErrorType, ) op = node.op def fake_wrapper(e): if isinstance(e, torch.Tensor): assert is_fake(e) return e def visit(n: torch.fx.Node): return n.meta["example_value"] args, kwargs = torch.fx.node.map_arg((node.args, node.kwargs), visit) args = tree_map(fake_wrapper, args) kwargs = tree_map(fake_wrapper, kwargs) nnmodule = None if op == "call_method" and len(args) > 0 and isinstance(args[0], torch.nn.Module): # If the first argument is nn.Module, should copy to fake mode. args = (deepcopy_to_fake_tensor(args[0], tx.fake_mode),) + tuple(args[1:]) if op == "call_module": nnmodule = tx.output.nn_modules[node.target] if is_lazy_module(nnmodule) and hasattr(nnmodule, "_initialize_hook"): # In the case of a lazy module, we want to run # the pre-hooks which initialize it. # Afterwards, lazy module deletes its pre-hooks # to avoid treating it as lazy on subsequent recompile. nnmodule._infer_parameters(nnmodule, args) # no matter it's lazy module or not, we should copy to fake mode. nnmodule = deepcopy_to_fake_tensor(nnmodule, tx.fake_mode) try: with tx.fake_mode, enable_python_dispatcher(): return wrap_fake_exception( lambda: run_node(tx.output, node, args, kwargs, nnmodule) ) except Unsupported: raise except RuntimeError as e: cause = e if e.__cause__ is not None: cause = e.__cause__ if isinstance( cause, torch._subclasses.fake_tensor.DataDependentOutputException ): unimplemented(f"data dependent operator: {cause.func}") elif isinstance( cause, torch._subclasses.fake_tensor.DynamicOutputShapeException ): unimplemented(f"dynamic shape operator: {cause.func}") elif isinstance( cause, torch._subclasses.fake_tensor.UnsupportedOperatorException ): unimplemented( f"unsupported operator: {cause.func} (see " "https://docs.google.com/document/d/1GgvOe7C8_NVOMLOCwDaYV1mXXyHMXY7ExoewHqooxrs/edit#heading=h.64r4npvq0w0" " for how to fix)" ) elif isinstance( cause, torch.fx.experimental.symbolic_shapes.GuardOnDataDependentSymNode ): unimplemented("guard on data-dependent symbolic int/float") elif isinstance(cause, torch.utils._sympy.value_ranges.ValueRangeError): raise UserError(UserErrorType.CONSTRAIN_VIOLATION, e.args[0]) from e raise TorchRuntimeError(str(e)).with_traceback(e.__traceback__) from None def run_node(tracer, node, args, kwargs, nnmodule): """ Runs a given node, with the given args and kwargs. Behavior is dicatated by a node's op. run_node is useful for extracting real values out of nodes. See get_real_value for more info on common usage. Note: The tracer arg is only used for 'get_attr' ops Note: The nnmodule arg is only used for 'call_module' ops Nodes that are not call_function, call_method, call_module, or get_attr will raise an AssertionError. """ op = node.op try: if op == "call_function": return node.target(*args, **kwargs) elif op == "call_method": return getattr(args[0], node.target)(*args[1:], **kwargs) elif op == "call_module": assert nnmodule is not None return nnmodule(*args, **kwargs) elif op == "get_attr": return tracer.get_submodule(node.target) elif op == "placeholder": assert "example_value" in node.meta return node.meta["example_value"] except Exception as e: fn_str = f"Failed running {op} {node.target}(*{args}, **{kwargs}):\n" raise RuntimeError(fn_str + str(e)).with_traceback(e.__traceback__) from e raise AssertionError(op) def get_real_value(node, tracer): """ Run the actual computation represented by `node` and return the result. This will execute any dependent nodes in the graph as well. """ from .exc import TorchRuntimeError cache = tracer.real_value_cache if node in cache: return cache[node] op = node.op args, kwargs = torch.fx.node.map_arg( (node.args, node.kwargs), lambda n: get_real_value(n, tracer), ) if op == "call_module": nn_module = tracer.output_graph.nn_modules[node.target] if not is_lazy_module(nn_module): nn_module = copy.deepcopy(nn_module) else: # In the case of a lazy module, we want to run # the pre-hooks which initialize it nn_module(*args, **kwargs) else: nn_module = None try: real_value = run_node(tracer, node, args, kwargs, nn_module) cache[node] = real_value except RuntimeError as e: raise TorchRuntimeError(str(e)).with_traceback(e.__traceback__) from None return real_value def assert_no_fake_params_or_buffers(gm): from torch._subclasses.fake_tensor import FakeTensorConfig def stack_or_hint(t): if FakeTensorConfig.debug: import traceback return f"FAKE TENSOR CREATION TRACEBACK: \n {traceback.format_list(t._debug_trace)}" else: return "Enable TORCH_FAKE_TENSOR_DEBUG=1 to get creation stack traces on fake tensors." for name, buffer in gm.named_buffers(): assert not isinstance( buffer, torch._subclasses.FakeTensor ), f"Unexpected fake buffer {name} {stack_or_hint(buffer)}" for name, param in gm.named_parameters(): assert not isinstance( param, torch._subclasses.FakeTensor ), f"Unexpected fake param {name} {stack_or_hint(param)}" def fqn(obj: Any): """ Returns the fully qualified name of the object. """ return f"{obj.__module__}.{obj.__qualname__}" def ifdynstaticdefault(count1, count2): if torch._dynamo.config.assume_static_by_default: return count1 else: return count2 def import_submodule(mod: types.ModuleType): """ Ensure all the files in a given submodule are imported """ for filename in sorted(os.listdir(os.path.dirname(mod.__file__))): if filename.endswith(".py") and filename[0] != "_": importlib.import_module(f"{mod.__name__}.{filename[:-3]}") def object_has_getattribute(value: Any): try: if isinstance( inspect.getattr_static(type(value), "__getattribute__"), types.FunctionType, ): return True except AttributeError: pass return False def get_custom_getattr(value: Any): try: getattr_fn = inspect.getattr_static(type(value), "__getattr__") except AttributeError: getattr_fn = None if getattr_fn is torch.nn.Module.__getattr__: # ignore this case of getattr getattr_fn = None return getattr_fn class TensorStaticReason(enum.Enum): PARAMETER = 2 NOT_TENSOR = 4 NN_MODULE_PROPERTY = 5 def tensor_static_reason_to_message(reason: TensorStaticReason): if reason == TensorStaticReason.PARAMETER: return "mark_dynamic on parameter, parameters are always static today." if reason == TensorStaticReason.NOT_TENSOR: return "mark_dynamic on a non tensor, how did this happen?" if reason == TensorStaticReason.NN_MODULE_PROPERTY: return "tensor is static because it is nn module associated." raise AssertionError(f"Illegal reason {reason}") def tensor_always_has_static_shape( tensor: Union[torch.Tensor, Any], is_tensor: bool, guard_source: "GuardSource" ) -> Tuple[bool, TensorStaticReason]: """ Given a tensor, source, and is_tensor flag, determine if a shape should be static. Args: tensor - the real tensor to evaluate, parameters force a static shape. is_tensor - internal dynamo check, esentially "is_tensor": target_cls is TensorVariable, tensors not in a TensorVariable for whatever reason are forced static. Returns a tuple, where the first element is the bool of whether or not this tensor should have a static shape. The second element is a TensorStaticReason, useful for passing to tensor_static_reason_to_message if needed. """ if guard_source.is_nn_module() and config.force_nn_module_property_static_shapes: return True, TensorStaticReason.NN_MODULE_PROPERTY if type(tensor) is torch.nn.Parameter and config.force_parameter_static_shapes: return True, TensorStaticReason.PARAMETER if not is_tensor: return True, TensorStaticReason.NOT_TENSOR return False, None class LazyString: def __init__(self, func, *args, **kwargs): self.func = func self.args = args self.kwargs = kwargs def __str__(self): return self.func(*self.args, **self.kwargs) def lazy_format_graph_code(name, gm, maybe_id=None): def format_name(): if maybe_id is not None: return f"{name} {maybe_id}" else: return name return LazyString( lambda: _format_graph_code( f"===== {format_name()} =====\n", gm.forward.__code__.co_filename, gm.print_readable(print_output=False), ) ) def _format_graph_code(name, filename, graph_str): return f"TRACED GRAPH\n {name} {filename} {graph_str}\n" def lazy_format_graph_tabular(fn_name, gm): def inner(): try: from tabulate import tabulate # TODO: Check that this is installed except ImportError: return ( "Tabulate module missing, please install tabulate to log the graph in tabular format, logging code instead:\n" + str(lazy_format_graph_code(fn_name, gm)) ) node_specs = [ [n.op, n.name, n.target, n.args, n.kwargs] for n in gm.graph.nodes ] graph_str = tabulate( node_specs, headers=["opcode", "name", "target", "args", "kwargs"] ) return _format_graph_code(fn_name, gm.forward.__code__.co_filename, graph_str) return LazyString(inner) def format_bytecode(prefix, name, filename, line_no, code): return f"{prefix} {name} {filename} line {line_no} \n{dis.Bytecode(code).dis()}\n" forward_hook_names = ["_forward_pre_hooks", "_forward_hooks"] backward_hook_names = ["_backward_pre_hooks", "_backward_hooks"] state_dict_hook_names = [ "_state_dict_pre_hooks", "_state_dict_hooks", "_load_state_dict_pre_hooks", "_load_state_dict_post_hooks", ] all_hook_names = forward_hook_names + backward_hook_names + state_dict_hook_names def nn_module_get_all_hooks( mod, check_forward_hooks=False, check_backward_hooks=False, check_state_dict_hooks=False, ): reset_code = torch._C._dynamo.eval_frame.reset_code """ Sometimes its useful to differentiate between types of hooks such as forward/backward/pre hooks executed during module.__call__, and state_dict hooks which are executed separately. """ hook_dicts_to_check = [] check_all_hooks = ( not check_forward_hooks and not check_backward_hooks and not check_state_dict_hooks ) if check_forward_hooks or check_all_hooks: hook_dicts_to_check.extend(forward_hook_names) if check_backward_hooks or check_all_hooks: hook_dicts_to_check.extend(backward_hook_names) if check_state_dict_hooks: hook_dicts_to_check.extend(state_dict_hook_names) all_hooks = [] for hook_dict_name in hook_dicts_to_check: hooks = getattr(mod, hook_dict_name, []) for hook_name in hooks: hook = hooks[hook_name] all_hooks.append(hook) return all_hooks def nnmodule_has_hooks( mod, check_forward_hooks=False, check_backward_hooks=False, check_state_dict_hooks=False, ): """ Helper function to check if a module has any hooks attached to it. """ hooks = nn_module_get_all_hooks( mod, check_forward_hooks=check_forward_hooks, check_backward_hooks=check_backward_hooks, check_state_dict_hooks=check_state_dict_hooks, ) return bool(hooks) def to_numpy_helper(value): """Convert tensor and tnp.ndarray to numpy.ndarray.""" if isinstance(value, tnp.ndarray): return to_numpy_helper(value.tensor) elif isinstance(value, torch.Tensor): return value.cpu().numpy() elif isinstance(value, (tuple, list)): return type(value)(to_numpy_helper(obj) for obj in value) else: return value def numpy_to_tensor(value): """Convert tnp.ndarray to tensor, leave other types intact. If a list/tuple, loop through it to convert.""" if isinstance(value, np.ndarray): return torch.as_tensor(value) if isinstance(value, tnp.ndarray): return value.tensor elif isinstance(value, (tuple, list)): return type(value)(numpy_to_tensor(obj) for obj in value) else: return value class numpy_to_tensor_wrapper: def __init__(self, f): self.f = f self.__name__ = "wrapped_" + self.f.__name__ def __repr__(self): return f"<Wrapped function <original {self.f.__name__}>>" def __call__(self, *args, **kwargs): out = self.f(*args, **kwargs) return numpy_to_tensor(out) def numpy_attr_wrapper(obj, name): if isinstance(obj, tnp.ndarray): out = getattr(obj, name) return numpy_to_tensor(out) elif isinstance(obj, torch.Tensor): out = getattr(tnp.ndarray(obj), name) return numpy_to_tensor(out) class numpy_method_wrapper: """Convert obj from torch.Tensor to tnp.ndarray and call method. Then convert result back to torch.Tensor.""" def __init__(self, method: str): self.method = method self.__name__ = "wrapped_" + self.method def __repr__(self): return f"<Wrapped method <original {self.method}>>" def __call__(self, *args, **kwargs): obj = args[0] if isinstance(obj, torch.Tensor): obj = tnp.ndarray(obj) method_callable = getattr(obj, self.method) out = method_callable(*args[1:], **kwargs) return numpy_to_tensor(out) def defake(x): if not isinstance(x, FakeTensor): return x if x._has_symbolic_sizes_strides: size = [ s.node.shape_env.size_hint(s.node.expr) if isinstance(s, torch.SymInt) else s for s in x.size() ] stride = [ s.node.shape_env.size_hint(s.node.expr) if isinstance(s, torch.SymInt) else s for s in x.stride() ] else: size = x.size() stride = x.stride() y = torch.empty_strided( size, stride, dtype=x.dtype, device=x.device, requires_grad=x.requires_grad, ) y.zero_() return y def is_utils_checkpoint(obj): # Lazy import to avoid circular dependenices import torch.utils.checkpoint return obj is torch.utils.checkpoint.checkpoint def build_checkpoint_variable(**options): import torch._higher_order_ops.wrap as higher_order_ops from .variables.higher_order_ops import TorchHigherOrderOperatorVariable # TODO - This is a temporary sitaution where we have two versions of # checkpointing implemetation. We will converge on one and remove the other. activation_checkpoint_op = higher_order_ops.tag_activation_checkpoint if torch._functorch.config.functionalize_rng_ops: activation_checkpoint_op = higher_order_ops.wrap_activation_checkpoint return TorchHigherOrderOperatorVariable.make( activation_checkpoint_op, **options, ) def is_compile_supported(device_type): from .eval_frame import is_dynamo_supported compile_supported = is_dynamo_supported() if device_type == "cpu": pass elif device_type == "cuda" and compile_supported: from torch._inductor.utils import has_triton compile_supported = has_triton() else: compile_supported = False return compile_supported # The following 3.11 source code functions are adapted from # https://github.com/python/cpython/blob/v3.11.4/Lib/traceback.py # in order to output source code corresponding to bytecode in 3.11+. # We need our own versions since we want to support multiline expressions. def _fix_offset(str: str, offset: int) -> int: """ Convert byte offset `offset` of `str` into character offset. Byte offset is used for 3.11+ instruction column data. Takes things like unicode characters into consideration. Unchanged from CPython implementation. """ as_utf8 = str.encode("utf-8") return len(as_utf8[:offset].decode("utf-8", errors="replace")) @dataclasses.dataclass class _Anchors: # inclusive left_end_lineno: int left_end_offset: int right_start_lineno: int # exclusive right_start_offset: int def _extract_anchors_from_expr(segment: str) -> Optional[_Anchors]: """ Given source code `segment` corresponding to a bytecode instruction, determine: - for binary ops, the location of the binary op - for indexing, the location of the brackets. `segment` is expected to be a valid Python expression """ assert sys.version_info >= (3, 11) import ast try: # Without brackets, `segment` is parsed as a statement. # We expect an expression, so wrap `segment` in # brackets to handle multi-line expressions. tree = ast.parse("(\n" + segment + "\n)") except SyntaxError: return None if len(tree.body) != 1: return None lines = segment.split("\n") # get character index given byte offset def normalize(lineno, offset): return _fix_offset(lines[lineno], offset) # Gets the next valid character index in `lines`, if # the current location is not valid. Handles empty lines. def next_valid_char(lineno, col): while lineno < len(lines) and col >= len(lines[lineno]): col = 0 lineno += 1 assert lineno < len(lines) and col < len(lines[lineno]) return lineno, col # Get the next valid character index in `lines`. def increment(lineno, col): col += 1 lineno, col = next_valid_char(lineno, col) assert lineno < len(lines) and col < len(lines[lineno]) return lineno, col # Get the next valid character at least on the next line def nextline(lineno, col): col = 0 lineno += 1 lineno, col = next_valid_char(lineno, col) assert lineno < len(lines) and col < len(lines[lineno]) return lineno, col statement = tree.body[0] if isinstance(statement, ast.Expr): expr = statement.value if isinstance(expr, ast.BinOp): # ast gives locations for BinOp subexpressions, e.g. # ( left_expr ) + ( right_expr ) # left^^^^^ right^^^^^ # -2 since end_lineno is 1-indexed and because we added an extra # bracket to `segment` when calling ast.parse cur_lineno = expr.left.end_lineno - 2 cur_col = normalize(cur_lineno, expr.left.end_col_offset) cur_lineno, cur_col = next_valid_char(cur_lineno, cur_col) # Heuristic to find the operator character. # The original CPython implementation did not look for ), \, or #, # leading to incorrect anchor location, e.g. # (x) + (y) # ~~^~~~~~~ while (ch := lines[cur_lineno][cur_col]).isspace() or ch in ")\\#": if ch in "\\#": cur_lineno, cur_col = nextline(cur_lineno, cur_col) else: cur_lineno, cur_col = increment(cur_lineno, cur_col) # binary op is 1 or 2 characters long, on the same line right_col = cur_col + 1 if ( right_col < len(lines[cur_lineno]) and not (ch := lines[cur_lineno][right_col]).isspace() and ch not in "\\#" ): right_col += 1 # right_col can be invalid since it is exclusive return _Anchors(cur_lineno, cur_col, cur_lineno, right_col) elif isinstance(expr, ast.Subscript): # ast gives locations for value and slice subexpressions, e.g. # ( value_expr ) [ slice_expr ] # value^^^^^ slice^^^^^ # subscript^^^^^^^^^^^^^^^^^^^^ # find left bracket (first '[' after value) left_lineno = expr.value.end_lineno - 2 left_col = normalize(left_lineno, expr.value.end_col_offset) left_lineno, left_col = next_valid_char(left_lineno, left_col) while lines[left_lineno][left_col] != "[": left_lineno, left_col = increment(left_lineno, left_col) # find right bracket (final character of expression) right_lineno = expr.end_lineno - 2 right_col = normalize(right_lineno, expr.end_col_offset) return _Anchors(left_lineno, left_col, right_lineno, right_col) elif isinstance(expr, ast.Call): # ( func_expr ) (args, kwargs) # func^^^^^ # call^^^^^^^^^^^^^^^^^^^^^^^^ # find left bracket (first '(' after func) left_lineno = expr.func.end_lineno - 2 left_col = normalize(left_lineno, expr.func.end_col_offset) left_lineno, left_col = next_valid_char(left_lineno, left_col) while lines[left_lineno][left_col] != "(": left_lineno, left_col = increment(left_lineno, left_col) # find right bracket (final character of expression) right_lineno = expr.end_lineno - 2 right_col = normalize(right_lineno, expr.end_col_offset) return _Anchors(left_lineno, left_col, right_lineno, right_col) return None def get_instruction_source_311(code: types.CodeType, inst: dis.Instruction) -> str: """ Python 3.11+ only. Returns lines of source code (from code object `code`) corresponding to `inst`'s location data, and underlines relevant code to `inst`. Example: CALL on `g`: f(g( ^^ h(x))) ^^^^^ We need our own implementation since `format_frame_summary` in Python's `traceback` module doesn't handle multi-line expressions (and their anchor extraction code is not completely correct). """ if inst.positions.lineno is None: return "" # The rstrip + "\n" pattern is used throughout this function to handle # linecache.getline errors. Error lines are treated as empty strings "", but we want # to treat them as blank lines "\n". first_line = linecache.getline(code.co_filename, inst.positions.lineno).rstrip() if inst.positions.end_lineno is None: return first_line if inst.positions.col_offset is None or inst.positions.end_col_offset is None: return first_line # character index of the start of the instruction start_offset = _fix_offset(first_line, inst.positions.col_offset) # character index of the end of the instruction # compute later since end may be a different line end_offset = None # expression corresponding to the instruction so we can get anchors segment = "" # underline markers to be printed - start with `~` marker and replace with `^` later markers = [] # Compute segment and initial markers if inst.positions.end_lineno == inst.positions.lineno: end_offset = _fix_offset(first_line, inst.positions.end_col_offset) segment = first_line[start_offset:end_offset] markers.append(" " * start_offset + "~" * (end_offset - start_offset)) else: segment = first_line[start_offset:] + "\n" markers.append(" " * start_offset + "~" * (len(first_line) - start_offset)) last_line = linecache.getline( code.co_filename, inst.positions.end_lineno ).rstrip() end_offset = _fix_offset(last_line, inst.positions.end_col_offset) for lineno in range(inst.positions.lineno + 1, inst.positions.end_lineno): line = linecache.getline(code.co_filename, lineno).rstrip() segment += line + "\n" # don't underline leading spaces num_spaces = len(line) - len(line.lstrip()) markers.append(" " * num_spaces + "~" * (len(line) - num_spaces)) segment += last_line[:end_offset] num_spaces = len(last_line) - len(last_line.lstrip()) markers.append(" " * num_spaces + "~" * (end_offset - num_spaces)) anchors: Optional[_Anchors] = None try: anchors = _extract_anchors_from_expr(segment) except AssertionError: pass # replace `~` markers with `^` where necessary if anchors is None: markers = [marker.replace("~", "^") for marker in markers] else: # make markers mutable markers = [list(marker) for marker in markers] # anchor positions do not take start_offset into account if anchors.left_end_lineno == 0: anchors.left_end_offset += start_offset if anchors.right_start_lineno == 0: anchors.right_start_offset += start_offset # Turn `~`` markers between anchors to `^` for line in range(len(markers)): for col in range(len(markers[line])): if line < anchors.left_end_lineno: continue if line == anchors.left_end_lineno and col < anchors.left_end_offset: continue if ( line == anchors.right_start_lineno and col >= anchors.right_start_offset ): continue if line > anchors.right_start_lineno: continue if markers[line][col] == "~": markers[line][col] = "^" # make markers into strings again markers = ["".join(marker) for marker in markers] result = "" for i in range(len(markers)): result += ( linecache.getline(code.co_filename, inst.positions.lineno + i).rstrip() + "\n" ) result += markers[i] + "\n" return result def is_guard_failure_reporting_enabled(): return ( config.report_guard_failures or torch._logging._internal.log_state.is_artifact_enabled("recompiles") ) def get_static_address_type(t): if isinstance(t, torch.Tensor): return getattr(t, "_dynamo_static_input_type", None) return None
import contextlib import dis import functools import logging import os.path import re import sys import types import unittest from typing import Sequence, Union from unittest.mock import patch import torch from torch import fx from torch._dynamo.output_graph import OutputGraph from torch._dynamo import config, eval_frame, optimize_assert, reset from torch._dynamo.bytecode_transformation import ( create_instruction, debug_checks, is_generator, transform_code_object, ) from torch._dynamo.guards import CheckFunctionManager, GuardedCode from .utils import same unsupported = eval_frame.unsupported three = 3 log = logging.getLogger(__name__) def clone_me(x): if x is None: return None return x.detach().clone().requires_grad_(x.requires_grad) def skip_if_pytest(fn): @functools.wraps(fn) def wrapped(*args, **kwargs): if "PYTEST_CURRENT_TEST" in os.environ: raise unittest.SkipTest("does not work under pytest") return fn(*args, **kwargs) return wrapped def named_parameters_for_optimized_module(mod): assert isinstance(mod, eval_frame.OptimizedModule) return mod._orig_mod.named_parameters def named_buffers_for_optimized_module(mod): assert isinstance(mod, eval_frame.OptimizedModule) return mod._orig_mod.named_buffers def remove_optimized_module_prefix(name): return re.sub(r"^_orig_mod[.]", "", name) def collect_results(model, prediction, loss, example_inputs): results = [] results.append(prediction) results.append(loss) # if isinstance(loss, torch.Tensor) and loss.item() > 1: # log.warning( # f"High loss value alert - {loss:.2f}. Can result in unstable gradients." # ) grads = dict() params = dict() for name, param in model.named_parameters(): if isinstance(model, eval_frame.OptimizedModule): name = remove_optimized_module_prefix(name) param_copy = param grad = param.grad # Treat None and zero grad as same if param.grad is None: grad = torch.zeros_like(param) grads[name + ".grad"] = grad params[name] = param_copy results.append(grads) results.append(params) buffers = dict() for name, buffer in model.named_buffers(): if isinstance(model, eval_frame.OptimizedModule): name = remove_optimized_module_prefix(name) buffers[name] = buffer results.append(buffers) for example in example_inputs: if isinstance(example, (tuple, list)): for inp in example: if isinstance(inp, torch.Tensor): results.append(inp.grad) else: if isinstance(example, torch.Tensor): results.append(example.grad) return results def requires_bwd_pass(out): if isinstance(out, torch.Tensor): return out.requires_grad elif isinstance(out, (list, tuple)): return any(requires_bwd_pass(x) for x in out) elif out is None: return False elif isinstance(out, int): return False raise NotImplementedError("Don't know how to reduce", type(out)) def reduce_to_scalar_loss(out): """Reduce the output of a model to get scalar loss""" if isinstance(out, torch.Tensor): # Mean does not work on integer tensors return out.sum() / out.numel() elif isinstance(out, (list, tuple)): return sum([reduce_to_scalar_loss(x) for x in out]) / len(out) elif type(out).__name__ in ( "MaskedLMOutput", "Seq2SeqLMOutput", "CausalLMOutputWithCrossAttentions", ): return reduce_to_scalar_loss(out.logits) elif type(out).__name__ == "SquashedNormal": return out.mean.sum() elif isinstance(out, dict): return sum([reduce_to_scalar_loss(value) for value in out.values()]) / len( out.keys() ) raise NotImplementedError("Don't know how to reduce", type(out)) def debug_dir(): path = os.path.join(os.path.dirname(__file__), "../debug") if not os.path.exists(path): os.mkdir(path) return path def debug_dump(name, code: types.CodeType, extra=""): with open(os.path.join(debug_dir(), name), "w") as fd: fd.write( f"{dis.Bytecode(code).info()}\n\n{dis.Bytecode(code).dis()}\n\n{extra}\n" ) def debug_insert_nops(frame, cache_size, hooks, _): """used to debug jump updates""" def insert_nops(instructions, code_options): instructions.insert(0, create_instruction("NOP")) instructions.insert(0, create_instruction("NOP")) if is_generator(frame.f_code): return None debug_checks(frame.f_code) code = transform_code_object(frame.f_code, insert_nops) graph = OutputGraph( code_options={}, compiler_fn=None, root_tx=None, export=False, export_constraints=None, frame_state={"_id": 0}, # TODO: shouldn't this be f_locals/f_globals from frame? local_scope=locals(), global_scope=globals(), f_code=frame.f_code, ) return GuardedCode(code, CheckFunctionManager(graph).check_fn) class CompileCounter: def __init__(self): self.frame_count = 0 self.op_count = 0 def __call__(self, gm: torch.fx.GraphModule, example_inputs): self.frame_count += 1 for node in gm.graph.nodes: if "call" in node.op: self.op_count += 1 return gm.forward def clear(self): self.frame_count = 0 self.op_count = 0 class CompileCounterWithBackend: def __init__(self, backend): self.frame_count = 0 self.op_count = 0 self.backend = backend self.graphs = [] def __call__(self, gm: torch.fx.GraphModule, example_inputs): from .backends.registry import lookup_backend self.frame_count += 1 for node in gm.graph.nodes: if "call" in node.op: self.op_count += 1 self.graphs.append(gm) return lookup_backend(self.backend)(gm, example_inputs) # Equivalent to backend="eager", but also records graphs that # we can assert on class EagerAndRecordGraphs: def __init__(self): self.graphs = [] def __call__(self, gm: torch.fx.GraphModule, example_inputs): self.graphs.append(gm) return gm def strip_comment(code): code = str(code) return re.sub(r"(?m)^ *#.*\n?", "", code) def remove_trailing_space(code): return "\n".join([line.rstrip() for line in code.split("\n")]) def normalize_gm(gm_str): # strip comments as comments have path to files which may differ from # system to system. return remove_trailing_space(strip_comment(gm_str)) def standard_test(self, fn, nargs, expected_ops=None, expected_ops_dynamic=None): if not config.assume_static_by_default and expected_ops_dynamic is not None: expected_ops = expected_ops_dynamic actual = CompileCounter() if expected_ops is None: expected = CompileCounter() try: gm = torch.fx.symbolic_trace(fn) expected(gm) print("\nfx.symbolic_trace graph:") gm.graph.print_tabular() expected_ops = expected.op_count except Exception: pass # Silently ignore FX errors (not our issue) args1 = [torch.randn(10, 10) for _ in range(nargs)] args2 = [torch.randn(10, 10) for _ in range(nargs)] correct1 = fn(*args1) correct2 = fn(*args2) reset() opt_fn = optimize_assert(actual)(fn) val1a = opt_fn(*args1) val2a = opt_fn(*args2) val1b = opt_fn(*args1) val2b = opt_fn(*args2) reset() self.assertTrue(same(val1a, correct1)) self.assertTrue(same(val1b, correct1)) self.assertTrue(same(val2a, correct2)) self.assertTrue(same(val2b, correct2)) self.assertEqual(actual.frame_count, 1) if expected_ops is not None: self.assertEqual(actual.op_count, expected_ops) def dummy_fx_compile(gm: fx.GraphModule, example_inputs): return gm.forward def format_speedup(speedup, pvalue, is_correct=True, pvalue_threshold=0.1): if not is_correct: return "ERROR" if pvalue > pvalue_threshold: return f"{speedup:.3f}x SAME" return f"{speedup:.3f}x p={pvalue:.2f}" def rand_strided( size: Sequence[int], stride: Sequence[int], dtype: torch.dtype = torch.float32, device: Union[str, torch.device] = "cpu", extra_size: int = 0, ): needed_size = ( sum((shape - 1) * stride for shape, stride in zip(size, stride)) + 1 + extra_size ) if dtype.is_floating_point: buffer = torch.randn(needed_size, dtype=dtype, device=device) else: buffer = torch.zeros(size=[needed_size], dtype=dtype, device=device) return torch.as_strided(buffer, size, stride) def _make_fn_with_patches(fn, *patches): @functools.wraps(fn) def _fn(*args, **kwargs): with contextlib.ExitStack() as stack: for module, attr, val in patches: stack.enter_context(patch.object(module, attr, val)) return fn(*args, **kwargs) return _fn def make_test_cls_with_patches(cls, cls_prefix, fn_suffix, *patches, xfail_prop=None): class DummyTestClass(cls): pass DummyTestClass.__name__ = f"{cls_prefix}{cls.__name__}" DummyTestClass.__qualname__ = DummyTestClass.__name__ for name in dir(cls): if name.startswith("test_"): fn = getattr(cls, name) if not callable(fn): continue new_name = f"{name}{fn_suffix}" new_fn = _make_fn_with_patches(fn, *patches) new_fn.__name__ = new_name if xfail_prop is not None and hasattr(fn, xfail_prop): new_fn = unittest.expectedFailure(new_fn) setattr(DummyTestClass, new_name, new_fn) return DummyTestClass # test Python 3.11+ specific features def skipIfNotPy311(fn): if sys.version_info >= (3, 11): return fn return unittest.skip(fn) # Controls tests generated in test/inductor/test_torchinductor_dynamic_shapes.py # and test/dynamo/test_dynamic_shapes.py def expectedFailureDynamic(fn): fn._expected_failure_dynamic = True return fn # Controls tests generated in test/inductor/test_torchinductor_codegen_dynamic_shapes.py def expectedFailureCodegenDynamic(fn): fn._expected_failure_codegen_dynamic = True return fn # Controls test generated in test/inductor/test_cpp_wrapper.py def expectedFailureDynamicWrapper(fn): fn._expected_failure_dynamic_wrapper = True return fn
import argparse import csv import functools import gc import io import itertools import logging import numpy as np import os import re import sys import time import torch from torch import nn from torch.jit import fuser, optimized_execution from os.path import abspath from scipy.stats import ttest_ind import importlib import glob import collections import random import torch._lazy import torch._lazy.metrics as metrics import torch._lazy.ts_backend def set_seeds(seed=1337): torch.manual_seed(seed) random.seed(seed) np.random.seed(seed) torch.backends.cudnn.deterministic = True torch.cuda.manual_seed_all(seed) def get_unique_suffix(): return f"{time.time()}_{os.getpid()}" def get_benchmark_cls(model_name): if ("Benchmark(dims=[" in model_name): # just evaluate the model name + args # it should create a model with the right dim return eval(model_name) try: module = importlib.import_module(f'.models.{model_name}', package="torchbenchmark") Model = getattr(module, 'Model', None) if Model is None: raise RuntimeError(f"{module} does not define attribute Model, skip it") if not hasattr(Model, 'name'): Model.name = model_name return Model except ModuleNotFoundError as e: raise RuntimeError(f"Could not find dependent module {e.name} for Model {model_name}, skip it") # from caffe2.python import workspace # workspace.GlobalInit(['caffe2', '--caffe2_log_level=-5']) import torch._lazy.metrics torch._lazy.ts_backend.init() os.environ["KALDI_ROOT"] = "/tmp" # avoids some spam log = logging.getLogger(__name__) # Models that are known to crash or otherwise not work with lazy tensor are # disabled, but should be removed from these lists once fixed SKIP = { "densenet121": "Disabled by torchbench upstream due to OOM on T4 CI machine", "timm_nfnet": "Disabled by torchbench upstream due to OOM on T4 CI machine", "moco": "Distributed/ProcessGroupNCCL: Tensors must be CUDA and dense", "tacotron2": "Disabled by torchbench upstream due to OOM on T4 CI machine", } SKIP_TRAIN_ONLY = { "squeezenet1_1": "Disabled by torchbench upstream due to OOM on T4 CI machine", "demucs": "Disabled by torchbench upstream due to OOM on T4 CI machine", } current_name = "" current_device = "" @functools.lru_cache(maxsize=None) def output_csv(name, headers): output = csv.writer( io.TextIOWrapper( open(name, "wb", buffering=0), "utf-8", write_through=True, ), delimiter=",", quotechar='"', quoting=csv.QUOTE_MINIMAL ) output.writerow(headers) return output class HardSwishBenchmark: def __init__(self, dims): self.name = "HardSwishBenchmark(dims=[" + ','.join([str(d) for d in dims]) + '])' self.dims = dims # test and extra_args are placeholders to match TorchBench API def __call__(self, device, test, extra_args): return HardSwish(self.dims, device) class HardSwish(nn.Module): def __init__(self, dims, device='cuda'): super(HardSwish, self).__init__() self.name = "HardSwish[" + ','.join([str(d) for d in dims]) + ']' self.example_inputs = ( torch.randn(*dims, device=device, dtype=torch.float32), ) def get_module(self): return self, self.example_inputs def name(self): return self.name def forward(self, x): return x * torch.clamp(x + 3.0, 0.0, 6.0) / 6.0 class DivAddMulBenchmark: """This wrapper helps interface with the same iterator as torchbench models """ def __init__(self, dims): self.name = "DivAddMulBenchmark(dims=[" + ','.join([str(d) for d in dims]) + '])' self.dims = dims # test and extra_args are placeholders to match TorchBench API def __call__(self, device, test, extra_args): return DivAddMul(self.dims, device) class DivAddMul(nn.Module): def __init__(self, dims, device='cuda'): super(DivAddMul, self).__init__() self.attention_head_size = dims[1] self.W = torch.ones(*dims[-2:], device=device, dtype=torch.float32) self.name = "DivAddMul[" + ','.join([str(d) for d in dims]) + ']' self.example_inputs = ( torch.ones(*dims, device=device, dtype=torch.float32), torch.randn(*dims, device=device, dtype=torch.float32), ) def get_module(self): return self, self.example_inputs def name(self): return self.name def forward(self, inputs, mask): out3 = ((inputs / 0.1) + mask) * 2.0 out5 = out3.matmul(self.W) out8 = ((out5 / 0.1) + mask) * 2.00 return out8 toy_models = [ HardSwishBenchmark, DivAddMulBenchmark, ] toy_dims = [ [1, 1, 1, 1], [32, 16, 128, 128], [128, 16, 128, 128], [256, 16, 128, 128], ] for dims in toy_dims: # The toy benchmarks don't support training.. # and it's too late to add it inside the generator func below... SKIP_TRAIN_ONLY["DivAddMulBenchmark(dims=[" + ','.join([str(d) for d in dims]) + '])'] = "This model has no train()" SKIP_TRAIN_ONLY["HardSwishBenchmark(dims=[" + ','.join([str(d) for d in dims]) + '])'] = "This model has no train()" def iter_toy_model_names(): for dims in toy_dims: for model in toy_models: yield model(dims=dims).name def pick_grad(args, name): if args.test == 'train': return torch.enable_grad() if name in ("maml",): return torch.enable_grad() else: return torch.no_grad() def short_name(name, limit=20): """Truncate a model name to limit chars""" return name if len(name) <= limit else f"{name[:limit - 3].rstrip('_')}..." def iter_torchbench_model_names(): from torchbenchmark import _list_model_paths for model_path in _list_model_paths(): model_name = os.path.basename(model_path) yield model_name def iter_models(args, dirpath): for name in itertools.chain(iter_toy_model_names(), iter_torchbench_model_names()): if ( (len(args.filter) and (not re.search("|".join(args.filter), name, re.I))) or (len(args.exclude) and re.search("|".join(args.exclude), name, re.I)) ): save_error(name, args.test, "disabled via cmdline filter/exclude", dirpath) continue if name in SKIP: save_error(name, args.test, f"SKIP because {SKIP[name]}", dirpath) continue if name in SKIP_TRAIN_ONLY and args.test == "train": save_error(name, args.test, f"SKIP_TRAIN_ONLY because {SKIP_TRAIN_ONLY[name]}", dirpath) continue yield name def call_model_with(model, inputs): if isinstance(inputs, tuple) or isinstance(inputs, list): return model(*inputs) elif isinstance(inputs, dict): return model(**inputs) elif isistance(inputs, torch.Tensor): return model(inputs) raise RuntimeError("invalid example inputs ", inputs) class CudaSync: def __init__(self, sync_every_iter=False): self.sync_every_iter = sync_every_iter def iter_sync(self): if self.sync_every_iter: torch.cuda.synchronize() def final_sync(self): torch.cuda.synchronize() class NoOpSync: def __init__(self, sync_every_iter=False): pass def iter_sync(self): pass def final_sync(self): pass class LazySync: def __init__(self, sync_every_iter=False, skip_final_sync=False): self.sync_every_iter = sync_every_iter self.skip_final_sync = skip_final_sync def iter_sync(self): torch._lazy.mark_step() if self.sync_every_iter: torch._lazy.wait_device_ops() if current_device == 'cuda': torch.cuda.synchronize() def final_sync(self): torch._lazy.mark_step() if self.skip_final_sync: return torch._lazy.wait_device_ops() if current_device == 'cuda': torch.cuda.synchronize() def dump_lazy_metrics(reset=False): met = {name: int(metrics.counter_value(name)) for name in metrics.counter_names() if int(metrics.counter_value(name) > 0)} if reset: metrics.reset() return met def timed(args, benchmark, sync, times=1): results = None sync.final_sync() set_seeds() if args.test == 'eval': model, example_inputs = benchmark.get_module() if current_device == 'lazy': torch.cuda.set_sync_debug_mode(2) elif current_device == 'cuda': torch.cuda.set_sync_debug_mode(0) # keep the lazy tensor results alive until the final sync t0 = time.perf_counter() for i in range(times): if args.test == 'eval': results = call_model_with(model, example_inputs) elif args.test == 'train': benchmark.train() # for the last i, let final_sync take care of it if i < times - 1: # may be just an async 'mark_step' for lazy, or no-op for cuda sync.iter_sync() if current_device in ['lazy', 'cuda']: # don't assume torch.cuda present unless using cuda torch.cuda.set_sync_debug_mode(0) # should be a hard sync for lazy and cuda # unless strictly measuring lazy trace overhead, then no-op sync.final_sync() t1 = time.perf_counter() return results, t1 - t0 def to_device(tensors, device): """Handles moving tensor or tensors (in various containers) to a new device. Used for various purposes (either correctness checking, or even as an impromptu means of synchronization.) Note: this method doesn't apply a cuda sync, do that outside. """ try: import transformers.modeling_outputs if ( isinstance(tensors, transformers.modeling_outputs.MaskedLMOutput) or isinstance(tensors, transformers.modeling_outputs.Seq2SeqLMOutput) ): # huggingface transformers return classes as model output with many attributes # we don't want to sync (such as hidden states of every layer) - just sync the logits tensors = tensors.logits except ImportError: pass try: import torchbenchmark.models.soft_actor_critic.nets import torchbenchmark.models.drq.drqutils if ( isinstance(tensors, torchbenchmark.models.soft_actor_critic.nets.SquashedNormal) or isinstance(tensors, torchbenchmark.models.drq.drqutils.SquashedNormal) ): # a SquashedNormal is a py class that holds a loc and scale torch tensor, # so convert it to a tuple for compatibility with downstream check_results tensors = (tensors.loc, tensors.scale) except ImportError: pass if isinstance(tensors, tuple) or isinstance(tensors, list): return tuple(to_device(i, device) for i in tensors) elif isinstance(tensors, dict): return {k: to_device(tensors[k], device) for k in tensors} elif isinstance(tensors, torch.Tensor): return tensors.to(device) raise RuntimeError("invalid example tensors ", tensors) def lazy_overhead_experiment(args, results, benchmark, lazy_benchmark): timings = np.zeros((args.repeat, 2), np.float64) ref_sync = CudaSync if current_device == 'cuda' else NoOpSync warmup0 = time.perf_counter() for rep in range(args.warmup): # interleave the runs to handle frequency scaling and load changes timed(args, benchmark, sync=ref_sync(sync_every_iter=True)) timed(args, lazy_benchmark, sync=LazySync(sync_every_iter=True)) warmup_time = time.perf_counter() - warmup0 bench0 = time.perf_counter() dump_lazy_metrics(reset=True) for rep in range(args.repeat): # interleave the runs to handle frequency scaling and load changes _, timings[rep, 0] = timed(args, benchmark, sync=ref_sync(sync_every_iter=True)) _, timings[rep, 1] = timed(args, lazy_benchmark, sync=LazySync(skip_final_sync=True)) torch._lazy.wait_device_ops() if current_device == 'cuda': torch.cuda.synchronize() lazy_metrics = dump_lazy_metrics(reset=True) bench_time = time.perf_counter() - bench0 pvalue = ttest_ind(timings[:, 0], timings[:, 1]).pvalue median = np.median(timings, axis=0) fallbacks = ";".join([f"{m}:{lazy_metrics[m]}" for m in lazy_metrics if "aten::" in m]) ops = int(sum([lazy_metrics[m] for m in lazy_metrics if 'lazy::' in m or 'aten::' in m]) / args.repeat) trace_us = median[1] / 1e-6 us_per_op = trace_us / ops overhead = median[1] / median[0] results.append(overhead) output_csv( os.path.join(args.output_dir, f"lazy-overheads_{args.test}_{get_unique_suffix()}.csv"), ("dev", "name", "test", "overhead", "pvalue", "ops", "trace_us", "us_per_op", "fallbacks"), ).writerow([current_device, current_name, args.test, f"{overhead:.4f}", f"{pvalue:.4e}", f"{ops}", f"{trace_us:.4f}", f"{us_per_op:.4f}", f"{fallbacks}"]) print(f"{short_name(current_name, limit=30):<30} {current_device:<4} {args.test:<5} " f"{'trace overheads':<20} overhead: {overhead:.3f} pvalue: {pvalue:.2e} us_per_op {us_per_op:.3f}") if args.verbose: print(f"CIDEBUGOUTPUT,lazy_overhead_experiment," f"{current_name},{args.test},{current_device},{overhead:.4f}," f"{pvalue:.4e},{args.warmup},{args.repeat},{warmup_time:.2f},{bench_time:.2f}") return (overhead, pvalue) def lazy_compute_experiment(args, experiment, results, benchmark, lazy_benchmark, sync_every_iter=False): timings = np.zeros((args.repeat, 2), np.float64) ref_sync = CudaSync(sync_every_iter=sync_every_iter) if current_device == 'cuda' else NoOpSync() lazy_sync = LazySync(sync_every_iter=sync_every_iter) # interleave the runs to handle frequency scaling and load changes warmup0 = time.perf_counter() for rep in range(args.warmup): # warmup timed(args, benchmark, sync=ref_sync) timed(args, lazy_benchmark, sync=lazy_sync) warmup_time = time.perf_counter() - warmup0 # fresh metrics for each timed run dump_lazy_metrics(reset=True) bench0 = time.perf_counter() for rep in range(args.repeat): # measure _, timings[rep, 0] = timed(args, benchmark, times=args.inner_loop_repeat, sync=ref_sync) _, timings[rep, 1] = timed(args, lazy_benchmark, times=args.inner_loop_repeat, sync=lazy_sync) bench_time = time.perf_counter() - bench0 lazy_metrics = dump_lazy_metrics(reset=True) if 'CachedCompile' not in lazy_metrics or lazy_metrics['CachedCompile'] != args.repeat * args.inner_loop_repeat: print("WARNING: lazy cached compile count indicates fallbacks, or something else") fallbacks = {k: v for (k, v) in lazy_metrics.items() if 'aten::' in k} if len(fallbacks): print(f"WARNING: lazy-eager fallbacks detected for [{fallbacks}]") if args.dump_lazy_counters: print(lazy_metrics) pvalue = ttest_ind(timings[:, 0], timings[:, 1]).pvalue median = np.median(timings, axis=0) speedup = median[0] / median[1] results.append(speedup) output_csv( os.path.join(args.output_dir, f"lazy-compute_{args.test}_{get_unique_suffix()}.csv"), ("name", "dev", "experiment", "test", "speedup", "pvalue"), ).writerow([current_name, current_device, experiment, args.test, f"{speedup:.4f}", f"{pvalue:.2e}"]) print(f"{short_name(current_name, limit=30):<30} {current_device:<4} " f"{args.test:<5} {experiment:<20} speedup: {speedup:.3f} pvalue: {pvalue:.2e}") if args.verbose: print(f"CIDEBUGOUTPUT,lazy_compute_experiment," f"{current_name},{current_device},{experiment},{args.test},{speedup:.4f}," f"{pvalue:.2e},{args.warmup},{args.repeat},{warmup_time:.2f},{bench_time:.2f}") return (speedup, pvalue) def check_eval_correctness(args, benchmark, lazy_benchmark, name): try: set_seeds() model, example_inputs = benchmark.get_module() model.eval() correct_result = call_model_with(model, example_inputs) set_seeds() lazy_model, lazy_inputs = lazy_benchmark.get_module() lazy_model.eval() lazy_result = call_model_with(lazy_model, lazy_inputs) if not check_results(correct_result, lazy_result, args.device, args.allclose_atol): print(f"INCORRECT: {name}") save_error(name, args.test, "Incorrect results.", args.output_dir) return False except Exception as e: print(f"ERROR: {name}: {e}") save_error(name, args.test, e, args.output_dir) return False return True def just_run_once(args, lazy_benchmark): set_seeds() if args.test == 'eval': model, example_inputs = lazy_benchmark.get_module() results.append(call_model_with(model, example_inputs)) elif args.test == 'train': lazy_benchmark.train() torch._lazy.mark_step() torch._lazy.wait_device_ops() if current_device == 'cuda': torch.cuda.synchronize() def check_results_impl(correct_result, lazy_result, atol): # recursive helper for dealing with nested data structures if type(correct_result) is tuple: for c, l in zip(correct_result, lazy_result): return check_results_impl(c, l, atol) if type(correct_result) is dict: print(correct_result.keys()) for k in correct_result: assert k in lazy_result return check_results_impl(correct_result[k], lazy_result[k], atol) assert type(correct_result) is torch.Tensor, f"Expect torch.Tensor but got {type(correct_result)}." ans = torch.allclose(correct_result, lazy_result, atol=atol) if not ans: print(f"correct_result:\n{correct_result}, lazy_result:\n{lazy_result}") return ans def check_results(correct_result, lazy_result, device, atol): # to_device has recursive logic and special handling for # extracting relevant tensors from huggingface data structures correct_result = to_device(correct_result, device) lazy_result = to_device(lazy_result, device) return check_results_impl(correct_result, lazy_result, atol) def check_fuser(args): if args.fuser == 'noopt': return if args.fuser is None: args.fuser = 'fuser1' if args.device == 'cpu' else 'fuser2' if args.device == 'cpu': assert args.fuser in ['fuser0', 'fuser1'] if args.fuser == 'fuser1': assert torch._C._llvm_enabled(), "Can't use fuser1 (nnc) for CPU without building torch with llvm." if args.device == 'cuda': assert args.fuser in ['fuser0', 'fuser1', 'fuser2'] def run_tracing_execute_noops(test, lazy_benchmark): ltm.set_noop_execution_mode(True) if test == 'eval': model, example_inputs = lazy_benchmark.get_module() # doesn't actualyl collect a profile, but runs just the lazy trace # so you can use a profiler on top of the program. # note: depends on making the backend do a 'no-op' for executecomputation results = [] for i in range(300): if test == 'eval': results.append(call_model_with(model, example_inputs)) elif test == 'train': lazy_benchmark.train() # we still do a mark step, to preserve the ratio of how often we split the graph # and run through the process of 'compile and execute' (even though these are now noops) torch._lazy.mark_step() ltm.set_noop_execution_mode(False) def merge_with_prefix(prefix, tmp_dir, out_dir, headers): results = [] rfnames = glob.glob(os.path.join(tmp_dir, prefix + "*")) for rfname in rfnames: results.extend(open(rfname).readlines()[1:]) # skip header # the header shouldn't require quotations and the results should already be properly # quoted via output_csv with open(os.path.join(out_dir, prefix + "acc.csv"), "a+") as acc_csv: acc_csv.write(",".join(headers) + "\n") for l in results: acc_csv.write(l) def merge_reformat(tmp_dir, out_dir, table): out_dir = args.output_dir # depending on the type of an experiment, fields can be in a different order # `get_field` deals with all three types including `error` def get_field(row, name, file_type): headers = { "error": ("name", "test", "error"), "lazy-compute" : ("name", "dev", "experiment", "test", "speedup", "pvalue"), "lazy-overheads" : ("dev", "name", "test", "overhead", "pvalue", "ops", "trace_us", "us_per_op", "fallbacks") } header = headers[file_type] r = row[header.index(name)] if name in header else "N/A" return r csv_files = glob.glob(os.path.join(tmp_dir, "*.csv")) for csvf in csv_files: with open(csvf, "r") as csvfile: prefix = os.path.basename(csvf).split("_")[0] csvreader = csv.reader(csvfile, delimiter=",", quotechar='"') # This skips the first row of the CSV file. next(csvreader) for r in csvreader: key = (get_field(r, "name", prefix), get_field(r, "test", prefix)) entry = table[key] if prefix == "error": entry["error"] = f'{entry.get("error", "")} {get_field(r, "error", prefix)}' elif prefix == "lazy-overheads": entry["overhead"] = get_field(r, "overhead", prefix) entry["ops"] = get_field(r, "ops", prefix) entry["trace_us"] = get_field(r, "trace_us", prefix) entry["us_per_op"] = get_field(r, "us_per_op", prefix) entry["fallbacks"] = get_field(r, "fallbacks", prefix) else: entry[get_field(r, "experiment", prefix)] = get_field(r, "speedup", prefix) amortized_header = f"amortized {args.inner_loop_repeat}x" headers = ("name", "test", amortized_header, "unamortized", "overhead", "error", "rc", "ops", "trace_us", "us_per_op", "fallbacks") cw = output_csv( os.path.join(out_dir, f"{args.test}_reformat.csv"), headers ) for k, v in table.items(): cw.writerow((k[0], k[1], v.get(amortized_header, 'N/A'), v.get('unamortized', 'N/A'), v.get('overhead', 'N/A'), v.get('error', 'N/A'), v.get('rc'), v.get('ops', 'N/A'), v.get('trace_us', 'N/A'), v.get('us_per_op', 'N/A'), v.get('fallbacks', 'N/A'))) def save_error(name, test, error, dir): output_csv( os.path.join(dir, f"error_{get_unique_suffix()}.csv"), ("name", "test", "error"), ).writerow([name, test, error]) if __name__ == "__main__" : parser = argparse.ArgumentParser() parser.add_argument("--filter", "-k", action="append", default=[], help="filter benchmarks") parser.add_argument("--exclude", "-x", action="append", default=[], help="filter benchmarks") parser.add_argument("--device", "-d", default='cuda', help="cpu or cuda") parser.add_argument("--warmup", type=int, default=4, help="number of warmup runs") parser.add_argument("--timeout", type=int, default=60 * 10, help="time allocated to each model") parser.add_argument("--repeat", "-n", type=int, default=4, help="number of timing runs (samples)") parser.add_argument("--inner_loop_repeat", type=int, default=10, help="repeat the computation this many times per sample") parser.add_argument("--fuser", type=str, choices=['noopt', 'fuser0', 'fuser1', 'fuser2'], help="0=legacy, 1=nnc, 2=nvfuser") parser.add_argument("--test", type=str, choices=['eval', 'train'], default='eval') parser.add_argument("--verbose", action='store_true') parser.add_argument("--torchbench_dir", type=str, help="path to torchbenchmark repo") parser.add_argument("--output_dir", type=str, default=".", help="path to write output files") parser.add_argument("--dump_lazy_counters", action='store_true', help="dump lazy counter values after each timing run") parser.add_argument("--just_run_once", action="store_true") parser.add_argument("--run_tracing_execute_noops", action='store_true', help="Run the tracing portion only, with noop backend, useful for running under a profiler.") parser.add_argument("--run_in_subprocess", "-s", type=str, help="which model run in subprocess. This will ignore filter and exclude") parser.add_argument("--allclose_atol", type=float, default=1e-4, help="Absolute tolerance to check lazy result again the correct result") parser.add_argument("--precision", choices=["fp32", "fp16", "amp"], default="fp32", help="enable fp16 modes from: fp32, fp16/half, or amp") args = parser.parse_args() results = [] check_fuser(args) # torchbench_dir = abspath(args.torchbench_dir) if args.torchbench_dir else abspath("../../benchmark") # assert os.path.exists(os.path.join(torchbench_dir, "torchbenchmark")), "set --torchbench_dir to installed torchbench repo" # sys.path.append(torchbench_dir) copy_argv = [] + sys.argv if args.run_in_subprocess: try: from fastNLP.core import logger logger.setLevel(logging.WARNING) current_name = args.run_in_subprocess benchmark_cls = get_benchmark_cls(args.run_in_subprocess) current_device = args.device if args.device == 'cuda': assert 'LTC_TS_CUDA' in os.environ and bool(os.environ['LTC_TS_CUDA']), "set LTC_TS_CUDA for cuda device" with pick_grad(args, current_name): with fuser(args.fuser) if args.fuser != 'noopt' else optimized_execution(False): if args.fuser == 'noopt': # TODO(whc) cleaner way to configure the fusers; seems i have to set both optimized_execution(False) # _and_ disable fusers to get no-optimization torch._C._jit_override_can_fuse_on_cpu(False) torch._C._jit_override_can_fuse_on_gpu(False) torch._C._jit_set_texpr_fuser_enabled(False) torch._C._jit_set_nvfuser_enabled(False) if args.fuser == 'fuser2': # special case to disable nvfuser horizontal fusion as it is currently broken # TODO(whc) remove this once it's fixed torch._C._jit_set_nvfuser_horizontal_mode(False) # no try since we should've already filtered out models we can't create set_seeds() benchmark = benchmark_cls(test=args.test, device=args.device, extra_args=["--precision", args.precision]) set_seeds() lazy_benchmark = benchmark_cls(test=args.test, device='lazy', extra_args=["--precision", args.precision]) # TODO: might be redundant gc.collect() if args.run_tracing_execute_noops: print(f"Profiling {current_name}") run_tracing_execute_noops(args.test, lazy_benchmark) # when profiling, we really don't want to do anything else exit(0) if args.just_run_once: just_run_once(args, lazy_benchmark) exit(0) if args.test == 'eval': if not check_eval_correctness(args, benchmark, lazy_benchmark, current_name): exit(3) lazy_overhead_experiment(args, results, benchmark, lazy_benchmark) lazy_compute_experiment(args, f"amortized {args.inner_loop_repeat}x", results, benchmark, lazy_benchmark) lazy_compute_experiment(args, "unamortized", results, benchmark, lazy_benchmark, sync_every_iter=True) except Exception as e: print(f"ERROR: {current_name}: {e}") save_error(current_name, args.test, e, args.output_dir) exit(13) exit(0) import psutil import subprocess import tempfile dirpath = tempfile.mkdtemp() table = collections.defaultdict(dict) for model_name in iter_models(args, dirpath): # if `--run_in_subprocess` is specified, it will override any filters and excludes # pass the rest of arguments intact such as device, test, repeat, etc # note, the latest output_dir will override the original one and this is exactly what we want # for child processes launch_command = f"python {' '.join(copy_argv)} --run_in_subprocess '{model_name}' --output_dir={dirpath}" env = os.environ env["LTC_TS_CUDA"] = "1" if args.device == "cuda" else "0" rc = 0 try: if args.verbose: cp = subprocess.run("nvidia-smi --query-gpu=timestamp,utilization.memory,memory.total,memory.free,memory.used" " --format=csv,noheader", capture_output=True, text=True, shell=True) print(f"CIDEBUGOUTPUT,BEFORE subprocess.run,{model_name},{cp.stdout}") proc = subprocess.Popen(launch_command, env=env, shell=True, stderr=subprocess.STDOUT) outs, errs = proc.communicate(timeout=args.timeout) rc = proc.poll() except subprocess.TimeoutExpired: print(f"{model_name} timed out after {args.timeout // 60} minutes! Include it in SKIP or SKIP_TRAIN_ONLY") save_error(model_name, args.test, "Timed out.", dirpath) # to visualize highlight timeouts, they will also have # "timed out" in the error column rc = 17 process = psutil.Process(proc.pid) for p in process.children(recursive=True): p.kill() process.kill() if args.verbose: cp = subprocess.run("nvidia-smi --query-gpu=timestamp,utilization.memory,memory.total,memory.free,memory.used" " --format=csv,noheader", capture_output=True, text=True, shell=True) print(f"CIDEBUGOUTPUT,AFTER subprocess.run,{model_name},{args.test},{cp.stdout}") entry = table[(model_name, args.test)] entry["rc"] = rc merge_with_prefix("lazy-overheads_", dirpath, args.output_dir, ("dev", "name", "test", "overhead", "pvalue")) merge_with_prefix("lazy-compute_", dirpath, args.output_dir, ("name", "dev", "experiment", "test", "speedup", "pvalue")) merge_with_prefix("error_", dirpath, args.output_dir, ("name", "test", "error")) merge_reformat(dirpath, args, table)
""" Run PyTorch nightly benchmarking. """ import re import argparse import itertools import json import math import os import yaml import numpy from typing import List, Tuple, Dict, Optional, Any from ..utils import REPO_PATH, add_path, get_output_json, get_default_output_json_path from . import BM_NAME with add_path(REPO_PATH): from torchbenchmark.util.experiment.instantiator import list_models, load_model_isolated, TorchBenchModelConfig, \ list_devices, list_tests from torchbenchmark.util.experiment.metrics import TorchBenchModelMetrics, get_model_test_metrics CURRENT_DIR = os.path.dirname(os.path.realpath(__file__)) DEFAULT_DELTA_THRESHOLD = 0.07 DEFAULT_TARGET_SCORE = 1000.0 def generate_model_configs(devices: List[str], tests: List[str], model_names: List[str]) -> List[TorchBenchModelConfig]: """Use the default batch size and default mode.""" if not model_names: model_names = list_models() cfgs = itertools.product(*[devices, tests, model_names]) result = [TorchBenchModelConfig( name=model_name, device=device, test=test, batch_size=None, extra_args=[], extra_env=None, ) for device, test, model_name in cfgs] return result def get_metrics(_config: TorchBenchModelConfig) -> List[str]: return ["latencies",] def compute_score(results, reference_latencies: Dict[str, float]) -> float: # sanity checks latency_results = {k: v for k, v in results.items() if k.endswith("_latency")} test_set = set(latency_results.keys()) reference_set = set(reference_latencies.keys()) test_only_set = test_set.difference(reference_set) assert not test_only_set, f"Tests {test_only_set} only appears in result json, not in reference yaml." reference_only_set = reference_set.difference(test_set) assert not reference_only_set, f"Tests {reference_only_set} only appears in reference yaml, not in result json." # check that for every test in reference_latencies, we can find the corresponding tests in latency_results total_score = 0.0 weight = 1.0 / len(reference_latencies) for key, ref_latency in reference_latencies.items(): test_latency = latency_results[key] ref_latency = float(ref_latency) delta = (test_latency - ref_latency) / test_latency # If less than threshold, treat it as noise if abs(delta) <= DEFAULT_DELTA_THRESHOLD: test_latency = ref_latency total_score += weight * math.log(ref_latency / test_latency) score = math.exp(total_score) * DEFAULT_TARGET_SCORE return score def result_to_output_metrics(results: List[Tuple[TorchBenchModelConfig, TorchBenchModelMetrics]]) -> Dict[str, float]: # metrics name examples: # test_eval[timm_regnet-cuda-eager]_latency # test_eval[timm_regnet-cuda-eager]_cmem # test_eval[timm_regnet-cuda-eager]_gmem result_metrics = {} for _config_id, (config, metrics) in enumerate(results): metrics_base = f"test_{config.test}[{config.name}-{config.device}-eager]" latency_metric = f"{metrics_base}_latency" median_latency = numpy.median(metrics.latencies) assert median_latency, f"Run failed for metric {latency_metric}" result_metrics[latency_metric] = median_latency if metrics.cpu_peak_mem: cpu_peak_mem = f"{metrics_base}_cmem" result_metrics[cpu_peak_mem] = metrics.cpu_peak_mem if metrics.gpu_peak_mem: gpu_peak_mem = f"{metrics_base}_gmem" result_metrics[gpu_peak_mem] = metrics.gpu_peak_mem return result_metrics def validate(candidates: List[str], choices: List[str]) -> List[str]: """Validate the candidates provided by the user is valid""" for candidate in candidates: assert candidate in choices, f"Specified {candidate}, but not in available list: {choices}." return candidates def generate_model_configs_from_yaml(yaml_file: str) -> Tuple[List[TorchBenchModelConfig], Dict[str, float], Any]: yaml_file_path = os.path.join(CURRENT_DIR, yaml_file) with open(yaml_file_path, "r") as yf: config_obj = yaml.safe_load(yf) devices = config_obj["metadata"]["devices"] configs = [] reference_latencies = {} for device in devices: for c in config_obj[device]: if not c["stable"]: continue config = TorchBenchModelConfig( name=c["model"], device=device, test=c["test"], batch_size=c["batch_size"] if "batch_size" in c else None, extra_args=[], extra_env=None, ) configs.append(config) metrics_base = f"test_{config.test}[{config.name}-{config.device}-eager]" latency_metric_key = f"{metrics_base}_latency" reference_latencies[latency_metric_key] = c["median_latency"] return configs, reference_latencies, config_obj def parse_test_name(test_name: str) -> TorchBenchModelConfig: regex = "test_(.*)\[(.*)-(.*)-eager\]" test, model, device = re.match(regex, test_name).groups() return TorchBenchModelConfig( name=model, device=device, test=test, batch_size=None, extra_args=[], extra_env=None, ) def generate_model_configs_from_bisect_yaml(bisect_yaml_file: str) -> List[TorchBenchModelConfig]: def _remove_suffix(test_name: str): index_last_underscore = test_name.rfind("_") return test_name[:index_last_underscore] with open(bisect_yaml_file, "r") as yf: bisect_obj = yaml.safe_load(yf) # remove the suffix bisect_tests = [ _remove_suffix(test_name) for test_name in bisect_obj["details"] ] bisect_tests = set(bisect_tests) configs = [ parse_test_name(test_name_str) for test_name_str in sorted(bisect_tests) ] return configs def parse_str_to_list(candidates): if isinstance(candidates, list): return candidates candidates = list(map(lambda x: x.strip(), candidates.split(","))) return candidates def run_config(config: TorchBenchModelConfig, dryrun: bool=False) -> Optional[TorchBenchModelMetrics]: """This function only handles NotImplementedError, all other errors will fail.""" metrics = get_metrics(config) print(f"Running {config} ...", end='', flush=True) if dryrun: print(" [Skip: Dryrun]", flush=True) return None # We do not allow RuntimeError in this test try: # load the model instance in subprocess model = load_model_isolated(config) # get the model test metrics result: TorchBenchModelMetrics = get_model_test_metrics(model, metrics=metrics) except NotImplementedError as e: print(" [NotImplemented]", flush=True) return None print(" [Done]", flush=True) return result def parse_args(args): parser = argparse.ArgumentParser() parser.add_argument("--device", "-d", default="cuda", help="Devices to run, splited by comma.") parser.add_argument("--test", "-t", default="eval", help="Tests to run, splited by comma.") parser.add_argument("--model", "-m", default=None, type=str, help="Only run the specifice models, splited by comma.") parser.add_argument("--config", "-c", default=None, help="YAML config to specify tests to run.") parser.add_argument("--run-bisect", help="Run with the output of regression detector.") parser.add_argument("--dryrun", action="store_true", help="Dryrun the command.") parser.add_argument("--score", default=None, help="Generate score from the past run json only.") parser.add_argument("--output", default=get_default_output_json_path(BM_NAME), help="Specify the path of the output file") return parser.parse_args(args) def run(args: List[str]): args = parse_args(args) if args.score: assert args.config, f"To compute score, you must specify the config YAML using --config." configs, reference_latencies, config_obj = generate_model_configs_from_yaml(args.config) with open(args.score, "r") as sp: run_result = json.load(sp) input_metrics = run_result["metrics"] score = compute_score(input_metrics, reference_latencies) score_version = config_obj["metadata"]["score_version"] score_name = f"{score_version}_score" print(f"TorchBench {score_name}: {score}.") exit(0) elif args.config: configs, reference_latencies, config_obj = generate_model_configs_from_yaml(args.config) elif args.run_bisect: configs = generate_model_configs_from_bisect_yaml(args.run_bisect) reference_latencies = None else: # If not specified, use the entire model set if not args.model: args.model = list_models() devices = validate(parse_str_to_list(args.device), list_devices()) tests = validate(parse_str_to_list(args.test), list_tests()) models = validate(parse_str_to_list(args.model), list_models()) configs = generate_model_configs(devices, tests, model_names=models) reference_latencies = None results = [] try: for config in configs: metrics = run_config(config, dryrun=args.dryrun) if metrics: results.append([config, metrics]) except KeyboardInterrupt: print("User keyboard interrupted!") if not args.dryrun: metrics = result_to_output_metrics(results) if reference_latencies: score = compute_score(metrics, reference_latencies) score_version = config_obj["metadata"]["score_version"] score_name = f"{score_version}_score" metrics[score_name] = score result = get_output_json(BM_NAME, metrics) import torch result["environ"]["device"] = torch.cuda.get_device_name() with open(args.output, 'w') as f: json.dump(result, f, indent=4)
BM_NAME = "rocm-test"
""" Test user-customized invoke function. """ import argparse from typing import List from ..utils import REPO_PATH, add_path, get_output_json, dump_output with add_path(REPO_PATH): from torchbenchmark.util.experiment.instantiator import list_models, load_model_isolated, TorchBenchModelConfig, \ list_devices, list_tests, inject_model_invoke from torchbenchmark.util.experiment.metrics import TorchBenchModelMetrics, get_model_test_metrics from typing import Optional def user_defined_invoke(self): print(f"Model {self.name} invoke has been replaced!") self.output_metrics_list = [1.0, 2.0, 3.0, 4.0] self.output_metrics_dict ={ "m1": 1.0, "m2": 2.0, "m3": 3.0, } def parse_args(args): parser = argparse.ArgumentParser() parser.add_argument("--device", "-d", default="cuda", help="Devices to run, splited by comma.") parser.add_argument("--test", "-t", default="eval", help="Tests to run, splited by comma.") parser.add_argument("--bs", type=int, default=1, help="Test batch size") parser.add_argument("--model", "-m", default=None, type=str, help="Only run the specifice models, splited by comma.") parser.add_argument("--inject", action="store_true", help="Inject user defined invoke function to the model.") return parser.parse_args(args) def get_metrics(_config: TorchBenchModelConfig) -> List[str]: return ["latencies"] def run_config(config: TorchBenchModelConfig, dryrun: bool=False) -> Optional[TorchBenchModelMetrics]: """This function only handles NotImplementedError, all other errors will fail.""" metrics = get_metrics(config) print(f"Running {config} ...", end='') if dryrun: return None # We do not allow RuntimeError in this test result ={} try: # load the model instance within the same process model = load_model_isolated(config) inject_model_invoke(model, user_defined_invoke) # get the model test metrics model.invoke() result["list_result"] = model.get_model_attribute("output_metrics_list") result["dict_output"] = model.get_model_attribute("output_metrics_dict") except NotImplementedError as e: print(" [NotImplemented]") return None print(" [Done]") return result def run(args: List[str]): args = parse_args(args) config = TorchBenchModelConfig( name=args.model, device=args.device, test=args.test, batch_size=args.bs, extra_args=[], extra_env=None, ) result = run_config(config) print(result)
import torch from ..utils import dump_output from .cases import benchmark_cases from .util import benchmark import pprint from typing import List BM_NAME = 'functorch' def run_benchmarks(): metrics = {} for case_ctor in benchmark_cases: case = case_ctor() runtime_ms = benchmark(case) metrics[case.name()] = runtime_ms return metrics def run(args: List[str]): metrics = run_benchmarks() result = { 'name': BM_NAME, 'environ': { 'pytorch_git_version': torch.version.git_version, }, 'metrics': metrics, } pprint.pprint(result) dump_output(BM_NAME, result)
import torch import torch.nn as nn from functorch import vmap, jacfwd, jacrev from .util import BenchmarkCase # batched hessians of fully connected layers is a popular quantity # in physics-related models. # This test case is from https://github.com/pytorch/functorch/issues/989 # We haven't been able to get the full model yet, so, this test case # is going into the functorch userbenchmark instead of torchbenchmark. class VmapHessianFC(BenchmarkCase): def __init__(self): device = 'cuda' D1 = 2 # x, y D2 = 3 # u, v, p B = 10000 x = torch.randn(B, D1).to(device) model = nn.Sequential( nn.Linear(D1, 512), nn.ReLU(), nn.Linear(512, 512), nn.ReLU(), nn.Linear(512, 512), nn.ReLU(), nn.Linear(512, 512), nn.ReLU(), nn.Linear(512, 512), nn.ReLU(), nn.Linear(512, 512), nn.ReLU(), nn.Linear(512, D2), ).to(device) self.model = model self.x = x def name(self): return 'vmap_hessian_fc_cuda' def run(self): def predict(x): out = self.model(x) return out, out hessian, pred = vmap( jacfwd(jacrev(predict, argnums=0, has_aux=True), argnums=0, has_aux=True), in_dims=0, )( self.x )
from abc import ABC, abstractmethod from typing import Any, Callable from torch.utils.benchmark import Timer from torch.utils._pytree import tree_flatten class BenchmarkCase(ABC): @abstractmethod def name(self) -> str: pass @abstractmethod def run(self) -> Callable: pass def time(fn: Callable, test_runs: int) -> float: t = Timer(stmt="fn()", globals={"fn": fn}) times = t.blocked_autorange() return times.median * 1000 # time in ms def benchmark(case: BenchmarkCase, warmup_runs: int = 10, test_runs: int = 20) -> float: for _ in range(warmup_runs): case.run() return time(case.run, test_runs)
from .util import BenchmarkCase from torchbenchmark.models.lennard_jones import Model as LJModel from torchbenchmark.models.functorch_maml_omniglot import Model as FTMamlOmniglot from torchbenchmark.models.functorch_dp_cifar10 import Model as FTDPCifar10 from .vmap_hessian_fc import VmapHessianFC from .simple_models import ( SimpleCNN, SimpleMLP, VmapWrapper, EnsembleMultiWrapper, EnsembleSingleWrapper, PerSampleGradWrapper, ) class TorchBenchModelWrapper(BenchmarkCase): def __init__(self, name, model, device): self.model = model('train', device) self.name_ = f'{name}_{device}' def name(self): return self.name_ def run(self): return self.model.train() # functorch user benchmark # ------------------------ # This userbenchmark is used for regression testing of: # - microbenchmarks, # - low-quality models that shouldn't go into torchbenchmark # - pieces of models where we do not have access to the full model. # - models in torchbenchmark that have not yet made it to a release branch # (and therefore are not being tracked for regressions). # # When adding a functorch-related benchmark, please prefer finding a high-quality # model that uses the benchmark and adding it to the torchbenchmark suite. # There is better infra support there and other folks use those models # for cross-cutting tests. benchmark_cases = [ # [models from torchbench that haven't made it to stable yet] lambda: TorchBenchModelWrapper('lennard_jones', LJModel, 'cpu'), lambda: TorchBenchModelWrapper('lennard_jones', LJModel, 'cuda'), lambda: TorchBenchModelWrapper('functorch_maml_omniglot', FTMamlOmniglot, 'cpu'), lambda: TorchBenchModelWrapper('functorch_maml_omniglot', FTMamlOmniglot, 'cuda'), lambda: TorchBenchModelWrapper('functorch_dp_cifar10', FTDPCifar10, 'cuda'), # end [models from torchbench that haven't made it to stable yet] VmapHessianFC, # [combinations from functorch tutorials] lambda: VmapWrapper(SimpleMLP, 'cpu'), lambda: VmapWrapper(SimpleMLP, 'cuda'), lambda: EnsembleMultiWrapper(SimpleMLP, 'cpu'), lambda: EnsembleMultiWrapper(SimpleMLP, 'cuda'), lambda: EnsembleMultiWrapper(SimpleCNN, 'cuda'), lambda: EnsembleSingleWrapper(SimpleMLP, 'cpu'), lambda: EnsembleSingleWrapper(SimpleMLP, 'cuda'), lambda: EnsembleSingleWrapper(SimpleCNN, 'cuda'), lambda: PerSampleGradWrapper(SimpleMLP, 'cpu'), lambda: PerSampleGradWrapper(SimpleMLP, 'cuda'), lambda: PerSampleGradWrapper(SimpleCNN, 'cuda'), # end [combinations from functorch tutorials] ]
import torch import torch.nn as nn import torch.nn.functional as F from functorch import vmap, grad, combine_state_for_ensemble, make_functional_with_buffers import functools from .util import BenchmarkCase class SimpleMLP(nn.Module): def __init__(self): super(SimpleMLP, self).__init__() self.fc1 = nn.Linear(784, 128) self.fc2 = nn.Linear(128, 128) self.fc3 = nn.Linear(128, 10) def forward(self, x): x = x.flatten(1) x = self.fc1(x) x = F.relu(x) x = self.fc2(x) x = F.relu(x) x = self.fc3(x) return x @classmethod def make_input(cls, bs=None): shape = [64, 1, 28, 28] if bs is None: return torch.randn(*shape) return torch.randn(bs, *shape) @classmethod def make_target(cls, bs=None): shape = [64] if bs is None: return torch.randint(10, shape) return torch.randn(10, [bs] + shape) class SimpleCNN(nn.Module): def __init__(self): super(SimpleCNN, self).__init__() self.conv1 = nn.Conv2d(1, 32, 3, 1) self.conv2 = nn.Conv2d(32, 64, 3, 1) self.fc1 = nn.Linear(9216, 128) self.fc2 = nn.Linear(128, 10) def forward(self, x): x = self.conv1(x) x = F.relu(x) x = self.conv2(x) x = F.relu(x) x = F.max_pool2d(x, 2) x = torch.flatten(x, 1) x = self.fc1(x) x = F.relu(x) x = self.fc2(x) output = F.log_softmax(x, dim=1) output = x return output @classmethod def make_input(cls, bs=None): shape = [64, 1, 28, 28] if bs is None: return torch.randn(*shape) return torch.randn(bs, *shape) @classmethod def make_target(cls, bs=None): shape = [64] if bs is None: return torch.randint(10, shape) return torch.randn(10, [bs] + shape) class VmapWrapper(BenchmarkCase): def __init__(self, model_cls, device): self.name_ = f'{model_cls.__name__}_vmap_{device}' self.model = model_cls().to(device) self.inputs = model_cls.make_input().to(device) def name(self): return self.name_ def run(self): vmap(self.model)(self.inputs) def ensemble_setup(self, model_cls, device): num_models = 10 models = [model_cls().to(device) for _ in range(num_models)] fmodel, params, buffers = combine_state_for_ensemble(models) self.fmodel = fmodel self.params = params self.buffers = buffers self.inputs = model_cls.make_input(num_models).to(device) class EnsembleMultiWrapper(BenchmarkCase): def __init__(self, model_cls, device): self.name_ = f'{model_cls.__name__}_ensemble_multi_{device}' ensemble_setup(self, model_cls, device) def name(self): return self.name_ def run(self): vmap(self.fmodel)(self.params, self.buffers, self.inputs) class EnsembleSingleWrapper(BenchmarkCase): def __init__(self, model_cls, device): self.name_ = f'{model_cls.__name__}_ensemble_single_{device}' ensemble_setup(self, model_cls, device) self.inputs = self.inputs[0] def name(self): return self.name_ def run(self): vmap(self.fmodel, (0, 0, None))(self.params, self.buffers, self.inputs) def loss_fn(predictions, targets): return F.nll_loss(predictions, targets) def compute_loss(fmodel, params, buffers, sample, target): sample = sample.unsqueeze(0) # prepend batch dimension for processing target = target.unsqueeze(0) prediction = fmodel(params, buffers, sample) return loss_fn(prediction, target) class PerSampleGradWrapper(BenchmarkCase): def __init__(self, model_cls, device): self.name_ = f'{model_cls.__name__}_persamplegrad_{device}' model = model_cls().to(device) self.model = make_functional_with_buffers(model) self.inputs = model_cls.make_input().to(device) self.targets = model_cls.make_target().to(device) def name(self): return self.name_ def run(self): fmodel, params, buffers = self.model loss = functools.partial(compute_loss, fmodel) vmap(grad(loss), (None, None, 0, 0))(params, buffers, self.inputs, self.targets)
import argparse import traceback import torch import numpy as np import json import os import time from datetime import datetime from typing import List, Union from torchbenchmark.util.experiment.instantiator import ( TorchBenchModelConfig, load_model_isolated, list_models, ) from torchbenchmark import ( ModelTask, load_canary_model_by_name, load_model_by_name, ModelNotFoundError, ) from torchbenchmark.util.model import BenchmarkModel def cli(args: List[str]): """Parse input arguments, extracting model specification and batch size""" arg_parser = argparse.ArgumentParser(args) arg_parser.add_argument( "--model", help="Full or partial name of a model to run. If partial, picks the first match.", default="", type=str, ) arg_parser.add_argument( "--bs", help="Input batch size to test.", default=1, type=int, ) arg_parser.add_argument( "--num_warmup", help="Number of inference warmup iterations.", default=10, type=int, ) arg_parser.add_argument( "--num_iter", help="Number of inference iterations for benchmarking.", default=100, type=int, ) parsed_args, unknown = arg_parser.parse_known_args() return vars(parsed_args), unknown def save_metrics(metrics): """Save metrics to a JSON file with formatted filename""" metrics_json = { "name": "torch_trt", "environ": { "metrics_version": "v0.1", "pytorch_git_version": torch.version.git_version, }, "metrics": metrics, } # Obtain target save directory for JSON metrics from current save directory current_dir = os.path.dirname(os.path.abspath(__file__)) target_dir = os.path.normpath( os.path.join(current_dir, "../../.userbenchmark/torch_trt/") ) os.makedirs(target_dir, exist_ok=True) # Format filename and path to save metrics metrics_file = "metrics-{}.json".format( datetime.fromtimestamp(time.time()).strftime("%Y%m%d%H%M%S") ) metrics_save_path = os.path.join(target_dir, metrics_file) with open(metrics_save_path, "w") as f: json.dump(metrics_json, f, indent=4) def run_single_model( model: Union[BenchmarkModel, ModelTask], selected_ir: str, num_warmup: int, num_iter: int, ): """Run inference benchmarking on a single model""" # Get basic metrics for the model metrics = run_one_step(model.invoke, model, num_warmup, num_iter, selected_ir) # Get PT2 compilation time for the model try: if isinstance(model, ModelTask): pt2_compilation_time = model.get_model_attribute("pt2_compilation_time") name = model.get_model_attribute("name") batch_size = model.get_model_attribute("batch_size") precision = model.get_model_attribute("dargs", "precision") else: pt2_compilation_time = getattr(model, "pt2_compilation_time", None) name = getattr(model, "name", None) batch_size = getattr(model, "batch_size", None) precision = getattr(model, "precision", None) if pt2_compilation_time is not None and pt2_compilation_time: metrics[ f"{name}.bs_{batch_size}.precision_{precision}." + f"ir_{selected_ir}.pt2_compilation_time" ] = pt2_compilation_time except: pass return metrics def run_one_step( func, model: Union[BenchmarkModel, ModelTask], num_warmup: int, num_iter: int, selected_ir: str, ): """Run one step of inference benchmarking on a single model""" # Warmup model inference for _ in range(num_warmup): func() result_summary = [] # Run inference for the specified number of iterations for _ in range(num_iter): torch.cuda.synchronize() start_event = torch.cuda.Event(enable_timing=True) end_event = torch.cuda.Event(enable_timing=True) # Collect time_ns() instead of time() which does not provide better precision than 1 # second according to https://docs.python.org/3/library/time.html#time.time. t0 = time.time_ns() start_event.record() func() end_event.record() torch.cuda.synchronize() t1 = time.time_ns() result_summary.append( (start_event.elapsed_time(end_event), (t1 - t0) / 1_000_000) ) # Get median times for GPU and CPU Walltime gpu_time = np.median(list(map(lambda x: x[0], result_summary))) cpu_walltime = np.median(list(map(lambda x: x[1], result_summary))) # Differentiate model attribute access based on input type if isinstance(model, ModelTask): num_batches = model.get_model_attribute("NUM_BATCHES") name = model.get_model_attribute("name") batch_size = model.get_model_attribute("batch_size") precision = model.get_model_attribute("dargs", "precision") else: num_batches = getattr(model, "NUM_BATCHES", None) name = getattr(model, "name", None) batch_size = getattr(model, "batch_size", None) precision = getattr(model, "precision", None) if num_batches is not None: median_gpu_time_per_batch = gpu_time / num_batches median_cpu_walltime_per_batch = cpu_walltime / num_batches else: median_gpu_time_per_batch = gpu_time median_cpu_walltime_per_batch = cpu_walltime # Store metrics as dictionary metrics = { f"{name}.bs_{batch_size}.precision_{precision}." + f"ir_{selected_ir}.median_gpu_time_ms_per_batch": median_gpu_time_per_batch, f"{name}.bs_{batch_size}.precision_{precision}." + f"ir_{selected_ir}.median_cpu_walltime_ms_per_batch": median_cpu_walltime_per_batch, } return metrics def run(args: List[str]): """Run inference and extract requested metrics""" parsed_args, unknown_args = cli(args) # Attempt to extract specified IR for logging purposes try: ir_idx = unknown_args.index("--ir") selected_ir = unknown_args[ir_idx + 1] except (ValueError, IndexError): selected_ir = "default" # Parse model string if specified, otherwise run all models # Adapted from benchmark/run.py if parsed_args["model"]: try: Model = load_model_by_name(parsed_args["model"]) except ModuleNotFoundError: traceback.print_exc() exit(-1) except ModelNotFoundError: print( f"Warning: The model {parsed_args['model']} cannot be found at core set." ) if not Model: try: Model = load_canary_model_by_name(parsed_args["model"]) except ModuleNotFoundError: traceback.print_exc() exit(-1) except ModelNotFoundError: print( f"Error: The model {parsed_args['model']} cannot be found at either core or canary model set." ) exit(-1) # For single models, use a BenchmarkModel instance model = Model( device="cuda", test="eval", batch_size=parsed_args["bs"], extra_args=[ "--backend", ] + unknown_args, ) all_metrics = run_single_model( model, selected_ir, parsed_args["num_warmup"], parsed_args["num_iter"], ) else: all_metrics = {} # For all models, use ModelTask instances for model_name in list_models(): config = TorchBenchModelConfig( name=model_name, test="eval", device="cuda", batch_size=parsed_args["bs"], extra_args=[ "--backend", ] + unknown_args, ) try: Model = load_model_isolated(config=config) except ValueError as e: print( f"Loading model {model_name} failed with:\n{e}\nSkipping the model." ) continue metrics = run_single_model( Model, selected_ir, parsed_args["num_warmup"], parsed_args["num_iter"], ) all_metrics = {**all_metrics, **metrics} # Delete model instance and clean up workspace del Model save_metrics(all_metrics)
import torch import argparse import json import os import time import torch.utils.jit.log_extract as log_extract from datetime import datetime from typing import Any, List def parse_fusers(extra_args: List[str]): parser = argparse.ArgumentParser() parser.add_argument( "--fusers", nargs="*", default=[], choices=["no_fuser", "fuser0", "fuser1", "fuser2"], help="List of fusers to run tests on") parser.add_argument("--filters", nargs="*", default=[], help='List of fuser microbenchmarks to test') parser.add_argument("--output", help="specifiy the output file name") args = parser.parse_args(extra_args) return args class NVFuserBenchmark(): def __init__(self, name, ir, warmup_runs=10, test_runs=20): self.name = name self.ir = ir self.warmup_runs = warmup_runs self.test_runs = test_runs def run_test(self, inputs, fuser_name: str) -> float: if fuser_name == "no_fuser": return log_extract.run_baseline_no_fusion(self.ir, inputs) elif fuser_name == "nnc-static": return log_extract.run_nnc(self.ir, inputs, dynamic=False) elif fuser_name == "nnc-dynamic" or fuser_name == "fuser1": return log_extract.run_nnc(self.ir, inputs, dynamic=True) elif fuser_name == "fuser2" or fuser_name == "nvfuser": return log_extract.run_nvfuser(self.ir, inputs) assert False def get_inputs(self) -> List[Any]: _, inputs = log_extract.load_graph_and_inputs(self.ir) return inputs def dump_metrics(metrics, output_name): output = { "name": "nvfuser", "environ": {"pytorch_git_version": torch.version.git_version}, "metrics": metrics, } current_dir = os.path.dirname(os.path.abspath(__file__)) target_dir = os.path.normpath(os.path.join(current_dir, "../../.userbenchmark/nvfuser/")) os.makedirs(target_dir, exist_ok=True) fname = "metrics-{}.json".format(datetime.fromtimestamp(time.time()).strftime("%Y%m%d%H%M%S")) full_fname = os.path.join(target_dir, fname) if output_name is not None: full_fname = output_name with open(full_fname, 'w') as f: json.dump(output, f, indent=4) def run_nvfuser_microbenchmarks(extra_args: List[str]): from userbenchmark.nvfuser.ir import ir_list benchmarks = [NVFuserBenchmark(name, ir) for name, ir in ir_list] args = parse_fusers(extra_args) filters, fusers = args.filters, args.fusers if len(filters) > 0: benchmarks = [x for x in benchmarks if x.name in filters] if len(fusers) == 0: fusers = ["no_fuser", "nnc-static", "nnc-dynamic", "nvfuser"] metrics = {} for b in benchmarks: outputs = [] for fuser in fusers: inputs = b.get_inputs() runtime = b.run_test(inputs, fuser) outputs.append((fuser, runtime)) metrics[f"{fuser}:{b.name}"] = runtime print(f"{b.name}:", "; ".join(f"{name} = {time:.3f} ms" for name, time in outputs)) dump_metrics(metrics, args.output) def run(args: List[str]): run_nvfuser_microbenchmarks(extra_args=args)
# contains the list of microbenchmark strings # format: list of tuples (name, IR) ir_list = [("autogen-0", """graph(%0 : Float(512, strides=[1], requires_grad=0, device=cuda:0), %1 : Float(4096, 512, strides=[512, 1], requires_grad=0, device=cuda:0), %2 : int): %3 : int[] = prim::Constant[value=[4096, 512]]() %4 : int[] = prim::Constant[value=[1, 4096, 512]]() %5 : Float(1, 4096, 512, strides=[2097152, 512, 1], requires_grad=0, device=cuda:0) = aten::reshape(%1, %4) %6 : Float(1, 4096, 512, strides=[2097152, 512, 1], requires_grad=0, device=cuda:0) = aten::add(%5, %0, %2) %7 : Float(4096, 512, strides=[512, 1], requires_grad=0, device=cuda:0) = aten::reshape(%6, %3) %8 : Float(1, 4096, 512, strides=[2097152, 512, 1], requires_grad=0, device=cuda:0) = aten::reshape(%7, %4) %9 : Float(1, 4096, 512, strides=[2097152, 512, 1], requires_grad=0, device=cuda:0) = aten::relu(%8) %10 : Float(4096, 512, strides=[512, 1], requires_grad=0, device=cuda:0) = aten::reshape(%9, %3) return (%10) """), ("autogen-1", """graph(%0 : Float(1, 12, 4096, 64, strides=[3145728, 64, 768, 1], requires_grad=0, device=cuda:0), %1 : Float(requires_grad=0, device=cuda:0)): %2 : int[] = prim::Constant[value=[1, 12, 64, 64, 64]]() %3 : Float(1, 12, 4096, 64, strides=[3145728, 64, 768, 1], requires_grad=0, device=cuda:0) = aten::div(%0, %1) %4 : Float(1, 12, 64, 64, 64, strides=[768, 64, 49152, 768, 1], requires_grad=0, device=cuda:0) = aten::reshape(%3, %2) return (%4) """), ("autogen-2", """graph(%0 : Float(8, 256, 56, 56, strides=[802816, 3136, 56, 1], requires_grad=0, device=cuda:0), %1 : Float(256, strides=[1], requires_grad=0, device=cuda:0), %2 : Float(256, strides=[1], requires_grad=0, device=cuda:0), %3 : Float(256, strides=[1], requires_grad=0, device=cuda:0), %4 : Float(256, strides=[1], requires_grad=0, device=cuda:0), %5 : Float(8, 256, 56, 56, strides=[802816, 3136, 56, 1], requires_grad=0, device=cuda:0), %6 : Float(256, strides=[1], requires_grad=0, device=cuda:0), %7 : Float(256, strides=[1], requires_grad=0, device=cuda:0), %8 : Float(256, strides=[1], requires_grad=0, device=cuda:0), %9 : Float(256, strides=[1], requires_grad=0, device=cuda:0), %10 : int): %11 : float = prim::Constant[value=1.0000000000000001e-05]() %12 : float = prim::Constant[value=0.10000000000000001]() %13 : bool = prim::Constant[value=0]() %14 : Float(8, 256, 56, 56, strides=[802816, 3136, 56, 1], requires_grad=0, device=cuda:0), %15 : Tensor, %16 : Tensor = aten::native_batch_norm(%5, %6, %7, %8, %9, %13, %12, %11) %17 : Float(8, 256, 56, 56, strides=[802816, 3136, 56, 1], requires_grad=0, device=cuda:0), %18 : Tensor, %19 : Tensor = aten::native_batch_norm(%0, %1, %2, %3, %4, %13, %12, %11) %20 : Float(8, 256, 56, 56, strides=[802816, 3136, 56, 1], requires_grad=0, device=cuda:0) = aten::add(%17, %14, %10) %21 : Float(8, 256, 56, 56, strides=[802816, 3136, 56, 1], requires_grad=0, device=cuda:0) = aten::relu(%20) return (%21) """), ("autogen-3", """graph(%0 : Double(requires_grad=0, device=cuda:0), %1 : Double(requires_grad=0, device=cuda:0), %2 : Double(requires_grad=0, device=cuda:0), %3 : Double(requires_grad=0, device=cuda:0), %4 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0), %5 : Double(requires_grad=0, device=cuda:0), %6 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0), %7 : Double(requires_grad=0, device=cuda:0), %8 : Double(requires_grad=0, device=cuda:0), %9 : Double(requires_grad=0, device=cuda:0), %10 : Double(requires_grad=0, device=cuda:0), %11 : Double(requires_grad=0, device=cuda:0), %12 : Double(requires_grad=0, device=cuda:0), %13 : Double(requires_grad=0, device=cuda:0), %14 : Double(requires_grad=0, device=cuda:0), %15 : Double(requires_grad=0, device=cuda:0), %16 : Double(requires_grad=0, device=cuda:0), %17 : Double(requires_grad=0, device=cuda:0), %18 : Double(requires_grad=0, device=cuda:0), %19 : Double(requires_grad=0, device=cuda:0), %20 : Double(requires_grad=0, device=cuda:0), %21 : Double(requires_grad=0, device=cuda:0), %22 : Double(requires_grad=0, device=cuda:0), %23 : Double(1, 1, 26, strides=[26, 26, 1], requires_grad=0, device=cuda:0), %24 : Double(requires_grad=0, device=cuda:0), %25 : Double(requires_grad=0, device=cuda:0), %26 : Double(requires_grad=0, device=cuda:0), %27 : int, %28 : int, %29 : int, %30 : int, %31 : int, %32 : int, %33 : int, %34 : int, %35 : int, %36 : int, %37 : int, %38 : int, %39 : int, %40 : int, %41 : int, %42 : int, %43 : int, %44 : int, %45 : int, %46 : int, %47 : int, %48 : int, %49 : int, %50 : int, %51 : int, %52 : int, %53 : int, %54 : int, %55 : int, %56 : int, %57 : int, %58 : int, %59 : int, %60 : int, %61 : int, %62 : int, %63 : int, %64 : int, %65 : int, %66 : int): %67 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%6, %16) %68 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%67, %12) %69 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%6, %26) %70 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%4, %25) %71 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%70, %10, %66) %72 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%4, %71) %73 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%72, %24, %65) %74 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%73, %69, %64) %75 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%74, %23) %76 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%4, %22) %77 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%76, %9, %63) %78 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%4, %77) %79 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%78, %8, %62) %80 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%4, %79) %81 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%80, %21, %61) %82 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::sqrt(%6) %83 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%82, %81) %84 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%4, %20) %85 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%84, %7, %60) %86 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%4, %85) %87 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%86, %19, %59) %88 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%87, %83, %58) %89 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%6, %88) %90 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%4, %18) %91 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%90, %5, %57) %92 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%4, %91) %93 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%92, %3, %56) %94 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%4, %93) %95 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%94, %17, %55) %96 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%95, %89, %54) %97 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%96, %74) %98 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%4, %16) %99 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%98, %15, %53) %100 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%6, %99) %101 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%100, %12) %102 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%4, %14) %103 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%102, %13, %52) %104 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%4, %103) %105 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%104, %12) %106 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%105, %11, %51) %107 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%106, %101, %50) %108 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::pow(%107, %49) %109 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::sub(%108, %97, %48) %110 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::sqrt(%109) %111 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%105, %11, %47) %112 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%111, %101, %46) %113 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%112, %110, %45) %114 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%113, %75, %44) %115 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::reciprocal(%114) %116 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%115, %2) %117 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%105, %11, %43) %118 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%117, %101, %42) %119 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::sub(%118, %110, %41) %120 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::reciprocal(%119) %121 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%120, %2) %122 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%110, %121) %123 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%122, %116) %124 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%75, %0) %125 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%124, %123) %126 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%125, %2, %40) %127 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%70, %0) %128 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%127, %10, %39) %129 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%76, %0) %130 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%129, %9, %38) %131 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%4, %130) %132 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%78, %8, %37) %133 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%132, %131, %36) %134 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%82, %133) %135 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%84, %0) %136 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%135, %7, %35) %137 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%136, %134, %34) %138 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%6, %137) %139 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%90, %0) %140 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%139, %5, %33) %141 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%4, %140) %142 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%92, %3, %32) %143 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%142, %141, %31) %144 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%143, %138, %30) %145 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%144, %74) %146 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%102, %2) %147 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%146, %1, %29) %148 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%147, %68, %28) %149 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%107, %0) %150 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%149, %148) %151 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::sub(%150, %145, %27) return (%151, %148, %146, %144, %128, %126, %123, %121, %119, %116, %114, %110, %109, %108, %107, %104, %102, %100, %96, %82, %75, %74, %68, %67) """), ("batchnorm-silu", """graph(%0 : Float(32, 480, 14, 14, strides=[94080, 196, 14, 1], requires_grad=0, device=cuda:0), %1 : Float(480, strides=[1], requires_grad=0, device=cuda:0), %2 : Float(480, strides=[1], requires_grad=0, device=cuda:0), %3 : Float(480, strides=[1], requires_grad=0, device=cuda:0), %4 : Float(480, strides=[1], requires_grad=0, device=cuda:0)): %5 : float = prim::Constant[value=1.0000000000000001e-05]() %6 : float = prim::Constant[value=0.10000000000000001]() %7 : bool = prim::Constant[value=0]() %8 : Float(32, 480, 14, 14, strides=[94080, 196, 14, 1], requires_grad=0, device=cuda:0), %9 : Tensor, %10 : Tensor = aten::native_batch_norm(%0, %1, %2, %3, %4, %7, %6, %5) %11 : Float(32, 480, 14, 14, strides=[94080, 196, 14, 1], requires_grad=0, device=cuda:0) = aten::silu(%8) return (%11) """), ("autogen-4", """graph(%0 : Float(768, strides=[1], requires_grad=0, device=cuda:0), %1 : Float(768, strides=[1], requires_grad=0, device=cuda:0), %2 : Float(1, 4096, 768, strides=[3145728, 768, 1], requires_grad=0, device=cuda:0), %3 : Float(768, strides=[1], requires_grad=0, device=cuda:0), %4 : Float(4096, 768, strides=[768, 1], requires_grad=0, device=cuda:0), %5 : int, %6 : int): %7 : float = prim::Constant[value=9.9999999999999998e-13]() %8 : int[] = prim::Constant[value=[768]]() %9 : int[] = prim::Constant[value=[4096, 768]]() %10 : int[] = prim::Constant[value=[1, 4096, 768]]() %11 : Float(1, 4096, 768, strides=[3145728, 768, 1], requires_grad=0, device=cuda:0) = aten::reshape(%4, %10) %12 : Float(1, 4096, 768, strides=[3145728, 768, 1], requires_grad=0, device=cuda:0) = aten::add(%11, %3, %6) %13 : Float(4096, 768, strides=[768, 1], requires_grad=0, device=cuda:0) = aten::reshape(%12, %9) %14 : Float(1, 4096, 768, strides=[3145728, 768, 1], requires_grad=0, device=cuda:0) = aten::reshape(%13, %10) %15 : Float(1, 4096, 768, strides=[3145728, 768, 1], requires_grad=0, device=cuda:0) = aten::add(%14, %2, %5) %16 : Float(1, 4096, 768, strides=[3145728, 768, 1], requires_grad=0, device=cuda:0), %17 : Tensor, %18 : Tensor = aten::native_layer_norm(%15, %8, %0, %1, %7) %19 : Float(4096, 768, strides=[768, 1], requires_grad=0, device=cuda:0) = aten::reshape(%16, %9) return (%19) """), ("autogen-5", """graph(%0 : Float(96, 160, 7, 7, strides=[7840, 49, 7, 1], requires_grad=0, device=cuda:0), %1 : Float(160, strides=[1], requires_grad=0, device=cuda:0), %2 : Float(160, strides=[1], requires_grad=0, device=cuda:0), %3 : Float(160, strides=[1], requires_grad=0, device=cuda:0), %4 : Float(160, strides=[1], requires_grad=0, device=cuda:0), %5 : Float(96, 160, 7, 7, strides=[7840, 49, 7, 1], requires_grad=0, device=cuda:0), %6 : Float(160, strides=[1], requires_grad=0, device=cuda:0), %7 : Float(160, strides=[1], requires_grad=0, device=cuda:0), %8 : Float(160, strides=[1], requires_grad=0, device=cuda:0), %9 : Float(160, strides=[1], requires_grad=0, device=cuda:0), %10 : Float(96, 160, 7, 7, strides=[7840, 49, 7, 1], requires_grad=0, device=cuda:0), %11 : Float(160, strides=[1], requires_grad=0, device=cuda:0), %12 : Float(160, strides=[1], requires_grad=0, device=cuda:0), %13 : Float(160, strides=[1], requires_grad=0, device=cuda:0), %14 : Float(160, strides=[1], requires_grad=0, device=cuda:0), %15 : int, %16 : int): %17 : float = prim::Constant[value=1.0000000000000001e-05]() %18 : float = prim::Constant[value=0.10000000000000001]() %19 : bool = prim::Constant[value=0]() %20 : Float(96, 160, 7, 7, strides=[7840, 49, 7, 1], requires_grad=0, device=cuda:0), %21 : Tensor, %22 : Tensor = aten::native_batch_norm(%10, %11, %12, %13, %14, %19, %18, %17) %23 : Float(96, 160, 7, 7, strides=[7840, 49, 7, 1], requires_grad=0, device=cuda:0), %24 : Tensor, %25 : Tensor = aten::native_batch_norm(%5, %6, %7, %8, %9, %19, %18, %17) %26 : Float(96, 160, 7, 7, strides=[7840, 49, 7, 1], requires_grad=0, device=cuda:0), %27 : Tensor, %28 : Tensor = aten::native_batch_norm(%0, %1, %2, %3, %4, %19, %18, %17) %29 : Float(96, 160, 7, 7, strides=[7840, 49, 7, 1], requires_grad=0, device=cuda:0) = aten::add(%26, %23, %16) %30 : Float(96, 160, 7, 7, strides=[7840, 49, 7, 1], requires_grad=0, device=cuda:0) = aten::add(%29, %20, %15) return (%30) """), ("autogen-6", """graph(%0 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0), %1 : Double(requires_grad=0, device=cuda:0), %2 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0), %3 : Double(requires_grad=0, device=cuda:0), %4 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0), %5 : Double(requires_grad=0, device=cuda:0), %6 : Double(requires_grad=0, device=cuda:0), %7 : Double(requires_grad=0, device=cuda:0), %8 : Double(requires_grad=0, device=cuda:0), %9 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0), %10 : Double(requires_grad=0, device=cuda:0), %11 : Double(requires_grad=0, device=cuda:0), %12 : Double(requires_grad=0, device=cuda:0), %13 : Double(requires_grad=0, device=cuda:0), %14 : Double(requires_grad=0, device=cuda:0), %15 : Double(requires_grad=0, device=cuda:0), %16 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0), %17 : Double(requires_grad=0, device=cuda:0), %18 : Double(requires_grad=0, device=cuda:0), %19 : Double(requires_grad=0, device=cuda:0), %20 : Double(requires_grad=0, device=cuda:0), %21 : Double(requires_grad=0, device=cuda:0), %22 : Double(requires_grad=0, device=cuda:0), %23 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0), %24 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0), %25 : Double(requires_grad=0, device=cuda:0), %26 : Double(requires_grad=0, device=cuda:0), %27 : Double(requires_grad=0, device=cuda:0), %28 : Double(requires_grad=0, device=cuda:0), %29 : Double(requires_grad=0, device=cuda:0), %30 : Double(requires_grad=0, device=cuda:0), %31 : Double(requires_grad=0, device=cuda:0), %32 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0), %33 : Double(requires_grad=0, device=cuda:0), %34 : Double(requires_grad=0, device=cuda:0), %35 : Double(requires_grad=0, device=cuda:0), %36 : Double(requires_grad=0, device=cuda:0), %37 : Double(requires_grad=0, device=cuda:0), %38 : Double(requires_grad=0, device=cuda:0), %39 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0), %40 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0), %41 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0), %42 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0), %43 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0), %44 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0), %45 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0), %46 : Double(requires_grad=0, device=cuda:0), %47 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0), %48 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0), %49 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0), %50 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0), %51 : Double(1, 1, 26, strides=[26, 26, 1], requires_grad=0, device=cuda:0), %52 : int, %53 : int, %54 : int, %55 : int, %56 : int, %57 : int, %58 : int, %59 : int, %60 : int, %61 : int, %62 : int, %63 : int, %64 : int, %65 : int, %66 : int, %67 : int, %68 : int, %69 : int, %70 : int, %71 : int, %72 : int, %73 : int, %74 : int, %75 : int, %76 : int, %77 : int, %78 : int, %79 : int, %80 : int, %81 : int, %82 : int, %83 : int, %84 : int, %85 : int, %86 : int, %87 : int, %88 : int, %89 : int, %90 : int, %91 : int, %92 : int, %93 : int, %94 : int): %95 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%50, %51) %96 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%24, %50) %97 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::sub(%49, %96, %94) %98 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::reciprocal(%47) %99 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%98, %3) %100 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%99, %97) %101 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::div(%100, %22) %102 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%45, %46, %93) %103 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%102, %44, %92) %104 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%103, %101, %91) %105 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%104, %95, %90) %106 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::pow(%48, %89) %107 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%42, %47) %108 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%107, %22) %109 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%108, %41) %110 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::div(%109, %106) %111 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%110, %105) %112 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%45, %46, %88) %113 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%112, %44, %87) %114 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::sub(%113, %101, %86) %115 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::pow(%43, %85) %116 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::div(%108, %115) %117 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%116, %40) %118 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%117, %114) %119 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%42, %99) %120 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%119, %41) %121 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%120, %40) %122 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%121, %97) %123 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%95, %22) %124 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%123, %39) %125 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%124, %122, %84) %126 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::sub(%125, %118, %83) %127 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::sub(%126, %111, %82) %128 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::reciprocal(%2) %129 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%128, %3) %130 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%9, %38) %131 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%4, %37) %132 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%131, %36, %81) %133 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%132, %130, %80) %134 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%4, %133) %135 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%134, %35, %79) %136 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%135, %22) %137 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%136, %23) %138 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%4, %34) %139 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%138, %33, %78) %140 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%139, %24) %141 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%139, %32) %142 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%141, %31) %143 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%142, %129) %144 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::sub(%143, %140, %77) %145 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::sub(%144, %137, %76) %146 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%145, %129) %147 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%4, %30) %148 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%147, %29, %75) %149 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%9, %148) %150 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%4, %28) %151 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%150, %27, %74) %152 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%4, %151) %153 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%152, %26, %73) %154 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%4, %153) %155 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%154, %25, %72) %156 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%155, %149, %71) %157 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%156, %146, %70) %158 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%157, %23) %159 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%135, %24) %160 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%23, %129) %161 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%140, %22) %162 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%161, %160) %163 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::sub(%162, %159, %69) %164 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%163, %129) %165 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%4, %21) %166 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%165, %20, %68) %167 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%4, %166) %168 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%167, %19, %67) %169 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%4, %168) %170 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%169, %18, %66) %171 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%4, %170) %172 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%171, %17, %65) %173 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%16, %172) %174 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%9, %15) %175 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%4, %14) %176 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%175, %13, %64) %177 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%4, %176) %178 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%177, %12, %63) %179 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%4, %178) %180 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%179, %11, %62) %181 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%4, %180) %182 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%181, %10, %61) %183 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%182, %174, %60) %184 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%183, %173, %59) %185 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%9, %184) %186 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%4, %8) %187 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%186, %7, %58) %188 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%4, %187) %189 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%188, %6, %57) %190 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%4, %189) %191 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%190, %5, %56) %192 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%4, %191) %193 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%192, %3, %55) %194 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%193, %185, %54) %195 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%194, %164, %53) %196 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%195, %2) %197 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::sub(%196, %158, %52) %198 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%197, %129) %199 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%198, %1) %200 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%199, %99) %201 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%200, %127) %202 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::div(%201, %0) return (%202, %198, %197, %195, %190, %188, %186, %179, %177, %175, %169, %167, %165, %163, %161, %160, %157, %152, %150, %145, %142, %139, %136, %135, %134, %131, %130, %129, %99, %97, %95) """), ("autogen-7", """graph(%0 : Float(8, 197, 6, 64, strides=[75648, 64, 12608, 1], requires_grad=0, device=cuda:0)): %1 : int[] = prim::Constant[value=[1576, 384]]() %2 : int[] = prim::Constant[value=[8, 197, 384]]() %3 : Float(8, 197, 384, strides=[75648, 384, 1], requires_grad=0, device=cuda:0) = aten::reshape(%0, %2) %4 : Float(1576, 384, strides=[384, 1], requires_grad=0, device=cuda:0) = aten::reshape(%3, %1) return (%4) """), ("autogen-8", """graph(%0 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0), %1 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0), %2 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0), %3 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0), %4 : Double(requires_grad=0, device=cuda:0), %5 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0)): %6 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::log(%5) %7 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%3, %4) %8 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::div(%7, %2) %9 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::div(%8, %1) %10 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%9, %6) %11 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%10, %0) return (%11, %6) """), ("autogen-9", """graph(%0 : Float(1, 12, 1, 64, 64, strides=[768, 64, 49152, 768, 1], requires_grad=0, device=cuda:0)): %1 : int[] = prim::Constant[value=[1, 12, 64, 64, 1, 1]]() %2 : int[] = prim::Constant[value=[1, 12, 64, 64, 1]]() %3 : int[] = prim::Constant[value=[1, 12, 64, 64]]() %4 : Float(1, 12, 64, 64, strides=[768, 64, 768, 1], requires_grad=0, device=cuda:0) = aten::reshape(%0, %3) %5 : Float(1, 12, 64, 64, 1, strides=[768, 64, 768, 1, 1], requires_grad=0, device=cuda:0) = aten::reshape(%4, %2) %6 : Float(1, 12, 64, 64, 1, 1, strides=[768, 64, 768, 1, 1, 1], requires_grad=0, device=cuda:0) = aten::reshape(%5, %1) return (%6, %4) """), ("autogen-10", """graph(%0 : Long(1, 1, 26, strides=[26, 26, 1], requires_grad=0, device=cuda:0), %1 : Long(200, 200, strides=[200, 1], requires_grad=0, device=cuda:0)): %2 : int[] = prim::Constant[value=[200, 200, 1]]() %3 : Long(200, 200, 1, strides=[200, 1, 1], requires_grad=0, device=cuda:0) = aten::reshape(%1, %2) %4 : Bool(200, 200, 26, strides=[5200, 26, 1], requires_grad=0, device=cuda:0) = aten::ge(%0, %3) return (%4) """), ("autogen-11", """graph(%0 : Float(768, strides=[1], requires_grad=0, device=cuda:0), %1 : Float(512, 768, strides=[768, 1], requires_grad=0, device=cuda:0), %2 : int): %3 : int[] = prim::Constant[value=[1, 512, 12, 64]]() %4 : int[] = prim::Constant[value=[512, 768]]() %5 : int[] = prim::Constant[value=[1, 512, 768]]() %6 : Float(1, 512, 768, strides=[393216, 768, 1], requires_grad=0, device=cuda:0) = aten::reshape(%1, %5) %7 : Float(1, 512, 768, strides=[393216, 768, 1], requires_grad=0, device=cuda:0) = aten::add(%6, %0, %2) %8 : Float(512, 768, strides=[768, 1], requires_grad=0, device=cuda:0) = aten::reshape(%7, %4) %9 : Float(1, 512, 768, strides=[393216, 768, 1], requires_grad=0, device=cuda:0) = aten::reshape(%8, %5) %10 : Float(1, 512, 12, 64, strides=[393216, 768, 64, 1], requires_grad=0, device=cuda:0) = aten::reshape(%9, %3) return (%10) """), ("autogen-12", """graph(%0 : Float(32, 360, 14, 14, strides=[70560, 196, 14, 1], requires_grad=0, device=cuda:0), %1 : Float(32, 360, 1, 1, strides=[360, 1, 1, 1], requires_grad=0, device=cuda:0)): %2 : Float(32, 360, 1, 1, strides=[360, 1, 1, 1], requires_grad=0, device=cuda:0) = aten::sigmoid(%1) %3 : Float(32, 360, 14, 14, strides=[70560, 196, 14, 1], requires_grad=0, device=cuda:0) = aten::mul(%0, %2) return (%3) """), ("autogen-13", """graph(%0 : Float(256, strides=[1], requires_grad=0, device=cuda:0), %1 : Float(256, strides=[1], requires_grad=0, device=cuda:0), %2 : Float(256, strides=[1], requires_grad=0, device=cuda:0), %3 : Float(256, strides=[1], requires_grad=0, device=cuda:0), %4 : Float(32, 256, 56, 56, strides=[802816, 3136, 56, 1], requires_grad=0, device=cuda:0), %5 : Float(256, strides=[1], requires_grad=0, device=cuda:0)): %6 : float = prim::Constant[value=1.0000000000000001e-05]() %7 : float = prim::Constant[value=0.10000000000000001]() %8 : bool = prim::Constant[value=0]() %9 : int[] = prim::Constant[value=[1, 256, 1, 1]]() %10 : Float(1, 256, 1, 1, strides=[256, 1, 1, 1], requires_grad=0, device=cuda:0) = aten::reshape(%5, %9) %11 : Float(32, 256, 56, 56, strides=[802816, 3136, 56, 1], requires_grad=0, device=cuda:0) = aten::div(%4, %10) %12 : Float(32, 256, 56, 56, strides=[802816, 3136, 56, 1], requires_grad=0, device=cuda:0), %13 : Tensor, %14 : Tensor = aten::native_batch_norm(%11, %0, %1, %2, %3, %8, %7, %6) return (%12, %13, %14) """), ("autogen-14", """graph(%0 : Float(8, 2048, 2048, strides=[4194304, 2048, 1], requires_grad=0, device=cuda:0), %1 : Float(8, 2048, 2048, strides=[1, 16384, 8], requires_grad=0, device=cuda:0), %2 : Double(requires_grad=0, device=cuda:0), %3 : Double(requires_grad=0, device=cuda:0), %4 : Float(1, 1, 2048, 2048, strides=[4194304, 4194304, 2048, 1], requires_grad=0, device=cuda:0), %5 : Float(1, 1, 1, 2048, strides=[2048, 2048, 2048, 1], requires_grad=0, device=cuda:0), %6 : int, %7 : int, %8 : int): %9 : bool = prim::Constant[value=0]() %10 : int = prim::Constant[value=-1]() %11 : int[] = prim::Constant[value=[8, 2048, 2048]]() %12 : int[] = prim::Constant[value=[1, 8, 2048, 2048]]() %13 : Float(1, 1, 2048, 2048, strides=[4194304, 4194304, 2048, 1], requires_grad=0, device=cuda:0) = aten::mul(%4, %5) %14 : Float(1, 1, 2048, 2048, strides=[4194304, 4194304, 2048, 1], requires_grad=0, device=cuda:0) = aten::sub(%3, %13, %8) %15 : Float(1, 1, 2048, 2048, strides=[4194304, 4194304, 2048, 1], requires_grad=0, device=cuda:0) = aten::mul(%14, %2) %16 : Float(1, 8, 2048, 2048, strides=[8, 1, 16384, 8], requires_grad=0, device=cuda:0) = aten::reshape(%1, %12) %17 : Float(1, 8, 2048, 2048, strides=[8, 1, 16384, 8], requires_grad=0, device=cuda:0) = aten::add(%16, %15, %7) %18 : Float(1, 8, 2048, 2048, strides=[33554432, 4194304, 2048, 1], requires_grad=0, device=cuda:0) = aten::reshape(%0, %12) %19 : Float(1, 8, 2048, 2048, strides=[33554432, 4194304, 2048, 1], requires_grad=0, device=cuda:0) = aten::add(%18, %17, %6) %20 : Float(8, 2048, 2048, strides=[4194304, 2048, 1], requires_grad=0, device=cuda:0) = aten::reshape(%19, %11) %21 : Float(1, 8, 2048, 2048, strides=[33554432, 4194304, 2048, 1], requires_grad=0, device=cuda:0) = aten::reshape(%20, %12) %22 : Float(1, 8, 2048, 2048, strides=[33554432, 4194304, 2048, 1], requires_grad=0, device=cuda:0) = aten::_softmax(%21, %10, %9) return (%22, %17) """), ("batchnorm-silu-mean", """graph(%0 : Float(32, 240, 14, 14, strides=[47040, 196, 14, 1], requires_grad=0, device=cuda:0), %1 : Float(240, strides=[1], requires_grad=0, device=cuda:0), %2 : Float(240, strides=[1], requires_grad=0, device=cuda:0), %3 : Float(240, strides=[1], requires_grad=0, device=cuda:0), %4 : Float(240, strides=[1], requires_grad=0, device=cuda:0)): %5 : NoneType = prim::Constant() %6 : bool = prim::Constant[value=1]() %7 : int[] = prim::Constant[value=[2, 3]]() %8 : float = prim::Constant[value=1.0000000000000001e-05]() %9 : float = prim::Constant[value=0.10000000000000001]() %10 : bool = prim::Constant[value=0]() %11 : Float(32, 240, 14, 14, strides=[47040, 196, 14, 1], requires_grad=0, device=cuda:0), %12 : Tensor, %13 : Tensor = aten::native_batch_norm(%0, %1, %2, %3, %4, %10, %9, %8) %14 : Float(32, 240, 14, 14, strides=[47040, 196, 14, 1], requires_grad=0, device=cuda:0) = aten::silu(%11) %15 : Float(32, 240, 1, 1, strides=[240, 1, 1, 1], requires_grad=0, device=cuda:0) = aten::mean(%14, %7, %6, %5) return (%15, %14) """), ("autogen-15", """graph(%0 : Float(768, strides=[1], requires_grad=0, device=cuda:0), %1 : Float(512, 768, strides=[768, 1], requires_grad=0, device=cuda:0), %2 : int): %3 : int[] = prim::Constant[value=[512, 768]]() %4 : int[] = prim::Constant[value=[1, 512, 768]]() %5 : Float(1, 512, 768, strides=[393216, 768, 1], requires_grad=0, device=cuda:0) = aten::reshape(%1, %4) %6 : Float(1, 512, 768, strides=[393216, 768, 1], requires_grad=0, device=cuda:0) = aten::add(%5, %0, %2) %7 : Float(512, 768, strides=[768, 1], requires_grad=0, device=cuda:0) = aten::reshape(%6, %3) %8 : Float(1, 512, 768, strides=[393216, 768, 1], requires_grad=0, device=cuda:0) = aten::reshape(%7, %4) %9 : Float(512, 768, strides=[768, 1], requires_grad=0, device=cuda:0) = aten::reshape(%8, %3) return (%9, %8) """), ("autogen-16", """graph(%0 : Float(1, 1, 512, 512, strides=[262144, 262144, 512, 1], requires_grad=0, device=cuda:0), %1 : Float(12, 512, 512, strides=[262144, 512, 1], requires_grad=0, device=cuda:0), %2 : int): %3 : bool = prim::Constant[value=0]() %4 : int = prim::Constant[value=-1]() %5 : int[] = prim::Constant[value=[12, 512, 512]]() %6 : int[] = prim::Constant[value=[1, 12, 512, 512]]() %7 : Float(1, 12, 512, 512, strides=[3145728, 262144, 512, 1], requires_grad=0, device=cuda:0) = aten::reshape(%1, %6) %8 : Float(1, 12, 512, 512, strides=[3145728, 262144, 512, 1], requires_grad=0, device=cuda:0) = aten::add(%7, %0, %2) %9 : Float(12, 512, 512, strides=[262144, 512, 1], requires_grad=0, device=cuda:0) = aten::reshape(%8, %5) %10 : Float(12, 512, 512, strides=[262144, 512, 1], requires_grad=0, device=cuda:0) = aten::_softmax(%9, %4, %3) return (%10) """), ("autogen-17", """graph(%0 : Float(1, 12, 64, 64, 1, strides=[49152, 4096, 64, 1, 1], requires_grad=0, device=cuda:0), %1 : Float(768, 64, 128, strides=[8192, 128, 1], requires_grad=0, device=cuda:0), %2 : int, %3 : int, %4 : int): %5 : NoneType = prim::Constant() %6 : bool = prim::Constant[value=1]() %7 : int[] = prim::Constant[value=[-1]]() %8 : int[] = prim::Constant[value=[1, 12, 64, 64, 128]]() %9 : Float(1, 12, 64, 64, 128, strides=[6291456, 524288, 8192, 128, 1], requires_grad=0, device=cuda:0) = aten::reshape(%1, %8) %10 : Float(1, 12, 64, 64, 128, strides=[6291456, 524288, 8192, 128, 1], requires_grad=0, device=cuda:0) = aten::sub(%9, %0, %4) %11 : Float(1, 12, 64, 64, 128, strides=[6291456, 524288, 8192, 128, 1], requires_grad=0, device=cuda:0) = aten::exp(%10) %12 : Float(1, 12, 64, 64, 1, strides=[49152, 4096, 64, 1, 1], requires_grad=0, device=cuda:0) = aten::sum(%11, %7, %6, %5) %13 : Float(1, 12, 64, 64, 1, strides=[49152, 4096, 64, 1, 1], requires_grad=0, device=cuda:0) = aten::log(%12) %14 : Float(1, 12, 64, 64, 1, strides=[49152, 4096, 64, 1, 1], requires_grad=0, device=cuda:0) = aten::add(%13, %0, %3) %15 : Float(1, 12, 64, 64, 128, strides=[6291456, 524288, 8192, 128, 1], requires_grad=0, device=cuda:0) = aten::sub(%9, %14, %2) %16 : Float(1, 12, 64, 64, 128, strides=[6291456, 524288, 8192, 128, 1], requires_grad=0, device=cuda:0) = aten::exp(%15) return (%16) """), ("autogen-18", """graph(%0 : Float(384, strides=[1], requires_grad=0, device=cuda:0), %1 : Float(384, strides=[1], requires_grad=0, device=cuda:0), %2 : Float(8, 197, 384, strides=[75648, 384, 1], requires_grad=0, device=cuda:0), %3 : Float(1, 197, 384, strides=[75648, 384, 1], requires_grad=0, device=cuda:0), %4 : int): %5 : int[] = prim::Constant[value=[1576, 384]]() %6 : float = prim::Constant[value=9.9999999999999995e-07]() %7 : int[] = prim::Constant[value=[384]]() %8 : Float(8, 197, 384, strides=[75648, 384, 1], requires_grad=0, device=cuda:0) = aten::add(%2, %3, %4) %9 : Float(8, 197, 384, strides=[75648, 384, 1], requires_grad=0, device=cuda:0), %10 : Tensor, %11 : Tensor = aten::native_layer_norm(%8, %7, %0, %1, %6) %12 : Float(1576, 384, strides=[384, 1], requires_grad=0, device=cuda:0) = aten::reshape(%9, %5) return (%12, %8) """), ("autogen-19", """graph(%0 : Float(256, strides=[1], requires_grad=0, device=cuda:0), %1 : Float(256, strides=[1], requires_grad=0, device=cuda:0), %2 : Float(1, 4096, 256, strides=[2097152, 512, 1], requires_grad=0, device=cuda:0), %3 : Float(4096, 256, strides=[256, 1], requires_grad=0, device=cuda:0), %4 : int): %5 : int[] = prim::Constant[value=[4096, 256]]() %6 : float = prim::Constant[value=9.9999999999999998e-13]() %7 : int[] = prim::Constant[value=[256]]() %8 : int[] = prim::Constant[value=[1, 4096, 256]]() %9 : Float(1, 4096, 256, strides=[1048576, 256, 1], requires_grad=0, device=cuda:0) = aten::reshape(%3, %8) %10 : Float(1, 4096, 256, strides=[1048576, 256, 1], requires_grad=0, device=cuda:0) = aten::add(%2, %9, %4) %11 : Float(1, 4096, 256, strides=[1048576, 256, 1], requires_grad=0, device=cuda:0), %12 : Tensor, %13 : Tensor = aten::native_layer_norm(%10, %7, %0, %1, %6) %14 : Float(4096, 256, strides=[256, 1], requires_grad=0, device=cuda:0) = aten::reshape(%11, %5) return (%14, %10) """), ("autogen-20", """graph(%0 : Float(16, 512, 7, 7, strides=[25088, 49, 7, 1], requires_grad=0, device=cuda:0), %1 : Float(16, 512, 7, 7, strides=[25088, 49, 7, 1], requires_grad=0, device=cuda:0), %2 : Float(512, strides=[1], requires_grad=0, device=cuda:0), %3 : Float(512, strides=[1], requires_grad=0, device=cuda:0), %4 : Float(512, strides=[1], requires_grad=0, device=cuda:0), %5 : Float(512, strides=[1], requires_grad=0, device=cuda:0), %6 : int): %7 : int[] = prim::Constant[value=[16, 512]]() %8 : NoneType = prim::Constant() %9 : bool = prim::Constant[value=1]() %10 : int[] = prim::Constant[value=[-1, -2]]() %11 : float = prim::Constant[value=1.0000000000000001e-05]() %12 : float = prim::Constant[value=0.10000000000000001]() %13 : bool = prim::Constant[value=0]() %14 : Float(16, 512, 7, 7, strides=[25088, 49, 7, 1], requires_grad=0, device=cuda:0), %15 : Tensor, %16 : Tensor = aten::native_batch_norm(%1, %2, %3, %4, %5, %13, %12, %11) %17 : Float(16, 512, 7, 7, strides=[25088, 49, 7, 1], requires_grad=0, device=cuda:0) = aten::add(%14, %0, %6) %18 : Float(16, 512, 7, 7, strides=[25088, 49, 7, 1], requires_grad=0, device=cuda:0) = aten::relu(%17) %19 : Float(16, 512, 1, 1, strides=[512, 1, 1, 1], requires_grad=0, device=cuda:0) = aten::mean(%18, %10, %9, %8) %20 : Float(16, 512, strides=[512, 1], requires_grad=0, device=cuda:0) = aten::reshape(%19, %7) return (%20) """), ("autogen-21", """graph(%0 : Float(768, strides=[1], requires_grad=0, device=cuda:0), %1 : Float(768, strides=[1], requires_grad=0, device=cuda:0), %2 : Float(1, 512, 768, strides=[393216, 768, 1], requires_grad=0, device=cuda:0), %3 : Float(1, 512, 768, strides=[393216, 768, 1], requires_grad=0, device=cuda:0), %4 : Float(1, 512, 768, strides=[393216, 768, 1], requires_grad=0, device=cuda:0), %5 : int, %6 : int): %7 : int[] = prim::Constant[value=[512, 768]]() %8 : float = prim::Constant[value=9.9999999999999998e-13]() %9 : int[] = prim::Constant[value=[768]]() %10 : Float(1, 512, 768, strides=[393216, 768, 1], requires_grad=0, device=cuda:0) = aten::add(%3, %4, %6) %11 : Float(1, 512, 768, strides=[393216, 768, 1], requires_grad=0, device=cuda:0) = aten::add(%10, %2, %5) %12 : Float(1, 512, 768, strides=[393216, 768, 1], requires_grad=0, device=cuda:0), %13 : Tensor, %14 : Tensor = aten::native_layer_norm(%11, %9, %0, %1, %8) %15 : Float(512, 768, strides=[768, 1], requires_grad=0, device=cuda:0) = aten::reshape(%12, %7) return (%15, %12) """), ("autogen-22", """graph(%0 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0), %1 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0), %2 : Double(requires_grad=0, device=cuda:0), %3 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0), %4 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0), %5 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0), %6 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0), %7 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0), %8 : Double(requires_grad=0, device=cuda:0), %9 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0), %10 : Double(requires_grad=0, device=cuda:0), %11 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0), %12 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0), %13 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0), %14 : Double(requires_grad=0, device=cuda:0), %15 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0), %16 : Double(requires_grad=0, device=cuda:0), %17 : Double(requires_grad=0, device=cuda:0), %18 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0), %19 : int, %20 : int, %21 : int, %22 : int, %23 : int, %24 : int, %25 : int, %26 : int, %27 : int): %28 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::pow(%18, %27) %29 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::reciprocal(%28) %30 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%29, %17) %31 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%15, %16) %32 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%13, %14) %33 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%30, %12) %34 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%0, %7) %35 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%32, %0) %36 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%11, %8) %37 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%36, %10, %26) %38 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%37, %9, %25) %39 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%38, %8) %40 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%39, %4) %41 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%6, %7) %42 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%3, %5) %43 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%3, %4) %44 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%43, %2) %45 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%44, %34) %46 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%35, %45, %24) %47 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%1, %33) %48 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::sub(%46, %47, %23) %49 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::sub(%48, %31, %22) %50 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::sub(%49, %42, %21) %51 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::sub(%50, %40, %20) %52 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::sub(%51, %41, %19) %53 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%52, %0) return (%53, %43, %42, %38, %36, %34, %33, %31, %30) """), ("autogen-23", """graph(%0 : Float(32, 2, 256, 28, 28, strides=[401408, 200704, 784, 28, 1], requires_grad=0, device=cuda:0), %1 : Float(32, 2, 1, 256, strides=[512, 256, 512, 1], requires_grad=0, device=cuda:0)): %2 : NoneType = prim::Constant() %3 : int[] = prim::Constant[value=[1]]() %4 : int[] = prim::Constant[value=[32, 2, 256, 1, 1]]() %5 : int[] = prim::Constant[value=[32, 512, 1, 1]]() %6 : int[] = prim::Constant[value=[32, 512]]() %7 : bool = prim::Constant[value=0]() %8 : int = prim::Constant[value=1]() %9 : Float(32, 2, 1, 256, strides=[512, 256, 256, 1], requires_grad=0, device=cuda:0) = aten::_softmax(%1, %8, %7) %10 : Float(32, 512, strides=[512, 1], requires_grad=0, device=cuda:0) = aten::reshape(%9, %6) %11 : Float(32, 512, 1, 1, strides=[512, 1, 1, 1], requires_grad=0, device=cuda:0) = aten::reshape(%10, %5) %12 : Float(32, 2, 256, 1, 1, strides=[512, 256, 1, 1, 1], requires_grad=0, device=cuda:0) = aten::reshape(%11, %4) %13 : Float(32, 2, 256, 28, 28, strides=[401408, 200704, 784, 28, 1], requires_grad=0, device=cuda:0) = aten::mul(%0, %12) %14 : Float(32, 256, 28, 28, strides=[200704, 784, 28, 1], requires_grad=0, device=cuda:0) = aten::sum(%13, %3, %7, %2) return (%14) """), ("autogen-24", """graph(%0 : Double(requires_grad=0, device=cuda:0), %1 : Double(requires_grad=0, device=cuda:0), %2 : Double(requires_grad=0, device=cuda:0), %3 : Double(requires_grad=0, device=cuda:0), %4 : Float(1024, 3072, strides=[3072, 1], requires_grad=0, device=cuda:0), %5 : int, %6 : int, %7 : float): %8 : int[] = prim::Constant[value=[1024, 3072]]() %9 : int[] = prim::Constant[value=[1, 1024, 3072]]() %10 : Float(1, 1024, 3072, strides=[3145728, 3072, 1], requires_grad=0, device=cuda:0) = aten::reshape(%4, %9) %11 : Float(1, 1024, 3072, strides=[3145728, 3072, 1], requires_grad=0, device=cuda:0) = aten::pow(%10, %7) %12 : Float(1, 1024, 3072, strides=[3145728, 3072, 1], requires_grad=0, device=cuda:0) = aten::mul(%11, %3) %13 : Float(1, 1024, 3072, strides=[3145728, 3072, 1], requires_grad=0, device=cuda:0) = aten::add(%10, %12, %6) %14 : Float(1, 1024, 3072, strides=[3145728, 3072, 1], requires_grad=0, device=cuda:0) = aten::mul(%13, %2) %15 : Float(1, 1024, 3072, strides=[3145728, 3072, 1], requires_grad=0, device=cuda:0) = aten::tanh(%14) %16 : Float(1, 1024, 3072, strides=[3145728, 3072, 1], requires_grad=0, device=cuda:0) = aten::add(%15, %1, %5) %17 : Float(1, 1024, 3072, strides=[3145728, 3072, 1], requires_grad=0, device=cuda:0) = aten::mul(%10, %0) %18 : Float(1, 1024, 3072, strides=[3145728, 3072, 1], requires_grad=0, device=cuda:0) = aten::mul(%17, %16) %19 : Float(1024, 3072, strides=[3072, 1], requires_grad=0, device=cuda:0) = aten::reshape(%18, %8) return (%19) """), ("autogen-25", """graph(%0 : Float(768, strides=[1], requires_grad=0, device=cuda:0), %1 : Float(768, strides=[1], requires_grad=0, device=cuda:0), %2 : Float(16, 128, 768, strides=[98304, 768, 1], requires_grad=0, device=cuda:0), %3 : Float(16, 128, 1, strides=[128, 1, 1], requires_grad=0, device=cuda:0), %4 : Double(requires_grad=0, device=cuda:0), %5 : int, %6 : int, %7 : int): %8 : int[] = prim::Constant[value=[2048, 768]]() %9 : NoneType = prim::Constant() %10 : bool = prim::Constant[value=1]() %11 : int[] = prim::Constant[value=[-1]]() %12 : Float(16, 128, 1, strides=[128, 1, 1], requires_grad=0, device=cuda:0) = aten::add(%3, %4, %7) %13 : Float(16, 128, 1, strides=[128, 1, 1], requires_grad=0, device=cuda:0) = aten::mean(%2, %11, %10, %9) %14 : Float(16, 128, 768, strides=[98304, 768, 1], requires_grad=0, device=cuda:0) = aten::sub(%2, %13, %6) %15 : Float(16, 128, 768, strides=[98304, 768, 1], requires_grad=0, device=cuda:0) = aten::mul(%1, %14) %16 : Float(16, 128, 768, strides=[98304, 768, 1], requires_grad=0, device=cuda:0) = aten::div(%15, %12) %17 : Float(16, 128, 768, strides=[98304, 768, 1], requires_grad=0, device=cuda:0) = aten::add(%16, %0, %5) %18 : Float(2048, 768, strides=[768, 1], requires_grad=0, device=cuda:0) = aten::reshape(%17, %8) return (%18) """), ("autogen-26", """graph(%0 : Float(1, 8, 2048, 2048, strides=[8, 1, 16384, 8], requires_grad=0, device=cuda:0), %1 : Float(8, 2048, 2048, strides=[4194304, 2048, 1], requires_grad=0, device=cuda:0), %2 : int): %3 : bool = prim::Constant[value=0]() %4 : int = prim::Constant[value=-1]() %5 : int[] = prim::Constant[value=[8, 2048, 2048]]() %6 : int[] = prim::Constant[value=[1, 8, 2048, 2048]]() %7 : Float(1, 8, 2048, 2048, strides=[33554432, 4194304, 2048, 1], requires_grad=0, device=cuda:0) = aten::reshape(%1, %6) %8 : Float(1, 8, 2048, 2048, strides=[33554432, 4194304, 2048, 1], requires_grad=0, device=cuda:0) = aten::add(%7, %0, %2) %9 : Float(8, 2048, 2048, strides=[4194304, 2048, 1], requires_grad=0, device=cuda:0) = aten::reshape(%8, %5) %10 : Float(1, 8, 2048, 2048, strides=[33554432, 4194304, 2048, 1], requires_grad=0, device=cuda:0) = aten::reshape(%9, %6) %11 : Float(1, 8, 2048, 2048, strides=[33554432, 4194304, 2048, 1], requires_grad=0, device=cuda:0) = aten::_softmax(%10, %4, %3) return (%11) """), ("autogen-27", """graph(%0 : Float(768, strides=[1], requires_grad=0, device=cuda:0), %1 : Float(768, strides=[1], requires_grad=0, device=cuda:0), %2 : Float(1, 512, 768, strides=[393216, 768, 1], requires_grad=0, device=cuda:0), %3 : Float(768, strides=[1], requires_grad=0, device=cuda:0), %4 : Float(512, 768, strides=[768, 1], requires_grad=0, device=cuda:0), %5 : int, %6 : int): %7 : float = prim::Constant[value=9.9999999999999998e-13]() %8 : int[] = prim::Constant[value=[768]]() %9 : int[] = prim::Constant[value=[512, 768]]() %10 : int[] = prim::Constant[value=[1, 512, 768]]() %11 : Float(1, 512, 768, strides=[393216, 768, 1], requires_grad=0, device=cuda:0) = aten::reshape(%4, %10) %12 : Float(1, 512, 768, strides=[393216, 768, 1], requires_grad=0, device=cuda:0) = aten::add(%11, %3, %6) %13 : Float(512, 768, strides=[768, 1], requires_grad=0, device=cuda:0) = aten::reshape(%12, %9) %14 : Float(1, 512, 768, strides=[393216, 768, 1], requires_grad=0, device=cuda:0) = aten::reshape(%13, %10) %15 : Float(1, 512, 768, strides=[393216, 768, 1], requires_grad=0, device=cuda:0) = aten::add(%14, %2, %5) %16 : Float(1, 512, 768, strides=[393216, 768, 1], requires_grad=0, device=cuda:0), %17 : Tensor, %18 : Tensor = aten::native_layer_norm(%15, %8, %0, %1, %7) %19 : Float(512, 768, strides=[768, 1], requires_grad=0, device=cuda:0) = aten::reshape(%16, %9) return (%19, %16) """), ("autogen-28", """graph(%0 : Float(128, strides=[1], requires_grad=0, device=cuda:0), %1 : Float(128, strides=[1], requires_grad=0, device=cuda:0), %2 : Float(1, 512, 128, strides=[65536, 128, 1], requires_grad=0, device=cuda:0), %3 : Float(1, 512, 128, strides=[65536, 128, 1], requires_grad=0, device=cuda:0), %4 : Float(1, 512, 128, strides=[65536, 128, 1], requires_grad=0, device=cuda:0), %5 : int, %6 : int): %7 : int[] = prim::Constant[value=[512, 128]]() %8 : float = prim::Constant[value=9.9999999999999998e-13]() %9 : int[] = prim::Constant[value=[128]]() %10 : Float(1, 512, 128, strides=[65536, 128, 1], requires_grad=0, device=cuda:0) = aten::add(%3, %4, %6) %11 : Float(1, 512, 128, strides=[65536, 128, 1], requires_grad=0, device=cuda:0) = aten::add(%10, %2, %5) %12 : Float(1, 512, 128, strides=[65536, 128, 1], requires_grad=0, device=cuda:0), %13 : Tensor, %14 : Tensor = aten::native_layer_norm(%11, %9, %0, %1, %8) %15 : Float(512, 128, strides=[128, 1], requires_grad=0, device=cuda:0) = aten::reshape(%12, %7) return (%15) """), ("autogen-29", """graph(%0 : Float(720, 64, 64, strides=[4096, 64, 1], requires_grad=0, device=cuda:0), %1 : Float(720, 64, 64, strides=[4096, 64, 1], requires_grad=0, device=cuda:0), %2 : Float(1, 12, 60, 64, 64, 1, strides=[64, 245760, 4096, 64, 1, 64], requires_grad=0, device=cuda:0), %3 : Float(1, 12, 60, 64, 64, 1, strides=[64, 245760, 4096, 64, 1, 64], requires_grad=0, device=cuda:0), %4 : int, %5 : int, %6 : int): %7 : int[] = prim::Constant[value=[720, 64, 64]]() %8 : int[] = prim::Constant[value=[1, 12, 60, 64, 64]]() %9 : Float(1, 12, 60, 64, 64, strides=[2949120, 245760, 4096, 64, 1], requires_grad=0, device=cuda:0) = aten::reshape(%3, %8) %10 : Float(1, 12, 60, 64, 64, strides=[2949120, 245760, 4096, 64, 1], requires_grad=0, device=cuda:0) = aten::reshape(%2, %8) %11 : Float(1, 12, 60, 64, 64, strides=[2949120, 245760, 4096, 64, 1], requires_grad=0, device=cuda:0) = aten::reshape(%1, %8) %12 : Float(1, 12, 60, 64, 64, strides=[2949120, 245760, 4096, 64, 1], requires_grad=0, device=cuda:0) = aten::reshape(%0, %8) %13 : Float(1, 12, 60, 64, 64, strides=[2949120, 245760, 4096, 64, 1], requires_grad=0, device=cuda:0) = aten::add(%12, %11, %6) %14 : Float(720, 64, 64, strides=[4096, 64, 1], requires_grad=0, device=cuda:0) = aten::reshape(%13, %7) %15 : Float(1, 12, 60, 64, 64, strides=[2949120, 245760, 4096, 64, 1], requires_grad=0, device=cuda:0) = aten::reshape(%14, %8) %16 : Float(1, 12, 60, 64, 64, strides=[2949120, 245760, 4096, 64, 1], requires_grad=0, device=cuda:0) = aten::add(%15, %10, %5) %17 : Float(720, 64, 64, strides=[4096, 64, 1], requires_grad=0, device=cuda:0) = aten::reshape(%16, %7) %18 : Float(1, 12, 60, 64, 64, strides=[2949120, 245760, 4096, 64, 1], requires_grad=0, device=cuda:0) = aten::reshape(%17, %8) %19 : Float(1, 12, 60, 64, 64, strides=[2949120, 245760, 4096, 64, 1], requires_grad=0, device=cuda:0) = aten::add(%18, %9, %4) %20 : Float(720, 64, 64, strides=[4096, 64, 1], requires_grad=0, device=cuda:0) = aten::reshape(%19, %7) %21 : Float(1, 12, 60, 64, 64, strides=[2949120, 245760, 4096, 64, 1], requires_grad=0, device=cuda:0) = aten::reshape(%20, %8) return (%21) """), ("autogen-30", """graph(%0 : Float(256, strides=[1], requires_grad=0, device=cuda:0), %1 : Float(256, strides=[1], requires_grad=0, device=cuda:0), %2 : Float(1, 4096, 256, strides=[1048576, 256, 1], requires_grad=0, device=cuda:0), %3 : Float(4096, 256, strides=[256, 1], requires_grad=0, device=cuda:0), %4 : int): %5 : int[] = prim::Constant[value=[4096, 256]]() %6 : float = prim::Constant[value=9.9999999999999998e-13]() %7 : int[] = prim::Constant[value=[256]]() %8 : int[] = prim::Constant[value=[1, 4096, 256]]() %9 : Float(1, 4096, 256, strides=[1048576, 256, 1], requires_grad=0, device=cuda:0) = aten::reshape(%3, %8) %10 : Float(1, 4096, 256, strides=[1048576, 256, 1], requires_grad=0, device=cuda:0) = aten::add(%2, %9, %4) %11 : Float(1, 4096, 256, strides=[1048576, 256, 1], requires_grad=0, device=cuda:0), %12 : Tensor, %13 : Tensor = aten::native_layer_norm(%10, %7, %0, %1, %6) %14 : Float(4096, 256, strides=[256, 1], requires_grad=0, device=cuda:0) = aten::reshape(%11, %5) return (%14) """), ("autogen-31", """graph(%0 : Float(1, 64, 64, 256, strides=[1048576, 16384, 256, 1], requires_grad=0, device=cuda:0)): %1 : int[] = prim::Constant[value=[4096, 256]]() %2 : int[] = prim::Constant[value=[1, 4096, 256]]() %3 : Float(1, 4096, 256, strides=[1048576, 256, 1], requires_grad=0, device=cuda:0) = aten::reshape(%0, %2) %4 : Float(1, 4096, 256, strides=[1048576, 256, 1], requires_grad=0, device=cuda:0) = aten::reshape(%3, %2) %5 : Float(4096, 256, strides=[256, 1], requires_grad=0, device=cuda:0) = aten::reshape(%4, %1) return (%5) """), ("autogen-32", """graph(%0 : Float(1, 12, 64, 64, 64, strides=[3145728, 262144, 4096, 64, 1], requires_grad=0, device=cuda:0), %1 : Float(1, 4096, strides=[4096, 1], requires_grad=0, device=cuda:0)): %2 : int[] = prim::Constant[value=[1, 12, 4096, 64]]() %3 : int[] = prim::Constant[value=[1, 1, 4096, 1]]() %4 : Float(1, 1, 4096, 1, strides=[4096, 4096, 1, 1], requires_grad=0, device=cuda:0) = aten::reshape(%1, %3) %5 : Float(1, 12, 4096, 64, strides=[3145728, 262144, 64, 1], requires_grad=0, device=cuda:0) = aten::reshape(%0, %2) %6 : Float(1, 12, 4096, 64, strides=[3145728, 262144, 64, 1], requires_grad=0, device=cuda:0) = aten::mul(%5, %4) return (%6, %4) """), ("autogen-33", """graph(%0 : Double(requires_grad=0, device=cuda:0), %1 : Float(12, 64, 4096, strides=[262144, 4096, 1], requires_grad=0, device=cuda:0), %2 : Double(requires_grad=0, device=cuda:0), %3 : Double(requires_grad=0, device=cuda:0), %4 : Float(1, 1, 1, 4096, strides=[4096, 4096, 4096, 1], requires_grad=0, device=cuda:0), %5 : int, %6 : int): %7 : int[] = prim::Constant[value=[12, 64, 4096]]() %8 : bool = prim::Constant[value=0]() %9 : int = prim::Constant[value=-1]() %10 : int[] = prim::Constant[value=[1, 12, 64, 4096]]() %11 : Float(1, 1, 1, 4096, strides=[4096, 4096, 4096, 1], requires_grad=0, device=cuda:0) = aten::sub(%3, %4, %6) %12 : Float(1, 1, 1, 4096, strides=[4096, 4096, 4096, 1], requires_grad=0, device=cuda:0) = aten::mul(%11, %2) %13 : Float(1, 12, 64, 4096, strides=[3145728, 262144, 4096, 1], requires_grad=0, device=cuda:0) = aten::reshape(%1, %10) %14 : Float(1, 12, 64, 4096, strides=[3145728, 262144, 4096, 1], requires_grad=0, device=cuda:0) = aten::mul(%13, %0) %15 : Float(1, 12, 64, 4096, strides=[3145728, 262144, 4096, 1], requires_grad=0, device=cuda:0) = aten::add(%14, %12, %5) %16 : Float(1, 12, 64, 4096, strides=[3145728, 262144, 4096, 1], requires_grad=0, device=cuda:0) = aten::_softmax(%15, %9, %8) %17 : Float(12, 64, 4096, strides=[262144, 4096, 1], requires_grad=0, device=cuda:0) = aten::reshape(%16, %7) return (%17) """), ("autogen-34", """graph(%0 : Float(384, strides=[1], requires_grad=0, device=cuda:0), %1 : Float(384, strides=[1], requires_grad=0, device=cuda:0), %2 : Float(8, 197, 384, strides=[75648, 384, 1], requires_grad=0, device=cuda:0), %3 : Float(384, strides=[1], requires_grad=0, device=cuda:0), %4 : Float(1576, 384, strides=[384, 1], requires_grad=0, device=cuda:0), %5 : int, %6 : int): %7 : float = prim::Constant[value=9.9999999999999995e-07]() %8 : int[] = prim::Constant[value=[384]]() %9 : int[] = prim::Constant[value=[1576, 384]]() %10 : int[] = prim::Constant[value=[8, 197, 384]]() %11 : Float(8, 197, 384, strides=[75648, 384, 1], requires_grad=0, device=cuda:0) = aten::reshape(%4, %10) %12 : Float(8, 197, 384, strides=[75648, 384, 1], requires_grad=0, device=cuda:0) = aten::add(%11, %3, %6) %13 : Float(1576, 384, strides=[384, 1], requires_grad=0, device=cuda:0) = aten::reshape(%12, %9) %14 : Float(8, 197, 384, strides=[75648, 384, 1], requires_grad=0, device=cuda:0) = aten::reshape(%13, %10) %15 : Float(8, 197, 384, strides=[75648, 384, 1], requires_grad=0, device=cuda:0) = aten::add(%2, %14, %5) %16 : Float(8, 197, 384, strides=[75648, 384, 1], requires_grad=0, device=cuda:0), %17 : Tensor, %18 : Tensor = aten::native_layer_norm(%15, %8, %0, %1, %7) %19 : Float(1576, 384, strides=[384, 1], requires_grad=0, device=cuda:0) = aten::reshape(%16, %9) return (%19, %15) """), ("autogen-35", """graph(%0 : Double(requires_grad=0, device=cuda:0), %1 : Float(512, strides=[1], requires_grad=0, device=cuda:0), %2 : Double(requires_grad=0, device=cuda:0), %3 : Float(1, 2048, 512, strides=[1048576, 512, 1], requires_grad=0, device=cuda:0), %4 : Float(2048, 512, strides=[512, 1], requires_grad=0, device=cuda:0), %5 : int, %6 : int, %7 : int): %8 : int[] = prim::Constant[value=[2048, 512]]() %9 : NoneType = prim::Constant() %10 : bool = prim::Constant[value=1]() %11 : int[] = prim::Constant[value=[-1]]() %12 : int[] = prim::Constant[value=[1, 2048, 512]]() %13 : Float(1, 2048, 512, strides=[1048576, 512, 1], requires_grad=0, device=cuda:0) = aten::reshape(%4, %12) %14 : Float(1, 2048, 512, strides=[1048576, 512, 1], requires_grad=0, device=cuda:0) = aten::add(%3, %13, %7) %15 : Float(1, 2048, 512, strides=[1048576, 512, 1], requires_grad=0, device=cuda:0) = aten::pow(%14, %6) %16 : Float(1, 2048, 1, strides=[2048, 1, 1], requires_grad=0, device=cuda:0) = aten::mean(%15, %11, %10, %9) %17 : Float(1, 2048, 1, strides=[2048, 1, 1], requires_grad=0, device=cuda:0) = aten::add(%16, %2, %5) %18 : Float(1, 2048, 1, strides=[2048, 1, 1], requires_grad=0, device=cuda:0) = aten::rsqrt(%17) %19 : Float(1, 2048, 512, strides=[1048576, 512, 1], requires_grad=0, device=cuda:0) = aten::mul(%14, %18) %20 : Float(1, 2048, 512, strides=[1048576, 512, 1], requires_grad=0, device=cuda:0) = aten::mul(%1, %19) %21 : Float(1, 2048, 512, strides=[1048576, 512, 1], requires_grad=0, device=cuda:0) = aten::mul(%20, %0) %22 : Float(2048, 512, strides=[512, 1], requires_grad=0, device=cuda:0) = aten::reshape(%21, %8) return (%22) """), ("autogen-36", """graph(%0 : Float(32, 512, 28, 28, strides=[401408, 784, 28, 1], requires_grad=0, device=cuda:0), %1 : Float(512, strides=[1], requires_grad=0, device=cuda:0), %2 : Float(512, strides=[1], requires_grad=0, device=cuda:0), %3 : Float(512, strides=[1], requires_grad=0, device=cuda:0), %4 : Float(512, strides=[1], requires_grad=0, device=cuda:0)): %5 : bool = prim::Constant[value=1]() %6 : int[] = prim::Constant[value=[2, 3]]() %7 : NoneType = prim::Constant() %8 : int[] = prim::Constant[value=[1]]() %9 : int[] = prim::Constant[value=[32, 2, 256, 28, 28]]() %10 : float = prim::Constant[value=1.0000000000000001e-05]() %11 : float = prim::Constant[value=0.10000000000000001]() %12 : bool = prim::Constant[value=0]() %13 : Float(32, 512, 28, 28, strides=[401408, 784, 28, 1], requires_grad=0, device=cuda:0), %14 : Tensor, %15 : Tensor = aten::native_batch_norm(%0, %1, %2, %3, %4, %12, %11, %10) %16 : Float(32, 512, 28, 28, strides=[401408, 784, 28, 1], requires_grad=0, device=cuda:0) = aten::relu(%13) %17 : Float(32, 2, 256, 28, 28, strides=[401408, 200704, 784, 28, 1], requires_grad=0, device=cuda:0) = aten::reshape(%16, %9) %18 : Float(32, 256, 28, 28, strides=[200704, 784, 28, 1], requires_grad=0, device=cuda:0) = aten::sum(%17, %8, %12, %7) %19 : Float(32, 256, 1, 1, strides=[256, 1, 1, 1], requires_grad=0, device=cuda:0) = aten::mean(%18, %6, %5, %7) return (%19, %17) """), ("autogen-37", """graph(%0 : Double(requires_grad=0, device=cuda:0), %1 : Float(720, 64, 192, strides=[12288, 192, 1], requires_grad=0, device=cuda:0), %2 : Double(requires_grad=0, device=cuda:0), %3 : Double(requires_grad=0, device=cuda:0), %4 : Float(1, 1, 60, 64, 192, strides=[737280, 737280, 12288, 192, 1], requires_grad=0, device=cuda:0), %5 : int, %6 : int): %7 : int[] = prim::Constant[value=[1, 12, 60, 64, 192]]() %8 : Float(1, 1, 60, 64, 192, strides=[737280, 737280, 12288, 192, 1], requires_grad=0, device=cuda:0) = aten::sub(%3, %4, %6) %9 : Float(1, 1, 60, 64, 192, strides=[737280, 737280, 12288, 192, 1], requires_grad=0, device=cuda:0) = aten::mul(%8, %2) %10 : Float(1, 12, 60, 64, 192, strides=[8847360, 737280, 12288, 192, 1], requires_grad=0, device=cuda:0) = aten::reshape(%1, %7) %11 : Float(1, 12, 60, 64, 192, strides=[8847360, 737280, 12288, 192, 1], requires_grad=0, device=cuda:0) = aten::mul(%10, %0) %12 : Float(1, 12, 60, 64, 192, strides=[8847360, 737280, 12288, 192, 1], requires_grad=0, device=cuda:0) = aten::add(%11, %9, %5) return (%12) """), ("autogen-38", """graph(%0 : Float(1, 4096, 256, strides=[2097152, 512, 1], requires_grad=0, device=cuda:0), %1 : Float(256, strides=[1], requires_grad=0, device=cuda:0), %2 : Float(256, strides=[1], requires_grad=0, device=cuda:0)): %3 : int[] = prim::Constant[value=[4096, 256]]() %4 : float = prim::Constant[value=9.9999999999999998e-13]() %5 : int[] = prim::Constant[value=[256]]() %6 : Float(1, 4096, 256, strides=[1048576, 256, 1], requires_grad=0, device=cuda:0), %7 : Tensor, %8 : Tensor = aten::native_layer_norm(%0, %5, %1, %2, %4) %9 : Float(4096, 256, strides=[256, 1], requires_grad=0, device=cuda:0) = aten::reshape(%6, %3) return (%9) """), ("autogen-39", """graph(%0 : Float(1, 12, 64, 64, 128, strides=[6291456, 524288, 8192, 128, 1], requires_grad=0, device=cuda:0), %1 : Float(1, 12, 64, 64, 1, strides=[49152, 4096, 64, 1, 1], requires_grad=0, device=cuda:0), %2 : int, %3 : int, %4 : int): %5 : NoneType = prim::Constant() %6 : bool = prim::Constant[value=1]() %7 : int[] = prim::Constant[value=[-1]]() %8 : Float(1, 12, 64, 64, 128, strides=[6291456, 524288, 8192, 128, 1], requires_grad=0, device=cuda:0) = aten::sub(%0, %1, %4) %9 : Float(1, 12, 64, 64, 128, strides=[6291456, 524288, 8192, 128, 1], requires_grad=0, device=cuda:0) = aten::exp(%8) %10 : Float(1, 12, 64, 64, 1, strides=[49152, 4096, 64, 1, 1], requires_grad=0, device=cuda:0) = aten::sum(%9, %7, %6, %5) %11 : Float(1, 12, 64, 64, 1, strides=[49152, 4096, 64, 1, 1], requires_grad=0, device=cuda:0) = aten::log(%10) %12 : Float(1, 12, 64, 64, 1, strides=[49152, 4096, 64, 1, 1], requires_grad=0, device=cuda:0) = aten::add(%11, %1, %3) %13 : Float(1, 12, 64, 64, 128, strides=[6291456, 524288, 8192, 128, 1], requires_grad=0, device=cuda:0) = aten::sub(%0, %12, %2) %14 : Float(1, 12, 64, 64, 128, strides=[6291456, 524288, 8192, 128, 1], requires_grad=0, device=cuda:0) = aten::exp(%13) return (%14) """), ("autogen-40", """graph(%0 : Float(32, 80, 14, 14, strides=[15680, 196, 14, 1], requires_grad=0, device=cuda:0), %1 : Float(80, strides=[1], requires_grad=0, device=cuda:0), %2 : Float(80, strides=[1], requires_grad=0, device=cuda:0), %3 : Float(80, strides=[1], requires_grad=0, device=cuda:0), %4 : Float(80, strides=[1], requires_grad=0, device=cuda:0), %5 : Float(32, 80, 14, 14, strides=[15680, 196, 14, 1], requires_grad=0, device=cuda:0), %6 : Float(80, strides=[1], requires_grad=0, device=cuda:0), %7 : Float(80, strides=[1], requires_grad=0, device=cuda:0), %8 : Float(80, strides=[1], requires_grad=0, device=cuda:0), %9 : Float(80, strides=[1], requires_grad=0, device=cuda:0), %10 : Float(32, 80, 14, 14, strides=[15680, 196, 14, 1], requires_grad=0, device=cuda:0), %11 : Float(80, strides=[1], requires_grad=0, device=cuda:0), %12 : Float(80, strides=[1], requires_grad=0, device=cuda:0), %13 : Float(80, strides=[1], requires_grad=0, device=cuda:0), %14 : Float(80, strides=[1], requires_grad=0, device=cuda:0), %15 : int, %16 : int): %17 : float = prim::Constant[value=0.001]() %18 : float = prim::Constant[value=0.01]() %19 : bool = prim::Constant[value=0]() %20 : Float(32, 80, 14, 14, strides=[15680, 196, 14, 1], requires_grad=0, device=cuda:0), %21 : Tensor, %22 : Tensor = aten::native_batch_norm(%10, %11, %12, %13, %14, %19, %18, %17) %23 : Float(32, 80, 14, 14, strides=[15680, 196, 14, 1], requires_grad=0, device=cuda:0), %24 : Tensor, %25 : Tensor = aten::native_batch_norm(%5, %6, %7, %8, %9, %19, %18, %17) %26 : Float(32, 80, 14, 14, strides=[15680, 196, 14, 1], requires_grad=0, device=cuda:0) = aten::add(%23, %20, %16) %27 : Float(32, 80, 14, 14, strides=[15680, 196, 14, 1], requires_grad=0, device=cuda:0), %28 : Tensor, %29 : Tensor = aten::native_batch_norm(%0, %1, %2, %3, %4, %19, %18, %17) %30 : Float(32, 80, 14, 14, strides=[15680, 196, 14, 1], requires_grad=0, device=cuda:0) = aten::add(%27, %26, %15) return (%30) """), ("autogen-41", """graph(%0 : Float(12, 64, 64, strides=[4096, 64, 1], requires_grad=0, device=cuda:0)): %1 : int[] = prim::Constant[value=[1, 12, 1, 64, 64]]() %2 : int[] = prim::Constant[value=[12, 64, 64]]() %3 : int = prim::Constant[value=2]() %4 : int[] = prim::Constant[value=[1, 12, 64, 64]]() %5 : Float(1, 12, 64, 64, strides=[49152, 4096, 64, 1], requires_grad=0, device=cuda:0) = aten::reshape(%0, %4) %6 : Float(1, 12, 1, 64, 64, strides=[49152, 4096, 4096, 64, 1], requires_grad=0, device=cuda:0) = aten::unsqueeze(%5, %3) %7 : Float(1, 12, 64, 64, strides=[49152, 4096, 64, 1], requires_grad=0, device=cuda:0) = aten::reshape(%6, %4) %8 : Float(12, 64, 64, strides=[4096, 64, 1], requires_grad=0, device=cuda:0) = aten::reshape(%7, %2) %9 : Float(1, 12, 64, 64, strides=[49152, 4096, 64, 1], requires_grad=0, device=cuda:0) = aten::reshape(%8, %4) %10 : Float(1, 12, 1, 64, 64, strides=[49152, 4096, 4096, 64, 1], requires_grad=0, device=cuda:0) = aten::reshape(%9, %1) return (%10) """), ("autogen-42", """graph(%0 : Double(requires_grad=0, device=cuda:0), %1 : Double(requires_grad=0, device=cuda:0), %2 : Double(requires_grad=0, device=cuda:0), %3 : Double(requires_grad=0, device=cuda:0), %4 : Float(3072, strides=[1], requires_grad=0, device=cuda:0), %5 : Float(512, 3072, strides=[3072, 1], requires_grad=0, device=cuda:0), %6 : int, %7 : int, %8 : float, %9 : int): %10 : int[] = prim::Constant[value=[512, 3072]]() %11 : int[] = prim::Constant[value=[1, 512, 3072]]() %12 : Float(1, 512, 3072, strides=[1572864, 3072, 1], requires_grad=0, device=cuda:0) = aten::reshape(%5, %11) %13 : Float(1, 512, 3072, strides=[1572864, 3072, 1], requires_grad=0, device=cuda:0) = aten::add(%12, %4, %9) %14 : Float(512, 3072, strides=[3072, 1], requires_grad=0, device=cuda:0) = aten::reshape(%13, %10) %15 : Float(1, 512, 3072, strides=[1572864, 3072, 1], requires_grad=0, device=cuda:0) = aten::reshape(%14, %11) %16 : Float(1, 512, 3072, strides=[1572864, 3072, 1], requires_grad=0, device=cuda:0) = aten::pow(%15, %8) %17 : Float(1, 512, 3072, strides=[1572864, 3072, 1], requires_grad=0, device=cuda:0) = aten::mul(%16, %3) %18 : Float(1, 512, 3072, strides=[1572864, 3072, 1], requires_grad=0, device=cuda:0) = aten::add(%15, %17, %7) %19 : Float(1, 512, 3072, strides=[1572864, 3072, 1], requires_grad=0, device=cuda:0) = aten::mul(%18, %2) %20 : Float(1, 512, 3072, strides=[1572864, 3072, 1], requires_grad=0, device=cuda:0) = aten::tanh(%19) %21 : Float(1, 512, 3072, strides=[1572864, 3072, 1], requires_grad=0, device=cuda:0) = aten::add(%20, %1, %6) %22 : Float(1, 512, 3072, strides=[1572864, 3072, 1], requires_grad=0, device=cuda:0) = aten::mul(%15, %0) %23 : Float(1, 512, 3072, strides=[1572864, 3072, 1], requires_grad=0, device=cuda:0) = aten::mul(%22, %21) %24 : Float(512, 3072, strides=[3072, 1], requires_grad=0, device=cuda:0) = aten::reshape(%23, %10) return (%24) """), ("autogen-43", """graph(%0 : Float(32, 80, 14, 14, strides=[15680, 196, 14, 1], requires_grad=0, device=cuda:0), %1 : Float(80, strides=[1], requires_grad=0, device=cuda:0), %2 : Float(80, strides=[1], requires_grad=0, device=cuda:0), %3 : Float(80, strides=[1], requires_grad=0, device=cuda:0), %4 : Float(80, strides=[1], requires_grad=0, device=cuda:0), %5 : Float(32, 80, 14, 14, strides=[15680, 196, 14, 1], requires_grad=0, device=cuda:0), %6 : Float(80, strides=[1], requires_grad=0, device=cuda:0), %7 : Float(80, strides=[1], requires_grad=0, device=cuda:0), %8 : Float(80, strides=[1], requires_grad=0, device=cuda:0), %9 : Float(80, strides=[1], requires_grad=0, device=cuda:0), %10 : Float(32, 80, 14, 14, strides=[15680, 196, 14, 1], requires_grad=0, device=cuda:0), %11 : Float(80, strides=[1], requires_grad=0, device=cuda:0), %12 : Float(80, strides=[1], requires_grad=0, device=cuda:0), %13 : Float(80, strides=[1], requires_grad=0, device=cuda:0), %14 : Float(80, strides=[1], requires_grad=0, device=cuda:0), %15 : Float(32, 80, 14, 14, strides=[15680, 196, 14, 1], requires_grad=0, device=cuda:0), %16 : Float(80, strides=[1], requires_grad=0, device=cuda:0), %17 : Float(80, strides=[1], requires_grad=0, device=cuda:0), %18 : Float(80, strides=[1], requires_grad=0, device=cuda:0), %19 : Float(80, strides=[1], requires_grad=0, device=cuda:0), %20 : int, %21 : int, %22 : int): %23 : float = prim::Constant[value=0.001]() %24 : float = prim::Constant[value=0.01]() %25 : bool = prim::Constant[value=0]() %26 : Float(32, 80, 14, 14, strides=[15680, 196, 14, 1], requires_grad=0, device=cuda:0), %27 : Tensor, %28 : Tensor = aten::native_batch_norm(%15, %16, %17, %18, %19, %25, %24, %23) %29 : Float(32, 80, 14, 14, strides=[15680, 196, 14, 1], requires_grad=0, device=cuda:0), %30 : Tensor, %31 : Tensor = aten::native_batch_norm(%10, %11, %12, %13, %14, %25, %24, %23) %32 : Float(32, 80, 14, 14, strides=[15680, 196, 14, 1], requires_grad=0, device=cuda:0) = aten::add(%29, %26, %22) %33 : Float(32, 80, 14, 14, strides=[15680, 196, 14, 1], requires_grad=0, device=cuda:0), %34 : Tensor, %35 : Tensor = aten::native_batch_norm(%5, %6, %7, %8, %9, %25, %24, %23) %36 : Float(32, 80, 14, 14, strides=[15680, 196, 14, 1], requires_grad=0, device=cuda:0) = aten::add(%33, %32, %21) %37 : Float(32, 80, 14, 14, strides=[15680, 196, 14, 1], requires_grad=0, device=cuda:0), %38 : Tensor, %39 : Tensor = aten::native_batch_norm(%0, %1, %2, %3, %4, %25, %24, %23) %40 : Float(32, 80, 14, 14, strides=[15680, 196, 14, 1], requires_grad=0, device=cuda:0) = aten::add(%37, %36, %20) return (%40) """), ("autogen-44", """graph(%0 : Float(128, 1024, 7, 7, strides=[50176, 49, 7, 1], requires_grad=0, device=cuda:0), %1 : Float(1024, strides=[1], requires_grad=0, device=cuda:0), %2 : Float(1024, strides=[1], requires_grad=0, device=cuda:0), %3 : Float(1024, strides=[1], requires_grad=0, device=cuda:0), %4 : Float(1024, strides=[1], requires_grad=0, device=cuda:0)): %5 : NoneType = prim::Constant() %6 : int[] = prim::Constant[value=[2, 3]]() %7 : float = prim::Constant[value=1.0000000000000001e-05]() %8 : float = prim::Constant[value=0.10000000000000001]() %9 : bool = prim::Constant[value=0]() %10 : Float(128, 1024, 7, 7, strides=[50176, 49, 7, 1], requires_grad=0, device=cuda:0), %11 : Tensor, %12 : Tensor = aten::native_batch_norm(%0, %1, %2, %3, %4, %9, %8, %7) %13 : Float(128, 1024, 7, 7, strides=[50176, 49, 7, 1], requires_grad=0, device=cuda:0) = aten::relu(%10) %14 : Float(128, 1024, strides=[1024, 1], requires_grad=0, device=cuda:0) = aten::mean(%13, %6, %9, %5) return (%14) """), ("autogen-45", """graph(%0 : Float(768, strides=[1], requires_grad=0, device=cuda:0), %1 : Float(768, strides=[1], requires_grad=0, device=cuda:0), %2 : Double(requires_grad=0, device=cuda:0), %3 : Double(requires_grad=0, device=cuda:0), %4 : Double(requires_grad=0, device=cuda:0), %5 : Double(requires_grad=0, device=cuda:0), %6 : Float(768, strides=[1], requires_grad=0, device=cuda:0), %7 : Float(4096, 768, strides=[768, 1], requires_grad=0, device=cuda:0), %8 : int, %9 : int, %10 : int): %11 : float = prim::Constant[value=9.9999999999999998e-13]() %12 : int[] = prim::Constant[value=[768]]() %13 : int[] = prim::Constant[value=[4096, 768]]() %14 : int[] = prim::Constant[value=[1, 4096, 768]]() %15 : Float(1, 4096, 768, strides=[3145728, 768, 1], requires_grad=0, device=cuda:0) = aten::reshape(%7, %14) %16 : Float(1, 4096, 768, strides=[3145728, 768, 1], requires_grad=0, device=cuda:0) = aten::add(%15, %6, %10) %17 : Float(4096, 768, strides=[768, 1], requires_grad=0, device=cuda:0) = aten::reshape(%16, %13) %18 : Float(1, 4096, 768, strides=[3145728, 768, 1], requires_grad=0, device=cuda:0) = aten::reshape(%17, %14) %19 : Float(1, 4096, 768, strides=[3145728, 768, 1], requires_grad=0, device=cuda:0) = aten::mul(%18, %5) %20 : Float(1, 4096, 768, strides=[3145728, 768, 1], requires_grad=0, device=cuda:0) = aten::mul(%19, %18) %21 : Float(1, 4096, 768, strides=[3145728, 768, 1], requires_grad=0, device=cuda:0) = aten::add(%20, %3, %9) %22 : Float(1, 4096, 768, strides=[3145728, 768, 1], requires_grad=0, device=cuda:0) = aten::mul(%18, %4) %23 : Float(1, 4096, 768, strides=[3145728, 768, 1], requires_grad=0, device=cuda:0) = aten::mul(%22, %21) %24 : Float(1, 4096, 768, strides=[3145728, 768, 1], requires_grad=0, device=cuda:0) = aten::tanh(%23) %25 : Float(1, 4096, 768, strides=[3145728, 768, 1], requires_grad=0, device=cuda:0) = aten::add(%24, %3, %8) %26 : Float(1, 4096, 768, strides=[3145728, 768, 1], requires_grad=0, device=cuda:0) = aten::mul(%18, %2) %27 : Float(1, 4096, 768, strides=[3145728, 768, 1], requires_grad=0, device=cuda:0) = aten::mul(%26, %25) %28 : Float(1, 4096, 768, strides=[3145728, 768, 1], requires_grad=0, device=cuda:0), %29 : Tensor, %30 : Tensor = aten::native_layer_norm(%27, %12, %0, %1, %11) %31 : Float(4096, 768, strides=[768, 1], requires_grad=0, device=cuda:0) = aten::reshape(%28, %13) return (%31) """), ("autogen-46", """graph(%0 : Double(requires_grad=0, device=cuda:0), %1 : Double(requires_grad=0, device=cuda:0), %2 : Double(requires_grad=0, device=cuda:0), %3 : Double(requires_grad=0, device=cuda:0), %4 : Float(3072, strides=[1], requires_grad=0, device=cuda:0), %5 : Float(4096, 3072, strides=[3072, 1], requires_grad=0, device=cuda:0), %6 : int, %7 : int, %8 : int): %9 : int[] = prim::Constant[value=[4096, 3072]]() %10 : int[] = prim::Constant[value=[1, 4096, 3072]]() %11 : Float(1, 4096, 3072, strides=[12582912, 3072, 1], requires_grad=0, device=cuda:0) = aten::reshape(%5, %10) %12 : Float(1, 4096, 3072, strides=[12582912, 3072, 1], requires_grad=0, device=cuda:0) = aten::add(%11, %4, %8) %13 : Float(4096, 3072, strides=[3072, 1], requires_grad=0, device=cuda:0) = aten::reshape(%12, %9) %14 : Float(1, 4096, 3072, strides=[12582912, 3072, 1], requires_grad=0, device=cuda:0) = aten::reshape(%13, %10) %15 : Float(1, 4096, 3072, strides=[12582912, 3072, 1], requires_grad=0, device=cuda:0) = aten::mul(%14, %3) %16 : Float(1, 4096, 3072, strides=[12582912, 3072, 1], requires_grad=0, device=cuda:0) = aten::mul(%15, %14) %17 : Float(1, 4096, 3072, strides=[12582912, 3072, 1], requires_grad=0, device=cuda:0) = aten::add(%16, %1, %7) %18 : Float(1, 4096, 3072, strides=[12582912, 3072, 1], requires_grad=0, device=cuda:0) = aten::mul(%14, %2) %19 : Float(1, 4096, 3072, strides=[12582912, 3072, 1], requires_grad=0, device=cuda:0) = aten::mul(%18, %17) %20 : Float(1, 4096, 3072, strides=[12582912, 3072, 1], requires_grad=0, device=cuda:0) = aten::tanh(%19) %21 : Float(1, 4096, 3072, strides=[12582912, 3072, 1], requires_grad=0, device=cuda:0) = aten::add(%20, %1, %6) %22 : Float(1, 4096, 3072, strides=[12582912, 3072, 1], requires_grad=0, device=cuda:0) = aten::mul(%14, %0) %23 : Float(1, 4096, 3072, strides=[12582912, 3072, 1], requires_grad=0, device=cuda:0) = aten::mul(%22, %21) %24 : Float(4096, 3072, strides=[3072, 1], requires_grad=0, device=cuda:0) = aten::reshape(%23, %9) return (%24) """), ("autogen-47", """graph(%0 : Float(1, 12, 4096, 64, strides=[3145728, 64, 768, 1], requires_grad=0, device=cuda:0)): %1 : int[] = prim::Constant[value=[768, 64, 64]]() %2 : int[] = prim::Constant[value=[1, 12, 64, 64, 64]]() %3 : Float(1, 12, 64, 64, 64, strides=[768, 64, 49152, 768, 1], requires_grad=0, device=cuda:0) = aten::reshape(%0, %2) %4 : Float(768, 64, 64, strides=[4096, 64, 1], requires_grad=0, device=cuda:0) = aten::reshape(%3, %1) return (%4, %3) """), ("autogen-48", """graph(%0 : Float(512, strides=[1], requires_grad=0, device=cuda:0), %1 : Double(requires_grad=0, device=cuda:0), %2 : Float(1, 2048, 512, strides=[1048576, 512, 1], requires_grad=0, device=cuda:0), %3 : Float(2048, 512, strides=[512, 1], requires_grad=0, device=cuda:0), %4 : int, %5 : int, %6 : int): %7 : int[] = prim::Constant[value=[2048, 512]]() %8 : NoneType = prim::Constant() %9 : bool = prim::Constant[value=1]() %10 : int[] = prim::Constant[value=[-1]]() %11 : int[] = prim::Constant[value=[1, 2048, 512]]() %12 : Float(1, 2048, 512, strides=[1048576, 512, 1], requires_grad=0, device=cuda:0) = aten::reshape(%3, %11) %13 : Float(1, 2048, 512, strides=[1048576, 512, 1], requires_grad=0, device=cuda:0) = aten::add(%2, %12, %6) %14 : Float(1, 2048, 512, strides=[1048576, 512, 1], requires_grad=0, device=cuda:0) = aten::pow(%13, %5) %15 : Float(1, 2048, 1, strides=[2048, 1, 1], requires_grad=0, device=cuda:0) = aten::mean(%14, %10, %9, %8) %16 : Float(1, 2048, 1, strides=[2048, 1, 1], requires_grad=0, device=cuda:0) = aten::add(%15, %1, %4) %17 : Float(1, 2048, 1, strides=[2048, 1, 1], requires_grad=0, device=cuda:0) = aten::rsqrt(%16) %18 : Float(1, 2048, 512, strides=[1048576, 512, 1], requires_grad=0, device=cuda:0) = aten::mul(%13, %17) %19 : Float(1, 2048, 512, strides=[1048576, 512, 1], requires_grad=0, device=cuda:0) = aten::mul(%0, %18) %20 : Float(2048, 512, strides=[512, 1], requires_grad=0, device=cuda:0) = aten::reshape(%19, %7) return (%20, %13) """), ("autogen-49", """graph(%0 : Long(requires_grad=0, device=cuda:0), %1 : Float(96, 3, 128, 128, strides=[49152, 16384, 128, 1], requires_grad=0, device=cuda:0), %2 : Float(96, 3, 128, 128, strides=[49152, 16384, 128, 1], requires_grad=0, device=cuda:0), %3 : int, %4 : int): %5 : NoneType = prim::Constant() %6 : bool = prim::Constant[value=0]() %7 : int[] = prim::Constant[value=[1]]() %8 : Float(96, 3, 128, 128, strides=[49152, 16384, 128, 1], requires_grad=0, device=cuda:0) = aten::sub(%1, %2, %4) %9 : Float(96, 3, 128, 128, strides=[49152, 16384, 128, 1], requires_grad=0, device=cuda:0) = aten::div(%8, %0) %10 : Float(96, 3, 128, 128, strides=[49152, 16384, 128, 1], requires_grad=0, device=cuda:0) = aten::pow(%9, %3) %11 : Float(96, 128, 128, strides=[16384, 128, 1], requires_grad=0, device=cuda:0) = aten::mean(%10, %7, %6, %5) %12 : Float(96, 128, strides=[128, 1], requires_grad=0, device=cuda:0) = aten::mean(%11, %7, %6, %5) %13 : Float(96, strides=[1], requires_grad=0, device=cuda:0) = aten::mean(%12, %7, %6, %5) return (%13) """), ("autogen-50", """graph(%0 : Float(1, 12, 1, 4096, 64, 1, strides=[64, 262144, 64, 64, 1, 64], requires_grad=0, device=cuda:0)): %1 : int[] = prim::Constant[value=[1, 12, 1, 4096, 64]]() %2 : Float(1, 12, 1, 4096, 64, strides=[3145728, 262144, 262144, 64, 1], requires_grad=0, device=cuda:0) = aten::reshape(%0, %1) %3 : Float(1, 12, 1, 4096, 64, strides=[3145728, 262144, 262144, 64, 1], requires_grad=0, device=cuda:0) = aten::neg(%2) return (%3, %2) """), ("autogen-51", """graph(%0 : Double(requires_grad=0, device=cuda:0), %1 : Float(12, 512, 512, strides=[262144, 512, 1], requires_grad=0, device=cuda:0), %2 : Double(requires_grad=0, device=cuda:0), %3 : Double(requires_grad=0, device=cuda:0), %4 : Float(1, 512, strides=[512, 1], requires_grad=0, device=cuda:0), %5 : int, %6 : int): %7 : bool = prim::Constant[value=0]() %8 : int = prim::Constant[value=-1]() %9 : int[] = prim::Constant[value=[1, 12, 512, 512]]() %10 : int[] = prim::Constant[value=[1, 1, 1, 512]]() %11 : int[] = prim::Constant[value=[1, 1, 512]]() %12 : Float(1, 1, 512, strides=[512, 512, 1], requires_grad=0, device=cuda:0) = aten::reshape(%4, %11) %13 : Float(1, 1, 1, 512, strides=[512, 512, 512, 1], requires_grad=0, device=cuda:0) = aten::reshape(%12, %10) %14 : Float(1, 1, 1, 512, strides=[512, 512, 512, 1], requires_grad=0, device=cuda:0) = aten::sub(%3, %13, %6) %15 : Float(1, 1, 1, 512, strides=[512, 512, 512, 1], requires_grad=0, device=cuda:0) = aten::mul(%14, %2) %16 : Float(1, 12, 512, 512, strides=[3145728, 262144, 512, 1], requires_grad=0, device=cuda:0) = aten::reshape(%1, %9) %17 : Float(1, 12, 512, 512, strides=[3145728, 262144, 512, 1], requires_grad=0, device=cuda:0) = aten::div(%16, %0) %18 : Float(1, 12, 512, 512, strides=[3145728, 262144, 512, 1], requires_grad=0, device=cuda:0) = aten::add(%17, %15, %5) %19 : Float(1, 12, 512, 512, strides=[3145728, 262144, 512, 1], requires_grad=0, device=cuda:0) = aten::_softmax(%18, %8, %7) return (%19, %15) """), ("autogen-52", """graph(%0 : Float(96, 64, 14, 14, strides=[12544, 196, 14, 1], requires_grad=0, device=cuda:0), %1 : Float(64, strides=[1], requires_grad=0, device=cuda:0), %2 : Float(64, strides=[1], requires_grad=0, device=cuda:0), %3 : Float(64, strides=[1], requires_grad=0, device=cuda:0), %4 : Float(64, strides=[1], requires_grad=0, device=cuda:0), %5 : Float(96, 64, 14, 14, strides=[12544, 196, 14, 1], requires_grad=0, device=cuda:0), %6 : Float(64, strides=[1], requires_grad=0, device=cuda:0), %7 : Float(64, strides=[1], requires_grad=0, device=cuda:0), %8 : Float(64, strides=[1], requires_grad=0, device=cuda:0), %9 : Float(64, strides=[1], requires_grad=0, device=cuda:0), %10 : Float(96, 64, 14, 14, strides=[12544, 196, 14, 1], requires_grad=0, device=cuda:0), %11 : Float(64, strides=[1], requires_grad=0, device=cuda:0), %12 : Float(64, strides=[1], requires_grad=0, device=cuda:0), %13 : Float(64, strides=[1], requires_grad=0, device=cuda:0), %14 : Float(64, strides=[1], requires_grad=0, device=cuda:0), %15 : Float(96, 64, 14, 14, strides=[12544, 196, 14, 1], requires_grad=0, device=cuda:0), %16 : Float(64, strides=[1], requires_grad=0, device=cuda:0), %17 : Float(64, strides=[1], requires_grad=0, device=cuda:0), %18 : Float(64, strides=[1], requires_grad=0, device=cuda:0), %19 : Float(64, strides=[1], requires_grad=0, device=cuda:0), %20 : int, %21 : int, %22 : int): %23 : float = prim::Constant[value=1.0000000000000001e-05]() %24 : float = prim::Constant[value=0.10000000000000001]() %25 : bool = prim::Constant[value=0]() %26 : Float(96, 64, 14, 14, strides=[12544, 196, 14, 1], requires_grad=0, device=cuda:0), %27 : Tensor, %28 : Tensor = aten::native_batch_norm(%15, %16, %17, %18, %19, %25, %24, %23) %29 : Float(96, 64, 14, 14, strides=[12544, 196, 14, 1], requires_grad=0, device=cuda:0), %30 : Tensor, %31 : Tensor = aten::native_batch_norm(%10, %11, %12, %13, %14, %25, %24, %23) %32 : Float(96, 64, 14, 14, strides=[12544, 196, 14, 1], requires_grad=0, device=cuda:0), %33 : Tensor, %34 : Tensor = aten::native_batch_norm(%5, %6, %7, %8, %9, %25, %24, %23) %35 : Float(96, 64, 14, 14, strides=[12544, 196, 14, 1], requires_grad=0, device=cuda:0), %36 : Tensor, %37 : Tensor = aten::native_batch_norm(%0, %1, %2, %3, %4, %25, %24, %23) %38 : Float(96, 64, 14, 14, strides=[12544, 196, 14, 1], requires_grad=0, device=cuda:0) = aten::add(%35, %32, %22) %39 : Float(96, 64, 14, 14, strides=[12544, 196, 14, 1], requires_grad=0, device=cuda:0) = aten::add(%38, %29, %21) %40 : Float(96, 64, 14, 14, strides=[12544, 196, 14, 1], requires_grad=0, device=cuda:0) = aten::add(%39, %26, %20) return (%40) """), ("autogen-53", """graph(%0 : Float(128, strides=[1], requires_grad=0, device=cuda:0), %1 : Float(128, strides=[1], requires_grad=0, device=cuda:0), %2 : Double(requires_grad=0, device=cuda:0), %3 : Double(requires_grad=0, device=cuda:0), %4 : Double(requires_grad=0, device=cuda:0), %5 : Double(requires_grad=0, device=cuda:0), %6 : Float(128, strides=[1], requires_grad=0, device=cuda:0), %7 : Float(512, 128, strides=[128, 1], requires_grad=0, device=cuda:0), %8 : int, %9 : int, %10 : float, %11 : int): %12 : float = prim::Constant[value=1.0000000000000001e-05]() %13 : int[] = prim::Constant[value=[128]]() %14 : int[] = prim::Constant[value=[512, 128]]() %15 : int[] = prim::Constant[value=[1, 512, 128]]() %16 : Float(1, 512, 128, strides=[65536, 128, 1], requires_grad=0, device=cuda:0) = aten::reshape(%7, %15) %17 : Float(1, 512, 128, strides=[65536, 128, 1], requires_grad=0, device=cuda:0) = aten::add(%16, %6, %11) %18 : Float(512, 128, strides=[128, 1], requires_grad=0, device=cuda:0) = aten::reshape(%17, %14) %19 : Float(1, 512, 128, strides=[65536, 128, 1], requires_grad=0, device=cuda:0) = aten::reshape(%18, %15) %20 : Float(1, 512, 128, strides=[65536, 128, 1], requires_grad=0, device=cuda:0) = aten::pow(%19, %10) %21 : Float(1, 512, 128, strides=[65536, 128, 1], requires_grad=0, device=cuda:0) = aten::mul(%20, %5) %22 : Float(1, 512, 128, strides=[65536, 128, 1], requires_grad=0, device=cuda:0) = aten::add(%19, %21, %9) %23 : Float(1, 512, 128, strides=[65536, 128, 1], requires_grad=0, device=cuda:0) = aten::mul(%22, %4) %24 : Float(1, 512, 128, strides=[65536, 128, 1], requires_grad=0, device=cuda:0) = aten::tanh(%23) %25 : Float(1, 512, 128, strides=[65536, 128, 1], requires_grad=0, device=cuda:0) = aten::add(%24, %3, %8) %26 : Float(1, 512, 128, strides=[65536, 128, 1], requires_grad=0, device=cuda:0) = aten::mul(%19, %2) %27 : Float(1, 512, 128, strides=[65536, 128, 1], requires_grad=0, device=cuda:0) = aten::mul(%26, %25) %28 : Float(1, 512, 128, strides=[65536, 128, 1], requires_grad=0, device=cuda:0), %29 : Tensor, %30 : Tensor = aten::native_layer_norm(%27, %13, %0, %1, %12) %31 : Float(512, 128, strides=[128, 1], requires_grad=0, device=cuda:0) = aten::reshape(%28, %14) return (%31) """), ("autogen-54", """graph(%0 : Float(32, 1000, 13, 13, strides=[169000, 169, 13, 1], requires_grad=0, device=cuda:0)): %1 : NoneType = prim::Constant() %2 : bool = prim::Constant[value=1]() %3 : int[] = prim::Constant[value=[-1, -2]]() %4 : Float(32, 1000, 13, 13, strides=[169000, 169, 13, 1], requires_grad=0, device=cuda:0) = aten::relu(%0) %5 : Float(32, 1000, 1, 1, strides=[1000, 1, 1, 1], requires_grad=0, device=cuda:0) = aten::mean(%4, %3, %2, %1) return (%5) """), ("autogen-55", """graph(%0 : Float(96, strides=[1], requires_grad=0, device=cuda:0), %1 : Long(requires_grad=0, device=cuda:0), %2 : Float(96, 3, 128, 128, strides=[49152, 16384, 128, 1], requires_grad=0, device=cuda:0), %3 : Float(96, 3, 128, 128, strides=[49152, 16384, 128, 1], requires_grad=0, device=cuda:0), %4 : Float(96, strides=[1], requires_grad=0, device=cuda:0), %5 : Double(requires_grad=0, device=cuda:0), %6 : int, %7 : int, %8 : int, %9 : int): %10 : NoneType = prim::Constant() %11 : bool = prim::Constant[value=0]() %12 : int[] = prim::Constant[value=[1]]() %13 : Float(96, strides=[1], requires_grad=0, device=cuda:0) = aten::add(%4, %5, %9) %14 : Float(96, 3, 128, 128, strides=[49152, 16384, 128, 1], requires_grad=0, device=cuda:0) = aten::sub(%2, %3, %8) %15 : Float(96, 3, 128, 128, strides=[49152, 16384, 128, 1], requires_grad=0, device=cuda:0) = aten::div(%14, %1) %16 : Float(96, 3, 128, 128, strides=[49152, 16384, 128, 1], requires_grad=0, device=cuda:0) = aten::pow(%15, %7) %17 : Float(96, 128, 128, strides=[16384, 128, 1], requires_grad=0, device=cuda:0) = aten::mean(%16, %12, %11, %10) %18 : Float(96, 128, strides=[128, 1], requires_grad=0, device=cuda:0) = aten::mean(%17, %12, %11, %10) %19 : Float(96, strides=[1], requires_grad=0, device=cuda:0) = aten::mean(%18, %12, %11, %10) %20 : Float(96, strides=[1], requires_grad=0, device=cuda:0) = aten::sub(%0, %19, %6) %21 : Float(96, strides=[1], requires_grad=0, device=cuda:0) = aten::div(%20, %13) return (%21) """), ("autogen-56", """graph(%0 : Float(384, strides=[1], requires_grad=0, device=cuda:0), %1 : Float(384, strides=[1], requires_grad=0, device=cuda:0), %2 : Float(8, 197, 384, strides=[75648, 384, 1], requires_grad=0, device=cuda:0), %3 : Float(384, strides=[1], requires_grad=0, device=cuda:0), %4 : Float(1576, 384, strides=[384, 1], requires_grad=0, device=cuda:0), %5 : int, %6 : int): %7 : float = prim::Constant[value=9.9999999999999995e-07]() %8 : int[] = prim::Constant[value=[384]]() %9 : int[] = prim::Constant[value=[1576, 384]]() %10 : int[] = prim::Constant[value=[8, 197, 384]]() %11 : Float(8, 197, 384, strides=[75648, 384, 1], requires_grad=0, device=cuda:0) = aten::reshape(%4, %10) %12 : Float(8, 197, 384, strides=[75648, 384, 1], requires_grad=0, device=cuda:0) = aten::add(%11, %3, %6) %13 : Float(1576, 384, strides=[384, 1], requires_grad=0, device=cuda:0) = aten::reshape(%12, %9) %14 : Float(8, 197, 384, strides=[75648, 384, 1], requires_grad=0, device=cuda:0) = aten::reshape(%13, %10) %15 : Float(8, 197, 384, strides=[75648, 384, 1], requires_grad=0, device=cuda:0) = aten::add(%2, %14, %5) %16 : Float(8, 197, 384, strides=[75648, 384, 1], requires_grad=0, device=cuda:0), %17 : Tensor, %18 : Tensor = aten::native_layer_norm(%15, %8, %0, %1, %7) return (%16, %17, %18) """), ("autogen-57", """graph(%0 : Float(32, 960, 7, 7, strides=[47040, 49, 7, 1], requires_grad=0, device=cuda:0)): %1 : int[] = prim::Constant[value=[32, 960]]() %2 : NoneType = prim::Constant() %3 : bool = prim::Constant[value=1]() %4 : int[] = prim::Constant[value=[-1, -2]]() %5 : Float(32, 960, 1, 1, strides=[960, 1, 1, 1], requires_grad=0, device=cuda:0) = aten::mean(%0, %4, %3, %2) %6 : Float(32, 960, strides=[960, 1], requires_grad=0, device=cuda:0) = aten::reshape(%5, %1) return (%6) """), ("autogen-59", """graph(%0 : Long(1, 12, 4096, strides=[49152, 4096, 1], requires_grad=0, device=cuda:0), %1 : Long(requires_grad=0, device=cuda:0), %2 : Long(1, 12, 1, 4096, strides=[49152, 4096, 4096, 1], requires_grad=0, device=cuda:0), %3 : Long(1, 12, 1, 1, strides=[1, 0, 1, 1], requires_grad=0, device=cuda:0), %4 : int, %5 : int): %6 : int[] = prim::Constant[value=[1, 12, 4096]]() %7 : Long(1, 12, 1, 4096, strides=[49152, 4096, 4096, 1], requires_grad=0, device=cuda:0) = aten::add(%2, %3, %5) %8 : Long(1, 12, 4096, strides=[49152, 4096, 1], requires_grad=0, device=cuda:0) = aten::reshape(%7, %6) %9 : Long(1, 12, 4096, strides=[49152, 4096, 1], requires_grad=0, device=cuda:0) = aten::mul(%8, %1) %10 : Long(1, 12, 4096, strides=[49152, 4096, 1], requires_grad=0, device=cuda:0) = aten::add(%9, %0, %4) return (%10) """), ("autogen-60", """graph(%0 : Float(requires_grad=0, device=cuda:0), %1 : Double(requires_grad=0, device=cuda:0), %2 : Float(1, 12, 4096, 64, strides=[3145728, 262144, 64, 1], requires_grad=0, device=cuda:0), %3 : int, %4 : int): %5 : NoneType = prim::Constant() %6 : bool = prim::Constant[value=1]() %7 : int[] = prim::Constant[value=[-1]]() %8 : int[] = prim::Constant[value=[1, 12, 64, 64, 64]]() %9 : Float(1, 12, 64, 64, 64, strides=[3145728, 262144, 4096, 64, 1], requires_grad=0, device=cuda:0) = aten::reshape(%2, %8) %10 : Float(1, 12, 64, 64, 64, strides=[3145728, 262144, 4096, 64, 1], requires_grad=0, device=cuda:0) = aten::pow(%9, %4) %11 : Float(1, 12, 64, 64, 1, strides=[49152, 4096, 64, 1, 1], requires_grad=0, device=cuda:0) = aten::mean(%10, %7, %6, %5) %12 : Float(1, 12, 64, 64, 1, strides=[49152, 4096, 64, 1, 1], requires_grad=0, device=cuda:0) = aten::add(%11, %1, %3) %13 : Float(1, 12, 64, 64, 1, strides=[49152, 4096, 64, 1, 1], requires_grad=0, device=cuda:0) = aten::rsqrt(%12) %14 : Float(1, 12, 64, 64, 64, strides=[3145728, 262144, 4096, 64, 1], requires_grad=0, device=cuda:0) = aten::mul(%9, %13) %15 : Float(1, 12, 64, 64, 64, strides=[3145728, 262144, 4096, 64, 1], requires_grad=0, device=cuda:0) = aten::mul(%14, %0) return (%15, %9) """), ("autogen-61", """graph(%0 : Float(16, 128, 768, strides=[98304, 768, 1], requires_grad=0, device=cuda:0), %1 : Float(768, strides=[1], requires_grad=0, device=cuda:0), %2 : Float(2048, 768, strides=[768, 1], requires_grad=0, device=cuda:0), %3 : int, %4 : int): %5 : int[] = prim::Constant[value=[2048, 768]]() %6 : int[] = prim::Constant[value=[16, 128, 768]]() %7 : Float(16, 128, 768, strides=[98304, 768, 1], requires_grad=0, device=cuda:0) = aten::reshape(%2, %6) %8 : Float(16, 128, 768, strides=[98304, 768, 1], requires_grad=0, device=cuda:0) = aten::add(%7, %1, %4) %9 : Float(2048, 768, strides=[768, 1], requires_grad=0, device=cuda:0) = aten::reshape(%8, %5) %10 : Float(16, 128, 768, strides=[98304, 768, 1], requires_grad=0, device=cuda:0) = aten::reshape(%9, %6) %11 : Float(16, 128, 768, strides=[98304, 768, 1], requires_grad=0, device=cuda:0) = aten::add(%0, %10, %3) %12 : Float(2048, 768, strides=[768, 1], requires_grad=0, device=cuda:0) = aten::reshape(%11, %5) return (%12, %11) """), ("autogen-62", """graph(%0 : Float(32, 2048, 7, 7, strides=[100352, 49, 7, 1], requires_grad=0, device=cuda:0), %1 : Float(2048, strides=[1], requires_grad=0, device=cuda:0), %2 : Float(2048, strides=[1], requires_grad=0, device=cuda:0), %3 : Float(2048, strides=[1], requires_grad=0, device=cuda:0), %4 : Float(2048, strides=[1], requires_grad=0, device=cuda:0), %5 : Float(32, 2048, 7, 7, strides=[100352, 49, 7, 1], requires_grad=0, device=cuda:0), %6 : Float(2048, strides=[1], requires_grad=0, device=cuda:0), %7 : Float(2048, strides=[1], requires_grad=0, device=cuda:0), %8 : Float(2048, strides=[1], requires_grad=0, device=cuda:0), %9 : Float(2048, strides=[1], requires_grad=0, device=cuda:0), %10 : int): %11 : int[] = prim::Constant[value=[32, 2048]]() %12 : NoneType = prim::Constant() %13 : bool = prim::Constant[value=1]() %14 : int[] = prim::Constant[value=[-1, -2]]() %15 : float = prim::Constant[value=1.0000000000000001e-05]() %16 : float = prim::Constant[value=0.10000000000000001]() %17 : bool = prim::Constant[value=0]() %18 : Float(32, 2048, 7, 7, strides=[100352, 49, 7, 1], requires_grad=0, device=cuda:0), %19 : Tensor, %20 : Tensor = aten::native_batch_norm(%5, %6, %7, %8, %9, %17, %16, %15) %21 : Float(32, 2048, 7, 7, strides=[100352, 49, 7, 1], requires_grad=0, device=cuda:0), %22 : Tensor, %23 : Tensor = aten::native_batch_norm(%0, %1, %2, %3, %4, %17, %16, %15) %24 : Float(32, 2048, 7, 7, strides=[100352, 49, 7, 1], requires_grad=0, device=cuda:0) = aten::add(%21, %18, %10) %25 : Float(32, 2048, 7, 7, strides=[100352, 49, 7, 1], requires_grad=0, device=cuda:0) = aten::relu(%24) %26 : Float(32, 2048, 1, 1, strides=[2048, 1, 1, 1], requires_grad=0, device=cuda:0) = aten::mean(%25, %14, %13, %12) %27 : Float(32, 2048, strides=[2048, 1], requires_grad=0, device=cuda:0) = aten::reshape(%26, %11) return (%27) """), ("autogen-63", """graph(%0 : Float(480, 1, 1, 3, strides=[13, 3, 3, 1], requires_grad=0, device=cuda:0), %1 : Long(requires_grad=0, device=cuda:0), %2 : Float(480, 1, 64, 2, 64, 2, strides=[16384, 16384, 64, 8192, 1, 4096], requires_grad=0, device=cuda:0), %3 : int, %4 : int): %5 : int[] = prim::Constant[value=[480, 128, 128, 1]]() %6 : int[] = prim::Constant[value=[480, 128, 128]]() %7 : int[] = prim::Constant[value=[480, 1, 128, 128]]() %8 : Float(480, 1, 128, 128, strides=[16384, 16384, 128, 1], requires_grad=0, device=cuda:0) = aten::reshape(%2, %7) %9 : Float(480, 1, 128, 128, strides=[16384, 16384, 128, 1], requires_grad=0, device=cuda:0) = aten::sigmoid(%8) %10 : Float(480, 128, 128, strides=[16384, 128, 1], requires_grad=0, device=cuda:0) = aten::reshape(%9, %6) %11 : Float(480, 128, 128, strides=[16384, 128, 1], requires_grad=0, device=cuda:0) = aten::sub(%1, %10, %4) %12 : Float(480, 128, 128, strides=[16384, 128, 1], requires_grad=0, device=cuda:0) = aten::sub(%1, %11, %3) %13 : Float(480, 128, 128, 1, strides=[16384, 128, 1, 1], requires_grad=0, device=cuda:0) = aten::reshape(%12, %5) %14 : Float(480, 128, 128, 3, strides=[49152, 384, 3, 1], requires_grad=0, device=cuda:0) = aten::mul(%13, %0) return (%14, %13) """), ("autogen-64", """graph(%0 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0), %1 : Double(requires_grad=0, device=cuda:0), %2 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0), %3 : Double(requires_grad=0, device=cuda:0), %4 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0), %5 : Double(requires_grad=0, device=cuda:0), %6 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0), %7 : Double(requires_grad=0, device=cuda:0), %8 : int, %9 : int, %10 : int, %11 : int): %12 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%6, %7) %13 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%4, %5) %14 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%13, %3, %11) %15 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::mul(%2, %14) %16 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%0, %1, %10) %17 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%16, %15, %9) %18 : Double(204, 204, 26, strides=[5304, 26, 1], requires_grad=0, device=cuda:0) = aten::add(%17, %12, %8) return (%18) """), ("autogen-65", """graph(%0 : Float(20005, strides=[1], requires_grad=0, device=cuda:0), %1 : Float(2048, 20005, strides=[20005, 1], requires_grad=0, device=cuda:0), %2 : int): %3 : int[] = prim::Constant[value=[2048, 20005]]() %4 : int[] = prim::Constant[value=[16, 128, 20005]]() %5 : Float(16, 128, 20005, strides=[2560640, 20005, 1], requires_grad=0, device=cuda:0) = aten::reshape(%1, %4) %6 : Float(16, 128, 20005, strides=[2560640, 20005, 1], requires_grad=0, device=cuda:0) = aten::add(%5, %0, %2) %7 : Float(2048, 20005, strides=[20005, 1], requires_grad=0, device=cuda:0) = aten::reshape(%6, %3) %8 : Float(16, 128, 20005, strides=[2560640, 20005, 1], requires_grad=0, device=cuda:0) = aten::reshape(%7, %4) return (%8) """), ("autogen-66", """graph(%0 : Float(768, strides=[1], requires_grad=0, device=cuda:0), %1 : Float(768, strides=[1], requires_grad=0, device=cuda:0), %2 : Float(1, 1024, 768, strides=[786432, 768, 1], requires_grad=0, device=cuda:0), %3 : Float(1024, 768, strides=[768, 1], requires_grad=0, device=cuda:0), %4 : int): %5 : int[] = prim::Constant[value=[1024, 768]]() %6 : float = prim::Constant[value=1.0000000000000001e-05]() %7 : int[] = prim::Constant[value=[768]]() %8 : int[] = prim::Constant[value=[1, 1024, 768]]() %9 : Float(1, 1024, 768, strides=[786432, 768, 1], requires_grad=0, device=cuda:0) = aten::reshape(%3, %8) %10 : Float(1, 1024, 768, strides=[786432, 768, 1], requires_grad=0, device=cuda:0) = aten::add(%2, %9, %4) %11 : Float(1, 1024, 768, strides=[786432, 768, 1], requires_grad=0, device=cuda:0), %12 : Tensor, %13 : Tensor = aten::native_layer_norm(%10, %7, %0, %1, %6) %14 : Float(1, 1024, 768, strides=[786432, 768, 1], requires_grad=0, device=cuda:0) = aten::reshape(%11, %8) %15 : Float(1024, 768, strides=[768, 1], requires_grad=0, device=cuda:0) = aten::reshape(%14, %5) return (%15) """), ("autogen-67", """graph(%0 : Double(requires_grad=0, device=cuda:0), %1 : Float(720, 64, 192, strides=[12288, 192, 1], requires_grad=0, device=cuda:0), %2 : Double(requires_grad=0, device=cuda:0), %3 : Double(requires_grad=0, device=cuda:0), %4 : Float(1, 60, 64, 1, strides=[3840, 64, 1, 1], requires_grad=0, device=cuda:0), %5 : Float(1, 60, 1, 192, strides=[11520, 192, 1, 1], requires_grad=0, device=cuda:0), %6 : int, %7 : int): %8 : int[] = prim::Constant[value=[1, 12, 60, 64, 192]]() %9 : int = prim::Constant[value=1]() %10 : Float(1, 60, 64, 192, strides=[737280, 12288, 192, 1], requires_grad=0, device=cuda:0) = aten::mul(%4, %5) %11 : Float(1, 1, 60, 64, 192, strides=[737280, 737280, 12288, 192, 1], requires_grad=0, device=cuda:0) = aten::unsqueeze(%10, %9) %12 : Float(1, 1, 60, 64, 192, strides=[737280, 737280, 12288, 192, 1], requires_grad=0, device=cuda:0) = aten::sub(%3, %11, %7) %13 : Float(1, 1, 60, 64, 192, strides=[737280, 737280, 12288, 192, 1], requires_grad=0, device=cuda:0) = aten::mul(%12, %2) %14 : Float(1, 12, 60, 64, 192, strides=[8847360, 737280, 12288, 192, 1], requires_grad=0, device=cuda:0) = aten::reshape(%1, %8) %15 : Float(1, 12, 60, 64, 192, strides=[8847360, 737280, 12288, 192, 1], requires_grad=0, device=cuda:0) = aten::mul(%14, %0) %16 : Float(1, 12, 60, 64, 192, strides=[8847360, 737280, 12288, 192, 1], requires_grad=0, device=cuda:0) = aten::add(%15, %13, %6) return (%16, %11) """), ("autogen-68", """graph(%0 : Float(768, strides=[1], requires_grad=0, device=cuda:0), %1 : Float(768, strides=[1], requires_grad=0, device=cuda:0), %2 : Float(1, 512, 768, strides=[393216, 768, 1], requires_grad=0, device=cuda:0), %3 : Float(768, strides=[1], requires_grad=0, device=cuda:0), %4 : Float(1, 512, 768, 1, 1, strides=[768, 768, 1, 768, 768], requires_grad=0, device=cuda:0), %5 : int, %6 : int): %7 : int[] = prim::Constant[value=[512, 768]]() %8 : float = prim::Constant[value=9.9999999999999998e-13]() %9 : int[] = prim::Constant[value=[768]]() %10 : int[] = prim::Constant[value=[1, 512, 768]]() %11 : Float(1, 512, 768, strides=[393216, 768, 1], requires_grad=0, device=cuda:0) = aten::reshape(%4, %10) %12 : Float(1, 512, 768, strides=[393216, 768, 1], requires_grad=0, device=cuda:0) = aten::add(%11, %3, %6) %13 : Float(1, 512, 768, strides=[393216, 768, 1], requires_grad=0, device=cuda:0) = aten::add(%2, %12, %5) %14 : Float(1, 512, 768, strides=[393216, 768, 1], requires_grad=0, device=cuda:0), %15 : Tensor, %16 : Tensor = aten::native_layer_norm(%13, %9, %0, %1, %8) %17 : Float(512, 768, strides=[768, 1], requires_grad=0, device=cuda:0) = aten::reshape(%14, %7) return (%17, %14) """), ("autogen-69", """graph(%0 : Double(requires_grad=0, device=cuda:0), %1 : Float(12, 64, 4096, strides=[262144, 4096, 1], requires_grad=0, device=cuda:0), %2 : Double(requires_grad=0, device=cuda:0), %3 : Double(requires_grad=0, device=cuda:0), %4 : Float(1, 4096, strides=[4096, 1], requires_grad=0, device=cuda:0), %5 : int, %6 : int): %7 : int[] = prim::Constant[value=[12, 64, 4096]]() %8 : bool = prim::Constant[value=0]() %9 : int = prim::Constant[value=-1]() %10 : int[] = prim::Constant[value=[1, 12, 64, 4096]]() %11 : int[] = prim::Constant[value=[1, 1, 1, 4096]]() %12 : Float(1, 1, 1, 4096, strides=[4096, 4096, 4096, 1], requires_grad=0, device=cuda:0) = aten::reshape(%4, %11) %13 : Float(1, 1, 1, 4096, strides=[4096, 4096, 4096, 1], requires_grad=0, device=cuda:0) = aten::sub(%3, %12, %6) %14 : Float(1, 1, 1, 4096, strides=[4096, 4096, 4096, 1], requires_grad=0, device=cuda:0) = aten::mul(%13, %2) %15 : Float(1, 12, 64, 4096, strides=[3145728, 262144, 4096, 1], requires_grad=0, device=cuda:0) = aten::reshape(%1, %10) %16 : Float(1, 12, 64, 4096, strides=[3145728, 262144, 4096, 1], requires_grad=0, device=cuda:0) = aten::mul(%15, %0) %17 : Float(1, 12, 64, 4096, strides=[3145728, 262144, 4096, 1], requires_grad=0, device=cuda:0) = aten::add(%16, %14, %5) %18 : Float(1, 12, 64, 4096, strides=[3145728, 262144, 4096, 1], requires_grad=0, device=cuda:0) = aten::_softmax(%17, %9, %8) %19 : Float(12, 64, 4096, strides=[262144, 4096, 1], requires_grad=0, device=cuda:0) = aten::reshape(%18, %7) return (%19, %12) """), ("autogen-70", """graph(%0 : Long(1, 12, 64, 64, strides=[49152, 4096, 64, 1], requires_grad=0, device=cuda:0), %1 : Long(1, 12, 64, 128, strides=[98304, 8192, 128, 1], requires_grad=0, device=cuda:0)): %2 : int[] = prim::Constant[value=[1, 12, 64, 64, 1]]() %3 : int[] = prim::Constant[value=[1, 12, 64, 1, 128]]() %4 : Long(1, 12, 64, 1, 128, strides=[98304, 8192, 128, 128, 1], requires_grad=0, device=cuda:0) = aten::reshape(%1, %3) %5 : Long(1, 12, 64, 64, 1, strides=[49152, 4096, 64, 1, 1], requires_grad=0, device=cuda:0) = aten::reshape(%0, %2) %6 : Bool(1, 12, 64, 64, 128, strides=[6291456, 524288, 8192, 128, 1], requires_grad=0, device=cuda:0) = aten::ne(%5, %4) return (%6) """), ("autogen-71", """graph(%0 : Float(512, strides=[1], requires_grad=0, device=cuda:0), %1 : Float(1, 2048, 512, strides=[1048576, 512, 1], requires_grad=0, device=cuda:0), %2 : Double(requires_grad=0, device=cuda:0), %3 : int, %4 : int): %5 : int[] = prim::Constant[value=[2048, 512]]() %6 : NoneType = prim::Constant() %7 : bool = prim::Constant[value=1]() %8 : int[] = prim::Constant[value=[-1]]() %9 : Float(1, 2048, 512, strides=[1048576, 512, 1], requires_grad=0, device=cuda:0) = aten::pow(%1, %4) %10 : Float(1, 2048, 1, strides=[2048, 1, 1], requires_grad=0, device=cuda:0) = aten::mean(%9, %8, %7, %6) %11 : Float(1, 2048, 1, strides=[2048, 1, 1], requires_grad=0, device=cuda:0) = aten::add(%10, %2, %3) %12 : Float(1, 2048, 1, strides=[2048, 1, 1], requires_grad=0, device=cuda:0) = aten::rsqrt(%11) %13 : Float(1, 2048, 512, strides=[1048576, 512, 1], requires_grad=0, device=cuda:0) = aten::mul(%1, %12) %14 : Float(1, 2048, 512, strides=[1048576, 512, 1], requires_grad=0, device=cuda:0) = aten::mul(%0, %13) %15 : Float(2048, 512, strides=[512, 1], requires_grad=0, device=cuda:0) = aten::reshape(%14, %5) return (%15) """), ("autogen-72", """graph(%0 : Long(2232, strides=[1], requires_grad=0, device=cuda:0), %1 : Long(2232, strides=[1], requires_grad=0, device=cuda:0), %2 : Long(requires_grad=0, device=cuda:0), %3 : Long(1, 12, 62, 3, strides=[2232, 186, 3, 1], requires_grad=0, device=cuda:0), %4 : int, %5 : int): %6 : int[] = prim::Constant[value=[2232]]() %7 : Long(2232, strides=[1], requires_grad=0, device=cuda:0) = aten::reshape(%3, %6) %8 : Long(2232, strides=[1], requires_grad=0, device=cuda:0) = aten::mul(%1, %2) %9 : Long(2232, strides=[1], requires_grad=0, device=cuda:0) = aten::add(%7, %8, %5) %10 : Long(2232, strides=[1], requires_grad=0, device=cuda:0) = aten::add(%7, %0, %4) return (%10, %9) """), ("autogen-73", """graph(%0 : Long(requires_grad=0, device=cuda:0), %1 : Float(96, 3, 128, 128, strides=[49152, 16384, 128, 1], requires_grad=0, device=cuda:0), %2 : Long(requires_grad=0, device=cuda:0), %3 : Float(96, 1, 1, 128, 128, strides=[81920, 16384, 16384, 128, 1], requires_grad=0, device=cuda:0), %4 : Float(96, 1, 3, 128, 128, strides=[245760, 49152, 1, 384, 3], requires_grad=0, device=cuda:0), %5 : Float(96, 1, 1, 128, 128, strides=[81920, 16384, 16384, 128, 1], requires_grad=0, device=cuda:0), %6 : Float(96, 1, 3, 128, 128, strides=[245760, 49152, 1, 384, 3], requires_grad=0, device=cuda:0), %7 : Float(96, 1, 1, 128, 128, strides=[81920, 16384, 16384, 128, 1], requires_grad=0, device=cuda:0), %8 : Float(96, 1, 3, 128, 128, strides=[245760, 49152, 1, 384, 3], requires_grad=0, device=cuda:0), %9 : Float(96, 1, 1, 128, 128, strides=[81920, 16384, 16384, 128, 1], requires_grad=0, device=cuda:0), %10 : Float(96, 1, 3, 128, 128, strides=[245760, 49152, 1, 384, 3], requires_grad=0, device=cuda:0), %11 : Float(96, 1, 1, 128, 128, strides=[81920, 16384, 16384, 128, 1], requires_grad=0, device=cuda:0), %12 : Float(96, 1, 3, 128, 128, strides=[245760, 49152, 1, 384, 3], requires_grad=0, device=cuda:0), %13 : int, %14 : int, %15 : int, %16 : int, %17 : int, %18 : int, %19 : int, %20 : int, %21 : int, %22 : int): %23 : int[] = prim::Constant[value=[96, 1, 128, 128]]() %24 : int[] = prim::Constant[value=[96, 3, 128, 128]]() %25 : Float(96, 3, 128, 128, strides=[245760, 1, 384, 3], requires_grad=0, device=cuda:0) = aten::reshape(%12, %24) %26 : Float(96, 1, 128, 128, strides=[81920, 16384, 128, 1], requires_grad=0, device=cuda:0) = aten::reshape(%11, %23) %27 : Float(96, 1, 128, 128, strides=[16384, 16384, 128, 1], requires_grad=0, device=cuda:0) = aten::sub(%2, %26, %22) %28 : Float(96, 3, 128, 128, strides=[245760, 1, 384, 3], requires_grad=0, device=cuda:0) = aten::reshape(%10, %24) %29 : Float(96, 1, 128, 128, strides=[81920, 16384, 128, 1], requires_grad=0, device=cuda:0) = aten::reshape(%9, %23) %30 : Float(96, 1, 128, 128, strides=[16384, 16384, 128, 1], requires_grad=0, device=cuda:0) = aten::sub(%2, %29, %21) %31 : Float(96, 3, 128, 128, strides=[245760, 1, 384, 3], requires_grad=0, device=cuda:0) = aten::reshape(%8, %24) %32 : Float(96, 1, 128, 128, strides=[81920, 16384, 128, 1], requires_grad=0, device=cuda:0) = aten::reshape(%7, %23) %33 : Float(96, 1, 128, 128, strides=[16384, 16384, 128, 1], requires_grad=0, device=cuda:0) = aten::sub(%2, %32, %20) %34 : Float(96, 3, 128, 128, strides=[245760, 1, 384, 3], requires_grad=0, device=cuda:0) = aten::reshape(%6, %24) %35 : Float(96, 1, 128, 128, strides=[81920, 16384, 128, 1], requires_grad=0, device=cuda:0) = aten::reshape(%5, %23) %36 : Float(96, 1, 128, 128, strides=[16384, 16384, 128, 1], requires_grad=0, device=cuda:0) = aten::sub(%2, %35, %19) %37 : Float(96, 3, 128, 128, strides=[245760, 1, 384, 3], requires_grad=0, device=cuda:0) = aten::reshape(%4, %24) %38 : Float(96, 1, 128, 128, strides=[81920, 16384, 128, 1], requires_grad=0, device=cuda:0) = aten::reshape(%3, %23) %39 : Float(96, 1, 128, 128, strides=[16384, 16384, 128, 1], requires_grad=0, device=cuda:0) = aten::sub(%2, %38, %18) %40 : Float(96, 3, 128, 128, strides=[49152, 16384, 128, 1], requires_grad=0, device=cuda:0) = aten::div(%1, %0) %41 : Float(96, 3, 128, 128, strides=[49152, 16384, 128, 1], requires_grad=0, device=cuda:0) = aten::mul(%40, %39) %42 : Float(96, 3, 128, 128, strides=[49152, 16384, 128, 1], requires_grad=0, device=cuda:0) = aten::add(%41, %37, %17) %43 : Float(96, 3, 128, 128, strides=[49152, 16384, 128, 1], requires_grad=0, device=cuda:0) = aten::mul(%42, %36) %44 : Float(96, 3, 128, 128, strides=[49152, 16384, 128, 1], requires_grad=0, device=cuda:0) = aten::add(%43, %34, %16) %45 : Float(96, 3, 128, 128, strides=[49152, 16384, 128, 1], requires_grad=0, device=cuda:0) = aten::mul(%44, %33) %46 : Float(96, 3, 128, 128, strides=[49152, 16384, 128, 1], requires_grad=0, device=cuda:0) = aten::add(%45, %31, %15) %47 : Float(96, 3, 128, 128, strides=[49152, 16384, 128, 1], requires_grad=0, device=cuda:0) = aten::mul(%46, %30) %48 : Float(96, 3, 128, 128, strides=[49152, 16384, 128, 1], requires_grad=0, device=cuda:0) = aten::add(%47, %28, %14) %49 : Float(96, 3, 128, 128, strides=[49152, 16384, 128, 1], requires_grad=0, device=cuda:0) = aten::mul(%48, %27) %50 : Float(96, 3, 128, 128, strides=[49152, 16384, 128, 1], requires_grad=0, device=cuda:0) = aten::add(%49, %25, %13) %51 : Float(96, 3, 128, 128, strides=[49152, 16384, 128, 1], requires_grad=0, device=cuda:0) = aten::mul(%50, %0) return (%51) """), ("autogen-74", """graph(%0 : Long(200, 200, strides=[204, 1], requires_grad=0, device=cuda:0), %1 : Long(requires_grad=0, device=cuda:0), %2 : int, %3 : int): %4 : Long(200, 200, strides=[200, 1], requires_grad=0, device=cuda:0) = aten::sub(%0, %1, %3) %5 : Bool(200, 200, strides=[200, 1], requires_grad=0, device=cuda:0) = aten::ge(%4, %2) return (%5, %4) """), ("autogen-75", """graph(%0 : Double(requires_grad=0, device=cuda:0), %1 : Float(12, 512, 512, strides=[262144, 512, 1], requires_grad=0, device=cuda:0), %2 : Double(requires_grad=0, device=cuda:0), %3 : Double(requires_grad=0, device=cuda:0), %4 : Float(1, 1, 1, 512, strides=[512, 512, 512, 1], requires_grad=0, device=cuda:0), %5 : int, %6 : int): %7 : bool = prim::Constant[value=0]() %8 : int = prim::Constant[value=-1]() %9 : int[] = prim::Constant[value=[1, 12, 512, 512]]() %10 : Float(1, 1, 1, 512, strides=[512, 512, 512, 1], requires_grad=0, device=cuda:0) = aten::sub(%3, %4, %6) %11 : Float(1, 1, 1, 512, strides=[512, 512, 512, 1], requires_grad=0, device=cuda:0) = aten::mul(%10, %2) %12 : Float(1, 12, 512, 512, strides=[3145728, 262144, 512, 1], requires_grad=0, device=cuda:0) = aten::reshape(%1, %9) %13 : Float(1, 12, 512, 512, strides=[3145728, 262144, 512, 1], requires_grad=0, device=cuda:0) = aten::div(%12, %0) %14 : Float(1, 12, 512, 512, strides=[3145728, 262144, 512, 1], requires_grad=0, device=cuda:0) = aten::add(%13, %11, %5) %15 : Float(1, 12, 512, 512, strides=[3145728, 262144, 512, 1], requires_grad=0, device=cuda:0) = aten::_softmax(%14, %8, %7) return (%15, %11) """), ("autogen-76", """graph(%0 : Float(2048, 2048, strides=[2048, 1], requires_grad=0, device=cuda:0)): %1 : int[] = prim::Constant[value=[2048, 2048]]() %2 : int[] = prim::Constant[value=[1, 2048, 2048]]() %3 : Float(1, 2048, 2048, strides=[4194304, 2048, 1], requires_grad=0, device=cuda:0) = aten::reshape(%0, %2) %4 : Float(1, 2048, 2048, strides=[4194304, 2048, 1], requires_grad=0, device=cuda:0) = aten::relu(%3) %5 : Float(2048, 2048, strides=[2048, 1], requires_grad=0, device=cuda:0) = aten::reshape(%4, %1) return (%5) """)]
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import logging import random from typing import List, Tuple import click import numpy as np import torch from fbgemm_gpu.split_embedding_configs import SparseType from fbgemm_gpu.split_table_batched_embeddings_ops_common import ( CacheAlgorithm, EmbeddingLocation, ) from fbgemm_gpu.split_table_batched_embeddings_ops_inference import ( IntNBitTableBatchedEmbeddingBagsCodegen, ) from torch import nn, Tensor logging.basicConfig(level=logging.DEBUG) try: # pyre-ignore[21] from fbgemm_gpu import open_source # noqa: F401 except Exception: torch.ops.load_library("//deeplearning/fbgemm/fbgemm_gpu:cumem_utils") torch.ops.load_library( "//deeplearning/fbgemm/fbgemm_gpu:split_table_batched_embeddings" ) # pyre-ignore def benchmark_same_input(iters: int, f, *args) -> float: """ Returns average execution time in milliseconds across "iters". """ # Warm-up f(*args) torch.cuda.synchronize() start_event = torch.cuda.Event(enable_timing=True) end_event = torch.cuda.Event(enable_timing=True) start_event.record() for _ in range(iters): f(*args) end_event.record() torch.cuda.synchronize() return start_event.elapsed_time(end_event) / iters # pyre-ignore def benchmark_different_inputs(f, args) -> float: """ Returns average execution time in milliseconds across "iters". """ torch.cuda.synchronize() start_event = torch.cuda.Event(enable_timing=True) end_event = torch.cuda.Event(enable_timing=True) start_event.record() for arg in args: f(arg) end_event.record() torch.cuda.synchronize() return start_event.elapsed_time(end_event) / len(args) def get_num_cached_tables(num_tables: int, cached_tables_ratio: float) -> int: """ Controls how # of cached tables are determined based on parameters. """ return round(num_tables * cached_tables_ratio) def create_table_offsets( num_tables: int, cached_tables_ratio: float, num_embeddings: int ) -> Tensor: """ Returns "table size cumsum", which is information of UVM caching for tables. """ num_cached_tables = get_num_cached_tables(num_tables, cached_tables_ratio) np_list = np.arange(0, num_embeddings * num_cached_tables, num_embeddings) num_uncached_tables = num_tables - num_cached_tables while num_uncached_tables > 0: added = random.randint(1, num_uncached_tables) pos = random.randint(0, len(np_list) - 1) np_list = np.insert(np_list, pos, [np_list[pos]] * added) num_uncached_tables -= added cache_hash_size_cumsum: Tensor = torch.tensor(np_list).cuda() return cache_hash_size_cumsum def create_embedding_specs( num_tables: int, cached_tables_ratio: float, num_embeddings: int, embedding_dims: int, ) -> List[Tuple[str, int, int, SparseType, EmbeddingLocation]]: """ Returns embedding specs to be used with IntNBitTableBatchedEmbeddingBagsCodegen. """ num_cached_tables = get_num_cached_tables(num_tables, cached_tables_ratio) num_uncached_tables = num_tables - num_cached_tables embedding_specs = [] for _ in range(min(num_cached_tables, num_uncached_tables)): embedding_specs.append( ( "", num_embeddings, embedding_dims, SparseType.INT8, EmbeddingLocation.DEVICE, ) ) embedding_specs.append( ( "", num_embeddings, embedding_dims, SparseType.INT8, EmbeddingLocation.MANAGED_CACHING, ) ) if num_cached_tables > num_uncached_tables: for _ in range(num_cached_tables - num_uncached_tables): embedding_specs.append( ( "", num_embeddings, embedding_dims, SparseType.INT8, EmbeddingLocation.MANAGED_CACHING, ) ) else: for _ in range(num_uncached_tables - num_cached_tables): embedding_specs.append( ( "", num_embeddings, embedding_dims, SparseType.INT8, EmbeddingLocation.DEVICE, ) ) return embedding_specs def create_request( num_tables: int, num_embeddings: int, batch: int, avg_pooling_factor: int ) -> Tuple[Tensor, Tensor]: """ Returns [indices, offsets], which are inputs of embedding bags. """ indices: Tensor = torch.randint( 0, num_embeddings, (num_tables * batch * avg_pooling_factor,), dtype=torch.int32 ).cuda() # Pooling factors are intentionally diversified between [1, pf / 2, pf, pf* 2, pf * 4, pf * 8]. # where pf == avg_pooling_factor. pooling_factors = [] for _ in range(num_tables - 1): half_avg_pooling_factor = avg_pooling_factor // 2 if half_avg_pooling_factor > 0: pooling_factors.append( random.choices( [ 1, half_avg_pooling_factor, avg_pooling_factor, 2 * avg_pooling_factor, 4 * avg_pooling_factor, 8 * avg_pooling_factor, ], weights=[5, 10, 15, 1, 1, 3], )[0] ) else: pooling_factors.append( random.choices( [1, avg_pooling_factor, 2 * avg_pooling_factor], weights=[2, 20, 1] )[0] ) # Last one is whatever is the remainder. curr_total_pooling_factors = sum(pooling_factors) pooling_factors.append(num_tables * avg_pooling_factor - curr_total_pooling_factors) offsets_list = [0] for pooling_factor in pooling_factors: if pooling_factor == 1: for _ in range(batch): offsets_list.append(pooling_factor) else: finish_offset = offsets_list[-1] + pooling_factor * batch for _ in range(batch - 1): selected = max( int(random.gauss(pooling_factor, 0.1 * pooling_factor)), 1 ) last_offset = offsets_list[-1] offsets_list.append(last_offset + selected) offsets_list.append(finish_offset) offsets: Tensor = torch.tensor(offsets_list, dtype=torch.int32).cuda() return (indices, offsets) @click.group() def cli() -> None: pass @cli.command() @click.option("--iters", default=100) @click.option("--num-tables", default=50) @click.option("--cached-tables-ratio", default=1.0) @click.option("--batch", default=100) @click.option("--avg-pooling-factor", default=100) def linearize_cache_indices( iters: int, num_tables: int, cached_tables_ratio: float, batch: int, avg_pooling_factor: int, ) -> None: num_embeddings: int = 1000000 cache_hash_size_cumsum = create_table_offsets( num_tables, cached_tables_ratio, num_embeddings ) indices, offsets = create_request( num_tables, num_embeddings, batch, avg_pooling_factor ) t_ms = benchmark_same_input( iters, lambda indices, offsets: torch.ops.fbgemm.linearize_cache_indices( cache_hash_size_cumsum, indices, offsets ), indices, offsets, ) logging.info( f"Across {iters} runs, T: {num_tables}, Cached T: {get_num_cached_tables(num_tables, cached_tables_ratio)}, BS: {batch}, {t_ms * 1.0e3:.0f}us" ) @cli.command() @click.option("--iters", default=100) @click.option("--num-tables", default=50) @click.option("--cached-tables-ratio", default=1.0) @click.option("--batch", default=100) @click.option("--avg-pooling-factor", default=100) @click.option("--cache-load-factor", default=0.2) def lxu_cache_lookup( iters: int, num_tables: int, cached_tables_ratio: float, batch: int, avg_pooling_factor: int, cache_load_factor: float, ) -> None: num_embeddings: int = 1000000 embedding_dims: int = 128 embedding_specs = create_embedding_specs( num_tables, cached_tables_ratio, num_embeddings, embedding_dims ) tbe: nn.Module = IntNBitTableBatchedEmbeddingBagsCodegen( embedding_specs, cache_load_factor=cache_load_factor ) tbe.fill_random_weights() # Imitate execution flow by performing prefetching once. indices, offsets = create_request( num_tables, num_embeddings, batch, avg_pooling_factor ) tbe.prefetch(indices, offsets) linearized_indices = torch.ops.fbgemm.linearize_cache_indices( tbe.cache_hash_size_cumsum, indices, offsets ) t_ms = benchmark_same_input( iters, lambda linearized_indices, lxu_cache_state: torch.ops.fbgemm.lxu_cache_lookup( linearized_indices, lxu_cache_state, tbe.total_cache_hash_size ), linearized_indices, tbe.lxu_cache_state, ) # Run once again to obtain cache miss ratio. locations = torch.ops.fbgemm.lxu_cache_lookup( linearized_indices, tbe.lxu_cache_state, tbe.total_cache_hash_size ) num_invalid_accesses = torch.sum(linearized_indices == tbe.total_cache_hash_size) num_valid_accesses = linearized_indices.numel() - num_invalid_accesses num_misses = torch.sum(locations == -1) - num_invalid_accesses logging.info( f"Across {iters} runs, T: {num_tables}, Cached T: {get_num_cached_tables(num_tables, cached_tables_ratio)}, " f"BS: {batch}, cache_load_factor: {cache_load_factor}, {t_ms * 1.0e3:.0f}us, " f"cache miss: {num_misses.item() / num_valid_accesses * 100}%" ) @cli.command() @click.option("--iters", default=100) @click.option("--num-tables", default=50) @click.option("--cached-tables-ratio", default=1.0) @click.option("--batch", default=100) @click.option("--avg-pooling-factor", default=100) @click.option("--cache-load-factor", default=0.2) def lru_cache_populate_byte( iters: int, num_tables: int, cached_tables_ratio: float, batch: int, avg_pooling_factor: int, cache_load_factor: float, ) -> None: num_warm_ups: int = 5 num_embeddings: int = 1000000 embedding_dims: int = 128 embedding_specs = create_embedding_specs( num_tables, cached_tables_ratio, num_embeddings, embedding_dims ) cc: nn.Module = IntNBitTableBatchedEmbeddingBagsCodegen( embedding_specs, cache_load_factor=cache_load_factor ) cc.fill_random_weights() warm_up_requests = [] for _ in range(num_warm_ups): indices, offsets = create_request( num_tables, num_embeddings, batch, avg_pooling_factor ) warm_up_requests.append( torch.ops.fbgemm.linearize_cache_indices( cc.cache_hash_size_cumsum, indices, offsets ) ) requests = [] for _ in range(iters): indices, offsets = create_request( num_tables, num_embeddings, batch, avg_pooling_factor ) requests.append( torch.ops.fbgemm.linearize_cache_indices( cc.cache_hash_size_cumsum, indices, offsets ) ) timestep: int = 1 def populate(linear_indices: Tensor) -> None: nonlocal timestep torch.ops.fbgemm.lru_cache_populate_byte( cc.weights_uvm, cc.cache_hash_size_cumsum, cc.total_cache_hash_size, cc.cache_index_table_map, cc.weights_offsets, cc.weights_tys, cc.D_offsets, linear_indices, cc.lxu_cache_state, cc.lxu_cache_weights, timestep, cc.lxu_state, ) timestep += 1 for warm_up_request in warm_up_requests: populate(warm_up_request) t_ms = benchmark_different_inputs( populate, requests, ) # Replay to figure out UVM access BW, which would be PCIe bound. replay_cc: nn.Module = IntNBitTableBatchedEmbeddingBagsCodegen( embedding_specs, cache_load_factor=cache_load_factor ) replay_cc.fill_random_weights() replay_timestep: int = 1 def replay_populate(linear_indices: Tensor) -> None: nonlocal replay_timestep torch.ops.fbgemm.lru_cache_populate_byte( replay_cc.weights_uvm, replay_cc.cache_hash_size_cumsum, replay_cc.total_cache_hash_size, replay_cc.cache_index_table_map, replay_cc.weights_offsets, replay_cc.weights_tys, replay_cc.D_offsets, linear_indices, replay_cc.lxu_cache_state, replay_cc.lxu_cache_weights, replay_timestep, replay_cc.lxu_state, ) replay_timestep += 1 for warm_up_request in warm_up_requests: replay_populate(warm_up_request) total_rows = 0 for request in requests: prev = replay_cc.lxu_cache_state.clone().detach() replay_populate(request) after = replay_cc.lxu_cache_state.clone().detach() diff = after - prev total_rows += diff.count_nonzero().item() logging.info( f"Across {iters} runs, T: {num_tables}, Cached T: {get_num_cached_tables(num_tables, cached_tables_ratio)}, " f"BS: {batch}, cache_load_factor: {cache_load_factor}, {t_ms * 1.0e3:.0f}us, " f"BW (just UVM accesses): {total_rows * embedding_dims / iters / t_ms * 1000 / 1024 / 1024} MB/s" ) @cli.command() @click.option("--iters", default=100) @click.option("--num-tables", default=50) @click.option("--cached-tables-ratio", default=1.0) @click.option("--batch", default=100) @click.option("--avg-pooling-factor", default=100) @click.option("--cache-load-factor", default=0.2) def lfu_cache_populate_byte( iters: int, num_tables: int, cached_tables_ratio: float, batch: int, avg_pooling_factor: int, cache_load_factor: float, ) -> None: num_warm_ups: int = 5 num_embeddings: int = 1000000 embedding_dims: int = 128 embedding_specs = create_embedding_specs( num_tables, cached_tables_ratio, num_embeddings, embedding_dims ) cc: nn.Module = IntNBitTableBatchedEmbeddingBagsCodegen( embedding_specs, cache_load_factor=cache_load_factor, cache_algorithm=CacheAlgorithm.LFU, ) cc.fill_random_weights() warm_up_requests = [] for _ in range(num_warm_ups): indices, offsets = create_request( num_tables, num_embeddings, batch, avg_pooling_factor ) warm_up_requests.append( torch.ops.fbgemm.linearize_cache_indices( cc.cache_hash_size_cumsum, indices, offsets ) ) requests = [] for _ in range(iters): indices, offsets = create_request( num_tables, num_embeddings, batch, avg_pooling_factor ) requests.append( torch.ops.fbgemm.linearize_cache_indices( cc.cache_hash_size_cumsum, indices, offsets ) ) def populate(linear_indices: Tensor) -> None: torch.ops.fbgemm.lfu_cache_populate_byte( cc.weights_uvm, cc.cache_hash_size_cumsum, cc.total_cache_hash_size, cc.cache_index_table_map, cc.weights_offsets, cc.weights_tys, cc.D_offsets, linear_indices, cc.lxu_cache_state, cc.lxu_cache_weights, cc.lxu_state, ) for warm_up_request in warm_up_requests: populate(warm_up_request) t_ms = benchmark_different_inputs( populate, requests, ) # Replay to figure out UVM access BW, which would be PCIe bound. replay_cc: nn.Module = IntNBitTableBatchedEmbeddingBagsCodegen( embedding_specs, cache_load_factor=cache_load_factor, cache_algorithm=CacheAlgorithm.LFU, ) replay_cc.fill_random_weights() def replay_populate(linear_indices: Tensor) -> None: torch.ops.fbgemm.lfu_cache_populate_byte( replay_cc.weights_uvm, replay_cc.cache_hash_size_cumsum, replay_cc.total_cache_hash_size, replay_cc.cache_index_table_map, replay_cc.weights_offsets, replay_cc.weights_tys, replay_cc.D_offsets, linear_indices, replay_cc.lxu_cache_state, replay_cc.lxu_cache_weights, replay_cc.lxu_state, ) for warm_up_request in warm_up_requests: replay_populate(warm_up_request) total_rows = 0 for request in requests: prev = replay_cc.lxu_cache_state.clone().detach() replay_populate(request) after = replay_cc.lxu_cache_state.clone().detach() diff = after - prev total_rows += diff.count_nonzero().item() logging.info( f"Across {iters} runs, T: {num_tables}, Cached T: {get_num_cached_tables(num_tables, cached_tables_ratio)}, " f"BS: {batch}, cache_load_factor: {cache_load_factor}, {t_ms * 1.0e3:.0f}us, " f"BW (just UVM accesses): {total_rows * embedding_dims / iters / t_ms * 1000 / 1024 / 1024} MB/s" ) if __name__ == "__main__": cli()
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import logging import click import torch from fbgemm_gpu.bench.bench_utils import benchmark_torch_function logging.basicConfig(level=logging.DEBUG) try: # pyre-ignore[21] from fbgemm_gpu import open_source # noqa: F401 except Exception: torch.ops.load_library("//deeplearning/fbgemm/fbgemm_gpu:sparse_ops") torch.ops.load_library("//deeplearning/fbgemm/fbgemm_gpu:sparse_ops_cpu") @click.group() def cli() -> None: pass @cli.command() @click.option("--flush-gpu-cache-size-mb", default=40) @click.option("--iters", default=100) @click.option("--batch-size", default=25) @click.option("--m", default=2048) @click.option("--n", default=100) @click.option("--k", default=256) @click.option("--num_warmups", default=2) def stride_gemm( flush_gpu_cache_size_mb: int, iters: int, batch_size: int, m: int, n: int, k: int, num_warmups: int, ) -> None: A = torch.rand(m, batch_size, k).half().cuda() B = torch.rand(batch_size, k, n).half().cuda() bias = torch.rand(batch_size, n).half().cuda() bias_permute102 = bias.unsqueeze(1) # A100 40MB L2 cache elapse, _ = benchmark_torch_function( torch.ops.fbgemm.permute102_baddbmm_permute102, (bias, A, B), flush_gpu_cache_size_mb, iters=iters, num_warmups=num_warmups, ) logging.info( f"stride gemm fused: time: {elapse}, TFLOPS/sec: {2.0 * batch_size * m * n * k / elapse / 1.0e12: .2f}" ) def ref_stride_gemm( bias_permute102: torch.Tensor, A: torch.Tensor, B: torch.Tensor ) -> torch.Tensor: A_permute102 = A.permute(1, 0, 2) C_permute102 = torch.baddbmm(bias_permute102, A_permute102, B) C_ref = C_permute102.permute(1, 0, 2) # (m, batch_size, n) return C_ref # A100 40MB L2 cache elapse_ref, _ = benchmark_torch_function( ref_stride_gemm, (bias_permute102, A, B), flush_gpu_cache_size_mb, iters=iters, num_warmups=num_warmups, ) logging.info( f"stride gemm unfused: time: {elapse_ref}, TFLOPS/sec: {2.0 * batch_size * m * n * k / elapse_ref / 1.0e12: .2f}" ) if __name__ == "__main__": cli()
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import logging import time from typing import Tuple import click import numpy as np import torch from fbgemm_gpu.bench.bench_utils import benchmark_requests from fbgemm_gpu.split_embedding_utils import generate_requests, round_up from fbgemm_gpu.split_table_batched_embeddings_ops_inference import ( IntNBitTableBatchedEmbeddingBagsCodegen, ) from fbgemm_gpu.ssd_split_table_batched_embeddings_ops import ( CacheAlgorithm, EmbeddingLocation, PoolingMode, SparseType, SSDIntNBitTableBatchedEmbeddingBags, ) logging.basicConfig(level=logging.DEBUG) torch.ops.load_library( "//deeplearning/fbgemm/fbgemm_gpu:ssd_split_table_batched_embeddings" ) logging.basicConfig(level=logging.DEBUG) @click.group() def cli() -> None: pass def benchmark_ssd_function( iters: int, warmup_iters: int, # pyre-fixme[2]: Parameter must be annotated. s, buf: torch.Tensor, indices: torch.Tensor, indices_per_itr: int, ) -> Tuple[float, float]: actions_count_cpu = torch.tensor([indices_per_itr]).long().cpu() # warmup for i in range(warmup_iters): start = i * indices_per_itr end = start + indices_per_itr indices_this_itr = indices[start:end] # Benchmark code s.get(indices_this_itr, buf, actions_count_cpu) s.set(indices_this_itr, buf, actions_count_cpu) logging.info("Finished warmup") total_time_read_ns = 0 total_time_write_ns = 0 for i in range(iters): start = (i + warmup_iters) * indices_per_itr end = start + indices_per_itr indices_this_itr = indices[start:end] # Benchmark code start = time.time_ns() s.get(indices_this_itr, buf, actions_count_cpu) read_end = time.time_ns() s.set(indices_this_itr, buf, actions_count_cpu) end = time.time_ns() total_time_read_ns += read_end - start total_time_write_ns += end - read_end if i % 10 == 0: logging.info( f"{i}, {(read_end - start) / 10**6}, {(end - read_end) / 10**6}" ) return (total_time_read_ns / iters, total_time_write_ns / iters) def benchmark_read_write( ssd_prefix: str, batch_size: int, bag_size: int, num_embeddings: int, embedding_dim: int, iters: int, warmup_iters: int, num_shards: int, num_threads: int, ) -> None: import tempfile idx_dtype = torch.int64 data_dtype = torch.float32 np.random.seed(42) torch.random.manual_seed(43) elem_size = 4 with tempfile.TemporaryDirectory(prefix=ssd_prefix) as ssd_directory: ssd_db = torch.classes.fbgemm.EmbeddingRocksDBWrapper( ssd_directory, num_shards, num_threads, 0, # ssd_memtable_flush_period, 0, # ssd_memtable_flush_offset, 4, # ssd_l0_files_per_compact, embedding_dim, 0, # ssd_rate_limit_mbps, 1, # ssd_size_ratio, 8, # ssd_compaction_trigger, 536870912, # 512MB ssd_write_buffer_size, 8, # ssd_max_write_buffer_num, -0.01, # ssd_uniform_init_lower 0.01, # ssd_uniform_init_upper 32, # row_storage_bitwidth ) total_indices = (warmup_iters + iters) * batch_size * bag_size indices_per_itr = batch_size * bag_size indices = torch.randint( low=0, high=num_embeddings, size=(total_indices,), dtype=idx_dtype ) buf = torch.empty((batch_size * bag_size, embedding_dim), dtype=data_dtype) read_lat_ns, write_lat_ns = benchmark_ssd_function( iters, warmup_iters, ssd_db, buf, indices, indices_per_itr ) total_bytes = batch_size * embedding_dim * bag_size * elem_size byte_seconds_per_ns = total_bytes * 1e9 gibps_rd = byte_seconds_per_ns / (read_lat_ns * 2**30) gibps_wr = byte_seconds_per_ns / (write_lat_ns * 2**30) gibps_tot = 2 * byte_seconds_per_ns / ((read_lat_ns + write_lat_ns) * 2**30) logging.info( f"Batch Size: {batch_size}, " f"Bag_size: {bag_size:3d}, " f"Read_us: {read_lat_ns / 1000:8.0f}, " f"Write_us: {write_lat_ns / 1000:8.0f}, " f"Total_us: {(read_lat_ns + write_lat_ns) / 1000:8.0f}, " f"TMaxQPS: {1e9 * batch_size / (read_lat_ns + write_lat_ns):8.0f}, " f"GiBps Rd: {gibps_rd:3.2f}, " f"GiBps Wr: {gibps_wr:3.2f}, " f"GiBps R+W: {gibps_tot:3.2f}, " ) del ssd_db @cli.command() # @click.option("--num-tables", default=64) @click.option("--num-embeddings", default=int(1.5e9)) @click.option("--embedding-dim", default=128) @click.option("--batch-size", default=1024) @click.option("--bag-size", default=1) @click.option("--iters", default=1000) @click.option("--warmup-iters", default=100) @click.option( "--ssd-prefix", default="/tmp/ssd_benchmark_embedding" ) # Check P556577690 and https://fburl.com/t9lf4d7v @click.option("--num-shards", default=8) @click.option("--num-threads", default=8) def ssd_read_write( ssd_prefix: str, num_embeddings: int, embedding_dim: int, bag_size: int, batch_size: int, iters: int, warmup_iters: int, num_shards: int, num_threads: int, ) -> None: benchmark_read_write( ssd_prefix, batch_size, bag_size, num_embeddings, embedding_dim, iters, warmup_iters, num_shards, num_threads, ) @cli.command() @click.option("--alpha", default=1.0) @click.option("--bag-size", default=20) @click.option("--batch-size", default=512) @click.option("--embedding-dim", default=128) @click.option("--weights-precision", type=SparseType, default=SparseType.INT4) @click.option("--iters", default=100) @click.option("--mixed", is_flag=True, default=False) @click.option("--num-embeddings", default=int(1e5)) @click.option("--num-tables", default=32) @click.option("--reuse", default=0.1) @click.option("--weighted", is_flag=True, default=False) @click.option("--flush-gpu-cache-size-mb", default=0) @click.option("--output-dtype", type=SparseType, default=SparseType.FP16) @click.option("--use-cache", is_flag=True, default=False) @click.option("--cache-algorithm", default="lru") @click.option("--cache-load-factor", default=0.2) @click.option("--enforce-hbm", is_flag=True, default=False) @click.option("--ssd-cache-loc", default="device") def nbit_ssd( alpha: bool, bag_size: int, # L batch_size: int, # B embedding_dim: int, # D weights_precision: SparseType, iters: int, mixed: bool, num_embeddings: int, # E num_tables: int, # T reuse: float, weighted: bool, flush_gpu_cache_size_mb: int, output_dtype: SparseType, use_cache: bool, cache_algorithm: str, cache_load_factor: float, enforce_hbm: bool, ssd_cache_loc: str, ) -> None: import tempfile np.random.seed(42) torch.manual_seed(42) B = batch_size D = embedding_dim L = bag_size E = num_embeddings T = num_tables cache_alg = CacheAlgorithm.LRU managed_type = ( EmbeddingLocation.MANAGED_CACHING if use_cache else EmbeddingLocation.MANAGED ) ssd_cache_location = ( EmbeddingLocation.MANAGED if ssd_cache_loc == "managed" else EmbeddingLocation.DEVICE ) logging.info(f"T: {T}") if mixed: Ds = [ round_up(np.random.randint(low=int(0.5 * D), high=int(1.5 * D)), 4) for _ in range(T) ] D = np.average(Ds) else: Ds = [D] * T emb_uvm = IntNBitTableBatchedEmbeddingBagsCodegen( [ ( "", E, d, weights_precision, managed_type, ) for d in Ds ], output_dtype=output_dtype, cache_load_factor=cache_load_factor, cache_algorithm=cache_alg, enforce_hbm=enforce_hbm, ).cuda() emb_uvm.fill_random_weights() feature_table_map = list(range(T)) C = max(T * B * L, 1) emb_ssd = SSDIntNBitTableBatchedEmbeddingBags( embedding_specs=[("", E, d, weights_precision) for d in Ds], feature_table_map=feature_table_map, ssd_storage_directory=tempfile.mkdtemp(), cache_sets=C, ssd_uniform_init_lower=-0.1, ssd_uniform_init_upper=0.1, ssd_shards=2, pooling_mode=PoolingMode.SUM, ssd_cache_location=ssd_cache_location, # adjust the cache locations ).cuda() emb_cpu = IntNBitTableBatchedEmbeddingBagsCodegen( [ ( "", E, d, weights_precision, EmbeddingLocation.HOST, ) for d in Ds ], output_dtype=output_dtype, device="cpu", ) emb_cpu.fill_random_weights() requests = generate_requests( iters, B, T, L, E, reuse=reuse, alpha=alpha, weighted=weighted, ) requests_gpu = [(a.int(), b.int(), c if c else None) for (a, b, c) in requests] param_size_multiplier = weights_precision.bit_rate() / 8.0 output_size_multiplier = output_dtype.bit_rate() / 8.0 read_write_bytes = ( output_size_multiplier * B * sum(Ds) + param_size_multiplier * B * sum(Ds) * L ) nparams_byte = sum(w.numel() for (w, _) in emb_cpu.split_embedding_weights()) logging.info( f"{weights_precision} Embedding tables: {E * T} rows, {nparams_byte / param_size_multiplier / 1.0e9: .2f} GParam, " f"{nparams_byte / 1.0e9: .2f} GB" # IntN TBE use byte for storage ) logging.info( f"Accessed weights per batch: {B * T * L} rows, " f"{B * (L * sum(Ds)) * param_size_multiplier / 1.0e9: .2f} GB" ) # UVM torch.cuda.cudart().cudaProfilerStart() torch.cuda.nvtx.range_push("uvm forward") time_per_iter = benchmark_requests( # pyre-ignore requests_gpu, lambda indices, offsets, per_sample_weights: emb_uvm.forward( indices.int(), offsets.int(), per_sample_weights, ), flush_gpu_cache_size_mb=flush_gpu_cache_size_mb, ) logging.info( f"UVM NBit Forward, {weights_precision}, B: {B}, " f"E: {E}, T: {T}, D: {D}, L: {L}, W: {weighted}, " f"BW: {read_write_bytes / time_per_iter / 1.0e9: .2f} GB/s, " # noqa: B950 f"Time: {time_per_iter * 1.0e6:.0f}us" ) torch.cuda.nvtx.range_pop() torch.cuda.cudart().cudaProfilerStop() # SSD torch.cuda.cudart().cudaProfilerStart() torch.cuda.nvtx.range_push("ssd forward") time_per_iter = benchmark_requests( # pyre-ignore requests_gpu, lambda indices, offsets, per_sample_weights: emb_ssd.forward( indices.int(), offsets.int(), per_sample_weights, ), flush_gpu_cache_size_mb=flush_gpu_cache_size_mb, ) logging.info( f"SSD NBit Forward, {weights_precision}, B: {B}, " f"E: {E}, T: {T}, D: {D}, L: {L}, W: {weighted}, " f"BW: {read_write_bytes / time_per_iter / 1.0e9: .2f} GB/s, " # noqa: B950 f"Time: {time_per_iter * 1.0e6:.0f}us" ) torch.cuda.nvtx.range_pop() torch.cuda.cudart().cudaProfilerStop() # CPU requests_cpu = [ (a.int().cpu(), b.int().cpu(), c if c else None) for (a, b, c) in requests ] time_per_iter = benchmark_requests( # pyre-ignore requests_cpu, lambda indices, offsets, per_sample_weights: emb_cpu.forward( indices.int().cpu(), offsets.int().cpu(), per_sample_weights, ), flush_gpu_cache_size_mb=flush_gpu_cache_size_mb, ) logging.info( f"CPU NBit Forward, {weights_precision}, B: {B}, " f"E: {E}, T: {T}, D: {D}, L: {L}, W: {weighted}, " f"BW: {read_write_bytes / time_per_iter / 1.0e9: .2f} GB/s, " # noqa: B950 f"Time: {time_per_iter * 1.0e6:.0f}us" ) if __name__ == "__main__": cli()
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import functools import logging import random from typing import List, Tuple import click import fbgemm_gpu import torch from torch.profiler import profile logging.basicConfig(level=logging.DEBUG) # pyre-fixme[16]: Module `fbgemm_gpu` has no attribute `open_source`. open_source: bool = getattr(fbgemm_gpu, "open_source", False) if open_source: # pyre-ignore[21] from bench_utils import benchmark_torch_function else: from fbgemm_gpu.bench.bench_utils import benchmark_torch_function torch.ops.load_library("//deeplearning/fbgemm/fbgemm_gpu:sparse_ops") torch.ops.load_library("//deeplearning/fbgemm/fbgemm_gpu:sparse_ops_cpu") @click.group() def cli() -> None: pass @cli.command() @click.option("--batch-size", type=int, default=128) @click.option("--embedding-dim", type=int, default=128) @click.option("--max-len", type=int, default=128) @click.option("--elem-type", type=str, default="half") def device( batch_size: int, embedding_dim: int, max_len: int, elem_type: str, ) -> None: lengths = torch.randint(max_len, size=(batch_size,)) total_lengths = lengths.sum().item() offsets = torch.ops.fbgemm.asynchronous_complete_cumsum(lengths) dtype = ( torch.float16 if elem_type == "half" or elem_type == "float16" else torch.float32 ) # pyre-fixme[6]: For 1st param expected `int` but got `Union[bool, float, int]`. values_2d = torch.rand(total_lengths, embedding_dim, dtype=dtype) if torch.cuda.is_available(): offsets = offsets.cuda() values_2d = values_2d.cuda() time, output = benchmark_torch_function( torch.ops.fbgemm.jagged_2d_to_dense, (values_2d, offsets, max_len), iters=1000 ) offsets_nbytes = offsets.numel() * offsets.element_size() values_nbytes = values_2d.numel() * values_2d.element_size() dense_nbytes = output.numel() * output.element_size() num_bytes = offsets_nbytes + values_nbytes + dense_nbytes logging.info(f"jagged_2d_to_dense {time} sec {num_bytes / time / 1e9} GB/s") total_L = values_2d.size(0) time, jagged_output = benchmark_torch_function( torch.ops.fbgemm.dense_to_jagged, (output, [offsets], total_L), iters=1000 ) num_bytes = offsets_nbytes + 2 * values_nbytes logging.info(f"dense_to_jagged (2d) {time} sec {num_bytes / time / 1e9} GB/s") time, jagged_output = benchmark_torch_function( torch.ops.fbgemm.jagged_dense_elementwise_add_jagged_output, (values_2d, [offsets], output), iters=1000, ) num_bytes = offsets_nbytes + 3 * values_nbytes logging.info( f"jagged_dense_elementwise_add_jagged_output {time} sec {num_bytes / time / 1e9} GB/s" ) time, jagged_output = benchmark_torch_function( torch.ops.fbgemm.jagged_dense_elementwise_mul, (values_2d, [offsets], output), iters=1000, ) num_bytes = offsets_nbytes + 3 * values_nbytes logging.info( f"jagged_dense_elementwise_mul {time} sec {num_bytes / time / 1e9} GB/s" ) output_sq = output * output time, jagged_output = benchmark_torch_function( torch.ops.fbgemm.jagged_dense_dense_elementwise_add_jagged_output, (values_2d, [offsets], output, output_sq), iters=1000, ) num_bytes = offsets_nbytes + 4 * values_nbytes logging.info( f"jagged_dense_dense_elementwise_add_jagged_output {time} sec {num_bytes / time / 1e9} GB/s" ) # pyre-fixme[6]: For 1st param expected `Union[List[int], Size, # typing.Tuple[int, ...]]` but got `Union[bool, float, int]`. values_1d = torch.rand(total_lengths) if torch.cuda.is_available(): values_1d = values_1d.cuda() values_nbytes = values_1d.numel() * values_1d.element_size() time, output = benchmark_torch_function( lambda: torch.ops.fbgemm.jagged_1d_to_dense( values_1d, offsets, max_len, padding_value=0 ), (), iters=1000, ) dense_nbytes = output.numel() * output.element_size() num_bytes = offsets_nbytes + values_nbytes + dense_nbytes logging.info(f"jagged_1d_to_dense {time} sec {num_bytes / time / 1e9} GB/s") total_L = values_1d.size(0) output_1d = torch.unsqueeze(output, -1) time, jagged_output = benchmark_torch_function( torch.ops.fbgemm.dense_to_jagged, (output_1d, [offsets], total_L), iters=1000 ) num_bytes = offsets_nbytes + 2 * values_nbytes logging.info(f"dense_to_jagged (1d) {time} sec {num_bytes / time / 1e9} GB/s") @cli.command() @click.option("--batch-size", type=int, default=1) @click.option("--h-dim", type=int, default=3) @click.option("--embedding-dim", type=int, default=16) @click.option("--max-len", type=int, default=10) @click.option("--elem-type", type=str, default="half") def batched_dense_vec_jagged_2d_mul( batch_size: int, h_dim: int, embedding_dim: int, max_len: int, elem_type: str, ) -> None: lengths = torch.randint(2 * max_len, size=(batch_size,)) # Allow for truncation total_lengths = lengths.sum().item() offsets = torch.ops.fbgemm.asynchronous_complete_cumsum(lengths) dtype = ( torch.float16 if elem_type == "half" or elem_type == "float16" else torch.float32 ) # pyre-fixme[6]: For 1st param expected `int` but got `Union[bool, float, int]`. values_2d = torch.rand(total_lengths, h_dim * embedding_dim, dtype=dtype) dense = torch.rand(batch_size * h_dim, max_len, dtype=dtype) if torch.cuda.is_available(): offsets = offsets.cuda() values_2d = values_2d.cuda() dense = dense.cuda() time, output = benchmark_torch_function( torch.ops.fbgemm.batched_dense_vec_jagged_2d_mul, (dense, values_2d, offsets), iters=1000, ) # Account for the fact that each matmul inner dim was limited to max_len computed_lengths = torch.minimum(lengths, torch.ones(batch_size) * max_len) total_computed_lengths = computed_lengths.sum().item() num_flops = total_computed_lengths * h_dim * embedding_dim * 2.0 logging.info( f"batched_dense_vec_jagged_2d_mul {time} sec {num_flops / time / 1e9} GFLOP/s" ) @cli.command() @click.option("--batch-size", type=int, default=1024) @click.option("--max-len", type=int, default=10) @click.option("--dtype", type=str, default="float") def jagged_1d_to_truncated_values( batch_size: int, max_len: int, dtype: str, ) -> None: lengths = torch.randint(2 * max_len, size=(batch_size,)) # Allow for truncation total_lengths = lengths.sum().item() torch_dtype = torch.float16 if dtype in ["half", "float16"] else torch.float32 # pyre-fixme[6]: For 1st param expected `int` but got `Union[bool, float, int]`. values = torch.rand(total_lengths, dtype=torch_dtype) def ref(values: torch.Tensor, lengths: torch.Tensor, max_len: int) -> torch.Tensor: dense_values = torch.ops.fbgemm.jagged_to_padded_dense( values, [torch.ops.fbgemm.asynchronous_complete_cumsum(lengths)], [max_len], padding_value=0, ) truncated_lengths = torch.clamp(lengths, max=max_len) mask2d = torch.arange(max_len).expand( batch_size, -1 ) < truncated_lengths.unsqueeze(-1) return dense_values[mask2d].view(-1) time_ref, output_ref = benchmark_torch_function( ref, (values, lengths, max_len), ) time, output = benchmark_torch_function( torch.ops.fbgemm.jagged_1d_to_truncated_values, (values, lengths, max_len), ) torch.testing.assert_close(output, output_ref) bytes = (values.numel() + output.numel()) * ( 4 if torch_dtype == torch.float else 2 ) + lengths.numel() * 4 logging.info(f"reference {time_ref} sec {bytes / time_ref / 1e9} GB/s") logging.info(f"truncate_jagged_1d {time} sec {bytes / time / 1e9} GB/s") @cli.command() @click.option("--batch-size", type=int, default=1024) @click.option("--max-len", type=int, default=256) def masked_select_jagged_1d( batch_size: int, max_len: int, ) -> None: lengths = torch.randint(2 * max_len, size=(batch_size,)) # Allow for truncation total_lengths = int(lengths.sum().item()) dtype = torch.long values = torch.randint(2**16, (total_lengths,), dtype=dtype) mask = torch.randint(2, (total_lengths,)) > 0 def ref( values: torch.Tensor, lengths: torch.Tensor, mask: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor]: masked_values_ref = values[mask] cum_count = torch.cumsum(mask, 0) cum_count = torch.cat((cum_count, torch.tensor([0]))) cum_length = cum_count[torch.cumsum(lengths, 0) - 1] cum_length_shift_right = torch.roll(cum_length, 1) cum_length_shift_right[0] = 0 masked_lengths_ref = cum_length - cum_length_shift_right return masked_values_ref, masked_lengths_ref time_ref, (masked_values_ref, masked_lengths_ref) = benchmark_torch_function( ref, (values, lengths, mask), ) time, (masked_values, masked_lengths) = benchmark_torch_function( torch.ops.fbgemm.masked_select_jagged_1d, (values, lengths, mask), ) torch.testing.assert_close(masked_values, masked_values_ref) torch.testing.assert_close(masked_lengths, masked_lengths_ref) bytes = (2 * values.numel() + 2 * lengths.numel() + 2 * masked_values.numel()) * 4 logging.info(f"reference {time_ref} sec {bytes / time_ref / 1e9} GB/s") logging.info(f"masked_select_jagged_1d {time} sec {bytes / time / 1e9} GB/s") @cli.command() @click.option("--num-batches", type=int, default=40) @click.option("--max-seq-length", type=int, default=400) @click.option("--input-batch-size", type=int, default=1024) @click.option("--output-batch-size", type=int, default=512) @click.option("--jagged-tensor-type", type=str, default="float") @click.option("--has-weights", is_flag=True, default=False) @click.option("--weight-type", type=str, default="float") def keyed_jagged_index_select_dim1( num_batches: int, max_seq_length: int, input_batch_size: int, output_batch_size: int, jagged_tensor_type: str, has_weights: bool, weight_type: str, ) -> None: jagged_tensor_types = { "float": torch.float, "half": torch.half, "int": torch.int, "long": torch.long, } weight_types = {"float": torch.float, "half": torch.half} if jagged_tensor_type not in jagged_tensor_types.keys(): raise AssertionError( f"--jagged-tensor-type ({jagged_tensor_type}) is not supported" ) if weight_type not in weight_types.keys(): raise AssertionError(f"--weight-type ({weight_type}) is not supported") jagged_tensor_dtype = jagged_tensor_types[jagged_tensor_type] is_float = jagged_tensor_dtype in [torch.float, torch.half] weight_dtype = weight_types[weight_type] lengths = torch.randint( low=0, high=max_seq_length, size=(input_batch_size * num_batches,), dtype=torch.long, device="cuda", ) # Imitate KeyedJaggedTensor offsets offsets = torch.concat( [torch.zeros(1, dtype=torch.long, device="cuda"), lengths.cumsum(0)] ) indices = torch.randint( low=0, high=1, size=(output_batch_size,), dtype=torch.long, device="cuda", ) if is_float: values = torch.rand( int(offsets[-1].item()), dtype=jagged_tensor_dtype, device="cuda", ) else: values = torch.randint( 2**16, (int(offsets[-1].item()),), dtype=jagged_tensor_dtype, device="cuda", ) weights = ( torch.rand(int(offsets[-1].item()), dtype=weight_dtype, device="cuda") if has_weights else None ) # Only float tensors can require grad if is_float: values.requires_grad = True time, output = benchmark_torch_function( torch.ops.fbgemm.keyed_jagged_index_select_dim1, (values, lengths, offsets, indices, input_batch_size, weights), iters=1000, ) output = output[0] # Prepare inputs for the reference run ref_inputs = [] for k in range(num_batches): key_lengths = lengths[k * input_batch_size : (k + 1) * input_batch_size] start_offset = offsets[k * input_batch_size] end_offset = offsets[(k + 1) * input_batch_size] key_values = values[start_offset:end_offset].view(-1, 1) if has_weights: # pyre-ignore[16] key_weights = weights[start_offset:end_offset].view(-1, 1) else: key_weights = torch.empty(0) ref_inputs.append((key_values, key_lengths, indices, key_weights)) def keyed_jagged_index_select_dim1_ref( inputs: List[torch.Tensor], has_weights: bool, ) -> Tuple[torch.Tensor, torch.Tensor]: outputs = [] output_weights = [] for key_values, key_lengths, indices, _ in inputs: outputs.append( torch.ops.fbgemm.jagged_index_select(key_values, key_lengths, indices)[ 0 ].view(-1) ) if has_weights: for _, key_lengths, indices, key_weights in inputs: output_weights.append( torch.ops.fbgemm.jagged_index_select( key_weights, key_lengths, indices )[0].view(-1) ) return torch.concat(outputs), torch.concat( output_weights ) if has_weights else torch.empty(0) time_ref, output_ref = benchmark_torch_function( keyed_jagged_index_select_dim1_ref, (ref_inputs, has_weights) ) output_ref = output_ref[0] logging.info( f"keyed_jagged_index_select_dim1 forward time: {time * 1e3} ms, ref {time_ref * 1e3}" ) if not is_float: return grad = torch.rand_like(output) time, _ = benchmark_torch_function( functools.partial(output.backward, retain_graph=True), (grad,), iters=1000 ) time_ref, _ = benchmark_torch_function( functools.partial(output_ref.backward, retain_graph=True), (grad,), iters=1000 ) logging.info( f"keyed_jagged_index_select_dim1 backward time: {time * 1e3} ms, ref {time_ref * 1e3}" ) @cli.command() @click.option("--max-seq-length", type=int, default=400) @click.option("--input-batch-size", type=int, default=1024) @click.option("--slice-length", type=int, default=10) @click.option("--jagged-tensor-type", type=str, default="float") def jagged_slice_cpu( max_seq_length: int, input_batch_size: int, slice_length: int, jagged_tensor_type: str, ) -> None: jagged_tensor_types = { "float": torch.float, "half": torch.half, "int": torch.int, "long": torch.long, } if jagged_tensor_type not in jagged_tensor_types.keys(): raise AssertionError( f"--jagged-tensor-type ({jagged_tensor_type}) is not supported" ) jagged_tensor_dtype = jagged_tensor_types[jagged_tensor_type] is_float = jagged_tensor_dtype in [torch.float, torch.half] lengths = torch.randint( low=0, high=max_seq_length, size=(input_batch_size,), dtype=torch.long, ) start_list = [random.randint(0, max(len_ - 1, 0)) for len_ in lengths.tolist()] start = torch.tensor(start_list) offsets = torch.ops.fbgemm.asynchronous_complete_cumsum(lengths) if is_float: values = torch.rand( int(offsets[-1].item()), dtype=jagged_tensor_dtype, ) else: values = torch.randint( 2**16, (int(offsets[-1].item()),), dtype=jagged_tensor_dtype, ) time, output = benchmark_torch_function( torch.ops.fbgemm.jagged_slice, (values, lengths, start, slice_length), iters=1000, ) def jagged_slice_ref( x_values: torch.Tensor, offsets: torch.Tensor, start: torch.Tensor, max_L: int, ) -> Tuple[torch.Tensor, torch.Tensor]: end_offsets_ = max_L + start + offsets[:-1] end_offsets = torch.where(end_offsets_ > offsets[1:], offsets[1:], end_offsets_) start_offsets = start + offsets[:-1] indices_to_select: List[torch.Tensor] = [] for i in range(end_offsets.size(0)): indices_to_select.append( torch.arange(start_offsets[i].item(), end_offsets[i].item()) ) output_ref = torch.index_select(x_values, 0, torch.cat(indices_to_select)) new_lengths = end_offsets - start_offsets new_offsets = torch.ops.fbgemm.asynchronous_complete_cumsum(new_lengths) return output_ref, new_offsets time_ref, output = benchmark_torch_function( jagged_slice_ref, (values, offsets, start, slice_length) ) logging.info(f"jagged_slice forward time: {time * 1e3} ms, ref {time_ref * 1e3} ms") profiler = profile( activities=[ torch.profiler.ProfilerActivity.CPU, torch.profiler.ProfilerActivity.CUDA, ], schedule=torch.profiler.schedule( wait=200, warmup=100, active=100, ), record_shapes=True, profile_memory=True, with_stack=True, with_flops=True, ) profiler.start() for _ in range(500): torch.ops.fbgemm.jagged_slice(values, lengths, start, slice_length) profiler.step() profiler.stop() logging.info( "\n" + profiler.key_averages().table(sort_by="self_cuda_time_total", row_limit=10) ) flops = sum(e.flops for e in profiler.events()) logging.info(f"Total Compute: {flops / 1e9} gflops") if __name__ == "__main__": cli()
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. # pyre-unsafe import logging import signal from typing import List, Tuple import click import fbgemm_gpu import numpy as np import tabulate import torch from fbgemm_gpu.split_embedding_configs import SparseType from fbgemm_gpu.split_table_batched_embeddings_ops_common import ( BoundsCheckMode, EmbeddingLocation, ) from fbgemm_gpu.split_table_batched_embeddings_ops_inference import ( IntNBitTableBatchedEmbeddingBagsCodegen, ) from torch import Tensor from torch.profiler import profile, ProfilerActivity # pyre-fixme[16]: Module `fbgemm_gpu` has no attribute `open_source`. open_source: bool = getattr(fbgemm_gpu, "open_source", False) if open_source: # pyre-ignore[21] from bench_utils import benchmark_torch_function else: from fbgemm_gpu.bench.bench_utils import benchmark_torch_function torch.ops.load_library("//deeplearning/fbgemm/fbgemm_gpu:merge_pooled_embeddings") torch.ops.load_library( "//deeplearning/fbgemm/fbgemm_gpu:merge_pooled_embeddings_cpu" ) def get_gpu_device(gpu_num) -> torch.device: return torch.device(f"cuda:{gpu_num}") # Merged indices with shape (T, B, L) -> (flattened indices with shape # (T * B * L), offsets with shape (T * B + 1)). # Reference: https://fburl.com/code/5ueyfv5j def get_table_batched_offsets_from_dense( merged_indices: torch.Tensor, gpu_num, ) -> Tuple[torch.Tensor, torch.Tensor]: (T, B, L) = merged_indices.size() lengths = np.ones((T, B)) * L flat_lengths = lengths.flatten() return ( merged_indices.int().contiguous().view(-1).to(device=get_gpu_device(gpu_num)), torch.tensor( ([0] + np.cumsum(flat_lengths).tolist()), device=get_gpu_device(gpu_num) ).int(), ) # Reference: https://fburl.com/code/o5600si0 def generate_requests( num_gpus: int, B: int, T: int, L: int, E: int, # inter-batch indices reuse rate reuse: float = 0.0, ) -> List[Tuple[torch.IntTensor, torch.IntTensor, None]]: rs = [] for gpu_num in range(num_gpus): all_indices = torch.randint( low=0, high=E, size=(T, B, L), device=get_gpu_device(gpu_num), dtype=torch.int32, ) # each bag is usually sorted (all_indices, _) = torch.sort(all_indices) all_indices = all_indices.reshape(T, B * L) rs.append( get_table_batched_offsets_from_dense(all_indices.view(T, B, L), gpu_num) ) return rs def _get_random_tensor( num_ads: int, embedding_dimension: int, ads_tables: int, data_type: str, gpu_idx: int, include_quantization: bool, ): if data_type == "FP16" or include_quantization: result_tensor = torch.randn( num_ads, embedding_dimension * ads_tables, dtype=torch.float16, device=torch.device(f"cuda:{gpu_idx}"), ) elif data_type == "INT8": assert ( embedding_dimension % 2 ) == 0, "needs to align to 2 bytes (half type size) for INT8" result_tensor = torch.randint( 0, 255, # 2 FP16 numbers for scale and bias, total of 4 bytes overhead size=(num_ads, (embedding_dimension + 4) * ads_tables), dtype=torch.uint8, device=torch.device(f"cuda:{gpu_idx}"), ) elif data_type == "INT4": assert ( embedding_dimension % 4 ) == 0, "needs to align to 2 bytes (half type size) for INT4" result_tensor = torch.randint( 0, 255, # Using torch.uint8 for int4 storage size=(num_ads, (embedding_dimension // 2 + 4) * ads_tables), dtype=torch.uint8, device=torch.device(f"cuda:{gpu_idx}"), ) else: raise ValueError return result_tensor def generate_tbe( batch_indices, num_ads: int, embedding_dimension: int, num_of_embeddings: int, pooling_factor: int, ads_tables: int, fused_tbe: bool, data_type: str, num_gpus: int, ): B = num_ads D = embedding_dimension E = num_of_embeddings L = pooling_factor T = ads_tables Ds = [D] * T managed_option = EmbeddingLocation.DEVICE output_dtype = SparseType.FP16 if fused_tbe: assert data_type == "INT8" # INT4 not implemented yet output_dtype = SparseType.INT8 emb = [ IntNBitTableBatchedEmbeddingBagsCodegen( [ ( str(idx), E, d, SparseType.INT4, managed_option, ) for d in Ds ], output_dtype=output_dtype, device=get_gpu_device(idx), bounds_check_mode=BoundsCheckMode.NONE, ) for idx in range(num_gpus) ] for e in emb: e.fill_random_weights() requests = generate_requests(num_gpus, B, T, L, E) # https://fburl.com/code/doxxjc8c SIZE_OF_FLOAT = 4 num_elem_per_byte = 1 if data_type == "INT8" else 2 assert embedding_dimension % (2 * num_elem_per_byte) == 0 col_sizes = ( [ (embedding_dimension + num_elem_per_byte - 1) // num_elem_per_byte + 2 * SIZE_OF_FLOAT ] * ads_tables * num_gpus ) offset = torch.tensor([0] + col_sizes, device=batch_indices.device) tbe_offset = torch.cumsum(offset, dim=0).to(torch.int).cuda() return emb, requests, tbe_offset def print_p2p_bandwidth( num_gpus, iters, pooled_ad_embeddings, bytes_per_element ) -> None: print("Pairwise GPU Copy Bandwidth (GB/s)") p2p_copy_bw = np.zeros((num_gpus, num_gpus)) for i in range(num_gpus): for j in range(num_gpus): with torch.cuda.device(i): t, _ = benchmark_torch_function( lambda: pooled_ad_embeddings[i].copy_(pooled_ad_embeddings[j]) if i != j else pooled_ad_embeddings[i].clone(), (), flush_gpu_cache_size_mb=0, iters=iters, ) p2p_copy_bw[i, j] = ( pooled_ad_embeddings[i].numel() * bytes_per_element / t / 1.0e9 ) table = tabulate.tabulate( p2p_copy_bw, headers=[f"GPU {i}" for i in range(num_gpus)], tablefmt="fancy_grid", floatfmt=".0f", ) print(table) def benchmark( # noqa C901 all_to_one_only: bool, sum_reduce_to_one_only: bool, num_ads: int, embedding_dimension: int, ads_tables: int, iters: int = 10, p2p_bw: bool = False, dst_device: int = 0, data_type: str = "FP16", mode: str = "P2P", skip_dequantization: bool = False, num_of_embeddings: int = 10000, pooling_factor: int = 25, ) -> str: assert torch.cuda.is_available() torch.cuda.set_device(dst_device) num_gpus = torch.cuda.device_count() batch_indices = torch.zeros(num_ads).long().cuda() include_quantization = not mode == "P2P" # Using torch.int8 for int4 storage bytes_per_element = 2 if (data_type == "FP16" or include_quantization) else 1 total_elements = num_ads * embedding_dimension * ads_tables * num_gpus logging.debug( f"B: {num_ads}, D: {embedding_dimension}, T: {ads_tables}, Data Type: {data_type}, Num GPUs: {num_gpus}, Destination GPU: {dst_device}" ) fused_tbe = mode == "P2P_FUSED_TBE" include_tbe = fused_tbe or mode == "P2P_TBE" if include_tbe: emb, requests, tbe_offset = generate_tbe( batch_indices, num_ads, embedding_dimension, num_of_embeddings, pooling_factor, ads_tables, fused_tbe, data_type, num_gpus, ) pooled_ad_embeddings = [ _get_random_tensor( num_ads, embedding_dimension, ads_tables, data_type, gpu_idx, include_quantization, ) for gpu_idx in range(num_gpus) ] if p2p_bw: print_p2p_bandwidth(num_gpus, iters, pooled_ad_embeddings, bytes_per_element) def pool_func_with_quantization( batch_indices, include_quantization, include_tbe, fused_tbe, skip_dequantization, data_type, ): if include_tbe: embedding_results = [] for idx, (indices, offsets) in enumerate(requests): with torch.cuda.device(idx): embedding_results.append(emb[idx].forward(indices, offsets)) else: embedding_results = pooled_ad_embeddings if data_type == "FP16" or (not fused_tbe and not include_quantization): if all_to_one_only: return torch.ops.fbgemm.all_to_one_device( pooled_ad_embeddings, batch_indices.device ) elif sum_reduce_to_one_only: return torch.ops.fbgemm.sum_reduce_to_one( pooled_ad_embeddings, batch_indices.device ) else: return torch.ops.fbgemm.merge_pooled_embeddings( embedding_results, batch_indices.size(0), batch_indices.device ) assert data_type == "INT8" or data_type == "INT4" assert not all_to_one_only # not supported if fused_tbe: pooled_quantized_result = torch.ops.fbgemm.merge_pooled_embeddings( embedding_results, batch_indices.size(0), batch_indices.device ) else: quantized = [] for t in embedding_results: t_split_by_table = torch.split(t, embedding_dimension, dim=1) quantized_split_by_table = [ torch.ops.fbgemm.FloatToFused8BitRowwiseQuantized(t.float()) if data_type == "INT8" else torch.ops.fbgemm.FloatToFusedNBitRowwiseQuantizedSBHalf( t.float(), 4 ) for t in t_split_by_table ] result = torch.cat(quantized_split_by_table, dim=1) quantized.append(result) pooled_quantized_result = torch.ops.fbgemm.merge_pooled_embeddings( quantized, batch_indices.size(0), batch_indices.device ) if skip_dequantization: return pooled_quantized_result PooledEmbeddingDequantizeDataTypeFP16 = 1 if data_type == "INT8": return torch.ops.fbgemm.Fused8BitRowwiseQuantizedToFloatMixedDim( pooled_quantized_result, tbe_offset, PooledEmbeddingDequantizeDataTypeFP16, ) else: # TODO: the result here is wrong. Once MixedDim version for FusedNBit quantization is done, switch to that. # Since their performance is similar, keep using Fused8BitRowwiseQuantizedToHalf for now. return torch.ops.fbgemm.Fused8BitRowwiseQuantizedToHalf( pooled_quantized_result ).half() streams = [torch.cuda.Stream(device=i) for i in range(num_gpus)] import contextlib with contextlib.ExitStack() as stack: for stream in streams: stack.enter_context(torch.cuda.stream(stream)) # warm up merged = pool_func_with_quantization( batch_indices, include_quantization, include_tbe, fused_tbe, skip_dequantization, data_type, ) if all_to_one_only: merged = torch.stack(merged) t, _ = benchmark_torch_function( pool_func_with_quantization, ( batch_indices, include_quantization, include_tbe, fused_tbe, skip_dequantization, data_type, ), flush_gpu_cache_size_mb=0, iters=iters, ) with profile(activities=[ProfilerActivity.CUDA]) as prof: pool_func_with_quantization( batch_indices, include_quantization, include_tbe, fused_tbe, skip_dequantization, data_type, ) print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=10)) if isinstance(merged, Tensor): # all_to_one_only returns a list of tensors, # otherwise, it's a Tensor. merged = [merged] output_num_el = sum([a.numel() for a in merged]) # Assume tensors gathered are all the same size. num_el_transferred = output_num_el * (num_gpus - 1) / num_gpus logging.debug( f"Mode: {mode}, Data Type: {data_type}, B: {num_ads}, D: {embedding_dimension}, T: {ads_tables}, Num GPUs: {num_gpus}, Destination GPU: {dst_device}, all_to_one_only: {all_to_one_only}, " f"Number of elements: {total_elements / 1.0e6:.2f}, Million, Number of elements per GPU: {total_elements / 1.0e6 / num_gpus:.2f}, Billion elements per sec: {total_elements / t / 1.0e9:.1f}, " f"Output Size: {output_num_el * bytes_per_element / 1.0e6:.0f}MB, Num elements transferred: {num_el_transferred / 1.0e6}, All-to-one BW: {output_num_el * bytes_per_element / t / 1.0e9:.1f}GB/s, link BW: {num_el_transferred * bytes_per_element / t / 1.0e9:.1f}GB/s, " f"t: {t * 1.0e3:.2f}ms" ) # return result in CSV format return ( f"{mode}, {data_type}, {num_ads}, {embedding_dimension}, {ads_tables}, {num_gpus}, {dst_device}, {all_to_one_only}, " f"{total_elements / 1.0e6:.2f}, {total_elements / 1.0e6 / num_gpus:.2f}, {total_elements / 1.0e9 / t:.1f}, " f"{output_num_el * bytes_per_element / 1.0e6:.0f}, {output_num_el * bytes_per_element / t / 1.0e9:.1f}, " f"{num_el_transferred * bytes_per_element / 1.0e9 / t:.1f}, " f"{t * 1.0e3:.2f}" ) @click.command() @click.option("--all-to-one-only", is_flag=True, default=False) @click.option("--sum-reduce-to-one-only", is_flag=True, default=False) @click.option("--num_ads", default=1024, type=int) @click.option("--embedding_dimension", default=300, type=int) @click.option("--ads_tables", default=100, type=int) @click.option("--iters", default=10, type=int) @click.option("--p2p_bw", is_flag=True, default=False) @click.option("--dst_device", default=0, type=int) @click.option( "--data_type", type=click.Choice(["FP16", "INT8", "INT4"]), default="FP16", ) # P2P: merge_pooled_embeddings() or all_to_one_device() for tensor with "--data_type" # P2P_QUANT: for INT8/INT4 data type, start with FP16, then quantize -> P2P -> dequantize to FP16 # P2P_TBE: add TBE in front of P2P_QUANT. When "--data_type" is FP16, the flow is TBE -> P2P; for INT8/INT4, the flow is TBE -> quantize -> P2P -> dequantize # P2P_FUSED_TBE: similar to P2P_TBE except fuse the quantization into TBE @click.option( "--mode", type=click.Choice(["P2P", "P2P_QUANT", "P2P_TBE", "P2P_FUSED_TBE"]), default="P2P", ) # For quantized communication, do we dequantize back to FP16 in the end. @click.option("--skip_dequantization", is_flag=True, default=False) @click.option("--num_of_embeddings", default=100000, type=int) @click.option("--pooling_factor", default=25, type=int) @click.option("--sweep", is_flag=True, default=False) def main( all_to_one_only: bool, sum_reduce_to_one_only: bool, num_ads: int, embedding_dimension: int, ads_tables: int, iters: int, p2p_bw: bool, dst_device: int, data_type: str, mode: str, skip_dequantization: bool, num_of_embeddings: int, pooling_factor: int, sweep: bool, ) -> None: csv_header = ( "mode, data_type, num_ads, embedding_dimension, ads_tables, num_gpus, dst_device, all_to_one_only, " "number of elements (Million), number of elements per GPU (Million), throughput (billion elements per sec), " "output size (MB), all-to-one BW (GB/s), link BW (GB/s), t (ms)" ) if sweep: def handler(signum, frame): logging.error("timeout") raise TimeoutError() results = [] num_gpu = torch.cuda.device_count() for num_ads in [128, 256, 512, 1024, 2048]: # Scale num_ads so all GPUs have sweep through the same number of total elements num_ads *= 8 // num_gpu for embedding_dimension in [16, 64, 112, 304]: for ads_tables in [25, 50, 100, 400, 800]: if num_ads * embedding_dimension * ads_tables > 983040000: continue # Skip tests that are too large signal.signal(signal.SIGTERM, handler) signal.alarm(600) logging.info( f"config: num_ads: {num_ads}, embedding_dimension: {embedding_dimension}, ads_tables: {ads_tables}" ) try: result = benchmark( all_to_one_only, sum_reduce_to_one_only, num_ads, embedding_dimension, ads_tables, iters, p2p_bw, dst_device, data_type, mode, skip_dequantization, num_of_embeddings, pooling_factor, ) results.append(result) except (TimeoutError, RuntimeError) as err: logging.error( f"B: {num_ads}, D: {embedding_dimension}, T: {ads_tables}, Data Type: {data_type}, Num GPU: {num_gpu}, time out or failed: {err}" ) print(csv_header) print(*results, sep="\n") return result = benchmark( all_to_one_only, sum_reduce_to_one_only, num_ads, embedding_dimension, ads_tables, iters, p2p_bw, dst_device, data_type, mode, skip_dequantization, num_of_embeddings, pooling_factor, ) print(csv_header) print(result) if __name__ == "__main__": main()
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import argparse import json import subprocess def run(args): with open(args.shapes_file, "r") as f: shapes = json.load(f) num_embeddings_list = ",".join([str(shape[0]) for shape in shapes]) embedding_dims_list = ",".join([str(shape[1]) for shape in shapes]) cmds = [ args.python, args.benchmark_path, args.benchmark_cmd, "--batch-size", str(args.batch_size), "--bag-size-list", str(args.bag_size), "--embedding-dim-list", embedding_dims_list, "--num-embeddings-list", num_embeddings_list, "--weights-precision", args.weights_precision, "--output-dtype", args.output_dtype, "--warmup-runs", str(args.warmup_runs), "--runs-of-iters", str(args.warmup_runs + args.test_runs), ] if not args.use_gpu: cmds.append("--use-cpu") if args.dry_run: print("Command to be executed:") print(" ".join(cmds)) return 0 p = subprocess.Popen( cmds, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, text=True ) output = "" for line in iter(p.stdout.readline, ""): print(line, end="") if args.output: output += line p.stdout.close() p.wait() if args.output: with open(args.output, "w") as outf: outf.write(output) return p.returncode if __name__ == "__main__": parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument( "--python", type=str, default="python3.10", help="The python interpreter used to run the benchmark", ) parser.add_argument( "--benchmark-path", type=str, default="split_table_batched_embeddings_benchmark.py", help="Path to the benchmark script", ) parser.add_argument( "--benchmark-cmd", type=str, default="nbit-device-with-spec", help="The subcommand of the benchmark", ) parser.add_argument("--batch-size", type=int, default=32, help="Batch size") parser.add_argument( "--bag-size", type=int, default=13, help="Bag size or pooling factor" ) parser.add_argument( "--shapes-file", type=str, required=True, help="Path to the JSON file that describes a list of shapes [rows, embedding-dims]. " + "Its content should look like '[[123, 2], [456, 16], [789, 16], ...]'", ) parser.add_argument( "--weights-precision", type=str, default="fp16", help="Weight data type", ) parser.add_argument( "--output-dtype", type=str, default="fp16", help="Output data type" ) parser.add_argument( "--warmup-runs", type=int, default=5, help="Number of warmup runs" ) parser.add_argument("--test-runs", type=int, default=5, help="Number of test runs") parser.add_argument( "--output", type=str, default="", help="Also log the benchmark output to a file" ) parser.add_argument("--use-gpu", action="store_true", help="Use GPU instead of CPU") parser.add_argument( "--dry-run", action="store_true", help="Only print out the command that will execute", ) args = parser.parse_args() returncode = run(args) exit(returncode)
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. # pyre-unsafe import functools from math import sqrt from typing import List, Tuple import click import fbgemm_gpu import fbgemm_gpu.batched_unary_embeddings_ops as batched_unary_embeddings_ops import numpy as np import torch # pyre-fixme[16]: Module `fbgemm_gpu` has no attribute `open_source`. open_source: bool = getattr(fbgemm_gpu, "open_source", False) if open_source: # pyre-ignore[21] from bench_utils import benchmark_torch_function else: from fbgemm_gpu.bench.bench_utils import benchmark_torch_function torch.ops.load_library("//deeplearning/fbgemm/fbgemm_gpu:sparse_ops") torch.ops.load_library("//deeplearning/fbgemm/fbgemm_gpu:sparse_ops_cpu") def generate_unary_feature( batch_size: int, num_embeddings: int ) -> Tuple[List, List, List]: lengths = [] offsets = [] indices = [] offset = 0 for _ in range(batch_size): n_indices = 1 indices += ( np.round(np.random.random(n_indices) * (num_embeddings - 1)) .astype(int) .tolist() ) offsets.append(offset) offset += 1 lengths.append(n_indices) offsets.append(offset) return (lengths, offsets, indices) class MyModule(torch.nn.Module): def __init__(self, num_tasks: int, hash_sizes: List[int]) -> None: super().__init__() self.num_tasks = num_tasks self.hash_sizes = hash_sizes self.emb_modules = torch.nn.ModuleList() for _ in range(num_tasks): for h in self.hash_sizes: emb = torch.nn.EmbeddingBag( num_embeddings=h, embedding_dim=1, mode="sum", sparse=False, include_last_offset=True, ) emb.weight = torch.nn.Parameter( torch.empty([h, 1]).uniform_(-sqrt(1 / h), sqrt(1 / h)) ) self.emb_modules.append(emb) def forward( self, offsets: List[torch.Tensor], indices: List[torch.Tensor] ) -> torch.Tensor: tt_list = [] for n in range(self.num_tasks): t_list = [] for i in range(len(self.hash_sizes)): t = self.emb_modules[n * len(self.hash_sizes) + i]( offsets=offsets[i].long(), input=indices[i].long() ) t_list.append(t) tt = torch.cat(t_list, dim=1) tt_list.append(tt) return torch.cat(tt_list).view(self.num_tasks, -1, len(self.hash_sizes)) @click.command() @click.option("--batch-size", default=512) @click.option("--num-tables", default=2) @click.option("--num-tasks", default=3) @click.option("--repeats", default=100) def main(batch_size, num_tables, num_tasks, repeats) -> None: device = torch.device("cuda", 0) torch.cuda.set_device(device) hash_sizes = list(np.random.choice(range(50, 250), size=(num_tables))) lengths = [] offsets = [] indices = [] for h in hash_sizes: l, o, i = generate_unary_feature(batch_size, h) lengths.append(torch.IntTensor(l).to(device)) offsets.append(torch.IntTensor(o).to(device)) indices.append(torch.IntTensor(i).to(device)) lengths_tensor = torch.cat(lengths) indices_tensor = torch.cat(indices) offsets_tensor = torch.zeros( lengths_tensor.numel() + 1, dtype=lengths_tensor.dtype, device=lengths_tensor.device, ) offsets_tensor[1:] = torch.ops.fbgemm.asynchronous_inclusive_cumsum( lengths_tensor.view(-1) ) # forward ref_emb = MyModule(num_tasks, hash_sizes).to(device) unary_emb = batched_unary_embeddings_ops.BatchedUnaryEmbeddingBag( num_tasks, hash_sizes ).to(device) for i, param in enumerate(unary_emb.split_embedding_weights()): param.detach().copy_(ref_emb.emb_modules[i].weight) output_ref = ref_emb(offsets, indices) output = unary_emb(offsets_tensor, indices_tensor) torch.testing.assert_close(output_ref, output) # backward d_output = torch.randn([num_tasks, batch_size, len(hash_sizes)]).to(device) * 0.1 output_ref.backward(d_output) output.backward(d_output) d_weight_ref = [] for emb in ref_emb.emb_modules: d_weight_ref.append(emb.weight.grad) d_weight_ref = torch.cat(d_weight_ref).view(num_tasks, -1) d_weight = unary_emb.weight.grad # pyre-fixme[16]: Optional type has no attribute `squeeze`. torch.testing.assert_close(d_weight_ref, d_weight.squeeze()) # A100 40MB L2 cache elapse, _ = benchmark_torch_function(ref_emb, (offsets, indices), iters=repeats) print("PyTorch EmbeddingBag forward", elapse) elapse, _ = benchmark_torch_function( unary_emb, (offsets_tensor, indices_tensor), iters=repeats, ) print("Batched Unary Emb forward", elapse) output = ref_emb(offsets, indices) output.backward(d_output, retain_graph=True) elapse, _ = benchmark_torch_function( functools.partial(output.backward, retain_graph=True), (d_output,), iters=repeats, ) print("PyTorch EmbeddingBag backward", elapse) output = unary_emb(offsets_tensor, indices_tensor) elapse, _ = benchmark_torch_function( functools.partial(output.backward, retain_graph=True), (d_output,), iters=repeats, ) print("Batched Unary Emb backward", elapse) if __name__ == "__main__": main()
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import copy import logging import statistics import threading import time from dataclasses import dataclass from typing import Callable, List, Optional, Tuple import torch from fbgemm_gpu.split_embedding_utils import ( # noqa: F401 b_indices, generate_requests, # noqa: F401 get_device, # noqa: F401 round_up, # noqa: F401 ) logging.basicConfig(level=logging.DEBUG) def benchmark_torch_function( # noqa: C901 # pyre-fixme[2]: Parameter must be annotated. f, # pyre-fixme[2]: Parameter must be annotated. args, flush_gpu_cache_size_mb: int = 40, iters: int = 10, num_warmups: int = 2, device: str = "cuda", name: str = "", num_threads: int = 1, copy_f_for_multi_thread_test: bool = False, ) -> Tuple[float, torch.Tensor]: logging.info(f"Start to benchmark {name}...") if device != "" and device != "cuda": torch.cuda.set_device(device) for _ in range(num_warmups): output = f(*args) assert num_threads > 0 if torch.cuda.is_available() and (num_threads == 1): cache = torch.empty( int(flush_gpu_cache_size_mb * 1024 * 1024 // 4), dtype=torch.float, device=device, ) start_event = [torch.cuda.Event(enable_timing=True) for i in range(iters)] end_event = [torch.cuda.Event(enable_timing=True) for i in range(iters)] torch.cuda.synchronize(device) for i in range(iters): # flush the cache if flush_gpu_cache_size_mb: cache.zero_() start_event[i].record() with torch.cuda.nvtx.range(f"RunCudaModule_{name}"): output = f(*args) end_event[i].record() torch.cuda.synchronize(device) times = torch.tensor( [s.elapsed_time(e) for s, e in zip(start_event, end_event)] ) elapsed_time = torch.mean(times).item() * 1.0e-3 elif torch.cuda.is_available() and (num_threads > 1): cache = torch.empty( int(flush_gpu_cache_size_mb * 1024 * 1024 // 4), dtype=torch.float, device=device, ) duration_ms_list: List[float] = [] f_list = [f] # make deepcopy of f if necessary for _ in range(num_threads - 1): f_list.append(copy.deepcopy(f) if copy_f_for_multi_thread_test else f) @torch.inference_mode() # pyre-ignore[53] def forward(idx: int) -> None: stream = torch.cuda.Stream() f_temp = f_list[idx] start_event = [ torch.cuda.Event(enable_timing=True) for i in range(iters // num_threads) ] end_event = [ torch.cuda.Event(enable_timing=True) for i in range(iters // num_threads) ] torch.cuda.synchronize(device) with torch.cuda.stream(stream): for i in range(iters // num_threads): # flush the cache if flush_gpu_cache_size_mb: cache.zero_() start_event[i].record() with torch.cuda.nvtx.range(f"RunCudaModule_{name}"): _ = f_temp(*args) end_event[i].record() torch.cuda.synchronize(device) times = torch.tensor( [s.elapsed_time(e) for s, e in zip(start_event, end_event)] ) duration_ms = torch.sum(times).item() duration_ms_list.append(duration_ms) threads = [ threading.Thread(target=forward, args=(idx,)) for idx in range(num_threads) ] for thread in threads: thread.start() for thread in threads: thread.join() elapsed_time = sum(duration_ms_list) * 1.0e-3 / num_threads / iters torch.cuda.synchronize(device) if copy_f_for_multi_thread_test: # clean the copies of f and clean the HBM cache for idx in reversed(range(num_threads - 1)): del f_list[idx + 1] torch.cuda.empty_cache() else: start_time = time.time() for _ in range(iters): with torch.cuda.nvtx.range(f"RunCPUModule_{name}"): output = f(*args) elapsed_time = (time.time() - start_time) / iters # pyre-fixme[61]: `output` is undefined, or not always defined. return float(elapsed_time), output def benchmark_requests( requests: List[Tuple[torch.IntTensor, torch.IntTensor, Optional[torch.Tensor]]], func: Callable[[torch.Tensor, torch.Tensor, Optional[torch.Tensor]], torch.Tensor], flush_gpu_cache_size_mb: int = 0, check_median: bool = False, num_warmups: int = 0, bwd_only: bool = False, grad: Optional[torch.Tensor] = None, # Used to label benchmark iterations differently in nsys profile result # so that we can compare performance of two different models for example. # If empty string is provided, it won't have any effect. nvtx_range: str = "", # Can be used to clear model's stats after warmup for example. callback_after_warmup: Optional[Callable[[], None]] = None, ) -> float: times = [] if num_warmups > 0: indices, offsets, weights = requests[0] for _ in range(num_warmups): out = func(indices, offsets, weights) if bwd_only: out.backward(grad) if callback_after_warmup is not None: callback_after_warmup() if torch.cuda.is_available(): torch.cuda.synchronize() start_event = torch.cuda.Event(enable_timing=True) end_event = torch.cuda.Event(enable_timing=True) for it, (indices, offsets, weights) in enumerate(requests): if bwd_only: # Run forward before profiling if does backward only out = func(indices, offsets, weights) start_time = time.time() if torch.cuda.is_available(): if flush_gpu_cache_size_mb: _ = torch.rand( flush_gpu_cache_size_mb * 1024 * 1024 // 4, dtype=torch.float, device="cuda", ) torch.cuda.synchronize() start_event.record() if nvtx_range: torch.cuda.nvtx.range_push(f"{nvtx_range}-{it}") if bwd_only: out.backward(grad) else: func(indices, offsets, weights) if nvtx_range: torch.cuda.nvtx.range_pop() if torch.cuda.is_available(): end_event.record() torch.cuda.synchronize() it_time = start_event.elapsed_time(end_event) * 1.0e-3 times.append(it_time) else: it_time = time.time() - start_time times.append(it_time) avg_time = sum(times) / len(requests) median_time = statistics.median(times) return median_time if check_median else avg_time def benchmark_requests_refer( requests: List[Tuple[torch.IntTensor, torch.IntTensor, Optional[torch.Tensor]]], T: int, B: int, L: int, E: int, D: int, pooling_mode: str, weighted: bool, flush_gpu_cache_size_mb: int = 0, check_median: bool = False, ) -> float: do_pooling = pooling_mode in ["sum", "mean"] if do_pooling: nn_embedding_list = [ torch.nn.EmbeddingBag(E, D, mode=pooling_mode, sparse=True).cuda() ] * T else: nn_embedding_list = [torch.nn.Embedding(E, D, sparse=True).cuda()] * T times = [] if torch.cuda.is_available(): torch.cuda.synchronize() start_event = torch.cuda.Event(enable_timing=True) end_event = torch.cuda.Event(enable_timing=True) for indices, _, weights in requests: indices_list = indices.view(T, B, L).split(1) if weighted: assert weights is not None weights_list = weights.view(T, B, L).split(1) start_time = time.time() if torch.cuda.is_available(): if flush_gpu_cache_size_mb: _ = torch.rand( flush_gpu_cache_size_mb * 1024 * 1024 // 4, dtype=torch.float, device="cuda", ) torch.cuda.synchronize() start_event.record() nn_embedding_output = ( [ b_indices(nn_embedding, x, use_cpu=False, do_pooling=do_pooling) for (nn_embedding, x) in zip(nn_embedding_list, indices_list) ] if not weighted else [ b_indices( nn_embedding, x, per_sample_weights=xw.view(-1), use_cpu=False, do_pooling=do_pooling, ) for (nn_embedding, x, xw) in zip( nn_embedding_list, indices_list, # pyre-fixme[61]: `weights_list` is undefined, or not always # defined. weights_list, ) ] ) if do_pooling: final_output = torch.cat( [f.view(B, -1) for f in nn_embedding_output], dim=1 ) else: final_output = torch.cat(nn_embedding_output, dim=0).view( # noqa: F841 -1, D ) if torch.cuda.is_available(): end_event.record() torch.cuda.synchronize() it_time = start_event.elapsed_time(end_event) * 1.0e-3 times.append(it_time) else: it_time = time.time() - start_time times.append(it_time) avg_time = sum(times) / len(requests) median_time = statistics.median(times) return median_time if check_median else avg_time def benchmark_pipelined_requests( requests: List[Tuple[torch.IntTensor, torch.IntTensor, Optional[torch.Tensor]]], func1: Callable[[torch.Tensor, torch.Tensor, Optional[torch.Tensor]], None], func2: Callable[[torch.Tensor, torch.Tensor, Optional[torch.Tensor]], None], flush_gpu_cache_size_mb: int = 0, check_median: bool = False, ) -> Tuple[float, float]: torch.cuda.synchronize() start_events = [ (torch.cuda.Event(enable_timing=True), torch.cuda.Event(enable_timing=True)) for _ in requests ] end_events = [ (torch.cuda.Event(enable_timing=True), torch.cuda.Event(enable_timing=True)) for _ in requests ] for (indices, offsets, indices_weights), start_event, end_event in zip( requests, start_events, end_events ): if flush_gpu_cache_size_mb: _ = torch.rand( flush_gpu_cache_size_mb * 1024 * 1024 // 4, dtype=torch.float, device="cuda", ) torch.cuda.synchronize() start_event[0].record() func1(indices, offsets, indices_weights) end_event[0].record() start_event[1].record() func2(indices, offsets, indices_weights) end_event[1].record() torch.cuda.synchronize() avg_time = ( sum( start_event[0].elapsed_time(end_event[0]) * 1.0e-3 for start_event, end_event in zip(start_events, end_events) ) / len(requests), sum( start_event[1].elapsed_time(end_event[1]) * 1.0e-3 for start_event, end_event in zip(start_events, end_events) ) / len(requests), ) median_time = ( statistics.median( start_event[0].elapsed_time(end_event[0]) * 1.0e-3 for start_event, end_event in zip(start_events, end_events) ), statistics.median( start_event[1].elapsed_time(end_event[1]) * 1.0e-3 for start_event, end_event in zip(start_events, end_events) ), ) return median_time if check_median else avg_time @dataclass class VBEBenchmarkOutput: avg: float fwd: float bwd: float compressed_avg: float compressed_fwd: float reindex: float compressed_bwd: float def benchmark_vbe( baseline_requests: List[Tuple[torch.Tensor, torch.Tensor]], compressed_requests: List[Tuple[torch.Tensor, torch.Tensor]], baseline_func: Callable[[torch.Tensor, torch.Tensor], torch.Tensor], compressed_func: Callable[[torch.Tensor, torch.Tensor], torch.Tensor], reindex: torch.Tensor, embedding_dim: int, ) -> VBEBenchmarkOutput: times = [] fwd_times = [] bwd_times = [] torch.cuda.synchronize() start_event = torch.cuda.Event(enable_timing=True) end_event = torch.cuda.Event(enable_timing=True) for indices, offsets in baseline_requests: time = 0.0 start_event.record() # forward out = baseline_func(indices, offsets) end_event.record() torch.cuda.synchronize() it_time = start_event.elapsed_time(end_event) * 1.0e-3 fwd_times.append(it_time) time += it_time grad = torch.rand_like(out) start_event.record() # backward out.backward(grad) end_event.record() torch.cuda.synchronize() it_time = start_event.elapsed_time(end_event) * 1.0e-3 bwd_times.append(it_time) time += it_time times.append(time) avg = statistics.median(times) fwd = statistics.median(fwd_times) bwd = statistics.median(bwd_times) times.clear() fwd_times.clear() bwd_times.clear() reindex_times = [] torch.cuda.synchronize() start_event = torch.cuda.Event(enable_timing=True) end_event = torch.cuda.Event(enable_timing=True) for indices, offsets in compressed_requests: time = 0.0 start_event.record() # forward out = compressed_func(indices, offsets) end_event.record() torch.cuda.synchronize() it_time = start_event.elapsed_time(end_event) * 1.0e-3 fwd_times.append(it_time) time += it_time start_event.record() # reindex out = out.reshape(-1, embedding_dim) out = torch.ops.fbgemm.index_select_dim0(out, reindex) end_event.record() torch.cuda.synchronize() it_time = start_event.elapsed_time(end_event) * 1.0e-3 reindex_times.append(it_time) time += it_time grad = torch.rand_like(out) start_event.record() # backward out.backward(grad) end_event.record() torch.cuda.synchronize() it_time = start_event.elapsed_time(end_event) * 1.0e-3 bwd_times.append(it_time) time += it_time times.append(time) compressed_avg = statistics.median(times) compressed_fwd = statistics.median(fwd_times) reindex = statistics.median(reindex_times) compressed_bwd = statistics.median(bwd_times) return VBEBenchmarkOutput( avg, fwd, bwd, compressed_avg, compressed_fwd, reindex, compressed_bwd )
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import json import logging import math import os import random import statistics from pathlib import Path from typing import Any, Callable, Dict, List, Optional, Tuple import click import fbgemm_gpu import numpy as np import torch from fbgemm_gpu.split_embedding_configs import EmbOptimType as OptimType, SparseType from fbgemm_gpu.split_embedding_utils import generate_requests, get_device, round_up from fbgemm_gpu.split_table_batched_embeddings_ops_common import ( BoundsCheckMode, CacheAlgorithm, EmbeddingLocation, PoolingMode, RecordCacheMetrics, ) from fbgemm_gpu.split_table_batched_embeddings_ops_inference import ( IntNBitTableBatchedEmbeddingBagsCodegen, rounded_row_size_in_bytes, ) from fbgemm_gpu.split_table_batched_embeddings_ops_training import ( ComputeDevice, DenseTableBatchedEmbeddingBagsCodegen, SplitTableBatchedEmbeddingBagsCodegen, ) from torch import Tensor haveAIBench = False try: from aibench_observer.utils.observer import emitMetric haveAIBench = True except Exception: haveAIBench = False # pyre-fixme[16]: Module `fbgemm_gpu` has no attribute `open_source`. open_source: bool = getattr(fbgemm_gpu, "open_source", False) if open_source: # pyre-ignore[21] from bench_utils import ( benchmark_pipelined_requests, benchmark_requests, benchmark_requests_refer, benchmark_torch_function, benchmark_vbe, ) else: from fbgemm_gpu.bench.bench_utils import ( benchmark_pipelined_requests, benchmark_requests, benchmark_requests_refer, benchmark_torch_function, benchmark_vbe, ) logging.basicConfig(level=logging.DEBUG) @click.group() def cli() -> None: pass @cli.command() # recommended value: alpha=1.15 for training and alpha=1.09 for inference @click.option("--alpha", default=1.0) @click.option("--bag-size", default=20) @click.option("--batch-size", default=512) @click.option("--embedding-dim", default=128) @click.option("--weights-precision", type=SparseType, default=SparseType.FP32) @click.option("--stoc", is_flag=True, default=False) @click.option("--iters", default=100) @click.option("--warmup-runs", default=0) @click.option("--managed", default="device") @click.option("--mixed", is_flag=True, default=False) @click.option("--num-embeddings", default=int(1e5)) @click.option("--num-tables", default=32) @click.option("--reuse", default=0.0) @click.option("--row-wise/--no-row-wise", default=True) @click.option("--weighted", is_flag=True, default=False) @click.option("--pooling", type=str, default="sum") @click.option("--weighted-num-requires-grad", type=int, default=None) @click.option("--bounds-check-mode", type=int, default=BoundsCheckMode.NONE.value) @click.option("--flush-gpu-cache-size-mb", default=0) @click.option("--dense", is_flag=True, default=False) @click.option("--output-dtype", type=SparseType, default=SparseType.FP32) @click.option("--requests_data_file", type=str, default=None) @click.option("--tables", type=str, default=None) def device( # noqa C901 alpha: float, bag_size: int, batch_size: int, embedding_dim: int, weights_precision: SparseType, stoc: bool, iters: int, warmup_runs: int, managed: str, mixed: bool, num_embeddings: int, num_tables: int, reuse: float, row_wise: bool, weighted: bool, pooling: str, weighted_num_requires_grad: Optional[int], bounds_check_mode: int, flush_gpu_cache_size_mb: int, dense: bool, output_dtype: SparseType, requests_data_file: Optional[str], tables: Optional[str], ) -> None: np.random.seed(42) torch.manual_seed(42) B = batch_size D = embedding_dim L = bag_size E = num_embeddings T = num_tables if weighted_num_requires_grad: assert weighted_num_requires_grad <= T weighted_requires_grad_tables = np.random.choice( T, replace=False, size=(weighted_num_requires_grad,) ).tolist() feature_requires_grad = ( torch.tensor( [1 if t in weighted_requires_grad_tables else 0 for t in range(T)] ) .to(get_device()) .int() ) else: feature_requires_grad = None if mixed: Ds = [ round_up(np.random.randint(low=int(0.5 * D), high=int(1.5 * D)), 4) for _ in range(T) ] D = np.average(Ds) else: Ds = [D] * T optimizer = OptimType.EXACT_ROWWISE_ADAGRAD if row_wise else OptimType.EXACT_ADAGRAD if managed == "device": managed_option = ( EmbeddingLocation.DEVICE if torch.cuda.is_available() else EmbeddingLocation.HOST ) else: managed_option = EmbeddingLocation.MANAGED if pooling is None or pooling == "sum": pooling = "sum" pooling_mode = PoolingMode.SUM do_pooling = True elif pooling == "mean": pooling_mode = PoolingMode.MEAN do_pooling = True else: # "none" pooling_mode = PoolingMode.NONE do_pooling = False if dense: emb = DenseTableBatchedEmbeddingBagsCodegen( [ ( E, d, ) for d in Ds ], pooling_mode=pooling_mode, use_cpu=not torch.cuda.is_available(), ) else: emb = SplitTableBatchedEmbeddingBagsCodegen( [ ( E, d, managed_option, ComputeDevice.CUDA if torch.cuda.is_available() else ComputeDevice.CPU, ) for d in Ds ], optimizer=optimizer, learning_rate=0.1, eps=0.1, weights_precision=weights_precision, stochastic_rounding=stoc, output_dtype=output_dtype, pooling_mode=pooling_mode, bounds_check_mode=BoundsCheckMode(bounds_check_mode), ) emb = emb.to(get_device()) if weights_precision == SparseType.INT8: emb.init_embedding_weights_uniform(-0.0003, 0.0003) nparams = sum(w.numel() for w in emb.split_embedding_weights()) param_size_multiplier = weights_precision.bit_rate() / 8.0 output_size_multiplier = output_dtype.bit_rate() / 8.0 if do_pooling: read_write_bytes = ( output_size_multiplier * B * sum(Ds) + param_size_multiplier * B * sum(Ds) * L ) else: read_write_bytes = ( output_size_multiplier * B * sum(Ds) * L + param_size_multiplier * B * sum(Ds) * L ) logging.info( f"Embedding parameters: {nparams / 1.0e9: .2f} GParam, " f"{nparams * param_size_multiplier / 1.0e9: .2f} GB" ) logging.info( f"Accessed weights per batch: {B * sum(Ds) * L * param_size_multiplier / 1.0e9: .2f} GB" ) requests = generate_requests( iters, B, T, L, E, reuse=reuse, alpha=alpha, weighted=weighted, requests_data_file=requests_data_file, tables=tables, ) # forward time_per_iter = benchmark_requests( requests, lambda indices, offsets, per_sample_weights: emb.forward( indices.long(), offsets.long(), per_sample_weights, feature_requires_grad=feature_requires_grad, ), flush_gpu_cache_size_mb=flush_gpu_cache_size_mb, num_warmups=warmup_runs, ) logging.info( f"Forward, B: {B}, " f"E: {E}, T: {T}, D: {D}, L: {L}, W: {weighted}, " f"BW: {read_write_bytes / time_per_iter / 1.0e9: .2f} GB/s, " # noqa: B950 f"T: {time_per_iter * 1.0e6:.0f}us" ) if output_dtype == SparseType.INT8: # backward bench not representative return if do_pooling: grad_output = torch.randn(B, sum(Ds)).to(get_device()) else: grad_output = torch.randn(B * T * L, D).to(get_device()) # backward time_per_iter = benchmark_requests( requests, lambda indices, offsets, per_sample_weights: emb( indices.long(), offsets.long(), per_sample_weights, feature_requires_grad=feature_requires_grad, ), flush_gpu_cache_size_mb=flush_gpu_cache_size_mb, bwd_only=True, grad=grad_output, ) logging.info( f"Backward, B: {B}, E: {E}, T: {T}, D: {D}, L: {L}, " f"BW: {2 * read_write_bytes / time_per_iter / 1.0e9: .2f} GB/s, " f"T: {time_per_iter * 1.0e6:.0f}us" ) @cli.command() @click.option("--alpha", default=1.0) @click.option("--bag-size", default=20) @click.option("--batch-size", default=512) @click.option("--embedding-dim", default=128) @click.option("--weights-precision", type=SparseType, default=SparseType.FP32) @click.option("--stoc", is_flag=True, default=False) @click.option("--iters", default=100) @click.option("--mixed", is_flag=True, default=False) @click.option("--num-embeddings", default=int(1e5)) @click.option("--num-tables", default=32) @click.option("--reuse", default=0.1) @click.option("--uvm-tables", default=1) @click.option("--uvm-bag-size", default=1) @click.option("--weighted", is_flag=True, default=False) @click.option("--flush-gpu-cache-size-mb", default=0) @click.option("--requests_data_file", type=str, default=None) @click.option("--tables", type=str, default=None) @click.option("--output-dtype", type=SparseType, default=SparseType.FP32) @click.option("--use-cache", is_flag=True, default=False) @click.option("--cache-algorithm", default="lru") @click.option("--cache-load-factor", default=0.2) @click.option("--enforce-hbm", is_flag=True, default=False) def uvm( alpha: bool, bag_size: int, batch_size: int, embedding_dim: int, weights_precision: SparseType, stoc: bool, iters: int, mixed: bool, num_embeddings: int, num_tables: int, reuse: float, uvm_tables: int, uvm_bag_size: int, weighted: bool, flush_gpu_cache_size_mb: int, requests_data_file: Optional[str], tables: Optional[str], output_dtype: SparseType, use_cache: bool, cache_algorithm: str, cache_load_factor: float, enforce_hbm: bool, ) -> None: np.random.seed(42) torch.manual_seed(42) B = batch_size D = embedding_dim L = bag_size E = num_embeddings T = num_tables T_uvm = uvm_tables assert T_uvm <= T assert ( T_uvm > 0 ), f"T_uvm specified {T_uvm} <= 0. If not testing UVM, please use device benchmark." T_gpu = T - T_uvm L_uvm = uvm_bag_size cache_alg = CacheAlgorithm.LRU if cache_algorithm == "lru" else CacheAlgorithm.LFU managed_type = ( EmbeddingLocation.MANAGED_CACHING if use_cache else EmbeddingLocation.MANAGED ) if mixed: Ds = [ round_up(np.random.randint(low=int(0.5 * D), high=int(1.5 * D)), 4) for _ in range(T) ] D = np.average(Ds) else: Ds = [D] * T emb_uvm = SplitTableBatchedEmbeddingBagsCodegen( [ ( E, d, managed_type, ComputeDevice.CUDA, ) for d in Ds[:T_uvm] ], weights_precision=weights_precision, stochastic_rounding=stoc, output_dtype=output_dtype, cache_load_factor=cache_load_factor, cache_algorithm=cache_alg, enforce_hbm=enforce_hbm, ).cuda() if weights_precision == SparseType.INT8: emb_uvm.init_embedding_weights_uniform(-0.0003, 0.0003) if T_gpu > 0: emb_gpu = SplitTableBatchedEmbeddingBagsCodegen( [ ( E, d, EmbeddingLocation.DEVICE, ComputeDevice.CUDA, ) for d in Ds[T_uvm:] ], weights_precision=weights_precision, stochastic_rounding=stoc, ).cuda() if weights_precision == SparseType.INT8: emb_gpu.init_embedding_weights_uniform(-0.0003, 0.0003) emb_mixed = SplitTableBatchedEmbeddingBagsCodegen( [ ( E, d, managed_option, ComputeDevice.CUDA, ) for (d, managed_option) in zip( Ds, [managed_type] * T_uvm + [EmbeddingLocation.DEVICE] * T_gpu, ) ], weights_precision=weights_precision, stochastic_rounding=stoc, output_dtype=output_dtype, cache_load_factor=cache_load_factor, cache_algorithm=cache_alg, enforce_hbm=enforce_hbm, ).cuda() if weights_precision == SparseType.INT8: emb_mixed.init_embedding_weights_uniform(-0.0003, 0.0003) requests_uvm = generate_requests( iters, B, T_uvm, L_uvm, E, reuse=reuse, alpha=alpha, weighted=weighted, requests_data_file=requests_data_file, tables=tables, ) requests_gpu = None if T_gpu > 0: requests_gpu = generate_requests( iters, B, T_gpu, L, E, reuse=reuse, alpha=alpha, weighted=False, requests_data_file=requests_data_file, tables=tables, ) param_size_multiplier = weights_precision.bit_rate() / 8.0 output_size_multiplier = output_dtype.bit_rate() / 8.0 read_write_bytes_uvm = ( output_size_multiplier * B * sum(Ds[:T_uvm]) + param_size_multiplier * B * sum(Ds[:T_uvm]) * L_uvm ) time_per_iter = benchmark_requests( requests_uvm, lambda indices, offsets, per_sample_weights: emb_uvm.forward( indices.long(), offsets.long(), per_sample_weights, ), flush_gpu_cache_size_mb=flush_gpu_cache_size_mb, ) logging.info( f"UVM Forward, B: {B}, " f"E: {E}, T: {T_uvm}, D: {D}, L: {L_uvm}, W: {weighted}, " f"BW: {read_write_bytes_uvm / time_per_iter / 1.0e9: .2f} GB/s, " # noqa: B950 f"T: {time_per_iter * 1.0e6:.0f}us" ) if T_gpu > 0: requests = [] assert requests_gpu is not None for rs_uvm, rs_gpu in zip(requests_uvm, requests_gpu): indices = torch.cat([rs_uvm[0], rs_gpu[0]]) lengths = [L_uvm] * (T_uvm * B) + [L] * (T_gpu * B) offsets = torch.tensor(([0] + np.cumsum(lengths).tolist())).int().cuda() per_sample_weights = None if weighted: this_rs_uvm_weights = rs_uvm[2] assert this_rs_uvm_weights is not None this_rs_gpu_weights = rs_gpu[2] assert this_rs_gpu_weights is not None per_sample_weights = torch.cat( [this_rs_uvm_weights, this_rs_gpu_weights] ) requests.append((indices, offsets, per_sample_weights)) # forward time_per_iter = benchmark_requests( requests_gpu, lambda indices, offsets, per_sample_weights: emb_gpu.forward( indices.long(), offsets.long(), per_sample_weights, ), flush_gpu_cache_size_mb=flush_gpu_cache_size_mb, ) read_write_bytes_hbm = ( output_size_multiplier * B * sum(Ds[T_uvm:]) + param_size_multiplier * B * sum(Ds[T_uvm:]) * L ) logging.info( f"GPU Forward, B: {B}, " f"E: {E}, T: {T_gpu}, D: {D}, L: {L}, W: {weighted}, " f"BW: {read_write_bytes_hbm / time_per_iter / 1.0e9: .2f} GB/s, " # noqa: B950 f"T: {time_per_iter * 1.0e6:.0f}us" ) time_per_iter = benchmark_requests( requests, lambda indices, offsets, per_sample_weights: emb_mixed.forward( indices.long(), offsets.long(), per_sample_weights, ), flush_gpu_cache_size_mb=flush_gpu_cache_size_mb, ) read_write_bytes_total = read_write_bytes_uvm + read_write_bytes_hbm logging.info( f"Mixed Forward, B: {B}, " f"E: {E}, T_GPU: {T_gpu}, T_UVM: {T_uvm}, D: {D}, L_GPU: {L}, L_UVM: {L_uvm}, W: {weighted}, " f"BW: {read_write_bytes_total / time_per_iter / 1.0e9: .2f} GB/s, " # noqa: B950 f"T: {time_per_iter * 1.0e6:.0f}us" ) @cli.command() @click.option("--alpha", default=1.0) @click.option("--bag-size", default=20) @click.option("--batch-size", default=512) @click.option("--cache-algorithm", default="lru") @click.option("--cache-load-factor", default=0.2) @click.option("--embedding-dim", default=128) @click.option("--weights-precision", type=SparseType, default=SparseType.FP32) @click.option("--stoc", is_flag=True, default=False) @click.option("--long-index", is_flag=True, default=False) @click.option("--iters", default=100) @click.option("--mixed", is_flag=True, default=False) @click.option("--num-embeddings", default=int(1e5)) @click.option("--num-tables", default=32) @click.option("--reuse", default=0.1) @click.option("--weighted", is_flag=True, default=False) @click.option("--flush-gpu-cache-size-mb", default=0) @click.option("--requests_data_file", type=str, default=None) @click.option("--tables", type=str, default=None) def cache( # noqa C901 alpha: float, bag_size: int, batch_size: int, cache_algorithm: str, cache_load_factor: float, embedding_dim: int, weights_precision: SparseType, stoc: bool, iters: int, long_index: bool, mixed: bool, num_embeddings: int, num_tables: int, reuse: float, weighted: bool, flush_gpu_cache_size_mb: int, requests_data_file: Optional[str], tables: Optional[str], ) -> None: np.random.seed(42) torch.manual_seed(42) optimizer = OptimType.EXACT_ROWWISE_ADAGRAD B = batch_size D = embedding_dim L = bag_size E = num_embeddings T = num_tables cache_alg = CacheAlgorithm.LRU if cache_algorithm == "lru" else CacheAlgorithm.LFU if mixed: Ds = [ round_up(np.random.randint(low=int(0.5 * D), high=int(1.5 * D)), 4) for _ in range(T) ] D = np.average(Ds) else: Ds = [D] * T emb_nc = SplitTableBatchedEmbeddingBagsCodegen( [ ( E, d, EmbeddingLocation.MANAGED, ComputeDevice.CUDA, ) for d in Ds ], optimizer=optimizer, weights_precision=weights_precision, stochastic_rounding=stoc, ).cuda() if weights_precision == SparseType.INT8: emb_nc.init_embedding_weights_uniform(-0.0003, 0.0003) emb = SplitTableBatchedEmbeddingBagsCodegen( [ ( E, d, EmbeddingLocation.MANAGED_CACHING, ComputeDevice.CUDA, ) for d in Ds ], optimizer=optimizer, weights_precision=weights_precision, stochastic_rounding=stoc, cache_load_factor=cache_load_factor, cache_algorithm=cache_alg, ).cuda() if weights_precision == SparseType.INT8: emb.init_embedding_weights_uniform(-0.0003, 0.0003) nparams = sum(w.numel() for w in emb.split_embedding_weights()) param_size_multiplier = weights_precision.bit_rate() / 8.0 logging.info( f"Embedding tables: {E * T} rows, {nparams / 1.0e9: .2f} GParam, " f"{nparams * param_size_multiplier / 1.0e9: .2f} GB" ) logging.info( f"Accessed weights per batch: {B * T * L} rows, " f"{B * T * L * D * param_size_multiplier / 1.0e9: .2f} GB" ) requests = generate_requests( 2 * iters, B, T, L, E, reuse=reuse, alpha=alpha, weighted=weighted, requests_data_file=requests_data_file, tables=tables, ) warmup_requests, requests = requests[:iters], requests[iters:] grad_output = torch.randn(B, sum(Ds)).cuda() time_per_iter = benchmark_requests( requests, lambda indices, offsets, per_sample_weights: emb_nc( indices.long(), offsets.long(), per_sample_weights ).backward(grad_output), flush_gpu_cache_size_mb=flush_gpu_cache_size_mb, ) logging.info( f"ForwardBackward (UVM), B: {B}, E: {E}, T: {T}, D: {D}, L: {L}, " f"BW: {3 * param_size_multiplier * B * sum(Ds) * L / time_per_iter / 1.0e9: .2f} GB/s, " f"T: {time_per_iter * 1.0e6:.0f}us" ) # warm up for indices, offsets, _ in warmup_requests: emb.forward(indices.long(), offsets.long()) # get cache miss rate (forward and backward) and exchanged cache lines (prefetch) cache_misses = [] exchanged_cache_lines = [] NOT_FOUND = -1 for indices, offsets, _ in requests: old_lxu_cache_state = emb.lxu_cache_state.clone() emb.prefetch(indices.long(), offsets.long()) exchanged_cache_lines.append( (emb.lxu_cache_state != old_lxu_cache_state).sum().item() ) cache_misses.append((emb.lxu_cache_locations_list[0] == NOT_FOUND).sum().item()) emb.forward(indices.long(), offsets.long()) logging.info( f"Exchanged cache lines -- mean: {sum(exchanged_cache_lines)/len(requests): .2f}, " f"max: {max(exchanged_cache_lines)}, min: {min(exchanged_cache_lines)}" ) logging.info( f"Cache miss -- mean: {sum(cache_misses)/len(requests)}, " f"max: {max(cache_misses)}, min: {min(cache_misses)}" ) # benchmark prefetch emb.reset_cache_states() for indices, offsets, _ in warmup_requests: emb.forward(indices, offsets) prefetch_time, forward_backward_time = benchmark_pipelined_requests( requests, lambda indices, offsets, indices_weights: emb.prefetch(indices, offsets), lambda indices, offsets, indices_weights: emb.forward( indices, offsets, indices_weights ).backward(grad_output), flush_gpu_cache_size_mb=flush_gpu_cache_size_mb, ) e2e_time = prefetch_time + forward_backward_time logging.info( f"ForwardBackward (LXU), reuse: {reuse}, alpha: {alpha}, B: {B}, " f"E: {E}, T: {T}, D: {D}, L: {L}, " f"BW: {3 * param_size_multiplier * B * sum(Ds) * L / e2e_time / 1.0e9: .2f} GB/s, " f"Tprefetch: {prefetch_time * 1.0e6:.0f}us, " f"{2 * sum(exchanged_cache_lines) * param_size_multiplier * D / prefetch_time / len(requests) / 1.0e9: .2f} GB/s, " f"Tfwdbwd: {forward_backward_time * 1.0e6:.0f}us, " f"{3 * param_size_multiplier * B * sum(Ds) * L / forward_backward_time / 1.0e9: .2f} GB/s, " f"Te2e: {e2e_time * 1.0e6:.0f}us, " ) def benchmark_cpu_requests( requests: List[Tuple[torch.IntTensor, torch.IntTensor, Optional[torch.Tensor]]], func: Callable[[Tensor, Tensor, Optional[Tensor]], Tensor], ) -> float: import time start_time = time.perf_counter() for indices, offsets, weights in requests: func(indices, offsets, weights) end_time = time.perf_counter() return (end_time - start_time) / len(requests) @cli.command() @click.option("--alpha", default=1.0) @click.option("--bag-size", default=20) @click.option("--batch-size", default=512) @click.option("--embedding-dim", default=128) @click.option("--weights-precision", type=SparseType, default=SparseType.INT4) @click.option("--stoc", is_flag=True, default=False) @click.option("--iters", default=100) @click.option("--managed", default="device") @click.option("--mixed", is_flag=True, default=False) @click.option("--num-embeddings", default=int(1e5)) @click.option("--num-tables", default=32) @click.option("--reuse", default=0.0) @click.option("--row-wise/--no-row-wise", default=True) @click.option("--weighted", is_flag=True, default=False) @click.option("--index-remapping", is_flag=True, default=False) @click.option("--requests_data_file", type=str, default=None) @click.option("--tables", type=str, default=None) @click.option("--output-dtype", type=SparseType, default=SparseType.FP16) @click.option("--fp8-exponent-bits", type=int, default=None) @click.option("--fp8-exponent-bias", type=int, default=None) def nbit_cpu( # noqa C901 alpha: float, bag_size: int, batch_size: int, embedding_dim: int, weights_precision: SparseType, stoc: bool, iters: int, managed: str, mixed: bool, num_embeddings: int, num_tables: int, reuse: float, row_wise: bool, weighted: bool, index_remapping: bool, requests_data_file: Optional[str], tables: Optional[str], output_dtype: SparseType, fp8_exponent_bits: Optional[int], fp8_exponent_bias: Optional[int], ) -> None: np.random.seed(42) torch.manual_seed(42) B = batch_size D = embedding_dim L = bag_size E = num_embeddings T = num_tables if mixed: Ds = [ # int4 table batched emb op can only handle mixed D where D is multiple of 8 round_up(np.random.randint(low=int(0.5 * D), high=int(1.5 * D)), 8) for _ in range(T) ] D = np.average(Ds) else: Ds = [D] * T emb = IntNBitTableBatchedEmbeddingBagsCodegen( [("", E, d, weights_precision, EmbeddingLocation.HOST) for d in Ds], device="cpu", index_remapping=[torch.arange(E) for _ in Ds] if index_remapping else None, output_dtype=output_dtype, fp8_exponent_bits=fp8_exponent_bits, fp8_exponent_bias=fp8_exponent_bias, ).cpu() emb.fill_random_weights() nparams_byte = sum(w.numel() for (w, _) in emb.split_embedding_weights()) param_size_multiplier = weights_precision.bit_rate() / 8.0 output_size_multiplier = output_dtype.bit_rate() / 8.0 read_write_bytes = ( output_size_multiplier * B * T * D + param_size_multiplier * B * T * L * D ) logging.info( f"{weights_precision} Embedding tables: {E * T} rows, {nparams_byte / param_size_multiplier / 1.0e9: .2f} GParam, " f"{nparams_byte / 1.0e9: .2f} GB" # IntN TBE use byte for storage ) logging.info( f"Accessed weights per batch: {B * T * L} rows, " f"{B * T * L * D * param_size_multiplier / 1.0e9: .2f} GB" ) requests = generate_requests( iters, B, T, L, E, reuse=reuse, alpha=alpha, weighted=weighted, requests_data_file=requests_data_file, tables=tables, use_cpu=True, ) requests = [ (a.cpu().int(), b.cpu().int(), c.cpu() if c else None) for (a, b, c) in requests ] time_per_iter = benchmark_cpu_requests( # pyre-fixme[6]: For 1st param expected `List[Tuple[IntTensor, IntTensor, # Optional[Tensor]]]` but got `List[Tuple[Tensor, Tensor, Optional[Tensor]]]`. requests, lambda indices, offsets, per_sample_weights: emb.forward( indices, offsets, per_sample_weights, ), ) logging.info( f"{weights_precision} Forward, B: {B}, " f"E: {E}, T: {T}, D: {D}, L: {L}, W: {weighted}, " f"BW: {read_write_bytes / time_per_iter / 1.0e9: .2f} GB/s, " # noqa: B950 f"T: {time_per_iter * 1.0e6:.0f}us" ) @cli.command() @click.option("--alpha", default=1.0) @click.option("--bag-size", default=20) @click.option("--batch-size", default=512) @click.option("--embedding-dim", default=128) @click.option("--weights-precision", type=SparseType, default=SparseType.INT4) @click.option("--managed", default="device") @click.option("--mixed", is_flag=True, default=False) @click.option("--num-embeddings", default=int(1e5)) @click.option("--num-tables", default=32) @click.option("--reuse", default=0.0) @click.option("--weighted", is_flag=True, default=False) @click.option("--pooling", type=str, default="sum") @click.option("--bounds-check-mode", type=int, default=BoundsCheckMode.NONE.value) @click.option("--pruning-ratio", type=float, default=None) @click.option("--pruning-hash-load-factor", default=0.75) @click.option("--use-array-for-index-remapping", is_flag=True, default=True) @click.option("--check-median", is_flag=True, default=True) @click.option("--iters", default=100) @click.option("--runs-of-iters", default=5) @click.option("--warmup-runs", default=2) @click.option("--output-dtype", type=SparseType, default=SparseType.FP16) @click.option("--report-aibench", is_flag=True) @click.option("--run-reference", is_flag=True, default=False) @click.option("--requests_data_file", type=str, default=None) @click.option("--tables", type=str, default=None) @click.option("--fp8-exponent-bits", type=int, default=None) @click.option("--fp8-exponent-bias", type=int, default=None) def nbit_device( # noqa C901 alpha: float, bag_size: int, batch_size: int, embedding_dim: int, weights_precision: SparseType, managed: str, mixed: bool, num_embeddings: int, num_tables: int, reuse: float, weighted: bool, pooling: str, bounds_check_mode: int, pruning_ratio: Optional[float], pruning_hash_load_factor: float, use_array_for_index_remapping: bool, check_median: bool, iters: int, runs_of_iters: int, warmup_runs: int, output_dtype: SparseType, report_aibench: bool, run_reference: bool, requests_data_file: Optional[str], tables: Optional[str], fp8_exponent_bits: Optional[int], fp8_exponent_bias: Optional[int], ) -> None: np.random.seed(42) torch.manual_seed(42) B = batch_size D = embedding_dim L = bag_size E = num_embeddings original_E = E T = num_tables index_remapping = None if mixed: # int4 table batched emb op can only handle mixed D where D is multiple of 8 Ds = [ round_up(np.random.randint(low=int(0.5 * D), high=int(1.5 * D)), 8) for _ in range(T) ] D = np.average(Ds) else: Ds = [D] * T mem_for_pruning = 0 if pruning_ratio: assert pruning_ratio < 1 and pruning_ratio >= 0 E = math.ceil(E * (1.0 - pruning_ratio)) index_remapping = [] for _ in range(T): mapping = torch.tensor([-1] * original_E, dtype=torch.int32) selected_indices = random.sample(range(original_E), E) for i, idx in enumerate(selected_indices): mapping[idx] = i index_remapping.append(mapping) if use_array_for_index_remapping: mem_for_pruning += mapping.numel() * 4 else: mem_for_pruning += E / pruning_hash_load_factor * 2 * 4 if managed == "device": managed_option = EmbeddingLocation.DEVICE else: managed_option = EmbeddingLocation.MANAGED if pooling is None or pooling == "sum": pooling = "sum" pooling_mode = PoolingMode.SUM do_pooling = True elif pooling == "mean": pooling_mode = PoolingMode.MEAN do_pooling = True else: # "none" pooling_mode = PoolingMode.NONE do_pooling = False emb = IntNBitTableBatchedEmbeddingBagsCodegen( [("", E, d, weights_precision, managed_option) for d in Ds], bounds_check_mode=BoundsCheckMode(bounds_check_mode), index_remapping=index_remapping, pruning_hash_load_factor=pruning_hash_load_factor, use_array_for_index_remapping=use_array_for_index_remapping, output_dtype=output_dtype, pooling_mode=pooling_mode, fp8_exponent_bits=fp8_exponent_bits, fp8_exponent_bias=fp8_exponent_bias, ).cuda() emb.fill_random_weights() nparams_byte = sum(w.numel() for (w, _) in emb.split_embedding_weights()) param_size_multiplier = weights_precision.bit_rate() / 8.0 output_size_multiplier = output_dtype.bit_rate() / 8.0 if do_pooling: read_write_bytes = ( output_size_multiplier * B * T * D + param_size_multiplier * B * T * L * D ) else: read_write_bytes = ( output_size_multiplier * B * T * L * D + param_size_multiplier * B * T * L * D ) logging.info( f"{weights_precision} Embedding tables: {E * T} rows, {nparams_byte / param_size_multiplier / 1.0e9: .2f} GParam, " f"{nparams_byte / 1.0e9: .2f} GB" # IntN TBE use byte for storage ) logging.info( f"Accessed weights per batch: {B * T * L} rows, " f"{B * T * L * D * param_size_multiplier / 1.0e9: .2f} GB" ) times = [] for i in range(runs_of_iters): requests = generate_requests( iters, B, T, L, E, reuse=reuse, alpha=alpha, weighted=weighted, requests_data_file=requests_data_file, tables=tables, ) requests = [(a.int(), b.int(), c if c else None) for (a, b, c) in requests] # forward time_per_iter = benchmark_requests( requests, lambda indices, offsets, per_sample_weights: emb.forward( indices.int(), offsets.int(), per_sample_weights, ), check_median=check_median, ) # free up GPU memory del requests logging.info( f"Iteration {i}: " f"{weights_precision} Forward, B: {B}, " f"E: {E}, T: {T}, D: {D}, L: {L}, W: {weighted}, " f"BW: {read_write_bytes / time_per_iter / 1.0e9: .2f} GB/s, " # noqa: B950 f"Time: {time_per_iter * 1.0e6:.0f}us, " f"Memory Usage For Pruning: {mem_for_pruning / 1.0e9:.0f} GB" ) if i >= warmup_runs: times.append(time_per_iter) time_per_iter = statistics.mean(times) bandwidth = read_write_bytes / time_per_iter / 1.0e9 logging.info( f"Average of all iterations: " f"{weights_precision} Forward, B: {B}, " f"E: {E}, T: {T}, D: {D}, L: {L}, W: {weighted}, " f"BW: {bandwidth: .2f} GB/s, " # noqa: B950 f"Time: {time_per_iter * 1.0e6:.0f}us, " f"Memory Usage For Pruning: {mem_for_pruning / 1.0e9:.0f} GB" ) if report_aibench and haveAIBench: print( emitMetric( type="NET", metric=f"bandwidth_{weights_precision}", unit="scalar", value=str(bandwidth), ) ) print( emitMetric( type="NET", metric=f"time_per_iter_{weights_precision}", unit="scalar", value=str(time_per_iter * 1.0e6), ) ) if run_reference: times = [] for i in range(runs_of_iters): requests = generate_requests( iters, B, T, L, E, reuse=reuse, alpha=alpha, weighted=weighted, requests_data_file=requests_data_file, tables=tables, ) requests = [(a.int(), b.int(), c if c else None) for (a, b, c) in requests] # forward time_per_iter_refer = benchmark_requests_refer( requests, T, B, L, E, D, pooling, weighted, check_median=check_median, ) # free up GPU memory del requests logging.info( f"Reference (nn.Embedding(Bag)) Iteration {i}: " f"Forward, B: {B}, " f"E: {E}, T: {T}, D: {D}, L: {L}, W: {weighted}, " f"BW: {read_write_bytes / time_per_iter_refer / 1.0e9: .2f} GB/s, " # noqa: B950 f"Time: {time_per_iter_refer * 1.0e6:.0f}us " ) if i >= warmup_runs: times.append(time_per_iter_refer) time_per_iter_refer = statistics.mean(times) bandwidth = read_write_bytes / time_per_iter_refer / 1.0e9 logging.info( f"Average of all iterations: " f"Forward, B: {B}, " f"E: {E}, T: {T}, D: {D}, L: {L}, W: {weighted}, " f"Effective BW: {bandwidth: .2f} GB/s, " # noqa: B950 f"Time: {time_per_iter_refer * 1.0e6:.0f}us " ) @cli.command() @click.option("--alpha", default=1.0) @click.option("--bag-size-list", type=str, default="20") @click.option("--batch-size", default=512) @click.option("--embedding-dim-list", type=str, default="128") @click.option("--weights-precision", type=SparseType, default=SparseType.INT4) @click.option("--managed", default="device") @click.option("--mixed", is_flag=True, default=False) @click.option("--num-embeddings-list", type=str, default="100000") @click.option("--reuse", default=0.0) @click.option("--weighted", is_flag=True, default=False) @click.option("--pooling", type=str, default="sum") @click.option("--bounds-check-mode", type=int, default=BoundsCheckMode.NONE.value) @click.option("--pruning-ratio", type=float, default=None) @click.option("--pruning-hash-load-factor", default=0.75) @click.option("--use-array-for-index-remapping", is_flag=True, default=True) @click.option("--check-median", is_flag=True, default=True) @click.option("--iters", default=100) @click.option("--runs-of-iters", default=5) @click.option("--warmup-runs", default=2) @click.option("--output-dtype", type=SparseType, default=SparseType.FP16) @click.option("--report-aibench", is_flag=True) @click.option("--fp8-exponent-bits", type=int, default=None) @click.option("--fp8-exponent-bias", type=int, default=None) @click.option("--use-cpu", is_flag=True, default=False) def nbit_device_with_spec( # noqa C901 alpha: float, bag_size_list: str, batch_size: int, embedding_dim_list: str, weights_precision: SparseType, managed: str, mixed: bool, num_embeddings_list: str, reuse: float, weighted: bool, pooling: str, bounds_check_mode: int, pruning_ratio: Optional[float], pruning_hash_load_factor: float, use_array_for_index_remapping: bool, check_median: bool, iters: int, runs_of_iters: int, warmup_runs: int, output_dtype: SparseType, report_aibench: bool, fp8_exponent_bits: Optional[int], fp8_exponent_bias: Optional[int], use_cpu: bool, ) -> None: np.random.seed(42) torch.manual_seed(42) B = batch_size Ds = [int(D) for D in embedding_dim_list.split(",")] Ls = [int(L) for L in bag_size_list.split(",")] Es = [int(E) for E in num_embeddings_list.split(",")] E = np.mean(Es) D = np.mean(Ds) L = np.mean(Ls) T = len(Ds) logging.info("TBE Spec:") logging.info("#, E, D, L") for i, (e, d, bag_size) in enumerate(zip(Es, Ds, Ls)): logging.info(f"{i}, {e}, {d}, {bag_size}") logging.info(f"Mean(Es) = {E}, Mean(Ds) = {D}, Mean(Ls) = {L}") index_remapping = None mem_for_pruning = 0 if pruning_ratio: original_Es = Es assert pruning_ratio < 1 and pruning_ratio >= 0 index_remapping = [] new_Es = [] for original_E in original_Es: E = math.ceil(original_E * (1.0 - pruning_ratio)) mapping = torch.tensor([-1] * original_E, dtype=torch.int32) selected_indices = random.sample(range(original_E), E) for i, idx in enumerate(selected_indices): mapping[idx] = i index_remapping.append(mapping) if use_array_for_index_remapping: mem_for_pruning += mapping.numel() * 4 else: mem_for_pruning += E / pruning_hash_load_factor * 2 * 4 new_Es.append(E) Es = new_Es E = np.mean(Es) logging.info(f"After prunnig (pruning_ratio={pruning_ratio}") logging.info("#, E, D, L") for i, (e, d, bag_size) in enumerate(zip(Es, Ds, Ls)): logging.info(f"{i}, {e}, {d}, {bag_size}") logging.info(f"Mean(Es) = {E}, Mean(Ds) = {D}, Mean(Ls) = {L}") if managed == "device": managed_option = EmbeddingLocation.DEVICE else: managed_option = EmbeddingLocation.MANAGED # Override managed_option to HOST if using CPU if use_cpu: managed_option = EmbeddingLocation.HOST if pooling is None or pooling == "sum": pooling = "sum" pooling_mode = PoolingMode.SUM do_pooling = True elif pooling == "mean": pooling_mode = PoolingMode.MEAN do_pooling = True else: # "none" pooling_mode = PoolingMode.NONE do_pooling = False emb = IntNBitTableBatchedEmbeddingBagsCodegen( [("", e, d, weights_precision, managed_option) for d, e in zip(Ds, Es)], device="cpu" if use_cpu else None, bounds_check_mode=BoundsCheckMode(bounds_check_mode), index_remapping=index_remapping, pruning_hash_load_factor=pruning_hash_load_factor, use_array_for_index_remapping=use_array_for_index_remapping, output_dtype=output_dtype, pooling_mode=pooling_mode, fp8_exponent_bits=fp8_exponent_bits, fp8_exponent_bias=fp8_exponent_bias, ) if use_cpu: emb = emb.cpu() else: emb = emb.cuda() emb.fill_random_weights() nparams_byte = sum(w.numel() for (w, _) in emb.split_embedding_weights()) param_size_multiplier = weights_precision.bit_rate() / 8.0 output_size_multiplier = output_dtype.bit_rate() / 8.0 if do_pooling: read_write_bytes = sum( [ output_size_multiplier * B * d + param_size_multiplier * B * bag_size * d for bag_size, d in zip(Ls, Ds) ] ) else: read_write_bytes = sum( [ output_size_multiplier * B * bag_size * d + param_size_multiplier * B * bag_size * d for bag_size, d in zip(Ls, Ds) ] ) logging.info( f"{weights_precision} Embedding tables: {sum(Es)} rows, {nparams_byte / param_size_multiplier / 1.0e9: .2f} GParam, " f"{nparams_byte / 1.0e9: .2f} GB" # IntN TBE use byte for storage ) logging.info( f"Accessed weights per batch: {B * sum(Ls)} rows, " f"{B * sum([bag_size * d for bag_size, d in zip(Ls, Ds)]) * param_size_multiplier / 1.0e9: .2f} GB" ) times = [] for i in range(runs_of_iters): # Generate a request for each table then combine all_requests = { "indices": [[] for _ in range(iters)], "offsets": [[] for _ in range(iters)], "weights": [[] for _ in range(iters)], } # row = iter, column = tensor for t, (bag_size, e) in enumerate(zip(Ls, Es)): requests = generate_requests( iters, B, 1, bag_size, e, reuse=reuse, # don't use zipf if e isn't large enough compared to bag_size. alpha=alpha if (e / bag_size) > 2.0 else 1.0, # need many more samples for zipf if bag_size is very small. zipf_oversample_ratio=3 if bag_size > 5 else 10, weighted=weighted, use_cpu=use_cpu, ) for it, (indices, offsets, weights) in enumerate(requests): all_requests["indices"][it].append(indices) if t > 0: offsets = offsets[1:] # remove the first element offsets += all_requests["offsets"][it][t - 1][-1] all_requests["offsets"][it].append(offsets) all_requests["weights"][it].append(weights) requests = [] for it in range(iters): indices = torch.concat(all_requests["indices"][it]) offsets = torch.concat(all_requests["offsets"][it]) if weighted: weights = torch.concat(all_requests["weights"][it]) else: weights = None requests.append((indices, offsets, weights)) if use_cpu: requests = [ (a.cpu().int(), b.cpu().int(), c.cpu() if c else None) for (a, b, c) in requests ] else: requests = [(a.int(), b.int(), c if c else None) for (a, b, c) in requests] del all_requests assert len(requests) == iters # forward if use_cpu: time_per_iter = benchmark_cpu_requests( requests, lambda indices, offsets, per_sample_weights: emb.forward( indices.int(), offsets.int(), per_sample_weights, ), ) else: time_per_iter = benchmark_requests( requests, lambda indices, offsets, per_sample_weights: emb.forward( indices.int(), offsets.int(), per_sample_weights, ), check_median=check_median, ) # free up memory del requests logging.info( f"Iteration {i}: " f"{weights_precision} Forward, B: {B}, " f"E: {E}, T: {T}, D: {D}, L: {L}, W: {weighted}, " f"BW: {read_write_bytes / time_per_iter / 1.0e9: .2f} GB/s, " # noqa: B950 f"Time: {time_per_iter * 1.0e6:.0f}us, " f"Memory Usage For Pruning: {mem_for_pruning / 1.0e9:.0f} GB" ) if i >= warmup_runs: times.append(time_per_iter) time_per_iter = statistics.mean(times) bandwidth = read_write_bytes / time_per_iter / 1.0e9 logging.info( f"Average of all iterations: " f"{weights_precision} Forward, B: {B}, " f"E: {E}, T: {T}, D: {D}, L: {L}, W: {weighted}, " f"BW: {bandwidth: .2f} GB/s, " # noqa: B950 f"Time: {time_per_iter * 1.0e6:.0f}us, " f"Memory Usage For Pruning: {mem_for_pruning / 1.0e9:.0f} GB" ) if report_aibench and haveAIBench: print( emitMetric( type="NET", metric=f"bandwidth_{weights_precision}", unit="scalar", value=str(bandwidth), ) ) print( emitMetric( type="NET", metric=f"time_per_iter_{weights_precision}", unit="scalar", value=str(time_per_iter * 1.0e6), ) ) @cli.command() @click.option("--alpha", default=1.0) @click.option("--bag-size", default=20) @click.option("--batch-size", default=512) @click.option("--embedding-dim", default=128) @click.option("--weights-precision", type=SparseType, default=SparseType.INT4) @click.option("--iters", default=100) @click.option("--mixed", is_flag=True, default=False) @click.option("--num-embeddings", default=int(1e5)) @click.option("--num-tables", default=32) @click.option("--reuse", default=0.1) @click.option("--uvm-num-embeddings", default=int(1e5)) @click.option("--uvm-tables", default=1) @click.option("--uvm-bag-size", default=1) @click.option("--weighted", is_flag=True, default=False) @click.option("--flush-gpu-cache-size-mb", default=0) @click.option("--output-dtype", type=SparseType, default=SparseType.FP16) @click.option("--use-cache", is_flag=True, default=False) @click.option("--cache-algorithm", default="lru") @click.option("--cache-load-factor", default=0.2) @click.option("--enforce-hbm", is_flag=True, default=False) @click.option("--fp8-exponent-bits", type=int, default=None) @click.option("--fp8-exponent-bias", type=int, default=None) def nbit_uvm( alpha: bool, bag_size: int, batch_size: int, embedding_dim: int, weights_precision: SparseType, iters: int, mixed: bool, num_embeddings: int, num_tables: int, reuse: float, uvm_num_embeddings: int, uvm_tables: int, uvm_bag_size: int, weighted: bool, flush_gpu_cache_size_mb: int, output_dtype: SparseType, use_cache: bool, cache_algorithm: str, cache_load_factor: float, enforce_hbm: bool, fp8_exponent_bits: Optional[int], fp8_exponent_bias: Optional[int], ) -> None: np.random.seed(42) torch.manual_seed(42) B = batch_size D = embedding_dim L = bag_size E = num_embeddings E_uvm = uvm_num_embeddings T = num_tables T_uvm = uvm_tables assert T_uvm <= T assert ( T_uvm > 0 ), f"T_uvm specified {T_uvm} <= 0. If not testing UVM, please use device benchmark." T_gpu = T - T_uvm L_uvm = uvm_bag_size cache_alg = CacheAlgorithm.LRU if cache_algorithm == "lru" else CacheAlgorithm.LFU managed_type = ( EmbeddingLocation.MANAGED_CACHING if use_cache else EmbeddingLocation.MANAGED ) logging.info(f"T: {T}, T_uvm: {T_uvm}, T_gpu: {T_gpu}") if mixed: Ds = [ round_up(np.random.randint(low=int(0.5 * D), high=int(1.5 * D)), 4) for _ in range(T) ] D = np.average(Ds) else: Ds = [D] * T emb_uvm = IntNBitTableBatchedEmbeddingBagsCodegen( [ ( "", E_uvm, d, weights_precision, managed_type, ) for d in Ds[:T_uvm] ], output_dtype=output_dtype, cache_load_factor=cache_load_factor, cache_algorithm=cache_alg, enforce_hbm=enforce_hbm, fp8_exponent_bits=fp8_exponent_bits, fp8_exponent_bias=fp8_exponent_bias, ).cuda() emb_uvm.fill_random_weights() if T_gpu > 0: emb_gpu = IntNBitTableBatchedEmbeddingBagsCodegen( [ ( "", E, d, weights_precision, EmbeddingLocation.DEVICE, ) for d in Ds[T_uvm:] ], output_dtype=output_dtype, fp8_exponent_bits=fp8_exponent_bits, fp8_exponent_bias=fp8_exponent_bias, ).cuda() emb_gpu.fill_random_weights() emb_mixed = IntNBitTableBatchedEmbeddingBagsCodegen( [ ( "", e, d, weights_precision, managed_option, ) for (e, d, managed_option) in zip( [E_uvm] * T_uvm + [E] * T_gpu, Ds, [managed_type] * T_uvm + [EmbeddingLocation.DEVICE] * T_gpu, ) ], output_dtype=output_dtype, cache_load_factor=cache_load_factor, cache_algorithm=cache_alg, enforce_hbm=enforce_hbm, fp8_exponent_bits=fp8_exponent_bits, fp8_exponent_bias=fp8_exponent_bias, ).cuda() emb_mixed.fill_random_weights() requests_uvm = generate_requests( iters, B, T_uvm, L_uvm, E_uvm, reuse=reuse, alpha=alpha, weighted=weighted, ) requests_uvm = [(a.int(), b.int(), c if c else None) for (a, b, c) in requests_uvm] requests_gpu = None if T_gpu > 0: requests_gpu = generate_requests( iters, B, T_gpu, L, E, reuse=reuse, alpha=alpha, weighted=False, ) requests_gpu = [ (a.int(), b.int(), c if c else None) for (a, b, c) in requests_gpu ] param_size_multiplier = weights_precision.bit_rate() / 8.0 output_size_multiplier = output_dtype.bit_rate() / 8.0 read_write_bytes_uvm = ( output_size_multiplier * B * sum(Ds[:T_uvm]) + param_size_multiplier * B * sum(Ds[:T_uvm]) * L_uvm ) if T_gpu > 0: nparams_byte = sum(w.numel() for (w, _) in emb_mixed.split_embedding_weights()) logging.info( f"{weights_precision} Embedding tables: {E * T_gpu + E_uvm * T_uvm} rows, {nparams_byte / param_size_multiplier / 1.0e9: .2f} GParam, " f"{nparams_byte / 1.0e9: .2f} GB" # IntN TBE use byte for storage ) logging.info( f"Accessed weights per batch: {B * (T_gpu * L + T_uvm * L_uvm)} rows, " f"{B * (L * sum(Ds[T_uvm:]) + L_uvm * sum(Ds[:T_uvm])) * param_size_multiplier / 1.0e9: .2f} GB" ) torch.cuda.cudart().cudaProfilerStart() torch.cuda.nvtx.range_push("uvm forward") time_per_iter = benchmark_requests( requests_uvm, lambda indices, offsets, per_sample_weights: emb_uvm.forward( indices.int(), offsets.int(), per_sample_weights, ), flush_gpu_cache_size_mb=flush_gpu_cache_size_mb, ) logging.info( f"UVM NBit Forward, {weights_precision}, B: {B}, " f"E_uvm: {E_uvm}, T: {T_uvm}, D: {D}, L: {L_uvm}, W: {weighted}, " f"BW: {read_write_bytes_uvm / time_per_iter / 1.0e9: .2f} GB/s, " # noqa: B950 f"Time: {time_per_iter * 1.0e6:.0f}us" ) torch.cuda.nvtx.range_pop() torch.cuda.cudart().cudaProfilerStop() if T_gpu > 0: requests = [] assert requests_gpu is not None for rs_uvm, rs_gpu in zip(requests_uvm, requests_gpu): indices = torch.cat([rs_uvm[0], rs_gpu[0]]) lengths = [L_uvm] * (T_uvm * B) + [L] * (T_gpu * B) offsets = torch.tensor(([0] + np.cumsum(lengths).tolist())).int().cuda() per_sample_weights = None if weighted: this_rs_uvm_weights = rs_uvm[2] assert this_rs_uvm_weights is not None this_rs_gpu_weights = rs_gpu[2] assert this_rs_gpu_weights is not None per_sample_weights = torch.cat( [this_rs_uvm_weights, this_rs_gpu_weights] ) requests.append((indices, offsets, per_sample_weights)) # forward time_per_iter = benchmark_requests( requests_gpu, lambda indices, offsets, per_sample_weights: emb_gpu.forward( indices.int(), offsets.int(), per_sample_weights, ), flush_gpu_cache_size_mb=flush_gpu_cache_size_mb, ) read_write_bytes_hbm = ( output_size_multiplier * B * sum(Ds[T_uvm:]) + param_size_multiplier * B * sum(Ds[T_uvm:]) * L ) logging.info( f"GPU NBit Forward, {weights_precision}, B: {B}, " f"E: {E}, T: {T_gpu}, D: {D}, L: {L}, W: {weighted}, " f"BW: {read_write_bytes_hbm / time_per_iter / 1.0e9: .2f} GB/s, " # noqa: B950 f"Time: {time_per_iter * 1.0e6:.0f}us" ) time_per_iter = benchmark_requests( requests, lambda indices, offsets, per_sample_weights: emb_mixed.forward( indices.int(), offsets.int(), per_sample_weights, ), flush_gpu_cache_size_mb=flush_gpu_cache_size_mb, ) read_write_bytes_total = read_write_bytes_uvm + read_write_bytes_hbm logging.info( f"Mixed NBit Forward, {weights_precision}, B: {B}, " f"E_GPU: {E}, E_UVM: {E_uvm}, T_GPU: {T_gpu}, T_UVM: {T_uvm}, D: {D}, L_GPU: {L}, L_UVM: {L_uvm}, W: {weighted}, " f"BW: {read_write_bytes_total / time_per_iter / 1.0e9: .2f} GB/s, " # noqa: B950 f"Time: {time_per_iter * 1.0e6:.0f}us" ) # benchmark prefetch emb_mixed.reset_cache_states() for indices, offsets, _ in requests: emb_mixed.forward(indices, offsets) prefetch_time, forward_time = benchmark_pipelined_requests( requests, lambda indices, offsets, indices_weights: emb_mixed.prefetch( indices, offsets, ), lambda indices, offsets, indices_weights: emb_mixed.forward( indices, offsets, indices_weights, ), flush_gpu_cache_size_mb=flush_gpu_cache_size_mb, ) e2e_time = prefetch_time + forward_time logging.info( f"Forward(LXU) {weights_precision}, reuse: {reuse}, alpha: {alpha}, B: {B}, " f"E: {E}, T: {T}, D: {D}, L: {L}, " f"Te2e: {e2e_time * 1.0e6:.0f}us, " f"e2e BW: {read_write_bytes_total / e2e_time / 1.0e9: .2f} GB/s, " f"Tprefetch: {prefetch_time * 1.0e6:.0f}us, " f"TfwdTime: {forward_time * 1.0e6:.0f}us, " f"{read_write_bytes_total / forward_time / 1.0e9: .2f} GB/s" ) @cli.command() @click.option("--test-name", type=str, default="") @click.option("--alpha", default=1.0) @click.option("--bag-size", default=20) @click.option("--batch-size", default=512) @click.option("--embedding-dim", default=128) @click.option("--weights-precision", type=SparseType, default=SparseType.INT4) @click.option("--iters", default=100) @click.option("--warmup", default=10) @click.option("--mixed", is_flag=True, default=False) @click.option("--num-embeddings", default=int(1e5)) @click.option("--num-tables", default=32) @click.option("--reuse", default=0.1) @click.option("--weighted", is_flag=True, default=False) @click.option("--flush-gpu-cache-size-mb", default=0) @click.option("--output-dtype", type=SparseType, default=SparseType.FP16) @click.option("--use-cache", is_flag=True, default=False) @click.option("--cache-algorithm", default="lru") @click.option("--cache-load-factor", default=0.2) @click.option("--enforce-hbm", is_flag=True, default=False) @click.option("--fp8-exponent-bits", type=int, default=None) @click.option("--fp8-exponent-bias", type=int, default=None) @click.option("--record-cache", is_flag=True, default=False) @click.option("--uvm-host-mapped", is_flag=True, default=False) @click.option( "--dump-requests", type=int, default=0, help="number of reqs to dump (0=no dump)" ) def nbit_uvm_compare_direct_mapped( test_name: str, alpha: bool, bag_size: int, batch_size: int, embedding_dim: int, weights_precision: SparseType, iters: int, warmup: int, mixed: bool, num_embeddings: int, num_tables: int, reuse: float, weighted: bool, flush_gpu_cache_size_mb: int, output_dtype: SparseType, use_cache: bool, cache_algorithm: str, cache_load_factor: float, enforce_hbm: bool, fp8_exponent_bits: Optional[int], fp8_exponent_bias: Optional[int], record_cache: bool, uvm_host_mapped: bool, dump_requests: int, ) -> None: logging.info(json.dumps({k: str(v) for k, v in locals().items()}, indent=2)) np.random.seed(42) torch.manual_seed(42) B: int = batch_size D: int = embedding_dim L: int = bag_size E: int = num_embeddings T: int = num_tables cache_alg: CacheAlgorithm = ( CacheAlgorithm.LRU if cache_algorithm == "lru" else CacheAlgorithm.LFU ) managed_type: EmbeddingLocation = ( EmbeddingLocation.MANAGED_CACHING if use_cache else EmbeddingLocation.MANAGED ) if mixed: Ds: List[int] = [ round_up(np.random.randint(low=int(0.5 * D), high=int(1.5 * D)), 4) for _ in range(T) ] D = np.average(Ds) else: Ds: List[int] = [D] * T _requests_uvm = generate_requests( iters, B, T, L, E, reuse=reuse, alpha=alpha, weighted=weighted, ) # pyre-fixme[9]: requests_uvm has type `List[Tuple[IntTensor, IntTensor, # Optional[Tensor]]]`; used as `List[Tuple[Tensor, Tensor, Optional[Tensor]]]`. requests_uvm: List[Tuple[torch.IntTensor, torch.IntTensor, Optional[Tensor]]] = [ (a.int(), b.int(), c if c else None) for (a, b, c) in _requests_uvm ] param_size_multiplier = weights_precision.bit_rate() / 8.0 output_size_multiplier = output_dtype.bit_rate() / 8.0 read_write_bytes_uvm: float = ( output_size_multiplier * B * sum(Ds[:T]) + param_size_multiplier * B * sum(Ds[:T]) * L ) stats: Dict[str, Any] = { "B": B, "T": T, "E": E, "L": L, "D": D, "reuse": reuse, } def bench_uvm_cls( name: str = "32way", cache_assoc: int = 32, record_cache: bool = False, hbm: bool = False, ) -> None: loc = managed_type if not hbm else EmbeddingLocation.DEVICE emb = IntNBitTableBatchedEmbeddingBagsCodegen( [ ( "", E, d, weights_precision, loc, ) for d in Ds[:T] ], output_dtype=output_dtype, cache_load_factor=cache_load_factor, cache_algorithm=cache_alg, cache_assoc=cache_assoc, enforce_hbm=enforce_hbm, fp8_exponent_bits=fp8_exponent_bits, fp8_exponent_bias=fp8_exponent_bias, gather_uvm_cache_stats=record_cache, uvm_host_mapped=uvm_host_mapped, ).cuda() emb.fill_random_weights() nvtx_range = ( f"UVM-RECORD-CACHE-{name.upper()}" if record_cache else f"UVM-{name.upper()}" ) callback_after_warmup = emb.reset_uvm_cache_stats if record_cache else None torch.cuda.cudart().cudaProfilerStart() time_per_iter = benchmark_requests( requests_uvm, lambda indices, offsets, per_sample_weights: emb.forward( indices.int(), offsets.int(), per_sample_weights, ), flush_gpu_cache_size_mb=flush_gpu_cache_size_mb, num_warmups=warmup, nvtx_range=nvtx_range, callback_after_warmup=callback_after_warmup, ) torch.cuda.cudart().cudaProfilerStop() nonlocal stats if name not in stats: stats[name] = {} if not record_cache: # Only measure time when cache counter is off (serious overhead) if name not in stats: stats[name] = {} stats[name]["bytes"] = read_write_bytes_uvm stats[name]["time_per_iter"] = time_per_iter * 1e6 logging.info( f"[{name.center(8)}] " f"UVM NBit Forward, {weights_precision}, B: {B}, " f"E_uvm: {E}, T: {T}, D: {D}, L: {L}, W: {weighted}, " f"BW: {read_write_bytes_uvm / time_per_iter / 1.0e9: .2f} GB/s, " # noqa: B950 f"Time: {time_per_iter * 1.0e6:.0f}us" ) if record_cache: ucs = emb.uvm_cache_stats.detach().cpu().numpy().tolist() cache_stats = { "num_calls": ucs[0], "num_requested_indices": ucs[1], "num_unique_indices": ucs[2], "num_unique_misses": ucs[3], "num_conflict_unique_misses": ucs[4], "num_conflict_misses": ucs[5], } stats[name]["cache_stats"] = cache_stats logging.info(f"[{name:>8s}] cache stats {cache_stats}") bench_uvm_cls(name="HBM", hbm=True) bench_uvm_cls(name="32way", cache_assoc=32) bench_uvm_cls(name="1way", cache_assoc=1) if record_cache: bench_uvm_cls( name="32way", cache_assoc=32, record_cache=True, ) bench_uvm_cls( name="1way", cache_assoc=1, record_cache=True, ) if test_name: folder = Path(os.getenv("HOME", ".")) / test_name if not folder.is_dir(): logging.info(f"MAKING FOLDER {folder}") folder.mkdir(parents=True, mode=0o755) with (folder / "uvm_stats.txt").open("w") as f: logging.info(f"Dumping stats at {folder}") print(stats, file=f) if dump_requests: with (folder / "requests.txt").open("w") as f: for req in requests_uvm[:dump_requests]: ind, off, _ = req print(ind.cpu().numpy().tolist(), file=f) print(off.cpu().numpy().tolist(), file=f) @cli.command() @click.option("--alpha", default=1.0) @click.option("--bag-size", default=20) @click.option("--batch-size", default=512) @click.option("--cache-algorithm", default="lru") @click.option("--cache-load-factor", default=0.2) @click.option("--cache-assoc", default=32) @click.option("--embedding-dim", default=128) @click.option("--weights-precision", type=SparseType, default=SparseType.INT4) @click.option("--iters", default=100) @click.option("--mixed", is_flag=True, default=False) @click.option("--num-embeddings", default=int(1e5)) @click.option("--num-tables", default=32) @click.option("--reuse", default=0.1) @click.option("--weighted", is_flag=True, default=False) @click.option("--flush-gpu-cache-size-mb", default=0) @click.option("--output-dtype", type=SparseType, default=SparseType.FP16) @click.option("--enforce-hbm", is_flag=True, default=False) @click.option("--record-cache-miss-counter", is_flag=True, default=False) @click.option("--record-tablewise-cache-miss", is_flag=True, default=False) @click.option("--gather-uvm-cache-stats", is_flag=True, default=False) @click.option("--fp8-exponent-bits", type=int, default=None) @click.option("--fp8-exponent-bias", type=int, default=None) def nbit_cache( # noqa C901 alpha: float, bag_size: int, batch_size: int, cache_algorithm: str, cache_load_factor: float, cache_assoc: int, embedding_dim: int, weights_precision: SparseType, iters: int, mixed: bool, num_embeddings: int, num_tables: int, reuse: float, weighted: bool, flush_gpu_cache_size_mb: int, output_dtype: SparseType, enforce_hbm: bool, record_cache_miss_counter: bool, record_tablewise_cache_miss: bool, gather_uvm_cache_stats: bool, fp8_exponent_bits: Optional[int], fp8_exponent_bias: Optional[int], ) -> None: np.random.seed(42) torch.manual_seed(42) B = batch_size D = embedding_dim L = bag_size E = num_embeddings T = num_tables cache_alg = CacheAlgorithm.LRU if cache_algorithm == "lru" else CacheAlgorithm.LFU if mixed: Ds = [ round_up(np.random.randint(low=int(0.5 * D), high=int(1.5 * D)), 4) for _ in range(T) ] D = np.average(Ds) else: Ds = [D] * T emb_nc = IntNBitTableBatchedEmbeddingBagsCodegen( [ ( "", E, d, weights_precision, EmbeddingLocation.MANAGED, ) for d in Ds ], output_dtype=output_dtype, enforce_hbm=enforce_hbm, fp8_exponent_bits=fp8_exponent_bits, fp8_exponent_bias=fp8_exponent_bias, cache_assoc=cache_assoc, ).cuda() emb_nc.fill_random_weights() emb = IntNBitTableBatchedEmbeddingBagsCodegen( [ ( "", E, d, weights_precision, EmbeddingLocation.MANAGED_CACHING, ) for d in Ds ], record_cache_metrics=RecordCacheMetrics( record_cache_miss_counter, record_tablewise_cache_miss ), gather_uvm_cache_stats=gather_uvm_cache_stats, cache_load_factor=cache_load_factor, cache_algorithm=cache_alg, output_dtype=output_dtype, enforce_hbm=enforce_hbm, fp8_exponent_bits=fp8_exponent_bits, fp8_exponent_bias=fp8_exponent_bias, cache_assoc=cache_assoc, ).cuda() emb.fill_random_weights() nparams_byte = sum(w.numel() for (w, _) in emb.split_embedding_weights()) param_size_multiplier = weights_precision.bit_rate() / 8.0 output_size_multiplier = output_dtype.bit_rate() / 8.0 read_write_bytes = ( param_size_multiplier * B * sum(Ds) * L + output_size_multiplier * B * sum(Ds) + param_size_multiplier * B * sum(Ds) * L ) logging.info( f"{weights_precision} Embedding tables: {E * T} rows, {nparams_byte / param_size_multiplier / 1.0e9: .2f} GParam, " f"{nparams_byte / 1.0e9: .2f} GB" # IntN TBE use byte for storage ) logging.info( f"Accessed weights per batch: {B * T * L} rows, " f"{B * T * L * D * param_size_multiplier / 1.0e9: .2f} GB" ) requests = generate_requests( 2 * iters, B, T, L, E, reuse=reuse, alpha=alpha, weighted=weighted ) requests = [(a.int(), b.int(), c if c else None) for (a, b, c) in requests] warmup_requests, requests = requests[:iters], requests[iters:] time_per_iter = benchmark_requests( requests, lambda indices, offsets, per_sample_weights: emb_nc( indices.int(), offsets.int(), per_sample_weights ), flush_gpu_cache_size_mb=flush_gpu_cache_size_mb, ) logging.info( f"Forward (UVM) {weights_precision}, B: {B}, E: {E}, T: {T}, D: {D}, L: {L}, " f"BW: {read_write_bytes / time_per_iter / 1.0e9: .2f} GB/s, " # noqa: B950 f"T: {time_per_iter * 1.0e6:.0f}us" ) # warm up for indices, offsets, _ in warmup_requests: emb.forward(indices.int(), offsets.int()) # get cache miss rate (forward only) and exchanged cache lines (prefetch) cache_misses = [] exchanged_cache_lines = [] unique_indices = [] input_indices = [] NOT_FOUND = -1 # reset the cache miss counters after warmup if record_cache_miss_counter or record_tablewise_cache_miss: emb.reset_cache_miss_counter() if gather_uvm_cache_stats: emb.reset_uvm_cache_stats() for indices, offsets, _ in requests: old_lxu_cache_state = emb.lxu_cache_state.clone() emb.prefetch(indices, offsets) exchanged_cache_lines.append( (emb.lxu_cache_state != old_lxu_cache_state).sum().item() ) cache_misses.append( (emb.lxu_cache_locations_list.top() == NOT_FOUND).sum().item() ) emb.forward(indices, offsets) linear_cache_indices = torch.ops.fbgemm.linearize_cache_indices( emb.cache_hash_size_cumsum, indices, offsets, ) unique_indices.append(len(torch.unique(linear_cache_indices, sorted=False))) input_indices.append(len(indices)) logging.info( f"Exchanged cache lines -- mean: {sum(exchanged_cache_lines)/len(requests): .2f}, " f"max: {max(exchanged_cache_lines)}, min: {min(exchanged_cache_lines)}" ) logging.info( f"Cache miss -- mean: {sum(cache_misses)/len(requests)}, " f"max: {max(cache_misses)}, min: {min(cache_misses)}" ) logging.info( f"input_indices -- mean: {sum(input_indices)/len(requests)}, " f"max: {max(input_indices)}, min: {min(input_indices)}" ) logging.info( f"unique_indices -- mean: {sum(unique_indices)/len(requests)}, " f"max: {max(unique_indices)}, min: {min(unique_indices)}" ) unique_miss_rate = [a / b for (a, b) in zip(exchanged_cache_lines, unique_indices)] logging.info( f"unique_miss_rate -- mean: {sum(unique_miss_rate)/len(requests)}, " f"max: {max(unique_miss_rate)}, min: {min(unique_miss_rate)}" ) if record_cache_miss_counter or record_tablewise_cache_miss: emb.print_cache_miss_counter() if gather_uvm_cache_stats: emb.print_uvm_cache_stats() # benchmark prefetch if record_cache_miss_counter or record_tablewise_cache_miss: emb.reset_cache_states() if gather_uvm_cache_stats: emb.reset_uvm_cache_stats() for indices, offsets, _ in warmup_requests: emb.forward(indices, offsets) torch.cuda.cudart().cudaProfilerStart() torch.cuda.nvtx.range_push("pipeline") prefetch_time, forward_time = benchmark_pipelined_requests( requests, lambda indices, offsets, indices_weights: emb.prefetch( indices, offsets, ), lambda indices, offsets, indices_weights: emb.forward( indices, offsets, indices_weights, ), flush_gpu_cache_size_mb=flush_gpu_cache_size_mb, ) e2e_time = prefetch_time + forward_time torch.cuda.nvtx.range_pop() logging.info( f"Forward(LXU) {weights_precision}, reuse: {reuse}, alpha: {alpha}, B: {B}, " f"E: {E}, T: {T}, D: {D}, L: {L}, " f"Te2e: {e2e_time * 1.0e6:.0f}us, " f"e2e BW: {read_write_bytes / e2e_time / 1.0e9: .2f} GB/s, " f"Tprefetch: {prefetch_time * 1.0e6:.0f}us, " f"{2 * sum(exchanged_cache_lines) * param_size_multiplier * D / prefetch_time / len(requests) / 1.0e9: .2f} GB/s, " f"TfwdTime: {forward_time * 1.0e6:.0f}us, " f"{read_write_bytes / forward_time / 1.0e9: .2f} GB/s" ) torch.cuda.cudart().cudaProfilerStop() @cli.command() @click.option("--bag-size", default=20) @click.option("--batch-size", default=2048) @click.option("--iters", default=10) @click.option("--num-embeddings", default=int(1e5)) @click.option("--num-tables", default=100) @click.option("--pruning-hash-load-factor", default=0.75) @click.option("--hit-rate", default=0.9) @click.option("--use-cpu", is_flag=True, default=False) @click.option("--requests_data_file", type=str, default=None) @click.option("--tables", type=str, default=None) def hashtable( # noqa C901 bag_size: int, batch_size: int, iters: int, num_embeddings: int, num_tables: int, pruning_hash_load_factor: float, hit_rate: float, use_cpu: bool, requests_data_file: Optional[str], tables: Optional[str], ) -> None: B = batch_size T = num_tables L = bag_size E = num_embeddings np.random.seed(42) torch.manual_seed(42) if hit_rate == 1.0: chosen_indices = torch.cat([torch.arange(E) for _ in range(T)], dim=0).int() else: chosen_indices = ( torch.randint(low=0, high=int(E * 1.0 / hit_rate), size=(E * T,)) .view(-1) .int() ) dense_indices = torch.cat([torch.arange(E) for _ in range(T)], dim=0).int() offsets = torch.tensor([E * t for t in range(T + 1)]).int() assert offsets[-1] == chosen_indices.numel() assert offsets.numel() == T + 1 assert (offsets.numel() - 1) // T == 1 capacities = [round_up(int(E / pruning_hash_load_factor), 32) for _ in range(T)] hash_table = torch.zeros( (sum(capacities), 2), dtype=torch.int32, ) hash_table_offsets = torch.tensor([0] + np.cumsum(capacities).tolist()).long() assert hash_table.numel() * 4 < 2**32 # initialize hash_table[:, :] = -1 torch.ops.fbgemm.pruned_hashmap_insert( chosen_indices, dense_indices, offsets, hash_table, hash_table_offsets ) requests = generate_requests( iters, B, T, L, E, requests_data_file=requests_data_file, tables=tables, ) if not use_cpu: hash_table = hash_table.cuda() hash_table_offsets = hash_table_offsets.cuda() requests = [(a.cuda().int(), b.cuda().int(), c) for (a, b, c) in requests] else: requests = [(a.int().cpu(), b.int().cpu(), c) for (a, b, c) in requests] empirical_hit_rate = np.mean( [ torch.ops.fbgemm.pruned_hashmap_lookup( indices, offsets, hash_table, hash_table_offsets ) .ne(-1) .sum() .item() / indices.numel() for indices, offsets, _ in requests ] ) time_per_iter = benchmark_requests( requests, lambda indices, offsets, _: torch.ops.fbgemm.pruned_hashmap_lookup( indices, offsets, hash_table, hash_table_offsets ), ) logging.info( f"LinearTable: B: {B}, T: {T}, L: {L}, E: {E}, QPS: {B * T * L / time_per_iter / 1.0e9:.2f}B QPS/s, " f"T: {time_per_iter * 1.0e6:.0f}us, pruning load factor: {E * T / hash_table.shape[0] * 100:.1f}%, hit rate: {empirical_hit_rate * 100:.2f}%, Table size: {hash_table.numel() * 4 / 1.0e9:.0f} GB" ) if use_cpu: ht = torch.classes.fbgemm.PrunedMapCPU() ht.insert(chosen_indices, dense_indices, offsets, T) time_per_iter = benchmark_requests( requests, lambda indices, offsets, _: ht.lookup(indices, offsets), ) logging.info( f"HashTable: B: {B}, T: {T}, L: {L}, E: {E}, QPS: {B * T * L / time_per_iter / 1.0e9:.2f}B QPS/s, " f"T: {time_per_iter * 1.0e6:.0f}us, pruning load factor: {E * T / hash_table.shape[0] * 100:.1f}%, hit rate: {empirical_hit_rate * 100:.2f}%, Table size: {hash_table.numel() * 4 / 1.0e9:.0f} GB" ) @cli.command() @click.option("--bag-size", default=20) @click.option("--batch-size", default=2048) @click.option("--iters", default=100) @click.option("--num-embeddings", default=int(1e5)) @click.option("--num-tables", default=100) @click.option("--pruning-ratio", default=0.9) @click.option("--device", default="cuda") @click.option("--requests_data_file", type=str, default=None) @click.option("--tables", type=str, default=None) def pruned_array( # noqa C901 bag_size: int, batch_size: int, iters: int, num_embeddings: int, num_tables: int, pruning_ratio: float, device: str, requests_data_file: Optional[str], tables: Optional[str], ) -> None: B = batch_size T = num_tables L = bag_size E = num_embeddings np.random.seed(42) torch.manual_seed(42) assert pruning_ratio > 0 and pruning_ratio <= 1 original_E = int(E / (1.0 - pruning_ratio)) index_remappings = torch.tensor( [-1] * original_E * T, dtype=torch.int32, device=device ) index_remappings_offsets = torch.empty(T + 1, dtype=torch.int64, device=device) index_remappings_offsets[0] = 0 dense_indices = torch.tensor(range(E), dtype=torch.int32, device=device) for t in range(T): selected_indices = torch.add( torch.randperm(original_E, device=device), t * original_E )[:E] index_remappings[selected_indices] = dense_indices index_remappings_offsets[t + 1] = index_remappings_offsets[t] + original_E requests = generate_requests( iters, B, T, L, E, requests_data_file=requests_data_file, tables=tables, use_cpu=True if device == "cpu" else False, ) requests = [(a.int().to(device), b.int().to(device), c) for (a, b, c) in requests] time_per_iter = benchmark_requests( requests, lambda indices, offsets, _: torch.ops.fbgemm.pruned_array_lookup( indices, offsets, index_remappings, index_remappings_offsets, ), ) logging.info( f"LinearTable: B: {B}, T: {T}, L: {L}, E: {E}, QPS: {B * T * L / time_per_iter / 1.0e9:.2f}B QPS/s, " f"T: {time_per_iter * 1.0e6:.0f}us, Pruning Ratio: {pruning_ratio * 100:.2f}%, Table size: {original_E * T * 4 / 1.0e9:.0f} GB" ) @cli.command() @click.option("--bag-size", default=20) @click.option("--batch-size", default=512) @click.option("--iters", default=100) @click.option("--num-embeddings", default=int(1e5)) @click.option("--num-tables", default=32) @click.option("--bounds-check-mode", type=int, default=BoundsCheckMode.WARNING.value) @click.option("--requests_data_file", type=str, default=None) @click.option("--tables", type=str, default=None) def bounds_check_indices( # noqa C901 bag_size: int, batch_size: int, iters: int, num_embeddings: int, num_tables: int, bounds_check_mode: int, requests_data_file: Optional[str], tables: Optional[str], ) -> None: np.random.seed(42) torch.manual_seed(42) B = batch_size L = bag_size E = num_embeddings T = num_tables requests = generate_requests( iters, B, T, L, E, requests_data_file=requests_data_file, tables=tables, ) # requests = [(a.int(), b.int(), c if c else None) for (a, b, c) in requests] warning = torch.tensor([0]).long().to(get_device()) rows_per_table = torch.tensor([E for _ in range(T)]).long().to(get_device()) # forward time_per_iter = benchmark_requests( requests, lambda indices, offsets, _: torch.ops.fbgemm.bounds_check_indices( rows_per_table, indices, offsets, BoundsCheckMode(bounds_check_mode), warning, ), ) logging.info( f"Bounds Check Indices: B: {B}, " f"E: {E}, T: {T}, L: {L}, " f"BW: {(8 * B * T * L + 8 * (B * T + 1)) / time_per_iter / 1.0e9: .2f} GB/s, " # noqa: B950 f"T: {time_per_iter * 1.0e6:.0f}us" ) @cli.command() @click.option("--num-tables", type=int, default=32) @click.option("--embedding-dim", type=int, default=248) @click.option("--num-embeddings", type=int, default=int(1e5)) @click.option("--update-row-num", type=int, default=1e4) @click.option("--weights-precision", type=SparseType, default=SparseType.INT4) @click.option("--output-dtype", type=SparseType, default=SparseType.FP16) @click.option("--iters", type=int, default=100) @click.option("--fp8-exponent-bits", type=int, default=None) @click.option("--fp8-exponent-bias", type=int, default=None) def emb_inplace_update( # noqa C901 num_tables: int, embedding_dim: int, num_embeddings: int, update_row_num: int, weights_precision: SparseType, output_dtype: SparseType, iters: int, fp8_exponent_bits: Optional[int], fp8_exponent_bias: Optional[int], ) -> None: if open_source: logging.warning( "emb_inplace_update op benchmark doesn't support open source now!" ) return np.random.seed(42) torch.manual_seed(42) T = num_tables D = embedding_dim E = num_embeddings N = update_row_num D_alignment = max(weights_precision.align_size() for t in range(T)) D_alignment = max(D_alignment, output_dtype.align_size()) D = round_up(D, D_alignment) Ds = [ round_up( np.random.randint(low=int(max(0.25 * D, 1)), high=int(1.0 * D)), D_alignment, ) for _ in range(T) ] Es = [E] * T row_alignment = 16 # use_cpu = False -> only test CUDA function now weights_ty_list = [weights_precision] * T managed = [EmbeddingLocation.DEVICE] * T embedding_specs = [ ( "", E, D, W_TY, EmbeddingLocation(M), ) for (E, D, M, W_TY) in zip(Es, Ds, managed, weights_ty_list) ] op = IntNBitTableBatchedEmbeddingBagsCodegen( embedding_specs=embedding_specs, output_dtype=output_dtype, device=torch.cuda.current_device(), fp8_exponent_bits=fp8_exponent_bits, fp8_exponent_bias=fp8_exponent_bias, ) # Initilize the random weights for int nbit table split embedding bag op.fill_random_weights() update_table_idx = [np.random.randint(low=0, high=T) for _ in range(N)] # Generate non-dup indices table_map = {} update_row_idx = [] for t in update_table_idx: while True: row_idx = np.random.randint(low=0, high=Es[t]) if t not in table_map or row_idx not in table_map[t]: break if t in table_map: table_map[t].append(row_idx) else: table_map[t] = [] table_map[t].append(row_idx) update_row_idx.append(row_idx) update_weight_size = sum( [ rounded_row_size_in_bytes( Ds[t], weights_ty_list[t], row_alignment, ) for t in update_table_idx ] ) update_weights = torch.randint( low=0, high=255, size=(update_weight_size,), dtype=torch.uint8, device=torch.cuda.current_device(), ) param_size_multiplier = weights_precision.bit_rate() / 8.0 output_size_multiplier = output_dtype.bit_rate() / 8.0 read_write_bytes = output_size_multiplier * N * D + param_size_multiplier * N * D # Update op weights with the customized ops op.embedding_inplace_update_internal( update_table_idx, update_row_idx, update_weights, ) time_per_iter, _ = benchmark_torch_function( op.embedding_inplace_update_internal, (update_table_idx, update_row_idx, update_weights), iters=iters, ) logging.info( f"Emb inplace update (including H2D for metadata): " f"T: {T}, D: {D}, E: {E}, N: {N}, " f"BW: {read_write_bytes / time_per_iter / 1.0e9:.2f} GB/s, " # noqa: B950 f"T: {time_per_iter * 1.0e6:.0f}us" ) update_offsets = [] update_offset = 0 for table_idx in update_table_idx: D_bytes = rounded_row_size_in_bytes( Ds[table_idx], weights_ty_list[table_idx], row_alignment, ) update_offsets.append(update_offset) update_offset += D_bytes update_offsets.append(update_offset) update_table_idx = torch.tensor( update_table_idx, device=torch.cuda.current_device(), dtype=torch.int32, ) update_row_idx = torch.tensor( update_row_idx, device=torch.cuda.current_device(), dtype=torch.int32, ) update_offsets = torch.tensor( update_offsets, device=torch.cuda.current_device(), dtype=torch.int64, ) time_per_iter, _ = benchmark_torch_function( torch.ops.fbgemm.emb_inplace_update, ( op.weights_dev, op.weights_uvm, op.weights_placements, op.weights_offsets, op.weights_tys, op.D_offsets, update_weights, update_table_idx, update_row_idx, update_offsets, 16, # row_alignment ), iters=iters, ) logging.info( f"Emb inplace update (pure device update op): " f"T: {T}, D: {D}, E: {E}, N: {N}, " f"BW: {read_write_bytes / time_per_iter / 1.0e9:.2f} GB/s, " # noqa: B950 f"T: {time_per_iter * 1.0e6:.0f}us" ) @cli.command() @click.option("--alpha", default=1.0) @click.option( "--bag-size-list", type=str, default="20", ) @click.option( "--bag-size-sigma-list", type=str, default="None", help="A list of bag size standard deviations for generating bag sizes " "(one std per table). If set, the benchmark will treat --bag-size-list as a " "list of bag size means.", ) @click.option("--batch-size", default=512) @click.option("--embedding-dim-list", type=str, default="128") @click.option("--weights-precision", type=SparseType, default=SparseType.FP32) @click.option("--stoc", is_flag=True, default=False) @click.option("--iters", default=100) @click.option("--warmup-runs", default=0) @click.option("--managed", default="device") @click.option("--num-embeddings-list", type=str, default="100000") @click.option("--reuse", default=0.0) @click.option("--row-wise/--no-row-wise", default=True) @click.option("--weighted", is_flag=True, default=False) @click.option("--pooling", type=str, default="sum") @click.option("--bounds-check-mode", type=int, default=BoundsCheckMode.NONE.value) @click.option("--flush-gpu-cache-size-mb", default=0) @click.option("--output-dtype", type=SparseType, default=SparseType.FP32) def device_with_spec( # noqa C901 alpha: float, bag_size_list: str, bag_size_sigma_list: str, batch_size: int, embedding_dim_list: str, weights_precision: SparseType, stoc: bool, iters: int, warmup_runs: int, managed: str, num_embeddings_list: str, reuse: float, row_wise: bool, weighted: bool, pooling: str, bounds_check_mode: int, flush_gpu_cache_size_mb: int, output_dtype: SparseType, ) -> None: np.random.seed(42) torch.manual_seed(42) B = batch_size Ds = [int(D) for D in embedding_dim_list.split(",")] Es = [int(E) for E in num_embeddings_list.split(",")] T = len(Ds) use_variable_bag_sizes = bag_size_sigma_list != "None" if use_variable_bag_sizes: Ls = [int(mu) for mu in bag_size_list.split(",")] sigma_Ls = [int(sigma) for sigma in bag_size_sigma_list.split(",")] assert T == len(Ls) and T == len(sigma_Ls), ( f"bag-size-list (length: {len(Ls)}) and bag-size-sigma-list " f"(length: {len(sigma_Ls)}) must have the same length as " f"embedding-dim-list (length: {T})" ) else: Ls = [int(L) for L in bag_size_list.split(",")] assert T == len(Ls), ( f"bag-size-list (length: {len(Ls)}) must have the same length as " f"embedding-dim-list (length: {T})" ) assert T == len(Es), ( f"num-embeddings-list (length: {len(Es)}) must have the same length as " f"embedding-dim-list (length: {T})" ) assert T >= 1, "There must be at least one table" feature_requires_grad = None optimizer = OptimType.EXACT_ROWWISE_ADAGRAD if row_wise else OptimType.EXACT_ADAGRAD if managed == "device": managed_option = ( EmbeddingLocation.DEVICE if torch.cuda.is_available() else EmbeddingLocation.HOST ) else: managed_option = EmbeddingLocation.MANAGED if pooling is None or pooling == "sum": pooling = "sum" pooling_mode = PoolingMode.SUM do_pooling = True elif pooling == "mean": pooling_mode = PoolingMode.MEAN do_pooling = True else: # "none" pooling_mode = PoolingMode.NONE do_pooling = False if not do_pooling: ref_D = Ds[0] for D in Ds: assert ( D == ref_D ), "All embedding dimensions must be the same for sequence TBE" emb = SplitTableBatchedEmbeddingBagsCodegen( [ ( e, d, managed_option, ComputeDevice.CUDA if torch.cuda.is_available() else ComputeDevice.CPU, ) for d, e in zip(Ds, Es) ], optimizer=optimizer, learning_rate=0.1, eps=0.1, weights_precision=weights_precision, stochastic_rounding=stoc, output_dtype=output_dtype, pooling_mode=pooling_mode, bounds_check_mode=BoundsCheckMode(bounds_check_mode), ) emb = emb.to(get_device()) if weights_precision == SparseType.INT8: emb.init_embedding_weights_uniform(-0.0003, 0.0003) nparams = sum(w.numel() for w in emb.split_embedding_weights()) param_size_multiplier = weights_precision.bit_rate() / 8.0 output_size_multiplier = output_dtype.bit_rate() / 8.0 # Generate a request for each table then combine all_requests = { "indices": [[] for _ in range(iters)], "offsets": [[] for _ in range(iters)], "weights": [[] for _ in range(iters)], } # row = iter, column = tensor for t, e in enumerate(Es): # (indices, offsets, weights) requests = generate_requests( iters, B, 1, Ls[t], e, reuse=reuse, alpha=alpha, weighted=weighted, sigma_L=sigma_Ls[t] if use_variable_bag_sizes else None, zipf_oversample_ratio=3 if Ls[t] > 5 else 5, ) for i, (indices, offsets, weights) in enumerate(requests): all_requests["indices"][i].append(indices) if t > 0: offsets = offsets[1:] # remove the first element offsets += all_requests["offsets"][i][t - 1][-1] all_requests["offsets"][i].append(offsets) all_requests["weights"][i].append(weights) prev_indices_len = -1 requests = [] for i in range(iters): indices = torch.concat(all_requests["indices"][i]) if prev_indices_len == -1: prev_indices_len = indices.numel() assert ( prev_indices_len == indices.numel() ), "Number of indices for every iteration must be the same" offsets = torch.concat(all_requests["offsets"][i]) if weighted: weights = torch.concat(all_requests["weights"][i]) else: weights = None requests.append((indices, offsets, weights)) del all_requests assert len(requests) == iters sum_DLs = sum([d * l for d, l in zip(Ds, Ls)]) if do_pooling: read_write_bytes = ( output_size_multiplier * B * sum(Ds) + param_size_multiplier * B * sum_DLs ) else: read_write_bytes = ( output_size_multiplier * B * sum(Ds) + param_size_multiplier * B * sum_DLs ) if use_variable_bag_sizes: # pyre-ignore [61] Ls_str = f"mu {Ls} sigma {sigma_Ls}" else: Ls_str = f"{Ls}" logging.info( f"Embedding parameters: {nparams / 1.0e9: .2f} GParam, " f"{nparams * param_size_multiplier / 1.0e9: .2f} GB" ) logging.info( f"Accessed weights per batch: {B * sum_DLs * param_size_multiplier / 1.0e9: .2f} GB" ) # forward time_per_iter = benchmark_requests( requests, lambda indices, offsets, per_sample_weights: emb.forward( indices.long(), offsets.long(), per_sample_weights, feature_requires_grad=feature_requires_grad, ), flush_gpu_cache_size_mb=flush_gpu_cache_size_mb, num_warmups=warmup_runs, ) logging.info( f"Forward, B: {B}, " f"Es: {Es}, T: {T}, Ds: {Ds}, Ls: {Ls_str}, W: {weighted}, " f"BW: {read_write_bytes / time_per_iter / 1.0e9: .2f} GB/s, " # noqa: B950 f"T: {time_per_iter * 1.0e6:.0f}us" ) if output_dtype == SparseType.INT8: # backward bench not representative return if do_pooling: grad_output = torch.randn(B, sum(Ds)).to(get_device()) else: # Obtain B * L from indices len # pyre-ignore[19] grad_output = torch.randn(requests[0][0].numel(), D).to(get_device()) # backward time_per_iter = benchmark_requests( requests, lambda indices, offsets, per_sample_weights: emb( indices.long(), offsets.long(), per_sample_weights, feature_requires_grad=feature_requires_grad, ), flush_gpu_cache_size_mb=flush_gpu_cache_size_mb, bwd_only=True, grad=grad_output, ) logging.info( f"Backward, B: {B}, Es: {Es}, T: {T}, Ds: {Ds}, Ls: {Ls_str}, " f"BW: {2 * read_write_bytes / time_per_iter / 1.0e9: .2f} GB/s, " f"T: {time_per_iter * 1.0e6:.0f}us" ) def _to_offsets(lengths: torch.Tensor) -> torch.Tensor: return torch.ops.fbgemm.asynchronous_complete_cumsum(lengths) @cli.command() @click.option("--batch-size", default=128000) @click.option("--compressed-batch-size", default=12800) @click.option("--embedding-dim", default=128) @click.option("--bag-size", default=5) @click.option("--num-embeddings", default=int(1e5)) @click.option("--num-tables", default=20) @click.option("--compressed-tables", default=10) @click.option("--iters", default=100) def vbe( batch_size: int, compressed_batch_size: int, embedding_dim: int, bag_size: int, num_embeddings: int, num_tables: int, compressed_tables: int, iters: int, ) -> None: torch.manual_seed(42) B = batch_size cB = compressed_batch_size D = embedding_dim L = bag_size E = num_embeddings T = num_tables cT = compressed_tables Ds = [D] * T optimizer = OptimType.EXACT_ROWWISE_ADAGRAD managed_option = ( EmbeddingLocation.DEVICE if torch.cuda.is_available() else EmbeddingLocation.HOST ) pooling_mode = PoolingMode.SUM emb = SplitTableBatchedEmbeddingBagsCodegen( [ ( E, d, managed_option, ComputeDevice.CUDA, ) for d in Ds ], optimizer=optimizer, learning_rate=0.1, eps=0.1, weights_precision=SparseType.FP32, stochastic_rounding=False, output_dtype=SparseType.FP32, pooling_mode=pooling_mode, bounds_check_mode=BoundsCheckMode(BoundsCheckMode.NONE.value), ).to(get_device()) compressed_batch_sizes = ([cB] * cT) + ([B] * (T - cT)) compressed_lengths = [L] * sum(compressed_batch_sizes) compressed_offsets = torch.ops.fbgemm.asynchronous_complete_cumsum( torch.tensor(compressed_lengths, device=get_device()) ) compressed_values = torch.randint( low=0, high=E, size=(sum(compressed_lengths),), device=get_device(), dtype=torch.int32, ) batch_sizes = [B] * T lengths = [L] * sum(batch_sizes) offsets = torch.ops.fbgemm.asynchronous_complete_cumsum( torch.tensor(lengths, device=get_device()) ) reindex = [] for t in range(cT): start = t * cB end = cB * (t + 1) reindex.extend(range(start, end)) for _ in range(B - cB): i = random.randint(t * cB, cB * (t + 1)) reindex.append(i) reindex.extend(range(cB * cT, (cB * cT) + (B * cT))) reindex = torch.tensor(reindex, device=get_device()) values = torch.index_select(compressed_values.reshape(-1, L), 0, reindex).flatten() requests = [ ( values, offsets, ) for _ in range(iters) ] compressed_requests = [ ( compressed_values, compressed_offsets, ) for _ in range(iters) ] out = benchmark_vbe( requests, compressed_requests, baseline_func=lambda indices, offsets: emb.forward( indices.long(), offsets.long(), ), compressed_func=lambda indices, offsets: emb.forward( indices.long(), offsets.long(), batch_size_per_feature_per_rank=[[bs] for bs in compressed_batch_sizes], ), reindex=reindex, embedding_dim=D, ) logging.info( f"Uncompressed, B: {B}, T: {T}, D: {D}, L: {L}, " f"T: {out.avg * 1.0e6:.0f}us, fwd: {out.fwd * 1.0e6:.0f}us, bwd: {out.bwd * 1.0e6:.0f}us\n" f"Compressed, B: {B}, cB: {cB}, T: {T - cT}, cT: {cT}, D: {D}, L: {L}, " f"T: {out.compressed_avg * 1.0e6:.0f}us, fwd: {out.compressed_fwd * 1.0e6:.0f}us, reindex: {out.reindex * 1.0e6:.0f}us, bwd: {out.compressed_bwd * 1.0e6:.0f}us" ) if __name__ == "__main__": cli()
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import contextlib import functools import logging import random from typing import List import click import fbgemm_gpu import numpy as np import torch from torch.profiler import profile logging.basicConfig(level=logging.DEBUG) # pyre-fixme[16]: Module `fbgemm_gpu` has no attribute `open_source`. open_source: bool = getattr(fbgemm_gpu, "open_source", False) if open_source: # pyre-ignore[21] from bench_utils import benchmark_torch_function else: from fbgemm_gpu.bench.bench_utils import benchmark_torch_function torch.ops.load_library("//deeplearning/fbgemm/fbgemm_gpu:sparse_ops") torch.ops.load_library("//deeplearning/fbgemm/fbgemm_gpu:sparse_ops_cpu") torch.ops.load_library("//deeplearning/fbgemm/fbgemm_gpu/codegen:index_select_ops") @click.group() def cli() -> None: pass @cli.command() @click.option("--world-size", default=128) @click.option("--num-tables", default=10) @click.option("--min-len", default=10000) @click.option("--max-len", default=20000) def device( world_size: int, num_tables: int, min_len: int, max_len: int, ) -> None: lengths = torch.randint(min_len, max_len, size=(num_tables * world_size,)) offsets = torch.ops.fbgemm.asynchronous_complete_cumsum(lengths) permute = list(range(num_tables * world_size)) random.shuffle(permute) permute_tensor = torch.tensor(permute) permuted_length = torch.index_select(lengths, 0, permute_tensor) permuted_offsets = torch.ops.fbgemm.asynchronous_complete_cumsum(permuted_length) jagged_size = offsets[-1] if torch.cuda.is_available(): permute_tensor = permute_tensor.cuda() offsets = offsets.cuda() permuted_offsets = permuted_offsets.cuda() time, output = benchmark_torch_function( torch.ops.fbgemm.expand_into_jagged_permute, (permute_tensor, offsets, permuted_offsets, jagged_size), ) num_bytes = ( permute_tensor.numel() * permute_tensor.element_size() + offsets.numel() * offsets.element_size() + permuted_offsets.numel() * permuted_offsets.element_size() + output.numel() * output.element_size() ) logging.info(f"expand_into_jagged_permute {time} sec {num_bytes / time / 1e9} GB/s") @cli.command() @click.option("--row-size", default=25600) @click.option("--batch-size", default=4096) @click.option("--unique-batch-size", default=1024) @click.option("--input-precision", type=str, default="fp32") def batch_reuse_index_select_device( row_size: int, batch_size: int, unique_batch_size: int, input_precision: str ) -> None: # A function for generating indices in batch_reuse # pyre-fixme[11]: Annotation `array` is not defined as a type. def gen_inverse_index(curr_size: int, final_size: int) -> np.array: inverse_index = list(range(curr_size)) np_arr = np.array(inverse_index) for _ in range(final_size - curr_size): inverse_index.append(np.random.randint(0, curr_size)) np_arr = np.array(inverse_index) np.random.shuffle(np_arr) return np_arr dtype = torch.float if input_precision == "fp32": dtype = torch.float elif input_precision == "fp16": dtype = torch.half else: raise RuntimeError(f"Does not support data type {input_precision}") indices = torch.cuda.IntTensor(gen_inverse_index(unique_batch_size, batch_size)) input = torch.rand(unique_batch_size, row_size, dtype=dtype, device="cuda") input.requires_grad = True num_bytes = 2 * batch_size * row_size * input.element_size() time, output = benchmark_torch_function( torch.ops.fbgemm.index_select_dim0, (input, indices, 0, unique_batch_size) ) logging.info( f"index_select_dim0 forward: {dtype}, {num_bytes} bytes read/write, {time * 1e3} ms, {num_bytes / time / 1e9} GB/s" ) grad = torch.rand_like(output, dtype=dtype, device="cuda") num_bytes = (input.numel() + output.numel()) * input.element_size() time, _ = benchmark_torch_function( functools.partial(output.backward, retain_graph=True), (grad,) ) logging.info( f"index_select_dim0 backward: {dtype}, {num_bytes} bytes read/write, {time * 1e3} ms, {num_bytes / time / 1e9} GB/s" ) @cli.command() @click.option("--max-seq-length", default=500) @click.option("--batch-size", default=4096) @click.option("--num-cols", default=256) @click.option("--num-jagged-tensor-rows", default=4096) @click.option("--num-zero-padding", default=1024) @click.option("--index-dtype", type=click.Choice(["int", "long"]), default="int") @click.option( "--jagged-tensor-dtype", type=click.Choice(["float", "half"]), default="float" ) def jagged_index_select_2d_bench( max_seq_length: int, batch_size: int, num_cols: int, num_jagged_tensor_rows: int, num_zero_padding: int, index_dtype: str, jagged_tensor_dtype: str, ) -> None: def jagged_index_select_2d_ref( values: torch.Tensor, lengths: torch.Tensor, inverse_lookup: torch.Tensor ) -> torch.Tensor: offsets = torch.ops.fbgemm.asynchronous_exclusive_cumsum(lengths) end_offsets = offsets + lengths full_start_offset = torch.index_select(offsets, 0, inverse_lookup) full_end_offset = torch.index_select(end_offsets, 0, inverse_lookup) index_ranges = torch.stack( (full_start_offset, full_end_offset), dim=0 ).transpose(0, 1) to_be_merged_tensors = [] for row in index_ranges: to_be_merged_tensors.append(torch.arange(row[0], row[1], device="cuda")) all_indices = torch.cat(to_be_merged_tensors, dim=0) new_embeddings = torch.index_select(values, 0, all_indices) return new_embeddings index_t = {"int": torch.int, "long": torch.long}[index_dtype] scalar_t = {"float": torch.float, "half": torch.half}[jagged_tensor_dtype] lengths = torch.randint( low=0, high=max_seq_length, size=(num_jagged_tensor_rows,), dtype=index_t, device="cuda", ) indices, _ = torch.sort( torch.randint( low=0, high=num_jagged_tensor_rows, size=(batch_size,), dtype=index_t, device="cuda", ) ) values = torch.rand( int(lengths.sum().item()), num_cols, dtype=scalar_t, device="cuda" ) values.requires_grad = True indices[batch_size - num_zero_padding :] = 0 time, (output, _) = benchmark_torch_function( torch.ops.fbgemm.jagged_index_select, (values, lengths, indices), num_warmups=10, iters=100, ) time_ref, output_ref = benchmark_torch_function( jagged_index_select_2d_ref, (values, lengths, indices), num_warmups=10, iters=100, ) logging.info( f"jagged_index_select_2d_bench " f"(max_seq_length={max_seq_length}, " f"batch_size={batch_size}, " f"num_cols={num_cols}, " f"num_jagged_tensor_rows={num_jagged_tensor_rows}, " f"num_zero_padding={num_zero_padding}, " f"index_dtype={index_dtype}, " f"jagged_tensor_dtype={jagged_tensor_dtype})" ) logging.info(f"forward: fbgemm {time * 1e3:.3f} ms, ref {time_ref * 1e3:.3f} ms") grad = torch.rand_like(output) time, _ = benchmark_torch_function( functools.partial(output.backward, retain_graph=True), (grad,), num_warmups=10, iters=100, ) time_ref, _ = benchmark_torch_function( functools.partial(output_ref.backward, retain_graph=True), (grad,), num_warmups=10, iters=100, ) logging.info(f"backward: fbgemm {time * 1e3:.3f} ms, ref {time_ref * 1e3:.3f} ms") @cli.command() @click.option("--row-size", default=512) @click.option("--batch-size", default=4096) @click.option("--unique-batch-size", default=1024) @click.option("--input-precision", type=str, default="fp32") @click.option("--sort-indices", type=bool, default=True) @click.option("--num-groups", default=32) def group_index_select_2d_bench( row_size: int, batch_size: int, unique_batch_size: int, input_precision: str, sort_indices: bool, num_groups: int, ) -> None: def gen_inverse_index(curr_size: int, final_size: int) -> np.array: inverse_index = list(range(curr_size)) np_arr = np.array(inverse_index) for _ in range(final_size - curr_size): inverse_index.append(np.random.randint(0, curr_size)) np_arr = np.array(inverse_index) np.random.shuffle(np_arr) return np_arr dtype = torch.float if input_precision == "fp32": dtype = torch.float elif input_precision == "fp16": dtype = torch.half else: raise RuntimeError(f"Does not support data type {input_precision}") offset_indices_group = [] indices_group = [] for i in range(num_groups): indices = torch.cuda.IntTensor(gen_inverse_index(unique_batch_size, batch_size)) if sort_indices: indices, _ = indices.sort() indices_group.append(indices) indices = torch.add(indices, batch_size * i) offset_indices_group.append(indices) offset_indices = torch.concat(offset_indices_group) input = torch.rand(num_groups * batch_size, row_size, dtype=dtype, device="cuda") input.requires_grad = True num_bytes = 2 * batch_size * row_size * input.element_size() * num_groups bench_kwargs = {"num_warmups": 10, "iters": 100} # Benchmark forward time_ref, output_ref = benchmark_torch_function( torch.index_select, (input, 0, offset_indices), **bench_kwargs ) input_group = input.split(batch_size, 0) time, output_group = benchmark_torch_function( torch.ops.fbgemm.group_index_select_dim0, (input_group, indices_group), **bench_kwargs, ) logging.info( f"forward: PyTorch batch {time_ref:.5f} sec ({num_bytes / time_ref / 1e9:.5f} GB/s), " f"fbgemm group {time:5f} sec ({num_bytes / time / 1e9:.5f} GB/s)" ) # Benchmark backward grad = torch.rand_like(output_ref) time_ref, _ = benchmark_torch_function( functools.partial(output_ref.backward, retain_graph=True), (grad,), **bench_kwargs, ) cat_output = torch.cat(output_group) time, _ = benchmark_torch_function( functools.partial(cat_output.backward, retain_graph=True), (grad,), **bench_kwargs, ) logging.info( f"backward: PyTorch batch {time_ref:.5f} sec ({num_bytes / time_ref / 1e9:.5f} GB/s), " f"fbgemm group {time:.5f} sec ({num_bytes / time / 1e9:.5f} GB/s)" ) @cli.command() @click.option("--num-vecs", default=2048) @click.option("--num-entries-per-vec", default=1024) @click.option("--dtype", type=str, default="long") def asynchronous_complete_cumsum_2d_bench( num_vecs: int, num_entries_per_vec: int, dtype: str, ) -> None: # Reference code from TorchRec https://github.com/pytorch/torchrec/pull/332 @torch.jit.script def asynchronous_complete_cumsum_2d_ref(lengths: torch.Tensor) -> torch.Tensor: (f, b) = lengths.shape offsets_0 = lengths.new_zeros((f, 1)) offsets_1 = torch.cumsum(lengths, dim=-1).to(lengths.dtype) offsets = torch.cat([offsets_0, offsets_1], dim=-1) return offsets assert dtype == "int" or dtype == "long", "Only int and long are supported" index_dtype = torch.int64 if dtype == "long" else torch.int32 x = torch.randint(low=0, high=100, size=(num_vecs, num_entries_per_vec)).type( index_dtype ) x = x.cuda() time_ref, _ = benchmark_torch_function( asynchronous_complete_cumsum_2d_ref, (x,), num_warmups=100, iters=1000 ) time, _ = benchmark_torch_function( torch.ops.fbgemm.asynchronous_complete_cumsum, (x,), num_warmups=100, iters=1000 ) logging.info( f"asynchronous_complete_cumsum_2d_bench: input shape {x.shape}, dtype {dtype}" ) logging.info(f"ref time: {time_ref:.5f} sec") logging.info(f"fbgemm_gpu time: {time:.5f} sec") @cli.command() @click.option("--batch-size", default=8192) @click.option("--table-size", default=20) @click.option("--length", default=50) @click.option("--num-ads", default=100) @click.option("--dtype", type=click.Choice(["float", "long"]), default="long") @click.option("--itype", type=click.Choice(["int", "long"]), default="int") @click.option("--broadcast-indices", type=bool, default=True) @click.option("--device", type=str, default="cpu") def reorder_batched_ad_indices_bench( batch_size: int, table_size: int, length: int, num_ads: int, dtype: str, itype: str, broadcast_indices: bool, device: str, ) -> None: assert dtype == "float" or dtype == "long", "Only int and long are supported" data_type = torch.int64 if dtype == "long" else torch.float data_size = 8 if dtype == "long" else 4 assert itype == "int" or itype == "long", "Only int and long are supported" index_type = torch.int64 if itype == "long" else torch.int32 if broadcast_indices: cat_ad_indices = ( torch.randint( low=0, high=100, size=(batch_size * table_size * length,), ) .int() .to(device) .to(data_type) ) cat_ad_lengths = ( torch.cat( [ torch.tensor([length for _ in range(table_size)]) for _ in range(batch_size) ], 0, ) .int() .to(device) ) else: cat_ad_indices = ( torch.randint( low=0, high=100, size=(batch_size * table_size * num_ads * length,), ) .int() .to(device) .to(data_type) ) cat_ad_lengths = ( torch.cat( [ torch.tensor([length for _ in range(table_size * num_ads)]) for _ in range(batch_size) ], 0, ) .int() .to(device) ) batch_offsets = ( torch.tensor([num_ads * b for b in range(batch_size + 1)]).int().cuda() ).to(device) num_ads_in_batch = batch_size * num_ads reordered_cat_ad_lengths = torch.ops.fbgemm.reorder_batched_ad_lengths( cat_ad_lengths, batch_offsets, num_ads_in_batch, broadcast_indices ).to(device) cat_ad_offsets = ( torch.ops.fbgemm.asynchronous_complete_cumsum(cat_ad_lengths) .to(index_type) .to(device) ) reordered_cat_ad_offsets = ( torch.ops.fbgemm.asynchronous_complete_cumsum(reordered_cat_ad_lengths) .to(index_type) .to(device) ) time, _ = benchmark_torch_function( torch.ops.fbgemm.reorder_batched_ad_indices, ( cat_ad_offsets, cat_ad_indices, reordered_cat_ad_offsets, batch_offsets, num_ads_in_batch, broadcast_indices, batch_size * table_size * num_ads * length, ), num_warmups=100, iters=1000, ) num_bytes = batch_size * table_size * (num_ads + 1) * length * data_size logging.info( f"fbgemm_gpu time: {time * 1000:.5f} ms ({num_bytes / time / 1e9:.5f} GB/s)" ) @cli.command() @click.option("--batch-size", default=8192) @click.option("--table-size", default=20) @click.option("--length", default=50) @click.option("--num-ads", default=100) @click.option("--broadcast-indices", type=bool, default=True) @click.option("--device", type=str, default="cpu") def reorder_batched_ad_lengths_bench( batch_size: int, table_size: int, length: int, num_ads: int, broadcast_indices: bool, device: str, ) -> None: if broadcast_indices: cat_ad_lengths = ( torch.cat( [ torch.tensor([length for _ in range(table_size)]) for _ in range(batch_size) ], 0, ) .int() .to(device) ) else: cat_ad_lengths = ( torch.cat( [ torch.tensor([length for _ in range(table_size * num_ads)]) for _ in range(batch_size) ], 0, ) .int() .to(device) ) batch_offsets = ( torch.tensor([num_ads * b for b in range(batch_size + 1)]).int().cuda() ).to(device) num_ads_in_batch = batch_size * num_ads time, _ = benchmark_torch_function( torch.ops.fbgemm.reorder_batched_ad_lengths, ( cat_ad_lengths, batch_offsets, num_ads_in_batch, broadcast_indices, ), num_warmups=100, iters=1000, ) num_bytes = batch_size * table_size * (num_ads + 1) * length * 4 logging.info( f"fbgemm_gpu time: {time * 1000:.5f} ms ({num_bytes / time / 1e9:.5f} GB/s)" ) @cli.command() @click.option("--num-inputs", default=1024) @click.option("--rows", default=100) @click.option("--columns", default=128) @click.option("--num-indices", default=2048) @click.option("--timeline", is_flag=True, default=False) def index_select_bench( num_inputs: int, rows: int, columns: int, num_indices: int, timeline: bool ) -> None: input_rows = [rows] * num_inputs input_columns = [columns] * num_inputs input_num_indices = [num_indices] * num_inputs inputs = [ torch.rand(rows, cols, dtype=torch.float, device="cuda") for rows, cols in zip(input_rows, input_columns) ] for i in range(len(inputs)): inputs[i].requires_grad = True indices = [ torch.randint(low=0, high=rows, size=(num,), dtype=torch.long, device="cuda") for num, rows in zip(input_num_indices, input_rows) ] concat_inputs = torch.concat([input.flatten().clone().detach() for input in inputs]) concat_inputs.requires_grad = True concat_indices = torch.concat(indices) gis_inputs = [input.clone().detach() for input in inputs] for i in range(len(gis_inputs)): gis_inputs[i].requires_grad = True # Add optimizer to perform zero grad in order to reset gradients # before the accumulation phase optim_index: torch.optim.Optimizer = torch.optim.SGD(inputs, lr=0.1) optim_batch: torch.optim.Optimizer = torch.optim.SGD([concat_inputs], lr=0.1) optim_group: torch.optim.Optimizer = torch.optim.SGD(gis_inputs, lr=0.1) def index_select_fwd_ref( inputs: List[torch.Tensor], indices: List[torch.Tensor] ) -> List[torch.Tensor]: outputs = [] for input, index in zip(inputs, indices): optim_index.zero_grad() outputs.append(torch.index_select(input, 0, index)) return outputs def index_select_bwd_ref( outputs: List[torch.Tensor], grads: List[torch.Tensor] ) -> None: for output, grad in zip(outputs, grads): optim_index.zero_grad() output.backward(grad, retain_graph=True) def batch_index_select_fwd( concat_inputs: List[torch.Tensor], concat_indices: List[int], input_num_indices: List[int], input_rows: List[int], input_columns: List[int], ) -> torch.autograd.Variable: optim_batch.zero_grad() return torch.ops.fbgemm.batch_index_select_dim0( concat_inputs, concat_indices, input_num_indices, input_rows, input_columns ) def group_index_select_fwd( gis_inputs: List[torch.Tensor], indices: List[int] ) -> torch.autograd.Variable: optim_group.zero_grad() return torch.ops.fbgemm.group_index_select_dim0(gis_inputs, indices) def batch_group_index_select_bwd( output: torch.autograd.Variable, grads: List[torch.Tensor], optim: torch.optim.Optimizer, ) -> torch.autograd.Variable: optim.zero_grad() return output.backward(grads, retain_graph=True) bench_kwargs = {"num_warmups": 10, "iters": 10 if timeline else 100} profile_ctx = profile if timeline else contextlib.nullcontext with profile_ctx() as prof: time_pyt, out_pyt = benchmark_torch_function( index_select_fwd_ref, (inputs, indices), **bench_kwargs, ) time_bis, out_bis = benchmark_torch_function( batch_index_select_fwd, ( concat_inputs, concat_indices, input_num_indices, input_rows, input_columns, ), **bench_kwargs, ) time_gis, out_gis = benchmark_torch_function( group_index_select_fwd, (gis_inputs, indices), **bench_kwargs, ) if timeline: prof.export_chrome_trace("index_select_fwd_trace.json") grads = [torch.rand_like(out) for out in out_pyt] concat_grads = torch.concat([grad.flatten() for grad in grads]) concat_out_gis = torch.concat([out.flatten() for out in out_gis]) with profile_ctx() as prof: time_bwd_pyt, _ = benchmark_torch_function( index_select_bwd_ref, (out_pyt, grads), **bench_kwargs, ) time_bwd_bis, _ = benchmark_torch_function( batch_group_index_select_bwd, ( out_bis, concat_grads, optim_batch, ), **bench_kwargs, ) time_bwd_gis, _ = benchmark_torch_function( batch_group_index_select_bwd, ( concat_out_gis, concat_grads, optim_group, ), **bench_kwargs, ) if timeline: prof.export_chrome_trace("index_select_bwd_trace.json") logging.info( f"torch.index_select forward {time_pyt * 1e6:.2f} us, backward {time_bwd_pyt * 1e6:.2f} us\n" f"torch.ops.fbgemm.batch_index_select forward {time_bis * 1e6:.2f} us, backward {time_bwd_bis * 1e6:.2f} us\n" f"torch.ops.fbgemm.group_index_select_dim0 forward {time_gis * 1e6:.2f} us, backward {time_bwd_gis * 1e6:.2f} us" ) @cli.command() @click.option("--batch-size", default=8192) @click.option("--table-size", default=20) @click.option("--length", default=50) @click.option("--num-ads", default=100) @click.option("--dtype", type=click.Choice(["float", "long"]), default="long") @click.option("--itype", type=click.Choice(["int", "long"]), default="int") @click.option("--broadcast-indices", type=bool, default=True) def cat_reorder_batched_ad_indices_bench( batch_size: int, table_size: int, length: int, num_ads: int, dtype: str, itype: str, broadcast_indices: bool, ) -> None: assert dtype == "float" or dtype == "long", "Only int and long are supported" data_type = torch.int64 if dtype == "long" else torch.float data_size = 8 if dtype == "long" else 4 assert itype == "int" or itype == "long", "Only int and long are supported" if broadcast_indices: ad_indices = [ ( torch.randint( low=0, high=100, size=(table_size * length,), ) .int() .to(data_type) ) for _ in range(batch_size) ] ad_lengths = [ torch.tensor([length for _ in range(table_size)]).int() for _ in range(batch_size) ] else: ad_indices = [ ( torch.randint( low=0, high=100, size=(table_size * num_ads * length,), ) .int() .to(data_type) ) for _ in range(batch_size) ] ad_lengths = [ torch.tensor([length for _ in range(table_size * num_ads)]).int() for _ in range(batch_size) ] batch_offsets = torch.tensor([num_ads * b for b in range(batch_size + 1)]).int() num_ads_in_batch = batch_size * num_ads # pyre-ignore def pass_1(ad_indices, ad_lengths, batch_offsets, num_ads_in_batch): cat_ad_lengths = torch.cat(ad_lengths, 0).to("cuda", non_blocking=True) cat_ad_indices = torch.cat(ad_indices, 0).to("cuda", non_blocking=True) batch_offsets = batch_offsets.to("cuda", non_blocking=True) reordered_cat_ad_lengths = torch.ops.fbgemm.reorder_batched_ad_lengths( cat_ad_lengths, batch_offsets, num_ads_in_batch, broadcast_indices ) cat_ad_offsets = torch.ops.fbgemm.asynchronous_complete_cumsum(cat_ad_lengths) reordered_cat_ad_offsets = torch.ops.fbgemm.asynchronous_complete_cumsum( reordered_cat_ad_lengths ) reordered_cat_ad_indices = torch.ops.fbgemm.reorder_batched_ad_indices( cat_ad_offsets, cat_ad_indices, reordered_cat_ad_offsets, batch_offsets, num_ads_in_batch, broadcast_indices, batch_size * table_size * num_ads * length, ) return reordered_cat_ad_indices, reordered_cat_ad_lengths # process length on device and process indice on device # pyre-ignore def pass_2(ad_indices, ad_lengths, batch_offsets, num_ads_in_batch): cat_ad_lengths = torch.cat(ad_lengths, 0) reordered_cat_ad_lengths = torch.ops.fbgemm.reorder_batched_ad_lengths( cat_ad_lengths, batch_offsets, num_ads_in_batch, broadcast_indices ) cat_ad_offsets = torch.ops.fbgemm.asynchronous_complete_cumsum(cat_ad_lengths) reordered_cat_ad_offsets = torch.ops.fbgemm.asynchronous_complete_cumsum( reordered_cat_ad_lengths ) cat_ad_indices = torch.cat(ad_indices, 0) reordered_cat_ad_indices = torch.ops.fbgemm.reorder_batched_ad_indices( cat_ad_offsets.to("cuda", non_blocking=True), cat_ad_indices.to("cuda", non_blocking=True), reordered_cat_ad_offsets.to("cuda", non_blocking=True), batch_offsets.to("cuda", non_blocking=True), num_ads_in_batch, broadcast_indices, batch_size * table_size * num_ads * length, ) return reordered_cat_ad_indices, reordered_cat_ad_lengths.to( "cuda", non_blocking=True ) # minimize GPU workload + unfused cat + reorder # pyre-ignore def pass_3(ad_indices, ad_lengths, batch_offsets, num_ads_in_batch): cat_ad_lengths = torch.cat(ad_lengths, 0) reordered_cat_ad_lengths = torch.ops.fbgemm.reorder_batched_ad_lengths( cat_ad_lengths, batch_offsets, num_ads_in_batch, broadcast_indices ) cat_ad_offsets = torch.ops.fbgemm.asynchronous_complete_cumsum(cat_ad_lengths) reordered_cat_ad_offsets = torch.ops.fbgemm.asynchronous_complete_cumsum( reordered_cat_ad_lengths ) cat_ad_indices = torch.cat(ad_indices, 0) reordered_cat_ad_indices = torch.ops.fbgemm.reorder_batched_ad_indices( cat_ad_offsets, cat_ad_indices, reordered_cat_ad_offsets, batch_offsets, num_ads_in_batch, broadcast_indices, batch_size * table_size * num_ads * length, ) return reordered_cat_ad_indices.to( "cuda", non_blocking=True ), reordered_cat_ad_lengths.to("cuda", non_blocking=True) # minimize GPU workload + fuse cat + reorder # pyre-ignore def pass_4(ad_indices, ad_lengths, batch_offsets, num_ads_in_batch): cat_ad_lengths = torch.cat(ad_lengths, 0) reordered_cat_ad_lengths = torch.ops.fbgemm.reorder_batched_ad_lengths( cat_ad_lengths, batch_offsets, num_ads_in_batch, broadcast_indices ) cat_ad_offsets = torch.ops.fbgemm.asynchronous_complete_cumsum(cat_ad_lengths) reordered_cat_ad_offsets = torch.ops.fbgemm.asynchronous_complete_cumsum( reordered_cat_ad_lengths ) reordered_cat_ad_indices = torch.ops.fbgemm.cat_reorder_batched_ad_indices( cat_ad_offsets, ad_indices, reordered_cat_ad_offsets, batch_offsets, num_ads_in_batch, broadcast_indices, batch_size * table_size * num_ads * length, ) return reordered_cat_ad_indices.to( "cuda", non_blocking=True ), reordered_cat_ad_lengths.to("cuda", non_blocking=True) num_bytes = batch_size * table_size * (num_ads + 1) * length * data_size # pyre-ignore def ben(fn, name, ad_indices, ad_lengths, batch_offsets, num_ads_in_batch): time, _ = benchmark_torch_function( fn, (ad_indices, ad_lengths, batch_offsets, num_ads_in_batch), num_warmups=50, iters=500, ) logging.info( f"{name} fbgemm_gpu time: {time * 1000:.5f} ms ({num_bytes / time / 1e9:.5f} GB/s)" ) ben(pass_1, "pass_1", ad_indices, ad_lengths, batch_offsets, num_ads_in_batch) ben(pass_2, "pass_2", ad_indices, ad_lengths, batch_offsets, num_ads_in_batch) ben(pass_3, "pass_3", ad_indices, ad_lengths, batch_offsets, num_ads_in_batch) ben(pass_4, "pass_4", ad_indices, ad_lengths, batch_offsets, num_ads_in_batch) if __name__ == "__main__": cli()
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import functools import logging import random import click import fbgemm_gpu import hypothesis.strategies as st import torch from hypothesis import given, settings logging.basicConfig(level=logging.DEBUG) # pyre-fixme[16]: Module `fbgemm_gpu` has no attribute `open_source`. open_source: bool = getattr(fbgemm_gpu, "open_source", False) if open_source: # pyre-ignore[21] from bench_utils import benchmark_torch_function else: from fbgemm_gpu.bench.bench_utils import benchmark_torch_function torch.ops.load_library("//deeplearning/fbgemm/fbgemm_gpu:sparse_ops") torch.ops.load_library("//deeplearning/fbgemm/fbgemm_gpu:sparse_ops_cpu") @click.group() def cli() -> None: pass def bench_impl( flush_gpu_cache_size_mb: int, iters: int, num_columns: int, num_rows: int, warmup_runs: int, ) -> None: average_time = { "int8_quant": 0.0, "int4_quant": 0.0, "int2_quant": 0.0, "fp8_143_quant": 0.0, "fp8_152_quant": 0.0, "fp16_quant": 0.0, "bf16_quant_fbgemm": 0.0, "bf16_quant_pytorch": 0.0, "int8_dequant": 0.0, "int4_dequant": 0.0, "int2_dequant": 0.0, "fp8_143_dequant": 0.0, "fp8_152_dequant": 0.0, "fp16_dequant": 0.0, "bf16_dequant_fbgemm": 0.0, "bf16_dequant_pytorch": 0.0, } benchmark = functools.partial( benchmark_torch_function, flush_gpu_cache_size_mb=flush_gpu_cache_size_mb, iters=iters, num_warmups=warmup_runs, ) input_data = torch.rand(num_rows, num_columns).float() if torch.cuda.is_available(): input_data = input_data.cuda() quant_data_8bit = torch.ops.fbgemm.FloatToFused8BitRowwiseQuantized(input_data) quant_data_4bit = torch.ops.fbgemm.FloatToFusedNBitRowwiseQuantizedSBHalf( input_data, 4 ) quant_data_2bit = torch.ops.fbgemm.FloatToFusedNBitRowwiseQuantizedSBHalf( input_data, 2 ) quant_data_fp8_143 = torch.ops.fbgemm.FloatToHFP8Quantized( input_data.contiguous(), 4, 14, (2 - 2 ** (-3)) ) quant_data_fp8_152 = torch.ops.fbgemm.FloatToHFP8Quantized( input_data, 5, 30, (2 - 2 ** (-2)) ) quant_data_fp16 = input_data.half() quant_data_bf16_fbgemm = torch.ops.fbgemm.FloatToBfloat16Quantized( input_data.contiguous() ) quant_data_bf16_pytorch = input_data.bfloat16().view(torch.half) average_time["int8_quant"], _ = benchmark( torch.ops.fbgemm.FloatToFused8BitRowwiseQuantized, (input_data,), ) average_time["int4_quant"], _ = benchmark( torch.ops.fbgemm.FloatToFusedNBitRowwiseQuantizedSBHalf, (input_data, 4), ) average_time["int2_quant"], _ = benchmark( torch.ops.fbgemm.FloatToFusedNBitRowwiseQuantizedSBHalf, (input_data, 2), ) average_time["fp8_143_quant"], _ = benchmark( torch.ops.fbgemm.FloatToHFP8Quantized, (input_data, 4, 14, (2 - 2 ** (-3))), ) average_time["fp8_152_quant"], _ = benchmark( torch.ops.fbgemm.FloatToHFP8Quantized, (input_data, 5, 30, (2 - 2 ** (-2))), ) average_time["fp16_quant"], _ = benchmark( lambda tensor: tensor.half(), (input_data,), ) average_time["bf16_quant_fbgemm"], _ = benchmark( torch.ops.fbgemm.FloatToBfloat16Quantized, (input_data,), ) average_time["bf16_quant_pytorch"], _ = benchmark( lambda tensor: tensor.bfloat16().view(torch.half), (input_data,), ) average_time["int8_dequant"], _ = benchmark( torch.ops.fbgemm.Fused8BitRowwiseQuantizedToFloat, (quant_data_8bit,), ) average_time["int4_dequant"], _ = benchmark( torch.ops.fbgemm.FusedNBitRowwiseQuantizedSBHalfToFloat, (quant_data_4bit, 4), ) average_time["int2_dequant"], _ = benchmark( torch.ops.fbgemm.FusedNBitRowwiseQuantizedSBHalfToFloat, (quant_data_2bit, 2), ) average_time["fp8_143_dequant"], _ = benchmark( torch.ops.fbgemm.HFP8QuantizedToFloat, (quant_data_fp8_143, 4, 14), ) average_time["fp8_152_dequant"], _ = benchmark( torch.ops.fbgemm.HFP8QuantizedToFloat, (quant_data_fp8_152, 5, 30), ) average_time["fp16_dequant"], _ = benchmark( lambda tensor: tensor.float(), (quant_data_fp16,), ) average_time["bf16_dequant_fbgemm"], _ = benchmark( torch.ops.fbgemm.Bfloat16QuantizedToFloat, (quant_data_bf16_fbgemm,), ) average_time["bf16_dequant_pytorch"], _ = benchmark( lambda tensor: tensor.view(torch.bfloat16).float(), (quant_data_bf16_pytorch,), ) logging.info(f"-------------- ncols={num_columns}, nrows={num_rows}-------------") for k, t_time in average_time.items(): logging.info(f"{k} time per iter: {t_time * 1.0e6:.0f}us") @settings(max_examples=10, deadline=None) # pyre-ignore @given( num_columns=st.sampled_from([2**n for n in range(4, 10)]), num_rows=st.sampled_from([2**n for n in range(4, 10)]), ) def bench_spectrum( flush_gpu_cache_size_mb: int, iters: int, num_columns: int, num_rows: int, warmup_runs: int, ) -> None: bench_impl( flush_gpu_cache_size_mb=flush_gpu_cache_size_mb, iters=iters, num_columns=num_columns, num_rows=num_rows, warmup_runs=warmup_runs, ) @cli.command() @click.option("--flush-gpu-cache-size-mb", default=0) @click.option("--iters", default=100) @click.option("--num-columns", default=-1) @click.option("--num-rows", default=-1) @click.option("--warmup-runs", default=2) def bench( flush_gpu_cache_size_mb: int, iters: int, num_columns: int, num_rows: int, warmup_runs: int, ) -> None: if num_columns == -1 or num_rows == -1: bench_spectrum( flush_gpu_cache_size_mb=flush_gpu_cache_size_mb, iters=iters, warmup_runs=warmup_runs, ) else: bench_impl( flush_gpu_cache_size_mb=flush_gpu_cache_size_mb, iters=iters, num_columns=num_columns, num_rows=num_rows, warmup_runs=warmup_runs, ) @cli.command() @click.option("--flush-gpu-cache-size-mb", default=0) @click.option("--iters", default=100) @click.option("--batch_size", default=512) @click.option("--num_tables", default=256) @click.option("--min_dim", default=1) @click.option("--max_dim", default=128) @click.option("--warmup-runs", default=2) def mixdim( flush_gpu_cache_size_mb: int, iters: int, batch_size: int, num_tables: int, min_dim: int, max_dim: int, warmup_runs: int, ) -> None: if not torch.cuda.is_available(): raise RuntimeError("CUDA is not available.") random.seed(0) table_dims = [ random.randint(min_dim, max_dim) * 8 for _ in range(num_tables) ] # assume table dimensions are multiples of 8 table_dims_with_qparams = [d + 8 for d in table_dims] D_offsets = ( torch.cumsum(torch.tensor([0] + table_dims_with_qparams), dim=0) .to(torch.int) .cuda() ) input_refs = [torch.randn((batch_size, d)).cuda() for d in table_dims] input_refs_int8 = [ torch.ops.fbgemm.FloatToFused8BitRowwiseQuantized(t) for t in input_refs ] input_data = torch.concat(input_refs_int8, dim=1).contiguous() benchmark = functools.partial( benchmark_torch_function, flush_gpu_cache_size_mb=flush_gpu_cache_size_mb, iters=iters, num_warmups=warmup_runs, ) average_time_mixed_dim_fp32, _ = benchmark( torch.ops.fbgemm.Fused8BitRowwiseQuantizedToFloatMixedDim, ( input_data, D_offsets, 0, ), ) # output is FP32 average_time_mixed_dim_fp16, _ = benchmark_torch_function( torch.ops.fbgemm.Fused8BitRowwiseQuantizedToFloatMixedDim, ( input_data, D_offsets, 1, ), ) # output is FP16 average_time_single_dim, _ = benchmark( torch.ops.fbgemm.Fused8BitRowwiseQuantizedToFloat, (input_data,), ) # output is FP32 print( f"Input tensor batch_size: {batch_size}, num_tables: {num_tables}, tensor_size: {input_data.numel() / (1 << 30)} GB, average table dimension: {sum(table_dims) * 1.0/num_tables}." ) print( f"Mixed dim dequantize average time per iter FP32: {average_time_mixed_dim_fp32} s, bandwidth : {input_data.numel() / (1 << 30) / average_time_mixed_dim_fp32} GB/s." ) print( f"Mixed dim dequantize average time per iter FP16: {average_time_mixed_dim_fp16} s, bandwidth : {input_data.numel() / (1 << 30) / average_time_mixed_dim_fp16} GB/s." ) print( f"Single dim dequantize average time per iter FP32: {average_time_single_dim} s, bandwidth: {input_data.numel() / (1 << 30) / average_time_single_dim} GB/s." ) if __name__ == "__main__": cli()
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import logging import time from typing import Callable, Tuple import click import torch from torch import Tensor logging.basicConfig(level=logging.DEBUG) try: # pyre-ignore[21] from fbgemm_gpu import open_source # noqa: F401 except Exception: torch.ops.load_library("//deeplearning/fbgemm/fbgemm_gpu:sparse_ops") torch.ops.load_library("//deeplearning/fbgemm/fbgemm_gpu:sparse_ops_cpu") def benchmark_hbc_function( func: Callable[[Tensor], Tuple[Tensor, Tensor]], input: Tensor, ) -> Tuple[float, Tensor]: if input.is_cuda: torch.cuda.synchronize() start_event = torch.cuda.Event(enable_timing=True) end_event = torch.cuda.Event(enable_timing=True) start_event.record() # Benchmark code output, _ = func(input) # Accumulate the time for iters iteration end_event.record() torch.cuda.synchronize() elapsed_time = start_event.elapsed_time(end_event) * 1.0e-3 else: start_time = time.time() output, _ = func(input) elapsed_time = time.time() - start_time return float(elapsed_time), output @click.command() @click.option("--iters", default=100) @click.option("--warmup-runs", default=2) def main( iters: int, warmup_runs: int, ) -> None: data_types = [torch.half, torch.float, torch.double] total_time = { "hbc": { "cpu": { torch.half: 0.0, torch.float: 0.0, torch.double: 0.0, }, "gpu": { torch.half: 0.0, torch.float: 0.0, torch.double: 0.0, }, }, "hbc_by_feature": { "cpu": { torch.half: 0.0, torch.float: 0.0, torch.double: 0.0, }, "gpu": { torch.half: 0.0, torch.float: 0.0, torch.double: 0.0, }, }, "generic_hbc_by_feature": { "cpu": { torch.half: 0.0, torch.float: 0.0, torch.double: 0.0, }, "gpu": { torch.half: 0.0, torch.float: 0.0, torch.double: 0.0, }, }, } num_bins: int = 5000 num_segments: int = 42 num_logits = 5000 input_data_cpu = torch.rand(num_logits, dtype=torch.float) segment_lengths: Tensor = torch.randint(0, 2, (num_logits,)) num_values: int = int(torch.sum(segment_lengths).item()) segment_values: Tensor = torch.randint( 0, num_segments, (num_values,), ) lower_bound: float = 0.0 upper_bound: float = 1.0 w: float = (upper_bound - lower_bound) / num_bins bin_num_examples: Tensor = torch.empty([num_bins], dtype=torch.float64).fill_(0.0) bin_num_positives: Tensor = torch.empty([num_bins], dtype=torch.float64).fill_(0.0) bin_boundaries: Tensor = torch.arange( lower_bound + w, upper_bound - w / 2, w, dtype=torch.float64 ) by_feature_bin_num_examples: Tensor = torch.empty( [num_bins * (num_segments + 1)], dtype=torch.float64 ).fill_(0.0) by_feature_bin_num_positives: Tensor = torch.empty( [num_bins * (num_segments + 1)], dtype=torch.float64 ).fill_(0.0) def fbgemm_hbc_cpu(input: Tensor) -> Tuple[Tensor, Tensor]: return torch.ops.fbgemm.histogram_binning_calibration( input, bin_num_examples, bin_num_positives, 0.4, lower_bound, upper_bound, 0, 0.9995, ) def fbgemm_hbc_by_feature_cpu(input: Tensor) -> Tuple[Tensor, Tensor]: return torch.ops.fbgemm.histogram_binning_calibration_by_feature( input, segment_values, segment_lengths, num_segments, by_feature_bin_num_examples, by_feature_bin_num_positives, num_bins, 0.4, lower_bound, upper_bound, 0, 0.9995, ) def fbgemm_generic_hbc_by_feature_cpu(input: Tensor) -> Tuple[Tensor, Tensor]: return torch.ops.fbgemm.generic_histogram_binning_calibration_by_feature( input, segment_values, segment_lengths, num_segments, by_feature_bin_num_examples, by_feature_bin_num_positives, bin_boundaries, 0.4, 0, 0.9995, ) for step in range(iters + warmup_runs): for data_type in data_types: curr_input = input_data_cpu.to(data_type) hbc_time, _ = benchmark_hbc_function( fbgemm_hbc_cpu, curr_input, ) hbc_by_feature_time, _ = benchmark_hbc_function( fbgemm_hbc_by_feature_cpu, curr_input ) generic_hbc_by_feature_time, _ = benchmark_hbc_function( fbgemm_generic_hbc_by_feature_cpu, curr_input ) if step >= warmup_runs: total_time["hbc"]["cpu"][data_type] += hbc_time total_time["hbc_by_feature"]["cpu"][data_type] += hbc_by_feature_time total_time["generic_hbc_by_feature"]["cpu"][ data_type ] += generic_hbc_by_feature_time if torch.cuda.is_available(): bin_num_examples_gpu: Tensor = bin_num_examples.cuda() bin_num_positives_gpu: Tensor = bin_num_positives.cuda() def fbgemm_hbc_gpu(input: Tensor) -> Tuple[Tensor, Tensor]: return torch.ops.fbgemm.histogram_binning_calibration( input, bin_num_examples_gpu, bin_num_positives_gpu, 0.4, lower_bound, upper_bound, 0, 0.9995, ) segment_values_gpu: Tensor = segment_values.cuda() segment_lengths_gpu: Tensor = segment_lengths.cuda() by_feature_bin_num_examples_gpu: Tensor = by_feature_bin_num_examples.cuda() by_feature_bin_num_positives_gpu: Tensor = ( by_feature_bin_num_positives.cuda() ) def fbgemm_hbc_by_feature_gpu(input: Tensor) -> Tuple[Tensor, Tensor]: return torch.ops.fbgemm.histogram_binning_calibration_by_feature( input, segment_values_gpu, segment_lengths_gpu, num_segments, by_feature_bin_num_examples_gpu, by_feature_bin_num_positives_gpu, num_bins, 0.4, lower_bound, upper_bound, 0, 0.9995, ) bin_boundaries_gpu: Tensor = bin_boundaries.cuda() def fbgemm_generic_hbc_by_feature_gpu( input: Tensor, ) -> Tuple[Tensor, Tensor]: return ( torch.ops.fbgemm.generic_histogram_binning_calibration_by_feature( input, segment_values_gpu, segment_lengths_gpu, num_segments, by_feature_bin_num_examples_gpu, by_feature_bin_num_positives_gpu, bin_boundaries_gpu, 0.4, 0, 0.9995, ) ) for data_type in data_types: curr_input_gpu = input_data_cpu.cuda().to(data_type) hbc_time, _ = benchmark_hbc_function( fbgemm_hbc_gpu, curr_input_gpu, ) hbc_by_feature_time, _ = benchmark_hbc_function( fbgemm_hbc_by_feature_gpu, curr_input_gpu, ) generic_hbc_by_feature_time, _ = benchmark_hbc_function( fbgemm_generic_hbc_by_feature_gpu, curr_input_gpu, ) if step >= warmup_runs: total_time["hbc"]["gpu"][data_type] += hbc_time total_time["hbc_by_feature"]["gpu"][ data_type ] += hbc_by_feature_time total_time["generic_hbc_by_feature"]["gpu"][ data_type ] += generic_hbc_by_feature_time for op, curr_items in total_time.items(): for platform, data_items in curr_items.items(): for dtype, t_time in data_items.items(): logging.info( f"{op}_{platform}_{dtype} time per iter: {t_time / iters * 1.0e6:.0f}us" ) if __name__ == "__main__": main()
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import logging import re import subprocess import click logging.basicConfig(level=logging.DEBUG) @click.command() @click.option( "--benchmark-command", default="python split_table_batched_embeddings_benchmark.py", help="Benchmark command to run", ) @click.option( "--command-file", default="batch_input.txt", help="File containing input commands to evaluate", ) def batch_benchmark( benchmark_command: str, command_file: str, ) -> None: assert ( "split_table_batched_embeddings_benchmark" in benchmark_command ), "split_table_batched_embeddings benchmark required for execution" benchmark_cmd = benchmark_command.strip().split() cmds_run = 0 failed_runs = [] total_fwd_bytes_read_gb = 0 total_fwdbwd_bytes_read_gb = 0 total_fwd_time_us = 0 total_fwdbwd_time_us = 0 with open(command_file) as cmd_file: for line in cmd_file: options = line.replace('"', "").strip().split() cmd = benchmark_cmd + options logging.info(f"Running command {cmds_run}: {cmd}") result = subprocess.run( cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT ) logging.info(result.stdout.decode("utf-8")) # Parse results found_fwd_results = False found_fwdbwd_results = False for line in result.stdout.decode("utf-8").splitlines(): re_match = re.search(r"BW: ([\.\d]+) GB/s, T: ([\.\d]+)us", line) if re_match: bw_gb = float(re_match.groups()[0]) time_us = int(re_match.groups()[1]) total_bytes_read_gb = bw_gb * time_us / 1e6 if "Forward, " in line: total_fwd_bytes_read_gb += total_bytes_read_gb total_fwd_time_us += time_us found_fwd_results = True elif "ForwardBackward, " in line: total_fwdbwd_bytes_read_gb += total_bytes_read_gb total_fwdbwd_time_us += time_us found_fwdbwd_results = True else: raise Exception( f"Unexpected reported metric for line: '{line}'" ) if not (found_fwd_results and found_fwdbwd_results): failed_runs.append(cmds_run) cmds_run += 1 logging.info(f"Number of commands run: {cmds_run}") if failed_runs: logging.info(f"Failed runs: {failed_runs}") logging.info( f"Average FWD BW: {total_fwd_bytes_read_gb / total_fwd_time_us * 1e6} GB/s" ) logging.info( f" FWDBWD BW: {total_fwdbwd_bytes_read_gb / total_fwdbwd_time_us * 1e6} GB/s" ) if __name__ == "__main__": batch_benchmark()
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import enum from typing import Any, Dict # noqa: F401 import torch @enum.unique class EmbOptimType(enum.Enum): SGD = "sgd" # uses non-deterministic updates (atomicAdd(..)) with duplicate ids EXACT_SGD = ( "exact_sgd" # uses deterministic updates (via sorting + segment reduction) ) LAMB = "lamb" ADAM = "adam" # exact/dedup: gradients to the same row are applied with coalesce then apply # together, instead of applied in sequence (approx). EXACT_ADAGRAD = "exact_adagrad" EXACT_ROWWISE_ADAGRAD = "exact_row_wise_adagrad" LARS_SGD = "lars_sgd" PARTIAL_ROWWISE_ADAM = "partial_row_wise_adam" PARTIAL_ROWWISE_LAMB = "partial_row_wise_lamb" ROWWISE_ADAGRAD = "row_wise_adagrad" SHAMPOO = "shampoo" # not currently supported for sparse embedding tables MADGRAD = "madgrad" EXACT_ROWWISE_WEIGHTED_ADAGRAD = "exact_row_wise_weighted_adagrad" NONE = "none" def __str__(self) -> str: return self.value # Base class for quantization configuration (in case other numeric types have # configs) class QuantizationConfig: def __init__(self) -> None: self.config = {} # type: Dict[str, Any] def get(self, name: str) -> int: return -1 # FP8 quantization configuration # Compute necessary parameters in the constructor class FP8QuantizationConfig(QuantizationConfig): def __init__(self, exponent_bits: int, exponent_bias: int) -> None: super(FP8QuantizationConfig, self).__init__() self.config = { "exponent_bits": exponent_bits, "exponent_bias": exponent_bias, "max_position": (1 << ((1 << exponent_bits) - 2 - exponent_bias)) * (2 - 2 ** (exponent_bits - 7)), } # type: Dict[str, Any] def get(self, name: str) -> int: if name not in self.config: raise RuntimeError("{} must be set in config".format(name)) return self.config[name] @enum.unique class SparseType(enum.Enum): FP32 = "fp32" FP16 = "fp16" FP8 = "fp8" INT8 = "int8" INT4 = "int4" INT2 = "int2" BF16 = "bf16" def __str__(self) -> str: return self.value @staticmethod def from_int(ty: int) -> "SparseType": if ty == 0: return SparseType("fp32") elif ty == 1: return SparseType("fp16") elif ty == 2: return SparseType("int8") elif ty == 3: return SparseType("int4") elif ty == 4: return SparseType("int2") elif ty == 5: return SparseType("bf16") elif ty == 6: return SparseType("fp8") else: raise ValueError(f"Unsupported sparse type: {ty}") def as_int(self) -> int: return { SparseType.FP32.value: 0, SparseType.FP16.value: 1, SparseType.INT8.value: 2, SparseType.INT4.value: 3, SparseType.INT2.value: 4, SparseType.BF16.value: 5, SparseType.FP8.value: 6, }[self.value] @staticmethod def from_dtype(dtype: torch.dtype) -> "SparseType": if dtype == torch.float32: return SparseType("fp32") elif dtype == torch.float16: return SparseType("fp16") elif dtype == torch.int8 or dtype == torch.uint8: return SparseType("int8") elif dtype == torch.quint4x2: return SparseType("int4") elif dtype == torch.quint2x4: return SparseType("int2") elif dtype == torch.bfloat16: return SparseType("bf16") else: raise ValueError(f"Unsupported sparse dtype: {dtype}") def as_dtype(self) -> torch.dtype: return { SparseType.FP32.value: torch.float32, SparseType.FP16.value: torch.float16, SparseType.FP8.value: torch.uint8, SparseType.INT8.value: torch.uint8, SparseType.INT4.value: torch.quint4x2, SparseType.INT2.value: torch.quint2x4, SparseType.BF16.value: torch.bfloat16, }[self.value] def bit_rate(self) -> int: return { SparseType.FP32.value: 32, SparseType.FP16.value: 16, SparseType.FP8.value: 8, SparseType.INT8.value: 8, SparseType.INT4.value: 4, SparseType.INT2.value: 2, SparseType.BF16.value: 16, }[self.value] def align_size(self) -> int: return { SparseType.FP32.value: 1, SparseType.FP16.value: 2, SparseType.FP8.value: 4, SparseType.INT8.value: 4, SparseType.INT4.value: 8, SparseType.INT2.value: 16, SparseType.BF16.value: 2, }[self.value] def is_float(self) -> bool: if ( self.value == SparseType.FP32.value or self.value == SparseType.FP16.value or self.value == SparseType.FP8.value or self.value == SparseType.BF16.value ): return True else: return False def default_config(self) -> QuantizationConfig: if self.value == SparseType.FP8.value: return FP8QuantizationConfig(4, 7) else: return QuantizationConfig() ELEMENT_SIZE: Dict[SparseType, int] = { SparseType.FP32: 4, SparseType.FP16: 2, SparseType.FP8: 1, SparseType.INT8: 1, SparseType.BF16: 2, # SparseType.INT4: 0.5, }
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from typing import Any, Callable import torch class BatchAuc(torch.nn.Module): def __init__(self) -> None: super().__init__() def forward( self, n_tasks: int, predictions: torch.Tensor, labels: torch.Tensor, weights: torch.Tensor, ) -> torch.Tensor: _, sorted_indices = torch.sort(predictions, descending=True, dim=-1) sorted_labels = torch.gather(labels, 1, sorted_indices) sorted_weights = torch.gather(weights, 1, sorted_indices) cum_fp = torch.cumsum(sorted_weights * (1.0 - sorted_labels), dim=-1) cum_tp = torch.cumsum(sorted_weights * sorted_labels, dim=-1) fac = cum_fp[:, -1] * cum_tp[:, -1] auc = torch.where(fac == 0, 0.5, torch.trapz(cum_tp, cum_fp, dim=-1) / fac) return auc class Auc(torch.nn.Module): def __init__(self) -> None: super().__init__() def forward( self, n_tasks: int, predictions: torch.Tensor, labels: torch.Tensor, weights: torch.Tensor, ) -> torch.Tensor: _, sorted_indices = torch.sort(predictions, descending=True, dim=-1) aucs = [] for sorted_indices_i, labels_i, weights_i in zip( sorted_indices, labels, weights ): sorted_labels = torch.index_select(labels_i, dim=0, index=sorted_indices_i) sorted_weights = torch.index_select( weights_i, dim=0, index=sorted_indices_i ) cum_fp = torch.cumsum(sorted_weights * (1.0 - sorted_labels), dim=0) cum_tp = torch.cumsum(sorted_weights * sorted_labels, dim=0) auc = torch.where( cum_fp[-1] * cum_tp[-1] == 0, 0.5, # 0.5 is the no-signal default value for auc. torch.trapz(cum_tp, cum_fp) / cum_fp[-1] / cum_tp[-1], ) aucs.append(auc.view(1)) return torch.cat(aucs) class AucJiterator(torch.nn.Module): def __init__(self) -> None: super().__init__() # Jiterator only works with elementwise kernels fp_code_string = """ template <typename T> T fp(T weights, T labels) { return weights * (1.0 - labels); }""" tp_code_string = """ template <typename T> T tp(T weights, T labels) { return weights * labels; }""" # pyre-ignore [4] self.jitted_fp: Callable[..., Any] = torch.cuda.jiterator._create_jit_fn( fp_code_string ) # pyre-ignore [4] self.jitted_tp: Callable[..., Any] = torch.cuda.jiterator._create_jit_fn( tp_code_string ) def forward( self, n_tasks: int, predictions: torch.Tensor, labels: torch.Tensor, weights: torch.Tensor, ) -> torch.Tensor: _, sorted_indices = torch.sort(predictions, descending=True, dim=-1) aucs = [] for sorted_indices_i, labels_i, weights_i in zip( sorted_indices, labels, weights ): sorted_labels = torch.index_select(labels_i, dim=0, index=sorted_indices_i) sorted_weights = torch.index_select( weights_i, dim=0, index=sorted_indices_i ) cum_fp = torch.cumsum(self.jitted_fp(sorted_weights, sorted_labels), dim=0) cum_tp = torch.cumsum(self.jitted_tp(sorted_weights, sorted_labels), dim=0) auc = torch.where( cum_fp[-1] * cum_tp[-1] == 0, 0.5, # 0.5 is the no-signal default value for auc. torch.trapz(cum_tp, cum_fp) / cum_fp[-1] / cum_tp[-1], ) aucs.append(auc.view(1)) return torch.cat(aucs) class BatchAucJiterator(torch.nn.Module): def __init__(self) -> None: super().__init__() # Jiterator only works with elementwise kernels fp_code_string = """ template <typename T> T fp(T weights, T labels) { return weights * (1.0 - labels); }""" tp_code_string = """ template <typename T> T tp(T weights, T labels) { return weights * labels; }""" # pyre-ignore [4] self.jitted_fp: Callable[..., Any] = torch.cuda.jiterator._create_jit_fn( fp_code_string ) # pyre-ignore [4] self.jitted_tp: Callable[..., Any] = torch.cuda.jiterator._create_jit_fn( tp_code_string ) def forward( self, n_tasks: int, predictions: torch.Tensor, labels: torch.Tensor, weights: torch.Tensor, ) -> torch.Tensor: _, sorted_indices = torch.sort(predictions, descending=True, dim=-1) sorted_labels = torch.gather(labels, 1, sorted_indices) sorted_weights = torch.gather(weights, 1, sorted_indices) cum_fp = torch.cumsum(self.jitted_fp(sorted_weights, sorted_labels), dim=-1) cum_tp = torch.cumsum(self.jitted_tp(sorted_weights, sorted_labels), dim=-1) fac = cum_fp[:, -1] * cum_tp[:, -1] auc = torch.where(fac == 0, 0.5, torch.trapz(cum_tp, cum_fp, dim=-1) / fac) return auc def auc( n_tasks: int, predictions: torch.Tensor, labels: torch.Tensor, weights: torch.Tensor ) -> torch.Tensor: _, sorted_indices = torch.sort(predictions, descending=True, dim=-1) return torch.ops.fbgemm.batch_auc(n_tasks, sorted_indices, labels, weights)
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import logging from itertools import accumulate from typing import List, Optional import torch from torch import nn try: # pyre-ignore[21] from fbgemm_gpu import open_source # noqa: F401 except Exception: torch.ops.load_library( "//deeplearning/fbgemm/fbgemm_gpu:permute_pooled_embedding_ops_gpu" ) class PermutePooledEmbeddings(nn.Module): def __init__( self, embs_dims: List[int], permute: List[int], device: Optional[torch.device] = None, ) -> None: super(PermutePooledEmbeddings, self).__init__() logging.info("Using Permute Pooled Embeddings") self.register_buffer( "_offset_dim_list", torch.tensor( [0] + list(accumulate(embs_dims)), device=device, dtype=torch.int64 ), ) self.register_buffer( "_permute", torch.tensor(permute, device=device, dtype=torch.int64) ) inv_permute: List[int] = [0] * len(permute) for i, p in enumerate(permute): inv_permute[p] = i self.register_buffer( "_inv_permute", torch.tensor(inv_permute, device=device, dtype=torch.int64) ) # `Union[BoundMethod[typing.Callable(torch.Tensor.tolist)[[Named(self, # torch.Tensor)], List[typing.Any]], torch.Tensor], nn.Module, torch.Tensor]` # is not a function. inv_embs_dims = [embs_dims[i] for i in permute] self.register_buffer( "_inv_offset_dim_list", torch.tensor( [0] + list(accumulate(inv_embs_dims)), device=device, dtype=torch.int64 ), ) def forward(self, pooled_embs: torch.Tensor) -> torch.Tensor: result = torch.ops.fbgemm.permute_pooled_embs_auto_grad( pooled_embs, self._offset_dim_list.to(device=pooled_embs.device), self._permute.to(device=pooled_embs.device), self._inv_offset_dim_list.to(device=pooled_embs.device), self._inv_permute.to(device=pooled_embs.device), ) return result
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. # flake8: noqa F401 from fbgemm_gpu.split_embedding_optimizer_codegen.optimizer_args import ( SplitEmbeddingArgs, SplitEmbeddingOptimizerParams, ) from fbgemm_gpu.split_embedding_optimizer_codegen.split_embedding_optimizer_rowwise_adagrad import ( SplitEmbeddingRowwiseAdagrad, )
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import enum import typing from typing import Any, Callable, List, Tuple # Create enums in given namespace with information from query_op def create_enums( namespace: typing.Dict[str, Any], query_op: Callable[[], List[Tuple[str, List[Tuple[str, int]]]]], ) -> None: for enum_name, items in query_op(): # Create matching python enumeration # pyre-fixme[6]: For 2nd argument expected `None` but got `List[Tuple[str, # int]]`. new_enum = enum.Enum(enum_name, items) # and store it in the module namespace[enum_name] = new_enum
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import logging from typing import Callable, List, Optional, Tuple, TypeVar import numpy as np import torch from fbgemm_gpu.split_embedding_configs import ( FP8QuantizationConfig, SparseType, ) # usort:skip # pyre-fixme[21]: Could not find name `default_rng` in `numpy.random` (stubbed). from numpy.random import default_rng logging.basicConfig(level=logging.DEBUG) Deviceable = TypeVar( "Deviceable", torch.nn.EmbeddingBag, torch.nn.Embedding, torch.Tensor ) def round_up(a: int, b: int) -> int: return int((a + b - 1) // b) * b def get_device() -> torch.device: # pyre-fixme[7]: Expected `device` but got `Union[int, device]`. return ( torch.cuda.current_device() if torch.cuda.is_available() else torch.device("cpu") ) def to_device(t: Deviceable, use_cpu: bool) -> Deviceable: # pyre-fixme[7]: Expected `Deviceable` but got `Union[Tensor, # torch.nn.EmbeddingBag]`. return t.cpu() if use_cpu else t.cuda() # Merged indices with shape (T, B, L) -> (flattened indices with shape # (T * B * L), offsets with shape (T * B + 1)) def get_table_batched_offsets_from_dense( merged_indices: torch.Tensor, L: Optional[int] = None, total_B: Optional[int] = None, use_cpu: bool = False, ) -> Tuple[torch.Tensor, torch.Tensor]: if L is None and total_B is None: (T, B, L) = merged_indices.size() total_B = T * B lengths = np.ones(total_B) * L return ( to_device(merged_indices.contiguous().view(-1), use_cpu), to_device( torch.tensor(([0] + np.cumsum(lengths).tolist())).long(), use_cpu, ), ) def get_offsets_from_dense(indices: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: (B, L) = indices.size() return ( indices.contiguous().view(-1), torch.tensor( np.cumsum(np.asarray([0] + [L for _ in range(B)])[:-1]).astype(np.int64) ), ) def b_indices( b: Callable[..., torch.Tensor], x: torch.Tensor, per_sample_weights: Optional[torch.Tensor] = None, use_cpu: bool = False, do_pooling: bool = True, ) -> torch.Tensor: (indices, offsets) = get_offsets_from_dense(x) if do_pooling: return b( to_device(indices, use_cpu), to_device(offsets, use_cpu), per_sample_weights=per_sample_weights, ) else: return b(to_device(indices, use_cpu)) def generate_requests( # noqa C901 iters: int, B: int, T: int, L: int, E: int, # inter-batch indices reuse rate reuse: float = 0.0, # alpha <= 1.0: use uniform distribution # alpha > 1.0: use zipf distribution alpha: float = 1.0, zipf_oversample_ratio: int = 3, weighted: bool = False, requests_data_file: Optional[str] = None, # Comma-separated list of table numbers tables: Optional[str] = None, # If sigma_L is not None, treat L as mu_L and generate Ls from sigma_L # and mu_L sigma_L: Optional[int] = None, emulate_pruning: bool = False, use_cpu: bool = False, deterministic_output: bool = False, # generate_requests uses numpy.random.default_rng without a set random seed be default, causing the indices tensor to vary with each call to generate_requests - set generate_repeatable_output to use a fixed random seed instead for repeatable outputs length_dist: str = "normal", # distribution of embedding sequence lengths ) -> List[Tuple[torch.IntTensor, torch.IntTensor, Optional[torch.Tensor]]]: # TODO: refactor and split into helper functions to separate load from file, # generate from distribution, and other future methods of generating data if requests_data_file is not None: indices_tensor, offsets_tensor, lengths_tensor = torch.load(requests_data_file) average_L = 0 if tables is not None: emb_tables = tuple(int(x) for x in tables.split(",")) indices = torch.zeros(0, dtype=indices_tensor.dtype) offsets = torch.zeros(1, dtype=offsets_tensor.dtype) total_L = 0 for t in emb_tables: t_offsets = offsets_tensor[B * t : B * (t + 1) + 1] total_L += t_offsets[-1] - t_offsets[0] indices = torch.cat( (indices, indices_tensor[t_offsets[0] : t_offsets[-1]]) ) offsets = torch.cat( ( offsets, t_offsets[1:] - t_offsets[0] + offsets[-1], ) ) indices_tensor = indices offsets_tensor = offsets average_L = int(total_L / B) assert np.prod(offsets_tensor.size()) - 1 == np.prod((T, B)), ( f"Requested tables: {emb_tables} " f"does not conform to inputs (T, B) = ({T}, {B})." ) logging.warning( f"Using (indices = {indices_tensor.size()}, offsets = {offsets_tensor.size()}) based " f"on tables: {emb_tables}" ) else: average_L = int((offsets_tensor[-1] - offsets_tensor[0]) / B) assert (np.prod(offsets_tensor.size()) - 1) == np.prod((T, B)), ( f"Data file (indices = {indices_tensor.size()}, " f"offsets = {offsets_tensor.size()}, lengths = {lengths_tensor.size()}) " f"does not conform to inputs (T, B) = ({T}, {B})." ) assert ( L == average_L ), f"Requested L does not align with provided data file ({L} vs. {average_L})" assert E > max(indices_tensor), ( f"Number of embeddings is not enough to support maximum index " f"provided by data file {E} vs. {max(indices_tensor)}" ) weights_tensor = ( None if not weighted else torch.randn(indices_tensor.size(), device=get_device()) ) rs = [] for _ in range(iters): rs.append( ( indices_tensor.to(get_device()), offsets_tensor.to(get_device()), weights_tensor, ) ) return rs # Generate L from stats if sigma_L is not None: use_variable_L = True if length_dist == "uniform": # TODO: either make these separate parameters or make a separate version of # generate_requests to handle the uniform dist case once whole # generate_requests function is refactored to split into helper functions # for each use case. # L represents the lower bound when the uniform distribution is used lower_bound = L # sigma_L represetns the upper bound when the uniform distribution is used upper_bound = sigma_L + 1 Ls = np.random.randint( lower_bound, upper_bound, (T, B), dtype=np.int32, ) else: # normal dist Ls = np.random.normal(loc=L, scale=sigma_L, size=T * B).astype(int) # Make sure that Ls are positive Ls[Ls < 0] = 0 # Use the same L distribution across iters Ls = np.tile(Ls, iters) L = Ls.max() # Make it exclusive cumsum L_offsets = torch.from_numpy(np.insert(Ls.cumsum(), 0, 0)).to(torch.long) else: use_variable_L = False # Init to suppress the pyre error L_offsets = torch.empty(1) if alpha <= 1.0: all_indices = torch.randint( low=0, high=E, size=(iters, T, B, L), device="cpu" if use_variable_L else get_device(), dtype=torch.int32, ) # each bag is usually sorted (all_indices, _) = torch.sort(all_indices) if use_variable_L: all_indices = torch.ops.fbgemm.bottom_k_per_row( all_indices.to(torch.long), L_offsets, False ) all_indices = all_indices.to(get_device()).int() else: all_indices = all_indices.reshape(iters, T, B * L) else: assert E >= L, "num-embeddings must be greater than equal to bag-size" # oversample and then remove duplicates to obtain sampling without # replacement zipf_shape = (iters, T, B, zipf_oversample_ratio * L) if torch.cuda.is_available(): zipf_shape_total_len = np.prod(zipf_shape) all_indices_list = [] # process 8 GB at a time on GPU chunk_len = int(1e9) for chunk_begin in range(0, zipf_shape_total_len, chunk_len): all_indices_gpu = torch.ops.fbgemm.zipf_cuda( alpha, min(zipf_shape_total_len - chunk_begin, chunk_len), seed=torch.randint(2**31 - 1, (1,))[0], ) all_indices_list.append(all_indices_gpu.cpu()) all_indices = torch.cat(all_indices_list).reshape(zipf_shape) else: all_indices = torch.as_tensor(np.random.zipf(a=alpha, size=zipf_shape)) all_indices = (all_indices - 1) % E if use_variable_L: all_indices = torch.ops.fbgemm.bottom_k_per_row( all_indices, L_offsets, True ) else: all_indices = torch.ops.fbgemm.bottom_k_per_row( all_indices, torch.tensor([0, L], dtype=torch.long), True ) if deterministic_output: rng = default_rng(12345) else: rng = default_rng() permutation = torch.as_tensor( rng.choice(E, size=all_indices.max().item() + 1, replace=False) ) all_indices = permutation.gather(0, all_indices.flatten()) all_indices = all_indices.to(get_device()).int() if not use_variable_L: all_indices = all_indices.reshape(iters, T, B * L) if reuse > 0.0: assert ( not use_variable_L ), "Does not support generating Ls from stats for reuse > 0.0" for it in range(iters - 1): for t in range(T): reused_indices = torch.randperm(B * L, device=get_device())[ : int(B * L * reuse) ] all_indices[it + 1, t, reused_indices] = all_indices[ it, t, reused_indices ] # Some indices are set to -1 for emulating pruned rows. if emulate_pruning: for it in range(iters): for t in range(T): num_negative_indices = B // 2 random_locations = torch.randint( low=0, high=(B * L), size=(num_negative_indices,), device=torch.cuda.current_device(), dtype=torch.int32, ) all_indices[it, t, random_locations] = -1 rs = [] for it in range(iters): if use_variable_L: start_offset = L_offsets[it * T * B] it_L_offsets = torch.concat( [ torch.zeros(1), L_offsets[it * T * B + 1 : (it + 1) * T * B + 1] - start_offset, ] ) weights_tensor = ( None if not weighted else torch.randn( int(it_L_offsets[-1].item()), device=get_device() ) # per sample weights will always be FP32 ) rs.append( ( all_indices[start_offset : L_offsets[(it + 1) * T * B]], it_L_offsets.to(get_device()), weights_tensor, ) ) else: weights_tensor = ( None if not weighted else torch.randn( T * B * L, device=get_device() ) # per sample weights will always be FP32 ) rs.append( get_table_batched_offsets_from_dense( all_indices[it].view(T, B, L), use_cpu=use_cpu ) + (weights_tensor,) ) return rs def quantize_embs( weight: torch.Tensor, weight_ty: SparseType, fp8_config: Optional[FP8QuantizationConfig] = None, ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: weight = weight.detach() if weight_ty == SparseType.FP32: q_weight = weight.float() res_weight = q_weight.view(torch.uint8) return (res_weight, None) elif weight_ty == SparseType.FP16: q_weight = weight.half() res_weight = q_weight.view(torch.uint8) return (res_weight, None) elif weight_ty == SparseType.FP8: assert fp8_config is not None # Quantize FP32 to HPF8 res_weight = torch.ops.fbgemm.FloatToHFP8Quantized( weight.float(), fp8_config.get("exponent_bits"), fp8_config.get("exponent_bias"), fp8_config.get("max_position"), ) return (res_weight, None) elif weight_ty == SparseType.INT8: # Note that FloatToFused8BitRowwiseQuantized might have additional padding # for alignment if embedding dimension is not a multiple of 4: # https://fburl.com/code/z009xsy6 q_weight = torch.ops.fbgemm.FloatToFused8BitRowwiseQuantized(weight) res_weight = q_weight[:, :-8].view(torch.uint8) res_scale_shift = torch.tensor( q_weight[:, -8:].view(torch.float32).to(torch.float16).view(torch.uint8) ) # [-4, -2]: scale; [-2:]: bias return (res_weight, res_scale_shift) elif weight_ty == SparseType.INT4 or weight_ty == SparseType.INT2: # Note that FP32 -> INT4/INT2 conersion op below might have additional padding # for alignment: https://fburl.com/code/xx9kkduf q_weight = torch.ops.fbgemm.FloatToFusedNBitRowwiseQuantizedSBHalf( weight, bit_rate=weight_ty.bit_rate(), ) res_weight = q_weight[:, :-4].view(torch.uint8) res_scale_shift = torch.tensor( q_weight[:, -4:].view(torch.uint8) ) # [-4, -2]: scale; [-2:]: bias return (res_weight, res_scale_shift) else: raise RuntimeError("Unsupported SparseType: {}".format(weight_ty)) def dequantize_embs( weights: torch.Tensor, scale_shift: torch.Tensor, weight_ty: SparseType, use_cpu: bool, fp8_config: Optional[FP8QuantizationConfig] = None, ) -> torch.Tensor: print(f"weight_ty: {weight_ty}") assert ( weights.dtype == torch.uint8 ), "The input tensor for dequantize_embs function needs to be byte tensor" th_weights = weights if scale_shift is not None: th_scale_shift: torch.Tensor = scale_shift.view(torch.float16).to(torch.float32) if weight_ty == SparseType.INT4: (E, D_2) = th_weights.shape D = D_2 * 2 def comp(i: int) -> torch.Tensor: subs = th_weights.view(torch.uint8) >> (i * 4) sub_mask = subs & 0xF result = sub_mask.to(torch.float32) * th_scale_shift[:, 0].reshape( -1, 1 ).to(torch.float32) + th_scale_shift[:, 1].reshape(-1, 1).to(torch.float32) return result.to(torch.float32) comps = [comp(i) for i in range(2)] comps = torch.stack(comps) comps = comps.permute(1, 2, 0) comps = comps.reshape(E, D) return to_device(torch.tensor(comps), use_cpu) elif weight_ty == SparseType.INT2: (E, D_4) = th_weights.shape D = D_4 * 4 # pyre-fixme[53]: Captured variable `scale_shift` is not annotated. # pyre-fixme[53]: Captured variable `weights` is not annotated. def comp(i: int) -> torch.Tensor: subs = th_weights.view(torch.uint8) >> (i * 2) sub_mask = subs & 0x3 result = sub_mask.to(torch.float32) * th_scale_shift[:, 0].reshape( -1, 1 ).to(torch.float32) + th_scale_shift[:, 1].reshape(-1, 1).to(torch.float32) return result.to(torch.float32) comps = [comp(i) for i in range(4)] comps = torch.stack(comps) comps = comps.permute(1, 2, 0) comps = comps.reshape(E, D) return to_device(torch.tensor(comps), use_cpu) elif weight_ty == SparseType.INT8: (E, D) = th_weights.shape comps = th_weights.to(torch.float32) * th_scale_shift[:, 0].reshape(-1, 1).to( torch.float32 ) + th_scale_shift[:, 1].reshape(-1, 1).to(torch.float32) return to_device(torch.tensor(comps), use_cpu) elif weight_ty == SparseType.FP8: assert fp8_config is not None assert scale_shift is None # Dequantize HPF8 to FP32 comps = torch.ops.fbgemm.HFP8QuantizedToFloat( weights, fp8_config.get("exponent_bits"), fp8_config.get("exponent_bias"), ) return to_device(comps, use_cpu) elif weight_ty == SparseType.FP16: assert scale_shift is None comps = th_weights.view(torch.half) return to_device(torch.tensor(comps), use_cpu) elif weight_ty == SparseType.FP32: assert scale_shift is None comps = th_weights.view(torch.float32) # pyre-fixme[7]: Expected `Tensor` but got implicit return value of `None`. return to_device(torch.tensor(comps), use_cpu) def fake_quantize_embs( weights: torch.Tensor, scale_shift: Optional[torch.Tensor], dequant_weights: torch.Tensor, weight_ty: SparseType, use_cpu: bool, fp8_config: Optional[FP8QuantizationConfig] = None, ) -> None: assert ( weights.dtype == torch.uint8 ), "The input tensor for dequantize_embs function needs to be byte tensor" th_weights = weights if scale_shift is not None: th_scale_shift: torch.Tensor = ( scale_shift.contiguous().view(torch.float16).to(torch.float32) ) if weight_ty == SparseType.INT4: (E, D_2) = th_weights.shape D = D_2 * 2 def comp(i: int) -> torch.Tensor: subs = th_weights.view(torch.uint8) >> (i * 4) sub_mask = subs & 0xF result = sub_mask.to(torch.float32) * th_scale_shift[:, 0].reshape( -1, 1 ).to(torch.float32) + th_scale_shift[:, 1].reshape(-1, 1).to(torch.float32) return result.to(torch.float32) comps = [comp(i) for i in range(2)] comps = torch.stack(comps) comps = comps.permute(1, 2, 0) comps = comps.reshape(E, D) dequant_weights.copy_(to_device(comps, use_cpu)) elif weight_ty == SparseType.INT2: (E, D_4) = th_weights.shape D = D_4 * 4 # pyre-fixme[53]: Captured variable `scale_shift` is not annotated. # pyre-fixme[53]: Captured variable `weights` is not annotated. def comp(i: int) -> torch.Tensor: subs = th_weights.view(torch.uint8) >> (i * 2) sub_mask = subs & 0x3 result = sub_mask.to(torch.float32) * th_scale_shift[:, 0].reshape( -1, 1 ).to(torch.float32) + th_scale_shift[:, 1].reshape(-1, 1).to(torch.float32) return result.to(torch.float32) comps = [comp(i) for i in range(4)] comps = torch.stack(comps) comps = comps.permute(1, 2, 0) comps = comps.reshape(E, D) dequant_weights.copy_(to_device(comps, use_cpu)) elif weight_ty == SparseType.INT8: (E, D) = th_weights.shape comps = th_weights.to(torch.float32) * th_scale_shift[:, 0].reshape(-1, 1).to( torch.float32 ) + th_scale_shift[:, 1].reshape(-1, 1).to(torch.float32) dequant_weights.copy_(to_device(comps, use_cpu)) elif weight_ty == SparseType.FP8: assert fp8_config is not None assert scale_shift is None # Quantize FP32 to HPF8 comps = torch.ops.fbgemm.FloatToHFP8Quantized( dequant_weights.detach().float(), fp8_config.get("exponent_bits"), fp8_config.get("exponent_bias"), fp8_config.get("max_position"), ) weights.copy_(comps) # Dequantize HPF8 to FP32 comps = torch.ops.fbgemm.HFP8QuantizedToFloat( comps, fp8_config.get("exponent_bits"), fp8_config.get("exponent_bias"), ) dequant_weights.copy_(to_device(comps, use_cpu)) elif weight_ty == SparseType.FP16: assert scale_shift is None comps = dequant_weights.detach().half().view(torch.uint8) weights.copy_(comps) elif weight_ty == SparseType.FP32: assert scale_shift is None comps = dequant_weights.detach().float().view(torch.uint8) weights.copy_(comps)
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. # pyre-unsafe import logging import math from typing import cast, Optional, Tuple import torch from fbgemm_gpu.split_embedding_configs import QuantizationConfig, SparseType from fbgemm_gpu.split_embedding_utils import FP8QuantizationConfig, quantize_embs from fbgemm_gpu.split_table_batched_embeddings_ops_common import EmbeddingLocation from fbgemm_gpu.split_table_batched_embeddings_ops_inference import ( IntNBitTableBatchedEmbeddingBagsCodegen, ) from fbgemm_gpu.split_table_batched_embeddings_ops_training import ( ComputeDevice, SplitTableBatchedEmbeddingBagsCodegen, ) from torch import Tensor # usort:skip # TODO: add per-feature based converter option (based on embedding_specs during inference) # TODO: optimize embedding pruning and quantization latency. class SplitEmbInferenceConverter: def __init__( self, quantize_type: SparseType, pruning_ratio: Optional[float], use_array_for_index_remapping: bool = True, quantization_config: Optional[QuantizationConfig] = None, ): self.quantize_type = quantize_type # TODO(yingz): Change the pruning ratio to per-table settings. self.pruning_ratio = pruning_ratio self.use_array_for_index_remapping = use_array_for_index_remapping self.quantization_config = quantization_config def convert_model(self, model: torch.nn.Module) -> torch.nn.Module: self._process_split_embs(model) return model def _prune_by_weights_l2_norm(self, new_num_rows, weights) -> Tuple[Tensor, float]: assert new_num_rows > 0 from numpy.linalg import norm indicators = [] for row in weights: indicators.append(norm(row.cpu().numpy(), ord=2)) sorted_indicators = sorted(indicators, reverse=True) threshold = None for i in range(new_num_rows, len(sorted_indicators)): if sorted_indicators[i] < sorted_indicators[new_num_rows - 1]: threshold = sorted_indicators[i] break if threshold is None: threshold = sorted_indicators[-1] - 1 return (torch.tensor(indicators), threshold) def _prune_embs( self, idx: int, num_rows: int, module: SplitTableBatchedEmbeddingBagsCodegen, ) -> Tuple[Tensor, Optional[Tensor]]: # TODO(yingz): Avoid DtoH / HtoD overhead. weights = module.split_embedding_weights()[idx].cpu() if self.pruning_ratio is None: return (weights, None) new_num_rows = int(math.ceil(num_rows * (1.0 - self.pruning_ratio))) # type: ignore if new_num_rows == num_rows: return (weights, None) (indicators, threshold) = self._prune_by_weights_l2_norm(new_num_rows, weights) return torch.ops.fbgemm.embedding_bag_rowwise_prune( weights, indicators, threshold, torch.int32 ) def _get_quantization_config(self, name): quantization_config = self.quantization_config if quantization_config is None: raise RuntimeError("quantization_config must be set for FP8 weight") return quantization_config.get(name) def _quantize_embs( self, weight: Tensor, weight_ty: SparseType ) -> Tuple[Tensor, Optional[Tensor]]: fp8_quant_config = cast(FP8QuantizationConfig, self.quantization_config) return quantize_embs(weight, weight_ty, fp8_quant_config) def _process_split_embs(self, model: torch.nn.Module) -> None: for name, child in model.named_children(): if isinstance( child, SplitTableBatchedEmbeddingBagsCodegen, ): embedding_specs = [] use_cpu = child.embedding_specs[0][3] == ComputeDevice.CPU for E, D, _, _ in child.embedding_specs: weights_ty = self.quantize_type if D % weights_ty.align_size() != 0: logging.warning( f"Embedding dim {D} couldn't be divided by align size {weights_ty.align_size()}!" ) assert D % 4 == 0 weights_ty = ( SparseType.FP16 ) # fall back to FP16 if dimension couldn't be aligned with the required size embedding_specs.append(("", E, D, weights_ty)) weight_lists = [] new_embedding_specs = [] index_remapping_list = [] for t, (_, E, D, weight_ty) in enumerate(embedding_specs): # Try to prune embeddings. (pruned_weight, index_remapping) = self._prune_embs(t, E, child) new_embedding_specs.append( ( "", pruned_weight.size()[0], D, weight_ty, EmbeddingLocation.HOST if use_cpu else EmbeddingLocation.DEVICE, ) ) index_remapping_list.append(index_remapping) # Try to quantize embeddings. weight_lists.append(self._quantize_embs(pruned_weight, weight_ty)) is_fp8_weight = self.quantize_type == SparseType.FP8 q_child = IntNBitTableBatchedEmbeddingBagsCodegen( embedding_specs=new_embedding_specs, index_remapping=index_remapping_list if self.pruning_ratio is not None else None, pooling_mode=child.pooling_mode, device="cpu" if use_cpu else torch.cuda.current_device(), weight_lists=weight_lists, use_array_for_index_remapping=self.use_array_for_index_remapping, fp8_exponent_bits=self._get_quantization_config("exponent_bits") if is_fp8_weight else None, fp8_exponent_bias=self._get_quantization_config("exponent_bias") if is_fp8_weight else None, ) setattr(model, name, q_child) else: self._process_split_embs(child)
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import os import torch try: torch.ops.load_library(os.path.join(os.path.dirname(__file__), "fbgemm_gpu_py.so")) except Exception as e: print(e) # __init__.py is only used in OSS # Use existence to check if fbgemm_gpu_py.so has already been loaded open_source: bool = True # Re-export docs from . import _fbgemm_gpu_docs # noqa: F401, E402 # Re-export the version string from the auto-generated version file from ._fbgemm_gpu_version import __version__ # noqa: F401, E402
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import logging from itertools import accumulate from typing import List, Optional import torch from torch import nn try: # pyre-ignore[21] from fbgemm_gpu import open_source # noqa: F401 except Exception: torch.ops.load_library( "//deeplearning/fbgemm/fbgemm_gpu:permute_pooled_embedding_ops_split_gpu" ) torch.ops.load_library( "//deeplearning/fbgemm/fbgemm_gpu:permute_pooled_embedding_ops_split_cpu" ) @torch.fx.wrap def _fx_wrap_tensor_to_device(t: torch.Tensor, device: torch.device) -> torch.Tensor: return t.to(device=device) class PermutePooledEmbeddingsSplit(nn.Module): def __init__( self, embs_dims: List[int], permute: List[int], device: Optional[torch.device] = None, ) -> None: super(PermutePooledEmbeddingsSplit, self).__init__() logging.info("Using Permute Pooled Embeddings") self.register_buffer( "_offset_dim_list", torch.tensor( [0] + list(accumulate(embs_dims)), device=device, dtype=torch.int64 ), ) self.register_buffer( "_permute", torch.tensor(permute, device=device, dtype=torch.int64) ) inv_permute: List[int] = [0] * len(permute) for i, p in enumerate(permute): inv_permute[p] = i self.register_buffer( "_inv_permute", torch.tensor(inv_permute, device=device, dtype=torch.int64) ) # `Union[BoundMethod[typing.Callable(torch.Tensor.tolist)[[Named(self, # torch.Tensor)], List[typing.Any]], torch.Tensor], nn.Module, torch.Tensor]` # is not a function. inv_embs_dims = [embs_dims[i] for i in permute] self.register_buffer( "_inv_offset_dim_list", torch.tensor( [0] + list(accumulate(inv_embs_dims)), device=device, dtype=torch.int64 ), ) def forward(self, pooled_embs: torch.Tensor) -> torch.Tensor: result = torch.ops.fbgemm.permute_pooled_embs_auto_grad_split( pooled_embs, _fx_wrap_tensor_to_device(self._offset_dim_list, device=pooled_embs.device), _fx_wrap_tensor_to_device(self._permute, device=pooled_embs.device), _fx_wrap_tensor_to_device( self._inv_offset_dim_list, device=pooled_embs.device ), _fx_wrap_tensor_to_device(self._inv_permute, device=pooled_embs.device), ) return result
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. # The code in this file is refactored from https://fburl.com/code/p2gy2gxb # based on "Amy Yang et al., Training Deep Learning Recommendation Model with # Quantized Collective Communications", DLP-KDD 2020. import logging from typing import Optional, TypeVar import torch from fbgemm_gpu.quantize_utils import ( bf16_to_fp32, fp16_to_fp32, fp32_to_bf16_with_clamp, fp32_to_fp16_with_clamp, fp32_to_hfp8_with_clamp, hfp8_to_fp32, ) from fbgemm_gpu.split_embedding_configs import SparseType from torch.autograd.profiler import record_function # usort:skip logger: logging.Logger = logging.getLogger() # FP8 configurations ebits, mbits, bias = 4, 3, 15 max_pos: float = (2 ** ((1 << ebits) - 2 - bias)) * (2 - 2 ** (-mbits)) # INT8 configurations ROW_DIM_DEFAULT = 32 def none_throws( optional: Optional[TypeVar("_T")], message: str = "Unexpected `None`" ) -> TypeVar("_T"): if optional is None: raise AssertionError(message) return optional class QuantizationContext: def __init__(self, row_dim: int = ROW_DIM_DEFAULT) -> None: self.row_dim = row_dim self.row_dim_quant: int = -1 def _quantize_tensor( input_tensor: torch.Tensor, comm_precision: SparseType, ctx: Optional[QuantizationContext] = None, is_fwd: bool = True, ) -> torch.Tensor: if comm_precision == SparseType.FP32: return input_tensor elif comm_precision == SparseType.FP16: return fp32_to_fp16_with_clamp(input_tensor) elif comm_precision == SparseType.BF16: return fp32_to_bf16_with_clamp(input_tensor) elif comm_precision == SparseType.FP8: # return fp32_to_hfp8_with_clamp(input_tensor, ebits, mbits, bias) if ctx is not None and ctx.row_dim > 0: ctx = none_throws(ctx) row_dim = ctx.row_dim input_2d = input_tensor.view((-1, row_dim)) if row_dim > 0 else input_tensor input_2d_quant = torch.ops.fbgemm.FloatToFP8RowwiseQuantized( input_2d, is_fwd ) row_dim_quant = input_2d_quant.shape[1] input_quant_all2all = None input_quant_all2all = input_2d_quant.view((-1)) ctx.row_dim_quant = row_dim_quant return input_quant_all2all else: return fp32_to_hfp8_with_clamp(input_tensor, ebits, mbits, bias) elif comm_precision == SparseType.INT8: ctx = none_throws(ctx) row_dim = ctx.row_dim input_2d = input_tensor.view((-1, row_dim)) if row_dim > 0 else input_tensor input_2d_quant = torch.ops.fbgemm.FloatToFused8BitRowwiseQuantized(input_2d) row_dim_quant = input_2d_quant.shape[1] input_quant_all2all = None input_quant_all2all = input_2d_quant.view((-1)) ctx.row_dim_quant = row_dim_quant return input_quant_all2all else: raise ValueError(f"comm_precision={comm_precision} is not supported") def _dequantize_tensor( quantized_tensor: torch.Tensor, comm_precision: SparseType, ctx: Optional[QuantizationContext] = None, is_fwd: bool = True, ) -> torch.Tensor: if comm_precision == SparseType.FP32: assert quantized_tensor.dtype == torch.float return quantized_tensor elif comm_precision == SparseType.FP16: assert quantized_tensor.dtype == torch.half return fp16_to_fp32(quantized_tensor) elif comm_precision == SparseType.BF16: assert quantized_tensor.dtype == torch.bfloat16 return bf16_to_fp32(quantized_tensor) elif comm_precision == SparseType.FP8: if ctx is not None and ctx.row_dim > 0: row_dim_quant = ctx.row_dim_quant quantized_tensor_2d = quantized_tensor.view((-1, row_dim_quant)) dequant_tensor = torch.ops.fbgemm.FP8RowwiseQuantizedToFloat( quantized_tensor_2d, is_fwd ) return dequant_tensor.view(-1) else: assert quantized_tensor.dtype == torch.uint8 return hfp8_to_fp32(quantized_tensor, ebits, bias) elif comm_precision == SparseType.INT8: ctx = none_throws(ctx) row_dim_quant = ctx.row_dim_quant quantized_tensor_2d = quantized_tensor.view((-1, row_dim_quant)) dequant_tensor = torch.ops.fbgemm.Fused8BitRowwiseQuantizedToFloat( quantized_tensor_2d ) return dequant_tensor.view(-1) else: raise ValueError(f"comm_precision={comm_precision} is not supported") class QuantizedCommCodec: # Concrete implementation of QuantizedCommCodec provided by FBGEMM functions. def __init__( self, comm_precision: SparseType, loss_scale: Optional[float] = None, row_dim: Optional[int] = None, is_fwd: bool = True, ) -> None: if loss_scale is not None: if comm_precision not in [SparseType.FP16, SparseType.BF16]: logger.warning( f"Setting loss scale for comm_precision={comm_precision} is not supported. Overriding to None" ) loss_scale = None logger.info( f"Creating QuantizedCommsCodec comm_precision:{comm_precision}, loss_scale:{loss_scale}" ) self._comm_precision = comm_precision self._loss_scale = loss_scale self._is_fwd = is_fwd self._row_dim: int = -1 if row_dim is None else row_dim def encode( self, input_tensor: torch.Tensor, ctx: Optional[QuantizationContext] = None ) -> torch.Tensor: if self._loss_scale is not None: input_tensor = self._loss_scale * input_tensor with record_function( f"## encoder {self._comm_precision} {self._loss_scale} ##" ): output = _quantize_tensor( input_tensor, self._comm_precision, ctx, self._is_fwd, ) return output def decode( self, input_tensor: torch.Tensor, ctx: Optional[QuantizationContext] = None ) -> torch.Tensor: if self._loss_scale is not None: input_tensor = input_tensor / self._loss_scale with record_function( f"## decoder {self._comm_precision} {self._loss_scale} ##" ): dequantized_tensor = _dequantize_tensor( input_tensor, self._comm_precision, ctx, self._is_fwd ) return dequantized_tensor def calc_quantized_size( self, input_len: int, ctx: Optional[QuantizationContext] = None ) -> int: # Use the same logic in _float_to_fused8bitrowwise_gpu_t() if self._comm_precision == SparseType.INT8 or ( self._comm_precision == SparseType.FP8 and self._row_dim > 0 ): ctx = none_throws(ctx) assert input_len % ctx.row_dim == 0, ( f"input_len {input_len} is not a multiple of row dim {ctx.row_dim} " "Please check your batch size (power of 2 batch size is recommended)" ) nrows = input_len // ctx.row_dim ncols = (ctx.row_dim + 3) // 4 * 4 + 2 * 4 return nrows * ncols else: return input_len @property def quantized_dtype(self) -> torch.dtype: return self._comm_precision.as_dtype() def create_context(self) -> Optional[QuantizationContext]: # fp8 rowwise is activated when row_dim > 0 if self._comm_precision == SparseType.FP8: return QuantizationContext(self._row_dim) # int8 rowwise is default return QuantizationContext()
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import logging import torch logger: logging.Logger = logging.getLogger() try: # pyre-ignore[21] from fbgemm_gpu import open_source # noqa: F401 except Exception: torch.ops.load_library("//deeplearning/fbgemm/fbgemm_gpu:sparse_ops") torch.ops.load_library("//deeplearning/fbgemm/fbgemm_gpu:sparse_ops_cpu") TORCH_HALF_MIN: float = torch.finfo(torch.float16).min TORCH_HALF_MAX: float = torch.finfo(torch.float16).max TORCH_BFLOAT16_MIN: float = torch.finfo(torch.bfloat16).min TORCH_BFLOAT16_MAX: float = torch.finfo(torch.bfloat16).max def fp32_to_fp16_with_clamp(tensor: torch.Tensor) -> torch.Tensor: return torch.clamp(tensor, TORCH_HALF_MIN, TORCH_HALF_MAX).half() def fp32_to_bf16_with_clamp(tensor: torch.Tensor) -> torch.Tensor: return torch.clamp(tensor, TORCH_BFLOAT16_MIN, TORCH_BFLOAT16_MAX).bfloat16() def fp32_to_hfp8_with_clamp( tensor: torch.Tensor, ebits: int = 4, mbits: int = 3, bias: int = 15 ) -> torch.Tensor: max_pos: float = (2 ** ((1 << ebits) - 2 - bias)) * (2 - 2 ** (-mbits)) return torch.ops.fbgemm.FloatToHFP8Quantized( tensor.contiguous(), ebits, bias, max_pos, ) def fp16_to_fp32(tensor: torch.Tensor) -> torch.Tensor: return tensor.float() def bf16_to_fp32(tensor: torch.Tensor) -> torch.Tensor: return tensor.view(torch.bfloat16).float() def hfp8_to_fp32(tensor: torch.Tensor, ebits: int = 4, bias: int = 15) -> torch.Tensor: return torch.ops.fbgemm.HFP8QuantizedToFloat( tensor.contiguous().view(torch.uint8), ebits, bias, ) def measure_fp16_quant_error(input_tensor: torch.Tensor) -> None: # TODO: log to tensorboard num_nan_fp32_tensor = torch.numel(input_tensor[torch.isnan(input_tensor)]) logger.info( "num NaN in fp32 tensor: {}, ratio: {}.".format( num_nan_fp32_tensor, num_nan_fp32_tensor / torch.numel(input_tensor) ) ) logger.info( "fp32 tensor profile: min: {}, max: {}, min abs:{}, max abs:{}.".format( torch.min(input_tensor), torch.max(input_tensor), torch.min(torch.abs(input_tensor)), torch.max(torch.abs(input_tensor)), ) ) fp16_tensor = fp32_to_fp16_with_clamp(input_tensor) num_nan_fp16_tensor = torch.numel(fp16_tensor[torch.isnan(fp16_tensor)]) logger.info( "num NaN in fp16 tensor: {}, ratio: {}.".format( num_nan_fp16_tensor, num_nan_fp16_tensor / torch.numel(input_tensor) ) ) diff = torch.abs(input_tensor - fp16_tensor.float()) rel_diff = diff / torch.abs(input_tensor) logger.info( "fp32_to_fp16 abs error: min={}, max={}, avg={}.".format( torch.min(diff), torch.max(diff), torch.mean(diff) ) ) rel_diff_not_nan = rel_diff[torch.logical_not(torch.isnan(rel_diff))] logger.info( "fp32_to_fp16 rel error: min={}, max={}, avg={}.".format( torch.min(rel_diff_not_nan), torch.max(rel_diff_not_nan), torch.mean(rel_diff_not_nan), ) ) rel_diff_1_idx = torch.where(rel_diff == 1.0) fp32_rel_err_1_vals = input_tensor[rel_diff_1_idx] if torch.numel(fp32_rel_err_1_vals) > 0: fp32_rel_err_1_vals = torch.abs(fp32_rel_err_1_vals) logger.info( "fp32_to_fp16 rel error == 1: fp32 min:{}, fp32 max:{}, fp32 avg:{}.".format( torch.min(fp32_rel_err_1_vals), torch.max(fp32_rel_err_1_vals), torch.mean(fp32_rel_err_1_vals), ) ) subrange_ratio = torch.numel(fp16_tensor[rel_diff_1_idx]) / torch.numel( fp16_tensor ) logger.info("sub fp16 range ratio: {}".format(subrange_ratio))
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from enum import Enum from typing import Optional import torch from fbgemm_gpu.enums import create_enums try: # pyre-ignore[21] from fbgemm_gpu import open_source # noqa: F401 except Exception: torch.ops.load_library("//deeplearning/fbgemm/fbgemm_gpu:cumem_utils") # Import all uvm enums from c++ library create_enums(globals(), torch.ops.fbgemm.fbgemm_gpu_uvm_enum_query) def cudaMemAdvise( t: torch.Tensor, advice: Enum, ) -> None: torch.ops.fbgemm.cuda_mem_advise(t, advice.value) def cudaMemPrefetchAsync( t: torch.Tensor, device_t: Optional[torch.Tensor] = None, ) -> None: torch.ops.fbgemm.cuda_mem_prefetch_async(t, device_t)
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. # pyre-unsafe from math import sqrt from typing import List import torch try: # pyre-ignore[21] from fbgemm_gpu import open_source # noqa: F401 except Exception: torch.ops.load_library("//deeplearning/fbgemm/fbgemm_gpu:sparse_ops") torch.ops.load_library("//deeplearning/fbgemm/fbgemm_gpu:sparse_ops_cpu") def wrap_weight_to_parameter(weights: List[torch.Tensor]) -> List[torch.Tensor]: for i, v in enumerate(weights): if not isinstance(v, torch.nn.Parameter): weights[i] = torch.nn.Parameter(v) return weights class BatchedUnaryEmbeddingBag(torch.nn.Module): def __init__(self, num_tasks: int, hash_sizes: List[int], long_index: bool = False): super().__init__() self.num_tasks = num_tasks self.hash_sizes = hash_sizes # [N][sum(E)][1] embedding_data = torch.randn(size=(num_tasks, sum(self.hash_sizes), 1)) self.weight = torch.nn.Parameter(embedding_data) index_dtype = torch.int64 if long_index else torch.int32 table_offsets_tensor = torch.cat( [ torch.tensor([0], dtype=index_dtype), torch.cumsum( torch.tensor(hash_sizes), dim=0, dtype=index_dtype, ), ] ) self.register_buffer("table_offsets_tensor", table_offsets_tensor) self.init_parameters() def forward(self, offsets: torch.Tensor, input: torch.Tensor): # output is [N][B][T] return torch.ops.fbgemm.batched_unary_embeddings( self.weight, self.table_offsets_tensor, offsets, input, ) @torch.jit.export def split_embedding_weights(self): embedding_weights = [] for n in range(self.num_tasks): for t in range(len(self.hash_sizes)): embedding_weights.append( self.weight.detach()[ n, self.table_offsets_tensor[t] : self.table_offsets_tensor[t + 1], :, ] ) return embedding_weights @torch.jit.export def init_parameters(self): for num_emb, param in zip( self.hash_sizes * self.num_tasks, wrap_weight_to_parameter(self.split_embedding_weights()), ): assert param.shape == (num_emb, 1) param.data.uniform_(-sqrt(1 / num_emb), sqrt(1 / num_emb))
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. # pyre-ignore-all-errors[56] import enum from dataclasses import dataclass from typing import List, NamedTuple # Maximum number of times prefetch() can be called without # a corresponding forward() call MAX_PREFETCH_DEPTH = 100 # GPU and CPU use 16-bit scale and bias for quantized embedding bags in TBE # The total size is 2 + 2 = 4 bytes DEFAULT_SCALE_BIAS_SIZE_IN_BYTES = 4 class EmbeddingLocation(enum.IntEnum): DEVICE = 0 MANAGED = 1 MANAGED_CACHING = 2 HOST = 3 class CacheAlgorithm(enum.Enum): LRU = 0 LFU = 1 class PoolingMode(enum.IntEnum): SUM = 0 MEAN = 1 NONE = 2 class BoundsCheckMode(enum.IntEnum): # Raise an exception (CPU) or device-side assert (CUDA) FATAL = 0 # Log the first out-of-bounds instance per kernel, and set to zero. WARNING = 1 # Set to zero. IGNORE = 2 # No bounds checks. NONE = 3 RecordCacheMetrics: NamedTuple = NamedTuple( "RecordCacheMetrics", [("record_cache_miss_counter", bool), ("record_tablewise_cache_miss", bool)], ) SplitState: NamedTuple = NamedTuple( "SplitState", [ ("dev_size", int), ("host_size", int), ("uvm_size", int), ("placements", List[EmbeddingLocation]), ("offsets", List[int]), ], ) @dataclass class CacheState: # T + 1 elements and cache_hash_size_cumsum[-1] == total_cache_hash_size cache_hash_size_cumsum: List[int] cache_index_table_map: List[int] total_cache_hash_size: int def construct_cache_state( row_list: List[int], location_list: List[EmbeddingLocation], feature_table_map: List[int], ) -> CacheState: _cache_hash_size_cumsum = [0] total_cache_hash_size = 0 for num_embeddings, location in zip(row_list, location_list): if location == EmbeddingLocation.MANAGED_CACHING: total_cache_hash_size += num_embeddings _cache_hash_size_cumsum.append(total_cache_hash_size) # [T], -1: non-cached table cache_hash_size_cumsum = [] # [total_cache_hash_size], linear cache index -> table index cache_index_table_map = [-1] * total_cache_hash_size unique_feature_table_map = {} for t, t_ in enumerate(feature_table_map): unique_feature_table_map[t_] = t for t_, t in unique_feature_table_map.items(): start, end = _cache_hash_size_cumsum[t_], _cache_hash_size_cumsum[t_ + 1] cache_index_table_map[start:end] = [t] * (end - start) cache_hash_size_cumsum = [ _cache_hash_size_cumsum[t_] if location_list[t_] == EmbeddingLocation.MANAGED_CACHING else -1 for t_ in feature_table_map ] cache_hash_size_cumsum.append(total_cache_hash_size) s = CacheState( cache_hash_size_cumsum=cache_hash_size_cumsum, cache_index_table_map=cache_index_table_map, total_cache_hash_size=total_cache_hash_size, ) return s # NOTE: This is also defined in fbgemm_gpu.split_embedding_utils, but declaring # target dependency on :split_embedding_utils will result in compatibility # breakage with Caffe2 module_factory because it will pull in numpy def round_up(a: int, b: int) -> int: return int((a + b - 1) // b) * b
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. # pyre-ignore-all-errors[56] import enum import functools import logging import os from dataclasses import dataclass, field from itertools import accumulate from math import log2 from typing import Callable, Dict, List, Optional, Tuple, Type, Union import torch # usort:skip from torch import nn, Tensor # usort:skip import fbgemm_gpu.split_embedding_codegen_lookup_invokers as invokers from fbgemm_gpu.split_embedding_configs import EmbOptimType as OptimType, SparseType from fbgemm_gpu.split_table_batched_embeddings_ops_common import ( BoundsCheckMode, CacheAlgorithm, CacheState, construct_cache_state, EmbeddingLocation, MAX_PREFETCH_DEPTH, PoolingMode, RecordCacheMetrics, SplitState, ) try: torch.ops.load_library( "//deeplearning/fbgemm/fbgemm_gpu/codegen:embedding_ops_cuda_training" ) torch.ops.load_library( "//deeplearning/fbgemm/fbgemm_gpu/codegen:embedding_ops_cpu_training" ) except Exception: pass DEFAULT_ASSOC = 32 if torch.version.hip is None else 64 INT8_EMB_ROW_DIM_OFFSET = 8 class DoesNotHavePrefix(Exception): pass class ComputeDevice(enum.IntEnum): CPU = 0 CUDA = 1 MTIA = 2 class WeightDecayMode(enum.IntEnum): NONE = 0 L2 = 1 DECOUPLE = 2 COUNTER = 3 class CounterWeightDecayMode(enum.IntEnum): NONE = 0 L2 = 1 DECOUPLE = 2 class LearningRateMode(enum.IntEnum): EQUAL = -1 TAIL_ID_LR_INCREASE = 0 TAIL_ID_LR_DECREASE = 1 COUNTER_SGD = 2 class GradSumDecay(enum.IntEnum): NO_DECAY = -1 CTR_DECAY = 0 @dataclass class TailIdThreshold: val: float = 0 is_ratio: bool = False @dataclass class CounterBasedRegularizationDefinition: counter_weight_decay_mode: CounterWeightDecayMode = CounterWeightDecayMode.NONE counter_halflife: int = -1 adjustment_iter: int = -1 adjustment_ub: float = 1.0 learning_rate_mode: LearningRateMode = LearningRateMode.EQUAL grad_sum_decay: GradSumDecay = GradSumDecay.NO_DECAY tail_id_threshold: TailIdThreshold = field(default_factory=TailIdThreshold) max_counter_update_freq: int = 1000 def construct_split_state( embedding_specs: List[Tuple[int, int, EmbeddingLocation, ComputeDevice]], rowwise: bool, cacheable: bool, precision: SparseType = SparseType.FP32, int8_emb_row_dim_offset: int = INT8_EMB_ROW_DIM_OFFSET, placement: Optional[EmbeddingLocation] = None, ) -> SplitState: placements: List[EmbeddingLocation] = [] offsets: List[int] = [] dev_size: int = 0 host_size: int = 0 uvm_size: int = 0 for num_embeddings, embedding_dim, location, _ in embedding_specs: assert ( embedding_dim % 4 == 0 ), f"embedding_dim must be a multiple of 4, but got {embedding_dim}" if precision == SparseType.INT8: embedding_dim += int8_emb_row_dim_offset state_size = num_embeddings * embedding_dim if not rowwise else num_embeddings location = placement if placement is not None else location if location == EmbeddingLocation.HOST: placements.append(EmbeddingLocation.HOST) offsets.append(host_size) host_size += state_size # If table is on device, then opimtizer is on device. # If table is managed, then if optimizer state is rowwise, optimizer is on device, otherwise optimizer is managed. elif location == EmbeddingLocation.DEVICE or rowwise: placements.append(EmbeddingLocation.DEVICE) offsets.append(dev_size) dev_size += state_size else: if cacheable and location == EmbeddingLocation.MANAGED_CACHING: placements.append(EmbeddingLocation.MANAGED_CACHING) else: placements.append(EmbeddingLocation.MANAGED) offsets.append(uvm_size) uvm_size += state_size assert len(placements) == len(offsets) return SplitState( dev_size=dev_size, host_size=host_size, uvm_size=uvm_size, placements=placements, offsets=offsets, ) def apply_split_helper( persistent_state_fn: Callable[[str, Tensor], None], set_attr_fn: Callable[ [str, Union[Tensor, List[int], List[EmbeddingLocation]]], None ], current_device: torch.device, use_cpu: bool, feature_table_map: List[int], split: SplitState, prefix: str, dtype: Type[torch.dtype], enforce_hbm: bool = False, make_dev_param: bool = False, dev_reshape: Optional[Tuple[int, ...]] = None, ) -> None: set_attr_fn(f"{prefix}_physical_placements", split.placements) set_attr_fn(f"{prefix}_physical_offsets", split.offsets) offsets = [split.offsets[t] for t in feature_table_map] placements = [split.placements[t] for t in feature_table_map] persistent_state_fn( f"{prefix}_offsets", torch.tensor(offsets, device=current_device, dtype=torch.int64), ) persistent_state_fn( f"{prefix}_placements", torch.tensor(placements, device=current_device, dtype=torch.int32), ) if split.dev_size > 0: dev_buffer = torch.zeros( split.dev_size, device=current_device, # pyre-fixme[6] dtype=dtype, ) dev_buffer = ( dev_buffer.view(*dev_reshape) if dev_reshape is not None else dev_buffer ) else: # pyre-fixme[6] dev_buffer = torch.empty(0, device=current_device, dtype=dtype) if make_dev_param: set_attr_fn(f"{prefix}_dev", nn.Parameter(dev_buffer)) else: persistent_state_fn(f"{prefix}_dev", dev_buffer) if split.host_size > 0: if dtype == torch.uint8: persistent_state_fn( f"{prefix}_host", torch.zeros( split.host_size, device=current_device, # pyre-fixme[6]: Expected `Optional[Type[torch._dtype]]` for # 3rd param but got `Type[Type[torch._dtype]]`. dtype=dtype, ), ) else: set_attr_fn( f"{prefix}_host", nn.Parameter( torch.zeros( split.host_size, device=current_device, # pyre-fixme[6]: Expected `Optional[Type[torch._dtype]]` # for 3rd param but got `Type[Type[torch._dtype]]`. dtype=dtype, ) ), ) else: persistent_state_fn( f"{prefix}_host", # pyre-fixme[6]: For 3rd param expected `dtype` but got `Type[dtype]`. torch.empty(0, device=current_device, dtype=dtype), ) if split.uvm_size > 0: assert not use_cpu if enforce_hbm: logging.info("Enforce hbm for the cache location") persistent_state_fn( f"{prefix}_uvm", torch.zeros( split.uvm_size, device=current_device, # pyre-fixme[6]: Expected `Optional[Type[torch._dtype]]` for # 3rd param but got `Type[Type[torch._dtype]]`. dtype=dtype, ), ) else: persistent_state_fn( f"{prefix}_uvm", torch.zeros( split.uvm_size, out=torch.ops.fbgemm.new_managed_tensor( # pyre-fixme[6]: Expected `Optional[Type[torch._dtype]]` # for 3rd param but got `Type[Type[torch._dtype]]`. torch.zeros(1, device=current_device, dtype=dtype), [split.uvm_size], ), ), ) else: persistent_state_fn( f"{prefix}_uvm", # pyre-fixme[6]: For 3rd param expected `dtype` but got `Type[dtype]`. torch.empty(0, device=current_device, dtype=dtype), ) # pyre-fixme[13]: Attribute `uvm_cache_stats` is never initialized. # pyre-fixme[13]: Attribute `local_uvm_cache_stats` is never initialized. class SplitTableBatchedEmbeddingBagsCodegen(nn.Module): """ Multiple sparse features can share one embedding table. 'feature_table_map' specifies the feature-table mapping. T: number of logical tables T_: number of physical tables T >= T_ For supported optimizer hyperparams, see inline comments below """ embedding_specs: List[Tuple[int, int, EmbeddingLocation, ComputeDevice]] optimizer_args: invokers.lookup_args.OptimizerArgs lxu_cache_locations_list: List[Tensor] lxu_cache_locations_empty: Tensor timesteps_prefetched: List[int] record_cache_metrics: RecordCacheMetrics uvm_cache_stats: torch.Tensor local_uvm_cache_stats: torch.Tensor linear_cache_indices_list: List[Tensor] def __init__( # noqa C901 self, embedding_specs: List[ Tuple[int, int, EmbeddingLocation, ComputeDevice] ], # tuple of (rows, dims, placements, compute_devices) feature_table_map: Optional[List[int]] = None, # [T] cache_algorithm: CacheAlgorithm = CacheAlgorithm.LRU, cache_load_factor: float = 0.2, cache_sets: int = 0, cache_reserved_memory: float = 0.0, cache_precision: SparseType = SparseType.FP32, weights_precision: SparseType = SparseType.FP32, output_dtype: SparseType = SparseType.FP32, enforce_hbm: bool = False, # place all weights/momentums in HBM when using cache optimizer: OptimType = OptimType.EXACT_SGD, record_cache_metrics: Optional[RecordCacheMetrics] = None, gather_uvm_cache_stats: Optional[bool] = False, # General Optimizer args stochastic_rounding: bool = True, gradient_clipping: bool = False, max_gradient: float = 1.0, learning_rate: float = 0.01, # used by EXACT_ADAGRAD, EXACT_ROWWISE_ADAGRAD, EXACT_ROWWISE_WEIGHTED_ADAGRAD, LAMB, and ADAM only # NOTE that default is different from nn.optim.Adagrad default of 1e-10 eps: float = 1.0e-8, momentum: float = 0.9, # used by LARS-SGD # EXACT_ADAGRAD, SGD, EXACT_SGD do not support weight decay # LAMB, ADAM, PARTIAL_ROWWISE_ADAM, PARTIAL_ROWWISE_LAMB, LARS_SGD support decoupled weight decay # EXACT_ROWWISE_WEIGHTED_ADAGRAD supports L2 weight decay # EXACT_ROWWISE_ADAGRAD support both L2 and decoupled weight decay (via weight_decay_mode) weight_decay: float = 0.0, weight_decay_mode: WeightDecayMode = WeightDecayMode.NONE, eta: float = 0.001, # used by LARS-SGD, beta1: float = 0.9, # used by LAMB and ADAM beta2: float = 0.999, # used by LAMB and ADAM counter_based_regularization: Optional[ CounterBasedRegularizationDefinition ] = None, # used by Rowwise Adagrad pooling_mode: PoolingMode = PoolingMode.SUM, device: Optional[Union[str, int, torch.device]] = None, bounds_check_mode: BoundsCheckMode = BoundsCheckMode.WARNING, uvm_non_rowwise_momentum: bool = False, # place non-rowwise momentum on UVM use_experimental_tbe: bool = False, # set to True to use TBE v2 (only support NVIDIA GPUs) # set to True to enable prefetch pipeline, currently only supports LRU cache policy. # If a separate stream is used for prefetch, the optional forward_stream arg of prefetch function # should be set. prefetch_pipeline: bool = False, ) -> None: super(SplitTableBatchedEmbeddingBagsCodegen, self).__init__() self.pooling_mode = pooling_mode self.bounds_check_mode_int: int = bounds_check_mode.value self.weights_precision = weights_precision self.output_dtype: int = output_dtype.as_int() assert ( not prefetch_pipeline or cache_algorithm == CacheAlgorithm.LRU ), "Only LRU cache policy supports prefetch_pipeline." self.prefetch_pipeline: bool = prefetch_pipeline self.lock_cache_line: bool = self.prefetch_pipeline if record_cache_metrics is not None: self.record_cache_metrics = record_cache_metrics else: self.record_cache_metrics = RecordCacheMetrics(False, False) self.embedding_specs = embedding_specs (rows, dims, locations, compute_devices) = zip(*embedding_specs) T_ = len(self.embedding_specs) self.dims: List[int] = dims assert T_ > 0 # mixed D is not supported by no bag kernels mixed_D = False D = self.dims[0] for d in self.dims: if d != D: mixed_D = True break if mixed_D: assert ( self.pooling_mode != PoolingMode.NONE ), "Mixed dimension tables only supported for pooling tables." assert all( cd == compute_devices[0] for cd in compute_devices ), "Heterogenous compute_devices are NOT supported!" # Split TBE has different function schemas for CUDA and CPU. # For MTIA device type, it uses the CPU one. self.use_cpu: bool = ( compute_devices[0] == ComputeDevice.CPU or compute_devices[0] == ComputeDevice.MTIA ) assert not self.use_cpu or all( loc == EmbeddingLocation.HOST for loc in locations ), "ComputeDevice.CPU is only for EmbeddingLocation.HOST!" assert self.use_cpu or all( loc != EmbeddingLocation.HOST for loc in locations ), "EmbeddingLocation.HOST doesn't work for CUDA device!" if self.use_cpu or self.pooling_mode == PoolingMode.NONE: assert output_dtype in [ SparseType.FP32, SparseType.FP16, SparseType.BF16, ], "Fused pooled embedding quantization only supported for cuda." if optimizer == OptimType.NONE: assert all( loc == EmbeddingLocation.DEVICE for loc in locations ), "OptimType.NONE supports only EmbeddingLocation.DEVICE" assert all( cd == ComputeDevice.CUDA for cd in compute_devices ), "OptimType.NONE supports only ComputeDevice.CUDA" assert ( not mixed_D ), "OptimType.NONE does not support mixed embedding dimension" if device is None: self.current_device: torch.device = ( torch.device("cpu") if self.use_cpu else torch.device(torch.cuda.current_device()) ) elif isinstance(device, torch.device): self.current_device = device else: self.current_device = torch.device(device) # add placeholder require_grad param tensor to enable autograd with int8 weights self.placeholder_autograd_tensor = nn.Parameter( torch.zeros(0, device=self.current_device, dtype=torch.float) ) self.gather_uvm_cache_stats = gather_uvm_cache_stats # Define the size of uvm cache stats as class variable # to make it work with torch jit script. self.uvm_cache_stats_size = 6 # 0: N_calls, 1: N_requested_indices, 2: N_unique_indices, 3: N_unique_misses, # 4: N_conflict_unique_misses, 5: N_conflict_misses self.int8_emb_row_dim_offset: int = INT8_EMB_ROW_DIM_OFFSET self.feature_table_map: List[int] = ( feature_table_map if feature_table_map is not None else list(range(T_)) ) T = len(self.feature_table_map) assert T_ <= T table_has_feature = [False] * T_ for t in self.feature_table_map: table_has_feature[t] = True assert all(table_has_feature), "Each table must have at least one feature!" feature_dims = [dims[t] for t in self.feature_table_map] D_offsets = [0] + list(accumulate(feature_dims)) self.total_D: int = D_offsets[-1] self.max_D: int = max(dims) cached_dims = [ embedding_spec[1] for embedding_spec in embedding_specs if embedding_spec[2] == EmbeddingLocation.MANAGED_CACHING ] self.max_D_cache: int = max(cached_dims) if len(cached_dims) > 0 else 0 self.register_buffer( "D_offsets", torch.tensor(D_offsets, device=self.current_device, dtype=torch.int32), ) hash_size_cumsum = [0] + list(accumulate(rows)) self.total_hash_size: int = int(hash_size_cumsum[-1]) if self.total_hash_size == 0: self.total_hash_size_bits: int = 0 else: self.total_hash_size_bits: int = int(log2(float(self.total_hash_size)) + 1) # The last element is to easily access # of rows of each table by # hash_size_cumsum[t + 1] - hash_size_cumsum[t] hash_size_cumsum = [hash_size_cumsum[t] for t in self.feature_table_map] + [ self.total_hash_size ] self.register_buffer( "hash_size_cumsum", torch.tensor( hash_size_cumsum, device=self.current_device, dtype=torch.int64 ), ) self.register_buffer( "rows_per_table", torch.tensor( [rows[t] for t in self.feature_table_map], device=self.current_device, dtype=torch.int64, ), ) self.register_buffer( "bounds_check_warning", torch.tensor([0], device=self.current_device, dtype=torch.int64), ) # Required for VBE self.register_buffer( "feature_dims", torch.tensor(feature_dims, device="cpu", dtype=torch.int64), ) weight_split = construct_split_state( embedding_specs, rowwise=False, cacheable=True, precision=weights_precision, ) table_embedding_dtype = weights_precision.as_dtype() self._apply_split( weight_split, prefix="weights", # pyre-fixme[6]: For 3rd param expected `Type[Type[_dtype]]` but got # `Type[_dtype]`. dtype=table_embedding_dtype, enforce_hbm=enforce_hbm, make_dev_param=optimizer == OptimType.NONE, dev_reshape=(-1, self.max_D) if optimizer == OptimType.NONE else None, ) assert optimizer not in ( OptimType.SGD, OptimType.ROWWISE_ADAGRAD, ), f"Optimizer {optimizer} is deprecated in the CPU + GPU modes." if self.use_cpu: # Construct optimizer states assert optimizer in ( OptimType.EXACT_ADAGRAD, OptimType.EXACT_ROWWISE_ADAGRAD, OptimType.EXACT_ROWWISE_WEIGHTED_ADAGRAD, OptimType.EXACT_SGD, ), f"Optimizer {optimizer} is not supported in CPU mode." else: assert optimizer in ( OptimType.ADAM, OptimType.EXACT_ADAGRAD, OptimType.EXACT_ROWWISE_ADAGRAD, OptimType.EXACT_ROWWISE_WEIGHTED_ADAGRAD, OptimType.EXACT_SGD, OptimType.LAMB, OptimType.LARS_SGD, OptimType.PARTIAL_ROWWISE_ADAM, OptimType.PARTIAL_ROWWISE_LAMB, OptimType.NONE, ), f"Optimizer {optimizer} is not supported." self.stochastic_rounding = stochastic_rounding self.optimizer = optimizer self.weight_decay_mode = weight_decay_mode if ( weight_decay_mode == WeightDecayMode.COUNTER and counter_based_regularization is None ): raise AssertionError( "weight_decay_mode is set to WeightDecayMode.COUNTER but counter_based_regularization is None" ) if ( weight_decay_mode != WeightDecayMode.COUNTER and counter_based_regularization is not None ): raise AssertionError( "Need to set weight_decay_mode to WeightDecayMode.COUNTER together with counter_based_regularization" ) self._used_rowwise_adagrad_with_counter: bool = ( optimizer == OptimType.EXACT_ROWWISE_ADAGRAD and weight_decay_mode == WeightDecayMode.COUNTER and counter_based_regularization is not None ) if counter_based_regularization is None: counter_based_regularization = CounterBasedRegularizationDefinition() self._max_counter_update_freq: int = -1 if self._used_rowwise_adagrad_with_counter: self._max_counter_update_freq = ( counter_based_regularization.max_counter_update_freq ) opt_arg_weight_decay_mode = ( counter_based_regularization.counter_weight_decay_mode ) else: opt_arg_weight_decay_mode = weight_decay_mode self.optimizer_args = invokers.lookup_args.OptimizerArgs( stochastic_rounding=stochastic_rounding, gradient_clipping=gradient_clipping, max_gradient=max_gradient, learning_rate=learning_rate, eps=eps, beta1=beta1, beta2=beta2, weight_decay=weight_decay, weight_decay_mode=opt_arg_weight_decay_mode.value, eta=eta, momentum=momentum, counter_halflife=counter_based_regularization.counter_halflife, adjustment_iter=counter_based_regularization.adjustment_iter, adjustment_ub=counter_based_regularization.adjustment_ub, learning_rate_mode=counter_based_regularization.learning_rate_mode.value, grad_sum_decay=counter_based_regularization.grad_sum_decay.value, tail_id_threshold=counter_based_regularization.tail_id_threshold.val, is_tail_id_thresh_ratio=int( counter_based_regularization.tail_id_threshold.is_ratio ), total_hash_size=self.total_hash_size, ) if optimizer != OptimType.NONE: if optimizer in (OptimType.EXACT_SGD,): # NOTE: make TorchScript work! self._register_nonpersistent_buffers("momentum1") else: rowwise = optimizer in [ OptimType.EXACT_ROWWISE_ADAGRAD, OptimType.EXACT_ROWWISE_WEIGHTED_ADAGRAD, ] self._apply_split( construct_split_state( embedding_specs, rowwise=rowwise, cacheable=False, placement=EmbeddingLocation.MANAGED if ((not rowwise) and uvm_non_rowwise_momentum) else None, ), prefix="momentum1", # pyre-fixme[6]: Expected `Type[Type[torch._dtype]]` for 3rd param # but got `Type[torch.float32]`. dtype=torch.float32, enforce_hbm=enforce_hbm, ) if optimizer in ( OptimType.ADAM, OptimType.PARTIAL_ROWWISE_ADAM, OptimType.LAMB, OptimType.PARTIAL_ROWWISE_LAMB, ): rowwise = optimizer in ( OptimType.PARTIAL_ROWWISE_ADAM, OptimType.PARTIAL_ROWWISE_LAMB, ) self._apply_split( construct_split_state( embedding_specs, rowwise=rowwise, cacheable=False, placement=EmbeddingLocation.MANAGED if ((not rowwise) and uvm_non_rowwise_momentum) else None, ), prefix="momentum2", # pyre-fixme[6]: Expected `Type[Type[torch._dtype]]` for 3rd param # but got `Type[torch.float32]`. dtype=torch.float32, ) else: # NOTE: make TorchScript work! self._register_nonpersistent_buffers("momentum2") if self._used_rowwise_adagrad_with_counter: self._apply_split( construct_split_state( embedding_specs, rowwise=True, cacheable=False, ), prefix="prev_iter", # TODO: ideally we should use int64 to track iter but it failed to compile. # It may be related to low precision training code. Currently using float32 # as a workaround while investigating the issue. # pyre-fixme[6]: Expected `Type[Type[torch._dtype]]` for 3rd param # but got `Type[torch.float32]`. dtype=torch.float32, ) self._apply_split( construct_split_state( embedding_specs, rowwise=True, cacheable=False, ), prefix="row_counter", # pyre-fixme[6]: Expected `Type[Type[torch._dtype]]` for 3rd param # but got `Type[torch.float32]`. dtype=torch.float32, ) self.register_buffer( "max_counter", torch.tensor([1], dtype=torch.float32) ) else: self._register_nonpersistent_buffers("prev_iter") self._register_nonpersistent_buffers("row_counter") self.register_buffer( "max_counter", torch.ones(1, dtype=torch.float32, device=self.current_device), persistent=False, ) if optimizer in ( OptimType.ADAM, OptimType.EXACT_ROWWISE_WEIGHTED_ADAGRAD, OptimType.LAMB, OptimType.PARTIAL_ROWWISE_ADAM, OptimType.PARTIAL_ROWWISE_LAMB, ): self.register_buffer( "iter", torch.zeros(1, dtype=torch.int64, device=self.current_device), ) else: self.register_buffer( "iter", torch.zeros(1, dtype=torch.int64, device=self.current_device), persistent=False, ) cache_state = construct_cache_state(rows, locations, self.feature_table_map) # Add table-wise cache miss counter if self.record_cache_metrics.record_tablewise_cache_miss: num_tables = len(cache_state.cache_hash_size_cumsum) - 1 self.register_buffer( "table_wise_cache_miss", torch.zeros( num_tables, device=self.current_device, dtype=torch.int64, ), ) # NOTE: make TorchScript work! else: self.register_buffer( "table_wise_cache_miss", torch.zeros( 0, device=self.current_device, dtype=torch.int64, ), ) if cache_precision == SparseType.FP32: cache_embedding_dtype = torch.float32 elif cache_precision == SparseType.FP16: cache_embedding_dtype = torch.float16 else: raise AssertionError(f"cache_precision {cache_precision} not supported!") self._apply_cache_state( cache_state, cache_algorithm, cache_load_factor, cache_sets, cache_reserved_memory, dtype=cache_embedding_dtype, ) logging.info( f"Using fused {optimizer} with optimizer_args={self.optimizer_args if optimizer != OptimType.NONE else None}\n" f"Using rowwise_adagrad_with_counter={self._used_rowwise_adagrad_with_counter}" ) self.step = 0 # Check whether to use TBE v2 is_experimental = False fbgemm_exp_tbe = os.environ.get("FBGEMM_EXPERIMENTAL_TBE") if use_experimental_tbe: is_experimental = True logging.info( "use_experimental_tbe is set to True; Use experimental TBE: True" ) elif fbgemm_exp_tbe is not None: is_experimental = int(fbgemm_exp_tbe) == 1 logging.info( f"FBGEMM_EXPERIMENTAL_TBE is set to {fbgemm_exp_tbe}; " f"Use experimental TBE: {is_experimental}" ) self.is_experimental: bool = is_experimental def _register_nonpersistent_buffers(self, prefix: str) -> None: # NOTE: make TorchScript work! self.register_buffer( f"{prefix}_dev", torch.zeros(1, dtype=torch.int64, device=self.current_device), persistent=False, ) self.register_buffer( f"{prefix}_host", torch.zeros(1, dtype=torch.int64, device=self.current_device), persistent=False, ) self.register_buffer( f"{prefix}_uvm", torch.zeros(1, dtype=torch.int64, device=self.current_device), persistent=False, ) self.register_buffer( f"{prefix}_placements", torch.zeros(1, dtype=torch.int64, device=self.current_device), persistent=False, ) self.register_buffer( f"{prefix}_offsets", torch.zeros(1, dtype=torch.int64, device=self.current_device), persistent=False, ) def get_states(self, prefix: str) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor]: if not hasattr(self, f"{prefix}_physical_placements"): raise DoesNotHavePrefix() dev_param = getattr(self, f"{prefix}_dev") host_param = getattr(self, f"{prefix}_host") uvm_param = getattr(self, f"{prefix}_uvm") placements = getattr(self, f"{prefix}_physical_placements") offsets = getattr(self, f"{prefix}_physical_offsets") return ( dev_param, host_param, uvm_param, torch.tensor(placements, dtype=torch.int32), torch.tensor(offsets, dtype=torch.int64), ) def get_all_states(self) -> List[Tuple[Tensor, Tensor, Tensor, Tensor, Tensor]]: all_states = [] for prefix in ["weights", "momentum1", "momentum2", "prev_iter", "row_counter"]: try: all_states.append(self.get_states(prefix)) except DoesNotHavePrefix: pass return all_states @torch.jit.export def get_cache_miss_counter(self) -> Tensor: # cache_miss_counter contains two items: # The first one is cache_miss_forward_count which records the total number of forwards which has at least one cache miss # The second one is the unique_cache_miss_count which records to total number of unique (dedup) cache misses return self.cache_miss_counter @torch.jit.export def get_table_wise_cache_miss(self) -> Tensor: # table_wise_cache_miss contains all the cache miss count for each table in this embedding table object: return self.table_wise_cache_miss def forward( # noqa: C901 self, indices: Tensor, offsets: Tensor, per_sample_weights: Optional[Tensor] = None, feature_requires_grad: Optional[Tensor] = None, # 2D tensor of batch size for each rank and feature. # Shape (number of features, number of ranks) batch_size_per_feature_per_rank: Optional[List[List[int]]] = None, total_unique_indices: Optional[int] = None, ) -> Tensor: if batch_size_per_feature_per_rank is not None: assert ( self.optimizer == OptimType.EXACT_ROWWISE_ADAGRAD or self.optimizer == OptimType.EXACT_SGD ), "Variable batch size TBE support is enabled for OptimType.EXACT_ROWWISE_ADAGRAD only" assert ( self.pooling_mode != PoolingMode.NONE.value ), "Variable batch size TBE support is not enabled for PoolingMode.NONE" # TODO: Add input check zero_tensor = torch.zeros(1, device="cpu", dtype=torch.int32) # Create B offsets total_batch_size_per_feature = torch.tensor( [sum(batch_sizes) for batch_sizes in batch_size_per_feature_per_rank], device="cpu", dtype=torch.int32, ) max_B = int(total_batch_size_per_feature.max().item()) Bs = torch.concat([zero_tensor, total_batch_size_per_feature]) B_offsets = Bs.cumsum(dim=0).to(torch.int) # Create output offsets B_feature_rank = torch.tensor( batch_size_per_feature_per_rank, device="cpu", dtype=torch.int64, ) max_B_feature_rank = int(B_feature_rank.max().item()) # D->H only once self.feature_dims = self.feature_dims.cpu() output_sizes_feature_rank = B_feature_rank.transpose( 0, 1 ) * self.feature_dims.view(1, -1) output_offsets_feature_rank = torch.concat( [ zero_tensor.to(torch.int64), output_sizes_feature_rank.flatten().cumsum(dim=0), ] ) output_size = int(output_offsets_feature_rank[-1].item()) # TODO: Support INT8 output # B_offsets_rank_per_feature is for rank and (b, t) mapping B_offsets_rank_per_feature = ( torch.tensor( [ [0] + batch_size_per_feature for batch_size_per_feature in batch_size_per_feature_per_rank ], device="cpu", dtype=torch.int32, ) .cumsum(dim=1) .to(torch.int) ) B_offsets = B_offsets.to(self.current_device, non_blocking=True) output_offsets_feature_rank = output_offsets_feature_rank.to( self.current_device, non_blocking=True ) B_offsets_rank_per_feature = B_offsets_rank_per_feature.to( self.current_device, non_blocking=True ) # TODO: Use int32 for B_offsets and int64 for output_offsets_feature_rank vbe_metadata = invokers.lookup_args.VBEMetadata( B_offsets=B_offsets, output_offsets_feature_rank=output_offsets_feature_rank, B_offsets_rank_per_feature=B_offsets_rank_per_feature, max_B=max_B, max_B_feature_rank=max_B_feature_rank, output_size=output_size, ) else: vbe_metadata = invokers.lookup_args.VBEMetadata( B_offsets=None, output_offsets_feature_rank=None, B_offsets_rank_per_feature=None, max_B=-1, max_B_feature_rank=-1, output_size=-1, ) (indices, offsets) = indices.long(), offsets.long() if self.bounds_check_mode_int != BoundsCheckMode.NONE.value: torch.ops.fbgemm.bounds_check_indices( self.rows_per_table, indices, offsets, self.bounds_check_mode_int, self.bounds_check_warning, per_sample_weights, B_offsets=vbe_metadata.B_offsets, max_B=vbe_metadata.max_B, ) self.step += 1 if len(self.timesteps_prefetched) == 0: self._prefetch(indices, offsets) self.timesteps_prefetched.pop(0) self.lxu_cache_locations = ( self.lxu_cache_locations_empty if len(self.lxu_cache_locations_list) == 0 else self.lxu_cache_locations_list.pop(0) ) common_args = invokers.lookup_args.CommonArgs( placeholder_autograd_tensor=self.placeholder_autograd_tensor, dev_weights=self.weights_dev, host_weights=self.weights_host, uvm_weights=self.weights_uvm, lxu_cache_weights=self.lxu_cache_weights, weights_placements=self.weights_placements, weights_offsets=self.weights_offsets, D_offsets=self.D_offsets, total_D=self.total_D, max_D=self.max_D, hash_size_cumsum=self.hash_size_cumsum, total_hash_size_bits=self.total_hash_size_bits, indices=indices, offsets=offsets, pooling_mode=self.pooling_mode, indice_weights=per_sample_weights, feature_requires_grad=feature_requires_grad, lxu_cache_locations=self.lxu_cache_locations, output_dtype=self.output_dtype, vbe_metadata=vbe_metadata, is_experimental=self.is_experimental, ) if self.optimizer == OptimType.NONE: assert ( total_unique_indices is not None and total_unique_indices <= indices.numel() ), f"OptimType.NONE requires total_unique_indices. Please pass it or check the value (total_unique_indices = {total_unique_indices})" return invokers.lookup_none.invoke( common_args, self.optimizer_args, total_unique_indices ) elif self.optimizer == OptimType.EXACT_SGD: return invokers.lookup_sgd.invoke(common_args, self.optimizer_args) momentum1 = invokers.lookup_args.Momentum( dev=self.momentum1_dev, host=self.momentum1_host, uvm=self.momentum1_uvm, offsets=self.momentum1_offsets, placements=self.momentum1_placements, ) if self.optimizer == OptimType.LARS_SGD: return invokers.lookup_lars_sgd.invoke( common_args, self.optimizer_args, momentum1 ) if self.optimizer == OptimType.EXACT_ADAGRAD: return invokers.lookup_adagrad.invoke( common_args, self.optimizer_args, momentum1 ) momentum2 = invokers.lookup_args.Momentum( dev=self.momentum2_dev, host=self.momentum2_host, uvm=self.momentum2_uvm, offsets=self.momentum2_offsets, placements=self.momentum2_placements, ) # Ensure iter is always on CPU so the increment doesn't synchronize. if not self.iter.is_cpu: self.iter = self.iter.cpu() self.iter[0] += 1 if self.optimizer == OptimType.EXACT_ROWWISE_WEIGHTED_ADAGRAD: return invokers.lookup_rowwise_weighted_adagrad.invoke( common_args, self.optimizer_args, momentum1, # pyre-fixme[6]: Expected `int` for 4th param but got `Union[float, # int]`. self.iter.item(), ) if self.optimizer == OptimType.ADAM: return invokers.lookup_adam.invoke( common_args, self.optimizer_args, momentum1, momentum2, # pyre-fixme[6]: Expected `int` for 5th param but got `Union[float, # int]`. self.iter.item(), ) if self.optimizer == OptimType.PARTIAL_ROWWISE_ADAM: return invokers.lookup_partial_rowwise_adam.invoke( common_args, self.optimizer_args, momentum1, momentum2, # pyre-fixme[6]: Expected `int` for 5th param but got `Union[float, # int]`. self.iter.item(), ) if self.optimizer == OptimType.LAMB: return invokers.lookup_lamb.invoke( common_args, self.optimizer_args, momentum1, momentum2, # pyre-fixme[6]: Expected `int` for 5th param but got `Union[float, # int]`. self.iter.item(), ) if self.optimizer == OptimType.PARTIAL_ROWWISE_LAMB: return invokers.lookup_partial_rowwise_lamb.invoke( common_args, self.optimizer_args, momentum1, momentum2, # pyre-fixme[6]: Expected `int` for 5th param but got `Union[float, # int]`. self.iter.item(), ) prev_iter = invokers.lookup_args.Momentum( dev=self.prev_iter_dev, host=self.prev_iter_host, uvm=self.prev_iter_uvm, offsets=self.prev_iter_offsets, placements=self.prev_iter_placements, ) row_counter = invokers.lookup_args.Momentum( dev=self.row_counter_dev, host=self.row_counter_host, uvm=self.row_counter_uvm, offsets=self.row_counter_offsets, placements=self.row_counter_placements, ) if self._used_rowwise_adagrad_with_counter: if self.iter.item() % self._max_counter_update_freq == 0: row_counter_dev = self.row_counter_dev.detach() if row_counter_dev.numel() > 0: self.max_counter[0] = torch.max(row_counter_dev).cpu().item() + 1 else: self.max_counter[0] = 1 if self.optimizer == OptimType.EXACT_ROWWISE_ADAGRAD: if self._used_rowwise_adagrad_with_counter: return invokers.lookup_rowwise_adagrad_with_counter.invoke( common_args, self.optimizer_args, momentum1, prev_iter, row_counter, # pyre-fixme[6]: Expected `int` for 6th param but got `Union[float, int]`. self.iter.item(), self.max_counter.item(), ) else: return invokers.lookup_rowwise_adagrad.invoke( common_args, self.optimizer_args, momentum1 ) raise ValueError(f"Invalid OptimType: {self.optimizer}") def reset_uvm_cache_stats(self) -> None: assert ( self.gather_uvm_cache_stats ), "gather_uvm_cache_stats should be set to true to access uvm cache stats." self.uvm_cache_stats.zero_() self.local_uvm_cache_stats.zero_() def get_uvm_cache_stats(self) -> Tensor: assert ( self.gather_uvm_cache_stats ), "gather_uvm_cache_stats should be set to true to access uvm cache stats." return self.uvm_cache_stats def print_uvm_cache_stats(self) -> None: assert ( self.gather_uvm_cache_stats ), "gather_uvm_cache_stats should be set to true to access uvm cache stats." uvm_cache_stats = self.uvm_cache_stats.tolist() logging.info( f"N_called: {uvm_cache_stats[0]}\n" f"N_requested_indices: {uvm_cache_stats[1]}\n" f"N_unique_indices: {uvm_cache_stats[2]}\n" f"N_unique_misses: {uvm_cache_stats[3]}\n" f"N_conflict_unique_misses: {uvm_cache_stats[4]}\n" f"N_conflict_misses: {uvm_cache_stats[5]}\n" ) if uvm_cache_stats[1]: logging.info( f"unique indices / requested indices: {uvm_cache_stats[2]/uvm_cache_stats[1]}\n" f"unique misses / requested indices: {uvm_cache_stats[3]/uvm_cache_stats[1]}\n" ) def prefetch( self, indices: Tensor, offsets: Tensor, forward_stream: Optional[torch.cuda.Stream] = None, ) -> None: if self.prefetch_stream is None and forward_stream is not None: self.prefetch_stream = torch.cuda.current_stream() assert ( self.prefetch_stream != forward_stream ), "prefetch_stream and forward_stream should not be the same stream" self._prefetch(indices, offsets) if forward_stream is not None: self._prefetch_tensors_record_stream(forward_stream) def _prefetch(self, indices: Tensor, offsets: Tensor) -> None: self.timestep += 1 self.timesteps_prefetched.append(self.timestep) if not self.lxu_cache_weights.numel(): return (indices, offsets) = indices.long(), offsets.long() linear_cache_indices = torch.ops.fbgemm.linearize_cache_indices( self.cache_hash_size_cumsum, indices, offsets, ) if ( self.record_cache_metrics.record_cache_miss_counter or self.record_cache_metrics.record_tablewise_cache_miss ): lxu_cache_locations = torch.ops.fbgemm.lxu_cache_lookup( linear_cache_indices, self.lxu_cache_state, self.total_cache_hash_size, self.gather_uvm_cache_stats, self.local_uvm_cache_stats, ) if self.record_cache_metrics.record_cache_miss_counter: self._update_cache_miss_counter( lxu_cache_locations, linear_cache_indices ) if self.record_cache_metrics.record_tablewise_cache_miss: self._update_tablewise_cache_miss( lxu_cache_locations, linear_cache_indices, offsets ) if self.cache_algorithm == CacheAlgorithm.LRU: torch.ops.fbgemm.lru_cache_populate( self.weights_uvm, self.cache_hash_size_cumsum, self.total_cache_hash_size, self.cache_index_table_map, self.weights_offsets, self.D_offsets, linear_cache_indices, self.lxu_cache_state, self.lxu_cache_weights, self.timestep, self.lxu_state, self.stochastic_rounding, self.gather_uvm_cache_stats, self.local_uvm_cache_stats, self.lock_cache_line, self.lxu_cache_locking_counter, ) elif self.cache_algorithm == CacheAlgorithm.LFU: torch.ops.fbgemm.lfu_cache_populate( self.weights_uvm, self.cache_hash_size_cumsum, self.total_cache_hash_size, self.cache_index_table_map, self.weights_offsets, self.D_offsets, linear_cache_indices, self.lxu_cache_state, self.lxu_cache_weights, self.lxu_state, self.stochastic_rounding, ) assert ( len(self.lxu_cache_locations_list) < self.max_prefetch_depth ), f"self.lxu_cache_locations_list has grown to size: {len(self.lxu_cache_locations_list)}, this exceeds the maximum: {self.max_prefetch_depth}. This probably indicates an error in logic where prefetch() is being called more frequently than forward()" lxu_cache_locations = torch.ops.fbgemm.lxu_cache_lookup( linear_cache_indices, self.lxu_cache_state, self.total_cache_hash_size, self.gather_uvm_cache_stats, self.local_uvm_cache_stats, ) self.lxu_cache_locations_list.append(lxu_cache_locations) if self.prefetch_pipeline: self.linear_cache_indices_list.append(linear_cache_indices) if self.gather_uvm_cache_stats: # Accumulate local_uvm_cache_stats (int32) into uvm_cache_stats (int64). # We may wanna do this accumulation atomically, but as it's only for monitoring, # slightly inaccurate result may be acceptable. self.uvm_cache_stats = torch.add( self.uvm_cache_stats, self.local_uvm_cache_stats ) self.local_uvm_cache_stats.zero_() def _prefetch_tensors_record_stream( self, forward_stream: torch.cuda.Stream ) -> None: # Record the tensors created by prefetch stream and consumed by forward/backward # to the forward stream. In PyTorch, each backward CUDA op runs on the same # stream that was used for its corresponding forward op. for t in self.lxu_cache_locations_list: # pyre-fixme[6]: For 1st param expected `_C.Stream` but got `streams.Stream` t.record_stream(forward_stream) for t in self.linear_cache_indices_list: # pyre-fixme[6]: For 1st param expected `_C.Stream` but got `streams.Stream` t.record_stream(forward_stream) def _update_cache_miss_counter( self, lxu_cache_locations: Tensor, linear_cache_indices: Tensor, ) -> None: CACHE_MISS = -1 CACHE_HIT = -2 cache_missed_locations = torch.where( lxu_cache_locations == CACHE_MISS, linear_cache_indices, CACHE_HIT ) unique_ids_list = torch.unique(cache_missed_locations) unique_ids_count_list = torch.where(unique_ids_list == CACHE_HIT, 0, 1) miss_count = torch.sum(unique_ids_count_list) self.cache_miss_counter[0] += (miss_count > 0).to(torch.int64) self.cache_miss_counter[1] += miss_count def _update_tablewise_cache_miss( self, lxu_cache_locations: Tensor, linear_cache_indices: Tensor, offsets: Tensor, ) -> None: CACHE_MISS = -1 CACHE_HIT = -2 num_tables = len(self.cache_hash_size_cumsum) - 1 num_offsets_per_table = (len(offsets) - 1) // num_tables cache_missed_locations = torch.where( lxu_cache_locations == CACHE_MISS, linear_cache_indices, CACHE_HIT ) for i in range(num_tables): start = offsets[i * num_offsets_per_table] end = offsets[(i + 1) * num_offsets_per_table] current_cache_missed_locations = cache_missed_locations[start:end] unique_ids_list = torch.unique(current_cache_missed_locations) unique_ids_count_list = torch.where(unique_ids_list == CACHE_HIT, 0, 1) miss_count = torch.sum(unique_ids_count_list) self.table_wise_cache_miss[i] += miss_count def init_embedding_weights_uniform(self, min_val: float, max_val: float) -> None: splits = self.split_embedding_weights() if self.weights_precision == SparseType.INT8: # TODO: add in-place FloatToFused8BitRowwiseQuantized conversion for emb in splits: assert ( len(emb.shape) == 2 ), "Int8 embedding only supported for 2D weight tensors." shape = [emb.shape[0], emb.shape[1] - self.int8_emb_row_dim_offset] tmp_emb = torch.zeros(shape, device=self.current_device) tmp_emb.uniform_(min_val, max_val) tmp_emb_i8 = torch.ops.fbgemm.FloatToFused8BitRowwiseQuantized(tmp_emb) emb.data.copy_(tmp_emb_i8) else: for param in splits: param.uniform_(min_val, max_val) @torch.jit.ignore def split_embedding_weights(self) -> List[Tensor]: """ Returns a list of weights, split by table """ splits = [] for t, (rows, dim, _, _) in enumerate(self.embedding_specs): if self.weights_precision == SparseType.INT8: dim += self.int8_emb_row_dim_offset placement = self.weights_physical_placements[t] offset = self.weights_physical_offsets[t] if placement == EmbeddingLocation.DEVICE.value: weights = self.weights_dev elif placement == EmbeddingLocation.HOST.value: weights = self.weights_host else: weights = self.weights_uvm if weights.dim() == 2: weights = weights.flatten() splits.append( weights.detach()[offset : offset + rows * dim].view(rows, dim) ) return splits @torch.jit.ignore def get_optimizer_buffer(self, state: str) -> torch.Tensor: if self.optimizer == OptimType.NONE: raise NotImplementedError( f"Getting optimizer buffer is not supported for {self.optimizer}" ) for name, buffer in self.named_buffers(): if name == state: return buffer return torch.tensor(0) @torch.jit.export def get_optimizer_state(self) -> List[Dict[str, torch.Tensor]]: r""" Get the optimizer state dict that matches the OSS Pytorch optims TODO: populate the supported list of optimizers """ split_optimizer_states = self.split_optimizer_states() if ( self.optimizer == OptimType.EXACT_ROWWISE_ADAGRAD or self.optimizer == OptimType.EXACT_ROWWISE_WEIGHTED_ADAGRAD or self.optimizer == OptimType.EXACT_ADAGRAD ): list_of_state_dict = [ {"sum": states[0], "prev_iter": states[1], "row_counter": states[2]} if self._used_rowwise_adagrad_with_counter else {"sum": states[0]} for states in split_optimizer_states ] elif self.optimizer == OptimType.SGD or self.optimizer == OptimType.EXACT_SGD: list_of_state_dict = [ {"momentum_buffer": states[0]} for states in split_optimizer_states ] elif ( self.optimizer == OptimType.ADAM or self.optimizer == OptimType.PARTIAL_ROWWISE_ADAM or self.optimizer == OptimType.LAMB or self.optimizer == OptimType.PARTIAL_ROWWISE_LAMB ): list_of_state_dict = [ {"exp_avg": states[0], "exp_avg_sq": states[1]} for states in split_optimizer_states ] else: raise NotImplementedError( f"Getting optimizer state {self.optimizer} is not implmeneted" ) return list_of_state_dict @torch.jit.ignore def split_optimizer_states( self, ) -> List[List[torch.Tensor]]: """ Returns a list of states, split by table """ if self.optimizer == OptimType.NONE: raise NotImplementedError( f"Getting optimizer states is not supported for {self.optimizer}" ) def get_optimizer_states( state_dev: Tensor, state_host: Tensor, state_uvm: Tensor, state_offsets: Tensor, state_placements: Tensor, rowwise: bool, ) -> List[torch.Tensor]: splits = [] for t, (rows, dim, _, _) in enumerate(self.embedding_specs): offset = state_offsets[t] placement = state_placements[t] if placement == EmbeddingLocation.DEVICE: state = state_dev elif placement == EmbeddingLocation.HOST: state = state_host else: state = state_uvm if not rowwise: splits.append( state.detach()[offset : offset + rows * dim].view(rows, dim) ) else: splits.append(state.detach()[offset : offset + rows].view(rows)) return splits states: List[List[torch.Tensor]] = [] if self.optimizer not in (OptimType.EXACT_SGD,): states.append( get_optimizer_states( self.momentum1_dev, self.momentum1_host, self.momentum1_uvm, self.momentum1_physical_offsets, self.momentum1_physical_placements, rowwise=self.optimizer in [ OptimType.EXACT_ROWWISE_ADAGRAD, OptimType.EXACT_ROWWISE_WEIGHTED_ADAGRAD, ], ) ) if self.optimizer in ( OptimType.ADAM, OptimType.PARTIAL_ROWWISE_ADAM, OptimType.LAMB, OptimType.PARTIAL_ROWWISE_LAMB, ): states.append( get_optimizer_states( self.momentum2_dev, self.momentum2_host, self.momentum2_uvm, self.momentum2_physical_offsets, self.momentum2_physical_placements, rowwise=self.optimizer in (OptimType.PARTIAL_ROWWISE_ADAM, OptimType.PARTIAL_ROWWISE_LAMB), ) ) if self._used_rowwise_adagrad_with_counter: states.append( get_optimizer_states( self.prev_iter_dev, self.prev_iter_host, self.prev_iter_uvm, self.prev_iter_physical_offsets, self.prev_iter_physical_placements, rowwise=True, ) ) states.append( get_optimizer_states( self.row_counter_dev, self.row_counter_host, self.row_counter_uvm, self.row_counter_physical_offsets, self.row_counter_physical_placements, rowwise=True, ) ) return_states = [list(s) for s in zip(*states)] return return_states @torch.jit.export def set_learning_rate(self, lr: float) -> None: """ Sets the learning rate. """ if self.optimizer == OptimType.NONE: raise NotImplementedError( f"Setting learning rate is not supported for {self.optimizer}" ) self._set_learning_rate(lr) @torch.jit.ignore def _set_learning_rate(self, lr: float) -> float: """ Helper function to script `set_learning_rate`. Note that returning None does not work. """ self.optimizer_args = self.optimizer_args._replace(learning_rate=lr) return 0.0 @torch.jit.export def set_optimizer_step(self, step: int) -> None: """ Sets the optimizer step. """ if self.optimizer == OptimType.NONE: raise NotImplementedError( f"Setting optimizer step is not supported for {self.optimizer}" ) self.iter[0] = step @torch.jit.export def flush(self) -> None: if not self.lxu_cache_weights.numel(): return torch.ops.fbgemm.lxu_cache_flush( self.weights_uvm, self.cache_hash_size_cumsum, self.cache_index_table_map, self.weights_offsets, self.D_offsets, self.total_D, self.lxu_cache_state, self.lxu_cache_weights, self.stochastic_rounding, ) def _apply_split( self, split: SplitState, prefix: str, dtype: Type[torch.dtype], enforce_hbm: bool = False, make_dev_param: bool = False, dev_reshape: Optional[Tuple[int, ...]] = None, ) -> None: apply_split_helper( self.register_buffer, functools.partial(setattr, self), self.current_device, self.use_cpu, self.feature_table_map, split, prefix, dtype, enforce_hbm, make_dev_param, dev_reshape, ) def _apply_cache_state( self, cache_state: CacheState, cache_algorithm: CacheAlgorithm, cache_load_factor: float, cache_sets: int, cache_reserved_memory: float, dtype: torch.dtype, ) -> None: self.cache_algorithm = cache_algorithm self.timestep = 1 self.timesteps_prefetched = [] self.max_prefetch_depth = MAX_PREFETCH_DEPTH self.lxu_cache_locations_list = [] self.lxu_cache_locations_empty = torch.empty( 0, device=self.current_device, dtype=torch.int32 ).fill_(-1) self.lxu_cache_locations = self.lxu_cache_locations_empty self.prefetch_stream: Optional[torch.cuda.Stream] = None self.linear_cache_indices_list = [] self._init_uvm_cache_stats() # NOTE: no cache for CPU mode! if cache_state.total_cache_hash_size == 0 or self.use_cpu: self.register_buffer( "lxu_cache_weights", torch.zeros(0, 0, device=self.current_device, dtype=dtype), ) # NOTE: make TorchScript work! self.register_buffer( "cache_hash_size_cumsum", torch.zeros(1, dtype=torch.int64, device=self.current_device), persistent=False, ) self.register_buffer( "total_cache_hash_size", torch.zeros(1, dtype=torch.int64, device=self.current_device), persistent=False, ) self.register_buffer( "cache_index_table_map", torch.zeros(1, dtype=torch.int64, device=self.current_device), persistent=False, ) self.register_buffer( "lxu_cache_state", torch.zeros(1, dtype=torch.int64, device=self.current_device), persistent=False, ) self.register_buffer( "lxu_state", torch.zeros(1, dtype=torch.int64, device=self.current_device), persistent=False, ) self.register_buffer( "cache_miss_counter", torch.tensor([0, 0], dtype=torch.int64), persistent=False, ) self._init_uvm_cache_counter(cache_sets, persistent=False) return assert cache_load_factor > 0 element_size = 2 if dtype == torch.float16 else 4 if cache_sets <= 0: total_memory = torch.cuda.get_device_properties( self.current_device ).total_memory free_memory = ( total_memory - torch.cuda.memory_reserved(self.current_device) - int(cache_reserved_memory) ) assert free_memory > 0 cache_sets = ( int(cache_state.total_cache_hash_size * cache_load_factor) + DEFAULT_ASSOC - 1 ) // DEFAULT_ASSOC cache_sets = 1 if cache_sets == 0 else cache_sets cache_size = cache_sets * DEFAULT_ASSOC * element_size * self.max_D_cache if cache_size > free_memory: cache_sets = ( int(1.0 * free_memory / self.max_D_cache / element_size) + DEFAULT_ASSOC - 1 ) // DEFAULT_ASSOC cache_load_factor = ( 1.0 * cache_sets * DEFAULT_ASSOC / int(cache_state.total_cache_hash_size) ) assert cache_sets > 0 if cache_algorithm == CacheAlgorithm.LFU: assert cache_sets < 2**24 - 1 cache_size = cache_sets * DEFAULT_ASSOC * element_size * self.max_D_cache logging.info( f"Using on-device cache with admission algorithm " f"{cache_algorithm}, {cache_sets} sets, " f"load_factor: {cache_load_factor : .3f}, " f"{cache_size / 1024.0 / 1024.0 / 1024.0 : .2f}GB" ) self.total_cache_hash_size = cache_state.total_cache_hash_size self.register_buffer( "cache_hash_size_cumsum", torch.tensor( cache_state.cache_hash_size_cumsum, device=self.current_device, dtype=torch.int64, ), ) self.register_buffer( "cache_index_table_map", torch.tensor( cache_state.cache_index_table_map, device=self.current_device, dtype=torch.int32, ), ) self.register_buffer( "lxu_cache_state", torch.zeros( cache_sets, DEFAULT_ASSOC, device=self.current_device, dtype=torch.int64 ).fill_(-1), ) self.register_buffer( "lxu_cache_weights", torch.zeros( cache_sets * DEFAULT_ASSOC, self.max_D_cache, device=self.current_device, dtype=dtype, ), ) self.register_buffer( "lxu_state", torch.zeros( size=(self.total_cache_hash_size + 1,) if cache_algorithm == CacheAlgorithm.LFU else (cache_sets, DEFAULT_ASSOC), device=self.current_device, dtype=torch.int64, ), ) self.register_buffer( "cache_miss_counter", torch.tensor([0, 0], device=self.current_device, dtype=torch.int64), ) self._init_uvm_cache_counter(cache_sets, persistent=True) if self.prefetch_pipeline: # using the placeholder_autograd_tensor to make sure # the hook is executed after the backward pass # not using register_module_full_backward_hook # due to https://github.com/pytorch/pytorch/issues/100528 self.placeholder_autograd_tensor.register_hook( self._sync_stream_post_backward ) self.register_full_backward_pre_hook( self._update_cache_counter_and_locations ) if cache_algorithm not in (CacheAlgorithm.LFU, CacheAlgorithm.LRU): raise ValueError( f"cache_algorithm must be {CacheAlgorithm.LRU} " f"or {CacheAlgorithm.LFU}" ) def _sync_stream_post_backward( self, grad: Tensor, ) -> None: """ backward hook function when prefetch_pipeline is enabled. With the pipeline, prefetch(batch_{i+2}) may overlap with backward(batch_{i}). There is race condition that backward(batch_i) writes to UVM memory and at the same time prefetch(batch_{i+2}) loads UVM memory to cache. This stream sync forces backward(batch_i) to finish before prefetch(batch_{i+2}). """ if self.prefetch_stream is not None: self.prefetch_stream.wait_stream(torch.cuda.current_stream()) def _update_cache_counter_and_locations( self, module: nn.Module, grad_input: Union[Tuple[Tensor, ...], Tensor], ) -> None: """ Backward prehook function when prefetch_pipeline is enabled. This function does 3 things: 1. backward stream waits for prefetch stream to finish. Otherwise the prefetch(batch_{i+1}) might overlap with backward(batch_i). If an idx is not in cache in batch_i, but it is being inserted in batch_{i+1}, there is race condition that backward(batch_i) writes to UVM memory and at the same time prefetch(batch_{i+1}) loads UVM memory to cache. 2. decrement the lxu_cache_locking_counter to indicate the current batch is finished. The lxu_cache_locking_counter is updated in both prefetch and TBE backward. As there is no overlap between prefetch and backward, we can decrement either before or after backward. It's better to decrement before lxu_cache_locations gets updated. 3. update lxu_cache_locations to address the cache inconsistency issue. In the case that the same index is not inserted into cache in batch_i, but it is inserted in batch_{i+1}, the cache can be invalid in the sense that the cached weight for this index does not have the backward update of batch_i. Example of the issue is as follows: idx is in batch_i, batch_{i+1} prefetch(batch_i) - failed to insert idx into cache, cache_locations_batch_i of idx is -1 (cache miss) forward(batch_i) prefetch(batch_{i+1}) - insert idx into cache, cache is loaded from host memory backward(batch_i) - cache_locations_batch_i of idx is -1, the host memory is updated forward(batch_{i+1}) - OUTPUT IS WRONG. the weight for idx is fetched from cache, but the cache is outdated. The fix to this cache inconsistency is to update the cache_locations_batch_i before backward of batch_i, so that the cache gets updated correctly by the backward pass of TBE. """ if self.prefetch_stream is not None: # need to wait for the prefetch of next batch, # so that cache states are valid torch.cuda.current_stream().wait_stream(self.prefetch_stream) torch.ops.fbgemm.lxu_cache_locking_counter_decrement( self.lxu_cache_locking_counter, self.lxu_cache_locations, ) linear_cache_indices = self.linear_cache_indices_list.pop(0) lxu_cache_locations_new = torch.ops.fbgemm.lxu_cache_lookup( linear_cache_indices, self.lxu_cache_state, self.total_cache_hash_size, False, # not collecting cache stats self.local_uvm_cache_stats, ) # self.lxu_cache_locations is updated inplace torch.ops.fbgemm.lxu_cache_locations_update( self.lxu_cache_locations, lxu_cache_locations_new, ) def _init_uvm_cache_counter(self, cache_sets: int, persistent: bool) -> None: if self.prefetch_pipeline and persistent: self.register_buffer( "lxu_cache_locking_counter", torch.zeros( cache_sets, DEFAULT_ASSOC, device=self.current_device, dtype=torch.int32, ), ) else: self.register_buffer( "lxu_cache_locking_counter", torch.zeros([0, 0], dtype=torch.int32, device=self.current_device), persistent=persistent, ) def _init_uvm_cache_stats(self) -> None: if not self.gather_uvm_cache_stats: # If uvm_cache_stats is not enabled, register stub entries via buffer to state_dict for TorchScript to JIT properly. # Since we're not using these variables, we can choose minimize tensor size to keep state_dict size small. self.register_buffer( "uvm_cache_stats", torch.zeros( 1, device=self.current_device, dtype=torch.int64, ), persistent=False, ) self.register_buffer( "local_uvm_cache_stats", torch.zeros( 1, device=self.current_device, dtype=torch.int32, ), persistent=False, ) else: self.register_buffer( "uvm_cache_stats", torch.zeros( size=(self.uvm_cache_stats_size,), device=self.current_device, dtype=torch.int64, ), ) self.register_buffer( "local_uvm_cache_stats", torch.zeros( size=(self.uvm_cache_stats_size,), device=self.current_device, dtype=torch.int32, ), ) self.reset_uvm_cache_stats() def reset_cache_states(self) -> None: if not self.lxu_cache_weights.numel(): return self.lxu_cache_state.fill_(-1) self.lxu_state.fill_(0) self.timestep = 1 def reset_embedding_weight_momentum( self, pruned_indices: Tensor, pruned_indices_offsets: Tensor, logical_table_ids: Tensor, buffer_ids: Tensor, ) -> None: if self.optimizer == OptimType.NONE: raise NotImplementedError( f"Resetting embedding weight momentum is not supported for {self.optimizer}" ) total_cache_hash_size = 0 if isinstance(self.total_cache_hash_size, Tensor): total_cache_hash_size = self.total_cache_hash_size.item() else: total_cache_hash_size = self.total_cache_hash_size rowwise = self.optimizer in [ OptimType.EXACT_ROWWISE_ADAGRAD, OptimType.EXACT_ROWWISE_WEIGHTED_ADAGRAD, ] if rowwise: torch.ops.fbgemm.reset_weight_momentum( dev_weights=self.weights_dev, uvm_weights=self.weights_uvm, lxu_cache_weights=self.lxu_cache_weights, weights_placements=self.weights_placements, weights_offsets=self.weights_offsets, momentum1_dev=self.momentum1_dev, momentum1_uvm=self.momentum1_uvm, momentum1_placements=self.momentum1_placements, momentum1_offsets=self.momentum1_offsets, D_offsets=self.D_offsets, pruned_indices=pruned_indices.to(device=self.current_device), pruned_indices_offsets=pruned_indices_offsets.to( device=self.current_device ), logical_table_ids=logical_table_ids.to(device=self.current_device), buffer_ids=buffer_ids.to(device=self.current_device), cache_hash_size_cumsum=self.cache_hash_size_cumsum, lxu_cache_state=self.lxu_cache_state, total_cache_hash_size=total_cache_hash_size, ) class DenseTableBatchedEmbeddingBagsCodegen(nn.Module): """ Table-batched version of nn.EmbeddingBag(sparse=False) """ weights: Tensor weights_offsets: Tensor D_offsets: Tensor total_D: int max_D: int hash_size_cumsum: Tensor total_hash_size_bits: int embedding_specs: List[Tuple[int, int]] def __init__( self, embedding_specs: List[Tuple[int, int]], # tuple of (rows, dims) feature_table_map: Optional[List[int]] = None, # [T] weights_precision: SparseType = SparseType.FP32, pooling_mode: PoolingMode = PoolingMode.SUM, use_cpu: bool = False, output_dtype: SparseType = SparseType.FP32, ) -> None: # noqa C901 # tuple of (rows, dims,) super(DenseTableBatchedEmbeddingBagsCodegen, self).__init__() self.pooling_mode = pooling_mode self.weights_precision = weights_precision self.output_dtype: int = output_dtype.as_int() table_embedding_dtype = weights_precision.as_dtype() self.use_cpu = use_cpu if self.use_cpu or self.pooling_mode == PoolingMode.NONE: assert output_dtype in [ SparseType.FP32, SparseType.FP16, SparseType.BF16, ], "Fused pooled embedding quantization only supported for cuda." # pyre-fixme[8]: Attribute has type `device`; used as `Union[int, device]`. self.current_device: torch.device = ( torch.device("cpu") if self.use_cpu else torch.cuda.current_device() ) self.embedding_specs = embedding_specs (rows, dims) = zip(*embedding_specs) T_ = len(self.embedding_specs) assert T_ > 0 feature_table_map = ( feature_table_map if feature_table_map is not None else list(range(T_)) ) T = len(feature_table_map) assert T_ <= T D_offsets = [dims[t] for t in feature_table_map] D_offsets = [0] + list(accumulate(D_offsets)) self.total_D = D_offsets[-1] self.max_D = max(dims) self.register_buffer( "D_offsets", torch.tensor(D_offsets, device=self.current_device, dtype=torch.int32), ) assert self.D_offsets.numel() == T + 1 hash_size_cumsum = [0] + list(accumulate(rows)) if hash_size_cumsum[-1] == 0: self.total_hash_size_bits: int = 0 else: self.total_hash_size_bits: int = int(log2(float(hash_size_cumsum[-1])) + 1) # The last element is to easily access # of rows of each table by # hash_size_cumsum[t + 1] - hash_size_cumsum[t] hash_size_cumsum = [hash_size_cumsum[t] for t in feature_table_map] + [ hash_size_cumsum[-1] ] self.register_buffer( "hash_size_cumsum", torch.tensor( hash_size_cumsum, device=self.current_device, dtype=torch.int64 ), ) weights_offsets = [0] + list( accumulate([row * dim for (row, dim) in embedding_specs]) ) self.weights = nn.Parameter( torch.randn( weights_offsets[-1], device=self.current_device, dtype=table_embedding_dtype, ) ) for feature in range(T): t = feature_table_map[feature] row, dim = embedding_specs[t] if ( self.weights[weights_offsets[t] : weights_offsets[t + 1]].numel() != row * dim ): logging.info( f"row {row} dim {dim} feature {feature} t {t} {self.weights[weights_offsets[t] : weights_offsets[t + 1]].numel()}" ) assert ( self.weights[weights_offsets[t] : weights_offsets[t + 1]].numel() == row * dim ) assert self.hash_size_cumsum[feature] == sum( row for (row, _) in embedding_specs[:t] ) self.weights_physical_offsets: List[int] = weights_offsets weights_offsets = [weights_offsets[t] for t in feature_table_map] self.register_buffer( "weights_offsets", torch.tensor( weights_offsets, device=self.current_device, dtype=torch.int64 ), ) def forward( self, indices: Tensor, offsets: Tensor, per_sample_weights: Optional[Tensor] = None, feature_requires_grad: Optional[Tensor] = None, ) -> Tensor: (indices, offsets) = indices.long(), offsets.long() return torch.ops.fbgemm.dense_embedding_codegen_lookup_function( dev_weights=self.weights, weights_offsets=self.weights_offsets, D_offsets=self.D_offsets, total_D=self.total_D, max_D=self.max_D, hash_size_cumsum=self.hash_size_cumsum, total_hash_size_bits=self.total_hash_size_bits, indices=indices, offsets=offsets, pooling_mode=self.pooling_mode, indice_weights=per_sample_weights, feature_requires_grad=feature_requires_grad, output_dtype=self.output_dtype, ) @torch.jit.export def split_embedding_weights(self) -> List[Tensor]: """ Returns a list of weights, split by table """ splits = [] for t, (rows, dim) in enumerate(self.embedding_specs): offset = self.weights_physical_offsets[t] splits.append( self.weights.detach()[offset : offset + rows * dim].view(rows, dim) ) return splits def init_embedding_weights_uniform(self, min_val: float, max_val: float) -> None: splits = self.split_embedding_weights() for param in splits: param.uniform_(min_val, max_val)
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. # pyre-ignore-all-errors[56] import logging from itertools import accumulate from typing import List, Optional, Tuple, Union import torch # usort:skip from torch import nn, Tensor # usort:skip from fbgemm_gpu.split_embedding_configs import SparseType from fbgemm_gpu.split_table_batched_embeddings_ops_common import ( BoundsCheckMode, CacheAlgorithm, CacheState, construct_cache_state, DEFAULT_SCALE_BIAS_SIZE_IN_BYTES, EmbeddingLocation, MAX_PREFETCH_DEPTH, PoolingMode, RecordCacheMetrics, round_up, SplitState, ) try: torch.ops.load_library( "//deeplearning/fbgemm/fbgemm_gpu/codegen:embedding_ops_cuda_inference" ) torch.ops.load_library( "//deeplearning/fbgemm/fbgemm_gpu/codegen:embedding_ops_cpu_inference" ) except Exception: pass def rounded_row_size_in_bytes( dim: int, weight_ty: SparseType, row_alignment: int, scale_bias_size_in_bytes: int = DEFAULT_SCALE_BIAS_SIZE_IN_BYTES, ) -> int: r = unpadded_row_size_in_bytes(dim, weight_ty, scale_bias_size_in_bytes) # align each row to 16-byte boundaries. return round_up(r, row_alignment) def unpadded_row_size_in_bytes( dim: int, weight_ty: SparseType, scale_bias_size_in_bytes: int = DEFAULT_SCALE_BIAS_SIZE_IN_BYTES, ) -> int: r = { SparseType.FP32.value: dim * 4, SparseType.FP16.value: dim * 2, SparseType.FP8.value: dim, SparseType.INT8.value: dim + scale_bias_size_in_bytes, SparseType.INT4.value: dim // 2 + scale_bias_size_in_bytes, SparseType.INT2.value: dim // 4 + scale_bias_size_in_bytes, }[weight_ty.value] return r def align_to_cacheline(a: int) -> int: # align each table to 128b cache line boundary. return round_up(a, 128) def nbit_construct_split_state( embedding_specs: List[Tuple[str, int, int, SparseType, EmbeddingLocation]], cacheable: bool, row_alignment: int, scale_bias_size_in_bytes: int = DEFAULT_SCALE_BIAS_SIZE_IN_BYTES, cacheline_alignment: bool = True, ) -> SplitState: placements = torch.jit.annotate(List[EmbeddingLocation], []) offsets = torch.jit.annotate(List[int], []) dev_size = 0 host_size = 0 uvm_size = 0 for _, num_embeddings, embedding_dim, weight_ty, location in embedding_specs: embedding_dim = rounded_row_size_in_bytes( embedding_dim, weight_ty, row_alignment, scale_bias_size_in_bytes ) state_size = num_embeddings * embedding_dim if cacheline_alignment: state_size = align_to_cacheline(state_size) if location == EmbeddingLocation.HOST: placements.append(EmbeddingLocation.HOST) offsets.append(host_size) host_size += state_size elif location == EmbeddingLocation.DEVICE: placements.append(EmbeddingLocation.DEVICE) offsets.append(dev_size) dev_size += state_size else: if cacheable and location == EmbeddingLocation.MANAGED_CACHING: placements.append(EmbeddingLocation.MANAGED_CACHING) else: placements.append(EmbeddingLocation.MANAGED) offsets.append(uvm_size) uvm_size += state_size assert len(placements) == len(offsets) return SplitState( dev_size=dev_size, host_size=host_size, uvm_size=uvm_size, placements=placements, offsets=offsets, ) def random_quant_scaled_tensor(shape: torch.Size, device: torch.device) -> torch.Tensor: return torch.randint( 0, 255, size=shape, dtype=torch.uint8, device=device, ) # pyre-fixme[13]: Attribute `cache_miss_counter` is never initialized. class IntNBitTableBatchedEmbeddingBagsCodegen(nn.Module): """ Table-batched version of nn.EmbeddingBag(sparse=False) Inference version, with FP32/FP16/FP8/INT8/INT4/INT2 supports """ embedding_specs: List[Tuple[str, int, int, SparseType, EmbeddingLocation]] record_cache_metrics: RecordCacheMetrics cache_miss_counter: torch.Tensor uvm_cache_stats: torch.Tensor local_uvm_cache_stats: torch.Tensor weights_offsets: torch.Tensor weights_placements: torch.Tensor def __init__( # noqa C901 self, embedding_specs: List[ Tuple[str, int, int, SparseType, EmbeddingLocation] ], # tuple of (feature_names, rows, dims, SparseType, EmbeddingLocation/placement) feature_table_map: Optional[List[int]] = None, # [T] index_remapping: Optional[List[Tensor]] = None, pooling_mode: PoolingMode = PoolingMode.SUM, device: Optional[Union[str, int, torch.device]] = None, bounds_check_mode: BoundsCheckMode = BoundsCheckMode.WARNING, weight_lists: Optional[List[Tuple[Tensor, Optional[Tensor]]]] = None, pruning_hash_load_factor: float = 0.5, use_array_for_index_remapping: bool = True, output_dtype: SparseType = SparseType.FP16, cache_algorithm: CacheAlgorithm = CacheAlgorithm.LRU, cache_load_factor: float = 0.2, cache_sets: int = 0, cache_reserved_memory: float = 0.0, enforce_hbm: bool = False, # place all weights/momentums in HBM when using cache record_cache_metrics: Optional[RecordCacheMetrics] = None, gather_uvm_cache_stats: Optional[bool] = False, row_alignment: Optional[int] = None, fp8_exponent_bits: Optional[int] = None, fp8_exponent_bias: Optional[int] = None, cache_assoc: int = 32, scale_bias_size_in_bytes: int = DEFAULT_SCALE_BIAS_SIZE_IN_BYTES, cacheline_alignment: bool = True, uvm_host_mapped: bool = False, # True to use cudaHostAlloc; False to use cudaMallocManaged. ) -> None: # noqa C901 # tuple of (rows, dims,) super(IntNBitTableBatchedEmbeddingBagsCodegen, self).__init__() # 64 for AMD if cache_assoc == 32 and torch.version.hip is not None: cache_assoc = 64 if device is None: self.current_device: torch.device = torch.device( torch.cuda.current_device() ) elif isinstance(device, torch.device): self.current_device = device else: self.current_device = torch.device(device) self.use_cpu: bool = self.current_device.type == "cpu" self.scale_bias_size_in_bytes = scale_bias_size_in_bytes self.pooling_mode = pooling_mode self.bounds_check_mode_int: int = bounds_check_mode.value self.embedding_specs = embedding_specs self.output_dtype: int = output_dtype.as_int() self.uvm_host_mapped = uvm_host_mapped # (feature_names, rows, dims, weights_tys, locations) = zip(*embedding_specs) # Pyre workaround self.feature_names: List[str] = [e[0] for e in embedding_specs] rows: List[int] = [e[1] for e in embedding_specs] dims: List[int] = [e[2] for e in embedding_specs] weights_tys: List[SparseType] = [e[3] for e in embedding_specs] locations: List[EmbeddingLocation] = [e[4] for e in embedding_specs] # if target device is meta then we set use_cpu based on the embedding location # information in embedding_specs. if self.current_device.type == "meta": self.use_cpu = all(loc == EmbeddingLocation.HOST for loc in locations) if row_alignment is None: self.row_alignment: int = 1 if self.use_cpu else 16 else: self.row_alignment = row_alignment if record_cache_metrics is not None: self.record_cache_metrics = record_cache_metrics else: self.record_cache_metrics = RecordCacheMetrics(False, False) self.gather_uvm_cache_stats = gather_uvm_cache_stats # Define the size of uvm cache stats as class variable # to make it work with torch jit script. self.uvm_cache_stats_size = 6 # 0: N_calls, 1: N_requested_indices, 2: N_unique_indices, 3: N_unique_misses, # 4: N_conflict_unique_misses, 5: N_conflict_misses # mixed D is not supported by no bag kernels mixed_D = not all(d == dims[0] for d in dims) if mixed_D: assert ( self.pooling_mode != PoolingMode.NONE ), "Mixed dimension tables are only supported for pooling tables." assert not self.use_cpu or all( loc == EmbeddingLocation.HOST for loc in locations ), "CPU device requires EmbeddingLocation.HOST for location!" assert self.use_cpu or all( loc != EmbeddingLocation.HOST for loc in locations ), "EmbeddingLocation.HOST doesn't work for CUDA device!" T_ = len(self.embedding_specs) assert T_ > 0 self.feature_table_map: List[int] = ( feature_table_map if feature_table_map is not None else list(range(T_)) ) T = len(self.feature_table_map) assert T_ <= T table_has_feature = [False] * T_ for t in self.feature_table_map: table_has_feature[t] = True assert all(table_has_feature), "Each table must have at least one feature!" D_offsets = [dims[t] for t in self.feature_table_map] D_offsets = [0] + list(accumulate(D_offsets)) self.total_D: int = D_offsets[-1] for dim, weight_ty in zip(dims, weights_tys): if not weight_ty.is_float(): assert ( dim % (8 / weight_ty.bit_rate()) == 0 ), f"For quantized types we need to at least pack at byte granularity, dim: {dim}, weight_ty: {weight_ty}" def max_ty_D(ty: SparseType) -> int: return max( [dim for dim, weight_ty in zip(dims, weights_tys) if weight_ty == ty], default=0, ) self.max_int2_D: int = max_ty_D(SparseType.INT2) self.max_int4_D: int = max_ty_D(SparseType.INT4) self.max_int8_D: int = max_ty_D(SparseType.INT8) self.max_float8_D: int = max_ty_D(SparseType.FP8) self.max_float16_D: int = max_ty_D(SparseType.FP16) self.max_float32_D: int = max_ty_D(SparseType.FP32) self.register_buffer( "D_offsets", torch.tensor(D_offsets, device=self.current_device, dtype=torch.int32), ) assert self.D_offsets.numel() == T + 1 self.register_buffer( "rows_per_table", torch.tensor( [rows[t] for t in self.feature_table_map], device=self.current_device, dtype=torch.int64, ), ) self.register_buffer( "bounds_check_warning", torch.tensor([0], device=self.current_device, dtype=torch.int64), ) weights_tys_int = [weights_tys[t].as_int() for t in self.feature_table_map] self.register_buffer( "weights_tys", torch.tensor( weights_tys_int, device=self.current_device, dtype=torch.uint8 ), ) self.weight_initialized: bool = False self.weights_dev: torch.Tensor = torch.zeros( 0, device=self.current_device, dtype=torch.uint8, ) self.weights_host: torch.Tensor = torch.zeros( 0, device=self.current_device, dtype=torch.uint8 ) self.weights_uvm: torch.Tensor = torch.empty(0, dtype=torch.uint8).to( self.current_device ) cached_dims = [ rounded_row_size_in_bytes( embedding_spec[2], embedding_spec[3], 16, self.scale_bias_size_in_bytes ) for embedding_spec in self.embedding_specs if embedding_spec[4] == EmbeddingLocation.MANAGED_CACHING ] self.max_D_cache: int = max(cached_dims) if len(cached_dims) > 0 else 0 self.initialize_physical_weights_placements_and_offsets(cacheline_alignment) self.enforce_hbm: bool = enforce_hbm # Assign weights after weights and weights_offsets are initialized. if weight_lists: self._apply_split( self.dev_size, self.host_size, self.uvm_size, self.weights_physical_placements, self.weights_physical_offsets, self.enforce_hbm, ) self.assign_embedding_weights(weight_lists) # Handle index remapping for embedding pruning. self.register_buffer( "index_remappings_array_offsets", torch.empty(0, device=self.current_device, dtype=torch.int64), ) self.register_buffer( "index_remappings_array", torch.empty(0, device=self.current_device, dtype=torch.int32), ) self.register_buffer( "index_remapping_hash_table_offsets", torch.empty(0, device=self.current_device, dtype=torch.int64), ) self.register_buffer( "index_remapping_hash_table", torch.empty(0, device=self.current_device, dtype=torch.int32), ) self.register_buffer( "original_rows_per_table", torch.empty(0, device=self.current_device, dtype=torch.int64), ) # pyre-fixme[4]: Attribute must be annotated. self.index_remapping_hash_table_cpu = None if index_remapping: self.set_index_remappings( index_remapping, pruning_hash_load_factor, use_array_for_index_remapping ) # Currently only support cache_precision == embedding_precision. # Both are represented as uint8_t cache_state = construct_cache_state(rows, locations, self.feature_table_map) if self.record_cache_metrics.record_tablewise_cache_miss: num_tables = len(cache_state.cache_hash_size_cumsum) - 1 self.register_buffer( "table_wise_cache_miss", torch.zeros( num_tables, device=self.current_device, dtype=torch.int64, ), ) # NOTE: make TorchScript work! else: self.register_buffer( "table_wise_cache_miss", torch.zeros( 0, device=self.current_device, dtype=torch.int64, ), ) self.cache_assoc = cache_assoc self._apply_cache_state( cache_state, cache_algorithm, cache_load_factor, cache_sets, cache_reserved_memory, ) if self.max_float8_D > 0: default_config = SparseType.FP8.default_config() self.fp8_exponent_bits: int = ( default_config.get("exponent_bits") if fp8_exponent_bits is None else fp8_exponent_bits ) self.fp8_exponent_bias: int = ( default_config.get("exponent_bias") if fp8_exponent_bias is None else fp8_exponent_bias ) else: self.fp8_exponent_bits = -1 self.fp8_exponent_bias = -1 def get_cache_miss_counter(self) -> Tensor: # cache_miss_counter[0]: cache_miss_forward_count which records the total number of forwards which has at least one cache miss # cache_miss_counter[1]: unique_cache_miss_count which records to total number of unique (dedup) cache misses # cache_miss_counter[2]: total number of unique (dedup) access count # cache_miss_counter[3]: total number of non-dedup access count # How to get cache miss ratio # cache miss ratio (# of missed entries / # of unique requests): ( cache_miss_counter[1] / cache_miss_counter[2] ) # cache miss ratio (# of missed entries / # of total access): ( cache_miss_counter[1] / cache_miss_counter[3] ) assert ( self.record_cache_metrics.record_cache_miss_counter ), "record_cache_miss_counter should be true to access counter values" return self.cache_miss_counter @torch.jit.export def get_table_wise_cache_miss(self) -> Tensor: assert ( self.record_cache_metrics.record_tablewise_cache_miss ), "record_tablewise_cache_miss should be true to access counter values" # table_wise_cache_miss contains all the cache miss count for each table in this embedding table object: return self.table_wise_cache_miss def reset_cache_miss_counter(self) -> None: assert ( self.record_cache_metrics.record_cache_miss_counter ), "record_cache_miss_counter should be true to access counter values" self.cache_miss_counter = torch.tensor( [0, 0, 0, 0], device=self.current_device, dtype=torch.int64 ) def reset_uvm_cache_stats(self) -> None: assert ( self.gather_uvm_cache_stats ), "gather_uvm_cache_stats should be set to true to access uvm cache stats." self.uvm_cache_stats.zero_() self.local_uvm_cache_stats.zero_() def print_cache_miss_counter(self) -> None: assert ( self.record_cache_metrics.record_cache_miss_counter ), "record_cache_miss_counter should be true to access counter values" logging.info( f"\n" f"Miss counter value [0] - # of miss occured iters : {self.cache_miss_counter[0]}, \n" f"Miss counter value [1] - # of unique misses : {self.cache_miss_counter[1]}, \n" f"Miss counter value [2] - # of unique requested indices : {self.cache_miss_counter[2]}, \n" f"Miss counter value [3] - # of total requested indices : {self.cache_miss_counter[3]}, " ) logging.info( f"unique_miss_rate using counter : {self.cache_miss_counter[1]/self.cache_miss_counter[2]}, \n" ) logging.info( f"total_miss_rate using counter : {self.cache_miss_counter[1]/self.cache_miss_counter[3]}, \n" ) def get_uvm_cache_stats(self) -> Tensor: assert ( self.gather_uvm_cache_stats ), "gather_uvm_cache_stats should be set to true to access uvm cache stats." return self.uvm_cache_stats def print_uvm_cache_stats(self) -> None: assert ( self.gather_uvm_cache_stats ), "gather_uvm_cache_stats should be set to true to access uvm cache stats." uvm_cache_stats = self.uvm_cache_stats.tolist() logging.info( f"N_called: {uvm_cache_stats[0]}\n" f"N_requested_indices: {uvm_cache_stats[1]}\n" f"N_unique_indices: {uvm_cache_stats[2]}\n" f"N_unique_misses: {uvm_cache_stats[3]}\n" f"N_conflict_unique_misses: {uvm_cache_stats[4]}\n" f"N_conflict_misses: {uvm_cache_stats[5]}\n" ) if uvm_cache_stats[1]: logging.info( f"unique indices / requested indices: {uvm_cache_stats[2]/uvm_cache_stats[1]}\n" f"unique misses / requested indices: {uvm_cache_stats[3]/uvm_cache_stats[1]}\n" ) @torch.jit.export def prefetch(self, indices: Tensor, offsets: Tensor) -> None: self.timestep_counter.increment() self.timestep_prefetch_size.increment() if not self.lxu_cache_weights.numel(): return # FIXME: check the int32_t range failure in https://fburl.com/gdoc/kcdnrnvg . # The real failure should be in cache handling in https://fburl.com/ox3f26r0 . indices, offsets = indices.long(), offsets.long() linear_cache_indices = torch.ops.fbgemm.linearize_cache_indices( self.cache_hash_size_cumsum, indices, offsets, ) if ( self.record_cache_metrics.record_cache_miss_counter or self.record_cache_metrics.record_tablewise_cache_miss ): lxu_cache_locations = ( torch.ops.fbgemm.lxu_cache_lookup( linear_cache_indices, self.lxu_cache_state, self.total_cache_hash_size, ) if self.cache_assoc in [32, 64] else torch.ops.fbgemm.direct_mapped_lxu_cache_lookup( linear_cache_indices, self.lxu_cache_state, self.total_cache_hash_size, ) ) if self.record_cache_metrics.record_cache_miss_counter: self._update_cache_miss_counter( lxu_cache_locations, linear_cache_indices ) if self.record_cache_metrics.record_tablewise_cache_miss: self._update_tablewise_cache_miss( lxu_cache_locations, linear_cache_indices, offsets ) if self.cache_assoc in [32, 64]: # 64 for AMD self.prefetch_32way(linear_cache_indices) elif self.cache_assoc == 1: self.prefetch_1way(linear_cache_indices) else: raise ValueError(f"{self.cache_assoc} not in [1, 32, 64]") def prefetch_32way(self, linear_cache_indices: Tensor) -> None: if self.cache_algorithm == CacheAlgorithm.LRU: torch.ops.fbgemm.lru_cache_populate_byte( self.weights_uvm, self.cache_hash_size_cumsum, self.total_cache_hash_size, self.cache_index_table_map, self.weights_offsets, self.weights_tys, self.D_offsets, linear_cache_indices, self.lxu_cache_state, self.lxu_cache_weights, self.timestep_counter.get(), self.lxu_state, 16, # row_alignment; using default value. self.gather_uvm_cache_stats, self.local_uvm_cache_stats, ) elif self.cache_algorithm == CacheAlgorithm.LFU: torch.ops.fbgemm.lfu_cache_populate_byte( self.weights_uvm, self.cache_hash_size_cumsum, self.total_cache_hash_size, self.cache_index_table_map, self.weights_offsets, self.weights_tys, self.D_offsets, linear_cache_indices, self.lxu_cache_state, self.lxu_cache_weights, self.lxu_state, ) assert ( self.lxu_cache_locations_list.size() < self.max_prefetch_depth ), f"self.lxu_cache_locations_list has grown to size: {self.lxu_cache_locations_list.size()}, this exceeds the maximum: {self.max_prefetch_depth}. This probably indicates an error in logic where prefetch() is being called more frequently than forward()" self.lxu_cache_locations_list.push( torch.ops.fbgemm.lxu_cache_lookup( linear_cache_indices, self.lxu_cache_state, self.total_cache_hash_size, self.gather_uvm_cache_stats, self.local_uvm_cache_stats, ) ) if self.gather_uvm_cache_stats: self._accumulate_uvm_cache_stats() def prefetch_1way(self, linear_cache_indices: Tensor) -> None: if self.cache_algorithm == CacheAlgorithm.LRU: torch.ops.fbgemm.direct_mapped_lru_cache_populate_byte( self.weights_uvm, self.cache_hash_size_cumsum, self.total_cache_hash_size, self.cache_index_table_map, self.weights_offsets, self.weights_tys, self.D_offsets, linear_cache_indices, self.lxu_cache_state, self.lxu_cache_weights, self.timestep_counter.get(), self.lxu_state, self.lxu_cache_miss_timestamp, 16, # row_alignment; using default value. self.gather_uvm_cache_stats, self.local_uvm_cache_stats, ) else: raise ValueError("Direct Mapped for LRU only") assert ( self.lxu_cache_locations_list.size() < self.max_prefetch_depth ), f"self.lxu_cache_locations_list has grown to size: {self.lxu_cache_locations_list.size()}, this exceeds the maximum: {self.max_prefetch_depth}. This probably indicates an error in logic where prefetch() is being called more frequently than forward()" self.lxu_cache_locations_list.push( torch.ops.fbgemm.direct_mapped_lxu_cache_lookup( linear_cache_indices, self.lxu_cache_state, self.total_cache_hash_size, self.gather_uvm_cache_stats, self.local_uvm_cache_stats, ) ) if self.gather_uvm_cache_stats: self._accumulate_uvm_cache_stats() def _accumulate_uvm_cache_stats(self) -> None: # Accumulate local_uvm_cache_stats (int32) into uvm_cache_stats (int64). # We may wanna do this accumulation atomically, but as it's only for monitoring, # slightly inaccurate result may be acceptable. self.uvm_cache_stats = torch.add( self.uvm_cache_stats, self.local_uvm_cache_stats ) self.local_uvm_cache_stats.zero_() def _update_cache_miss_counter( self, lxu_cache_locations: Tensor, linear_cache_indices: Tensor, ) -> None: CACHE_MISS = torch.tensor([-1], device=self.current_device, dtype=torch.int32) CACHE_HIT = torch.tensor([-2], device=self.current_device, dtype=torch.int32) cache_missed_locations = torch.where( lxu_cache_locations == CACHE_MISS, linear_cache_indices, CACHE_HIT ) unique_ids_list = torch.unique(cache_missed_locations) unique_ids_count_list = torch.where(unique_ids_list == CACHE_HIT, 0, 1) miss_count = torch.sum(unique_ids_count_list) self.cache_miss_counter[0] += (miss_count > 0).to(torch.int64) self.cache_miss_counter[1] += miss_count # Number of unique requests assert ( len(linear_cache_indices.size()) == 1 ), f"linear_cache_indices should be 1-D was {len(linear_cache_indices.size())}-D" assert ( self.cache_miss_counter.size()[0] == 4 ), f"self.cache_miss_counter should be 4-D was {self.cache_miss_counter.size()[0]}-D" self.cache_miss_counter[2] += torch.unique(linear_cache_indices).size()[0] # Number of total requests self.cache_miss_counter[3] += linear_cache_indices.size()[0] def _update_tablewise_cache_miss( self, lxu_cache_locations: Tensor, linear_cache_indices: Tensor, offsets: Tensor, ) -> None: CACHE_MISS = torch.tensor([-1], device=self.current_device, dtype=torch.int32) CACHE_HIT = torch.tensor([-2], device=self.current_device, dtype=torch.int32) num_tables = len(self.cache_hash_size_cumsum) - 1 num_offsets_per_table = (len(offsets) - 1) // num_tables cache_missed_locations = torch.where( lxu_cache_locations == CACHE_MISS, linear_cache_indices, CACHE_HIT ) for i in range(num_tables): start = offsets[i * num_offsets_per_table] end = offsets[(i + 1) * num_offsets_per_table] current_cache_missed_locations = cache_missed_locations[start:end] unique_ids_list = torch.unique(current_cache_missed_locations) unique_ids_count_list = torch.where(unique_ids_list == CACHE_HIT, 0, 1) miss_count = torch.sum(unique_ids_count_list) self.table_wise_cache_miss[i] += miss_count def forward( self, indices: Tensor, offsets: Tensor, per_sample_weights: Optional[Tensor] = None, ) -> Tensor: assert ( self.weight_initialized ), "weight needs to be initialized before forward function" # First bound check: check if the indices/offsets are within the boundary # of the original embedding rows before pruning. # Note that this is only applied when we enable pruning (if the perf becomes # an issue, we can fuse it inside the remapping kernel). if ( self.index_remapping_hash_table_cpu is not None or self.index_remapping_hash_table.numel() > 0 or self.index_remappings_array.numel() > 0 ): if self.bounds_check_mode_int != BoundsCheckMode.NONE.value: torch.ops.fbgemm.bounds_check_indices( self.original_rows_per_table, indices, offsets, self.bounds_check_mode_int, self.bounds_check_warning, per_sample_weights, ) # Index remapping changes input indices, and some of them becomes -1 (prunned rows). # Hence, remapping should be done before prefetch and emb lookup # so that these operations are with the remapped indices. if self.index_remapping_hash_table_cpu is not None: indices = self.index_remapping_hash_table_cpu.lookup(indices, offsets) elif self.index_remapping_hash_table.numel() > 0: # Convert from raw indices to pruned indices indices = torch.ops.fbgemm.pruned_hashmap_lookup( indices, offsets, self.index_remapping_hash_table, self.index_remapping_hash_table_offsets, ) elif self.index_remappings_array.numel() > 0: indices = torch.ops.fbgemm.pruned_array_lookup( indices, offsets, self.index_remappings_array, self.index_remappings_array_offsets, ) if self.timestep_prefetch_size.get() <= 0: self.prefetch(indices, offsets) self.timestep_prefetch_size.decrement() lxu_cache_locations = self.lxu_cache_locations_list.pop() # Second bound check: check if the indices/offsets are within the boundary # of the pruned embedding rows after pruning. # Note: we cast to int as a TorchScript workaround. if self.bounds_check_mode_int != BoundsCheckMode.NONE.value: torch.ops.fbgemm.bounds_check_indices( self.rows_per_table, indices, offsets, self.bounds_check_mode_int, self.bounds_check_warning, per_sample_weights, ) # Note: CPU and CUDA ops use the same interface to facilitate JIT IR # generation for CUDA/CPU. For CPU op, we don't need weights_uvm and # weights_placements return torch.ops.fbgemm.int_nbit_split_embedding_codegen_lookup_function( dev_weights=self.weights_host if self.host_size > 0 else self.weights_dev, uvm_weights=self.weights_uvm, weights_placements=self.weights_placements, weights_offsets=self.weights_offsets, weights_tys=self.weights_tys, D_offsets=self.D_offsets, total_D=self.total_D, max_int2_D=self.max_int2_D, max_int4_D=self.max_int4_D, max_int8_D=self.max_int8_D, max_float16_D=self.max_float16_D, max_float32_D=self.max_float32_D, indices=indices, offsets=offsets, pooling_mode=int(self.pooling_mode), indice_weights=per_sample_weights, output_dtype=self.output_dtype, lxu_cache_weights=self.lxu_cache_weights, lxu_cache_locations=lxu_cache_locations, row_alignment=self.row_alignment, max_float8_D=self.max_float8_D, fp8_exponent_bits=self.fp8_exponent_bits, fp8_exponent_bias=self.fp8_exponent_bias, ) def initialize_logical_weights_placements_and_offsets( self, ) -> None: assert len(self.weights_physical_offsets) == len(self.embedding_specs) assert len(self.weights_physical_offsets) == len( self.weights_physical_placements ) offsets = [self.weights_physical_offsets[t] for t in self.feature_table_map] placements = [ self.weights_physical_placements[t] for t in self.feature_table_map ] self.weights_offsets = torch.tensor( offsets, device=self.current_device, dtype=torch.int64 ) self.weights_placements = torch.tensor( placements, device=self.current_device, dtype=torch.int32 ) def initialize_physical_weights_placements_and_offsets( self, cacheline_alignment: bool = True, ) -> None: # Initialize physical weights placements and offsets # and host/dev/uvm sizes weight_split: SplitState = nbit_construct_split_state( self.embedding_specs, cacheable=True, row_alignment=self.row_alignment, scale_bias_size_in_bytes=self.scale_bias_size_in_bytes, cacheline_alignment=cacheline_alignment, ) self.weights_physical_placements = [t.value for t in weight_split.placements] self.weights_physical_offsets = weight_split.offsets self.host_size = weight_split.host_size self.dev_size = weight_split.dev_size self.uvm_size = weight_split.uvm_size @torch.jit.export def reset_weights_placements_and_offsets( self, device: torch.device, location: int ) -> None: # Reset device/location denoted in embedding specs self.reset_embedding_spec_location(device, location) # Initialize all physical/logical weights placements and offsets without initializing large dev weights tensor self.initialize_physical_weights_placements_and_offsets() self.initialize_logical_weights_placements_and_offsets() def reset_embedding_spec_location( self, device: torch.device, location: int ) -> None: # Overwrite location in embedding_specs with new location # Use map since can't script enum call (ie. EmbeddingLocation(value)) INT_TO_EMBEDDING_LOCATION = { 0: EmbeddingLocation.DEVICE, 1: EmbeddingLocation.MANAGED, 2: EmbeddingLocation.MANAGED_CACHING, 3: EmbeddingLocation.HOST, } target_location = INT_TO_EMBEDDING_LOCATION[location] self.current_device = device self.row_alignment = 1 if target_location == EmbeddingLocation.HOST else 16 self.embedding_specs = [ (spec[0], spec[1], spec[2], spec[3], target_location) for spec in self.embedding_specs ] def _apply_split( self, dev_size: int, host_size: int, uvm_size: int, placements: List[int], offsets: List[int], enforce_hbm: bool, ) -> None: assert not self.weight_initialized, "Weights have already been initialized." self.weight_initialized = True self.weights_physical_placements = placements self.weights_physical_offsets = offsets self.host_size = host_size self.dev_size = dev_size self.uvm_size = uvm_size self.initialize_logical_weights_placements_and_offsets() if dev_size > 0: self.weights_dev = torch.zeros( dev_size, device=self.current_device, dtype=torch.uint8, ) if host_size > 0: self.weights_host = torch.zeros( host_size, device=self.current_device, dtype=torch.uint8 ) if uvm_size > 0: assert not self.use_cpu if enforce_hbm: if not torch.jit.is_scripting(): logging.info("Enforce hbm for the cache location") self.weights_uvm = torch.zeros( uvm_size, device=self.current_device, dtype=torch.uint8, ) else: self.weights_uvm = torch.zeros( uvm_size, out=torch.ops.fbgemm.new_unified_tensor( torch.zeros(1, device=self.D_offsets.device, dtype=torch.uint8), [uvm_size], self.uvm_host_mapped, ), ) def _apply_cache_state( self, cache_state: CacheState, cache_algorithm: CacheAlgorithm, cache_load_factor: float, cache_sets: int, cache_reserved_memory: float, ) -> None: assert self.cache_assoc in [ 1, 32, 64, ], "Only 1-way or 32-way(64-way for AMD) implmeneted for now" self.cache_algorithm = cache_algorithm self.timestep_counter = torch.classes.fbgemm.AtomicCounter() self.timestep_prefetch_size = torch.classes.fbgemm.AtomicCounter() self.max_prefetch_depth = MAX_PREFETCH_DEPTH if self.current_device.type == "meta": # To reslove "Cannot copy out of meta tensor; no data!" error lxu_cache_locations_empty = torch.empty(0, dtype=torch.int32).fill_(-1) else: lxu_cache_locations_empty = torch.empty( 0, device=self.current_device, dtype=torch.int32 ).fill_(-1) self.lxu_cache_locations_list = torch.classes.fbgemm.TensorQueue( lxu_cache_locations_empty ) # NOTE: no cache for CPU mode! if cache_state.total_cache_hash_size == 0 or self.use_cpu: self.register_buffer( "lxu_cache_weights", torch.zeros(0, 0, device=self.current_device, dtype=torch.uint8), ) # NOTE: make TorchScript work! self.register_buffer( "cache_hash_size_cumsum", torch.zeros(1, dtype=torch.int64, device=self.current_device), persistent=False, ) self.register_buffer( "total_cache_hash_size", torch.zeros(1, dtype=torch.int64, device=self.current_device), persistent=False, ) self.register_buffer( "cache_index_table_map", torch.zeros(1, dtype=torch.int64, device=self.current_device), persistent=False, ) self.register_buffer( "lxu_cache_state", torch.zeros(1, dtype=torch.int64, device=self.current_device), persistent=False, ) self.register_buffer( "lxu_state", torch.zeros(1, dtype=torch.int64, device=self.current_device), persistent=False, ) self.register_buffer( "lxu_cache_miss_timestamp", torch.zeros(1, dtype=torch.int64, device=self.current_device), persistent=False, ) self.register_buffer( "cache_miss_counter", torch.tensor([0, 0, 0, 0], dtype=torch.int64), persistent=False, ) self.register_buffer( "uvm_cache_stats", torch.zeros( size=(self.uvm_cache_stats_size,), device=self.current_device, dtype=torch.int64, ), persistent=False, ) self.register_buffer( "local_uvm_cache_stats", torch.zeros( size=(self.uvm_cache_stats_size,), device=self.current_device, dtype=torch.int32, ), persistent=False, ) return assert cache_load_factor > 0 if cache_sets <= 0: total_memory = torch.cuda.get_device_properties( self.current_device ).total_memory free_memory = ( total_memory - torch.cuda.memory_reserved(self.current_device) - int(cache_reserved_memory) ) assert free_memory > 0 cache_sets = ( int(cache_state.total_cache_hash_size * cache_load_factor) + self.cache_assoc - 1 ) // self.cache_assoc # Note that element_size has been included in max_D_cache (in Bytes) cache_size = cache_sets * self.cache_assoc * self.max_D_cache if cache_size > free_memory: cache_sets = ( int(1.0 * free_memory / self.max_D_cache) + self.cache_assoc - 1 ) // self.cache_assoc cache_sets = 1 if cache_sets == 0 else cache_sets cache_load_factor = ( 1.0 * cache_sets * self.cache_assoc / int(cache_state.total_cache_hash_size) ) assert cache_sets > 0 if cache_algorithm == CacheAlgorithm.LFU: assert cache_sets < 2**24 - 1 cache_size = cache_sets * self.cache_assoc * self.max_D_cache logging.info( f"Using on-device cache with admission algorithm " f"{cache_algorithm}, {cache_sets} sets, " f"cache_load_factor: {cache_load_factor : .3f}, " f"{cache_size / 1024.0 / 1024.0 / 1024.0 : .2f}GB" ) self.total_cache_hash_size = cache_state.total_cache_hash_size self.register_buffer( "cache_hash_size_cumsum", torch.tensor( cache_state.cache_hash_size_cumsum, device=self.current_device, dtype=torch.int64, ), ) self.register_buffer( "cache_index_table_map", torch.tensor( cache_state.cache_index_table_map, device=self.current_device, dtype=torch.int32, ), ) self.register_buffer( "lxu_cache_state", torch.zeros( cache_sets, self.cache_assoc, device=self.current_device, dtype=torch.int64, ).fill_(-1), ) self.register_buffer( "lxu_cache_weights", torch.zeros( cache_sets * self.cache_assoc, self.max_D_cache, device=self.current_device, dtype=torch.uint8, ), ) self.register_buffer( "lxu_state", torch.zeros( size=(self.total_cache_hash_size + 1,) if cache_algorithm == CacheAlgorithm.LFU else (cache_sets, self.cache_assoc), device=self.current_device, dtype=torch.int64, ), ) if self.cache_assoc == 1: self.register_buffer( "lxu_cache_miss_timestamp", torch.zeros( cache_sets, self.cache_assoc, device=self.current_device, dtype=torch.int64, ), ) else: # make TorchScript work self.register_buffer( "lxu_cache_miss_timestamp", torch.zeros(1, device=self.current_device, dtype=torch.int64), persistent=False, ) self.register_buffer( "cache_miss_counter", torch.tensor([0, 0, 0, 0], device=self.current_device, dtype=torch.int64), ) self.register_buffer( "uvm_cache_stats", torch.zeros( size=(self.uvm_cache_stats_size,), device=self.current_device, dtype=torch.int64, ), persistent=False, ) self.register_buffer( "local_uvm_cache_stats", torch.zeros( size=(self.uvm_cache_stats_size,), device=self.current_device, dtype=torch.int32, ), persistent=False, ) if cache_algorithm not in (CacheAlgorithm.LFU, CacheAlgorithm.LRU): raise ValueError( f"cache_algorithm must be {CacheAlgorithm.LRU} " f"or {CacheAlgorithm.LFU}" ) if self.gather_uvm_cache_stats: self.reset_uvm_cache_stats() def reset_cache_states(self) -> None: if not self.lxu_cache_weights.numel(): return self.lxu_cache_state.fill_(-1) self.lxu_state.fill_(0) self.timestep_counter.reset() @torch.jit.export def split_embedding_weights_with_scale_bias( self, split_scale_bias_mode: int = 1 ) -> List[Tuple[Tensor, Optional[Tensor], Optional[Tensor]]]: """ Returns a list of weights, split by table split_scale_bias_mode: 0: return one row; 1: return weights + scale_bias; 2: return weights, scale, bias. """ assert self.weight_initialized splits: List[Tuple[Tensor, Optional[Tensor], Optional[Tensor]]] = [] for t, (_, rows, dim, weight_ty, _) in enumerate(self.embedding_specs): placement = self.weights_physical_placements[t] if placement == EmbeddingLocation.DEVICE.value: weights = self.weights_dev elif placement == EmbeddingLocation.HOST.value: weights = self.weights_host else: weights = self.weights_uvm offset = self.weights_physical_offsets[t] weights_shifts = weights.detach()[ offset : offset + rows * rounded_row_size_in_bytes( dim, weight_ty, self.row_alignment, self.scale_bias_size_in_bytes ) ].view( rows, rounded_row_size_in_bytes( dim, weight_ty, self.row_alignment, self.scale_bias_size_in_bytes ), ) if split_scale_bias_mode == 1 or split_scale_bias_mode == 2: # remove the padding at the end of each row. weights_shifts = weights_shifts[ :, : unpadded_row_size_in_bytes( dim, weight_ty, self.scale_bias_size_in_bytes ), ] if ( weight_ty == SparseType.INT8 or weight_ty == SparseType.INT4 or weight_ty == SparseType.INT2 ): if split_scale_bias_mode == 1: splits.append( ( weights_shifts[:, self.scale_bias_size_in_bytes :], weights_shifts[:, : self.scale_bias_size_in_bytes], None, ) ) else: # 2 # weights_shifts: [0:2] is scale; [2:4] is bias; [4:] is real weights splits.append( ( weights_shifts[:, self.scale_bias_size_in_bytes :], weights_shifts[ :, : self.scale_bias_size_in_bytes // 2 ].view(torch.float16), weights_shifts[ :, self.scale_bias_size_in_bytes // 2 : self.scale_bias_size_in_bytes, ].view(torch.float16), ) ) elif ( weight_ty == SparseType.FP8 or weight_ty == SparseType.FP16 or weight_ty == SparseType.FP32 ): splits.append( ( weights_shifts, None, None, ) ) else: raise ValueError("weight_ty is not supported") else: # split_scale_bias_mode == 0: splits.append((weights_shifts, None, None)) return splits @torch.jit.export def split_embedding_weights( self, split_scale_shifts: bool = True # When true, return list of two tensors, the first with weights and # the second with scale_bias. # This should've been named as split_scale_bias. # Keep as is for backward compatibility. ) -> List[Tuple[Tensor, Optional[Tensor]]]: """ Returns a list of weights, split by table """ splits: List[ Tuple[Tensor, Optional[Tensor], Optional[Tensor]] ] = self.split_embedding_weights_with_scale_bias( split_scale_bias_mode=(1 if split_scale_shifts else 0) ) return [ (split_weight_scale_bias[0], split_weight_scale_bias[1]) for split_weight_scale_bias in splits ] @torch.jit.export def initialize_weights(self) -> None: if not self.weight_initialized: self._apply_split( self.dev_size, self.host_size, self.uvm_size, self.weights_physical_placements, self.weights_physical_offsets, self.enforce_hbm, ) self.weight_initialized = True def fill_random_weights(self) -> None: """ Fill the buffer with random weights, table by table FIXME: make it in-place fill. """ self.initialize_weights() weights = self.split_embedding_weights() for dest_weight in weights: dest_weight[0].copy_( random_quant_scaled_tensor( shape=dest_weight[0].shape, device=self.current_device ) ) def assign_embedding_weights( self, q_weight_list: List[Tuple[Tensor, Optional[Tensor]]] ) -> None: """ Assigns self.split_embedding_weights() with values from the input list of weights and scale_shifts. """ weights = self.split_embedding_weights() assert len(q_weight_list) == len(weights) for dest_weight, input_weight in zip(weights, q_weight_list): dest_weight[0].copy_(input_weight[0]) if input_weight[1] is not None: assert dest_weight[1] is not None dest_weight[1].copy_(input_weight[1]) else: assert dest_weight[1] is None @torch.jit.export def set_index_remappings_array( self, index_remapping: List[Tensor], ) -> None: rows: List[int] = [e[1] for e in self.embedding_specs] index_remappings_array_offsets = [0] original_feature_rows = torch.jit.annotate(List[int], []) last_offset = 0 for t, mapping in enumerate(index_remapping): if mapping is not None: current_original_row = mapping.numel() last_offset += current_original_row original_feature_rows.append(current_original_row) else: original_feature_rows.append(rows[t]) index_remappings_array_offsets.append(last_offset) self.index_remappings_array_offsets = torch.tensor( index_remappings_array_offsets, device=self.current_device, dtype=torch.int64, ) if len(original_feature_rows) == 0: original_feature_rows = rows self.original_rows_per_table = torch.tensor( [original_feature_rows[t] for t in self.feature_table_map], device=self.current_device, dtype=torch.int64, ) if self.index_remappings_array_offsets[-1] == 0: self.index_remappings_array = torch.empty( 0, dtype=torch.int32, device=self.current_device ) else: index_remappings_filter_nones = [] for mapping in index_remapping: if mapping is not None: index_remappings_filter_nones.append(mapping) self.index_remappings_array = torch.cat(index_remappings_filter_nones).to( self.current_device ) def set_index_remappings( self, index_remapping: List[Tensor], pruning_hash_load_factor: float = 0.5, use_array_for_index_remapping: bool = True, ) -> None: rows: List[int] = [e[1] for e in self.embedding_specs] T = len(self.embedding_specs) # Hash mapping pruning if not use_array_for_index_remapping: capacities = [ round_up(int(row * 1.0 / pruning_hash_load_factor), 32) if index_remap is not None else 0 for (index_remap, row) in zip(index_remapping, rows) ] hash_table = torch.empty( (sum(capacities), 2), dtype=torch.int32, ) hash_table[:, :] = -1 hash_table_offsets = torch.tensor([0] + list(accumulate(capacities))).long() merged_index_remappings = [ mapping if mapping is not None else Tensor(list(range(row))) for (mapping, row) in zip(index_remapping, rows) ] original_feature_rows = [ mapping.numel() for mapping in merged_index_remappings ] if len(original_feature_rows) == 0: original_feature_rows = rows self.original_rows_per_table = torch.tensor( [original_feature_rows[t] for t in self.feature_table_map], device=self.current_device, dtype=torch.int64, ) dense_indices = torch.cat(merged_index_remappings, dim=0).int() indices = torch.cat( [torch.arange(row) for row in original_feature_rows], dim=0 ).int() offsets = torch.tensor([0] + list(accumulate(original_feature_rows))).int() if self.use_cpu: self.index_remapping_hash_table_cpu = ( torch.classes.fbgemm.PrunedMapCPU() ) self.index_remapping_hash_table_cpu.insert( indices, dense_indices, offsets, T ) else: # pruned_hashmap_insert only has cpu implementation: Move dense_indices to CPU torch.ops.fbgemm.pruned_hashmap_insert( indices, dense_indices.cpu(), offsets, hash_table, hash_table_offsets, ) self.index_remapping_hash_table = hash_table.to(self.current_device) self.index_remapping_hash_table_offsets = hash_table_offsets.to( self.current_device ) self.index_remapping_hash_table_cpu = None # Array mapping pruning else: self.set_index_remappings_array(index_remapping) def _embedding_inplace_update_per_table( self, update_table_idx: int, update_row_indices: List[int], update_weights: Tensor, ) -> None: row_size = len(update_row_indices) if row_size == 0: return # pyre-fixme[9]: update_row_indices has type `List[int]`; used as `Tensor`. update_row_indices = torch.tensor( update_row_indices, device=self.current_device, dtype=torch.int64, ) table_values = self.split_embedding_weights(split_scale_shifts=False)[ update_table_idx ] table_values[0].scatter_( dim=0, # pyre-fixme[16]: `List` has no attribute `view`. index=update_row_indices.view(row_size, 1).expand_as(update_weights), src=update_weights, ) @torch.jit.export def embedding_inplace_update( self, update_table_indices: List[int], update_row_indices: List[List[int]], update_weights: List[Tensor], ) -> None: for i in range(len(update_table_indices)): self._embedding_inplace_update_per_table( update_table_indices[i], update_row_indices[i], update_weights[i], ) def embedding_inplace_update_internal( self, update_table_indices: List[int], update_row_indices: List[int], update_weights: Tensor, ) -> None: assert len(update_table_indices) == len(update_row_indices) update_offsets = [] update_offset = 0 for table_idx in update_table_indices: D_bytes = rounded_row_size_in_bytes( self.embedding_specs[table_idx][2], self.embedding_specs[table_idx][3], self.row_alignment, self.scale_bias_size_in_bytes, ) update_offsets.append(update_offset) update_offset += D_bytes update_offsets.append(update_offset) # pyre-fixme[9]: update_table_indices has type `List[int]`; used as `Tensor`. update_table_indices = torch.tensor( update_table_indices, device=self.current_device, dtype=torch.int32, ) # pyre-fixme[9]: update_row_indices has type `List[int]`; used as `Tensor`. update_row_indices = torch.tensor( update_row_indices, device=self.current_device, dtype=torch.int64, ) update_offsets = torch.tensor( update_offsets, device=self.current_device, dtype=torch.int64, ) # Only support array based pruning for now. assert self.index_remapping_hash_table_cpu is None assert self.index_remapping_hash_table.numel() == 0 assert self.index_remappings_array.numel() >= 0 if self.index_remappings_array.numel() > 0: update_row_indices = torch.ops.fbgemm.pruned_array_lookup_from_row_idx( update_row_indices, update_table_indices, self.index_remappings_array, self.index_remappings_array_offsets, ) lxu_cache_locations = None if self.lxu_cache_weights.numel() > 0: linear_cache_indices = ( torch.ops.fbgemm.linearize_cache_indices_from_row_idx( self.cache_hash_size_cumsum, update_table_indices, update_row_indices, ) ) if self.cache_assoc in [32, 64]: # 64 for AMD self.prefetch_32way(linear_cache_indices) elif self.cache_assoc == 1: self.prefetch_1way(linear_cache_indices) else: raise ValueError(f"{self.cache_assoc} not in [1, 32, 64]") lxu_cache_locations = self.lxu_cache_locations_list.pop() torch.ops.fbgemm.emb_inplace_update( dev_weights=self.weights_host if self.host_size > 0 else self.weights_dev, uvm_weights=self.weights_uvm, weights_placements=self.weights_placements, weights_offsets=self.weights_offsets, weights_tys=self.weights_tys, D_offsets=self.D_offsets, update_weights=update_weights, update_table_indices=update_table_indices, update_row_indices=update_row_indices, update_offsets=update_offsets, row_alignment=self.row_alignment, lxu_cache_weights=self.lxu_cache_weights, lxu_cache_locations=lxu_cache_locations, )
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import fbgemm_gpu import fbgemm_gpu.split_table_batched_embeddings_ops_training import torch # usort:skip Tensor = torch.Tensor def add_docs(method, docstr): method.__doc__ = docstr add_docs( torch.ops.fbgemm.jagged_2d_to_dense, """ jagged_2d_to_dense(values, x_offsets, max_sequence_length) -> Tensor Converts a jagged tensor, with a 2D values array into a dense tensor, padding with zeros. Args: values (Tensor): 2D tensor containing the values of the jagged tensor. x_offsets (Tensor): 1D tensor containing the starting point of each jagged row in the values tensor. max_sequence_length (int): Maximum length of any row in the jagged dimension. Returns: Tensor: The padded dense tensor Example: >>> values = torch.tensor([[1,1],[2,2],[3,3],[4,4]]) >>> x_offsets = torch.tensor([0, 1, 3]) >>> torch.ops.fbgemm.jagged_2d_to_dense(values, x_offsets, 3) tensor([[[1, 1], [0, 0], [0, 0]], [[2, 2], [3, 3], [0, 0]]]) """, ) # Example: # # >>> t = torch.arange(4) add_docs( torch.ops.fbgemm.jagged_1d_to_dense, """ jagged_1d_to_dense(values, offsets, max_sequence_length, padding_value) -> Tensor) Converts a jagged tensor, with a 1D values array, into a dense tensor, padding with a specified padding value. Args: values (Tensor): 1D tensor containing the values of the jagged tensor. offsets (Tensor): 1D tensor containing the starting point of each jagged row in the values tensor. max_sequence_length (int): Maximum length of any row in the jagged dimension. padding_value (int): Value to set in the empty areas of the dense output, outside of the jagged tensor coverage. Returns: Tensor: the padded dense tensor Example: >>> values = torch.tensor([1,2,3,4]) >>> offsets = torch.tensor([0, 1, 3]) >>> torch.ops.fbgemm.jagged_1d_to_dense(values, x_offsets, 3, 0) tensor([[1, 0, 0], [2, 3, 0]]) """, ) add_docs( torch.ops.fbgemm.dense_to_jagged, """ dense_to_jagged(dense, x_offsets, total_L) -> (Tensor, Tensor[]) Converts a dense tensor into a jagged tensor, given the desired offsets of the resulting dense tensor. Args: dense (Tensor): A dense input tensor to be converted x_offsets (Tensor[]): A list of jagged offset tensors, one for each jagged dimension. total_L (int, Optional): Total number of values in the resulting jagged tensor. Returns: (Tensor, Tensor[]): Values and offsets of the resulting jagged tensor. Offsets are identital to those that were input. Example: >>> dense = torch.tensor([[[1, 1], [0, 0], [0, 0]], [[2, 2], [3, 3], [0, 0]]]) >>> x_offsets = torch.tensor([0, 1, 3]) >>> torch.ops.fbgemm.dense_to_jagged(dense, [x_offsets]) (tensor([[1, 1], [2, 2], [3, 3]]), [tensor([0, 1, 3])]) """, ) add_docs( torch.ops.fbgemm.jagged_to_padded_dense, """ jagged_to_padded_dense(values, offsets, max_lengths, padding_value=0) -> Tensor Converts a jagged tensor into a dense tensor, padding with a specified padding value. Args: values (Tensor): Jagged tensor values offsets (Tensor[]): A list of jagged offset tensors, one for each jagged dimension. max_lengths (int[]): A list with max_length for each jagged dimension. padding_value (float): Value to set in the empty areas of the dense output, outside of the jagged tensor coverage. Returns: Tensor: the padded dense tensor Example: >>> values = torch.tensor([[1,1],[2,2],[3,3],[4,4]]) >>> offsets = torch.tensor([0, 1, 3]) >>> torch.ops.fbgemm.jagged_to_padded_dense(values, [offsets], [3], 7) tensor([[[1, 1], [7, 7], [7, 7]], [[2, 2], [3, 3], [7, 7]]]) """, ) add_docs( torch.ops.fbgemm.jagged_dense_elementwise_add, """ jagged_dense_elementwise_add(x_values, x_offsets, y) -> Tensor Adds a jagged tensor to a dense tensor, resulting in dense tensor. Jagged tensor input will be padded with zeros for the purposes of the addition. Args: x_values (Tensor): Jagged tensor values offsets (Tensor[]): A list of jagged offset tensors, one for each jagged dimension. y (Tensor): A dense tensor Returns: Tensor: The sum of jagged input tensor + y """, ) add_docs( torch.ops.fbgemm.jagged_dense_elementwise_add_jagged_output, """ jagged_dense_elementwise_add_jagged_output(x_values, x_offsets, y) -> (Tensor, Tensor[]) Adds a jagged tensor to a dense tensor and, resulting in a jagged tensor with the same structure as the input jagged tensor. Args: x_values (Tensor): Jagged tensor values x_offsets (Tensor[]): A list of jagged offset tensors, one for each jagged dimension. y (Tensor): A dense tensor Returns: (Tensor, Tensor[]): Values and offsets of the resulting jagged tensor. Offsets are identital to those that were input. """, ) add_docs( torch.ops.fbgemm.jagged_dense_dense_elementwise_add_jagged_output, """ jagged_dense_dense_elementwise_add_jagged_output(x_values, x_offsets, y_0, y_1) -> (Tensor, Tensor[]) Adds a jagged tensor to the sum of two dense tensors, resulting in a jagged tensor with the same structure as the input jagged tensor. Args: x_values (Tensor): Jagged tensor values x_offsets (Tensor[]): A list of jagged offset tensors, one for each jagged dimension. y_0 (Tensor): A dense tensor y_1 (Tensor): A dense tensor Returns: (Tensor, Tensor[]): Values and offsets of the resulting jagged tensor. Offsets are identital to those that were input. """, ) add_docs( torch.ops.fbgemm.jagged_dense_elementwise_mul, """ jagged_dense_elementwise_mul(x_values, x_offsets, y) -> (Tensor, Tensor[]) Elementwise-multiplies a jagged tensor a dense tensor and, resulting in a jagged tensor with the same structure as the input jagged tensor. Args: x_values (Tensor): Jagged tensor values x_offsets (Tensor[]): A list of jagged offset tensors, one for each jagged dimension. y (Tensor): A dense tensor Returns: (Tensor, Tensor[]): Values and offsets of the resulting jagged tensor. Offsets are identital to those that were input. """, ) add_docs( fbgemm_gpu.split_table_batched_embeddings_ops_training.SplitTableBatchedEmbeddingBagsCodegen, """ SplitTableBatchedEmbeddingBagsCodegen(embedding_specs, feature_table_map=None, cache_algorithm=CacheAlgorithm.LRU, cache_load_factor=0.2, cache_sets=0, cache_reserved_memory=0.0, cache_precision=SparseType.FP32, weights_precision=SparseType.FP32, output_dtype=SparseType.FP32, enforce_hbm=False, optimizer=OptimType.EXACT_SGD, record_cache_metrics=None, stochastic_rounding=True, gradient_clipping=False, max_gradient=1.0, learning_rate=0.01, eps=1.0e-8, momentum=0.9, weight_decay=0.0, weight_decay_mode=WeightDecayMode.NONE, eta=0.001, beta1=0.9, beta2=0.999, pooling_mode=PoolingMode.SUM, device=None, bounds_check_mode=BoundsCheckMode.WARNING) -> None Table batched Embedding operator. Looks up one or more embedding tables. The module is application for training. The backward operator is fused with optimizer. Thus, the embedding tables are updated during backward. Args: embedding_specs (List[Tuple[int, int, EmbeddingLocation, ComputeDevice]]): A list of embedding specifications. Each spec is a tuple of (number of embedding rows, embedding dimension; must be a multiple of 4, table placement, compute device). feature_table_map (List[int], optional): An optional list that specifies feature-table mapping. cache_algorithm (CacheAlgorithm, optional): LXU cache algorithm (`CacheAlgorithm.LRU`, `CacheAlgorithm.LFU`) cache_load_factor (float, optional): The LXU cache capacity which is `cache_load_factor` * the total number of rows in all embedding tables cache_sets (int, optional): The number of cache sets cache_reserved_memory (float, optional): Amount of memory reserved in HBM for non-cache purpose. cache_precision (SparseType, optional): Data type of LXU cache (`SparseType.FP32`, `SparseType.FP16`) weights_precision (SparseType, optional): Data type of embedding tables (also known as weights) (`SparseType.FP32`, `SparseType.FP16`, `SparseType.INT8`) output_dtype (SparseType, optional): Data type of an output tensor (`SparseType.FP32`, `SparseType.FP16`, `SparseType.INT8`) enforce_hbm (bool, optional): If True, place all weights/momentums in HBM when using cache optimizer (OptimType, optional): An optimizer to use for embedding table update in the backward pass. (`OptimType.ADAM`, `OptimType.EXACT_ADAGRAD`, `OptimType.EXACT_ROWWISE_ADAGRAD`, `OptimType.EXACT_ROWWISE_WEIGHTED_ADAGRAD`, `OptimType.EXACT_SGD`, `OptimType.LAMB`, `OptimType.LARS_SGD`, `OptimType.PARTIAL_ROWWISE_ADAM`, `OptimType.PARTIAL_ROWWISE_LAMB`, `OptimType.SGD`) record_cache_metrics (RecordCacheMetrics, optional): Record number of hits, number of requests, etc if RecordCacheMetrics.record_cache_miss_counter is True and record the similar metrics table-wise if RecordCacheMetrics.record_tablewise_cache_miss is True (default is None). stochastic_rounding (bool, optional): If True, apply stochastic rounding for weight type that is not `SparseType.FP32` gradient_clipping (bool, optional): If True, apply gradient clipping max_gradient (float, optional): The value for gradient clipping learning_rate (float, optional): The learning rate eps (float, optional): The epsilon value used by Adagrad, LAMB, and Adam momentum (float, optional): Momentum used by LARS-SGD weight_decay (float, optional): Weight decay used by LARS-SGD, LAMB, ADAM, and Rowwise Adagrad weight_decay_mode (WeightDecayMode, optional): Weight decay mode (`WeightDecayMode.NONE`, `WeightDecayMode.L2`, `WeightDecayMode.DECOUPLE`) eta (float, optional): The eta value used by LARS-SGD beta1 (float, optional): The beta1 value used by LAMB and ADAM beta2 (float, optional): The beta2 value used by LAMB and ADAM pooling_mode (PoolingMode, optional): Pooling mode (`PoolingMode.SUM`, `PoolingMode.MEAN`, `PoolingMode.NONE`) device (torch.device, optional): The current device to place tensors on bounds_check_mode (BoundsCheckMode, optional): If not set to `BoundsCheckMode.NONE`, apply boundary check for indices (`BoundsCheckMode.NONE`, `BoundsCheckMode.FATAL`, `BoundsCheckMode.WARNING`, `BoundsCheckMode.IGNORE`) Inputs: indices (torch.Tensor): A 1D-tensor that contains indices to be accessed in all embedding table offsets (torch.Tensor): A 1D-tensor that conatins offsets of indices. Shape `(B * T + 1)` where `B` = batch size and `T` = number of tables. `offsets[t * B + b + 1] - offsets[t * B + b]` is the length of bag `b` of table `t` per_sample_weights (torch.Tensor, optional): An optional 1D-tensor that contains positional weights. Shape `(max(bag length))`. Positional weight `i` is multiplied to all columns of row `i` in each bag after its read from the embedding table and before pooling (if pooling mode is not PoolingMode.NONE). feature_requires_grad (torch.Tensor, optional): An optional tensor for checking if `per_sample_weights` requires gradient Returns: A 2D-tensor containing looked up data. Shape `(B, total_D)` where `B` = batch size and `total_D` = the sum of all embedding dimensions in the table Example: >>> import torch >>> >>> from fbgemm_gpu.split_table_batched_embeddings_ops_common import ( >>> EmbeddingLocation, >>> ) >>> from fbgemm_gpu.split_table_batched_embeddings_ops_training import ( >>> SplitTableBatchedEmbeddingBagsCodegen, >>> ComputeDevice, >>> ) >>> >>> # Two tables >>> embedding_specs = [ >>> (3, 8, EmbeddingLocation.DEVICE, ComputeDevice.CUDA), >>> (5, 4, EmbeddingLocation.MANAGED, ComputeDevice.CUDA) >>> ] >>> >>> tbe = SplitTableBatchedEmbeddingBagsCodegen(embedding_specs) >>> tbe.init_embedding_weights_uniform(-1, 1) >>> >>> print(tbe.split_embedding_weights()) [tensor([[-0.9426, 0.7046, 0.4214, -0.0419, 0.1331, -0.7856, -0.8124, -0.2021], [-0.5771, 0.5911, -0.7792, -0.1068, -0.6203, 0.4813, -0.1677, 0.4790], [-0.5587, -0.0941, 0.5754, 0.3475, -0.8952, -0.1964, 0.0810, -0.4174]], device='cuda:0'), tensor([[-0.2513, -0.4039, -0.3775, 0.3273], [-0.5399, -0.0229, -0.1455, -0.8770], [-0.9520, 0.4593, -0.7169, 0.6307], [-0.1765, 0.8757, 0.8614, 0.2051], [-0.0603, -0.9980, -0.7958, -0.5826]], device='cuda:0')] >>> # Batch size = 3 >>> indices = torch.tensor([0, 1, 2, 0, 1, 2, 0, 3, 1, 4, 2, 0, 0], >>> device="cuda", >>> dtype=torch.long) >>> offsets = torch.tensor([0, 2, 5, 7, 9, 12, 13], >>> device="cuda", >>> dtype=torch.long) >>> >>> output = tbe(indices, offsets) >>> >>> # Batch size = 3, total embedding dimension = 12 >>> print(output.shape) torch.Size([3, 12]) >>> print(output) tensor([[-1.5197, 1.2957, -0.3578, -0.1487, -0.4873, -0.3044, -0.9801, 0.2769, -0.7164, 0.8528, 0.7159, -0.6719], [-2.0784, 1.2016, 0.2176, 0.1988, -1.3825, -0.5008, -0.8991, -0.1405, -1.2637, -0.9427, -1.8902, 0.3754], [-1.5013, 0.6105, 0.9968, 0.3057, -0.7621, -0.9821, -0.7314, -0.6195, -0.2513, -0.4039, -0.3775, 0.3273]], device='cuda:0', grad_fn=<CppNode<SplitLookupFunction_sgd_Op>>) """, ) add_docs( torch.ops.fbgemm.batched_dense_vec_jagged_2d_mul, """ batched_dense_vec_jagged_2d_mul(Tensor v, Tensor a_values, Tensor a_offsets) -> Tensor Batched vector matrix multiplication of a batched dense vector with a jagged tensor, dense vector is in size (B * H, max_N) and jagged tensor is in size (B, max_N, H * D) where max_N is the maximum size of jagged dimension. B * H is the batch size and each multiplies is max_N with [max_N, D] Args: v (Tensor): dense vector tensor a_values (Tensor): Jagged tensor values a_offsets (Tensor []): A list of jagged offset tensors, one for each jagged dimension. Returns: Tensor: output of batch matmul in size (B * H, D) """, ) # # # add_docs( # torch.ops.fbgemm.stacked_jagged_1d_to_dense, # """Args: # {input} # Keyword args: # {out}""", # ) # # # add_docs( # torch.ops.fbgemm.stacked_jagged_2d_to_dense, # """Args: # {input} # Keyword args: # {out}""", # )
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. # pyre-ignore-all-errors[56] import itertools import logging from math import log2 from typing import List, Optional, Tuple import torch # usort:skip import fbgemm_gpu.split_embedding_codegen_lookup_invokers as invokers from fbgemm_gpu.split_embedding_configs import SparseType from fbgemm_gpu.split_table_batched_embeddings_ops_common import ( CacheAlgorithm, DEFAULT_SCALE_BIAS_SIZE_IN_BYTES, EmbeddingLocation, PoolingMode, ) from fbgemm_gpu.split_table_batched_embeddings_ops_inference import ( align_to_cacheline, rounded_row_size_in_bytes, unpadded_row_size_in_bytes, ) from fbgemm_gpu.split_table_batched_embeddings_ops_training import ( CounterBasedRegularizationDefinition, WeightDecayMode, ) from torch import nn, Tensor # usort:skip from torch.autograd.profiler import record_function try: torch.ops.load_library( "//deeplearning/fbgemm/fbgemm_gpu:ssd_split_table_batched_embeddings" ) except OSError: # Keep for BC: will be deprecated soon. torch.ops.load_library( "//deeplearning/fbgemm/fbgemm_gpu/fb:ssd_split_table_batched_embeddings" ) ASSOC = 32 class SSDTableBatchedEmbeddingBags(nn.Module): D_offsets: Tensor lxu_cache_weights: Tensor lru_state: Tensor lxu_cache_weights: Tensor lxu_cache_state: Tensor momentum1_dev: Tensor momentum1_uvm: Tensor momentum1_host: Tensor momentum1_placements: Tensor momentum1_offsets: Tensor weights_dev: Tensor weights_uvm: Tensor weights_host: Tensor weights_placements: Tensor weights_offsets: Tensor def __init__( self, embedding_specs: List[Tuple[int, int]], # tuple of (rows, dims) feature_table_map: Optional[List[int]], # [T] cache_sets: int, ssd_storage_directory: str, ssd_shards: int = 1, ssd_memtable_flush_period: int = -1, ssd_memtable_flush_offset: int = -1, ssd_l0_files_per_compact: int = 4, ssd_rate_limit_mbps: int = 0, ssd_size_ratio: int = 10, ssd_compaction_trigger: int = 8, ssd_write_buffer_size: int = 2 * 1024 * 1024 * 1024, ssd_max_write_buffer_num: int = 16, ssd_cache_location: EmbeddingLocation = EmbeddingLocation.MANAGED, ssd_uniform_init_lower: float = -0.01, ssd_uniform_init_upper: float = 0.01, # General Optimizer args stochastic_rounding: bool = True, gradient_clipping: bool = False, max_gradient: float = 1.0, learning_rate: float = 0.01, eps: float = 1.0e-8, # used by Adagrad, LAMB, and Adam momentum: float = 0.9, # used by LARS-SGD weight_decay: float = 0.0, # used by LARS-SGD, LAMB, ADAM, and Rowwise Adagrad weight_decay_mode: WeightDecayMode = WeightDecayMode.NONE, # used by Rowwise Adagrad eta: float = 0.001, # used by LARS-SGD, beta1: float = 0.9, # used by LAMB and ADAM beta2: float = 0.999, # used by LAMB and ADAM counter_based_regularization: Optional[ CounterBasedRegularizationDefinition ] = None, # used by Rowwise Adagrad pooling_mode: PoolingMode = PoolingMode.SUM, ) -> None: super(SSDTableBatchedEmbeddingBags, self).__init__() self.pooling_mode = pooling_mode self.embedding_specs = embedding_specs (rows, dims) = zip(*embedding_specs) T_ = len(self.embedding_specs) assert T_ > 0 # pyre-fixme[8]: Attribute has type `device`; used as `int`. self.current_device: torch.device = torch.cuda.current_device() self.feature_table_map: List[int] = ( feature_table_map if feature_table_map is not None else list(range(T_)) ) T = len(self.feature_table_map) assert T_ <= T table_has_feature = [False] * T_ for t in self.feature_table_map: table_has_feature[t] = True assert all(table_has_feature), "Each table must have at least one feature!" D_offsets = [dims[t] for t in self.feature_table_map] D_offsets = [0] + list(itertools.accumulate(D_offsets)) self.total_D: int = D_offsets[-1] self.max_D: int = max(dims) self.register_buffer( "D_offsets", torch.tensor(D_offsets, device=self.current_device, dtype=torch.int32), ) assert self.D_offsets.numel() == T + 1 hash_size_cumsum = [0] + list(itertools.accumulate(rows)) if hash_size_cumsum[-1] == 0: self.total_hash_size_bits: int = 0 else: self.total_hash_size_bits: int = int(log2(float(hash_size_cumsum[-1])) + 1) # The last element is to easily access # of rows of each table by self.total_hash_size_bits = int(log2(float(hash_size_cumsum[-1])) + 1) self.total_hash_size: int = hash_size_cumsum[-1] # The last element is to easily access # of rows of each table by # hash_size_cumsum[t + 1] - hash_size_cumsum[t] hash_size_cumsum = [hash_size_cumsum[t] for t in self.feature_table_map] + [ hash_size_cumsum[-1] ] self.register_buffer( "hash_size_cumsum", torch.tensor( hash_size_cumsum, device=self.current_device, dtype=torch.int64 ), ) element_size = 4 cache_size = cache_sets * ASSOC * element_size * self.max_D logging.info( f"Using cache for SSD with admission algorithm " f"{CacheAlgorithm.LRU}, {cache_sets} sets, stored on {'DEVICE' if ssd_cache_location is EmbeddingLocation.DEVICE else 'MANAGED'} with {ssd_shards} shards, " f"Memtable Flush Period: {ssd_memtable_flush_period}, " f"Memtable Flush Offset: {ssd_memtable_flush_offset}, " f"Desired L0 files per compaction: {ssd_l0_files_per_compact}, " f"{cache_size / 1024.0 / 1024.0 / 1024.0 : .2f}GB" ) self.register_buffer( "lxu_cache_state", torch.zeros(cache_sets, ASSOC, dtype=torch.int64).fill_(-1), ) self.register_buffer( "lru_state", torch.zeros(cache_sets, ASSOC, dtype=torch.int64) ) assert ssd_cache_location in ( EmbeddingLocation.MANAGED, EmbeddingLocation.DEVICE, ) if ssd_cache_location == EmbeddingLocation.MANAGED: self.register_buffer( "lxu_cache_weights", torch.ops.fbgemm.new_managed_tensor( torch.zeros(1, device=self.current_device, dtype=torch.float32), [cache_sets * ASSOC, self.max_D], ), ) else: self.register_buffer( "lxu_cache_weights", torch.zeros( cache_sets * ASSOC, self.max_D, device=self.current_device, dtype=torch.float32, ), ) self.timestep = 0 import os os.makedirs(ssd_storage_directory, exist_ok=True) import tempfile ssd_directory = tempfile.mkdtemp( prefix="ssd_table_batched_embeddings", dir=ssd_storage_directory ) # pyre-fixme[4]: Attribute must be annotated. self.ssd_db = torch.classes.fbgemm.EmbeddingRocksDBWrapper( ssd_directory, ssd_shards, ssd_shards, ssd_memtable_flush_period, ssd_memtable_flush_offset, ssd_l0_files_per_compact, self.max_D, ssd_rate_limit_mbps, ssd_size_ratio, ssd_compaction_trigger, ssd_write_buffer_size, ssd_max_write_buffer_num, ssd_uniform_init_lower, ssd_uniform_init_upper, 32, # row_storage_bitwidth ) # pyre-fixme[20]: Argument `self` expected. (low_priority, high_priority) = torch.cuda.Stream.priority_range() self.ssd_stream = torch.cuda.Stream(priority=low_priority) self.ssd_set_start = torch.cuda.Event() self.ssd_set_end = torch.cuda.Event() self.timesteps_prefetched: List[int] = [] if weight_decay_mode == WeightDecayMode.COUNTER or counter_based_regularization: raise AssertionError( "weight_decay_mode = WeightDecayMode.COUNTER is not supported for SSD TBE." ) counter_based_regularization = CounterBasedRegularizationDefinition() self.optimizer_args = invokers.lookup_args.OptimizerArgs( stochastic_rounding=stochastic_rounding, gradient_clipping=gradient_clipping, max_gradient=max_gradient, learning_rate=learning_rate, eps=eps, beta1=beta1, beta2=beta2, weight_decay=weight_decay, weight_decay_mode=weight_decay_mode.value, eta=eta, momentum=momentum, counter_halflife=counter_based_regularization.counter_halflife, adjustment_iter=counter_based_regularization.adjustment_iter, adjustment_ub=counter_based_regularization.adjustment_ub, learning_rate_mode=counter_based_regularization.learning_rate_mode.value, grad_sum_decay=counter_based_regularization.grad_sum_decay.value, tail_id_threshold=counter_based_regularization.tail_id_threshold.val, is_tail_id_thresh_ratio=int( counter_based_regularization.tail_id_threshold.is_ratio ), total_hash_size=-1, # Unused ) self.weights_dev = nn.Parameter( torch.empty((0,), device=self.current_device, dtype=torch.float32) ) self.register_buffer( "weights_uvm", torch.tensor((0,), device=self.current_device, dtype=torch.float32), ) self.register_buffer( "weights_host", torch.empty(0), ) self.register_buffer( "weights_placements", torch.tensor( [EmbeddingLocation.MANAGED_CACHING for _ in range(T_)], dtype=torch.int32, ), ) weights_offsets = [0] + list( itertools.accumulate([row * dim for (row, dim) in zip(rows, dims)]) ) self.register_buffer( "weights_offsets", torch.tensor( weights_offsets[:-1], device=self.current_device, dtype=torch.int64, ), ) self.register_buffer( "momentum1_dev", torch.zeros( self.total_hash_size, device=self.current_device, dtype=torch.float32, ), ) self.register_buffer( "momentum1_uvm", torch.empty((0,), device=self.current_device, dtype=torch.float32), ) self.register_buffer( "momentum1_host", torch.empty(0), ) self.register_buffer( "momentum1_placements", torch.tensor( [EmbeddingLocation.DEVICE for _ in range(T_)], dtype=torch.int32 ), ) momentum1_offsets = [0] + list(itertools.accumulate(rows)) self.register_buffer( "momentum1_offsets", torch.tensor( momentum1_offsets[:-1], device=self.current_device, dtype=torch.int64, ), ) # add placeholder require_grad param to enable autograd without nn.parameter # this is needed to enable int8 embedding weights for SplitTableBatchedEmbedding self.placeholder_autograd_tensor = nn.Parameter( torch.zeros(0, device=self.current_device, dtype=torch.float) ) def prefetch(self, indices: Tensor, offsets: Tensor) -> Optional[Tensor]: (indices, offsets) = indices.long(), offsets.long() linear_cache_indices = torch.ops.fbgemm.linearize_cache_indices( self.hash_size_cumsum, indices, offsets, ) self.timestep += 1 self.timesteps_prefetched.append(self.timestep) ( inserted_indices, evicted_indices, assigned_cache_slots, actions_count_gpu, ) = torch.ops.fbgemm.ssd_cache_populate_actions( linear_cache_indices, self.total_hash_size, self.lxu_cache_state, self.timestep, 1, # for now assume prefetch_dist == 1 self.lru_state, ) def to_pinned_cpu(t: torch.Tensor) -> torch.Tensor: t_cpu = torch.empty(t.shape, pin_memory=True, dtype=t.dtype) t_cpu.copy_(t, non_blocking=True) return t_cpu actions_count_cpu = to_pinned_cpu(actions_count_gpu) assigned_cache_slots = assigned_cache_slots.long() evicted_rows = self.lxu_cache_weights[ assigned_cache_slots.clamp_(min=0).long(), : ] inserted_rows = torch.empty( evicted_rows.shape, dtype=self.lxu_cache_weights.dtype, pin_memory=True, ) current_stream = torch.cuda.current_stream() # Ensure the previous iterations l3_db.set(..) has completed. current_stream.wait_event(self.ssd_set_end) self.ssd_db.get_cuda( to_pinned_cpu(inserted_indices), inserted_rows, actions_count_cpu ) current_stream.record_event(self.ssd_set_start) # TODO: T123943415 T123943414 this is a big copy that is (mostly) unnecessary with a decent cache hit rate. # Should we allocate on HBM? inserted_rows_gpu = inserted_rows.cuda(non_blocking=True) # self.lxu_cache_weights[assigned_cache_slots, :] = inserted_rows.cuda(non_blocking=True) torch.ops.fbgemm.masked_index_put( self.lxu_cache_weights, assigned_cache_slots, inserted_rows_gpu, actions_count_gpu, ) with torch.cuda.stream(self.ssd_stream): self.ssd_stream.wait_event(self.ssd_set_start) evicted_rows_cpu = to_pinned_cpu(evicted_rows) evicted_indices_cpu = to_pinned_cpu(evicted_indices) # pyre-fixme[6]: For 1st param expected `Stream` but got `Stream`. evicted_rows.record_stream(self.ssd_stream) evicted_indices.record_stream(self.ssd_stream) self.ssd_db.set_cuda( evicted_indices_cpu, evicted_rows_cpu, actions_count_cpu, self.timestep ) # TODO: is this needed? # Need a way to synchronize # actions_count_cpu.record_stream(self.ssd_stream) self.ssd_stream.record_event(self.ssd_set_end) return linear_cache_indices def forward( self, indices: Tensor, offsets: Tensor, per_sample_weights: Optional[Tensor] = None, feature_requires_grad: Optional[Tensor] = None, ) -> Tensor: (indices, offsets) = indices.long(), offsets.long() if len(self.timesteps_prefetched) == 0: with record_function("## prefetch ##"): linear_cache_indices = self.prefetch(indices, offsets) else: linear_cache_indices = torch.ops.fbgemm.linearize_cache_indices( self.hash_size_cumsum, indices, offsets, ) lxu_cache_locations = torch.ops.fbgemm.lxu_cache_lookup( linear_cache_indices, self.lxu_cache_state, self.hash_size_cumsum[-1].item(), ) common_args = invokers.lookup_args.CommonArgs( placeholder_autograd_tensor=self.placeholder_autograd_tensor, output_dtype=SparseType.FP32.as_int(), dev_weights=self.weights_dev, host_weights=self.weights_host, uvm_weights=self.weights_uvm, lxu_cache_weights=self.lxu_cache_weights, weights_placements=self.weights_placements, weights_offsets=self.weights_offsets, D_offsets=self.D_offsets, total_D=self.total_D, max_D=self.max_D, hash_size_cumsum=self.hash_size_cumsum, total_hash_size_bits=self.total_hash_size_bits, indices=indices, offsets=offsets, pooling_mode=self.pooling_mode, indice_weights=per_sample_weights, feature_requires_grad=feature_requires_grad, lxu_cache_locations=lxu_cache_locations, vbe_metadata=invokers.lookup_args.VBEMetadata( B_offsets=None, output_offsets_feature_rank=None, B_offsets_rank_per_feature=None, max_B=-1, max_B_feature_rank=-1, output_size=-1, ), is_experimental=False, ) momentum1 = invokers.lookup_args.Momentum( dev=self.momentum1_dev, host=self.momentum1_host, uvm=self.momentum1_uvm, offsets=self.momentum1_offsets, placements=self.momentum1_placements, ) self.timesteps_prefetched.pop(0) return invokers.lookup_rowwise_adagrad.invoke( common_args, self.optimizer_args, momentum1 ) @torch.jit.ignore def debug_split_optimizer_states(self) -> List[Tuple[torch.Tensor]]: """ Returns a list of states, split by table Testing only """ (rows, _) = zip(*self.embedding_specs) rows_cumsum = [0] + list(itertools.accumulate(rows)) return [ ( self.momentum1_dev.detach()[rows_cumsum[t] : rows_cumsum[t + 1]].view( row ), ) for t, row in enumerate(rows) ] @torch.jit.export def debug_split_embedding_weights(self) -> List[torch.Tensor]: """ Returns a list of weights, split by table. Testing only, very slow. """ (rows, _) = zip(*self.embedding_specs) rows_cumsum = [0] + list(itertools.accumulate(rows)) splits = [] for t, (row, dim) in enumerate(self.embedding_specs): weights = torch.empty((row, dim), dtype=torch.float32) self.ssd_db.get_cuda( torch.arange(rows_cumsum[t], rows_cumsum[t + 1]).to(torch.int64), weights, torch.as_tensor([row]), ) splits.append(weights) torch.cuda.synchronize(self.current_device) return splits @torch.jit.export def set_learning_rate(self, lr: float) -> None: """ Sets the learning rate. """ self._set_learning_rate(lr) @torch.jit.ignore def _set_learning_rate(self, lr: float) -> float: """ Helper function to script `set_learning_rate`. Note that returning None does not work. """ self.optimizer_args = self.optimizer_args._replace(learning_rate=lr) return 0.0 def flush(self) -> None: active_slots_mask = self.lxu_cache_state != -1 active_weights = self.lxu_cache_weights.masked_select( active_slots_mask.view(-1, 1) ).view(-1, self.max_D) active_ids = self.lxu_cache_state.view(-1).masked_select( active_slots_mask.view(-1) ) torch.cuda.current_stream().wait_stream(self.ssd_stream) self.ssd_db.set_cuda( active_ids.cpu(), active_weights.cpu(), torch.tensor([active_ids.numel()]), self.timestep, ) class SSDIntNBitTableBatchedEmbeddingBags(nn.Module): """ SSD Table-batched version of nn.EmbeddingBag(sparse=False) Inference version, with FP32/FP16/FP8/INT8/INT4/INT2 supports """ embedding_specs: List[Tuple[str, int, int, SparseType]] def __init__( self, embedding_specs: List[ Tuple[str, int, int, SparseType] ], # tuple of (feature_names, rows, dims, SparseType) feature_table_map: Optional[List[int]] = None, # [T] pooling_mode: PoolingMode = PoolingMode.SUM, output_dtype: SparseType = SparseType.FP16, row_alignment: Optional[int] = None, fp8_exponent_bits: Optional[int] = None, fp8_exponent_bias: Optional[int] = None, cache_assoc: int = 32, scale_bias_size_in_bytes: int = DEFAULT_SCALE_BIAS_SIZE_IN_BYTES, cache_sets: int = 0, ssd_storage_directory: str = "/tmp", ssd_shards: int = 1, ssd_memtable_flush_period: int = -1, ssd_memtable_flush_offset: int = -1, ssd_l0_files_per_compact: int = 4, ssd_rate_limit_mbps: int = 0, ssd_size_ratio: int = 10, ssd_compaction_trigger: int = 8, ssd_write_buffer_size: int = 2 * 1024 * 1024 * 1024, ssd_max_write_buffer_num: int = 16, ssd_cache_location: EmbeddingLocation = EmbeddingLocation.MANAGED, ssd_uniform_init_lower: float = -0.01, ssd_uniform_init_upper: float = 0.01, ) -> None: # noqa C901 # tuple of (rows, dims,) super(SSDIntNBitTableBatchedEmbeddingBags, self).__init__() assert cache_assoc == 32, "Only 32-way cache is supported now" self.scale_bias_size_in_bytes = scale_bias_size_in_bytes self.pooling_mode = pooling_mode self.embedding_specs = embedding_specs T_ = len(self.embedding_specs) assert T_ > 0 device = torch.cuda.current_device() if device is None: self.current_device: torch.device = torch.device( torch.cuda.current_device() ) elif isinstance(device, torch.device): self.current_device = device else: self.current_device = torch.device(device) self.use_cpu: bool = self.current_device.type == "cpu" self.feature_table_map: List[int] = ( feature_table_map if feature_table_map is not None else list(range(T_)) ) T = len(self.feature_table_map) assert T_ <= T table_has_feature = [False] * T_ for t in self.feature_table_map: table_has_feature[t] = True assert all(table_has_feature), "Each table must have at least one feature!" self.output_dtype: int = output_dtype.as_int() # (feature_names, rows, dims, weights_tys) = zip(*embedding_specs) # Pyre workaround rows: List[int] = [e[1] for e in embedding_specs] dims: List[int] = [e[2] for e in embedding_specs] weights_tys: List[SparseType] = [e[3] for e in embedding_specs] D_offsets = [dims[t] for t in self.feature_table_map] D_offsets = [0] + list(itertools.accumulate(D_offsets)) self.total_D: int = D_offsets[-1] self.register_buffer( "D_offsets", torch.tensor(D_offsets, device=self.current_device, dtype=torch.int32), ) if row_alignment is None: self.row_alignment: int = 1 if self.use_cpu else 16 else: self.row_alignment = row_alignment for dim, weight_ty in zip(dims, weights_tys): if not weight_ty.is_float(): assert ( dim % (8 / weight_ty.bit_rate()) == 0 ), f"For quantized types we need to at least pack at byte granularity, dim: {dim}, weight_ty: {weight_ty}" def max_ty_D(ty: SparseType) -> int: return max( [dim for dim, weight_ty in zip(dims, weights_tys) if weight_ty == ty], default=0, ) self.max_int2_D: int = max_ty_D(SparseType.INT2) self.max_int4_D: int = max_ty_D(SparseType.INT4) self.max_int8_D: int = max_ty_D(SparseType.INT8) self.max_float8_D: int = max_ty_D(SparseType.FP8) self.max_float16_D: int = max_ty_D(SparseType.FP16) self.max_float32_D: int = max_ty_D(SparseType.FP32) cached_dims = [ rounded_row_size_in_bytes( embedding_spec[2], embedding_spec[3], 16, self.scale_bias_size_in_bytes ) for embedding_spec in self.embedding_specs ] self.max_D_cache: int = max(cached_dims) if len(cached_dims) > 0 else 0 placements = [] offsets = [] uvm_size = 0 for _, num_embeddings, embedding_dim, weight_ty in embedding_specs: embedding_dim = rounded_row_size_in_bytes( embedding_dim, weight_ty, self.row_alignment, scale_bias_size_in_bytes ) state_size = num_embeddings * embedding_dim state_size = align_to_cacheline(state_size) placements.append(EmbeddingLocation.MANAGED_CACHING) offsets.append(uvm_size) uvm_size += state_size self.weights_physical_offsets: List[int] = offsets weights_tys_int = [weights_tys[t].as_int() for t in self.feature_table_map] self.register_buffer( "weights_tys", torch.tensor( weights_tys_int, device=self.current_device, dtype=torch.uint8 ), ) self.weight_initialized: bool = True assert self.D_offsets.numel() == T + 1 hash_size_cumsum = [0] + list(itertools.accumulate(rows)) if hash_size_cumsum[-1] == 0: self.total_hash_size_bits: int = 0 else: self.total_hash_size_bits: int = int(log2(float(hash_size_cumsum[-1])) + 1) # The last element is to easily access # of rows of each table by self.total_hash_size_bits = int(log2(float(hash_size_cumsum[-1])) + 1) self.total_hash_size: int = hash_size_cumsum[-1] # The last element is to easily access # of rows of each table by # hash_size_cumsum[t + 1] - hash_size_cumsum[t] hash_size_cumsum = [hash_size_cumsum[t] for t in self.feature_table_map] + [ hash_size_cumsum[-1] ] self.register_buffer( "hash_size_cumsum", torch.tensor( hash_size_cumsum, device=self.current_device, dtype=torch.int64 ), ) element_size = 1 cache_size = cache_sets * ASSOC * element_size * self.max_D_cache logging.info( f"Using cache for SSD with admission algorithm " f"{CacheAlgorithm.LRU}, {cache_sets} sets, stored on {'DEVICE' if ssd_cache_location is EmbeddingLocation.DEVICE else 'MANAGED'} with {ssd_shards} shards, " f"Memtable Flush Period: {ssd_memtable_flush_period}, " f"Memtable Flush Offset: {ssd_memtable_flush_offset}, " f"Desired L0 files per compaction: {ssd_l0_files_per_compact}, " f"{cache_size / 1024.0 / 1024.0 / 1024.0 : .2f}GB" ) self.register_buffer( "lxu_cache_state", torch.zeros(cache_sets, ASSOC, dtype=torch.int64).fill_(-1), ) self.register_buffer( "lru_state", torch.zeros(cache_sets, ASSOC, dtype=torch.int64) ) assert ssd_cache_location in ( EmbeddingLocation.MANAGED, EmbeddingLocation.DEVICE, ) if ssd_cache_location == EmbeddingLocation.MANAGED: self.register_buffer( "lxu_cache_weights", torch.ops.fbgemm.new_managed_tensor( torch.zeros(1, device=self.current_device, dtype=torch.uint8), [cache_sets * ASSOC, self.max_D_cache], ), ) else: self.register_buffer( "lxu_cache_weights", torch.zeros( cache_sets * ASSOC, self.max_D_cache, device=self.current_device, dtype=torch.uint8, ), ) import os os.makedirs(ssd_storage_directory, exist_ok=True) import tempfile ssd_directory = tempfile.mkdtemp( prefix="ssd_table_batched_embeddings", dir=ssd_storage_directory ) # pyre-fixme[4]: Attribute must be annotated. self.ssd_db = torch.classes.fbgemm.EmbeddingRocksDBWrapper( ssd_directory, ssd_shards, ssd_shards, ssd_memtable_flush_period, ssd_memtable_flush_offset, ssd_l0_files_per_compact, self.max_D_cache, ssd_rate_limit_mbps, ssd_size_ratio, ssd_compaction_trigger, ssd_write_buffer_size, ssd_max_write_buffer_num, ssd_uniform_init_lower, ssd_uniform_init_upper, 8, # row_storage_bitwidth ) # pyre-fixme[20]: Argument `self` expected. (low_priority, high_priority) = torch.cuda.Stream.priority_range() self.ssd_stream = torch.cuda.Stream(priority=low_priority) self.ssd_set_start = torch.cuda.Event() self.ssd_set_end = torch.cuda.Event() # pyre-fixme[4]: Attribute must be annotated. self.timestep_counter = torch.classes.fbgemm.AtomicCounter() # pyre-fixme[4]: Attribute must be annotated. self.timestep_prefetch_size = torch.classes.fbgemm.AtomicCounter() self.weights_dev: torch.Tensor = torch.empty( 0, device=self.current_device, dtype=torch.uint8, ) self.register_buffer( "weights_uvm", torch.tensor((0,), device=self.current_device, dtype=torch.uint8), ) self.register_buffer( "weights_host", torch.empty(0), ) self.register_buffer( "weights_placements", torch.tensor( [EmbeddingLocation.MANAGED_CACHING for _ in range(T_)], dtype=torch.int32, ), ) weights_offsets = [0] + list( itertools.accumulate([row * dim for (row, dim) in zip(rows, dims)]) ) self.register_buffer( "weights_offsets", torch.tensor( weights_offsets[:-1], device=self.current_device, dtype=torch.int64, ), ) if self.max_float8_D > 0: default_config = SparseType.FP8.default_config() self.fp8_exponent_bits: int = ( default_config.get("exponent_bits") if fp8_exponent_bits is None else fp8_exponent_bits ) self.fp8_exponent_bias: int = ( default_config.get("exponent_bias") if fp8_exponent_bias is None else fp8_exponent_bias ) else: self.fp8_exponent_bits = -1 self.fp8_exponent_bias = -1 @torch.jit.export def prefetch(self, indices: Tensor, offsets: Tensor) -> Tensor: (indices, offsets) = indices.long(), offsets.long() linear_cache_indices = torch.ops.fbgemm.linearize_cache_indices( self.hash_size_cumsum, indices, offsets, ) self.timestep_counter.increment() self.timestep_prefetch_size.increment() ( inserted_indices, evicted_indices, assigned_cache_slots, actions_count_gpu, ) = torch.ops.fbgemm.ssd_cache_populate_actions( linear_cache_indices, self.total_hash_size, self.lxu_cache_state, self.timestep_counter.get(), 1, # for now assume prefetch_dist == 1 self.lru_state, ) actions_count_cpu = torch.empty( actions_count_gpu.shape, pin_memory=True, dtype=actions_count_gpu.dtype ) actions_count_cpu.copy_(actions_count_gpu, non_blocking=True) assigned_cache_slots = assigned_cache_slots.long() evicted_rows = self.lxu_cache_weights[ assigned_cache_slots.clamp_(min=0).long(), : ] inserted_rows = torch.empty( evicted_rows.shape, dtype=self.lxu_cache_weights.dtype, pin_memory=True, ) current_stream = torch.cuda.current_stream() # Ensure the previous iterations l3_db.set(..) has completed. current_stream.wait_event(self.ssd_set_end) inserted_indices_cpu = torch.empty( inserted_indices.shape, pin_memory=True, dtype=inserted_indices.dtype ) inserted_indices_cpu.copy_(inserted_indices, non_blocking=True) self.ssd_db.get_cuda( inserted_indices_cpu, inserted_rows, actions_count_cpu, ) current_stream.record_event(self.ssd_set_start) # TODO: T123943415 T123943414 this is a big copy that is (mostly) unnecessary with a decent cache hit rate. # Should we allocate on HBM? inserted_rows_gpu = inserted_rows.to(self.current_device, non_blocking=True) # self.lxu_cache_weights[assigned_cache_slots, :] = inserted_rows.cuda(non_blocking=True) torch.ops.fbgemm.masked_index_put( self.lxu_cache_weights, assigned_cache_slots, inserted_rows_gpu, actions_count_gpu, ) with torch.cuda.stream(self.ssd_stream): self.ssd_stream.wait_event(self.ssd_set_start) evicted_rows_cpu = torch.empty( evicted_rows.shape, pin_memory=True, dtype=evicted_rows.dtype ) evicted_rows_cpu.copy_(evicted_rows, non_blocking=True) evicted_indices_cpu = torch.empty( evicted_indices.shape, pin_memory=True, dtype=evicted_indices.dtype ) evicted_indices_cpu.copy_(evicted_indices, non_blocking=True) # pyre-fixme[6]: For 1st param expected `Stream` but got `Stream`. evicted_rows.record_stream(self.ssd_stream) evicted_indices.record_stream(self.ssd_stream) self.ssd_db.set_cuda( evicted_indices_cpu, evicted_rows_cpu, actions_count_cpu, self.timestep_counter.get(), ) # TODO: is this needed? # Need a way to synchronize # actions_count_cpu.record_stream(self.ssd_stream) self.ssd_stream.record_event(self.ssd_set_end) return linear_cache_indices def forward( self, indices: Tensor, offsets: Tensor, per_sample_weights: Optional[Tensor] = None, ) -> Tensor: if self.timestep_prefetch_size.get() <= 0: with record_function("## prefetch ##"): linear_cache_indices = self.prefetch(indices, offsets) else: linear_cache_indices = torch.ops.fbgemm.linearize_cache_indices( self.hash_size_cumsum, indices, offsets, ) lxu_cache_locations = torch.ops.fbgemm.lxu_cache_lookup( linear_cache_indices, self.lxu_cache_state, self.hash_size_cumsum[-1].item(), ) self.timestep_prefetch_size.decrement() assert ( self.weight_initialized ), "weight needs to be initialized before forward function" # Note: CPU and CUDA ops use the same interface to facilitate JIT IR # generation for CUDA/CPU. For CPU op, we don't need weights_uvm and # weights_placements return torch.ops.fbgemm.int_nbit_split_embedding_codegen_lookup_function( dev_weights=self.weights_dev, uvm_weights=self.weights_uvm, weights_placements=self.weights_placements, weights_offsets=self.weights_offsets, weights_tys=self.weights_tys, D_offsets=self.D_offsets, total_D=self.total_D, max_int2_D=self.max_int2_D, max_int4_D=self.max_int4_D, max_int8_D=self.max_int8_D, max_float16_D=self.max_float16_D, max_float32_D=self.max_float32_D, indices=indices, offsets=offsets, pooling_mode=int(self.pooling_mode), indice_weights=per_sample_weights, output_dtype=self.output_dtype, lxu_cache_weights=self.lxu_cache_weights, lxu_cache_locations=lxu_cache_locations, row_alignment=self.row_alignment, max_float8_D=self.max_float8_D, fp8_exponent_bits=self.fp8_exponent_bits, fp8_exponent_bias=self.fp8_exponent_bias, ) @torch.jit.export def split_embedding_weights( self, split_scale_shifts: bool = True ) -> List[Tuple[Tensor, Optional[Tensor]]]: """ Returns a list of weights, split by table. Testing only, very slow. """ splits: List[Tuple[Tensor, Optional[Tensor]]] = [] rows_cumsum = 0 for _, row, dim, weight_ty in self.embedding_specs: weights = torch.empty( ( row, rounded_row_size_in_bytes( dim, weight_ty, self.row_alignment, self.scale_bias_size_in_bytes, ), ), dtype=torch.uint8, ) self.ssd_db.get_cuda( torch.arange(rows_cumsum, rows_cumsum + row).to(torch.int64), weights, torch.as_tensor([row]), ) rows_cumsum += row torch.cuda.synchronize(self.current_device) weights_shifts = weights.detach() if split_scale_shifts: # remove the padding at the end of each row. weights_shifts = weights_shifts[ :, : unpadded_row_size_in_bytes( dim, weight_ty, self.scale_bias_size_in_bytes ), ] if ( weight_ty == SparseType.INT8 or weight_ty == SparseType.INT4 or weight_ty == SparseType.INT2 ): splits.append( ( weights_shifts[:, self.scale_bias_size_in_bytes :], weights_shifts[:, : self.scale_bias_size_in_bytes], ) ) else: assert ( weight_ty == SparseType.FP8 or weight_ty == SparseType.FP16 or weight_ty == SparseType.FP32 ) splits.append( ( weights_shifts, None, ) ) else: splits.append((weights_shifts, None)) torch.cuda.synchronize(self.current_device) return splits
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. # pyre-ignore-all-errors[56] # flake8: noqa F401 import torch # usort:skip import warnings # This module is a compatibility wrapper that re-exports the symbols from: # fbgemm_gpu.split_table_batched_embeddings_ops_common # fbgemm_gpu.split_table_batched_embeddings_ops_inference # fbgemm_gpu.split_table_batched_embeddings_ops_training from fbgemm_gpu.split_embedding_configs import EmbOptimType as OptimType, SparseType from fbgemm_gpu.split_table_batched_embeddings_ops_common import ( BoundsCheckMode, CacheAlgorithm, CacheState, DEFAULT_SCALE_BIAS_SIZE_IN_BYTES, EmbeddingLocation, PoolingMode, RecordCacheMetrics, round_up, SplitState, ) from fbgemm_gpu.split_table_batched_embeddings_ops_inference import ( align_to_cacheline, IntNBitTableBatchedEmbeddingBagsCodegen, rounded_row_size_in_bytes, unpadded_row_size_in_bytes, ) from fbgemm_gpu.split_table_batched_embeddings_ops_training import ( ComputeDevice, CounterBasedRegularizationDefinition, CounterWeightDecayMode, DEFAULT_ASSOC, DenseTableBatchedEmbeddingBagsCodegen, GradSumDecay, INT8_EMB_ROW_DIM_OFFSET, LearningRateMode, SplitTableBatchedEmbeddingBagsCodegen, TailIdThreshold, WeightDecayMode, ) try: torch.ops.load_library("//deeplearning/fbgemm/fbgemm_gpu/codegen:embedding_ops") torch.ops.load_library("//deeplearning/fbgemm/fbgemm_gpu/codegen:embedding_ops_cpu") except Exception: pass warnings.warn( f"""\033[93m The Python module {__name__} is now DEPRECATED and will be removed in the future. Users should instead declare dependencies on //deeplearning/fbgemm/fbgemm_gpu/split_table_batched_embeddings_ops_{{training, inference}} in their TARGETS file and import the fbgemm_gpu.split_table_batched_embeddings_ops_{{training, inference}} modules as needed in their scripts. \033[0m""", DeprecationWarning, )
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree.
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import math import os import struct import subprocess import unittest from functools import wraps from typing import Any, Callable, List, Tuple import hypothesis.strategies as st import numpy as np import torch TEST_WITH_ROCM: bool = os.getenv("FBGEMM_TEST_WITH_ROCM", "0") == "1" # Eigen/Python round 0.5 away from 0, Numpy rounds to even round_to_nearest: Callable[[np.ndarray], np.ndarray] = np.vectorize(round) def bytes_to_floats(byte_matrix: np.ndarray) -> np.ndarray: floats = np.empty([np.shape(byte_matrix)[0], 1], dtype=np.float32) for i, byte_values in enumerate(byte_matrix): (floats[i],) = struct.unpack("f", bytearray(byte_values)) return floats def floats_to_bytes(floats: np.ndarray) -> np.ndarray: byte_matrix = np.empty([np.shape(floats)[0], 4], dtype=np.uint8) for i, value in enumerate(floats): assert isinstance(value, np.float32), (value, floats) as_bytes = struct.pack("f", value) # In Python3 bytes will be a list of int, in Python2 a list of string if isinstance(as_bytes[0], int): byte_matrix[i] = list(as_bytes) else: byte_matrix[i] = list(map(ord, as_bytes)) return byte_matrix def bytes_to_half_floats(byte_matrix: np.ndarray) -> np.ndarray: floats = np.empty([np.shape(byte_matrix)[0], 1], dtype=np.float16) for i, byte_values in enumerate(byte_matrix): (floats[i],) = np.frombuffer( memoryview(byte_values).tobytes(), dtype=np.float16 ) return floats def half_floats_to_bytes(floats: np.ndarray) -> np.ndarray: byte_matrix = np.empty([np.shape(floats)[0], 2], dtype=np.uint8) for i, value in enumerate(floats): assert isinstance(value, np.float16), (value, floats) byte_matrix[i] = np.frombuffer( memoryview(value.tobytes()).tobytes(), dtype=np.uint8 ) return byte_matrix def fused_rowwise_8bit_quantize_reference(data: np.ndarray) -> np.ndarray: minimum = np.min(data, axis=-1, keepdims=True) maximum = np.max(data, axis=-1, keepdims=True) span = maximum - minimum bias = minimum scale = span / 255.0 inverse_scale = 255.0 / (span + 1e-8) quantized_data = round_to_nearest((data - bias) * inverse_scale) scale_bytes = floats_to_bytes(scale.reshape(-1)) scale_bytes = scale_bytes.reshape(data.shape[:-1] + (scale_bytes.shape[-1],)) bias_bytes = floats_to_bytes(bias.reshape(-1)) bias_bytes = bias_bytes.reshape(data.shape[:-1] + (bias_bytes.shape[-1],)) return np.concatenate([quantized_data, scale_bytes, bias_bytes], axis=-1) def fused_rowwise_8bit_dequantize_reference(fused_quantized: np.ndarray) -> np.ndarray: scale = bytes_to_floats(fused_quantized[..., -8:-4].astype(np.uint8).reshape(-1, 4)) scale = scale.reshape(fused_quantized.shape[:-1] + (scale.shape[-1],)) bias = bytes_to_floats(fused_quantized[..., -4:].astype(np.uint8).reshape(-1, 4)) bias = bias.reshape(fused_quantized.shape[:-1] + (bias.shape[-1],)) quantized_data = fused_quantized[..., :-8] return quantized_data * scale + bias def fused_rowwise_8bit_dequantize_reference_half( fused_quantized: np.ndarray, ) -> np.ndarray: scale = bytes_to_half_floats( fused_quantized[..., -8:-4].astype(np.uint8).reshape(-1, 4) ) scale = scale.reshape(fused_quantized.shape[:-1] + (scale.shape[-1],)) bias = bytes_to_half_floats( fused_quantized[..., -4:].astype(np.uint8).reshape(-1, 4) ) bias = bias.reshape(fused_quantized.shape[:-1] + (bias.shape[-1],)) quantized_data = fused_quantized[..., :-8] return quantized_data * scale + bias def fused_rowwise_nbit_quantize_reference(data: np.ndarray, bit: int) -> np.ndarray: minimum = np.min(data, axis=1).astype(np.float16).astype(np.float32) maximum = np.max(data, axis=1) span = maximum - minimum qmax = (1 << bit) - 1 scale = (span / qmax).astype(np.float16).astype(np.float32) bias = np.zeros(data.shape[0]) quantized_data = np.zeros(data.shape).astype(np.uint8) for i in range(data.shape[0]): bias[i] = minimum[i] inverse_scale = 1.0 if scale[i] == 0.0 else 1 / scale[i] if scale[i] == 0.0 or math.isinf(inverse_scale): scale[i] = 1.0 inverse_scale = 1.0 quantized_data[i] = np.clip( np.round((data[i, :] - minimum[i]) * inverse_scale), 0, qmax ) # pack assert 8 % bit == 0 num_elem_per_byte = 8 // bit packed_dim = (data.shape[1] + num_elem_per_byte - 1) // num_elem_per_byte packed_data = np.zeros([data.shape[0], packed_dim]).astype(np.uint8) for i in range(data.shape[0]): for j in range(data.shape[1]): if j % num_elem_per_byte == 0: packed_data[i, j // num_elem_per_byte] = quantized_data[i, j] else: packed_data[i, j // num_elem_per_byte] += quantized_data[i, j] << ( (j % num_elem_per_byte) * bit ) scale_bytes = half_floats_to_bytes(scale.astype(np.float16)) bias_bytes = half_floats_to_bytes(bias.astype(np.float16)) return np.concatenate([packed_data, scale_bytes, bias_bytes], axis=1) def fused_rowwise_nbit_quantize_dequantize_reference( data: np.ndarray, bit: int ) -> np.ndarray: fused_quantized = fused_rowwise_nbit_quantize_reference(data, bit) scale = bytes_to_half_floats(fused_quantized[:, -4:-2].astype(np.uint8)).astype( np.float32 ) bias = bytes_to_half_floats(fused_quantized[:, -2:].astype(np.uint8)).astype( np.float32 ) quantized_data = fused_quantized[:, :-4] # unpack packed_dim = fused_quantized.shape[1] - 4 assert 8 % bit == 0 num_elem_per_byte = 8 // bit assert packed_dim == ((data.shape[1] + num_elem_per_byte - 1) // num_elem_per_byte) unpacked_data = np.zeros(data.shape).astype(np.uint8) for i in range(data.shape[0]): for j in range(data.shape[1]): unpacked_data[i, j] = ( quantized_data[i, j // num_elem_per_byte] >> ((j % num_elem_per_byte) * bit) ) & ((1 << bit) - 1) return scale * unpacked_data + bias # Used for `@unittest.skipIf` gpu_unavailable: Tuple[bool, str] = ( not torch.cuda.is_available() or torch.cuda.device_count() == 0, "CUDA is not available or no GPUs detected", ) # Used for `if` statements inside tests gpu_available: bool = not gpu_unavailable[0] # Used for `@unittest.skipIf` for tests that pass in internal CI, but fail on the GitHub runners running_on_github: Tuple[bool, str] = ( os.getenv("GITHUB_ENV") is not None, "Test is currently known to fail or hang when run in the GitHub runners", ) # Used for `@unittest.skipIf` for tests that currently fail on ARM platform on_arm_platform: Tuple[bool, str] = ( subprocess.run(["uname", "-m"], stdout=subprocess.PIPE) .stdout.decode("utf-8") .strip() == "aarch64", "Test is currently known to fail when running on ARM platform", ) def cpu_and_maybe_gpu() -> st.SearchStrategy[List[torch.device]]: gpu_available = torch.cuda.is_available() and torch.cuda.device_count() > 0 # st.sampled_from is not guaranteed to test all the values passed to it. # However, Hypothesis, by default, generates 100 test cases from the specified strategies. # If st.sampled_from contains >100 items or if it's used in conjunction with other strategies # then it may not test all values; however, for smaller tests it may work fine. # This is still a stopgap solution until we figure out a way to parameterize UnitTestCase. return st.sampled_from( [torch.device("cpu")] + ([torch.device("cuda")] if gpu_available else []) ) def cpu_only() -> st.SearchStrategy[List[torch.device]]: return st.sampled_from([torch.device("cpu")]) # pyre-fixme[3]: Return annotation cannot be `Any`. def skipIfRocm(reason: str = "Test currently doesn't work on the ROCm stack") -> Any: # pyre-fixme[3]: Return annotation cannot be `Any`. # pyre-fixme[24]: Generic type `Callable` expects 2 type parameters. def skipIfRocmDecorator(fn: Callable) -> Any: @wraps(fn) # pyre-fixme[3]: Return annotation cannot be `Any`. def wrapper(*args: Any, **kwargs: Any) -> Any: if TEST_WITH_ROCM: raise unittest.SkipTest(reason) else: fn(*args, **kwargs) return wrapper return skipIfRocmDecorator def symint_vector_unsupported() -> Tuple[bool, str]: major, minor = torch.__version__.split(".")[0:2] return ( int(major) < 2 or (int(major) == 2 and int(minor) < 1), """ dynamic shape support for this op needs to be on PyTorch 2.1 or newer with https://github.com/pytorch/pytorch/pull/101056 """, )
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import math import random import unittest from itertools import accumulate from typing import List, Tuple import hypothesis.strategies as st import torch from hypothesis import given, HealthCheck, settings try: # pyre-ignore[21] from fbgemm_gpu import open_source # noqa: F401 from test_utils import gpu_unavailable # pyre-ignore[21] except Exception: torch.ops.load_library("//deeplearning/fbgemm/fbgemm_gpu:sparse_ops") from fbgemm_gpu.test.test_utils import gpu_unavailable def gen_inputs( hash_sizes: List[int], batch_size: int, max_len: int, ) -> Tuple[torch.Tensor, torch.Tensor]: """ the lengths of bags are chosen from a uniform distribution from [0, max_len] """ T = len(hash_sizes) offsets = [0] indices_per_table = [] for t in range(T): len_sum = 0 for _ in range(batch_size): length = random.randint(0, max_len) len_sum += length offsets.append(offsets[-1] + length) n_rows = hash_sizes[t] indices_per_table.append(torch.randint(n_rows, [len_sum], dtype=torch.int64)) indices = torch.cat(indices_per_table, dim=0) offsets = torch.tensor(offsets, dtype=torch.int64) return indices, offsets def transpose_embedding_input_ref( hash_size_cumsum: torch.Tensor, indices: torch.Tensor, offsets: torch.Tensor, info_B_num_bits: int, ) -> Tuple[ torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, ]: """ reference implementation of torch.ops.fbgemm.transpose_embedding_input """ T = hash_size_cumsum.numel() - 1 B = (offsets.numel() - 1) // T linear_indices = torch.zeros_like(indices) infos = torch.zeros_like(indices) for b_t in range(B * T): t = b_t // B b = b_t % B start = int(offsets[b_t].item()) end = int(offsets[b_t + 1].item()) for i in range(start, end): linear_indices[i] = indices[i] + hash_size_cumsum[t] infos[i] = (t << info_B_num_bits) | b linear_indices_sorted, sorted_idx = torch.sort(linear_indices, stable=True) infos_sorted = infos[sorted_idx] ( sorted_linear_indices_run, sorted_linear_indices_run_lengths, ) = torch.unique_consecutive(linear_indices_sorted, return_counts=True) sorted_linear_indices_num_runs = torch.tensor( sorted_linear_indices_run.numel(), dtype=torch.int64 ) sorted_linear_indices_cumulative_run_lengths = torch.tensor( [0] + list(accumulate(sorted_linear_indices_run_lengths.tolist())), dtype=torch.int64, ) return ( linear_indices, linear_indices_sorted, infos_sorted, sorted_linear_indices_run, sorted_linear_indices_run_lengths, sorted_linear_indices_num_runs, sorted_linear_indices_cumulative_run_lengths, ) class SplitEmbeddingsUtilsTest(unittest.TestCase): @unittest.skipIf(*gpu_unavailable) # pyre-ignore [56]: Invalid decoration, was not able to infer the type of argument @given( B=st.integers(min_value=10, max_value=25), T=st.integers(min_value=5, max_value=20), E=st.integers(min_value=10, max_value=50), ) @settings(deadline=30000, suppress_health_check=[HealthCheck.filter_too_much]) def test_transpose(self, B: int, T: int, E: int) -> None: hash_sizes = [random.randint(E, 2 * E) for _ in range(T)] batch_size = B max_len = 3 * E total_hash_size_bits: int = int(math.log2(sum(hash_sizes)) + 1) hash_size_cumsum = torch.tensor( [0] + list(accumulate(hash_sizes)), dtype=torch.int64 ) indices, offsets = gen_inputs(hash_sizes, batch_size, max_len) hash_size_cumsum_cuda = hash_size_cumsum.cuda() info_B_num_bits, _ = torch.ops.fbgemm.get_infos_metadata( hash_size_cumsum_cuda, B, T ) ( linear_indices, linear_indices_sorted, infos_sorted, sorted_linear_indices_run, sorted_linear_indices_run_lengths, sorted_linear_indices_num_runs, sorted_linear_indices_cumulative_run_lengths, ) = torch.ops.fbgemm.transpose_embedding_input( hash_size_cumsum_cuda, total_hash_size_bits, indices.cuda(), offsets.cuda(), info_B_num_bits=info_B_num_bits, ) ( linear_indices_ref, linear_indices_sorted_ref, infos_sorted_ref, sorted_linear_indices_run_ref, sorted_linear_indices_run_lengths_ref, sorted_linear_indices_num_runs_ref, sorted_linear_indices_cumulative_run_lengths_ref, ) = transpose_embedding_input_ref( hash_size_cumsum, indices, offsets, info_B_num_bits ) self.assertTrue(torch.equal(linear_indices.cpu(), linear_indices_ref)) self.assertTrue( torch.equal(linear_indices_sorted.cpu(), linear_indices_sorted_ref) ) self.assertTrue(torch.equal(infos_sorted.cpu(), infos_sorted_ref)) # fbgemm impl has padding so we need slice num = sorted_linear_indices_run_ref.numel() self.assertTrue( torch.equal( sorted_linear_indices_run.cpu()[:num], sorted_linear_indices_run_ref ) ) self.assertTrue( torch.equal( sorted_linear_indices_run_lengths.cpu()[:num], sorted_linear_indices_run_lengths_ref, ) ) self.assertEqual( sorted_linear_indices_num_runs.item(), sorted_linear_indices_num_runs_ref.item(), ) self.assertTrue( torch.equal( sorted_linear_indices_cumulative_run_lengths.cpu()[: num + 1], sorted_linear_indices_cumulative_run_lengths_ref, ) )
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. # pyre-ignore-all-errors[56] import random import unittest from typing import List import fbgemm_gpu import hypothesis.strategies as st import torch from hypothesis import given, settings, Verbosity # pyre-fixme[16]: Module `fbgemm_gpu` has no attribute `open_source`. open_source: bool = getattr(fbgemm_gpu, "open_source", False) if open_source: # pyre-ignore[21] from test_utils import gpu_available, gpu_unavailable, skipIfRocm else: from fbgemm_gpu.test.test_utils import gpu_available, gpu_unavailable, skipIfRocm if gpu_available: # pyre-ignore[21] from fbgemm_gpu.uvm import cudaMemAdvise, cudaMemoryAdvise, cudaMemPrefetchAsync MAX_EXAMPLES = 40 class UvmTest(unittest.TestCase): @unittest.skipIf(*gpu_unavailable) @given( sizes=st.lists(st.integers(min_value=1, max_value=8), min_size=1, max_size=4), uvm_op=st.sampled_from( [ torch.ops.fbgemm.new_unified_tensor, torch.ops.fbgemm.new_managed_tensor, torch.ops.fbgemm.new_host_mapped_tensor, torch.ops.fbgemm.new_vanilla_managed_tensor, ] ), ) @settings(verbosity=Verbosity.verbose, max_examples=MAX_EXAMPLES, deadline=None) # pyre-fixme[2]: Parameter must be annotated. def test_is_uvm_tensor(self, sizes: List[int], uvm_op) -> None: if uvm_op is torch.ops.fbgemm.new_unified_tensor: is_host_mapped = random.choice([True, False]) uvm_t = uvm_op( torch.empty(0, device="cuda:0", dtype=torch.float), sizes, is_host_mapped, ) else: uvm_t = uvm_op(torch.empty(0, device="cuda:0", dtype=torch.float), sizes) assert torch.ops.fbgemm.is_uvm_tensor(uvm_t) assert torch.ops.fbgemm.uvm_storage(uvm_t) @unittest.skipIf(*gpu_unavailable) @given( sizes=st.lists(st.integers(min_value=1, max_value=8), min_size=1, max_size=4), uvm_op=st.sampled_from( [ torch.ops.fbgemm.new_unified_tensor, torch.ops.fbgemm.new_managed_tensor, torch.ops.fbgemm.new_vanilla_managed_tensor, ] ), ) @settings(verbosity=Verbosity.verbose, max_examples=MAX_EXAMPLES, deadline=None) # pyre-fixme[2]: Parameter must be annotated. def test_uvm_to_cpu(self, sizes: List[int], uvm_op) -> None: if uvm_op is torch.ops.fbgemm.new_unified_tensor: is_host_mapped = False uvm_t = uvm_op( torch.empty(0, device="cuda:0", dtype=torch.float), sizes, is_host_mapped, ) else: uvm_t = uvm_op(torch.empty(0, device="cuda:0", dtype=torch.float), sizes) cpu_t = torch.ops.fbgemm.uvm_to_cpu(uvm_t) assert not torch.ops.fbgemm.is_uvm_tensor(cpu_t) assert torch.ops.fbgemm.uvm_storage(cpu_t) uvm_t.copy_(cpu_t) assert torch.ops.fbgemm.is_uvm_tensor(uvm_t) assert torch.ops.fbgemm.uvm_storage(uvm_t) # Test use of cpu tensor after freeing the uvm tensor del uvm_t cpu_t.mul_(42) @unittest.skipIf(*gpu_unavailable) def test_enum(self) -> None: # pyre-ignore[16] assert cudaMemoryAdvise.cudaMemAdviseSetAccessedBy.value == 5 @skipIfRocm() @unittest.skipIf(*gpu_unavailable) @given( sizes=st.lists( st.integers(min_value=1, max_value=(1024)), min_size=1, max_size=4 ), uvm_op=st.sampled_from( [ torch.ops.fbgemm.new_unified_tensor, torch.ops.fbgemm.new_managed_tensor, torch.ops.fbgemm.new_vanilla_managed_tensor, ] ), ) @settings(verbosity=Verbosity.verbose, max_examples=MAX_EXAMPLES, deadline=None) # pyre-fixme[2]: Parameter must be annotated. def test_cudaMemAdvise(self, sizes: List[int], uvm_op) -> None: if uvm_op is torch.ops.fbgemm.new_unified_tensor: is_host_mapped = False uvm_t = uvm_op( torch.empty(0, device="cuda:0", dtype=torch.float), sizes, is_host_mapped, ) else: uvm_t = uvm_op(torch.empty(0, device="cuda:0", dtype=torch.float), sizes) assert torch.ops.fbgemm.is_uvm_tensor(uvm_t) assert torch.ops.fbgemm.uvm_storage(uvm_t) # pyre-ignore[16] cudaMemAdvise(uvm_t, cudaMemoryAdvise.cudaMemAdviseSetAccessedBy) @unittest.skipIf(*gpu_unavailable) @given( sizes=st.lists( st.integers(min_value=1, max_value=(1024)), min_size=1, max_size=3 ), uvm_op=st.sampled_from( [ torch.ops.fbgemm.new_unified_tensor, torch.ops.fbgemm.new_managed_tensor, torch.ops.fbgemm.new_vanilla_managed_tensor, ] ), ) @settings(verbosity=Verbosity.verbose, max_examples=MAX_EXAMPLES, deadline=None) # pyre-fixme[2]: Parameter must be annotated. def test_cudaMemPrefetchAsync(self, sizes: List[int], uvm_op) -> None: if uvm_op is torch.ops.fbgemm.new_unified_tensor: is_host_mapped = False uvm_t = uvm_op( torch.empty(0, device="cuda:0", dtype=torch.float), sizes, is_host_mapped, ) else: uvm_t = uvm_op(torch.empty(0, device="cuda:0", dtype=torch.float), sizes) assert torch.ops.fbgemm.is_uvm_tensor(uvm_t) assert torch.ops.fbgemm.uvm_storage(uvm_t) cudaMemPrefetchAsync(uvm_t) torch.cuda.synchronize(torch.device("cuda:0")) @skipIfRocm() @unittest.skipIf( not torch.cuda.is_available() or torch.cuda.device_count() < 2, "Skip unless two CUDA devices are detected", ) @given( sizes=st.lists( st.integers(min_value=1, max_value=(1024)), min_size=1, max_size=4 ), uvm_op=st.sampled_from( [ torch.ops.fbgemm.new_unified_tensor, torch.ops.fbgemm.new_managed_tensor, torch.ops.fbgemm.new_vanilla_managed_tensor, ] ), ) @settings(verbosity=Verbosity.verbose, max_examples=MAX_EXAMPLES, deadline=None) # pyre-fixme[2]: Parameter must be annotated. def test_uvm_to_device(self, sizes: List[int], uvm_op) -> None: if uvm_op is torch.ops.fbgemm.new_unified_tensor: is_host_mapped = False uvm_t = uvm_op( torch.empty(0, device="cuda:0", dtype=torch.float), sizes, is_host_mapped, ) else: uvm_t = uvm_op(torch.empty(0, device="cuda:0", dtype=torch.float), sizes) assert torch.ops.fbgemm.is_uvm_tensor(uvm_t) assert torch.ops.fbgemm.uvm_storage(uvm_t) # Reference uvm tensor from second cuda device try: device_prototype = torch.empty(0, device="cuda:1") except RuntimeError: # Skip the tests if there is no "cuda:1" device return second_t = torch.ops.fbgemm.uvm_to_device(uvm_t, device_prototype) assert torch.ops.fbgemm.is_uvm_tensor(second_t) assert torch.ops.fbgemm.uvm_storage(second_t) assert second_t.device == device_prototype.device @skipIfRocm() @unittest.skipIf(*gpu_unavailable) @given( sizes=st.lists( st.integers(min_value=1, max_value=(1024)), min_size=1, max_size=4 ), uvm_op=st.sampled_from( [ torch.ops.fbgemm.new_unified_tensor, torch.ops.fbgemm.new_managed_tensor, torch.ops.fbgemm.new_vanilla_managed_tensor, ] ), ) @settings(verbosity=Verbosity.verbose, max_examples=MAX_EXAMPLES, deadline=None) # pyre-fixme[2]: Parameter must be annotated. def test_uvm_slice(self, sizes: List[int], uvm_op) -> None: if uvm_op is torch.ops.fbgemm.new_unified_tensor: is_host_mapped = False uvm_t = uvm_op( torch.empty(0, device="cuda:0", dtype=torch.float), sizes, is_host_mapped, ) else: uvm_t = uvm_op(torch.empty(0, device="cuda:0", dtype=torch.float), sizes) assert torch.ops.fbgemm.is_uvm_tensor(uvm_t) assert torch.ops.fbgemm.uvm_storage(uvm_t) for i in range(sizes[0]): uvm_slice = uvm_t[i] cpu_slice = torch.ops.fbgemm.uvm_to_cpu(uvm_slice) assert uvm_slice.storage_offset() == cpu_slice.storage_offset() assert uvm_slice.storage().data_ptr() == uvm_t.storage().data_ptr() assert cpu_slice.storage().data_ptr() == uvm_t.storage().data_ptr() assert torch.ops.fbgemm.is_uvm_tensor(uvm_slice) assert torch.ops.fbgemm.uvm_storage(cpu_slice) @skipIfRocm() @unittest.skipIf(*gpu_unavailable) @given( sizes=st.lists( st.integers(min_value=1, max_value=(1024)), min_size=1, max_size=4 ), uvm_op=st.sampled_from( [ torch.ops.fbgemm.new_unified_tensor, torch.ops.fbgemm.new_managed_tensor, torch.ops.fbgemm.new_vanilla_managed_tensor, ] ), ) @settings(verbosity=Verbosity.verbose, max_examples=MAX_EXAMPLES, deadline=None) # pyre-fixme[2]: Parameter must be annotated. def test_uvm_memadviceDontFork(self, sizes: List[int], uvm_op) -> None: if uvm_op is torch.ops.fbgemm.new_unified_tensor: is_host_mapped = False uvm_t = uvm_op( torch.empty(0, device="cuda:0", dtype=torch.float), sizes, is_host_mapped, ) else: uvm_t = uvm_op(torch.empty(0, device="cuda:0", dtype=torch.float), sizes) assert torch.ops.fbgemm.is_uvm_tensor(uvm_t) assert torch.ops.fbgemm.uvm_storage(uvm_t) cpu_t = torch.ops.fbgemm.uvm_to_cpu(uvm_t) torch.ops.fbgemm.uvm_mem_advice_dont_fork(cpu_t) @unittest.skipIf(*gpu_unavailable) @given( sizes=st.lists( st.integers(min_value=1, max_value=(512)), min_size=1, max_size=3 ), uvm_op=st.sampled_from( [ torch.ops.fbgemm.new_unified_tensor, torch.ops.fbgemm.new_managed_tensor, torch.ops.fbgemm.new_vanilla_managed_tensor, ] ), ) @settings(verbosity=Verbosity.verbose, max_examples=MAX_EXAMPLES, deadline=None) # pyre-fixme[2]: Parameter must be annotated. def test_uvm_to_cpu_clone(self, sizes: List[int], uvm_op) -> None: if uvm_op is torch.ops.fbgemm.new_unified_tensor: is_host_mapped = False uvm_t = uvm_op( torch.empty(0, device="cuda:0", dtype=torch.float), sizes, is_host_mapped, ) else: uvm_t = uvm_op(torch.empty(0, device="cuda:0", dtype=torch.float), sizes) assert torch.ops.fbgemm.is_uvm_tensor(uvm_t) assert torch.ops.fbgemm.uvm_storage(uvm_t) cpu_clone = torch.ops.fbgemm.uvm_to_cpu_clone(uvm_t) assert not torch.ops.fbgemm.is_uvm_tensor(cpu_clone) assert not torch.ops.fbgemm.uvm_storage(cpu_clone) @unittest.skipIf(*gpu_unavailable) @given( sizes=st.lists( st.integers(min_value=1, max_value=(512)), min_size=1, max_size=3 ), ) @settings(verbosity=Verbosity.verbose, max_examples=MAX_EXAMPLES, deadline=None) def test_new_managed_tensor_meta(self, sizes: List[int]) -> None: cpu_tensor = torch.empty(sizes).to("meta") cpu_tensor_meta = torch.ops.fbgemm.new_managed_tensor(cpu_tensor, sizes) assert cpu_tensor.shape == cpu_tensor_meta.shape if __name__ == "__main__": unittest.main()
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. # pyre-unsafe import logging import math import random import unittest from typing import Optional, Tuple import fbgemm_gpu import hypothesis.strategies as st import numpy as np import torch from fbgemm_gpu.split_embedding_configs import ( EmbOptimType as OptimType, FP8QuantizationConfig, QuantizationConfig, SparseType, ) from fbgemm_gpu.split_embedding_inference_converter import SplitEmbInferenceConverter from fbgemm_gpu.split_table_batched_embeddings_ops_common import ( EmbeddingLocation, PoolingMode, ) from fbgemm_gpu.split_table_batched_embeddings_ops_inference import ( IntNBitTableBatchedEmbeddingBagsCodegen, ) from fbgemm_gpu.split_table_batched_embeddings_ops_training import ( ComputeDevice, SplitTableBatchedEmbeddingBagsCodegen, ) from hypothesis import given, settings, Verbosity from torch import nn # pyre-fixme[16]: Module `fbgemm_gpu` has no attribute `open_source`. open_source: bool = getattr(fbgemm_gpu, "open_source", False) if open_source: # pyre-ignore[21] from test_utils import gpu_available, on_arm_platform else: from fbgemm_gpu.test.test_utils import gpu_available, on_arm_platform EMB_WEIGHT_UNIFORM_INIT_BOUND = 0.000316 MAX_EXAMPLES = 40 def div_round_up(a: int, b: int) -> int: return int((a + b - 1) // b) * b def to_device(t: torch.Tensor, use_cpu: bool) -> torch.Tensor: return t.cpu() if use_cpu else t.cuda() def get_table_batched_offsets_from_dense( merged_indices: torch.Tensor, use_cpu: bool = False ) -> Tuple[torch.Tensor, torch.Tensor]: (T, B, L) = merged_indices.size() lengths = np.ones((T, B)) * L flat_lengths = lengths.flatten() return ( to_device(merged_indices.contiguous().view(-1), use_cpu), to_device( torch.tensor(([0] + np.cumsum(flat_lengths).tolist())).long(), use_cpu, ), ) class SparseArch(nn.Module): """ The testing module with split table batched embedding op """ def __init__( self, emb_dim, num_tables, num_rows, use_cpu, ) -> None: super().__init__() pooling_mode = PoolingMode.SUM Ds = [emb_dim] * num_tables Es = [num_rows] * num_tables device = ComputeDevice.CPU if use_cpu else ComputeDevice.CUDA loc = EmbeddingLocation.HOST if use_cpu else EmbeddingLocation.DEVICE self.emb_module = SplitTableBatchedEmbeddingBagsCodegen( embedding_specs=[ ( E, D, loc, device, ) for (E, D) in zip(Es, Ds) ], weights_precision=SparseType.FP32, optimizer=OptimType.EXACT_SGD, learning_rate=0.05, pooling_mode=pooling_mode, ) self.emb_module.init_embedding_weights_uniform( -EMB_WEIGHT_UNIFORM_INIT_BOUND, +EMB_WEIGHT_UNIFORM_INIT_BOUND ) def forward(self, indices, offsets): return self.emb_module(indices, offsets) class QuantizedSplitEmbeddingsTest(unittest.TestCase): @given( T=st.integers(min_value=1, max_value=10), D=st.integers(min_value=2, max_value=128), B=st.integers(min_value=1, max_value=128), log_E=st.integers(min_value=3, max_value=5), L=st.integers(min_value=0, max_value=20), pooling_mode=st.sampled_from( [ PoolingMode.SUM, PoolingMode.MEAN, ] ), quantize_type=st.sampled_from( [ SparseType.FP32, SparseType.FP16, SparseType.FP8, SparseType.INT8, SparseType.INT4, SparseType.INT2, ] ), use_cpu=st.booleans() if gpu_available else st.just(True), pruning_ratio=st.sampled_from([None, 0.0]), ) @settings(verbosity=Verbosity.verbose, max_examples=MAX_EXAMPLES, deadline=None) def test_quantize_workflow( self, T: int, D: int, B: int, log_E: int, L: int, pooling_mode: PoolingMode, quantize_type: SparseType, pruning_ratio: Optional[float], use_cpu: bool, ) -> None: E = int(10**log_E) Es = [E] * T D_alignment = 8 if not quantize_type == SparseType.INT2 else 16 D = div_round_up(D, D_alignment) xs = [torch.randint(low=0, high=e, size=(B, L)) for e in Es] x = torch.cat([x.view(1, B, L) for x in xs], dim=0) # indices: T, B, L; offsets: T * B + 1 (indices, offsets) = get_table_batched_offsets_from_dense(x, use_cpu=use_cpu) sparse_arch = SparseArch(emb_dim=D, num_tables=T, num_rows=E, use_cpu=use_cpu) quantization_config = QuantizationConfig() # Fake quantize to make the original weight in FP32 all be exactly # representable by INT8 row-wise quantized values if quantize_type == quantize_type.INT8: for t in range(T): sparse_arch.emb_module.split_embedding_weights()[t].data.copy_( torch.ops.fbgemm.Fused8BitRowwiseQuantizedToFloat( torch.ops.fbgemm.FloatToFused8BitRowwiseQuantized( sparse_arch.emb_module.split_embedding_weights()[t].data ) ) ) elif quantize_type == quantize_type.INT4 or quantize_type == quantize_type.INT2: for t in range(T): sparse_arch.emb_module.split_embedding_weights()[t].data.copy_( torch.ops.fbgemm.FusedNBitRowwiseQuantizedSBHalfToFloat( torch.ops.fbgemm.FloatToFusedNBitRowwiseQuantizedSBHalf( sparse_arch.emb_module.split_embedding_weights()[t].data, bit_rate=quantize_type.bit_rate(), ), bit_rate=quantize_type.bit_rate(), ) ) elif quantize_type == SparseType.FP8: quantization_config = FP8QuantizationConfig(random.choice([4, 5]), 7) for t in range(T): sparse_arch.emb_module.split_embedding_weights()[t].data.copy_( torch.ops.fbgemm.HFP8QuantizedToFloat( torch.ops.fbgemm.FloatToHFP8Quantized( sparse_arch.emb_module.split_embedding_weights()[t].data, quantization_config.get("exponent_bits"), quantization_config.get("exponent_bias"), quantization_config.get("max_position"), ), quantization_config.get("exponent_bits"), quantization_config.get("exponent_bias"), ) ) emb_out = sparse_arch(indices, offsets) # B, T, D # Apply the quantization transformations on the model! split_emb_infer_converter = SplitEmbInferenceConverter( quantize_type=quantize_type, pruning_ratio=pruning_ratio, quantization_config=quantization_config, ) split_emb_infer_converter.convert_model(sparse_arch) assert type(sparse_arch.emb_module) is IntNBitTableBatchedEmbeddingBagsCodegen assert sparse_arch.emb_module.use_cpu == use_cpu quantized_emb_out = sparse_arch(indices.int(), offsets.int()) # B, T, D # Compare FP32 emb module vs. quantize_type (FP16, INT8, INT4, INT2) emb module torch.testing.assert_close( emb_out.float().cpu(), quantized_emb_out.float().cpu(), atol=1.0e-1, rtol=1.0e-1, ) @unittest.skipIf(*on_arm_platform) @given( use_cpu=st.booleans() if gpu_available else st.just(True), use_array_for_index_remapping=st.booleans(), quantize_type=st.sampled_from( [ SparseType.FP32, SparseType.FP16, SparseType.INT8, SparseType.INT4, SparseType.INT2, ] ), ) @settings(verbosity=Verbosity.verbose, max_examples=MAX_EXAMPLES, deadline=None) def test_l2_norm_pruning_workflow( self, use_cpu: bool, use_array_for_index_remapping: bool, quantize_type: SparseType, ) -> None: D = 128 T = 2 E = 5 indices = torch.Tensor([3, 0, 2, 2, 3, 4, 2]).int() offsets = torch.Tensor([0, 1, 4, 6, 7]).int() weights = [ (torch.Tensor([0.4, 0.1, -0.2, 0.2, 0.3]).float().view(E, 1)) * (torch.Tensor([1.0] * E * D).view(E, D)), (torch.Tensor([-0.8, 0.2, 0.5, -0.1, 0.9]).float().view(E, 1)) * (torch.Tensor([1.0] * E * D).view(E, D)), ] # Inputs for 3 test cases. Each row is used in one test case. pruning_ratios = [0.9, 0.5, 0.1] remapped_indices = [ torch.Tensor([0, 4]).int(), torch.Tensor([3, 0, 2, 2, 4, 2]).int(), indices, ] remapped_offsets = [ torch.Tensor([0, 0, 1, 2, 2]).int(), torch.Tensor([0, 1, 4, 5, 6]).int(), offsets, ] # Start to test. logging.info("use cpu = {}".format(use_cpu)) for pruning_ratio, remapped_index, remapped_offset in zip( pruning_ratios, remapped_indices, remapped_offsets ): logging.info("pruning ratio = {}.".format(pruning_ratio)) sparse_arch = SparseArch( emb_dim=D, num_tables=T, num_rows=E, use_cpu=use_cpu ) for idx in range(T): sparse_arch.emb_module.split_embedding_weights()[idx].copy_( weights[idx] ) emb_out = sparse_arch( to_device(remapped_index, use_cpu), to_device(remapped_offset, use_cpu) ) # B, T, D # Apply pruning / quantization transformations on the model! split_emb_infer_converter = SplitEmbInferenceConverter( quantize_type=quantize_type, pruning_ratio=pruning_ratio, use_array_for_index_remapping=use_array_for_index_remapping, ) split_emb_infer_converter.convert_model(sparse_arch) assert ( type(sparse_arch.emb_module) is IntNBitTableBatchedEmbeddingBagsCodegen ) assert sparse_arch.emb_module.use_cpu == use_cpu pruned_emb_out = sparse_arch( to_device(indices, use_cpu), to_device(offsets, use_cpu) ) # B, T, D # Compare FP32 emb module with remapped index vs. FP16 emb module with pruning torch.testing.assert_close( emb_out.float().cpu(), pruned_emb_out.float().cpu(), atol=1.0e-1, rtol=1.0e-1, ) @given( T=st.integers(min_value=1, max_value=10), D=st.integers(min_value=2, max_value=128), log_E=st.integers(min_value=3, max_value=5), pruning_ratio=st.floats(min_value=0.0, max_value=1.0, exclude_max=True), use_cpu=st.booleans() if gpu_available else st.just(True), use_array_for_index_remapping=st.booleans(), ) @settings(verbosity=Verbosity.verbose, max_examples=MAX_EXAMPLES, deadline=None) def test_pruning_workflow_large_scale( self, T: int, D: int, log_E: int, pruning_ratio: Optional[float], use_cpu: bool, use_array_for_index_remapping: bool, ) -> None: E = int(10**log_E) D_alignment = 8 D = div_round_up(D, D_alignment) sparse_arch = SparseArch(emb_dim=D, num_tables=T, num_rows=E, use_cpu=use_cpu) # Make sure that each row has a unique L2 norm. embedding_weights_before = sparse_arch.emb_module.split_embedding_weights() for weights in embedding_weights_before: for i in range(weights.size()[0]): weights[i].uniform_(i * 0.01, (i + 1) * 0.01) # Collect #rows before pruning. num_rows_before = [weight.size()[0] for weight in embedding_weights_before] # Apply pruning / quantization transformations on the model! split_emb_infer_converter = SplitEmbInferenceConverter( quantize_type=SparseType.FP16, pruning_ratio=pruning_ratio, use_array_for_index_remapping=use_array_for_index_remapping, ) split_emb_infer_converter.convert_model(sparse_arch) embedding_weights_after = sparse_arch.emb_module.split_embedding_weights() assert type(sparse_arch.emb_module) is IntNBitTableBatchedEmbeddingBagsCodegen assert sparse_arch.emb_module.use_cpu == use_cpu # Collect #rows after pruning. embedding_weights_after = sparse_arch.emb_module.split_embedding_weights() num_rows_after = [weight[0].size()[0] for weight in embedding_weights_after] # Check #rows after pruning aligns with the specified pruning ratio. self.assertEqual(len(num_rows_before), len(num_rows_after)) for before, after in zip(num_rows_before, num_rows_after): self.assertEqual( math.ceil(before * (1.0 - pruning_ratio)), # type: ignore after, msg="original_num_rows = {}, pruning ratio = {}".format( before, pruning_ratio ), ) if __name__ == "__main__": unittest.main()
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import logging import os import random import unittest from ctypes import c_float, c_int32, cast, POINTER, pointer from typing import Dict, Tuple import hypothesis.strategies as st import numpy as np import torch from fbgemm_gpu.split_embedding_configs import SparseType from hypothesis import assume, given, HealthCheck, settings, Verbosity from torch import Tensor try: # pyre-ignore[21] from fbgemm_gpu import open_source # noqa: F401 # pyre-ignore[21] from test_utils import ( # noqa: F401 bytes_to_half_floats, fused_rowwise_8bit_dequantize_reference, fused_rowwise_8bit_quantize_reference, fused_rowwise_nbit_quantize_dequantize_reference, fused_rowwise_nbit_quantize_reference, gpu_available, gpu_unavailable, symint_vector_unsupported, ) except Exception: torch.ops.load_library("//deeplearning/fbgemm/fbgemm_gpu:sparse_ops") torch.ops.load_library("//deeplearning/fbgemm/fbgemm_gpu:sparse_ops_cpu") from fbgemm_gpu.test.test_utils import ( bytes_to_half_floats, fused_rowwise_8bit_dequantize_reference, fused_rowwise_8bit_quantize_reference, fused_rowwise_nbit_quantize_dequantize_reference, fused_rowwise_nbit_quantize_reference, gpu_available, gpu_unavailable, symint_vector_unsupported, ) no_long_tests: bool = False class TestFused8BitRowwiseQuantizationConversion(unittest.TestCase): # pyre-fixme[56]: Pyre was not able to infer the type of argument # `hypothesis.strategies.integers($parameter$min_value = 0, $parameter$max_value = # 100)` to decorator factory `hypothesis.given`. @given( nrows=st.integers(min_value=0, max_value=100), ncols=st.integers(min_value=0, max_value=100), is_half=st.booleans(), test_float_or_half_op=st.booleans(), ) @settings(deadline=10000, suppress_health_check=[HealthCheck.filter_too_much]) def test_quantize_op( self, nrows: int, ncols: int, is_half: bool, test_float_or_half_op: bool, ) -> None: input_data = torch.rand(nrows, ncols).float() if is_half: input_data = torch.rand(nrows, ncols).half() if test_float_or_half_op: quantized_data = torch.ops.fbgemm.FloatOrHalfToFused8BitRowwiseQuantized( input_data ) else: if not is_half: quantized_data = torch.ops.fbgemm.FloatToFused8BitRowwiseQuantized( input_data ) else: quantized_data = torch.ops.fbgemm.HalfToFused8BitRowwiseQuantized( input_data ) if nrows == 0 or ncols == 0: assert quantized_data.numel() == nrows * ((ncols + 3) // 4 * 4 + 8) return reference = fused_rowwise_8bit_quantize_reference(input_data.float().numpy()) np.testing.assert_array_almost_equal(quantized_data.numpy(), reference) if gpu_available: input_data_gpu = input_data.cuda() if test_float_or_half_op: quantized_data_gpu = ( torch.ops.fbgemm.FloatOrHalfToFused8BitRowwiseQuantized( input_data_gpu ) ) else: if not is_half: quantized_data_gpu = ( torch.ops.fbgemm.FloatToFused8BitRowwiseQuantized( input_data_gpu ) ) else: quantized_data_gpu = ( torch.ops.fbgemm.HalfToFused8BitRowwiseQuantized(input_data_gpu) ) quantized_data_numpy = quantized_data_gpu.cpu().numpy() ncols_aligned = (ncols + 4 - 1) // 4 * 4 # compare quantized data np.testing.assert_allclose( quantized_data_numpy[:, :ncols], reference[:, :ncols], # Allow 1 mantissa bit difference (LSB) atol=1, ) # compare scales np.testing.assert_array_almost_equal( quantized_data_numpy[:, ncols_aligned : ncols_aligned + 4], reference[:, ncols : ncols + 4], ) # compare zero points np.testing.assert_array_equal( quantized_data_numpy[:, ncols_aligned + 4 : ncols_aligned + 8], reference[:, ncols + 4 : ncols + 8], ) # pyre-ignore [56]: Invalid decoration, was not able to infer the type of argument @given( nrows=st.integers(min_value=0, max_value=100), ncols=st.integers(min_value=0, max_value=100), is_output_half=st.booleans(), test_float_or_half_op=st.booleans(), ) @settings(deadline=10000, suppress_health_check=[HealthCheck.filter_too_much]) def test_quantize_and_dequantize_op( self, nrows: int, ncols: int, is_output_half: bool, test_float_or_half_op: bool, ) -> None: num_elem_per_byte = 1 input_data = torch.rand(nrows, ncols).float() if is_output_half: input_data = input_data.half() assume(ncols % (2 * num_elem_per_byte) == 0) if test_float_or_half_op: quantized_data = torch.ops.fbgemm.FloatOrHalfToFused8BitRowwiseQuantized( input_data ) dequantized_data = torch.ops.fbgemm.Fused8BitRowwiseQuantizedToFloatOrHalf( quantized_data, output_dtype=1 if is_output_half else 0, ) else: if not is_output_half: quantized_data = torch.ops.fbgemm.FloatToFused8BitRowwiseQuantized( input_data ) dequantized_data = torch.ops.fbgemm.Fused8BitRowwiseQuantizedToFloat( quantized_data ) else: quantized_data = torch.ops.fbgemm.HalfToFused8BitRowwiseQuantized( input_data ) dequantized_data = torch.ops.fbgemm.Fused8BitRowwiseQuantizedToHalf( quantized_data ) if nrows == 0 or ncols == 0: assert dequantized_data.numel() == 0 return reference = torch.from_numpy( fused_rowwise_8bit_dequantize_reference(quantized_data.numpy()) ) if not is_output_half: torch.testing.assert_close(dequantized_data.float(), reference.float()) else: torch.testing.assert_close(dequantized_data.half(), reference.half()) if gpu_available: input_data_gpu = input_data.cuda() if test_float_or_half_op: quantized_data_gpu = ( torch.ops.fbgemm.FloatOrHalfToFused8BitRowwiseQuantized( input_data_gpu ) ) dequantized_data_gpu = ( torch.ops.fbgemm.Fused8BitRowwiseQuantizedToFloatOrHalf( quantized_data_gpu, output_dtype=1 if is_output_half else 0, ) ) else: if not is_output_half: quantized_data_gpu = ( torch.ops.fbgemm.FloatToFused8BitRowwiseQuantized( input_data_gpu ) ) dequantized_data_gpu = ( torch.ops.fbgemm.Fused8BitRowwiseQuantizedToFloat( quantized_data_gpu ) ) else: quantized_data_gpu = ( torch.ops.fbgemm.HalfToFused8BitRowwiseQuantized(input_data_gpu) ) dequantized_data_gpu = ( torch.ops.fbgemm.Fused8BitRowwiseQuantizedToHalf( quantized_data_gpu ) ) dequantized_data_numpy = dequantized_data_gpu.cpu().numpy() dequantized_data_trimmed = torch.from_numpy( dequantized_data_numpy[:, :ncols] ) if not is_output_half: torch.testing.assert_close( dequantized_data_trimmed.float(), reference.float() ) else: torch.testing.assert_close( dequantized_data_trimmed.half(), reference.half() ) @unittest.skipIf(no_long_tests, "Slow test, requires buck build to run.") # noqa def test_quantize_and_dequantize_op_cuda_large_nrows(self) -> None: ncols = 256 nrows = 65540 input_data = torch.rand(nrows, ncols).float() quantized_data = torch.ops.fbgemm.FloatToFused8BitRowwiseQuantized(input_data) reference = torch.from_numpy( fused_rowwise_8bit_dequantize_reference(quantized_data.numpy()) ) if gpu_available: input_data_gpu = input_data.cuda() quantized_data_gpu = torch.ops.fbgemm.FloatToFused8BitRowwiseQuantized( input_data_gpu ) dequantized_data_gpu = torch.ops.fbgemm.Fused8BitRowwiseQuantizedToFloat( quantized_data_gpu ) reference = torch.from_numpy( fused_rowwise_8bit_dequantize_reference( quantized_data_gpu.cpu().numpy() ) ) # compare quantized data torch.testing.assert_close(dequantized_data_gpu.cpu(), reference) class TestMixedDimInt8DequantizationConversion(unittest.TestCase): # pyre-fixme[56]: Pyre was not able to infer the type of argument # Pyre was not able to infer the type of argument `not torch.cuda.is_available()` # to decorator factory `unittest.skipIf`. @unittest.skipIf(*gpu_unavailable) def test_mixed_dim_8bit_dequantize_op_empty(self) -> None: # assert that kernel return empty tensor and not failing with cuda error input_refs = torch.empty((0, 0), dtype=torch.uint8).cuda() D_offsets = torch.tensor([0]).cuda() mixed_dim_dequant_output = ( torch.ops.fbgemm.Fused8BitRowwiseQuantizedToFloatMixedDim( input_refs, D_offsets, SparseType.FP32.as_int() ) ) assert mixed_dim_dequant_output.numel() == 0 @unittest.skipIf(*gpu_unavailable) # pyre-fixme[56]: Pyre was not able to infer the type of argument # `hypothesis.strategies.integers($parameter$min_value = 0, $parameter$max_value = # 100)` to decorator factory `hypothesis.given`. @given( B=st.integers(min_value=1, max_value=100), T=st.integers(min_value=1, max_value=100), output_dtype=st.sampled_from([SparseType.FP32, SparseType.FP16]), min_dim=st.just(1), max_dim=st.just(100), ) @settings(deadline=10000, suppress_health_check=[HealthCheck.filter_too_much]) def test_mixed_dim_8bit_dequantize_op( self, B: int, T: int, output_dtype: SparseType, min_dim: int, max_dim: int, ) -> None: self.run_mixed_dim_8bit_dequantize_op_test(B, T, output_dtype, min_dim, max_dim) @unittest.skipIf(*gpu_unavailable) # pyre-fixme[56]: Pyre was not able to infer the type of argument # `hypothesis.strategies.integers($parameter$min_value = 0, $parameter$max_value = # 100)` to decorator factory `hypothesis.given`. @given( B=st.integers(min_value=1, max_value=100), T=st.integers(min_value=1, max_value=100), output_dtype=st.sampled_from([SparseType.FP32, SparseType.FP16]), min_dim=st.just(100), max_dim=st.just(1000), ) @settings(deadline=10000, suppress_health_check=[HealthCheck.filter_too_much]) def test_mixed_dim_8bit_dequantize_op_large_dims( self, B: int, T: int, output_dtype: SparseType, min_dim: int, max_dim: int, ) -> None: self.run_mixed_dim_8bit_dequantize_op_test(B, T, output_dtype, min_dim, max_dim) @unittest.skipIf(*gpu_unavailable) # pyre-fixme[56]: Pyre was not able to infer the type of argument # `hypothesis.strategies.integers($parameter$min_value = 0, $parameter$max_value = # 100)` to decorator factory `hypothesis.given`. @given( B=st.just(65540), T=st.just(5), output_dtype=st.just(SparseType.FP32), min_dim=st.just(1), max_dim=st.just(100), ) @settings(deadline=10000, suppress_health_check=[HealthCheck.filter_too_much]) def test_mixed_dim_8bit_dequantize_op_large_rows( self, B: int, T: int, output_dtype: SparseType, min_dim: int, max_dim: int, ) -> None: self.run_mixed_dim_8bit_dequantize_op_test(B, T, output_dtype, min_dim, max_dim) def run_mixed_dim_8bit_dequantize_op_test( self, B: int, T: int, output_dtype: SparseType, min_dim: int, max_dim: int, ) -> None: table_dims = [ random.randint(min_dim, max_dim) * 8 for _ in range(T) ] # assume table dimensions are multiples of 8 table_dims_with_qparams = [d + 8 for d in table_dims] D_offsets = ( torch.cumsum(torch.tensor([0] + table_dims_with_qparams), dim=0) .to(torch.int) .cuda() ) input_refs = [torch.randn((B, d)).cuda() for d in table_dims] input_refs_int8 = [ torch.ops.fbgemm.FloatToFused8BitRowwiseQuantized(t) for t in input_refs ] input_data = torch.concat(input_refs_int8, dim=1).contiguous() mixed_dim_dequant_output = ( torch.ops.fbgemm.Fused8BitRowwiseQuantizedToFloatMixedDim( input_data, D_offsets, output_dtype.as_int() ) ) table_output_split = [t + 8 for t in table_dims] output_ref = [] for output_i8 in torch.split(input_data, table_output_split, dim=1): output_ref.append( torch.ops.fbgemm.Fused8BitRowwiseQuantizedToFloat( output_i8.contiguous() ) ) output_ref_concat = torch.cat(output_ref, dim=1) if output_dtype == SparseType.FP16: output_ref_concat = output_ref_concat.half() torch.testing.assert_close(output_ref_concat, mixed_dim_dequant_output) class TestFusedNBitRowwiseQuantizationConversion(unittest.TestCase): # pyre-ignore [56]: Invalid decoration, was not able to infer the type of argument @given( nrows=st.integers(min_value=0, max_value=100), ncols=st.integers(min_value=0, max_value=100), bit_rate=st.sampled_from([2, 4]), is_half=st.booleans(), test_float_or_half_op=st.booleans(), ) @settings(deadline=10000, suppress_health_check=[HealthCheck.filter_too_much]) def test_quantize_op( self, nrows: int, ncols: int, bit_rate: int, is_half: bool, test_float_or_half_op: bool, ) -> None: assert 8 % bit_rate == 0 num_elem_per_byte = 8 // bit_rate assume(ncols % (2 * num_elem_per_byte) == 0) input_data = torch.rand(nrows, ncols).float() if is_half: input_data = input_data.half() if test_float_or_half_op: quantized_data = ( torch.ops.fbgemm.FloatOrHalfToFusedNBitRowwiseQuantizedSBHalf( input_data, bit_rate ) ) else: if not is_half: quantized_data = ( torch.ops.fbgemm.FloatToFusedNBitRowwiseQuantizedSBHalf( input_data, bit_rate ) ) else: quantized_data = torch.ops.fbgemm.HalfToFusedNBitRowwiseQuantizedSBHalf( input_data, bit_rate ) if nrows == 0 or ncols == 0: assert quantized_data.numel() == nrows * ( (ncols + bit_rate - 1) // bit_rate + 4 ) return quantized_data = quantized_data.numpy() reference = fused_rowwise_nbit_quantize_reference( input_data.float().numpy(), bit_rate ) interleaved_dim = ncols // num_elem_per_byte # compare quantized data np.testing.assert_array_equal( quantized_data[:, :interleaved_dim], reference[:, :interleaved_dim] ) # compare scales np.testing.assert_array_almost_equal( bytes_to_half_floats( quantized_data[:, interleaved_dim : interleaved_dim + 2] ), bytes_to_half_floats(reference[:, interleaved_dim : interleaved_dim + 2]), ) # compare zero points np.testing.assert_array_equal( quantized_data[:, interleaved_dim + 2], reference[:, interleaved_dim + 2] ) if gpu_available: input_data_gpu = input_data.cuda() if test_float_or_half_op: quantized_data_gpu = ( torch.ops.fbgemm.FloatOrHalfToFusedNBitRowwiseQuantizedSBHalf( input_data_gpu, bit_rate ) ) else: if not is_half: quantized_data_gpu = ( torch.ops.fbgemm.FloatToFusedNBitRowwiseQuantizedSBHalf( input_data_gpu, bit_rate ) ) else: quantized_data_gpu = ( torch.ops.fbgemm.HalfToFusedNBitRowwiseQuantizedSBHalf( input_data_gpu, bit_rate ) ) quantized_data_numpy = quantized_data_gpu.cpu().numpy() # compare quantized data np.testing.assert_array_equal( quantized_data_numpy[:, :ncols], reference[:, :ncols] ) # pyre-ignore [56]: Invalid decoration, was not able to infer the type of argument @given( nrows=st.integers(min_value=0, max_value=100), ncols=st.integers(min_value=0, max_value=100), bit_rate=st.sampled_from([2, 4]), is_output_half=st.booleans(), test_float_or_half_op=st.booleans(), ) @settings(deadline=10000, suppress_health_check=[HealthCheck.filter_too_much]) def test_quantize_and_dequantize_op( self, nrows: int, ncols: int, bit_rate: int, is_output_half: bool, test_float_or_half_op: bool, ) -> None: assert 8 % bit_rate == 0 num_elem_per_byte = 8 // bit_rate input_data = torch.rand(nrows, ncols).float() if is_output_half: input_data = input_data.half() assume(ncols % (2 * num_elem_per_byte) == 0) if test_float_or_half_op: quantized_data = ( torch.ops.fbgemm.FloatOrHalfToFusedNBitRowwiseQuantizedSBHalf( input_data, bit_rate ) ) dequantized_data = ( torch.ops.fbgemm.FusedNBitRowwiseQuantizedSBHalfToFloatOrHalf( quantized_data, bit_rate, output_dtype=1 if is_output_half else 0, ) ) else: if not is_output_half: quantized_data = ( torch.ops.fbgemm.FloatToFusedNBitRowwiseQuantizedSBHalf( input_data, bit_rate ) ) dequantized_data = ( torch.ops.fbgemm.FusedNBitRowwiseQuantizedSBHalfToFloat( quantized_data, bit_rate ) ) else: quantized_data = torch.ops.fbgemm.HalfToFusedNBitRowwiseQuantizedSBHalf( input_data, bit_rate ) dequantized_data = ( torch.ops.fbgemm.FusedNBitRowwiseQuantizedSBHalfToHalf( quantized_data, bit_rate ) ) if nrows == 0 or ncols == 0: assert dequantized_data.numel() == 0 return if not is_output_half: reference = torch.from_numpy( fused_rowwise_nbit_quantize_dequantize_reference( input_data.float().numpy(), bit_rate ) ) else: reference = torch.from_numpy( fused_rowwise_nbit_quantize_dequantize_reference( input_data.float().numpy(), bit_rate ) ).half() torch.testing.assert_close(dequantized_data, reference) if gpu_available: input_data_gpu = input_data.cuda() if test_float_or_half_op: quantized_data_gpu = ( torch.ops.fbgemm.FloatOrHalfToFusedNBitRowwiseQuantizedSBHalf( input_data_gpu, bit_rate ) ) dequantized_data_gpu = ( torch.ops.fbgemm.FusedNBitRowwiseQuantizedSBHalfToFloatOrHalf( quantized_data_gpu, bit_rate, output_dtype=1 if is_output_half else 0, ) ) else: if not is_output_half: quantized_data_gpu = ( torch.ops.fbgemm.FloatToFusedNBitRowwiseQuantizedSBHalf( input_data_gpu, bit_rate ) ) dequantized_data_gpu = ( torch.ops.fbgemm.FusedNBitRowwiseQuantizedSBHalfToFloat( quantized_data_gpu, bit_rate ) ) else: quantized_data_gpu = ( torch.ops.fbgemm.HalfToFusedNBitRowwiseQuantizedSBHalf( input_data_gpu, bit_rate ) ) dequantized_data_gpu = ( torch.ops.fbgemm.FusedNBitRowwiseQuantizedSBHalfToHalf( quantized_data_gpu, bit_rate ) ) # compare quantized data torch.testing.assert_close( dequantized_data_gpu.cpu().float(), dequantized_data.float() ) @unittest.skipIf(no_long_tests, "Slow test, requires buck build to run.") # noqa def test_quantize_and_dequantize_op_cuda_large_nrows(self) -> None: ncols = 256 bit_rate = 4 nrows = 65540 num_elem_per_byte = 8 // bit_rate input_data = torch.rand(nrows, ncols).float() assume(ncols % (2 * num_elem_per_byte) == 0) reference = torch.from_numpy( fused_rowwise_nbit_quantize_dequantize_reference( input_data.numpy(), bit_rate ) ) if gpu_available: input_data_gpu = input_data.cuda() quantized_data_gpu = ( torch.ops.fbgemm.FloatToFusedNBitRowwiseQuantizedSBHalf( input_data_gpu, bit_rate ) ) dequantized_data_gpu = ( torch.ops.fbgemm.FusedNBitRowwiseQuantizedSBHalfToFloat( quantized_data_gpu, bit_rate ) ) # compare quantized data torch.testing.assert_close(dequantized_data_gpu.cpu(), reference) class TestHFP8QuantizationConversion(unittest.TestCase): # min_pos is the minimal of denormal numbers # min_normal_pos is the minimal of normal numbers def _get_hfp8_dynamic_range( self, ebits: int, mbits: int, bias: int ) -> Tuple[int, int, int]: max_pos = (1 << ((1 << ebits) - 2 - bias)) * (2 - 2 ** (-mbits)) min_pos = 2 ** (1 - bias - mbits) min_normal_pos = 2 ** (1 - bias) return min_pos, max_pos, min_normal_pos def _get_hfp8_config( self, ) -> Tuple[int, int, Dict[int, int], Dict[int, int], Dict[int, int]]: # TODO: set up test for 1-5-2 format # TODO: parameterize ebits and mbits in unit test ebits = 4 mbits = 3 max_pos_dict = {} min_pos_dict = {} min_normal_pos_dict = {} for bias in [4, 5, 6, 7]: min_pos, max_pos, min_normal_pos = self._get_hfp8_dynamic_range( ebits, mbits, bias ) min_pos_dict[bias] = min_pos max_pos_dict[bias] = max_pos min_normal_pos_dict[bias] = min_normal_pos return ebits, mbits, min_pos_dict, max_pos_dict, min_normal_pos_dict def _test_conversion( self, input_data: Tensor, reference_data: Tensor, ebits: int, exponent_bias: int, max_pos: float, atol: float = 0.0, rtol: float = 1e-7, ) -> None: if torch.cuda.is_available(): input_data_gpu = input_data.cuda() quantized_data_gpu = torch.ops.fbgemm.FloatToHFP8Quantized( input_data_gpu, ebits, exponent_bias, max_pos ) dequantized_data_gpu = torch.ops.fbgemm.HFP8QuantizedToFloat( quantized_data_gpu, ebits, exponent_bias ) torch.testing.assert_close( dequantized_data_gpu.cpu(), reference_data, rtol=rtol, atol=atol ) # pyre-ignore [56] @given( nrows=st.integers(min_value=1, max_value=100), ncols=st.integers(min_value=1, max_value=100), exponent_bias=st.integers(min_value=4, max_value=7), ) @settings(deadline=10000, suppress_health_check=[HealthCheck.filter_too_much]) def test_quantize_and_dequantize_op( self, nrows: int, ncols: int, exponent_bias: int ) -> None: ebits, mbits, min_pos, max_pos, min_normal_pos = self._get_hfp8_config() # test positive normal range input_data = torch.FloatTensor((nrows, ncols)).uniform_( min_normal_pos[exponent_bias], max_pos[exponent_bias] ) self._test_conversion( input_data, input_data, ebits, exponent_bias, max_pos[exponent_bias], rtol=(2 ** (-mbits - 1)), atol=0, ) # test positive denormal range input_data = torch.FloatTensor((nrows, ncols)).uniform_( min_pos[exponent_bias], min_normal_pos[exponent_bias] ) self._test_conversion( input_data, input_data, ebits, exponent_bias, max_pos[exponent_bias], rtol=0.0, atol=(2 ** (1 - exponent_bias - mbits)), ) # test negative normal range input_data = torch.FloatTensor((nrows, ncols)).uniform_( -max_pos[exponent_bias], -min_normal_pos[exponent_bias] ) self._test_conversion( input_data, input_data, ebits, exponent_bias, max_pos[exponent_bias], rtol=(2 ** (-mbits - 1)), atol=0, ) # test negative denormal range input_data = torch.FloatTensor((nrows, ncols)).uniform_( -min_normal_pos[exponent_bias], -min_pos[exponent_bias] ) self._test_conversion( input_data, input_data, ebits, exponent_bias, max_pos[exponent_bias], rtol=0.0, atol=(2 ** (1 - exponent_bias - mbits)), ) # test positive underflow input_data = torch.FloatTensor((nrows, ncols)).uniform_( 0, 0.5 * min_pos[exponent_bias] ) self._test_conversion( input_data, input_data.new_full(input_data.shape, 0), ebits, exponent_bias, max_pos[exponent_bias], ) # test negative underflow input_data = torch.FloatTensor((nrows, ncols)).uniform_( -0.5 * min_pos[exponent_bias], 0 ) self._test_conversion( input_data, input_data.new_full(input_data.shape, 0), ebits, exponent_bias, max_pos[exponent_bias], ) # test positive overflow input_data = torch.FloatTensor((nrows, ncols)).uniform_( max_pos[exponent_bias], max_pos[exponent_bias] * 2 ) self._test_conversion( input_data, input_data.new_full(input_data.shape, max_pos[exponent_bias]), ebits, exponent_bias, max_pos[exponent_bias], ) # test negative overflow input_data = torch.FloatTensor((nrows, ncols)).uniform_( -max_pos[exponent_bias] * 2, -max_pos[exponent_bias] ) self._test_conversion( input_data, input_data.new_full(input_data.shape, -max_pos[exponent_bias]), ebits, exponent_bias, max_pos[exponent_bias], ) class TestDenseMLPQuantizationConversion(unittest.TestCase): @unittest.skipIf(*gpu_unavailable) # pyre-ignore [56]: Invalid decoration, was not able to infer the type of argument @given( nrows=st.integers(min_value=0, max_value=100), ncols=st.integers(min_value=0, max_value=100), ) @settings(deadline=10000, suppress_health_check=[HealthCheck.filter_too_much]) def test_quantize_op(self, nrows: int, ncols: int) -> None: ebits = 8 mbits = 7 bias = 127 max_pos = (1 << ((1 << ebits) - 2 - bias)) * (2 - 2 ** (-mbits)) min_pos = 2 ** (1 - bias - mbits) bounding_box_size = 16 print("MSFP parameters", bounding_box_size, ebits, mbits, bias) input_data = torch.rand(nrows, ncols).float() quantized_data = torch.ops.fbgemm.FloatToMSFPQuantized( input_data.cuda(), bounding_box_size, ebits, mbits, bias, min_pos, max_pos, ) dequantized_data = torch.ops.fbgemm.MSFPQuantizedToFloat( quantized_data.cuda(), ebits, mbits, bias ) torch.testing.assert_close(dequantized_data.cpu(), input_data, rtol=1, atol=0) class SparseNNOperatorsGPUTest(unittest.TestCase): # pyre-fixme[56]: Pyre was not able to infer the type of argument # `hypothesis.strategies.sampled_from(["BF16"])` to decorator factory # `hypothesis.given`. @given( precision=st.just("BF16"), batch_size=st.integers(min_value=1, max_value=256), k=st.integers(min_value=2, max_value=2), n=st.integers(min_value=2, max_value=2), ) def test_dense_mlp_quantize_ops( self, precision: str, batch_size: int, k: int, n: int ) -> None: if precision == "BF16": input_data = torch.rand((n, k), dtype=torch.float32) quantized_data = torch.ops.fbgemm.FloatToBfloat16Quantized(input_data) dequantized_data = torch.ops.fbgemm.Bfloat16QuantizedToFloat(quantized_data) torch.testing.assert_close( dequantized_data, input_data, rtol=1e-2, atol=1e-2 ) def bfloat_quantize(x_float: float) -> np.uint16: bits = cast(pointer(c_float(x_float)), POINTER(c_int32)).contents.value bits += 1 << 15 bits = bits >> 16 bits = np.uint16(bits) return bits def bfloat_dequantize(x_bfloat: np.uint16) -> float: bits = np.int32(x_bfloat) << 16 return cast(pointer(c_int32(bits)), POINTER(c_float)).contents.value class TestBfloat16QuantizationConversion(unittest.TestCase): # pyre-fixme[56]: Pyre was not able to infer the type of argument # `hypothesis.strategies.integers($parameter$min_value = 0, $parameter$max_value = # 100)` to decorator factory `hypothesis.given`. @given( nrows=st.integers(min_value=0, max_value=100), ncols=st.integers(min_value=0, max_value=100), ) @settings(deadline=10000, suppress_health_check=[HealthCheck.filter_too_much]) def test_quantize_op(self, nrows: int, ncols: int) -> None: input_data = torch.rand(nrows, ncols).float() quantized_data = torch.ops.fbgemm.FloatToBfloat16Quantized(input_data) if nrows == 0 or ncols == 0: assert quantized_data.numel() == 0 return f = np.vectorize(lambda x: bfloat_quantize(x)) reference = f(input_data.numpy()) quantized_data_uint16 = quantized_data.numpy() quantized_data_uint16.dtype = np.uint16 np.testing.assert_array_almost_equal(quantized_data_uint16, reference) if torch.cuda.is_available(): input_data_gpu = input_data.cuda() quantized_data_gpu = torch.ops.fbgemm.FloatToBfloat16Quantized( input_data_gpu ) quantized_data_numpy = quantized_data_gpu.cpu().numpy() quantized_data_numpy.dtype = np.uint16 np.testing.assert_allclose(quantized_data_numpy, reference) # pyre-fixme[56]: Pyre was not able to infer the type of argument # `hypothesis.strategies.integers($parameter$min_value = 0, $parameter$max_value = # 100)` to decorator factory `hypothesis.given`. @given( nrows=st.integers(min_value=0, max_value=100), ncols=st.integers(min_value=0, max_value=100), ) @settings(deadline=10000, suppress_health_check=[HealthCheck.filter_too_much]) def test_quantize_and_dequantize_op(self, nrows: int, ncols: int) -> None: input_data = torch.rand(nrows, ncols).float() quantized_data = torch.ops.fbgemm.FloatToBfloat16Quantized(input_data) dequantized_data = torch.ops.fbgemm.Bfloat16QuantizedToFloat(quantized_data) if nrows == 0 or ncols == 0: assert dequantized_data.numel() == 0 return f = np.vectorize(lambda x: bfloat_quantize(x)) ref_bfloat16 = f(input_data.numpy()) f = np.vectorize(lambda x: bfloat_dequantize(x)) ref_fp32 = torch.from_numpy(f(ref_bfloat16)).float() torch.testing.assert_close(dequantized_data, ref_fp32) if torch.cuda.is_available(): input_data_gpu = input_data.cuda() quantized_data_gpu = torch.ops.fbgemm.FloatToBfloat16Quantized( input_data_gpu ) dequantized_data_gpu = torch.ops.fbgemm.Bfloat16QuantizedToFloat( quantized_data_gpu ) # compare quantized data torch.testing.assert_close(dequantized_data_gpu.cpu(), ref_fp32) @unittest.skipIf(not torch.cuda.is_available(), "Skip when CUDA is not available") # pyre-fixme[56]: Pyre was not able to infer the type of argument # `hypothesis.strategies.sampled_from([(65540, 256), (256, 65540)])` to decorator # factory `hypothesis.given`. @given( ncols_nrows=st.sampled_from([(65540, 256), (256, 65540)]), ) @settings(deadline=10000, suppress_health_check=[HealthCheck.filter_too_much]) def test_quantize_and_dequantize_op_cuda_large_nrows_bf16( self, ncols_nrows: Tuple[int, int] ) -> None: ncols, nrows = ncols_nrows input_data = torch.rand(nrows, ncols).float() quantized_data = torch.ops.fbgemm.FloatToBfloat16Quantized(input_data) dequantized_data = torch.ops.fbgemm.Bfloat16QuantizedToFloat(quantized_data) if torch.cuda.is_available(): input_data_gpu = input_data.cuda() quantized_data_gpu = torch.ops.fbgemm.FloatToBfloat16Quantized( input_data_gpu ) dequantized_data_gpu = torch.ops.fbgemm.Bfloat16QuantizedToFloat( quantized_data_gpu ) # compare quantized data torch.testing.assert_close(dequantized_data_gpu.cpu(), dequantized_data) class TestFP8RowwiseQuantizationConversion(unittest.TestCase): enable_logging: bool = False def setUp(self) -> None: self.enable_logging = bool(os.getenv("FBGEMM_GPU_ENABLE_LOGGING", 0)) if self.enable_logging: logging.info("Enabled logging for TestFP8RowwiseQuantizationConversion") @unittest.skipIf(*gpu_unavailable) # pyre-fixme[56]: @given( batched=st.booleans(), bs=st.integers(min_value=1, max_value=100), m=st.integers(min_value=0, max_value=100), n=st.integers(min_value=0, max_value=100), forward=st.booleans(), given_last_dim=st.booleans(), dtype=st.sampled_from( [ torch.float, torch.half, torch.bfloat16, ], ), # if before PT 2.1, we don't support symint_vector, so turn it off test_compile=st.booleans() if symint_vector_unsupported() else st.just(False), ) @settings(verbosity=Verbosity.verbose, max_examples=10, deadline=None) def test_quantize_and_dequantize_op_fp8_rowwise( self, batched: bool, bs: int, m: int, n: int, forward: bool, given_last_dim: bool, dtype: torch.dtype, test_compile: bool, ) -> None: n = n * 4 # need (n % 4 == 0) input_data = ( torch.rand(bs, m, n, dtype=dtype) if batched else torch.rand(bs * m, n, dtype=dtype) ) input_data_gpu = input_data.cuda() quantized_data_gpu = torch.ops.fbgemm.FloatToFP8RowwiseQuantized( input_data_gpu, forward=forward ) quantize_func = ( torch.compile( torch.ops.fbgemm.FP8RowwiseQuantizedToFloat, dynamic=True, fullgraph=True, ) if test_compile else torch.ops.fbgemm.FP8RowwiseQuantizedToFloat ) if test_compile: torch._dynamo.mark_dynamic(quantized_data_gpu, 0) torch._dynamo.mark_dynamic(quantized_data_gpu, 1) dequantized_data_gpu = quantize_func( quantized_data_gpu, forward=forward, output_dtype=SparseType.FP32.as_int() if dtype == torch.float else ( SparseType.FP16.as_int() if dtype == torch.half else SparseType.BF16.as_int() ), ) if m == 0 or n == 0: assert dequantized_data_gpu.numel() == 0 return assert ( dequantized_data_gpu.dtype == dtype ), "result is {dequantized_data_gpu.dtype} type, but expected {dtype}" qref = input_data_gpu.float() dq = dequantized_data_gpu.float() if self.enable_logging: # Logging quantization errors errors = (qref - dq) / (qref + 1e-5) logging.info(f"max relative error {errors.abs().max()}") val, idx = torch.topk(errors.flatten().abs(), k=min(10, errors.shape[-1])) logging.info(f"top-10 errors {val}") logging.info(f"ref data {input_data_gpu.flatten()}") logging.info(f"dequantized data {dequantized_data_gpu.flatten()}") logging.info(f"max relative error {errors.flatten()[idx]}") torch.testing.assert_close(qref.cpu(), dq.cpu(), rtol=0.1, atol=0.05) if __name__ == "__main__": unittest.main()
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. # pyre-ignore-all-errors[56] import copy import random import unittest import fbgemm_gpu.ssd_split_table_batched_embeddings_ops as ssd_split_table_batched_embeddings_ops import hypothesis.strategies as st import numpy as np import torch from fbgemm_gpu.split_embedding_configs import SparseType from fbgemm_gpu.split_embedding_utils import ( b_indices, fake_quantize_embs, get_table_batched_offsets_from_dense, round_up, ) from fbgemm_gpu.split_table_batched_embeddings_ops_common import PoolingMode from fbgemm_gpu.split_table_batched_embeddings_ops_inference import ( rounded_row_size_in_bytes, unpadded_row_size_in_bytes, ) from hypothesis import given, settings, Verbosity MAX_EXAMPLES = 40 @unittest.skipIf(not torch.cuda.is_available(), "Skip when CUDA is not available") class SSDSplitTableBatchedEmbeddingsTest(unittest.TestCase): def test_ssd(self) -> None: import tempfile E = int(1e4) D = 128 N = 100 indices = torch.as_tensor(np.random.choice(E, replace=False, size=(N,))) weights = torch.randn(N, D) output_weights = torch.empty_like(weights) count = torch.tensor([N]) feature_table_map = list(range(1)) emb = ssd_split_table_batched_embeddings_ops.SSDTableBatchedEmbeddingBags( embedding_specs=[(E, D)], feature_table_map=feature_table_map, ssd_storage_directory=tempfile.mkdtemp(), cache_sets=1, ssd_uniform_init_lower=-0.1, ssd_uniform_init_upper=0.1, ) emb.ssd_db.get_cuda(indices, output_weights, count) torch.cuda.synchronize() assert (output_weights <= 0.1).all().item() assert (output_weights >= -0.1).all().item() emb.ssd_db.set_cuda(indices, weights, count, 1) emb.ssd_db.get_cuda(indices, output_weights, count) torch.cuda.synchronize() torch.testing.assert_close(weights, output_weights) @given( T=st.integers(min_value=1, max_value=10), D=st.integers(min_value=2, max_value=128), B=st.integers(min_value=1, max_value=128), log_E=st.integers(min_value=3, max_value=5), L=st.integers(min_value=0, max_value=20), weighted=st.booleans(), ) @settings(verbosity=Verbosity.verbose, max_examples=MAX_EXAMPLES, deadline=None) def test_ssd_forward( self, T: int, D: int, B: int, log_E: int, L: int, weighted: bool ) -> None: import tempfile E = int(10**log_E) D = D * 4 Ds = [D] * T Es = [E] * T feature_table_map = list(range(T)) emb = ssd_split_table_batched_embeddings_ops.SSDTableBatchedEmbeddingBags( embedding_specs=[(E, D) for (E, D) in zip(Es, Ds)], feature_table_map=feature_table_map, ssd_storage_directory=tempfile.mkdtemp(), cache_sets=max(T * B * L, 1), ssd_uniform_init_lower=-0.1, ssd_uniform_init_upper=0.1, ).cuda() bs = [ torch.nn.EmbeddingBag(E, D, mode="sum", sparse=True).cuda() for (E, D) in zip(Es, Ds) ] torch.manual_seed(42) xs = [torch.randint(low=0, high=e, size=(B, L)).cuda() for e in Es] xws = [torch.randn(size=(B, L)).cuda() for _ in range(T)] xws_acc_type = copy.deepcopy(xws) fs = ( [b_indices(b, x) for (b, x) in zip(bs, xs)] if not weighted else [ b_indices(b, x, per_sample_weights=xw.view(-1)) for (b, x, xw) in zip(bs, xs, xws) ] ) f = torch.cat([f.view(B, -1) for f in fs], dim=1) for t in range(T): emb.ssd_db.set_cuda( torch.arange(t * E, (t + 1) * E).to(torch.int64), bs[t].weight.cpu(), torch.as_tensor([E]), t, ) x = torch.cat([x.view(1, B, L) for x in xs], dim=0) xw = torch.cat([xw.view(1, B, L) for xw in xws_acc_type], dim=0) (indices, offsets) = get_table_batched_offsets_from_dense(x) fc2 = ( emb(indices.cuda(), offsets.cuda()) if not weighted else emb(indices.cuda(), offsets.cuda(), xw.contiguous().view(-1).cuda()) ) torch.testing.assert_close( fc2.float(), f.float(), atol=1.0e-5, rtol=1.0e-5, ) @given( T=st.integers(min_value=1, max_value=5), D=st.integers(min_value=2, max_value=128), B=st.integers(min_value=1, max_value=128), log_E=st.integers(min_value=3, max_value=5), L=st.integers(min_value=0, max_value=20), weighted=st.booleans(), ) @settings(verbosity=Verbosity.verbose, max_examples=MAX_EXAMPLES, deadline=None) def test_ssd_backward_adagrad( self, T: int, D: int, B: int, log_E: int, L: int, weighted: bool ) -> None: import tempfile E = int(10**log_E) D = D * 4 Ds = [D] * T Es = [E] * T lr = 0.5 eps = 0.2 feature_table_map = list(range(T)) emb = ssd_split_table_batched_embeddings_ops.SSDTableBatchedEmbeddingBags( embedding_specs=[(E, D) for (E, D) in zip(Es, Ds)], feature_table_map=feature_table_map, ssd_storage_directory=tempfile.mkdtemp(), cache_sets=max(T * B * L, 1), ssd_uniform_init_lower=-0.1, ssd_uniform_init_upper=0.1, learning_rate=lr, eps=eps, ssd_shards=2, ).cuda() bs = [ torch.nn.EmbeddingBag(E, D, mode="sum", sparse=True).cuda() for (E, D) in zip(Es, Ds) ] torch.manual_seed(42) xs = [torch.randint(low=0, high=e, size=(B, L)).cuda() for e in Es] xws = [torch.randn(size=(B, L)).cuda() for _ in range(T)] xws_acc_type = copy.deepcopy(xws) fs = ( [b_indices(b, x) for (b, x) in zip(bs, xs)] if not weighted else [ b_indices(b, x, per_sample_weights=xw.view(-1)) for (b, x, xw) in zip(bs, xs, xws) ] ) f = torch.cat([f.view(B, -1) for f in fs], dim=1) gos = [torch.randn_like(f) for f in fs] [f.backward(go) for (f, go) in zip(fs, gos)] for t in range(T): emb.ssd_db.set_cuda( torch.arange(t * E, (t + 1) * E).to(torch.int64), bs[t].weight.cpu(), torch.as_tensor([E]), t, ) x = torch.cat([x.view(1, B, L) for x in xs], dim=0) xw = torch.cat([xw.view(1, B, L) for xw in xws_acc_type], dim=0) (indices, offsets) = get_table_batched_offsets_from_dense(x) fc2 = ( emb(indices.cuda(), offsets.cuda()) if not weighted else emb(indices.cuda(), offsets.cuda(), xw.contiguous().view(-1).cuda()) ) torch.testing.assert_close( fc2.float(), f.float(), atol=1.0e-5, rtol=1.0e-5, ) fc2.backward(torch.cat([go.view(B, -1) for go in gos], dim=1)) split_optimizer_states = [s for (s,) in emb.debug_split_optimizer_states()] for t in range(T): # pyre-fixme[16]: Optional type has no attribute `float`. ref_optimizer_state = bs[t].weight.grad.float().to_dense().pow(2) torch.testing.assert_close( split_optimizer_states[t].float(), ref_optimizer_state.mean(dim=1), atol=1.0e-4, rtol=1.0e-4, ) emb.flush() for t in range(T): torch.testing.assert_close( emb.debug_split_embedding_weights()[t].float().cuda(), torch.addcdiv( bs[t].weight.float(), value=-lr, tensor1=bs[t].weight.grad.float().to_dense(), tensor2=split_optimizer_states[t] .float() .sqrt_() .add_(eps) .view(Es[t], 1), ), atol=1.0e-4, rtol=1.0e-4, ) @given( T=st.integers(min_value=1, max_value=10), D=st.integers(min_value=2, max_value=128), B=st.integers(min_value=1, max_value=128), log_E=st.integers(min_value=3, max_value=5), L=st.integers(min_value=0, max_value=20), weighted=st.booleans(), ) @settings(verbosity=Verbosity.verbose, max_examples=MAX_EXAMPLES, deadline=None) def test_ssd_cache( self, T: int, D: int, B: int, log_E: int, L: int, weighted: bool ) -> None: # T=2 # D=2 # B=9 # log_E=3 # L=14 # weighted=False import tempfile E = int(10**log_E) D = D * 4 Ds = [D] * T Es = [E] * T lr = 0.5 eps = 0.2 C = max(T * B * L, 1) feature_table_map = list(range(T)) emb = ssd_split_table_batched_embeddings_ops.SSDTableBatchedEmbeddingBags( embedding_specs=[(E, D) for (E, D) in zip(Es, Ds)], feature_table_map=feature_table_map, ssd_storage_directory=tempfile.mkdtemp(), cache_sets=C, ssd_uniform_init_lower=-0.1, ssd_uniform_init_upper=0.1, learning_rate=lr, eps=eps, ssd_shards=2, ).cuda() bs = [ torch.nn.EmbeddingBag(E, D, mode="sum", sparse=True).cuda() for (E, D) in zip(Es, Ds) ] torch.manual_seed(42) for t in range(T): emb.ssd_db.set_cuda( torch.arange(t * E, (t + 1) * E).to(torch.int64), bs[t].weight.cpu(), torch.as_tensor([E]), t, ) for i in range(10): xs = [torch.randint(low=0, high=e, size=(B, L)).cuda() for e in Es] x = torch.cat([x.view(1, B, L) for x in xs], dim=0) xws = [torch.randn(size=(B, L)).cuda() for _ in range(T)] xws_acc_type = copy.deepcopy(xws) xw = torch.cat([xw.view(1, B, L) for xw in xws_acc_type], dim=0) (indices, offsets) = get_table_batched_offsets_from_dense(x) (indices, offsets) = indices.cuda(), offsets.cuda() assert emb.timestep == i emb.prefetch(indices, offsets) linear_cache_indices = torch.ops.fbgemm.linearize_cache_indices( emb.hash_size_cumsum, indices, offsets, ) # Verify that prefetching twice avoids any actions. ( _, _, _, actions_count_gpu, ) = torch.ops.fbgemm.ssd_cache_populate_actions( # noqa linear_cache_indices, emb.total_hash_size, emb.lxu_cache_state, emb.timestep, 0, # prefetch_dist emb.lru_state, ) assert actions_count_gpu.item() == 0 lxu_cache_locations = torch.ops.fbgemm.lxu_cache_lookup( linear_cache_indices, emb.lxu_cache_state, emb.hash_size_cumsum[-1], ) lru_state_cpu = emb.lru_state.cpu() lxu_cache_state_cpu = emb.lxu_cache_state.cpu() NOT_FOUND = np.iinfo(np.int32).max ASSOC = 32 for loc, linear_idx in zip( lxu_cache_locations.cpu().numpy().tolist(), linear_cache_indices.cpu().numpy().tolist(), ): assert loc != NOT_FOUND # if we have a hit, check the cache is consistent loc_set = loc // ASSOC loc_slot = loc % ASSOC assert lru_state_cpu[loc_set, loc_slot] == emb.timestep assert lxu_cache_state_cpu[loc_set, loc_slot] == linear_idx fs = ( [b_indices(b, x) for (b, x) in zip(bs, xs)] if not weighted else [ b_indices(b, x, per_sample_weights=xw.view(-1)) for (b, x, xw) in zip(bs, xs, xws) ] ) f = torch.cat([f.view(B, -1) for f in fs], dim=1) fc2 = ( emb(indices, offsets) if not weighted else emb(indices, offsets, xw.contiguous().view(-1).cuda()) ) torch.testing.assert_close( fc2.float(), f.float(), atol=1.0e-5, rtol=1.0e-5, ) @unittest.skipIf(not torch.cuda.is_available(), "Skip when CUDA is not available") class SSDIntNBitTableBatchedEmbeddingsTest(unittest.TestCase): def test_nbit_ssd(self) -> None: import tempfile E = int(1e4) D = 128 N = 100 indices = torch.as_tensor(np.random.choice(E, replace=False, size=(N,))) weights = torch.empty(N, D, dtype=torch.uint8) output_weights = torch.empty_like(weights) count = torch.tensor([N]) feature_table_map = list(range(1)) emb = ( ssd_split_table_batched_embeddings_ops.SSDIntNBitTableBatchedEmbeddingBags( embedding_specs=[("", E, D, SparseType.FP32)], feature_table_map=feature_table_map, ssd_storage_directory=tempfile.mkdtemp(), cache_sets=1, ) ) emb.ssd_db.get_cuda(indices, output_weights, count) torch.cuda.synchronize() emb.ssd_db.set_cuda(indices, weights, count, 1) emb.ssd_db.get_cuda(indices, output_weights, count) torch.cuda.synchronize() torch.testing.assert_close(weights, output_weights) @given( T=st.integers(min_value=1, max_value=10), D=st.integers(min_value=2, max_value=128), B=st.integers(min_value=1, max_value=128), log_E=st.integers(min_value=3, max_value=5), L=st.integers(min_value=0, max_value=20), # FIXME: Disable positional weight due to numerical issues. weighted=st.just(False), weights_ty=st.sampled_from( [ SparseType.FP32, SparseType.FP16, SparseType.INT8, SparseType.INT4, SparseType.INT2, ] ), mixed_weights_ty=st.booleans(), ) @settings(verbosity=Verbosity.verbose, max_examples=MAX_EXAMPLES, deadline=None) def test_nbit_ssd_forward( self, T: int, D: int, B: int, log_E: int, L: int, weighted: bool, weights_ty: SparseType, mixed_weights_ty: bool, ) -> None: import tempfile if not mixed_weights_ty: weights_ty_list = [weights_ty] * T else: weights_ty_list = [ random.choice( [ SparseType.FP32, SparseType.FP16, SparseType.INT8, SparseType.INT4, SparseType.INT2, ] ) for _ in range(T) ] D_alignment = max( 1 if ty.bit_rate() % 8 == 0 else int(8 / ty.bit_rate()) for ty in weights_ty_list ) D = round_up(D, D_alignment) E = int(10**log_E) Ds = [D] * T Es = [E] * T row_alignment = 16 feature_table_map = list(range(T)) emb = ( ssd_split_table_batched_embeddings_ops.SSDIntNBitTableBatchedEmbeddingBags( embedding_specs=[ ("", E, D, W_TY) for (E, D, W_TY) in zip(Es, Ds, weights_ty_list) ], feature_table_map=feature_table_map, ssd_storage_directory=tempfile.mkdtemp(), cache_sets=max(T * B * L, 1), ssd_uniform_init_lower=-0.1, ssd_uniform_init_upper=0.1, pooling_mode=PoolingMode.SUM, ).cuda() ) # # NOTE: test TorchScript-compatible! # emb = torch.jit.script(emb) bs = [ torch.nn.EmbeddingBag(E, D, mode="sum", sparse=True).cuda() for (E, D) in zip(Es, Ds) ] torch.manual_seed(42) xs = [torch.randint(low=0, high=e, size=(B, L)).cuda() for e in Es] xws = [torch.randn(size=(B, L)).cuda() for _ in range(T)] xws_acc_type = copy.deepcopy(xws) for t in range(T): (weights, scale_shift) = emb.split_embedding_weights()[t] if scale_shift is not None: (E, R) = scale_shift.shape self.assertEqual(R, 4) scales = np.random.uniform(0.1, 1, size=(E,)).astype(np.float16) shifts = np.random.uniform(-2, 2, size=(E,)).astype(np.float16) scale_shift[:, :] = torch.tensor( np.stack([scales, shifts], axis=1).astype(np.float16).view(np.uint8) ) D_bytes = rounded_row_size_in_bytes( Ds[t], weights_ty_list[t], row_alignment ) copy_byte_tensor = torch.empty([E, D_bytes], dtype=torch.uint8) fake_quantize_embs( weights, scale_shift, bs[t].weight.detach(), weights_ty_list[t], use_cpu=False, ) if weights_ty_list[t] in [SparseType.FP32, SparseType.FP16, SparseType.FP8]: copy_byte_tensor[ :, : unpadded_row_size_in_bytes(Ds[t], weights_ty_list[t]), ] = weights # q_weights else: copy_byte_tensor[ :, emb.scale_bias_size_in_bytes : unpadded_row_size_in_bytes( Ds[t], weights_ty_list[t] ), ] = weights # q_weights copy_byte_tensor[ :, : emb.scale_bias_size_in_bytes ] = scale_shift # q_scale_shift emb.ssd_db.set_cuda( torch.arange(t * E, (t + 1) * E).to(torch.int64), copy_byte_tensor, torch.as_tensor([E]), t, ) torch.cuda.synchronize() fs = ( [b_indices(b, x) for (b, x) in zip(bs, xs)] if not weighted else [ b_indices(b, x, per_sample_weights=xw.view(-1)) for (b, x, xw) in zip(bs, xs, xws) ] ) f = torch.cat([f.view(B, -1) for f in fs], dim=1) x = torch.cat([x.view(1, B, L) for x in xs], dim=0) xw = torch.cat([xw.view(1, B, L) for xw in xws_acc_type], dim=0) (indices, offsets) = get_table_batched_offsets_from_dense(x) fc2 = ( emb(indices.cuda().int(), offsets.cuda().int()) if not weighted else emb( indices.cuda().int(), offsets.cuda().int(), xw.contiguous().view(-1).cuda(), ) ) torch.testing.assert_close( fc2.float(), f.float(), atol=1.0e-2, rtol=1.0e-2, equal_nan=True, ) @given( T=st.integers(min_value=1, max_value=10), D=st.integers(min_value=2, max_value=128), B=st.integers(min_value=1, max_value=128), log_E=st.integers(min_value=3, max_value=5), L=st.integers(min_value=0, max_value=20), weighted=st.booleans(), ) @settings(verbosity=Verbosity.verbose, max_examples=MAX_EXAMPLES, deadline=None) def test_nbit_ssd_cache( self, T: int, D: int, B: int, log_E: int, L: int, weighted: bool ) -> None: import tempfile weights_ty = random.choice( [ SparseType.FP32, SparseType.FP16, SparseType.INT8, SparseType.INT4, SparseType.INT2, ] ) D_alignment = ( 1 if weights_ty.bit_rate() % 8 == 0 else int(8 / weights_ty.bit_rate()) ) D = round_up(D, D_alignment) E = int(10**log_E) Ds = [D] * T Es = [E] * T weights_ty_list = [weights_ty] * T C = max(T * B * L, 1) row_alignment = 16 feature_table_map = list(range(T)) emb = ( ssd_split_table_batched_embeddings_ops.SSDIntNBitTableBatchedEmbeddingBags( embedding_specs=[ ("", E, D, W_TY) for (E, D, W_TY) in zip(Es, Ds, weights_ty_list) ], feature_table_map=feature_table_map, ssd_storage_directory=tempfile.mkdtemp(), cache_sets=C, ssd_uniform_init_lower=-0.1, ssd_uniform_init_upper=0.1, ssd_shards=2, pooling_mode=PoolingMode.SUM, ).cuda() ) # # NOTE: test TorchScript-compatible! # emb = torch.jit.script(emb) bs = [ torch.nn.EmbeddingBag(E, D, mode="sum", sparse=True).cuda() for (E, D) in zip(Es, Ds) ] torch.manual_seed(42) for t in range(T): (weights, scale_shift) = emb.split_embedding_weights()[t] if scale_shift is not None: (E, R) = scale_shift.shape self.assertEqual(R, 4) if weights_ty_list[t] == SparseType.INT2: scales = np.random.uniform(0.1, 1, size=(E,)).astype(np.float16) shifts = np.random.uniform(-2, 2, size=(E,)).astype(np.float16) if weights_ty_list[t] == SparseType.INT4: scales = np.random.uniform(0.01, 0.1, size=(E,)).astype(np.float16) shifts = np.random.uniform(-2, 2, size=(E,)).astype(np.float16) if weights_ty_list[t] == SparseType.INT8: scales = np.random.uniform(0.001, 0.01, size=(E,)).astype( np.float16 ) shifts = np.random.uniform(-2, 2, size=(E,)).astype(np.float16) scale_shift[:, :] = torch.tensor( np.stack([scales, shifts], axis=1).astype(np.float16).view(np.uint8) ) D_bytes = rounded_row_size_in_bytes( Ds[t], weights_ty_list[t], row_alignment ) copy_byte_tensor = torch.empty([E, D_bytes], dtype=torch.uint8) fake_quantize_embs( weights, scale_shift, bs[t].weight.detach(), weights_ty_list[t], use_cpu=False, ) if weights_ty_list[t] in [SparseType.FP32, SparseType.FP16, SparseType.FP8]: copy_byte_tensor[ :, : unpadded_row_size_in_bytes(Ds[t], weights_ty_list[t]), ] = weights # q_weights else: copy_byte_tensor[ :, emb.scale_bias_size_in_bytes : unpadded_row_size_in_bytes( Ds[t], weights_ty_list[t] ), ] = weights # q_weights copy_byte_tensor[ :, : emb.scale_bias_size_in_bytes ] = scale_shift # q_scale_shift emb.ssd_db.set_cuda( torch.arange(t * E, (t + 1) * E).to(torch.int64), copy_byte_tensor, torch.as_tensor([E]), t, ) torch.cuda.synchronize() for i in range(10): xs = [torch.randint(low=0, high=e, size=(B, L)).cuda() for e in Es] x = torch.cat([x.view(1, B, L) for x in xs], dim=0) xws = [torch.randn(size=(B, L)).cuda() for _ in range(T)] xws_acc_type = copy.deepcopy(xws) xw = torch.cat([xw.view(1, B, L) for xw in xws_acc_type], dim=0) (indices, offsets) = get_table_batched_offsets_from_dense(x) (indices, offsets) = indices.cuda(), offsets.cuda() assert emb.timestep_counter.get() == i emb.prefetch(indices, offsets) linear_cache_indices = torch.ops.fbgemm.linearize_cache_indices( emb.hash_size_cumsum, indices, offsets, ) # Verify that prefetching twice avoids any actions. ( _, _, _, actions_count_gpu, ) = torch.ops.fbgemm.ssd_cache_populate_actions( # noqa linear_cache_indices, emb.total_hash_size, emb.lxu_cache_state, emb.timestep_counter.get(), 0, # prefetch_dist emb.lru_state, ) assert actions_count_gpu.item() == 0 lxu_cache_locations = torch.ops.fbgemm.lxu_cache_lookup( linear_cache_indices, emb.lxu_cache_state, emb.hash_size_cumsum[-1], ) lru_state_cpu = emb.lru_state.cpu() lxu_cache_state_cpu = emb.lxu_cache_state.cpu() NOT_FOUND = np.iinfo(np.int32).max ASSOC = 32 for loc, linear_idx in zip( lxu_cache_locations.cpu().numpy().tolist(), linear_cache_indices.cpu().numpy().tolist(), ): assert loc != NOT_FOUND # if we have a hit, check the cache is consistent loc_set = loc // ASSOC loc_slot = loc % ASSOC assert lru_state_cpu[loc_set, loc_slot] == emb.timestep_counter.get() assert lxu_cache_state_cpu[loc_set, loc_slot] == linear_idx fs = ( [b_indices(b, x) for (b, x) in zip(bs, xs)] if not weighted else [ b_indices(b, x, per_sample_weights=xw.view(-1)) for (b, x, xw) in zip(bs, xs, xws) ] ) f = torch.cat([f.view(B, -1) for f in fs], dim=1) fc2 = ( emb(indices.cuda().int(), offsets.cuda().int()) if not weighted else emb( indices.cuda().int(), offsets.cuda().int(), xw.contiguous().view(-1).cuda(), ) ) torch.testing.assert_close( fc2.float(), f.float(), atol=1.0e-2, rtol=1.0e-2, )
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. # pyre-unsafe import unittest from typing import List, Optional, Tuple import torch from hypothesis import given, settings try: # pyre-ignore[21] from fbgemm_gpu import open_source # noqa: F401 # pyre-ignore[21] from test_utils import cpu_and_maybe_gpu except Exception: torch.ops.load_library("//deeplearning/fbgemm/fbgemm_gpu:input_combine") torch.ops.load_library("//deeplearning/fbgemm/fbgemm_gpu:input_combine_cpu") from fbgemm_gpu.test.test_utils import cpu_and_maybe_gpu DEFAULT_DEVICE = torch.device("cpu") class TBEInputPrepareReference(torch.nn.Module): def __init__(self, include_last_offsets: List[bool]) -> None: super().__init__() self.include_last_offsets = include_last_offsets def forward( # noqa C901 self, indices_list: List[torch.Tensor], offsets_list: List[torch.Tensor], per_sample_weights_list: List[torch.Tensor], batch_size: Optional[int] = None, ) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]: size = 0 assert len(indices_list) > 0 assert len(indices_list) == len(offsets_list) assert len(indices_list) == len(per_sample_weights_list) assert len(indices_list) == len(self.include_last_offsets) for i in range(len(self.include_last_offsets)): size += indices_list[i].size(0) assert indices_list[i].dim() == 1 assert offsets_list[i].dim() == 1 if per_sample_weights_list[i].numel() > 0: assert per_sample_weights_list[i].dim() == 1 assert indices_list[i].numel() == per_sample_weights_list[i].numel() combined_indices = torch.empty( size, dtype=torch.int32, device=indices_list[0].device, ) torch.cat(indices_list, out=combined_indices) offsets_starts = torch.zeros( [len(offsets_list) + 1], dtype=offsets_list[0].dtype, device=offsets_list[0].device, ) offsets_accs = torch.zeros( [len(offsets_list) + 1], dtype=offsets_list[0].dtype, device=offsets_list[0].device, ) for i, include_last_offset in enumerate(self.include_last_offsets): if include_last_offset: offsets_starts[i + 1] = offsets_starts[i] + offsets_list[i].size(0) - 1 else: offsets_starts[i + 1] = offsets_starts[i] + offsets_list[i].size(0) offsets_accs[i + 1] = offsets_accs[i] + indices_list[i].size(0) assert offsets_accs[-1] == combined_indices.size(0) combined_offsets_size: List[int] = ( [int(offsets_starts[-1].item()) + 1] if batch_size is None else [batch_size * len(offsets_list) + 1] ) combined_offsets = torch.zeros( combined_offsets_size, dtype=torch.int32, device=offsets_list[0].device, ) if batch_size is None: for i in range(len(self.include_last_offsets)): combined_offsets[offsets_starts[i] : offsets_starts[i + 1]] = ( offsets_list[i][: offsets_starts[i + 1] - offsets_starts[i]] + offsets_accs[i] ) else: for i in range(len(self.include_last_offsets)): cur_start = batch_size * i combined_offsets[ cur_start : cur_start + offsets_starts[i + 1] - offsets_starts[i] ] = ( offsets_list[i][: offsets_starts[i + 1] - offsets_starts[i]] + offsets_accs[i] ) cur_start = cur_start + offsets_starts[i + 1] - offsets_starts[i] for j in range(batch_size - offsets_starts[i + 1] + offsets_starts[i]): combined_offsets[cur_start + j] = ( indices_list[i].numel() + offsets_accs[i] ) combined_offsets[-1] = offsets_accs[-1] per_sample_weights: Optional[torch.Tensor] = None for i in range(len(self.include_last_offsets)): if per_sample_weights_list[i].size(0) > 0: per_sample_weights = torch.ones( combined_indices.size(0), dtype=per_sample_weights_list[i].dtype, device=per_sample_weights_list[i].device, ) break if per_sample_weights is not None: for i in range(len(self.include_last_offsets)): if per_sample_weights_list[i].size(0) > 0: per_sample_weights[ offsets_accs[i] : offsets_accs[i + 1] ] = per_sample_weights_list[i][:] # indices and offsets are required to be int32 for TBE return combined_indices, combined_offsets, per_sample_weights class InputCombineTest(unittest.TestCase): def _get_inputs(self, dtypes, device=DEFAULT_DEVICE): indices_list = [ torch.tensor([1, 2, 3], dtype=dtypes[0], device=device), torch.tensor([1, 2, 3, 4], dtype=dtypes[1], device=device), ] offsets_list = [ torch.tensor([0, 2], dtype=dtypes[0], device=device), torch.tensor([0, 1, 4], dtype=dtypes[1], device=device), ] include_last_offsets = [False, True] per_sample_weights = [ torch.tensor([1, 2, 1], dtype=torch.float, device=device), torch.tensor([1, 2, 1, 3], dtype=torch.float, device=device), ] empty_per_sample_weights = [ torch.tensor([], dtype=torch.float, device=device), torch.tensor([], dtype=torch.float, device=device), ] return ( indices_list, offsets_list, per_sample_weights, empty_per_sample_weights, include_last_offsets, ) def _run_test(self, dtypes) -> None: ( indices_list, offsets_list, per_sample_weights, empty_per_sample_weights, include_last_offsets, ) = self._get_inputs(dtypes) ref_mod = TBEInputPrepareReference(include_last_offsets) outputs = torch.ops.fbgemm.tbe_input_combine( indices_list, offsets_list, per_sample_weights, torch.BoolTensor(include_last_offsets), ) ref_outputs = ref_mod(indices_list, offsets_list, per_sample_weights) for i, j in zip(outputs, ref_outputs): torch.testing.assert_close(i, j) self.assertTrue(outputs[0].dtype == torch.int32) self.assertTrue(outputs[1].dtype == torch.int32) outputs = torch.ops.fbgemm.tbe_input_combine( indices_list, offsets_list, empty_per_sample_weights, torch.BoolTensor(include_last_offsets), ) ref_outputs = ref_mod(indices_list, offsets_list, empty_per_sample_weights) for i, j in zip(outputs[:-1], ref_outputs[:-1]): torch.testing.assert_close(i, j) self.assertTrue(j.dtype == torch.int32) self.assertTrue(outputs[0].dtype == torch.int32) self.assertTrue(outputs[1].dtype == torch.int32) self.assertTrue(outputs[-1].size(0) == 0) def _run_padding_fused_test(self, dtypes, batch_size) -> None: ( indices_list, offsets_list, per_sample_weights, empty_per_sample_weights, include_last_offsets, ) = self._get_inputs(dtypes) ref_mod = TBEInputPrepareReference(include_last_offsets) outputs = torch.ops.fbgemm.padding_fused_tbe_input_combine( indices_list, offsets_list, per_sample_weights, torch.BoolTensor(include_last_offsets), batch_size, ) ref_outputs = ref_mod( indices_list, offsets_list, per_sample_weights, batch_size ) for i, j in zip(outputs, ref_outputs): torch.testing.assert_close(i, j) self.assertTrue(outputs[0].dtype == torch.int32) self.assertTrue(outputs[1].dtype == torch.int32) outputs = torch.ops.fbgemm.padding_fused_tbe_input_combine( indices_list, offsets_list, empty_per_sample_weights, torch.BoolTensor(include_last_offsets), batch_size, ) ref_outputs = ref_mod( indices_list, offsets_list, empty_per_sample_weights, batch_size ) for i, j in zip(outputs[:-1], ref_outputs[:-1]): torch.testing.assert_close(i, j) self.assertTrue(j.dtype == torch.int32) self.assertTrue(outputs[0].dtype == torch.int32) self.assertTrue(outputs[1].dtype == torch.int32) self.assertTrue(outputs[-1].size(0) == 0) def _offsets_to_lengths( self, offsets, indices, include_last_offsets, device=DEFAULT_DEVICE ): if include_last_offsets: offsets_complete = offsets else: offsets_complete = torch.cat( [ offsets, torch.tensor([indices.numel()], dtype=offsets.dtype, device=device), ] ) return offsets_complete[1:] - offsets_complete[:-1] def _run_test_with_length(self, dtypes, device=DEFAULT_DEVICE) -> None: ( indices_list, offsets_list, per_sample_weights, empty_per_sample_weights, include_last_offsets, ) = self._get_inputs(dtypes, device=device) ref_mod = TBEInputPrepareReference(include_last_offsets) lengths_list = [ self._offsets_to_lengths( offsets, indices, include_last_offsets, device=device ) for offsets, indices, include_last_offsets in zip( offsets_list, indices_list, include_last_offsets ) ] outputs = torch.ops.fbgemm.tbe_input_combine_with_length( indices_list, lengths_list, per_sample_weights ) ref_outputs = ref_mod(indices_list, offsets_list, per_sample_weights) # indices self.assertTrue(ref_outputs[0].allclose(outputs[0])) # per sample weights self.assertTrue(ref_outputs[2].allclose(outputs[2])) ref_lengths = self._offsets_to_lengths(ref_outputs[1], ref_outputs[0], True) self.assertTrue(ref_lengths.allclose(outputs[1])) def _run_padding_fused_test_with_length(self, dtypes, batch_size) -> None: ( indices_list, offsets_list, per_sample_weights, empty_per_sample_weights, include_last_offsets, ) = self._get_inputs(dtypes) ref_mod = TBEInputPrepareReference(include_last_offsets) lengths_list = [ self._offsets_to_lengths(offsets, indices, include_last_offsets) for offsets, indices, include_last_offsets in zip( offsets_list, indices_list, include_last_offsets ) ] outputs = torch.ops.fbgemm.padding_fused_tbe_input_combine_with_length( indices_list, lengths_list, per_sample_weights, batch_size, ) ref_outputs = ref_mod( indices_list, offsets_list, per_sample_weights, batch_size ) # indices self.assertTrue(ref_outputs[0].allclose(outputs[0])) # per sample weights self.assertTrue(ref_outputs[2].allclose(outputs[2])) ref_lengths = self._offsets_to_lengths(ref_outputs[1], ref_outputs[0], True) self.assertTrue(ref_lengths.allclose(outputs[1])) def test_input_combine_int64(self) -> None: self._run_test((torch.int64, torch.int64)) def test_input_combine_int32(self) -> None: self._run_test((torch.int64, torch.int64)) def test_input_combined_mix(self) -> None: self._run_test((torch.int64, torch.int32)) @given(device=cpu_and_maybe_gpu()) @settings(deadline=None) def test_input_combine_int64_with_length(self, device: torch.device) -> None: self._run_test_with_length((torch.int64, torch.int64), device=device) @given(device=cpu_and_maybe_gpu()) @settings(deadline=None) def test_input_combine_int32_with_length(self, device: torch.device) -> None: self._run_test_with_length((torch.int32, torch.int32), device=device) @given(device=cpu_and_maybe_gpu()) @settings(deadline=None) def test_input_combine_mix_with_length(self, device: torch.device) -> None: self._run_test_with_length((torch.int64, torch.int32), device=device) def test_padding_fused_input_combine_int64(self) -> None: self._run_padding_fused_test((torch.int64, torch.int64), 64) def test_padding_fused_input_combine_int32(self) -> None: self._run_padding_fused_test((torch.int32, torch.int32), 64) def test_padding_fused_input_combined_mix(self) -> None: self._run_padding_fused_test((torch.int64, torch.int32), 64) def test_padding_fused_input_combine_int64_with_length(self) -> None: self._run_padding_fused_test_with_length((torch.int64, torch.int64), 64) def test_padding_fused_input_combine_int32_with_length(self) -> None: self._run_padding_fused_test_with_length((torch.int32, torch.int32), 64) def test_padding_fused_input_combined_mix_with_length(self) -> None: self._run_padding_fused_test_with_length((torch.int64, torch.int32), 64) if __name__ == "__main__": unittest.main()
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. # pyre-ignore-all-errors[56] import contextlib import functools import itertools import logging import random import unittest from itertools import accumulate from typing import Any, Callable, Dict, List, Optional, Tuple, Type, Union import hypothesis.strategies as st import numpy as np import torch from hypothesis import given, settings, Verbosity try: # pyre-ignore[21] from fbgemm_gpu import open_source # noqa: F401 # pyre-ignore[21] from test_utils import gpu_available, gpu_unavailable, skipIfRocm except Exception: torch.ops.load_library("//deeplearning/fbgemm/fbgemm_gpu:sparse_ops") torch.ops.load_library("//deeplearning/fbgemm/fbgemm_gpu:sparse_ops_cpu") torch.ops.load_library("//deeplearning/fbgemm/fbgemm_gpu/codegen:index_select_ops") from fbgemm_gpu.test.test_utils import gpu_available, gpu_unavailable, skipIfRocm def unbucketize_indices_value( bucketized_indices: torch.Tensor, bucketized_lengths: torch.Tensor, block_sizes: torch.Tensor, W: int, B: int, ) -> torch.Tensor: block_size_expand = torch.empty_like(bucketized_indices) bucket_expand = torch.empty_like(bucketized_indices) T = block_sizes.size()[0] offset = 0 for w in range(W): for t in range(T): for b in range(B): seg_length = bucketized_lengths[w * T * B + t * B + b] for i in range(offset, offset + seg_length): block_size_expand[i] = block_sizes[t] bucket_expand[i] = w offset += seg_length return bucket_expand * block_size_expand + bucketized_indices def get_n_rand_num_summing_to_k(n: int, k: int) -> np.ndarray: """Get a list of `n` integers which collectively sum to `k`, drawn uniformly from the set of all such lists. Args: n - The number of integers in the result list k - The value they should sum to """ # There are a lot of ways to do this wrong, probably including # the ones you've just thought of. I think the following does # it correctly, though. if n == 0: return np.array([]) return np.random.multinomial(k, np.ones(n) / n, size=1)[0] @torch.jit.script def permute_scripted( permute: torch.Tensor, lengths: torch.Tensor, indices: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]: ( permuted_lengths_cpu, permuted_indices_cpu, permuted_weights_cpu, ) = torch.ops.fbgemm.permute_2D_sparse_data(permute, lengths, indices, None, None) return ( permuted_lengths_cpu, permuted_indices_cpu, permuted_weights_cpu, ) class SparseOpsTest(unittest.TestCase): @staticmethod def permute_indices_ref_( lengths: torch.Tensor, indices: torch.Tensor, weights: Optional[torch.Tensor], permute: torch.LongTensor, is_1D: bool = False, ) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]: T = lengths.size(0) B = lengths.size(1) if T == 0 or B == 0: if is_1D: lengths = lengths.view(-1) return lengths, indices, weights if is_1D: permuted_lengths = torch.index_select(lengths.view(-1), 0, permute).view(-1) original_segment_lengths = lengths.view(-1) original_segment_start = [0] + list(accumulate(lengths.view(-1))) permuted_indices = [] permuted_weights = [] for i in range(permute.numel()): start = original_segment_start[permute[i]] end = start + original_segment_lengths[permute[i]] permuted_indices.append(indices[start:end]) if weights is not None: permuted_weights.append(weights[start:end]) permuted_indices = torch.cat(permuted_indices, dim=0).flatten() if weights is None: permuted_weights = None else: permuted_weights = torch.cat(permuted_weights, dim=0).flatten() else: permuted_lengths = torch.index_select(lengths.view(T, -1), 0, permute) original_segment_lengths = lengths.view(T, -1).sum(dim=1, dtype=torch.int32) original_segment_start = [0] + list( accumulate(original_segment_lengths.view(-1)) ) permuted_indices = [] permuted_weights = [] for i in range(permute.size(0)): start = original_segment_start[permute[i]] end = start + original_segment_lengths[permute[i]] permuted_indices.append(indices[start:end]) if weights is not None: permuted_weights.append(weights[start:end]) permuted_indices = torch.cat(permuted_indices, dim=0).flatten() if weights is None: permuted_weights = None else: permuted_weights = torch.cat(permuted_weights, dim=0).flatten() return permuted_lengths, permuted_indices, permuted_weights @given( B=st.integers(min_value=0, max_value=20), T=st.integers(min_value=0, max_value=20), L=st.integers(min_value=2, max_value=20), long_index=st.booleans(), has_weight=st.booleans(), is_1D=st.booleans(), W=st.integers(min_value=4, max_value=8), ) @settings(verbosity=Verbosity.verbose, max_examples=20, deadline=None) def test_permute_indices( self, B: int, T: int, L: int, long_index: bool, has_weight: bool, is_1D: bool, W: int, ) -> None: index_dtype = torch.int64 if long_index else torch.int32 length_splits: Optional[List[torch.Tensor]] = None if is_1D: if B == 0: batch_sizes = [0] * W else: batch_sizes = [random.randint(a=1, b=B) for i in range(W)] length_splits = [ torch.randint(low=1, high=L, size=(T, batch_sizes[i])).type(index_dtype) for i in range(W) ] lengths = torch.cat(length_splits, dim=1) else: lengths = torch.randint(low=1, high=L, size=(T, B)).type(index_dtype) # pyre-fixme[6]: For 1st param expected `Union[List[int], Size, # typing.Tuple[int, ...]]` but got `Union[bool, float, int]`. weights = torch.rand(lengths.sum().item()).float() if has_weight else None indices = torch.randint( low=1, high=int(1e5), # pyre-fixme[6]: Expected `Union[int, typing.Tuple[int, ...]]` for 3rd # param but got `Tuple[typing.Union[float, int]]`. size=(lengths.sum().item(),), ).type(index_dtype) if is_1D: permute_list = [] offset_w = [0] + list( # pyre-fixme[16] accumulate([length_split.numel() for length_split in length_splits]) ) for t in range(T): for w in range(W): for b in range(batch_sizes[w]): permute_list.append(offset_w[w] + t * batch_sizes[w] + b) else: permute_list = list(range(T)) random.shuffle(permute_list) permute = torch.IntTensor(permute_list) if is_1D: ( permuted_lengths_cpu, permuted_indices_cpu, permuted_weights_cpu, ) = torch.ops.fbgemm.permute_1D_sparse_data( permute, lengths, indices, weights, None ) else: ( permuted_lengths_cpu, permuted_indices_cpu, permuted_weights_cpu, ) = torch.ops.fbgemm.permute_2D_sparse_data( permute, lengths, indices, weights, None ) ( permuted_lengths_ref, permuted_indices_ref, permuted_weights_ref, # pyre-fixme[6]: For 4th param expected `LongTensor` but got `Tensor`. ) = self.permute_indices_ref_(lengths, indices, weights, permute.long(), is_1D) torch.testing.assert_close(permuted_indices_cpu, permuted_indices_ref) torch.testing.assert_close(permuted_lengths_cpu, permuted_lengths_ref) if has_weight: torch.testing.assert_close(permuted_weights_cpu, permuted_weights_ref) else: assert permuted_weights_cpu is None and permuted_weights_ref is None if gpu_available: if is_1D: ( permuted_lengths_gpu, permuted_indices_gpu, permuted_weights_gpu, ) = torch.ops.fbgemm.permute_1D_sparse_data( permute.cuda(), lengths.cuda(), indices.cuda(), # pyre-fixme[16]: `Optional` has no attribute `cuda`. weights.cuda() if has_weight else None, None, ) else: ( permuted_lengths_gpu, permuted_indices_gpu, permuted_weights_gpu, ) = torch.ops.fbgemm.permute_2D_sparse_data( permute.cuda(), lengths.cuda(), indices.cuda(), weights.cuda() if has_weight else None, None, ) torch.testing.assert_close(permuted_indices_gpu.cpu(), permuted_indices_cpu) torch.testing.assert_close(permuted_lengths_gpu.cpu(), permuted_lengths_cpu) if has_weight: torch.testing.assert_close( permuted_weights_gpu.cpu(), permuted_weights_cpu ) else: assert permuted_weights_gpu is None # TorchScript has different behaviors than eager mode. We can see undefined # models returned. So we need to add a unittest to ensure the op return # real None, not an undefined tensor. def test_permute_indices_scripted_with_none_weights( self, ) -> None: index_dtype = torch.int32 lengths = torch.randint(low=1, high=2, size=(1, 1)).type(index_dtype) weights = None indices = torch.randint( low=1, high=int(1e5), # pyre-fixme[6]: Expected `Union[int, typing.Tuple[int, ...]]` for 3rd # param but got `Tuple[typing.Union[float, int]]`. size=(lengths.sum().item(),), ).type(index_dtype) permute_list = list(range(1)) random.shuffle(permute_list) permute = torch.IntTensor(permute_list) ( permuted_lengths_cpu, permuted_indices_cpu, permuted_weights_cpu, ) = permute_scripted(permute, lengths, indices) ( permuted_lengths_ref, permuted_indices_ref, permuted_weights_ref, # pyre-fixme[6]: For 4th param expected `LongTensor` but got `Tensor`. ) = self.permute_indices_ref_(lengths, indices, weights, permute.long(), False) self.assertTrue(torch.equal(permuted_indices_cpu, permuted_indices_ref)) self.assertTrue(torch.equal(permuted_lengths_cpu, permuted_lengths_ref)) self.assertEqual(permuted_weights_cpu, None) self.assertEqual(permuted_weights_ref, None) @given( permute_size=st.integers(min_value=30, max_value=1000), long_index=st.booleans(), ) @settings(verbosity=Verbosity.verbose, max_examples=20, deadline=None) def test_invert_permute( self, permute_size: int, long_index: bool, ) -> None: index_dtype = torch.int64 if long_index else torch.int32 permute_list = list(range(permute_size)) random.shuffle(permute_list) inversed_permute_list = [0] * len(permute_list) for i in range(permute_size): inversed_permute_list[permute_list[i]] = i permute = torch.IntTensor(permute_list).type(index_dtype) inverse_permute_ref = torch.IntTensor(inversed_permute_list).type(index_dtype) inverse_permute_cpu = torch.ops.fbgemm.invert_permute(permute) torch.testing.assert_close(inverse_permute_cpu, inverse_permute_ref) if gpu_available: inverse_permute_gpu = torch.ops.fbgemm.invert_permute(permute.cuda()) torch.testing.assert_close(inverse_permute_gpu.cpu(), inverse_permute_cpu) @given( B=st.integers(min_value=1, max_value=20), T=st.integers(min_value=1, max_value=20), L=st.integers(min_value=2, max_value=20), long_index=st.booleans(), has_weight=st.booleans(), ) @settings(verbosity=Verbosity.verbose, max_examples=10, deadline=None) def test_permute_indices_with_repeats( self, B: int, T: int, L: int, long_index: bool, has_weight: bool ) -> None: index_dtype = torch.int64 if long_index else torch.int32 lengths = torch.randint(low=1, high=L, size=(T, B)).type(index_dtype) # pyre-fixme[6]: For 1st param expected `Union[List[int], Size, # typing.Tuple[int, ...]]` but got `Union[bool, float, int]`. weights = torch.rand(lengths.sum().item()).float() if has_weight else None indices = torch.randint( low=1, high=int(1e5), # pyre-fixme[6]: Expected `Union[int, typing.Tuple[int, ...]]` for 3rd # param but got `Tuple[typing.Union[float, int]]`. size=(lengths.sum().item(),), ).type(index_dtype) permute_list = list(range(T)) num_repeats = random.randint(0, T) for _ in range(num_repeats): permute_list.append(random.randint(0, T - 1)) random.shuffle(permute_list) permute = torch.IntTensor(permute_list) ( permuted_lengths_cpu, permuted_indices_cpu, permuted_weights_cpu, ) = torch.ops.fbgemm.permute_2D_sparse_data(permute, lengths, indices, weights) ( permuted_lengths_ref, permuted_indices_ref, permuted_weights_ref, # pyre-fixme[6]: For 4th param expected `LongTensor` but got `Tensor`. ) = self.permute_indices_ref_(lengths, indices, weights, permute.long()) torch.testing.assert_close(permuted_indices_cpu, permuted_indices_ref) torch.testing.assert_close(permuted_lengths_cpu, permuted_lengths_ref) if has_weight: torch.testing.assert_close(permuted_weights_cpu, permuted_weights_ref) else: assert permuted_weights_cpu is None and permuted_weights_ref is None if gpu_available: ( permuted_lengths_gpu, permuted_indices_gpu, permuted_weights_gpu, ) = torch.ops.fbgemm.permute_2D_sparse_data( permute.cuda(), lengths.cuda(), indices.cuda(), # pyre-fixme[16]: `Optional` has no attribute `cuda`. weights.cuda() if has_weight else None, ) torch.testing.assert_close(permuted_indices_gpu.cpu(), permuted_indices_cpu) torch.testing.assert_close(permuted_lengths_gpu.cpu(), permuted_lengths_cpu) if has_weight: torch.testing.assert_close( permuted_weights_gpu.cpu(), permuted_weights_cpu ) else: assert permuted_weights_cpu is None @staticmethod def permute_embeddings_( permute_fn: Callable[..., Tuple[torch.Tensor, ...]], *args: Any, ) -> Tuple[torch.Tensor, torch.Tensor]: if permute_fn == torch.ops.fbgemm.permute_2D_sparse_data: permuted_lengths, permuted_embeddings, _ = permute_fn(*args, None) return permuted_lengths, permuted_embeddings else: return permute_fn(*args) @given( B=st.integers(min_value=1, max_value=20), T=st.integers(min_value=1, max_value=20), L=st.integers(min_value=2, max_value=20), long_index=st.booleans(), permute_fn=st.sampled_from( [ torch.ops.fbgemm.permute_2D_sparse_data, torch.ops.fbgemm.permute_sequence_embeddings, ] ), ) @settings(verbosity=Verbosity.verbose, max_examples=10, deadline=None) def test_permute_embeddings( self, B: int, T: int, L: int, long_index: bool, permute_fn: Callable[..., Tuple[torch.Tensor, ...]], ) -> None: index_dtype = torch.int64 if long_index else torch.int32 lengths = torch.randint(low=1, high=L, size=(T, B)).type(index_dtype) # pyre-fixme[6]: For 1st param expected `Union[List[int], Size, # typing.Tuple[int, ...]]` but got `Union[bool, float, int]`. embeddings = torch.rand(lengths.sum().item()).float() permute_list = list(range(T)) random.shuffle(permute_list) permute = torch.IntTensor(permute_list) (permuted_lengths_cpu, permuted_embeddings_cpu) = self.permute_embeddings_( permute_fn, permute, lengths, embeddings ) ( permuted_lengths_ref, permuted_embeddings_ref, _, # pyre-fixme[6]: For 4th param expected `LongTensor` but got `Tensor`. ) = self.permute_indices_ref_(lengths, embeddings, None, permute.long()) torch.testing.assert_close(permuted_embeddings_cpu, permuted_embeddings_ref) torch.testing.assert_close(permuted_lengths_cpu, permuted_lengths_ref) if gpu_available: (permuted_lengths_gpu, permuted_embeddings_gpu) = self.permute_embeddings_( permute_fn, permute.cuda(), lengths.cuda(), embeddings.cuda(), ) torch.testing.assert_close( permuted_embeddings_gpu.cpu(), permuted_embeddings_cpu ) torch.testing.assert_close(permuted_lengths_gpu.cpu(), permuted_lengths_cpu) @given( long_indices=st.booleans(), use_cpu=st.booleans() if gpu_available else st.just(True), ) @settings(verbosity=Verbosity.verbose, max_examples=16, deadline=None) def test_block_bucketize_sparse_features_long_indices( self, long_indices: bool, use_cpu: bool ) -> None: bucketize_pos = False sequence = False index_type = torch.long if long_indices else torch.int # 3 GPUs my_size = 3 block_sizes = torch.tensor([3, 4, 5], dtype=index_type) if not long_indices: lengths = torch.tensor([0, 3, 2, 0, 1, 4], dtype=index_type) indices = torch.tensor([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], dtype=index_type) new_lengths_ref = torch.tensor( [0, 2, 0, 0, 0, 0, 0, 1, 2, 0, 1, 3, 0, 0, 0, 0, 0, 1], dtype=index_type ) new_indices_ref = torch.tensor( [1, 2, 0, 0, 1, 1, 2, 3, 4, 0], dtype=index_type ) else: lengths = torch.tensor([0, 3, 2, 0, 1, 4], dtype=index_type) # Test long and negative indices: -8 will be casted to 18446644015555759292 indices = torch.tensor( [1, 2, 3, 100061827127359, 5, 6, 7, -8, 100058153792324, 10], dtype=index_type, ) new_lengths_ref = torch.tensor( [0, 2, 0, 0, 0, 0, 0, 1, 2, 0, 1, 1, 0, 0, 0, 0, 0, 3], dtype=index_type ) new_indices_ref = torch.tensor( [ 1, 2, 0, 33353942375786, # 100061827127359/3 = 33353942375786 1, 1, 2, 6148914691236517202, # -8 cast to 18446644015555759292, 18446644015555759292 /3 = 6148914691236517202 33352717930774, # 100058153792324/3 = 33352717930774 0, ], dtype=index_type, ) ( new_lengths_cpu, new_indices_cpu, new_weights_cpu, new_pos_cpu, unbucketize_permute_cpu, ) = torch.ops.fbgemm.block_bucketize_sparse_features( lengths, indices, bucketize_pos, sequence, block_sizes, my_size, None, ) torch.testing.assert_close(new_lengths_cpu, new_lengths_ref) torch.testing.assert_close(new_indices_cpu, new_indices_ref) if not use_cpu: ( new_lengths_gpu, new_indices_gpu, new_weights_gpu, new_pos_gpu, unbucketize_permute_gpu, ) = torch.ops.fbgemm.block_bucketize_sparse_features( lengths.cuda(), indices.cuda(), bucketize_pos, sequence, block_sizes.cuda(), my_size, None, ) torch.testing.assert_close(new_lengths_gpu.cpu(), new_lengths_ref) torch.testing.assert_close(new_indices_gpu.cpu(), new_indices_ref) torch.testing.assert_close(new_lengths_gpu.cpu(), new_lengths_cpu) torch.testing.assert_close(new_indices_gpu.cpu(), new_indices_cpu) @given( n=st.integers(min_value=1, max_value=100), long_index=st.booleans(), ) @settings(verbosity=Verbosity.verbose, max_examples=20, deadline=None) def test_cumsum(self, n: int, long_index: bool) -> None: index_dtype = torch.int64 if long_index else torch.int32 np_index_dtype = np.int64 if long_index else np.int32 # cpu tests x = torch.randint(low=0, high=100, size=(n,)).type(index_dtype) ze = torch.ops.fbgemm.asynchronous_exclusive_cumsum(x) zi = torch.ops.fbgemm.asynchronous_inclusive_cumsum(x) zc = torch.ops.fbgemm.asynchronous_complete_cumsum(x) torch.testing.assert_close( torch.from_numpy(np.cumsum(x.cpu().numpy()).astype(np_index_dtype)), zi.cpu(), ) torch.testing.assert_close( torch.from_numpy( (np.cumsum([0] + x.cpu().numpy().tolist())[:-1]).astype(np_index_dtype) ), ze.cpu(), ) torch.testing.assert_close( torch.from_numpy( (np.cumsum([0] + x.cpu().numpy().tolist())).astype(np_index_dtype) ), zc.cpu(), ) # meta tests mx = torch.randint(low=0, high=100, size=(n,)).type(index_dtype).to("meta") # mze = torch.ops.fbgemm.asynchronous_exclusive_cumsum(mx) # mzi = torch.ops.fbgemm.asynchronous_inclusive_cumsum(mx) mzc = torch.ops.fbgemm.asynchronous_complete_cumsum(mx) # self.assertEqual(ze.size(), mze.size()) # self.assertEqual(zi.size(), mzi.size()) self.assertEqual(zc.size(), mzc.size()) if gpu_available: x = x.cuda() ze = torch.ops.fbgemm.asynchronous_exclusive_cumsum(x) zi = torch.ops.fbgemm.asynchronous_inclusive_cumsum(x) zc = torch.ops.fbgemm.asynchronous_complete_cumsum(x) torch.testing.assert_close( torch.from_numpy(np.cumsum(x.cpu().numpy()).astype(np_index_dtype)), zi.cpu(), ) torch.testing.assert_close( torch.from_numpy( (np.cumsum([0] + x.cpu().numpy().tolist())[:-1]).astype( np_index_dtype ) ), ze.cpu(), ) torch.testing.assert_close( torch.from_numpy( (np.cumsum([0] + x.cpu().numpy().tolist())).astype(np_index_dtype) ), zc.cpu(), ) @given( n=st.integers(min_value=1, max_value=600), b=st.integers(min_value=1, max_value=10), long_index=st.booleans(), ) @settings(verbosity=Verbosity.verbose, max_examples=20, deadline=None) def test_asynchronous_complete_cumsum_2d( self, n: int, b: int, long_index: bool ) -> None: index_dtype = torch.int64 if long_index else torch.int32 def test_asynchronous_complete_cumsum_2d_helper(x: torch.Tensor) -> None: np_index_dtype = np.int64 if long_index else np.int32 zc = torch.ops.fbgemm.asynchronous_complete_cumsum(x) zeros = torch.zeros(b, 1) torch.testing.assert_close( torch.from_numpy( np.cumsum( torch.concat([zeros, x.cpu()], dim=1).numpy(), axis=1 ).astype(np_index_dtype) ), zc.cpu(), ) x = torch.randint(low=0, high=100, size=(b, n)).type(index_dtype) # cpu test test_asynchronous_complete_cumsum_2d_helper(x) if gpu_available: # gpu test test_asynchronous_complete_cumsum_2d_helper(x.cuda()) @given( N=st.integers(min_value=1, max_value=20), offsets_type=st.sampled_from([torch.int32, torch.int64]), ) @settings(verbosity=Verbosity.verbose, max_examples=20, deadline=None) def test_offsets_range( self, N: int, # pyre-fixme[11]: Annotation `int32` is not defined as a type. # pyre-fixme[11]: Annotation `int64` is not defined as a type. offsets_type: "Union[Type[torch.int32], Type[torch.int64]]", ) -> None: lengths = np.array([np.random.randint(low=0, high=20) for _ in range(N)]) offsets = np.cumsum(np.concatenate(([0], lengths)))[:-1] range_ref = torch.from_numpy( np.concatenate([np.arange(size) for size in lengths]) ) output_size = np.sum(lengths) offsets_cpu = torch.tensor(offsets, dtype=offsets_type) range_cpu = torch.ops.fbgemm.offsets_range(offsets_cpu, output_size) range_ref = range_ref.to(range_cpu.dtype) torch.testing.assert_close(range_cpu, range_ref, rtol=0, atol=0) if gpu_available: range_gpu = torch.ops.fbgemm.offsets_range(offsets_cpu.cuda(), output_size) range_ref = range_ref.to(range_gpu.dtype) torch.testing.assert_close(range_gpu.cpu(), range_ref, rtol=0, atol=0) @given( index_type=st.sampled_from([torch.int, torch.long]), has_weight=st.booleans(), bucketize_pos=st.booleans(), sequence=st.booleans(), ) @settings(verbosity=Verbosity.verbose, max_examples=16, deadline=None) def test_block_bucketize_sparse_features( self, index_type: Type[torch.dtype], has_weight: bool, bucketize_pos: bool, sequence: bool, ) -> None: B = 2 # pyre-ignore [6] lengths = torch.tensor([0, 2, 1, 3, 2, 3, 3, 1], dtype=index_type) indices = torch.tensor( [3, 4, 15, 11, 28, 29, 1, 10, 11, 12, 13, 11, 22, 20, 20], # pyre-ignore [6] dtype=index_type, ) weights = ( torch.tensor( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, ], dtype=torch.float, ) if has_weight else None ) # pyre-ignore [6] block_sizes = torch.tensor([5, 15, 10, 20], dtype=index_type) my_size = 2 new_lengths_ref = torch.tensor( [0, 2, 0, 1, 1, 0, 1, 0, 0, 0, 1, 2, 1, 3, 2, 1], # pyre-ignore [6] dtype=index_type, ) new_indices_ref = torch.tensor( [3, 4, 11, 1, 11, 0, 13, 14, 0, 1, 2, 3, 2, 0, 0], # pyre-ignore [6] dtype=index_type, ) new_weights_ref = torch.tensor( [ 1.0, 2.0, 4.0, 7.0, 12.0, 3.0, 5.0, 6.0, 8.0, 9.0, 10.0, 11.0, 13.0, 14.0, 15.0, ], dtype=torch.float, ) new_pos_ref = torch.tensor( [0, 1, 0, 0, 0, 0, 1, 2, 1, 0, 1, 2, 1, 2, 0], # pyre-ignore [6] dtype=index_type, ) ( new_lengths_cpu, new_indices_cpu, new_weights_cpu, new_pos_cpu, unbucketize_permute, ) = torch.ops.fbgemm.block_bucketize_sparse_features( lengths, indices, bucketize_pos, sequence, block_sizes, my_size, weights ) torch.testing.assert_close(new_lengths_cpu, new_lengths_ref, rtol=0, atol=0) torch.testing.assert_close(new_indices_cpu, new_indices_ref, rtol=0, atol=0) if has_weight: torch.testing.assert_close(new_weights_cpu, new_weights_ref) if bucketize_pos: torch.testing.assert_close(new_pos_cpu, new_pos_ref) if sequence: value_unbucketized_indices = unbucketize_indices_value( new_indices_cpu, new_lengths_cpu, block_sizes, my_size, B ) unbucketized_indices = torch.index_select( value_unbucketized_indices, 0, unbucketize_permute ) torch.testing.assert_close(unbucketized_indices, indices, rtol=0, atol=0) if gpu_available: ( new_lengths_gpu, new_indices_gpu, new_weights_gpu, new_pos_gpu, unbucketize_permute_gpu, ) = torch.ops.fbgemm.block_bucketize_sparse_features( lengths.cuda(), indices.cuda(), bucketize_pos, sequence, block_sizes.cuda(), my_size, # pyre-fixme[16]: `Optional` has no attribute `cuda`. weights.cuda() if has_weight else None, ) torch.testing.assert_close( new_lengths_gpu.cpu(), new_lengths_ref, rtol=0, atol=0 ) torch.testing.assert_close( new_indices_gpu.cpu(), new_indices_ref, rtol=0, atol=0 ) if has_weight: torch.testing.assert_close(new_weights_gpu.cpu(), new_weights_cpu) if bucketize_pos: torch.testing.assert_close(new_pos_gpu.cpu(), new_pos_cpu) if sequence: value_unbucketized_indices = unbucketize_indices_value( new_indices_gpu.cpu(), new_lengths_gpu.cpu(), block_sizes, my_size, B, ) unbucketized_indices = torch.index_select( value_unbucketized_indices, 0, unbucketize_permute_gpu.cpu() ) torch.testing.assert_close( unbucketized_indices, indices, rtol=0, atol=0 ) @given( index_type=st.sampled_from([torch.int, torch.long]), has_weight=st.booleans(), bucketize_pos=st.booleans(), ) @settings(verbosity=Verbosity.verbose, max_examples=2, deadline=None) def test_bucketize_sparse_features( self, index_type: Type[torch.dtype], has_weight: bool, bucketize_pos: bool, ) -> None: # pyre-ignore [6] lengths = torch.tensor([0, 2, 1, 3], dtype=index_type) # pyre-ignore [6] indices = torch.tensor([10, 10, 15, 20, 25, 30], dtype=index_type) weights = ( torch.tensor([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], dtype=torch.float) if has_weight else None ) # pyre-ignore [6] new_lengths_ref = torch.tensor([0, 2, 0, 2, 0, 0, 1, 1], dtype=index_type) # pyre-ignore [6] new_indices_ref = torch.tensor([5, 5, 10, 15, 7, 12], dtype=index_type) new_weights_ref = torch.tensor( [1.0, 2.0, 4.0, 6.0, 3.0, 5.0], dtype=torch.float ) # pyre-ignore [6] new_pos_ref = torch.tensor([0, 1, 0, 2, 0, 1], dtype=index_type) ( new_lengths_cpu, new_indices_cpu, new_weights_cpu, new_pos_cpu, ) = torch.ops.fbgemm.bucketize_sparse_features( lengths, indices, bucketize_pos, 2, weights ) torch.testing.assert_close(new_lengths_cpu, new_lengths_ref, rtol=0, atol=0) torch.testing.assert_close(new_indices_cpu, new_indices_ref, rtol=0, atol=0) if has_weight: torch.testing.assert_close(new_weights_cpu, new_weights_ref) if bucketize_pos: torch.testing.assert_close(new_pos_cpu, new_pos_ref) if gpu_available: ( new_lengths_gpu, new_indices_gpu, new_weights_gpu, new_pos_gpu, ) = torch.ops.fbgemm.bucketize_sparse_features( lengths.cuda(), indices.cuda(), bucketize_pos, 2, # pyre-fixme[16]: `Optional` has no attribute `cuda`. weights.cuda() if has_weight else None, ) torch.testing.assert_close( new_lengths_gpu.cpu(), new_lengths_ref, rtol=0, atol=0 ) torch.testing.assert_close( new_indices_gpu.cpu(), new_indices_ref, rtol=0, atol=0 ) if has_weight: torch.testing.assert_close(new_weights_gpu.cpu(), new_weights_cpu) if bucketize_pos: torch.testing.assert_close(new_pos_gpu.cpu(), new_pos_cpu) @unittest.skipIf(*gpu_unavailable) @given( B=st.integers(min_value=1, max_value=20), T=st.integers(min_value=1, max_value=20), L=st.integers(min_value=2, max_value=20), A=st.integers(min_value=1, max_value=20), Dtype=st.sampled_from([torch.int32, torch.float, torch.int64]), broadcast_lengths=st.booleans(), ) @settings(verbosity=Verbosity.verbose, max_examples=20, deadline=None) def test_reorder_batched_ad_lengths( self, B: int, T: int, L: int, A: int, Dtype: torch.dtype, broadcast_lengths: bool, ) -> None: if broadcast_lengths: cat_ad_lengths = ( torch.cat([torch.tensor([L for _ in range(T)]) for _ in range(B)], 0) .cuda() .to(Dtype) ) cat_ad_lengths_broadcasted = cat_ad_lengths.tile([A]) else: cat_ad_lengths = ( torch.cat( [torch.tensor([L for _ in range(T * A)]) for _ in range(B)], 0 ) .cuda() .to(Dtype) ) cat_ad_lengths_broadcasted = cat_ad_lengths batch_offsets = torch.tensor([A * b for b in range(B + 1)]).int().cuda() num_ads_in_batch = B * A reordered_batched_ad_lengths = torch.ops.fbgemm.reorder_batched_ad_lengths( cat_ad_lengths, batch_offsets, num_ads_in_batch, broadcast_lengths ) torch.testing.assert_close( cat_ad_lengths_broadcasted, reordered_batched_ad_lengths ) cat_ad_lengths_cpu = cat_ad_lengths.cpu() batch_offsets_cpu = batch_offsets.cpu() reordered_batched_ad_lengths_cpu = torch.ops.fbgemm.reorder_batched_ad_lengths( cat_ad_lengths_cpu, batch_offsets_cpu, num_ads_in_batch, broadcast_lengths ) torch.testing.assert_close( reordered_batched_ad_lengths_cpu, reordered_batched_ad_lengths.cpu() ) @given( B=st.integers(min_value=1, max_value=20), T=st.integers(min_value=1, max_value=20), L=st.integers(min_value=2, max_value=20), A=st.integers(min_value=1, max_value=20), Dtype=st.sampled_from([torch.int32, torch.float, torch.int64]), broadcast_lengths=st.booleans(), ) @settings(verbosity=Verbosity.verbose, max_examples=40, deadline=None) def test_reorder_batched_ad_lengths_cpu( self, B: int, T: int, L: int, A: int, Dtype: torch.dtype, broadcast_lengths: bool, ) -> None: if broadcast_lengths: cat_ad_lengths = ( torch.cat([torch.tensor([L for _ in range(T)]) for _ in range(B)], 0) .int() .to(Dtype) ) cat_ad_lengths_broadcasted = cat_ad_lengths.tile([A]) else: cat_ad_lengths = ( torch.cat( [torch.tensor([L for _ in range(T * A)]) for _ in range(B)], 0 ) .int() .to(Dtype) ) cat_ad_lengths_broadcasted = cat_ad_lengths batch_offsets = torch.tensor([A * b for b in range(B + 1)]).int() num_ads_in_batch = B * A reordered_batched_ad_lengths = torch.ops.fbgemm.reorder_batched_ad_lengths( cat_ad_lengths, batch_offsets, num_ads_in_batch, broadcast_lengths ) torch.testing.assert_close( cat_ad_lengths_broadcasted, reordered_batched_ad_lengths ) @unittest.skipIf(*gpu_unavailable) @given( B=st.integers(min_value=1, max_value=20), T=st.integers(min_value=1, max_value=20), L=st.integers(min_value=2, max_value=20), A=st.integers(min_value=1, max_value=20), Dtype=st.sampled_from([torch.int32, torch.float, torch.int64]), Itype=st.sampled_from([torch.int32, torch.int64]), broadcast_indices=st.booleans(), ) @settings(verbosity=Verbosity.verbose, max_examples=20, deadline=None) def test_reorder_batched_ad_indices( self, B: int, T: int, L: int, A: int, Dtype: torch.dtype, Itype: torch.dtype, broadcast_indices: bool, ) -> None: if broadcast_indices: cat_ad_indices = ( torch.randint( low=0, high=100, size=(B * T * L,), ) .int() .cuda() .to(Dtype) ) cat_ad_lengths = ( torch.cat( [torch.tensor([L for _ in range(T)]) for _ in range(B)], 0, ) .int() .cuda() ) cat_ad_lengths_broadcasted = cat_ad_lengths.tile([A]) else: cat_ad_indices = ( torch.randint( low=0, high=100, size=(B * T * A * L,), ) .int() .cuda() .to(Dtype) ) cat_ad_lengths = ( torch.cat( [torch.tensor([L for _ in range(T * A)]) for _ in range(B)], 0, ) .int() .cuda() ) cat_ad_lengths_broadcasted = cat_ad_lengths batch_offsets = torch.tensor([A * b for b in range(B + 1)]).int().cuda() num_ads_in_batch = B * A reordered_cat_ad_lengths = torch.ops.fbgemm.reorder_batched_ad_lengths( cat_ad_lengths, batch_offsets, num_ads_in_batch, broadcast_indices ) torch.testing.assert_close(cat_ad_lengths_broadcasted, reordered_cat_ad_lengths) cat_ad_offsets = torch.ops.fbgemm.asynchronous_complete_cumsum( cat_ad_lengths ).to(Itype) reordered_cat_ad_offsets = torch.ops.fbgemm.asynchronous_complete_cumsum( reordered_cat_ad_lengths ).to(Itype) reordered_cat_ad_indices = torch.ops.fbgemm.reorder_batched_ad_indices( cat_ad_offsets, cat_ad_indices, reordered_cat_ad_offsets, batch_offsets, num_ads_in_batch, broadcast_indices, B * T * A * L, ) torch.testing.assert_close( reordered_cat_ad_indices.view(T, B, A, L).permute(1, 0, 2, 3), cat_ad_indices.view(B, T, 1, L).tile([1, 1, A, 1]) if broadcast_indices else cat_ad_indices.view(B, T, A, L), ) @given( B=st.integers(min_value=1, max_value=20), T=st.integers(min_value=1, max_value=20), L=st.integers(min_value=2, max_value=20), A=st.integers(min_value=1, max_value=20), Dtype=st.sampled_from([torch.int32, torch.float, torch.int64]), Itype=st.sampled_from([torch.int32, torch.int64]), broadcast_indices=st.booleans(), ) @settings(verbosity=Verbosity.verbose, max_examples=20, deadline=None) def test_cat_reorder_batched_ad_indices_cpu( self, B: int, T: int, L: int, A: int, Dtype: torch.dtype, Itype: torch.dtype, broadcast_indices: bool, ) -> None: if broadcast_indices: ad_indices = [ ( torch.randint( low=0, high=100, size=(T * L,), ) .int() .to(Dtype) ) for _ in range(B) ] cat_ad_lengths = torch.cat( [torch.tensor([L for _ in range(T)]) for _ in range(B)], 0, ).int() cat_ad_lengths_broadcasted = cat_ad_lengths.tile([A]) cat_ad_indices = torch.cat(ad_indices, 0) else: ad_indices = [ ( torch.randint( low=0, high=100, size=(T * A * L,), ) .int() .to(Dtype) ) for _ in range(B) ] cat_ad_lengths = torch.cat( [torch.tensor([L for _ in range(T * A)]) for _ in range(B)], 0, ).int() cat_ad_lengths_broadcasted = cat_ad_lengths cat_ad_indices = torch.cat(ad_indices, 0) batch_offsets = torch.tensor([A * b for b in range(B + 1)]).int() num_ads_in_batch = B * A reordered_cat_ad_lengths = torch.ops.fbgemm.reorder_batched_ad_lengths( cat_ad_lengths, batch_offsets, num_ads_in_batch, broadcast_indices ) torch.testing.assert_close(cat_ad_lengths_broadcasted, reordered_cat_ad_lengths) cat_ad_offsets = torch.ops.fbgemm.asynchronous_complete_cumsum( cat_ad_lengths ).to(Itype) reordered_cat_ad_offsets = torch.ops.fbgemm.asynchronous_complete_cumsum( reordered_cat_ad_lengths ).to(Itype) reordered_cat_ad_indices = torch.ops.fbgemm.cat_reorder_batched_ad_indices( cat_ad_offsets, ad_indices, reordered_cat_ad_offsets, batch_offsets, num_ads_in_batch, broadcast_indices, B * T * A * L, ) torch.testing.assert_close( reordered_cat_ad_indices.view(T, B, A, L).permute(1, 0, 2, 3), cat_ad_indices.view(B, T, 1, L).tile([1, 1, A, 1]) if broadcast_indices else cat_ad_indices.view(B, T, A, L), ) @given( B=st.integers(min_value=1, max_value=20), T=st.integers(min_value=1, max_value=20), L=st.integers(min_value=2, max_value=20), A=st.integers(min_value=1, max_value=20), Dtype=st.sampled_from([torch.int32, torch.float, torch.int64]), Itype=st.sampled_from([torch.int32, torch.int64]), broadcast_indices=st.booleans(), ) @settings(verbosity=Verbosity.verbose, max_examples=40, deadline=None) def test_reorder_batched_ad_indices_cpu( self, B: int, T: int, L: int, A: int, Dtype: torch.dtype, Itype: torch.dtype, broadcast_indices: bool, ) -> None: if broadcast_indices: cat_ad_indices = ( torch.randint( low=0, high=100, size=(B * T * L,), ) .int() .to(Dtype) ) cat_ad_lengths = torch.cat( [torch.tensor([L for _ in range(T)]) for _ in range(B)], 0, ).int() cat_ad_lengths_broadcasted = cat_ad_lengths.tile([A]) else: cat_ad_indices = ( torch.randint( low=0, high=100, size=(B * T * A * L,), ) .int() .to(Dtype) ) cat_ad_lengths = torch.cat( [torch.tensor([L for _ in range(T * A)]) for _ in range(B)], 0, ).int() cat_ad_lengths_broadcasted = cat_ad_lengths batch_offsets = torch.tensor([A * b for b in range(B + 1)]).int() num_ads_in_batch = B * A reordered_cat_ad_lengths = torch.ops.fbgemm.reorder_batched_ad_lengths( cat_ad_lengths, batch_offsets, num_ads_in_batch, broadcast_indices ) torch.testing.assert_close(cat_ad_lengths_broadcasted, reordered_cat_ad_lengths) cat_ad_offsets = torch.ops.fbgemm.asynchronous_complete_cumsum( cat_ad_lengths ).to(Itype) reordered_cat_ad_offsets = torch.ops.fbgemm.asynchronous_complete_cumsum( reordered_cat_ad_lengths ).to(Itype) reordered_cat_ad_indices = torch.ops.fbgemm.reorder_batched_ad_indices( cat_ad_offsets, cat_ad_indices, reordered_cat_ad_offsets, batch_offsets, num_ads_in_batch, broadcast_indices, B * T * A * L, ) torch.testing.assert_close( reordered_cat_ad_indices.view(T, B, A, L).permute(1, 0, 2, 3), cat_ad_indices.view(B, T, 1, L).tile([1, 1, A, 1]) if broadcast_indices else cat_ad_indices.view(B, T, A, L), ) @given(data_type=st.sampled_from([torch.bfloat16, torch.half, torch.float32])) @settings(verbosity=Verbosity.verbose, deadline=None) def test_histogram_binning_calibration(self, data_type: torch.dtype) -> None: num_bins = 5000 logit = torch.tensor([[-0.0018], [0.0085], [0.0090], [0.0003], [0.0029]]).type( data_type ) bin_num_examples = torch.empty([num_bins], dtype=torch.float64).fill_(0.0) bin_num_positives = torch.empty([num_bins], dtype=torch.float64).fill_(0.0) calibrated_prediction, bin_ids = torch.ops.fbgemm.histogram_binning_calibration( logit=logit, bin_num_examples=bin_num_examples, bin_num_positives=bin_num_positives, positive_weight=0.4, lower_bound=0.0, upper_bound=1.0, bin_ctr_in_use_after=10000, bin_ctr_weight_value=0.9995, ) expected_calibrated_prediction = torch.tensor( [[0.2853], [0.2875], [0.2876], [0.2858], [0.2863]] ).type(data_type) expected_bin_ids = torch.tensor( [1426, 1437, 1437, 1428, 1431], dtype=torch.long ) error_tolerance = 1e-03 if data_type == torch.bfloat16: # Due to smaller significand bits. error_tolerance = 1e-02 expected_bin_ids = torch.tensor( [1426, 1438, 1438, 1430, 1430], dtype=torch.long ) torch.testing.assert_close( calibrated_prediction, expected_calibrated_prediction, rtol=error_tolerance, atol=error_tolerance, ) self.assertTrue( torch.equal( bin_ids.long(), expected_bin_ids, ) ) if torch.cuda.is_available(): ( calibrated_prediction_gpu, bin_ids_gpu, ) = torch.ops.fbgemm.histogram_binning_calibration( logit=logit.cuda(), bin_num_examples=bin_num_examples.cuda(), bin_num_positives=bin_num_positives.cuda(), positive_weight=0.4, lower_bound=0.0, upper_bound=1.0, bin_ctr_in_use_after=10000, bin_ctr_weight_value=0.9995, ) torch.testing.assert_close( calibrated_prediction_gpu, expected_calibrated_prediction.cuda(), rtol=error_tolerance, atol=error_tolerance, ) self.assertTrue( torch.equal( bin_ids_gpu.long(), expected_bin_ids.cuda(), ) ) @given( data_type=st.sampled_from([torch.bfloat16, torch.half, torch.float32]), segment_value_type=st.sampled_from([torch.int, torch.long]), segment_length_type=st.sampled_from([torch.int, torch.long]), ) @settings(verbosity=Verbosity.verbose, deadline=None) def test_histogram_binning_calibration_by_feature( self, data_type: torch.dtype, segment_value_type: torch.dtype, segment_length_type: torch.dtype, ) -> None: num_bins = 5000 num_segments = 42 logit = torch.tensor([-0.0018, 0.0085, 0.0090, 0.0003, 0.0029]).type(data_type) segment_value = torch.tensor([40, 31, 32, 13, 31]).type(segment_value_type) lengths = torch.tensor([[1], [1], [1], [1], [1]]).type(segment_length_type) num_interval = num_bins * (num_segments + 1) bin_num_examples = torch.empty([num_interval], dtype=torch.float64).fill_(0.0) bin_num_positives = torch.empty([num_interval], dtype=torch.float64).fill_(0.0) ( calibrated_prediction, bin_ids, ) = torch.ops.fbgemm.histogram_binning_calibration_by_feature( logit=logit, segment_value=segment_value, segment_lengths=lengths, num_segments=num_segments, bin_num_examples=bin_num_examples, bin_num_positives=bin_num_positives, num_bins=num_bins, positive_weight=0.4, lower_bound=0.0, upper_bound=1.0, bin_ctr_in_use_after=10000, bin_ctr_weight_value=0.9995, ) expected_calibrated_prediction = torch.tensor( [0.2853, 0.2875, 0.2876, 0.2858, 0.2863] ).type(data_type) expected_bin_ids = torch.tensor( [206426, 161437, 166437, 71428, 161431], dtype=torch.long ) error_tolerance = 1e-03 if data_type == torch.bfloat16: # Due to smaller significand bits. error_tolerance = 1e-02 expected_bin_ids = torch.tensor( [206426, 161438, 166438, 71430, 161430], dtype=torch.long ) torch.testing.assert_close( calibrated_prediction, expected_calibrated_prediction, rtol=error_tolerance, atol=error_tolerance, ) self.assertTrue( torch.equal( bin_ids.long(), expected_bin_ids, ) ) if torch.cuda.is_available(): ( calibrated_prediction_gpu, bin_ids_gpu, ) = torch.ops.fbgemm.histogram_binning_calibration_by_feature( logit=logit.cuda(), segment_value=segment_value.cuda(), segment_lengths=lengths.cuda(), num_segments=num_segments, bin_num_examples=bin_num_examples.cuda(), bin_num_positives=bin_num_positives.cuda(), num_bins=num_bins, positive_weight=0.4, lower_bound=0.0, upper_bound=1.0, bin_ctr_in_use_after=10000, bin_ctr_weight_value=0.9995, ) torch.testing.assert_close( calibrated_prediction_gpu, expected_calibrated_prediction.cuda(), rtol=error_tolerance, atol=error_tolerance, ) self.assertTrue( torch.equal( bin_ids_gpu.long(), expected_bin_ids.cuda(), ) ) @given( data_type=st.sampled_from([torch.bfloat16, torch.half, torch.float32]), segment_value_type=st.sampled_from([torch.int, torch.long]), segment_length_type=st.sampled_from([torch.int, torch.long]), ) @settings(verbosity=Verbosity.verbose, deadline=None) def test_generic_histogram_binning_calibration_by_feature( self, data_type: torch.dtype, segment_value_type: torch.dtype, segment_length_type: torch.dtype, ) -> None: num_bins = 5000 num_segments = 42 logit = torch.tensor([-0.0018, 0.0085, 0.0090, 0.0003, 0.0029]).type(data_type) segment_value = torch.tensor([40, 31, 32, 13, 31]).type(segment_value_type) lengths = torch.tensor([[1], [1], [1], [1], [1]]).type(segment_length_type) num_interval = num_bins * (num_segments + 1) bin_num_examples = torch.empty([num_interval], dtype=torch.float64).fill_(0.0) bin_num_positives = torch.empty([num_interval], dtype=torch.float64).fill_(0.0) lower_bound = 0.0 upper_bound = 1.0 w = (upper_bound - lower_bound) / num_bins bin_boundaries = torch.arange( lower_bound + w, upper_bound - w / 2, w, dtype=torch.float64 ) ( calibrated_prediction, bin_ids, ) = torch.ops.fbgemm.generic_histogram_binning_calibration_by_feature( logit=logit, segment_value=segment_value, segment_lengths=lengths, num_segments=num_segments, bin_num_examples=bin_num_examples, bin_num_positives=bin_num_positives, bin_boundaries=bin_boundaries, positive_weight=0.4, bin_ctr_in_use_after=10000, bin_ctr_weight_value=0.9995, ) expected_calibrated_prediction = torch.tensor( [0.2853, 0.2875, 0.2876, 0.2858, 0.2863] ).type(data_type) expected_bin_ids = torch.tensor( [206426, 161437, 166437, 71428, 161431], dtype=torch.long ) error_tolerance = 1e-03 if data_type == torch.bfloat16: # Due to smaller significand bits. error_tolerance = 1e-02 expected_bin_ids = torch.tensor( [206426, 161438, 166438, 71430, 161430], dtype=torch.long ) torch.testing.assert_close( calibrated_prediction, expected_calibrated_prediction, rtol=error_tolerance, atol=error_tolerance, ) self.assertTrue( torch.equal( bin_ids.long(), expected_bin_ids, ) ) if torch.cuda.is_available(): ( calibrated_prediction_gpu, bin_ids_gpu, ) = torch.ops.fbgemm.generic_histogram_binning_calibration_by_feature( logit=logit.cuda(), segment_value=segment_value.cuda(), segment_lengths=lengths.cuda(), num_segments=num_segments, bin_num_examples=bin_num_examples.cuda(), bin_num_positives=bin_num_positives.cuda(), bin_boundaries=bin_boundaries.cuda(), positive_weight=0.4, bin_ctr_in_use_after=10000, bin_ctr_weight_value=0.9995, ) torch.testing.assert_close( calibrated_prediction_gpu, expected_calibrated_prediction.cuda(), rtol=error_tolerance, atol=error_tolerance, ) self.assertTrue( torch.equal( bin_ids_gpu.long(), expected_bin_ids.cuda(), ) ) @unittest.skipIf(*gpu_unavailable) @given( data_type=st.sampled_from([torch.bfloat16, torch.half, torch.float32]), ) @settings(verbosity=Verbosity.verbose, deadline=None) def test_generic_histogram_binning_calibration_by_feature_cpu_gpu( self, data_type: torch.dtype, ) -> None: num_logits = random.randint(8, 16) num_bins = random.randint(3, 8) num_segments = random.randint(3, 8) positive_weight = random.uniform(0.1, 1.0) bin_ctr_in_use_after = random.randint(0, 10) bin_ctr_weight_value = random.random() logit = torch.randn(num_logits).type(data_type) lengths = torch.randint(0, 2, (num_logits,)) segment_value = torch.randint(-3, num_segments + 3, (sum(lengths),)) num_interval = num_bins * (num_segments + 1) bin_num_positives = torch.randint(0, 10, (num_interval,)).double() bin_num_examples = ( bin_num_positives + torch.randint(0, 10, (num_interval,)).double() ) lower_bound = 0.0 upper_bound = 1.0 w = (upper_bound - lower_bound) / num_bins bin_boundaries = torch.arange( lower_bound + w, upper_bound - w / 2, w, dtype=torch.float64 ) ( calibrated_prediction_cpu, bin_ids_cpu, ) = torch.ops.fbgemm.generic_histogram_binning_calibration_by_feature( logit=logit, segment_value=segment_value, segment_lengths=lengths, num_segments=num_segments, bin_num_examples=bin_num_examples, bin_num_positives=bin_num_positives, bin_boundaries=bin_boundaries, positive_weight=positive_weight, bin_ctr_in_use_after=bin_ctr_in_use_after, bin_ctr_weight_value=bin_ctr_weight_value, ) ( calibrated_prediction_gpu, bin_ids_gpu, ) = torch.ops.fbgemm.generic_histogram_binning_calibration_by_feature( logit=logit.cuda(), segment_value=segment_value.cuda(), segment_lengths=lengths.cuda(), num_segments=num_segments, bin_num_examples=bin_num_examples.cuda(), bin_num_positives=bin_num_positives.cuda(), bin_boundaries=bin_boundaries.cuda(), positive_weight=positive_weight, bin_ctr_in_use_after=bin_ctr_in_use_after, bin_ctr_weight_value=bin_ctr_weight_value, ) torch.testing.assert_close( calibrated_prediction_cpu, calibrated_prediction_gpu.cpu(), rtol=1e-03, atol=1e-03, ) self.assertTrue( torch.equal( bin_ids_cpu, bin_ids_gpu.cpu(), ) ) def test_segment_sum_csr(self) -> None: segment_sum_cpu = torch.ops.fbgemm.segment_sum_csr( 2, torch.IntTensor([0, 2, 3, 5]), torch.Tensor([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0]), ) torch.testing.assert_close( segment_sum_cpu, torch.Tensor([10.0, 11.0, 34.0]), rtol=0, atol=0 ) if torch.cuda.is_available(): segment_sum_cuda = torch.ops.fbgemm.segment_sum_csr( 2, torch.IntTensor([0, 2, 3, 5]).cuda(), torch.Tensor( [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0] ).cuda(), ) torch.testing.assert_close( segment_sum_cuda.cpu(), torch.Tensor([10.0, 11.0, 34.0]), rtol=0, atol=0 ) @given( batch_size=st.just(2), m=st.just(3), k=st.just(4), n=st.just(5), use_cpu=st.booleans() if gpu_available else st.just(True), ) @settings(verbosity=Verbosity.verbose, max_examples=20, deadline=None) def test_permute102_baddbmm_permute102( self, batch_size: int, m: int, k: int, n: int, use_cpu: bool, ) -> None: # baddbmm doesn't support half dtype = torch.float if use_cpu else torch.half device = torch.device("cpu" if use_cpu else "cuda") A = torch.rand((m, batch_size, k), dtype=dtype, device=device) B = torch.rand((batch_size, k, n), dtype=dtype, device=device) # bias_permute102 = torch.rand(batch_size, 1, n).half().cuda() # bias = bias_permute102.permute(1, 0, 2) bias = torch.rand((batch_size, n), dtype=dtype, device=device) bias_permute102 = bias.unsqueeze(1) # bias = bias_short.unsqueeze(0) A_permute102 = A.permute(1, 0, 2) C_permute102 = torch.baddbmm(bias_permute102, A_permute102, B) C_ref = C_permute102.permute(1, 0, 2) # (m, batch_size, n) C = torch.ops.fbgemm.permute102_baddbmm_permute102(bias, A, B) torch.testing.assert_close(C.cpu(), C_ref.cpu()) def _pack_segments_ref( self, lengths: torch.Tensor, tensor: torch.Tensor, max_length: Optional[int] = None, ) -> np.ndarray: lengths = lengths.numpy() sections = np.split(tensor, np.cumsum(lengths)) max_length = np.max(lengths, initial=0) if max_length is None else max_length padded_arrs = [] for arr in sections[:-1]: # Last section is always a blank arr = arr[: min(max_length, len(arr)), ...] padded_arr = np.pad( arr, [(0, max(max_length - arr.shape[0], 0))] + ([(0, 0)] * (len(arr.shape) - 1)), constant_values=0, ) padded_arrs.append(padded_arr) if len(padded_arrs) == 0: padded_arrs = torch.empty((0, 0) + tuple(tensor.shape[1:])) else: padded_arrs = torch.Tensor(np.stack(padded_arrs)) # pyre-fixme[7]: Expected `ndarray` but got `Tensor`. return padded_arrs @given( n=st.integers(2, 10), k=st.integers(2, 10), batch_size=st.integers(1, 30), divisions=st.integers(1, 10), dtype=st.sampled_from( [ torch.float, torch.half, ] ), ) @settings(deadline=None) def test_pack_segments( self, n: int, k: int, batch_size: int, divisions: int, dtype: torch.dtype, ) -> None: input_raw = np.random.rand(batch_size, n, k) input_data = torch.tensor(input_raw, dtype=dtype, requires_grad=True) lengths = torch.tensor( get_n_rand_num_summing_to_k(divisions, batch_size), dtype=torch.int ) max_length = lengths.max().item() packed_tensor = torch.ops.fbgemm.pack_segments( t_in=input_data, lengths=lengths, max_length=max_length ) packed_ref = self._pack_segments_ref(lengths, input_raw) packed_ref = torch.Tensor(packed_ref).to(dtype) self.assertTrue(torch.equal(packed_tensor, packed_ref)) grad_cpu = torch.tensor( np.random.uniform(low=0.01, high=0.5, size=packed_ref.shape).astype( np.float32 ) ).to(dtype) # CPU backward packed_tensor.backward(grad_cpu) if gpu_available: packed_cuda = torch.ops.fbgemm.pack_segments( t_in=input_data.cuda(), lengths=lengths.cuda(), max_length=max_length, ) self.assertTrue(torch.equal(packed_tensor, packed_cuda.cpu())) # GPU backward packed_cuda.backward(grad_cpu.cuda()) @given( n=st.integers(2, 10), k=st.integers(2, 10), batch_size=st.integers(1, 30), divisions=st.integers(1, 10), max_length=st.integers(1, 20), dtype=st.sampled_from( [ torch.float, torch.half, ] ), ) @settings(deadline=None) def test_pack_segments_smaller_max_len( self, n: int, k: int, batch_size: int, divisions: int, max_length: int, dtype: torch.dtype, ) -> None: input_data = torch.tensor(np.random.rand(batch_size, n, k), dtype=dtype) lengths = torch.tensor( get_n_rand_num_summing_to_k(divisions, batch_size), dtype=torch.int ) packed_tensor = torch.ops.fbgemm.pack_segments( t_in=input_data, lengths=lengths, max_length=max_length, ) self.assertEqual(packed_tensor.shape, (divisions, max_length, n, k)) packed_ref = self._pack_segments_ref( lengths, input_data, max_length=max_length, ) # pyre-fixme[6]: For 2nd param expected `Tensor` but got `ndarray`. self.assertTrue(torch.equal(packed_tensor, packed_ref)) if gpu_available: packed_cuda = torch.ops.fbgemm.pack_segments( t_in=input_data.cuda(), lengths=lengths.cuda(), max_length=max_length, ) self.assertTrue(torch.equal(packed_tensor, packed_cuda.cpu())) @skipIfRocm() @given( n=st.integers(2, 10), k=st.integers(2, 10), batch_size=st.integers(1, 30), divisions=st.integers(1, 10), dtype=st.sampled_from( [ torch.float, torch.half, ] ), ) @settings(deadline=None) def test_pack_segments_meta_backend( self, n: int, k: int, batch_size: int, divisions: int, dtype: torch.dtype, ) -> None: input_raw = np.random.rand(batch_size, n, k) input_data = torch.tensor( input_raw, dtype=torch.float32, requires_grad=True ).to("meta") lengths = torch.tensor( get_n_rand_num_summing_to_k(divisions, batch_size), dtype=torch.int ) max_length = lengths.max().item() packed_tensor = torch.ops.fbgemm.pack_segments( t_in=input_data, lengths=lengths, max_length=max_length ) packed_ref = self._pack_segments_ref(lengths, input_raw) # verify forward assert packed_tensor.size() == torch.Tensor(packed_ref).size() @given( N=st.integers(1, 32), shape=st.one_of( st.lists(st.integers(1, 128), max_size=1), st.lists(st.integers(1, 16), min_size=2, max_size=2), ), dtype=st.sampled_from([torch.float, torch.half, torch.double]), use_cpu=st.booleans() if gpu_available else st.just(True), consecutive_indices=st.booleans(), skip_indices_sorting_fwd=st.booleans(), use_inference_mode=st.booleans(), ) @settings(max_examples=20, deadline=None) def test_index_select_dim0( self, N: int, shape: List[int], dtype: torch.dtype, use_cpu: bool, consecutive_indices: bool, skip_indices_sorting_fwd: bool, use_inference_mode: bool, ) -> None: device = torch.device("cpu" if use_cpu else "cuda") U = random.randint(0, N + 1) kwargs = {} if consecutive_indices: start = np.random.randint(0, U) length = np.random.randint(1, U - start + 1) indices = list(range(start, start + length)) np_arr = np.array(indices) for _ in range(N - U): indices.append(np.random.randint(start, start + length)) np_arr = np.array(indices) np.random.shuffle(np_arr) indices = torch.from_numpy(np_arr).to(torch.int).to(device) kwargs["consecutive_range_start"] = start kwargs["consecutive_range_length"] = length else: indices = torch.randint(U, (N,), device=device) kwargs["skip_indices_sorting_fwd"] = skip_indices_sorting_fwd input = torch.rand((U,) + tuple(shape), dtype=dtype, device=device) with torch.inference_mode() if use_inference_mode else contextlib.nullcontext(): output_ref = torch.ops.fbgemm.index_select_dim0(input, indices, **kwargs) output = torch.index_select(input, 0, indices) torch.testing.assert_close(output, output_ref) if not use_inference_mode: gradcheck_args = [ input.clone().detach().double().requires_grad_(True), indices, ] for k in kwargs: gradcheck_args.append(kwargs[k]) torch.autograd.gradcheck(torch.ops.fbgemm.index_select_dim0, gradcheck_args) @given( num_indices=st.integers(1, 32), max_num_input_rows=st.integers(1, 32), shape=st.lists(st.integers(1, 32), min_size=1, max_size=2), dtype=st.sampled_from([torch.float, torch.half, torch.double]), use_cpu=st.booleans() if gpu_available else st.just(True), num_groups=st.integers(1, 32), use_var_cols=st.booleans(), use_var_num_input_rows=st.booleans(), check_non_contiguous=st.booleans(), ) @settings( verbosity=Verbosity.verbose, max_examples=20, deadline=None, ) def test_group_index_select_dim0( self, num_indices: int, max_num_input_rows: int, shape: List[int], dtype: torch.dtype, use_cpu: bool, num_groups: int, use_var_cols: bool, use_var_num_input_rows: bool, check_non_contiguous: bool, ) -> None: device = torch.device("cpu" if use_cpu else "cuda") input_group: List[torch.Tensor] = [] input_ref_group: List[torch.Tensor] = [] indices_group: List[torch.Tensor] = [] grad_group: List[torch.Tensor] = [] for _ in range(num_groups): if use_var_num_input_rows: num_input_rows = ( random.randint(1, max_num_input_rows) if max_num_input_rows > 1 else 1 ) else: num_input_rows = max_num_input_rows indices = torch.randint(num_input_rows, (num_indices,), device=device) assert indices.max() < num_input_rows if use_var_cols: var_dim = random.randint(0, len(shape) - 1) new_shape = random.randint(1, 32) shape[var_dim] = new_shape indices_group.append(indices) input = torch.rand( (num_input_rows,) + tuple(shape), dtype=dtype, device=device ) input_ref = input.clone().detach() input.requires_grad = True input_ref.requires_grad = True input_group.append(input) input_ref_group.append(input_ref) grad = torch.rand((num_indices,) + tuple(shape), dtype=dtype, device=device) grad_group.append(grad) # Test forward output_ref_group = [] for input, indices in zip(input_ref_group, indices_group): output_ref_group.append(torch.index_select(input, 0, indices)) output_group = torch.ops.fbgemm.group_index_select_dim0( input_group, indices_group ) # Test backward for out, grad in zip(output_ref_group, grad_group): out.backward(grad) cat_output = torch.concat( [ ( # Transpose is likely going to make the tensor # noncontiguous output.transpose(1, 0).flatten() if check_non_contiguous else output.flatten() ) for output in output_group ] ) cat_grad = torch.concat( [ ( # Transpose is likely going to make the tensor # noncontiguous grad.transpose(1, 0).flatten() if check_non_contiguous else grad.flatten() ) for grad in grad_group ] ) cat_output.backward(cat_grad) def compare_tensor_groups( test_group: List[torch.Tensor], ref_group: List[torch.Tensor], tensor_type: str, tols: Dict["str", float], ) -> None: passed = True failure_count = 0 for i, (test, ref) in enumerate(zip(test_group, ref_group)): # pyre-ignore [6] if not torch.allclose(test, ref, **tols): passed = False failure_count += 1 print( f"FAILED: group {i} {tensor_type} ({dtype}), " f"input shape {input_group[i].shape}, indices " f"{indices_group[i]}, test {test}, ref {ref}" ) assert ( passed ), f"{failure_count}/{num_groups} groups of {tensor_type} failed" compare_tensor_groups( output_group, output_ref_group, "activation", {"rtol": 0, "atol": 0} ) compare_tensor_groups( # pyre-ignore [6] [i.grad for i in input_group], # pyre-ignore [6] [i.grad for i in input_ref_group], "gradient", {"rtol": 1e-02, "atol": 1e-02} if dtype == torch.half else {}, ) @given( T=st.integers(1, 5), B=st.integers(1, 5), L=st.integers(1, 5), ) @settings(max_examples=20, deadline=None) def test_bottom_unique_k_per_row( self, T: int, B: int, L: int, ) -> None: E = 1000000 all_indices = (np.random.zipf(a=1.15, size=(T, B, 3 * L)) - 1) % E all_indices_deduped = torch.ops.fbgemm.bottom_k_per_row( torch.as_tensor(all_indices), torch.tensor([0, L], dtype=torch.long), True ) for index_tuple in itertools.product(range(T), range(B)): # sample without replacement from # https://stats.stackexchange.com/questions/20590/how-do-i-sample-without-replacement-using-a-sampling-with-replacement-function r = set() for x in all_indices[index_tuple]: if x not in r: r.add(x) if len(r) == L: break assert (len(r)) == L, "too skewed distribution (alpha too big)" all_indices[index_tuple][:L] = sorted(r) all_indices_deduped_ref = torch.as_tensor(all_indices[:, :, :L]) torch.testing.assert_close(all_indices_deduped, all_indices_deduped_ref) @given( num_inputs=st.integers(0, 100), max_input_rows=st.integers(2, 32), max_cols_factor=st.integers(2, 256), max_output_rows=st.integers(2, 32), permute_output_dim_0_1=st.booleans(), dtype=st.sampled_from([torch.float, torch.half]), use_cpu=st.booleans() if gpu_available else st.just(True), ) @settings(verbosity=Verbosity.verbose, max_examples=20, deadline=None) def test_batch_index_select_dim0( self, num_inputs: int, max_input_rows: int, max_cols_factor: int, max_output_rows: int, permute_output_dim_0_1: bool, dtype: torch.dtype, use_cpu: bool, ) -> None: device = "cpu" if use_cpu else "cuda" input_rows = torch.randint( low=1, high=max_input_rows, size=(num_inputs,) ).tolist() input_columns = ( torch.randint(low=1, high=max_cols_factor, size=(num_inputs,)) * 4 ).tolist() if permute_output_dim_0_1: # All num_indices must be the same if permute_output_dim_0_1 is # True num_indices = torch.randint(low=1, high=max_output_rows, size=(1,)).item() input_num_indices = [num_indices] * num_inputs else: input_num_indices = torch.randint( low=1, high=max_output_rows, size=(num_inputs,) ).tolist() def validate( test_list: List[torch.Tensor], ref_list: List[torch.Tensor], rows: List[int], val_fn: Callable[[torch.Tensor, torch.Tensor], bool], name: str, ) -> None: test_passed_all = True error_msg = "" for i, (test, ref) in enumerate(zip(test_list, ref_list)): test = test.float() ref = ref.float() test_passed = val_fn(test, ref) test_passed_all = test_passed & test_passed_all if not test_passed: test = test.reshape(rows[i], -1) ref = ref.reshape(rows[i], -1) for r in range(rows[i]): test_row = test[r] ref_row = ref[r] if not val_fn(test_row, ref_row): error_msg += f"ERROR: {name} {i} row {r} are different, test {test_row}, ref {ref_row}\n" assert test_passed_all, error_msg logging.info(f"{name} test passed") if num_inputs == 0: inputs = [torch.empty(0, dtype=dtype, device=device)] indices = [torch.empty(0, dtype=torch.long, device=device)] else: inputs = [ torch.rand(rows, cols, dtype=dtype, device=device) for rows, cols in zip(input_rows, input_columns) ] indices = [ torch.randint( low=0, high=rows, size=(num,), dtype=torch.long, device=device ) for num, rows in zip(input_num_indices, input_rows) ] for i in range(len(inputs)): inputs[i].requires_grad = True output_ref = [ input.index_select(dim=0, index=index).flatten() for input, index in zip(inputs, indices) ] concat_inputs = torch.concat( [input.flatten().clone().detach() for input in inputs] ) concat_indices = torch.concat(indices) concat_inputs.requires_grad = True output_test = torch.ops.fbgemm.batch_index_select_dim0( concat_inputs, concat_indices, input_num_indices, input_rows, input_columns, permute_output_dim_0_1, ) if permute_output_dim_0_1 and num_inputs > 0: output_list = output_test.view(input_num_indices[0], -1).split( input_columns, dim=1, ) output_list = [out.flatten() for out in output_list] else: output_list = output_test.split( [rows * cols for rows, cols in zip(input_num_indices, input_columns)] ) validate(output_list, output_ref, input_num_indices, torch.equal, "output") if num_inputs == 0: grads = [torch.empty(0, dtype=dtype, device=device)] else: grads = [torch.rand_like(output) for output in output_ref] for out_ref, grad in zip(output_ref, grads): out_ref.backward(grad) if permute_output_dim_0_1 and num_inputs > 0: concat_grads = torch.concat( [grad.view(input_num_indices[0], -1) for grad in grads], dim=1 ).flatten() else: concat_grads = torch.concat(grads) assert concat_grads.shape == output_test.shape output_test.backward(concat_grads) assert concat_inputs.grad is not None grad_list = concat_inputs.grad.split( [rows * cols for rows, cols in zip(input_rows, input_columns)] ) grad_ref = [] for input in inputs: assert input.grad is not None grad_ref.append(input.grad.flatten()) tol = 1.0e-4 if dtype == torch.float else 1.0e-2 validate( grad_list, grad_ref, input_rows, functools.partial(torch.allclose, atol=tol, rtol=tol), "grad", ) if __name__ == "__main__": unittest.main()
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import inspect import sys import unittest from itertools import accumulate from typing import List, Tuple import fbgemm_gpu import torch import torch._dynamo from fbgemm_gpu.permute_pooled_embedding_modules import PermutePooledEmbeddings from hypothesis import given, HealthCheck, settings from torch import nn, Tensor # pyre-fixme[16]: Module `fbgemm_gpu` has no attribute `open_source`. if getattr(fbgemm_gpu, "open_source", False): # pyre-ignore[21] from test_utils import cpu_and_maybe_gpu, gpu_unavailable else: from fbgemm_gpu.test.test_utils import cpu_and_maybe_gpu, gpu_unavailable typed_gpu_unavailable: Tuple[bool, str] = gpu_unavailable if getattr(HealthCheck, "not_a_test_method", False): suppressed_list: List[HealthCheck] = [HealthCheck.not_a_test_method] else: suppressed_list = [] INTERN_MODULE = "fbgemm_gpu.permute_pooled_embedding_modules" FIXED_EXTERN_API = { "PermutePooledEmbeddings": { "__init__": ["self", "embs_dims", "permute", "device"], "forward": ["self", "pooled_embs"], }, } FWD_COMPAT_MSG = ( "WARNING: If this test is failing, you are probably trying " "to make changes to a module that has been marked external to PyPer torch packages. " "This can break forward compatibility of torch packages on training_platform " "(see https://fb.workplace.com/groups/pyper/permalink/808155810065803/). " "You need to split up your changes as follows:\n" "\t1. Edit your diff so it only contains the changes as optional, and not any usage of the" " new optional changes.\n" "\t2. Edit FIXED_EXTERN_API in this test so your diff passes the test.\n" "\t3. Land your diff and wait for the diff to be picked up by the production version of" " fbpkg training_platform.\n" "\t4. Once step 3. is complete, you can push the rest of your changes that use the new" " changes." ) class Net(torch.nn.Module): def __init__(self) -> None: super(Net, self).__init__() self.fc1 = torch.nn.Linear(1, 10, bias=False) self.permute_pooled_embeddings = PermutePooledEmbeddings( [2, 3, 1, 4], [3, 0, 2, 1] ) self.fc2 = torch.nn.Linear(10, 1, bias=False) def forward(self, x: Tensor) -> Tensor: x = self.fc1(x) x = self.permute_pooled_embeddings(x) x = self.fc2(x) return x # @parameterized_class([{"device_type": "cpu"}, {"device_type": "cuda"}]) class PooledEmbeddingModulesTest(unittest.TestCase): @settings(deadline=10000, suppress_health_check=suppressed_list) # pyre-fixme[56]: Pyre was not able to infer the type of argument @given(device_type=cpu_and_maybe_gpu()) def setUp(self, device_type: torch.device) -> None: self.device = device_type @unittest.skipIf(True, "Skip until FailedHealthCheck is fixed") def test_permutation(self) -> None: net = Net().to(self.device) input = torch.Tensor([range(10)]).to(self.device) self.assertEqual( net.permute_pooled_embeddings(input).view(10).tolist(), [6, 7, 8, 9, 0, 1, 5, 2, 3, 4], ) @unittest.skipIf(True, "Skip until FailedHealthCheck is fixed") def test_permutation_autograd(self) -> None: net = Net().to(self.device) input = torch.randn(2, 1).to(self.device) input_sum = input.sum().item() output = net(input) output.sum().backward() # check grads for fc1 when permuted, equals to fc2 weights times input_sum # pyre-fixme[16]: Optional type has no attribute `view`. permute_res = net.permute_pooled_embeddings(net.fc1.weight.grad.view(1, 10)) permute_ref = input_sum * net.fc2.weight torch.testing.assert_close(permute_res, permute_ref, rtol=1e-03, atol=1e-03) def test_compatibility(self) -> None: members = inspect.getmembers(sys.modules[INTERN_MODULE]) for name, clazz in members: if getattr(clazz, "__module__", None) != INTERN_MODULE: continue self.assertIn(name, FIXED_EXTERN_API.keys(), FWD_COMPAT_MSG) for fn, fixed_params in FIXED_EXTERN_API[name].items(): current_params = inspect.getfullargspec(getattr(clazz, fn)).args self.assertEqual( fixed_params, current_params, msg=f"\nForward incompatible change in {name} : {fn}\n\n" f"{FWD_COMPAT_MSG}", ) @unittest.skipIf(True, "Skip until FailedHealthCheck is fixed") def test_pooled_table_batched_embedding(self) -> None: num_emb_bags = 5 num_embeddings = 10 embedding_dims = [1, 2, 3, 4, 5] emb_weight_range = 1 embedding_bags = [ nn.EmbeddingBag( num_embeddings=num_embeddings, embedding_dim=embedding_dims[i], mode="sum", sparse=True, ) for i in range(num_emb_bags) ] for emb_bag in embedding_bags: torch.nn.init.uniform_( emb_bag.weight, -emb_weight_range, emb_weight_range, ) indices = [[0], [1, 2], [0, 1, 2], [3, 6], [8]] indices = [torch.tensor(i).view(-1, len(i)) for i in indices] pooled_embs = [emb_bag(indices[i]) for i, emb_bag in enumerate(embedding_bags)] cat_pooled_embs = torch.cat(pooled_embs, dim=1) permute_order = [2, 1, 3, 0, 4] permute_pooled_embeddings = PermutePooledEmbeddings( embedding_dims, permute_order, device=self.device, ) permuted_pooled_emb = permute_pooled_embeddings(cat_pooled_embs.to(self.device)) ref_permuted_pooled_emb = [pooled_embs[i] for i in permute_order] ref_permuted_pooled_emb = torch.cat(ref_permuted_pooled_emb, dim=1) assert torch.allclose( ref_permuted_pooled_emb.to(self.device), permuted_pooled_emb ) @unittest.skipIf(True, "Skip until FailedHealthCheck is fixed") def test_permutation_autograd_meta(self) -> None: """ Test that permute_pooled_embeddings_autograd works with meta tensor and dynamo export mode """ input = torch.randn(2, 1) net = Net() output_cpu = net(input) output_meta = net.to("meta")(input.to("meta")) assert output_meta.shape == output_cpu.shape assert input.shape == output_meta.shape @unittest.skipIf(True, "Skip until FailedHealthCheck is fixed") def test_duplicate_permutations(self) -> None: embs_dims = [2, 3, 1, 4] permute = [3, 0, 2, 0, 1, 3] expected_result = [6, 7, 8, 9, 0, 1, 5, 0, 1, 2, 3, 4, 6, 7, 8, 9] input = torch.Tensor([range(10)]).to(device="cuda") _permute = torch.tensor(permute, device=self.device, dtype=torch.int64) _offset_dim_list = torch.tensor( [0] + list(accumulate(embs_dims)), device=self.device, dtype=torch.int64 ) inv_permute: List[int] = [0] * len(permute) for i, p in enumerate(permute): inv_permute[p] = i _inv_permute = torch.tensor(inv_permute, device=self.device, dtype=torch.int64) inv_embs_dims = [embs_dims[i] for i in permute] _inv_offset_dim_list = torch.tensor( [0] + list(accumulate(inv_embs_dims)), device=self.device, dtype=torch.int64, ) result = torch.ops.fbgemm.permute_duplicate_pooled_embs_auto_grad( input, _offset_dim_list.to(device=input.device), _permute.to(device=input.device), _inv_offset_dim_list.to(device=input.device), _inv_permute.to(device=input.device), ) self.assertEqual( result.view(16).tolist(), expected_result, ) input = input.to(device="cpu") result = torch.ops.fbgemm.permute_duplicate_pooled_embs_auto_grad( input, _offset_dim_list.to(device=input.device), _permute.to(device=input.device), _inv_offset_dim_list.to(device=input.device), _inv_permute.to(device=input.device), ) self.assertEqual( result.view(16).tolist(), expected_result, ) if __name__ == "__main__": unittest.main()
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. # pyre-unsafe import random import unittest from math import sqrt from typing import List, Tuple import fbgemm_gpu.batched_unary_embeddings_ops as batched_unary_embeddings_ops import numpy as np import torch try: # pyre-ignore[21] from fbgemm_gpu import open_source # noqa: F401 # pyre-ignore[21] from test_utils import gpu_unavailable except Exception: torch.ops.load_library("//deeplearning/fbgemm/fbgemm_gpu:sparse_ops") torch.ops.load_library("//deeplearning/fbgemm/fbgemm_gpu:sparse_ops_cpu") from fbgemm_gpu.test.test_utils import gpu_unavailable # Relative tolerances TOLERANCE_REL = { torch.float32: 1e-4, torch.float16: 1e-2, torch.bfloat16: 0.1, } # Absolute tolerances TOLERANCE_ABS = { torch.float32: 1e-4, torch.float16: 1e-2, torch.bfloat16: 1e-2, } class TableBatchedEmbeddingsTest(unittest.TestCase): class RefEmb(torch.nn.Module): def __init__(self, num_tasks: int, hash_sizes: List[int]) -> None: super().__init__() self.num_tasks = num_tasks self.hash_sizes = hash_sizes self.emb_modules = torch.nn.ModuleList() for _ in range(num_tasks): for h in self.hash_sizes: emb = torch.nn.EmbeddingBag( num_embeddings=h, embedding_dim=1, mode="sum", sparse=False, include_last_offset=True, ) emb.weight = torch.nn.Parameter( torch.empty([h, 1]).uniform_(-sqrt(1 / h), sqrt(1 / h)) ) self.emb_modules.append(emb) def forward( self, offsets: List[torch.Tensor], indices: List[torch.Tensor] ) -> torch.Tensor: tt_list = [] for n in range(self.num_tasks): t_list = [] for i in range(len(self.hash_sizes)): t = self.emb_modules[n * len(self.hash_sizes) + i]( offsets=offsets[i].long(), input=indices[i].long() ) t_list.append(t) tt = torch.cat(t_list, dim=1) tt_list.append(tt) return torch.cat(tt_list).view(self.num_tasks, -1, len(self.hash_sizes)) def _generate_unary_features( self, batch_size: int, num_embeddings: int ) -> Tuple[List, List, List]: lengths = [] offsets = [] indices = [] offset = 0 for _ in range(batch_size): n_indices = 1 indices += np.round( np.random.random(n_indices) * (num_embeddings - 1) ).tolist() offsets.append(offset) offset += 1 lengths.append(n_indices) offsets.append(offset) return (lengths, offsets, indices) def _test_main( self, gpu_infer: bool, torch_compile: bool = False, ) -> None: if gpu_infer: device = torch.device("cuda:0") torch.cuda.set_device(device) else: device = torch.device("cpu") batch_size = 128 hash_sizes = [100, 200] num_tasks = 3 emb_dtype = random.choice([torch.float, torch.half, torch.bfloat16]) # generate unary features lengths = [] offsets = [] indices = [] for h in hash_sizes: l, o, i = self._generate_unary_features(batch_size, h) lengths.append(torch.IntTensor(l).to(device)) offsets.append(torch.IntTensor(o).to(device)) indices.append(torch.IntTensor(i).to(device)) lengths_tensor = torch.cat(lengths) indices_tensor = torch.cat(indices) offsets_tensor = torch.zeros( lengths_tensor.numel() + 1, dtype=lengths_tensor.dtype, device=lengths_tensor.device, ) offsets_tensor[1:] = torch.ops.fbgemm.asynchronous_inclusive_cumsum( lengths_tensor.view(-1) ) # forward with int_32 ref_emb = self.RefEmb(num_tasks, hash_sizes).to(device).to(emb_dtype) unary_emb = ( batched_unary_embeddings_ops.BatchedUnaryEmbeddingBag(num_tasks, hash_sizes) .to(device) .to(emb_dtype) ) for i, param in enumerate(unary_emb.split_embedding_weights()): param.detach().copy_(ref_emb.emb_modules[i].weight) output_ref = ref_emb(offsets, indices) if torch_compile: unary_emb = torch.compile(unary_emb, dynamic=True, fullgraph=True) output = unary_emb(offsets_tensor, indices_tensor) torch.testing.assert_close( output_ref, output, atol=TOLERANCE_ABS[emb_dtype], rtol=TOLERANCE_REL[emb_dtype], ) # forward with int_64 ref_emb = self.RefEmb(num_tasks, hash_sizes).to(device).to(emb_dtype) unary_emb = ( batched_unary_embeddings_ops.BatchedUnaryEmbeddingBag( num_tasks=num_tasks, hash_sizes=hash_sizes, long_index=True ) .to(device) .to(emb_dtype) ) for i, param in enumerate(unary_emb.split_embedding_weights()): param.detach().copy_(ref_emb.emb_modules[i].weight) output_ref = ref_emb(offsets, indices) if torch_compile: unary_emb = torch.compile(unary_emb, dynamic=True, fullgraph=True) output = unary_emb(offsets_tensor.long(), indices_tensor.long()) torch.testing.assert_close( output_ref, output, atol=TOLERANCE_ABS[emb_dtype], rtol=TOLERANCE_REL[emb_dtype], ) # No implementation for CPU backprop yet if not gpu_infer: return # FIXME: the following doesn't work # with torch.compile-d unary_emb if torch_compile: return d_output = ( torch.randn([num_tasks, batch_size, len(hash_sizes)]).to(device) * 0.1 ) output_ref.backward(d_output) output.backward(d_output) d_weight_ref = [] for emb in ref_emb.emb_modules: d_weight_ref.append(emb.weight.grad) d_weight_ref = torch.cat(d_weight_ref).view(num_tasks, sum(hash_sizes), -1) d_weight = unary_emb.weight.grad # pyre-ignore[16] torch.testing.assert_close( d_weight_ref, d_weight, atol=TOLERANCE_ABS[emb_dtype], rtol=TOLERANCE_REL[emb_dtype], ) # Testing the case where we add permute operation, which produces # in contiguous grad tensor, this should also work unary_embedding_module = batched_unary_embeddings_ops.BatchedUnaryEmbeddingBag( num_tasks=3, hash_sizes=[71, 107], long_index=True, ).to(device) offsets = torch.tensor([0, 1, 2, 3, 4, 5, 6, 7], dtype=torch.long).to(device) values = torch.tensor([1, 2, 3, 4, 5, 6, 7, 8], dtype=torch.long).to(device) for _ in range(10): output = unary_embedding_module(offsets, values).transpose(1, 0) output = output[1:] output.sum().backward() @unittest.skipIf(*gpu_unavailable) def test_gpu(self) -> None: self._test_main(gpu_infer=True) # the test below fails with CUDA error in the OSS CI # likely to the CUDA IMA issues in the test_gpu above # commenting out for now # @unittest.skipIf(*gpu_unavailable) # def test_gpu_torch_compile(self) -> None: # self._test_main(gpu_infer=True, torch_compile=True) def test_cpu(self) -> None: self._test_main(gpu_infer=False) if __name__ == "__main__": unittest.main()
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import unittest from typing import Optional, Tuple import hypothesis.strategies as st import torch from fbgemm_gpu.quantize_comm import none_throws, QuantizedCommCodec from fbgemm_gpu.split_embedding_configs import SparseType from hypothesis import assume, given, settings class QuantizedCommCodecTest(unittest.TestCase): @settings(deadline=4000) # pyre-ignore @given( comm_precisions_loss_scale=st.sampled_from( [ (SparseType.FP32, None), (SparseType.FP16, None), (SparseType.FP16, 4.0), (SparseType.BF16, None), (SparseType.BF16, 2.0), (SparseType.FP8, None), (SparseType.FP8, 3.0), (SparseType.INT8, None), ] ), row_size=st.integers(4, 256), col_size=st.integers(4, 256), rand_seed=st.integers(0, 65534), row_dim=st.sampled_from([-1, 4, 8, 16, 32]), ) def test_quantized_comm_codec( self, comm_precisions_loss_scale: Tuple[SparseType, Optional[float]], row_size: int, col_size: int, rand_seed: int, row_dim: int, ) -> None: (comm_precision, loss_scale) = comm_precisions_loss_scale if comm_precision == SparseType.FP8: if row_dim > 0: assume((col_size * row_size) % row_dim == 0) assume(col_size % 4 == 0) torch.manual_seed(rand_seed) shape = (row_size, col_size) input_tensor = torch.rand(shape, requires_grad=True) cur_row_dim = None if ( comm_precision == SparseType.FP8 and torch.cuda.device_count() != 0 and row_dim > 0 ): cur_row_dim = row_dim input_tensor = input_tensor.view(-1).cuda() quant_codec = QuantizedCommCodec( comm_precision, loss_scale, row_dim=cur_row_dim ) ctx = quant_codec.create_context() if comm_precision == SparseType.INT8: ctx = none_throws(ctx) assume(row_size * col_size % ctx.row_dim == 0) input_tensor = input_tensor.view(-1) quant_tensor = quant_codec.encode(input_tensor, ctx) self.assertEqual( quant_tensor.numel(), quant_codec.calc_quantized_size(input_tensor.numel(), ctx), ) output_tensor = quant_codec.decode(quant_tensor, ctx) self.assertEqual(output_tensor.shape, input_tensor.shape) rtol = 0.005 atol = 0.005 if comm_precision == SparseType.FP8: rtol = 0.05 atol = 0.05 torch.testing.assert_close( input_tensor.detach().cpu(), output_tensor.detach().cpu(), rtol=rtol, atol=atol, )
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import unittest import fbgemm_gpu.metrics import hypothesis.strategies as st import torch from hypothesis import given, settings try: # pyre-ignore[21] from fbgemm_gpu import open_source # noqa: F401 except Exception: torch.ops.load_library("//deeplearning/fbgemm/fbgemm_gpu:metric_ops") class MetricOpsTest(unittest.TestCase): @unittest.skipIf( True, "Test is sometimes failed due to issues with Flaky. Skipping until the issues are resolved. ", ) # pyre-ignore [56] @given( n_tasks=st.integers(1, 5), batch_size=st.integers(1, 1024), dtype=st.sampled_from([torch.half, torch.float, torch.double]), ) @settings(max_examples=20, deadline=None) def test_auc(self, n_tasks: int, batch_size: int, dtype: torch.dtype) -> None: predictions = torch.randint(0, 1000, (n_tasks, batch_size)).to(dtype).cuda() labels = torch.randint(0, 1000, (n_tasks, batch_size)).to(dtype).cuda() / 1000.0 weights = torch.rand(n_tasks, batch_size).to(dtype).cuda() compute_auc = fbgemm_gpu.metrics.Auc() output_ref = compute_auc(n_tasks, predictions, labels, weights) output = fbgemm_gpu.metrics.auc(n_tasks, predictions, labels, weights) # Explicitly convert type based on output_ref's dtype output = output.to(output_ref.dtype) # Test correctness only if output_ref does not product nan or inf if not (torch.isnan(output_ref).any() or torch.isinf(output_ref).any()): torch.testing.assert_close( output_ref, output, rtol=1e-2 if dtype == torch.half else None, atol=1e-2 if dtype == torch.half else None, ) if __name__ == "__main__": unittest.main()
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. # pyre-ignore-all-errors[56] import itertools import random import unittest from typing import List, Tuple import hypothesis.strategies as st import numpy as np import torch import torch._dynamo from hypothesis import assume, given, settings, Verbosity try: # pyre-ignore[21] from fbgemm_gpu import open_source # noqa: F401 # pyre-ignore[21] from test_utils import ( gpu_available, gpu_unavailable, on_arm_platform, running_on_github, symint_vector_unsupported, TEST_WITH_ROCM, ) except Exception: torch.ops.load_library("//deeplearning/fbgemm/fbgemm_gpu:sparse_ops") torch.ops.load_library("//deeplearning/fbgemm/fbgemm_gpu:sparse_ops_cpu") from fbgemm_gpu.test.test_utils import ( gpu_available, gpu_unavailable, on_arm_platform, running_on_github, symint_vector_unsupported, TEST_WITH_ROCM, ) def lengths_to_segment_ids(lengths: torch.Tensor) -> torch.Tensor: return torch.repeat_interleave( torch._dim_arange(lengths, 0).long(), lengths.long(), ) # Converts lengths + values format to COO format # [B], [N] -> [B, N']. # pyre-ignore Missing return annotation [3] def var_list_to_coo_1d( lengths: torch.Tensor, values: torch.Tensor, N: int, ): rows = lengths_to_segment_ids(lengths) num_rows = lengths.size()[0] # This does D&H sync offsets = torch.ops.fbgemm.asynchronous_complete_cumsum(lengths) output_size = lengths.sum() # This does D&H sync cols = torch.ops.fbgemm.offsets_range(offsets, output_size) indices = torch.stack([rows, cols]) dims = [num_rows, N] # torch.sparse_coo_tensor is not supported by torch.fx, wrap it. return torch.sparse_coo_tensor( indices=indices, values=values, size=dims, ) # Converts lengths + values format to COO format # [B], [N, D] -> [B, N', D]. # pyre-ignore Missing return annotation [3] def var_list_to_coo(lengths: torch.Tensor, values: torch.Tensor, N: int, D: int): rows = lengths_to_segment_ids(lengths) num_rows = lengths.size()[0] offsets = torch.ops.fbgemm.asynchronous_complete_cumsum(lengths) output_size = lengths.sum() # This does D&H sync cols = torch.ops.fbgemm.offsets_range(offsets, output_size) indices = torch.stack([rows, cols]) dims = [num_rows, N, D] # torch.sparse_coo_tensor is not supported by torch.fx, wrap it. return torch.sparse_coo_tensor( indices=indices, values=values, size=dims, ) def hash_size_cumsum_to_offsets(hash_size_cum_sum_list: List[int]) -> List[int]: hash_size_offsets_list = [0] count = 0 for f in range(1, len(hash_size_cum_sum_list)): count = count + 1 if hash_size_cum_sum_list[f] == hash_size_cum_sum_list[f - 1]: curr_offsets = hash_size_offsets_list[-1] hash_size_offsets_list.append(curr_offsets) else: hash_size_offsets_list.append(count) hash_size_offsets_list[-1] = count return hash_size_offsets_list class JaggedTensorOpsTest(unittest.TestCase): def setUp(self) -> None: if symint_vector_unsupported()[0]: return assert hasattr( torch._dynamo.config, "assume_static_by_default" ), "Need to update the config as the dynamic/auto-dynamic setting has changed" # Turn off static assumption for auto-dynamic torch._dynamo.config.assume_static_by_default = False @staticmethod def expand_into_jagged_permute_ref_( permute: List[int], length: List[int], ) -> List[int]: offsets = [0] + list(itertools.accumulate(length)) output_permute = [] for r in permute: output_permute.extend( range( offsets[r], offsets[r + 1], ) ) return output_permute @given( T=st.integers(min_value=10, max_value=20), W=st.integers(min_value=8, max_value=64), ) @settings(verbosity=Verbosity.verbose, max_examples=10, deadline=None) def test_expand_into_jagged_permute( self, T: int, W: int, ) -> None: length_per_w = [random.randint(5000, 10000) for i in range(W)] length_1d = list( itertools.chain.from_iterable(itertools.repeat(x, T) for x in length_per_w) ) permute_list = list(range(T * W)) random.shuffle(permute_list) permuted_length_1d = [length_1d[r] for r in permute_list] permute_tensor = torch.tensor(permute_list) # compute offsets offsets_1d = [0] + list(itertools.accumulate(length_1d)) permuted_offsets_1d = [0] + list(itertools.accumulate(permuted_length_1d)) offsets_1d_tensor = torch.tensor(offsets_1d) permuted_offsets_1d_tensor = torch.tensor(permuted_offsets_1d) # cpu op output_permute_cpu = torch.ops.fbgemm.expand_into_jagged_permute( permute_tensor, offsets_1d_tensor, permuted_offsets_1d_tensor, offsets_1d[-1], ) # reference solution output_permute_ref = self.expand_into_jagged_permute_ref_( permute_list, length_1d, ) output_permute_ref_tensor = torch.tensor(output_permute_ref) # assert cpu and gpu ops torch.testing.assert_close(output_permute_cpu, output_permute_ref_tensor) if gpu_available: # gpu op output_permute_gpu = torch.ops.fbgemm.expand_into_jagged_permute( permute_tensor.cuda(), offsets_1d_tensor.cuda(), permuted_offsets_1d_tensor.cuda(), offsets_1d[-1], ) torch.testing.assert_close( output_permute_gpu.cpu(), output_permute_ref_tensor ) @settings( verbosity=Verbosity.verbose, max_examples=20, deadline=None, ) @given( B=st.integers(min_value=1, max_value=128), D=st.integers(min_value=1, max_value=128), max_sequence_length=st.integers(min_value=1, max_value=200), dtype=st.sampled_from([torch.float, torch.half, torch.bfloat16]), ) def test_jagged_2d_to_dense( self, B: int, D: int, max_sequence_length: int, dtype: torch.dtype, ) -> None: D = D * 4 lengths_ = np.random.randint(low=0, high=max_sequence_length, size=B) total_lengths = lengths_.sum() lengths = torch.from_numpy(lengths_) offsets = torch.ops.fbgemm.asynchronous_complete_cumsum(lengths) ref_values = torch.rand(total_lengths, D) ref_output_values = var_list_to_coo( lengths, ref_values, max_sequence_length, D, ).to_dense() ref_output_values = ref_output_values.to(dtype) # test cpu forward values = ref_values.clone().to(dtype).detach().requires_grad_(True) output_values = torch.ops.fbgemm.jagged_2d_to_dense( values=values, offsets=offsets, max_sequence_length=max_sequence_length, ) torch.testing.assert_close(ref_output_values, output_values) if torch.cuda.is_available(): # test gpu forward ref_values = ref_values.cuda() values = ref_values.clone().to(dtype).detach().requires_grad_(True) offsets = offsets.cuda() ref_output_values = ref_output_values.cuda() output_values = torch.ops.fbgemm.jagged_2d_to_dense( values=values, offsets=offsets, max_sequence_length=max_sequence_length, ) torch.testing.assert_close(ref_output_values, output_values) # test gpu backward output_values.backward(ref_output_values) ref_values = ref_values.to(dtype) torch.testing.assert_close(ref_values, values.grad) def test_jagged_2d_to_dense_truncation(self) -> None: # Test the case where max_sequence_length < max(lengths[i]) lengths_ = np.array([2, 3, 0, 1]) lengths = torch.from_numpy(lengths_) total_lengths = lengths_.sum() offsets = torch.ops.fbgemm.asynchronous_complete_cumsum(lengths) embedding_dim = 16 max_sequence_length = 2 ref_values = torch.rand(total_lengths, embedding_dim) ref_output_values = var_list_to_coo( lengths, ref_values, 3, embedding_dim, ).to_dense()[:, :max_sequence_length, :] # test cpu forward values = ref_values.clone().detach().requires_grad_(True) output_values = torch.ops.fbgemm.jagged_2d_to_dense( values=values, offsets=offsets, max_sequence_length=max_sequence_length, ) torch.testing.assert_close(ref_output_values, output_values) if torch.cuda.is_available(): # test gpu forward ref_values = ref_values.cuda() values = ref_values.clone().detach().requires_grad_(True) offsets = offsets.cuda() ref_output_values = ref_output_values.cuda() output_values = torch.ops.fbgemm.jagged_2d_to_dense( values=values, offsets=offsets, max_sequence_length=max_sequence_length, ) torch.testing.assert_close(ref_output_values, output_values) # test gpu backward expected_grad = ref_values expected_grad[4, :] = 0 # due to truncation expected_grad = expected_grad.cuda() output_values.backward(ref_output_values) torch.testing.assert_close(expected_grad, values.grad) @unittest.skipIf(*symint_vector_unsupported()) @settings( verbosity=Verbosity.verbose, max_examples=20, deadline=None, ) @given( B=st.integers(min_value=2, max_value=128), D=st.integers(min_value=2, max_value=128), max_sequence_length=st.integers(min_value=1, max_value=200), dtype=st.sampled_from([torch.float, torch.half, torch.bfloat16]), device_type=st.sampled_from(["cpu", "cuda"]) if gpu_available else st.just("cpu"), ) def test_jagged_2d_to_dense_dynamic_shape( self, B: int, D: int, max_sequence_length: int, dtype: torch.dtype, device_type: str, ) -> None: # Start a fresh compile for each parameter of the test case torch._dynamo.reset() D = D * 4 lengths_ = np.random.randint(low=0, high=max_sequence_length, size=B) total_lengths = lengths_.sum() lengths = torch.from_numpy(lengths_) offsets = torch.ops.fbgemm.asynchronous_complete_cumsum(lengths) ref_values = torch.rand(total_lengths, D) ref_output_values = var_list_to_coo( lengths, ref_values, max_sequence_length, D, ).to_dense() ref_output_values = ref_output_values.to(dtype) ref_values = ref_values.to(device_type) values = ref_values.clone().to(dtype).detach().requires_grad_(True) offsets = offsets.to(device_type) ref_output_values = ref_output_values.to(device_type) output_values = torch.compile( torch.ops.fbgemm.jagged_2d_to_dense, dynamic=True, fullgraph=True )( values=values, offsets=offsets, max_sequence_length=max_sequence_length, ) torch.testing.assert_close(ref_output_values, output_values) output_values.backward(ref_output_values) ref_values = ref_values.to(dtype) torch.testing.assert_close(ref_values, values.grad) @unittest.skipIf(*gpu_unavailable) @settings( verbosity=Verbosity.verbose, max_examples=20, deadline=None, ) @given( T=st.integers(min_value=1, max_value=5), B=st.integers(min_value=1, max_value=64), D=st.integers(min_value=1, max_value=128), max_sequence_length=st.integers(min_value=1, max_value=300), use_cpu=st.booleans() if gpu_available else st.just(True), ) def test_stacked_jagged_2d_to_dense( self, T: int, B: int, D: int, max_sequence_length: int, use_cpu: bool, ) -> None: device = torch.device("cpu" if use_cpu else "cuda") D = D * 4 lengths_ = np.random.randint(low=0, high=max_sequence_length, size=B * T) total_lengths = lengths_.sum() lengths = torch.from_numpy(lengths_).to(device) offsets = torch.ops.fbgemm.asynchronous_complete_cumsum(lengths) ref_values = torch.rand(total_lengths, D, device=device) ref_output_values = var_list_to_coo( lengths, ref_values, max_sequence_length, D, ).to_dense() lengths = lengths.view(T, B) values = ref_values.clone().detach().requires_grad_(True) output_values_per_table = torch.ops.fbgemm.stacked_jagged_2d_to_dense( values=values, lengths=lengths, offset_per_key=[0] + np.cumsum([lengths[t].sum().item() for t in range(T)]).tolist(), max_lengths_per_key=[max_sequence_length] * T, ) ref_output_values = torch.ops.fbgemm.jagged_2d_to_dense( values=ref_values, offsets=offsets, max_sequence_length=max_sequence_length, ) torch.testing.assert_close( ref_output_values, torch.cat(output_values_per_table) ) # test backward output_values = torch.cat(output_values_per_table) output_values.backward(ref_output_values) torch.testing.assert_close(ref_values, values.grad) @settings( verbosity=Verbosity.verbose, max_examples=20, deadline=None, ) @given( B=st.integers(min_value=1, max_value=128), max_sequence_length=st.integers(min_value=1, max_value=500), padding_value=st.integers(min_value=-100000, max_value=100000), ) def test_jagged_1d_to_dense( self, B: int, max_sequence_length: int, padding_value: int, ) -> None: def lengths_to_segment_ids(lengths: torch.Tensor) -> torch.Tensor: return torch.repeat_interleave( torch._dim_arange(lengths, 0).long(), lengths.long(), ) lengths_ = np.random.randint(low=0, high=max_sequence_length, size=B) total_lengths = lengths_.sum() lengths = torch.from_numpy(lengths_) offsets = torch.ops.fbgemm.asynchronous_complete_cumsum(lengths) ref_values = torch.randint(low=0, high=1000000000, size=(total_lengths,)) ref_values_mask = var_list_to_coo_1d( lengths, torch.ones_like(ref_values), max_sequence_length ).to_dense() ref_output_values = ( var_list_to_coo_1d( lengths, ref_values, max_sequence_length, ).to_dense() + (1 - ref_values_mask) * torch.ones_like(ref_values_mask) * padding_value ) # test cpu forward values = ref_values.clone().detach().requires_grad_(False) output_values = torch.ops.fbgemm.jagged_1d_to_dense( values=values, offsets=offsets, max_sequence_length=max_sequence_length, padding_value=padding_value, ) torch.testing.assert_close(ref_output_values, output_values) if torch.cuda.is_available(): # test gpu forward ref_values = ref_values.cuda() values = ref_values.clone().detach().requires_grad_(False) offsets = offsets.cuda() ref_output_values = ref_output_values.cuda() output_values = torch.ops.fbgemm.jagged_1d_to_dense( values=values, offsets=offsets, max_sequence_length=max_sequence_length, padding_value=padding_value, ) torch.testing.assert_close(ref_output_values, output_values) def test_jagged_1d_to_dense_truncation(self) -> None: lengths_ = np.array([1, 3, 0, 1]) lengths = torch.from_numpy(lengths_) offsets = torch.ops.fbgemm.asynchronous_complete_cumsum(lengths) ref_values = torch.from_numpy(np.array([100, 3, 4, 5, 6])) ref_output = torch.from_numpy(np.array([100, 3, -1, 6])).reshape(-1, 1) # test cpu forward values = ref_values.clone().detach().requires_grad_(False) output = torch.ops.fbgemm.jagged_1d_to_dense( values=values, offsets=offsets, max_sequence_length=1, padding_value=-1, ) torch.testing.assert_close(ref_output, output) if torch.cuda.is_available(): # test gpu forward ref_values = ref_values.cuda() values = ref_values.clone().detach().requires_grad_(False) offsets = offsets.cuda() ref_output = ref_output.cuda() output = torch.ops.fbgemm.jagged_1d_to_dense( values=values, offsets=offsets, max_sequence_length=1, padding_value=-1, ) torch.testing.assert_close(ref_output, output) @unittest.skipIf(*symint_vector_unsupported()) @settings( verbosity=Verbosity.verbose, max_examples=20, deadline=None, ) @given( B=st.integers(min_value=1, max_value=128), max_sequence_length=st.integers(min_value=1, max_value=500), padding_value=st.integers(min_value=-100000, max_value=100000), device_type=st.sampled_from(["cpu", "cuda"]) if gpu_available else st.just("cpu"), ) def test_jagged_1d_to_dense_dynamic_shape( self, B: int, max_sequence_length: int, padding_value: int, device_type: str ) -> None: # Start a fresh compile for each parameter of the test case torch._dynamo.reset() def lengths_to_segment_ids(lengths: torch.Tensor) -> torch.Tensor: return torch.repeat_interleave( torch._dim_arange(lengths, 0).long(), lengths.long(), ) lengths_ = np.random.randint(low=0, high=max_sequence_length, size=B) total_lengths = lengths_.sum() lengths = torch.from_numpy(lengths_) offsets = torch.ops.fbgemm.asynchronous_complete_cumsum(lengths) ref_values = torch.randint(low=0, high=1000000000, size=(total_lengths,)) ref_values_mask = var_list_to_coo_1d( lengths, torch.ones_like(ref_values), max_sequence_length ).to_dense() ref_output_values = ( var_list_to_coo_1d( lengths, ref_values, max_sequence_length, ).to_dense() + (1 - ref_values_mask) * torch.ones_like(ref_values_mask) * padding_value ) ref_values = ref_values.to(device_type) values = ref_values.clone().detach().requires_grad_(False) offsets = offsets.to(device_type) ref_output_values = ref_output_values.to(device_type) output_values = torch.compile( torch.ops.fbgemm.jagged_1d_to_dense, dynamic=True, fullgraph=True )( values=values, offsets=offsets, max_sequence_length=max_sequence_length, padding_value=padding_value, ) torch.testing.assert_close(ref_output_values, output_values) @unittest.skipIf(*gpu_unavailable) @settings( verbosity=Verbosity.verbose, max_examples=20, deadline=None, ) @given( T=st.integers(min_value=1, max_value=20), B=st.integers(min_value=1, max_value=128), max_sequence_length=st.integers(min_value=1, max_value=500), padding_value=st.integers(min_value=-100000, max_value=100000), use_cpu=st.booleans() if gpu_available else st.just(True), ) def test_stacked_jagged_1d_to_dense( self, T: int, B: int, max_sequence_length: int, padding_value: int, use_cpu: bool, ) -> None: device = torch.device("cpu" if use_cpu else "cuda") def lengths_to_segment_ids(lengths: torch.Tensor) -> torch.Tensor: return torch.repeat_interleave( torch._dim_arange(lengths, 0).long(), lengths.long(), ) lengths_ = np.random.randint(low=0, high=max_sequence_length, size=B * T) total_lengths = lengths_.sum() lengths = torch.from_numpy(lengths_).to(device) offsets = torch.ops.fbgemm.asynchronous_complete_cumsum(lengths) lengths = lengths.view(T, B) ref_values = torch.randint( low=0, high=1000000000, size=(total_lengths,), device=device ) values = ref_values.clone().detach().requires_grad_(False) output_values_per_table = torch.ops.fbgemm.stacked_jagged_1d_to_dense( values=values, lengths=lengths, offset_per_key=[0] + np.cumsum([lengths[t].sum().item() for t in range(T)]).tolist(), max_lengths_per_key=[max_sequence_length] * T, padding_value=padding_value, ) ref_output_values = torch.ops.fbgemm.jagged_1d_to_dense( values=ref_values, offsets=offsets, max_sequence_length=max_sequence_length, padding_value=padding_value, ) torch.testing.assert_close( ref_output_values, torch.cat(output_values_per_table) ) def _to_padded_dense( self, values: torch.Tensor, offsets: List[torch.LongTensor], max_lengths: np.ndarray, padding_value: float = 0, ) -> torch.Tensor: outer_dense_size = len(offsets[0]) - 1 # canonicalize by unsqueeze the last dim if the inner dense dimension # is 1 and folded. inner_dense_size = 1 if values.ndim == 1 else values.size(-1) dense = torch.empty( (outer_dense_size,) + tuple(max_lengths) + (inner_dense_size,), dtype=values.dtype, device=values.device, ) for i in range(outer_dense_size): for jagged_coord in itertools.product( *(list(range(max_l)) for max_l in max_lengths) ): cur_offset = i is_zero = False for d in range(len(max_lengths)): begin = offsets[d][cur_offset].item() end = offsets[d][cur_offset + 1].item() # pyre-fixme[6]: For 1st param expected `int` but got # `Union[bool, float, int]`. if jagged_coord[d] >= end - begin: is_zero = True break cur_offset = begin + jagged_coord[d] dense[(i,) + jagged_coord] = ( padding_value if is_zero else values[cur_offset] ) return dense.squeeze(-1) if values.ndim == 1 else dense # TODO: reuse this code in test_(stacked)_jagged_1/2d def _generate_jagged_tensor( self, num_jagged_dim: int, outer_dense_size: int, inner_dense_size: int, dtype: torch.dtype, device: torch.device, fold_inner_dense: bool = False, # dynamo to mark the input as dynamic shape to make sure symbolic # shape is generated mark_dynamic: bool = False, ) -> Tuple[torch.Tensor, List[torch.LongTensor], np.ndarray]: max_lengths = np.random.randint(low=1, high=10, size=(num_jagged_dim,)) x_offsets: List[torch.LongTensor] = [] num_lengths = outer_dense_size for d in range(num_jagged_dim): # Sometimes length[i] exceed max_L meaning jagged->dense will be # truncation vs. padding lengths = torch.randint( # PT2 specialize 0/1 dims as non-symbolic shape. So we need # to make it non 0/1 for testing. In real cases it'll likelyl # not 0/1 anyway (if so, they'll be recompiled) low=0 if not mark_dynamic else 1, high=max_lengths[d] * 2, # pyre-fixme[6]: For 3rd param expected `Union[List[int], Size, # typing.Tuple[int, ...]]` but got `Tuple[Union[bool, float, int]]`. size=(num_lengths,), device=device, ) offset = torch.ops.fbgemm.asynchronous_complete_cumsum(lengths) if mark_dynamic: torch._dynamo.mark_dynamic(offset, 0) x_offsets.append(offset) num_lengths = x_offsets[-1][-1].item() x_values = torch.rand( # pyre-fixme[6]: For 1st param expected `Union[List[int], Size, # typing.Tuple[int, ...]]` but got `Tensor`. x_offsets[-1][-1] * inner_dense_size, dtype=dtype, device=device, ) if inner_dense_size != 1 or not fold_inner_dense: # pyre-fixme[6]: For 1st param expected `int` but got `Union[bool, float, int]`. x_values = x_values.reshape(x_offsets[-1][-1].item(), inner_dense_size) if mark_dynamic: for i in range(inner_dense_size): torch._dynamo.mark_dynamic(x_values, i) return x_values, x_offsets, max_lengths def _test_dense_to_jagged( self, num_jagged_dim: int, outer_dense_size: int, inner_dense_size: int, dtype: torch.dtype, device_type: str, precompute_total_L: bool, ) -> None: # Generate multi-dim jagged tensor device = torch.device(device_type) values_2d, offsets, max_lengths = self._generate_jagged_tensor( num_jagged_dim, outer_dense_size, inner_dense_size, dtype, device ) values_2d = values_2d.clone().detach().requires_grad_(True) # jagged -> dense dense = torch.ops.fbgemm.jagged_to_padded_dense(values_2d, offsets, max_lengths) # dense -> jagged (op which is being tested) if precompute_total_L: total_L = values_2d.size(0) jagged_values, jagged_offsets = torch.ops.fbgemm.dense_to_jagged( dense, offsets, total_L ) else: jagged_values, jagged_offsets = torch.ops.fbgemm.dense_to_jagged( dense, offsets ) # jagged -> dense dense2 = torch.ops.fbgemm.jagged_to_padded_dense( jagged_values, jagged_offsets, max_lengths ) # verify forward torch.testing.assert_close(dense, dense2) # verify backward dense.retain_grad() ref_output_values = jagged_values.clone().detach().requires_grad_(True) ref_values = dense.clone().detach().requires_grad_(True) jagged_values.backward(ref_output_values) torch.testing.assert_close(dense.grad, ref_values) @given( num_jagged_dim=st.integers(1, 5), outer_dense_size=st.integers(0, 5), inner_dense_size=st.integers(0, 5), dtype=st.sampled_from([torch.float, torch.half, torch.bfloat16]), device_type=st.sampled_from(["cpu", "cuda"]) if gpu_available else st.just("cpu"), precompute_total_L=st.booleans(), ) @settings(verbosity=Verbosity.verbose, max_examples=20, deadline=None) def test_dense_to_jagged( self, num_jagged_dim: int, outer_dense_size: int, inner_dense_size: int, dtype: torch.dtype, device_type: str, precompute_total_L: bool, ) -> None: self._test_dense_to_jagged( num_jagged_dim, outer_dense_size, inner_dense_size, dtype, device_type, precompute_total_L, ) @unittest.skipIf(*gpu_unavailable) @given( num_jagged_dim=st.just(1), outer_dense_size=st.integers(0, 6000), inner_dense_size=st.sampled_from([8, 16, 23, 24, 48, 50, 64, 72, 96, 192]), dtype=st.just(torch.half), device_type=st.sampled_from(["cpu", "cuda"]) if gpu_available else st.just("cpu"), precompute_total_L=st.booleans(), ) @settings(verbosity=Verbosity.verbose, max_examples=20, deadline=None) def test_dense_to_jagged_opt( self, num_jagged_dim: int, outer_dense_size: int, inner_dense_size: int, dtype: torch.dtype, device_type: str, precompute_total_L: bool, ) -> None: self._test_dense_to_jagged( num_jagged_dim, outer_dense_size, inner_dense_size, dtype, device_type, precompute_total_L, ) # (8000+1) * 8 (size of the element of LongTensor/int64_t offsets) # = ~62.5KB > 48KB default shared memory on V100/A100. @unittest.skipIf(*gpu_unavailable) @given( num_jagged_dim=st.just(1), outer_dense_size=st.just(8000), inner_dense_size=st.just(16), dtype=st.just(torch.half), device_type=st.sampled_from(["cpu", "cuda"]) if gpu_available else st.just("cpu"), precompute_total_L=st.booleans(), ) @settings(verbosity=Verbosity.verbose, max_examples=1, deadline=None) def test_dense_to_jagged_opt_large_batch( self, num_jagged_dim: int, outer_dense_size: int, inner_dense_size: int, dtype: torch.dtype, device_type: str, precompute_total_L: bool, ) -> None: self._test_dense_to_jagged( num_jagged_dim, outer_dense_size, inner_dense_size, dtype, device_type, precompute_total_L, ) @given( num_jagged_dim=st.integers(1, 5), outer_dense_size=st.integers(0, 5), inner_dense_size=st.integers(0, 5), dtype=st.sampled_from([torch.float, torch.half, torch.bfloat16]), device_type=st.sampled_from(["meta"]), precompute_total_L=st.booleans(), ) @settings(verbosity=Verbosity.verbose, max_examples=20, deadline=None) def test_dense_to_jagged_meta_backend( self, num_jagged_dim: int, outer_dense_size: int, inner_dense_size: int, dtype: torch.dtype, device_type: str, precompute_total_L: bool, ) -> None: device = torch.device("cpu") values_2d, offsets, max_lengths = self._generate_jagged_tensor( num_jagged_dim, outer_dense_size, inner_dense_size, dtype, device ) values_2d = values_2d.clone().detach().requires_grad_(True) # jagged -> dense dense = torch.ops.fbgemm.jagged_to_padded_dense(values_2d, offsets, max_lengths) # dense -> jagged (op which is being tested) if precompute_total_L: total_L = values_2d.size(0) dense.to(device_type) jagged_values, jagged_offsets = torch.ops.fbgemm.dense_to_jagged( dense, offsets, total_L ) else: dense.to(device_type) jagged_values, jagged_offsets = torch.ops.fbgemm.dense_to_jagged( dense, offsets ) jagged_values.to(device_type) # jagged -> dense dense2 = torch.ops.fbgemm.jagged_to_padded_dense( jagged_values, jagged_offsets, max_lengths ) # verify forward assert dense.size() == dense2.size() @unittest.skipIf(*symint_vector_unsupported()) @given( num_jagged_dim=st.integers(1, 5), # TODO: size = 0/1 will be incorrectly specialized outer_dense_size=st.integers(2, 5), inner_dense_size=st.integers(2, 5), dtype=st.sampled_from([torch.float, torch.half, torch.bfloat16]), device_type=st.sampled_from(["cpu", "cuda"]) if gpu_available else st.just("cpu"), ) @settings(verbosity=Verbosity.verbose, max_examples=20, deadline=None) def test_dense_to_jagged_dynamic_shape( self, num_jagged_dim: int, outer_dense_size: int, inner_dense_size: int, dtype: torch.dtype, device_type: str, ) -> None: # Start a fresh compile for each parameter of the test case torch._dynamo.reset() values_2d, offsets, max_lengths = self._generate_jagged_tensor( num_jagged_dim, outer_dense_size, inner_dense_size, dtype, torch.device(device_type), mark_dynamic=True, ) values_2d = values_2d.clone().detach().requires_grad_(True) @torch.compile(fullgraph=True, dynamic=True) def jagged_to_dense( values: torch.Tensor, offsets: torch.Tensor, max_lengths: List[int] ) -> torch.Tensor: return torch.ops.fbgemm.jagged_to_padded_dense(values, offsets, max_lengths) # jagged -> dense dense = jagged_to_dense(values_2d, offsets, max_lengths.tolist()) # dense -> jagged, it is required to pre-compute totalL total_L = values_2d.size(0) dense = dense.clone().detach().to(device_type) torch._dynamo.mark_dynamic(dense, 0) torch._dynamo.mark_dynamic(dense, -1) @torch.compile(fullgraph=True, dynamic=True) def dense_to_jagged_withL( dense: torch.Tensor, offsets: torch.Tensor, total_L: List[int] ) -> Tuple[torch.Tensor, torch.Tensor]: return torch.ops.fbgemm.dense_to_jagged(dense, offsets, total_L) @torch.compile(fullgraph=False, dynamic=True) def dense_to_jagged_noL( dense: torch.Tensor, offsets: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor]: return torch.ops.fbgemm.dense_to_jagged(dense, offsets) jagged_values, jagged_offsets = dense_to_jagged_noL(dense, offsets) jagged_values, jagged_offsets = dense_to_jagged_withL(dense, offsets, total_L) jagged_values.to(device_type) # jagged -> dense dense2 = torch.ops.fbgemm.jagged_to_padded_dense( jagged_values, jagged_offsets, max_lengths ) # verify forward assert dense.size() == dense2.size() @given( num_jagged_dim=st.integers(1, 5), outer_dense_size=st.integers(0, 5), inner_dense_size=st.integers(0, 5), fold_inner_dense=st.booleans(), padding_value=st.sampled_from([0, -1e-8]), dtype=st.sampled_from([torch.float, torch.half, torch.bfloat16, torch.double]), device_type=st.sampled_from(["cpu", "cuda"]) if gpu_available else st.just("cpu"), ) @settings(verbosity=Verbosity.verbose, max_examples=20, deadline=None) def test_jagged_to_padded_dense( self, num_jagged_dim: int, outer_dense_size: int, inner_dense_size: int, fold_inner_dense: bool, padding_value: float, dtype: torch.dtype, device_type: str, ) -> None: # CPU doesn't support bfloat16 assume(device_type != "cpu" or dtype != torch.bfloat16) assume(not fold_inner_dense or inner_dense_size == 1) # Testing with a basic crafted example. # dense representation is # [[[[0, 1], [ 0, 0], [0, 0]], # [[2, 3], [ 4, 5], [6, 7]], # [[0, 0], [ 0, 0], [0, 0]], # [[0, 0], [ 0, 0], [0, 0]]], # [[[0, 0], [ 0, 0], [0, 0]], # [[0, 0], [ 0, 0], [0, 0]], # [[0, 0], [ 0, 0], [0, 0]], # [[0, 0], [ 0, 0], [0, 0]]], # [[[8, 9], [10, 11], [0, 0]], # [[0, 0], [ 0, 0], [0, 0]], # [[0, 0], [ 0, 0], [0, 0]], # [[0, 0], [ 0, 0], [0, 0]]]], # inner_dense_size = 2 # x_offsets = [ # torch.LongTensor([0, 2, 2, 3]), # lengths torch.Tensor([2, 0, 1]), # torch.LongTensor([0, 1, 4, 6]), # lengths torch.Tensor([1, 3, 2]), # ] # outer_dense_size = len(x_offsets[0]) - 1 # max_lengths = [4, 3] device = torch.device(device_type) x_values, x_offsets, max_lengths = self._generate_jagged_tensor( num_jagged_dim, outer_dense_size, inner_dense_size, torch.float, device, fold_inner_dense, ) output_ref = self._to_padded_dense( x_values, x_offsets, max_lengths, padding_value=padding_value ) output = torch.ops.fbgemm.jagged_to_padded_dense( x_values, x_offsets, max_lengths, padding_value=padding_value, ) torch.testing.assert_close(output, output_ref) torch.autograd.gradcheck( torch.ops.fbgemm.jagged_to_padded_dense, ( x_values.double().requires_grad_(True), x_offsets, max_lengths, padding_value, ), ) @given( num_jagged_dim=st.integers(1, 5), outer_dense_size=st.integers(0, 5), inner_dense_size=st.integers(0, 5), padding_value=st.just(0), dtype=st.sampled_from([torch.float, torch.half, torch.bfloat16, torch.double]), device_type=st.just("meta"), ) @settings(verbosity=Verbosity.verbose, max_examples=20, deadline=None) def test_jagged_to_padded_dense_meta_backend( self, num_jagged_dim: int, outer_dense_size: int, inner_dense_size: int, padding_value: float, dtype: torch.dtype, device_type: str, ) -> None: assume(device_type != "cpu" or dtype != torch.bfloat16) device = torch.device("cpu") x_values, x_offsets, max_lengths = self._generate_jagged_tensor( num_jagged_dim, outer_dense_size, inner_dense_size, torch.float, device ) output_ref = self._to_padded_dense( x_values, x_offsets, max_lengths, padding_value=padding_value ) x_values.to(device_type) output = torch.ops.fbgemm.jagged_to_padded_dense( x_values, x_offsets, max_lengths, padding_value=padding_value, ) assert output.size() == output_ref.size() def _test_jagged_elementwise_binary( self, num_jagged_dim: int, outer_dense_size: int, inner_dense_size: int, operation: str, dtype: torch.dtype, device_type: str, ) -> None: device = torch.device(device_type) x_values, x_offsets, max_lengths = self._generate_jagged_tensor( num_jagged_dim, outer_dense_size, inner_dense_size, dtype, device ) y = torch.rand( outer_dense_size * np.prod(max_lengths) * inner_dense_size, dtype=dtype, device=device, ).reshape((outer_dense_size,) + tuple(max_lengths) + (inner_dense_size,)) x_padded = self._to_padded_dense(x_values, x_offsets, max_lengths) if operation == "add": output_ref = x_padded + y output = torch.ops.fbgemm.jagged_dense_elementwise_add( x_values, x_offsets, y ) elif operation == "add_jagged_output": # create a jagged tensor and then densify y = self._to_padded_dense( torch.rand( ( max(outer_dense_size * np.prod(max_lengths), x_values.size(0)), inner_dense_size, ), dtype=dtype, device=device, ), x_offsets, max_lengths, ) output_ref = x_padded + y ( output, output_offsets, ) = torch.ops.fbgemm.jagged_dense_elementwise_add_jagged_output( x_values, x_offsets, y ) output = self._to_padded_dense(output, output_offsets, max_lengths) elif operation == "mul": output_ref = x_padded * y output, output_offsets = torch.ops.fbgemm.jagged_dense_elementwise_mul( x_values, x_offsets, y ) output = self._to_padded_dense(output, output_offsets, max_lengths) else: raise AssertionError(f"Unknown operation {operation}") torch.testing.assert_close(output, output_ref) if operation == "add": f = torch.ops.fbgemm.jagged_dense_elementwise_add elif operation == "add_jagged_output": # pyre-fixme[2]: Parameter must be annotated. def add_jagged_output_func(*args) -> torch.Tensor: return torch.ops.fbgemm.jagged_dense_elementwise_add_jagged_output( *args )[0] f = add_jagged_output_func else: assert operation == "mul" # pyre-fixme[2]: Parameter must be annotated. def mul_func(*args) -> torch.Tensor: return torch.ops.fbgemm.jagged_dense_elementwise_mul(*args)[0] f = mul_func torch.autograd.gradcheck( f, ( x_values.double().requires_grad_(True), x_offsets, y.double().requires_grad_(True), ), ) @given( num_jagged_dim=st.integers(1, 4), outer_dense_size=st.integers(0, 4), inner_dense_size=st.integers(0, 4), operation=st.sampled_from(["add", "add_jagged_output", "mul"]), dtype=st.sampled_from([torch.float, torch.half, torch.double, torch.bfloat16]), device_type=st.sampled_from(["cpu", "cuda"]) if gpu_available else st.just("cpu"), ) @settings(verbosity=Verbosity.verbose, max_examples=20, deadline=None) def test_jagged_elementwise_binary( self, num_jagged_dim: int, outer_dense_size: int, inner_dense_size: int, operation: str, dtype: torch.dtype, device_type: str, ) -> None: self._test_jagged_elementwise_binary( num_jagged_dim, outer_dense_size, inner_dense_size, operation, dtype, device_type, ) @unittest.skipIf(*gpu_unavailable) @given( num_jagged_dim=st.just(1), outer_dense_size=st.integers(0, 8), inner_dense_size=st.sampled_from([16, 64, 96, 192]), operation=st.sampled_from(["add_jagged_output", "mul"]), dtype=st.just(torch.half), device_type=st.sampled_from(["cpu", "cuda"]) if gpu_available else st.just("cpu"), ) @settings(verbosity=Verbosity.verbose, max_examples=4, deadline=None) def test_jagged_elementwise_binary_opt( self, num_jagged_dim: int, outer_dense_size: int, inner_dense_size: int, operation: str, dtype: torch.dtype, device_type: str, ) -> None: self._test_jagged_elementwise_binary( num_jagged_dim, outer_dense_size, inner_dense_size, operation, dtype, device_type, ) @unittest.skipIf(*symint_vector_unsupported()) @given( num_jagged_dim=st.integers(1, 5), outer_dense_size=st.integers(2, 5), inner_dense_size=st.integers(2, 5), operation=st.sampled_from(["add", "add_jagged_output", "mul"]), dtype=st.sampled_from([torch.float, torch.half, torch.double, torch.bfloat16]), device_type=st.sampled_from(["cpu", "cuda"]) if gpu_available else st.just("cpu"), ) @settings(verbosity=Verbosity.verbose, max_examples=20, deadline=None) def test_jagged_elementwise_binary_dynamic_shape( self, num_jagged_dim: int, outer_dense_size: int, inner_dense_size: int, operation: str, dtype: torch.dtype, device_type: str, ) -> None: # Start a fresh compile for each parameter of the test case torch._dynamo.reset() device = torch.device(device_type) x_values, x_offsets, max_lengths = self._generate_jagged_tensor( num_jagged_dim, outer_dense_size, inner_dense_size, dtype, device, mark_dynamic=True, ) y = torch.rand( outer_dense_size * np.prod(max_lengths) * inner_dense_size, dtype=dtype, device=device, ).reshape((outer_dense_size,) + tuple(max_lengths) + (inner_dense_size,)) x_padded = self._to_padded_dense(x_values, x_offsets, max_lengths) @torch.compile(fullgraph=True, dynamic=True) def jagged_dense_elementwise_add( x_values: torch.Tensor, x_offsets: torch.Tensor, y: torch.Tensor ) -> torch.Tensor: return torch.ops.fbgemm.jagged_dense_elementwise_add(x_values, x_offsets, y) @torch.compile(fullgraph=True, dynamic=True) def jagged_dense_elementwise_add_jagged_output( x_values: torch.Tensor, x_offsets: torch.Tensor, y: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor]: return torch.ops.fbgemm.jagged_dense_elementwise_add_jagged_output( x_values, x_offsets, y ) @torch.compile(fullgraph=True, dynamic=True) def jagged_dense_elementwise_mul( x_values: torch.Tensor, x_offsets: torch.Tensor, y: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor]: return torch.ops.fbgemm.jagged_dense_elementwise_mul(x_values, x_offsets, y) if operation == "add": output_ref = x_padded + y output = jagged_dense_elementwise_add(x_values, x_offsets, y) elif operation == "add_jagged_output": # create a jagged tensor and then densify y = self._to_padded_dense( torch.rand( ( max(outer_dense_size * np.prod(max_lengths), x_values.size(0)), inner_dense_size, ), dtype=dtype, device=device, ), x_offsets, max_lengths, ) output_ref = x_padded + y ( output, output_offsets, ) = jagged_dense_elementwise_add_jagged_output(x_values, x_offsets, y) output = self._to_padded_dense(output, output_offsets, max_lengths) elif operation == "mul": output_ref = x_padded * y output, output_offsets = jagged_dense_elementwise_mul( x_values, x_offsets, y ) output = self._to_padded_dense(output, output_offsets, max_lengths) else: raise AssertionError(f"Unknown operation {operation}") assert output.size() == output_ref.size() def _test_jagged_dense_dense_elementwise_add_jagged_output( self, num_jagged_dim: int, outer_dense_size: int, inner_dense_size: int, dtype: torch.dtype, device_type: str, ) -> None: device = torch.device(device_type) x_values, x_offsets, max_lengths = self._generate_jagged_tensor( num_jagged_dim, outer_dense_size, inner_dense_size, dtype, device ) x_padded = self._to_padded_dense(x_values, x_offsets, max_lengths) # create a jagged tensor and then densify y_0 = self._to_padded_dense( torch.rand( ( max(outer_dense_size * np.prod(max_lengths), x_values.size(0)), inner_dense_size, ), dtype=dtype, device=device, ), x_offsets, max_lengths, ) y_1 = self._to_padded_dense( torch.rand( ( max(outer_dense_size * np.prod(max_lengths), x_values.size(0)), inner_dense_size, ), dtype=dtype, device=device, ), x_offsets, max_lengths, ) output_ref = x_padded + y_0 + y_1 ( output, output_offsets, ) = torch.ops.fbgemm.jagged_dense_dense_elementwise_add_jagged_output( x_values, x_offsets, y_0, y_1 ) output = self._to_padded_dense(output, output_offsets, max_lengths) torch.testing.assert_close(output, output_ref) # pyre-fixme[2]: Parameter must be annotated. def add_jagged_output_func(*args) -> torch.Tensor: return torch.ops.fbgemm.jagged_dense_dense_elementwise_add_jagged_output( *args )[0] f = add_jagged_output_func torch.autograd.gradcheck( f, ( x_values.double().requires_grad_(True), x_offsets, y_0.double().requires_grad_(True), y_1.double().requires_grad_(True), ), ) @given( num_jagged_dim=st.integers(1, 4), outer_dense_size=st.integers(0, 4), inner_dense_size=st.integers(0, 4), dtype=st.sampled_from([torch.float, torch.half, torch.double, torch.bfloat16]), device_type=st.sampled_from(["cpu", "cuda"]) if gpu_available else st.just("cpu"), ) @settings(verbosity=Verbosity.verbose, max_examples=20, deadline=None) def test_jagged_dense_dense_elementwise_add_jagged_output( self, num_jagged_dim: int, outer_dense_size: int, inner_dense_size: int, dtype: torch.dtype, device_type: str, ) -> None: self._test_jagged_dense_dense_elementwise_add_jagged_output( num_jagged_dim, outer_dense_size, inner_dense_size, dtype, device_type ) @unittest.skipIf(*gpu_unavailable) @given( num_jagged_dim=st.just(1), outer_dense_size=st.integers(0, 8), inner_dense_size=st.sampled_from([16, 64, 96, 192]), dtype=st.just(torch.half), device_type=st.sampled_from(["cpu", "cuda"]) if gpu_available else st.just("cpu"), ) @settings(verbosity=Verbosity.verbose, max_examples=4, deadline=None) def test_jagged_dense_dense_elementwise_add_jagged_output_opt( self, num_jagged_dim: int, outer_dense_size: int, inner_dense_size: int, dtype: torch.dtype, device_type: str, ) -> None: self._test_jagged_dense_dense_elementwise_add_jagged_output( num_jagged_dim, outer_dense_size, inner_dense_size, dtype, device_type ) @given( num_jagged_dim=st.integers(1, 4), outer_dense_size=st.integers(0, 4), inner_dense_size=st.integers(0, 4), dtype=st.sampled_from([torch.float, torch.half, torch.double, torch.bfloat16]), device_type=st.just("meta"), ) @settings(verbosity=Verbosity.verbose, max_examples=20, deadline=None) def test_jagged_dense_dense_elementwise_add_jagged_output_meta_backend( self, num_jagged_dim: int, outer_dense_size: int, inner_dense_size: int, dtype: torch.dtype, device_type: str, ) -> None: device = torch.device("cpu") x_values, x_offsets, max_lengths = self._generate_jagged_tensor( num_jagged_dim, outer_dense_size, inner_dense_size, dtype, device ) x_padded = self._to_padded_dense(x_values, x_offsets, max_lengths) # create a jagged tensor and then densify y_0 = self._to_padded_dense( torch.rand( ( max(outer_dense_size * np.prod(max_lengths), x_values.size(0)), inner_dense_size, ), dtype=dtype, device=device, ), x_offsets, max_lengths, ) y_1 = self._to_padded_dense( torch.rand( ( max(outer_dense_size * np.prod(max_lengths), x_values.size(0)), inner_dense_size, ), dtype=dtype, device=device, ), x_offsets, max_lengths, ) output_ref = x_padded + y_0 + y_1 x_values.to(device_type) ( output, output_offsets, ) = torch.ops.fbgemm.jagged_dense_dense_elementwise_add_jagged_output( x_values, x_offsets, y_0, y_1 ) output.to("cpu") output = self._to_padded_dense(output, output_offsets, max_lengths) assert output.size() == output_ref.size() @unittest.skipIf(*symint_vector_unsupported()) @given( num_jagged_dim=st.integers(1, 4), outer_dense_size=st.integers(2, 4), inner_dense_size=st.integers(2, 4), dtype=st.sampled_from([torch.float, torch.half, torch.double, torch.bfloat16]), device_type=st.just("cpu"), ) @settings(verbosity=Verbosity.verbose, max_examples=20, deadline=None) def test_jagged_dense_dense_elementwise_add_jagged_output_dynamic_shape( self, num_jagged_dim: int, outer_dense_size: int, inner_dense_size: int, dtype: torch.dtype, device_type: str, ) -> None: # Start a fresh compile for each parameter of the test case torch._dynamo.reset() x_values, x_offsets, max_lengths = self._generate_jagged_tensor( num_jagged_dim, outer_dense_size, inner_dense_size, dtype, torch.device(device_type), mark_dynamic=True, ) x_padded = self._to_padded_dense(x_values, x_offsets, max_lengths) # create a jagged tensor and then densify y_0 = self._to_padded_dense( torch.rand( ( max(outer_dense_size * np.prod(max_lengths), x_values.size(0)), inner_dense_size, ), dtype=dtype, device=torch.device(device_type), ), x_offsets, max_lengths, ) y_1 = self._to_padded_dense( torch.rand( ( max(outer_dense_size * np.prod(max_lengths), x_values.size(0)), inner_dense_size, ), dtype=dtype, device=torch.device(device_type), ), x_offsets, max_lengths, ) output_ref = x_padded + y_0 + y_1 x_values.to(device_type) (output, output_offsets) = torch.compile( torch.ops.fbgemm.jagged_dense_dense_elementwise_add_jagged_output, fullgraph=True, dynamic=True, )(x_values, x_offsets, y_0, y_1) output.to("cpu") output = self._to_padded_dense(output, output_offsets, max_lengths) assert output.size() == output_ref.size() @settings( verbosity=Verbosity.verbose, max_examples=20, deadline=None, ) @given( B=st.integers(0, 32), H=st.integers(1, 3), max_L=st.integers(1, 32), D=st.integers(0, 32), dtype=st.sampled_from([torch.float, torch.half, torch.bfloat16, torch.double]), device_type=st.sampled_from(["cpu", "cuda"]) if gpu_available else st.just("cpu"), ) def test_batched_dense_vec_jagged_2d_mul( self, B: int, H: int, max_L: int, D: int, dtype: torch.dtype, device_type: str, ) -> None: assume(H == 1 or B != 0) # CPU doesn't support bfloat16 assume(device_type != "cpu" or dtype != torch.bfloat16) device = torch.device(device_type) torch.backends.cuda.matmul.allow_tf32 = False # Sometimes length[i] exceed max_L meaning jagged->dense will be # truncation vs. padding lengths = torch.randint(max_L * 2, size=(B,), device=device) offsets = torch.ops.fbgemm.asynchronous_complete_cumsum(lengths) values = torch.rand((offsets[-1], H * D), dtype=dtype, device=device) dense = torch.rand((B * H, max_L), dtype=dtype, device=device) padded_values = torch.ops.fbgemm.jagged_to_padded_dense( values, [offsets], [max_L], ) # [B, N, H * D] bmm_arg1 = dense.unsqueeze(1) bmm_arg2 = ( padded_values.reshape(B, max_L, H, D) .transpose(1, 2) .reshape(B * H, max_L, D) ) # torch.bmm not implemented for Half on CPU if dtype in [torch.half, torch.bfloat16] and device_type == "cpu": bmm_arg1 = bmm_arg1.float() bmm_arg2 = bmm_arg2.float() output_ref = torch.bmm(bmm_arg1, bmm_arg2).squeeze( 1 ) # [B H, 1, N] x [B H, N, D] = [B H, 1, D] if dtype in [torch.half, torch.bfloat16] and device_type == "cpu": output_ref = output_ref.to(dtype) output = torch.ops.fbgemm.batched_dense_vec_jagged_2d_mul( dense, values, offsets ) torch.testing.assert_close( output, output_ref, rtol=1e-2 if dtype in [torch.half, torch.bfloat16] else None, atol=1e-2 if dtype in [torch.half, torch.bfloat16] else None, ) torch.autograd.gradcheck( torch.ops.fbgemm.batched_dense_vec_jagged_2d_mul, ( dense.clone().detach().double().requires_grad_(True), values.clone().detach().double().requires_grad_(True), offsets, ), ) @settings( verbosity=Verbosity.verbose, max_examples=20, deadline=None, ) @given( B=st.integers(0, 32), H=st.integers(1, 3), max_L=st.integers(1, 32), D=st.integers(0, 32), dtype=st.sampled_from([torch.float, torch.half, torch.bfloat16, torch.double]), device_type=st.sampled_from(["meta"]), ) def test_batched_dense_vec_jagged_2d_mul_meta_backend( self, B: int, H: int, max_L: int, D: int, dtype: torch.dtype, device_type: str, ) -> None: assume(H == 1 or B != 0) device = torch.device("cpu") torch.backends.cuda.matmul.allow_tf32 = False # Sometimes length[i] exceed max_L meaning jagged->dense will be # truncation vs. padding lengths = torch.randint(max_L * 2, size=(B,), device=device) offsets = torch.ops.fbgemm.asynchronous_complete_cumsum(lengths) values = torch.rand((offsets[-1], H * D), dtype=dtype, device=device) dense = torch.rand((B * H, max_L), dtype=dtype, device=device) padded_values = torch.ops.fbgemm.jagged_to_padded_dense( values, [offsets], [max_L], ) # [B, N, H * D] bmm_arg1 = dense.unsqueeze(1) bmm_arg2 = ( padded_values.reshape(B, max_L, H, D) .transpose(1, 2) .reshape(B * H, max_L, D) ) # torch.bmm not implemented for Half on CPU if dtype in [torch.half, torch.bfloat16]: bmm_arg1 = bmm_arg1.float() bmm_arg2 = bmm_arg2.float() output_ref = torch.bmm(bmm_arg1, bmm_arg2).squeeze( 1 ) # [B H, 1, N] x [B H, N, D] = [B H, 1, D] dense.to(device_type) values.to(device_type) output = torch.ops.fbgemm.batched_dense_vec_jagged_2d_mul( dense, values, offsets ) assert output.size() == output_ref.size() @unittest.skipIf(*symint_vector_unsupported()) @settings( verbosity=Verbosity.verbose, max_examples=20, deadline=None, ) @given( B=st.integers(2, 32), H=st.integers(1, 3), max_L=st.integers(1, 32), D=st.integers(2, 32), dtype=st.sampled_from([torch.float, torch.half, torch.bfloat16, torch.double]), device_type=st.just("cpu"), ) def test_batched_dense_vec_jagged_2d_mul_dynamic_shape( self, B: int, H: int, max_L: int, D: int, dtype: torch.dtype, device_type: str, ) -> None: # Start a fresh compile for each parameter of the test case torch._dynamo.reset() assume(H == 1 or B != 0) device = torch.device(device_type) torch.backends.cuda.matmul.allow_tf32 = False # Sometimes length[i] exceed max_L meaning jagged->dense will be # truncation vs. padding lengths = torch.randint(low=1, high=max_L * 2, size=(B,), device=device) offsets = torch.ops.fbgemm.asynchronous_complete_cumsum(lengths) values = torch.rand((offsets[-1], H * D), dtype=dtype, device=device) dense = torch.rand((B * H, max_L), dtype=dtype, device=device) padded_values = torch.ops.fbgemm.jagged_to_padded_dense( values, [offsets], [max_L], ) # [B, N, H * D] bmm_arg1 = dense.unsqueeze(1) bmm_arg2 = ( padded_values.reshape(B, max_L, H, D) .transpose(1, 2) .reshape(B * H, max_L, D) ) # torch.bmm not implemented for Half on CPU if dtype in [torch.half, torch.bfloat16]: bmm_arg1 = bmm_arg1.float() bmm_arg2 = bmm_arg2.float() output_ref = torch.bmm(bmm_arg1, bmm_arg2).squeeze( 1 ) # [B H, 1, N] x [B H, N, D] = [B H, 1, D] dense.to(device_type) values.to(device_type) torch._dynamo.mark_dynamic(dense, 0) torch._dynamo.mark_dynamic(values, 0) torch._dynamo.mark_dynamic(values, 1) torch._dynamo.mark_dynamic(offsets, 0) output = torch.compile( torch.ops.fbgemm.batched_dense_vec_jagged_2d_mul, fullgraph=True, dynamic=True, )(dense, values, offsets) assert output.size() == output_ref.size() @staticmethod def jagged_index_select_2d_ref( values: torch.Tensor, lengths: torch.Tensor, inverse_lookup: torch.Tensor, device: torch.device, ) -> torch.Tensor: offsets = torch.ops.fbgemm.asynchronous_exclusive_cumsum(lengths) end_offsets = offsets + lengths full_start_offset = torch.index_select(offsets, 0, inverse_lookup) full_end_offset = torch.index_select(end_offsets, 0, inverse_lookup) index_ranges = torch.stack( (full_start_offset, full_end_offset), dim=0 ).transpose(0, 1) to_be_merged_tensors = [] for row in index_ranges: to_be_merged_tensors.append(torch.arange(row[0], row[1], device=device)) all_indices = torch.cat(to_be_merged_tensors, dim=0) new_embeddings = torch.index_select(values, 0, all_indices) return new_embeddings @unittest.skipIf(*running_on_github) @given( max_seq_length=st.integers(5, 10), batch_size=st.integers(1, 128), num_cols=st.integers(1, 128), num_jagged_tensor_rows=st.integers(1, 128), index_dtype=st.sampled_from([torch.int, torch.long]), jagged_tensor_dtype=st.sampled_from( [ torch.float, torch.half, torch.int, torch.long, ] # Disable torch.bfloat16 due to large error bound ), use_cpu=st.booleans() if (gpu_available and not TEST_WITH_ROCM) else st.just(False) if (gpu_available and TEST_WITH_ROCM) else st.just(True), ) @settings(max_examples=20, deadline=None) def test_jagged_index_select_2d( self, max_seq_length: int, batch_size: int, num_cols: int, num_jagged_tensor_rows: int, index_dtype: torch.dtype, jagged_tensor_dtype: torch.dtype, use_cpu: bool, ) -> None: device = torch.device("cpu" if use_cpu else "cuda") is_float = jagged_tensor_dtype in [torch.float, torch.half, torch.bfloat16] lengths = torch.randint( low=0, high=max_seq_length, size=(num_jagged_tensor_rows,), dtype=index_dtype, device=device, ) indices, _ = torch.sort( torch.randint( low=0, high=num_jagged_tensor_rows, size=(batch_size,), dtype=index_dtype, device=device, ) ) if is_float: values = torch.rand( int(lengths.sum().item()), num_cols, dtype=jagged_tensor_dtype, device=device, ) else: values = torch.randint( 2**16, (int(lengths.sum().item()), num_cols), dtype=jagged_tensor_dtype, device=device, ) values_ref = values.detach().clone() # Only float tensors can require grad if is_float: values.requires_grad = True values_ref.requires_grad = True output, _ = torch.ops.fbgemm.jagged_index_select(values, lengths, indices) output_ref = self.jagged_index_select_2d_ref( values_ref, lengths, indices, device ) assert torch.equal(output, output_ref) if not is_float: return grad = torch.rand_like(output) grad_ref = grad.detach().clone() output.backward(grad) output_ref.backward(grad_ref) torch.testing.assert_close( values.grad, values_ref.grad, rtol=1e-2 if jagged_tensor_dtype in [torch.half, torch.bfloat16] else None, atol=1e-2 if jagged_tensor_dtype in [torch.half, torch.bfloat16] else None, ) @unittest.skipIf(*running_on_github) @given( max_seq_length=st.integers(5, 10), batch_size=st.integers(1, 128), num_cols=st.integers(1, 128), num_jagged_tensor_rows=st.integers(1, 128), index_dtype=st.sampled_from([torch.int, torch.long]), jagged_tensor_dtype=st.sampled_from( [ torch.float, torch.half, torch.int, torch.long, ] # Disable torch.bfloat16 due to large error bound ), use_cpu=st.booleans() if (gpu_available and not TEST_WITH_ROCM) else st.just(False) if (gpu_available and TEST_WITH_ROCM) else st.just(True), ) @settings(max_examples=20, deadline=None) def test_jagged_index_select_2d_in_inference( self, max_seq_length: int, batch_size: int, num_cols: int, num_jagged_tensor_rows: int, index_dtype: torch.dtype, jagged_tensor_dtype: torch.dtype, use_cpu: bool, ) -> None: device = torch.device("cpu" if use_cpu else "cuda") is_float = jagged_tensor_dtype in [torch.float, torch.half, torch.bfloat16] lengths = torch.randint( low=0, high=max_seq_length, size=(num_jagged_tensor_rows,), dtype=index_dtype, device=device, ) indices, _ = torch.sort( torch.randint( low=0, high=num_jagged_tensor_rows, size=(batch_size,), dtype=index_dtype, device=device, ) ) if is_float: values = torch.rand( int(lengths.sum().item()), num_cols, dtype=jagged_tensor_dtype, device=device, ) else: values = torch.randint( 2**16, (int(lengths.sum().item()), num_cols), dtype=jagged_tensor_dtype, device=device, ) values_ref = values.detach().clone() with torch.inference_mode(): output, _ = torch.ops.fbgemm.jagged_index_select(values, lengths, indices) output_ref = self.jagged_index_select_2d_ref( values_ref, lengths, indices, device ) assert torch.equal(output, output_ref) @given( batch_size=st.integers(1, 128), max_length=st.integers(0, 128), max_truncated_length=st.integers(1, 32), index_dtype=st.sampled_from([torch.int, torch.long]), jagged_tensor_dtype=st.sampled_from( [torch.float, torch.half, torch.bfloat16, torch.int, torch.long] ), use_cpu=st.just(True), ) @settings(max_examples=20, deadline=None) def test_jagged_1d_to_truncated_values( self, max_length: int, batch_size: int, max_truncated_length: int, index_dtype: torch.dtype, jagged_tensor_dtype: torch.dtype, use_cpu: bool, ) -> None: device = "cpu" if use_cpu else "cuda" is_float = jagged_tensor_dtype in [torch.float, torch.half, torch.bfloat16] lengths = torch.randint( low=0, high=max_length + 1, size=(batch_size,), dtype=index_dtype, device=device, ) n = int(lengths.sum().item()) if is_float: values = torch.rand( (n,), dtype=jagged_tensor_dtype, device=device, ) else: values = torch.randint( 2**16, (n,), dtype=jagged_tensor_dtype, device=device, ) truncated_values = torch.ops.fbgemm.jagged_1d_to_truncated_values( values, lengths, max_truncated_length, ) dense_values = torch.ops.fbgemm.jagged_1d_to_dense( values=values, offsets=torch.ops.fbgemm.asynchronous_complete_cumsum(lengths), max_sequence_length=max_truncated_length, padding_value=0, ) # [B, N] truncated_lengths_ref = torch.clamp(lengths, max=max_truncated_length) mask2d = torch.arange(max_truncated_length, device=device).expand( batch_size, -1 ) < truncated_lengths_ref.unsqueeze(-1) truncated_values_ref = dense_values[mask2d].view(-1) torch.testing.assert_close(truncated_values, truncated_values_ref) @given( batch_size=st.integers(1, 128), max_length=st.integers(0, 128), index_dtype=st.sampled_from([torch.int, torch.long]), jagged_tensor_dtype=st.sampled_from([torch.int, torch.long]), empty_lengths=st.booleans(), use_cpu=st.just(True), ) @settings(max_examples=20, deadline=None) def test_masked_select_jagged_1d( self, max_length: int, batch_size: int, index_dtype: torch.dtype, jagged_tensor_dtype: torch.dtype, empty_lengths: bool, use_cpu: bool, ) -> None: device = "cpu" if use_cpu else "cuda" if empty_lengths: lengths = torch.zeros(batch_size, dtype=index_dtype, device=device) else: lengths = torch.randint( low=0, high=max_length + 1, size=(batch_size,), dtype=index_dtype, device=device, ) lengths[batch_size // 2] = 0 # test a corner case n = int(lengths.sum().item()) values = torch.randint( 2**16, (n,), dtype=jagged_tensor_dtype, device=device, ) mask = torch.randint(2, (n,)) > 0 masked_values, masked_lengths = torch.ops.fbgemm.masked_select_jagged_1d( values, lengths, mask, ) masked_values_ref = values[mask] cum_count = torch.cumsum(mask, 0) cum_count = torch.cat((cum_count, torch.tensor([0]))) cum_length = cum_count[torch.cumsum(lengths, 0) - 1] cum_length_shift_right = torch.roll(cum_length, 1) cum_length_shift_right[0] = 0 masked_lengths_ref = (cum_length - cum_length_shift_right).to(lengths.dtype) torch.testing.assert_close(masked_values, masked_values_ref) torch.testing.assert_close(masked_lengths, masked_lengths_ref) @unittest.skipIf(*gpu_unavailable) @given( max_seq_length=st.integers(5, 10), input_batch_size=st.integers(1, 128), output_batch_size=st.integers(1, 128), num_batches=st.integers(1, 3), index_dtype=st.sampled_from([torch.int, torch.long]), jagged_tensor_dtype=st.sampled_from( [ torch.float, torch.half, torch.int, torch.long, ] # Disable torch.bfloat16 due to large error bound ), has_weights=st.booleans(), ) @settings(max_examples=20, deadline=None) def test_keyed_jagged_index_select_dim1( self, max_seq_length: int, input_batch_size: int, output_batch_size: int, num_batches: int, index_dtype: torch.dtype, jagged_tensor_dtype: torch.dtype, has_weights: bool, ) -> None: is_float = jagged_tensor_dtype in [torch.float, torch.half, torch.bfloat16] lengths = torch.randint( low=0, high=max_seq_length, size=(input_batch_size * num_batches,), dtype=index_dtype, device="cuda", ) offsets = torch.concat( [torch.zeros(1, dtype=torch.long, device="cuda"), lengths.cumsum(0)] ) indices = torch.randint( low=0, high=1, size=(output_batch_size,), dtype=index_dtype, device="cuda", ) if is_float: values = torch.rand( int(offsets[-1].item()), dtype=jagged_tensor_dtype, device="cuda", ) else: values = torch.randint( 2**16, (int(offsets[-1].item()),), dtype=jagged_tensor_dtype, device="cuda", ) values_ref = values.detach().clone() if has_weights: weights = torch.rand( int(offsets[-1].item()), dtype=random.choice([torch.float, torch.half]), device="cuda", ) else: weights = None # Only float tensors can require grad if is_float: values.requires_grad = True values_ref.requires_grad = True index_select_output = torch.ops.fbgemm.keyed_jagged_index_select_dim1( values, lengths, offsets, indices, input_batch_size, weights ) output = index_select_output[0] if has_weights: output_weights = index_select_output[2] output_ref = [] output_weight_ref = [] for k in range(num_batches): key_lengths = lengths[k * input_batch_size : (k + 1) * input_batch_size] start_offset = offsets[k * input_batch_size] end_offset = offsets[(k + 1) * input_batch_size] key_values = values_ref[start_offset:end_offset].view(-1, 1) output_ref.append( torch.ops.fbgemm.jagged_index_select(key_values, key_lengths, indices)[ 0 ].view(-1) ) if has_weights: # pyre-ignore[16] key_weights = weights[start_offset:end_offset].view(-1, 1) output_weight_ref.append( torch.ops.fbgemm.jagged_index_select( key_weights, key_lengths, indices )[0].view(-1) ) output_ref = torch.concat(output_ref) assert torch.equal(output, output_ref) if has_weights: output_weight_ref = torch.concat(output_weight_ref) # pyre-ignore[61] assert torch.equal(output_weights, output_weight_ref) if not is_float: return grad = torch.rand_like(output) grad_ref = grad.detach().clone() output.backward(grad) output_ref.backward(grad_ref) torch.testing.assert_close( values.grad, values_ref.grad, rtol=1e-2 if jagged_tensor_dtype in [torch.half, torch.bfloat16] else None, atol=1e-2 if jagged_tensor_dtype in [torch.half, torch.bfloat16] else None, ) @given( B=st.integers(1, 512), max_L=st.integers(1, 1000), D=st.integers(1, 32), dtype=st.sampled_from([torch.float, torch.double]), device_type=st.sampled_from(["cpu", "cuda"]) if gpu_available else st.just("cpu"), ) @settings(verbosity=Verbosity.verbose, max_examples=20, deadline=None) def test_jagged_softmax( self, B: int, max_L: int, D: int, dtype: torch.dtype, device_type: str, ) -> None: device = torch.device(device_type) torch.backends.cuda.matmul.allow_tf32 = False lengths = torch.randint(max_L + 1, size=(B,), device=device) total_length = int(lengths.sum().item()) offsets = torch.ops.fbgemm.asynchronous_complete_cumsum(lengths) values = torch.rand( (total_length, D), requires_grad=True, dtype=dtype, device=device ) output, _ = torch.ops.fbgemm.jagged_softmax( values, offsets, max_L, ) values_ref = values.detach().clone().requires_grad_(True) output_ref, _ = torch.ops.fbgemm.dense_to_jagged( torch.nn.functional.softmax( torch.ops.fbgemm.jagged_to_padded_dense( values_ref, [offsets], max_lengths=[max_L], padding_value=-5e7, ).transpose(1, 2), dim=-1, ).permute(0, 2, 1), [offsets], total_length, ) # verify forward torch.testing.assert_close(output, output_ref) # verify backward grad_output = output.detach().clone().requires_grad_(True) output.backward(grad_output) output_ref.backward(grad_output) torch.testing.assert_close(values.grad, values_ref.grad) @given( B=st.integers(10, 512), M=st.integers(1, 32), N=st.integers(1, 32), max_L=st.integers(1, 32), dtype=st.sampled_from([torch.float, torch.double]), device_type=st.sampled_from(["cpu", "cuda"]) if gpu_available else st.just("cpu"), ) @unittest.skipIf(*on_arm_platform) @settings(verbosity=Verbosity.verbose, max_examples=20, deadline=None) def test_jagged_jagged_bmm( self, B: int, M: int, N: int, max_L: int, dtype: torch.dtype, device_type: str, ) -> None: assume(B != 0) device = torch.device(device_type) torch.backends.cuda.matmul.allow_tf32 = False lengths = torch.randint(max_L + 1, size=(B,), device=device) offsets = torch.ops.fbgemm.asynchronous_complete_cumsum(lengths) total_length = int(lengths.sum().item()) x_values = torch.rand( (total_length, M), requires_grad=True, dtype=dtype, device=device ) y_values = torch.rand( (total_length, N), requires_grad=True, dtype=dtype, device=device ) output = torch.ops.fbgemm.jagged_jagged_bmm( x_values, y_values, offsets, max_L, ) x_values_ref = x_values.detach().clone().requires_grad_(True) y_values_ref = y_values.detach().clone().requires_grad_(True) x_dense_ref = torch.ops.fbgemm.jagged_to_padded_dense( x_values_ref, [offsets], max_lengths=[max_L], ) y_dense_ref = torch.ops.fbgemm.jagged_to_padded_dense( y_values_ref, [offsets], max_lengths=[max_L], ) output_ref = torch.bmm(x_dense_ref.transpose(2, 1), y_dense_ref) # verify forward torch.testing.assert_close(output, output_ref) # verify backward grad_output = output.detach().clone().requires_grad_(True) output.backward(grad_output) output_ref.backward(grad_output) torch.testing.assert_close(x_values.grad, x_values_ref.grad) torch.testing.assert_close(y_values.grad, y_values_ref.grad) @given( B=st.integers(10, 512), M=st.integers(1, 32), N=st.integers(1, 32), max_L=st.integers(1, 32), dtype=st.sampled_from([torch.float, torch.double]), device_type=st.sampled_from(["cpu", "cuda"]) if gpu_available else st.just("cpu"), ) @unittest.skipIf(*on_arm_platform) @settings(verbosity=Verbosity.verbose, max_examples=2, deadline=None) def test_jagged_dense_bmm( self, B: int, M: int, N: int, max_L: int, dtype: torch.dtype, device_type: str, ) -> None: assume(B != 0) device = torch.device(device_type) torch.backends.cuda.matmul.allow_tf32 = False lengths = torch.randint(max_L + 1, size=(B,), device=device) total_length = int(lengths.sum().item()) offsets = torch.ops.fbgemm.asynchronous_complete_cumsum(lengths) x_values = torch.rand( (total_length, M), requires_grad=True, dtype=dtype, device=device ) y = torch.rand((B, M, N), requires_grad=True, dtype=dtype, device=device) output, _ = torch.ops.fbgemm.jagged_dense_bmm( x_values, offsets, y, max_L, ) x_values_ref = x_values.detach().clone().requires_grad_(True) x_dense_ref = torch.ops.fbgemm.jagged_to_padded_dense( x_values_ref, [offsets], max_lengths=[max_L], ) y_ref = y.detach().clone().requires_grad_(True) output_dense = torch.bmm(x_dense_ref, y_ref) output_ref, _ = torch.ops.fbgemm.dense_to_jagged( output_dense, [offsets], total_length ) # verify forward torch.testing.assert_close(output, output_ref) # verify backward grad_output = output.detach().clone().requires_grad_(True) output.backward(grad_output) output_ref.backward(grad_output) torch.testing.assert_close(x_values.grad, x_values_ref.grad) torch.testing.assert_close(y.grad, y_ref.grad) @unittest.skipIf(*symint_vector_unsupported()) @given( B=st.integers(10, 512), M=st.integers(2, 32), N=st.integers(2, 32), max_L=st.integers(2, 32), dtype=st.sampled_from([torch.float, torch.double]), device_type=st.just("cpu"), ) @unittest.skipIf(*on_arm_platform) @settings(verbosity=Verbosity.verbose, max_examples=20, deadline=None) def test_jagged_dense_bmm_dynamic_shape( self, B: int, M: int, N: int, max_L: int, dtype: torch.dtype, device_type: str, ) -> None: # Start a fresh compile for each parameter of the test case torch._dynamo.reset() assume(B != 0) device = torch.device(device_type) torch.backends.cuda.matmul.allow_tf32 = False lengths = torch.randint(low=1, high=max_L + 1, size=(B,), device=device) total_length = int(lengths.sum().item()) offsets = torch.ops.fbgemm.asynchronous_complete_cumsum(lengths) x_values = torch.rand( (total_length, M), requires_grad=True, dtype=dtype, device=device ) y = torch.rand((B, M, N), requires_grad=True, dtype=dtype, device=device) torch._dynamo.mark_dynamic(x_values, 0) torch._dynamo.mark_dynamic(x_values, 1) torch._dynamo.mark_dynamic(lengths, 0) # offsets = lengths + 1 output, _ = torch.compile( torch.ops.fbgemm.jagged_dense_bmm, fullgraph=True, dynamic=True )( x_values, offsets, y, max_L, ) x_values_ref = x_values.detach().clone().requires_grad_(True) x_dense_ref = torch.ops.fbgemm.jagged_to_padded_dense( x_values_ref, [offsets], max_lengths=[max_L], ) y_ref = y.detach().clone().requires_grad_(True) output_dense = torch.bmm(x_dense_ref, y_ref) output_ref, _ = torch.ops.fbgemm.dense_to_jagged( output_dense, [offsets], total_length ) # verify forward torch.testing.assert_close(output, output_ref) # verify backward grad_output = output.detach().clone().requires_grad_(True) output.backward(grad_output) output_ref.backward(grad_output) torch.testing.assert_close(x_values.grad, x_values_ref.grad) torch.testing.assert_close(y.grad, y_ref.grad) @given( B=st.integers(10, 512), N=st.integers(10, 64), slice_length=st.integers(0, 64), dtype=st.sampled_from([torch.float, torch.double]), ) @settings(verbosity=Verbosity.verbose, max_examples=20, deadline=None) def test_jagged_slice( self, B: int, N: int, slice_length: int, dtype: torch.dtype, ) -> None: assume(B != 0) device = torch.device("cpu") torch.backends.cuda.matmul.allow_tf32 = False lengths = torch.randint(N + 1, size=(B,), device=device) start_list = [random.randint(0, max(len_ - 1, 0)) for len_ in lengths.tolist()] start = torch.tensor(start_list, device=device) total_length = int(lengths.sum().item()) x_values = torch.rand( (total_length), requires_grad=True, dtype=dtype, device=device ) output, output_lengths = torch.ops.fbgemm.jagged_slice( x_values, lengths, start, slice_length, ) output_offsets = torch.ops.fbgemm.asynchronous_complete_cumsum(output_lengths) offsets = torch.ops.fbgemm.asynchronous_complete_cumsum(lengths) x_values_ref = x_values.detach().clone().requires_grad_(True) def jagged_slice_ref( x_values: torch.Tensor, offsets: torch.Tensor, start: torch.Tensor, slice_length: int, ) -> Tuple[torch.Tensor, torch.Tensor]: end_offsets_ = slice_length + start + offsets[:-1] end_offsets = torch.where( end_offsets_ > offsets[1:], offsets[1:], end_offsets_ ) start_offsets = start + offsets[:-1] indices_to_select: List[torch.Tensor] = [] for i in range(end_offsets.size(0)): indices_to_select.append( torch.arange(start_offsets[i].item(), end_offsets[i].item()) ) output_ref = torch.index_select(x_values, 0, torch.cat(indices_to_select)) new_lengths = end_offsets - start_offsets new_offsets = torch.ops.fbgemm.asynchronous_complete_cumsum(new_lengths) return output_ref, new_offsets output_ref, output_offsets_ref = jagged_slice_ref( x_values_ref, offsets, start, slice_length ) # verify forward torch.testing.assert_close( output, output_ref, msg=f"output={output} output_ref={output_ref}" ) torch.testing.assert_close( output_offsets, output_offsets_ref, msg=f"output_off={output_offsets} output_off_ref={output_offsets_ref}", ) # verify backward grad_output = output.detach().clone().requires_grad_(True) output.backward(grad_output) output_ref.backward(grad_output) torch.testing.assert_close( x_values.grad, x_values_ref.grad, msg=f"grad={x_values.grad} x_values_ref.grad={x_values_ref.grad}", ) def test_jagged_slice_errors( self, ) -> None: lengths = torch.tensor([1, 2, 3, 4, 5, 6]) values = torch.tensor([x + y for x in range(6) for y in range(x)]) with self.assertRaises(RuntimeError): torch.ops.fbgemm.jagged_slice( values, lengths, torch.tensor([2, 1, 2, 3, 4, 2]), 7 ) with self.assertRaises(RuntimeError): torch.ops.fbgemm.jagged_slice( values, lengths, torch.tensor([-2, 1, 1, 0, 1, 2]), 7 ) @unittest.skipIf(*gpu_unavailable) @given( B=st.integers(min_value=100, max_value=200), F=st.integers(min_value=50, max_value=100), max_length=st.integers(min_value=5, max_value=10), ) @settings(verbosity=Verbosity.verbose, max_examples=10, deadline=None) def test_jagged_unique_indices( self, B: int, # Batch size F: int, # The number of features max_length: int, # The maximum value of pooling factor ) -> None: hash_size_list = [] lengths_list = [] indices_list = [] linearized_indices_list = [] hash_size_offsets_list = [0] for _ in range(F): # We generate a small hash size to increase index duplication hash_size = random.randint(3, 5) hash_size_list.append(hash_size) hash_size_offset = hash_size_offsets_list[-1] + 1 hash_size_offsets_list.append(hash_size_offset) for _ in range(B): length = random.randint(0, max_length) lengths_list.append(length) if length > 0: indices = np.random.randint(0, hash_size, size=length) linearized_indices = indices + sum(hash_size_list[:-1]) indices_list.extend(indices) linearized_indices_list.extend(linearized_indices) device = torch.device("cuda") dtype = torch.int64 hash_size = torch.as_tensor(hash_size_list, dtype=dtype, device=device) hash_size_offsets = torch.as_tensor( hash_size_offsets_list, dtype=dtype, device=device ) lengths = torch.as_tensor(lengths_list, dtype=dtype, device=device) indices = torch.as_tensor(indices_list, dtype=dtype, device=device) linearized_indices = torch.as_tensor( linearized_indices_list, dtype=dtype, device=device ) hash_size_cum_sum = torch.zeros(F + 1, dtype=dtype, device=device) hash_size_cum_sum[1:] = torch.cumsum(hash_size, dim=0) offsets = torch.zeros(F * B + 1, dtype=dtype, device=device) offsets[1:] = torch.cumsum(lengths, dim=0) ( output_lengths, output_offsets, unique_indices, reverse_index, ) = torch.ops.fbgemm.jagged_unique_indices( hash_size_cum_sum, hash_size_offsets, offsets, indices ) # Check hash size cumsum to offsets function output_hash_size_offsets_list = hash_size_cumsum_to_offsets( hash_size_cum_sum.tolist() ) self.assertEqual(output_hash_size_offsets_list, hash_size_offsets_list) # Compute hash size cumsum and offsets based on KJT offsets and indices ( inferred_hash_size_cum_sum, inferred_hash_size_offsets, ) = torch.ops.fbgemm.jagged_hash_size_cumsum(offsets, indices, B) ( output_lengths_inf, output_offsets_inf, unique_indices_inf, reverse_index_inf, ) = torch.ops.fbgemm.jagged_unique_indices( inferred_hash_size_cum_sum, inferred_hash_size_offsets, offsets, indices ) self.assertTrue(torch.equal(output_lengths, output_lengths_inf)) self.assertTrue(torch.equal(output_offsets, output_offsets_inf)) self.assertTrue(torch.equal(unique_indices, unique_indices_inf)) self.assertTrue(torch.equal(reverse_index, reverse_index_inf)) unique_linearized_indices = torch.unique(linearized_indices, sorted=True) self.assertTrue(unique_linearized_indices.numel() == unique_indices.numel()) unique_indices_list = unique_indices.tolist() reverse_index_list = reverse_index.tolist() for i in range(len(reverse_index_list)): pos = reverse_index_list[i] self.assertTrue(unique_indices_list[pos] == indices_list[i]) input_offsets_list = offsets.tolist() output_offsets_list = output_offsets.tolist() for i in range(F): input_start = input_offsets_list[i * B] input_end = input_offsets_list[(i + 1) * B] output_start = output_offsets_list[i * B] output_end = output_offsets_list[(i + 1) * B] for each_offset in range(input_start, input_end): pos = reverse_index_list[each_offset] self.assertTrue((output_start <= pos) and (pos < output_end)) @unittest.skipIf(*gpu_unavailable) @given( B=st.integers(min_value=100, max_value=200), F=st.integers(min_value=50, max_value=100), max_length=st.integers(min_value=5, max_value=10), ) @settings(verbosity=Verbosity.verbose, max_examples=10, deadline=None) def test_jagged_unique_indices_multi_keys( self, B: int, # Batch size F: int, # The number of features max_length: int, # The maximum value of pooling factor ) -> None: hash_size_list = [] lengths_list = [] indices_list = [] linearized_indices_list = [] MAX_HASH_SIZE = 10 for _ in range(F): # We generate a small hash size to increase index duplication hash_size = random.randint(3, 6) self.assertTrue(hash_size <= MAX_HASH_SIZE) masked_hash_size = MAX_HASH_SIZE if random.randint(1, 3) == 3 else 0 hash_size_list.append(masked_hash_size) for _ in range(B): length = random.randint(0, max_length) lengths_list.append(length) if length > 0: indices = np.random.randint(0, hash_size, size=length) linearized_indices = indices + sum(hash_size_list[:-1]) indices_list.extend(indices) linearized_indices_list.extend(linearized_indices) device = torch.device("cuda") dtype = torch.int64 hash_size = torch.as_tensor(hash_size_list, dtype=dtype, device=device) lengths = torch.as_tensor(lengths_list, dtype=dtype, device=device) indices = torch.as_tensor(indices_list, dtype=dtype, device=device) linearized_indices = torch.as_tensor( linearized_indices_list, dtype=dtype, device=device ) hash_size_cum_sum = torch.zeros(F + 1, dtype=dtype, device=device) hash_size_cum_sum[1:] = torch.cumsum(hash_size, dim=0) offsets = torch.zeros(F * B + 1, dtype=dtype, device=device) offsets[1:] = torch.cumsum(lengths, dim=0) # Compute hash size offsets based on hash size cumsum to dedup # indices from multiple keys hash_size_cum_sum_list = hash_size_cum_sum.tolist() hash_size_offsets_list = hash_size_cumsum_to_offsets(hash_size_cum_sum_list) hash_size_offsets = torch.as_tensor( hash_size_offsets_list, dtype=dtype, device=device ) ( _, # output lengths _, # output offsets unique_indices, reverse_index, ) = torch.ops.fbgemm.jagged_unique_indices( hash_size_cum_sum, hash_size_offsets, offsets, indices ) unique_linearized_indices = torch.unique(linearized_indices, sorted=True) self.assertTrue(unique_linearized_indices.numel() == unique_indices.numel()) unique_indices_list = unique_indices.tolist() reverse_index_list = reverse_index.tolist() for i in range(len(reverse_index_list)): pos = reverse_index_list[i] self.assertTrue(unique_indices_list[pos] == indices_list[i]) @unittest.skipIf(*gpu_unavailable) @given( B=st.integers(min_value=100, max_value=200), F=st.integers(min_value=50, max_value=100), ) @settings(verbosity=Verbosity.verbose, max_examples=2, deadline=None) def test_jagged_unique_indices_empty( self, B: int, # Batch size F: int, # The number of features ) -> None: hash_size_cumsum_list = [0] + list(itertools.accumulate([10] * F)) hash_size_offsets_list = [0] + list(itertools.accumulate([1] * F)) offsets_list = [0] * (B * F + 1) indices_list = [] device = torch.device("cuda") dtype = torch.int64 hash_size_cumsum = torch.as_tensor( hash_size_cumsum_list, device=device, dtype=dtype ) hash_size_offsets = torch.as_tensor( hash_size_offsets_list, device=device, dtype=dtype ) offsets = torch.as_tensor(offsets_list, device=device, dtype=dtype) indices = torch.as_tensor(indices_list, device=device, dtype=dtype) ( output_lengths, output_offsets, unique_indices, reverse_index, ) = torch.ops.fbgemm.jagged_unique_indices( hash_size_cumsum, hash_size_offsets, offsets, indices ) # The output should be empty since there are no input indices self.assertEqual(unique_indices.numel(), 0) self.assertEqual(reverse_index.numel(), 0) self.assertEqual(torch.sum(output_lengths).item(), 0) self.assertEqual(torch.sum(output_offsets).item(), 0) if __name__ == "__main__": unittest.main()
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. # pyre-unsafe import unittest import hypothesis.strategies as st import torch from hypothesis import given, settings, Verbosity try: # pyre-ignore[21] from fbgemm_gpu import open_source # noqa: F401 # pyre-ignore[21] from test_utils import gpu_unavailable except Exception: torch.ops.load_library("//deeplearning/fbgemm/fbgemm_gpu:merge_pooled_embeddings") torch.ops.load_library( "//deeplearning/fbgemm/fbgemm_gpu:merge_pooled_embeddings_cpu" ) from fbgemm_gpu.test.test_utils import gpu_unavailable open_source = False @unittest.skipIf(*gpu_unavailable) @unittest.skipIf(open_source, "Not supported in open source yet") class MergePooledEmbeddingsTest(unittest.TestCase): @given( num_ads=st.integers(min_value=1, max_value=10), embedding_dimension=st.integers(min_value=1, max_value=32), ads_tables=st.integers(min_value=1, max_value=32), num_gpus=st.integers(min_value=1, max_value=torch.cuda.device_count()), non_default_stream=st.booleans(), r=st.randoms(use_true_random=False), dim=st.integers(min_value=0, max_value=1), ) # Can instantiate 8 contexts which takes a long time. @settings(verbosity=Verbosity.verbose, max_examples=40, deadline=None) def test_merge( self, num_ads, embedding_dimension, ads_tables, num_gpus, non_default_stream, r, dim: int, ) -> None: dst_device = r.randint(0, num_gpus - 1) torch.cuda.set_device(dst_device) ad_ds = [embedding_dimension * ads_tables for _ in range(num_gpus)] batch_indices = torch.zeros(num_ads).long().cuda() pooled_ad_embeddings = [ torch.randn( num_ads, ad_d, dtype=torch.float16, device=torch.device(f"cuda:{i}") ) for i, ad_d in enumerate(ad_ds) ] r.shuffle(pooled_ad_embeddings) streams = [torch.cuda.Stream(device=i) for i in range(num_gpus)] import contextlib uncat_size = batch_indices.size(0) if dim == 1 else ad_ds[0] with contextlib.ExitStack() as stack: if non_default_stream: for stream in streams: stack.enter_context(torch.cuda.stream(stream)) output = torch.ops.fbgemm.merge_pooled_embeddings( pooled_ad_embeddings, uncat_size, batch_indices.device, dim ) def ref(pooled_ad_embeddings, batch_indices): return torch.cat([p.cpu() for p in pooled_ad_embeddings], dim=dim) output_ref = ref(pooled_ad_embeddings, batch_indices) output_cpu = torch.ops.fbgemm.merge_pooled_embeddings( [pe.cpu() for pe in pooled_ad_embeddings], uncat_size, batch_indices.cpu().device, dim, ) self.assertEqual(output.device, torch.device(f"cuda:{dst_device}")) torch.testing.assert_close(output_ref, output.cpu()) torch.testing.assert_close(output_ref, output_cpu) @given( num_inputs=st.integers(min_value=1, max_value=10), num_gpus=st.integers(min_value=1, max_value=torch.cuda.device_count()), r=st.randoms(use_true_random=False), ) # Can instantiate 8 contexts which takes a long time. @settings(verbosity=Verbosity.verbose, max_examples=40, deadline=None) def test_all_to_one_device( self, num_inputs, num_gpus, r, ) -> None: dst_device = torch.device(f"cuda:{r.randint(0, num_gpus - 1)}") with torch.cuda.device(dst_device): inputs = [torch.randn(10, 20) for _ in range(num_inputs)] cuda_inputs = [ input.to(f"cuda:{i % num_gpus}") for i, input in enumerate(inputs) ] cuda_outputs = torch.ops.fbgemm.all_to_one_device(cuda_inputs, dst_device) for i, o in zip(inputs, cuda_outputs): self.assertEqual(o.device, dst_device) torch.testing.assert_close(o.cpu(), i) def test_merge_pooled_embeddings_cpu_with_different_target_device(self) -> None: uncat_size = 2 pooled_embeddings = [torch.ones(uncat_size, 4), torch.ones(uncat_size, 8)] output_meta = torch.ops.fbgemm.merge_pooled_embeddings( pooled_embeddings, uncat_size, torch.device("meta"), 1, ) self.assertFalse(output_meta.is_cpu) self.assertTrue(output_meta.is_meta) @given( num_inputs=st.integers(min_value=1, max_value=10), num_gpus=st.integers(min_value=1, max_value=torch.cuda.device_count()), r=st.randoms(use_true_random=False), ) # Can instantiate 8 contexts which takes a long time. @settings(verbosity=Verbosity.verbose, max_examples=10, deadline=None) def test_sum_reduce_to_one( self, num_inputs, num_gpus, r, ) -> None: dst_device = torch.device(f"cuda:{r.randint(0, num_gpus - 1)}") with torch.cuda.device(dst_device): inputs = [torch.randn(10, 20) for _ in range(num_inputs)] cuda_inputs = [ input.to(f"cuda:{i % num_gpus}") for i, input in enumerate(inputs) ] cuda_output = torch.ops.fbgemm.sum_reduce_to_one(cuda_inputs, dst_device) self.assertEqual(cuda_output.device, dst_device) torch.testing.assert_close( cuda_output.cpu(), torch.stack(inputs).sum(dim=0) ) if __name__ == "__main__": unittest.main()
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. # pyre-ignore-all-errors[56] import copy import math import pickle import random import unittest from itertools import accumulate from typing import Any, List, Optional, Tuple, Union import fbgemm_gpu import hypothesis.strategies as st import numpy as np import torch from fbgemm_gpu.split_embedding_configs import ( EmbOptimType as OptimType, FP8QuantizationConfig, SparseType, ) from fbgemm_gpu.split_embedding_optimizer_ops import ( SplitEmbeddingArgs, SplitEmbeddingOptimizerParams, SplitEmbeddingRowwiseAdagrad, ) from fbgemm_gpu.split_embedding_utils import ( b_indices, fake_quantize_embs, generate_requests, get_table_batched_offsets_from_dense, quantize_embs, round_up, to_device, ) from fbgemm_gpu.split_table_batched_embeddings_ops_common import ( BoundsCheckMode, CacheAlgorithm, EmbeddingLocation, PoolingMode, RecordCacheMetrics, ) from fbgemm_gpu.split_table_batched_embeddings_ops_inference import ( IntNBitTableBatchedEmbeddingBagsCodegen, rounded_row_size_in_bytes, ) from fbgemm_gpu.split_table_batched_embeddings_ops_training import ( ComputeDevice, CounterBasedRegularizationDefinition, CounterWeightDecayMode, DEFAULT_ASSOC, DenseTableBatchedEmbeddingBagsCodegen, GradSumDecay, INT8_EMB_ROW_DIM_OFFSET, LearningRateMode, SplitTableBatchedEmbeddingBagsCodegen, TailIdThreshold, WeightDecayMode, ) from hypothesis import assume, given, HealthCheck, settings, Verbosity from hypothesis.strategies import composite from torch import Tensor # pyre-fixme[16]: Module `fbgemm_gpu` has no attribute `open_source`. open_source: bool = getattr(fbgemm_gpu, "open_source", False) if open_source: # pyre-ignore[21] from test_utils import gpu_available, gpu_unavailable, TEST_WITH_ROCM else: from fbgemm_gpu.test.test_utils import ( gpu_available, gpu_unavailable, TEST_WITH_ROCM, ) MAX_EXAMPLES = 40 # For long running tests reduce the number of iterations to reduce timeout errors. MAX_EXAMPLES_LONG_RUNNING = 15 @composite # pyre-ignore def get_nbit_weights_ty(draw) -> Optional[SparseType]: """ Returns None if mixed weights ty should be used, otherwise, returns specific SparseType. """ mixed_weights_ty = draw(st.booleans()) if mixed_weights_ty: return None return draw( st.sampled_from( [ SparseType.FP32, SparseType.FP16, SparseType.FP8, SparseType.INT8, SparseType.INT4, SparseType.INT2, ] ) ) def gen_mixed_B_batch_sizes(B: int, T: int) -> Tuple[List[List[int]], List[int]]: num_ranks = np.random.randint(low=1, high=4) low = max(int(0.25 * B), 1) high = int(B) if low == high: Bs_rank_feature = [[B] * num_ranks for _ in range(T)] else: Bs_rank_feature = [ np.random.randint(low=low, high=high, size=num_ranks).tolist() for _ in range(T) ] Bs = [sum(Bs_feature) for Bs_feature in Bs_rank_feature] return Bs_rank_feature, Bs def format_ref_tensors_in_mixed_B_layout( ref_tensors: List[torch.Tensor], Bs_rank_feature: List[List[int]] ) -> torch.Tensor: # Relayout the reference tensor # Jagged dimension: (rank, table, local batch) num_ranks = len(Bs_rank_feature[0]) split_tensors = [[] for _ in range(num_ranks)] # shape (rank, table) for t, ref_tensor in enumerate(ref_tensors): assert ref_tensor.shape[0] == sum(Bs_rank_feature[t]) tensors = ref_tensor.split(Bs_rank_feature[t]) for r, tensor in enumerate(tensors): split_tensors[r].append(tensor.flatten()) concat_list = [] for r in range(num_ranks): concat_list += split_tensors[r] return torch.cat(concat_list, dim=0) class SplitTableBatchedEmbeddingsTest(unittest.TestCase): def execute_forward_( # noqa C901 self, T: int, D: int, B: int, log_E: int, L: int, weights_precision: SparseType, weighted: bool, mixed: bool, mixed_B: bool, use_cache: bool, cache_algorithm: CacheAlgorithm, pooling_mode: PoolingMode, use_cpu: bool, output_dtype: SparseType, use_experimental_tbe: bool, ) -> None: # NOTE: cache is not applicable to CPU version. assume(not use_cpu or not use_cache) # NOTE: limit (T * B * L * D) to avoid timeout for CPU version! assume(not use_cpu or T * B * L * D <= 2048) # NOTE: CPU does not support FP16. assume(not (use_cpu and weights_precision == SparseType.FP16)) # NOTE: weighted operation can be done only for SUM. assume(pooling_mode == PoolingMode.SUM or not weighted) # NOTE: No bag ops only work on GPUs, no mixed assume(not use_cpu or pooling_mode != PoolingMode.NONE) assume(not mixed or pooling_mode != PoolingMode.NONE) # TODO: Support these cases assume( not mixed_B or ( weights_precision != SparseType.INT8 and output_dtype != SparseType.INT8 and not use_cpu and not use_cache and pooling_mode != PoolingMode.NONE ) ) emb_op = SplitTableBatchedEmbeddingBagsCodegen if pooling_mode == PoolingMode.SUM: mode = "sum" do_pooling = True elif pooling_mode == PoolingMode.MEAN: mode = "mean" do_pooling = True elif pooling_mode == PoolingMode.NONE: mode = "sum" do_pooling = False else: # This proves that we have exhaustively checked all PoolingModes raise RuntimeError("Unknown PoolingMode!") E = int(10**log_E) if use_cpu: D = (D + 15) // 16 * 4 else: D = D * 4 if not mixed: Ds = [D] * T Es = [E] * T else: Ds = [ round_up(np.random.randint(low=int(0.25 * D), high=int(1.0 * D)), 4) for _ in range(T) ] Es = [ np.random.randint(low=int(0.5 * E), high=int(2.0 * E)) for _ in range(T) ] if not mixed_B: Bs = [B] * T Bs_rank_feature = [[0]] else: Bs_rank_feature, Bs = gen_mixed_B_batch_sizes(B, T) compute_device = ComputeDevice.CUDA if use_cpu: managed = [EmbeddingLocation.HOST] * T compute_device = ComputeDevice.CPU elif TEST_WITH_ROCM: # ROCm managed memory allocation is under development managed = [EmbeddingLocation.DEVICE] * T elif use_cache: managed = [EmbeddingLocation.MANAGED_CACHING] * T if mixed: average_D = sum(Ds) // T for t, d in enumerate(Ds): managed[t] = ( EmbeddingLocation.DEVICE if d < average_D else managed[t] ) else: managed = [ np.random.choice( [ EmbeddingLocation.DEVICE, EmbeddingLocation.MANAGED, ] ) for _ in range(T) ] if do_pooling: bs = [ to_device(torch.nn.EmbeddingBag(E, D, mode=mode, sparse=True), use_cpu) for (E, D) in zip(Es, Ds) ] else: bs = [ to_device(torch.nn.Embedding(E, D, sparse=True), use_cpu) for (E, D) in zip(Es, Ds) ] if weights_precision == SparseType.INT8: for t in range(T): bs[t].weight.data.copy_( torch.ops.fbgemm.Fused8BitRowwiseQuantizedToFloat( torch.ops.fbgemm.FloatToFused8BitRowwiseQuantized( bs[t].weight.data ) ) ) if weights_precision == SparseType.FP16: bs = [b.half() for b in bs] # Generate indices xs = [ to_device(torch.randint(low=0, high=e, size=(b, L)), use_cpu) for e, b in zip(Es, Bs) ] # Generate positional weights xws = [to_device(torch.randn(size=(b, L)), use_cpu) for b in Bs] xws_acc_type = copy.deepcopy(xws) if weights_precision == SparseType.FP16: xws = [xw.half() for xw in xws] # Run baseline fs = ( [ b_indices(b, x, use_cpu=use_cpu, do_pooling=do_pooling) for (b, x) in zip(bs, xs) ] if not weighted else [ b_indices( b, x, per_sample_weights=xw.view(-1), use_cpu=use_cpu, do_pooling=do_pooling, ) for (b, x, xw) in zip(bs, xs, xws) ] ) if do_pooling: if mixed_B: f = format_ref_tensors_in_mixed_B_layout(fs, Bs_rank_feature) else: f = torch.cat([f.view(B, -1) for f in fs], dim=1) else: f = torch.cat(fs, dim=0).view(-1, D) # Create a TBE op cc = emb_op( embedding_specs=[ ( E, D, EmbeddingLocation(M), compute_device, ) for (E, D, M) in zip(Es, Ds, managed) ], weights_precision=weights_precision, optimizer=OptimType.EXACT_ROWWISE_ADAGRAD if mixed_B else OptimType.EXACT_SGD, learning_rate=0.05, cache_algorithm=cache_algorithm, pooling_mode=pooling_mode, output_dtype=output_dtype, use_experimental_tbe=use_experimental_tbe, ) # NOTE: test TorchScript-compatible! cc = torch.jit.script(cc) for t in range(T): cc.split_embedding_weights()[t].data.copy_( bs[t].weight if weights_precision != SparseType.INT8 else torch.ops.fbgemm.FloatToFused8BitRowwiseQuantized(bs[t].weight) ) x = torch.cat([x.contiguous().flatten() for x in xs], dim=0) xw = torch.cat([xw.contiguous().flatten() for xw in xws_acc_type], dim=0) (indices, offsets) = get_table_batched_offsets_from_dense( x, L, sum(Bs), use_cpu ) batch_size_per_feature_per_rank = Bs_rank_feature if mixed_B else None # Run TBE fc2 = ( cc( indices, offsets, batch_size_per_feature_per_rank=batch_size_per_feature_per_rank, ) if not weighted else cc( indices, offsets, to_device(xw.contiguous().view(-1), use_cpu), batch_size_per_feature_per_rank=batch_size_per_feature_per_rank, ) ) # Compare results: f = baseline, fc2 = TBE tolerance = ( 1.0e-5 if weights_precision == SparseType.FP32 and output_dtype == SparseType.FP32 else 8.0e-3 ) torch.testing.assert_close( fc2.float(), f.float(), atol=tolerance, rtol=tolerance ) def test_forward_cpu_int8( self, ) -> None: weights_precision = SparseType.INT8 use_cpu = True T = random.randint(1, 10) D = random.randint(2, min(256, int(2048 / T))) B = random.randint(1, min(128, int(2048 / T / D))) L = random.randint(0, min(20, int(2048 / T / D / B))) log_E = random.randint(3, 5) use_cache = False # cache_algorithm is don't care as we don't use cache. cache_algorithm = CacheAlgorithm.LRU pooling_mode = random.choice( [ PoolingMode.SUM, PoolingMode.MEAN, ] ) mixed = False mixed_B = False if pooling_mode == PoolingMode.SUM: weighted = random.choice([True, False]) else: weighted = False self.execute_forward_( T, D, B, log_E, L, weights_precision, weighted, mixed, mixed_B, use_cache, cache_algorithm, pooling_mode, use_cpu, SparseType.FP32, False, # use_experimental_tbe ) def test_forward_cpu_fp32( self, ) -> None: weights_precision = SparseType.FP32 use_cpu = True T = random.randint(1, 10) D = random.randint(2, min(256, int(2048 / T))) B = random.randint(1, min(128, int(2048 / T / D))) L = random.randint(0, min(20, int(2048 / T / D / B))) log_E = random.randint(3, 5) use_cache = False # cache_algorithm is don't care as we don't use cache. cache_algorithm = CacheAlgorithm.LRU pooling_mode = random.choice( [ PoolingMode.SUM, PoolingMode.MEAN, ] ) mixed = False mixed_B = False if pooling_mode == PoolingMode.SUM: weighted = random.choice([True, False]) else: weighted = False self.execute_forward_( T, D, B, log_E, L, weights_precision, weighted, mixed, mixed_B, use_cache, cache_algorithm, pooling_mode, use_cpu, SparseType.FP32, False, # use_experimental_tbe ) @unittest.skipIf(*gpu_unavailable) def test_forward_gpu_no_cache_int8( self, ) -> None: weights_precision = SparseType.INT8 use_cpu = False T = random.randint(1, 10) D = random.randint(2, 256) B = random.randint(1, 128) L = random.randint(0, 20) log_E = random.randint(3, 5) use_cache = False # cache_algorithm is don't care as we don't use cache. cache_algorithm = CacheAlgorithm.LRU pooling_mode = random.choice( [ PoolingMode.SUM, PoolingMode.MEAN, PoolingMode.NONE, ] ) if pooling_mode == PoolingMode.NONE: mixed = False else: mixed = random.choice([True, False]) mixed_B = False if pooling_mode == PoolingMode.SUM: weighted = random.choice([True, False]) else: weighted = False self.execute_forward_( T, D, B, log_E, L, weights_precision, weighted, mixed, mixed_B, use_cache, cache_algorithm, pooling_mode, use_cpu, SparseType.FP32, False, # use_experimental_tbe ) @unittest.skipIf(*gpu_unavailable) @given( use_experimental_tbe=st.booleans() if not TEST_WITH_ROCM else st.just(False), ) @settings( verbosity=Verbosity.verbose, max_examples=MAX_EXAMPLES_LONG_RUNNING, deadline=None, suppress_health_check=[HealthCheck.filter_too_much, HealthCheck.data_too_large], ) def test_forward_gpu_no_cache_fp16( self, use_experimental_tbe: bool, ) -> None: weights_precision = SparseType.FP16 use_cpu = False T = random.randint(1, 10) D = random.randint(2, 256) B = random.randint(1, 128) L = random.randint(0, 20) log_E = random.randint(3, 5) use_cache = False # cache_algorithm is don't care as we don't use cache. cache_algorithm = CacheAlgorithm.LRU pooling_mode = random.choice( [ PoolingMode.SUM, PoolingMode.MEAN, ] + ([PoolingMode.NONE] if not use_experimental_tbe else []) ) if pooling_mode == PoolingMode.NONE: mixed = False mixed_B = False else: mixed = random.choice([True, False]) mixed_B = ( random.choice([True, False]) if not use_experimental_tbe else False ) if pooling_mode == PoolingMode.SUM: weighted = random.choice([True, False]) else: weighted = False self.execute_forward_( T, D, B, log_E, L, weights_precision, weighted, mixed, mixed_B, use_cache, cache_algorithm, pooling_mode, use_cpu, SparseType.FP32, use_experimental_tbe, ) @unittest.skipIf(*gpu_unavailable) @given( use_experimental_tbe=st.booleans() if not TEST_WITH_ROCM else st.just(False), ) @settings( verbosity=Verbosity.verbose, max_examples=MAX_EXAMPLES_LONG_RUNNING, deadline=None, suppress_health_check=[HealthCheck.filter_too_much, HealthCheck.data_too_large], ) def test_forward_gpu_no_cache_fp32( self, use_experimental_tbe: bool, ) -> None: weights_precision = SparseType.FP32 use_cpu = False T = random.randint(1, 10) D = random.randint(2, 256) B = random.randint(1, 128) L = random.randint(0, 20) log_E = random.randint(3, 5) use_cache = False # cache_algorithm is don't care as we don't use cache. cache_algorithm = CacheAlgorithm.LRU pooling_mode = random.choice( [ PoolingMode.SUM, PoolingMode.MEAN, ] + ([PoolingMode.NONE] if not use_experimental_tbe else []) ) if pooling_mode == PoolingMode.NONE: mixed = False mixed_B = False else: mixed = random.choice([True, False]) mixed_B = ( random.choice([True, False]) if not use_experimental_tbe else False ) if pooling_mode == PoolingMode.SUM: weighted = random.choice([True, False]) else: weighted = False self.execute_forward_( T, D, B, log_E, L, weights_precision, weighted, mixed, mixed_B, use_cache, cache_algorithm, pooling_mode, use_cpu, SparseType.FP32, use_experimental_tbe, ) @unittest.skipIf(*gpu_unavailable) @given( cache_algorithm=st.sampled_from(CacheAlgorithm), ) @settings( verbosity=Verbosity.verbose, max_examples=MAX_EXAMPLES_LONG_RUNNING, deadline=None, suppress_health_check=[HealthCheck.filter_too_much, HealthCheck.data_too_large], ) def test_forward_gpu_uvm_cache_int8( self, cache_algorithm: CacheAlgorithm, ) -> None: weights_precision = SparseType.INT8 use_cpu = False T = random.randint(1, 10) D = random.randint(2, 256) B = random.randint(1, 128) L = random.randint(0, 20) log_E = random.randint(3, 5) use_cache = True pooling_mode = random.choice( [ PoolingMode.SUM, PoolingMode.MEAN, PoolingMode.NONE, ] ) output_dtype = random.choice( [ SparseType.FP32, SparseType.FP16, ] ) if pooling_mode == PoolingMode.NONE: mixed = False else: mixed = random.choice([True, False]) mixed_B = False if pooling_mode == PoolingMode.SUM: weighted = random.choice([True, False]) else: weighted = False self.execute_forward_( T, D, B, log_E, L, weights_precision, weighted, mixed, mixed_B, use_cache, cache_algorithm, pooling_mode, use_cpu, output_dtype, False, # use_experimental_tbe ) @unittest.skipIf(*gpu_unavailable) @given( cache_algorithm=st.sampled_from(CacheAlgorithm), use_experimental_tbe=st.booleans() if not TEST_WITH_ROCM else st.just(False), ) @settings( verbosity=Verbosity.verbose, max_examples=MAX_EXAMPLES_LONG_RUNNING, deadline=None, suppress_health_check=[HealthCheck.filter_too_much, HealthCheck.data_too_large], ) def test_forward_gpu_uvm_cache_fp16( self, cache_algorithm: CacheAlgorithm, use_experimental_tbe: bool, ) -> None: weights_precision = SparseType.FP16 use_cpu = False T = random.randint(1, 10) D = random.randint(2, 256) B = random.randint(1, 128) L = random.randint(0, 20) log_E = random.randint(3, 5) use_cache = True pooling_mode = random.choice( [ PoolingMode.SUM, PoolingMode.MEAN, ] + ([PoolingMode.NONE] if not use_experimental_tbe else []) ) output_dtype = random.choice( [ SparseType.FP32, SparseType.FP16, ] ) if pooling_mode == PoolingMode.NONE: mixed = False else: mixed = random.choice([True, False]) mixed_B = False if pooling_mode == PoolingMode.SUM: weighted = random.choice([True, False]) else: weighted = False self.execute_forward_( T, D, B, log_E, L, weights_precision, weighted, mixed, mixed_B, use_cache, cache_algorithm, pooling_mode, use_cpu, output_dtype, use_experimental_tbe, ) @unittest.skipIf(*gpu_unavailable) @given( cache_algorithm=st.sampled_from(CacheAlgorithm), use_experimental_tbe=st.booleans() if not TEST_WITH_ROCM else st.just(False), ) @settings( verbosity=Verbosity.verbose, max_examples=MAX_EXAMPLES_LONG_RUNNING, deadline=None, suppress_health_check=[HealthCheck.filter_too_much, HealthCheck.data_too_large], ) def test_forward_gpu_uvm_cache_fp32( self, cache_algorithm: CacheAlgorithm, use_experimental_tbe: bool, ) -> None: weights_precision = SparseType.FP32 use_cpu = False T = random.randint(1, 10) D = random.randint(2, 256) B = random.randint(1, 128) L = random.randint(0, 20) log_E = random.randint(3, 5) use_cache = True pooling_mode = random.choice( [ PoolingMode.SUM, PoolingMode.MEAN, ] + ([PoolingMode.NONE] if not use_experimental_tbe else []) ) output_dtype = random.choice( [ SparseType.FP32, SparseType.FP16, ] ) if pooling_mode == PoolingMode.NONE: mixed = False else: mixed = random.choice([True, False]) mixed_B = False if pooling_mode == PoolingMode.SUM: weighted = random.choice([True, False]) else: weighted = False self.execute_forward_( T, D, B, log_E, L, weights_precision, weighted, mixed, mixed_B, use_cache, cache_algorithm, pooling_mode, use_cpu, output_dtype, use_experimental_tbe, ) @unittest.skipIf(*gpu_unavailable) @given( T=st.integers(min_value=1, max_value=10), D=st.integers(min_value=2, max_value=128), B=st.integers(min_value=1, max_value=128), log_E=st.integers(min_value=3, max_value=5), L=st.integers(min_value=0, max_value=20), output_dtype=st.sampled_from([SparseType.FP16, SparseType.INT8]), ) @settings( verbosity=Verbosity.verbose, max_examples=MAX_EXAMPLES_LONG_RUNNING, deadline=None, suppress_health_check=[HealthCheck.filter_too_much], ) def test_forward_fused_pooled_emb_quant( self, T: int, D: int, B: int, log_E: int, L: int, output_dtype: SparseType, ) -> None: Ds = [ round_up(np.random.randint(low=int(max(0.25 * D, 1)), high=int(1.0 * D)), 4) for _ in range(T) ] E = int(10**log_E) Es = [np.random.randint(low=int(0.5 * E), high=int(2.0 * E)) for _ in range(T)] op = SplitTableBatchedEmbeddingBagsCodegen( embedding_specs=[ ( E, D, EmbeddingLocation.DEVICE, ComputeDevice.CUDA, ) for (E, D) in zip(Es, Ds) ], output_dtype=output_dtype, device=torch.cuda.current_device(), ) op_ref = SplitTableBatchedEmbeddingBagsCodegen( embedding_specs=[ ( E, D, EmbeddingLocation.DEVICE, ComputeDevice.CUDA, ) for (E, D) in zip(Es, Ds) ], output_dtype=SparseType.FP32, device=torch.cuda.current_device(), ) # sync weights between two ops split_weights = op.split_embedding_weights() ref_split_weights = op_ref.split_embedding_weights() for t in range(T): split_weights[t].data.copy_(ref_split_weights[t]) requests = generate_requests(2, B, T, L, min(Es), reuse=0.1) for indices, offsets, _ in requests: lowp_pooled_output = op( indices=indices, offsets=offsets, ) fp32_pooled_output = op_ref( indices=indices, offsets=offsets, ) lowp_pooled_emb_split = [ d + 8 if output_dtype == SparseType.INT8 else d for d in op.dims ] lowp_pooled_output_per_table = torch.split( lowp_pooled_output, lowp_pooled_emb_split, dim=1 ) deq_lowp_pooled_output_per_table = [ torch.ops.fbgemm.Fused8BitRowwiseQuantizedToFloat(t.contiguous()) if output_dtype == SparseType.INT8 else t.float() for t in lowp_pooled_output_per_table ] fp32_pooled_output_per_table = torch.split( fp32_pooled_output, op.dims, dim=1 ) dq_fp32_pooled_output_per_table = [ torch.ops.fbgemm.Fused8BitRowwiseQuantizedToFloat( torch.ops.fbgemm.FloatToFused8BitRowwiseQuantized( t.contiguous() ).contiguous() ) if output_dtype == SparseType.INT8 else t.half().float() for t in fp32_pooled_output_per_table ] cat_deq_lowp_pooled_output = torch.cat( deq_lowp_pooled_output_per_table, dim=1 ) cat_dq_fp32_pooled_output = torch.cat( dq_fp32_pooled_output_per_table, dim=1 ) torch.testing.assert_close( cat_deq_lowp_pooled_output, cat_dq_fp32_pooled_output ) @unittest.skipIf(*gpu_unavailable) @given( T=st.integers(min_value=1, max_value=10), D=st.integers(min_value=2, max_value=128), B=st.integers(min_value=1, max_value=128), log_E=st.integers(min_value=3, max_value=5), L=st.integers(min_value=0, max_value=20), weights_ty=st.sampled_from( [ SparseType.FP32, SparseType.FP16, SparseType.INT8, SparseType.INT4, # FIXME: INT2 caused big numerical error for this test # SparseType.INT2, ] ), output_dtype=st.sampled_from( [ SparseType.FP16, SparseType.BF16, SparseType.INT8, # SparseType.INT4, ] ) if not TEST_WITH_ROCM else st.sampled_from( [ SparseType.FP16, # The counterparts of __nv_bfloat16 and __nv_bfloat162 are not supported on ROCm SparseType.INT8, # SparseType.INT4, ] ), ) @settings( verbosity=Verbosity.verbose, max_examples=MAX_EXAMPLES_LONG_RUNNING, deadline=None, suppress_health_check=[HealthCheck.filter_too_much], ) def test_nbit_forward_fused_pooled_emb_quant( self, T: int, D: int, B: int, log_E: int, L: int, weights_ty: SparseType, output_dtype: SparseType, ) -> None: D_alignment = max(weights_ty.align_size() for t in range(T)) D_alignment = max(D_alignment, output_dtype.align_size()) D = round_up(D, D_alignment) # BF16 output only works for CUDA device sm80+ (e.g., A100) assume( torch.cuda.is_available() and torch.cuda.get_device_capability() >= (8, 0) or not output_dtype == SparseType.BF16 ) Ds = [ round_up( np.random.randint(low=int(max(0.25 * D, 1)), high=int(1.0 * D)), D_alignment, ) for _ in range(T) ] Ds = [D] * T E = int(10**log_E) Es = [np.random.randint(low=int(0.5 * E), high=int(2.0 * E)) for _ in range(T)] weights_ty_list = [weights_ty] * T managed = [EmbeddingLocation.DEVICE] * T op = IntNBitTableBatchedEmbeddingBagsCodegen( embedding_specs=[ ( "", E, D, W_TY, EmbeddingLocation(M), ) for (E, D, M, W_TY) in zip(Es, Ds, managed, weights_ty_list) ], output_dtype=output_dtype, device=torch.cuda.current_device(), ) # Initialize the random weights for int nbit table split embedding bag op.fill_random_weights() op_ref = IntNBitTableBatchedEmbeddingBagsCodegen( embedding_specs=[ ( "", E, D, W_TY, EmbeddingLocation(M), ) for (E, D, M, W_TY) in zip(Es, Ds, managed, weights_ty_list) ], output_dtype=SparseType.FP32, device=torch.cuda.current_device(), ) # Initialize the random weights for int nbit table split embedding bag op_ref.fill_random_weights() # sync weights between two ops split_weights = op.split_embedding_weights() ref_split_weights = op_ref.split_embedding_weights() for t in range(T): (weights, scale_shift) = split_weights[t] (ref_weights, ref_scale_shift) = ref_split_weights[t] self.assertEqual(weights.size(), ref_weights.size()) element_size = weights_ty_list[t].bit_rate() / 8.0 rand_tensor = torch.rand( ref_weights.shape[0], int(ref_weights.shape[1] / element_size) ) rand_weights, rand_scale_shift = quantize_embs( rand_tensor, weights_ty_list[t] ) ref_weights.copy_(rand_weights) weights.copy_(ref_weights) if rand_scale_shift is not None: self.assertIsNotNone(scale_shift) self.assertIsNotNone(ref_scale_shift) ref_scale_shift.copy_(rand_scale_shift) scale_shift.copy_(ref_scale_shift) requests = generate_requests(1, B, T, L, min(Es), reuse=0.1) for indices, offsets, _ in requests: lowp_pooled_output = op( indices=indices.int(), offsets=offsets.int(), ) fp32_pooled_output = op_ref( indices=indices.int(), offsets=offsets.int(), ) lowp_pooled_emb_split = [ d + 8 if output_dtype == SparseType.INT8 else d for d in Ds ] lowp_pooled_output_per_table = torch.split( lowp_pooled_output, lowp_pooled_emb_split, dim=1 ) deq_lowp_pooled_output_per_table = [ torch.ops.fbgemm.Fused8BitRowwiseQuantizedToFloat(t.contiguous()) if output_dtype == SparseType.INT8 else t.float() for t in lowp_pooled_output_per_table ] fp32_pooled_output_per_table = torch.split(fp32_pooled_output, Ds, dim=1) dq_fp32_pooled_output_per_table = [ torch.ops.fbgemm.Fused8BitRowwiseQuantizedToFloat( torch.ops.fbgemm.FloatToFused8BitRowwiseQuantized( t.contiguous() ).contiguous() ).contiguous() if output_dtype == SparseType.INT8 else t.half().float() for t in fp32_pooled_output_per_table ] cat_deq_lowp_pooled_output = torch.cat( deq_lowp_pooled_output_per_table, dim=1 ) cat_dq_fp32_pooled_output = torch.cat( dq_fp32_pooled_output_per_table, dim=1 ) torch.testing.assert_close( cat_deq_lowp_pooled_output, cat_dq_fp32_pooled_output, rtol=1e-2, atol=1e-2, equal_nan=True, ) @unittest.skipIf(*gpu_unavailable) @given( T=st.integers(min_value=1, max_value=10), D=st.integers(min_value=2, max_value=128), B=st.integers(min_value=1, max_value=128), log_E=st.integers(min_value=3, max_value=5), L=st.integers(min_value=0, max_value=20), weights_ty=st.sampled_from( [ SparseType.FP32, SparseType.FP16, SparseType.INT8, SparseType.INT4, SparseType.INT2, ] ), output_dtype=st.sampled_from( [ SparseType.FP16, SparseType.BF16, SparseType.INT8, ] ) if not TEST_WITH_ROCM else st.sampled_from( [ SparseType.FP16, # The counterparts of __nv_bfloat16 and __nv_bfloat162 are not supported on ROCm SparseType.INT8, ] ), ) @settings( verbosity=Verbosity.verbose, max_examples=MAX_EXAMPLES_LONG_RUNNING, deadline=None, suppress_health_check=[HealthCheck.filter_too_much], ) def test_nbit_split_embedding_weights_with_scale_and_bias( self, T: int, D: int, B: int, log_E: int, L: int, weights_ty: SparseType, output_dtype: SparseType, ) -> None: D_alignment = max(weights_ty.align_size() for t in range(T)) D_alignment = max(D_alignment, output_dtype.align_size()) D = round_up(D, D_alignment) # BF16 output only works for CUDA device sm80+ (e.g., A100) assume( torch.cuda.is_available() and torch.cuda.get_device_capability() >= (8, 0) or not output_dtype == SparseType.BF16 ) Ds = [ round_up( np.random.randint(low=int(max(0.25 * D, 1)), high=int(1.0 * D)), D_alignment, ) for _ in range(T) ] Ds = [D] * T E = int(10**log_E) Es = [np.random.randint(low=int(0.5 * E), high=int(2.0 * E)) for _ in range(T)] weights_ty_list = [weights_ty] * T managed = [EmbeddingLocation.DEVICE] * T op = IntNBitTableBatchedEmbeddingBagsCodegen( embedding_specs=[ ( "", E, D, W_TY, EmbeddingLocation(M), ) for (E, D, M, W_TY) in zip(Es, Ds, managed, weights_ty_list) ], output_dtype=output_dtype, device=torch.cuda.current_device(), ) # Initialize the random weights for int nbit table split embedding bag op.fill_random_weights() # sync weights between two ops split_weights = op.split_embedding_weights() split_weights_with_scale_bias = op.split_embedding_weights_with_scale_bias( split_scale_bias_mode=2 ) for t in range(T): (weights, scale_bias) = split_weights[t] (weights2, scale, bias) = split_weights_with_scale_bias[t] torch.testing.assert_close(weights2, weights) if scale is None: self.assertIsNone(scale_bias) self.assertIsNone(bias) else: torch.testing.assert_close( scale.cpu(), torch.tensor( scale_bias[:, : scale_bias.size(1) // 2] .contiguous() .cpu() .numpy() .view(np.float16) ), ) torch.testing.assert_close( bias.cpu(), torch.tensor( scale_bias[:, scale_bias.size(1) // 2 :] .contiguous() .cpu() .numpy() .view(np.float16) ), ) @given( T=st.integers(min_value=1, max_value=3), D=st.integers(min_value=2, max_value=128), B=st.integers(min_value=1, max_value=32), log_E=st.integers(min_value=3, max_value=5), L=st.integers(min_value=0, max_value=10), weights_precision=st.sampled_from([SparseType.FP16, SparseType.FP32]), weighted=st.booleans(), mixed=st.booleans(), long_segments=st.booleans(), pooling_mode=st.sampled_from( [ PoolingMode.SUM, PoolingMode.MEAN, PoolingMode.NONE, ] ), use_cpu=st.booleans() if (gpu_available and not TEST_WITH_ROCM) else st.just(False) if (gpu_available and TEST_WITH_ROCM) else st.just(True), output_dtype=st.sampled_from([SparseType.FP32, SparseType.FP16]), ) @settings( verbosity=Verbosity.verbose, max_examples=10, deadline=None, suppress_health_check=[HealthCheck.filter_too_much, HealthCheck.data_too_large], ) def test_backward_dense( # noqa C901 self, T: int, D: int, B: int, log_E: int, L: int, weights_precision: SparseType, weighted: bool, mixed: bool, long_segments: bool, pooling_mode: PoolingMode, use_cpu: bool, output_dtype: SparseType, ) -> None: # NOTE: torch.autograd.gradcheck() is too time-consuming for CPU version # so we have to limit (T * B * L * D)! assume(not use_cpu or T * B * L * D <= 2048) assume(pooling_mode == PoolingMode.SUM or not weighted) assume(not (use_cpu and weights_precision == SparseType.FP16)) # No bag ops only work on GPUs, no mixed, no weighted assume(not use_cpu or pooling_mode != PoolingMode.NONE) assume(not mixed or pooling_mode != PoolingMode.NONE) assume(not weighted or pooling_mode != PoolingMode.NONE) emb_op = DenseTableBatchedEmbeddingBagsCodegen if pooling_mode == PoolingMode.SUM: mode = "sum" do_pooling = True elif pooling_mode == PoolingMode.MEAN: mode = "mean" do_pooling = True elif pooling_mode == PoolingMode.NONE: mode = "sum" do_pooling = False else: # This proves that we have exhaustively checked all PoolingModes raise RuntimeError("Unknown PoolingMode!") E = int(10**log_E) if use_cpu: D = (D + 15) // 16 * 4 else: D = D * 4 if not mixed: Ds = [D] * T Es = [E] * T else: Ds = [ round_up(np.random.randint(low=int(0.25 * D), high=int(1.0 * D)), 4) for _ in range(T) ] Es = [ np.random.randint(low=int(0.5 * E), high=int(2 * E)) for _ in range(T) ] if do_pooling: bs = [ to_device(torch.nn.EmbeddingBag(E, D, mode=mode, sparse=False), use_cpu) for (E, D) in zip(Es, Ds) ] else: bs = [ to_device(torch.nn.Embedding(E, D, sparse=False), use_cpu) for (E, D) in zip(Es, Ds) ] if weights_precision == SparseType.FP16: bs = [b.half() for b in bs] xs = [ to_device( torch.from_numpy( np.random.choice(range(e), size=(B, L), replace=True).astype( np.int64 ) ), use_cpu, ) for e in Es ] if long_segments and L > 0 and weights_precision != SparseType.FP16: for x in xs: x[:, 0] = 0 xws = [to_device(torch.randn(size=(B, L)), use_cpu) for _ in range(T)] xws_acc_type = copy.deepcopy(xws) if weights_precision == SparseType.FP16: xws = [xw.half() for xw in xws] fs = ( [ b_indices(b, x, use_cpu=use_cpu, do_pooling=do_pooling) for (b, x) in zip(bs, xs) ] if not weighted else [ b_indices( b, x, per_sample_weights=xw.view(-1), use_cpu=use_cpu, do_pooling=do_pooling, ) for (b, x, xw) in zip(bs, xs, xws) ] ) gos = [torch.randn_like(f) for f in fs] [f.backward(go) for (f, go) in zip(fs, gos)] # pyre-fixme[16]: `Optional` has no attribute `view`. grad_weights = torch.cat([b.weight.grad.view(-1) for b in bs]) if weights_precision == SparseType.FP16 and not use_cpu: grad_weights = grad_weights.half() cc = emb_op( embedding_specs=[(E, D) for (E, D) in zip(Es, Ds)], pooling_mode=pooling_mode, use_cpu=use_cpu, weights_precision=weights_precision, output_dtype=output_dtype, ) if do_pooling: # NOTE: test TorchScript-compatible! cc = torch.jit.script(cc) for t in range(T): cc.split_embedding_weights()[t].data.copy_(bs[t].weight) x = torch.cat([x.view(1, B, L) for x in xs], dim=0) xw = torch.cat([xw.view(1, B, L) for xw in xws_acc_type], dim=0) (indices, offsets) = get_table_batched_offsets_from_dense(x, use_cpu=use_cpu) fc2 = ( cc(indices, offsets) if not weighted else cc(indices, offsets, to_device(xw.contiguous().view(-1), use_cpu)) ) if do_pooling: f = torch.cat([f.view(B, -1) for f in fs], dim=1) else: f = torch.cat(fs, dim=0).view(-1, D) torch.testing.assert_close( fc2.float(), f.float(), atol=5.0e-3 if weights_precision == SparseType.FP16 or output_dtype == SparseType.FP16 else 1.0e-5, rtol=5.0e-3 if weights_precision == SparseType.FP16 or output_dtype == SparseType.FP16 else 1.0e-5, ) if do_pooling: goc = torch.cat([go.view(B, -1) for go in gos], dim=1) else: goc = torch.cat(gos, dim=0) fc2.backward(goc) torch.testing.assert_close( cc.weights.grad, grad_weights, atol=5.0e-3 if weights_precision == SparseType.FP16 or output_dtype == SparseType.FP16 else 1.0e-4, rtol=5.0e-3 if weights_precision == SparseType.FP16 or output_dtype == SparseType.FP16 else 1.0e-4, ) cc = DenseTableBatchedEmbeddingBagsCodegen( [(E, D) for (E, D) in zip(Es, Ds)], # NOTE: only SUM pooling can work with per_sample_weights! pooling_mode=PoolingMode.SUM, use_cpu=use_cpu, ) per_sample_weights = to_device(xw.contiguous().view(-1), use_cpu) if use_cpu: # NOTE: GPU version of DenseTableBatchedEmbeddingBagsCodegen doesn't support double. cc = cc.double() per_sample_weights = per_sample_weights.double() per_sample_weights.requires_grad = True indices.requires_grad = False offsets.requires_grad = False for param in cc.parameters(): param.requires_grad = False y = cc(indices, offsets, per_sample_weights) y.sum().backward() # pyre-fixme[16]: `Optional` has no attribute `clone`. indice_weight_grad_all = per_sample_weights.grad.clone().cpu() T_ = len(xws) feature_requires_grad = to_device( torch.tensor(np.random.choice([0, 1], replace=True, size=(T_,))).int(), use_cpu, ) per_sample_weights = per_sample_weights.detach().clone() per_sample_weights.requires_grad = True y = cc( indices, offsets, per_sample_weights, feature_requires_grad=feature_requires_grad, ) y.sum().backward() indice_weight_grad_mask = per_sample_weights.grad.clone().cpu() for t in range(T_): if feature_requires_grad[t]: torch.testing.assert_close( indice_weight_grad_mask.view(T_, B, L)[t], indice_weight_grad_all.view(T_, B, L)[t], ) else: torch.testing.assert_close( indice_weight_grad_mask.view(T_, B, L)[t], torch.zeros_like(indice_weight_grad_mask.view(T_, B, L)[t]), ) per_sample_weights = to_device(xw.contiguous().view(-1), use_cpu) if use_cpu: # NOTE: GPU version of DenseTableBatchedEmbeddingBagsCodegen doesn't support double. cc = cc.double() per_sample_weights = per_sample_weights.double() else: cc = cc.float() per_sample_weights = per_sample_weights.float() per_sample_weights.requires_grad = True indices.requires_grad = False offsets.requires_grad = False for param in cc.parameters(): param.requires_grad = False torch.autograd.gradcheck( cc, (indices, offsets, per_sample_weights), eps=1e-2, atol=1e-3, rtol=1e-3 ) @given( T=st.integers(min_value=1, max_value=5), D=st.integers(min_value=2, max_value=256), B=st.integers(min_value=1, max_value=128), log_E=st.integers(min_value=3, max_value=5), L=st.integers(min_value=0, max_value=20), weights_precision=st.sampled_from([SparseType.FP16, SparseType.FP32]), weighted=st.booleans(), long_segments=st.booleans(), pooling_mode=st.sampled_from( [ PoolingMode.SUM, PoolingMode.MEAN, PoolingMode.NONE, ] ), output_dtype=st.sampled_from([SparseType.FP16, SparseType.FP32]), ) @settings( verbosity=Verbosity.verbose, max_examples=MAX_EXAMPLES, deadline=None, suppress_health_check=[HealthCheck.filter_too_much, HealthCheck.data_too_large], ) def test_backward_none(self, **kwargs: Any) -> None: self.execute_backward_none_(**kwargs) @given( T=st.integers(min_value=1, max_value=5), D=st.integers(min_value=2, max_value=256), B=st.integers(min_value=1, max_value=128), log_E=st.integers(min_value=3, max_value=5), L=st.integers(min_value=0, max_value=20), weights_precision=st.sampled_from([SparseType.FP16, SparseType.FP32]), weighted=st.booleans(), long_segments=st.booleans(), pooling_mode=st.sampled_from( [ PoolingMode.SUM, PoolingMode.MEAN, PoolingMode.NONE, ] ), output_dtype=st.sampled_from([SparseType.FP16, SparseType.FP32]), ) @settings( verbosity=Verbosity.verbose, max_examples=MAX_EXAMPLES, deadline=None, suppress_health_check=[HealthCheck.filter_too_much, HealthCheck.data_too_large], ) def test_backward_none_with_rowwise_adagrad(self, **kwargs: Any) -> None: self.execute_backward_none_(optimizer=OptimType.EXACT_ROWWISE_ADAGRAD, **kwargs) def execute_backward_none_( # noqa C901 self, T: int, D: int, B: int, log_E: int, L: int, weights_precision: SparseType, weighted: bool, long_segments: bool, pooling_mode: PoolingMode, output_dtype: SparseType, optimizer: Optional[OptimType] = None, ) -> None: use_cpu = False mixed = False use_cache = False # NOTE: cache is not applicable to CPU version. assume(not use_cpu or not use_cache) # NOTE: limit (T * B * L * D) to avoid timeout for CPU version! assume(not use_cpu or T * B * L * D <= 2048) assume(not (use_cpu and weights_precision == SparseType.FP16)) # No bag ops only work on GPUs, no mixed, no weighted assume(not use_cpu or pooling_mode != PoolingMode.NONE) assume(not mixed or pooling_mode != PoolingMode.NONE) assume(not weighted or pooling_mode != PoolingMode.NONE) assume(pooling_mode == PoolingMode.SUM or not weighted) if pooling_mode == PoolingMode.SUM: mode = "sum" do_pooling = True elif pooling_mode == PoolingMode.MEAN: mode = "mean" do_pooling = True elif pooling_mode == PoolingMode.NONE: mode = "sum" do_pooling = False else: # This proves that we have exhaustively checked all PoolingModes raise RuntimeError("Unknown PoolingMode!") E = int(10**log_E) if use_cpu: D = (D + 15) // 16 * 4 else: D = D * 4 if not mixed: Ds = [D] * T Es = [E] * T else: Ds = [ round_up(np.random.randint(low=int(0.25 * D), high=int(1.0 * D)), 4) for _ in range(T) ] Es = [ np.random.randint(low=int(0.5 * E), high=int(2.0 * E)) for _ in range(T) ] compute_device = ComputeDevice.CUDA if use_cpu: managed = [EmbeddingLocation.HOST] * T compute_device = ComputeDevice.CPU elif TEST_WITH_ROCM: # ROCm managed memory allocation is under development managed = [EmbeddingLocation.DEVICE] * T elif use_cache: managed = [EmbeddingLocation.MANAGED_CACHING] * T if mixed: average_D = sum(Ds) // T for t, d in enumerate(Ds): managed[t] = ( EmbeddingLocation.DEVICE if d < average_D else managed[t] ) else: managed = [ np.random.choice( [ EmbeddingLocation.DEVICE, ] ) for _ in range(T) ] if do_pooling: bs = [ to_device(torch.nn.EmbeddingBag(E, D, mode=mode, sparse=True), use_cpu) for (E, D) in zip(Es, Ds) ] else: bs = [ to_device(torch.nn.Embedding(E, D, sparse=True), use_cpu) for (E, D) in zip(Es, Ds) ] if weights_precision == SparseType.FP16: bs = [b.half() for b in bs] feature_table_map = list(range(T)) xs = [ to_device( torch.from_numpy( np.random.choice(range(Es[t]), size=(B, L)).astype(np.int64) ), use_cpu, ) for t in feature_table_map ] if long_segments and L > 0: for x in xs: x[:, 0] = 0 xws = [to_device(torch.randn(size=(B, L)), use_cpu) for _ in range(len(xs))] xws_acc_type = copy.deepcopy(xws) if weights_precision == SparseType.FP16: xws = [xw.half() for xw in xws] x = torch.cat([x.view(1, B, L) for x in xs], dim=0) xw = torch.cat([xw.view(1, B, L) for xw in xws_acc_type], dim=0) (indices, offsets) = get_table_batched_offsets_from_dense(x, use_cpu=use_cpu) embedding_specs = [ (E, D, M, compute_device) for (E, D, M) in zip(Es, Ds, managed) ] # Hyperparameters in case optimizer is not None lr = 0.5 eps = 0.2 stochastic_rounding = random.choice([True, False]) if optimizer is None: fs = ( [ b_indices(b, x, use_cpu=use_cpu, do_pooling=do_pooling) for (b, x) in zip(bs, xs) ] if not weighted else [ b_indices( b, x, per_sample_weights=xw.view(-1), use_cpu=use_cpu, do_pooling=do_pooling, ) for (b, x, xw) in zip(bs, xs, xws) ] ) gos: Union[List[Tensor], Tensor] = [torch.randn_like(f) for f in fs] [f.backward(go) for (f, go) in zip(fs, gos)] else: bs_ = SplitTableBatchedEmbeddingBagsCodegen( embedding_specs=embedding_specs, optimizer=optimizer, feature_table_map=feature_table_map, weights_precision=weights_precision, pooling_mode=pooling_mode, output_dtype=output_dtype, learning_rate=lr, eps=eps, stochastic_rounding=stochastic_rounding, ) for t in range(T): bs_.split_embedding_weights()[t].data.copy_(bs[t].weight) fs = ( bs_(indices, offsets) if not weighted else bs_( indices, offsets, to_device(xw.contiguous().view(-1), use_cpu), ) ) gos: Union[List[Tensor], Tensor] = torch.rand_like(fs) fs.backward(gos) cc = SplitTableBatchedEmbeddingBagsCodegen( embedding_specs=embedding_specs, optimizer=OptimType.NONE, feature_table_map=feature_table_map, weights_precision=weights_precision, pooling_mode=pooling_mode, output_dtype=output_dtype, ) for t in range(T): cc.split_embedding_weights()[t].data.copy_(bs[t].weight) total_unique_indices = 0 # Compute number of unique indices for t in range(len(feature_table_map)): start = offsets[t * B] end = offsets[(t + 1) * B] uniq_indices = indices[start:end].unique() total_unique_indices += uniq_indices.numel() fc2 = ( cc(indices, offsets, total_unique_indices=total_unique_indices) if not weighted else cc( indices, offsets, to_device(xw.contiguous().view(-1), use_cpu), total_unique_indices=total_unique_indices, ) ) if optimizer is None: assert type(gos) is list if do_pooling: goc = torch.cat([go.view(B, -1) for go in gos], dim=1) else: goc = torch.cat(gos, dim=0) else: assert type(gos) is Tensor goc = gos.clone() fc2.backward(goc) if optimizer is not None: params = SplitEmbeddingOptimizerParams(weights_dev=cc.weights_dev) embedding_args = SplitEmbeddingArgs( weights_placements=cc.weights_placements, weights_offsets=cc.weights_offsets, max_D=cc.max_D, ) optim = SplitEmbeddingRowwiseAdagrad( params, embedding_args, embedding_specs, feature_table_map, learning_rate=lr, eps=eps, stochastic_rounding=stochastic_rounding, ) optim.step() if use_cache: cc.flush() if optimizer is None: test_tensor = cc.weights_dev.grad weight_grads = [] for t in range(T): grad = bs[t].weight.grad # Check grad to suppress pyre error assert grad is not None weight_grads.append(grad) ref_grad = torch.concat(weight_grads, dim=0).to_sparse().coalesce() ref_tensor = ( ref_grad.half() if weights_precision == SparseType.FP16 else ref_grad ) else: indices = cc.weights_dev.grad._indices().flatten() # Select only the part in the table that is updated test_tensor = torch.index_select(cc.weights_dev.view(-1, D), 0, indices) ref_tensor = torch.index_select(bs_.weights_dev.view(-1, D), 0, indices) tolerance = ( 1.0e-2 if long_segments else ( 1.0e-4 if weights_precision == SparseType.FP32 and output_dtype == SparseType.FP32 else 1.0e-2 ) ) torch.testing.assert_close( test_tensor, ref_tensor, atol=tolerance, rtol=tolerance, ) def execute_backward_sgd_( # noqa C901 self, T: int, D: int, B: int, log_E: int, L: int, weights_precision: SparseType, weighted: bool, mixed: bool, mixed_B: bool, use_cache: bool, cache_algorithm: CacheAlgorithm, long_segments: bool, pooling_mode: PoolingMode, use_cpu: bool, output_dtype: SparseType, ) -> None: # NOTE: cache is not applicable to CPU version. assume(not use_cpu or not use_cache) # NOTE: limit (T * B * L * D) to avoid timeout for CPU version! assume(not use_cpu or T * B * L * D <= 2048) assume(not (use_cpu and weights_precision == SparseType.FP16)) # No bag ops only work on GPUs, no mixed, no weighted assume(not use_cpu or pooling_mode != PoolingMode.NONE) assume(not mixed or pooling_mode != PoolingMode.NONE) assume(not weighted or pooling_mode != PoolingMode.NONE) assume(pooling_mode == PoolingMode.SUM or not weighted) # TODO: Support these cases assume( not mixed_B or ( weights_precision != SparseType.INT8 and output_dtype != SparseType.INT8 and not use_cpu and not use_cache and pooling_mode != PoolingMode.NONE ) ) emb_op = SplitTableBatchedEmbeddingBagsCodegen if pooling_mode == PoolingMode.SUM: mode = "sum" do_pooling = True elif pooling_mode == PoolingMode.MEAN: mode = "mean" do_pooling = True elif pooling_mode == PoolingMode.NONE: mode = "sum" do_pooling = False else: # This proves that we have exhaustively checked all PoolingModes raise RuntimeError("Unknown PoolingMode!") E = int(10**log_E) if use_cpu: D = (D + 15) // 16 * 4 else: D = D * 4 if not mixed: Ds = [D] * T Es = [E] * T else: Ds = [ round_up(np.random.randint(low=int(0.25 * D), high=int(1.0 * D)), 4) for _ in range(T) ] Es = [ np.random.randint(low=int(0.5 * E), high=int(2.0 * E)) for _ in range(T) ] if not mixed_B: Bs = [B] * T else: low = max(int(0.25 * B), 1) high = int(B) if low == high: Bs = [B] * T else: Bs = [np.random.randint(low=low, high=high) for _ in range(T)] compute_device = ComputeDevice.CUDA if use_cpu: managed = [EmbeddingLocation.HOST] * T compute_device = ComputeDevice.CPU elif TEST_WITH_ROCM: # ROCm managed memory allocation is under development managed = [EmbeddingLocation.DEVICE] * T elif use_cache: managed = [EmbeddingLocation.MANAGED_CACHING] * T if mixed: average_D = sum(Ds) // T for t, d in enumerate(Ds): managed[t] = ( EmbeddingLocation.DEVICE if d < average_D else managed[t] ) else: managed = [ np.random.choice( [ EmbeddingLocation.DEVICE, EmbeddingLocation.MANAGED, ] ) for _ in range(T) ] if do_pooling: bs = [ to_device(torch.nn.EmbeddingBag(E, D, mode=mode, sparse=True), use_cpu) for (E, D) in zip(Es, Ds) ] else: bs = [ to_device(torch.nn.Embedding(E, D, sparse=True), use_cpu) for (E, D) in zip(Es, Ds) ] if weights_precision == SparseType.FP16: bs = [b.half() for b in bs] feature_table_map = list(range(T)) table_to_replicate = T // 2 # pyre-fixme[6]: For 2nd param expected `Embedding` but got # `Union[Embedding, EmbeddingBag]`. bs.insert(table_to_replicate, bs[table_to_replicate]) feature_table_map.insert(table_to_replicate, table_to_replicate) num_features = len(feature_table_map) if not mixed_B: Bs = [B] * num_features Bs_rank_feature = [[0]] else: Bs_rank_feature, Bs = gen_mixed_B_batch_sizes(B, num_features) # Generate indices xs = [ to_device( torch.from_numpy( np.random.choice(range(Es[t]), size=(b, L), replace=True).astype( np.int64 ) ), use_cpu, ) for t, b in zip(feature_table_map, Bs) ] if long_segments and L > 0: for x in xs: x[:, 0] = 0 # Generate positional weights xws = [to_device(torch.randn(size=(b, L)), use_cpu) for b in Bs] xws_acc_type = copy.deepcopy(xws) if weights_precision == SparseType.FP16: xws = [xw.half() for xw in xws] # Run baseline's forward fs = ( [ b_indices(b, x, use_cpu=use_cpu, do_pooling=do_pooling) for (b, x) in zip(bs, xs) ] if not weighted else [ b_indices( b, x, per_sample_weights=xw.view(-1), use_cpu=use_cpu, do_pooling=do_pooling, ) for (b, x, xw) in zip(bs, xs, xws) ] ) # Generate gradients gos = [torch.randn_like(f) for f in fs] # Run baseline's backward [f.backward(go) for (f, go) in zip(fs, gos)] # do SGD update lr = 0.05 del bs[table_to_replicate] # pyre-fixme[58]: `*` is not supported for operand types # `Optional[torch._tensor.Tensor]` and `float`. new_weights = [(b.weight - b.weight.grad * lr) for b in bs] # Create a TBE op cc = emb_op( embedding_specs=[ (E, D, M, compute_device) for (E, D, M) in zip(Es, Ds, managed) ], optimizer=OptimType.EXACT_SGD, feature_table_map=feature_table_map, learning_rate=lr, weights_precision=weights_precision, cache_algorithm=cache_algorithm, pooling_mode=pooling_mode, output_dtype=output_dtype, ) for t in range(T): cc.split_embedding_weights()[t].data.copy_(bs[t].weight) x = torch.cat([x.contiguous().flatten() for x in xs], dim=0) xw = torch.cat([xw.contiguous().flatten() for xw in xws_acc_type], dim=0) (indices, offsets) = get_table_batched_offsets_from_dense( x, L, sum(Bs), use_cpu=use_cpu ) batch_size_per_feature_per_rank = Bs_rank_feature if mixed_B else None # Run TBE's forward fc2 = ( cc( indices, offsets, batch_size_per_feature_per_rank=batch_size_per_feature_per_rank, ) if not weighted else cc( indices, offsets, to_device(xw.contiguous().view(-1), use_cpu), batch_size_per_feature_per_rank=batch_size_per_feature_per_rank, ) ) # Generate gradients if do_pooling: if mixed_B: goc = format_ref_tensors_in_mixed_B_layout(gos, Bs_rank_feature) else: goc = torch.cat([go.view(B, -1) for go in gos], dim=1) else: goc = torch.cat(gos, dim=0) # Run TBE's backward fc2.backward(goc) if use_cache: cc.flush() for t in range(T): torch.testing.assert_close( cc.split_embedding_weights()[t], new_weights[t].half() if weights_precision == SparseType.FP16 and not use_cpu else new_weights[t], atol=1.0e-2 if long_segments else (5.0e-3 if weights_precision == SparseType.FP16 else 1.0e-5), rtol=1.0e-1 if long_segments else (2.0e-2 if weights_precision == SparseType.FP16 else 1.0e-5), ) @given( T=st.integers(min_value=1, max_value=5), D=st.integers(min_value=2, max_value=256), B=st.integers(min_value=1, max_value=128), log_E=st.integers(min_value=3, max_value=5), L=st.integers(min_value=0, max_value=20), weights_precision=st.sampled_from([SparseType.FP16, SparseType.FP32]), weighted=st.booleans(), mixed=st.booleans(), mixed_B=st.booleans(), use_cache=st.booleans(), cache_algorithm=st.sampled_from(CacheAlgorithm), long_segments=st.booleans(), pooling_mode=st.sampled_from( [ PoolingMode.SUM, PoolingMode.MEAN, PoolingMode.NONE, ] ), use_cpu=st.booleans() if (gpu_available and not TEST_WITH_ROCM) else st.just(False) if (gpu_available and TEST_WITH_ROCM) else st.just(True), ) @settings( verbosity=Verbosity.verbose, max_examples=MAX_EXAMPLES, deadline=None, suppress_health_check=[HealthCheck.filter_too_much, HealthCheck.data_too_large], ) def test_backward_sgd( # noqa C901 self, T: int, D: int, B: int, log_E: int, L: int, weights_precision: SparseType, weighted: bool, mixed: bool, mixed_B: bool, use_cache: bool, cache_algorithm: CacheAlgorithm, long_segments: bool, pooling_mode: PoolingMode, use_cpu: bool, ) -> None: self.execute_backward_sgd_( T, D, B, log_E, L, weights_precision, weighted, mixed, mixed_B if not use_cpu else False, use_cache, cache_algorithm, long_segments, pooling_mode, use_cpu, SparseType.FP32, # output_dtype ) @given( D=st.integers(min_value=2, max_value=10), # 128 * 1024 is to exercise a case num_ctas_for_run needs to be capped # at the number of SMs (H100 SXM5 has 132 SMs and the default seglen # per CTA is 1024) B=st.sampled_from([1152, 256 * 1024]), L=st.integers(min_value=1, max_value=4), weighted=st.booleans(), mixed=st.booleans(), mixed_B=st.booleans(), use_cache=st.booleans(), cache_algorithm=st.sampled_from(CacheAlgorithm), ) @settings( verbosity=Verbosity.verbose, max_examples=MAX_EXAMPLES_LONG_RUNNING, deadline=None, suppress_health_check=[HealthCheck.filter_too_much, HealthCheck.data_too_large], ) @unittest.skipIf(*gpu_unavailable) def test_backward_sgd_really_long_segments( # noqa C901 self, D: int, B: int, L: int, weighted: bool, mixed: bool, mixed_B: bool, use_cache: bool, cache_algorithm: CacheAlgorithm, ) -> None: self.execute_backward_sgd_( 2, # T D, B, 1, # log_E, L, SparseType.FP32, # weights_precision weighted, mixed, mixed_B, use_cache, cache_algorithm, True, # long_segments PoolingMode.SUM, # pooling_mode False, # use_cpu SparseType.FP32, # output_dtype ) def execute_backward_adagrad_( # noqa C901 self, T: int, D: int, B: int, log_E: int, L: int, D_gradcheck: int, weights_precision: SparseType, stochastic_rounding: bool, weighted: bool, row_wise: bool, mixed: bool, mixed_B: bool, use_cache: bool, cache_algorithm: CacheAlgorithm, pooling_mode: PoolingMode, use_cpu: bool, output_dtype: SparseType, weight_decay_mode: WeightDecayMode = WeightDecayMode.NONE, ) -> None: # NOTE: cache is not applicable to CPU version. assume(not use_cpu or not use_cache) # NOTE: torch.autograd.gradcheck() is too time-consuming for CPU version # so we have to limit (T * B * L * D)! assume(not use_cpu or T * B * L * D <= 1024) assume(not (use_cpu and weights_precision == SparseType.FP16)) assume( pooling_mode == PoolingMode.SUM or not weighted ) # No bag ops only work on GPUs, no mixed, no weighted assume(not use_cpu or pooling_mode != PoolingMode.NONE) assume(not mixed or pooling_mode != PoolingMode.NONE) assume(not weighted or pooling_mode != PoolingMode.NONE) # TODO: Support these cases assume( not mixed_B or ( weights_precision != SparseType.INT8 and output_dtype != SparseType.INT8 and not use_cpu and not use_cache and pooling_mode != PoolingMode.NONE ) ) emb_op = SplitTableBatchedEmbeddingBagsCodegen if pooling_mode == PoolingMode.SUM: mode = "sum" do_pooling = True elif pooling_mode == PoolingMode.MEAN: mode = "mean" do_pooling = True elif pooling_mode == PoolingMode.NONE: mode = "sum" do_pooling = False else: # This proves that we have exhaustively checked all PoolingModes raise RuntimeError("Unknown PoolingMode!") # stochastic rounding only implemented for rowwise assume(not stochastic_rounding or row_wise) # only row-wise supports caching assume(row_wise or not use_cache) E = int(10**log_E) if use_cpu: D = (D + 15) // 16 * 4 else: D = D * 4 if not mixed: Ds = [D] * T Es = [E] * T else: Ds = [ round_up(np.random.randint(low=int(0.25 * D), high=int(1.0 * D)), 4) for _ in range(T) ] Es = [ np.random.randint(low=int(0.5 * E), high=int(2.0 * E)) for _ in range(T) ] if not mixed_B: Bs = [B] * T else: low = max(int(0.25 * B), 1) high = int(B) if low == high: Bs = [B] * T else: Bs = [np.random.randint(low=low, high=high) for _ in range(T)] compute_device = ComputeDevice.CUDA if use_cpu: managed = [EmbeddingLocation.HOST] * T compute_device = ComputeDevice.CPU elif TEST_WITH_ROCM: # ROCm managed memory allocation is under development managed = [EmbeddingLocation.DEVICE] * T elif use_cache: managed = [EmbeddingLocation.MANAGED_CACHING] * T if mixed: average_D = sum(Ds) // T for t, d in enumerate(Ds): managed[t] = ( EmbeddingLocation.DEVICE if d < average_D else managed[t] ) else: managed = [ np.random.choice( [ EmbeddingLocation.DEVICE, EmbeddingLocation.MANAGED, ] ) for _ in range(T) ] if do_pooling: bs = [ to_device(torch.nn.EmbeddingBag(E, D, mode=mode, sparse=True), use_cpu) for (E, D) in zip(Es, Ds) ] else: bs = [ to_device(torch.nn.Embedding(E, D, sparse=True), use_cpu) for (E, D) in zip(Es, Ds) ] if weights_precision == SparseType.FP16: bs = [b.half() for b in bs] feature_table_map = list(range(T)) # autograd with shared embedding only works for exact table_to_replicate = T // 2 # pyre-fixme[6]: For 2nd param expected `Embedding` but got # `Union[Embedding, EmbeddingBag]`. bs.insert(table_to_replicate, bs[table_to_replicate]) feature_table_map.insert(table_to_replicate, table_to_replicate) num_features = len(feature_table_map) if not mixed_B: Bs = [B] * num_features Bs_rank_feature = [[0]] else: Bs_rank_feature, Bs = gen_mixed_B_batch_sizes(B, num_features) xs = [ to_device( torch.from_numpy( np.random.choice(range(Es[t]), size=(b, L), replace=True).astype( np.int64 ) ), use_cpu, ) for t, b in zip(feature_table_map, Bs) ] xws = [to_device(torch.randn(size=(b, L)), use_cpu) for b in Bs] xws_acc_type = copy.deepcopy(xws) if weights_precision == SparseType.FP16 and not use_cpu: xws = [xw.half() for xw in xws] fs = ( [ b_indices(b, x, use_cpu=use_cpu, do_pooling=do_pooling) for (b, x) in zip(bs, xs) ] if not weighted else [ b_indices( b, x, per_sample_weights=xw.view(-1), use_cpu=use_cpu, do_pooling=do_pooling, ) for (b, x, xw) in zip(bs, xs, xws) ] ) gos = [torch.randn_like(f) for f in fs] [f.backward(go) for (f, go) in zip(fs, gos)] # do SGD update lr = 0.5 eps = 0.2 optimizer = ( OptimType.EXACT_ROWWISE_ADAGRAD if row_wise else OptimType.EXACT_ADAGRAD ) cc = emb_op( embedding_specs=[ (E, D, M, compute_device) for (E, D, M) in zip(Es, Ds, managed) ], feature_table_map=feature_table_map, optimizer=optimizer, learning_rate=lr, eps=eps, weights_precision=weights_precision, stochastic_rounding=stochastic_rounding, pooling_mode=pooling_mode, output_dtype=output_dtype, ) del bs[table_to_replicate] for t in range(T): cc.split_embedding_weights()[t].data.copy_(bs[t].weight) x = torch.cat([x.contiguous().flatten() for x in xs], dim=0) xw = torch.cat([xw.contiguous().flatten() for xw in xws_acc_type], dim=0) (indices, offsets) = get_table_batched_offsets_from_dense( x, L, sum(Bs), use_cpu=use_cpu ) batch_size_per_feature_per_rank = Bs_rank_feature if mixed_B else None fc2 = ( cc( indices, offsets, batch_size_per_feature_per_rank=batch_size_per_feature_per_rank, ) if not weighted else cc( indices, offsets, to_device(xw.contiguous().view(-1), use_cpu), batch_size_per_feature_per_rank=batch_size_per_feature_per_rank, ) ) if do_pooling: if mixed_B: goc = format_ref_tensors_in_mixed_B_layout(gos, Bs_rank_feature) else: goc = torch.cat([go.view(B, -1) for go in gos], dim=1) else: goc = torch.cat(gos, dim=0) fc2.backward(goc) cc.flush() split_optimizer_states = cc.split_optimizer_states() assert len(split_optimizer_states) == T get_optimizer_states = None if row_wise: # get_optimizer_state should/must be implemented for rowwise get_optimizer_states = cc.get_optimizer_state() assert len(get_optimizer_states) == T tolerance = ( 1.0e-4 if weights_precision == SparseType.FP32 and output_dtype == SparseType.FP32 else 1.0e-2 ) for t in range(T): expected_keys = {"sum"} if row_wise and weight_decay_mode == WeightDecayMode.COUNTER: (m1, c1, c2) = split_optimizer_states[t] expected_keys.update( [ "prev_iter", "row_counter", ] ) else: (m1,) = split_optimizer_states[t] if get_optimizer_states is not None: optimizer_states_dict = get_optimizer_states[t] assert set(optimizer_states_dict.keys()) == expected_keys # pyre-fixme[16]: `Optional` has no attribute `float`. ref_optimizer_state = bs[t].weight.grad.float().cpu().to_dense().pow(2) torch.testing.assert_close( m1.float().cpu(), ref_optimizer_state.mean(dim=1) if row_wise else ref_optimizer_state, atol=tolerance, rtol=tolerance, ) for t in range(T): # optimizer_state = squares (no row-wise) or sum squares (row-wise) if row_wise and weight_decay_mode == WeightDecayMode.COUNTER: (m1, c1, c2) = split_optimizer_states[t] else: (m1,) = split_optimizer_states[t] torch.testing.assert_close( cc.split_embedding_weights()[t].float().cpu(), torch.addcdiv( bs[t].weight.float().cpu(), value=-lr, tensor1=bs[t].weight.grad.float().cpu().to_dense(), tensor2=m1.float() .sqrt_() .add_(eps) .view(Es[t], 1 if row_wise else Ds[t]) .cpu(), ), atol=tolerance, rtol=tolerance, ) if use_cpu: D_gradcheck = (D_gradcheck + 15) // 16 * 4 else: D_gradcheck = D_gradcheck * 4 cc = emb_op( embedding_specs=[ (E, D_gradcheck, M, compute_device) for (E, M) in zip(Es, managed) ], feature_table_map=feature_table_map, optimizer=optimizer, learning_rate=0.0, eps=eps, weights_precision=weights_precision, stochastic_rounding=stochastic_rounding, # NOTE: only SUM pooling can work with per_sample_weights! pooling_mode=PoolingMode.SUM, output_dtype=output_dtype, ) per_sample_weights = to_device(xw.contiguous().view(-1), use_cpu) if use_cpu: # NOTE: GPU version of SplitTableBatchedEmbeddingBagsCodegen doesn't support double. cc = cc.double() per_sample_weights = per_sample_weights.double() per_sample_weights.requires_grad = True indices.requires_grad = False offsets.requires_grad = False for param in cc.parameters(): param.requires_grad = False torch.autograd.gradcheck( cc, ( indices, offsets, per_sample_weights, None, batch_size_per_feature_per_rank, ), ) per_sample_weights = to_device(xw.contiguous().view(-1), use_cpu) if use_cpu: per_sample_weights = per_sample_weights.double() per_sample_weights.requires_grad = True indices.requires_grad = False offsets.requires_grad = False for param in cc.parameters(): param.requires_grad = False y = cc( indices, offsets, per_sample_weights, batch_size_per_feature_per_rank=batch_size_per_feature_per_rank, ) y.sum().backward() # pyre-fixme[16]: `Optional` has no attribute `clone`. indice_weight_grad_all = per_sample_weights.grad.clone().cpu() T_ = len(xws) feature_requires_grad = to_device( torch.tensor(np.random.choice([0, 1], replace=True, size=(T_,))).int(), use_cpu, ) per_sample_weights = per_sample_weights.detach().clone() per_sample_weights.requires_grad = True y = cc( indices, offsets, per_sample_weights, feature_requires_grad=feature_requires_grad, batch_size_per_feature_per_rank=batch_size_per_feature_per_rank, ) y.sum().backward() indice_weight_grad_mask = per_sample_weights.grad.clone().cpu() torch.cuda.synchronize() acc_B = 0 for t in range(T_): B = Bs[t] table_indice_weight_grad_mask = indice_weight_grad_mask[ acc_B : acc_B + B * L ] table_indice_weight_grad_all = indice_weight_grad_all[acc_B : acc_B + B * L] acc_B += B * L if feature_requires_grad[t]: torch.testing.assert_close( table_indice_weight_grad_mask, table_indice_weight_grad_all, ) else: torch.testing.assert_close( table_indice_weight_grad_mask, torch.zeros_like(table_indice_weight_grad_mask), ) @given( T=st.integers(min_value=1, max_value=5), D=st.integers(min_value=2, max_value=128), B=st.integers(min_value=1, max_value=128), log_E=st.integers(min_value=3, max_value=5), L=st.integers(min_value=0, max_value=20), D_gradcheck=st.integers(min_value=1, max_value=2), weights_precision=st.just(SparseType.FP16), stochastic_rounding=st.booleans(), weighted=st.booleans(), row_wise=st.booleans(), mixed=st.booleans(), mixed_B=st.booleans(), use_cache=st.booleans(), cache_algorithm=st.sampled_from(CacheAlgorithm), use_cpu=st.booleans() if (gpu_available and not TEST_WITH_ROCM) else st.just(False) if (gpu_available and TEST_WITH_ROCM) else st.just(True), output_dtype=st.sampled_from([SparseType.FP32, SparseType.FP16]), ) @settings( verbosity=Verbosity.verbose, max_examples=MAX_EXAMPLES_LONG_RUNNING, deadline=None, suppress_health_check=[HealthCheck.filter_too_much, HealthCheck.data_too_large], ) def test_backward_adagrad_fp16_pmSUM( # noqa C901 self, T: int, D: int, B: int, log_E: int, L: int, D_gradcheck: int, weights_precision: SparseType, stochastic_rounding: bool, weighted: bool, row_wise: bool, mixed: bool, mixed_B: bool, use_cache: bool, cache_algorithm: CacheAlgorithm, use_cpu: bool, output_dtype: SparseType, ) -> None: # VBE is supported in rowwise_adagrad only if not row_wise: mixed_B = False self.execute_backward_adagrad_( T, D, B, log_E, L, D_gradcheck, weights_precision, stochastic_rounding, weighted, row_wise, mixed, mixed_B, use_cache, cache_algorithm, PoolingMode.SUM, use_cpu, output_dtype, ) @given( T=st.integers(min_value=1, max_value=5), D=st.integers(min_value=2, max_value=128), B=st.integers(min_value=1, max_value=128), log_E=st.integers(min_value=3, max_value=5), L=st.integers(min_value=0, max_value=20), D_gradcheck=st.integers(min_value=1, max_value=2), weights_precision=st.just(SparseType.FP16), stochastic_rounding=st.booleans(), weighted=st.booleans(), row_wise=st.booleans(), mixed=st.booleans(), mixed_B=st.booleans(), use_cache=st.booleans(), cache_algorithm=st.sampled_from(CacheAlgorithm), use_cpu=st.booleans() if (gpu_available and not TEST_WITH_ROCM) else st.just(False) if (gpu_available and TEST_WITH_ROCM) else st.just(True), output_dtype=st.sampled_from([SparseType.FP32, SparseType.FP16]), ) @settings( verbosity=Verbosity.verbose, max_examples=MAX_EXAMPLES_LONG_RUNNING, deadline=None, suppress_health_check=[HealthCheck.filter_too_much, HealthCheck.data_too_large], ) def test_backward_adagrad_fp16_pmMEAN( # noqa C901 self, T: int, D: int, B: int, log_E: int, L: int, D_gradcheck: int, weights_precision: SparseType, stochastic_rounding: bool, weighted: bool, row_wise: bool, mixed: bool, mixed_B: bool, use_cache: bool, cache_algorithm: CacheAlgorithm, use_cpu: bool, output_dtype: SparseType, ) -> None: # VBE is supported in rowwise_adagrad only if not row_wise: mixed_B = False self.execute_backward_adagrad_( T, D, B, log_E, L, D_gradcheck, weights_precision, stochastic_rounding, weighted, row_wise, mixed, mixed_B, use_cache, cache_algorithm, PoolingMode.MEAN, use_cpu, output_dtype, ) @given( T=st.integers(min_value=1, max_value=5), D=st.integers(min_value=2, max_value=128), B=st.integers(min_value=1, max_value=128), log_E=st.integers(min_value=3, max_value=5), L=st.integers(min_value=0, max_value=20), D_gradcheck=st.integers(min_value=1, max_value=2), weights_precision=st.just(SparseType.FP16), stochastic_rounding=st.booleans(), weighted=st.booleans(), row_wise=st.booleans(), mixed=st.booleans(), use_cache=st.booleans(), cache_algorithm=st.sampled_from(CacheAlgorithm), use_cpu=st.booleans() if (gpu_available and not TEST_WITH_ROCM) else st.just(False) if (gpu_available and TEST_WITH_ROCM) else st.just(True), output_dtype=st.sampled_from([SparseType.FP32, SparseType.FP16]), ) @settings( verbosity=Verbosity.verbose, max_examples=MAX_EXAMPLES_LONG_RUNNING, deadline=None, suppress_health_check=[HealthCheck.filter_too_much, HealthCheck.data_too_large], ) def test_backward_adagrad_fp16_pmNONE( # noqa C901 self, T: int, D: int, B: int, log_E: int, L: int, D_gradcheck: int, weights_precision: SparseType, stochastic_rounding: bool, weighted: bool, row_wise: bool, mixed: bool, use_cache: bool, cache_algorithm: CacheAlgorithm, use_cpu: bool, output_dtype: SparseType, ) -> None: self.execute_backward_adagrad_( T, D, B, log_E, L, D_gradcheck, weights_precision, stochastic_rounding, weighted, row_wise, mixed, False, # mixed_B use_cache, cache_algorithm, PoolingMode.NONE, use_cpu, output_dtype, ) @given( T=st.integers(min_value=1, max_value=5), D=st.integers(min_value=2, max_value=128), B=st.integers(min_value=1, max_value=128), log_E=st.integers(min_value=3, max_value=5), L=st.integers(min_value=0, max_value=20), D_gradcheck=st.integers(min_value=1, max_value=2), weights_precision=st.just(SparseType.FP32), stochastic_rounding=st.booleans(), weighted=st.booleans(), row_wise=st.booleans(), mixed=st.booleans(), mixed_B=st.booleans(), use_cache=st.booleans(), cache_algorithm=st.sampled_from(CacheAlgorithm), use_cpu=st.booleans() if (gpu_available and not TEST_WITH_ROCM) else st.just(False) if (gpu_available and TEST_WITH_ROCM) else st.just(True), output_dtype=st.sampled_from([SparseType.FP32, SparseType.FP16]), ) @settings( verbosity=Verbosity.verbose, max_examples=MAX_EXAMPLES_LONG_RUNNING, deadline=None, suppress_health_check=[HealthCheck.filter_too_much, HealthCheck.data_too_large], ) def test_backward_adagrad_fp32_pmSUM( # noqa C901 self, T: int, D: int, B: int, log_E: int, L: int, D_gradcheck: int, weights_precision: SparseType, stochastic_rounding: bool, weighted: bool, row_wise: bool, mixed: bool, mixed_B: bool, use_cache: bool, cache_algorithm: CacheAlgorithm, use_cpu: bool, output_dtype: SparseType, ) -> None: # VBE is supported in rowwise_adagrad only if not row_wise: mixed_B = False self.execute_backward_adagrad_( T, D, B, log_E, L, D_gradcheck, weights_precision, stochastic_rounding, weighted, row_wise, mixed, mixed_B, use_cache, cache_algorithm, PoolingMode.SUM, use_cpu, output_dtype, ) @given( T=st.integers(min_value=1, max_value=5), D=st.integers(min_value=2, max_value=128), B=st.integers(min_value=1, max_value=128), log_E=st.integers(min_value=3, max_value=5), L=st.integers(min_value=0, max_value=20), D_gradcheck=st.integers(min_value=1, max_value=2), weights_precision=st.just(SparseType.FP32), stochastic_rounding=st.booleans(), weighted=st.booleans(), row_wise=st.booleans(), mixed=st.booleans(), mixed_B=st.booleans(), use_cache=st.booleans(), cache_algorithm=st.sampled_from(CacheAlgorithm), use_cpu=st.booleans() if (gpu_available and not TEST_WITH_ROCM) else st.just(False) if (gpu_available and TEST_WITH_ROCM) else st.just(True), output_dtype=st.sampled_from([SparseType.FP32, SparseType.FP16]), ) @settings( verbosity=Verbosity.verbose, max_examples=MAX_EXAMPLES_LONG_RUNNING, deadline=None, suppress_health_check=[HealthCheck.filter_too_much, HealthCheck.data_too_large], ) def test_backward_adagrad_fp32_pmMEAN( # noqa C901 self, T: int, D: int, B: int, log_E: int, L: int, D_gradcheck: int, weights_precision: SparseType, stochastic_rounding: bool, weighted: bool, row_wise: bool, mixed: bool, mixed_B: bool, use_cache: bool, cache_algorithm: CacheAlgorithm, use_cpu: bool, output_dtype: SparseType, ) -> None: # VBE is supported in rowwise_adagrad only if not row_wise: mixed_B = False self.execute_backward_adagrad_( T, D, B, log_E, L, D_gradcheck, weights_precision, stochastic_rounding, weighted, row_wise, mixed, mixed_B, use_cache, cache_algorithm, PoolingMode.MEAN, use_cpu, output_dtype, ) @given( T=st.integers(min_value=1, max_value=5), D=st.integers(min_value=2, max_value=128), B=st.integers(min_value=1, max_value=128), log_E=st.integers(min_value=3, max_value=5), L=st.integers(min_value=0, max_value=20), D_gradcheck=st.integers(min_value=1, max_value=2), weights_precision=st.just(SparseType.FP32), stochastic_rounding=st.booleans(), weighted=st.booleans(), row_wise=st.booleans(), mixed=st.booleans(), use_cache=st.booleans(), cache_algorithm=st.sampled_from(CacheAlgorithm), use_cpu=st.booleans() if (gpu_available and not TEST_WITH_ROCM) else st.just(False) if (gpu_available and TEST_WITH_ROCM) else st.just(True), output_dtype=st.sampled_from([SparseType.FP32, SparseType.FP16]), ) @settings( verbosity=Verbosity.verbose, max_examples=MAX_EXAMPLES_LONG_RUNNING, deadline=None, suppress_health_check=[HealthCheck.filter_too_much, HealthCheck.data_too_large], ) def test_backward_adagrad_fp32_pmNONE( # noqa C901 self, T: int, D: int, B: int, log_E: int, L: int, D_gradcheck: int, weights_precision: SparseType, stochastic_rounding: bool, weighted: bool, row_wise: bool, mixed: bool, use_cache: bool, cache_algorithm: CacheAlgorithm, use_cpu: bool, output_dtype: SparseType, ) -> None: self.execute_backward_adagrad_( T, D, B, log_E, L, D_gradcheck, weights_precision, stochastic_rounding, weighted, row_wise, mixed, False, # mixed_B use_cache, cache_algorithm, PoolingMode.NONE, use_cpu, output_dtype, ) def _generate_cache_tbes( self, T: int, D: int, B: int, log_E: int, L: int, mixed: bool, cache_algorithm: CacheAlgorithm = CacheAlgorithm.LRU, prefetch_pipeline: bool = False, use_int_weight: bool = False, ) -> Tuple[ SplitTableBatchedEmbeddingBagsCodegen, SplitTableBatchedEmbeddingBagsCodegen, int, int, ]: lr = 1.0 if use_int_weight else 0.02 E = int(10**log_E) D = D * 4 if not mixed: Ds = [D] * T Es = [E] * T else: Ds = [ round_up(np.random.randint(low=int(0.25 * D), high=int(1.0 * D)), 4) for _ in range(T) ] Es = [ np.random.randint(low=int(0.5 * E), high=int(2.0 * E)) for _ in range(T) ] managed = [EmbeddingLocation.MANAGED_CACHING] * T if mixed: average_D = sum(Ds) // T for t, d in enumerate(Ds): managed[t] = EmbeddingLocation.DEVICE if d < average_D else managed[t] cc_ref = SplitTableBatchedEmbeddingBagsCodegen( [ ( E, D, EmbeddingLocation.DEVICE, ComputeDevice.CUDA, ) for (E, D) in zip(Es, Ds) ], stochastic_rounding=False, prefetch_pipeline=False, learning_rate=lr, ) cc = SplitTableBatchedEmbeddingBagsCodegen( [(E, D, M, ComputeDevice.CUDA) for (E, D, M) in zip(Es, Ds, managed)], cache_algorithm=cache_algorithm, stochastic_rounding=False, prefetch_pipeline=prefetch_pipeline, learning_rate=lr, ) if use_int_weight: min_val = -20 max_val = +20 for param in cc_ref.split_embedding_weights(): p = torch.randint( int(min_val), int(max_val) + 1, size=param.shape, device=param.device, ) param.data.copy_(p) for t in range(T): self.assertEqual( cc.split_embedding_weights()[t].size(), cc_ref.split_embedding_weights()[t].size(), ) cc.split_embedding_weights()[t].data.copy_( cc_ref.split_embedding_weights()[t] ) return (cc, cc_ref, min(Es), sum(Ds)) @unittest.skipIf(*gpu_unavailable) @given( T=st.integers(min_value=1, max_value=5), D=st.integers(min_value=2, max_value=256), B=st.integers(min_value=1, max_value=128), log_E=st.integers(min_value=3, max_value=5), L=st.integers(min_value=1, max_value=20), mixed=st.booleans(), cache_algorithm=st.sampled_from(CacheAlgorithm), ) @settings(verbosity=Verbosity.verbose, max_examples=MAX_EXAMPLES, deadline=None) def test_cache_pipeline( self, T: int, D: int, B: int, log_E: int, L: int, mixed: bool, cache_algorithm: CacheAlgorithm, ) -> None: cc, cc_ref, min_Es, sum_Ds = self._generate_cache_tbes( T, D, B, log_E, L, mixed, cache_algorithm ) iters = 3 requests = generate_requests(iters, B, T, L, min_Es, reuse=0.1) grad_output = torch.randn(B, sum_Ds).cuda() for indices, offsets, _ in requests: output = cc(indices, offsets) output_ref = cc_ref(indices, offsets) torch.testing.assert_close(output, output_ref) output.backward(grad_output) output_ref.backward(grad_output) cc.flush() for t in range(T): torch.testing.assert_close( cc.split_embedding_weights()[t], cc_ref.split_embedding_weights()[t] ) def _test_cache_prefetch_pipeline( # noqa C901 self, T: int, D: int, B: int, log_E: int, L: int, mixed: bool, prefetch_location: str, prefetch_stream: Optional[torch.cuda.Stream], ) -> None: """ test cache prefetch pipeline with prefetch_pipeline=True. prefetch_location can be "before_fwd" or "between_fwd_bwd", where the TBE prefetch(batch_{i+1}) is called before forward(batch_i) or in between of forward(batch_i) and backward(batch_i), respectively. If prefetch_stream is not None, the TBE prefetch function will use this stream. In addition, we make the TBE weights initialized as integer values, learning_rate as integer value, and gradients as integer values so that the test is more stable. """ assert prefetch_location in ["before_fwd", "between_fwd_bwd"] cc, cc_ref, min_Es, sum_Ds = self._generate_cache_tbes( T, D, B, log_E, L, mixed, CacheAlgorithm.LRU, True, True ) iters = 5 requests = generate_requests(iters, B, T, L, min_Es, reuse=0.1) grad_output = ( torch.randint( low=-10, high=10, size=(B, sum_Ds), ) .float() .cuda() ) torch.cuda.synchronize() # make sure TBEs and inputs are ready self.assertTrue(torch.all(cc.lxu_cache_locking_counter == 0)) cur_stream: torch.cuda.Stream = torch.cuda.current_stream() req_iter = iter(requests) batch_i = next(req_iter) batch_ip1 = None output, output_ref = None, None def _prefetch( cc: SplitTableBatchedEmbeddingBagsCodegen, batch: Optional[Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]], ) -> None: if not batch: return context_stream = prefetch_stream if prefetch_stream else cur_stream stream = cur_stream if prefetch_stream else None indices, offsets, _ = batch with torch.cuda.stream(context_stream): cc.prefetch(indices, offsets, stream) _prefetch(cc, batch_i) while batch_i: indices, offsets, _ = batch_i batch_ip1 = next(req_iter, None) if prefetch_stream: cur_stream.wait_stream(prefetch_stream) if prefetch_location == "before_fwd": _prefetch(cc, batch_ip1) output = cc(indices, offsets) if prefetch_location == "between_fwd_bwd": _prefetch(cc, batch_ip1) output.backward(grad_output) batch_i = batch_ip1 batch_ip1 = None cc.flush() for indices, offsets, _ in requests: output_ref = cc_ref(indices, offsets) output_ref.backward(grad_output) for t in range(T): torch.testing.assert_close( cc.split_embedding_weights()[t], cc_ref.split_embedding_weights()[t] ) torch.testing.assert_close(output, output_ref) self.assertTrue(torch.all(cc.lxu_cache_locking_counter == 0)) @unittest.skipIf(*gpu_unavailable) @given( T=st.integers(min_value=1, max_value=5), D=st.integers(min_value=2, max_value=256), B=st.integers(min_value=1, max_value=128), log_E=st.integers(min_value=3, max_value=5), L=st.integers(min_value=1, max_value=20), mixed=st.booleans(), prefetch_location=st.sampled_from(["before_fwd", "between_fwd_bwd"]), ) @settings(verbosity=Verbosity.verbose, max_examples=MAX_EXAMPLES, deadline=None) def test_cache_prefetch_pipeline( self, T: int, D: int, B: int, log_E: int, L: int, mixed: bool, prefetch_location: str, ) -> None: self._test_cache_prefetch_pipeline( T, D, B, log_E, L, mixed, prefetch_location, prefetch_stream=None, ) @unittest.skipIf(*gpu_unavailable) @given( T=st.integers(min_value=1, max_value=5), D=st.integers(min_value=2, max_value=256), B=st.integers(min_value=1, max_value=128), log_E=st.integers(min_value=3, max_value=5), L=st.integers(min_value=1, max_value=20), mixed=st.booleans(), ) @settings(verbosity=Verbosity.verbose, max_examples=MAX_EXAMPLES, deadline=None) def test_cache_prefetch_pipeline_stream_1( self, T: int, D: int, B: int, log_E: int, L: int, mixed: bool, ) -> None: self._test_cache_prefetch_pipeline( T, D, B, log_E, L, mixed, prefetch_location="before_fwd", prefetch_stream=torch.cuda.Stream(), ) @unittest.skipIf(*gpu_unavailable) @given( T=st.integers(min_value=1, max_value=5), D=st.integers(min_value=2, max_value=256), B=st.integers(min_value=1, max_value=128), log_E=st.integers(min_value=3, max_value=5), L=st.integers(min_value=1, max_value=20), mixed=st.booleans(), ) @settings(verbosity=Verbosity.verbose, max_examples=MAX_EXAMPLES, deadline=None) def test_cache_prefetch_pipeline_stream_2( self, T: int, D: int, B: int, log_E: int, L: int, mixed: bool, ) -> None: self._test_cache_prefetch_pipeline( T, D, B, log_E, L, mixed, prefetch_location="between_fwd_bwd", prefetch_stream=torch.cuda.Stream(), ) def execute_backward_optimizers_( # noqa C901 self, T: int, D: int, B: int, log_E: int, L: int, weighted: bool, mixed: bool, mixed_B: bool, optimizer: OptimType, long_segments: bool, pooling_mode: PoolingMode, use_cpu: bool, weight_decay_mode: WeightDecayMode = WeightDecayMode.L2, uvm_non_rowwise_momentum: bool = False, ) -> None: # NOTE: limit (T * B * L * D) to avoid timeout for CPU version! assume(not use_cpu or T * B * L * D <= 2048) assume( not use_cpu or optimizer in [ OptimType.EXACT_ADAGRAD, OptimType.EXACT_ROWWISE_ADAGRAD, OptimType.EXACT_SGD, ] ) assume(pooling_mode == PoolingMode.SUM or not weighted) # No bag ops only work on GPUs, no mixed, no weighted assume(not use_cpu or pooling_mode != PoolingMode.NONE) assume(not mixed or pooling_mode != PoolingMode.NONE) assume(not weighted or pooling_mode != PoolingMode.NONE) assume(not mixed_B or (not use_cpu and pooling_mode != PoolingMode.NONE)) emb_op = SplitTableBatchedEmbeddingBagsCodegen if pooling_mode == PoolingMode.SUM: mode = "sum" do_pooling = True elif pooling_mode == PoolingMode.MEAN: mode = "mean" do_pooling = True elif pooling_mode == PoolingMode.NONE: mode = "sum" do_pooling = False else: # This proves that we have exhaustively checked all PoolingModes raise RuntimeError("Unknown PoolingMode!") E = int(10**log_E) if use_cpu: D = (D + 15) // 16 * 4 else: D = D * 4 if not mixed: Ds = [D] * T Es = [E] * T else: Ds = [ round_up(np.random.randint(low=int(0.25 * D), high=int(1.0 * D)), 4) for _ in range(T) ] Es = [ np.random.randint(low=int(0.5 * E), high=int(2.0 * E)) for _ in range(T) ] if not mixed_B: Bs = [B] * T Bs_rank_feature = [[0]] else: Bs_rank_feature, Bs = gen_mixed_B_batch_sizes(B, T) compute_device = ComputeDevice.CUDA if use_cpu: managed = [EmbeddingLocation.HOST] * T compute_device = ComputeDevice.CPU elif TEST_WITH_ROCM: # ROCm managed memory allocation is under development managed = [EmbeddingLocation.DEVICE] * T else: managed = [ np.random.choice( [ EmbeddingLocation.DEVICE, EmbeddingLocation.MANAGED, ] ) for _ in range(T) ] if do_pooling: bs = [ to_device(torch.nn.EmbeddingBag(E, D, mode=mode, sparse=True), use_cpu) for (E, D) in zip(Es, Ds) ] else: bs = [ to_device(torch.nn.Embedding(E, D, sparse=True), use_cpu) for (E, D) in zip(Es, Ds) ] xs = [ to_device( torch.from_numpy( np.random.choice(range(e), size=(b, L), replace=True).astype( np.int64 ) ), use_cpu, ) for (e, b) in zip(Es, Bs) ] if long_segments and L > 0: for x, e in zip(xs, Es): x[:, 0] = np.random.randint(low=0, high=e) xws = [to_device(torch.randn(size=(b, L)), use_cpu) for b in Bs] xws_acc_type = copy.deepcopy(xws) fs = ( [ b_indices(b, x, use_cpu=use_cpu, do_pooling=do_pooling) for (b, x) in zip(bs, xs) ] if not weighted else [ b_indices( b, x, per_sample_weights=xw.view(-1), use_cpu=use_cpu, do_pooling=do_pooling, ) for (b, x, xw) in zip(bs, xs, xws) ] ) gos = [torch.randn_like(f) for f in fs] [f.backward(go) for (f, go) in zip(fs, gos)] # do SGD update optimizer_kwargs = {"learning_rate": 0.5} (lr, eps, beta1, beta2, weight_decay, momentum, eta) = ( 0.5, 1e-4, 0.9, 0.99, 0.01, 0.9, 0.01, ) counter_based_regularization: CounterBasedRegularizationDefinition if optimizer == OptimType.EXACT_ADAGRAD: optimizer_kwargs["eps"] = eps if optimizer == OptimType.EXACT_ROWWISE_ADAGRAD: optimizer_kwargs["eps"] = eps optimizer_kwargs["weight_decay"] = weight_decay optimizer_kwargs["weight_decay_mode"] = weight_decay_mode if weight_decay_mode == WeightDecayMode.COUNTER: counter_based_regularization = CounterBasedRegularizationDefinition( counter_weight_decay_mode=CounterWeightDecayMode.DECOUPLE, counter_halflife=20000, adjustment_iter=24000, adjustment_ub=0.1, learning_rate_mode=LearningRateMode.TAIL_ID_LR_DECREASE, grad_sum_decay=GradSumDecay.NO_DECAY, tail_id_threshold=TailIdThreshold(val=1000, is_ratio=False), ) optimizer_kwargs[ "counter_based_regularization" # pyre-fixme[6]: Expected `float` for 2nd param but got `CounterBasedRegularizationDefinition`. ] = counter_based_regularization if optimizer == OptimType.EXACT_ROWWISE_WEIGHTED_ADAGRAD: optimizer_kwargs["eps"] = eps optimizer_kwargs["weight_decay"] = weight_decay if optimizer in (OptimType.PARTIAL_ROWWISE_ADAM, OptimType.ADAM): optimizer_kwargs["eps"] = eps optimizer_kwargs["beta1"] = beta1 optimizer_kwargs["beta2"] = beta2 optimizer_kwargs["weight_decay"] = weight_decay if optimizer in (OptimType.PARTIAL_ROWWISE_LAMB, OptimType.LAMB): optimizer_kwargs["eps"] = eps optimizer_kwargs["beta1"] = beta1 optimizer_kwargs["beta2"] = beta2 optimizer_kwargs["weight_decay"] = weight_decay if optimizer == OptimType.LARS_SGD: optimizer_kwargs["weight_decay"] = weight_decay optimizer_kwargs["momentum"] = momentum optimizer_kwargs["eta"] = eta cc = emb_op( embedding_specs=[ (E, D, M, compute_device) for (E, D, M) in zip(Es, Ds, managed) ], optimizer=optimizer, pooling_mode=pooling_mode, uvm_non_rowwise_momentum=uvm_non_rowwise_momentum, # pyre-fixme[6]: Expected `CacheAlgorithm` for 5th param but got `float`. **optimizer_kwargs, ) for t in range(T): cc.split_embedding_weights()[t].data.copy_(bs[t].weight) x = torch.cat([x.contiguous().flatten() for x in xs], dim=0) xw = torch.cat([xw.contiguous().flatten() for xw in xws_acc_type], dim=0) batch_size_per_feature_per_rank = Bs_rank_feature if mixed_B else None (indices, offsets) = get_table_batched_offsets_from_dense( x, L, sum(Bs), use_cpu=use_cpu ) fc2 = ( cc( indices, offsets, batch_size_per_feature_per_rank=batch_size_per_feature_per_rank, ) if not weighted else cc( indices, offsets, to_device(xw.contiguous().view(-1), use_cpu), batch_size_per_feature_per_rank=batch_size_per_feature_per_rank, ) ) if do_pooling: if mixed_B: goc = format_ref_tensors_in_mixed_B_layout(gos, Bs_rank_feature) else: goc = torch.cat([go.view(B, -1) for go in gos], dim=1) else: goc = torch.cat(gos, dim=0) fc2.backward(goc) cc.flush() split_optimizer_states = cc.split_optimizer_states() self.assertEqual(len(split_optimizer_states), T) split_weights = cc.split_embedding_weights() get_optimizer_states = None try: get_optimizer_states = cc.get_optimizer_state() assert len(get_optimizer_states) == T except NotImplementedError: assert optimizer not in ( OptimType.ADAM, OptimType.PARTIAL_ROWWISE_ADAM, OptimType.LAMB, OptimType.PARTIAL_ROWWISE_LAMB, OptimType.EXACT_SGD, OptimType.EXACT_ROWWISE_ADAGRAD, OptimType.EXACT_ROWWISE_WEIGHTED_ADAGRAD, OptimType.EXACT_ADAGRAD, ) if optimizer in (OptimType.EXACT_ROWWISE_ADAGRAD, OptimType.EXACT_ADAGRAD): rowwise = optimizer == OptimType.EXACT_ROWWISE_ADAGRAD for t in range(T): row_counter: Optional[torch.Tensor] = None freq: Optional[torch.Tensor] = None iter_: int = -1 if rowwise and weight_decay_mode == WeightDecayMode.COUNTER: (m1, prev_iter, row_counter) = split_optimizer_states[t] else: (m1,) = split_optimizer_states[t] # to_dense in GPU is non-deterministic due to atmomics used in # coalescing and floating point non-associativity. # pyre-fixme[16]: `Optional` has no attribute `cpu`. dense_cpu_grad = bs[t].weight.grad.cpu().to_dense() if rowwise and not use_cpu: # We need to skip when using cpu because use_fbgemm (https://fburl.com/code/12131iub) # is true and the template code (https://fburl.com/code/1kctlup3) is not executed. if weight_decay_mode == WeightDecayMode.L2: dense_cpu_grad += weight_decay * bs[t].weight.cpu() elif weight_decay_mode == WeightDecayMode.COUNTER: iter_ = int(cc.iter.item()) ( dense_cpu_grad, row_counter, freq, ) = self.get_grad_from_counter_adagrad( dense_cpu_grad, bs[t].weight.cpu(), counter_based_regularization, row_counter.cpu(), prev_iter.cpu(), iter_, weight_decay, ) m1_ref = ( dense_cpu_grad.pow(2) if not rowwise else dense_cpu_grad.pow(2).mean(dim=1) ) torch.testing.assert_close( m1.float().index_select(dim=0, index=xs[t].view(-1)).cpu(), m1_ref.float().index_select(dim=0, index=xs[t].view(-1).cpu()), atol=1.0e-4, rtol=1.0e-4, ) weights_new = split_weights[t] denom = ( torch.sqrt( m1_ref if not rowwise else m1_ref.view(m1_ref.numel(), 1) ) + eps ) if rowwise and not use_cpu: if weight_decay_mode == WeightDecayMode.DECOUPLE: weights_ref = bs[t].weight.cpu() - lr * ( dense_cpu_grad / denom + weight_decay * bs[t].weight.cpu() ) elif weight_decay_mode == WeightDecayMode.L2: # pyre-fixme[58]: `/` is not supported for operand types `float` # and `Tensor`. weights_ref = bs[t].weight.cpu() - lr * dense_cpu_grad / denom elif weight_decay_mode == WeightDecayMode.COUNTER: max_counter = cc.max_counter.item() weights_ref = self.get_wts_from_counter_adagrad( dense_cpu_grad, bs[t].weight.cpu(), denom, counter_based_regularization, row_counter, # pyre-fixme[6]: Expected `Tensor` for 6th param but got `Optional[Tensor]` freq, max_counter, iter_, eps, lr, weight_decay, ) else: # pyre-fixme[58]: `/` is not supported for operand types `float` # and `Tensor`. weights_ref = bs[t].weight.cpu() - lr * dense_cpu_grad / denom # TODO: why is tolerance off here? torch.testing.assert_close( weights_new.index_select(dim=0, index=xs[t].view(-1)).cpu(), weights_ref.index_select(dim=0, index=xs[t].view(-1).cpu()), atol=1.0e-2, rtol=1.0e-2, ) optimizer_states_dict = get_optimizer_states[t] expected_keys = {"sum"} if rowwise and weight_decay_mode == WeightDecayMode.COUNTER: expected_keys.update(["prev_iter", "row_counter"]) assert set(optimizer_states_dict.keys()) == expected_keys if optimizer == OptimType.EXACT_ROWWISE_WEIGHTED_ADAGRAD: for t in range(T): (m1,) = split_optimizer_states[t] # to_dense in GPU is non-deterministic due to atmomics used in # coalescing and floating point non-associativity. dense_cpu_grad = bs[t].weight.grad.cpu().to_dense() dense_cpu_grad += weight_decay * bs[t].weight.cpu() iter_ = cc.iter.item() lambda_ = (iter_ + 1) ** 0.5 m1_ref = dense_cpu_grad.pow(2).mean(dim=1) m1_ref *= lambda_ torch.testing.assert_close( m1.float().index_select(dim=0, index=xs[t].view(-1)).cpu(), m1_ref.float().index_select(dim=0, index=xs[t].view(-1).cpu()), atol=1.0e-4, rtol=1.0e-4, ) weights_new = split_weights[t] weights_ref = bs[t].weight.cpu() - lr * lambda_ * dense_cpu_grad / ( # pyre-fixme[58]: `/` is not supported for operand types `float` # and `Tensor`. torch.pow(m1_ref.view(m1_ref.numel(), 1), 1.0 / 3) + eps ) torch.testing.assert_close( weights_new.index_select(dim=0, index=xs[t].view(-1)).cpu(), weights_ref.index_select(dim=0, index=xs[t].view(-1).cpu()), atol=1.0e-4, rtol=1.0e-4, ) if get_optimizer_states is not None: optimizer_states_dict = get_optimizer_states[t] assert set(optimizer_states_dict.keys()) == {"sum"} if optimizer in (OptimType.PARTIAL_ROWWISE_ADAM, OptimType.ADAM): rowwise = optimizer == OptimType.PARTIAL_ROWWISE_ADAM for t in range(T): (m1, m2) = split_optimizer_states[t] dense_cpu_grad = bs[t].weight.grad.cpu().to_dense() m2_ref = ( dense_cpu_grad.pow(2) if not rowwise else dense_cpu_grad.pow(2).mean(dim=1) ) * (1.0 - beta2) torch.testing.assert_close(m2.cpu(), m2_ref, atol=1.0e-4, rtol=1.0e-4) m1_ref = dense_cpu_grad * (1.0 - beta1) torch.testing.assert_close(m1.cpu(), m1_ref, atol=1.0e-4, rtol=1.0e-4) iter_ = cc.iter.item() v_hat_t = m2_ref / (1 - beta2**iter_) v_hat_t = v_hat_t if not rowwise else v_hat_t.view(v_hat_t.numel(), 1) m_hat_t = m1_ref / (1 - beta1**iter_) weights_new = split_weights[t] weights_ref = ( torch.addcdiv( bs[t].weight.cpu(), value=-lr, tensor1=m_hat_t, tensor2=v_hat_t.sqrt_().add_(eps), ) - lr * weight_decay * bs[t].weight.cpu() ) torch.testing.assert_close( weights_new.index_select(dim=0, index=xs[t].view(-1)).cpu(), weights_ref.index_select(dim=0, index=xs[t].view(-1).cpu()), atol=1.0e-3, rtol=1.0e-3, ) if get_optimizer_states is not None: optimizer_states_dict = get_optimizer_states[t] assert set(optimizer_states_dict.keys()) == { "exp_avg", "exp_avg_sq", } if optimizer in (OptimType.PARTIAL_ROWWISE_LAMB, OptimType.LAMB): rowwise = optimizer == OptimType.PARTIAL_ROWWISE_LAMB for t in range(T): (m1, m2) = split_optimizer_states[t] dense_cpu_grad = bs[t].weight.grad.cpu().to_dense() m2_ref = ( dense_cpu_grad.pow(2) if not rowwise else dense_cpu_grad.pow(2).mean(dim=1) ) * (1.0 - beta2) torch.testing.assert_close(m2.cpu(), m2_ref, atol=1.0e-4, rtol=1.0e-4) m1_ref = dense_cpu_grad * (1.0 - beta1) torch.testing.assert_close(m1.cpu(), m1_ref, atol=1.0e-4, rtol=1.0e-4) iter_ = cc.iter.item() v_hat_t = m2_ref / (1 - beta2**iter_) v_hat_t = v_hat_t if not rowwise else v_hat_t.view(v_hat_t.numel(), 1) m_hat_t = m1_ref / (1 - beta1**iter_) rtw = (m_hat_t / (torch.sqrt(v_hat_t) + eps)) + weight_decay * bs[ t ].weight.cpu() true_ratio = torch.linalg.norm(bs[t].weight, dim=1, ord=2).view( m1.shape[0], 1 ).cpu() / torch.linalg.norm(rtw, dim=1, ord=2).view(m1.shape[0], 1) weights_new = split_weights[t] weights_ref = bs[t].weight.cpu() - lr * true_ratio * rtw torch.testing.assert_close( weights_new.index_select(dim=0, index=xs[t].view(-1)).cpu(), weights_ref.index_select(dim=0, index=xs[t].view(-1).cpu()), atol=1.0e-3, rtol=1.0e-3, ) if get_optimizer_states is not None: optimizer_states_dict = get_optimizer_states[t] assert set(optimizer_states_dict.keys()) == { "exp_avg", "exp_avg_sq", } if optimizer == OptimType.LARS_SGD: for t in range(T): (m1,) = split_optimizer_states[t] weight_norm = ( torch.linalg.norm(bs[t].weight, dim=1, ord=2) .view(m1.shape[0], 1) .cpu() ) dense_cpu_grad = bs[t].weight.grad.cpu().to_dense() grad_norm = torch.linalg.norm(dense_cpu_grad, dim=1, ord=2).view( m1.shape[0], 1 ) adjusted_lr = ( lr * eta * weight_norm / (grad_norm + weight_decay * weight_norm) ) m1_ref = adjusted_lr * ( dense_cpu_grad + weight_decay * bs[t].weight.cpu() ) torch.testing.assert_close( m1.index_select(dim=0, index=xs[t].view(-1)).cpu(), # pyre-fixme[16]: `float` has no attribute `index_select`. m1_ref.index_select(dim=0, index=xs[t].view(-1).cpu()), atol=1.0e-4, rtol=1.0e-4, ) weights_new = split_weights[t] weights_ref = bs[t].weight.cpu() - m1_ref torch.testing.assert_close( weights_new.index_select(dim=0, index=xs[t].view(-1)).cpu(), weights_ref.index_select(dim=0, index=xs[t].view(-1).cpu()), atol=1.0e-4, rtol=1.0e-4, ) def get_grad_from_counter_adagrad( self, dense_cpu_grad: torch.Tensor, weights: torch.Tensor, counter_based_regularization: CounterBasedRegularizationDefinition, row_counter: torch.Tensor, prev_iter: torch.Tensor, iter_: int, weight_decay: float, ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: row_counter = row_counter.view(row_counter.numel(), 1) prev_iter = prev_iter.view(prev_iter.numel(), 1) freq = torch.ones_like(row_counter) counter_weight_decay_mode = ( counter_based_regularization.counter_weight_decay_mode ) counter_halflife = counter_based_regularization.counter_halflife l2_wd = 1.0 if counter_weight_decay_mode == CounterWeightDecayMode.L2 else 0.0 if counter_halflife > 0: counter_log_rho = math.log(2.0) / counter_halflife # if id occurs multiple times in a batch, iter_delta=1 iter_delta = torch.where(prev_iter == 0.0, 1.0, iter_ * 1.0 - prev_iter) prev_iter = iter_ * torch.ones_like(prev_iter) row_counter = 1.0 + torch.exp(-iter_delta * counter_log_rho) * row_counter freq = torch.tensor([counter_halflife]) / row_counter dense_cpu_grad += l2_wd * freq * weight_decay * weights return dense_cpu_grad, row_counter, freq def get_wts_from_counter_adagrad( self, dense_cpu_grad: torch.Tensor, weights: torch.Tensor, denom: torch.Tensor, counter_based_regularization: CounterBasedRegularizationDefinition, row_counter: torch.Tensor, freq: torch.Tensor, max_counter: float, iter_: int, eps: float, learning_rate: float, weight_decay: float, ) -> torch.Tensor: counter_weight_decay_mode = ( counter_based_regularization.counter_weight_decay_mode ) counter_halflife = counter_based_regularization.counter_halflife tail_id_threshold_val = counter_based_regularization.tail_id_threshold.val if counter_based_regularization.tail_id_threshold.is_ratio: tail_id_threshold_val = math.floor(tail_id_threshold_val * max_counter) learning_rate_mode = counter_based_regularization.learning_rate_mode adjustment_iter = counter_based_regularization.adjustment_iter adjustment_ub = counter_based_regularization.adjustment_ub multiplier = torch.tensor([learning_rate]) / denom adjusted_multiplier = multiplier exp_reg_correction = torch.ones_like(row_counter) if counter_halflife > 0: if adjustment_iter <= 0 or ( adjustment_iter > 0 and iter_ > adjustment_iter ): if learning_rate_mode == LearningRateMode.TAIL_ID_LR_INCREASE: adjusted_multiplier = torch.where( row_counter > tail_id_threshold_val, multiplier * torch.maximum( torch.minimum( torch.pow( torch.tensor([max_counter]) / (row_counter + 1.0), adjustment_ub, ), torch.Tensor([10.0]), ), torch.Tensor([1.0]), ), multiplier, ) elif learning_rate_mode == LearningRateMode.TAIL_ID_LR_DECREASE: adjusted_multiplier = torch.where( row_counter > tail_id_threshold_val, multiplier * torch.minimum( torch.maximum( torch.pow( (row_counter + 1.0) / max_counter, adjustment_ub, ), torch.Tensor([0.1]), ), torch.Tensor([1.0]), ), multiplier, ) elif learning_rate_mode == LearningRateMode.COUNTER_SGD: adjusted_multiplier = torch.where( row_counter > tail_id_threshold_val, torch.Tensor([learning_rate]) / (torch.sqrt(adjustment_ub * row_counter) + eps), multiplier, ) if counter_weight_decay_mode == CounterWeightDecayMode.DECOUPLE: exp_reg_correction = 1.0 - freq * weight_decay * learning_rate elif counter_weight_decay_mode == CounterWeightDecayMode.L2: exp_reg_correction = 1.0 - freq * weight_decay * multiplier weights = exp_reg_correction * weights - adjusted_multiplier * dense_cpu_grad return weights @given( T=st.integers(min_value=1, max_value=5), D=st.integers(min_value=2, max_value=256), B=st.integers(min_value=1, max_value=128), log_E=st.integers(min_value=3, max_value=5), L=st.integers(min_value=0, max_value=20), weighted=st.booleans(), mixed=st.booleans(), optimizer=st.sampled_from( [ OptimType.ADAM, OptimType.PARTIAL_ROWWISE_ADAM, ] ), long_segments=st.booleans(), pooling_mode=st.sampled_from( [ PoolingMode.SUM, PoolingMode.MEAN, PoolingMode.NONE, ] ), use_cpu=st.booleans() if (gpu_available and not TEST_WITH_ROCM) else st.just(False) if (gpu_available and TEST_WITH_ROCM) else st.just(True), uvm_non_rowwise_momentum=st.booleans(), ) @settings( verbosity=Verbosity.verbose, max_examples=MAX_EXAMPLES_LONG_RUNNING, deadline=None, suppress_health_check=[HealthCheck.filter_too_much, HealthCheck.data_too_large], ) @unittest.skipIf(*gpu_unavailable) def test_backward_optimizers_adam( # noqa C901 self, T: int, D: int, B: int, log_E: int, L: int, weighted: bool, mixed: bool, optimizer: OptimType, long_segments: bool, pooling_mode: PoolingMode, use_cpu: bool, uvm_non_rowwise_momentum: bool, ) -> None: self.execute_backward_optimizers_( T, D, B, log_E, L, weighted, mixed, False, # mixed_B optimizer, long_segments, pooling_mode, use_cpu, uvm_non_rowwise_momentum=uvm_non_rowwise_momentum, ) @given( T=st.integers(min_value=1, max_value=5), D=st.integers(min_value=2, max_value=256), B=st.integers(min_value=1, max_value=128), log_E=st.integers(min_value=3, max_value=5), L=st.integers(min_value=2, max_value=20), weighted=st.booleans(), mixed=st.booleans(), mixed_B=st.booleans(), optimizer=st.sampled_from( [ OptimType.EXACT_ADAGRAD, OptimType.EXACT_ROWWISE_ADAGRAD, OptimType.EXACT_ROWWISE_WEIGHTED_ADAGRAD, ] ), long_segments=st.booleans(), pooling_mode=st.sampled_from( [ PoolingMode.SUM, PoolingMode.MEAN, PoolingMode.NONE, ] ), use_cpu=st.booleans() if (gpu_available and not TEST_WITH_ROCM) else st.just(False) if (gpu_available and TEST_WITH_ROCM) else st.just(True), weight_decay_mode=st.sampled_from( [ WeightDecayMode.L2, WeightDecayMode.DECOUPLE, # temporarily disabled due to a test error to unblock release # will fix in a follow-up diff # WeightDecayMode.COUNTER, ] ), ) @settings( verbosity=Verbosity.verbose, max_examples=MAX_EXAMPLES_LONG_RUNNING, deadline=None, suppress_health_check=[HealthCheck.filter_too_much, HealthCheck.data_too_large], ) @unittest.skipIf(*gpu_unavailable) def test_backward_optimizers_adagrad( # noqa C901 self, T: int, D: int, B: int, log_E: int, L: int, weighted: bool, mixed: bool, mixed_B: bool, optimizer: OptimType, long_segments: bool, pooling_mode: PoolingMode, use_cpu: bool, weight_decay_mode: WeightDecayMode, ) -> None: if ( pooling_mode == PoolingMode.NONE or optimizer != OptimType.EXACT_ROWWISE_ADAGRAD ): mixed_B = False self.execute_backward_optimizers_( T, D, B, log_E, L, weighted, mixed, mixed_B, optimizer, long_segments, pooling_mode, use_cpu, weight_decay_mode, ) @given( T=st.integers(min_value=1, max_value=5), D=st.integers(min_value=2, max_value=256), B=st.integers(min_value=1, max_value=128), log_E=st.integers(min_value=3, max_value=5), L=st.integers(min_value=0, max_value=20), weighted=st.booleans(), mixed=st.booleans(), optimizer=st.sampled_from( [ OptimType.LAMB, OptimType.PARTIAL_ROWWISE_LAMB, ] ), long_segments=st.booleans(), pooling_mode=st.sampled_from( [ PoolingMode.SUM, PoolingMode.MEAN, PoolingMode.NONE, ] ), use_cpu=st.booleans() if (gpu_available and not TEST_WITH_ROCM) else st.just(False) if (gpu_available and TEST_WITH_ROCM) else st.just(True), ) @settings( verbosity=Verbosity.verbose, max_examples=MAX_EXAMPLES_LONG_RUNNING, deadline=None, suppress_health_check=[HealthCheck.filter_too_much, HealthCheck.data_too_large], ) @unittest.skipIf(*gpu_unavailable) def test_backward_optimizers_lamb( # noqa C901 self, T: int, D: int, B: int, log_E: int, L: int, weighted: bool, mixed: bool, optimizer: OptimType, long_segments: bool, pooling_mode: PoolingMode, use_cpu: bool, ) -> None: self.execute_backward_optimizers_( T, D, B, log_E, L, weighted, mixed, False, # mixed_B optimizer, long_segments, pooling_mode, use_cpu, ) @given( T=st.integers(min_value=1, max_value=5), D=st.integers(min_value=2, max_value=256), B=st.integers(min_value=1, max_value=128), log_E=st.integers(min_value=3, max_value=5), L=st.integers(min_value=0, max_value=20), weighted=st.booleans(), mixed=st.booleans(), optimizer=st.just(OptimType.LARS_SGD), long_segments=st.booleans(), pooling_mode=st.sampled_from( [ PoolingMode.SUM, PoolingMode.MEAN, PoolingMode.NONE, ] ), use_cpu=st.booleans() if (gpu_available and not TEST_WITH_ROCM) else st.just(False) if (gpu_available and TEST_WITH_ROCM) else st.just(True), ) @settings( verbosity=Verbosity.verbose, max_examples=MAX_EXAMPLES_LONG_RUNNING, deadline=None, suppress_health_check=[HealthCheck.filter_too_much, HealthCheck.data_too_large], ) @unittest.skipIf(*gpu_unavailable) def test_backward_optimizers_lars( # noqa C901 self, T: int, D: int, B: int, log_E: int, L: int, weighted: bool, mixed: bool, optimizer: OptimType, long_segments: bool, pooling_mode: PoolingMode, use_cpu: bool, ) -> None: self.execute_backward_optimizers_( T, D, B, log_E, L, weighted, mixed, False, # mixed_B optimizer, long_segments, pooling_mode, use_cpu, ) def execute_nbit_forward_( # noqa C901 self, T: int, D: int, B: int, log_E: int, L: int, weighted: bool, mixed: bool, pooling_mode: PoolingMode, weights_ty: SparseType, use_cache: bool, cache_algorithm: CacheAlgorithm, use_cpu: bool, use_array_for_index_remapping: bool, do_pruning: bool, mixed_weights_ty: bool, output_dtype: SparseType, ) -> None: # NOTE: weighted operation can be done only for SUM. assume(pooling_mode == PoolingMode.SUM or not weighted) assume(not mixed or pooling_mode != PoolingMode.NONE) mode = "sum" do_pooling = True if pooling_mode == PoolingMode.SUM: mode = "sum" elif pooling_mode == PoolingMode.MEAN: mode = "mean" else: mode = "sum" do_pooling = False E = int(10**log_E) if not mixed_weights_ty: weights_ty_list = [weights_ty] * T else: weights_ty_list = [ np.random.choice( [ SparseType.FP32, SparseType.FP16, SparseType.FP8, SparseType.INT8, SparseType.INT4, SparseType.INT2, ] ) for _ in range(T) ] D_alignment = max( 1 if ty.bit_rate() % 8 == 0 else int(8 / ty.bit_rate()) for ty in weights_ty_list ) D = round_up(D, D_alignment) if not mixed: Ds = [D] * T Es = [E] * T else: Ds = [ round_up( np.random.randint(low=int(max(0.25 * D, 1)), high=int(1.0 * D)), D_alignment, ) for _ in range(T) ] Ds = [min(D, 128) for D in Ds] Es = [ np.random.randint(low=int(0.5 * E), high=int(2.0 * E)) for _ in range(T) ] if do_pooling: bs = [ to_device(torch.nn.EmbeddingBag(E, D, mode=mode, sparse=True), use_cpu) for (E, D) in zip(Es, Ds) ] else: bs = [ to_device(torch.nn.Embedding(E, D, sparse=True), use_cpu) for (E, D) in zip(Es, Ds) ] if use_cpu: managed = [EmbeddingLocation.HOST] * T elif use_cache: managed = [ EmbeddingLocation.MANAGED_CACHING, ] * T if mixed: average_D = sum(Ds) // T for t, d in enumerate(Ds): managed[t] = ( EmbeddingLocation.DEVICE if d < average_D else managed[t] ) else: managed = [ np.random.choice( [ EmbeddingLocation.DEVICE, EmbeddingLocation.MANAGED, ] ) for _ in range(T) ] # Fix exponent bias to 7 for now (TODO: Randomize it from a range of integers) if SparseType.FP8 in weights_ty_list: fp8_config = FP8QuantizationConfig(random.choice([4, 5]), 7) has_fp8_weight = True else: has_fp8_weight = False xs = [to_device(torch.randint(low=0, high=e, size=(B, L)), use_cpu) for e in Es] xws = [to_device(torch.randn(size=(B, L)), use_cpu) for _ in range(T)] xws_acc_type = copy.deepcopy(xws) if do_pruning: x = torch.cat([x.view(1, B, L) for x in xs], dim=0) xw = torch.cat([xw.view(1, B, L) for xw in xws_acc_type], dim=0) (indices, offsets) = get_table_batched_offsets_from_dense( x, use_cpu=use_cpu ) # generate index_remapping dense_indices = torch.randint(low=0, high=E, size=(T, B, L)).view(-1).int() original_E = E current_device = "cpu" if use_cpu else torch.cuda.current_device() indices = indices.view(-1).int() offsets = offsets.view(-1).int() # generate index_remapping done # Initialize and insert Array index remapping based data structure index_remappings_array = [] for t in range(T): # pyre-fixme[6]: For 1st param expected `dtype` but got `Union[int, # str]`. indice_t = (indices.view(T, B, L))[t].long().view(-1).to(current_device) dense_indice_t = ( (dense_indices.view(T, B, L))[t].view(-1) # pyre-fixme[6]: For 1st param expected `dtype` but got `Union[int, # str]`. .to(current_device) ) index_remappings_array_t = torch.tensor( [-1] * original_E, dtype=torch.int32, device=current_device, ) index_remappings_array_t[indice_t] = dense_indice_t index_remappings_array.append(index_remappings_array_t.cpu()) else: index_remappings_array = [torch.arange(E, dtype=torch.int32) for E in Es] x = torch.cat([x.view(1, B, L) for x in xs], dim=0) xw = torch.cat([xw.view(1, B, L) for xw in xws_acc_type], dim=0) (indices, offsets) = get_table_batched_offsets_from_dense( x, use_cpu=use_cpu ) cc = IntNBitTableBatchedEmbeddingBagsCodegen( embedding_specs=[ ( "", E, D, W_TY, EmbeddingLocation(M), ) for (E, D, M, W_TY) in zip(Es, Ds, managed, weights_ty_list) ], pooling_mode=pooling_mode, index_remapping=index_remappings_array if B != 0 else None, device="cpu" if use_cpu else torch.cuda.current_device(), cache_algorithm=cache_algorithm, use_array_for_index_remapping=use_array_for_index_remapping, output_dtype=output_dtype, fp8_exponent_bits=fp8_config.get("exponent_bits") if has_fp8_weight else None, fp8_exponent_bias=fp8_config.get("exponent_bias") if has_fp8_weight else None, ) # Initialize the random weights for int nbit table split embedding bag cc.fill_random_weights() # NOTE: test TorchScript-compatible! cc = torch.jit.script(cc) for t in range(T): (weights, scale_shift) = cc.split_embedding_weights()[t] if scale_shift is not None: (E, R) = scale_shift.shape self.assertEqual(R, 4) if weights_ty_list[t] == SparseType.INT2: scales = np.random.uniform(0.1, 1, size=(E,)).astype(np.float16) shifts = np.random.uniform(-2, 2, size=(E,)).astype(np.float16) if weights_ty_list[t] == SparseType.INT4: scales = np.random.uniform(0.01, 0.1, size=(E,)).astype(np.float16) shifts = np.random.uniform(-2, 2, size=(E,)).astype(np.float16) if weights_ty_list[t] == SparseType.INT8: scales = np.random.uniform(0.001, 0.01, size=(E,)).astype( np.float16 ) shifts = np.random.uniform(-2, 2, size=(E,)).astype(np.float16) scale_shift[:, :] = torch.tensor( np.stack([scales, shifts], axis=1).astype(np.float16).view(np.uint8) ) fake_quantize_embs( weights, scale_shift, bs[t].weight.detach(), weights_ty_list[t], use_cpu=False, # pyre-fixme[61]: `fp8_config` is undefined, or not always defined. fp8_config=fp8_config if has_fp8_weight else None, ) if not use_cpu: fc2 = ( cc(indices.int(), offsets.int()) if not weighted else cc(indices.int(), offsets.int(), xw.contiguous().view(-1)) ) else: cc = cc.cpu() indices, offsets = indices.cpu(), offsets.cpu() fc2 = ( cc(indices.int(), offsets.int()) if not weighted else cc(indices.int(), offsets.int(), xw.contiguous().view(-1).cpu()) ) if do_pooling and B == 0: self.assertEqual(fc2.size(), (0, cc.total_D)) return new_indices = [] for t in range(T): new_indices_t = torch.zeros([B, L], dtype=torch.int32) for i in range(B): for j in range(L): old_index = xs[t][i, j] new_index = index_remappings_array[t][old_index] new_indices_t[i][j] = new_index new_indices.append(new_indices_t) fs = ( [ b_indices(b, x, use_cpu=use_cpu, do_pooling=do_pooling) for (b, x) in zip(bs, new_indices) ] if not weighted else [ b_indices( b, x, per_sample_weights=xw.view(-1), use_cpu=use_cpu, do_pooling=do_pooling, ) for (b, x, xw) in zip(bs, new_indices, xws) ] ) if do_pooling: f = torch.cat([f.view(B, -1) for f in fs], dim=1) else: f = torch.cat(fs, dim=0).view(-1, D) torch.testing.assert_close( fc2.float().cpu(), f.float().cpu(), atol=1.0e-2, rtol=1.0e-2, ) @given( nbit_weights_ty=get_nbit_weights_ty(), use_array_for_index_remapping=st.booleans(), do_pruning=st.booleans(), ) @settings( verbosity=Verbosity.verbose, max_examples=MAX_EXAMPLES_LONG_RUNNING, deadline=None, ) def test_nbit_forward_cpu( self, nbit_weights_ty: Optional[SparseType], use_array_for_index_remapping: bool, do_pruning: bool, ) -> None: use_cpu = True T = random.randint(1, 50) B = random.randint(0, 128) L = random.randint(0, 32) D = random.randint(2, 2048) log_E = random.randint(2, 4) use_cache = False # cache_algorithm is don't care as we don't use cache. cache_algorithm = CacheAlgorithm.LRU pooling_mode = random.choice( [ PoolingMode.SUM, PoolingMode.MEAN, PoolingMode.NONE, ] ) mixed = random.choice([True, False]) if pooling_mode == PoolingMode.NONE: nbit_weights_ty = random.choice( [ SparseType.FP32, SparseType.FP16, # CPU sequence embedding does not support FP8/INT4/INT2 yet # SparseType.FP8, SparseType.INT8, # SparseType.INT4, # SparseType.INT2, ] ) if pooling_mode == PoolingMode.SUM: weighted = random.choice([True, False]) else: weighted = False if nbit_weights_ty is None: # don't care when mixed type is used. weights_ty: SparseType = SparseType.INT8 mixed_weights_ty = True else: weights_ty: SparseType = nbit_weights_ty mixed_weights_ty = False output_dtype = random.choice( ( [SparseType.BF16] if weights_ty in [SparseType.INT4, SparseType.INT2] else [] ) + [SparseType.FP32, SparseType.FP16] ) self.execute_nbit_forward_( T, D, B, log_E, L, weighted, mixed, pooling_mode, weights_ty, use_cache, cache_algorithm, use_cpu, use_array_for_index_remapping, do_pruning, mixed_weights_ty, output_dtype, ) @given( nbit_weights_ty=get_nbit_weights_ty(), use_array_for_index_remapping=st.booleans(), do_pruning=st.booleans(), ) @settings( verbosity=Verbosity.verbose, max_examples=MAX_EXAMPLES_LONG_RUNNING, deadline=None, ) def test_nbit_forward_cpu_bf16_out( self, nbit_weights_ty: Optional[SparseType], use_array_for_index_remapping: bool, do_pruning: bool, ) -> None: use_cpu = True T = random.randint(1, 50) B = random.randint(0, 128) L = random.randint(0, 32) D = random.randint(2, 2048) log_E = random.randint(2, 4) use_cache = False # cache_algorithm is don't care as we don't use cache. cache_algorithm = CacheAlgorithm.LRU pooling_mode = random.choice( [ PoolingMode.SUM, PoolingMode.MEAN, ] ) mixed = random.choice([True, False]) if pooling_mode == PoolingMode.SUM: weighted = random.choice([True, False]) else: weighted = False if nbit_weights_ty is None: # don't care when mixed type is used. weights_ty: SparseType = SparseType.INT8 mixed_weights_ty = True else: weights_ty: SparseType = nbit_weights_ty mixed_weights_ty = False output_dtype = SparseType.BF16 self.execute_nbit_forward_( T, D, B, log_E, L, weighted, mixed, pooling_mode, weights_ty, use_cache, cache_algorithm, use_cpu, use_array_for_index_remapping, do_pruning, mixed_weights_ty, output_dtype, ) @unittest.skipIf(*gpu_unavailable) @given( nbit_weights_ty=get_nbit_weights_ty(), use_array_for_index_remapping=st.booleans(), do_pruning=st.booleans(), ) @settings( verbosity=Verbosity.verbose, max_examples=MAX_EXAMPLES_LONG_RUNNING, deadline=None, ) def test_nbit_forward_gpu_no_cache( self, nbit_weights_ty: Optional[SparseType], use_array_for_index_remapping: bool, do_pruning: bool, ) -> None: use_cpu = False T = random.randint(1, 50) B = random.randint(0, 128) L = random.randint(0, 32) D = random.randint(2, 2048) log_E = random.randint(2, 4) use_cache = False # cache_algorithm is don't care as we don't use cache. cache_algorithm = CacheAlgorithm.LRU pooling_mode = random.choice( [ PoolingMode.SUM, PoolingMode.MEAN, PoolingMode.NONE, ] ) if pooling_mode == PoolingMode.NONE: mixed = False else: mixed = random.choice([True, False]) if pooling_mode == PoolingMode.SUM: weighted = random.choice([True, False]) else: weighted = False if nbit_weights_ty is None: # don't care when mixed type is used. weights_ty: SparseType = SparseType.INT8 mixed_weights_ty = True else: weights_ty: SparseType = nbit_weights_ty mixed_weights_ty = False output_dtype = random.choice( [SparseType.FP32, SparseType.FP16, SparseType.BF16] ) self.execute_nbit_forward_( T, D, B, log_E, L, weighted, mixed, pooling_mode, weights_ty, use_cache, cache_algorithm, use_cpu, use_array_for_index_remapping, do_pruning, mixed_weights_ty, output_dtype, ) @unittest.skipIf(*gpu_unavailable) @given( weights_ty=st.sampled_from( [ SparseType.FP32, SparseType.FP16, SparseType.INT8, SparseType.INT4, SparseType.INT2, ] ), emulate_pruning=st.booleans(), ) @settings(verbosity=Verbosity.verbose, max_examples=MAX_EXAMPLES, deadline=None) def test_int_nbit_split_embedding_uvm_caching_codegen_lookup_function( self, weights_ty: SparseType, emulate_pruning: bool, ) -> None: # TODO: support direct-mapped in int_nbit_split_embedding_uvm_caching_codegen_lookup_function # This test is for int_nbit_split_embedding_uvm_caching_codegen_lookup_function. # We run IntNBitTableBatchedEmbeddingBagsCodegen with UVM_CACHING, and then # run int_nbit_split_embedding_uvm_caching_codegen_lookup_function with the # exact same cache configuration. As both use the same logic, the result # as well as cache state should match. # Currently, int_nbit_split_embedding_uvm_caching_codegen_lookup_function supports only LRU. cache_algorithm = CacheAlgorithm.LRU associativity = 32 # Currently, hard-coded 32-way set associative. current_device: torch.device = torch.device(torch.cuda.current_device()) T = random.randint(1, 5) B = random.randint(1, 128) L = random.randint(1, 20) D = random.randint(2, 256) log_E = random.randint(3, 5) iters = 3 E = int(10**log_E) D_alignment = ( 1 if weights_ty.bit_rate() % 8 == 0 else int(8 / weights_ty.bit_rate()) ) D = round_up(D, D_alignment) # Currently, int_nbit_split_embedding_uvm_caching_codegen_lookup_function supports only all UVM or all UVM_CACHING. Ds = [D] * T Es = [E] * T managed_caching = [EmbeddingLocation.MANAGED_CACHING] * T # Note both cc_ref and cc use caching. cc_ref = IntNBitTableBatchedEmbeddingBagsCodegen( [("", E, D, weights_ty, M) for (E, D, M) in zip(Es, Ds, managed_caching)], cache_algorithm=cache_algorithm, ) cc_ref.fill_random_weights() # cc is only for cache states; we test int_nbit_split_embedding_uvm_caching_codegen_lookup_function directly; # hence, no need to synchronize cc's weights with cc_ref's. cc = IntNBitTableBatchedEmbeddingBagsCodegen( [("", E, D, weights_ty, M) for (E, D, M) in zip(Es, Ds, managed_caching)], cache_algorithm=cache_algorithm, ) cc.fill_random_weights() # weights_placement for all UVM case. managed_uvm = [EmbeddingLocation.MANAGED] * T placement_uvm = torch.tensor( managed_uvm, device=current_device, dtype=torch.int32 ) # zero size HBM cache for UVM case. zero_size_cache_weights = torch.zeros( 0, 0, device=current_device, dtype=torch.uint8 ) requests = generate_requests( iters, B, T, L, min(Es), reuse=0.1, emulate_pruning=emulate_pruning ) for indices, offsets, _ in requests: indices = indices.int() offsets = offsets.int() output_ref = cc_ref(indices, offsets) # int_nbit_split_embedding_uvm_caching_codegen_lookup_function for UVM_CACHING. # using weights and other params from cc_ref, but # cache states from cc. output_uvm_caching = torch.ops.fbgemm.int_nbit_split_embedding_uvm_caching_codegen_lookup_function( dev_weights=cc_ref.weights_host if cc_ref.host_size > 0 else cc_ref.weights_dev, uvm_weights=cc_ref.weights_uvm, weights_placements=cc_ref.weights_placements, weights_offsets=cc_ref.weights_offsets, weights_tys=cc_ref.weights_tys, D_offsets=cc_ref.D_offsets, total_D=cc_ref.total_D, max_int2_D=cc_ref.max_int2_D, max_int4_D=cc_ref.max_int4_D, max_int8_D=cc_ref.max_int8_D, max_float16_D=cc_ref.max_float16_D, max_float32_D=cc_ref.max_float32_D, indices=indices, offsets=offsets, pooling_mode=int(cc_ref.pooling_mode), indice_weights=None, output_dtype=cc_ref.output_dtype, lxu_cache_weights=cc.lxu_cache_weights, # cc, not cc_ref. lxu_cache_locations=torch.empty(0, dtype=torch.int32).fill_(-1), row_alignment=cc_ref.row_alignment, max_float8_D=cc_ref.max_float8_D, fp8_exponent_bits=cc_ref.fp8_exponent_bits, fp8_exponent_bias=cc_ref.fp8_exponent_bias, # Additional args for UVM_CACHING: using cc, not cc_ref. cache_hash_size_cumsum=cc.cache_hash_size_cumsum, total_cache_hash_size=cc.total_cache_hash_size, cache_index_table_map=cc.cache_index_table_map, lxu_cache_state=cc.lxu_cache_state, lxu_state=cc.lxu_state, ) torch.testing.assert_close(output_uvm_caching, output_ref, equal_nan=True) # cache status; we use the exact same logic, but still assigning ways in a associative cache can be # arbitrary. We compare sum along ways in each set, instead of expecting exact tensor match. cache_weights_ref = torch.reshape( cc_ref.lxu_cache_weights, [-1, associativity], ) cache_weights = torch.reshape(cc.lxu_cache_weights, [-1, associativity]) torch.testing.assert_close( torch.sum(cache_weights_ref, 1), torch.sum(cache_weights, 1), equal_nan=True, ) torch.testing.assert_close( torch.sum(cc.lxu_cache_state, 1), torch.sum(cc_ref.lxu_cache_state, 1), equal_nan=True, ) # lxu_state can be different as time_stamp values can be different. # we check the entries with max value. max_timestamp_ref = torch.max(cc_ref.lxu_state) max_timestamp_uvm_caching = torch.max(cc.lxu_state) x = cc_ref.lxu_state == max_timestamp_ref y = cc.lxu_state == max_timestamp_uvm_caching torch.testing.assert_close(torch.sum(x, 1), torch.sum(y, 1)) # int_nbit_split_embedding_uvm_caching_codegen_lookup_function for UVM. output_uvm = torch.ops.fbgemm.int_nbit_split_embedding_uvm_caching_codegen_lookup_function( dev_weights=cc_ref.weights_host if cc_ref.host_size > 0 else cc_ref.weights_dev, uvm_weights=cc_ref.weights_uvm, weights_placements=placement_uvm, # all UVM weights placement. weights_offsets=cc_ref.weights_offsets, weights_tys=cc_ref.weights_tys, D_offsets=cc_ref.D_offsets, total_D=cc_ref.total_D, max_int2_D=cc_ref.max_int2_D, max_int4_D=cc_ref.max_int4_D, max_int8_D=cc_ref.max_int8_D, max_float16_D=cc_ref.max_float16_D, max_float32_D=cc_ref.max_float32_D, indices=indices, offsets=offsets, pooling_mode=int(cc_ref.pooling_mode), indice_weights=None, output_dtype=cc_ref.output_dtype, lxu_cache_weights=zero_size_cache_weights, # empty HBM cache. lxu_cache_locations=torch.empty(0, dtype=torch.int32).fill_(-1), row_alignment=cc_ref.row_alignment, max_float8_D=cc_ref.max_float8_D, fp8_exponent_bits=cc_ref.fp8_exponent_bits, fp8_exponent_bias=cc_ref.fp8_exponent_bias, # Additional args for UVM_CACHING; not needed for UVM. cache_hash_size_cumsum=None, total_cache_hash_size=None, cache_index_table_map=None, lxu_cache_state=None, lxu_state=None, ) torch.testing.assert_close(output_uvm, output_ref, equal_nan=True) @unittest.skipIf(*gpu_unavailable) @given( weights_ty=st.sampled_from( [ SparseType.FP32, SparseType.FP16, SparseType.INT8, SparseType.INT4, SparseType.INT2, ] ), cache_algorithm=st.sampled_from(CacheAlgorithm), associativity=st.sampled_from([1, DEFAULT_ASSOC]), do_pruning=st.booleans(), use_array_for_index_remapping=st.booleans(), ) @settings(verbosity=Verbosity.verbose, max_examples=MAX_EXAMPLES, deadline=None) def test_nbit_forward_uvm_cache( self, weights_ty: SparseType, cache_algorithm: CacheAlgorithm, associativity: int, do_pruning: bool, use_array_for_index_remapping: bool, ) -> None: assume(cache_algorithm == CacheAlgorithm.LRU or associativity != 1) T = random.randint(1, 5) B = random.randint(1, 128) L = random.randint(1, 20) D = random.randint(2, 256) log_E = random.randint(3, 5) mixed = random.choice([True, False]) iters = 3 E = int(10**log_E) D_alignment = ( 1 if weights_ty.bit_rate() % 8 == 0 else int(8 / weights_ty.bit_rate()) ) D = round_up(D, D_alignment) if not mixed: Ds = [D] * T Es = [E] * T else: Ds = [ round_up( np.random.randint(low=int(max(0.25 * D, 1)), high=int(1.0 * D)), D_alignment, ) for _ in range(T) ] Es = [ np.random.randint(low=int(0.5 * E), high=int(2.0 * E)) for _ in range(T) ] managed = [EmbeddingLocation.MANAGED_CACHING] * T if mixed: average_D = sum(Ds) // T for t, d in enumerate(Ds): managed[t] = EmbeddingLocation.DEVICE if d < average_D else managed[t] index_remapping = None pruning_hash_load_factor = 0.5 if do_pruning: current_device = torch.cuda.current_device() index_remapping = [] for E in Es: # For each table, keep the first half of rows as is, but # the rest is treated as pruned (-1). remapping = list(range(0, E // 2)) + [-1] * (E - E // 2) remapping_t = torch.tensor( remapping, dtype=torch.int32, device=current_device, ) index_remapping.append(remapping_t) cc_ref = IntNBitTableBatchedEmbeddingBagsCodegen( [ ( "", E, D, weights_ty, EmbeddingLocation.DEVICE, ) for (E, D) in zip(Es, Ds) ], index_remapping=index_remapping, use_array_for_index_remapping=use_array_for_index_remapping, pruning_hash_load_factor=pruning_hash_load_factor, ) cc_ref.fill_random_weights() cc = IntNBitTableBatchedEmbeddingBagsCodegen( [("", E, D, weights_ty, M) for (E, D, M) in zip(Es, Ds, managed)], cache_algorithm=cache_algorithm, cache_assoc=associativity, index_remapping=index_remapping, use_array_for_index_remapping=use_array_for_index_remapping, pruning_hash_load_factor=pruning_hash_load_factor, ) cc.fill_random_weights() split_weights = cc.split_embedding_weights() ref_split_weights = cc_ref.split_embedding_weights() for t in range(T): (weights, scale_shift) = split_weights[t] (ref_weights, ref_scale_shift) = ref_split_weights[t] self.assertEqual(weights.size(), ref_weights.size()) weights.copy_(ref_weights) if ref_scale_shift is not None: scale_shift.copy_(ref_scale_shift) requests = generate_requests(iters, B, T, L, min(Es), reuse=0.1) for indices, offsets, _ in requests: indices = indices.int() offsets = offsets.int() output = cc(indices, offsets) output_ref = cc_ref(indices, offsets) torch.testing.assert_close(output, output_ref, equal_nan=True) @given( T=st.integers(min_value=1, max_value=5), B=st.integers(min_value=1, max_value=8), L=st.integers(min_value=0, max_value=8), use_cpu=st.booleans() if (gpu_available and not TEST_WITH_ROCM) else st.just(False) if (gpu_available and TEST_WITH_ROCM) else st.just(True), use_cpu_hashtable=st.booleans(), use_array_for_index_remapping=st.booleans(), ) @settings(verbosity=Verbosity.verbose, max_examples=MAX_EXAMPLES, deadline=None) def test_pruning( self, T: int, B: int, L: int, use_cpu: bool, use_cpu_hashtable: bool, use_array_for_index_remapping: bool, ) -> None: E = int(1000) LOAD_FACTOR = 0.8 pruning_ratio = 0.5 capacities = [int(B * L / LOAD_FACTOR) + 1 for _ in range(T)] original_E = int(E / (1.0 - pruning_ratio)) # Enforce the size of original_E/B/L to get the unique indices assume(original_E > B * L) current_device = "cpu" if use_cpu else torch.cuda.current_device() if use_cpu_hashtable: assume(use_cpu) indices = torch.randint(low=0, high=original_E, size=(T, B, L)) for t in range(T): while ( torch.unique( indices[t], return_counts=False, return_inverse=False ).numel() != indices[t].numel() ): indices[t] = torch.randint(low=0, high=original_E, size=(B, L)) indices = indices.view(-1).int() dense_indices = torch.randint(low=0, high=E, size=(T, B, L)).view(-1).int() offsets = torch.tensor([L * b_t for b_t in range(B * T + 1)]).int() # Initialize and insert Hashmap index remapping based data structure hash_table = torch.empty( (sum(capacities), 2), dtype=torch.int32, ) hash_table[:, :] = -1 hash_table_offsets = torch.tensor([0] + np.cumsum(capacities).tolist()).long() torch.ops.fbgemm.pruned_hashmap_insert( indices, dense_indices, offsets, hash_table, hash_table_offsets ) if use_cpu_hashtable: ht = torch.classes.fbgemm.PrunedMapCPU() ht.insert(indices, dense_indices, offsets, T) # Initialize and insert Array index remapping based data structure index_remappings_array = torch.tensor( [-1] * original_E * T, dtype=torch.int32, device=current_device, ) index_remappings_array_offsets = torch.empty( T + 1, dtype=torch.int64, # pyre-fixme[6]: For 3rd param expected `Union[None, str, device]` but # got `Union[int, str]`. device=current_device, ) index_remappings_array_offsets[0] = 0 for t in range(T): # pyre-fixme[6]: For 1st param expected `dtype` but got `Union[int, str]`. indice_t = (indices.view(T, B, L))[t].long().view(-1).to(current_device) dense_indice_t = ( (dense_indices.view(T, B, L))[t].view(-1) # pyre-fixme[6]: For 1st param expected `dtype` but got `Union[int, # str]`. .to(current_device) ) selected_indices = torch.add(indice_t, t * original_E)[:E] index_remappings_array[selected_indices] = dense_indice_t index_remappings_array_offsets[t + 1] = ( index_remappings_array_offsets[t] + original_E ) # Move data when using device if not use_cpu: ( indices, dense_indices, offsets, hash_table, hash_table_offsets, index_remappings_array, index_remappings_array_offsets, ) = ( # pyre-fixme[6]: For 1st param expected `dtype` but got `Union[int, # str]`. indices.to(current_device), # pyre-fixme[6]: For 1st param expected `dtype` but got `Union[int, # str]`. dense_indices.to(current_device), # pyre-fixme[6]: For 1st param expected `dtype` but got `Union[int, # str]`. offsets.to(current_device), # pyre-fixme[6]: For 1st param expected `dtype` but got `Union[int, # str]`. hash_table.to(current_device), # pyre-fixme[6]: For 1st param expected `dtype` but got `Union[int, # str]`. hash_table_offsets.to(current_device), # pyre-fixme[6]: For 1st param expected `dtype` but got `Union[int, # str]`. index_remappings_array.to(current_device), # pyre-fixme[6]: For 1st param expected `dtype` but got `Union[int, # str]`. index_remappings_array_offsets.to(current_device), ) # Lookup if use_cpu_hashtable: dense_indices_ = ht.lookup(indices, offsets) elif not use_array_for_index_remapping: # hashmap based pruning dense_indices_ = torch.ops.fbgemm.pruned_hashmap_lookup( indices, offsets, hash_table, hash_table_offsets ) else: # array based pruning dense_indices_ = torch.ops.fbgemm.pruned_array_lookup( indices, offsets, index_remappings_array, index_remappings_array_offsets, ) # Validate the lookup result torch.testing.assert_close(dense_indices, dense_indices_) # For array based pruning, it will be out-of-boundary for arbitrarily # large indices. We will rely on bound checker to make sure indices # are within the boundary. if not use_array_for_index_remapping: # now, use a value that does not exist in the original set of indices # and so should be pruned out. indices[:] = np.iinfo(np.int32).max if use_cpu_hashtable: dense_indices_ = ht.lookup(indices, offsets) elif not use_array_for_index_remapping: # hashmap based pruning dense_indices_ = torch.ops.fbgemm.pruned_hashmap_lookup( indices, offsets, hash_table, hash_table_offsets ) else: # array based pruning dense_indices_ = torch.ops.fbgemm.pruned_array_lookup( indices, offsets, index_remappings_array, index_remappings_array_offsets, ) torch.testing.assert_close(dense_indices.clone().fill_(-1), dense_indices_) @given( L=st.integers(min_value=0, max_value=16), H=st.integers(min_value=512, max_value=1024), S=st.integers(min_value=0, max_value=128), ) @settings(verbosity=Verbosity.verbose, max_examples=MAX_EXAMPLES, deadline=None) def test_cache_update_function(self, L: int, H: int, S: int) -> None: # Generate synthetic data linear_cache_indices_cpu = torch.randint(L, H, (S,)) lxu_cache_locations_cpu = torch.clone(linear_cache_indices_cpu) indices = [True if np.random.rand() < 0.5 else False for _ in range(S)] lxu_cache_locations_cpu[indices] = -1 cache_miss_ids = torch.clone(linear_cache_indices_cpu) cache_miss_ids[lxu_cache_locations_cpu != -1] = -2 # Calculate the correct output unique_cache_miss_ids = torch.unique(cache_miss_ids) expect_out = sum(unique_cache_miss_ids >= 0) linear_cache_indices = to_device( torch.tensor(linear_cache_indices_cpu, dtype=torch.int64), use_cpu=False ) lxu_cache_locations = to_device( torch.tensor(lxu_cache_locations_cpu, dtype=torch.int32), use_cpu=False ) # Create an abstract split table D = 8 T = 2 E = 10**3 Ds = [D] * T Es = [E] * T emb_op = SplitTableBatchedEmbeddingBagsCodegen cc = emb_op( embedding_specs=[ ( E, D, EmbeddingLocation.MANAGED_CACHING, ComputeDevice.CUDA, ) for (E, D) in zip(Es, Ds) ], record_cache_metrics=RecordCacheMetrics(True, False), ) cc._update_cache_miss_counter(lxu_cache_locations, linear_cache_indices) ( cache_miss_forward_count, unique_cache_miss_count, ) = cc.get_cache_miss_counter().cpu() self.assertEqual(unique_cache_miss_count, expect_out) self.assertLessEqual(cache_miss_forward_count, unique_cache_miss_count) @given(N=st.integers(min_value=1, max_value=8)) @settings(verbosity=Verbosity.verbose, max_examples=MAX_EXAMPLES, deadline=None) def test_cache_miss_counter(self, N: int) -> None: # Create an abstract split table D = 8 T = 2 E = 10**3 Ds = [D] * T Es = [E] * T emb_op = SplitTableBatchedEmbeddingBagsCodegen cc = emb_op( embedding_specs=[ ( E, D, EmbeddingLocation.MANAGED_CACHING, ComputeDevice.CUDA, ) for (E, D) in zip(Es, Ds) ], record_cache_metrics=RecordCacheMetrics(True, True), ) # Create fake input data and the target output xs = [] x1 = torch.Tensor([[[1], [1]], [[3], [4]]]) x1 = to_device(torch.tensor(x1, dtype=torch.int64), use_cpu=False) x2 = torch.Tensor([[[2], [1]], [[3], [4]]]) x2 = to_device(torch.tensor(x2, dtype=torch.int64), use_cpu=False) x3 = torch.Tensor([[[5], [6]], [[7], [8]]]) x3 = to_device(torch.tensor(x3, dtype=torch.int64), use_cpu=False) xs.append(x1) xs.append(x2) xs.append(x3) target_counter_list = [[1, 3], [2, 4], [3, 8]] target_tablewise_cache_miss_list = [[1, 2], [2, 2], [4, 4]] for x, t_counter, t_tablewise_cache_miss in zip( xs, target_counter_list, target_tablewise_cache_miss_list ): (indices, offsets) = get_table_batched_offsets_from_dense(x, use_cpu=False) for _ in range(N): cc(indices, offsets) ( cache_miss_forward_count, unique_cache_miss_count, ) = cc.get_cache_miss_counter().cpu() tablewise_cache_miss = cc.get_table_wise_cache_miss().cpu() self.assertEqual(cache_miss_forward_count, t_counter[0]) self.assertEqual(unique_cache_miss_count, t_counter[1]) for i in range(len(tablewise_cache_miss)): self.assertEqual(tablewise_cache_miss[i], t_tablewise_cache_miss[i]) @given(N=st.integers(min_value=1, max_value=2)) @settings(verbosity=Verbosity.verbose, max_examples=MAX_EXAMPLES, deadline=None) def test_stb_uvm_cache_stats(self, N: int) -> None: # Create an abstract split table D = 8 T = 2 E = 10**3 Ds = [D] * T Es = [E] * T emb_op = SplitTableBatchedEmbeddingBagsCodegen cc = emb_op( embedding_specs=[ ( E, D, EmbeddingLocation.MANAGED_CACHING, ComputeDevice.CUDA, ) for (E, D) in zip(Es, Ds) ], gather_uvm_cache_stats=True, ) x = torch.Tensor([[[1], [1]], [[3], [4]]]) x = to_device(torch.tensor(x, dtype=torch.int64), use_cpu=False) for _ in range(N): indices, offsets = get_table_batched_offsets_from_dense(x, use_cpu=False) cc.reset_cache_states() cc.reset_uvm_cache_stats() cc(indices, offsets) ( n_calls, n_requested_indices, n_unique_indices, n_unique_misses, n_conflict_unique_misses, n_conflict_misses, ) = cc.get_uvm_cache_stats() self.assertEqual(n_calls, 1) self.assertEqual(n_requested_indices, len(indices)) self.assertEqual(n_unique_indices, len(set(indices.tolist()))) self.assertEqual(n_unique_misses, len(set(indices.tolist()))) self.assertEqual(n_conflict_unique_misses, 0) self.assertEqual(n_conflict_misses, 0) @unittest.skipIf(*gpu_unavailable) @given( L=st.integers(min_value=0, max_value=16), H=st.integers(min_value=512, max_value=1024), S=st.integers(min_value=0, max_value=128), ) @settings(verbosity=Verbosity.verbose, max_examples=MAX_EXAMPLES, deadline=None) def test_nbit_cache_update_function(self, L: int, H: int, S: int) -> None: # Generate synthetic data linear_cache_indices_cpu = torch.randint(L, H, (S,)) lxu_cache_locations_cpu = torch.clone(linear_cache_indices_cpu) indices = [True if np.random.rand() < 0.5 else False for _ in range(S)] lxu_cache_locations_cpu[indices] = -1 cache_miss_ids = torch.clone(linear_cache_indices_cpu) cache_miss_ids[lxu_cache_locations_cpu != -1] = -2 # Calculate the correct output unique_cache_miss_ids = torch.unique(cache_miss_ids) expect_out = sum(unique_cache_miss_ids >= 0) linear_cache_indices = linear_cache_indices_cpu.to(torch.int32).cuda() lxu_cache_locations = lxu_cache_locations_cpu.to(torch.int32).cuda() expected_unique_access = len(torch.unique(linear_cache_indices_cpu)) expected_total_access = len(linear_cache_indices_cpu) # Create an abstract split table D = 8 T = 2 E = 10**3 Ds = [D] * T Es = [E] * T cc = IntNBitTableBatchedEmbeddingBagsCodegen( embedding_specs=[ ( "", E, D, SparseType.INT8, EmbeddingLocation.MANAGED_CACHING, ) for (E, D) in zip(Es, Ds) ], device=torch.cuda.current_device(), record_cache_metrics=RecordCacheMetrics(True, False), ) cc.fill_random_weights() cc._update_cache_miss_counter(lxu_cache_locations, linear_cache_indices) ( cache_miss_forward_count, unique_cache_miss_count, unique_access_count, total_access_count, ) = cc.get_cache_miss_counter().cpu() self.assertEqual(unique_cache_miss_count, expect_out) self.assertLessEqual(cache_miss_forward_count, unique_cache_miss_count) self.assertEqual(unique_access_count, expected_unique_access) self.assertEqual(total_access_count, expected_total_access) @unittest.skipIf(*gpu_unavailable) @given(N=st.integers(min_value=1, max_value=8)) @settings(verbosity=Verbosity.verbose, max_examples=MAX_EXAMPLES, deadline=None) def test_nbit_cache_miss_counter(self, N: int) -> None: # Create an abstract split table D = 8 T = 2 E = 10**3 Ds = [D] * T Es = [E] * T cc = IntNBitTableBatchedEmbeddingBagsCodegen( embedding_specs=[ ( "", E, D, SparseType.INT8, EmbeddingLocation.MANAGED_CACHING, ) for (E, D) in zip(Es, Ds) ], device=torch.cuda.current_device(), record_cache_metrics=RecordCacheMetrics(True, True), ) cc.fill_random_weights() # Create fake input data and the target output x1 = torch.Tensor([[[1], [1]], [[3], [4]]]).cuda() x2 = torch.Tensor([[[2], [1]], [[3], [4]]]).cuda() x3 = torch.Tensor([[[5], [6]], [[7], [8]]]).cuda() xs = [x1, x2, x3] target_counter_list = [[1, 3], [2, 4], [3, 8]] target_tablewise_cache_miss_list = [[1, 2], [2, 2], [4, 4]] for x, t_counter, t_tablewise_cache_miss in zip( xs, target_counter_list, target_tablewise_cache_miss_list ): (indices, offsets) = get_table_batched_offsets_from_dense(x, use_cpu=False) for _ in range(N): cc(indices.int(), offsets.int()) ( cache_miss_forward_count, unique_cache_miss_count, _, _, ) = cc.get_cache_miss_counter().cpu() tablewise_cache_miss = cc.get_table_wise_cache_miss().cpu() self.assertEqual(cache_miss_forward_count, t_counter[0]) self.assertEqual(unique_cache_miss_count, t_counter[1]) for i in range(len(tablewise_cache_miss)): self.assertEqual(tablewise_cache_miss[i], t_tablewise_cache_miss[i]) @unittest.skipIf(*gpu_unavailable) @given( N=st.integers(min_value=1, max_value=8), dtype=st.sampled_from([SparseType.INT8, SparseType.INT4, SparseType.INT2]), ) @settings(verbosity=Verbosity.verbose, max_examples=MAX_EXAMPLES, deadline=None) def test_nbit_uvm_cache_stats(self, N: int, dtype: SparseType) -> None: # Create an abstract split table D = 8 T = 2 E = 10**3 Ds = [D] * T Es = [E] * T cc = IntNBitTableBatchedEmbeddingBagsCodegen( embedding_specs=[ ( "", E, D, dtype, EmbeddingLocation.MANAGED_CACHING, ) for (E, D) in zip(Es, Ds) ], device=torch.cuda.current_device(), gather_uvm_cache_stats=True, ) cc.fill_random_weights() # Create fake input data and the target output x1 = torch.Tensor([[[1], [1]], [[3], [4]]]).cuda() x2 = torch.Tensor([[[2], [1]], [[3], [4]]]).cuda() x3 = torch.Tensor([[[5], [6]], [[7], [8]]]).cuda() xs = [x1, x2, x3] # num_unique_indices, num_unique_misses # note that these are cumulative over calls; and also "unique" is per batch. target_counter_list = [[3, 3], [4, 4], [4, 8]] num_calls_expected = 0 num_indices_expcted = 0 num_unique_indices_expected = 0 for x, t_counter in zip(xs, target_counter_list): (indices, offsets) = get_table_batched_offsets_from_dense(x, use_cpu=False) for _ in range(N): num_calls_expected = num_calls_expected + 1 num_indices_expcted = num_indices_expcted + len(indices) cc(indices.int(), offsets.int()) ( num_calls, num_indices, num_unique_indices, num_unique_misses, num_conflict_unique_miss, num_conflict_miss, ) = cc.get_uvm_cache_stats().cpu() # Note num_unique_indices is cumulative stats. num_unique_indices_expected = num_unique_indices_expected + t_counter[0] self.assertEqual(num_calls, num_calls_expected) self.assertEqual(num_indices, num_indices_expcted) self.assertEqual(num_unique_indices, num_unique_indices_expected) self.assertEqual(num_unique_misses, t_counter[1]) self.assertEqual(num_conflict_unique_miss, 0) self.assertEqual(num_conflict_miss, 0) T = 1 # for simplicity Ds = [D] * T Es = [E] * T cc1 = IntNBitTableBatchedEmbeddingBagsCodegen( embedding_specs=[ ( "", E, D, SparseType.INT8, EmbeddingLocation.MANAGED_CACHING, ) for (E, D) in zip(Es, Ds) ], device=torch.cuda.current_device(), gather_uvm_cache_stats=True, cache_sets=1, # Only one set. ) cc1.fill_random_weights() associativty = DEFAULT_ASSOC # 32 for NVidia / 64 for AMD. repetition = 17 indices1 = torch.Tensor( [[list(range(0, associativty))] * repetition] ).cuda() # 0, 1, ..., 31. indices2 = torch.Tensor( [[list(range(0, associativty + 1))] * repetition] ).cuda() # 0, 1, ..., 31, 32. indices3 = torch.Tensor( [[list(range(0, associativty + 10))] * repetition] ).cuda() # 0, 1, ..., 31, 32, ..., 41. # num_conflict_unique_miss, num_conflict_miss expected = [[0, 0], [1, 17], [10, 170]] for x, e in zip((indices1, indices2, indices3), expected): (indices, offsets) = get_table_batched_offsets_from_dense(x, use_cpu=False) for _ in range(N): cc1(indices.int(), offsets.int()) ( _, _, _, _, num_conflict_unique_miss, num_conflict_miss, ) = cc1.get_uvm_cache_stats().cpu() self.assertEqual(num_conflict_unique_miss, e[0]) self.assertEqual(num_conflict_miss, e[1]) cc1.reset_uvm_cache_stats() @unittest.skipIf(*gpu_unavailable) @given( N=st.integers(min_value=1, max_value=8), dtype=st.sampled_from([SparseType.INT8, SparseType.INT4, SparseType.INT2]), ) @settings(verbosity=Verbosity.verbose, max_examples=MAX_EXAMPLES, deadline=None) def test_nbit_direct_mapped_uvm_cache_stats( self, N: int, dtype: SparseType ) -> None: # Create an abstract split table D = 8 T = 2 E = 10**3 Ds = [D] * T Es = [E] * T cc = IntNBitTableBatchedEmbeddingBagsCodegen( embedding_specs=[ ( "", E, D, dtype, EmbeddingLocation.MANAGED_CACHING, ) for (E, D) in zip(Es, Ds) ], device=torch.cuda.current_device(), gather_uvm_cache_stats=True, cache_assoc=1, # Direct Mapped ) cc.fill_random_weights() # Create fake input data and the target output x1 = torch.Tensor([[[1], [1]], [[3], [4]]]).cuda() x2 = torch.Tensor([[[2], [1]], [[3], [4]]]).cuda() x3 = torch.Tensor([[[5], [6]], [[7], [8]]]).cuda() xs = [x1, x2, x3] # num_unique_indices, num_unique_misses # note that these are cumulative over calls; and also "unique" is per batch. target_counter_list = [[3, 3], [4, 4], [4, 8]] num_calls_expected = 0 num_indices_expcted = 0 num_unique_indices_expected = 0 for x, t_counter in zip(xs, target_counter_list): (indices, offsets) = get_table_batched_offsets_from_dense(x, use_cpu=False) for _ in range(N): num_calls_expected = num_calls_expected + 1 num_indices_expcted = num_indices_expcted + len(indices) cc(indices.int(), offsets.int()) ( num_calls, num_indices, num_unique_indices, num_unique_misses, num_conflict_unique_miss, num_conflict_miss, ) = cc.get_uvm_cache_stats().cpu() # Note num_unique_indices is cumulative stats. num_unique_indices_expected = num_unique_indices_expected + t_counter[0] self.assertEqual(num_calls, num_calls_expected) self.assertEqual(num_indices, num_indices_expcted) self.assertEqual(num_unique_indices, 0) # N/A for Direct Mapped self.assertEqual(num_unique_misses, 0) # N/A for Direct Mapped self.assertEqual( num_conflict_unique_miss, t_counter[1] ) # number of actually inserted rows for Direct Mapped self.assertEqual(num_conflict_miss, 0) T = 1 # for simplicity Ds = [D] * T Es = [E] * T cc1 = IntNBitTableBatchedEmbeddingBagsCodegen( embedding_specs=[ ( "", E, D, SparseType.INT8, EmbeddingLocation.MANAGED_CACHING, ) for (E, D) in zip(Es, Ds) ], device=torch.cuda.current_device(), gather_uvm_cache_stats=True, cache_sets=1, # Only one set. cache_assoc=1, # Direct Mapped ) cc1.fill_random_weights() associativty = 1 # Direct-Mapped repetition = 17 indices1 = torch.Tensor( [[list(range(0, associativty))] * repetition] ).cuda() # no conflict miss indices2 = torch.Tensor( [[list(range(0, associativty + 1))] * repetition] ).cuda() # 1 * 17 conflict miss per request indices3 = torch.Tensor( [[list(range(0, associativty + 10))] * repetition] ).cuda() # 10 * 17 conflict misses per request # num_conflict_unique_miss, num_conflict_miss expected = [[1, 0], [1, 17], [1, 170]] accum_num_conflict_miss = 0 for x, e in zip((indices1, indices2, indices3), expected): (indices, offsets) = get_table_batched_offsets_from_dense(x, use_cpu=False) for _ in range(N): cc1(indices.int(), offsets.int()) ( _, _, _, _, num_conflict_unique_miss, num_conflict_miss, ) = cc1.get_uvm_cache_stats().cpu() # for DM this represents number of actually inserted rows self.assertEqual(num_conflict_unique_miss, e[0]) accum_num_conflict_miss += e[1] self.assertEqual(num_conflict_miss, accum_num_conflict_miss) @given( T=st.integers(min_value=1, max_value=64), B=st.integers(min_value=1, max_value=64), max_L=st.integers(min_value=1, max_value=64), bounds_check_mode=st.sampled_from( [ BoundsCheckMode.FATAL, BoundsCheckMode.WARNING, BoundsCheckMode.IGNORE, ] ), use_cpu=st.booleans() if (gpu_available and not TEST_WITH_ROCM) else st.just(False) if (gpu_available and TEST_WITH_ROCM) else st.just(True), weighted=st.booleans(), dtype=st.sampled_from( [ torch.int64, torch.int32, ] ), mixed_B=st.booleans(), ) @settings(verbosity=Verbosity.verbose, max_examples=MAX_EXAMPLES, deadline=None) def test_bounds_check( # noqa C901 self, T: int, B: int, max_L: int, bounds_check_mode: BoundsCheckMode, use_cpu: bool, weighted: bool, dtype: torch.dtype, mixed_B: bool, ) -> None: # use_cpu does not support mixed_B if use_cpu and mixed_B: mixed_B = False rows_per_table = torch.tensor( np.random.randint(low=1, high=1000, size=(T,)) ).long() if not mixed_B: Bs = [B] * T else: low = max(int(0.25 * B), 1) high = int(B) if low == high: Bs = [B] * T else: Bs = [np.random.randint(low=low, high=high) for _ in range(T)] B_offsets = [0] + list(accumulate(Bs)) Ls = np.random.randint(low=0, high=max_L, size=(B_offsets[-1],)) indices = [ np.random.randint( low=0, high=rows_per_table[t], size=sum(Ls[B_offsets[t] : B_offsets[t + 1]]), ) for t in range(T) ] indices = torch.tensor(np.concatenate(indices, axis=0)).to(dtype) weights = ( torch.rand(indices.shape, dtype=torch.float, device=indices.device) if weighted else None ) offsets = torch.tensor([0] + np.cumsum(Ls.flatten()).tolist()).to(dtype) warning = torch.tensor([0]).long() if mixed_B: B_offsets = torch.tensor(B_offsets, device="cuda", dtype=torch.int32) max_B = max(Bs) else: B_offsets = None max_B = -1 self.assertEqual(indices.numel(), np.sum(Ls).item()) self.assertEqual(offsets[-1], np.sum(Ls).item()) if not use_cpu: indices, offsets, rows_per_table, warning = ( indices.cuda(), offsets.cuda(), rows_per_table.cuda(), warning.cuda(), ) if weighted: # pyre-fixme[16]: `Optional` has no attribute `cuda`. weights = weights.cuda() indices_copy = indices.clone() offsets_copy = offsets.clone() torch.ops.fbgemm.bounds_check_indices( rows_per_table, indices, offsets, bounds_check_mode, warning, weights, B_offsets=B_offsets, max_B=max_B, ) # we don't modify when we are in-bounds. torch.testing.assert_close(indices_copy, indices) indices[:] = torch.iinfo(dtype).max if bounds_check_mode != BoundsCheckMode.FATAL: torch.ops.fbgemm.bounds_check_indices( rows_per_table, indices, offsets, bounds_check_mode, warning, weights, B_offsets=B_offsets, max_B=max_B, ) torch.testing.assert_close(indices, torch.zeros_like(indices)) if bounds_check_mode == BoundsCheckMode.WARNING: self.assertEqual(warning.item(), indices.numel()) else: if use_cpu and indices.numel(): with self.assertRaises(RuntimeError): torch.ops.fbgemm.bounds_check_indices( rows_per_table, indices, offsets, bounds_check_mode, warning, weights, B_offsets=B_offsets, max_B=max_B, ) # It would be nice to test the CUDA implementation of BoundsCheckMode==FATAL, # but the device assert kills the CUDA context and requires a process restart, # which is a bit inconvenient. # test offsets bound errors indices = indices_copy.clone() offsets = offsets_copy.clone() if offsets.numel() > 0: offsets[0] = -100 if offsets.numel() > 1: offsets[-1] += 100 if bounds_check_mode != BoundsCheckMode.FATAL: torch.ops.fbgemm.bounds_check_indices( rows_per_table, indices, offsets, bounds_check_mode, warning, weights, B_offsets=B_offsets, max_B=max_B, ) if offsets.numel() > 0: self.assertEqual(offsets[0].item(), 0) if offsets.numel() > 1: self.assertEqual(offsets[-1].item(), indices.numel()) if bounds_check_mode == BoundsCheckMode.WARNING: # -1 because when we have 2 elements in offsets, we have only 1 # warning for the pair. self.assertGreaterEqual(warning.item(), min(2, offsets.numel() - 1)) else: if use_cpu and indices.numel(): with self.assertRaises(RuntimeError): torch.ops.fbgemm.bounds_check_indices( rows_per_table, indices, offsets, bounds_check_mode, warning, weights, ) # test offsets.size(0) ! = B * T + 1 case. Here we test with T >= 2 case. # If T == 1, we will always get the even division. # (does not apply to mixed_B = True) if not mixed_B and T >= 2: indices = indices_copy.clone() offsets = offsets_copy.clone() offsets = torch.cat( ( offsets, torch.tensor( [indices.numel()] * (T - 1), dtype=offsets.dtype, device=offsets.device, ), ), dim=0, ) with self.assertRaises(RuntimeError): torch.ops.fbgemm.bounds_check_indices( rows_per_table, indices, offsets, bounds_check_mode, warning, weights, ) # test weights.size(0) != indices.size(0) case weights = torch.rand( (indices.size(0) + 1,), dtype=torch.float, device=indices.device ) with self.assertRaises(RuntimeError): torch.ops.fbgemm.bounds_check_indices( rows_per_table, indices, offsets, bounds_check_mode, warning, weights, B_offsets=B_offsets, max_B=max_B, ) def test_pickle(self) -> None: tensor_queue = torch.classes.fbgemm.TensorQueue(torch.empty(0)) pickled = pickle.dumps(tensor_queue) unpickled = pickle.loads(pickled) # noqa: F841 @unittest.skipIf(*gpu_unavailable) def test_linearize_cache_indices(self) -> None: indices = torch.tensor( [10, 2, 3, 7, 1, 4, 5, 9, 2, 7, 6, 8, 5, 1, 0, 4], dtype=torch.int, device="cuda", ) pruned_indices = torch.tensor( [10, -1, 3, 7, 1, 4, -1, 9, 2, -1, 6, 8, 5, 1, -1, 4], dtype=torch.int, device="cuda", ) equal_offsets = torch.tensor([0, 4, 8, 12, 16], dtype=torch.int, device="cuda") varying_offsets = torch.tensor( [0, 1, 3, 6, 8, 10, 14, 15, 16], dtype=torch.int, device="cuda" ) # Testing equal sized tables. cache_hash_size_cumsum_0 = torch.tensor([0, 12, 24, 36, 48]).cuda() linear_cache_indices_0 = torch.ops.fbgemm.linearize_cache_indices( cache_hash_size_cumsum_0, indices, equal_offsets ) self.assertTrue( torch.equal( linear_cache_indices_0.cpu(), torch.tensor( [10, 2, 3, 7, 13, 16, 17, 21, 26, 31, 30, 32, 41, 37, 36, 40], dtype=torch.int, ), ) ) # Testing partially cached tables. cache_hash_size_cumsum_1 = torch.tensor([0, 12, -1, 24, 36]).cuda() linear_cache_indices_1 = torch.ops.fbgemm.linearize_cache_indices( cache_hash_size_cumsum_1, indices, equal_offsets ) self.assertTrue( torch.equal( linear_cache_indices_1.cpu(), torch.tensor( [10, 2, 3, 7, 13, 16, 17, 21, 36, 36, 36, 36, 29, 25, 24, 28], dtype=torch.int, ), ) ) # Testing batched with varying pooling factor. cache_hash_size_cumsum_2 = torch.tensor([0, 12, -1, 24, 36]).cuda() linear_cache_indices_2 = torch.ops.fbgemm.linearize_cache_indices( cache_hash_size_cumsum_2, indices, varying_offsets ) self.assertTrue( torch.equal( linear_cache_indices_2.cpu(), torch.tensor( [10, 2, 3, 19, 13, 16, 17, 21, 36, 36, 36, 36, 36, 36, 24, 28], dtype=torch.int, ), ) ) # Testing when multiple features share the same table. cache_hash_size_cumsum_3 = torch.tensor([0, 0, 12, 12, 24]).cuda() linear_cache_indices_3 = torch.ops.fbgemm.linearize_cache_indices( cache_hash_size_cumsum_3, indices, varying_offsets ) self.assertTrue( torch.equal( linear_cache_indices_3.cpu(), torch.tensor( [10, 2, 3, 7, 1, 4, 5, 9, 14, 19, 18, 20, 17, 13, 12, 16], dtype=torch.int, ), ) ) # Testing equal sized tables + pruned indices cache_hash_size_cumsum_4 = torch.tensor([0, 12, 24, 36, 48]).cuda() linear_cache_indices_4 = torch.ops.fbgemm.linearize_cache_indices( cache_hash_size_cumsum_4, pruned_indices, equal_offsets ) self.assertTrue( torch.equal( linear_cache_indices_4.cpu(), torch.tensor( [10, 48, 3, 7, 13, 16, 48, 21, 26, 48, 30, 32, 41, 37, 48, 40], dtype=torch.int, ), ) ) # Testing batched with varying pooling factor + pruned indices cache_hash_size_cumsum_5 = torch.tensor([0, 12, -1, 24, 36]).cuda() linear_cache_indices_5 = torch.ops.fbgemm.linearize_cache_indices( cache_hash_size_cumsum_5, pruned_indices, varying_offsets ) self.assertTrue( torch.equal( linear_cache_indices_5.cpu(), torch.tensor( [10, 36, 3, 19, 13, 16, 36, 21, 36, 36, 36, 36, 36, 36, 36, 28], dtype=torch.int, ), ) ) @unittest.skipIf(*gpu_unavailable) def test_linearize_cache_indices_from_row_idx(self) -> None: update_row_indices = torch.tensor( [10, 2, 3, 7, 1, 4, 5, 9, 2, 7, 6, 8, 5, 1, 0, 4], dtype=torch.int, device="cuda", ) update_table_indices = torch.tensor( [0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3], dtype=torch.int, device="cuda", ) varying_update_table_indices = torch.tensor( [0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3], dtype=torch.int, device="cuda", ) # Testing equal sized tables. cache_hash_size_cumsum_0 = torch.tensor([0, 12, 24, 36, 48]).cuda() linear_cache_indices_0 = torch.ops.fbgemm.linearize_cache_indices_from_row_idx( cache_hash_size_cumsum_0, update_table_indices, update_row_indices, ) self.assertTrue( torch.equal( linear_cache_indices_0.cpu(), torch.tensor( [10, 2, 3, 7, 13, 16, 17, 21, 26, 31, 30, 32, 41, 37, 36, 40], dtype=torch.int, ), ) ) # Testing partially cached tables. cache_hash_size_cumsum_1 = torch.tensor([0, 12, -1, 24, 36]).cuda() linear_cache_indices_1 = torch.ops.fbgemm.linearize_cache_indices_from_row_idx( cache_hash_size_cumsum_1, update_table_indices, update_row_indices, ) self.assertTrue( torch.equal( linear_cache_indices_1.cpu(), torch.tensor( [10, 2, 3, 7, 13, 16, 17, 21, 36, 36, 36, 36, 29, 25, 24, 28], dtype=torch.int, ), ) ) # Testing batched with varying pooling factor. cache_hash_size_cumsum_2 = torch.tensor([0, 12, -1, 24, 36]).cuda() linear_cache_indices_2 = torch.ops.fbgemm.linearize_cache_indices_from_row_idx( cache_hash_size_cumsum_2, varying_update_table_indices, update_row_indices, ) self.assertTrue( torch.equal( linear_cache_indices_2.cpu(), torch.tensor( [10, 2, 3, 19, 13, 16, 17, 21, 36, 36, 36, 36, 36, 36, 24, 28], dtype=torch.int, ), ) ) @unittest.skipIf(*gpu_unavailable) @given( associativity=st.sampled_from([1, DEFAULT_ASSOC]), ) @settings(deadline=None) def test_lxu_cache_lookup(self, associativity: int) -> None: max_index: int = 8000 # Use single cache set to avoid dealing with cache set hash algorithm. lxu_cache_state_gpu = ( torch.arange(associativity, dtype=torch.int64).unsqueeze(0).cuda() ) # Testing all miss. linear_cache_indices_0 = ( torch.tensor([32, 33, 34, 35, 36, 100, 1000, 1725]) if associativity <= 32 else torch.tensor([64, 65, 66, 67, 68, 100, 1000, 1725]) ).cuda() lxu_locations = torch.ops.fbgemm.lxu_cache_lookup( linear_cache_indices_0, lxu_cache_state_gpu, max_index ) torch.testing.assert_close( lxu_locations, torch.full_like(lxu_locations, -1), ) # Testing all hits. cache_indices_1 = torch.randint(0, associativity, (associativity,)) linear_cache_indices_1 = cache_indices_1.cuda() lxu_locations = torch.ops.fbgemm.lxu_cache_lookup( linear_cache_indices_1, lxu_cache_state_gpu, max_index ) torch.testing.assert_close( lxu_locations.cpu(), cache_indices_1.int(), ) # Testing mixture. miss_cache_indices_0 = torch.randint(associativity, max_index // 2, (10,)) hit_cache_indices_0 = torch.randint(0, associativity, (8,)) miss_cache_indices_1 = torch.randint(max_index // 2, max_index, (16,)) hit_cache_indices_1 = torch.randint(0, associativity, (8,)) linear_cache_indices_2 = torch.cat( [ miss_cache_indices_0, hit_cache_indices_0, miss_cache_indices_1, hit_cache_indices_1, ] ).cuda() lxu_locations = torch.ops.fbgemm.lxu_cache_lookup( linear_cache_indices_2, lxu_cache_state_gpu, max_index ) expected_result = torch.cat( [ torch.full_like(miss_cache_indices_0, -1), hit_cache_indices_0, torch.full_like(miss_cache_indices_1, -1), hit_cache_indices_1, ] ).int() torch.testing.assert_close( lxu_locations.cpu(), expected_result, ) @unittest.skipIf(*gpu_unavailable) @given( cache_sets=st.integers(min_value=10, max_value=300), ) @settings(verbosity=Verbosity.verbose, max_examples=MAX_EXAMPLES, deadline=None) def test_lxu_cache_locking_counter_decrement( self, cache_sets: int, ) -> None: warp_size = DEFAULT_ASSOC N = cache_sets * warp_size lxu_cache_locking_counter = torch.randint( low=1, high=3, size=[cache_sets, warp_size], device="cuda", dtype=torch.int32, ) counter_ref = lxu_cache_locking_counter.tolist() lxu_cache_locations_list = [] lxu_cache_locations_set = set() for _ in range(3 * N): location = random.randrange(-1, N) lxu_cache_locations_list.append(location) lxu_cache_locations_set.add(location) for idx in lxu_cache_locations_set: if idx >= 0: q, r = idx // warp_size, idx % warp_size counter_ref[q][r] -= 1 counter_ref = torch.tensor(counter_ref, device="cuda", dtype=torch.int32) lxu_cache_locations = torch.tensor( lxu_cache_locations_list, device="cuda", dtype=torch.int32 ) torch.ops.fbgemm.lxu_cache_locking_counter_decrement( lxu_cache_locking_counter, lxu_cache_locations ) self.assertTrue(torch.equal(lxu_cache_locking_counter, counter_ref)) @unittest.skipIf(*gpu_unavailable) @given( T=st.integers(min_value=1, max_value=5), D=st.integers(min_value=2, max_value=64), log_E=st.integers(min_value=2, max_value=3), N=st.integers(min_value=0, max_value=50), weights_ty=st.sampled_from( [ SparseType.FP32, SparseType.FP16, SparseType.INT8, SparseType.INT4, SparseType.INT2, ] ), output_dtype=st.sampled_from( [ SparseType.FP32, SparseType.FP16, SparseType.INT8, ] ), use_cpu=st.booleans() if (gpu_available and not TEST_WITH_ROCM) else st.just(False) if (gpu_available and TEST_WITH_ROCM) else st.just(True), test_internal=st.booleans(), ) @settings(verbosity=Verbosity.verbose, max_examples=MAX_EXAMPLES, deadline=None) def test_embedding_inplace_update( self, T: int, # num of embedding tables D: int, # embedding dim log_E: int, # embedding table row number N: int, # num of update rows per table weights_ty: SparseType, output_dtype: SparseType, use_cpu: bool, test_internal: bool, # test with OSS op or internal customized op ) -> None: D_alignment = max(weights_ty.align_size(), output_dtype.align_size()) D = round_up(D, D_alignment) Ds = [ round_up( np.random.randint(low=int(max(0.25 * D, 1)), high=int(1.0 * D)), D_alignment, ) for _ in range(T) ] E = int(10**log_E) Es = [np.random.randint(low=int(0.5 * E), high=int(2.0 * E)) for _ in range(T)] row_alignment = 1 if use_cpu else 16 current_device = "cpu" if use_cpu else torch.cuda.current_device() location = EmbeddingLocation.HOST if use_cpu else EmbeddingLocation.DEVICE weights_ty_list = [weights_ty] * T if open_source: test_internal = False # create two embedding bag op with random weights locations = [location] * T op = IntNBitTableBatchedEmbeddingBagsCodegen( embedding_specs=[ ("", E, D, W_TY, L) for (E, D, W_TY, L) in zip(Es, Ds, weights_ty_list, locations) ], output_dtype=output_dtype, device=current_device, ) op.fill_random_weights() op_ref = IntNBitTableBatchedEmbeddingBagsCodegen( embedding_specs=[ ("", E, D, W_TY, L) for (E, D, W_TY, L) in zip(Es, Ds, weights_ty_list, locations) ], output_dtype=output_dtype, device=current_device, ) op_ref.fill_random_weights() # randomly generate update table and row indices update_table_indices = [] update_table_indices2 = [] update_row_indices = [] update_row_indices2 = [] for t in range(T): n = np.random.randint(low=0, high=N) if N > 0 else 0 if n == 0: continue update_table_indices.append(t) update_row_id_list = random.sample(range(Es[t]), n) update_row_indices.append(update_row_id_list) update_table_indices2.extend([t] * n) update_row_indices2.extend(update_row_id_list) # generate update tensor based on weights from "op_ref" embedding table update_weights_list = [] ref_split_weights = op_ref.split_embedding_weights(split_scale_shifts=False) update_weight_size = sum( [ rounded_row_size_in_bytes( Ds[t], weights_ty_list[t], row_alignment, ) for t in update_table_indices2 ] ) update_weights_tensor2 = torch.randint( low=0, high=255, size=(update_weight_size,), dtype=torch.uint8, device=current_device, ) update_offsets = 0 for i in range(len(update_table_indices)): table_idx = update_table_indices[i] (ref_weights, _) = ref_split_weights[table_idx] D_bytes = rounded_row_size_in_bytes( Ds[table_idx], weights_ty_list[table_idx], row_alignment ) update_weights = [] for row_idx in update_row_indices[i]: update_weights.append(ref_weights[row_idx].tolist()) update_weights_tensor2[ update_offsets : update_offsets + D_bytes ] = ref_weights[row_idx] update_offsets += D_bytes update_weights_tensor = torch.tensor( update_weights, device=current_device, dtype=torch.uint8, ) update_weights_list.append(update_weights_tensor) # run inplace update on "op" embedding table if not test_internal: # Test scatter_ based OSS solution op.embedding_inplace_update( update_table_indices, update_row_indices, update_weights_list, ) else: # Test customized op op.embedding_inplace_update_internal( update_table_indices2, update_row_indices2, update_weights_tensor2, ) # verify weights are equal with "op_ref" for the updated rows in "op" split_weights = op.split_embedding_weights(split_scale_shifts=False) for i in range(len(update_table_indices)): t = update_table_indices[i] for r in update_row_indices[i]: (weights, _) = split_weights[t] (ref_weights, _) = ref_split_weights[t] self.assertEqual(weights.size(), ref_weights.size()) torch.testing.assert_close( weights[r], ref_weights[r], rtol=1e-2, atol=1e-2, equal_nan=True, ) @given( T=st.integers(min_value=1, max_value=5), D=st.integers(min_value=2, max_value=128), log_E=st.integers(min_value=2, max_value=3), weights_precision=st.sampled_from( [SparseType.FP16, SparseType.FP32, SparseType.INT8] ), mixed=st.booleans(), use_cache=st.booleans(), output_dtype=st.sampled_from([SparseType.FP32, SparseType.FP16]), num_indices_per_table=st.integers(min_value=1, max_value=5), ) @settings( verbosity=Verbosity.verbose, max_examples=MAX_EXAMPLES, deadline=None, ) def test_reset_embedding_weight_momentum( self, T: int, D: int, log_E: int, weights_precision: SparseType, mixed: bool, use_cache: bool, output_dtype: SparseType, num_indices_per_table: int, ) -> None: emb_op = SplitTableBatchedEmbeddingBagsCodegen E = int(10**log_E) D = D * 4 Ds: List[int] = [] Es: List[int] = [] if not mixed: Ds = [D] * T Es = [E] * T else: Ds = [ round_up(np.random.randint(low=int(0.25 * D), high=int(1.0 * D)), 4) for _ in range(T) ] Es = [ np.random.randint(low=int(0.5 * E), high=int(2.0 * E)) for _ in range(T) ] compute_device = ComputeDevice.CUDA if use_cache: managed = [EmbeddingLocation.MANAGED_CACHING] * T if mixed: average_D = sum(Ds) // T for t, d in enumerate(Ds): managed[t] = ( EmbeddingLocation.DEVICE if d < average_D else managed[t] ) else: managed = [ np.random.choice( [ EmbeddingLocation.DEVICE, EmbeddingLocation.MANAGED, ] ) for _ in range(T) ] optimizer = OptimType.EXACT_ROWWISE_ADAGRAD cc = emb_op( embedding_specs=[ (E, D, M, compute_device) for (E, D, M) in zip(Es, Ds, managed) ], optimizer=optimizer, weights_precision=weights_precision, output_dtype=output_dtype, ) pruned_indices: List[int] = [] pruned_indices_offsets: List[int] = [0] logical_table_ids: List[int] = [] buffer_ids: List[int] = [] for i in range(len(Es)): indices = [ np.random.randint(low=1, high=int(Es[i] - 2)) for _ in range(num_indices_per_table) ] pruned_indices += indices pruned_indices_offsets.append( pruned_indices_offsets[i] + num_indices_per_table ) logical_table_ids.append(i) buffer_ids.append(i) pruned_indices_tensor = to_device( torch.tensor(pruned_indices, dtype=torch.int64, requires_grad=False), False ) pruned_indices_offsets_tensor = to_device( torch.tensor( pruned_indices_offsets, dtype=torch.int64, requires_grad=False ), False, ) logical_table_ids_tensor = to_device( torch.tensor(logical_table_ids, dtype=torch.int32, requires_grad=False), False, ) buffer_ids_tensor = to_device( torch.tensor(buffer_ids, dtype=torch.int32, requires_grad=False), False ) momentum1: List[Tensor] = [ s for (s,) in cc.split_optimizer_states() ] # List[rows] weight: List[Tensor] = cc.split_embedding_weights() # List[(rows, dim)] for t in range(T): momentum1[t].fill_(1) weight[t].fill_(1) def check_weight_momentum(v: int) -> None: for i in range(len(pruned_indices)): logical_id = i // num_indices_per_table table_momentum1 = momentum1[logical_id] table_weight = weight[logical_id] dim = Ds[logical_id] expected_row_momentum1 = to_device( torch.tensor(v, dtype=torch.float32), False ) expected_row_weight = to_device( torch.tensor([v] * dim, dtype=weights_precision.as_dtype()), False, ) pruned_index = pruned_indices[i] row_weight = table_weight[pruned_index] if weights_precision == SparseType.INT8: row_weight = row_weight[:-INT8_EMB_ROW_DIM_OFFSET] self.assertEqual(table_momentum1[pruned_index], expected_row_momentum1) torch.testing.assert_close( row_weight, expected_row_weight, rtol=0, atol=0, equal_nan=True, ) check_weight_momentum(1) cc.reset_embedding_weight_momentum( pruned_indices_tensor, pruned_indices_offsets_tensor, logical_table_ids_tensor, buffer_ids_tensor, ) check_weight_momentum(0) if __name__ == "__main__": unittest.main()
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import unittest import hypothesis.strategies as st import numpy as np import torch from hypothesis import given, settings, Verbosity try: # pyre-ignore[21] from fbgemm_gpu import open_source # noqa: F401 # pyre-ignore[21] from test_utils import gpu_unavailable except Exception: torch.ops.load_library("//deeplearning/fbgemm/fbgemm_gpu:sparse_ops") torch.ops.load_library("//deeplearning/fbgemm/fbgemm_gpu:sparse_ops_cpu") from fbgemm_gpu.test.test_utils import gpu_unavailable MAX_EXAMPLES = 20 class LayoutTransformOpsTest(unittest.TestCase): @unittest.skipIf(*gpu_unavailable) # pyre-fixme[56] @given( B=st.integers(min_value=1, max_value=20), T=st.integers(min_value=1, max_value=20), D=st.integers(min_value=2, max_value=20), W=st.integers(min_value=1, max_value=20), ) @settings(verbosity=Verbosity.verbose, max_examples=MAX_EXAMPLES, deadline=None) def test_recat_embedding_grad_output(self, B: int, T: int, D: int, W: int) -> None: num_features_per_rank = np.random.randint(low=1, high=20, size=(W,)).tolist() grad_output = torch.randn(B, sum(num_features_per_rank), D).float().cuda() grad_outputs_by_rank = grad_output.split(num_features_per_rank, dim=1) sharded_grad_output = torch.cat( [ grad_output_by_rank.contiguous().view(-1) for grad_output_by_rank in grad_outputs_by_rank ], dim=0, ) sharded_grad_output_impl = torch.ops.fbgemm.recat_embedding_grad_output( grad_output, num_features_per_rank ) torch.testing.assert_close( sharded_grad_output_impl.cpu(), sharded_grad_output.cpu() ) @unittest.skipIf(*gpu_unavailable) # pyre-fixme[56] @given( B=st.integers(min_value=1, max_value=20), W=st.integers(min_value=1, max_value=20), cuda=st.booleans(), ) @settings(verbosity=Verbosity.verbose, max_examples=MAX_EXAMPLES, deadline=None) def test_recat_embedding_grad_output_mixed_D( self, B: int, W: int, cuda: bool ) -> None: num_features_per_rank = np.random.randint(low=1, high=20, size=(W,)).tolist() global_T = sum(num_features_per_rank) mixed_D_list = np.random.randint(low=1, high=10, size=(global_T,)) grad_output = torch.randn(B, sum(mixed_D_list)).float().cuda() if cuda: grad_output = grad_output.cuda() num_feature_offsets_list = torch.tensor( [0] + np.cumsum(num_features_per_rank).tolist() ) dim_sum_per_rank = [ sum( mixed_D_list[ num_feature_offsets_list[i] : num_feature_offsets_list[i + 1] ] ) for i in range(W) ] grad_outputs_by_rank = grad_output.split(dim_sum_per_rank, dim=1) sharded_grad_output = torch.cat( [ grad_output_by_rank.contiguous().view(-1) for grad_output_by_rank in grad_outputs_by_rank ], dim=0, ) sharded_grad_output_impl = torch.ops.fbgemm.recat_embedding_grad_output_mixed_D( grad_output, dim_sum_per_rank ) torch.testing.assert_close( sharded_grad_output_impl.cpu(), sharded_grad_output.cpu() ) @unittest.skipIf(*gpu_unavailable) # pyre-fixme[56] @given( B=st.integers(min_value=1, max_value=20), W=st.integers(min_value=1, max_value=20), ) @settings(verbosity=Verbosity.verbose, max_examples=MAX_EXAMPLES, deadline=None) def test_recat_embedding_grad_output_mixed_D_batch(self, B: int, W: int) -> None: num_features_per_rank = np.random.randint(low=1, high=20, size=(W,)).tolist() global_T = sum(num_features_per_rank) mixed_D_list = np.random.randint(low=1, high=10, size=(global_T,)) grad_output = torch.randn(B, sum(mixed_D_list)).float().cuda() num_feature_offsets_list = torch.tensor( [0] + np.cumsum(num_features_per_rank).tolist() ) dim_sum_per_rank = [ sum( mixed_D_list[ num_feature_offsets_list[i] : num_feature_offsets_list[i + 1] ] ) for i in range(W) ] dim_sum_per_rank_tensor = torch.cuda.LongTensor(dim_sum_per_rank) cumsum_dim_sum_per_rank_tensor = torch.cuda.LongTensor( np.cumsum([0] + dim_sum_per_rank)[:-1] ) grad_outputs_by_rank = grad_output.split(dim_sum_per_rank, dim=1) sharded_grad_output = torch.cat( [ grad_output_by_rank.contiguous().view(-1) for grad_output_by_rank in grad_outputs_by_rank ], dim=0, ) sharded_grad_output_impl = ( torch.ops.fbgemm.recat_embedding_grad_output_mixed_D_batch( grad_output.cuda(), dim_sum_per_rank_tensor.cuda(), cumsum_dim_sum_per_rank_tensor.cuda(), ) ) torch.testing.assert_close( sharded_grad_output_impl.cpu(), sharded_grad_output.cpu() ) num_features_per_rank = np.random.randint(low=1, high=20, size=(W,)).tolist() global_T = sum(num_features_per_rank) mixed_D_list = np.random.randint(low=1, high=10, size=(global_T,)) grad_output = torch.randn(B, sum(mixed_D_list)).float().cuda() num_feature_offsets_list = torch.tensor( [0] + np.cumsum(num_features_per_rank).tolist() ) dim_sum_per_rank = [ sum( mixed_D_list[ num_feature_offsets_list[i] : num_feature_offsets_list[i + 1] ] ) for i in range(W) ] dim_sum_per_rank_tensor = torch.cuda.LongTensor(dim_sum_per_rank) cumsum_dim_sum_per_rank_tensor = torch.cuda.LongTensor( np.cumsum([0] + dim_sum_per_rank)[:-1] ) grad_outputs_by_rank = grad_output.split(dim_sum_per_rank, dim=1) sharded_grad_output = torch.cat( [ grad_output_by_rank.contiguous().view(-1) for grad_output_by_rank in grad_outputs_by_rank ], dim=0, ) sharded_grad_output_impl = ( torch.ops.fbgemm.recat_embedding_grad_output_mixed_D_batch( grad_output, dim_sum_per_rank_tensor, cumsum_dim_sum_per_rank_tensor ) ) torch.testing.assert_close( sharded_grad_output_impl.cpu(), sharded_grad_output.cpu() ) if __name__ == "__main__": unittest.main()
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. # pyre-unsafe """Check Python source code contains Meta copyright header """ from __future__ import annotations import os import sys import click def process_header(header, comment): lines = header.split("\n") new_lines = [] for line in lines: if line is None or line == "": new_lines.append(comment) else: new_lines.append(comment + " " + line) return "\n".join(new_lines) + "\n" HEADER = """Copyright (c) Meta Platforms, Inc. and affiliates. All rights reserved. This source code is licensed under the BSD-style license found in the LICENSE file in the root directory of this source tree. """ HEADER_lines = HEADER.splitlines()[1:] PY_HEADER = process_header(HEADER, "#") CPP_HEADER = process_header(HEADER, "//") def dfs(root_path: str) -> list[str]: """DFS source code tree to find python files missing header Parameters ---------- root_path : str root source directory path Returns ------- list[str] file list missing header """ ret = [] for root, _, files in os.walk(root_path, topdown=False): for name in files: path = os.path.join(root, name) if path.endswith(".py"): with open(path) as fi: src = fi.read() flag = True for line in HEADER_lines: if line not in src: flag = False break if not flag: ret.append(path) return ret def fix_header(file_list: list[str]) -> None: """Adding Meta header to to source files Parameters ---------- file_list : list[str] file list missing header """ for path in file_list: src = "" with open(path) as fi: src = fi.read() with open(path, "w") as fo: fo.write(PY_HEADER) fo.write(src) @click.command() @click.option( "--path", help="Root directory of source to be checked", required=True, type=str ) @click.option( "--fixit", default=False, help="Fix missing header", required=False, type=bool ) def check_header(path, fixit): ret = dfs(path) if len(ret) == 0: sys.exit(0) print("Need to add Meta header to the following files.") print("----------------File List----------------") for line in ret: print(line) print("-----------------------------------------") if fixit: fix_header(ret) sys.exit(1) if __name__ == "__main__": check_header()
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. # Configuration file for the Sphinx documentation builder. # # This file only contains a selection of the most common options. For a full # list see the documentation: # https://www.sphinx-doc.org/en/master/usage/configuration.html # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # # import os # import sys # sys.path.insert(0, os.path.abspath('.')) import os import subprocess import sys import pytorch_sphinx_theme for dir_i in os.listdir("../.."): if dir_i == "fbgemm_gpu": continue possible_dir = os.path.join("../..", dir_i) if os.path.isdir(possible_dir): sys.path.insert(0, possible_dir) # Doxygen subprocess.call("doxygen Doxyfile.in", shell=True) # -- Project information ----------------------------------------------------- highlight_language = "c++" project = "fbgemm" copyright = "2022, FBGEMM team" author = "FBGEMM team" # The full version, including alpha/beta/rc tags release = "0.1.2" # breathe_projects_source = {"auto": ("../src/", ["auto_function.h", "auto_class.h"])} # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = ["sphinx.ext.napoleon", "sphinx.ext.autodoc"] # Add any paths that contain templates here, relative to this directory. templates_path = ["_templates"] # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = [] extensions = ["sphinx.ext.intersphinx", "breathe", "sphinx.ext.autodoc"] intersphinx_mapping = {"pytorch": ("https://pytorch.org/docs/master", None)} # Setup absolute paths for communicating with breathe / exhale where # items are expected / should be trimmed by. # This file is {repo_root}/docs/cpp/source/conf.py breathe_projects = {"fbgemm_gpu": "../build/xml/", "codegen": "../build/xml/codegen/"} breathe_default_project = "fbgemm_gpu" # Tell sphinx what the primary language being documented is. primary_domain = "cpp" # Tell sphinx what the pygments highlight language should be. highlight_language = "cpp" # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = "pytorch_sphinx_theme" html_theme_path = [pytorch_sphinx_theme.get_html_theme_path()] html_theme_options = { "pytorch_project": "fbgemm", "collapse_navigation": True, "analytics_id": "UA-117752657-2", } # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". # html_static_path = ["_static"]
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. # flake8: noqa F401 from typing import Optional try: # Internal from .embedding_common_code_generator import * except ImportError: # OSS from embedding_common_code_generator import * def _generate(**kwargs: Any) -> None: gen_args = kwargs["args"] kwargs["args"] = gen_args["cuda"] optimizer = kwargs.get("optimizer") # Generate cuda host code template = env.get_template("embedding_optimizer_split_template.cu") write( f"gen_embedding_optimizer_{optimizer}_split_cuda.cu", template.render(**kwargs) ) # Generate host code template = env.get_template("embedding_optimizer_split_host_template.cpp") write(f"gen_embedding_optimizer_{optimizer}_split.cpp", template.render(**kwargs)) template = env.get_template("embedding_optimizer_split_kernel_template.cu") write( f"gen_embedding_optimizer_{optimizer}_split_kernel.cu", template.render(**kwargs), ) # Generates Python invoker for CUDA template = env.get_template("split_embedding_optimizer_codegen.template") write( f"split_embedding_optimizer_{optimizer}.py", template.render(is_fbcode=args.is_fbcode, **kwargs), ) # Generate optimizer kernel template = env.get_template("embedding_optimizer_split_device_kernel_template.cuh") write( f"gen_embedding_optimizer_{optimizer}_split_device_kernel.cuh", template.render(**kwargs), ) def generate(**kwargs: Any) -> None: _generate( optimizer_class_name="".join( [optim.capitalize() for optim in kwargs["optimizer"].split("_")] ), **kwargs, ) def optimizer_codegen( install_dir: Optional[str] = None, is_fbcode: Optional[bool] = None ) -> None: if install_dir is not None and len(install_dir) != 0: args.install_dir = install_dir if is_fbcode is not None: args.is_fbcode = is_fbcode # Generate optimizers generate(**(rowwise_adagrad())) def main() -> None: optimizer_codegen() if __name__ == "__main__": main()
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. # flake8: noqa F401 import re from typing import Optional try: # Internal from .embedding_common_code_generator import * except ImportError: # OSS from embedding_common_code_generator import * import re def generate_backward_embedding_cuda( template_filepath: str, optimizer: str, filename_format: str, kwargs: Dict[str, Any], ) -> None: if not kwargs.get("has_gpu_support"): return template = env.get_template(template_filepath) vbe_options = [True, False] if kwargs.get("has_vbe_support") else [False] for weighted in [True, False]: for nobag in [True, False]: for vbe in vbe_options: if (not nobag or (not weighted and not vbe)) and ( not kwargs.get("dense") or not vbe ): wdesc = f"{ 'weighted' if weighted else 'unweighted' }{ '_nobag' if nobag else '' }{ '_vbe' if vbe else '' }" filename = filename_format.format(optimizer, wdesc) write( filename, template.render( weighted=weighted, nobag=nobag, vbe=vbe, is_index_select=False, **kwargs, ), ) print(f"[Backward Split] [{optimizer}]: {filename}") def generate(**kwargs: Any) -> None: optimizer = kwargs.get("optimizer") gen_args = kwargs["args"] # # Generate GPU variants of the operators # kwargs["args"] = gen_args["cuda"] # Generate the backward splits generate_backward_embedding_cuda( "embedding_backward_split_template.cu", optimizer, "gen_embedding_backward_{}_split_{}_cuda.cu", kwargs, ) # Generate the cta_per_row kernels for the backward splits generate_backward_embedding_cuda( "embedding_backward_split_kernel_cta_template.cu", optimizer, "gen_embedding_backward_{}_split_{}_kernel_cta.cu", kwargs, ) # Generate the warp_per_row kernels for the backward splits generate_backward_embedding_cuda( "embedding_backward_split_kernel_warp_template.cu", optimizer, "gen_embedding_backward_{}_split_{}_kernel_warp.cu", kwargs, ) # Generate optimizer kernel template = env.get_template("embedding_optimizer_split_device_kernel_template.cuh") filename = f"gen_embedding_optimizer_{optimizer}_split_device_kernel.cuh" write(filename, template.render(**kwargs)) # Generate the backward splits (non-dense) # We generate only the API to preserve the backward compatibility if # has_gpu_support=True if not kwargs.get("dense"): template = env.get_template("embedding_backward_split_host_template.cpp") filename = f"gen_embedding_backward_split_{optimizer}.cpp" write(filename, template.render(**kwargs)) print(f"[Backward Split] [{optimizer}]: {filename}") if kwargs.get("has_cpu_support") or kwargs.get("has_gpu_support"): # Generates Python invoker for CUDA + CPU template = env.get_template( "split_embedding_codegen_lookup_invoker.template" ) filename = f"lookup_{optimizer}.py" write(filename, template.render(is_fbcode=args.is_fbcode, **kwargs)) print(f"[Backward Split] [{optimizer}]: {filename}") # # Generate CPU variants of the operators # kwargs["args"] = gen_args["cpu"] # Generate the backward splits if kwargs.get("has_cpu_support"): is_approx = "approx" in optimizer template = ( env.get_template("embedding_backward_split_cpu_approx_template.cpp") if is_approx else env.get_template("embedding_backward_split_cpu_template.cpp") ) filename = f"gen_embedding_backward_{optimizer}_split_cpu.cpp" write(filename, template.render(**kwargs)) print(f"[Backward Split] [{optimizer}]: {filename}") # Generate the backward splits (non-dense) if not kwargs.get("dense"): template = env.get_template("embedding_backward_split_host_cpu_template.cpp") filename = f"gen_embedding_backward_split_{optimizer}_cpu.cpp" write(filename, template.render(**kwargs)) print(f"[Backward Split] [{optimizer}]: {filename}") # Format the way to generate PackedTensorAccessors def make_pta_acc_format(pta_str_list: List[str], func_name: str) -> List[str]: new_str_list = [] for pta_str in pta_str_list: if "packed_accessor" in pta_str: match = re.search( r"([a-zA-z0-9_]*)[.]packed_accessor([3|6][2|4])<(.*)>\(\)", pta_str ) assert match is not None and len(match.groups()) == 3 tensor, acc_nbits, args = match.groups() if "acc_type" in args: match = re.search("at::acc_type<([a-zA-Z_]*), true>", args) assert match is not None and len(match.groups()) == 1 new_type = match.group(1) args = re.sub("at::acc_type<[a-zA-Z_]*, true>", new_type, args) func_name_suffix = "_ACC_TYPE" else: func_name_suffix = "" new_str_list.append( f"{func_name}{func_name_suffix}({tensor}, {args}, {acc_nbits})" ) else: new_str_list.append(pta_str) return new_str_list def replace_pta_namespace(pta_str_list: List[str]) -> List[str]: return [ pta_str.replace("at::PackedTensorAccessor", "pta::PackedTensorAccessor") for pta_str in pta_str_list ] def backward_indices() -> None: template = env.get_template("embedding_backward_split_indice_weights_template.cu") src_cu = template.render() write("gen_embedding_backward_split_indice_weights_codegen_cuda.cu", src_cu) src_cu = template.render(dense=True) write("gen_embedding_backward_dense_indice_weights_codegen_cuda.cu", src_cu) def backward_dense() -> None: generate( optimizer="dense", dense=True, args=make_args( [ (FLOAT, "unused"), ] ), split_precomputation=split_precomputation, split_weight_update=split_weight_update, split_post_update="", split_weight_update_cpu=split_weight_update_cpu, has_cpu_support=False, has_gpu_support=True, has_vbe_support=False, ) def generate_forward_embedding_cuda( template_filepath: str, filename_format: str, dense_options: List[bool], nobag_options: List[bool], vbe_options: List[bool], ) -> None: template = env.get_template(template_filepath) for dense in dense_options: for weighted in [True, False]: for nobag in nobag_options: for vbe in vbe_options: if (not nobag or (not weighted and not vbe)) and ( not dense or not vbe ): dense_desc = f"{ 'dense' if dense else 'split'}" weight_desc = f"{ 'weighted' if weighted else 'unweighted' }" nobag_desc = f"{ '_nobag' if nobag else '' }" vbe_desc = f"{ '_vbe' if vbe else '' }" desc = ( f"{ dense_desc }_{ weight_desc }{ nobag_desc }{ vbe_desc }" ) filename = filename_format.format(desc) write( filename, template.render( dense=dense, weighted=weighted, nobag=nobag, vbe=vbe, is_index_select=False, ), ) print(f"[Forward Split]: {filename}") def forward_split() -> None: # Generate the forward splits generate_forward_embedding_cuda( "embedding_forward_split_template.cu", "gen_embedding_forward_{}_codegen_cuda.cu", dense_options=[True, False], nobag_options=[False], # nobag is not used vbe_options=[True, False], ) # Generate the kernels for the forward splits generate_forward_embedding_cuda( "embedding_forward_split_kernel_template.cu", "gen_embedding_forward_{}_kernel.cu", dense_options=[True, False], nobag_options=[True, False], vbe_options=[True, False], ) # Generate the kernels for the forward splits v2 generate_forward_embedding_cuda( "embedding_forward_split_kernel_v2_template.cu", "gen_embedding_forward_{}_v2_kernel.cu", dense_options=[False], # dense is not supported nobag_options=[False], # nobag is not supported vbe_options=[False], # vbe is not supported ) # Generate the small kernels (for nobag only) for the forward splits template = env.get_template( "embedding_forward_split_kernel_nobag_small_template.cu" ) for dense in [True, False]: wdesc = f"{ 'dense' if dense else 'split' }" filename = f"gen_embedding_forward_{wdesc}_unweighted_nobag_kernel_small.cu" write(filename, template.render(dense=dense, is_index_select=False)) print(f"[Forward Split]: {filename}") # TODO: Separate this function into another codegen script def index_select() -> None: kwargs = make_args([(FLOAT, "unused")]) kwargs["args"] = kwargs["cuda"] for templ_file, gen_file in [ ( "embedding_forward_split_template.cu", "gen_batch_index_select_dim0_forward_codegen_cuda.cu", ), ( "embedding_forward_split_kernel_template.cu", "gen_batch_index_select_dim0_forward_kernel.cu", ), ( "embedding_forward_split_kernel_nobag_small_template.cu", "gen_batch_index_select_dim0_forward_kernel_small.cu", ), ( "embedding_backward_split_template.cu", "gen_batch_index_select_dim0_backward_codegen_cuda.cu", ), ( "embedding_backward_split_kernel_cta_template.cu", "gen_batch_index_select_dim0_backward_kernel_cta.cu", ), ( "embedding_backward_split_kernel_warp_template.cu", "gen_batch_index_select_dim0_backward_kernel_warp.cu", ), ]: template = env.get_template(templ_file) write( gen_file, template.render( weighted=False, dense=True, vbe=False, nobag=True, is_index_select=True, **kwargs, ), ) template = env.get_template("embedding_backward_split_grad_template.cu") write("gen_embedding_backward_split_grad.cu", template.render()) def forward_quantized() -> None: @dataclass class template_instance_params: output_rows_per_thread: str input_rows_in_flight: str min_128b_rows: str max_128b_rows: str @dataclass class elem_type: enum_name: str cpp_type_name: str primitive_type: str bit_width: int template_params: List[template_instance_params] type_map = { "FP32": elem_type( "FP32", "float", "FP", 32, [ template_instance_params(*map(str, (2, 4, 0, 4))), template_instance_params(*map(str, (2, 2, 4, 16))), template_instance_params(*map(str, (1, 1, 16, 32))), template_instance_params(*map(str, (1, 1, 32, 64))), ], ), "FP16": elem_type( "FP16", "__half2", "FP", 16, [ template_instance_params(*map(str, (2, 8, 0, 2))), template_instance_params(*map(str, (2, 8, 2, 4))), template_instance_params(*map(str, (2, 4, 4, 8))), template_instance_params(*map(str, (2, 2, 8, 16))), template_instance_params(*map(str, (2, 1, 16, 32))), ], ), "FP8": elem_type( "FP8", "uint32_t", "FP", 8, [ template_instance_params(*map(str, (2, 8, 0, 1))), template_instance_params(*map(str, (2, 4, 1, 2))), template_instance_params(*map(str, (2, 4, 2, 4))), template_instance_params(*map(str, (2, 4, 4, 8))), template_instance_params(*map(str, (2, 2, 4, 8))), ], ), "INT8": elem_type( "INT8", "uint32_t", "INT", 8, [ template_instance_params(*map(str, (2, 8, 0, 1))), template_instance_params(*map(str, (2, 4, 1, 2))), template_instance_params(*map(str, (2, 4, 2, 4))), template_instance_params(*map(str, (2, 4, 4, 8))), template_instance_params(*map(str, (2, 2, 8, 16))), ], ), "INT4": elem_type( "INT4", "uint32_t", "INT", 4, [ template_instance_params(*map(str, (4, 8, 0, 1))), template_instance_params(*map(str, (2, 8, 1, 2))), template_instance_params(*map(str, (1, 4, 2, 4))), template_instance_params(*map(str, (1, 4, 4, 8))), ], ), "INT2": elem_type( "INT2", "uint32_t", "INT", 2, [ template_instance_params(*map(str, (2, 16, 0, 1))), template_instance_params(*map(str, (2, 8, 1, 2))), template_instance_params(*map(str, (2, 8, 2, 4))), ], ), } # Generate the CUDA nbit (kernel) templates template = env.get_template( "embedding_forward_quantized_split_nbit_kernel_template.cu" ) for weighted in [True, False]: for nobag in [True, False]: if not nobag or not weighted: for emb_weight_type in type_map.values(): wdesc = f"{ 'weighted' if weighted else 'unweighted' }{ '_nobag' if nobag else '' }" filename = f"gen_embedding_forward_quantized_split_nbit_kernel_{ wdesc }_{ emb_weight_type.enum_name.lower() }_codegen_cuda.cu" write( filename, template.render( weighted=weighted, nobag=nobag, emb_weight_type=emb_weight_type, ), ) print(f"[Forward Quantized]: {filename}") # Generate the CUDA nbit (host) templates template = env.get_template( "embedding_forward_quantized_split_nbit_host_template.cu" ) for weighted in [True, False]: for nobag in [True, False]: if not nobag or not weighted: wdesc = f"{ 'weighted' if weighted else 'unweighted' }{ '_nobag' if nobag else '' }" filename = f"gen_embedding_forward_quantized_split_nbit_host_{ wdesc }_codegen_cuda.cu" write( filename, template.render(weighted=weighted, nobag=nobag, type_map=type_map), ) print(f"[Forward Quantized]: {filename}") # Generate the CPU templates template = env.get_template("embedding_forward_quantized_cpu_template.cpp") for weighted in [True, False]: filename = f"gen_embedding_forward_quantized_{ 'weighted' if weighted else 'unweighted' }_codegen_cpu.cpp" write(filename, template.render(weighted=weighted, type_map=type_map)) print(f"[Forward Quantized]: {filename}") def backward_grad() -> None: # Generate the common grad functions template = env.get_template("embedding_backward_split_grad_template.cu") write("gen_embedding_backward_split_grad.cu", template.render()) def backward_indices() -> None: template = env.get_template("embedding_backward_split_indice_weights_template.cu") src_cu = template.render() write("gen_embedding_backward_split_indice_weights_codegen_cuda.cu", src_cu) src_cu = template.render(dense=True) write("gen_embedding_backward_dense_indice_weights_codegen_cuda.cu", src_cu) def backward_dense() -> None: generate( optimizer="dense", dense=True, args=make_args( [ (FLOAT, "unused"), ] ), has_cpu_support=True, has_gpu_support=True, has_vbe_support=False, ) def gen__init__py() -> None: template = env.get_template("__init__.template") src_py = template.render() write("__init__.py", src_py) def emb_codegen( install_dir: Optional[str] = None, is_fbcode: Optional[bool] = None ) -> None: if install_dir is not None and len(install_dir) != 0: args.install_dir = install_dir if is_fbcode is not None: args.is_fbcode = is_fbcode backward_grad() # Generate forwards and specialized backwards backward_indices() backward_dense() forward_quantized() forward_split() # Generate backwards and optimizers generate(**(adagrad())) generate(**(adam())) generate(**(lamb())) generate(**(lars_sgd())) generate(**(partial_rowwise_adam())) generate(**(partial_rowwise_lamb())) generate(**(rowwise_adagrad())) generate(**(approx_rowwise_adagrad())) generate(**(rowwise_adagrad_with_weight_decay())) generate(**(approx_rowwise_adagrad_with_weight_decay())) generate(**(rowwise_adagrad_with_counter())) generate(**(approx_rowwise_adagrad_with_counter())) generate(**(rowwise_weighted_adagrad())) generate(**(sgd())) generate(**(approx_sgd())) generate(**(none_optimizer())) # Generate index_select ops using TBE backend index_select() gen__init__py() def main() -> None: emb_codegen() if __name__ == "__main__": main()
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. # flake8: noqa F401 import argparse import os import re from dataclasses import dataclass from typing import Any, Dict, List, Optional, Tuple, Union import jinja2 args: argparse.Namespace _: List[str] TENSOR: int INT_TENSOR: int LONG_TENSOR: int INT: int FLOAT: int parser = argparse.ArgumentParser() # By default the source template files are in the same folder as # embedding_backward_code_generator.py; # The install dir is by default the same as the current folder. parser.add_argument("--install_dir", default=".", help="where to put generated file") parser.add_argument("--opensource", action="store_false", dest="is_fbcode") parser.add_argument("--is_rocm", action="store_true") args, _ = parser.parse_known_args() env = jinja2.Environment( loader=jinja2.FileSystemLoader(os.path.dirname(os.path.abspath(__file__))) ) # Upper Limit of "max_embedding_dim (max_D)": # BT_block_size * sizeof(float) * 4 * kWarpSize * {{ kMaxVecsPerThread }} # needs to be smaller than the allocated shared memory size (2/3 of 96 KB # on V100 and 160 KB on A100. # BT_block_size * 4 * 4 * 32 * (max_D // 128) <= 64 * 1024 (V100) or 96 * 1024 (A100) # Since BT_block_size >= 1, max_D <= 16K (V100) or 24K (A100). # Note that if we increase max_D, it will increase the compilation time significantly. env.globals["max_embedding_dim"] = 1024 # An optimization for ROCm env.globals["items_per_warp"] = 128 if args.is_rocm is False else 256 env.globals["dense"] = False def write(filename: str, s: str) -> None: with open(os.path.join(args.install_dir, filename), "w") as f: f.write(s) def _arg_constructor( type: str, name: str, gpu: bool = True, precision: int = 32 ) -> str: return ( f"{name}.packed_accessor{precision}<{type}, 1, at::RestrictPtrTraits>()" if gpu else f"{name}.accessor<{type}, 1>()" ) def _arg( type: str, name: str, gpu: bool = True, precision: int = 32, pass_by_ref: bool = False, ) -> str: ref = "&" if pass_by_ref else "" return ( f"at::PackedTensorAccessor{precision}<{type}, 1, at::RestrictPtrTraits>{ref} {name}" if gpu else f"at::TensorAccessor<{type}, 1>{ref} {name}" ) def acc_cache_tensor_arg_constructor(name: str, gpu: bool = True) -> str: return _arg_constructor( "at::acc_type<" + ("cache_t" if gpu else "scalar_t") + ", true>", name, gpu=gpu, precision=64, ) def acc_cache_tensor_arg(name: str, gpu: bool = True, pass_by_ref: bool = False) -> str: return _arg( "at::acc_type<" + ("cache_t" if gpu else "scalar_t") + ", true>", name, gpu=gpu, precision=64, pass_by_ref=pass_by_ref, ) def long_tensor_arg_constructor(name: str, gpu: bool = True) -> str: return _arg_constructor("int64_t", name, gpu=gpu) def long_tensor_arg(name: str, gpu: bool = True, pass_by_ref: bool = False) -> str: return _arg("int64_t", name, gpu=gpu, pass_by_ref=pass_by_ref) def int_tensor_arg_constructor(name: str, gpu: bool = True) -> str: return _arg_constructor("int32_t", name, gpu=gpu) def int_tensor_arg(name: str, gpu: bool = True, pass_by_ref: bool = False) -> str: return _arg("int32_t", name, gpu=gpu, pass_by_ref=pass_by_ref) def tensor_arg(name: str) -> str: return f"Tensor {name}" def double_arg(name: str, default: float = 0.0) -> str: return f"double {name} = {default}" def double_arg_no_default(name: str) -> str: return f"double {name}" def float_arg(name: str, default: float = 0.0) -> str: return f"float {name} = {default}" def float_arg_no_default(name: str) -> str: return f"float {name}" def int64_arg(name: str, default: int = 0) -> str: return f"int64_t {name} = {default}" def int64_arg_no_default(name: str) -> str: return f"int64_t {name}" def int_arg(name: str, default: int = 0) -> str: return f"int {name} = {default}" # Format the macro call to generate pta::PackedTensorAccessors def make_pta_acc_format(pta_str_list: List[str], func_name: str) -> List[str]: new_str_list = [] for pta_str in pta_str_list: if "packed_accessor" in pta_str: match = re.search( r"([a-zA-z0-9_]*)[.]packed_accessor([3|6][2|4])<(.*)>\(\)", pta_str ) assert match is not None and len(match.groups()) == 3 tensor, acc_nbits, args = match.groups() if "acc_type" in args: match = re.search("at::acc_type<([a-zA-Z_]*), true>", args) assert match is not None and len(match.groups()) == 1 new_type = match.group(1) args = re.sub("at::acc_type<[a-zA-Z_]*, true>", new_type, args) macro_name = "MAKE_PTA_ACC_WITH_NAME" else: macro_name = "MAKE_PTA_WITH_NAME" args = args.replace(", at::RestrictPtrTraits", "") new_str_list.append( f"{macro_name}({func_name}, {tensor}, {args}, {acc_nbits})" ) else: new_str_list.append(pta_str) return new_str_list def replace_pta_namespace(pta_str_list: List[str]) -> List[str]: return [ pta_str.replace("at::PackedTensorAccessor", "pta::PackedTensorAccessor") for pta_str in pta_str_list ] env.filters["make_pta_acc_format"] = make_pta_acc_format env.filters["replace_pta_namespace"] = replace_pta_namespace @dataclass class Args: split_kernel_args: List[str] split_kernel_args_no_defaults: List[str] split_kernel_arg_constructors: List[str] split_cpu_kernel_args: List[str] split_cpu_kernel_arg_constructors: List[str] split_function_args: List[str] split_function_args_no_defaults: List[str] split_saved_tensors: List[str] split_tensors: List[str] saved_data: List[Tuple[str, str]] split_function_arg_names: List[str] split_function_schemas: List[str] split_variables: List[str] split_ref_kernel_args: List[str] TENSOR, INT_TENSOR, LONG_TENSOR, INT, FLOAT = range(5) def make_args( arg_spec: List[Union[Tuple[int, str], Tuple[int, str, Union[float, int]]]] ) -> Dict[str, Any]: def make_kernel_arg( ty: int, name: str, default: Union[int, float, None], pass_by_ref: bool = False ) -> str: return { TENSOR: lambda x: acc_cache_tensor_arg(x, pass_by_ref=pass_by_ref), INT_TENSOR: lambda x: int_tensor_arg(x, pass_by_ref=pass_by_ref), LONG_TENSOR: lambda x: long_tensor_arg(x, pass_by_ref=pass_by_ref), INT: (lambda x: int64_arg(x, default=int(default))) if default is not None else int64_arg_no_default, FLOAT: (lambda x: float_arg(x, default=default)) if default is not None else float_arg_no_default, }[ty](name) def make_kernel_arg_constructor(ty: int, name: str) -> str: return { TENSOR: acc_cache_tensor_arg_constructor, INT_TENSOR: int_tensor_arg_constructor, LONG_TENSOR: long_tensor_arg_constructor, INT: lambda x: x, FLOAT: lambda x: x, }[ty](name) def make_cpu_kernel_arg(ty: int, name: str, default: Union[int, float]) -> str: return { TENSOR: lambda x: acc_cache_tensor_arg(x, gpu=False), INT_TENSOR: lambda x: int_tensor_arg(x, gpu=False), LONG_TENSOR: lambda x: long_tensor_arg(x, gpu=False), INT: lambda x: int64_arg(x, default=int(default)), FLOAT: lambda x: float_arg(x, default=default), }[ty](name) def make_cpu_kernel_arg_constructor(ty: int, name: str) -> str: return { TENSOR: lambda x: acc_cache_tensor_arg_constructor(x, gpu=False), INT_TENSOR: lambda x: int_tensor_arg_constructor(x, gpu=False), LONG_TENSOR: lambda x: long_tensor_arg_constructor(x, gpu=False), INT: lambda x: x, FLOAT: lambda x: x, }[ty](name) def make_function_arg( ty: int, name: str, default: Optional[Union[int, float]] ) -> str: return { TENSOR: tensor_arg, INT_TENSOR: tensor_arg, LONG_TENSOR: tensor_arg, INT: (lambda x: int64_arg(x, default=int(default))) if default is not None else int64_arg_no_default, FLOAT: (lambda x: double_arg(x, default=default)) if default is not None else double_arg_no_default, }[ty](name) def make_function_schema_arg(ty: int, name: str, default: Union[int, float]) -> str: return { TENSOR: tensor_arg, INT_TENSOR: tensor_arg, LONG_TENSOR: tensor_arg, INT: lambda x: int_arg(x, default=int(default)), FLOAT: lambda x: float_arg(x, default=default), }[ty](name) def make_ivalue_cast(ty: int) -> str: return {INT: "toInt", FLOAT: "toDouble"}[ty] def make_args_for_compute_device( split_arg_spec: List[Tuple[int, str, Union[int, float]]] ) -> Args: return Args( split_kernel_args=[ make_kernel_arg(ty, name, default) for (ty, name, default) in split_arg_spec ], split_kernel_args_no_defaults=[ make_kernel_arg(ty, name, None) for (ty, name, _) in split_arg_spec ], split_kernel_arg_constructors=[ make_kernel_arg_constructor(ty, name) for (ty, name, default) in split_arg_spec ], split_cpu_kernel_args=[ make_cpu_kernel_arg(ty, name, default) for (ty, name, default) in split_arg_spec ], split_cpu_kernel_arg_constructors=[ make_cpu_kernel_arg_constructor(ty, name) for (ty, name, default) in split_arg_spec ], split_function_args=[ make_function_arg(ty, name, default) for (ty, name, default) in split_arg_spec ], split_function_args_no_defaults=[ make_function_arg(ty, name, None) for (ty, name, default) in split_arg_spec ], split_tensors=[ name for (ty, name, default) in augmented_arg_spec if ty == TENSOR ], split_saved_tensors=[ name for (ty, name, default) in split_arg_spec if ty in (TENSOR, INT_TENSOR, LONG_TENSOR) ], saved_data=[ (name, make_ivalue_cast(ty)) for (ty, name, default) in augmented_arg_spec if ty != TENSOR ], split_function_arg_names=[name for (ty, name, default) in split_arg_spec], split_function_schemas=[ make_function_schema_arg(ty, name, default) for (ty, name, default) in split_arg_spec ], split_variables=["Variable()" for _ in split_arg_spec], split_ref_kernel_args=[ make_kernel_arg(ty, name, default, pass_by_ref=True) for (ty, name, default) in split_arg_spec ], ) DEFAULT_ARG_VAL = 0 augmented_arg_spec = [ item if len(item) == 3 else (*item, DEFAULT_ARG_VAL) for item in arg_spec ] split_arg_spec = [] for (ty, arg, default) in augmented_arg_spec: if ty in (FLOAT, INT): split_arg_spec.append((ty, arg, default)) else: assert ty == TENSOR split_arg_spec.extend( [ (TENSOR, f"{arg}_host", default), (INT_TENSOR, f"{arg}_placements", default), (LONG_TENSOR, f"{arg}_offsets", default), ] ) cpu = make_args_for_compute_device(split_arg_spec) split_arg_spec = [] for (ty, arg, default) in augmented_arg_spec: if ty in (FLOAT, INT): split_arg_spec.append((ty, arg, default)) else: assert ty == TENSOR split_arg_spec.extend( [ (TENSOR, f"{arg}_dev", default), (TENSOR, f"{arg}_uvm", default), (INT_TENSOR, f"{arg}_placements", default), (LONG_TENSOR, f"{arg}_offsets", default), ] ) cuda = make_args_for_compute_device(split_arg_spec) return {"cpu": cpu, "cuda": cuda} def adagrad() -> Dict[str, Any]: split_weight_update = """ Vec4T<cache_t> m_t(&momentum1[idx * D + d]); m_t.acc.x += grad.acc.x * grad.acc.x; m_t.acc.y += grad.acc.y * grad.acc.y; m_t.acc.z += grad.acc.z * grad.acc.z; m_t.acc.w += grad.acc.w * grad.acc.w; m_t.store(&momentum1[idx * D + d]); weight_new.acc.x -= learning_rate * grad.acc.x / (sqrtf(m_t.acc.x) + eps); weight_new.acc.y -= learning_rate * grad.acc.y / (sqrtf(m_t.acc.y) + eps); weight_new.acc.z -= learning_rate * grad.acc.z / (sqrtf(m_t.acc.z) + eps); weight_new.acc.w -= learning_rate * grad.acc.w / (sqrtf(m_t.acc.w) + eps); """ split_weight_update_cpu = """ for (int64_t d = 0; d < D; ++d) { momentum1_host[embedding_begin + d] += grad_buffer[d] * grad_buffer[d]; host_weights_data[embedding_begin + d] -= learning_rate * grad_buffer[d] / (sqrt(momentum1_host[embedding_begin + d]) + eps); } """ return { "optimizer": "adagrad", "args": make_args( [(TENSOR, "momentum1"), (FLOAT, "eps"), (FLOAT, "learning_rate")] ), "split_precomputation": "", "split_weight_update": split_weight_update, "split_post_update": "", "split_weight_update_cpu": split_weight_update_cpu, "has_cpu_support": True, "has_gpu_support": True, "has_vbe_support": False, } def table_info_precomputation(momentum_prefix: str = "momentum1") -> str: template = """ // table_begin -> (E, D, {momentum_prefix}_row_begin). std::map<int64_t, std::tuple<int64_t, int64_t, int64_t>> table_info_map; for (int64_t t = 0; t < T; ++t) { const auto D = D_offsets_data[t + 1] - D_offsets_data[t]; const auto table_begin = weights_offsets_data[t]; const auto {momentum_prefix}_row_begin = {momentum_prefix}_offsets_data[t]; table_info_map[table_begin] = std::make_tuple(0, D, {momentum_prefix}_row_begin); } int64_t previous_table_begin = host_weights.numel(); // NOTE: table_info_map is sorted by table_begin! for (auto it = table_info_map.rbegin(); it != table_info_map.rend(); ++it) { const auto D = std::get<1>(it->second); // Calculates number of rows of each table. std::get<0>(it->second) = (previous_table_begin - it->first) / D; previous_table_begin = it->first; } """ return template.replace("{momentum_prefix}", momentum_prefix) def rowwise_adagrad() -> Dict[str, Any]: split_weight_update = """ weight_new.acc.x = correction * weight_new.acc.x - multiplier * grad.acc.x; weight_new.acc.y = correction * weight_new.acc.y - multiplier * grad.acc.y; weight_new.acc.z = correction * weight_new.acc.z - multiplier * grad.acc.z; weight_new.acc.w = correction * weight_new.acc.w - multiplier * grad.acc.w; """ split_post_update = """ if (max_norm > 0.0) { CUDA_KERNEL_ASSERT(!(std::is_same<emb_t, uint8_t>::value && !cache_weights)); // not supported for uint8 yet // compute weight norm at::acc_type<cache_t, true> weight_sum_square = 0.0; #pragma unroll kMaxVecsPerThread for (int32_t i = 0; i < kMaxVecsPerThread && 4 * kThreadGroupSize * i + threadIdx.x * 4 < D; ++i) { int32_t d = 4 * kThreadGroupSize * i + threadIdx.x * 4; Vec4T<at::acc_type<cache_t, true>> weight_new = weight_row_template.load(d, qparams_template); weight_sum_square += weight_new.acc.x * weight_new.acc.x + weight_new.acc.y * weight_new.acc.y + weight_new.acc.z * weight_new.acc.z + weight_new.acc.w * weight_new.acc.w; } const at::acc_type<cache_t, true> weight_norm = sqrtf(warpReduceAllSum<at::acc_type<cache_t, true>, kThreadGroupSize>(weight_sum_square, shfl_sync_mask)); // scale by max_norm if weight_norm exceeds max_norm if (threadIdx.x == 0) { multiplier = weight_norm > max_norm ? max_norm / weight_norm : 1.0f; } multiplier = SHFL_SYNC(multiplier, 0); if (weight_norm > max_norm) { #pragma unroll kMaxVecsPerThread for (int32_t i = 0; i < kMaxVecsPerThread && 4 * kThreadGroupSize * i + threadIdx.x * 4 < D; ++i) { int32_t d = 4 * kThreadGroupSize * i + threadIdx.x * 4; Vec4T<at::acc_type<cache_t, true>> weight_new = weight_row_template.load(d, qparams_template); weight_new.acc.x *= multiplier; weight_new.acc.y *= multiplier; weight_new.acc.z *= multiplier; weight_new.acc.w *= multiplier; weight_row_template.store(weight_new, d, qparams_new); // qparams_new not used if embedding is not int8 } } } """ split_precomputation = """ at::acc_type<cache_t, true> g_local_sum_square = 0.0; #pragma unroll kMaxVecsPerThread for (int32_t i = 0; i < kMaxVecsPerThread && 4 * kThreadGroupSize * i + threadIdx.x * 4 < D; ++i) { auto gx = grad_sum[i].acc.x; auto gy = grad_sum[i].acc.y; auto gz = grad_sum[i].acc.z; auto gw = grad_sum[i].acc.w; if (weight_decay_mode == 1) { // L2 regularization int32_t d = 4 * kThreadGroupSize * i + threadIdx.x * 4; Vec4T<at::acc_type<cache_t, true>> weight = weight_row_template.load(d, qparams_template); gx += weight_decay * weight.acc.x; gy += weight_decay * weight.acc.y; gz += weight_decay * weight.acc.z; gw += weight_decay * weight.acc.w; } g_local_sum_square += gx * gx + gy * gy + gz * gz + gw * gw; } const at::acc_type<cache_t, true> g_avg_square = warpReduceAllSum<at::acc_type<cache_t, true>, kThreadGroupSize>(g_local_sum_square, shfl_sync_mask) / D; at::acc_type<cache_t, true> multiplier; at::acc_type<cache_t, true> correction; if (threadIdx.x == 0) { at::acc_type<cache_t, true> new_sum_square_grads = momentum1[idx] + g_avg_square; momentum1[idx] = new_sum_square_grads; multiplier = learning_rate / (sqrtf(new_sum_square_grads) + eps); if (weight_decay_mode == 1) { // L2 regularization correction = 1.0 - multiplier * weight_decay; } else if (weight_decay_mode == 2) { // Decoupled weight decay correction = 1.0 - learning_rate * weight_decay; } else { // default value correction = 1.0; } } multiplier = SHFL_SYNC(multiplier, 0); correction = SHFL_SYNC(correction, 0); """ split_weight_update_cpu = """ at::acc_type<grad_t, true> g_local_sum_square = 0.0; for (int64_t d = 0; d < D; ++d) { auto grad = grad_buffer[d]; if (weight_decay_mode == 1) { // L2 regularization grad += weight_decay * host_weights_data[embedding_begin + d]; } g_local_sum_square += grad * grad; } auto g_avg_square = g_local_sum_square / D; at::acc_type<grad_t, true> new_sum_square_grads = momentum1_host[momentum1_offsets_data[feature_begin] + idx] + g_avg_square; momentum1_host[momentum1_offsets_data[feature_begin] + idx] = new_sum_square_grads; at::acc_type<grad_t, true> multiplier; multiplier = learning_rate / (sqrtf(new_sum_square_grads) + eps); at::acc_type<grad_t, true> correction; if (weight_decay_mode == 1) { // L2 regularization correction = 1.0 - multiplier * weight_decay; } else if (weight_decay_mode == 2) { // Decoupled weight decay correction = 1.0 - learning_rate * weight_decay; } else { // default value correction = 1.0; } for (int64_t d = 0; d < D; ++d) { host_weights_data[embedding_begin + d] = correction * host_weights_data[embedding_begin + d] - grad_buffer[d] * multiplier; } """ return { "optimizer": "rowwise_adagrad", "args": make_args( [ (TENSOR, "momentum1"), (FLOAT, "eps"), (FLOAT, "learning_rate"), (FLOAT, "weight_decay", 0.0), (INT, "weight_decay_mode", 0), (FLOAT, "max_norm", 0.0), ] ), "split_precomputation": split_precomputation, "split_weight_update": split_weight_update, "split_post_update": split_post_update, "split_weight_update_cpu": split_weight_update_cpu, "has_cpu_support": True, "has_gpu_support": True, "has_vbe_support": True, } def approx_rowwise_adagrad() -> Dict[str, Any]: rowwise_adagrad_args = rowwise_adagrad() approx_split_weight_update = """ // dummy computation to avoid unused variable warning weight_new.fma_(grad, -multiplier); assert(false); // approx rowwise AdaGrad is not supported on GPU """ return { "optimizer": "approx_rowwise_adagrad", "args": make_args( [ (TENSOR, "momentum1"), (FLOAT, "eps"), (FLOAT, "learning_rate"), (FLOAT, "weight_decay", 0.0), (INT, "weight_decay_mode", 0), ] ), "split_precomputation": rowwise_adagrad_args["split_precomputation"], "split_weight_update": approx_split_weight_update, "split_post_update": "", "split_weight_update_cpu": rowwise_adagrad_args["split_weight_update_cpu"], "has_cpu_support": False, "has_gpu_support": False, "has_vbe_support": False, } def rowwise_adagrad_with_weight_decay() -> Dict[str, Any]: split_weight_update = """ weight_new.acc.x = correction * weight_new.acc.x - multiplier * grad.acc.x; weight_new.acc.y = correction * weight_new.acc.y - multiplier * grad.acc.y; weight_new.acc.z = correction * weight_new.acc.z - multiplier * grad.acc.z; weight_new.acc.w = correction * weight_new.acc.w - multiplier * grad.acc.w; """ split_precomputation = """ at::acc_type<cache_t, true> g_local_sum_square = 0.0; #pragma unroll kMaxVecsPerThread for (int32_t i = 0; i < kMaxVecsPerThread && 4 * kThreadGroupSize * i + threadIdx.x * 4 < D; ++i) { auto gx = grad_sum[i].acc.x; auto gy = grad_sum[i].acc.y; auto gz = grad_sum[i].acc.z; auto gw = grad_sum[i].acc.w; if (weight_decay_mode == 1) { // L2 regularization int32_t d = 4 * kThreadGroupSize * i + threadIdx.x * 4; Vec4T<at::acc_type<cache_t, true>> weight = weight_row_template.load(d, qparams_template); gx += weight_decay * weight.acc.x; gy += weight_decay * weight.acc.y; gz += weight_decay * weight.acc.z; gw += weight_decay * weight.acc.w; } g_local_sum_square += gx * gx + gy * gy + gz * gz + gw * gw; } const at::acc_type<cache_t, true> g_avg_square = warpReduceAllSum<at::acc_type<cache_t, true>, kThreadGroupSize>(g_local_sum_square, shfl_sync_mask) / D; at::acc_type<cache_t, true> multiplier; at::acc_type<cache_t, true> correction; if (threadIdx.x == 0) { at::acc_type<cache_t, true> new_sum_square_grads = momentum1[idx] + g_avg_square; momentum1[idx] = new_sum_square_grads; multiplier = learning_rate / (sqrtf(new_sum_square_grads) + eps); if (weight_decay_mode == 1) { // L2 regularization correction = 1.0 - multiplier * weight_decay; } else if (weight_decay_mode == 2) { // Decoupled weight decay correction = 1.0 - learning_rate * weight_decay; } else { // default value correction = 1.0; } } multiplier = SHFL_SYNC(multiplier, 0); correction = SHFL_SYNC(correction, 0); """ split_weight_update_cpu = """ at::acc_type<grad_t, true> g_local_sum_square = 0.0; for (int64_t d = 0; d < D; ++d) { auto grad = grad_buffer[d]; if (weight_decay_mode == 1) { // L2 regularization grad += weight_decay * host_weights_data[embedding_begin + d]; } g_local_sum_square += grad * grad; } auto g_avg_square = g_local_sum_square / D; at::acc_type<grad_t, true> new_sum_square_grads = momentum1_host[momentum1_offsets_data[feature_begin] + idx] + g_avg_square; momentum1_host[momentum1_offsets_data[feature_begin] + idx] = new_sum_square_grads; at::acc_type<grad_t, true> multiplier; multiplier = learning_rate / (sqrtf(new_sum_square_grads) + eps); at::acc_type<grad_t, true> correction; if (weight_decay_mode == 1) { // L2 regularization correction = 1.0 - multiplier * weight_decay; } else if (weight_decay_mode == 2) { // Decoupled weight decay correction = 1.0 - learning_rate * weight_decay; } else { // default value correction = 1.0; } for (int64_t d = 0; d < D; ++d) { host_weights_data[embedding_begin + d] = correction * host_weights_data[embedding_begin + d] - grad_buffer[d] * multiplier; } """ return { "optimizer": "rowwise_adagrad_with_weight_decay", "args": make_args( [ (TENSOR, "momentum1"), (FLOAT, "eps"), (FLOAT, "learning_rate"), (FLOAT, "weight_decay", 0.0), (INT, "weight_decay_mode", 0), ] ), "split_precomputation": split_precomputation, "split_weight_update": split_weight_update, "split_post_update": "", "split_weight_update_cpu": split_weight_update_cpu, "has_cpu_support": False, "has_gpu_support": True, "has_vbe_support": False, } def approx_rowwise_adagrad_with_weight_decay() -> Dict[str, Any]: rowwise_adagrad_with_weight_decay_args = rowwise_adagrad_with_weight_decay() approx_split_weight_update = """ // dummy computation to avoid unused variable warning weight_new.fma_(grad, -multiplier); assert(false); // approx rowwise AdaGrad is not supported on GPU """ return { "optimizer": "approx_rowwise_adagrad_with_weight_decay", "args": make_args( [ (TENSOR, "momentum1"), (FLOAT, "eps"), (FLOAT, "learning_rate"), (FLOAT, "weight_decay", 0.0), (INT, "weight_decay_mode", 0), ] ), "split_precomputation": rowwise_adagrad_with_weight_decay_args[ "split_precomputation" ], "split_weight_update": approx_split_weight_update, "split_post_update": "", "split_weight_update_cpu": rowwise_adagrad_with_weight_decay_args[ "split_weight_update_cpu" ], "has_cpu_support": False, "has_gpu_support": True, "has_vbe_support": False, } def rowwise_adagrad_with_counter() -> Dict[str, Any]: split_weight_update = """ weight_new.acc.x = (exp_reg_correction * weight_new.acc.x - adjusted_multiplier * grad.acc.x); weight_new.acc.y = (exp_reg_correction * weight_new.acc.y - adjusted_multiplier * grad.acc.y); weight_new.acc.z = (exp_reg_correction * weight_new.acc.z - adjusted_multiplier * grad.acc.z); weight_new.acc.w = (exp_reg_correction * weight_new.acc.w - adjusted_multiplier * grad.acc.w); """ split_precomputation = """ at::acc_type<cache_t, true> freq = 1.0; at::acc_type<cache_t, true> l2_wd = 0.0; at::acc_type<cache_t, true> tail_id_threshold_val = tail_id_threshold; CUDA_KERNEL_ASSERT(max_counter > 0.0); // avoid divide by zero error if (is_tail_id_thresh_ratio == 1){ tail_id_threshold_val = floorf(tail_id_threshold * max_counter); } if (counter_halflife > 0 && threadIdx.x == 0) { // if id occurs multiple times in a batch, iter_delta=1 const auto iter_delta = prev_iter[idx] == 0 ? 1.0 : iter * 1.0 - prev_iter[idx]; prev_iter[idx] = iter * 1.0; const auto counter_log_rho = logf(2.0) / counter_halflife; row_counter[idx] = 1.0 + expf(-iter_delta * counter_log_rho) * row_counter[idx]; freq = counter_halflife / row_counter[idx]; if (weight_decay_mode == 1) { // L2 regularization l2_wd = 1.0; } } freq = SHFL_SYNC(freq, 0); l2_wd = SHFL_SYNC(l2_wd, 0); tail_id_threshold_val = SHFL_SYNC(tail_id_threshold_val, 0); at::acc_type<cache_t, true> g_local_sum_square = 0.0; #pragma unroll kMaxVecsPerThread for (int32_t i = 0; i < kMaxVecsPerThread && 4 * kThreadGroupSize * i + threadIdx.x * 4 < D; ++i) { int32_t d = 4 * kThreadGroupSize * i + threadIdx.x * 4; Vec4T<at::acc_type<cache_t, true>> weight = weight_row_template.load(d, qparams_template); auto gx = grad_sum[i].acc.x + l2_wd * freq * weight_decay * weight.acc.x; auto gy = grad_sum[i].acc.y + l2_wd * freq * weight_decay * weight.acc.y; auto gz = grad_sum[i].acc.z + l2_wd * freq * weight_decay * weight.acc.z; auto gw = grad_sum[i].acc.w + l2_wd * freq * weight_decay * weight.acc.w; g_local_sum_square += gx * gx + gy * gy + gz * gz + gw * gw; } const at::acc_type<cache_t, true> g_avg_square = warpReduceAllSum<at::acc_type<cache_t, true>, kThreadGroupSize>(g_local_sum_square, shfl_sync_mask) / D; at::acc_type<cache_t, true> multiplier; at::acc_type<cache_t, true> adjusted_multiplier; at::acc_type<cache_t, true> exp_reg_correction; if (threadIdx.x == 0) { at::acc_type<cache_t, true> new_sum_square_grads = momentum1[idx] + g_avg_square; momentum1[idx] = new_sum_square_grads; multiplier = learning_rate / (sqrtf(new_sum_square_grads) + eps); adjusted_multiplier = multiplier; if ( learning_rate_mode >=0 ) { if (adjustment_iter <= 0 || (adjustment_iter > 0 && iter > adjustment_iter)) { if (row_counter[idx] > tail_id_threshold_val) { if ( learning_rate_mode == 0 ) { adjusted_multiplier = multiplier * max(min(powf(max_counter/(row_counter[idx] + 1.0), adjustment_ub), 10.0), 1.0); } else if ( learning_rate_mode == 1 ) { adjusted_multiplier = multiplier * min(max(powf((row_counter[idx] + 1.0)/max_counter, adjustment_ub), 0.1), 1.0); } else if (learning_rate_mode == 2) { adjusted_multiplier = learning_rate / (sqrtf(adjustment_ub*row_counter[idx]) + eps); } } } } exp_reg_correction = 1.0; if (adjustment_iter <= 0 || (adjustment_iter > 0 && iter > adjustment_iter)) { if (weight_decay_mode == 2) { // Decoupled weight decay exp_reg_correction = 1.0 - freq * weight_decay * learning_rate; } else if (weight_decay_mode == 1) { // L2 regularization (coupled wd) exp_reg_correction = 1.0 - freq * weight_decay * multiplier; } } } multiplier = SHFL_SYNC(multiplier, 0); adjusted_multiplier = SHFL_SYNC(adjusted_multiplier, 0); exp_reg_correction = SHFL_SYNC(exp_reg_correction, 0); """ split_weight_update_cpu = """ at::acc_type<grad_t, true> g_local_sum_square = 0.0; for (int64_t d = 0; d < D; ++d) { g_local_sum_square += grad_buffer[d] * grad_buffer[d]; } auto g_avg_square = g_local_sum_square / D; auto offset_idx = momentum1_offsets_data[feature_begin] + idx; at::acc_type<grad_t, true> new_sum_square_grads = momentum1_host[offset_idx] + g_avg_square; momentum1_host[offset_idx] = new_sum_square_grads; at::acc_type<grad_t, true> multiplier; multiplier = learning_rate / (sqrtf(new_sum_square_grads) + eps); const auto iter_delta = iter * 1.0 - prev_iter_host[offset_idx]; prev_iter_host[offset_idx] = iter * 1.0; const auto exp_reg = 1.0 / (weight_decay * multiplier + 1.0); const auto exp_reg_correction = powf(exp_reg, iter_delta); for (int64_t d = 0; d < D; ++d) { const auto weight = host_weights_data[embedding_begin + d]; host_weights_data[embedding_begin + d] = exp_reg_correction * weight - exp_reg * multiplier * grad_buffer[d]; } """ return { "optimizer": "rowwise_adagrad_with_counter", "args": make_args( [ (TENSOR, "momentum1"), (TENSOR, "prev_iter"), (TENSOR, "row_counter"), (FLOAT, "eps"), (FLOAT, "learning_rate"), (FLOAT, "weight_decay", 0.0), (INT, "iter"), (INT, "counter_halflife", -1), (INT, "adjustment_iter", -1), (FLOAT, "adjustment_ub", 1.0), (INT, "learning_rate_mode", -1), (INT, "weight_decay_mode", 1), (INT, "grad_sum_decay", -1), (FLOAT, "max_counter"), (FLOAT, "tail_id_threshold", 0.0), (INT, "is_tail_id_thresh_ratio", 0), ] ), "split_precomputation": split_precomputation, "split_weight_update": split_weight_update, "split_post_update": "", "split_weight_update_cpu": split_weight_update_cpu, "has_cpu_support": True, "has_gpu_support": True, "has_vbe_support": False, } def approx_rowwise_adagrad_with_counter() -> Dict[str, Any]: rowwise_adagrad_with_counter_args = rowwise_adagrad_with_counter() approx_split_weight_update = """ // dummy computation to avoid unused variable warning weight_new.fma_(grad, -multiplier); assert(false); // approx rowwise AdaGrad is not supported on GPU """ return { "optimizer": "approx_rowwise_adagrad_with_counter", "args": make_args( [ (TENSOR, "momentum1"), (TENSOR, "prev_iter"), (TENSOR, "row_counter"), (FLOAT, "eps"), (FLOAT, "learning_rate"), (FLOAT, "weight_decay", 0.0), (INT, "iter"), (INT, "counter_halflife", -1), (INT, "adjustment_iter", -1), (FLOAT, "adjustment_ub", 1.0), (INT, "learning_rate_mode", -1), (INT, "weight_decay_mode", 1), (INT, "grad_sum_decay", -1), (FLOAT, "max_counter"), (FLOAT, "tail_id_threshold", 0.0), (INT, "is_tail_id_thresh_ratio", 0), ] ), "split_precomputation": rowwise_adagrad_with_counter_args[ "split_precomputation" ], "split_weight_update": approx_split_weight_update, "split_post_update": "", "split_weight_update_cpu": rowwise_adagrad_with_counter_args[ "split_weight_update_cpu" ], "has_cpu_support": False, "has_gpu_support": False, "has_vbe_support": False, } def rowwise_weighted_adagrad() -> Dict[str, Any]: split_weight_update = """ weight_new.acc.x = correction * weight_new.acc.x - multiplier * grad.acc.x; weight_new.acc.y = correction * weight_new.acc.y - multiplier * grad.acc.y; weight_new.acc.z = correction * weight_new.acc.z - multiplier * grad.acc.z; weight_new.acc.w = correction * weight_new.acc.w - multiplier * grad.acc.w; """ split_precomputation = """ at::acc_type<cache_t, true> g_local_sum_square = 0.0; #pragma unroll kMaxVecsPerThread for (int32_t i = 0; i < kMaxVecsPerThread && 4 * kThreadGroupSize * i + threadIdx.x * 4 < D; ++i) { int32_t d = 4 * kThreadGroupSize * i + threadIdx.x * 4; Vec4T<at::acc_type<cache_t, true>> weight = weight_row_template.load(d, qparams_template); auto gx = grad_sum[i].acc.x + weight_decay * weight.acc.x; auto gy = grad_sum[i].acc.y + weight_decay * weight.acc.y; auto gz = grad_sum[i].acc.z + weight_decay * weight.acc.z; auto gw = grad_sum[i].acc.w + weight_decay * weight.acc.w; g_local_sum_square += gx * gx + gy * gy + gz * gz + gw * gw; } const at::acc_type<cache_t, true> g_avg_square = warpReduceAllSum<at::acc_type<cache_t, true>, kThreadGroupSize>(g_local_sum_square, shfl_sync_mask) / D; at::acc_type<cache_t, true> multiplier; at::acc_type<cache_t, true> correction; if (threadIdx.x == 0) { at::acc_type<cache_t, true> lambda = sqrtf(iter + 1); at::acc_type<cache_t, true> new_sum_square_grads = momentum1[idx] + lambda * g_avg_square; momentum1[idx] = new_sum_square_grads; multiplier = learning_rate * lambda / (cbrtf(new_sum_square_grads) + eps); correction = 1.0 - multiplier * weight_decay; } multiplier = SHFL_SYNC(multiplier, 0); correction = SHFL_SYNC(correction, 0); """ split_weight_update_cpu = """ // weight_decay not supported for cpu version at::acc_type<grad_t, true> g_local_sum_square = 0.0; for (int64_t d = 0; d < D; ++d) { g_local_sum_square += grad_buffer[d] * grad_buffer[d]; } auto g_avg_square = g_local_sum_square / D; at::acc_type<grad_t, true> lambda = sqrtf(iter + 1); at::acc_type<grad_t, true> new_sum_square_grads = momentum1_host[momentum1_offsets_data[feature_begin] + idx] + lambda * g_avg_square; momentum1_host[momentum1_offsets_data[feature_begin] + idx] = new_sum_square_grads; at::acc_type<grad_t, true> multiplier; multiplier = learning_rate * lambda / (cbrtf(new_sum_square_grads) + eps); for (int64_t d = 0; d < D; ++d) { host_weights_data[embedding_begin + d] -= grad_buffer[d] * multiplier; } """ return { "optimizer": "rowwise_weighted_adagrad", "is_experimental_optimizer": True, "args": make_args( [ (TENSOR, "momentum1"), (FLOAT, "eps"), (FLOAT, "learning_rate"), (FLOAT, "weight_decay"), (INT, "iter"), ] ), "split_precomputation": split_precomputation, "split_weight_update": split_weight_update, "split_post_update": "", "split_weight_update_cpu": split_weight_update_cpu, "has_cpu_support": True, "has_gpu_support": True, "has_vbe_support": False, } def sgd() -> Dict[str, Any]: split_weight_update = """ weight_new.fma_(grad, -learning_rate); """ split_weight_update_cpu = """ for (int64_t d = 0; d < D; ++d) { host_weights_data[embedding_begin + d] -= learning_rate * grad_buffer[d]; } """ return { "optimizer": "sgd", "args": make_args([(FLOAT, "learning_rate")]), "split_precomputation": "", "split_weight_update": split_weight_update, "split_post_update": "", "split_weight_update_cpu": split_weight_update_cpu, "has_cpu_support": True, "has_gpu_support": True, "has_vbe_support": True, } def approx_sgd() -> Dict[str, Any]: sgd_args = sgd() approx_split_weight_update = """ // approx_sgd not supported for GPU. // Just do the same thing as exact sgd to avoid unused variable warning. weight_new.fma_(grad, -learning_rate); assert(false); // approx SGD is not supported on GPU """ return { "optimizer": "approx_sgd", "args": make_args([(FLOAT, "learning_rate")]), "split_precomputation": "", "split_weight_update": approx_split_weight_update, "split_post_update": "", "split_weight_update_cpu": sgd_args["split_weight_update_cpu"], "has_cpu_support": False, "has_gpu_support": False, "has_vbe_support": False, } def lamb() -> Dict[str, Any]: split_precomputation = """ at::acc_type<cache_t, true> weight_sum_sq = 0.0; at::acc_type<cache_t, true> rtw_sum_sq = 0.0; auto weight_row = WeightRow<emb_t, cache_t, at::acc_type<cache_t, true>>(weights, cache_weights, D, nullptr); float2 qparams; if (std::is_same<emb_t, uint8_t>::value && !cache_weights) { qparams = weight_row.load_qparams(); } #pragma unroll 1 for (int32_t i = 0; i < kMaxVecsPerThread && 4 * kThreadGroupSize * i + threadIdx.x * 4 < D; ++i) { int32_t d = 4 * kThreadGroupSize * i + threadIdx.x * 4; Vec4T<at::acc_type<cache_t, true>> weight = weight_row.load(d, qparams); Vec4T<at::acc_type<cache_t, true>> m1(&momentum1[idx * D + d]); m1.acc.x = beta1 * m1.acc.x + (1.0 - beta1) * grad_sum[i].acc.x; m1.acc.y = beta1 * m1.acc.y + (1.0 - beta1) * grad_sum[i].acc.y; m1.acc.z = beta1 * m1.acc.z + (1.0 - beta1) * grad_sum[i].acc.z; m1.acc.w = beta1 * m1.acc.w + (1.0 - beta1) * grad_sum[i].acc.w; m1.store(&momentum1[idx * D + d]); Vec4T<at::acc_type<cache_t, true>> m2(&momentum2[idx * D + d]); m2.acc.x = beta2 * m2.acc.x + (1.0 - beta2) * grad_sum[i].acc.x * grad_sum[i].acc.x; m2.acc.y = beta2 * m2.acc.y + (1.0 - beta2) * grad_sum[i].acc.y * grad_sum[i].acc.y; m2.acc.z = beta2 * m2.acc.z + (1.0 - beta2) * grad_sum[i].acc.z * grad_sum[i].acc.z; m2.acc.w = beta2 * m2.acc.w + (1.0 - beta2) * grad_sum[i].acc.w * grad_sum[i].acc.w; m2.store(&momentum2[idx * D + d]); // now, we are finished with grad_sum. We can *reuse* grad_sum to store r_t + weight_decay * weight; grad_sum[i].acc.x = (m1.acc.x / (1.0 - powf(beta1, iter))) / (sqrtf((m2.acc.x / (1.0 - powf(beta2, iter)))) + eps) + weight_decay * weight.acc.x; grad_sum[i].acc.y = (m1.acc.y / (1.0 - powf(beta1, iter))) / (sqrtf((m2.acc.y / (1.0 - powf(beta2, iter)))) + eps) + weight_decay * weight.acc.y; grad_sum[i].acc.z = (m1.acc.z / (1.0 - powf(beta1, iter))) / (sqrtf((m2.acc.z / (1.0 - powf(beta2, iter)))) + eps) + weight_decay * weight.acc.z; grad_sum[i].acc.w = (m1.acc.w / (1.0 - powf(beta1, iter))) / (sqrtf((m2.acc.w / (1.0 - powf(beta2, iter)))) + eps) + weight_decay * weight.acc.w; weight_sum_sq += weight.acc.x * weight.acc.x + weight.acc.y * weight.acc.y + weight.acc.z * weight.acc.z + weight.acc.w * weight.acc.w; rtw_sum_sq += grad_sum[i].acc.x * grad_sum[i].acc.x + grad_sum[i].acc.y * grad_sum[i].acc.y + grad_sum[i].acc.z * grad_sum[i].acc.z + grad_sum[i].acc.w * grad_sum[i].acc.w; } const auto weight_norm = sqrtf(warpReduceAllSum<at::acc_type<cache_t, true>, kThreadGroupSize>(weight_sum_sq, shfl_sync_mask)); const auto rtw_norm = sqrtf(warpReduceAllSum<at::acc_type<cache_t, true>, kThreadGroupSize>(rtw_sum_sq, shfl_sync_mask)); const auto true_ratio = weight_norm / rtw_norm; """ split_weight_update = """ weight_new.fma_(grad, -learning_rate * true_ratio); """ split_weight_update_cpu = "" return { "optimizer": "lamb", "is_experimental_optimizer": True, "args": make_args( [ (TENSOR, "momentum1"), (TENSOR, "momentum2"), (FLOAT, "learning_rate"), (FLOAT, "eps"), (FLOAT, "beta1"), (FLOAT, "beta2"), (FLOAT, "weight_decay"), (INT, "iter"), ] ), "split_precomputation": split_precomputation, "split_weight_update": split_weight_update, "split_post_update": "", "split_weight_update_cpu": split_weight_update_cpu, "has_cpu_support": False, "has_gpu_support": True, "has_vbe_support": False, } def partial_rowwise_lamb() -> Dict[str, Any]: split_precomputation = """ at::acc_type<cache_t, true> g_local_sum_square = 0.0; #pragma unroll kMaxVecsPerThread for (int32_t i = 0; i < kMaxVecsPerThread && 4 * kThreadGroupSize * i + threadIdx.x * 4 < D; ++i) { g_local_sum_square += grad_sum[i].acc.x * grad_sum[i].acc.x + grad_sum[i].acc.y * grad_sum[i].acc.y + grad_sum[i].acc.z * grad_sum[i].acc.z + grad_sum[i].acc.w * grad_sum[i].acc.w; } const at::acc_type<cache_t, true> g_avg_square = warpReduceAllSum<at::acc_type<cache_t, true>, kThreadGroupSize>(g_local_sum_square, shfl_sync_mask) / D; at::acc_type<cache_t, true> m2; if (threadIdx.x == 0) { m2 = beta2 * momentum2[idx] + (1.0 - beta2) * g_avg_square; momentum2[idx] = m2; } m2 = SHFL_SYNC(m2, 0); at::acc_type<cache_t, true> m2_hat = 1.0 / (sqrtf((m2 / (1.0 - powf(beta2, iter)))) + eps); at::acc_type<cache_t, true> weight_sum_sq = 0.0; at::acc_type<cache_t, true> rtw_sum_sq = 0.0; auto weight_row = WeightRow<emb_t, cache_t, at::acc_type<cache_t, true>>(weights, cache_weights, D, nullptr); float2 qparams; if (std::is_same<emb_t, uint8_t>::value && !cache_weights) { qparams = weight_row.load_qparams(); } #pragma unroll kMaxVecsPerThread for (int32_t i = 0; i < kMaxVecsPerThread && 4 * kThreadGroupSize * i + threadIdx.x * 4 < D; ++i) { int32_t d = 4 * kThreadGroupSize * i + threadIdx.x * 4; Vec4T<at::acc_type<cache_t, true>> m1(&momentum1[idx * D + d]); m1.acc.x = beta1 * m1.acc.x + (1.0 - beta1) * grad_sum[i].acc.x; m1.acc.y = beta1 * m1.acc.y + (1.0 - beta1) * grad_sum[i].acc.y; m1.acc.z = beta1 * m1.acc.z + (1.0 - beta1) * grad_sum[i].acc.z; m1.acc.w = beta1 * m1.acc.w + (1.0 - beta1) * grad_sum[i].acc.w; m1.store(&momentum1[idx * D + d]); // now, we are finished with grad_sum. We can *reuse* grad_sum to store r_t + weight_decay * weight; Vec4T<at::acc_type<cache_t, true>> weight = weight_row.load(d, qparams); grad_sum[i].acc.x = (m1.acc.x / (1.0 - powf(beta1, iter))) * m2_hat + weight_decay * weight.acc.x; grad_sum[i].acc.y = (m1.acc.y / (1.0 - powf(beta1, iter))) * m2_hat + weight_decay * weight.acc.y; grad_sum[i].acc.z = (m1.acc.z / (1.0 - powf(beta1, iter))) * m2_hat + weight_decay * weight.acc.z; grad_sum[i].acc.w = (m1.acc.w / (1.0 - powf(beta1, iter))) * m2_hat + weight_decay * weight.acc.w; weight_sum_sq += weight.acc.x * weight.acc.x + weight.acc.y * weight.acc.y + weight.acc.z * weight.acc.z + weight.acc.w * weight.acc.w; rtw_sum_sq += grad_sum[i].acc.x * grad_sum[i].acc.x + grad_sum[i].acc.y * grad_sum[i].acc.y + grad_sum[i].acc.z * grad_sum[i].acc.z + grad_sum[i].acc.w * grad_sum[i].acc.w; } const auto weight_norm = sqrtf(warpReduceAllSum<at::acc_type<cache_t, true>, kThreadGroupSize>(weight_sum_sq)); const auto rtw_norm = sqrtf(warpReduceAllSum<at::acc_type<cache_t, true>, kThreadGroupSize>(rtw_sum_sq)); const auto true_ratio = weight_norm / rtw_norm; """ split_weight_update = """ weight_new.fma_(grad, -learning_rate * true_ratio); """ split_weight_update_cpu = "" # TODO return { "optimizer": "partial_rowwise_lamb", "args": make_args( [ (TENSOR, "momentum1"), (TENSOR, "momentum2"), (FLOAT, "learning_rate"), (FLOAT, "eps"), (FLOAT, "beta1"), (FLOAT, "beta2"), (FLOAT, "weight_decay"), (INT, "iter"), ] ), "split_precomputation": split_precomputation, "split_weight_update": split_weight_update, "split_post_update": "", "split_weight_update_cpu": split_weight_update_cpu, "has_cpu_support": False, "has_gpu_support": True, "has_vbe_support": False, } def adam() -> Dict[str, Any]: split_weight_update = """ Vec4T<cache_t> m_t(&momentum1[idx * D + d]); m_t.acc.x *= beta1; m_t.acc.y *= beta1; m_t.acc.z *= beta1; m_t.acc.w *= beta1; m_t.fma_(grad, 1.0 - beta1); m_t.store(&momentum1[idx * D + d]); Vec4T<cache_t> v_t(&momentum2[idx * D + d]); v_t.acc.x *= beta2; v_t.acc.y *= beta2; v_t.acc.z *= beta2; v_t.acc.w *= beta2; grad.acc.x *= grad.acc.x; grad.acc.y *= grad.acc.y; grad.acc.z *= grad.acc.z; grad.acc.w *= grad.acc.w; v_t.fma_(grad, 1.0 - beta2); v_t.store(&momentum2[idx * D + d]); weight_new.acc.x -= learning_rate * (m_t.acc.x / (1.0 - powf(beta1, iter)) / (sqrtf((v_t.acc.x / (1.0 - powf(beta2, iter)))) + eps) + weight_decay * weight_new.acc.x); weight_new.acc.y -= learning_rate * (m_t.acc.y / (1.0 - powf(beta1, iter)) / (sqrtf((v_t.acc.y / (1.0 - powf(beta2, iter)))) + eps) + weight_decay * weight_new.acc.y); weight_new.acc.z -= learning_rate * (m_t.acc.z / (1.0 - powf(beta1, iter)) / (sqrtf((v_t.acc.z / (1.0 - powf(beta2, iter)))) + eps) + weight_decay * weight_new.acc.z); weight_new.acc.w -= learning_rate * (m_t.acc.w / (1.0 - powf(beta1, iter)) / (sqrtf((v_t.acc.w / (1.0 - powf(beta2, iter)))) + eps) + weight_decay * weight_new.acc.w); """ split_weight_update_cpu = "" # TODO return { "optimizer": "adam", "is_experimental_optimizer": True, "args": make_args( [ (TENSOR, "momentum1"), (TENSOR, "momentum2"), (FLOAT, "learning_rate"), (FLOAT, "eps"), (FLOAT, "beta1"), (FLOAT, "beta2"), (FLOAT, "weight_decay"), (INT, "iter"), ] ), "split_precomputation": "", "split_weight_update": split_weight_update, "split_post_update": "", "split_weight_update_cpu": split_weight_update_cpu, "has_cpu_support": False, "has_gpu_support": True, "has_vbe_support": False, } def partial_rowwise_adam() -> Dict[str, Any]: split_precomputation = """ at::acc_type<cache_t, true> g_local_sum_square = 0.0; #pragma unroll kMaxVecsPerThread for (int32_t i = 0; i < kMaxVecsPerThread && 4 * kThreadGroupSize * i + threadIdx.x * 4 < D; ++i) { g_local_sum_square += grad_sum[i].acc.x * grad_sum[i].acc.x + grad_sum[i].acc.y * grad_sum[i].acc.y + grad_sum[i].acc.z * grad_sum[i].acc.z + grad_sum[i].acc.w * grad_sum[i].acc.w; } const at::acc_type<cache_t, true> g_avg_square = warpReduceAllSum<at::acc_type<cache_t, true>, kThreadGroupSize>(g_local_sum_square) / D; at::acc_type<cache_t, true> v_hat_t; if (threadIdx.x == 0) { at::acc_type<cache_t, true> v_t = momentum2[idx] * beta2 + g_avg_square * (1.0 - beta2); momentum2[idx] = v_t; v_hat_t = v_t / (1.0 - powf(beta2, iter)); } v_hat_t = SHFL_SYNC(v_hat_t, 0); """ split_weight_update = """ Vec4T<cache_t> m_t(&momentum1[idx * D + d]); m_t.acc.x *= beta1; m_t.acc.y *= beta1; m_t.acc.z *= beta1; m_t.acc.w *= beta1; m_t.fma_(grad, 1.0 - beta1); m_t.store(&momentum1[idx * D + d]); weight_new.acc.x -= learning_rate * (m_t.acc.x / (1.0 - powf(beta1, iter)) / (sqrtf(v_hat_t) + eps) + weight_decay * weight_new.acc.x); weight_new.acc.y -= learning_rate * (m_t.acc.y / (1.0 - powf(beta1, iter)) / (sqrtf(v_hat_t) + eps) + weight_decay * weight_new.acc.y); weight_new.acc.z -= learning_rate * (m_t.acc.z / (1.0 - powf(beta1, iter)) / (sqrtf(v_hat_t) + eps) + weight_decay * weight_new.acc.z); weight_new.acc.w -= learning_rate * (m_t.acc.w / (1.0 - powf(beta1, iter)) / (sqrtf(v_hat_t) + eps) + weight_decay * weight_new.acc.w); """ split_weight_update_cpu = "" # TODO return { "optimizer": "partial_rowwise_adam", "args": make_args( [ (TENSOR, "momentum1"), (TENSOR, "momentum2"), (FLOAT, "learning_rate"), (FLOAT, "eps"), (FLOAT, "beta1"), (FLOAT, "beta2"), (FLOAT, "weight_decay"), (INT, "iter"), ] ), "split_precomputation": split_precomputation, "split_weight_update": split_weight_update, "split_post_update": "", "split_weight_update_cpu": split_weight_update_cpu, "has_cpu_support": False, "has_gpu_support": True, "has_vbe_support": False, } def lars_sgd() -> Dict[str, Any]: split_precomputation = """ at::acc_type<cache_t, true> weight_sum_sq = 0.0; at::acc_type<cache_t, true> grad_sum_sq = 0.0; auto weight_row = WeightRow<emb_t, cache_t, at::acc_type<cache_t, true>>(weights, cache_weights, D, nullptr); float2 qparams; if (std::is_same<emb_t, uint8_t>::value && !cache_weights) { qparams = weight_row.load_qparams(); } #pragma unroll kMaxVecsPerThread for (int32_t i = 0; i < kMaxVecsPerThread && 4 * kThreadGroupSize * i + threadIdx.x * 4 < D; ++i) { int32_t d = 4 * kThreadGroupSize * i + threadIdx.x * 4; Vec4T<at::acc_type<cache_t,true>> weight = weight_row.load(d, qparams); weight_sum_sq += weight.acc.x * weight.acc.x + weight.acc.y * weight.acc.y + weight.acc.z * weight.acc.z + weight.acc.w * weight.acc.w; grad_sum_sq += grad_sum[i].acc.x * grad_sum[i].acc.x + grad_sum[i].acc.y * grad_sum[i].acc.y + grad_sum[i].acc.z * grad_sum[i].acc.z + grad_sum[i].acc.w * grad_sum[i].acc.w; } const auto weight_norm = sqrtf(warpReduceAllSum<at::acc_type<cache_t, true>, kThreadGroupSize>(weight_sum_sq)); const auto grad_norm = sqrtf(warpReduceAllSum<at::acc_type<cache_t, true>, kThreadGroupSize>(grad_sum_sq)); const at::acc_type<cache_t, true> adjusted_lr = learning_rate * eta * weight_norm / (grad_norm + weight_decay * weight_norm); """ split_weight_update = """ Vec4T<cache_t> m1(&momentum1[idx * D + d]); m1.acc.x = momentum * m1.acc.x + adjusted_lr * (grad.acc.x + weight_decay * weight_new.acc.x); m1.acc.y = momentum * m1.acc.y + adjusted_lr * (grad.acc.y + weight_decay * weight_new.acc.y); m1.acc.z = momentum * m1.acc.z + adjusted_lr * (grad.acc.z + weight_decay * weight_new.acc.z); m1.acc.w = momentum * m1.acc.w + adjusted_lr * (grad.acc.w + weight_decay * weight_new.acc.w); m1.store(&momentum1[idx * D + d]); weight_new.acc.x -= m1.acc.x; weight_new.acc.y -= m1.acc.y; weight_new.acc.z -= m1.acc.z; weight_new.acc.w -= m1.acc.w; """ split_weight_update_cpu = "" # TODO return { "optimizer": "lars_sgd", "is_experimental_optimizer": True, "args": make_args( [ (TENSOR, "momentum1"), (FLOAT, "learning_rate"), (FLOAT, "eta"), (FLOAT, "momentum"), (FLOAT, "weight_decay"), ] ), "split_precomputation": split_precomputation, "split_weight_update": split_weight_update, "split_post_update": "", "split_weight_update_cpu": split_weight_update_cpu, "has_cpu_support": False, "has_gpu_support": True, "has_vbe_support": False, } def none_optimizer() -> Dict[str, Any]: return { "optimizer": "none", "dense": False, "args": make_args( [ (INT, "total_hash_size"), (INT, "total_unique_indices"), ] ), # Generate only GPU code "has_cpu_support": False, "has_gpu_support": True, "has_vbe_support": False, }
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from typing import NamedTuple import torch from torch import nn class SplitEmbeddingOptimizerParams(NamedTuple): weights_dev: nn.Parameter # TODO: Enable weights_uvm and weights_lxu_cache support # weights_uvm: nn.Parameter # weights_lxu_cache: nn.Parameter class SplitEmbeddingArgs(NamedTuple): weights_placements: torch.Tensor weights_offsets: torch.Tensor max_D: int
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from typing import NamedTuple, Optional import torch class VBEMetadata(NamedTuple): B_offsets: Optional[torch.Tensor] output_offsets_feature_rank: Optional[torch.Tensor] B_offsets_rank_per_feature: Optional[torch.Tensor] max_B_feature_rank: int = -1 max_B: int = -1 output_size: int = -1 class CommonArgs(NamedTuple): placeholder_autograd_tensor: torch.Tensor dev_weights: torch.Tensor host_weights: torch.Tensor uvm_weights: torch.Tensor lxu_cache_weights: torch.Tensor weights_placements: torch.Tensor weights_offsets: torch.Tensor D_offsets: torch.Tensor total_D: int max_D: int hash_size_cumsum: torch.Tensor total_hash_size_bits: int indices: torch.Tensor offsets: torch.Tensor pooling_mode: int indice_weights: Optional[torch.Tensor] feature_requires_grad: Optional[torch.Tensor] lxu_cache_locations: torch.Tensor output_dtype: int vbe_metadata: VBEMetadata is_experimental: bool class OptimizerArgs(NamedTuple): stochastic_rounding: bool gradient_clipping: bool max_gradient: float learning_rate: float eps: float beta1: float beta2: float weight_decay: float weight_decay_mode: int eta: float momentum: float counter_halflife: int adjustment_iter: int adjustment_ub: float learning_rate_mode: int grad_sum_decay: int tail_id_threshold: float is_tail_id_thresh_ratio: int total_hash_size: int # Required for OptimType.NONE class Momentum(NamedTuple): dev: torch.Tensor host: torch.Tensor uvm: torch.Tensor offsets: torch.Tensor placements: torch.Tensor
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. # Configuration file for the Sphinx documentation builder. # # This file only contains a selection of the most common options. For a full # list see the documentation: # http://www.sphinx-doc.org/en/master/config # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # # import os # import sys # sys.path.insert(0, os.path.abspath('.')) import os import subprocess def configureDoxyfile(input_dir, output_dir): with open("Doxyfile.in", "r") as file: filedata = file.read() filedata = filedata.replace("@DOXYGEN_INPUT_DIR@", input_dir) filedata = filedata.replace("@DOXYGEN_OUTPUT_DIR@", output_dir) with open("Doxyfile", "w") as file: file.write(filedata) # Check if we're running on Read the Docs' servers read_the_docs_build = os.environ.get("READTHEDOCS", None) == "True" breathe_projects = {} if read_the_docs_build: input_dir = "../include/fbgemm" output_dir = "build" configureDoxyfile(input_dir, output_dir) subprocess.call("doxygen", shell=True) breathe_projects["fbgemm"] = output_dir + "/xml" # -- Project information ----------------------------------------------------- project = "FBGEMM" copyright = "2020, Facebook Inc." author = "Facebook Inc." # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. # ... extensions = ["breathe"] # ... # Add any paths that contain templates here, relative to this directory. templates_path = ["_templates"] # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = ["_build", "Thumbs.db", ".DS_Store"] # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = "sphinx_rtd_theme" # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ["_static"] # Breathe Configuration breathe_default_project = "FBGEMM"
# Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ## This is a helper script that generates simple Caffe2 models. from caffe2.proto import caffe2_pb2 from caffe2.python import utils # Define a weights network weights = caffe2_pb2.NetDef() weights.name = "init" op = caffe2_pb2.OperatorDef() op.type = "fake_data_provider" op.output.extend(["data"]) weights.op.extend([op]) weights.external_output.extend(op.output) op = caffe2_pb2.OperatorDef() op.type = "GivenTensorFill" op.output.extend(["fc_w"]) op.arg.extend([utils.MakeArgument("shape", [1, 4])]) op.arg.extend([utils.MakeArgument("values", [1.0 for i in range(4)])]) weights.op.extend([op]) weights.external_output.extend(op.output) op = caffe2_pb2.OperatorDef() op.type = "GivenTensorFill" op.output.extend(["fc_b"]) op.arg.extend([utils.MakeArgument("shape", [1, 4])]) op.arg.extend([utils.MakeArgument("values", [1.0 for i in range(4)])]) weights.op.extend([op]) weights.external_output.extend(op.output) # Define an inference net net = caffe2_pb2.NetDef() net.name = "predict" op = caffe2_pb2.OperatorDef() op.type = "fake_operator" op.input.extend(["data"]) op.output.extend(["fake_out"]) net.op.extend([op]) op = caffe2_pb2.OperatorDef() op.type = "FC" op.input.extend(["fake_out"]) op.input.extend(["fc_w"]) op.input.extend(["fc_b"]) op.output.extend(["fc_out"]) net.op.extend([op]) op = caffe2_pb2.OperatorDef() op.type = "Relu" op.input.extend(["fc_out"]) op.output.extend(["relu_out"]) net.op.extend([op]) # Relu out is what we want net.external_output.extend(op.output) # We want DCE to remove this one op = caffe2_pb2.OperatorDef() op.type = "useless_operator" op.input.extend(["fake_out"]) op.output.extend(["useless_out"]) net.op.extend([op]) with open("predictNet.pb", "wb") as f: f.write(net.SerializeToString()) with open("initNet.pb", "wb") as f: f.write(weights.SerializeToString())
# Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from caffe2.proto import caffe2_pb2 from caffe2.python import workspace from google.protobuf import text_format def fix_tensor_fills(init_net_file): init_net_pb = open(init_net_file, "rb").read() init_net = caffe2_pb2.NetDef() init_net.ParseFromString(init_net_pb) for op in init_net.op: if any("indices" in x for x in op.output): op.type = "GivenTensorInt64Fill" elif any("lengths" in x for x in op.output): op.type = "GivenTensorIntFill" open(init_net_file + "txt", "w").write(text_format.MessageToString(init_net)) open(init_net_file, "wb").write(init_net.SerializeToString()) def read_init_net_pbtxt(init_net_file): init_net_txt = open(init_net_file, "r").read() init_net = caffe2_pb2.NetDef() text_format.Merge(init_net_txt, init_net) return init_net def read_init_net(init_net_file): init_net_pb = open(init_net_file, "rb").read() init_net = caffe2_pb2.NetDef() init_net.ParseFromString(init_net_pb) return init_net def read_predict_net(predict_net_file): predict_net_txt = open(predict_net_file, "r").read() predict_net = caffe2_pb2.NetDef() predict_net.name = "the_model" text_format.Merge(predict_net_txt, predict_net) return predict_net def run(predict_net, init_net): workspace.ResetWorkspace() workspace.RunNetOnce(init_net) workspace.CreateNet(predict_net) workspace.RunNet(predict_net.name) out = workspace.FetchBlob(predict_net.external_output[0]) print(out) def parse_args(): parser = argparse.ArgumentParser() parser.add_argument("predict_net", default="predict_net.pbtxt", nargs="?") parser.add_argument("init_net", default="init_net.pb", nargs="?") return parser.parse_args() if __name__ == "__main__": args = parse_args() init_net = read_init_net(args.init_net) predict_net = read_predict_net(args.predict_net) run(predict_net, init_net)
# Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import torch.onnx import torchvision from torch.autograd import Variable # Export ONNX model from PyTorch # Refer to https://pytorch.org/docs/stable/onnx.html class PyTorchPretrainedModel: def __init__(self, model_name): self.model_name = model_name method_to_call = getattr(torchvision.models, self.model_name) self.model = method_to_call(pretrained=True) self.model_parameters_num = len(list(self.model.state_dict())) def export_onnx_model( self, input_name, output_name, batch_size, model_path, verbose ): dummy_input = Variable(torch.randn(batch_size, 3, 224, 224)) input_names = [input_name] + [ "learned_%d" % i for i in range(self.model_parameters_num) ] output_names = [output_name] torch.onnx.export( self.model, dummy_input, model_path, verbose=verbose, input_names=input_names, output_names=output_names, ) if __name__ == "__main__": # For more pretrained model in PyTorch, refer to: # https://pytorch.org/docs/stable/torchvision/models.html parser = argparse.ArgumentParser("ONNX model exported from PyTorch.") parser.add_argument("--model_name", type=str, default="resnet18") parser.add_argument("--model_path", type=str, default="resnet18.onnx") parser.add_argument("--model_input_name", type=str, default="data") parser.add_argument("--model_output_name", type=str, default="output") parser.add_argument("--batch_size", type=int, default=16) parser.add_argument("--verbose", action="store_true") args = parser.parse_args() pytorch_model = PyTorchPretrainedModel(args.model_name) pytorch_model.export_onnx_model( args.model_input_name, args.model_output_name, args.batch_size, args.model_path, args.verbose, )
#!/usr/bin/env python3 # Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import json import re from collections import defaultdict from operator import attrgetter, itemgetter import numpy def formatUs(time): """Format human readable time (input in us).""" if time < 1000: return f"{time:.2f} us" time = time / 1000 if time < 1000: return f"{time:.2f} ms" time = time / 1000 return f"{time:.2f} s" class Event: """Class to hold TraceEvents, matches glow::TraceEvent.""" def __init__(self, name, start, end, optype): self.name = name self.start = start self.end = end self.optype = optype self.children = [] self.child_time = 0 def __repr__(self): return f"Event({self.name}, {self.start}, {self.end}, {self.optype})" def printTree(self, tabs): """Pretty print the tree.""" indent = tabs * "\t" print(f"{indent}{self.name} ({self.optype})") for c in self.children: c.printTree(tabs + 1) def totalOverlap(self, event): """Returns True if this Event completely incloses the provided event.""" return self.start <= event.start and self.end >= event.end def addChild(self, event): """Add an enclosed event.""" self.children.append(event) def updateChildTime(self): """Determine the total time cost of all children.""" self.child_time = 0 for child in self.children: child.updateChildTime() self.child_time += child.end - child.start def selfTime(self): """Return this Event's time cost above the sum of its children.""" return (self.end - self.start) - self.child_time def loadEvents(filename, runtimeEvents, fixedEvent, skip): """Load the json trace file and create Events.""" trace = None with open(filename) as f: trace = json.load(f) events = [] partialEvents = {} for line in trace: if "name" in line: name = line["name"] evtype = line["ph"] start = int(line["ts"]) optype = "runtime" if "args" in line: if "type" in line["args"]: optype = line["args"]["type"] elif "kind" in line["args"]: optype = line["args"]["kind"] # If we're looking for a single event, skip others. if ( fixedEvent and not re.match(fixedEvent, name) and not re.match(fixedEvent, optype) ): continue # if we're not including runtime events, skip them. if not fixedEvent and not runtimeEvents and optype == "runtime": continue # If we're skipping some number of events, skip them. if skip > 0: skip = skip - 1 continue end = 0 if evtype == "X": end = start + int(line["dur"]) events.append(Event(name, start, end, optype)) elif evtype == "B": partialEvents[name] = Event(name, start, end, optype) elif evtype == "E": if not name in partialEvents: # This is a bug in Glow tracing, but ignore for now. continue ev = partialEvents[name] ev.end = start events.append(ev) return events def stackEvents(events): """Find all enclosed events and move them to be children. Returns a tree of Events where parents completely enclose the timeline of their children.""" # Ensure events are sorted by time. events = sorted(events, key=attrgetter("end"), reverse=True) events = sorted(events, key=attrgetter("start")) result = [] lastEvent = None for ev in events: # If ev is enclosed by the previous event, add it as a child. if lastEvent: if lastEvent.totalOverlap(ev): lastEvent.addChild(ev) continue # If we're closing the previous event, recursively stack its children. if lastEvent.children: lastEvent.children = stackEvents(lastEvent.children) lastEvent.updateChildTime() # If not enclosed its a new top-level event, which may enclose other events. lastEvent = ev result.append(ev) # Stack children of the last Event. if lastEvent.children: lastEvent.children = stackEvents(lastEvent.children) lastEvent.updateChildTime() return result def dumpAccumulate(events, keyfunc, traceTime): """Accumulate Event durations by a key produced by keyfunc. Keyfunc is a lambda which takes an Event as a parameter.""" nameMap = defaultdict(list) for ev in events: name = keyfunc(ev) nameMap[name].append(ev.selfTime()) layers = [] for (name, times) in nameMap.items(): layers.append( (name, len(times), numpy.mean(times), numpy.std(times), numpy.sum(times)) ) # Iterate sorted by total time. for (name, num, mean, stddev, total) in sorted( layers, key=itemgetter(4), reverse=True ): mean = formatUs(mean) stddev = formatUs(stddev) pc = (total / traceTime) * 100 total = formatUs(total) print( f"{name} {num} events, mean: {mean}, stddev: {stddev}, total: {total} ({pc:.2f}%)" ) print() print() def main(): parser = argparse.ArgumentParser(description="process trace json") parser.add_argument("filename", type=str, help="filename for trace file to load") parser.add_argument( "--layers", action="store_true", help="aggregate and display by layer names" ) parser.add_argument( "--kinds", action="store_true", help="aggregate and display by op kind" ) parser.add_argument("--runtime", action="store_true", help="include runtime events") parser.add_argument( "--summarize", action="store_true", help="print a summary of the trace" ) parser.add_argument( "--event", type=str, default="", help="restrict events matching this regex" ) parser.add_argument( "--skip", type=int, default=0, help="skip a number of events matching conditions", ) args = parser.parse_args() events = loadEvents(args.filename, args.runtime, args.event, args.skip) if not events: return # Stack events so we can determine selfTime. stacked = stackEvents(events) # Ensure events are sorted by startTime. stacked = sorted(stacked, key=attrgetter("start")) totalTime = stacked[-1].end - stacked[0].start coveredTime = 0 for ev in stacked: coveredTime += ev.end - ev.start if args.layers: dumpAccumulate(events, lambda ev: f"{ev.name} ({ev.optype})", coveredTime) if args.kinds: dumpAccumulate(events, lambda ev: ev.optype, coveredTime) if args.event: dumpAccumulate(events, lambda ev: f"{ev.name} ({ev.optype})", coveredTime) if args.summarize: print("Total time of trace:", formatUs(totalTime)) print("Time covered by events:", formatUs(coveredTime)) print("Unattributed time:", formatUs(totalTime - coveredTime)) if __name__ == "__main__": main()
# Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This was mostly taken from a tutorial from Caffe2: # caffe2/blob/master/caffe2/python/tutorials/py_gen/MNIST.py # It currently allows to train either LeNet or an MLP on MNIST. We can then load # the pre-trained protobuf file into Glow to run. import os import shutil import caffe2.python.predictor.predictor_exporter as pe import numpy as np from caffe2.python import brew, core, model_helper, optimizer, workspace from caffe2.python.predictor import mobile_exporter # If you would like to see some really detailed initializations, # you can change --caffe2_log_level=0 to --caffe2_log_level=-1 core.GlobalInit(["caffe2", "--caffe2_log_level=0"]) print("Necessities imported!") # If True, a more complicated convolutional model is used # If False, a multilayer perceptron model is used USE_LENET_MODEL = True # This section preps your image and test set in a lmdb database def DownloadResource(url, path): """Downloads resources from s3 by url and unzips them to the provided path""" import StringIO import zipfile import requests print("Downloading... {} to {}".format(url, path)) r = requests.get(url, stream=True) z = zipfile.ZipFile(StringIO.StringIO(r.content)) z.extractall(path) print("Completed download and extraction.") current_folder = os.path.join(os.path.expanduser("~"), "caffe2_notebooks") data_folder = os.path.join(current_folder, "tutorial_data", "mnist") root_folder = os.path.join(current_folder, "tutorial_files", "tutorial_mnist") db_missing = False if not os.path.exists(data_folder): os.makedirs(data_folder) print("Your data folder was not found!! This was generated: {}".format(data_folder)) # Look for existing database: lmdb # MNIST lmdb can be found here: # https://download.caffe2.ai/databases/mnist-lmdb.zip if os.path.exists(os.path.join(data_folder, "mnist-train-nchw-lmdb")): print("lmdb train db found!") else: db_missing = True if os.path.exists(os.path.join(data_folder, "mnist-test-nchw-lmdb")): print("lmdb test db found!") else: db_missing = True # attempt the download of the db if either was missing if db_missing: print("one or both of the MNIST lmbd dbs not found!!") db_url = "http://download.caffe2.ai/databases/mnist-lmdb.zip" try: DownloadResource(db_url, data_folder) except Exception as ex: print( "Failed to download dataset. Please download it manually from {}".format( db_url ) ) print( "Unzip it and place the two database folders here: {}".format(data_folder) ) raise ex if os.path.exists(root_folder): print("Looks like you ran this before, so we need to cleanup those old files...") shutil.rmtree(root_folder) os.makedirs(root_folder) workspace.ResetWorkspace(root_folder) print("training data folder:" + data_folder) print("workspace root folder:" + root_folder) def AddInput(model, batch_size, db, db_type): # load the data data_uint8, label = brew.db_input( model, blobs_out=["data_uint8", "label"], batch_size=batch_size, db=db, db_type=db_type, ) print(data_uint8._from_net) # cast the data to float data = model.Cast(data_uint8, "data", to=core.DataType.FLOAT) # scale data from [0,255] down to [0,1] data = model.Scale(data, data, scale=float(1.0 / 256)) # don't need the gradient for the backward pass data = model.StopGradient(data, data) return data, label def AddMLPModel(model, data): size = 28 * 28 * 1 sizes = [size, size * 2, size * 2, 10] layer = data for i in range(len(sizes) - 1): layer = brew.fc( model, layer, "dense_{}".format(i), dim_in=sizes[i], dim_out=sizes[i + 1], use_cudnn=False, ) layer = model.net.Relu(layer, "relu_{}".format(i), use_cudnn=False) softmax = model.net.Softmax(layer, "softmax", use_cudnn=False) return softmax def AddLeNetModel(model, data): """ This part is the standard LeNet model: from data to the softmax prediction. For each convolutional layer we specify dim_in - number of input channels and dim_out - number or output channels. Also each Conv and MaxPool layer changes the image size. For example, kernel of size 5 reduces each side of an image by 4. While when we have kernel and stride sizes equal 2 in a MaxPool layer, it divides each side in half. """ # Image size: 28 x 28 -> 24 x 24 conv1 = brew.conv( model, data, "conv1", dim_in=1, dim_out=20, kernel=5, use_cudnn=False ) # Image size: 24 x 24 -> 12 x 12 pool1 = model.net.MaxPool(conv1, "pool1", kernel=2, stride=2, use_cudnn=False) # Image size: 12 x 12 -> 8 x 8 conv2 = brew.conv( model, pool1, "conv2", dim_in=20, dim_out=50, kernel=5, use_cudnn=False ) # Image size: 8 x 8 -> 4 x 4 pool2 = model.net.MaxPool(conv2, "pool2", kernel=2, stride=2, use_cudnn=False) # 50 * 4 * 4 stands for dim_out from previous layer multiplied by the # image size fc3 = brew.fc(model, pool2, "fc3", dim_in=50 * 4 * 4, dim_out=500, use_cudnn=False) fc3 = model.net.Relu(fc3, "relu3", use_cudnn=False) pred = brew.fc(model, fc3, "pred", 500, 10, use_cudnn=False) softmax = model.net.Softmax(pred, "softmax", use_cudnn=False) return softmax def AddModel(model, data): if USE_LENET_MODEL: return AddLeNetModel(model, data) else: return AddMLPModel(model, data) def AddAccuracy(model, softmax, label): """Adds an accuracy op to the model""" accuracy = model.Accuracy([softmax, label], "accuracy", use_cudnn=False) return accuracy def AddTrainingOperators(model, softmax, label): """Adds training operators to the model.""" xent = model.LabelCrossEntropy([softmax, label], "xent", use_cudnn=False) # compute the expected loss loss = model.AveragedLoss(xent, "loss", use_cudnn=False) # track the accuracy of the model AddAccuracy(model, softmax, label) # use the average loss we just computed to add gradient operators to the # model model.AddGradientOperators([loss]) optimizer.build_sgd( model, base_learning_rate=0.1, policy="step", stepsize=1, gamma=0.999 ) arg_scope = {"order": "NCHW"} train_model = model_helper.ModelHelper(name="mnist_train", arg_scope=arg_scope) data, label = AddInput( train_model, batch_size=64, db=os.path.join(data_folder, "mnist-train-nchw-lmdb"), db_type="lmdb", ) softmax = AddModel(train_model, data) AddTrainingOperators(train_model, softmax, label) test_model = model_helper.ModelHelper( name="mnist_test", arg_scope=arg_scope, init_params=False ) data, label = AddInput( test_model, batch_size=100, db=os.path.join(data_folder, "mnist-test-nchw-lmdb"), db_type="lmdb", ) softmax = AddModel(test_model, data) # Deployment model. We simply need the main AddModel part. deploy_model = model_helper.ModelHelper( name="mnist_deploy", arg_scope=arg_scope, init_params=False ) AddModel(deploy_model, "data") # The parameter initialization network only needs to be run once. # Now all the parameter blobs are going to be initialized in the workspace. workspace.RunNetOnce(train_model.param_init_net) # overwrite=True allows you to run this cell several times and avoid errors workspace.CreateNet(train_model.net, overwrite=True) # Set the iterations number and track the accuracy & loss total_iters = 200 accuracy = np.zeros(total_iters) loss = np.zeros(total_iters) print("The blobs in the workspace pre-train: {}".format(workspace.Blobs())) # Now, we will manually run the network for 200 iterations. for i in range(total_iters): workspace.RunNet(train_model.net) accuracy[i] = workspace.blobs["accuracy"] loss[i] = workspace.blobs["loss"] print("The blobs in the workspace post-train: {}".format(workspace.Blobs())) # param_init_net here will only create a data reader # Other parameters won't be re-created because we selected # init_params=False before workspace.RunNetOnce(test_model.param_init_net) workspace.CreateNet(test_model.net, overwrite=True) test_accuracy = np.zeros(100) for i in range(100): workspace.RunNet(test_model.net.Proto().name) test_accuracy[i] = workspace.FetchBlob("accuracy") print("test_accuracy: %f" % test_accuracy.mean()) # construct the model to be exported # the inputs/outputs of the model are manually specified. pe_meta = pe.PredictorExportMeta( predict_net=deploy_model.net.Proto(), parameters=[str(b) for b in deploy_model.params], inputs=["data"], outputs=["softmax"], ) # save the model to a file. Use minidb as the file format pe.save_to_db("minidb", os.path.join(root_folder, "mnist_model.minidb"), pe_meta) print("The deploy model is saved to: " + root_folder + "/mnist_model.minidb") workspace.RunNetOnce(deploy_model.param_init_net) init_net, predict_net = mobile_exporter.Export( workspace, deploy_model.net, deploy_model.params ) with open("init_net.pb", "wb") as f: f.write(init_net.SerializeToString()) with open("predict_net.pb", "wb") as f: f.write(predict_net.SerializeToString()) with open("predict_net.pbtxt", "wb") as f: f.write(str(deploy_model.net.Proto())) # Now we can load the model back and run the prediction to verify it works. # we retrieve the last input data out and use it in our prediction test # before we scratch the workspace blob = workspace.FetchBlob("data") # reset the workspace, to make sure the model is actually loaded workspace.ResetWorkspace(root_folder) # verify that all blobs are destroyed. print("The blobs in the workspace after reset: {}".format(workspace.Blobs())) # load the predict net predict_net = pe.prepare_prediction_net( os.path.join(root_folder, "mnist_model.minidb"), "minidb" ) # verify that blobs are loaded back print( "The blobs in the workspace after loading the model: {}".format(workspace.Blobs()) ) # feed the previously saved data to the loaded model workspace.FeedBlob("data", blob) # predict workspace.RunNetOnce(predict_net) softmax = workspace.FetchBlob("softmax")
#!/usr/bin/env python # Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import division, print_function import argparse import array import collections import gzip import os.path import pickle import sys import tarfile try: from urllib.error import URLError except ImportError: from urllib2 import URLError try: from urllib.request import urlretrieve except ImportError: from urllib import urlretrieve Dataset = collections.namedtuple("TargetItem", "filename, url, handler, dest_path") # Load a file using pickle module, and parameters vary based on different # Python versions. def pickle_load(file): if sys.version_info.major >= 3: return pickle.load(file, encoding="bytes") return pickle.load(file) # A helper function to extract mnist dataset from tar file, and split the dataset # into data and labels. def handle_mnist(filename, dest_path): print("Extracting {} ...".format(filename)) with gzip.open(filename, "rb") as file: training_set, _, _ = pickle_load(file) data, labels = training_set images_file = open(os.path.join(dest_path, "mnist_images.bin"), "wb") data.tofile(images_file) images_file.close() labels_file = open(os.path.join(dest_path, "mnist_labels.bin"), "wb") L = array.array("B", labels) L.tofile(labels_file) labels_file.close() def untar(filename, dest_path, member=None): print("Extracting {} ...".format(filename)) tar = tarfile.open(filename, "r:gz") if not member: tar.extractall(dest_path) else: tar.extract(member, dest_path) tar.close() DATASETS = dict( mnist=Dataset( "mnist.pkl.gz", "http://www.iro.umontreal.ca/~lisa/deep/data/mnist/mnist.pkl.gz", handle_mnist, ".", ), cifar10=Dataset( "cifar-10.binary.tar.gz", "http://www.cs.toronto.edu/~kriz/cifar-10-binary.tar.gz", untar, ".", ), ptb=Dataset( "ptb.tgz", "http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz", untar, "ptb", ), fr2en=Dataset( "fr2en.tar.gz", "http://fb-glow-assets.s3.amazonaws.com/models/fr2en.tar.gz", untar, "fr2en", ), ) DATASET_NAMES = list(DATASETS.keys()) CAFFE2_MODELS = [ "densenet121", "inception_v1", "inception_v2", "lenet_mnist", "resnet50", "shufflenet", "squeezenet", "vgg19", "zfnet512", "bvlc_alexnet", "en2gr", "quant_resnet50", ] ONNX_MODELS = [ "resnet50", "vgg19", "squeezenet", "zfnet512", "densenet121", "shufflenet", "inception_v1", "inception_v2", "bvlc_alexnet", "lenet_mnist", "googlenet_v1_slim", "googlenet_v4_slim", "resnet50_tf", "emotion_ferplus", "bvlc_reference_rcnn_ilsvrc13", ] def report_download_progress(chunk_number, chunk_size, file_size): if file_size != -1: percent = min(1, (chunk_number * chunk_size) / file_size) bar = "#" * int(64 * percent) sys.stdout.write("\r0% |{:<64}| {}%".format(bar, int(percent * 100))) def download(path, filename, url): if not os.path.exists(path): os.mkdir(path) destFile = os.path.join(path, filename) if os.path.exists(destFile): print("{} already exists, skipping ...".format(filename)) else: print("Downloading {} from {} ...".format(filename, url)) try: urlretrieve(url, destFile, reporthook=report_download_progress) except URLError: print("Error downloading {}!".format(filename)) finally: # Just a newline. print() def download_caffe2_models(outDir, models): for modelname in models: print("For model ", modelname) for filename in ["predict_net.pbtxt", "predict_net.pb", "init_net.pb"]: path = os.path.join(outDir, modelname) url = "http://fb-glow-assets.s3.amazonaws.com/models/{}/{}".format( modelname, filename ) download(path, filename, url) if modelname == "en2gr": for filename in ["dst_dictionary.txt", "src_dictionary.txt"]: path = os.path.join(outDir, "en2gr") url = "http://fb-glow-assets.s3.amazonaws.com/models/en2gr/{}".format( filename ) download(path, filename, url) return def download_onnx_models(outDir, models): for modelname in models: if modelname in [ "resnet50", "vgg19", "squeezenet", "zfnet512", "densenet121", "shufflenet", ]: url = "https://s3.amazonaws.com/download.onnx/models/opset_6/{}.tar.gz".format( modelname ) filename = "{}.tar.gz".format(modelname) download(outDir, filename, url) untar(os.path.join(outDir, filename), outDir) elif modelname in ["inception_v1", "inception_v2", "bvlc_alexnet"]: url = "https://s3.amazonaws.com/download.onnx/models/opset_8/{}.tar.gz".format( modelname ) filename = "{}.tar.gz".format(modelname) download(outDir, filename, url) untar(os.path.join(outDir, filename), outDir) elif modelname in ["lenet_mnist"]: url = "http://fb-glow-assets.s3.amazonaws.com/models/{}.tar.gz".format( modelname ) filename = "{}.tar.gz".format(modelname) download(outDir, filename, url) untar(os.path.join(outDir, filename), outDir) elif modelname in ["googlenet_v1_slim", "googlenet_v4_slim", "resnet50_tf"]: url = "http://fb-glow-assets.s3.amazonaws.com/models/{}.onnx".format( modelname ) filename = "{}.onnx".format(modelname) path = os.path.join(outDir, modelname) download(path, filename, url) elif modelname == "emotion_ferplus": url = "https://onnxzoo.blob.core.windows.net/models/opset_8/emotion_ferplus/emotion_ferplus.tar.gz" filename = "emotion_ferplus.tar.gz" download(outDir, filename, url) untar(os.path.join(outDir, filename), outDir, "emotion_ferplus/model.onnx") elif modelname == "bvlc_reference_rcnn_ilsvrc13": url = "https://s3.amazonaws.com/download.onnx/models/opset_8/bvlc_reference_rcnn_ilsvrc13.tar.gz" filename = "bvlc_reference_rcnn_ilsvrc13.tar.gz" download(outDir, filename, url) untar( os.path.join(outDir, filename), outDir, "bvlc_reference_rcnn_ilsvrc13/model.onnx", ) return def parse(): parser = argparse.ArgumentParser(description="Download datasets for Glow") parser.add_argument("-d", "--datasets", nargs="+", choices=DATASET_NAMES) parser.add_argument("-D", "--all-datasets", action="store_true") parser.add_argument("-c", "--caffe2-models", nargs="+", choices=CAFFE2_MODELS) parser.add_argument("-C", "--all-caffe2-models", action="store_true") parser.add_argument("-o", "--onnx-models", nargs="+", choices=ONNX_MODELS) parser.add_argument("-O", "--all-onnx-models", action="store_true") parser.add_argument("-P", "--output-directory", default=".") options = parser.parse_args() if options.all_datasets: datasets = DATASET_NAMES elif options.datasets: datasets = options.datasets else: datasets = [] if options.all_caffe2_models: caffe2Models = CAFFE2_MODELS elif options.caffe2_models: caffe2Models = options.caffe2_models else: caffe2Models = [] if options.all_onnx_models: onnxModels = ONNX_MODELS elif options.onnx_models: onnxModels = options.onnx_models else: onnxModels = [] return options.output_directory, datasets, caffe2Models, onnxModels def main(): outDir, datasets, caffe2Models, onnxModels = parse() if not os.path.exists(outDir): os.mkdir(outDir) outDir = os.path.join(".", outDir) try: for name in datasets: dataset = DATASETS[name] download(outDir, dataset.filename, dataset.url) dataset.handler( os.path.join(outDir, dataset.filename), os.path.join(outDir, dataset.dest_path), ) if datasets: print("\n===Done with downloading datasets.\n\n") if caffe2Models: download_caffe2_models(outDir, caffe2Models) print("===Done with downloading caffe2 models.\n\n") if onnxModels: download_onnx_models(outDir, onnxModels) print("===Done with downloading onnx models.\n\n") except KeyboardInterrupt: print("Interrupted") if __name__ == "__main__": main()
# Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Load a pre-trained Caffe2 image classifier and run it on an image. import argparse import collections import os import time import numpy as np import skimage.io from caffe2.python import workspace print("Required modules imported.") cmd_line_parser = argparse.ArgumentParser( description="Run Caffe2 using provided models and inputs." ) cmd_line_parser.add_argument( "--image", "-i", required=True, help="Image to be processed by the neural network" ) cmd_line_parser.add_argument( "--directory", "-d", required=True, help="Directory containing the network structure " "<predict_net.pb> and weight <init_net.pb> files. " "The model name is assumed to be the directory " "name, and should correspond to a model from the " "model_props (e.g. 'resnet50', 'lenet_mnist', " "etc.). If the directory name is not the model " "name, use --model-name (-m) to specify the name " "of the supported model to use.", ) cmd_line_parser.add_argument( "--model-name", "-m", required=False, help="Name of the model to be used" ) cmd_line_parser.add_argument( "--image_mode", required=False, help="Image mode; one of '0to1', '0to256', or '128to127'", ) cmd_line_parser.add_argument("--time", action="store_true") cmd_line_parser.add_argument("--iterations", type=int, default=1) args = cmd_line_parser.parse_args() # 0to256 is the default input def mode_0to256(x): return x def mode_0to1(x): return x / 255 def mode_128to127(x): return x - 128 Model = collections.namedtuple( "Model", "blob_name, image_mode_op, image_size, num_color_channels" ) model_props = dict( densenet121=Model("data", mode_0to1, 224, 3), inception_v1=Model("data", mode_128to127, 224, 3), inception_v2=Model("data", mode_128to127, 224, 3), # unknown resnet50=Model("gpu_0/data", mode_0to1, 224, 3), shufflenet=Model("gpu_0/data", mode_0to1, 224, 3), squeezenet=Model("data", mode_128to127, 224, 3), vgg19=Model("data", mode_128to127, 224, 3), zfnet512=Model("gpu_0/data", mode_0to256, 224, 3), lenet_mnist=Model("data", mode_0to1, 28, 1), resnext=Model("data", mode_0to1, 224, 3), ) MODEL = args.model_name if MODEL is None: MODEL = os.path.basename(os.path.normpath(args.directory)) if MODEL not in list(model_props.keys()): print( "Model " + MODEL + " is not supported. Specify --model-name (-m) if " "it is not the base name of the directory containing pb files." ) exit(1) MODEL_ROOT = args.directory IMAGE_LOCATION = args.image img = skimage.img_as_ubyte(skimage.io.imread(IMAGE_LOCATION)).astype(np.float32) image_shape = np.array(img).shape print("Initial img shape: " + str(image_shape)) if img.shape[0] != img.shape[1] or img.shape[0] != model_props[MODEL].image_size: print("Invalid image dimensions for model.") exit(2) num_dims = len(np.array(img).shape) if num_dims != 3: img = np.expand_dims(img, axis=num_dims) img = img[:, :, : model_props[MODEL].num_color_channels] # Create a zero initiated image. transposed_image = np.zeros( ( 1, model_props[MODEL].num_color_channels, model_props[MODEL].image_size, model_props[MODEL].image_size, ) ).astype(np.float32) for w in range(0, model_props[MODEL].image_size): for h in range(0, model_props[MODEL].image_size): for c in range(0, model_props[MODEL].num_color_channels): # WHC -> CWH, RGB -> BGR transposed_image[0][model_props[MODEL].num_color_channels - c - 1][w][ h ] = model_props[MODEL].image_mode_op(img[w][h][c]) final_image = transposed_image print("Shape of final_image: " + str(np.array(final_image).shape)) with open(MODEL_ROOT + "/init_net.pb", "rb") as f: init_net = f.read() with open(MODEL_ROOT + "/predict_net.pb", "rb") as f: predict_net = f.read() workspace.ResetWorkspace() blob_name = model_props[MODEL].blob_name workspace.FeedBlob(blob_name, final_image) print("The blobs in the workspace after FeedBlob: {}".format(workspace.Blobs())) # Create a predictor using the loaded model. p = workspace.Predictor(init_net, predict_net) start = time.time() for i in range(0, args.iterations): results = p.run([final_image]) end = time.time() if args.time: print( "Wall time per iteration (s): {:0.4f}".format((end - start) / args.iterations) ) max_idx = np.argmax(results[0][0]) sum_probability = sum(results[0][0]) print("Max index is {}".format(max_idx)) print( "Predicted class at index {} with probability {}".format( max_idx, results[0][0][max_idx] ) ) print("Number of classes {}".format(len(results[0][0]))) print("Sum of probabilities is {}".format(sum_probability))
#!/usr/bin/env python3 # Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import glob import os # imagenet-process : Runs preprocessing of standard imagenet images # to work with a pretrained model (e.g. resnet) # through glow # usage: python3 imagenet-process.py "images/*.JPEG" processed import PIL.Image import torchvision parser = argparse.ArgumentParser(description="imagenet preprocessor") parser.add_argument("input", metavar="input", help="glob to input images") parser.add_argument( "output", metavar="output", default="./", help="directory to put output images" ) parser.add_argument("--normalize", action="store_true") args = parser.parse_args() # create the output dir if necessary try: os.makedirs(args.output, exist_ok=True) except Exception as e: print(e) for ifn in glob.glob(args.input): name, ext = os.path.splitext(ifn) name = os.path.basename(name) outputname = os.path.join(args.output, name + ".png") print("processing", name, "as", outputname) im = PIL.Image.open(ifn) im = im.convert("RGB") resize = torchvision.transforms.Compose( [torchvision.transforms.Resize(256), torchvision.transforms.CenterCrop(224)] ) processed_im = resize(im) if args.normalize: transform_fn = torchvision.transforms.Compose( [ torchvision.transforms.ToTensor(), torchvision.transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] ), ] ) else: transform_fn = torchvision.transforms.ToTensor() processed_im = transform_fn(processed_im) processed_im = processed_im.unsqueeze(0) torchvision.utils.save_image(processed_im, outputname)
#!/usr/bin/env python3 # Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import shutil import sys import tempfile import pexpect import PIL.Image as Image import torchvision parser = argparse.ArgumentParser( description="Glow image-classifier Driver for " "TopK ImageNet Calculation" ) parser.add_argument( "--validation-images-dir", metavar="DIR", required=True, help="Path to the directory containing the validation set " "of images. Subdirectories are expected to be organized " "such that when sorted their index corresponds to their " "label. For example, if the validation_images_dir contains " "{'abc/', 'def/', 'ghi/'}, then this should correspond to " "labels {0, 1, 2} respectively.", ) parser.add_argument( "--batch-size", default=1, type=int, metavar="N", help="Batch size for use with the model. The total number " "of images in the validation_images_dir should be " "divisible by the batch size.", ) parser.add_argument( "--only-resize-and-save", default=False, action="store_true", help="Use to pre-process images " "to 224x224. Saves the images to " "the validation_images_dir/processed/", ) parser.add_argument( "--resize-input-images", default=False, action="store_true", help="Resize and center-crop images " "at runtime to 224x224.", ) parser.add_argument( "--verbose", default=False, action="store_true", help="Verbose printing." ) parser.add_argument( "--image-classifier-cmd", default="", help="Command to use for running the image-classifier, " "including the binary and all of its command lime " "parameters.", ) # Opens and returns an image located at @param path using the PIL loader. def pil_loader(path): # open path as file to avoid ResourceWarning # (https://github.com/python-pillow/Pillow/issues/835) with open(path, "rb") as img: img = Image.open(img) return img.convert("RGB") # Opens and returns an image located at @param path using the accimage loader. def accimage_loader(path): import accimage try: return accimage.Image(path) except IOError: # Potentially a decoding problem, fall back to PIL.Image return pil_loader(path) # Opens and returns an image located at @param path using either the accimage # loader or PIL loader. def default_image_loader(path): if torchvision.get_image_backend() == "accimage": return accimage_loader(path) return pil_loader(path) def get_sorted_img_subdirs(validation_images_dir): img_dir_paths = [] for img_dir in os.listdir(validation_images_dir): dir_path = os.path.join(validation_images_dir, img_dir) if os.path.isdir(dir_path): img_dir_paths.append(img_dir) img_dir_paths.sort() return img_dir_paths # @returns two lists of the same length found in directory # @param validation_images_dir; the first list contains paths to all images # found, and the second list contains the corresponding labels of the image. def get_img_paths_and_labels(validation_images_dir): img_subdirs = get_sorted_img_subdirs(validation_images_dir) # Create lists holding paths to each image to be classified and the label # for that image. img_paths = [] img_labels = [] curr_label_idx = 0 for img_subdir in img_subdirs: img_subdir_path = os.path.join(validation_images_dir, img_subdir) for img in os.listdir(img_subdir_path): full_img_path = os.path.join(img_subdir_path, img) if os.path.isfile(full_img_path): img_paths.append(full_img_path) img_labels.append(curr_label_idx) curr_label_idx = curr_label_idx + 1 return img_paths, img_labels # Given an image located at @param img_path, transform the image # and save it to the path @param path_to_new_img. def resize_and_save_image(img_path, path_to_new_img): # Load the image. img = default_image_loader(img_path) # Use to Resize and CenterCrop the images to 224x224. transform_resize = torchvision.transforms.Compose( [torchvision.transforms.Resize(256), torchvision.transforms.CenterCrop(224)] ) resized_img = transform_resize(img) resized_img.save(path_to_new_img, format="png") # Used to pre-process an input set of images. Takes a string of a directory # @param validation_images_dir and saves the cropped subset of the images in a # subdirectory `processed/`, which must not yet exist. def save_centered_cropped_dataset(validation_images_dir): processed_validation_images_dir = os.path.join(validation_images_dir, "processed") print( "Saving centered cropped input images: %s" % (processed_validation_images_dir) ) img_subdirs = get_sorted_img_subdirs(validation_images_dir) try: os.makedirs(processed_validation_images_dir) except OSError: sys.exit("New validation directory must not exist") # Iterate over all labels subdirectories, loading, transforming and saving # all images to the new location. for img_subdir in img_subdirs: orig_img_subdir_path = os.path.join(validation_images_dir, img_subdir) processed_img_subdir_path = os.path.join( processed_validation_images_dir, img_subdir ) # Create a new subdirectory for the next label. try: os.makedirs(processed_img_subdir_path) except OSError: sys.exit("New label subdirectory somehow already existed.") # Transform and save all images in this label subdirectory. for orig_img_filename in os.listdir(orig_img_subdir_path): orig_img_path = os.path.join(orig_img_subdir_path, orig_img_filename) if os.path.isfile(orig_img_path): processed_img_path = os.path.join( processed_img_subdir_path, orig_img_filename ) resize_and_save_image(orig_img_path, processed_img_path) # @returns a list of strings (of length equal to the @param batch_size) which # are paths to images to do inference on. @param img_paths is the set of all # image paths, @param img_index is the next index to use in @param img_paths, # and @param tmp_dir_name is the location of where to save the images if # @param resize_input_images is true. Note that if @param resize_input_images is # true, then names for the temporary images are used for every batch, thus only # @param batch_size temporary images will ever exist in @param tmp_dir_name. def get_curr_img_paths( img_paths, img_index, batch_size, tmp_dir_name, resize_input_images ): curr_img_paths = [] for batch_idx in range(batch_size): img_path = img_paths[img_index + batch_idx] # If we are resizing the image then we are going to save it to a # temp location to read in later for inference. if resize_input_images: # Save the new image to the tmp directory. Note that these names are # reused every call to get_curr_img_paths(). path_to_tmp_img = os.path.join( tmp_dir_name, "tmp" + str(batch_idx) + ".png" ) resize_and_save_image(img_path, path_to_tmp_img) img_path = path_to_tmp_img curr_img_paths.append(img_path) return curr_img_paths # Verifies that the @param image_classifier_cmd is well formatted via # assertions. def verify_spawn_cmd(image_classifier_cmd): split_cmd = image_classifier_cmd.split() if "image-classifier" in split_cmd[0]: assert "-" in split_cmd, "Streaming mode must be used." assert "-topk=5" in split_cmd, "-topk=5 must be used." assert any( "-model-input-name=" in s for s in split_cmd ), "image-classifier requires -model-input-name to be specified." assert any( "-m=" in s for s in split_cmd ), "image-classifier requires -m to be specified" assert any( "-image-mode=" in s for s in split_cmd ), "image-classifier requires -image-mode to be specified" # Prints the Top-1 and Top-5 accuracy given @param total_image_count, @param # top1_count, and @param top5_count. def print_topk_accuracy(total_image_count, top1_count, top5_count): top1_accuracy = float(top1_count) / float(total_image_count) top5_accuracy = float(top5_count) / float(total_image_count) print("\tTop-1 accuracy: " + "{0:.4f}".format(top1_accuracy)) print("\tTop-5 accuracy: " + "{0:.4f}".format(top5_accuracy)) # Calculates and prints top-1 and top-5 accuracy for images located in # subdirectories at @param validation_images_dir, given the command line # parameters passed in to @param args. def calculate_top_k( validation_images_dir, image_classifier_cmd, batch_size, resize_input_images, verbose, ): print("Calculating Top-1 and Top-5 accuracy...") verify_spawn_cmd(image_classifier_cmd) img_paths, img_labels = get_img_paths_and_labels(validation_images_dir) total_image_count = len(img_paths) assert ( total_image_count % batch_size == 0 ), "Total number of images must be divisible by batch size" if verbose: print("Running image classifier with: " + image_classifier_cmd) try: # Create a temporary directory to store the transformed image we # classify (if applicable) and the log of image-classifer output. tmp_dir_name = tempfile.mkdtemp() path_to_tmp_log = os.path.join(tmp_dir_name, "log.txt") with open(path_to_tmp_log, "w") as fout: classifier_proc = pexpect.spawn( image_classifier_cmd, logfile=fout, timeout=None ) if verbose: print("Temp log located at: " + path_to_tmp_log) prompt = "Enter image filenames to classify: " top1_count = 0 top5_count = 0 # Process the images in batches as specified on the command line. for img_index in range(0, total_image_count, batch_size): curr_img_paths = get_curr_img_paths( img_paths, img_index, batch_size, tmp_dir_name, resize_input_images ) # Expect prompt from the image-classifier for the next image path. classifier_proc.expect(prompt) appended_paths = " ".join(curr_img_paths) assert ( len(appended_paths) <= 1024 ), "Line length is too long (max 1024): %r" % len(appended_paths) # Send the paths to the image-classifier. classifier_proc.sendline(appended_paths) for batch_idx in range(batch_size): # Now we expect the image-classifier's response with the label. # The first line will include the path to the file, e.g.: # File: tests/images/imagenet/cat_285.png classifier_proc.expect(" File: " + curr_img_paths[batch_idx]) # All labels will be formatted like: # Label-K1: 281 (probability: 0.7190) top5_labels = [] for _ in range(5): label_and_prob = classifier_proc.readline() # Get the label from the line. label = label_and_prob.split()[1] top5_labels.append(int(label)) expected_label = img_labels[img_index + batch_idx] if expected_label == top5_labels[0]: top1_count += 1 if expected_label in top5_labels: top5_count += 1 curr_completed_count = img_index + batch_size if curr_completed_count % 100 == 0: print( "Finished image index %d out of %d" % ((curr_completed_count, total_image_count)) ) if verbose: print(" Current Top-1/5 accuracy:") print_topk_accuracy( curr_completed_count, top1_count, top5_count ) else: print("") finally: classifier_proc.close(force=True) # Remove the temp directory we used to save the images and log. shutil.rmtree(tmp_dir_name) print( "\nCompleted running; Final Top-1/5 accuracy across %d images:" % (total_image_count) ) print_topk_accuracy(total_image_count, top1_count, top5_count) def main(): # Parse the recognized command line arguments into args. args = parser.parse_args() # Path to the directory containing the validation set of images. # Subdirectories are expected to be organized such that when sorted their # index corresponds to their label. For example, if the # validation_images_dir contains {'abc/', 'def/', 'ghi/'}, then this should # correspond to labels {0, 1, 2} respectively. validation_images_dir = os.path.join(args.validation_images_dir) assert os.path.exists(validation_images_dir), ( "Validation directory does not exist: " + validation_images_dir ) # This is used solely to pre-process the input image set. if args.only_resize_and_save: save_centered_cropped_dataset(validation_images_dir) return calculate_top_k( validation_images_dir, args.image_classifier_cmd, args.batch_size, args.resize_input_images, args.verbose, ) if __name__ == "__main__": main()
#!/usr/bin/env python3 # Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import json import os import re import sqlite3 import typing from typing import Dict, List, Tuple # Maintaining all nodes NODES_MAP: Dict[str, "Node"] = {} # Scope stack SCOPE_STACK: List[str] = [] # Scope related information scopeID = 0 class NodeNameAndKind(typing.NamedTuple): """A class that represents the named tuple of node name and kind.""" name: str kind: str class NodeValue(typing.NamedTuple): """A class that represents the named tuple of node and result number.""" node: "Node" resNo: int class Node: """A class that represents a node in the compute graph Public attributes: kindName_: str. The kind name. name_: str. The node name. inputs_: List[NodeValue]. Input node values. users_: Dict['Node', int]. The users of this node. """ def __init__(self, kindName: str, name: str): self.kindName_: str = kindName self.name_: str = name self.inputs_: List[NodeValue] = [] self.users_: Dict["Node", int] = {} def __repr__(self): return self.name_ def get_kind_name(self) -> str: """Gets the kind name.""" return self.kindName_ def get_name(self) -> str: """Gets the node name.""" return self.name_ def getNodeNameAndKind(self) -> NodeNameAndKind: """Gets the Name+Kind tuple.""" return (self.name_, self.kindName_) def get_inputs(self) -> List[NodeValue]: """Gets the input node.""" return self.inputs_ def get_users(self) -> Dict["Node", int]: """Gets the user of this node.""" return self.users_ def add_user(self, u: "Node") -> None: """Adds one user of this node. Increment the number of uses of the user by 1.""" if u not in self.users_: self.users_[u] = 0 self.users_[u] += 1 def remove_user(self, u: "Node") -> None: """Removes one use from the given user.""" if u in self.users_: self.users_[u] -= 1 if self.users_[u] == 0: del self.users_[u] def has_no_uses(self) -> bool: """Returns True if the node has no uses.""" return len(self.users_) == 0 def set_input(self, nodeVal: NodeValue) -> None: """Adds one input node value.""" self.inputs_.append(nodeVal) def replace_input(self, oldNodeVal: NodeValue, newNodeVal: NodeValue) -> None: """Replace one operand with another one. Args: oldNode: Node. Old operand node. oldResNo: int. Old operand result number. newNode: Node. New operand node. newResNo: int. New operand result number. """ try: self.inputs_.remove(oldNodeVal) except ValueError: print("Removed input value must already exist in the node's input list. ") self.inputs_.append(newNodeVal) def set_scope_of_creation(self, creationScopeName: str) -> None: self.creationScopeName_ = creationScopeName class DottyPrinter: """A class for generating the dotty graph file Public attributes: vertices_: List[str]. Vertices in the dotty file. edges_: List[str]. Edges in the dotty file. uniqueVertexMap_: Dict[Node, int]. A map for node with their unique index. uniqueVertexNo_: int. A incrementing number that represents the number of unique nodes in the graph. colors_: List[str]. A list for colors for nodes in the dotty graph. """ def __init__(self, nodesMap: Dict[NodeNameAndKind, Node]): self.nodesMap_ = nodesMap self.vertices_: List[str] = [] self.edges_: List[str] = [] self.uniqueVertexMap_: Dict[Node, int] = {} self.uniqueVertexNo_: int = 0 self.colors_: List[str] = [ "AliceBlue", "CadetBlue1", "Coral", "DarkOliveGreen1", "DarkSeaGreen1", "GhostWhite", "Khaki1", "LavenderBlush1", "LemonChiffon1", "LightSkyBlue", "MistyRose1", "MistyRose2", "PaleTurquoise2", "PeachPuff1", "PowderBlue", "Salmon", "Thistle1", "Thistle3", "Wheat1", "Yellow2", ] def get_unique_vertex_name(self, node: Node) -> str: """Get the unique vertex name given a Node object.""" if node not in self.uniqueVertexMap_: self.uniqueVertexMap_[node] = self.uniqueVertexNo_ self.uniqueVertexNo_ += 1 return f"v{self.uniqueVertexMap_[node]}" def dump_label(self, node: Node) -> str: """Returns the string for the label of the given node.""" labelStr = f"""{{ {{<Inputs>Inputs}}| {{ {node.get_kind_name()}\lname: {node.get_name()} }}| {{<Outputs>Outputs}} }}""" return labelStr def get_color(self, node: Node) -> str: """Returns the color for the given node.""" idx = hash(node.get_kind_name()) % len(self.colors_) return self.colors_[idx] def dump_node(self, node: Node) -> None: """Generates the dotty information for the given node.""" if not node: return nodeStr = f"""{self.get_unique_vertex_name(node)}[\n \tlabel = \"{self.dump_label(node)}\"\n \tshape = \"record\"\n \tstyle=\"filled,rounded\"\n \tfillcolor={self.get_color(node)}\n penwidth = 2];\n""" self.vertices_.append(nodeStr) def visitNodes(self) -> None: """Visits all nodes in nodesMap_ and dump the dotty information for each node.""" for node in self.nodesMap_.values(): self.dump_node(node) def visitEdges(self) -> None: """Visits all edges and dump the dotty information for each edge.""" for node in self.nodesMap_.values(): for nodeInput in node.get_inputs(): i = nodeInput[0] if i.get_name() not in self.nodesMap_: print(i.get_kind_name(), i.get_name()) edgeStr = self.get_unique_vertex_name(i) + ":Outputs -> " edgeStr += self.get_unique_vertex_name(node) + ":Inputs" self.edges_.append(edgeStr) def dump_graph(self, dagName: str) -> None: """Visits the node graph and generates the dotty information.""" self.visitNodes() self.visitEdges() with open(f"{dagName}_dotty.dot", "w") as f: f.write("digraph DAG {\n\trankdir=TB;\n") for v in self.vertices_: f.write(f"{v}\n") for e in self.edges_: f.write(f"{e};\n") f.write("}") def parse_args() -> Tuple[str, str, List[str]]: """Parse the arguments of this script.""" parser = argparse.ArgumentParser(description="Parse compilation log") parser.add_argument("-f", "--log-file") parser.add_argument("-d", "--db-file") parser.add_argument("--dump-phases", nargs="+") options = parser.parse_args() if options.dump_phases: dumpPhases = options.dump_phases else: dumpPhases = [] if options.db_file: dbFile = options.db_file else: dbFile = "compilation_log_db.sqlite" return dbFile, options.log_file, dumpPhases def dump_dag(dagName: str) -> None: """A helper function to dump the DAG.""" dotty = DottyPrinter(NODES_MAP) dotty.dump_graph(dagName) def store_transformation_into_DB( transID: int, baseNode: Node, addedNodes: List[Node], replacedNodes: List[Node], cursor: sqlite3.Cursor, fullScopeName: str, ) -> None: """A helper function to store nodes transformations into database. Args: transID: int. The ID for this stored transformation. baseNode: Node. The base node that changes its operands. addedNodes: List[Node]. A list of added nodes in this transformation. replacedNodes: List[Node]. A list of replaced nodes in this transformation. cursor: sqlite3.Cursor. Cursor of the sqlite3 database. fullScopeName: str. The full scope name of this transformation. """ cursor.execute( """INSERT INTO Log_Transformation VALUES ( ?, 'OPERATOR_BASE', ?, ?, ? )""", (transID, baseNode.get_name(), baseNode.get_kind_name(), fullScopeName), ) for an in addedNodes: cursor.execute( """INSERT INTO Log_Transformation VALUES ( ?, 'ADD_OPERAND', ?, ?, ? )""", (transID, an.get_name(), an.get_kind_name(), fullScopeName), ) for rn in replacedNodes: cursor.execute( """INSERT INTO Log_Transformation VALUES ( ?, 'REMOVE_OPERAND', ?, ?, ? )""", (transID, rn.get_name(), rn.get_kind_name(), fullScopeName), ) def find_all_replaced_nodes(replacedNode: Node) -> List[Node]: """Find all nodes that will lose user after the given node is removed. After one node lost all its uses (e.g. after replaceAllUsesOfWith()), we go through all of its parents to collect all nodes that will consequently lose all their uses. Args: replacedNode: Node. The node that just lost all uses. """ replacedNodeList = [] activeDCEList = [replacedNode] while len(activeDCEList): DCEnode = activeDCEList.pop() replacedNodeList.append(DCEnode) for nv in DCEnode.inputs_: n = nv.node if len(n.users_) <= 1: activeDCEList.append(n) return replacedNodeList def init_db(sqliteFile: str) -> sqlite3.Connection: """Initialize a sqlite3 database connection.""" if os.path.isfile(sqliteFile): os.remove(sqliteFile) # Connect to database file. conn = sqlite3.connect(sqliteFile) cursor = conn.cursor() cursor.execute( """CREATE TABLE Log_Transformation ( trans_id INTEGER, operation_type VARCHAR(200), node_name VARCHAR(200), node_kind VARCHAR(200), full_scope VARCHAR(200) )""" ) cursor.execute( """CREATE TABLE Log_Scope ( scope_id INTEGER, scope_str VARCHAR(200), full_scope_str VARCHAR(200) )""" ) cursor.execute( """CREATE TABLE Log_Node ( node_name VARCHAR(200), node_kind VARCHAR(200), create_scope_id INTEGER, delete_scope_id INTEGER )""" ) cursor.execute( """CREATE TABLE Log_Node_Operation ( scope_id INTEGER, operation VARCHAR(200), node_name VARCHAR(200), node_kind VARCHAR(200) )""" ) return conn def process(log: Dict, dumpPhases: List[str], conn: sqlite3.Connection) -> None: """Process all the log lines. Extract their information and reconstruct the node graph. And dump DAGs at given compilation phases. Args: logLines: List[str]. All lines of compilation log. dumpPhases: List[str]. The phase at which to dump the DAG. conn: sqlite3.Connection. The connection to a sqlite3 database that will store all the transformation in the compilation lop. """ # DB related vars cursor = conn.cursor() # Record nodes transformation replacedNodes: List[Node] = [] addedNodes: List[Node] = [] recordTransformation = False stopRecordTranformationNames = { "optimizeFunctionBeforeLowering", "optimizeFunction", } transID = 0 def process_create(event: Dict) -> None: global scopeID createdNode = Node(event["kind"], event["create"]) createdNode.set_scope_of_creation(SCOPE_STACK[-1]) NODES_MAP[createdNode.get_name()] = createdNode cursor.execute( """INSERT INTO Log_Node VALUES ( ?, ?, ?, ? )""", (event["create"], event["kind"], scopeID, -1), ) cursor.execute( """INSERT INTO Log_Node_Operation VALUES ( ?, 'CREATE', ?, ? )""", (scopeID, event["create"], event["kind"]), ) if len(event["inputs"]) == 0: # there's no node input for Splat assert event["kind"] in ( "Splat", "Constant", "Placeholder", ), "This node kind shouldn't have any inputs." for i in event["inputs"]: name, resNo = i.split(":", 1) if name in NODES_MAP: inputNode = NODES_MAP[name] createdNode.set_input(NodeValue(inputNode, resNo)) inputNode.add_user(createdNode) if recordTransformation: addedNodes.append(createdNode) def process_delete(event: Dict) -> None: global scopeID deletedNode = NODES_MAP[event["delete"]] for inputNode in deletedNode.inputs_: i = inputNode[0] i.remove_user(deletedNode) del NODES_MAP[deletedNode.get_name()] cursor.execute( """UPDATE Log_Node SET delete_scope_id=? WHERE node_name=? """, (scopeID, event["delete"]), ) cursor.execute( """INSERT INTO Log_Node_Operation VALUES ( ?, 'DELETE', ?, ? )""", (scopeID, event["delete"], event["kind"]), ) def process_input_change(event: Dict) -> None: changedNode = NODES_MAP[event["input_change"]] # Don't touch the line of node input changing into null, it only happened # in module destructor. if event["after"] == "NONE": return prevNodeName, prevResNo = event["before"].split(":", 1) newNodeName, newResNo = event["after"].split(":", 1) prevNode = NODES_MAP[prevNodeName] newNode = NODES_MAP[newNodeName] # change the input of changedNode changedNode.replace_input( NodeValue(prevNode, prevResNo), NodeValue(newNode, newResNo) ) prevNode.remove_user(changedNode) newNode.add_user(changedNode) # Record nodes transformation if recordTransformation: if prevNode.has_no_uses(): replacedNodes = find_all_replaced_nodes(prevNode) store_transformation_into_DB( transID, changedNode, addedNodes, replacedNodes, cursor, scopeName ) transID += 1 addedNodes = [] replacedNodes = [] def process_scope(scopeName: str, phase: List) -> None: global scopeID if "::" in scopeName: scopeName = scopeName.split("::", 1)[-1] scopeID += 1 if scopeName in dumpPhases: dump_dag(f"before_{scopeName}_{scopeID}") if str(scopeID) in dumpPhases: dump_dag(f"phase_{scopedID}") SCOPE_STACK.append(scopeName) # Start recording transformations. if scopeName in stopRecordTranformationNames and len(SCOPE_STACK) == 2: recordTransformation = True # Update scope entrance in database cursor.execute( """INSERT INTO Log_Scope VALUES ( ?, ?, ? )""", (scopeID, "ENTER " + scopeName, "ENTER " + scopeName), ) for ev in phase: if "create" in ev: process_create(ev) elif "delete" in ev: process_delete(ev) elif "input_change" in ev: process_input_change(ev) else: name, scope = list(ev.items())[0] process_scope(name, scope) # Stop recording transformations. if scopeName in stopRecordTranformationNames and len(SCOPE_STACK) == 1: recordTransformation = False # Update scope exit in database cursor.execute( """INSERT INTO Log_Scope VALUES ( ?, ?, ? )""", (scopeID, "EXIT " + scopeName, "EXIT " + name), ) scopeID += 1 if scopeName in dumpPhases: dump_dag(f"after_{scopeName}_{scopeID}") if str(scopeID) in dumpPhases: dump_dag(f"phase_{scopedID}") SCOPE_STACK.pop() print("Log Version:", log["version"]) process_scope("MODULE LOADER", log["passes"]) conn.commit() def main(): dbFile, logFile, dumpPhases = parse_args() log = json.load(open(logFile)) with init_db(dbFile) as conn: process(log, dumpPhases, conn) return if __name__ == "__main__": main()
#!/usr/bin/env python3 # Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import sqlite3 from typing import Dict, List # A list of all filtered transformations. TRANS_LIST: List["Transformation"] = [] # Mapping between added nodes and the transformation that adds these nodes. NODES_ADDING_MAP: Dict[str, "Transformation"] = {} class Transformation: """A class that represents the nodes transformation, e.g. lower,fold etc. Public attributes: addedNodes_: List[str]. Nodes added by this transformation. removedNodes_: List[str]. Nodes removed by this transformation. ancestors_: List['Transformation']. The ancestor transformation of current transformation. scopeName_: str. The scope of current transformation. transID_: str. The internal transformation ID in the database. isDirectTrans_ :bool. Whether this transformation directly created/replaced the given nodeName that is passed to this script file. """ def __init__(self, transID: str): self.addedNodes_: List[str] = [] self.removedNodes_: List[str] = [] self.ancestors_: List["Transformation"] = [] self.scopeName_: str = "" self.transID_: str = transID self.isDirectTrans_: bool = False def appendAddedNode(self, nodeName: str) -> None: """Append the added nodes of this transformation.""" self.addedNodes_.append(nodeName) def appendRemovedNode(self, nodeName: str) -> None: """Append the removed nodes of this transformation.""" self.removedNodes_.append(nodeName) def addAncestor(self, ancestor: "Transformation") -> None: """Add ancestors of this transformation.""" self.ancestors_.append(ancestor) def setBase(self, baseName: str) -> None: """Set the operator base of this node.""" self.baseNode_ = baseName class DottyPrinter: """A class for generating the dotty graph file""" def __init__(self, transList: List[Transformation]): self.transList_ = transList self.vertices_ = [] self.edges_ = [] def get_color(self, isDirectTrans: bool) -> str: """Returns the color for the given node.""" if isDirectTrans: return "Yellow2" else: return "AliceBlue" def dump_label(self, tran: Transformation) -> str: """Returns the string for the label of the given transformation.""" labelStr = ( rf"""{{ {{SCOPE:\l{tran.scopeName_} }}|{{ORIGINAL OPERAND CHAIN:\l\l""" ) for rstr in tran.removedNodes_: labelStr += rf"""{rstr}\l\l""" labelStr += rf"}}| {{NEW OPERAND CHAIN:\l\l" for astr in tran.addedNodes_: labelStr += rf"""{astr}\l\l""" labelStr += rf"}} |{{USER NODE: \l\l {tran.baseNode_}}} }}" return labelStr def dump_node(self, tran: Transformation) -> None: """Generates the dotty information for the given transformation.""" if not tran: return tranStr = f"""v{tran.transID_}[\n \tlabel = \"{self.dump_label(tran)}\"\n \tshape = \"record\"\n \tstyle=\"filled,rounded\"\n \tfillcolor={self.get_color(tran.isDirectTrans_)}\n penwidth = 2];\n""" self.vertices_.append(tranStr) def visit_nodes(self) -> None: """Visits all transformation and dump the dotty information for each transformation.""" for tran in self.transList_: self.dump_node(tran) def visit_edges(self) -> None: """Visits all edges and dump the dotty information for each edge.""" for tran in self.transList_: for anc in tran.ancestors_: edgeStr = f"v{anc.transID_} -> v{tran.transID_}" self.edges_.append(edgeStr) def dump_graph(self, dottyFile: str) -> None: """Visits the graph and generates the dotty information.""" self.visit_nodes() self.visit_edges() with open(f"transformations_{dottyFile}.dot", "w") as f: print( f"\nWriting DAG info into dotty file transformations_{dottyFile}.dot ..." ) f.write("digraph DAG {\n\trankdir=TB;\n") for v in self.vertices_: f.write(f"{v}\n") for e in self.edges_: f.write(f"{e};\n") f.write("}") def dump_dotty_DAG(dottyFile: str) -> None: """A helper function to dump the dotty file.""" dotty = DottyPrinter(TRANS_LIST) dotty.dump_graph(dottyFile) def init_db(sqliteFile: str) -> sqlite3.Connection: """Initialize a sqlite3 database connection.""" assert os.path.isfile(sqliteFile) # Connect to database file. return sqlite3.connect(sqliteFile) def find_all_related_transformation(cursor: sqlite3.Cursor, transIDs: List[str]): """A recursive function that find all related transformations given a list of transformation IDs in the database. Args: cursor: sqlite3.Cursor. Cursor of current sqlite3 database connection. transIDs: List[str]. A list of transformation IDs. """ transQueryStr = "(" + ", ".join(transIDs) + ")" cursor.execute( f""" SELECT node_name FROM Log_Transformation WHERE trans_id in {transQueryStr} and operation_type in ('ADD_OPERAND', 'REMOVE_OPERAND') GROUP BY node_name """ ) rows = cursor.fetchall() nodesList = ["'" + r[0] + "'" for r in rows] transQueryStr = "(" + ", ".join(nodesList) + ")" cursor.execute( f""" SELECT trans_id FROM Log_Transformation WHERE node_name in {transQueryStr} and operation_type in ('ADD_OPERAND', 'REMOVE_OPERAND') GROUP BY trans_id """ ) rows = cursor.fetchall() newTransIDs = [str(r[0]) for r in rows] if sorted(newTransIDs) != sorted(transIDs): transIDs = find_all_related_transformation(cursor, newTransIDs) return transIDs def filter_node_transformation( nodeName: str, conn: sqlite3.Connection, verbose: bool, dottyFile: str ): """Filter out all node transformation that is related to the given node. Args: nodeName: str. The node name that is passed to this script. conn: sqlite3.Connection. A sqlite3 database connection. verbose: bool. Verbosity of the output. dottyFile: str. Dotty file name. """ cursor = conn.cursor() cursor.execute( """ SELECT trans_id FROM Log_Transformation WHERE node_name = ? GROUP BY trans_id """, (nodeName,), ) rows = cursor.fetchall() directTransIDs = [str(r[0]) for r in rows] transIDs = find_all_related_transformation(cursor, directTransIDs) for tid in transIDs: cursor.execute( """ SELECT * FROM Log_Transformation WHERE trans_id = ? """, (tid,), ) rows = cursor.fetchall() if len(rows): tran = Transformation(tid) if tid in directTransIDs: tran.isDirectTrans_ = True TRANS_LIST.append(tran) tran.scopeName_ = rows[0][4].replace("glow::", "").replace("->", r" --\> ") for r in rows: opr_type, name, kind = r[1:4] if opr_type == "ADD_OPERAND": nodeKindAndName = kind + r" \l" + name tran.appendAddedNode(nodeKindAndName) NODES_ADDING_MAP[nodeKindAndName] = tran elif opr_type == "REMOVE_OPERAND": nodeKindAndName = kind + r" \l" + name tran.appendRemovedNode(nodeKindAndName) if nodeKindAndName in NODES_ADDING_MAP: tran.addAncestor(NODES_ADDING_MAP[nodeKindAndName]) elif opr_type == "OPERATOR_BASE": nodeKindAndName = kind + r" \l" + name tran.setBase(nodeKindAndName) def processOutDottyName(dottyStyleName): return dottyStyleName.split(r"\l")[1] def checkNodeInIt(tran, nodeName): if nodeName == processOutDottyName(tran.baseNode_): return True for rn in tran.removedNodes_: if nodeName == processOutDottyName(rn): return True for an in tran.addedNodes_: if nodeName == processOutDottyName(an): return True return False for tran in TRANS_LIST: if not verbose: if not checkNodeInIt(tran, nodeName): continue print(f"\n===============Transformation ID: {tran.transID_} ================") print("Scope: " + tran.scopeName_.replace(r"\>", ">")) if nodeName == processOutDottyName(tran.baseNode_): print("USER NODE: \n(*)" + tran.baseNode_.replace(r"\l", " ")) else: print("USER NODE: \n" + tran.baseNode_.replace(r"\l", " ")) print("------ Previous operands set:") for rn in tran.removedNodes_: if nodeName == processOutDottyName(rn): print("\t(*)" + rn.replace(r"\l", " ")) else: print("\t" + rn.replace(r"\l", " ")) print("------ New operands set:") for an in tran.addedNodes_: if nodeName == processOutDottyName(an): print("\t(*)" + an.replace(r"\l", " ")) else: print("\t" + an.replace(r"\l", " ")) dump_dotty_DAG(dottyFile) conn.commit() def stat_list_phases(conn, depth=0): cursor = conn.cursor() cursor.execute( """ SELECT * FROM Log_Scope ORDER BY scope_id """ ) rows = cursor.fetchall() currDepth = 0 print("Phase ID \tPhase Name\n-------------------------\n") for r in rows: if "ENTER" in r[1]: currDepth += 1 if currDepth <= depth or depth == 0: print(r[0], "\t" * currDepth + r[1]) if "EXIT" in r[1]: currDepth -= 1 assert currDepth >= 0 def stat_phases_summary(conn: sqlite3.Connection, startPhase: int, endPhase: int): cursor = conn.cursor() cursor.execute( """ SELECT lng.scope_id, ls.full_scope_str, lng.operation, lng.node_kind, COUNT(node_kind) FROM Log_Node_Operation lng LEFT JOIN Log_Scope ls ON lng.scope_id = ls.scope_id WHERE lng.scope_id >= ? AND lng.scope_id < ? GROUP By lng.node_kind ORDER BY lng.scope_id """, (startPhase, endPhase), ) rows = cursor.fetchall() print(f"---- Between phase {startPhase} and phase {endPhase}:\n") summaryStrs = {} for r in rows: scope_id, scope, opr, kind, num = r if scope_id not in summaryStrs: summaryStrs[scope_id] = f"Phase {scope_id}: \n [{scope}]\n" summaryStrs[scope_id] += f"\t {opr}D {num} {kind} nodes.\n" for sid in summaryStrs: print(summaryStrs[sid]) def stat_phase(conn: sqlite3.Connection, phaseId: int): cursor = conn.cursor() cursor.execute( """SELECT full_scope_str FROM Log_Scope WHERE scope_id=?""", (phaseId,) ) rows = cursor.fetchall() fullScope = rows[0][0] cursor.execute( """ SELECT node_kind, COUNT(node_kind), COUNT(node_kind)*100.0/ (SELECT Count(*) FROM Log_Node WHERE create_scope_id < ? AND delete_scope_id >= ?) FROM Log_Node WHERE create_scope_id < ? AND delete_scope_id >= ? GROUP By node_kind ORDER BY COUNT(node_kind) DESC """, (phaseId, phaseId, phaseId, phaseId), ) rows = cursor.fetchall() print(f"=== At phase {phaseId} ({fullScope}): \n") print( "\t{:>4s} \t{:>12s} \t\t{:>2s}\n--------------------------------------------------------".format( "Num", "Kind", "(Percentage)" ) ) for r in rows: kind, num, perc = r print("\t{:>4d} \t{:>12s} \t\t({:>2f}%)".format(num, kind, round(perc, 2))) def process(): """Parse args and process this script.""" parser = argparse.ArgumentParser(description="Filter compilation and optimiztion.") parser.add_argument("--db-file") parser.add_argument("--filter-target") parser.add_argument("--filter-target-verbose") parser.add_argument("--dotty-file") parser.add_argument("--stat-list-phases", type=bool) parser.add_argument("--stat-list-phases-depth", type=int) parser.add_argument("--stat-phases-summary", type=int, nargs="+") parser.add_argument("--stat-phase", type=int) options = parser.parse_args() assert options.db_file, "Please specify db file." with init_db(options.db_file) as conn: dottyFile = options.dotty_file if options.dotty_file else "dotty" if options.filter_target: filter_node_transformation(options.filter_target, conn, False, dottyFile) if options.filter_target_verbose: filter_node_transformation( options.filter_target_verbose, conn, True, dottyFile ) if options.stat_list_phases: stat_list_phases(conn) if options.stat_list_phases_depth: stat_list_phases(conn, options.stat_list_phases_depth) if options.stat_phases_summary: assert len(options.stat_phases_summary) == 2 startPhase, endPhase = options.stat_phases_summary stat_phases_summary(conn, startPhase, endPhase) if options.stat_phase: stat_phase(conn, options.stat_phase) def main(): process() if __name__ == "__main__": main()
#!/usr/bin/env python # Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import matplotlib.pyplot as plt import numpy as np import yaml # Command line options. parser = argparse.ArgumentParser( usage="Helper script to print the histogram from a Glow YAML profile." ) parser.add_argument( "-f", "--file", dest="file", required=True, type=str, help="Profile YAML file path." ) parser.add_argument( "-n", "--name", dest="name", required=True, type=str, help="Node value name to plot.", ) parser.add_argument( "-l", "--log-scale", dest="log_scale", required=False, default=False, action="store_true", help="Plot the histogram on a logarithmic scale (base 10).", ) args = parser.parse_args() # Get arguments. profile = args.file name = args.name log_scale = args.log_scale # Verify profile exists. if not os.path.isfile(profile): print('File "%s" not found!' % profile) exit(1) # Read YAML data. print('Reading file "%s" ...' % profile) data = None with open(profile, "r") as stream: try: data = yaml.safe_load(stream) except yaml.YAMLError as err: print(err) # Search YAML entry for node value. print('Searching node value name "%s" ...' % name) entry = None for item in data: if item["nodeOutputName"] == name: entry = item if not entry: print('Node value "%s" not found!' % name) exit(1) # Extract data. hist_min = entry["min"] hist_max = entry["max"] histogram = np.array(entry["histogram"]) num_bins = len(histogram) bin_width = (hist_max - hist_min) / num_bins bin_centers = [(hist_min + idx * bin_width + bin_width / 2) for idx in range(num_bins)] if log_scale: histogram = np.log10(histogram) histogram = np.maximum(histogram, np.zeros(histogram.shape)) # Plot histogram. fig = plt.figure() plt.plot(bin_centers, histogram) plt.bar(bin_centers, histogram, bin_width) fig.suptitle('Histogram for "%s" with range [%f, %f]' % (name, hist_min, hist_max)) plt.grid() plt.xlabel("Range") plt.ylabel("Bins [%s]" % ("Log Scale" if log_scale else "Linear Scale")) plt.show()
# Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import onnx import torch import torch.nn import torch.onnx from onnx import helper, TensorProto # GRU enums GRU_DIR_FORWARD = "forward" GRU_DIR_REVERSE = "reverse" GRU_DIR_BIDIRECTIONAL = "bidirectional" GRU_DIRS = [GRU_DIR_FORWARD, GRU_DIR_REVERSE, GRU_DIR_BIDIRECTIONAL] # ONNX utility def make_init(name, type, tensor): return helper.make_tensor( name=name, data_type=type, dims=tensor.shape, vals=tensor.reshape(tensor.size).tolist(), ) # Function to generate GRU ONNX test model def gen_gru_onnx_test_model( model_path, seq_length, batch_size, hidden_size, input_size, direction, has_bias, has_sequence_lens, has_initial_h, linear_before_reset=False, ): # Validate parameters assert direction in GRU_DIRS, "ONNX GRU direction invalid!" assert not has_sequence_lens, "ONNX GRU Variable sequence length not supported" # Get number of directions num_directions = 2 if (direction == GRU_DIR_BIDIRECTIONAL) else 1 # Tensor sizes X_shape = [seq_length, batch_size, input_size] W_shape = [num_directions, 3 * hidden_size, input_size] R_shape = [num_directions, 3 * hidden_size, hidden_size] B_shape = [num_directions, 6 * hidden_size] sequence_lens_shape = [batch_size] initial_h_shape = [num_directions, batch_size, hidden_size] Y_shape = [seq_length, num_directions, batch_size, hidden_size] # Generate random inputs (weights are assumed concatenated in ONNX format: z,r,h) np.random.seed(1) X = np.random.randn(*X_shape) W = np.random.randn(*W_shape) R = np.random.randn(*R_shape) B = np.random.randn(*B_shape) if has_bias else np.zeros(B_shape) sequence_lens = ( np.random.randint(1, seq_length, batch_size) if has_sequence_lens else np.tile(seq_length, batch_size) ) initial_h = ( np.random.randn(*initial_h_shape) if has_initial_h else np.zeros(initial_h_shape) ) # Function to get all the weight components for the given direction def get_weights(dir_idx): Wz = np.reshape( W[dir_idx, 0 * hidden_size : 1 * hidden_size, :], [hidden_size, input_size] ) Wr = np.reshape( W[dir_idx, 1 * hidden_size : 2 * hidden_size, :], [hidden_size, input_size] ) Wh = np.reshape( W[dir_idx, 2 * hidden_size : 3 * hidden_size, :], [hidden_size, input_size] ) Rz = np.reshape( R[dir_idx, 0 * hidden_size : 1 * hidden_size, :], [hidden_size, hidden_size] ) Rr = np.reshape( R[dir_idx, 1 * hidden_size : 2 * hidden_size, :], [hidden_size, hidden_size] ) Rh = np.reshape( R[dir_idx, 2 * hidden_size : 3 * hidden_size, :], [hidden_size, hidden_size] ) bWz = np.reshape(B[dir_idx, 0 * hidden_size : 1 * hidden_size], [hidden_size]) bWr = np.reshape(B[dir_idx, 1 * hidden_size : 2 * hidden_size], [hidden_size]) bWh = np.reshape(B[dir_idx, 2 * hidden_size : 3 * hidden_size], [hidden_size]) bRz = np.reshape(B[dir_idx, 3 * hidden_size : 4 * hidden_size], [hidden_size]) bRr = np.reshape(B[dir_idx, 4 * hidden_size : 5 * hidden_size], [hidden_size]) bRh = np.reshape(B[dir_idx, 5 * hidden_size : 6 * hidden_size], [hidden_size]) return Wz, Wr, Wh, Rz, Rr, Rh, bWz, bWr, bWh, bRz, bRr, bRh # Function to get PyTorch weights (which are in the r,z,h order) def get_torch_weights(dir_idx): Wz, Wr, Wh, Rz, Rr, Rh, bWz, bWr, bWh, bRz, bRr, bRh = get_weights(dir_idx) W_torch = np.concatenate((Wr, Wz, Wh), 0) R_torch = np.concatenate((Rr, Rz, Rh), 0) bW_torch = np.concatenate((bWr, bWz, bWh), 0) bR_torch = np.concatenate((bRr, bRz, bRh), 0) return (W_torch, R_torch, bW_torch, bR_torch) # ----------------------------------------- COMPUTE pyTORCH REFERENCE ---------------------------------------------- # Compute reference using Pytorch. Pytorch GRU has only forward/bidirectional so we will do the reverse GRU using # a Pytorch forward GRU. gru = torch.nn.GRU( input_size=input_size, hidden_size=hidden_size, num_layers=1, bias=True, batch_first=False, dropout=0, bidirectional=(direction == GRU_DIR_BIDIRECTIONAL), ) # Get GRU state dictionary gru_state_dict = gru.state_dict() # Assign forward weights forwardEnabled = direction in [GRU_DIR_FORWARD, GRU_DIR_BIDIRECTIONAL] if forwardEnabled: forward_dir_idx = 0 (W_torch, R_torch, bW_torch, bR_torch) = get_torch_weights(forward_dir_idx) gru_state_dict["weight_ih_l0"] = torch.tensor(W_torch, dtype=torch.float32) gru_state_dict["weight_hh_l0"] = torch.tensor(R_torch, dtype=torch.float32) gru_state_dict["bias_ih_l0"] = torch.tensor(bW_torch, dtype=torch.float32) gru_state_dict["bias_hh_l0"] = torch.tensor(bR_torch, dtype=torch.float32) # Assign reverse weights reverseEnabled = direction in [GRU_DIR_REVERSE, GRU_DIR_BIDIRECTIONAL] if reverseEnabled: if direction == GRU_DIR_REVERSE: reverse_dir_idx = 0 (W_torch, R_torch, bW_torch, bR_torch) = get_torch_weights(reverse_dir_idx) gru_state_dict["weight_ih_l0"] = torch.tensor(W_torch, dtype=torch.float32) gru_state_dict["weight_hh_l0"] = torch.tensor(R_torch, dtype=torch.float32) gru_state_dict["bias_ih_l0"] = torch.tensor(bW_torch, dtype=torch.float32) gru_state_dict["bias_hh_l0"] = torch.tensor(bR_torch, dtype=torch.float32) else: reverse_dir_idx = 1 (W_torch, R_torch, bW_torch, bR_torch) = get_torch_weights(reverse_dir_idx) gru_state_dict["weight_ih_l0_reverse"] = torch.tensor( W_torch, dtype=torch.float32 ) gru_state_dict["weight_hh_l0_reverse"] = torch.tensor( R_torch, dtype=torch.float32 ) gru_state_dict["bias_ih_l0_reverse"] = torch.tensor( bW_torch, dtype=torch.float32 ) gru_state_dict["bias_hh_l0_reverse"] = torch.tensor( bR_torch, dtype=torch.float32 ) # Set GRU state dictionary gru.load_state_dict(gru_state_dict, strict=True) # Perform inference X_torch = torch.tensor(X, dtype=torch.float32) initial_h_torch = torch.tensor(initial_h, dtype=torch.float32) if direction == GRU_DIR_REVERSE: Y, next_h = gru(X_torch.flip([0]), initial_h_torch) Y = Y.flip([0]) else: Y, next_h = gru(X_torch, initial_h_torch) # Reshape output to ONNX format [seq_length, num_directions, batch_size, hidden_size] Y_ref = Y.detach().numpy() Y_ref = np.reshape(Y_ref, [seq_length, batch_size, num_directions, hidden_size]) Y_ref = np.transpose(Y_ref, [0, 2, 1, 3]) # Reshape states to ONNX format Y_h_ref = next_h.detach().numpy() # --------------------------------------- COMPUTE PYTHON-NUMPY REFERENCE ------------------------------------------- # Create X slices Xslices = list() for t in range(seq_length): Xslices.append(np.reshape(X[t, :, :], [batch_size, input_size])) # Function to compute one GRU cell def compute_gru(forward): dir_idx = 0 if forward else (0 if direction == GRU_DIR_REVERSE else 1) Wz, Wr, Wh, Rz, Rr, Rh, bWz, bWr, bWh, bRz, bRr, bRh = get_weights(dir_idx) def f(x): return 1 / (1 + np.exp(-x)) def g(x): return np.tanh(x) def mm(x, w): return np.matmul(x, w.transpose()) Ht = np.reshape(initial_h[dir_idx, :, :], [batch_size, hidden_size]) Yslices = list() for t in range(seq_length): xt = Xslices[t] if forward else Xslices[seq_length - 1 - t] zt = f(mm(xt, Wz) + bWz + mm(Ht, Rz) + bRz) rt = f(mm(xt, Wr) + bWr + mm(Ht, Rr) + bRr) if linear_before_reset: htild = g(mm(xt, Wh) + bWh + rt * (mm(Ht, Rh) + bRh)) else: htild = g(mm(xt, Wh) + bWh + mm(rt * Ht, Rh) + bRh) Ht = (1 - zt) * htild + zt * Ht Yslices.append(Ht) return Yslices, Ht Yslices = list() Hslices = list() # Compute forward GRU forwardYslices = list() if forwardEnabled: Yt, Ht = compute_gru(True) forwardYslices += Yt Hslices.append(Ht) # Compute reverse GRU reverseYslices = list() if reverseEnabled: Yt, Ht = compute_gru(False) reverseYslices += Yt Hslices.append(Ht) # Concatenate slices for t in range(seq_length): if forwardEnabled: Yslices.append(forwardYslices[t]) if reverseEnabled: Yslices.append(reverseYslices[seq_length - 1 - t]) Y_ref_np = np.concatenate(Yslices, 0).reshape( [seq_length, num_directions, batch_size, hidden_size] ) Y_h_ref_np = np.concatenate(Hslices, 0).reshape( [num_directions, batch_size, hidden_size] ) # Use numpy implementation when linear_before_reset = False, else assert errors if linear_before_reset is False: Y_ref = Y_ref_np Y_h_ref = Y_h_ref_np else: assert ( np.max(np.abs(Y_ref - Y_ref_np)) < 1e-6 ), "Mismatch between Pytorch and Numpy GRU implementation" assert ( np.max(np.abs(Y_h_ref - Y_h_ref_np)) < 1e-6 ), "Mismatch between Pytorch and Numpy GRU implementation" # ---------------------------------------------- NODE DEFINITION -------------------------------------------------- # Node inputs node_inputs = [ "X", "W", "R", "B" if has_bias else "", "", "initial_h" if has_initial_h else "", ] # Node outputs node_outputs = ["Y", "Y_h"] # GRU node definition gru_node_def = onnx.helper.make_node( "GRU", name="gru", inputs=node_inputs, outputs=node_outputs, hidden_size=hidden_size, direction=direction, linear_before_reset=linear_before_reset, ) # Error node definition err_node_def = onnx.helper.make_node( "Sub", name="error", inputs=["Y", "Y_ref"], outputs=["Y_err"] ) # --------------------------------------------- GRAPH DEFINITION -------------------------------------------------- graph_input = list() graph_init = list() graph_output = list() # GRU inputs graph_input.append(helper.make_tensor_value_info("X", TensorProto.FLOAT, X_shape)) graph_input.append(helper.make_tensor_value_info("W", TensorProto.FLOAT, W_shape)) graph_input.append(helper.make_tensor_value_info("R", TensorProto.FLOAT, R_shape)) if has_bias: graph_input.append( helper.make_tensor_value_info("B", TensorProto.FLOAT, B_shape) ) if has_sequence_lens: graph_input.append( helper.make_tensor_value_info( "sequence_lens", TensorProto.INT32, sequence_lens_shape ) ) if has_initial_h: graph_input.append( helper.make_tensor_value_info( "initial_h", TensorProto.FLOAT, initial_h_shape ) ) # Reference input graph_input.append( helper.make_tensor_value_info("Y_ref", TensorProto.FLOAT, Y_shape) ) # GRU initializers graph_init.append(make_init("X", TensorProto.FLOAT, X)) graph_init.append(make_init("W", TensorProto.FLOAT, W)) graph_init.append(make_init("R", TensorProto.FLOAT, R)) if has_bias: graph_init.append(make_init("B", TensorProto.FLOAT, B)) if has_sequence_lens: graph_init.append(make_init("sequence_lens", TensorProto.INT32, sequence_lens)) if has_initial_h: graph_init.append(make_init("initial_h", TensorProto.FLOAT, initial_h)) # Reference initializer graph_init.append(make_init("Y_ref", TensorProto.FLOAT, Y_ref)) # Graph outputs graph_output.append( helper.make_tensor_value_info("Y_err", TensorProto.FLOAT, Y_shape) ) # Define graph (GraphProto) graph_name = "gru_test" graph_def = helper.make_graph( [gru_node_def, err_node_def], graph_name, inputs=graph_input, outputs=graph_output, ) # Set initializers graph_def.initializer.extend(graph_init) # --------------------------------------------- MODEL DEFINITION -------------------------------------------------- # Define model (ModelProto) model_def = helper.make_model(graph_def, producer_name="onnx-gru") # Check model onnx.checker.check_model(model_def) # Print model with open(model_path, "w") as f: f.write(str(model_def)) # Forward GRU gen_gru_onnx_test_model( model_path="gruForward.onnxtxt", seq_length=2, batch_size=5, hidden_size=4, input_size=3, direction="forward", has_bias=True, has_sequence_lens=False, has_initial_h=True, linear_before_reset=False, ) # Reverse GRU gen_gru_onnx_test_model( model_path="gruReverse.onnxtxt", seq_length=2, batch_size=5, hidden_size=4, input_size=3, direction="reverse", has_bias=True, has_sequence_lens=False, has_initial_h=True, linear_before_reset=False, ) # Bidirectional GRU gen_gru_onnx_test_model( model_path="gruBidirectional.onnxtxt", seq_length=2, batch_size=5, hidden_size=4, input_size=3, direction="bidirectional", has_bias=True, has_sequence_lens=False, has_initial_h=True, linear_before_reset=False, ) # Forward no bias GRU gen_gru_onnx_test_model( model_path="gruForwardNoBias.onnxtxt", seq_length=1, batch_size=5, hidden_size=4, input_size=3, direction="forward", has_bias=False, has_sequence_lens=False, has_initial_h=True, linear_before_reset=False, ) # Forward no state GRU gen_gru_onnx_test_model( model_path="gruForwardNoState.onnxtxt", seq_length=1, batch_size=5, hidden_size=4, input_size=3, direction="forward", has_bias=True, has_sequence_lens=False, has_initial_h=False, linear_before_reset=False, ) # Forward with linear before reset gen_gru_onnx_test_model( model_path="gruForwardLinearBeforeReset.onnxtxt", seq_length=1, batch_size=5, hidden_size=4, input_size=3, direction="forward", has_bias=True, has_sequence_lens=False, has_initial_h=True, linear_before_reset=True, )
# Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This is a helper script that generates Caffe2 models. # The generated model will be used for Caffe2 importer unittest: # ./tests/unittests/caffe2ImporterTest.cpp # Run $>python gen_caffe2_model.py to get the model files. from caffe2.proto import caffe2_pb2 from caffe2.python import utils from google.protobuf import text_format # Define a weights network weights = caffe2_pb2.NetDef() weights.name = "init" op = caffe2_pb2.OperatorDef() op.type = "GivenTensorFill" op.output.extend(["conv_w"]) op.arg.extend([utils.MakeArgument("shape", [1, 1, 2, 2])]) op.arg.extend([utils.MakeArgument("values", [1.0 for i in range(4)])]) weights.op.extend([op]) op = caffe2_pb2.OperatorDef() op.type = "GivenTensorFill" op.output.extend(["conv_b"]) op.arg.extend([utils.MakeArgument("shape", [1])]) op.arg.extend([utils.MakeArgument("values", [2.0 for i in range(1)])]) weights.op.extend([op]) weights.external_output.extend(op.output) # Define an inference net net = caffe2_pb2.NetDef() net.name = "predict" op = caffe2_pb2.OperatorDef() op.type = "Conv" op.input.extend(["data"]) op.input.extend(["conv_w"]) op.input.extend(["conv_b"]) op.arg.add().CopyFrom(utils.MakeArgument("kernel", 2)) op.arg.add().CopyFrom(utils.MakeArgument("stride", 1)) op.arg.add().CopyFrom(utils.MakeArgument("group", 1)) op.arg.add().CopyFrom(utils.MakeArgument("pad", 1)) op.output.extend(["conv_out"]) net.op.extend([op]) net.external_output.extend(op.output) # Generate model in text format. with open("predict_net.pbtxt", "w") as f: f.write(text_format.MessageToString(net)) with open("init_net.pbtxt", "w") as f: f.write(text_format.MessageToString(weights)) # Generate model in binary format. with open("predict_net.pb", "wb") as f: f.write(net.SerializeToString()) with open("init_net.pb", "wb") as f: f.write(weights.SerializeToString())
# Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This is a helper script that generates the TensorFlowLite models used # for testing the Glow importer. The models will be generated in a local # folder here 'tflite_models'. In order for the models to be used for unit # testing the files must be copied in the folder: # 'glow\tests\models\tfliteModels' # To generate the models you need to run this script without arguments: # python gen_tflite_models.py # Python requirements: Python 3.6 # Python package requirements: # TensorFlow 2.1.0 # Keras 2.3.1 # Numpy 1.16.2 # shutil, os, other dependencies import os import shutil import numpy as np import tensorflow as tf import tensorflow.keras.backend as keras_backend import tensorflow.keras.layers as layers from tensorflow.keras.models import Model from tensorflow.python.tools import freeze_graph # ---------------------------------------------------------------------------------------------------------------------- # UTILS # ---------------------------------------------------------------------------------------------------------------------- # Temporary folder path. TEMP_DIR = os.path.join(os.path.dirname(__file__), "temp") # Output model folder. OUT_DIR = os.path.join(os.path.dirname(__file__), "tflite_models") # Clean temporary directory. def clean_dir(dir_path): if os.path.exists(dir_path): shutil.rmtree(dir_path) os.mkdir(dir_path) # Remove temporary directory. def rm_dir(dir_path): if os.path.exists(dir_path): shutil.rmtree(dir_path) # Function to save a model in TensorFlowLite format. def save_model(model, filename): # Print status. print('Saving model "%s" ...' % filename) # Clean temporary folder. clean_dir(TEMP_DIR) # Get model inputs. model_inputs_dict = dict() model_inputs_array = [] for idx in range(len(model.inputs)): model_inputs_dict["input_%d" % idx] = model.inputs[idx] model_inputs_array.append(model.inputs[idx].op.name) # Get model outputs. model_outputs_dict = dict() model_outputs_array = [] for idx in range(len(model.outputs)): if idx == 0: output_name = model.outputs[idx].op.name else: output_name = model.outputs[idx].name model_outputs_dict[output_name] = model.outputs[idx] model_outputs_array.append(output_name) # Save TensorFlow checkpoint. tf.saved_model.simple_save( keras_backend.get_session(), os.path.join(TEMP_DIR, "checkpoint"), inputs=model_inputs_dict, outputs=model_outputs_dict, ) # Freeze TensorFlow graph. freeze_graph.freeze_graph( None, None, None, None, model.outputs[0].op.name, None, None, os.path.join(TEMP_DIR, "model.pb"), False, "", input_saved_model_dir=os.path.join(TEMP_DIR, "checkpoint"), ) # Convert and save TensorFlowLite model. converter = tf.lite.TFLiteConverter.from_frozen_graph( os.path.join(TEMP_DIR, "model.pb"), input_arrays=model_inputs_array, output_arrays=model_outputs_array, ) converter.dump_graphviz_video = False converter.allow_custom_ops = True tflite_model = converter.convert() model_filename = os.path.join(OUT_DIR, filename) if not model_filename.endswith(".tflite"): model_filename += ".tflite" open(model_filename, "wb").write(tflite_model) # Clean temporary folder. rm_dir(TEMP_DIR) # Function to save a tensor in binary format. In order for the GIT system # to correctly recognize these files as binary we will add a leading '0' # byte into the file. def save_tensor(tensor, filename): byte_array = b"\x00" + tensor.tobytes(order="C") with open(os.path.join(OUT_DIR, filename), "wb") as fh: fh.write(byte_array) # Create output directory. clean_dir(OUT_DIR) # ---------------------------------------------------------------------------------------------------------------------- # Strided Slice # ---------------------------------------------------------------------------------------------------------------------- def gen_strided_slice( name, input_shape, begin, end, strides, begin_mask=0, end_mask=0, ellipsis_mask=0, new_axis_mask=0, shrink_axis_mask=0, ): # Create model. inp = layers.Input( name="input", batch_size=input_shape[0], shape=input_shape[1:], dtype=tf.float32 ) out = tf.strided_slice( inp, begin, end, strides, begin_mask, end_mask, ellipsis_mask, new_axis_mask, shrink_axis_mask, ) model = Model(inputs=[inp], outputs=[out]) # Create data. np.random.seed(0) inp_tensor = np.random.rand(*input_shape).astype(np.float32) out_tensor = model.predict([inp_tensor]) # Save model. save_model(model, name) # Save data. save_tensor(inp_tensor, name + ".inp0") save_tensor(out_tensor, name + ".out0") # Clear session. keras_backend.clear_session() # Basic test. Default strides are 1. gen_strided_slice( name="strided_slice_test0", input_shape=(1, 2, 3), begin=(0, 0, 0), end=(1, 1, 1), strides=(1, 1, 1), ) # Test begin_mask. Ignore "begin" value for 2nd dimension and use value for maximum range. gen_strided_slice( name="strided_slice_test1", input_shape=(1, 3, 4), begin=(0, 2, 3), end=(1, 3, 4), strides=(1, 1, 1), begin_mask=2, ) # Test end_mask. Ignore "end" value for 2nd dimension and use value for maximum range. gen_strided_slice( name="strided_slice_test2", input_shape=(1, 3, 4), begin=(0, 0, 0), end=(1, 1, 1), strides=(1, 1, 1), end_mask=2, ) # Test begin_mask & end_mask. Ignore "begin"/"end" value for 2nd dimension and use values for maximum range. gen_strided_slice( name="strided_slice_test3", input_shape=(1, 3, 4), begin=(0, 1, 1), end=(1, 2, 2), strides=(1, 1, 1), begin_mask=2, end_mask=2, ) # Test ellipsis_mask. Test access pattern [0, ..., 0] where the ellipsis position is marked as 0's for begin/end. gen_strided_slice( name="strided_slice_test4", input_shape=(1, 3, 4), begin=(0, 0, 0), end=(1, 0, 1), strides=(1, 1, 1), begin_mask=0, end_mask=0, ellipsis_mask=2, ) # Test new_axis_mask. gen_strided_slice( name="strided_slice_test5", input_shape=(1, 3, 4), begin=(0, 0, 0), end=(1, 2, 3), strides=(1, 1, 1), new_axis_mask=2, ) # Test shrink_axis_mask. gen_strided_slice( name="strided_slice_test6", input_shape=(1, 3, 4), begin=(0, 0, 0), end=(1, 2, 3), strides=(1, 1, 1), shrink_axis_mask=2, ) # ---------------------------------------------------------------------------------------------------------------------- # Select # ---------------------------------------------------------------------------------------------------------------------- def gen_select_test(name, input_shape): # Create model. cond = layers.Input( name="cond", batch_size=input_shape[0], shape=input_shape[1:], dtype=tf.bool ) lhs = layers.Input( name="lhs", batch_size=input_shape[0], shape=input_shape[1:], dtype=tf.float32 ) rhs = layers.Input( name="rhs", batch_size=input_shape[0], shape=input_shape[1:], dtype=tf.float32 ) out = tf.where(cond, x=lhs, y=rhs) model = Model(inputs=[cond, lhs, rhs], outputs=[out]) # Create data. np.random.seed(0) cond_tensor = np.random.randint(low=0, high=2, size=input_shape).astype(np.bool) lhs_tensor = np.random.rand(*input_shape).astype(np.float32) rhs_tensor = np.random.rand(*input_shape).astype(np.float32) out_tensor = model.predict([cond_tensor, lhs_tensor, rhs_tensor]) # Save model. save_model(model, name) # Save data. save_tensor(cond_tensor, name + ".inp0") save_tensor(lhs_tensor, name + ".inp1") save_tensor(rhs_tensor, name + ".inp2") save_tensor(out_tensor, name + ".out0") # Clear session. keras_backend.clear_session() gen_select_test(name="select", input_shape=(1, 2, 3)) # ---------------------------------------------------------------------------------------------------------------------- # LogSoftmax # ---------------------------------------------------------------------------------------------------------------------- def gen_log_softmax_test(name, input_shape, axis): # Create model. inp = layers.Input(name="input", batch_size=input_shape[0], shape=input_shape[1:]) out = tf.nn.log_softmax(inp, axis=axis) model = Model(inputs=[inp], outputs=[out]) # Create data. np.random.seed(0) inp_tensor = np.random.rand(*input_shape).astype(np.float32) out_tensor = model.predict(inp_tensor) # Save model. save_model(model, name) # Save data. save_tensor(inp_tensor, name + ".inp0") save_tensor(out_tensor, name + ".out0") # Clear session. keras_backend.clear_session() gen_log_softmax_test(name="log_softmax", input_shape=(1, 3), axis=-1) # ---------------------------------------------------------------------------------------------------------------------- # GATHER ND # ---------------------------------------------------------------------------------------------------------------------- def gen_gather_nd_test(name, data_shape, indices_shape): # Create model. data = layers.Input( name="data", batch_size=data_shape[0], shape=data_shape[1:], dtype=tf.float32 ) indices = layers.Input( name="indices", batch_size=indices_shape[0], shape=indices_shape[1:], dtype=tf.int32, ) out = tf.gather_nd(data, indices, batch_dims=0) model = Model(inputs=[data, indices], outputs=[out]) # Create data. np.random.seed(0) data_tensor = np.random.rand(*data_shape).astype(np.float32) indices_tensor = np.random.randint( low=0, high=data_shape, size=indices_shape ).astype(np.int32) out_tensor = model.predict([data_tensor, indices_tensor]) # Save model. save_model(model, name) # Save data. save_tensor(data_tensor, name + ".inp0") save_tensor(indices_tensor, name + ".inp1") save_tensor(out_tensor, name + ".out0") # Clear session. keras_backend.clear_session() gen_gather_nd_test(name="gather_nd", data_shape=(2, 3, 4), indices_shape=(2, 3)) # ---------------------------------------------------------------------------------------------------------------------- # GATHER # ---------------------------------------------------------------------------------------------------------------------- def gen_gather_test(name, data_shape, indices_shape, axis): # Create model. data = layers.Input( name="data", batch_size=data_shape[0], shape=data_shape[1:], dtype=tf.float32 ) indices = layers.Input( name="indices", batch_size=indices_shape[0], shape=indices_shape[1:], dtype=tf.int32, ) out = tf.gather(data, indices, axis=axis, batch_dims=0) model = Model(inputs=[data, indices], outputs=[out]) # Create data. np.random.seed(0) data_tensor = np.random.rand(*data_shape).astype(np.float32) indices_tensor = np.random.randint(data_shape[axis], size=indices_shape).astype( np.int32 ) out_tensor = model.predict([data_tensor, indices_tensor]) # Save model. save_model(model, name) # Save data. save_tensor(data_tensor, name + ".inp0") save_tensor(indices_tensor, name + ".inp1") save_tensor(out_tensor, name + ".out0") # Clear session. keras_backend.clear_session() gen_gather_test( name="gather_axis0", data_shape=(1, 2, 3, 4), indices_shape=(1, 5), axis=0 ) gen_gather_test( name="gather_axis1", data_shape=(1, 2, 3, 4), indices_shape=(1, 5), axis=1 ) # ---------------------------------------------------------------------------------------------------------------------- # CAST # ---------------------------------------------------------------------------------------------------------------------- def gen_cast_test(name, input_shape, dtype): # Create model. inp = layers.Input(name="input", batch_size=input_shape[0], shape=input_shape[1:]) out = tf.cast(inp, dtype=dtype) model = Model(inputs=[inp], outputs=[out]) # Create data. np.random.seed(0) inp_tensor = np.random.rand(*input_shape).astype(np.float32) out_tensor = model.predict(inp_tensor) # Save model. save_model(model, name) # Save data. save_tensor(inp_tensor, name + ".inp0") save_tensor(out_tensor, name + ".out0") # Clear session. keras_backend.clear_session() gen_cast_test(name="cast_f32_to_int32", input_shape=(1, 1, 2, 12), dtype=tf.int32) # ---------------------------------------------------------------------------------------------------------------------- # Logical operators # ---------------------------------------------------------------------------------------------------------------------- def gen_unary_logical_operator_test(name, type): # Create model. inp = layers.Input(name="input1", batch_size=1, shape=2, dtype=tf.bool) if type == "not": out = tf.math.logical_not(inp) else: print('Logical unary operator "%s" not supported!') exit(1) model = Model(inputs=[inp], outputs=[out]) # Create data. inp_tensor = np.array([[False, True]]).astype(bool) out_tensor = model.predict([inp_tensor]) # Save model. save_model(model, name) # Save data. save_tensor(inp_tensor, name + ".inp0") save_tensor(out_tensor, name + ".out0") # Clear session. keras_backend.clear_session() gen_unary_logical_operator_test(name="logical_not", type="not") def gen_binary_logical_operator_test(name, type): # Create model. inp1 = layers.Input(name="input1", batch_size=1, shape=4, dtype=tf.bool) inp2 = layers.Input(name="input2", batch_size=1, shape=4, dtype=tf.bool) if type == "and": out = tf.math.logical_and(inp1, inp2) elif type == "or": out = tf.math.logical_or(inp1, inp2) else: print('Logical binary operator "%s" not supported!') exit(1) model = Model(inputs=[inp1, inp2], outputs=[out]) # Create data. inp1_tensor = np.array([[False, True, False, True]]).astype(bool) inp2_tensor = np.array([[False, False, True, True]]).astype(bool) out_tensor = model.predict([inp1_tensor, inp2_tensor]) # Save model. save_model(model, name) # Save data. save_tensor(inp1_tensor, name + ".inp0") save_tensor(inp2_tensor, name + ".inp1") save_tensor(out_tensor, name + ".out0") # Clear session. keras_backend.clear_session() gen_binary_logical_operator_test(name="logical_and", type="and") gen_binary_logical_operator_test(name="logical_or", type="or") def gen_cmp_operator_test(name, type): # Create model. inp1 = layers.Input(name="input1", batch_size=1, shape=3) inp2 = layers.Input(name="input2", batch_size=1, shape=3) if type == "equal": out = tf.math.equal(inp1, inp2) elif type == "not_equal": out = tf.math.not_equal(inp1, inp2) elif type == "less": out = tf.math.less(inp1, inp2) elif type == "less_equal": out = tf.math.less_equal(inp1, inp2) elif type == "greater": out = tf.math.greater(inp1, inp2) elif type == "greater_equal": out = tf.math.greater_equal(inp1, inp2) else: print('Logical operator "%s" not supported!') exit(1) model = Model(inputs=[inp1, inp2], outputs=[out]) # Create data. inp1_tensor = np.array([[1.0, 1.0, -1.0]]).astype(np.float32) inp2_tensor = np.array([[1.0, -1.0, 1.0]]).astype(np.float32) out_tensor = model.predict([inp1_tensor, inp2_tensor]) # Save model. save_model(model, name) # Save data. save_tensor(inp1_tensor, name + ".inp0") save_tensor(inp2_tensor, name + ".inp1") save_tensor(out_tensor, name + ".out0") # Clear session. keras_backend.clear_session() gen_cmp_operator_test(name="equal", type="equal") gen_cmp_operator_test(name="not_equal", type="not_equal") gen_cmp_operator_test(name="less", type="less") gen_cmp_operator_test(name="less_equal", type="less_equal") gen_cmp_operator_test(name="greater", type="greater") gen_cmp_operator_test(name="greater_equal", type="greater_equal") # ---------------------------------------------------------------------------------------------------------------------- # Unary operators # ---------------------------------------------------------------------------------------------------------------------- def gen_unary_operator_test(name, type, input_shape): # Create model. inp = layers.Input(name="input", batch_size=input_shape[0], shape=input_shape[1:]) if type == "relu": out = tf.nn.relu(inp) elif type == "relu_n1to1": out = tf.clip_by_value(inp, -1.0, 1.0) elif type == "relu6": out = tf.nn.relu6(inp) elif type == "sigmoid": out = tf.nn.sigmoid(inp) elif type == "exp": out = tf.exp(inp) elif type == "log": out = tf.math.log(inp) elif type == "tanh": out = tf.nn.tanh(inp) elif type == "leaky_relu": out = tf.nn.leaky_relu(inp, alpha=0.1) elif type == "prelu": out = layers.PReLU(alpha_initializer="random_uniform")(inp) elif type == "square": out = tf.math.square(inp) elif type == "abs": out = tf.math.abs(inp) elif type == "neg": out = tf.math.negative(inp) elif type == "sqrt": out = tf.math.sqrt(inp) elif type == "rsqrt": out = tf.math.rsqrt(inp) elif type == "sin": out = tf.math.sin(inp) elif type == "cos": out = tf.math.cos(inp) elif type == "ceil": out = tf.math.ceil(inp) elif type == "round": out = tf.math.round(inp) elif type == "floor": out = tf.math.floor(inp) else: print('Unary operator "%s" not supported!') exit(1) model = Model(inputs=[inp], outputs=[out]) # Create data. np.random.seed(0) inp_tensor = np.random.randn(*input_shape).astype(np.float32) if type in ["log", "sqrt", "rsqrt"]: inp_tensor = np.abs(inp_tensor) + 1 out_tensor = model.predict(inp_tensor) # Save model. save_model(model, name) # Save data. save_tensor(inp_tensor, name + ".inp0") save_tensor(out_tensor, name + ".out0") # Clear session. keras_backend.clear_session() gen_unary_operator_test(name="relu", type="relu", input_shape=(1, 10)) gen_unary_operator_test(name="relu_n1to1", type="relu_n1to1", input_shape=(1, 10)) gen_unary_operator_test(name="relu6", type="relu6", input_shape=(1, 10)) gen_unary_operator_test(name="sigmoid", type="sigmoid", input_shape=(1, 10)) gen_unary_operator_test(name="tanh", type="tanh", input_shape=(1, 10)) gen_unary_operator_test(name="exp", type="exp", input_shape=(1, 10)) gen_unary_operator_test(name="log", type="log", input_shape=(1, 10)) gen_unary_operator_test(name="leaky_relu", type="leaky_relu", input_shape=(1, 10)) gen_unary_operator_test(name="prelu", type="prelu", input_shape=(1, 10)) gen_unary_operator_test(name="square", type="square", input_shape=(1, 10)) gen_unary_operator_test(name="abs", type="abs", input_shape=(1, 10)) gen_unary_operator_test(name="neg", type="neg", input_shape=(1, 10)) gen_unary_operator_test(name="sqrt", type="sqrt", input_shape=(1, 10)) gen_unary_operator_test(name="rsqrt", type="rsqrt", input_shape=(1, 10)) gen_unary_operator_test(name="sin", type="sin", input_shape=(1, 10)) gen_unary_operator_test(name="cos", type="cos", input_shape=(1, 10)) gen_unary_operator_test(name="ceil", type="ceil", input_shape=(1, 10)) gen_unary_operator_test(name="round", type="round", input_shape=(1, 10)) gen_unary_operator_test(name="floor", type="floor", input_shape=(1, 10)) # ---------------------------------------------------------------------------------------------------------------------- # Binary operators # ---------------------------------------------------------------------------------------------------------------------- def gen_binary_operator_test(name, type, input_shape): # Create model. inp1 = layers.Input(name="input1", batch_size=input_shape[0], shape=input_shape[1:]) inp2 = layers.Input(name="input2", batch_size=input_shape[0], shape=input_shape[1:]) if type == "add": out = tf.math.add(inp1, inp2) elif type == "mul": out = tf.math.multiply(inp1, inp2) elif type == "sub": out = tf.math.subtract(inp1, inp2) elif type == "div": out = tf.math.divide(inp1, inp2) elif type == "pow": out = tf.math.pow(inp1, inp2) elif type == "max": out = tf.math.maximum(inp1, inp2) elif type == "min": out = tf.math.minimum(inp1, inp2) else: print('Binary operator "%s" not supported!') exit(1) model = Model(inputs=[inp1, inp2], outputs=[out]) # Create data. np.random.seed(0) inp1_tensor = np.random.rand(*input_shape).astype(np.float32) inp2_tensor = np.random.rand(*input_shape).astype(np.float32) if type == "pow": inp1_tensor = np.abs(inp1_tensor) + 1 out_tensor = model.predict([inp1_tensor, inp2_tensor]) # Save model. save_model(model, name) # Save data. save_tensor(inp1_tensor, name + ".inp0") save_tensor(inp2_tensor, name + ".inp1") save_tensor(out_tensor, name + ".out0") # Clear session. keras_backend.clear_session() gen_binary_operator_test(name="add", type="add", input_shape=(1, 10)) gen_binary_operator_test(name="mul", type="mul", input_shape=(1, 10)) gen_binary_operator_test(name="sub", type="sub", input_shape=(1, 10)) gen_binary_operator_test(name="div", type="div", input_shape=(1, 10)) gen_binary_operator_test(name="pow", type="pow", input_shape=(1, 10)) gen_binary_operator_test(name="max", type="max", input_shape=(1, 10)) gen_binary_operator_test(name="min", type="min", input_shape=(1, 10)) # ---------------------------------------------------------------------------------------------------------------------- # Binary broadcasted operators # ---------------------------------------------------------------------------------------------------------------------- def gen_binary_broadcast_operator_test(name, type, shape_1, shape_2): # Create model. inp1 = layers.Input(name="input1", batch_size=shape_1[0], shape=shape_1[1:]) inp2 = layers.Input(name="input2", batch_size=shape_2[0], shape=shape_2[1:]) if type == "add": out = tf.math.add(inp1, inp2) elif type == "mul": out = tf.math.multiply(inp1, inp2) elif type == "sub": out = tf.math.subtract(inp1, inp2) elif type == "div": out = tf.math.divide(inp1, inp2) elif type == "max": out = tf.math.maximum(inp1, inp2) elif type == "min": out = tf.math.minimum(inp1, inp2) else: print('Binary operator "%s" not supported!' % type) exit(1) model = Model(inputs=[inp1, inp2], outputs=[out]) # Create data. np.random.seed(0) inp1_tensor = np.random.rand(*shape_1).astype(np.float32) inp2_tensor = np.random.rand(*shape_2).astype(np.float32) if type == "pow": inp1_tensor = np.abs(inp1_tensor) + 1 out_tensor = model.predict([inp1_tensor, inp2_tensor]) # Save model. save_model(model, name) # Save data. save_tensor(inp1_tensor, name + ".inp0") save_tensor(inp2_tensor, name + ".inp1") save_tensor(out_tensor, name + ".out0") # Clear session. keras_backend.clear_session() gen_binary_broadcast_operator_test( name="add_broadcast", type="add", shape_1=(1, 5, 5, 3), shape_2=(1, 1, 1, 3) ) gen_binary_broadcast_operator_test( name="mul_broadcast", type="mul", shape_1=(1, 5, 5, 3), shape_2=(1, 1, 1, 3) ) gen_binary_broadcast_operator_test( name="sub_broadcast", type="sub", shape_1=(1, 5, 5, 3), shape_2=(1, 1, 1, 3) ) gen_binary_broadcast_operator_test( name="div_broadcast", type="div", shape_1=(1, 5, 5, 3), shape_2=(1, 1, 1, 3) ) gen_binary_broadcast_operator_test( name="max_broadcast", type="max", shape_1=(1, 5, 5, 3), shape_2=(1, 1, 1, 3) ) gen_binary_broadcast_operator_test( name="min_broadcast", type="min", shape_1=(1, 5, 5, 3), shape_2=(1, 1, 1, 3) ) # ---------------------------------------------------------------------------------------------------------------------- # Conv2D # ---------------------------------------------------------------------------------------------------------------------- def gen_conv2d_test( name, input_shape, filters, kernels, strides, padding, dilations, activation ): # Create model. inp = layers.Input(name="input", batch_size=input_shape[0], shape=input_shape[1:]) out = layers.Conv2D( filters=filters, kernel_size=kernels, strides=strides, padding=padding, dilation_rate=dilations, activation=activation, use_bias=True, bias_initializer="random_normal", )(inp) model = Model(inputs=[inp], outputs=[out]) # Create data. np.random.seed(0) inp_tensor = np.random.rand(*input_shape).astype(np.float32) out_tensor = model.predict(inp_tensor) # Save model. save_model(model, name) # Save data. save_tensor(inp_tensor, name + ".inp0") save_tensor(out_tensor, name + ".out0") # Clear session. keras_backend.clear_session() gen_conv2d_test( name="conv2d_valid", input_shape=(1, 5, 5, 3), filters=2, kernels=(2, 3), strides=(1, 1), padding="valid", dilations=(1, 1), activation="linear", ) gen_conv2d_test( name="conv2d_same", input_shape=(1, 5, 5, 3), filters=2, kernels=(2, 3), strides=(1, 1), padding="same", dilations=(1, 1), activation="linear", ) gen_conv2d_test( name="conv2d_relu", input_shape=(1, 5, 5, 3), filters=2, kernels=(2, 3), strides=(1, 1), padding="valid", dilations=(1, 1), activation="relu", ) # ---------------------------------------------------------------------------------------------------------------------- # DepthwiseConv2D # ---------------------------------------------------------------------------------------------------------------------- def gen_depthwise_conv2d_test( name, input_shape, depth_multiplier, kernels, strides, padding, dilations, activation, ): # Create model. inp = layers.Input(name="input", batch_size=input_shape[0], shape=input_shape[1:]) out = layers.DepthwiseConv2D( kernel_size=kernels, strides=strides, padding=padding, depth_multiplier=depth_multiplier, dilation_rate=dilations, activation=activation, use_bias=True, bias_initializer="random_normal", )(inp) model = Model(inputs=[inp], outputs=[out]) # Create data. np.random.seed(0) inp_tensor = np.random.rand(*input_shape).astype(np.float32) out_tensor = model.predict(inp_tensor) # Save model. save_model(model, name) # Save data. save_tensor(inp_tensor, name + ".inp0") save_tensor(out_tensor, name + ".out0") # Clear session. keras_backend.clear_session() gen_depthwise_conv2d_test( name="depthwise_conv2d_c1_m1", input_shape=(1, 5, 5, 1), depth_multiplier=1, kernels=(2, 3), strides=(1, 1), padding="valid", dilations=(1, 1), activation="linear", ) gen_depthwise_conv2d_test( name="depthwise_conv2d_c1_m2", input_shape=(1, 5, 5, 1), depth_multiplier=2, kernels=(2, 3), strides=(1, 1), padding="valid", dilations=(1, 1), activation="linear", ) gen_depthwise_conv2d_test( name="depthwise_conv2d_c2_m1", input_shape=(1, 5, 5, 2), depth_multiplier=1, kernels=(2, 3), strides=(1, 1), padding="valid", dilations=(1, 1), activation="linear", ) gen_depthwise_conv2d_test( name="depthwise_conv2d_c2_m2", input_shape=(1, 5, 5, 2), depth_multiplier=2, kernels=(2, 3), strides=(1, 1), padding="valid", dilations=(1, 1), activation="linear", ) # ---------------------------------------------------------------------------------------------------------------------- # FullyConnected # ---------------------------------------------------------------------------------------------------------------------- def gen_fully_connected_test(name, input_shape, out_channels, activation): # Create model. inp = layers.Input(name="input", batch_size=input_shape[0], shape=input_shape[1:]) out = layers.Dense( units=out_channels, activation=activation, use_bias=True, bias_initializer="random_normal", )(inp) model = Model(inputs=[inp], outputs=[out]) # Create data. np.random.seed(0) inp_tensor = np.random.rand(*input_shape).astype(np.float32) out_tensor = model.predict(inp_tensor) # Save model. save_model(model, name) # Save data. save_tensor(inp_tensor, name + ".inp0") save_tensor(out_tensor, name + ".out0") # Clear session. keras_backend.clear_session() gen_fully_connected_test( name="fully_connected", input_shape=(2, 5), out_channels=10, activation="linear" ) # ---------------------------------------------------------------------------------------------------------------------- # MaxPool2D # ---------------------------------------------------------------------------------------------------------------------- def gen_maxpool2d_test(name, input_shape, kernels, strides, padding): # Create model. inp = layers.Input(name="input", batch_size=input_shape[0], shape=input_shape[1:]) out = layers.MaxPooling2D(pool_size=kernels, strides=strides, padding=padding)(inp) model = Model(inputs=[inp], outputs=[out]) # Create data. np.random.seed(0) inp_tensor = np.random.rand(*input_shape).astype(np.float32) out_tensor = model.predict(inp_tensor) # Save model. save_model(model, name) # Save data. save_tensor(inp_tensor, name + ".inp0") save_tensor(out_tensor, name + ".out0") # Clear session. keras_backend.clear_session() gen_maxpool2d_test( name="maxpool2d_valid", input_shape=(1, 5, 5, 2), kernels=(2, 3), strides=(1, 1), padding="valid", ) gen_maxpool2d_test( name="maxpool2d_same", input_shape=(1, 5, 5, 2), kernels=(2, 3), strides=(1, 1), padding="same", ) # ---------------------------------------------------------------------------------------------------------------------- # AvgPool2D # ---------------------------------------------------------------------------------------------------------------------- def gen_avgpool2d_test(name, input_shape, kernels, strides, padding): # Create model. inp = layers.Input(name="input", batch_size=input_shape[0], shape=input_shape[1:]) out = layers.AveragePooling2D(pool_size=kernels, strides=strides, padding=padding)( inp ) model = Model(inputs=[inp], outputs=[out]) # Create data. np.random.seed(0) inp_tensor = np.random.rand(*input_shape).astype(np.float32) out_tensor = model.predict(inp_tensor) # Save model. save_model(model, name) # Save data. save_tensor(inp_tensor, name + ".inp0") save_tensor(out_tensor, name + ".out0") # Clear session. keras_backend.clear_session() gen_avgpool2d_test( name="avgpool2d_valid", input_shape=(1, 5, 5, 2), kernels=(2, 3), strides=(1, 1), padding="valid", ) gen_avgpool2d_test( name="avgpool2d_same", input_shape=(1, 5, 5, 2), kernels=(2, 3), strides=(1, 1), padding="same", ) # ---------------------------------------------------------------------------------------------------------------------- # Softmax # ---------------------------------------------------------------------------------------------------------------------- def gen_softmax_test(name, input_shape, axis): # Create model. inp = layers.Input(name="input", batch_size=input_shape[0], shape=input_shape[1:]) out = layers.Softmax(axis=axis)(inp) model = Model(inputs=[inp], outputs=[out]) # Create data. np.random.seed(0) inp_tensor = np.random.rand(*input_shape).astype(np.float32) out_tensor = model.predict(inp_tensor) # Save model. save_model(model, name) # Save data. save_tensor(inp_tensor, name + ".inp0") save_tensor(out_tensor, name + ".out0") # Clear session. keras_backend.clear_session() gen_softmax_test(name="softmax", input_shape=(1, 3), axis=-1) # ---------------------------------------------------------------------------------------------------------------------- # Transpose # ---------------------------------------------------------------------------------------------------------------------- def gen_transpose_test(name, input_shape, perm): # Create model. inp = layers.Input(name="input", batch_size=input_shape[0], shape=input_shape[1:]) out = layers.Permute(perm)(inp) model = Model(inputs=[inp], outputs=[out]) # Create data. np.random.seed(0) inp_tensor = np.random.rand(*input_shape).astype(np.float32) out_tensor = model.predict(inp_tensor) # Save model. save_model(model, name) # Save data. save_tensor(inp_tensor, name + ".inp0") save_tensor(out_tensor, name + ".out0") # Clear session. keras_backend.clear_session() gen_transpose_test(name="transpose", input_shape=(1, 2, 3), perm=(2, 1)) # ---------------------------------------------------------------------------------------------------------------------- # Slice # ---------------------------------------------------------------------------------------------------------------------- def gen_slice_test(name, input_shape, begin, size): # Create model. inp = layers.Input(name="input", batch_size=input_shape[0], shape=input_shape[1:]) out = tf.slice(inp, begin, size) model = Model(inputs=[inp], outputs=[out]) # Create data. np.random.seed(0) inp_tensor = np.random.rand(*input_shape).astype(np.float32) out_tensor = model.predict(inp_tensor) # Save model. save_model(model, name) # Save data. save_tensor(inp_tensor, name + ".inp0") save_tensor(out_tensor, name + ".out0") # Clear session. keras_backend.clear_session() gen_slice_test(name="slice", input_shape=(1, 2, 3), begin=(0, 1, 2), size=(1, 1, 1)) gen_slice_test( name="slice_neg_size", input_shape=(1, 2, 3), begin=(0, 1, 2), size=(1, 1, -1) ) # ---------------------------------------------------------------------------------------------------------------------- # Reshape # ---------------------------------------------------------------------------------------------------------------------- def gen_reshape_test(name, input_shape, shape): # Create model. inp = layers.Input(name="input", batch_size=input_shape[0], shape=input_shape[1:]) out = tf.reshape(inp, shape) model = Model(inputs=[inp], outputs=[out]) # Create data. np.random.seed(0) inp_tensor = np.random.rand(*input_shape).astype(np.float32) out_tensor = model.predict(inp_tensor) # Save model. save_model(model, name) # Save data. save_tensor(inp_tensor, name + ".inp0") save_tensor(out_tensor, name + ".out0") # Clear session. keras_backend.clear_session() gen_reshape_test(name="reshape", input_shape=(1, 2, 3), shape=(1, 6)) gen_reshape_test(name="reshape_neg_shape", input_shape=(1, 2, 3), shape=(1, -1)) # ---------------------------------------------------------------------------------------------------------------------- # Concat # ---------------------------------------------------------------------------------------------------------------------- def gen_concat_test(name, input_shape, axis): # Create model. inp1 = layers.Input(name="input1", batch_size=input_shape[0], shape=input_shape[1:]) inp2 = layers.Input(name="input2", batch_size=input_shape[0], shape=input_shape[1:]) out = tf.concat([inp1, inp2], axis) model = Model(inputs=[inp1, inp2], outputs=[out]) # Create data. np.random.seed(0) inp1_tensor = np.random.rand(*input_shape).astype(np.float32) inp2_tensor = np.random.rand(*input_shape).astype(np.float32) out_tensor = model.predict([inp1_tensor, inp2_tensor]) # Save model. save_model(model, name) # Save data. save_tensor(inp1_tensor, name + ".inp0") save_tensor(inp2_tensor, name + ".inp1") save_tensor(out_tensor, name + ".out0") # Clear session. keras_backend.clear_session() gen_concat_test(name="concat", input_shape=(1, 2, 3), axis=1) gen_concat_test(name="concat_neg_axis", input_shape=(1, 2, 3), axis=-1) # ---------------------------------------------------------------------------------------------------------------------- # Split # ---------------------------------------------------------------------------------------------------------------------- def gen_split_test(name, input_shape, axis, num_split): # Create model. inp = layers.Input(name="input", batch_size=input_shape[0], shape=input_shape[1:]) outs = tf.split(inp, num_or_size_splits=num_split, axis=axis) model = Model(inputs=[inp], outputs=outs) # Create data. np.random.seed(0) inp_tensor = np.random.rand(*input_shape).astype(np.float32) out_tensors = model.predict(inp_tensor) # Save model. save_model(model, name) # Save data. save_tensor(inp_tensor, name + ".inp0") for idx in range(len(out_tensors)): save_tensor(out_tensors[idx], name + (".out%d" % idx)) # Clear session. keras_backend.clear_session() gen_split_test(name="split", input_shape=(1, 9), axis=-1, num_split=3) # ---------------------------------------------------------------------------------------------------------------------- # Pad # ---------------------------------------------------------------------------------------------------------------------- def gen_pad_test(name, input_shape, pads): # Create model. inp = layers.Input(name="input", batch_size=input_shape[0], shape=input_shape[1:]) out = tf.pad(inp, paddings=pads) model = Model(inputs=[inp], outputs=[out]) # Create data. np.random.seed(0) inp_tensor = np.random.rand(*input_shape).astype(np.float32) out_tensor = model.predict(inp_tensor) # Save model. save_model(model, name) # Save data. save_tensor(inp_tensor, name + ".inp0") save_tensor(out_tensor, name + ".out0") # Clear session. keras_backend.clear_session() gen_pad_test(name="pad", input_shape=(1, 2, 2), pads=[[0, 0], [1, 2], [0, 3]]) # ---------------------------------------------------------------------------------------------------------------------- # ArgMin/ArgMax # ---------------------------------------------------------------------------------------------------------------------- def gen_arg_min_max_test(name, type, input_shape, axis): # Create model. inp = layers.Input(name="input", batch_size=input_shape[0], shape=input_shape[1:]) if type == "min": out = tf.math.argmin(inp, axis=axis) else: out = tf.math.argmax(inp, axis=axis) model = Model(inputs=[inp], outputs=[out]) # Create data. np.random.seed(0) inp_tensor = np.random.rand(*input_shape).astype(np.float32) out_tensor = model.predict(inp_tensor) # Save model. save_model(model, name) # Save data. save_tensor(inp_tensor, name + ".inp0") save_tensor(out_tensor, name + ".out0") # Clear session. keras_backend.clear_session() gen_arg_min_max_test(name="arg_min", type="min", input_shape=(1, 2, 10), axis=2) gen_arg_min_max_test(name="arg_max", type="max", input_shape=(1, 2, 10), axis=2) # ---------------------------------------------------------------------------------------------------------------------- # Pack # ---------------------------------------------------------------------------------------------------------------------- def gen_pack_test(name, input_shape, axis): # Create model. inp1 = layers.Input(name="input1", batch_size=input_shape[0], shape=input_shape[1:]) inp2 = layers.Input(name="input2", batch_size=input_shape[0], shape=input_shape[1:]) out = tf.stack([inp1, inp2], axis=axis) model = Model(inputs=[inp1, inp2], outputs=[out]) # Create data. np.random.seed(0) inp1_tensor = np.random.rand(*input_shape).astype(np.float32) inp2_tensor = np.random.rand(*input_shape).astype(np.float32) out_tensor = model.predict([inp1_tensor, inp2_tensor]) # Save model. save_model(model, name) # Save data. save_tensor(inp1_tensor, name + ".inp0") save_tensor(inp2_tensor, name + ".inp1") save_tensor(out_tensor, name + ".out0") # Clear session. keras_backend.clear_session() gen_pack_test(name="pack", input_shape=(2, 3, 4), axis=1) # ---------------------------------------------------------------------------------------------------------------------- # Unpack # ---------------------------------------------------------------------------------------------------------------------- def gen_unpack_test(name, input_shape, axis): # Create model. inp = layers.Input(name="input", batch_size=input_shape[0], shape=input_shape[1:]) outs = tf.unstack(inp, axis=axis) model = Model(inputs=[inp], outputs=outs) # Create data. np.random.seed(0) inp_tensor = np.random.rand(*input_shape).astype(np.float32) out_tensors = model.predict(inp_tensor) # Save model. save_model(model, name) # Save data. save_tensor(inp_tensor, name + ".inp0") for idx in range(len(out_tensors)): save_tensor(out_tensors[idx], name + (".out%d" % idx)) # Clear session. keras_backend.clear_session() gen_unpack_test(name="unpack", input_shape=(2, 3, 4), axis=1) # ---------------------------------------------------------------------------------------------------------------------- # Mean # ---------------------------------------------------------------------------------------------------------------------- def gen_mean_test(name, input_shape, axis, keep_dims): # Create model. inp = layers.Input(name="input", batch_size=input_shape[0], shape=input_shape[1:]) out = tf.reduce_mean(inp, axis=axis, keepdims=keep_dims) model = Model(inputs=[inp], outputs=[out]) # Create data. np.random.seed(0) inp_tensor = np.random.rand(*input_shape).astype(np.float32) out_tensor = model.predict(inp_tensor) # Save model. save_model(model, name) # Save data. save_tensor(inp_tensor, name + ".inp0") save_tensor(out_tensor, name + ".out0") # Clear session. keras_backend.clear_session() gen_mean_test(name="mean_keep_dims", input_shape=(1, 2, 10), axis=2, keep_dims=True) gen_mean_test(name="mean_no_keep_dims", input_shape=(1, 2, 10), axis=2, keep_dims=False) gen_mean_test( name="mean_multiple_axis_keep_dims", input_shape=(1, 2, 10), axis=(1, 2), keep_dims=True, ) gen_mean_test( name="mean_multiple_axis_no_keep_dims", input_shape=(1, 2, 10), axis=(1, 2), keep_dims=False, ) # ---------------------------------------------------------------------------------------------------------------------- # Tile # ---------------------------------------------------------------------------------------------------------------------- def gen_tile_test(name, input_shape, tiles): # Create model. inp = layers.Input(name="input", batch_size=input_shape[0], shape=input_shape[1:]) out = tf.tile(inp, multiples=tiles) model = Model(inputs=[inp], outputs=[out]) # Create data. np.random.seed(0) inp_tensor = np.random.rand(*input_shape).astype(np.float32) out_tensor = model.predict(inp_tensor) # Save model. save_model(model, name) # Save data. save_tensor(inp_tensor, name + ".inp0") save_tensor(out_tensor, name + ".out0") # Clear session. keras_backend.clear_session() gen_tile_test(name="tile", input_shape=(1, 2, 3), tiles=[1, 3, 2]) # ---------------------------------------------------------------------------------------------------------------------- # RESIZE NEAREST # ---------------------------------------------------------------------------------------------------------------------- def gen_resize_nearest_test(name, input_shape, output_shape): # Create model. inp = layers.Input(name="input", batch_size=input_shape[0], shape=input_shape[1:]) out = tf.compat.v1.image.resize_nearest_neighbor(inp, size=output_shape) model = Model(inputs=[inp], outputs=[out]) # Create data. np.random.seed(0) inp_tensor = np.random.rand(*input_shape).astype(np.float32) out_tensor = model.predict(inp_tensor) # Save model. save_model(model, name) # Save data. save_tensor(inp_tensor, name + ".inp0") save_tensor(out_tensor, name + ".out0") # Clear session. keras_backend.clear_session() gen_resize_nearest_test( name="resize_nearest", input_shape=(1, 3, 4, 2), output_shape=(5, 7) ) # ---------------------------------------------------------------------------------------------------------------------- # RESIZE BILINEAR # ---------------------------------------------------------------------------------------------------------------------- def gen_resize_bilinear_test(name, input_shape, output_shape): # Create model. inp = layers.Input(name="input", batch_size=input_shape[0], shape=input_shape[1:]) out = tf.compat.v1.image.resize_bilinear(inp, size=output_shape) model = Model(inputs=[inp], outputs=[out]) # Create data. np.random.seed(0) inp_tensor = np.random.rand(*input_shape).astype(np.float32) out_tensor = model.predict(inp_tensor) # Save model. save_model(model, name) # Save data. save_tensor(inp_tensor, name + ".inp0") save_tensor(out_tensor, name + ".out0") # Clear session. keras_backend.clear_session() gen_resize_bilinear_test( name="resize_bilinear", input_shape=(1, 3, 4, 2), output_shape=(5, 7) ) # ---------------------------------------------------------------------------------------------------------------------- # SPACE TO DEPTH # ---------------------------------------------------------------------------------------------------------------------- def gen_space_to_depth_test(name, input_shape, block_size): # Create model. inp = layers.Input(name="input", batch_size=input_shape[0], shape=input_shape[1:]) out = tf.compat.v1.space_to_depth(inp, block_size=block_size) model = Model(inputs=[inp], outputs=[out]) # Create data. np.random.seed(0) inp_tensor = np.random.rand(*input_shape).astype(np.float32) out_tensor = model.predict(inp_tensor) # Save model. save_model(model, name) # Save data. save_tensor(inp_tensor, name + ".inp0") save_tensor(out_tensor, name + ".out0") # Clear session. keras_backend.clear_session() gen_space_to_depth_test(name="space_to_depth", input_shape=(1, 2, 4, 3), block_size=2) # ---------------------------------------------------------------------------------------------------------------------- # DEPTH TO SPACE # ---------------------------------------------------------------------------------------------------------------------- # Note: Older version of TensorFlow handles this operator as custom. This test is generated separately by manually # editing the 'space_to_depth' test. def gen_depth_to_space_test(name, input_shape, block_size): # Create model. inp = layers.Input(name="input", batch_size=input_shape[0], shape=input_shape[1:]) out = tf.nn.depth_to_space(inp, block_size=block_size) model = Model(inputs=[inp], outputs=[out]) # Create data. np.random.seed(0) inp_tensor = np.random.rand(*input_shape).astype(np.float32) out_tensor = model.predict(inp_tensor) # Save model. save_model(model, name) # Save data. save_tensor(inp_tensor, name + ".inp0") save_tensor(out_tensor, name + ".out0") # Clear session. keras_backend.clear_session() gen_depth_to_space_test(name="depth_to_space", input_shape=(1, 1, 2, 12), block_size=2)
#!/usr/bin/env python # Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys from PIL import Image # This script is used to visualize memory allocations in the Glow compiler. # # Usage: ./visualize.py dump.txt # # The script will dump a sequence of bitmap files that can be combined into a # video. Example: heap100123.bmp, heap heap100124.bmp, heap100125.bmp ... ) # # On mac and linux this command will generate a gif file: # convert -delay 10 -loop 0 *.bmp video.gif # # The input file should contain a list of allocation/deallocation commands. # Allocation commands (marked with the letter 'a') report the start address and # the size of the buffer, and the deallocation commands (marked with the letter # 'd') report the address of the buffer. You can generate these command lists # by inserting printf calls into the Glow memory allocator. # # Example input: # a 348864 20000 # a 368896 20000 # a 388928 20000 # a 408960 200000 # d 388928 # d 368896 # d 348864 content = open(sys.argv[1]).read() lines = content.split("\n") canvas_size = 512 pixelsize = 8 img = Image.new("RGB", (canvas_size, canvas_size), "black") pixels = img.load() # Use this number to assign file names to frames in the video. filename_counter = 10000000 # Maps from address to size sizes = {} color_index = 0 colors = [ (218, 112, 214), (255, 182, 193), (250, 235, 215), (255, 250, 205), (210, 105, 30), (210, 180, 140), (188, 143, 143), (255, 240, 245), (230, 230, 250), (255, 255, 240), ] def getColor(): global color_index color_index += 1 return colors[color_index % len(colors)] def setPixel(addr, color): # Don't draw out-of-bounds pixels. if addr >= canvas_size * canvas_size: return # Only draw pixels that are aligned to the block size. if addr % pixelsize != 0: return # Draw large pixels. sx = addr % canvas_size sy = addr / canvas_size sx = int(sx / pixelsize) sy = int(sy / pixelsize) for x in range(pixelsize): for y in range(pixelsize): pixels[sx * pixelsize + x, sy * pixelsize + y] = color def saveFrame(): global filename_counter filename_counter += 1 img.save("heap" + str(filename_counter) + ".bmp") for line in lines: tokens = line.split() if len(tokens) < 1: break print(tokens) if tokens[0] == "a": frm = int(tokens[1]) sz = int(tokens[2]) sizes[frm] = sz if frm + sz >= canvas_size * canvas_size: continue for i in range(sz): setPixel(i + frm, (255, 255, 255)) # allocate saveFrame() cc = getColor() for i in range(sz): setPixel(i + frm, cc) # allocated saveFrame() if tokens[0] == "d": frm = int(tokens[1]) sz = sizes[frm] if frm + sz >= canvas_size * canvas_size: continue for i in range(sz): setPixel(i + frm, (128, 0, 0)) # deallocate saveFrame() for i in range(sz): setPixel(i + frm, (15, 15, 15)) # previously allocated saveFrame()
# Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This is a helper script that generates ONNX models. # The generated model will be used for ONNX importer unittest: # ./tests/unittests/onnxImporterTest.cpp # Run $>python gen_onnx_model.py to get the ONNX model. import numpy as np import onnx from onnx import AttributeProto, GraphProto, helper, TensorProto # The protobuf definition can be found here: # https://github.com/onnx/onnx/blob/master/onnx/onnx.proto W = np.array( [[[[1.0, 1.0], [1.0, 1.0]]]] # (1, 1, 2, 2) tensor for convolution weights ).astype(np.float32) B = np.array([2.0]).astype(np.float32) # Convolution with padding. "data" represents the input data, # which will be provided by ONNX importer unittests. node_def = onnx.helper.make_node( "Conv", inputs=["data", "W", "B"], outputs=["y"], kernel_shape=[2, 2], strides=[1, 1], pads=[1, 1, 1, 1], name="conv1", ) weight_tensor = helper.make_tensor( name="W", data_type=TensorProto.FLOAT, dims=(1, 1, 2, 2), vals=W.reshape(4).tolist() ) bias_tensor = helper.make_tensor( name="B", data_type=TensorProto.FLOAT, dims=(1,), vals=B.reshape(1).tolist() ) # Create the graph (GraphProto) graph_def = helper.make_graph( [node_def], "test-model", inputs=[ helper.make_tensor_value_info("data", TensorProto.FLOAT, [1, 1, 3, 3]), helper.make_tensor_value_info("W", TensorProto.FLOAT, [1, 1, 2, 2]), helper.make_tensor_value_info("B", TensorProto.FLOAT, [1]), ], outputs=[helper.make_tensor_value_info("y", TensorProto.FLOAT, [1, 1, 4, 4])], ) graph_def.initializer.extend([weight_tensor]) graph_def.initializer.extend([bias_tensor]) graph_def.initializer[0].name = "W" graph_def.initializer[1].name = "B" # Create the model (ModelProto) model_def = helper.make_model(graph_def, producer_name="onnx-conv") with open("simpleConv.onnxtxt", "w") as f: f.write(str(model_def)) onnx.checker.check_model(model_def) print("The model is checked!")
# Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import onnx import tensorflow as tf from onnx import helper, TensorProto from tensorflow.python.ops import gen_audio_ops as audio_ops # ONNX utility. def make_init(name, dtype, tensor): return helper.make_tensor( name=name, data_type=dtype, dims=tensor.shape, vals=tensor.reshape(tensor.size).tolist(), ) # Function to generate AudioSpectrogram ONNX test model. def gen_spectrogram_onnx_test_model( model_path, window_count, window_size, stride, magnitude_squared=True ): # Tensor sizes. input_length = window_size + (window_count - 1) * stride fft_length = int(2 ** np.ceil(np.log2(window_size))) input_shape = [1, input_length] spectrogram_length = int(fft_length / 2 + 1) spectrogram_shape = [window_count, spectrogram_length] # Generate random input data. np.random.seed(1) input_data = np.random.randn(*input_shape) # ----------------------------------------- COMPUTE TensorFlow REFERENCE ------------------------------------------- # Define TensorFlow model. tf_input = tf.constant( input_data.reshape([input_length, 1]), name="input", dtype=tf.float32 ) tf_spectrogram = audio_ops.audio_spectrogram( tf_input, window_size=window_size, stride=stride, magnitude_squared=magnitude_squared, ) # Run TensorFlow model and get reference output. with tf.Session() as sess: spectrogram_ref = sess.run(tf_spectrogram) spectrogram_ref = np.reshape(spectrogram_ref, spectrogram_shape) # ---------------------------------------------- NODE DEFINITION -------------------------------------------------- # AudioSpectrogram node definition. spectrogram_node_def = onnx.helper.make_node( "AudioSpectrogram", name="audio_spectrogram", inputs=["input"], outputs=["spectrogram"], window_size=int(window_size), stride=int(stride), magnitude_squared=int(magnitude_squared), ) # Error node definition. err_node_def = onnx.helper.make_node( "Sub", name="error", inputs=["spectrogram", "spectrogram_ref"], outputs=["spectrogram_err"], ) # --------------------------------------------- GRAPH DEFINITION -------------------------------------------------- graph_input = list() graph_init = list() graph_output = list() # Graph inputs. graph_input.append( helper.make_tensor_value_info("input", TensorProto.FLOAT, input_shape) ) graph_input.append( helper.make_tensor_value_info( "spectrogram_ref", TensorProto.FLOAT, spectrogram_shape ) ) # Graph initializers. graph_init.append(make_init("input", TensorProto.FLOAT, input_data)) graph_init.append(make_init("spectrogram_ref", TensorProto.FLOAT, spectrogram_ref)) # Graph outputs. graph_output.append( helper.make_tensor_value_info( "spectrogram_err", TensorProto.FLOAT, spectrogram_shape ) ) # Graph name. graph_name = "audio_spectrogram_test" # Define graph (GraphProto). graph_def = helper.make_graph( [spectrogram_node_def, err_node_def], graph_name, inputs=graph_input, outputs=graph_output, ) # Set initializers. graph_def.initializer.extend(graph_init) # --------------------------------------------- MODEL DEFINITION -------------------------------------------------- # Define model (ModelProto). model_def = helper.make_model(graph_def, producer_name="onnx-audio-spectrogram") # Print model. with open(model_path, "w") as f: f.write(str(model_def)) # One window spectrogram. gen_spectrogram_onnx_test_model( model_path="audioSpectrogramOneWindow.onnxtxt", window_count=1, window_size=512, stride=256, magnitude_squared=True, ) # Two window spectrogram. gen_spectrogram_onnx_test_model( model_path="audioSpectrogramTwoWindow.onnxtxt", window_count=2, window_size=640, stride=320, magnitude_squared=True, ) # Magnitude non-squared. gen_spectrogram_onnx_test_model( model_path="audioSpectrogramNonSquared.onnxtxt", window_count=1, window_size=640, stride=320, magnitude_squared=False, )
# Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from caffe2.proto import caffe2_pb2 from google.protobuf import text_format def read_model_from_file(path): m = caffe2_pb2.NetDef() with open(path, "rb") as f: if ".pbtxt" in path: text_format.Merge(f.read(), m) else: m.ParseFromString(f.read()) return m def write_model_to_file(path, m): with open(path, "wb") as f: if ".pbtxt" in path: f.write(text_format.MessageToString(m)) else: f.write(m.SerializeToString()) # Perform dead code elimination on predict_net removing any nodes that aren't # used for producing values in predict_net.external_output. Remove any nodes in # init_net that produce values that are no longer needed by predict_net. def dce(init_net, predict_net): num_predict_net_ops_original = len(predict_net.op) num_predict_net_inputs_original = len(predict_net.external_input) # Find the set of tensors used in the computation of the outputs. live_predict_net_op_outputs = set(predict_net.external_output) prev_num_live_predict_net_op_outputs = len(live_predict_net_op_outputs) while True: for op in predict_net.op: for output_tensor in op.output: if output_tensor in live_predict_net_op_outputs: for input_tensor in op.input: live_predict_net_op_outputs.add(input_tensor) num_live_predict_net_op_outputs = len(live_predict_net_op_outputs) if num_live_predict_net_op_outputs == prev_num_live_predict_net_op_outputs: break prev_num_live_predict_net_op_outputs = num_live_predict_net_op_outputs # Find the ops that are required to compute the tensors used during # computation of the outputs. live_predict_net_ops = [] for op in predict_net.op: for output_tensor in op.output: if output_tensor in live_predict_net_op_outputs: live_predict_net_ops.append(op) # Delete all unused ops in predict_net. num_predict_net_ops_eliminated = len(predict_net.op) - len(live_predict_net_ops) del predict_net.op[:] predict_net.op.extend(live_predict_net_ops) # Find the set of all used inputs tensors in predict_net. live_predict_net_op_inputs = set() for op in predict_net.op: for input_tensor in op.input: live_predict_net_op_inputs.add(input_tensor) # Find the set of used external_inputs. live_predict_net_external_inputs = set() for external_input in predict_net.external_input: if external_input in live_predict_net_op_inputs: live_predict_net_external_inputs.add(external_input) # Delete unused external_inputs in predict_net. num_predict_net_inputs_eliminated = len(predict_net.external_input) - len( live_predict_net_external_inputs ) del predict_net.external_input[:] predict_net.external_input.extend(live_predict_net_external_inputs) print( "predict_net ops eliminated: {}/{}".format( num_predict_net_ops_eliminated, num_predict_net_ops_original ) ) print( "predict_net external_inputs eliminated: {}/{}".format( num_predict_net_inputs_eliminated, num_predict_net_inputs_original ) ) # Everything below pertains to removing unused outputs in the init_net, # if no init net was provided then stop here. if init_net is None: return num_init_net_ops_original = len(init_net.op) # Find the set of init_net ops with outputs needed by the init_net live_init_net_ops = [] for op in init_net.op: for output_tensor in op.output: if output_tensor in live_predict_net_external_inputs: live_init_net_ops.append(op) # Eliminate dead init_net ops num_init_net_ops_eliminated = len(init_net.op) - len(live_init_net_ops) del init_net.op[:] init_net.op.extend(live_init_net_ops) # Update init_net external_outputs live_init_net_op_outputs = set() for op in init_net.op: for output_tensor in op.output: live_init_net_op_outputs.add(output_tensor) live_init_net_external_outputs = set() for output_tensor in init_net.external_output: if output_tensor in live_init_net_op_outputs: live_init_net_external_outputs.add(output_tensor) del init_net.external_output[:] init_net.external_output.extend(live_init_net_external_outputs) print( "init_net ops eliminated: {}/{}".format( num_init_net_ops_eliminated, num_init_net_ops_original ) ) if __name__ == "__main__": parser = argparse.ArgumentParser("Caffe2 model dead code elimination") parser.add_argument("--input_init_net_path", type=str) parser.add_argument("--input_predict_net_path", type=str, required=True) parser.add_argument("--output_init_net_path", type=str) parser.add_argument("--output_predict_net_path", type=str, required=True) args = parser.parse_args() predict_net = read_model_from_file(args.input_predict_net_path) init_net = None if args.input_init_net_path is not None: init_net = read_model_from_file(args.input_init_net_path) dce(init_net, predict_net) write_model_to_file(args.output_predict_net_path, predict_net) if args.output_init_net_path is not None: write_model_to_file(args.output_init_net_path, init_net)
# Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import onnx import torch import torch.nn import torch.onnx from onnx import helper, TensorProto # LSTM enums LSTM_DIR_FORWARD = "forward" LSTM_DIR_REVERSE = "reverse" LSTM_DIR_BIDIRECTIONAL = "bidirectional" LSTM_DIRS = [LSTM_DIR_FORWARD, LSTM_DIR_REVERSE, LSTM_DIR_BIDIRECTIONAL] # ONNX utility def make_init(name, type, tensor): return helper.make_tensor( name=name, data_type=type, dims=tensor.shape, vals=tensor.reshape(tensor.size).tolist(), ) # Function to generate LSTM ONNX test model def gen_lstm_onnx_test_model( model_path, seq_length, batch_size, hidden_size, input_size, direction, has_bias, has_sequence_lens, has_initial_h, has_initial_c, has_peephole, input_forget=False, ): # Validate parameters assert direction in LSTM_DIRS, "ONNX LSTM direction invalid!" assert not has_sequence_lens, "ONNX LSTM Variable sequence length not supported" # Get number of directions num_directions = 2 if (direction == LSTM_DIR_BIDIRECTIONAL) else 1 # Tensor sizes X_shape = [seq_length, batch_size, input_size] W_shape = [num_directions, 4 * hidden_size, input_size] R_shape = [num_directions, 4 * hidden_size, hidden_size] B_shape = [num_directions, 8 * hidden_size] sequence_lens_shape = [batch_size] initial_h_shape = [num_directions, batch_size, hidden_size] initial_c_shape = [num_directions, batch_size, hidden_size] P_shape = [num_directions, 3 * hidden_size] Y_shape = [seq_length, num_directions, batch_size, hidden_size] # Generate random inputs (weights are assumed concatenated in ONNX format: i,o,f,c) np.random.seed(1) X = np.random.randn(*X_shape) W = np.random.randn(*W_shape) R = np.random.randn(*R_shape) B = np.random.randn(*B_shape) if has_bias else np.zeros(B_shape) sequence_lens = ( np.random.randint(1, seq_length, batch_size) if has_sequence_lens else np.tile(seq_length, batch_size) ) initial_h = ( np.random.randn(*initial_h_shape) if has_initial_h else np.zeros(initial_h_shape) ) initial_c = ( np.random.randn(*initial_c_shape) if has_initial_c else np.zeros(initial_c_shape) ) P = np.random.randn(*P_shape) if has_peephole else np.zeros(P_shape) # Function to get all the weight components for the given direction def get_weights(dir_idx): Wi = np.reshape( W[dir_idx, 0 * hidden_size : 1 * hidden_size, :], [hidden_size, input_size] ) Wo = np.reshape( W[dir_idx, 1 * hidden_size : 2 * hidden_size, :], [hidden_size, input_size] ) Wf = np.reshape( W[dir_idx, 2 * hidden_size : 3 * hidden_size, :], [hidden_size, input_size] ) Wc = np.reshape( W[dir_idx, 3 * hidden_size : 4 * hidden_size, :], [hidden_size, input_size] ) Ri = np.reshape( R[dir_idx, 0 * hidden_size : 1 * hidden_size, :], [hidden_size, hidden_size] ) Ro = np.reshape( R[dir_idx, 1 * hidden_size : 2 * hidden_size, :], [hidden_size, hidden_size] ) Rf = np.reshape( R[dir_idx, 2 * hidden_size : 3 * hidden_size, :], [hidden_size, hidden_size] ) Rc = np.reshape( R[dir_idx, 3 * hidden_size : 4 * hidden_size, :], [hidden_size, hidden_size] ) bWi = np.reshape(B[dir_idx, 0 * hidden_size : 1 * hidden_size], [hidden_size]) bWo = np.reshape(B[dir_idx, 1 * hidden_size : 2 * hidden_size], [hidden_size]) bWf = np.reshape(B[dir_idx, 2 * hidden_size : 3 * hidden_size], [hidden_size]) bWc = np.reshape(B[dir_idx, 3 * hidden_size : 4 * hidden_size], [hidden_size]) bRi = np.reshape(B[dir_idx, 4 * hidden_size : 5 * hidden_size], [hidden_size]) bRo = np.reshape(B[dir_idx, 5 * hidden_size : 6 * hidden_size], [hidden_size]) bRf = np.reshape(B[dir_idx, 6 * hidden_size : 7 * hidden_size], [hidden_size]) bRc = np.reshape(B[dir_idx, 7 * hidden_size : 8 * hidden_size], [hidden_size]) Pi = np.tile(P[dir_idx, 0 * hidden_size : 1 * hidden_size], (batch_size, 1)) Po = np.tile(P[dir_idx, 1 * hidden_size : 2 * hidden_size], (batch_size, 1)) Pf = np.tile(P[dir_idx, 2 * hidden_size : 3 * hidden_size], (batch_size, 1)) return ( Wi, Wo, Wf, Wc, Ri, Ro, Rf, Rc, bWi, bWo, bWf, bWc, bRi, bRo, bRf, bRc, Pi, Po, Pf, ) # Function to get PyTorch weights (which are in the i, f, c, o order) def get_torch_weights(dir_idx): ( Wi, Wo, Wf, Wc, Ri, Ro, Rf, Rc, bWi, bWo, bWf, bWc, bRi, bRo, bRf, bRc, Pi, Po, Pf, ) = get_weights(dir_idx) W_torch = np.concatenate((Wi, Wf, Wc, Wo), 0) R_torch = np.concatenate((Ri, Rf, Rc, Ro), 0) bW_torch = np.concatenate((bWi, bWf, bWc, bWo), 0) bR_torch = np.concatenate((bRi, bRf, bRc, bRo), 0) return (W_torch, R_torch, bW_torch, bR_torch) # ----------------------------------------- COMPUTE pyTORCH REFERENCE ---------------------------------------------- # Compute reference using Pytorch. Pytorch LSTM has only forward/bidirectional so we will do the reverse LSTM using # a Pytorch forward LSTM. lstm = torch.nn.LSTM( input_size=input_size, hidden_size=hidden_size, num_layers=1, bias=True, batch_first=False, dropout=0, bidirectional=(direction == LSTM_DIR_BIDIRECTIONAL), ) # Get LSTM state dictionary lstm_state_dict = lstm.state_dict() # Assign forward weights forwardEnabled = direction in [LSTM_DIR_FORWARD, LSTM_DIR_BIDIRECTIONAL] if forwardEnabled: forward_dir_idx = 0 (W_torch, R_torch, bW_torch, bR_torch) = get_torch_weights(forward_dir_idx) lstm_state_dict["weight_ih_l0"] = torch.tensor(W_torch, dtype=torch.float32) lstm_state_dict["weight_hh_l0"] = torch.tensor(R_torch, dtype=torch.float32) lstm_state_dict["bias_ih_l0"] = torch.tensor(bW_torch, dtype=torch.float32) lstm_state_dict["bias_hh_l0"] = torch.tensor(bR_torch, dtype=torch.float32) # Assign reverse weights reverseEnabled = direction in [LSTM_DIR_REVERSE, LSTM_DIR_BIDIRECTIONAL] if reverseEnabled: if direction == LSTM_DIR_REVERSE: reverse_dir_idx = 0 (W_torch, R_torch, bW_torch, bR_torch) = get_torch_weights(reverse_dir_idx) lstm_state_dict["weight_ih_l0"] = torch.tensor(W_torch, dtype=torch.float32) lstm_state_dict["weight_hh_l0"] = torch.tensor(R_torch, dtype=torch.float32) lstm_state_dict["bias_ih_l0"] = torch.tensor(bW_torch, dtype=torch.float32) lstm_state_dict["bias_hh_l0"] = torch.tensor(bR_torch, dtype=torch.float32) else: reverse_dir_idx = 1 (W_torch, R_torch, bW_torch, bR_torch) = get_torch_weights(reverse_dir_idx) lstm_state_dict["weight_ih_l0_reverse"] = torch.tensor( W_torch, dtype=torch.float32 ) lstm_state_dict["weight_hh_l0_reverse"] = torch.tensor( R_torch, dtype=torch.float32 ) lstm_state_dict["bias_ih_l0_reverse"] = torch.tensor( bW_torch, dtype=torch.float32 ) lstm_state_dict["bias_hh_l0_reverse"] = torch.tensor( bR_torch, dtype=torch.float32 ) # Set LSTM state dictionary lstm.load_state_dict(lstm_state_dict, strict=True) # Perform inference X_torch = torch.tensor(X, dtype=torch.float32) initial_h_torch = torch.tensor(initial_h, dtype=torch.float32) initial_c_torch = torch.tensor(initial_c, dtype=torch.float32) if direction == LSTM_DIR_REVERSE: Y, (next_h, next_c) = lstm( X_torch.flip([0]), (initial_h_torch, initial_c_torch) ) Y = Y.flip([0]) else: Y, (next_h, next_c) = lstm(X_torch, (initial_h_torch, initial_c_torch)) # Reshape output to ONNX format [seq_length, num_directions, batch_size, hidden_size] Y_ref = Y.detach().numpy() Y_ref = np.reshape(Y_ref, [seq_length, batch_size, num_directions, hidden_size]) Y_ref = np.transpose(Y_ref, [0, 2, 1, 3]) # Reshape states to ONNX format Y_h_ref = next_h.detach().numpy() Y_c_ref = next_c.detach().numpy() # --------------------------------------- COMPUTE PYTHON-NUMPY REFERENCE ------------------------------------------- # Create X slices Xslices = list() for t in range(seq_length): Xslices.append(np.reshape(X[t, :, :], [batch_size, input_size])) # Function to compute one LSTM cell def compute_lstm(forward): dir_idx = 0 if forward else (0 if direction == LSTM_DIR_REVERSE else 1) ( Wi, Wo, Wf, Wc, Ri, Ro, Rf, Rc, bWi, bWo, bWf, bWc, bRi, bRo, bRf, bRc, Pi, Po, Pf, ) = get_weights(dir_idx) def f(x): return 1 / (1 + np.exp(-x)) def g(x): return np.tanh(x) def h(x): return np.tanh(x) def mm(x, w): return np.matmul(x, w.transpose()) Ht = np.reshape(initial_h[dir_idx, :, :], [batch_size, hidden_size]) Ct = np.reshape(initial_c[dir_idx, :, :], [batch_size, hidden_size]) Yslices = list() for t in range(seq_length): xt = Xslices[t] if forward else Xslices[seq_length - 1 - t] ft = f(mm(xt, Wf) + bWf + mm(Ht, Rf) + bRf + Pf * Ct) if input_forget: it = 1 - ft else: it = f(mm(xt, Wi) + bWi + mm(Ht, Ri) + bRi + Pi * Ct) ctild = g(mm(xt, Wc) + bWc + mm(Ht, Rc) + bRc) Ct = ft * Ct + it * ctild ot = f(mm(xt, Wo) + bWo + mm(Ht, Ro) + bRo + Po * Ct) Ht = ot * h(Ct) Yslices.append(Ht) return Yslices, Ht, Ct Yslices = list() Hslices = list() Cslices = list() # Compute forward LSTM forwardYslices = list() if forwardEnabled: Yt, Ht, Ct = compute_lstm(True) forwardYslices += Yt Hslices.append(Ht) Cslices.append(Ct) # Compute reverse LSTM reverseYslices = list() if reverseEnabled: Yt, Ht, Ct = compute_lstm(False) reverseYslices += Yt Hslices.append(Ht) Cslices.append(Ct) # Concatenate slices for t in range(seq_length): if forwardEnabled: Yslices.append(forwardYslices[t]) if reverseEnabled: Yslices.append(reverseYslices[seq_length - 1 - t]) Y_ref_np = np.concatenate(Yslices, 0).reshape( [seq_length, num_directions, batch_size, hidden_size] ) Y_h_ref_np = np.concatenate(Hslices, 0).reshape( [num_directions, batch_size, hidden_size] ) Y_c_ref_np = np.concatenate(Cslices, 0).reshape( [num_directions, batch_size, hidden_size] ) # Use numpy implementation when using peepholes or input_forget, else assert errors if has_peephole or input_forget: Y_ref = Y_ref_np Y_h_ref = Y_h_ref_np Y_c_ref = Y_c_ref_np else: assert ( np.max(np.abs(Y_ref - Y_ref_np)) < 1e-6 ), "Mismatch between Pytorch and Numpy LSTM implementation" assert ( np.max(np.abs(Y_h_ref - Y_h_ref_np)) < 1e-6 ), "Mismatch between Pytorch and Numpy LSTM implementation" assert ( np.max(np.abs(Y_c_ref - Y_c_ref_np)) < 1e-6 ), "Mismatch between Pytorch and Numpy LSTM implementation" # ---------------------------------------------- NODE DEFINITION -------------------------------------------------- # Node inputs node_inputs = [ "X", "W", "R", "B" if has_bias else "", "", "initial_h" if has_initial_h else "", "initial_c" if has_initial_c else "", "P" if has_peephole else "", ] # Node outputs node_outputs = ["Y", "Y_h", "Y_c"] # LSTM node definition lstm_node_def = onnx.helper.make_node( "LSTM", name="lstm", inputs=node_inputs, outputs=node_outputs, hidden_size=hidden_size, direction=direction, input_forget=input_forget, ) # Error node definition err_node_def = onnx.helper.make_node( "Sub", name="error", inputs=["Y", "Y_ref"], outputs=["Y_err"] ) # --------------------------------------------- GRAPH DEFINITION -------------------------------------------------- graph_input = list() graph_init = list() graph_output = list() # LSTM inputs graph_input.append(helper.make_tensor_value_info("X", TensorProto.FLOAT, X_shape)) graph_input.append(helper.make_tensor_value_info("W", TensorProto.FLOAT, W_shape)) graph_input.append(helper.make_tensor_value_info("R", TensorProto.FLOAT, R_shape)) if has_bias: graph_input.append( helper.make_tensor_value_info("B", TensorProto.FLOAT, B_shape) ) if has_sequence_lens: graph_input.append( helper.make_tensor_value_info( "sequence_lens", TensorProto.INT32, sequence_lens_shape ) ) if has_initial_h: graph_input.append( helper.make_tensor_value_info( "initial_h", TensorProto.FLOAT, initial_h_shape ) ) if has_initial_c: graph_input.append( helper.make_tensor_value_info( "initial_c", TensorProto.FLOAT, initial_c_shape ) ) if has_peephole: graph_input.append( helper.make_tensor_value_info("P", TensorProto.FLOAT, P_shape) ) # Reference input graph_input.append( helper.make_tensor_value_info("Y_ref", TensorProto.FLOAT, Y_shape) ) # LSTM initializers graph_init.append(make_init("X", TensorProto.FLOAT, X)) graph_init.append(make_init("W", TensorProto.FLOAT, W)) graph_init.append(make_init("R", TensorProto.FLOAT, R)) if has_bias: graph_init.append(make_init("B", TensorProto.FLOAT, B)) if has_sequence_lens: graph_init.append(make_init("sequence_lens", TensorProto.INT32, sequence_lens)) if has_initial_h: graph_init.append(make_init("initial_h", TensorProto.FLOAT, initial_h)) if has_initial_c: graph_init.append(make_init("initial_c", TensorProto.FLOAT, initial_c)) if has_peephole: graph_init.append(make_init("P", TensorProto.FLOAT, P)) # Reference initializer graph_init.append(make_init("Y_ref", TensorProto.FLOAT, Y_ref)) # Graph outputs graph_output.append( helper.make_tensor_value_info("Y_err", TensorProto.FLOAT, Y_shape) ) # Define graph (GraphProto) graph_name = "lstm_test" graph_def = helper.make_graph( [lstm_node_def, err_node_def], graph_name, inputs=graph_input, outputs=graph_output, ) # Set initializers graph_def.initializer.extend(graph_init) # --------------------------------------------- MODEL DEFINITION -------------------------------------------------- # Define model (ModelProto) model_def = helper.make_model(graph_def, producer_name="onnx-lstm") # Check model onnx.checker.check_model(model_def) # Print model with open(model_path, "w") as f: f.write(str(model_def)) # Forward LSTM gen_lstm_onnx_test_model( model_path="lstmForward.onnxtxt", seq_length=2, batch_size=5, hidden_size=4, input_size=3, direction="forward", has_bias=True, has_sequence_lens=False, has_initial_h=True, has_initial_c=True, has_peephole=False, input_forget=False, ) # Reverse LSTM gen_lstm_onnx_test_model( model_path="lstmReverse.onnxtxt", seq_length=2, batch_size=5, hidden_size=4, input_size=3, direction="reverse", has_bias=True, has_sequence_lens=False, has_initial_h=True, has_initial_c=True, has_peephole=False, input_forget=False, ) # Bidirectional LSTM gen_lstm_onnx_test_model( model_path="lstmBidirectional.onnxtxt", seq_length=2, batch_size=5, hidden_size=4, input_size=3, direction="bidirectional", has_bias=True, has_sequence_lens=False, has_initial_h=True, has_initial_c=True, has_peephole=False, input_forget=False, ) # Forward no bias LSTM gen_lstm_onnx_test_model( model_path="lstmForwardNoBias.onnxtxt", seq_length=1, batch_size=5, hidden_size=4, input_size=3, direction="forward", has_bias=False, has_sequence_lens=False, has_initial_h=True, has_initial_c=True, has_peephole=False, input_forget=False, ) # Forward no state LSTM gen_lstm_onnx_test_model( model_path="lstmForwardNoState.onnxtxt", seq_length=1, batch_size=5, hidden_size=4, input_size=3, direction="forward", has_bias=True, has_sequence_lens=False, has_initial_h=False, has_initial_c=False, has_peephole=False, input_forget=False, ) # Forward with peephole LSTM gen_lstm_onnx_test_model( model_path="lstmForwardWithPeephole.onnxtxt", seq_length=1, batch_size=5, hidden_size=4, input_size=3, direction="forward", has_bias=True, has_sequence_lens=False, has_initial_h=True, has_initial_c=True, has_peephole=True, input_forget=False, ) # Forward with input forget LSTM gen_lstm_onnx_test_model( model_path="lstmForwardInputForget.onnxtxt", seq_length=1, batch_size=5, hidden_size=4, input_size=3, direction="forward", has_bias=True, has_sequence_lens=False, has_initial_h=True, has_initial_c=True, has_peephole=False, input_forget=True, )
# Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import onnx import tensorflow as tf from onnx import helper, TensorProto from tensorflow.python.ops import gen_audio_ops as audio_ops # ONNX utility. def make_init(name, dtype, tensor): return helper.make_tensor( name=name, data_type=dtype, dims=tensor.shape, vals=tensor.reshape(tensor.size).tolist(), ) # Function to generate MFCC ONNX test model. def gen_mfcc_onnx_test_model( model_path, window_count, window_size, stride, sample_rate, lower_frequency_limit, upper_frequency_limit, filterbank_channel_count, dct_coefficient_count, ): # Tensor sizes. input_length = window_size + (window_count - 1) * stride fft_length = int(2 ** np.ceil(np.log2(window_size))) input_shape = [1, input_length] spectrogram_length = int(fft_length / 2 + 1) spectrogram_shape = [window_count, spectrogram_length] coefficients_shape = [window_count, dct_coefficient_count] # Generate random input data. np.random.seed(1) input_data = np.random.randn(*input_shape) # ----------------------------------------- COMPUTE TensorFlow REFERENCE ------------------------------------------- # Define TensorFlow model. tf_input = tf.constant( input_data.reshape([input_length, 1]), name="input", dtype=tf.float32 ) tf_spectrogram = audio_ops.audio_spectrogram( tf_input, window_size=window_size, stride=stride, magnitude_squared=True ) tf_mfcc = audio_ops.mfcc( spectrogram=tf_spectrogram, sample_rate=sample_rate, upper_frequency_limit=upper_frequency_limit, lower_frequency_limit=lower_frequency_limit, filterbank_channel_count=filterbank_channel_count, dct_coefficient_count=dct_coefficient_count, ) # Run TensorFlow model and get spectrogram input. with tf.Session() as sess: spectrogram = sess.run(tf_spectrogram) spectrogram = np.reshape(spectrogram, spectrogram_shape) # Run TensorFlow model and get reference output coefficients. with tf.Session() as sess: coefficients_ref = sess.run(tf_mfcc) coefficients_ref = np.reshape(coefficients_ref, coefficients_shape) # ---------------------------------------------- NODE DEFINITION -------------------------------------------------- # MFCC node definition. mfcc_node_def = onnx.helper.make_node( "MFCC", name="mfcc", inputs=["spectrogram"], outputs=["coefficients"], sample_rate=float(sample_rate), lower_frequency_limit=float(lower_frequency_limit), upper_frequency_limit=float(upper_frequency_limit), filterbank_channel_count=int(filterbank_channel_count), dct_coefficient_count=int(dct_coefficient_count), ) # Error node definition. err_node_def = onnx.helper.make_node( "Sub", name="error", inputs=["coefficients", "coefficients_ref"], outputs=["coefficients_err"], ) # --------------------------------------------- GRAPH DEFINITION -------------------------------------------------- graph_input = list() graph_init = list() graph_output = list() # Graph inputs. graph_input.append( helper.make_tensor_value_info( "spectrogram", TensorProto.FLOAT, spectrogram_shape ) ) graph_input.append( helper.make_tensor_value_info( "coefficients_ref", TensorProto.FLOAT, coefficients_shape ) ) # Graph initializers. graph_init.append(make_init("spectrogram", TensorProto.FLOAT, spectrogram)) graph_init.append( make_init("coefficients_ref", TensorProto.FLOAT, coefficients_ref) ) # Graph outputs. graph_output.append( helper.make_tensor_value_info( "coefficients_err", TensorProto.FLOAT, coefficients_shape ) ) # Graph name. graph_name = "mfcc_test" # Define graph (GraphProto). graph_def = helper.make_graph( [mfcc_node_def, err_node_def], graph_name, inputs=graph_input, outputs=graph_output, ) # Set initializers. graph_def.initializer.extend(graph_init) # --------------------------------------------- MODEL DEFINITION -------------------------------------------------- # Define model (ModelProto). model_def = helper.make_model(graph_def, producer_name="onnx-mfcc") # Print model. with open(model_path, "w") as f: f.write(str(model_def)) # One window MFCC. gen_mfcc_onnx_test_model( model_path="mfccOneWindow.onnxtxt", window_count=1, window_size=640, stride=320, sample_rate=16000, lower_frequency_limit=20, upper_frequency_limit=4000, filterbank_channel_count=40, dct_coefficient_count=10, ) # Two window MFCC. gen_mfcc_onnx_test_model( model_path="mfccTwoWindow.onnxtxt", window_count=2, window_size=512, stride=256, sample_rate=16000, lower_frequency_limit=20, upper_frequency_limit=4000, filterbank_channel_count=40, dct_coefficient_count=10, )
# Copyright (c) Glow Contributors. See CONTRIBUTORS file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import onnx import torch import torch.nn import torch.onnx from onnx import helper, TensorProto # RNN enums RNN_DIR_FORWARD = "forward" RNN_DIR_REVERSE = "reverse" RNN_DIR_BIDIRECTIONAL = "bidirectional" RNN_DIRS = [RNN_DIR_FORWARD, RNN_DIR_REVERSE, RNN_DIR_BIDIRECTIONAL] # ONNX utility def make_init(name, type, tensor): return helper.make_tensor( name=name, data_type=type, dims=tensor.shape, vals=tensor.reshape(tensor.size).tolist(), ) # Function to generate RNN ONNX test model def gen_rnn_onnx_test_model( model_path, seq_length, batch_size, hidden_size, input_size, direction, has_bias, has_sequence_lens, has_initial_h, ): # Validate parameters assert direction in RNN_DIRS, "ONNX RNN direction invalid!" assert not has_sequence_lens, "ONNX RNN Variable sequence length not supported" # Get number of directions num_directions = 2 if (direction == RNN_DIR_BIDIRECTIONAL) else 1 # Tensor sizes X_shape = [seq_length, batch_size, input_size] W_shape = [num_directions, 1 * hidden_size, input_size] R_shape = [num_directions, 1 * hidden_size, hidden_size] B_shape = [num_directions, 2 * hidden_size] sequence_lens_shape = [batch_size] initial_h_shape = [num_directions, batch_size, hidden_size] Y_shape = [seq_length, num_directions, batch_size, hidden_size] # Generate random inputs (weights are assumed concatenated in ONNX format: z,r,h) np.random.seed(1) X = np.random.randn(*X_shape) W = np.random.randn(*W_shape) R = np.random.randn(*R_shape) B = np.random.randn(*B_shape) if has_bias else np.zeros(B_shape) sequence_lens = ( np.random.randint(1, seq_length, batch_size) if has_sequence_lens else np.tile(seq_length, batch_size) ) initial_h = ( np.random.randn(*initial_h_shape) if has_initial_h else np.zeros(initial_h_shape) ) # Function to get all the weight components for the given direction def get_weights(dir_idx): Wi = np.reshape( W[dir_idx, 0 * hidden_size : 1 * hidden_size, :], [hidden_size, input_size] ) Ri = np.reshape( R[dir_idx, 0 * hidden_size : 1 * hidden_size, :], [hidden_size, hidden_size] ) bWi = np.reshape(B[dir_idx, 0 * hidden_size : 1 * hidden_size], [hidden_size]) bRi = np.reshape(B[dir_idx, 1 * hidden_size : 2 * hidden_size], [hidden_size]) return (Wi, Ri, bWi, bRi) # Function to get PyTorch weights (which are in the r,z,h order) def get_torch_weights(dir_idx): Wi, Ri, bWi, bRi = get_weights(dir_idx) W_torch = Wi R_torch = Ri bW_torch = bWi bR_torch = bRi return (W_torch, R_torch, bW_torch, bR_torch) # ----------------------------------------- COMPUTE pyTORCH REFERENCE ---------------------------------------------- # Compute reference using Pytorch. Pytorch RNN has only forward/bidirectional so we will do the reverse RNN using # a Pytorch forward RNN. rnn = torch.nn.RNN( input_size=input_size, hidden_size=hidden_size, num_layers=1, nonlinearity="tanh", bias=True, batch_first=False, dropout=0, bidirectional=(direction == RNN_DIR_BIDIRECTIONAL), ) # Get RNN state dictionary rnn_state_dict = rnn.state_dict() # Assign forward weights forwardEnabled = direction in [RNN_DIR_FORWARD, RNN_DIR_BIDIRECTIONAL] if forwardEnabled: forward_dir_idx = 0 (W_torch, R_torch, bW_torch, bR_torch) = get_torch_weights(forward_dir_idx) rnn_state_dict["weight_ih_l0"] = torch.tensor(W_torch, dtype=torch.float32) rnn_state_dict["weight_hh_l0"] = torch.tensor(R_torch, dtype=torch.float32) rnn_state_dict["bias_ih_l0"] = torch.tensor(bW_torch, dtype=torch.float32) rnn_state_dict["bias_hh_l0"] = torch.tensor(bR_torch, dtype=torch.float32) # Assign reverse weights reverseEnabled = direction in [RNN_DIR_REVERSE, RNN_DIR_BIDIRECTIONAL] if reverseEnabled: if direction == RNN_DIR_REVERSE: reverse_dir_idx = 0 (W_torch, R_torch, bW_torch, bR_torch) = get_torch_weights(reverse_dir_idx) rnn_state_dict["weight_ih_l0"] = torch.tensor(W_torch, dtype=torch.float32) rnn_state_dict["weight_hh_l0"] = torch.tensor(R_torch, dtype=torch.float32) rnn_state_dict["bias_ih_l0"] = torch.tensor(bW_torch, dtype=torch.float32) rnn_state_dict["bias_hh_l0"] = torch.tensor(bR_torch, dtype=torch.float32) else: reverse_dir_idx = 1 (W_torch, R_torch, bW_torch, bR_torch) = get_torch_weights(reverse_dir_idx) rnn_state_dict["weight_ih_l0_reverse"] = torch.tensor( W_torch, dtype=torch.float32 ) rnn_state_dict["weight_hh_l0_reverse"] = torch.tensor( R_torch, dtype=torch.float32 ) rnn_state_dict["bias_ih_l0_reverse"] = torch.tensor( bW_torch, dtype=torch.float32 ) rnn_state_dict["bias_hh_l0_reverse"] = torch.tensor( bR_torch, dtype=torch.float32 ) # Set RNN state dictionary rnn.load_state_dict(rnn_state_dict, strict=True) # Perform inference X_torch = torch.tensor(X, dtype=torch.float32) initial_h_torch = torch.tensor(initial_h, dtype=torch.float32) if direction == RNN_DIR_REVERSE: Y, next_h = rnn(X_torch.flip([0]), initial_h_torch) Y = Y.flip([0]) else: Y, next_h = rnn(X_torch, initial_h_torch) # Reshape output to ONNX format [seq_length, num_directions, batch_size, hidden_size] Y_ref = Y.detach().numpy() Y_ref = np.reshape(Y_ref, [seq_length, batch_size, num_directions, hidden_size]) Y_ref = np.transpose(Y_ref, [0, 2, 1, 3]) # Reshape states to ONNX format Y_h_ref = next_h.detach().numpy() # --------------------------------------- COMPUTE PYTHON-NUMPY REFERENCE ------------------------------------------- # Create X slices Xslices = list() for t in range(seq_length): Xslices.append(np.reshape(X[t, :, :], [batch_size, input_size])) # Function to compute one RNN cell def compute_rnn(forward): dir_idx = 0 if forward else (0 if direction == RNN_DIR_REVERSE else 1) Wi, Ri, bWi, bRi = get_weights(dir_idx) def f(x): return np.tanh(x) def mm(x, w): return np.matmul(x, w.transpose()) Ht = np.reshape(initial_h[dir_idx, :, :], [batch_size, hidden_size]) Yslices = list() for t in range(seq_length): xt = Xslices[t] if forward else Xslices[seq_length - 1 - t] Ht = f(mm(xt, Wi) + bWi + mm(Ht, Ri) + bRi) Yslices.append(Ht) return Yslices, Ht Yslices = list() Hslices = list() # Compute forward RNN forwardYslices = list() if forwardEnabled: Yt, Ht = compute_rnn(True) forwardYslices += Yt Hslices.append(Ht) # Compute reverse RNN reverseYslices = list() if reverseEnabled: Yt, Ht = compute_rnn(False) reverseYslices += Yt Hslices.append(Ht) # Concatenate slices for t in range(seq_length): if forwardEnabled: Yslices.append(forwardYslices[t]) if reverseEnabled: Yslices.append(reverseYslices[seq_length - 1 - t]) Y_ref_np = np.concatenate(Yslices, 0).reshape( [seq_length, num_directions, batch_size, hidden_size] ) Y_h_ref_np = np.concatenate(Hslices, 0).reshape( [num_directions, batch_size, hidden_size] ) # Compare Numpy with Torch implementation. assert ( np.max(np.abs(Y_ref - Y_ref_np)) < 1e-6 ), "Mismatch between Pytorch and Numpy RNN implementation" assert ( np.max(np.abs(Y_h_ref - Y_h_ref_np)) < 1e-6 ), "Mismatch between Pytorch and Numpy RNN implementation" # ---------------------------------------------- NODE DEFINITION -------------------------------------------------- # Node inputs node_inputs = [ "X", "W", "R", "B" if has_bias else "", "", "initial_h" if has_initial_h else "", ] # Node outputs node_outputs = ["Y", "Y_h"] # RNN node definition rnn_node_def = onnx.helper.make_node( "RNN", name="rnn", inputs=node_inputs, outputs=node_outputs, hidden_size=hidden_size, direction=direction, ) # Error node definition err_node_def = onnx.helper.make_node( "Sub", name="error", inputs=["Y", "Y_ref"], outputs=["Y_err"] ) # --------------------------------------------- GRAPH DEFINITION -------------------------------------------------- graph_input = list() graph_init = list() graph_output = list() # RNN inputs graph_input.append(helper.make_tensor_value_info("X", TensorProto.FLOAT, X_shape)) graph_input.append(helper.make_tensor_value_info("W", TensorProto.FLOAT, W_shape)) graph_input.append(helper.make_tensor_value_info("R", TensorProto.FLOAT, R_shape)) if has_bias: graph_input.append( helper.make_tensor_value_info("B", TensorProto.FLOAT, B_shape) ) if has_sequence_lens: graph_input.append( helper.make_tensor_value_info( "sequence_lens", TensorProto.INT32, sequence_lens_shape ) ) if has_initial_h: graph_input.append( helper.make_tensor_value_info( "initial_h", TensorProto.FLOAT, initial_h_shape ) ) # Reference input graph_input.append( helper.make_tensor_value_info("Y_ref", TensorProto.FLOAT, Y_shape) ) # RNN initializers graph_init.append(make_init("X", TensorProto.FLOAT, X)) graph_init.append(make_init("W", TensorProto.FLOAT, W)) graph_init.append(make_init("R", TensorProto.FLOAT, R)) if has_bias: graph_init.append(make_init("B", TensorProto.FLOAT, B)) if has_sequence_lens: graph_init.append(make_init("sequence_lens", TensorProto.INT32, sequence_lens)) if has_initial_h: graph_init.append(make_init("initial_h", TensorProto.FLOAT, initial_h)) # Reference initializer graph_init.append(make_init("Y_ref", TensorProto.FLOAT, Y_ref)) # Graph outputs graph_output.append( helper.make_tensor_value_info("Y_err", TensorProto.FLOAT, Y_shape) ) # Define graph (GraphProto) graph_name = "rnn_test" graph_def = helper.make_graph( [rnn_node_def, err_node_def], graph_name, inputs=graph_input, outputs=graph_output, ) # Set initializers graph_def.initializer.extend(graph_init) # --------------------------------------------- MODEL DEFINITION -------------------------------------------------- # Define model (ModelProto) model_def = helper.make_model(graph_def, producer_name="onnx-rnn") # Check model onnx.checker.check_model(model_def) # Print model with open(model_path, "w") as f: f.write(str(model_def)) # Forward RNN gen_rnn_onnx_test_model( model_path="rnnForward.onnxtxt", seq_length=2, batch_size=5, hidden_size=4, input_size=3, direction="forward", has_bias=True, has_sequence_lens=False, has_initial_h=True, ) # Reverse RNN gen_rnn_onnx_test_model( model_path="rnnReverse.onnxtxt", seq_length=2, batch_size=5, hidden_size=4, input_size=3, direction="reverse", has_bias=True, has_sequence_lens=False, has_initial_h=True, ) # Bidirectional RNN gen_rnn_onnx_test_model( model_path="rnnBidirectional.onnxtxt", seq_length=2, batch_size=5, hidden_size=4, input_size=3, direction="bidirectional", has_bias=True, has_sequence_lens=False, has_initial_h=True, ) # Forward no bias RNN gen_rnn_onnx_test_model( model_path="rnnForwardNoBias.onnxtxt", seq_length=1, batch_size=5, hidden_size=4, input_size=3, direction="forward", has_bias=False, has_sequence_lens=False, has_initial_h=True, ) # Forward no state RNN gen_rnn_onnx_test_model( model_path="rnnForwardNoState.onnxtxt", seq_length=1, batch_size=5, hidden_size=4, input_size=3, direction="forward", has_bias=True, has_sequence_lens=False, has_initial_h=False, )
# isort:skip_file from __future__ import absolute_import, division, print_function, unicode_literals import torch_glow def pytest_addoption(parser): parser.addoption("--backend", action="store", default=None) def pytest_sessionstart(session): backend = session.config.getoption("--backend") if backend: torch_glow.setGlowBackend(backend)
# isort:skip_file from __future__ import absolute_import, division, print_function, unicode_literals import itertools import os import unittest from contextlib import contextmanager from copy import deepcopy from io import BytesIO import numpy as np import torch import torch_glow from parameterized import parameterized GLOW_FUSION_GROUP = "glow::FusionGroup" SUBGRAPH_ATTR = "Subgraph" BACKEND_NAME_KEY = "BACKEND_NAME" INTERPRETER = "Interpreter" DEFAULT_BACKEND = os.environ.get(BACKEND_NAME_KEY, "Interpreter") def get_backend_name(): return os.environ.get(BACKEND_NAME_KEY, INTERPRETER) @contextmanager def ephemeral_torchglow_settings( fp16=False, backend=DEFAULT_BACKEND, fusion=False, blocklist=None, accept_all_layouts=False, ): old_fp16 = torch_glow.get_convert_to_fp16() old_clip = torch_glow.get_clip_fp16() old_convert_fused = torch_glow.get_convert_fused_to_fp16() old_backend = torch_glow.getGlowBackendName() old_blocklist = torch_glow.getFusionBlocklist() old_fusion = torch_glow.getFusionPassEnabled() try: if fusion: torch_glow.enableFusionPass_DO_NOT_USE_THIS() else: torch_glow.disableFusionPass() if fp16: torch_glow.enable_convert_to_fp16() torch_glow.enable_convert_fused_to_fp16() torch_glow.enable_clip_fp16() else: torch_glow.disable_convert_to_fp16() torch_glow.disable_convert_fused_to_fp16() torch_glow.disable_clip_fp16() if blocklist is None: torch_glow.clearFusionBlocklist() else: torch_glow.setFusionBlocklist(list(blocklist)) if accept_all_layouts: torch_glow.enable_accept_all_layout() else: torch_glow.disable_accept_all_layout() torch_glow.setGlowBackend(backend) yield finally: torch_glow.enable_convert_to_fp16() if old_fp16 else torch_glow.disable_convert_to_fp16() torch_glow.enable_clip_fp16() if old_clip else torch_glow.disable_clip_fp16() torch_glow.enable_convert_fused_to_fp16() if old_convert_fused else torch_glow.disable_convert_fused_to_fp16() torch_glow.enableFusionPass_DO_NOT_USE_THIS() if old_fusion else torch_glow.disableFusionPass() torch_glow.setGlowBackend(old_backend) torch_glow.setFusionBlocklist(old_blocklist) def check_skip(case): backend = DEFAULT_BACKEND supported = {INTERPRETER} try: supported = supported | case.supported_backends except AttributeError: pass if backend not in supported: case.skipTest("Skipping tests for backend: " + backend) def assert_equivalent( result1_name, result1, result2_name, result2, atol=5e-4, rtol=1e-3, use_eq=False ): if isinstance(result1, tuple) or isinstance(result2, tuple): assert isinstance(result1, tuple) and isinstance(result2, tuple) assert len(result1) == len(result2) return all( assert_equivalent( result1_name, a, result2_name, b, atol=atol, rtol=rtol, use_eq=use_eq ) for a, b in zip(result1, result2) ) elif result2.dtype == torch.bool: diff = torch.eq(result1, result2) if torch.all(diff): return True else: error = f"Diff:{diff}\n" raise AssertionError(error) else: matches = ( torch.equal(result1, result2) if use_eq else torch.allclose(result1, result2, rtol=rtol, atol=atol) ) if matches: return True else: diff = torch.abs(result1 - result2) error = f"{result1_name} result:\n{result1}\n" error += f"{result2_name} result:\n{result2}\n" error += f"Diff:\n{diff}\n" error += f"Max diff:\n{torch.max(diff)}" raise AssertionError(error) # To avoid linter complaining about allocating default value DEFAULT_SKIP_BACKENDS_SET = {} def run_comparison_tests( module, inputs, fusible_ops, fp32vfp32_atol=5e-4, fp32vfp32_rtol=1e-3, fp32vfp16_atol=1e-2, fp32vfp16_rtol=1e-2, fp16vfp16_atol=5e-4, fp16vfp16_rtol=1e-3, fusion_blocklist=None, scripted=False, check_trace=True, skip_for_backends=DEFAULT_SKIP_BACKENDS_SET, skip_fp32_vs_fp16=False, skip_to_glow=False, # Ugly hack, TODO: Remove ): # tuplify inputs if not isinstance(inputs, tuple): inputs = (inputs,) # Check that test is setup properly if not isinstance(module, torch.nn.Module): raise AssertionError("to_glow only supports nn.Modules") if "Interpreter" in skip_for_backends: raise AssertionError( "Interpreter backend can't be skipped, skip entire test until Interpreter is supported" ) # If other_backend isn't supported then skip the test other_backend = torch_glow.getGlowBackendName() if other_backend in skip_for_backends: raise unittest.SkipTest(f"backend {other_backend} not supported for this test") # Get other Glow backend besides Interpreter to test if applicable if other_backend == "Interpreter": other_backend = None if skip_to_glow and other_backend: raise AssertionError( f"to_glow must be used for non-interpreter backends, skip this test for {other_backend} backend until the test supports to_glow" ) def prepare(m, inputs, fp16, backend, fusion): """ "Helper to prepare a JIT module to run either on PyTorch or Glow""" inputs = deepcopy(inputs) def getJITModule(): m_jit = None if scripted: m_jit = torch.jit.script(m) else: m_jit = torch.jit.trace(m, inputs, check_trace=check_trace) if scripted or not check_trace: # run it once to activate the fuser if not run yet m_jit(*inputs) return m_jit with torch.no_grad(): m_jit = None if fusion: with ephemeral_torchglow_settings( fusion=True, fp16=fp16, backend=backend, blocklist=fusion_blocklist ): m_jit = getJITModule() assert_fused( m_jit.graph_for(*(deepcopy(inputs))), fusible_ops, ) else: m_jit = getJITModule() if backend != "PyTorch": # to_glow m_jit = torch_glow.lower( model=m_jit, example_inputs=inputs, backend=backend, convert_to_fp16=fp16, ) return m_jit def compare(a_name, a, b_name, b, atol, rtol, use_eq=False): """ "Helper to compare two JIT modules, skip comparison if either is None""" if not a: print(f"Skipping {a_name} vs {b_name} because {a_name} not computed") return if not b: print(f"Skipping {a_name} vs {b_name} because {b_name} not computed") return a_ouputs = a(*deepcopy(inputs)) b_ouputs = b(*deepcopy(inputs)) assert_equivalent(a_name, a_ouputs, b_name, b_ouputs, atol, rtol, use_eq) # Prepare modules for testing m_pytorch_fp32 = prepare( module, inputs, fp16=False, backend="PyTorch", fusion=False ) m_interpreter_fuser_fp32 = prepare( module, inputs, fp16=False, backend="Interpreter", fusion=True ) m_interpreter_fp32 = None m_interpreter_fp16 = None m_other_fp16 = None if not skip_to_glow: m_interpreter_fp32 = prepare( module, inputs, fp16=False, backend="Interpreter", fusion=True ) m_interpreter_fp16 = prepare( module, inputs, fp16=True, backend="Interpreter", fusion=True ) m_other_fp16 = None if other_backend: m_other_fp16 = prepare( module, inputs, fp16=True, backend=other_backend, fusion=False ) # JIT vs Interpreter, via to_glow, fp32-fp32 compare( "m_pytorch_fp32", m_pytorch_fp32, "m_interpreter_fp32", m_interpreter_fp32, fp32vfp32_atol, fp32vfp32_rtol, ) # Interpreter vs Interpreter, via to_glow and fuser, fp32-fp32 compare( "m_interpreter_fp32", m_interpreter_fp32, "m_interpreter_fuser_fp32", m_interpreter_fuser_fp32, fp32vfp32_atol, fp32vfp32_rtol, use_eq=True, # fuser and to_glow should match exactly ) # Interpreter vs Other, via to_glow, fp16-fp16 compare( "m_interpreter_fp16", m_interpreter_fp16, "m_other_fp16", m_other_fp16, fp16vfp16_atol, fp16vfp16_rtol, ) if not skip_fp32_vs_fp16: # JIT vs Interpreter, via to_glow, fp32-fp16 compare( "m_pytorch_fp32", m_pytorch_fp32, "m_interpreter_fp16", m_interpreter_fp16, fp32vfp16_atol, fp32vfp16_rtol, ) def compare_tracing_methods( module, *inputs, atol=5e-4, rtol=1e-3, reference=None, fusible_ops=None, fusion_blocklist=None, fp16=False, scripted=False, check_trace=True, accept_all_layouts=False, skip_to_glow=False, # Ugly hack, TODO: Remove ): if not isinstance(module, torch.nn.Module): raise AssertionError("to_glow only supports nn.Modules") def trace(mod, ins): if scripted: return torch.jit.script(mod) else: return torch.jit.trace(mod, ins, check_trace=check_trace) with torch.no_grad(): with ephemeral_torchglow_settings( fusion=True, fp16=fp16, blocklist=fusion_blocklist, accept_all_layouts=accept_all_layouts, ): fusion_inputs = deepcopy(inputs) fusion_trace = trace(module, fusion_inputs) assert_fused( fusion_trace.graph_for(*fusion_inputs), (fusible_ops or []), accept_any=fusible_ops is None, ) fusion_result = fusion_trace(*fusion_inputs) with ephemeral_torchglow_settings( fusion=False, fp16=fp16, accept_all_layouts=accept_all_layouts ): if scripted: torchscript_result = module(*deepcopy(inputs)) else: torchscript_inputs = deepcopy(inputs) torchscript_trace = trace(module, torchscript_inputs) torchscript_result = torchscript_trace(*torchscript_inputs) with ephemeral_torchglow_settings( fusion=False, fp16=fp16, accept_all_layouts=accept_all_layouts ): if not skip_to_glow: glow_inputs = deepcopy(inputs) traced_module = trace(module, glow_inputs) lowered_module = torch_glow.lower( traced_module, glow_inputs, DEFAULT_BACKEND ) glow_result = lowered_module(*glow_inputs) if reference: assert_equivalent( "Reference", reference, "Glow fusion", fusion_trace, atol=atol, rtol=rtol, ) assert_equivalent( "Reference", reference, "TorchScript", torchscript_result, atol=atol, rtol=rtol, ) if not skip_to_glow: assert_equivalent( "Reference", reference, "Glow", glow_result, atol=atol, rtol=rtol ) # This is written out manually instead of using combinations in order to aid # debugging. TODO: Clean up. assert_equivalent( "Glow fusion", fusion_result, "TorchScript", torchscript_result, atol=atol, rtol=rtol, ) if not skip_to_glow: assert_equivalent( "Glow fusion", fusion_result, "Glow", glow_result, atol=atol, rtol=rtol ) assert_equivalent( "TorchScript", torchscript_result, "Glow", glow_result, atol=atol, rtol=rtol, ) # Compilation test for glow lowering without executing. # This is designed for use cases where the original graph contains placeholder operators. def test_lowering( module, *inputs, fusible_ops=None, fusion_blocklist=None, fp16=False, scripted=False, check_trace=True, accept_all_layouts=False, ): if not isinstance(module, torch.nn.Module): raise AssertionError("to_glow only supports nn.Modules") def trace(mod, ins): if scripted: return torch.jit.script(mod) else: return torch.jit.trace(mod, ins, check_trace=check_trace) with torch.no_grad(): with ephemeral_torchglow_settings( fusion=False, fp16=fp16, accept_all_layouts=accept_all_layouts ): glow_inputs = deepcopy(inputs) traced_module = trace(module, glow_inputs) # If deferred weight loader is not set, it will throw a runtime exception _lowered_module = torch_glow.lower( traced_module, glow_inputs, DEFAULT_BACKEND ) # unused def compare_tracing_methods_error( module, *inputs, fusible_ops=None, fusion_blocklist=None, fp16=False, ): if not isinstance(module, torch.nn.Module): raise AssertionError("to_glow only supports nn.Modules") def trace(mod, ins): return torch.jit.trace(mod, ins) with torch.no_grad(): with ephemeral_torchglow_settings( fusion=True, fp16=fp16, blocklist=fusion_blocklist ): fusion_inputs = deepcopy(inputs) try: fusion_trace = trace(module, fusion_inputs) assert_fused( fusion_trace.graph_for(*fusion_inputs), *(fusible_ops or []), accept_any=fusible_ops is None, ) fusion_trace(*fusion_inputs) except Exception: pass else: raise AssertionError("Error expected (fusion), but none were received") with ephemeral_torchglow_settings(fusion=False, fp16=fp16): try: torchscript_inputs = deepcopy(inputs) torchscript_trace = trace(module, torchscript_inputs) torchscript_trace(*torchscript_inputs) except Exception: pass else: raise AssertionError( "Error expected (torchscript), but none were received" ) with ephemeral_torchglow_settings(fusion=False, fp16=fp16): try: glow_inputs = deepcopy(inputs) glow_spec = torch_glow.lower( model=module, example_inputs=glow_inputs, backend=DEFAULT_BACKEND, ) glow_trace = torch_glow.to_glow(trace(module, glow_inputs), glow_spec) glow_trace(*glow_inputs) except Exception: pass else: raise AssertionError("Error expected (glow), but none were received") def assert_fused(fused_graph, ops, accept_any=False, strict=False): expected = set(ops) fused = set() with torch.no_grad(): for node in fused_graph.nodes(): kind = node.kind() if kind == GLOW_FUSION_GROUP: fused.update(map(lambda n: n.kind(), node.g(SUBGRAPH_ATTR).nodes())) else: assert ( kind not in expected ), f"Expected {kind} to be fused in graph\n{fused_graph}" missing = set() if (accept_any and fused) else expected - fused unexpected = set() if (accept_any or not strict) else fused - expected assert ( not unexpected ), f"Expected fusion of {expected}, but {fused} was fused in graph\n{fused_graph}" assert ( not missing ), f"Expected fusion of {expected}, but only {fused} was fused in graph\n{fused_graph}" def graph_contains_str(graph, substr): return graph.str().find(substr) >= 0 # Verifies equal modules for save-load tests. def assertModulesEqual(case, mod1, mod2, message=None): for p1, p2 in itertools.zip_longest(mod1.parameters(), mod2.parameters()): case.assertTrue(p1.equal(p2), message) def save_and_reload_model(model): buf = BytesIO() print("saving ...") torch.jit.save(model, buf) print("done") print("reloading....") buf.seek(0) reloaded_model = torch.jit.load(buf) print("done") return reloaded_model class TorchGlowTestCase(unittest.TestCase): """ Base class for torch_glow tests that ensure that torch.manual_seed is called before each test. NOTE: this won't effect arguments to the test case so make sure that test cases generate their own inputs to the test network within the test case not outside of it. """ def setUp(self): torch.manual_seed(0) np.random.seed(0) print("running the setup for TorchGlowTest") def deterministic_expand(params): """Takes params as a list of lambdas where each lambda produces a tuple of unique parameters for the test""" torch.manual_seed(0) np.random.seed(0) return parameterized.expand([p() for p in params])