python_code
stringlengths
0
229k
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from torchdata._utils import ExceptionWrapper class DataLoaderQueueMessage: pass class Request(DataLoaderQueueMessage): pass class Response(DataLoaderQueueMessage): pass class ResetEpochRequest(Request): __slots__ = ("seed_generator", "iter_reset_fn") def __init__(self, seed_generator, iter_reset_fn): self.seed_generator = seed_generator self.iter_reset_fn = iter_reset_fn class ResetEpochResponse(Response): pass class LimitRequest(Request): __slots__ = ("num_batches", "limit_fn", "worker_num_batches") def __init__(self, num_batches, limit_fn, worker_num_batches=None): self.num_batches = num_batches self.limit_fn = limit_fn self.worker_num_batches = worker_num_batches class LimitResponse(Response): pass class PauseRequest(Request): __slots__ = "pause_fn" def __init__(self, pause_fn): self.pause_fn = pause_fn class PauseResponse(Response): pass class ResumeRequest(Request): __slots__ = "resume_fn" def __init__(self, resume_fn): self.resume_fn = resume_fn class ResumeResponse(Response): pass class TerminateRequest(Request): pass class TerminateResponse(Response): pass class LenRequest(Request): pass class LenResponse(Response): __slots__ = "len" def __init__(self, len): self.len = len class GetItemRequest(Request): __slots__ = "key" def __init__(self, key): self.key = key class GetItemResponse(Response): __slots__ = ("key", "value") def __init__(self, key, value): self.key = key self.value = value class GetNextRequest(Request): pass class GetNextResponse(Response): __slots__ = "value" def __init__(self, value): self.value = value class StopIterationResponse(Response): pass class InvalidStateResponse(Response): """ Returned by DataPipe when it is expecting to get reset request, for example RouterDataPipe expecting all workers to request reset' """ pass class WorkerExceptionResponse(Response): __slots__ = "exc" def __init__(self, exc: ExceptionWrapper): self.exc: ExceptionWrapper = exc
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from typing import List, Optional, Tuple # Note [Philox Engine implementation] # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Refer to: http://www.thesalmons.org/john/random123/papers/random123sc11.pdf for details regarding the engine. # Using Philox4×32-10 for the sake of performance, randomness and crush-resistance. # The following code could be optimized into C++ bindings # Philox Constants kPhilox10A = 0x9E3779B9 kPhilox10B = 0xBB67AE85 kPhiloxSA = 0xD2511F53 kPhiloxSB = 0xCD9E8D57 MASK_32b = 0xFFFFFFFF MASK_64b = 0xFFFFFFFFFFFFFFFF HALF_UINT64 = 0x8000000000000000 def mulhilo32(a: int, b: int) -> Tuple[int, int]: product = a * b return product & MASK_32b, (product >> 32) & MASK_32b def single_round(key: List[int], ctr: List[int]) -> List[int]: lo0, hi0 = mulhilo32(kPhiloxSA, ctr[0]) lo1, hi1 = mulhilo32(kPhiloxSB, ctr[2]) res = [0] * 4 res[0] = hi1 ^ ctr[1] ^ key[0] res[1] = lo1 res[2] = hi0 ^ ctr[3] ^ key[1] res[3] = lo0 return res def philox_10_round(key: Tuple[int, int], ctr: List[int]) -> List[int]: _key = list(key) _ctr = list(ctr) for _ in range(9): _ctr = single_round(_key, _ctr) _key[0] = (_key[0] + kPhilox10A) & MASK_32b _key[1] = (_key[1] + kPhilox10B) & MASK_32b return single_round(_key, _ctr) class PhiloxEngine: r""" Philox is a counter-based RNG with a certain properties: - High performance - Statistiacl random - Crush-resistance Bijection Generate new seeds or spawn parallel seeds for worker processes. """ def __init__(self, seed: Optional[int] = None) -> None: self._seed: Tuple[int, int] = (-1, -1) self._ctr: List[int] = [0] * 4 self._generated_seeds: Optional[List[int]] = None self._spawn_seed: Tuple[int, int] = (-1, -1) if seed is not None: self.seed(seed) def _incr_ctr(self) -> None: for i in range(3): self._ctr[i] += 1 if self._ctr[i] <= MASK_32b: return self._ctr[i] = 0 self._ctr[3] += 1 # if overflow (2^128) has occurred during addition, back to the initial counter if self._ctr[3] > MASK_32b: self._ctr[3] = 0 self._incr_ctr() def seed(self, seed: int) -> "PhiloxEngine": seed = seed & MASK_64b # Convert seed from int64 to uint64 if seed < 0: seed = seed + HALF_UINT64 lo = seed & MASK_32b hi = (seed >> 32) & MASK_32b self._seed = (lo, hi) # Reset counter and cached seed self._ctr = [0] * 4 self._generated_seeds = None # Generate the spawn seed self._spawn_seed = tuple(philox_10_round(self._seed, self._ctr)[:2]) # type: ignore[assignment] self._incr_ctr() return self def generate(self) -> int: assert self._seed != (-1, -1), "Please provide seed to PhiloxEngine" if self._generated_seeds is None: self._generated_seeds = philox_10_round(self._seed, self._ctr) self._incr_ctr() res = self._generated_seeds[:2] else: res = self._generated_seeds[2:] self._generated_seeds = None return (res[1] << 32) + res[0] def clone(self) -> "PhiloxEngine": new_engine = PhiloxEngine(None) new_engine._seed = self._seed # immutable tuple new_engine._ctr = self._ctr.copy() new_engine._generated_seeds = None if self._generated_seeds is None else self._generated_seeds.copy() new_engine._spawn_seed = self._spawn_seed # immutable tuple return new_engine def spawn(self, index: int) -> "PhiloxEngine": assert index >= 0, f"Expected a non-negative value for spawn, but found {index}" assert self._spawn_seed != (-1, -1), "Please provide seed to PhiloxEngine" offset = index % 2 val = index if offset == 0 else index - 1 ctr = [] for _ in range(4): ctr.append(val & MASK_32b) val = val >> 32 res = philox_10_round(self._spawn_seed, ctr)[offset * 2 : offset * 2 + 2] sub_seed = (res[1] << 32) + res[0] return PhiloxEngine(sub_seed)
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from torchdata.dataloader2.random.distributed import dist_share_seed from torchdata.dataloader2.random.seed_generator import SeedGenerator __all__ = ["SeedGenerator", "dist_share_seed"]
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from typing import Optional import torch import torch.distributed as dist _HALF_UINT64 = 0x8000000000000000 def dist_share_seed(seed: int, process_group: Optional[dist.ProcessGroup] = None) -> int: # Convert uint64 to int64 to prevent overflow for integer Tensor seed -= _HALF_UINT64 shared_seed = torch.tensor(seed, dtype=torch.int64) dist.broadcast(shared_seed, src=0, group=process_group) # Revert int64 back to uint64 return int(shared_seed.item()) + _HALF_UINT64
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from typing import Optional, Tuple import torch from torchdata.dataloader2.random._philox import PhiloxEngine _UINT64_UPPER_BOUND = 2 ** 64 def _get_torch_random_seed(): iinfo = torch.iinfo(torch.int64) seed = torch.randint(iinfo.min, iinfo.max, ()).item() # Convert int64 to uint64 seed += 2 ** 63 return seed class SeedGenerator: r""" ``SeedGenerator`` is used to generate seeds in a deterministic and randomized manner based on a user-provided initial seed. Internally, it utilizes a counter-based PRNG called Philox to generate random seeds. Args: seed: The base seed to generate random seeds """ _shared_rng: PhiloxEngine _worker_rng: PhiloxEngine def __init__(self, seed: Optional[int] = None, _rngs: Optional[Tuple[PhiloxEngine, PhiloxEngine]] = None) -> None: if seed is not None and _rngs is not None: raise ValueError("SeedGenerator doesn't allow both seed and _rng specified at the same time") if _rngs is None: self._shared_rng = PhiloxEngine() self._worker_rng = PhiloxEngine() self.seed(seed) else: assert len(_rngs) == 2 self._shared_rng, self._worker_rng = _rngs def seed(self, seed: Optional[int] = None) -> None: r""" Re-seed the ``SeedGenerator``. When ``None`` is provided, a random seed generated by the default PyTorch RNG. """ if seed is None: seed = _get_torch_random_seed() if seed >= _UINT64_UPPER_BOUND: raise ValueError(f"Expected an uint64 seed, but got {seed}.") self._shared_rng.seed(seed) self._worker_rng.seed(seed) def generate_shared_seed(self) -> int: r""" Generate one uint64 random seed that is supposed to be the same across distributed processes. """ return self._shared_rng.generate() def generate_seed(self) -> int: r""" Generate one unique uint64 random seed based on distributed and multiprocessing information. """ return self._worker_rng.generate() def spawn(self, worker_id: int, inplace: bool = False) -> "SeedGenerator": r""" Spawn a sub-SeedGenerator based on the provided worker_id. If inplace is turn on, the SeedGenerator will evolve itself rather than spawning a new """ if worker_id < 0: raise ValueError(f"Expected `rank` equal or larger than 0, but got {worker_id}.") if inplace: self._worker_rng = self._worker_rng.spawn(worker_id) return self return SeedGenerator(seed=None, _rngs=(self._shared_rng.clone(), self._worker_rng.spawn(worker_id))) def __getstate__(self): state = ( self._shared_rng, self._worker_rng, ) return state def __setstate__(self, state): self._shared_rng, self._worker_rng = state
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from torch.utils.data import DataChunk, functional_datapipe from . import iter, map, utils __all__ = ["DataChunk", "functional_datapipe", "iter", "map", "utils"]
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. ############################################################################### # Reference From PyTorch Core ############################################################################### from torch.utils.data import IterDataPipe from torch.utils.data.datapipes.iter import ( Batcher, Collator, Concater, Demultiplexer, FileLister, FileOpener, Filter, Forker, Grouper, IterableWrapper, Mapper, Multiplexer, RoutedDecoder, Sampler, ShardingFilter, Shuffler, StreamReader, UnBatcher, Zipper, ) from torchdata.datapipes.iter.load.aisio import ( AISFileListerIterDataPipe as AISFileLister, AISFileLoaderIterDataPipe as AISFileLoader, ) ############################################################################### # TorchData ############################################################################### from torchdata.datapipes.iter.load.fsspec import ( FSSpecFileListerIterDataPipe as FSSpecFileLister, FSSpecFileOpenerIterDataPipe as FSSpecFileOpener, FSSpecSaverIterDataPipe as FSSpecSaver, ) from torchdata.datapipes.iter.load.huggingface import HuggingFaceHubReaderIterDataPipe as HuggingFaceHubReader from torchdata.datapipes.iter.load.iopath import ( IoPathFileListerIterDataPipe as IoPathFileLister, IoPathFileOpenerIterDataPipe as IoPathFileOpener, IoPathSaverIterDataPipe as IoPathSaver, ) from torchdata.datapipes.iter.load.online import ( GDriveReaderDataPipe as GDriveReader, HTTPReaderIterDataPipe as HttpReader, OnlineReaderIterDataPipe as OnlineReader, ) from torchdata.datapipes.iter.load.s3io import ( S3FileListerIterDataPipe as S3FileLister, S3FileLoaderIterDataPipe as S3FileLoader, ) from torchdata.datapipes.iter.transform.bucketbatcher import ( BucketBatcherIterDataPipe as BucketBatcher, InBatchShufflerIterDataPipe as InBatchShuffler, MaxTokenBucketizerIterDataPipe as MaxTokenBucketizer, ) from torchdata.datapipes.iter.transform.callable import ( BatchAsyncMapperIterDataPipe as BatchAsyncMapper, BatchMapperIterDataPipe as BatchMapper, DropperIterDataPipe as Dropper, FlatMapperIterDataPipe as FlatMapper, FlattenIterDataPipe as Flattener, ShuffledFlatMapperIterDataPipe as ShuffledFlatMapper, SliceIterDataPipe as Slicer, ThreadPoolMapperIterDataPipe as ThreadPoolMapper, ) from torchdata.datapipes.iter.util.bz2fileloader import Bz2FileLoaderIterDataPipe as Bz2FileLoader from torchdata.datapipes.iter.util.cacheholder import ( EndOnDiskCacheHolderIterDataPipe as EndOnDiskCacheHolder, InMemoryCacheHolderIterDataPipe as InMemoryCacheHolder, OnDiskCacheHolderIterDataPipe as OnDiskCacheHolder, ) from torchdata.datapipes.iter.util.combining import ( IterKeyZipperIterDataPipe as IterKeyZipper, MapKeyZipperIterDataPipe as MapKeyZipper, RoundRobinDemultiplexerIterDataPipe as RoundRobinDemultiplexer, UnZipperIterDataPipe as UnZipper, ) from torchdata.datapipes.iter.util.cycler import CyclerIterDataPipe as Cycler, RepeaterIterDataPipe as Repeater from torchdata.datapipes.iter.util.dataframemaker import ( DataFrameMakerIterDataPipe as DataFrameMaker, ParquetDFLoaderIterDataPipe as ParquetDataFrameLoader, ) from torchdata.datapipes.iter.util.decompressor import ( DecompressorIterDataPipe as Decompressor, ExtractorIterDataPipe as Extractor, ) from torchdata.datapipes.iter.util.distributed import FullSyncIterDataPipe as FullSync from torchdata.datapipes.iter.util.hashchecker import HashCheckerIterDataPipe as HashChecker from torchdata.datapipes.iter.util.header import HeaderIterDataPipe as Header, LengthSetterIterDataPipe as LengthSetter from torchdata.datapipes.iter.util.indexadder import ( EnumeratorIterDataPipe as Enumerator, IndexAdderIterDataPipe as IndexAdder, ) from torchdata.datapipes.iter.util.jsonparser import JsonParserIterDataPipe as JsonParser from torchdata.datapipes.iter.util.mux_longest import MultiplexerLongestIterDataPipe as MultiplexerLongest from torchdata.datapipes.iter.util.paragraphaggregator import ParagraphAggregatorIterDataPipe as ParagraphAggregator from torchdata.datapipes.iter.util.plain_text_reader import ( CSVDictParserIterDataPipe as CSVDictParser, CSVParserIterDataPipe as CSVParser, LineReaderIterDataPipe as LineReader, ) from torchdata.datapipes.iter.util.prefetcher import ( PinMemoryIterDataPipe as PinMemory, PrefetcherIterDataPipe as Prefetcher, ) from torchdata.datapipes.iter.util.randomsplitter import RandomSplitterIterDataPipe as RandomSplitter from torchdata.datapipes.iter.util.rararchiveloader import RarArchiveLoaderIterDataPipe as RarArchiveLoader from torchdata.datapipes.iter.util.rows2columnar import Rows2ColumnarIterDataPipe as Rows2Columnar from torchdata.datapipes.iter.util.samplemultiplexer import SampleMultiplexerDataPipe as SampleMultiplexer from torchdata.datapipes.iter.util.saver import SaverIterDataPipe as Saver from torchdata.datapipes.iter.util.shardexpander import ShardExpanderIterDataPipe as ShardExpander from torchdata.datapipes.iter.util.sharding import ( ShardingRoundRobinDispatcherIterDataPipe as ShardingRoundRobinDispatcher, ) from torchdata.datapipes.iter.util.tararchiveloader import TarArchiveLoaderIterDataPipe as TarArchiveLoader from torchdata.datapipes.iter.util.tfrecordloader import ( TFRecordExample, TFRecordExampleSpec, TFRecordLoaderIterDataPipe as TFRecordLoader, ) from torchdata.datapipes.iter.util.webdataset import WebDatasetIterDataPipe as WebDataset from torchdata.datapipes.iter.util.xzfileloader import XzFileLoaderIterDataPipe as XzFileLoader from torchdata.datapipes.iter.util.zip_longest import ZipperLongestIterDataPipe as ZipperLongest from torchdata.datapipes.iter.util.ziparchiveloader import ZipArchiveLoaderIterDataPipe as ZipArchiveLoader from torchdata.datapipes.map.util.converter import MapToIterConverterIterDataPipe as MapToIterConverter __all__ = [ "AISFileLister", "AISFileLoader", "BatchAsyncMapper", "BatchMapper", "Batcher", "BucketBatcher", "Bz2FileLoader", "CSVDictParser", "CSVParser", "Collator", "Concater", "Cycler", "DataFrameMaker", "Decompressor", "Demultiplexer", "Dropper", "EndOnDiskCacheHolder", "Enumerator", "Extractor", "FSSpecFileLister", "FSSpecFileOpener", "FSSpecSaver", "FileLister", "FileOpener", "Filter", "FlatMapper", "Flattener", "Forker", "FullSync", "GDriveReader", "Grouper", "HashChecker", "Header", "HttpReader", "HuggingFaceHubReader", "InBatchShuffler", "InMemoryCacheHolder", "IndexAdder", "IoPathFileLister", "IoPathFileOpener", "IoPathSaver", "IterDataPipe", "IterKeyZipper", "IterableWrapper", "JsonParser", "LengthSetter", "LineReader", "MapKeyZipper", "MapToIterConverter", "Mapper", "MaxTokenBucketizer", "Multiplexer", "MultiplexerLongest", "OnDiskCacheHolder", "OnlineReader", "ParagraphAggregator", "ParquetDataFrameLoader", "PinMemory", "Prefetcher", "RandomSplitter", "RarArchiveLoader", "Repeater", "RoundRobinDemultiplexer", "RoutedDecoder", "Rows2Columnar", "S3FileLister", "S3FileLoader", "SampleMultiplexer", "Sampler", "Saver", "ShardExpander", "ShardingFilter", "ShardingRoundRobinDispatcher", "ShuffledFlatMapper", "Shuffler", "Slicer", "StreamReader", "TFRecordLoader", "TarArchiveLoader", "ThreadPoolMapper", "UnBatcher", "UnZipper", "WebDataset", "XzFileLoader", "ZipArchiveLoader", "Zipper", "ZipperLongest", ] # Please keep this list sorted assert __all__ == sorted(__all__)
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from typing import Iterator, Optional, TypeVar from torch.utils.data.datapipes.iter.sharding import SHARDING_PRIORITIES from torchdata.datapipes import functional_datapipe from torchdata.datapipes.iter import IterDataPipe T_co = TypeVar("T_co", covariant=True) @functional_datapipe("sharding_round_robin_dispatch") class ShardingRoundRobinDispatcherIterDataPipe(IterDataPipe): r""" Wrapper that indicates the prior section of ``DataPipe`` graph is non-replicable and will be iterated in a separate, single dispatching process to distribute data to worker processes in a round-robin manner when multiprocessing is being used. (functional name: ``sharding_round_robin_dispatch``). Args: source_datapipe: Iterable DataPipe that will be sharded sharding_group_filter: Optional ``SHARDING_PRIORITIES`` value Note: - ``sharding_group_filter`` only accepts ``SHARDING_PRIORITIES.MULTIPROCESSING`` for now - When using distributed training, you can add a ``sharding_filter()`` prior to this DataPipe to distribute samples among worker nodes. Examples: >>> # xdoctest: +SKIP >>> from torchdata.datapipes.iter import IterableWrapper >>> from torch.utils.data.datapipes.iter.sharding import SHARDING_PRIORITIES >>> dp = IterableWrapper(range(10)) >>> # `.shuffle()` will be executed in a single dispatching processing, then the samples are distributed >>> # to worker processes >>> dp = dp.shuffle().sharding_round_robin_dispatch(SHARDING_PRIORITIES.MULTIPROCESSING) >>> # `.map()` will be executed within each worker process >>> dp = dp.map(lambda x: x + 1) >>> # Distributed case: the 10 samples will be distributed among the nodes >>> dp = IterableWrapper(range(10)).sharding_filter() >>> # `.map()` will be executed in a single dispatching processing in each node >>> # You may apply further transformation after within each worker process >>> dp = dp.map(lambda x: x + 1).sharding_round_robin_dispatch(SHARDING_PRIORITIES.MULTIPROCESSING) """ def __init__(self, source_datapipe: IterDataPipe, sharding_group_filter: Optional[SHARDING_PRIORITIES] = None): self.source_datapipe = source_datapipe if sharding_group_filter != SHARDING_PRIORITIES.MULTIPROCESSING: raise NotImplementedError( "`sharding_round_robin_dispatch` currently only supports `SHARDING_PRIORITIES.MULTIPROCESSING`." "Please open issue on github for your feature request." ) self.sharding_group_filter = sharding_group_filter def __iter__(self) -> Iterator[T_co]: yield from self.source_datapipe def __len__(self) -> int: return len(self.source_datapipe)
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import re from typing import Any, Dict, Iterator, List, Union from torchdata.datapipes import functional_datapipe from torchdata.datapipes.iter import IterDataPipe def pathsplit(p): """Split a path into a WebDataset prefix and suffix. The prefix is used for grouping files into samples, the suffix is used as key in the output dictionary. The suffix consists of all components after the first "." in the filename. In torchdata, the prefix consists of the .tar file path followed by the file name inside the archive. Any backslash in the prefix is replaced by a forward slash to make Windows prefixes consistent with POSIX paths. """ # convert Windows pathnames to UNIX pathnames, otherwise # we get an inconsistent mix of the Windows path to the tar # file followed by the POSIX path inside that tar file p = p.replace("\\", "/") if "." not in p: return p, "" # we need to use a regular expression because os.path is # platform specific, but tar files always contain POSIX paths match = re.search(r"^(.*?)(\.[^/]*)$", p) if not match: return p, "" prefix, suffix = match.groups() return prefix, suffix @functional_datapipe("webdataset") class WebDatasetIterDataPipe(IterDataPipe[Dict]): r""" Iterable DataPipe that accepts stream of (path, data) tuples, usually, representing the pathnames and files of a tar archive (functional name: ``webdataset``). This aggregates consecutive items with the same basename into a single dictionary, using the extensions as keys (WebDataset file convention). Any text after the first "." in the filename is used as a key/extension. File names that do not have an extension are ignored. Args: source_datapipe: a DataPipe yielding a stream of (path, data) pairs Returns: a DataPipe yielding a stream of dictionaries Examples: >>> from torchdata.datapipes.iter import FileLister, FileOpener >>> >>> def decode(item): >>> key, value = item >>> if key.endswith(".txt"): >>> return key, value.read().decode("utf-8") >>> if key.endswith(".bin"): >>> return key, value.read().decode("utf-8") >>> >>> datapipe1 = FileLister("test/_fakedata", "wds*.tar") >>> datapipe2 = FileOpener(datapipe1, mode="b") >>> dataset = datapipe2.load_from_tar().map(decode).webdataset() >>> for obj in dataset: >>> print(obj) """ def __init__(self, source_datapipe: IterDataPipe[List[Union[Dict, List]]]) -> None: self.source_datapipe: IterDataPipe[List[Union[Dict, List]]] = source_datapipe def __iter__(self) -> Iterator[Dict]: sample: Dict[str, Any] = {} current = "" for path, data in self.source_datapipe: assert isinstance(path, str), path prefix, suffix = pathsplit(path) if suffix == "": # files with empty suffixes can be used for metadata # they cannot be used for data since they wouldn't have a key continue if prefix != current: if current != "": yield sample sample = {} current = prefix sample["__key__"] = current sample[suffix] = data if sample != {}: yield sample
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import lzma import warnings from io import BufferedIOBase from typing import Iterable, Iterator, Tuple from torchdata.datapipes import functional_datapipe from torchdata.datapipes.iter import IterDataPipe from torchdata.datapipes.utils import StreamWrapper from torchdata.datapipes.utils.common import validate_pathname_binary_tuple @functional_datapipe("load_from_xz") class XzFileLoaderIterDataPipe(IterDataPipe[Tuple[str, BufferedIOBase]]): r""" Decompresses xz (lzma) binary streams from an Iterable DataPipe which contains tuples of path name and xy binary streams, and yields a tuple of path name and extracted binary stream (functional name: ``load_from_xz``). Args: datapipe: Iterable DataPipe that provides tuples of path name and xy binary stream length: Nominal length of the DataPipe Note: The opened file handles will be closed automatically if the default ``DecoderDataPipe`` is attached. Otherwise, user should be responsible to close file handles explicitly or let Python's GC close them periodically. Example: >>> from torchdata.datapipes.iter import FileLister, FileOpener >>> datapipe1 = FileLister(".", "*.xz") >>> datapipe2 = FileOpener(datapipe1, mode="b") >>> xz_loader_dp = datapipe2.load_from_xz() >>> for _, stream in xz_loader_dp: >>> print(stream.read()) b'0123456789abcdef' """ def __init__(self, datapipe: Iterable[Tuple[str, BufferedIOBase]], length: int = -1) -> None: super().__init__() self.datapipe: Iterable[Tuple[str, BufferedIOBase]] = datapipe self.length: int = length def __iter__(self) -> Iterator[Tuple[str, BufferedIOBase]]: for data in self.datapipe: validate_pathname_binary_tuple(data) pathname, data_stream = data try: extracted_fobj = lzma.open(data_stream, mode="rb") # type: ignore[call-overload] new_pathname = pathname.rstrip(".xz") yield new_pathname, StreamWrapper(extracted_fobj, data_stream, name=pathname) # type: ignore[misc] except Exception as e: warnings.warn(f"Unable to extract files from corrupted xz/lzma stream {pathname} due to: {e}, abort!") raise e finally: if isinstance(data_stream, StreamWrapper): data_stream.autoclose() def __len__(self) -> int: if self.length == -1: raise TypeError(f"{type(self).__name__} instance doesn't have valid length") return self.length
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import contextlib import csv from typing import IO, Iterator, Tuple, TypeVar, Union from torchdata.datapipes import functional_datapipe from torchdata.datapipes.iter import IterDataPipe D = TypeVar("D") Str_Or_Bytes = Union[str, bytes] class PlainTextReaderHelper: def __init__( self, *, skip_lines: int = 0, strip_newline: bool = True, decode: bool = True, encoding="utf-8", errors: str = "ignore", return_path: bool = False, as_tuple: bool = False, ) -> None: if skip_lines < 0: raise ValueError("'skip_lines' is required to be a positive integer.") self._skip_lines = skip_lines self._strip_newline = strip_newline self._decode = decode self._encoding = encoding self._errors = errors self._return_path = return_path self._as_tuple = as_tuple def skip_lines(self, file: IO) -> Union[Iterator[bytes], Iterator[str]]: with contextlib.suppress(StopIteration): for _ in range(self._skip_lines): next(file) try: yield from file finally: file.close() def strip_newline(self, stream: Union[Iterator[bytes], Iterator[str]]) -> Union[Iterator[bytes], Iterator[str]]: if not self._strip_newline: yield from stream return for line in stream: if isinstance(line, str): yield line.strip("\r\n") else: yield line.strip(b"\r\n") def decode(self, stream: Union[Iterator[bytes], Iterator[str]]) -> Union[Iterator[bytes], Iterator[str]]: if not self._decode: yield from stream else: for line in stream: yield line.decode(self._encoding, self._errors) if isinstance(line, bytes) else line def return_path(self, stream: Iterator[D], *, path: str) -> Iterator[Union[D, Tuple[str, D]]]: if not self._return_path: yield from stream return for data in stream: yield path, data def as_tuple(self, stream: Iterator[D]) -> Iterator[Union[D, Tuple]]: if not self._as_tuple: yield from stream return for data in stream: if isinstance(data, list): yield tuple(data) else: yield data @functional_datapipe("readlines") class LineReaderIterDataPipe(IterDataPipe[Union[Str_Or_Bytes, Tuple[str, Str_Or_Bytes]]]): r""" Accepts a DataPipe consisting of tuples of file name and string data stream, and for each line in the stream, yields a tuple of file name and the line (functional name: ``readlines``). Args: source_datapipe: a DataPipe with tuples of file name and string data stream skip_lines: number of lines to skip at the beginning of each file strip_newline: if ``True``, the new line character will be stripped decode: if ``True``, this will decode the contents of the file based on the specified ``encoding`` encoding: the character encoding of the files (`default='utf-8'`) errors: the error handling scheme used while decoding return_path: if ``True``, each line will return a tuple of path and contents, rather than just the contents Example: >>> from torchdata.datapipes.iter import IterableWrapper >>> import io >>> text1 = "Line1\nLine2" >>> text2 = "Line2,1\r\nLine2,2\r\nLine2,3" >>> source_dp = IterableWrapper([("file1", io.StringIO(text1)), ("file2", io.StringIO(text2))]) >>> line_reader_dp = source_dp.readlines() >>> list(line_reader_dp) [('file1', 'Line1'), ('file1', 'Line2'), ('file2', 'Line2,1'), ('file2', 'Line2,2'), ('file2', 'Line2,3')] """ def __init__( self, source_datapipe: IterDataPipe[Tuple[str, IO]], *, skip_lines: int = 0, strip_newline: bool = True, decode: bool = False, encoding="utf-8", errors: str = "ignore", return_path: bool = True, ) -> None: self.source_datapipe = source_datapipe self._helper = PlainTextReaderHelper( skip_lines=skip_lines, strip_newline=strip_newline, decode=decode, encoding=encoding, errors=errors, return_path=return_path, ) def __iter__(self) -> Iterator[Union[Str_Or_Bytes, Tuple[str, Str_Or_Bytes]]]: for path, file in self.source_datapipe: stream = self._helper.skip_lines(file) stream = self._helper.strip_newline(stream) stream = self._helper.decode(stream) yield from self._helper.return_path(stream, path=path) # type: ignore[misc] class _CSVBaseParserIterDataPipe(IterDataPipe): def __init__( self, source_datapipe, csv_reader, *, skip_lines: int = 0, decode: bool = False, encoding="utf-8", errors: str = "ignore", return_path: bool = True, as_tuple: bool = False, **fmtparams, ) -> None: self.source_datapipe = source_datapipe self._csv_reader = csv_reader self._helper = PlainTextReaderHelper( skip_lines=skip_lines, decode=decode, encoding=encoding, errors=errors, return_path=return_path, as_tuple=as_tuple, ) self.fmtparams = fmtparams def __iter__(self) -> Iterator[Union[D, Tuple[str, D]]]: for path, file in self.source_datapipe: stream = self._helper.skip_lines(file) stream = self._helper.decode(stream) stream = self._csv_reader(stream, **self.fmtparams) stream = self._helper.as_tuple(stream) # type: ignore[assignment] yield from self._helper.return_path(stream, path=path) # type: ignore[misc] @functional_datapipe("parse_csv") class CSVParserIterDataPipe(_CSVBaseParserIterDataPipe): r""" Accepts a DataPipe consists of tuples of file name and CSV data stream, reads and returns the contents within the CSV files one row at a time (functional name: ``parse_csv``). Each output is a `List` by default, but it depends on ``fmtparams``. Args: source_datapipe: source DataPipe with tuples of file name and CSV data stream skip_lines: number of lines to skip at the beginning of each file strip_newline: if ``True``, the new line character will be stripped decode: if ``True``, this will decode the contents of the file based on the specified ``encoding`` encoding: the character encoding of the files (`default='utf-8'`) errors: the error handling scheme used while decoding return_path: if ``True``, each line will return a tuple of path and contents, rather than just the contents as_tuple: if ``True``, each line will return a tuple instead of a list Example: >>> from torchdata.datapipes.iter import IterableWrapper, FileOpener >>> import os >>> def get_name(path_and_stream): >>> return os.path.basename(path_and_stream[0]), path_and_stream[1] >>> datapipe1 = IterableWrapper(["1.csv", "empty.csv", "empty2.csv"]) >>> datapipe2 = FileOpener(datapipe1, mode="b") >>> datapipe3 = datapipe2.map(get_name) >>> csv_parser_dp = datapipe3.parse_csv() >>> list(csv_parser_dp) [['key', 'item'], ['a', '1'], ['b', '2'], []] """ def __init__( self, source_datapipe: IterDataPipe[Tuple[str, IO]], *, skip_lines: int = 0, decode: bool = True, encoding: str = "utf-8", errors: str = "ignore", return_path: bool = False, as_tuple: bool = False, **fmtparams, ) -> None: super().__init__( source_datapipe, csv.reader, skip_lines=skip_lines, decode=decode, encoding=encoding, errors=errors, return_path=return_path, as_tuple=as_tuple, **fmtparams, ) @functional_datapipe("parse_csv_as_dict") class CSVDictParserIterDataPipe(_CSVBaseParserIterDataPipe): r""" Accepts a DataPipe consists of tuples of file name and CSV data stream, reads and returns the contents within the CSV files one row at a time (functional name: ``parse_csv_as_dict``). Each output is a `Dict` by default, but it depends on ``fmtparams``. The first row of each file, unless skipped, will be used as the header; the contents of the header row will be used as keys for the `Dict`\s generated from the remaining rows. Args: source_datapipe: source DataPipe with tuples of file name and CSV data stream skip_lines: number of lines to skip at the beginning of each file strip_newline: if ``True``, the new line character will be stripped decode: if ``True``, this will decode the contents of the file based on the specified ``encoding`` encoding: the character encoding of the files (`default='utf-8'`) errors: the error handling scheme used while decoding return_path: if ``True``, each line will return a tuple of path and contents, rather than just the contents Example: >>> from torchdata.datapipes.iter import FileLister, FileOpener >>> import os >>> def get_name(path_and_stream): >>> return os.path.basename(path_and_stream[0]), path_and_stream[1] >>> datapipe1 = FileLister(".", "*.csv") >>> datapipe2 = FileOpener(datapipe1, mode="b") >>> datapipe3 = datapipe2.map(get_name) >>> csv_dict_parser_dp = datapipe3.parse_csv_as_dict() >>> list(csv_dict_parser_dp) [{'key': 'a', 'item': '1'}, {'key': 'b', 'item': '2'}] """ def __init__( self, source_datapipe: IterDataPipe[Tuple[str, IO]], *, skip_lines: int = 0, decode: bool = True, encoding: str = "utf-8", errors: str = "ignore", return_path: bool = False, **fmtparams, ) -> None: super().__init__( source_datapipe, csv.DictReader, skip_lines=skip_lines, decode=decode, encoding=encoding, errors=errors, return_path=return_path, **fmtparams, )
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from typing import Iterator, Optional, TypeVar from warnings import warn from torchdata.datapipes import functional_datapipe from torchdata.datapipes.iter import IterDataPipe T_co = TypeVar("T_co", covariant=True) @functional_datapipe("header") class HeaderIterDataPipe(IterDataPipe[T_co]): r""" Yields elements from the source DataPipe from the start, up to the specfied limit (functional name: ``header``). If you would like to manually set the length of a DataPipe to a certain value; we recommend you to use :class:`.LengthSetter`. Args: source_datapipe: the DataPipe from which elements will be yielded limit: the number of elements to yield before stopping Example: >>> from torchdata.datapipes.iter import IterableWrapper >>> dp = IterableWrapper(range(10)) >>> header_dp = dp.header(3) >>> list(header_dp) [0, 1, 2] """ def __init__(self, source_datapipe: IterDataPipe[T_co], limit: Optional[int] = 10) -> None: self.source_datapipe: IterDataPipe[T_co] = source_datapipe self.limit: Optional[int] = limit def __iter__(self) -> Iterator[T_co]: i: int = 0 for value in self.source_datapipe: i += 1 if self.limit is None or i <= self.limit: yield value else: break def __len__(self) -> int: try: source_len = len(self.source_datapipe) return source_len if self.limit is None else min(source_len, self.limit) except TypeError as error: if self.limit is None: raise TypeError("The length of this HeaderIterDataPipe cannot be determined.") from error warn( "The length of this HeaderIterDataPipe is inferred to be equal to its limit." "The actual value may be smaller if the actual length of source_datapipe is smaller than the limit." ) return self.limit @functional_datapipe("set_length") class LengthSetterIterDataPipe(IterDataPipe[T_co]): r""" Set the length attribute of the DataPipe, which is returned by ``__len__`` (functional name: ``set_length``). This can be used after DataPipes whose final length cannot be known in advance (e.g. ``filter``). If you know the final length with certainty, you can manually set it, which can then be used by DataLoader or other DataPipes. Note: This DataPipe differs from :class:`.Header` in that this doesn't restrict the number of elements that can be yielded from the DataPipe; this is strictly used for setting an attribute so that it can be used later. Args: source_datapipe: a DataPipe length: the integer value that will be set as the length Example: >>> from torchdata.datapipes.iter import IterableWrapper >>> dp = IterableWrapper(range(10)).filter(lambda x: x < 5).set_length(3) >>> list(dp) # Notice that the number of elements yielded is unchanged [0, 1, 2, 3, 4] >>> len(dp) 3 >>> header_dp = IterableWrapper(range(10)).filter(lambda x: x < 5).header(3) >>> list(header_dp) # Use `.header()` if you want to limit the number of elements yielded [0, 1, 2] >>> len(header_dp) 3 """ def __init__(self, source_datapipe: IterDataPipe[T_co], length: int) -> None: self.source_datapipe: IterDataPipe[T_co] = source_datapipe assert length >= 0 self.length: int = length def __iter__(self) -> Iterator[T_co]: yield from self.source_datapipe def __len__(self) -> int: return self.length
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from collections import defaultdict from typing import Dict, Iterator, List, Union from torchdata.datapipes import functional_datapipe from torchdata.datapipes.iter import IterDataPipe @functional_datapipe("rows2columnar") class Rows2ColumnarIterDataPipe(IterDataPipe[Dict]): r""" Accepts an input DataPipe with batches of data, and processes one batch at a time and yields a Dict for each batch, with ``column_names`` as keys and lists of corresponding values from each row as values (functional name: ``rows2columnar``). Within the input DataPipe, each row within a batch must either be a `Dict` or a `List` Note: If ``column_names`` are not given and each row is a `Dict`, the keys of that Dict will be used as column names. Args: source_datapipe: a DataPipe where each item is a batch. Within each batch, there are rows and each row is a `List` or `Dict` column_names: if each element in a batch contains `Dict`, ``column_names`` act as a filter for matching keys; otherwise, these are used as keys to for the generated `Dict` of each batch Example: >>> # Each element in a batch is a `Dict` >>> from torchdata.datapipes.iter import IterableWrapper >>> dp = IterableWrapper([[{'a': 1}, {'b': 2, 'a': 1}], [{'a': 1, 'b': 200}, {'b': 2, 'c': 3, 'a': 100}]]) >>> row2col_dp = dp.rows2columnar() >>> list(row2col_dp) [defaultdict(<class 'list'>, {'a': [1, 1], 'b': [2]}), defaultdict(<class 'list'>, {'a': [1, 100], 'b': [200, 2], 'c': [3]})] >>> row2col_dp = dp.rows2columnar(column_names=['a']) >>> list(row2col_dp) [defaultdict(<class 'list'>, {'a': [1, 1]}), defaultdict(<class 'list'>, {'a': [1, 100]})] >>> # Each element in a batch is a `List` >>> dp = IterableWrapper([[[0, 1, 2, 3], [4, 5, 6, 7]]]) >>> row2col_dp = dp.rows2columnar(column_names=["1st_in_batch", "2nd_in_batch", "3rd_in_batch", "4th_in_batch"]) >>> list(row2col_dp) [defaultdict(<class 'list'>, {'1st_in_batch': [0, 4], '2nd_in_batch': [1, 5], '3rd_in_batch': [2, 6], '4th_in_batch': [3, 7]})] """ column_names: List[str] def __init__(self, source_datapipe: IterDataPipe[List[Union[Dict, List]]], column_names: List[str] = None) -> None: self.source_datapipe: IterDataPipe[List[Union[Dict, List]]] = source_datapipe self.column_names: List[str] = [] if column_names is None else column_names def __iter__(self) -> Iterator[Dict]: for batch in self.source_datapipe: columnar = defaultdict(list) for list_or_dict_row in batch: if isinstance(list_or_dict_row, dict): # if column_names provided, we use it as a filter if len(self.column_names) > 0: for column_name in self.column_names: # this line will raise a KeyError if column_name # is not within list_or_dict_row which is the # expected behavior columnar[column_name].append(list_or_dict_row[column_name]) else: for k, v in list_or_dict_row.items(): columnar[k].append(v) else: for i, v in enumerate(list_or_dict_row): columnar[self.column_names[i]].append(v) yield columnar def __len__(self) -> int: return len(self.source_datapipe)
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import os import sys import warnings import zipfile from io import BufferedIOBase from typing import cast, IO, Iterable, Iterator, Tuple from torchdata.datapipes import functional_datapipe from torchdata.datapipes.iter import IterDataPipe from torchdata.datapipes.utils import StreamWrapper from torchdata.datapipes.utils.common import validate_pathname_binary_tuple @functional_datapipe("load_from_zip") class ZipArchiveLoaderIterDataPipe(IterDataPipe[Tuple[str, BufferedIOBase]]): r""" Opens/decompresses zip binary streams from an Iterable DataPipe which contains a tuple of path name and zip binary stream, and yields a tuple of path name and extracted binary stream (functional name: ``load_from_zip``). Args: datapipe: Iterable DataPipe that provides tuples of path name and zip binary stream length: Nominal length of the DataPipe Note: The opened file handles will be closed automatically if the default ``DecoderDataPipe`` is attached. Otherwise, user should be responsible to close file handles explicitly or let Python's GC close them periodically. Due to how `zipfiles` implements its ``open()`` method, the data_stream variable below cannot be closed within the scope of this function. Example: >>> from torchdata.datapipes.iter import FileLister, FileOpener >>> datapipe1 = FileLister(".", "*.zip") >>> datapipe2 = FileOpener(datapipe1, mode="b") >>> zip_loader_dp = datapipe2.load_from_zip() >>> for _, stream in zip_loader_dp: >>> print(stream.read()) b'0123456789abcdef' """ def __init__(self, datapipe: Iterable[Tuple[str, BufferedIOBase]], length: int = -1) -> None: super().__init__() self.datapipe: Iterable[Tuple[str, BufferedIOBase]] = datapipe self.length: int = length def __iter__(self) -> Iterator[Tuple[str, BufferedIOBase]]: for data in self.datapipe: validate_pathname_binary_tuple(data) pathname, data_stream = data try: # typing.cast is used here to silence mypy's type checker zips = zipfile.ZipFile(cast(IO[bytes], data_stream)) for zipinfo in zips.infolist(): # major version should always be 3 here. if sys.version_info[1] >= 6: if zipinfo.is_dir(): continue elif zipinfo.filename.endswith("/"): continue extracted_fobj = zips.open(zipinfo) inner_pathname = os.path.normpath(os.path.join(pathname, zipinfo.filename)) yield inner_pathname, StreamWrapper(extracted_fobj, data_stream, name=inner_pathname) # type: ignore[misc] except Exception as e: warnings.warn(f"Unable to extract files from corrupted zipfile stream {pathname} due to: {e}, abort!") raise e finally: if isinstance(data_stream, StreamWrapper): data_stream.autoclose() # We are unable to close 'data_stream' here, because it needs to be available to use later def __len__(self) -> int: if self.length == -1: raise TypeError(f"{type(self).__name__} instance doesn't have valid length") return self.length
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from typing import Dict, Iterator, Tuple, TypeVar from torchdata.datapipes import functional_datapipe from torchdata.datapipes.iter import IterDataPipe K = TypeVar("K") @functional_datapipe("enumerate") class EnumeratorIterDataPipe(IterDataPipe[Tuple[int, K]]): r""" Adds an index to an existing DataPipe through enumeration, with the index starting from 0 by default (functional name: ``enumerate``). Args: source_datapipe: Iterable DataPipe being indexed starting_index: Index from which enumeration will start Example: >>> from torchdata.datapipes.iter import IterableWrapper >>> dp = IterableWrapper(['a', 'b', 'c']) >>> enum_dp = dp.enumerate() >>> list(enum_dp) [(0, 'a'), (1, 'b'), (2, 'c')] """ def __init__(self, source_datapipe: IterDataPipe[K], starting_index: int = 0) -> None: self.source_datapipe: IterDataPipe[K] = source_datapipe self.starting_index = starting_index def __iter__(self): yield from enumerate(self.source_datapipe, self.starting_index) def __len__(self): return len(self.source_datapipe) @functional_datapipe("add_index") class IndexAdderIterDataPipe(IterDataPipe[Dict]): r""" Adds an index to an existing Iterable DataPipe with (functional name: ``add_index``). The row or batch within the DataPipe must have the type `Dict`; otherwise, a `NotImplementedError` will be thrown. The index of the data is set to the provided ``index_name``. Args: source_datapipe: Iterable DataPipe being indexed, its row/batch must be of type `Dict` index_name: Name of the key to store data index Example: >>> from torchdata.datapipes.iter import IterableWrapper >>> dp = IterableWrapper([{'a': 1, 'b': 2}, {'c': 3, 'a': 1}]) >>> index_dp = dp.add_index("order") >>> list(index_dp) [{'a': 1, 'b': 2, 'order': 0}, {'c': 3, 'a': 1, 'order': 1}] """ def __init__(self, source_datapipe: IterDataPipe[Dict], index_name: str = "index") -> None: self.source_datapipe = source_datapipe self.index_name = index_name def __iter__(self) -> Iterator[Dict]: for i, row_or_batch in enumerate(self.source_datapipe): if isinstance(row_or_batch, dict): row_or_batch[self.index_name] = i yield row_or_batch else: raise NotImplementedError("We only support adding index to row or batch in dict type") def __len__(self) -> int: return len(self.source_datapipe)
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import random from typing import Dict, Iterator, Optional, Sized, TypeVar from torchdata.datapipes.iter import IterDataPipe T_co = TypeVar("T_co", covariant=True) class SampleMultiplexerDataPipe(IterDataPipe[T_co]): """ Takes a `Dict` of (IterDataPipe, Weight), and yields items by sampling from these DataPipes with respect to their weights. When individual DataPipes are exhausted, continues to sample from the remaining DataPipes according to their relative weights. If you wish to maintain the same ratio of weights indefinitely, you need to ensure that the inputs are never exhausted, by, for instance, applying ``cycle`` to them. Sampling is controlled by the provided random ``seed``. If you don't provide it, the sampling will not be deterministic. Args: pipes_to_weights_dict: a `Dict` of IterDataPipes and Weights. The total weight of unexhausted DataPipes will be normalized to 1 for the purpose of sampling. seed: random seed to initialize the random number generator Example: >>> from torchdata.datapipes.iter import IterableWrapper, SampleMultiplexer >>> source_dp1 = IterableWrapper([0] * 10) >>> source_dp2 = IterableWrapper([1] * 10) >>> d = {source_dp1: 99999999, source_dp2: 0.0000001} >>> sample_mul_dp = SampleMultiplexer(pipes_to_weights_dict=d, seed=0) >>> list(sample_mul_dp) [0, 0, 0, 0, 0, 1, 1, 1, 1, 1] """ def __init__( self, pipes_to_weights_dict: Dict[IterDataPipe[T_co], float], seed: Optional[int] = None, ): if not pipes_to_weights_dict: raise ValueError("Empty dictionary passed to SampleMultiplexerDataPipe") total_weight: float = 0 for v in pipes_to_weights_dict.values(): if v <= 0: raise ValueError(f"Expecting a positive and non-zero weight, got {v}") total_weight += v self.pipes_and_weights = [(k, v / total_weight) for k, v in pipes_to_weights_dict.items()] if seed is None: self.random = random.Random() else: self.random = random.Random(seed) def __iter__(self) -> Iterator[T_co]: pipes_and_weights = [(iter(k), v) for k, v in self.pipes_and_weights] while len(pipes_and_weights) > 1: r = self.random.random() s: float = 0 for it, weight in pipes_and_weights: s += weight if r < s: try: item = next(it) yield item except StopIteration: # remove the current stream new_total = 1 - weight assert new_total > 0 pipes_and_weights = [(k, v / new_total) for k, v in pipes_and_weights if k != it] break # only one stream left for item in pipes_and_weights[0][0]: yield item def __len__(self) -> int: if all(isinstance(dp, Sized) for dp, _ in self.pipes_and_weights): return sum(len(dp) for dp, _ in self.pipes_and_weights) else: raise TypeError(f"{type(self).__name__} instance doesn't have valid length")
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import hashlib from io import IOBase from typing import Dict, Iterator, Tuple, Union from torchdata.datapipes import functional_datapipe from torchdata.datapipes.iter import IterDataPipe from torchdata.datapipes.utils import StreamWrapper D_type = Union[str, bytes, bytearray] U = Union[D_type, StreamWrapper] @functional_datapipe("check_hash") class HashCheckerIterDataPipe(IterDataPipe[Tuple[str, U]]): r""" Computes and checks the hash of each file, from an input DataPipe of tuples of file name and data/stream (functional name: ``check_hash``). If the hashes match the given hash in the dictionary, it yields a tuple of file name and data/stream. Otherwise, it will raise an error. Args: source_datapipe: IterDataPipe with tuples of file name and data/stream hash_dict: Dictionary that maps file names to their corresponding hashes hash_type: The type of hash function to apply rewind: Rewind the stream after using the stream to compute the hash (this does not work with non-seekable stream, e.g. HTTP) Example: >>> from torchdata.datapipes.iter import IterableWrapper, FileOpener >>> expected_MD5_hash = "bb9675028dd39d2dd2bf71002b93e66c" File is from "https://raw.githubusercontent.com/pytorch/data/main/LICENSE" >>> file_dp = FileOpener(IterableWrapper(["LICENSE.txt"]), mode='rb') >>> # An exception is only raised when the hash doesn't match, otherwise (path, stream) is returned >>> check_hash_dp = file_dp.check_hash({"LICENSE.txt": expected_MD5_hash}, "md5", rewind=True) >>> reader_dp = check_hash_dp.readlines() >>> it = iter(reader_dp) >>> path, line = next(it) >>> path LICENSE.txt >>> line b'BSD 3-Clause License' """ def __init__( self, source_datapipe: IterDataPipe[Tuple[str, IOBase]], hash_dict: Dict[str, str], hash_type: str = "sha256", rewind: bool = True, ) -> None: self.source_datapipe: IterDataPipe[Tuple[str, IOBase]] = source_datapipe self.hash_dict: Dict[str, str] = hash_dict self.hash_type: str = hash_type self.rewind: bool = rewind if self.hash_type not in ["sha256", "md5"]: raise ValueError("Invalid hash_type requested, should be one of {}".format(["sha256", "md5"])) def __iter__(self) -> Iterator[Tuple[str, StreamWrapper]]: for file_name, data in self.source_datapipe: if self.hash_type == "sha256": hash_func = hashlib.sha256() else: hash_func = hashlib.md5() if isinstance(data, (str, bytes, bytearray)): if isinstance(data, str): data = data.decode() hash_func.update(data) # File Stream else: # Not all streams have `read(bytes)` method. # `__iter__` method is chosen because it is a common interface for IOBase. for d in data: hash_func.update(d) # TODO(133): this will not work (or work crappy for non-seekable steams like http) if self.rewind: data.seek(0) if file_name not in self.hash_dict: raise RuntimeError(f"Unspecified hash for file {file_name}") if hash_func.hexdigest() != self.hash_dict[file_name]: raise RuntimeError( f"The computed hash {hash_func.hexdigest()} of {file_name} does not match the expected" f"hash {self.hash_dict[file_name]}. Delete the file manually and retry." ) if isinstance(data, (str, bytes, bytearray)): yield file_name, data else: yield file_name, StreamWrapper(data) def __len__(self) -> int: return len(self.source_datapipe)
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import warnings from typing import Callable, Dict, Optional from torch.utils.data import IterDataPipe, MapDataPipe from torch.utils.data.datapipes.utils.common import _check_unpickable_fn, DILL_AVAILABLE if DILL_AVAILABLE: import dill dill.extend(use_dill=False) # @functional_datapipe("to_map_datapipe") # This line must be kept for .pyi signature parser class IterToMapConverterMapDataPipe(MapDataPipe): r""" Lazily load data from ``IterDataPipe`` to construct a ``MapDataPipe`` with the key-value pair generated by ``key_value_fn`` (functional name: ``to_map_datapipe``). If ``key_value_fn`` is not given, each data from the source IterDataPipe must itself be an iterable with exactly two objects. The first object of each item becomes a key in the new dictionary, and the second object the corresponding value. For the opposite converter, use :class:`.MapToIterConverter`. Args: datapipe: Source IterDataPipe key_value_fn: Function being applied over each data to generate key-value pair Note: If a key being added is already present, the corresponding value will be replaced by the new value. Example: >>> from torchdata.datapipes.iter import IterableWrapper >>> source_dp = IterableWrapper([(i, i) for i in range(10)]) >>> map_dp = source_dp.to_map_datapipe() >>> list(map_dp) [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] >>> source_dp2 = IterableWrapper([('a', 1), ('b', 2), ('c', 1)]) >>> map_dp2 = source_dp2.to_map_datapipe() >>> map_dp2['a'] 1 >>> def row_to_tuple(row): >>> label = row[0] >>> data = row[1:] >>> return label, data >>> source_dp3 = IterableWrapper([('a', 1, 1, 1, 1, 1, 1), ('b', 2, 2, 2, 2, 2, 2), ('c', 3, 3, 3, 3, 3, 3)]) >>> map_dp3 = source_dp3.to_map_datapipe(key_value_fn=row_to_tuple) >>> map_dp3['a'] (1, 1, 1, 1, 1, 1) """ datapipe: IterDataPipe key_value_fn: Optional[Callable] _map: Optional[Dict] _length: int def __init__(self, datapipe: IterDataPipe, key_value_fn: Optional[Callable] = None): if not isinstance(datapipe, IterDataPipe): raise TypeError(f"IterToMapConverter can only apply on IterDataPipe, but found {type(datapipe)}") self.datapipe = datapipe if key_value_fn is not None: _check_unpickable_fn(key_value_fn) self.key_value_fn = key_value_fn # type: ignore[assignment] self._map = None def _load_map(self): self._map = {} for d in self.datapipe: inp = d if self.key_value_fn is None else self.key_value_fn(d) try: length = len(inp) except TypeError: raise TypeError(f"Cannot convert dictionary update element {type(inp)} ({inp}) to a sequence") if length != 2: raise ValueError(f"dictionary update sequence element has length {length}, 2 is required") key, value = inp if key in self._map: warnings.warn(f"Found duplicate key {key}. Please check your `key_value_fn`") self._map[key] = value def __getitem__(self, index): try: if self._map is None: self._load_map() return self._map[index] # type: ignore[index] except KeyError: raise IndexError(f"Index {index} is invalid for IterToMapConverter.") def __len__(self): if self._map is not None: return len(self._map) # type: ignore[arg-type] try: return len(self.datapipe) except (TypeError, NotImplementedError): pass warnings.warn( "Data from prior DataPipe are loaded to get length of" "IterToMapConverter before execution of the pipeline." "Please consider removing len()." ) self._load_map() return len(self._map) # type: ignore[arg-type] def __getstate__(self): if DILL_AVAILABLE: dill_key_value_fn = dill.dumps(self.key_value_fn) else: dill_key_value_fn = self.key_value_fn return ( self.datapipe, dill_key_value_fn, self._map, ) def __setstate__(self, state): (self.datapipe, dill_key_value_fn, self._map) = state if DILL_AVAILABLE: self.key_value_fn = dill.loads(dill_key_value_fn) # type: ignore[assignment] else: self.key_value_fn = dill_key_value_fn # type: ignore[assignment] # Register for functional API # See https://github.com/pytorch/data/issues/200 IterDataPipe.register_datapipe_as_function("to_map_datapipe", IterToMapConverterMapDataPipe)
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree.
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import warnings from collections import OrderedDict from typing import Callable, final, Iterator, List, Optional, Sequence, TypeVar from torch.utils.data import functional_datapipe, IterDataPipe, MapDataPipe from torch.utils.data.datapipes.iter.combining import _ChildDataPipe, _DemultiplexerIterDataPipe, _ForkerIterDataPipe from torch.utils.data.datapipes.utils.common import _check_unpickable_fn from torchdata.datapipes.utils.janitor import janitor T_co = TypeVar("T_co", covariant=True) T = TypeVar("T") @functional_datapipe("zip_with_iter") class IterKeyZipperIterDataPipe(IterDataPipe[T_co]): r""" Zips two IterDataPipes together based on the matching key (functional name: ``zip_with_iter``). The keys are computed by ``key_fn`` and ``ref_key_fn`` for the two IterDataPipes, respectively. When there isn't a match between the elements of the two IterDataPipes, the element from ``ref_datapipe`` is stored in a buffer. Then, the next element from ``ref_datapipe`` is tried. After a match is found, the ``merge_fn`` determines how they will be combined and returned (a tuple is generated by default). Args: source_datapipe: IterKeyZipper will yield data based on the order of this IterDataPipe ref_datapipe: Reference IterDataPipe from which IterKeyZipper will find items with matching key for ``source_datapipe`` key_fn: Callable function that will compute keys using elements from ``source_datapipe`` ref_key_fn: Callable function that will compute keys using elements from ``ref_datapipe`` If it's not specified, the ``key_fn`` will also be applied to elements from ``ref_datapipe`` keep_key: Option to yield the matching key along with the items in a tuple, resulting in `(key, merge_fn(item1, item2))`. buffer_size: The size of buffer used to hold key-data pairs from reference DataPipe until a match is found. If it's specified as ``None``, the buffer size is set as infinite. merge_fn: Function that combines the item from ``source_datapipe`` and the item from ``ref_datapipe``, by default a tuple is created Example: >>> from torchdata.datapipes.iter import IterableWrapper >>> from operator import itemgetter >>> def merge_fn(t1, t2): >>> return t1[1] + t2[1] >>> dp1 = IterableWrapper([('a', 100), ('b', 200), ('c', 300)]) >>> dp2 = IterableWrapper([('a', 1), ('b', 2), ('c', 3), ('d', 4)]) >>> res_dp = dp1.zip_with_iter(dp2, key_fn=itemgetter(0), >>> ref_key_fn=itemgetter(0), keep_key=True, merge_fn=merge_fn) >>> list(res_dp) [('a', 101), ('b', 202), ('c', 303)] """ def __init__( self, source_datapipe: IterDataPipe, ref_datapipe: IterDataPipe, key_fn: Callable, ref_key_fn: Optional[Callable] = None, keep_key: bool = False, buffer_size: int = 10000, merge_fn: Optional[Callable] = None, ) -> None: if not isinstance(ref_datapipe, IterDataPipe): raise TypeError(f"ref_datapipe must be a IterDataPipe, but its type is {type(ref_datapipe)} instead.") self.source_datapipe = source_datapipe self.ref_datapipe = ref_datapipe _check_unpickable_fn(key_fn) self.key_fn = key_fn if ref_key_fn is not None: _check_unpickable_fn(ref_key_fn) self.ref_key_fn = key_fn if ref_key_fn is None else ref_key_fn self.keep_key = keep_key if merge_fn is not None: _check_unpickable_fn(merge_fn) self.merge_fn = merge_fn if buffer_size is not None and buffer_size <= 0: raise ValueError("'buffer_size' is required to be either None or a positive integer.") self.buffer_size: int = buffer_size self.buffer: OrderedDict = OrderedDict() def __iter__(self) -> Iterator: ref_it = iter(self.ref_datapipe) warn_once_flag = True try: for data in self.source_datapipe: key = self.key_fn(data) while key not in self.buffer: try: ref_data = next(ref_it) except StopIteration: raise BufferError( f"No matching key can be found from reference DataPipe for the data {data}. " "Please consider increasing the buffer size." ) ref_key = self.ref_key_fn(ref_data) if ref_key in self.buffer: raise ValueError("Duplicate key is found in reference DataPipe") if self.buffer_size is not None and len(self.buffer) > self.buffer_size: if warn_once_flag: warn_once_flag = False warnings.warn( "Buffer reaches the upper limit, so reference key-data pair begins to " "be removed from buffer in FIFO order. Please consider increase buffer size." ) self.buffer.popitem(last=False) self.buffer[ref_key] = ref_data res = self.merge_fn(data, self.buffer.pop(key)) if self.merge_fn else (data, self.buffer.pop(key)) if self.keep_key: yield key, res else: yield res finally: del ref_it # TODO(633): This should be Exception or warn when debug mode is enabled if self.buffer: for _, v in self.buffer.items(): janitor(v) self.buffer.clear() def __len__(self) -> int: return len(self.source_datapipe) @final def reset(self) -> None: self.buffer = OrderedDict() def __getstate__(self): state = ( self.source_datapipe, self.ref_datapipe, self.key_fn, self.ref_key_fn, self.keep_key, self.merge_fn, self.buffer_size, ) if IterDataPipe.getstate_hook is not None: return IterDataPipe.getstate_hook(state) return state def __setstate__(self, state): ( self.source_datapipe, self.ref_datapipe, self.key_fn, self.ref_key_fn, self.keep_key, self.merge_fn, self.buffer_size, ) = state self.buffer = OrderedDict() def __del__(self): if self.buffer: for _, v in self.buffer.items(): janitor(v) self.buffer.clear() @functional_datapipe("zip_with_map") class MapKeyZipperIterDataPipe(IterDataPipe[T_co]): r""" Joins the items from the source IterDataPipe with items from a MapDataPipe (functional name: ``zip_with_map``). The matching is done by the provided ``key_fn``, which maps an item from ``source_iterdatapipe`` to a key that should exist in the ``map_datapipe``. The return value is created by the ``merge_fn``, which returns a tuple of the two items by default. Args: source_iterdatapipe: IterDataPipe from which items are yield and will be combined with an item from ``map_datapipe`` map_datapipe: MapDataPipe that takes a key from ``key_fn``, and returns an item key_fn: Function that maps each item from ``source_iterdatapipe`` to a key that exists in ``map_datapipe`` keep_key: Option to yield the matching key along with the items in a tuple, resulting in ``(key, merge_fn(item1, item2))``. merge_fn: Function that combines the item from ``source_iterdatapipe`` and the matching item from ``map_datapipe``, by default a tuple is created Example: .. testsetup:: from operator import itemgetter .. testcode:: from torchdata.datapipes.iter import IterableWrapper from torchdata.datapipes.map import SequenceWrapper def merge_fn(tuple_from_iter, value_from_map): return tuple_from_iter[0], tuple_from_iter[1] + value_from_map dp1 = IterableWrapper([('a', 1), ('b', 2), ('c', 3)]) mapdp = SequenceWrapper({'a': 100, 'b': 200, 'c': 300, 'd': 400}) res_dp = dp1.zip_with_map(map_datapipe=mapdp, key_fn=itemgetter(0), merge_fn=merge_fn) print(list(res_dp)) Output: .. testoutput:: [('a', 101), ('b', 202), ('c', 303)] """ def __init__( self, source_iterdatapipe: IterDataPipe, map_datapipe: MapDataPipe, key_fn: Callable, merge_fn: Optional[Callable] = None, keep_key: bool = False, ): if not isinstance(map_datapipe, MapDataPipe): raise TypeError(f"map_datapipe must be a MapDataPipe, but its type is {type(map_datapipe)} instead.") self.source_iterdatapipe: IterDataPipe = source_iterdatapipe self.map_datapipe: MapDataPipe = map_datapipe _check_unpickable_fn(key_fn) self.key_fn: Callable = key_fn if merge_fn is not None: _check_unpickable_fn(merge_fn) self.merge_fn: Optional[Callable] = merge_fn self.keep_key = keep_key def __iter__(self) -> Iterator: for item in self.source_iterdatapipe: key = self.key_fn(item) try: map_item = self.map_datapipe[key] except (KeyError, IndexError): raise KeyError(f"key_fn maps {item} to {key}, which is not a valid key in the given MapDataPipe.") res = self.merge_fn(item, map_item) if self.merge_fn else (item, map_item) if self.keep_key: yield key, res else: yield res def __len__(self) -> int: return len(self.source_iterdatapipe) def _drop_index(idx_data): _, data = idx_data return data @functional_datapipe("round_robin_demux") class RoundRobinDemultiplexerIterDataPipe(IterDataPipe): r""" Splits the input DataPipe into multiple child DataPipes in the round-robin order (functional name: ``round_robin_demux``). A list of the child DataPipes is returned from this operation. Args: datapipe: Iterable DataPipe being filtered num_instances: number of instances of the DataPipe to create buffer_size: this defines the maximum number of inputs that the buffer can hold across all child DataPipes while waiting for their values to be yielded. Defaults to ``1000``. Use ``-1`` for the unlimited buffer. Examples: >>> from torchdata.datapipes.iter import IterableWrapper >>> source_dp = IterableWrapper(range(5)) >>> dp1, dp2 = source_dp.round_robin_demux(2) >>> list(dp1) [0, 2, 4] >>> len(dp1) 3 >>> list(dp2) [1, 3] >>> len(dp2) 2 """ def __new__(cls, datapipe: IterDataPipe, num_instances: int, buffer_size: int = 1000): if num_instances < 1: raise ValueError(f"Expected `num_instaces` larger than 0, but {num_instances} is found") if num_instances == 1: warnings.warn( "The operation of `round_robin_demux` with `num_instances=1` is an no-op and returns the provided `datapipe` in a list directly" ) return [datapipe] datapipe = datapipe.enumerate() container = _RoundRobinDemultiplexerIterDataPipe(datapipe, num_instances, buffer_size=buffer_size) return [_ChildDataPipe(container, i).map(_drop_index) for i in range(num_instances)] class _RoundRobinDemultiplexerIterDataPipe(_DemultiplexerIterDataPipe): def __init__(self, datapipe: IterDataPipe[T_co], num_instances: int, buffer_size: int): super().__init__(datapipe, num_instances, self._round_robin_fn, drop_none=False, buffer_size=buffer_size) def _round_robin_fn(self, idx_data) -> int: idx, _ = idx_data return idx % self.num_instances def get_length_by_instance(self, instance_id: int) -> int: n = len(self.main_datapipe) avg_length = n // self.num_instances return avg_length + 1 if n - avg_length * self.num_instances > instance_id else avg_length @functional_datapipe("unzip") class UnZipperIterDataPipe(IterDataPipe[T]): r""" Takes in a DataPipe of Sequences, unpacks each Sequence, and return the elements in separate DataPipes based on their position in the Sequence (functional name: ``unzip``). The number of instances produced equals to the sequence length minus the number of columns to skip. Note: Each sequence within the DataPipe should have the same length, specified by the input argument `sequence_length`. Args: source_datapipe: Iterable DataPipe with sequences of data sequence_length: Length of the sequence within the source_datapipe. All elements should have the same length. buffer_size: this restricts how far ahead the leading child DataPipe can read relative to the slowest child DataPipe. Use -1 for the unlimited buffer. columns_to_skip: optional indices of columns that the DataPipe should skip (each index should be an integer from 0 to sequence_length - 1) Example: >>> from torchdata.datapipes.iter import IterableWrapper >>> source_dp = IterableWrapper([(i, i + 10, i + 20) for i in range(3)]) >>> dp1, dp2, dp3 = source_dp.unzip(sequence_length=3) >>> list(dp1) [0, 1, 2] >>> list(dp2) [10, 11, 12] >>> list(dp3) [20, 21, 22] """ def __new__( cls, source_datapipe: IterDataPipe[Sequence[T]], sequence_length: int, buffer_size: int = 1000, columns_to_skip: Optional[Sequence[int]] = None, ): if columns_to_skip is None: instance_ids = list(range(sequence_length)) else: skips = set(columns_to_skip) instance_ids = [i for i in range(sequence_length) if i not in skips] if len(instance_ids) == 0: raise RuntimeError( "All instances are being filtered out in UnZipperIterDataPipe. Please check" "the input `sequence_length` and `columns_to_skip`." ) # The implementation basically uses Forker but only yields a specific element within the sequence container = _UnZipperIterDataPipe(source_datapipe, instance_ids, buffer_size) # type: ignore[arg-type] return [_ChildDataPipe(container, i) for i in range(len(instance_ids))] class _UnZipperIterDataPipe(_ForkerIterDataPipe): def __init__(self, datapipe: IterDataPipe, instance_ids: List[int], buffer_size: int = 1000): super().__init__(datapipe, len(instance_ids), buffer_size) # type: ignore[arg-type] self.instance_ids = instance_ids def get_next_element_by_instance(self, instance_id: int): r""" Note: Each element returned from the source datapipe is required to be a sequnce that can be subscribed with a column index """ for return_val in super().get_next_element_by_instance(instance_id): yield return_val[self.instance_ids[instance_id]] def __getstate__(self): state = super().__getstate__() return (*state, self.instance_ids) def __setstate__(self, state): super().__setstate__(state[:-1]) self.instance_ids = state[-1]
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import bz2 import gzip import lzma import os import pathlib import tarfile import zipfile from enum import Enum from io import IOBase from typing import Iterator, Optional, Tuple, Union from torchdata.datapipes import functional_datapipe from torchdata.datapipes.iter import IterDataPipe from torchdata.datapipes.utils import StreamWrapper class CompressionType(Enum): GZIP = "gzip" LZMA = "lzma" TAR = "tar" ZIP = "zip" BZIP2 = "bz2" @functional_datapipe("decompress") class DecompressorIterDataPipe(IterDataPipe[Tuple[str, StreamWrapper]]): r""" Takes tuples of path and compressed stream of data, and returns tuples of path and decompressed stream of data (functional name: ``decompress``). The input compression format can be specified or automatically detected based on the files' file extensions. Args: source_datapipe: IterDataPipe containing tuples of path and compressed stream of data file_type: Optional `string` or ``CompressionType`` that represents what compression format of the inputs Example: >>> from torchdata.datapipes.iter import FileLister, FileOpener >>> tar_file_dp = FileLister(self.temp_dir.name, "*.tar") >>> tar_load_dp = FileOpener(tar_file_dp, mode="b") >>> tar_decompress_dp = Decompressor(tar_load_dp, file_type="tar") >>> for _, stream in tar_decompress_dp: >>> print(stream.read()) b'0123456789abcdef' """ types = CompressionType _DECOMPRESSORS = { types.GZIP: lambda file: gzip.GzipFile(fileobj=file), types.LZMA: lambda file: lzma.LZMAFile(file), types.TAR: lambda file: tarfile.open(fileobj=file, mode="r:*"), types.ZIP: lambda file: zipfile.ZipFile(file=file), types.BZIP2: lambda file: bz2.BZ2File(filename=file), } def __init__( self, source_datapipe: IterDataPipe[Tuple[str, IOBase]], file_type: Optional[Union[str, CompressionType]] = None ) -> None: self.source_datapipe: IterDataPipe[Tuple[str, IOBase]] = source_datapipe if isinstance(file_type, str): file_type = self.types(file_type.lower()) self.file_type: Optional[CompressionType] = file_type def _detect_compression_type(self, path: str) -> CompressionType: if self.file_type: return self.file_type ext = "".join(pathlib.Path(path).suffixes) if ext in {".tar.gz", ".tar.xz"}: return self.types.TAR else: ext = os.path.splitext(path)[1] if ext == ".tar": return self.types.TAR elif ext == ".xz": return self.types.LZMA elif ext == ".gz": return self.types.GZIP elif ext == ".zip": return self.types.ZIP elif ext == ".bz2": return self.types.BZIP2 else: raise RuntimeError( f"File at {path} has file extension {ext}, which does not match what are supported by" f"ExtractorIterDataPipe." ) def __iter__(self) -> Iterator[Tuple[str, StreamWrapper]]: for path, file in self.source_datapipe: try: file_type = self._detect_compression_type(path) decompressor = self._DECOMPRESSORS[file_type] yield path, StreamWrapper(decompressor(file), file, name=path) finally: if isinstance(file, StreamWrapper): file.autoclose() @functional_datapipe("extract") class ExtractorIterDataPipe(IterDataPipe[Tuple[str, StreamWrapper]]): r""" Please use ``Decompressor`` or ``.decompress`` instead. """ def __new__( cls, source_datapipe: IterDataPipe[Tuple[str, IOBase]], file_type: Optional[Union[str, CompressionType]] = None ): return DecompressorIterDataPipe(source_datapipe, file_type)
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import threading import time from collections import deque from typing import Deque, final, Optional, Sized import torch from torchdata.datapipes import functional_datapipe from torchdata.datapipes.iter import IterDataPipe from torchdata.datapipes.utils import pin_memory_fn PRODUCER_SLEEP_INTERVAL = 0.0001 # Interval between buffer fulfillment checks CONSUMER_SLEEP_INTERVAL = 0.0001 # Interval between checking items availability in buffer class _PrefetchData: def __init__(self, source_datapipe, buffer_size: int): self.run_prefetcher: bool = True self.prefetch_buffer: Deque = deque() self.buffer_size: int = buffer_size self.source_datapipe = source_datapipe self.stop_iteration: bool = False self.paused: bool = False @functional_datapipe("prefetch") class PrefetcherIterDataPipe(IterDataPipe): r""" Prefetches elements from the source DataPipe and puts them into a buffer (functional name: ``prefetch``). Prefetching performs the operations (e.g. I/O, computations) of the DataPipes up to this one ahead of time and stores the result in the buffer, ready to be consumed by the subsequent DataPipe. It has no effect aside from getting the sample ready ahead of time. This is used by ``MultiProcessingReadingService`` when the arguments ``worker_prefetch_cnt`` (for prefetching at each worker process) or ``main_prefetch_cnt`` (for prefetching at the main loop) are greater than 0. Beyond the built-in use cases, this can be useful to put after I/O DataPipes that have expensive I/O operations (e.g. takes a long time to request a file from a remote server). Args: source_datapipe: IterDataPipe from which samples are prefetched buffer_size: the size of the buffer which stores the prefetched samples Example: >>> from torchdata.datapipes.iter import IterableWrapper >>> dp = IterableWrapper(file_paths).open_files().prefetch(5) """ def __init__(self, source_datapipe, buffer_size: int = 10): self.source_datapipe = source_datapipe if buffer_size <= 0: raise ValueError("'buffer_size' is required to be a positive integer.") self.buffer_size = buffer_size self.thread: Optional[threading.Thread] = None self.prefetch_data: Optional[_PrefetchData] = None @staticmethod def thread_worker(prefetch_data: _PrefetchData): itr = iter(prefetch_data.source_datapipe) while not prefetch_data.stop_iteration: # Run if not paused while prefetch_data.run_prefetcher: if len(prefetch_data.prefetch_buffer) < prefetch_data.buffer_size: try: item = next(itr) prefetch_data.prefetch_buffer.append(item) except Exception as e: prefetch_data.run_prefetcher = False prefetch_data.stop_iteration = True prefetch_data.prefetch_buffer.append(e) else: # Buffer is full, waiting for main thread to consume items # TODO: Calculate sleep interval based on previous consumption speed time.sleep(PRODUCER_SLEEP_INTERVAL) prefetch_data.paused = True # Sleep longer when this prefetcher thread is paused time.sleep(PRODUCER_SLEEP_INTERVAL * 10) def __iter__(self): try: prefetch_data = _PrefetchData(self.source_datapipe, self.buffer_size) self.prefetch_data = prefetch_data thread = threading.Thread(target=PrefetcherIterDataPipe.thread_worker, args=(prefetch_data,), daemon=True) thread.start() self.thread = thread # Lazily import to prevent circular import from torchdata.dataloader2 import communication while not prefetch_data.stop_iteration or len(prefetch_data.prefetch_buffer) > 0: if len(prefetch_data.prefetch_buffer) > 0: data = prefetch_data.prefetch_buffer.popleft() if isinstance(data, Exception): if isinstance(data, (StopIteration, communication.iter.TerminateRequired)): break raise data yield data else: time.sleep(CONSUMER_SLEEP_INTERVAL) finally: if "prefetch_data" in locals(): prefetch_data.run_prefetcher = False prefetch_data.stop_iteration = True prefetch_data.paused = False if "thread" in locals(): thread.join() def __getstate__(self): """ Getting state in threading environment requires next operations: 1) Stopping of the producer thread. 2) Saving buffer. 3) Adding lazy restart of producer thread when __next__ is called again (this will guarantee that you only change state of the source_datapipe after entire state of the graph is saved). """ # TODO: Update __getstate__ and __setstate__ to support snapshotting and restoration return {"source_datapipe": self.source_datapipe, "buffer_size": self.buffer_size} def __setstate__(self, state): self.source_datapipe = state["source_datapipe"] self.buffer_size = state["buffer_size"] self.thread = None @final def reset(self): self.shutdown() def pause(self): if self.thread is not None: assert self.prefetch_data is not None self.prefetch_data.run_prefetcher = False if self.thread.is_alive(): # Blocking until the thread is paused while not self.prefetch_data.paused: time.sleep(PRODUCER_SLEEP_INTERVAL * 10) @final def resume(self): if ( self.thread is not None and self.prefetch_data is not None and (not self.prefetch_data.stop_iteration or len(self.prefetch_data.prefetch_buffer) > 0) ): self.prefetch_data.run_prefetcher = True self.prefetch_data.paused = False @final def shutdown(self): if hasattr(self, "prefetch_data") and self.prefetch_data is not None: self.prefetch_data.run_prefetcher = False self.prefetch_data.stop_iteration = True self.prefetch_data.paused = False self.prefetch_data = None if hasattr(self, "thread") and self.thread is not None: self.thread.join() self.thread = None def __del__(self): self.shutdown() def __len__(self) -> int: if isinstance(self.source_datapipe, Sized): return len(self.source_datapipe) raise TypeError(f"{type(self).__name__} instance doesn't have valid length") @functional_datapipe("pin_memory") class PinMemoryIterDataPipe(PrefetcherIterDataPipe): r""" Prefetches one element from the source DataPipe and moves it to pinned memory (functional name: ``pin_memory``). When used with ``MultiProcessingReadingService``, this DataPipe would be kept in the main process to prevent duplicated CUDA context creation. Args: source_datapipe: IterDataPipe from which samples are moved to pinned memory. device: The device to pin samples. pin_memory_fn: Optional callable function to move data to pinned memory. A ``pin_memory_fn`` to handle general objects is provided by default. Example: >>> from torchdata.datapipes.iter import IterableWrapper >>> dp = IterableWrapper(file_paths).open_files().readlines().map(tokenize_fn).pin_memory() """ def __init__(self, source_datapipe, device=None, pin_memory_fn=pin_memory_fn): if not torch.cuda.is_available(): raise RuntimeError("``pin_memory`` can only be used when CUDA is available.") # TODO: Add support for dynamic buffer based on the available size of pinned memory super().__init__(source_datapipe, buffer_size=2) if device is None: device = torch.cuda.current_device() self.device = device self.pin_memory_fn = pin_memory_fn def is_replicable(self) -> bool: return False @staticmethod def thread_worker(prefetch_data: _PrefetchData, pin_memory_fn, device): # type: ignore[override] itr = iter(prefetch_data.source_datapipe) while not prefetch_data.stop_iteration: # Run if not paused while prefetch_data.run_prefetcher: if len(prefetch_data.prefetch_buffer) < prefetch_data.buffer_size: try: item = pin_memory_fn(next(itr), device) prefetch_data.prefetch_buffer.append(item) except Exception as e: prefetch_data.run_prefetcher = False prefetch_data.stop_iteration = True prefetch_data.prefetch_buffer.append(e) else: # Buffer is full, waiting for main thread to consume items # TODO: Calculate sleep interval based on previous consumption speed time.sleep(PRODUCER_SLEEP_INTERVAL) # Sleep longer when this prefetcher thread is paused time.sleep(PRODUCER_SLEEP_INTERVAL * 10) def __iter__(self): try: prefetch_data = _PrefetchData(self.source_datapipe, self.buffer_size) self.prefetch_data = prefetch_data thread = threading.Thread( target=PinMemoryIterDataPipe.thread_worker, args=(prefetch_data, self.pin_memory_fn, self.device), daemon=True, ) thread.start() self.thread = thread # Lazily import to prevent circular import from torchdata.dataloader2 import communication while not prefetch_data.stop_iteration or len(prefetch_data.prefetch_buffer) > 0: if len(prefetch_data.prefetch_buffer) > 0: data = prefetch_data.prefetch_buffer.popleft() if isinstance(data, Exception): if isinstance(data, (StopIteration, communication.iter.TerminateRequired)): break raise data yield data else: time.sleep(CONSUMER_SLEEP_INTERVAL) finally: if "prefetch_data" in locals(): prefetch_data.run_prefetcher = False prefetch_data.stop_iteration = True prefetch_data.paused = False if "thread" in locals(): thread.join() def __getstate__(self): state = super().__getstate__() state["pin_memory_fn"] = self.pin_memory_fn state["device"] = self.device return state def __setstate__(self, state): super().__setstate__(state) self.pin_memory_fn = state["pin_memory_fn"] self.device = state["device"]
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from typing import Set, Sized from torch.utils.data.datapipes._decorator import functional_datapipe from torch.utils.data.datapipes.datapipe import IterDataPipe @functional_datapipe("mux_longest") class MultiplexerLongestIterDataPipe(IterDataPipe): r""" Yields one element at a time from each of the input Iterable DataPipes (functional name: ``mux_longest``). As in, one element from the 1st input DataPipe, then one element from the 2nd DataPipe in the next iteration, and so on. It skips over DataPipes that are exhausted, and ends when all input DataPipes are exhausted. Args: datapipes: Iterable DataPipes that will take turn to yield their elements, until they are all exhausted Example: >>> from torchdata.datapipes.iter import IterableWrapper >>> dp1, dp2, dp3 = IterableWrapper(range(5)), IterableWrapper(range(10, 15)), IterableWrapper(range(20, 25)) >>> list(dp1.mux_longest(dp2, dp3)) [0, 10, 20, 1, 11, 21, 2, 12, 22, 3, 13, 23, 4, 14, 24] """ def __init__(self, *datapipes): self.datapipes = datapipes def __iter__(self): iterators = [iter(x) for x in self.datapipes] finished: Set[int] = set() while len(finished) < len(iterators): for i in range(len(iterators)): if i not in finished: try: value = next(iterators[i]) yield value except StopIteration: finished.add(i) def __len__(self): if all(isinstance(dp, Sized) for dp in self.datapipes): return sum(len(dp) for dp in self.datapipes) else: raise TypeError(f"{type(self).__name__} instance doesn't have valid length")
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import bz2 import warnings from io import BufferedIOBase from typing import Iterable, Iterator, Tuple from torchdata.datapipes import functional_datapipe from torchdata.datapipes.iter import IterDataPipe from torchdata.datapipes.utils import StreamWrapper from torchdata.datapipes.utils.common import validate_pathname_binary_tuple @functional_datapipe("load_from_bz2") class Bz2FileLoaderIterDataPipe(IterDataPipe[Tuple[str, BufferedIOBase]]): r""" Decompresses bz2 binary streams from an Iterable DataPipe which contains tuples of path name and bz2 binary streams, and yields a tuple of path name and extracted binary stream (functional name: ``load_from_bz2``). Args: datapipe: Iterable DataPipe that provides tuples of path name and bz2 binary stream length: Nominal length of the DataPipe Note: The opened file handles will be closed automatically if the default ``DecoderDataPipe`` is attached. Otherwise, user should be responsible to close file handles explicitly or let Python's GC close them periodically. Example: >>> from torchdata.datapipes.iter import FileLister, FileOpener >>> datapipe1 = FileLister(".", "*.bz2") >>> datapipe2 = FileOpener(datapipe1, mode="b") >>> bz2_loader_dp = datapipe2.load_from_bz2() >>> for _, stream in bz2_loader_dp: >>> print(stream.read()) b'0123456789abcdef' """ def __init__(self, datapipe: Iterable[Tuple[str, BufferedIOBase]], length: int = -1) -> None: super().__init__() self.datapipe: Iterable[Tuple[str, BufferedIOBase]] = datapipe self.length: int = length def __iter__(self) -> Iterator[Tuple[str, BufferedIOBase]]: for data in self.datapipe: validate_pathname_binary_tuple(data) pathname, data_stream = data try: extracted_fobj = bz2.open(data_stream, mode="rb") # type: ignore[call-overload] new_pathname = pathname.rstrip(".bz2") yield new_pathname, StreamWrapper(extracted_fobj, data_stream, name=new_pathname) # type: ignore[misc] except Exception as e: warnings.warn(f"Unable to extract files from corrupted bzip2 stream {pathname} due to: {e}, abort!") raise e finally: if isinstance(data_stream, StreamWrapper): data_stream.autoclose() def __len__(self) -> int: if self.length == -1: raise TypeError(f"{type(self).__name__} instance doesn't have valid length") return self.length
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from typing import Callable, final, Iterator, List, Tuple, TypeVar from torch.utils.data.datapipes.utils.common import _check_unpickable_fn from torchdata.datapipes import functional_datapipe from torchdata.datapipes.iter import IterDataPipe T_co = TypeVar("T_co", covariant=True) def _default_line_join(lines: List[str]) -> str: return "\n".join(lines) @functional_datapipe("lines_to_paragraphs") class ParagraphAggregatorIterDataPipe(IterDataPipe[Tuple[str, str]]): r""" Aggregates lines of text from the same file into a single paragraph (functional name: ``lines_to_paragraphs``). Specifically, this accepts a DataPipe consisting of tuples of a file name and a line. For each tuple, it checks if the file name matches the file name from the previous tuple. If yes, it joins the current line with existing paragraph. If the file names do not match, the existing paragraph is yielded and a new paragraph starts. Args: source_datapipe: a DataPipe with tuples of a file name and a line joiner: a function that joins a list of lines together Example: >>> from torchdata.datapipes.iter import IterableWrapper >>> source_dp = IterableWrapper( >>> [("file1", "Line1"), ("file1", "Line2"), ("file2", "Line2,1"), ("file2", "Line2,2"), ("file2", "Line2,3")] >>> ) >>> para_agg_dp = source_dp.lines_to_paragraphs(joiner=lambda ls: " ".join(ls)) >>> list(para_agg_dp) [('file1', 'Line1 Line2'), ('file2', 'Line2,1 Line2,2 Line2,3')] """ def __init__(self, source_datapipe: IterDataPipe[Tuple[str, T_co]], joiner: Callable = _default_line_join) -> None: self.source_datapipe: IterDataPipe[Tuple[str, T_co]] = source_datapipe _check_unpickable_fn(joiner) self.joiner: Callable = joiner self.buffer: List = [] def __iter__(self) -> Iterator[Tuple[str, str]]: prev_filename = None for filename, line in self.source_datapipe: if prev_filename is None: prev_filename = filename if line and prev_filename == filename: self.buffer.append(line) else: if self.buffer: yield prev_filename, self.joiner(self.buffer) # type: ignore[misc] if line: self.buffer = [line] else: self.buffer = [] prev_filename = filename if self.buffer: yield prev_filename, self.joiner(self.buffer) # type: ignore[misc] @final def reset(self) -> None: self.buffer = [] def __getstate__(self): state = (self.source_datapipe, self.joiner) if IterDataPipe.getstate_hook is not None: return IterDataPipe.getstate_hook(state) return state def __setstate__(self, state): (self.source_datapipe, self.joiner) = state self.buffer = [] def __del__(self): self.buffer.clear()
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import threading import time from collections import deque from concurrent.futures import Future, ThreadPoolExecutor, TimeoutError from dataclasses import dataclass from functools import partial from typing import Callable, Deque, final, Iterator, Optional, TypeVar import torch import torch.distributed as dist from torchdata._constants import default_timeout_in_s from torchdata.datapipes import functional_datapipe from torchdata.datapipes.iter import IterDataPipe from torchdata.datapipes.iter.util.prefetcher import PRODUCER_SLEEP_INTERVAL T_co = TypeVar("T_co", covariant=True) __all__ = ["Expected", "FullSyncIterDataPipe", "PrefetchTimeoutError"] class PrefetchTimeoutError(RuntimeError): def __init__(self, timeout: int) -> None: super().__init__(f"Fail to fetch data within {timeout} seconds") self.timeout = timeout class _EndOfPrefetch: ... @dataclass class Expected: r""" Expected data provided to callback function in ``_PrefetchExecutor``. """ index: int error: Optional[BaseException] = None def has_error(self) -> bool: return self.error is not None class _PrefetchExecutor: # TODO: Improvement - merge with the `_PrefetchData` class of prefetcher.py # May not be possible right now due to circular import def __init__( self, datapipe_iterator: Iterator, prefetch_size: int = 1, callback_fn: Optional[Callable[[Expected], None]] = None, timeout: int = default_timeout_in_s, ) -> None: self.datapipe_iterator = datapipe_iterator self.prefetch_size = prefetch_size self.callback_fn = callback_fn self.timeout = timeout # Use max_workers as 1 to guarantee the order of data fetched from iterator self._executor = ThreadPoolExecutor(max_workers=1) self._futures: Deque[Future] = deque() self._lock = threading.RLock() # `_end_flag` indicates the end of epoch or an exception has been raised, # with the exception being handled by `callback_fn` self._end_flag: bool = False self._paused: bool = False self._is_shutdown: bool = False # indicates if `_executor` has been shutdown by `shutdown` method self._idx = 0 for _ in range(prefetch_size): with self._lock: if self._end_flag: break fetch_future: Future = self._executor.submit(self.fetch_next) fetch_future.add_done_callback(partial(self._done_callback_fn, self._idx)) self._futures.append(fetch_future) with self._lock: self._idx += 1 def fetch_next(self): while self._paused: time.sleep(PRODUCER_SLEEP_INTERVAL * 10) return next(self.datapipe_iterator) def _done_callback_fn(self, index: int, f: Future): if f.exception(): with self._lock: self._end_flag = True if self.callback_fn is not None: # Invoke `callback_fn` in order to set `FullSyncDP._done_callback` to `True` self.callback_fn(Expected(index, f.exception())) def return_next(self): if self._futures: fetch_future = self._futures.popleft() try: data = fetch_future.result(timeout=self.timeout) except TimeoutError: raise PrefetchTimeoutError(self.timeout) with self._lock: if not self._end_flag and not self._is_shutdown: next_future = self._executor.submit(self.fetch_next) next_future.add_done_callback(partial(self._done_callback_fn, self._idx)) self._futures.append(next_future) self._idx += 1 else: data = _EndOfPrefetch() return data def shutdown(self): self._paused = False self._is_shutdown = True while self._futures: self._futures.popleft().cancel() self._executor.shutdown(wait=True) def pause(self): self._paused = True def resume(self): self._paused = False @functional_datapipe("fullsync") class FullSyncIterDataPipe(IterDataPipe[T_co]): r""" Synchronizes data across distributed processes to prevent hanging during training, which is caused by uneven sharded data (functional name: ``fullsync``). It stops when the shortest distributed shard is exhausted. It would be appended at the end of the graph of ``DataPipe`` by ``DistributedReadingService`` automatically. Args: datapipe: IterDataPipe that needs to be synchronized timeout: Timeout for prefetching data in seconds. Default value equals to 30 minutes Example: >>> from torchdata.datapipes.iter import IterableWrapper >>> # Distributed training with world size 2 >>> world_size = 2 >>> dp = IterableWrapper(list(range(23))).sharding_filter() >>> torch.utils.data.graph_settings.apply_sharding(dp, world_size, rank) >>> # Rank 0 has 12 elements; Rank 1 has 11 elements >>> for d in dp: ... model(d) # Hanging at the end of epoch due to uneven sharding >>> dp = dp.fullsync() >>> # Both ranks have 11 elements >>> for d in dp: ... model(d) # Not hanging anymore """ def __init__(self, datapipe: IterDataPipe, timeout=default_timeout_in_s): if not dist.is_available(): raise RuntimeError("Torch Distributed is required to be available") self.datapipe = datapipe self.timeout: int = timeout self._process_group: Optional[dist.ProcessGroup] = None self._world_size: int = 1 self._lock = threading.RLock() self._cv = threading.Condition(lock=self._lock) self._executor: Optional[_PrefetchExecutor] = None # Use single values rather than deques for the following variables # because fullsync only prefetches 1 element self._error = None self._sync_counter = torch.tensor([0], dtype=torch.int32) self._done_callback = False def _callback_fn(self, exp: Expected) -> None: with self._cv: if exp.has_error(): if not isinstance(exp.error, StopIteration): self._error = exp.error # type: ignore[assignment] self._sync_counter = torch.tensor([0], dtype=torch.int32) else: self._sync_counter = torch.tensor([1], dtype=torch.int32) dist.all_reduce( tensor=self._sync_counter, op=dist.ReduceOp.SUM, group=self._process_group, ) self._done_callback = True self._cv.notify() def __iter__(self) -> Iterator[T_co]: assert self._executor is None if not (dist.is_available() and dist.is_initialized()): raise RuntimeError("Torch Distributed is required to be initialized to use `FullSync`.") if self._process_group is None: self._process_group = dist.new_group(backend="gloo") self._world_size = dist.get_world_size() if self._world_size == 1: # The below functionalities are not needed if `_world_size == 1` yield from self.datapipe return self._executor = _PrefetchExecutor(iter(self.datapipe), 1, self._callback_fn, self.timeout) while True: with self._cv: is_success = self._cv.wait_for( lambda: self._done_callback is True, self.timeout, ) if not is_success: raise PrefetchTimeoutError(self.timeout) if self._error is not None: raise self._error if bool(self._sync_counter < self._world_size): break self._done_callback = False data = self._executor.return_next() # type: ignore[attr-defined] if isinstance(data, _EndOfPrefetch): break yield data @final def reset(self): if self._executor is not None: self._executor.shutdown() self._executor = None self._world_size = 1 with self._cv: self._error = None self._sync_counter = torch.tensor([0], dtype=torch.int32) self._done_callback = False def is_replicable(self): return False def __getstate__(self): state = ( self.datapipe, self.timeout, ) if IterDataPipe.getstate_hook is not None: return IterDataPipe.getstate_hook(state) return state def __setstate__(self, state): self.datapipe, self.timeout = state self._process_group = None self._world_size = 1 self._lock = threading.RLock() self._cv = threading.Condition(lock=self._lock) self._executor = None self._error = None self._sync_counter = torch.tensor([0], dtype=torch.int32) self._done_callback = False @final def pause(self): if self._executor is not None: self._executor.pause() @final def resume(self): if self._executor is not None: self._executor.resume() @final def shutdown(self): if self._executor is not None: self._executor.shutdown() self._executor = None def __del__(self): self.shutdown()
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import os from typing import Any, Callable, Iterator, Optional, Tuple, Union from torchdata.datapipes import functional_datapipe from torchdata.datapipes.iter import IterDataPipe U = Union[bytes, bytearray, str] @functional_datapipe("save_to_disk") class SaverIterDataPipe(IterDataPipe[str]): r""" Takes in a DataPipe of tuples of metadata and data, saves the data to the target path generated by the ``filepath_fn`` and metadata, and yields file path on local file system (functional name: ``save_to_disk``). Args: source_datapipe: Iterable DataPipe with tuples of metadata and data mode: Node in which the file will be opened for write the data (``"w"`` by default) filepath_fn: Function that takes in metadata and returns the target path of the new file Example: >>> from torchdata.datapipes.iter import IterableWrapper >>> import os >>> def filepath_fn(name: str) -> str: >>> return os.path.join(".", os.path.basename(name)) >>> name_to_data = {"1.txt": b"DATA1", "2.txt": b"DATA2", "3.txt": b"DATA3"} >>> source_dp = IterableWrapper(sorted(name_to_data.items())) >>> saver_dp = source_dp.save_to_disk(filepath_fn=filepath_fn, mode="wb") >>> res_file_paths = list(saver_dp) >>> res_file_paths ['./1.txt', './2.txt', './3.txt'] """ def __init__( self, source_datapipe: IterDataPipe[Tuple[Any, U]], mode: str = "w", filepath_fn: Optional[Callable] = None, ): self.source_datapipe: IterDataPipe[Tuple[Any, U]] = source_datapipe self.mode: str = mode if "w" in mode else "w" + mode self.fn: Optional[Callable] = filepath_fn def __iter__(self) -> Iterator[str]: for filepath, data in self.source_datapipe: if self.fn is not None: filepath = self.fn(filepath) dirname = os.path.dirname(filepath) if not os.path.exists(dirname): os.makedirs(dirname) # with portalocker.Lock(filepath, self.mode, flags=portalocker.LockFlags.EXCLUSIVE) as f: # TODO(639): Enabling line above will require all read sites to be updated (Win). with open(filepath, self.mode) as f: f.write(data) yield filepath def __len__(self) -> int: return len(self.source_datapipe)
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import io import os.path from typing import Iterator, Tuple from unittest.mock import patch from torchdata.datapipes import functional_datapipe from torchdata.datapipes.iter import IterDataPipe from torchdata.datapipes.utils import StreamWrapper from torchdata.datapipes.utils.common import validate_pathname_binary_tuple class RarfilePatcher: def __init__(self): from rarfile import DirectReader unpatched_read = DirectReader._read def patched_read(self, cnt=-1): self._fd.seek(self._inf.header_offset, 0) self._cur = self._parser._parse_header(self._fd) self._cur_avail = self._cur.add_size return unpatched_read(self, cnt) self._patch = patch("rarfile.DirectReader._read", new=patched_read) def start(self): self._patch.start() def stop(self): self._patch.stop() _PATCHED = False @functional_datapipe("load_from_rar") class RarArchiveLoaderIterDataPipe(IterDataPipe[Tuple[str, io.BufferedIOBase]]): r""" Decompresses rar binary streams from input Iterable Datapipes which contains tuples of path name and rar binary stream, and yields a tuple of path name and extracted binary stream (functional name: ``load_from_rar``). Note: The nested RAR archive is not supported by this DataPipe due to the limitation of the archive type. Please extract outer RAR archive before reading the inner archive. Args: datapipe: Iterable DataPipe that provides tuples of path name and rar binary stream length: Nominal length of the DataPipe Example: >>> from torchdata.datapipes.iter import FileLister, FileOpener >>> datapipe1 = FileLister(".", "*.rar") >>> datapipe2 = FileOpener(datapipe1, mode="b") >>> rar_loader_dp = datapipe2.load_from_rar() >>> for _, stream in rar_loader_dp: >>> print(stream.read()) b'0123456789abcdef' """ def __init__(self, datapipe: IterDataPipe[Tuple[str, io.BufferedIOBase]], *, length: int = -1): try: import rarfile except ImportError as error: raise ModuleNotFoundError( "Package `rarfile` is required to be installed to use this datapipe. " "Please use `pip install rarfile` or `conda -c conda-forge install rarfile` to install it." ) from error # check if at least one system library for reading rar archives is available to be used by rarfile rarfile.tool_setup() self.datapipe = datapipe self.length = length def __iter__(self) -> Iterator[Tuple[str, io.BufferedIOBase]]: import rarfile global _PATCHED if not _PATCHED: patcher = RarfilePatcher() patcher.start() _PATCHED = True for data in self.datapipe: try: validate_pathname_binary_tuple(data) path, stream = data if isinstance(stream, rarfile.RarExtFile) or ( isinstance(stream, StreamWrapper) and isinstance(stream.file_obj, rarfile.RarExtFile) ): raise ValueError( f"Nested RAR archive is not supported by {type(self).__name__}. Please extract outer archive first." ) rar = rarfile.RarFile(stream) for info in rar.infolist(): if info.is_dir(): continue inner_path = os.path.join(path, info.filename) file_obj = rar.open(info) yield inner_path, StreamWrapper(file_obj, stream, name=path) # type: ignore[misc] finally: if isinstance(stream, StreamWrapper): stream.autoclose() def __len__(self) -> int: if self.length == -1: raise TypeError(f"{type(self).__name__} instance doesn't have valid length") return self.length
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from typing import Any, Iterator, List, Optional, Set, Sized, Tuple from torch.utils.data.datapipes._decorator import functional_datapipe from torch.utils.data.datapipes.datapipe import IterDataPipe @functional_datapipe("zip_longest") class ZipperLongestIterDataPipe(IterDataPipe): r""" Aggregates elements into a tuple from each of the input DataPipes (functional name: ``zip_longest``). The output is stopped until all input DataPipes are exhausted. If any input DataPipe is exhausted, missing values are filled-in with `fill_value` (default value is None). Args: *datapipes: Iterable DataPipes being aggregated *fill_value: Value that user input to fill in the missing values from DataPipe. Default value is None. Example: >>> from torchdata.datapipes.iter import IterableWrapper >>> dp1, dp2, dp3 = IterableWrapper(range(3)), IterableWrapper(range(10, 15)), IterableWrapper(range(20, 25)) >>> list(dp1.zip_longest(dp2, dp3)) [(0, 10, 20), (1, 11, 21), (2, 12, 22), (None, 13, 23), (None, 14, 24)] >>> list(dp1.zip_longest(dp2, dp3, -1)) [(0, 10, 20), (1, 11, 21), (2, 12, 22), (-1, 13, 23), (-1, 14, 24)] """ datapipes: Tuple[IterDataPipe] length: Optional[int] fill_value: Any def __init__( self, *datapipes: IterDataPipe, fill_value: Any = None, ): if not all(isinstance(dp, IterDataPipe) for dp in datapipes): raise TypeError("All inputs are required to be `IterDataPipe` " "for `ZipperLongestIterDataPipe`.") super().__init__() self.datapipes = datapipes # type: ignore[assignment] self.fill_value = fill_value def __iter__(self) -> Iterator[Tuple]: iterators = [iter(x) for x in self.datapipes] finished: Set[int] = set() while len(finished) < len(iterators): values: List[Any] = [] for i in range(len(iterators)): value = self.fill_value if i not in finished: try: value = next(iterators[i]) except StopIteration: finished.add(i) if len(finished) == len(iterators): return values.append(value) yield tuple(values) def __len__(self) -> int: if all(isinstance(dp, Sized) for dp in self.datapipes): return max(len(dp) for dp in self.datapipes) else: raise TypeError(f"{type(self).__name__} instance doesn't have valid length")
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import json from typing import Dict, IO, Iterator, Tuple from torchdata.datapipes import functional_datapipe from torchdata.datapipes.iter import IterDataPipe @functional_datapipe("parse_json_files") class JsonParserIterDataPipe(IterDataPipe[Tuple[str, Dict]]): r""" Reads from JSON data streams and yields a tuple of file name and JSON data (functional name: ``parse_json_files``). Args: source_datapipe: a DataPipe with tuples of file name and JSON data stream kwargs: keyword arguments that will be passed through to ``json.loads`` Example: >>> from torchdata.datapipes.iter import IterableWrapper, FileOpener >>> import os >>> def get_name(path_and_stream): >>> return os.path.basename(path_and_stream[0]), path_and_stream[1] >>> datapipe1 = IterableWrapper(["empty.json", "1.json", "2.json"]) >>> datapipe2 = FileOpener(datapipe1, mode="b") >>> datapipe3 = datapipe2.map(get_name) >>> json_dp = datapipe3.parse_json_files() >>> list(json_dp) [('1.json', ['foo', {'bar': ['baz', None, 1.0, 2]}]), ('2.json', {'__complex__': True, 'real': 1, 'imag': 2})] """ def __init__(self, source_datapipe: IterDataPipe[Tuple[str, IO]], **kwargs) -> None: self.source_datapipe: IterDataPipe[Tuple[str, IO]] = source_datapipe self.kwargs = kwargs def __iter__(self) -> Iterator[Tuple[str, Dict]]: for file_name, stream in self.source_datapipe: data = stream.read() stream.close() yield file_name, json.loads(data, **self.kwargs) def __len__(self) -> int: return len(self.source_datapipe)
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import hashlib import inspect import os.path import sys import time import uuid import warnings from collections import deque from functools import partial from typing import Any, Callable, Deque, Dict, Iterator, List, Optional, Tuple, TypeVar try: import portalocker except ImportError: portalocker = None from torch.utils.data.datapipes.utils.common import _check_unpickable_fn, DILL_AVAILABLE from torch.utils.data.graph import traverse_dps from torchdata.datapipes import functional_datapipe from torchdata.datapipes.iter import IterableWrapper, IterDataPipe if DILL_AVAILABLE: import dill dill.extend(use_dill=False) def _assert_portalocker() -> None: try: import portalocker # noqa: F401 except ImportError as e: if os.name == "nt" and str(e).startswith("DLL load failed while importing"): print( "Please take a look at FAQ in https://github.com/pytorch/data#frequently-asked-questions-faq" "for the solution of this Error." ) raise else: raise ModuleNotFoundError( "Package `portalocker` is required to be installed to use this datapipe." "Please use `pip install 'portalocker>=2.0.0'` or" "`conda install -c conda-forge 'portalocker>=2/0.0'`" "to install the package" ) T_co = TypeVar("T_co", covariant=True) PROMISE_FILE_DELETE_TIMEOUT = 30 PROMISE_FILE_DELETE_RETRY_INTERVAL = 0.005 from enum import IntEnum class CacheState(IntEnum): UNCACHED = 0 CACHED_SINGLE_ENTITY = 1 CACHED_MULTIPLE_ENTITIES = 2 @functional_datapipe("in_memory_cache") class InMemoryCacheHolderIterDataPipe(IterDataPipe[T_co]): r""" Stores elements from the source DataPipe in memory, up to a size limit if specified (functional name: ``in_memory_cache``). This cache is FIFO - once the cache is full, further elements will not be added to the cache until the previous ones are yielded and popped off from the cache. Args: source_dp: source DataPipe from which elements are read and stored in memory size: The maximum size (in megabytes) that this DataPipe can hold in memory. This defaults to unlimited. Example: >>> from torchdata.datapipes.iter import IterableWrapper >>> source_dp = IterableWrapper(range(10)) >>> cache_dp = source_dp.in_memory_cache(size=5) >>> list(cache_dp) [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] """ size: Optional[int] = None idx: int def __init__(self, source_dp: IterDataPipe[T_co], size: Optional[int] = None) -> None: self.source_dp: IterDataPipe[T_co] = source_dp # cache size in MB if size is not None: self.size = size * 1024 * 1024 self.cache: Optional[Deque] = None self.idx: int = 0 def __iter__(self) -> Iterator[T_co]: if self.cache: if self.idx > 0: for idx, data in enumerate(self.source_dp): if idx < self.idx: yield data else: break yield from self.cache else: # Local cache cache: Deque = deque() idx = 0 for data in self.source_dp: cache.append(data) # Cache reaches limit if self.size is not None and sys.getsizeof(cache) > self.size: cache.popleft() idx += 1 yield data self.cache = cache self.idx = idx def __len__(self) -> int: try: return len(self.source_dp) except TypeError: if self.cache: return self.idx + len(self.cache) else: raise TypeError(f"{type(self).__name__} instance doesn't have valid length until the cache is loaded.") def _generator_to_list(gen_fn): def list_fn(*args, **kwargs): gen = gen_fn(*args, **kwargs) return list(gen) return list_fn def _hash_check(filepath, hash_dict, hash_type): if filepath not in hash_dict: return False if hash_type == "sha256": hash_func = hashlib.sha256() else: hash_func = hashlib.md5() # with portalocker.Lock(filepath, "rb", flags=portalocker.LockFlags.SHARED) as f: # TODO(634): Line above will require all readers (Win) to obtain proper locks, # I'm putting it on hold as we need to modify PyTorch core codebase heavily. with open(filepath, "rb") as f: chunk = f.read(1024 ** 2) while chunk: hash_func.update(chunk) chunk = f.read(1024 ** 2) return hash_func.hexdigest() == hash_dict[filepath] def _promise_filename(filename, cache_uuid): return filename + ".promise." + str(cache_uuid) @functional_datapipe("on_disk_cache") class OnDiskCacheHolderIterDataPipe(IterDataPipe): """ Caches the outputs of multiple DataPipe operations to local files, which are typically performance bottleneck such download, decompress, and etc (functional name: ``on_disk_cache``). Must use ``.end_caching()`` to stop tracing the sequence of DataPipe operations and save the results to local files. Args: source_datapipe: IterDataPipe filepath_fn: Given data from ``source_datapipe``, returns file path(s) on local file system. Single file path is only allowed as output of the function. If resulted file name is different from the filename generated by the filename function of the end_cache original file name used to store list of yield files (and as cached items availability check) hash_dict: A Dictionary mapping file names to their corresponding hashes. If ``hash_dict`` is specified, the extra hash check will be attached before saving data to local file system. If the data doesn't meet the hash, the pipeline will raise an Error. hash_type: The type of hash function to apply extra_check_fn: Optional function to carry out extra validation on the given file path from ``filepath_fn``. Example: >>> from torchdata.datapipes.iter import IterableWrapper, HttpReader >>> url = IterableWrapper(["https://path/to/filename", ]) >>> def _filepath_fn(url): >>> temp_dir = tempfile.gettempdir() >>> return os.path.join(temp_dir, os.path.basename(url)) >>> hash_dict = {"expected_filepath": expected_MD5_hash} >>> cache_dp = url.on_disk_cache(filepath_fn=_filepath_fn, hash_dict=_hash_dict, hash_type="md5") >>> # You must call ``.end_caching`` at a later point to stop tracing and save the results to local files. >>> cache_dp = HttpReader(cache_dp).end_caching(mode="wb", filepath_fn=_filepath_fn) """ _temp_dict: Dict = {} def __init__( self, source_datapipe: IterDataPipe, filepath_fn: Optional[Callable] = None, hash_dict: Dict[str, str] = None, hash_type: str = "sha256", extra_check_fn: Optional[Callable[[str], bool]] = None, ): _assert_portalocker() self.source_datapipe = source_datapipe if filepath_fn is not None: _check_unpickable_fn(filepath_fn) assert not inspect.isgeneratorfunction(filepath_fn) # BC breaking, now only str is accepted as return if hash_dict is not None and hash_type not in ("sha256", "md5"): raise ValueError("Invalid hash_type requested, should be one of {}".format(("sha256", "md5"))) # TODO(VitalyFedyunin): We need some way to generate pipe uuids which will have similar result for # same graph but different nodes of distributed system self._uuid = uuid.uuid4() OnDiskCacheHolderIterDataPipe._temp_dict[self] = (filepath_fn, hash_dict, hash_type, extra_check_fn, self._uuid) self._end_caching_flag: bool = False self._download_everything = False # This is internal field used for load testing only def __iter__(self): if self._end_caching_flag: yield from self.source_datapipe else: # In case of BC breaking, use RuntimeError for now. Warning is another option raise RuntimeError("Please call `end_caching()` before iteration.") def __add__(self, other_datapipe): raise RuntimeError("`OnDiskCacheHolder` doesn't support add operation") # Since Demux is using this function, we should not attach it to OnDiskCacheHolder instance. # Otherwise, it would cause infinite recursion in graph traversal @staticmethod def _cache_check_fn(data, filepath_fn, hash_dict, hash_type, extra_check_fn, cache_uuid): filepath = data if filepath_fn is None else filepath_fn(data) assert not isinstance(filepath, (list, tuple)) # BC breaking, now only str is accepted as return result = CacheState.CACHED_SINGLE_ENTITY cached_file_exists = True if os.path.exists(_get_list_filename(filepath)): return int(CacheState.CACHED_MULTIPLE_ENTITIES) if not os.path.exists(filepath): cached_file_exists = False elif hash_dict is not None and not _hash_check(filepath, hash_dict, hash_type): # TODO: It is safer to assume that entire cache is compromised and require user to wipe it cached_file_exists = False elif extra_check_fn is not None and not extra_check_fn(filepath): # TODO: It is safer to assume that entire cache is compromised and require user to wipe it cached_file_exists = False if not cached_file_exists: promise_filepath = _promise_filename(filepath, cache_uuid) dirname = os.path.dirname(promise_filepath) if not os.path.exists(dirname): os.makedirs(dirname) with portalocker.Lock(promise_filepath, "a+", flags=portalocker.LockFlags.EXCLUSIVE) as promise_fh: promise_fh.seek(0) data = promise_fh.read() # TODO(VitalyFedyunin): Potentially there is old .promise file from previous failed run, we # need to somehow propagate uniq session id for dataloader, save and compare it here, # raising error file_exists = len(data) > 0 if not file_exists: result = CacheState.UNCACHED promise_fh.seek(0) data = promise_fh.read() # TODO(635): Potentially there is old .promise file from previous failed run, we # need to somehow propagate uniq session id for dataloader, save and compare it here, # raising error file_exists = len(data) > 0 if not file_exists: promise_fh.seek(0) promise_fh.write("[dataloader session uid]") promise_fh.truncate() promise_fh.flush() return int(result) def _end_caching(self): filepath_fn, hash_dict, hash_type, extra_check_fn, cache_uuid = OnDiskCacheHolderIterDataPipe._temp_dict.pop( self ) todo_dp: Any cached_dp: Any one_many_cached_dp: Any if self._download_everything: todo_dp = self.source_datapipe cached_dp = IterableWrapper([]) one_many_cached_dp = IterableWrapper([]) else: todo_dp, cached_dp, one_many_cached_dp = self.source_datapipe.demux( 3, partial( OnDiskCacheHolderIterDataPipe._cache_check_fn, filepath_fn=filepath_fn, hash_dict=hash_dict, hash_type=hash_type, extra_check_fn=extra_check_fn, cache_uuid=cache_uuid, ), ) # Cached: keep filepath(s) cached_dp = cached_dp.map(fn=filepath_fn) one_many_cached_dp = one_many_cached_dp.map(fn=filepath_fn) one_many_cached_dp = _ExtractFilesFromList(one_many_cached_dp) self.source_datapipe = todo_dp.memory_cell() self._end_caching_flag = True return cached_dp, one_many_cached_dp def _read_bytes(fd): return b"".join(fd) def _read_str(fd): return "".join(fd) def _is_promise_pending(promise_filename): return os.path.exists(promise_filename) class _WaitPendingCacheItemIterDataPipe(IterDataPipe): def __init__(self, source_datapipe, timeout=300, input_col=None, cache_uuid=None): self.source_datapipe = source_datapipe self.timeout = timeout self.input_col = input_col self._cache_uuid = cache_uuid def set_timeout(self, timeout): self.timeout = timeout def __iter__(self): for data in self.source_datapipe: if self.input_col is not None: filename = data[self.input_col] else: filename = data promise_filename = _promise_filename(filename, self._cache_uuid) start = time.time() while _is_promise_pending(promise_filename): time.sleep(0.01) if time.time() - start > self.timeout: raise Exception( f"OnDiskCache Exception: {filename} expected to be written by different process, " + f"but file is not ready in {self.timeout} seconds." ) yield data @functional_datapipe("memory_cell") class _MemoryCellIterDataPipe(IterDataPipe): def __init__(self, source_datapipe, remember_elements=1000): self.source_datapipe = source_datapipe self.buffer: List[Optional[Tuple[Any, Any]]] = [None for i in range(remember_elements)] self.remember_elements = remember_elements self.buffer_pos = -1 # TODO(VitalyFedyunin): Make it friendly to save/restore state def __iter__(self): for item in self.source_datapipe: item_id = uuid.uuid4() self.buffer_pos = (self.buffer_pos + 1) % self.remember_elements self.buffer[self.buffer_pos] = (item_id, item) yield item def get_last(self): # Returns tuple of elements, autogenerated id of the last returned row and its value return self.buffer[self.buffer_pos] def get_buffer(self): # Returns last returned id+element and others in the order from latest to oldest. result = [] for i in range(self.remember_elements): idx = (self.buffer_pos - i) % self.remember_elements if self.buffer[idx] is not None: result.append(self.buffer[idx]) return result def _get_list_filename(file_name): return file_name + ".torchdata_list" class _ExtractFilesFromList(IterDataPipe): def __init__(self, source_datapipe): self.source_datapipe = source_datapipe def __iter__(self): for filename in self.source_datapipe: with open(_get_list_filename(filename)) as fh: for line in fh: inner_file_name = line.rstrip() yield filename, inner_file_name class _FulfilledPromisesIterDataPipe(IterDataPipe): def __init__(self, source_datapipe, memory_cell_dp, first_filepath_fn, cache_uuid): self.source_datapipe = source_datapipe self.memory_cell_dp = memory_cell_dp self.first_filepath_fn = first_filepath_fn self._cache_uuid = cache_uuid @staticmethod def _del_promise_file(promise_filename, filename): if os.path.exists(promise_filename): retry = True start = time.time() while retry: retry = False try: os.unlink(promise_filename) except Exception as e: # Workaround about Windows not letting to delete file, while it is open by another process retry = True if time.time() - start > PROMISE_FILE_DELETE_TIMEOUT: raise Exception("Timeout while trying to recover from the ", type(e), e) time.sleep(PROMISE_FILE_DELETE_RETRY_INTERVAL) else: warnings.warn( f"Attempt to mark {promise_filename} promise (base of file {filename}) as fulfilled failed. Potentially missmatching filename functions of on_disk_cache and end_cache." ) def __iter__(self): last_record_uuid = None one_to_many_detected = False one_to_one_detected = False def fulfill_old_promises(buffer, last_record_uuid, first_filepath_fn, cache_uuid): for old_rec_uuid, old_rec in buffer: original_file_name = first_filepath_fn(old_rec) old_promise_filename = _promise_filename(original_file_name, cache_uuid) self._del_promise_file(old_promise_filename, original_file_name) if old_rec_uuid == last_record_uuid: break # TODO(VitalyFedyunin): If no match found, that means we exceeded length of memory_cell # and there is aggressive amount 1-to-zero cases, raise error and explain how to fix try: for filename in self.source_datapipe: rec_uuid, record = self.memory_cell_dp.get_last() original_file_name = self.first_filepath_fn(record) # TODO(VitalyFedyunin): For debug mode we can detect duplicate keys situations here and warn user if original_file_name != filename: # Situations when every archive unpacks to single file only are also considered as 1-M one_to_many_detected = True if one_to_one_detected: raise Exception("Disovered different keys when one-to-one mode previously assumed") # We are dealing with one-to-many situation now with open(_get_list_filename(original_file_name), "a") as fh: fh.write(f"{filename}\n") else: one_to_one_detected = True if one_to_many_detected: # Keys should be always the same (1-1 situation) or always different (1-many) sutuation raise Exception("first key somehow equal to secondary key") if rec_uuid != last_record_uuid: fulfill_old_promises( self.memory_cell_dp.get_buffer()[1:], last_record_uuid, self.first_filepath_fn, self._cache_uuid ) last_record_uuid = rec_uuid yield filename finally: if last_record_uuid is not None: fulfill_old_promises( self.memory_cell_dp.get_buffer(), last_record_uuid, self.first_filepath_fn, self._cache_uuid ) def _leave_second(x): return x[1] @functional_datapipe("end_caching") class EndOnDiskCacheHolderIterDataPipe(IterDataPipe): """ Indicates when the result of prior DataPipe will be saved local files specified by ``filepath_fn`` (functional name: ``end_caching``). Moreover, the result of source DataPipe is required to be a tuple of metadata and data, or a tuple of metadata and file handle. Args: datapipe: IterDataPipe with at least one ``OnDiskCacheHolder`` in the graph. mode: Mode in which the cached files are opened to write the data on disk. This is needed to be aligned with the type of data or file handle from ``datapipe``. ``"wb"`` is used by default. filepath_fn: Optional function to extract filepath from the metadata from ``datapipe``. By default, it would directly use the ?metadata? as file path. same_filepath_fn: Set to ``True`` to use same ``filepath_fn`` from the ``OnDiskCacheHolder``. skip_read: Boolean value to skip reading the file handle from ``datapipe``. By default, reading is enabled and reading function is created based on the ``mode``. timeout: Integer value of seconds to wait for uncached item to be written to disk Example: >>> from torchdata.datapipes.iter import IterableWrapper, HttpReader >>> url = IterableWrapper(["https://path/to/filename", ]) >>> def _filepath_fn(url): >>> temp_dir = tempfile.gettempdir() >>> return os.path.join(temp_dir, os.path.basename(url)) >>> hash_dict = {"expected_filepath": expected_MD5_hash} >>> # You must call ``.on_disk_cache`` at some point before ``.end_caching`` >>> cache_dp = url.on_disk_cache(filepath_fn=_filepath_fn, hash_dict=_hash_dict, hash_type="md5") >>> # You must call ``.end_caching`` at a later point to stop tracing and save the results to local files. >>> cache_dp = HttpReader(cache_dp).end_caching(mode="wb", filepath_fn=_filepath_fn) """ def __new__(cls, datapipe, mode="wb", filepath_fn=None, *, same_filepath_fn=False, skip_read=False, timeout=300): if filepath_fn is not None and same_filepath_fn: raise ValueError("`filepath_fn` is mutually exclusive with `same_filepath_fn`") graph = traverse_dps(datapipe) # Get the last CacheHolder cache_holder = EndOnDiskCacheHolderIterDataPipe._recursive_search(graph) if cache_holder is None: raise RuntimeError("Expected `OnDiskCacheHolder` existing in pipeline when `end_caching` is invoked") if cache_holder._end_caching_flag: raise RuntimeError("`end_caching` can only be invoked once per `OnDiskCacheHolder`") first_filepath_fn, _hash_dict, _hash_type, _, cache_uuid = OnDiskCacheHolderIterDataPipe._temp_dict[ cache_holder ] cached_dp, one_many_cached_dp = cache_holder._end_caching() cached_dp = _WaitPendingCacheItemIterDataPipe(cached_dp, timeout=timeout, cache_uuid=cache_uuid) one_many_cached_dp = _WaitPendingCacheItemIterDataPipe( one_many_cached_dp, timeout=timeout, cache_uuid=cache_uuid, input_col=0 ) one_many_cached_dp = one_many_cached_dp.map(_leave_second) memory_cell_dp = cache_holder.source_datapipe if same_filepath_fn: filepath_fn = first_filepath_fn todo_dp = datapipe if not skip_read: if "t" in mode: todo_dp = todo_dp.map(fn=_read_str, input_col=1) else: todo_dp = todo_dp.map(fn=_read_bytes, input_col=1) if filepath_fn is not None: todo_dp = todo_dp.map(fn=filepath_fn, input_col=0) # Extra hash check here when hash is provided. # And, raise Error if data returned from prior operations doesn't meet hash if _hash_dict is not None: todo_dp = todo_dp.check_hash(_hash_dict, _hash_type) todo_dp = todo_dp.save_to_disk(mode=mode) todo_dp = _FulfilledPromisesIterDataPipe(todo_dp, memory_cell_dp, first_filepath_fn, cache_uuid=cache_uuid) # TODO(VitalyFedyunin): This impacts determinism for partial cache situations return todo_dp.concat(cached_dp).concat(one_many_cached_dp) @staticmethod def _recursive_search(graph): for dp, _ in graph.values(): # Find the closest CacheHolder if isinstance(dp, OnDiskCacheHolderIterDataPipe): return dp for _, sub_graph in graph.values(): res = EndOnDiskCacheHolderIterDataPipe._recursive_search(sub_graph) if res is not None: return res return None
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from typing import Iterator, Optional, TypeVar from torchdata.datapipes import functional_datapipe from torchdata.datapipes.iter import IterDataPipe T_co = TypeVar("T_co", covariant=True) @functional_datapipe("cycle") class CyclerIterDataPipe(IterDataPipe[T_co]): """ Cycles the specified input in perpetuity by default, or for the specified number of times (functional name: ``cycle``). If the ordering does not matter (e.g. because you plan to ``shuffle`` later) or if you would like to repeat an element multiple times before moving onto the next element, use :class:`.Repeater`. Args: source_datapipe: source DataPipe that will be cycled through count: the number of times to read through ``source_datapipe` (if ``None``, it will cycle in perpetuity) Example: >>> from torchdata.datapipes.iter import IterableWrapper >>> dp = IterableWrapper(range(3)) >>> dp = dp.cycle(2) >>> list(dp) [0, 1, 2, 0, 1, 2] """ def __init__(self, source_datapipe: IterDataPipe[T_co], count: Optional[int] = None) -> None: self.source_datapipe: IterDataPipe[T_co] = source_datapipe self.count: Optional[int] = count if count is not None and count < 0: raise ValueError(f"Expected non-negative count, got {count}") def __iter__(self) -> Iterator[T_co]: i = 0 while self.count is None or i < self.count: yield from self.source_datapipe i += 1 def __len__(self) -> int: if self.count is None: raise TypeError( f"This {type(self).__name__} instance cycles forever, and therefore doesn't have valid length" ) else: return self.count * len(self.source_datapipe) @functional_datapipe("repeat") class RepeaterIterDataPipe(IterDataPipe[T_co]): """ Repeatedly yield each element of source DataPipe for the specified number of times before moving onto the next element (functional name: ``repeat``). Note that no copy is made in this DataPipe, the same element is yielded repeatedly. If you would like to yield the whole DataPipe in order multiple times, use :class:`.Cycler`. Args: source_datapipe: source DataPipe that will be iterated through times: the number of times an element of ``source_datapipe`` will be yielded before moving onto the next element Example: >>> from torchdata.datapipes.iter import IterableWrapper >>> dp = IterableWrapper(range(3)) >>> dp = dp.repeat(2) >>> list(dp) [0, 0, 1, 1, 2, 2] """ def __init__(self, source_datapipe: IterDataPipe[T_co], times: int) -> None: self.source_datapipe: IterDataPipe[T_co] = source_datapipe self.times: int = times if times <= 1: raise ValueError(f"The number of repetition must be > 1, got {times}") def __iter__(self) -> Iterator[T_co]: for element in self.source_datapipe: for _ in range(self.times): yield element def __len__(self) -> int: return self.times * len(self.source_datapipe)
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from functools import partial from typing import List, Optional, TypeVar from torch.utils.data.datapipes.utils.common import DILL_AVAILABLE from torchdata.datapipes import functional_datapipe from torchdata.datapipes.iter import IterDataPipe try: # TODO(637): Create dependency on TorchArrow? import pyarrow.parquet as parquet import torcharrow except ImportError: torcharrow = None parquet = None if DILL_AVAILABLE: import dill dill.extend(use_dill=False) T_co = TypeVar("T_co") def _construct_dataframe(data, dtype=None, dtype_generator=None, columns=None, device=None): if dtype is None: dtype = dtype_generator() return torcharrow.dataframe(data, dtype=dtype, columns=columns, device=device) @functional_datapipe("dataframe") class DataFrameMakerIterDataPipe(IterDataPipe): # IterDataPipe[torcharrow.IDataFrame[T_co]] r""" Takes rows of data, batches a number of them together and creates `TorchArrow` DataFrames (functional name: ``dataframe``). Note: There is a trade-off between having a large number of rows within a DataFrame and usage of memory. Please choose a value carefully. Args: source_dp: IterDataPipe containing rows of data dataframe_size: number of rows of data within each DataFrame, page size can be option dtype: specify the `TorchArrow` dtype for the DataFrame, use ``torcharrow.dtypes.DType`` dtype_generator: function with no input argument that generates a torcharrow.dtypes.DType, which overrides dtype if both are given. This is useful for when the desired dtype is not serializable. columns: List of str that specifies the column names of the DataFrame device: specify the device on which the DataFrame will be stored Example: >>> from torchdata.datapipes.iter import IterableWrapper >>> import torcharrow.dtypes as dt >>> source_data = [(i,) for i in range(3)] >>> source_dp = IterableWrapper(source_data) >>> DTYPE = dt.Struct([dt.Field("Values", dt.int32)]) >>> df_dp = source_dp.dataframe(dtype=DTYPE) >>> list(df_dp)[0] index Values ------- -------- 0 0 1 1 2 2 dtype: Struct([Field('Values', int32)]), count: 3, null_count: 0 """ def __new__( cls, source_dp: IterDataPipe[T_co], dataframe_size: int = 1000, dtype=None, dtype_generator=None, columns: Optional[List[str]] = None, device: str = "", ): if torcharrow is None: raise ImportError( "The library 'torcharrow' is necessary for this DataPipe but it is not available." "Please visit https://github.com/facebookresearch/torcharrow/ to install it." ) # In this version, DF tracing is not available, which would allow DataPipe to run DataFrame operations batch_dp = source_dp.batch(dataframe_size) df_dp = batch_dp.map( partial(_construct_dataframe, dtype=dtype, dtype_generator=dtype_generator, columns=columns, device=device) ) return df_dp @functional_datapipe("load_parquet_as_df") class ParquetDFLoaderIterDataPipe(IterDataPipe): # IterDataPipe[torcharrow.IDataFrame[T_co]] r""" Takes in paths to Parquet files and return a `TorchArrow` DataFrame for each row group within a Parquet file (functional name: ``load_parquet_as_df``). Args: source_dp: source DataPipe containing paths to the Parquet files columns: List of `str` that specifies the column names of the DataFrame use_threads: if ``True``, Parquet reader will perform multi-threaded column reads dtype: specify the `TorchArrow` dtype for the DataFrame, use ``torcharrow.dtypes.DType`` device: specify the device on which the DataFrame will be stored Example: >>> from torchdata.datapipes.iter import FileLister >>> import torcharrow.dtypes as dt >>> DTYPE = dt.Struct([dt.Field("Values", dt.int32)]) >>> source_dp = FileLister(".", masks="df*.parquet") >>> parquet_df_dp = source_dp.load_parquet_as_df(dtype=DTYPE) >>> list(parquet_df_dp)[0] index Values ------- -------- 0 0 1 1 2 2 dtype: Struct([Field('Values', int32)]), count: 3, null_count: 0 """ def __init__( self, source_dp: IterDataPipe[str], dtype=None, columns: Optional[List[str]] = None, device: str = "", use_threads: bool = False, ): if torcharrow is None: raise ImportError( "The library 'torcharrow' is necessary for this DataPipe but it is not available." "Please visit https://github.com/facebookresearch/torcharrow/ to install it." ) if parquet is None: raise ImportError("The library 'parquet' is necessary for this DataPipe but it is not available.") self.source_dp = source_dp self.columns = columns self.use_threads = use_threads self.dtype = dtype self.device = device def __iter__(self): for path in self.source_dp: parquet_file = parquet.ParquetFile(path) num_row_groups = parquet_file.num_row_groups for i in range(num_row_groups): # TODO(638): More fine-grain control over the number of rows or row group per DataFrame row_group = parquet_file.read_row_group(i, columns=self.columns, use_threads=self.use_threads) yield torcharrow.from_arrow(row_group, dtype=self.dtype) def __getstate__(self): if DILL_AVAILABLE: dill_dtype = dill.dumps(self.dtype) else: dill_dtype = self.dtype state = (self.source_dp, dill_dtype, self.columns, self.device, self.use_threads) if IterDataPipe.getstate_hook is not None: return IterDataPipe.getstate_hook(state) return state def __setstate__(self, state): (self.source_dp, dill_dtype, self.columns, self.device, self.use_threads) = state if DILL_AVAILABLE: self.dtype = dill.loads(dill_dtype) # type: ignore[assignment] else: self.dtype = dill_dtype # type: ignore[assignment]
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import struct import warnings from functools import partial from io import BufferedIOBase from typing import Any, cast, Dict, Iterable, Iterator, List, NamedTuple, Optional, Tuple, Union import torch from torchdata.datapipes import functional_datapipe from torchdata.datapipes.iter import IterDataPipe from torchdata.datapipes.utils.common import validate_pathname_binary_tuple try: from math import prod # type: ignore except ImportError: # Implementation for older Python # NOTE: this is not supported by mypy yet # https://github.com/python/mypy/issues/1393 import operator from functools import reduce def prod(xs): # type: ignore[no-redef] return reduce(operator.mul, xs, 1) try: import google.protobuf as _protobuf del _protobuf HAS_PROTOBUF = True except ImportError: HAS_PROTOBUF = False U = Union[bytes, bytearray, str] TFRecordFeatureSpec = Tuple[Tuple[int, ...], torch.dtype] TFRecordExampleSpec = Dict[str, TFRecordFeatureSpec] # Note, reccursive types not supported by mypy at the moment # TODO(640): uncomment as soon as it becomes supported # https://github.com/python/mypy/issues/731 # BinaryData = Union[str, List['BinaryData']] TFRecordBinaryData = Union[str, List[str], List[List[str]], List[List[List[Any]]]] TFRecordExampleFeature = Union[torch.Tensor, List[torch.Tensor], TFRecordBinaryData] TFRecordExample = Dict[str, TFRecordExampleFeature] class SequenceExampleSpec(NamedTuple): context: TFRecordExampleSpec feature_lists: TFRecordExampleSpec def _assert_protobuf() -> None: if not HAS_PROTOBUF: raise ModuleNotFoundError( "Package `protobuf` is required to be installed to use this datapipe." "Please use `pip install protobuf` or `conda install -c conda-forge protobuf`" "to install the package" ) def iterate_tfrecord_file(data: BufferedIOBase) -> Iterator[memoryview]: length_bytes = bytearray(8) crc_bytes = bytearray(4) data_bytes = bytearray(1024) while True: bytes_read = data.readinto(length_bytes) if bytes_read == 0: break elif bytes_read != 8: raise RuntimeError("Invalid tfrecord file: failed to read the record size.") if data.readinto(crc_bytes) != 4: raise RuntimeError("Invalid tfrecord file: failed to read the start token.") (length,) = struct.unpack("<Q", length_bytes) if length > len(data_bytes): data_bytes = data_bytes.zfill(int(length * 1.5)) data_bytes_view = memoryview(data_bytes)[:length] if data.readinto(data_bytes_view) != length: raise RuntimeError("Invalid tfrecord file: failed to read the record.") if data.readinto(crc_bytes) != 4: raise RuntimeError("Invalid tfrecord file: failed to read the end token.") # TODO(641): check CRC yield data_bytes_view def process_feature(feature) -> torch.Tensor: # NOTE: We assume that each key in the example has only one field # (either "bytes_list", "float_list", or "int64_list")! field = feature.ListFields()[0] inferred_typename, value = field[0].name, field[1].value if inferred_typename == "bytes_list": pass elif inferred_typename == "float_list": value = torch.tensor(value, dtype=torch.float32) elif inferred_typename == "int64_list": value = torch.tensor(value, dtype=torch.int64) return value def _reshape_list(value, shape): # Flatten list flat_list = [] def flatten(value): if isinstance(value, (str, bytes)): flat_list.append(value) else: for x in value: flatten(x) flatten(value) # Compute correct shape common_divisor = prod(x for x in shape if x != -1) if sum(1 for x in shape if x == -1) > 1: raise RuntimeError("Shape can contain at most one dynamic dimension (-1).") if len(flat_list) % max(common_divisor, 1) != 0: raise RuntimeError(f"Cannot reshape {len(flat_list)} values into shape {shape}") shape = [x if x != -1 else (len(flat_list) // common_divisor) for x in shape] # Reshape list into the correct shape def _reshape(value, shape): if len(shape) == 0: assert len(value) == 1 return value[0] elif len(shape) == 1: # To make the reccursion faster assert len(value) == shape[0] return value dim_size = len(value) // shape[0] return [_reshape(value[i * dim_size : (i + 1) * dim_size], shape[1:]) for i in range(dim_size)] return _reshape(flat_list, shape) def _apply_feature_spec(value, feature_spec): if feature_spec is not None: shape, dtype = feature_spec if isinstance(dtype, torch.dtype): if shape is not None: value = value.reshape(shape) value = value.to(dtype) elif shape is not None: # Manual list reshape value = _reshape_list(value, shape) return value def _parse_tfrecord_features(features, spec: Optional[TFRecordExampleSpec]) -> Dict[str, torch.Tensor]: result = dict() features = features.feature for key in features.keys(): if spec is not None and key not in spec: continue feature_spec = None if spec is None else spec[key] feature = features[key] result[key] = _apply_feature_spec(process_feature(feature), feature_spec) return result def parse_tfrecord_sequence_example(example, spec: Optional[TFRecordExampleSpec]) -> TFRecordExample: # Parse context features result = cast(TFRecordExample, _parse_tfrecord_features(example.context, spec)) # Parse feature lists feature_lists_keys = None if spec is None else set(spec.keys()) - set(result.keys()) features = example.feature_lists.feature_list for key in features.keys(): if feature_lists_keys is not None and key not in feature_lists_keys: continue feature_spec = None if spec is None else spec[key] feature = features[key].feature if key in result: raise RuntimeError( "TFRecord example's key {key} is contained in both the context and feature lists. This is not supported." ) value: Union[torch.Tensor, List[Any]] = list(map(partial(process_feature), feature)) # For known torch dtypes, we stack the list features if feature_spec is not None and isinstance(feature_spec[1], torch.dtype): value = torch.stack(cast(List[torch.Tensor], value), 0) value = _apply_feature_spec(value, feature_spec) result[key] = value if spec is not None and len(result.keys()) != len(spec.keys()): raise RuntimeError(f"Example is missing some required keys: {sorted(result.keys())} != {sorted(spec.keys())}") return result @functional_datapipe("load_from_tfrecord") class TFRecordLoaderIterDataPipe(IterDataPipe[TFRecordExample]): r""" Opens/decompresses tfrecord binary streams from an Iterable DataPipe which contains tuples of path name and tfrecord binary stream, and yields the stored records (functional name: ``load_from_tfrecord``). Args: datapipe: Iterable DataPipe that provides tuples of path name and tfrecord binary stream length: a nominal length of the DataPipe Note: The opened file handles will be closed automatically if the default ``DecoderDataPipe`` is attached. Otherwise, user should be responsible to close file handles explicitly or let Python's GC close them periodically. Example: >>> from torchdata.datapipes.iter import FileLister, FileOpener >>> datapipe1 = FileLister(".", "*.tfrecord") >>> datapipe2 = FileOpener(datapipe1, mode="b") >>> tfrecord_loader_dp = datapipe2.load_from_tfrecord() >>> for example in tfrecord_loader_dp: >>> print(example) """ def __init__( self, datapipe: Iterable[Tuple[str, BufferedIOBase]], spec: Optional[TFRecordExampleSpec] = None, length: int = -1, ) -> None: super().__init__() _assert_protobuf() self.datapipe: Iterable[Tuple[str, BufferedIOBase]] = datapipe self.length: int = length self.spec = spec def __iter__(self) -> Iterator[TFRecordExample]: # We assume that the "example.proto" and "feature.proto" # stays the same for future TensorFlow versions. # If it changed, newer TensorFlow versions would # not be able to load older tfrecord datasets. from .protobuf_template import _tfrecord_example_pb2 as example_pb2 for data in self.datapipe: validate_pathname_binary_tuple(data) pathname, data_stream = data try: for example_bytes in iterate_tfrecord_file(data_stream): example = example_pb2.SequenceExample() # type: ignore example.ParseFromString(example_bytes) # type: ignore yield parse_tfrecord_sequence_example(example, self.spec) except RuntimeError as e: warnings.warn(f"Unable to read from corrupted tfrecord stream {pathname} due to: {e}, abort!") raise e def __len__(self) -> int: if self.length == -1: raise TypeError(f"{type(self).__name__} instance doesn't have valid length") return self.length
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import re from typing import Iterator, List from torchdata.datapipes import functional_datapipe from torchdata.datapipes.iter import IterDataPipe def _shard_expand(s: str) -> List[str]: expansion = r"[{][0-9]+[.][.][0-9]+[}]" m = re.search(expansion, s) if not m: return [s] prefix = s[: m.start()] rest = _shard_expand(s[m.end() :]) rng = s[m.start() + 1 : m.end() - 1] lohi = rng.split("..") if len(lohi[0]) == len(lohi[1]) and lohi[0].startswith("0"): fmt = "{prefix}{i:0>{l}d}{r}" elif len(lohi[0]) <= len(lohi[1]): if lohi[0].startswith("0") and lohi[0] != "0": raise ValueError("shard_expand: low bound must not start with 0 if low bound is shorter") fmt = "{prefix}{i}{r}" else: raise ValueError("shard_expand: low bound must be shorter than high bound") lo, hi = (int(x) for x in lohi) if lo >= hi: raise ValueError(f"shard_expand: bad range in in shard spec {s}.") result = [] for i in range(lo, hi + 1): for r in rest: expanded: str = fmt.format(prefix=prefix, i=i, r=r, l=len(lohi[1])) result.append(expanded) return result @functional_datapipe("shard_expand") class ShardExpanderIterDataPipe(IterDataPipe[str]): r""" Expands incoming shard strings into shards. Sharded data files are named using shell-like brace notation. For example, an ImageNet dataset sharded into 1200 shards and stored on a web server might be named `imagenet-{000000..001199}.tar`. Note that shard names can be expanded without any server transactions; this makes `shard_expand` reproducible and storage system independent (unlike :class `.FileLister` etc.). Args: source_datapipe: a DataPipe yielding a stream of pairs Returns: a DataPipe yielding a stream of expanded pathnames. Example: >>> from torchdata.datapipes.iter import IterableWrapper >>> source_dp = IterableWrapper(["ds-{00..05}.tar"]) >>> expand_dp = source_dp.shard_expand() >>> list(expand_dp) ['ds-00.tar', 'ds-01.tar', 'ds-02.tar', 'ds-03.tar', 'ds-04.tar', 'ds-05.tar'] >>> source_dp = IterableWrapper(["imgs_{00..05}.tar", "labels_{00..05}.tar"]) >>> expand_dp = source_dp.shard_expand() >>> list(expand_dp) ['imgs_00.tar', 'imgs_01.tar', 'imgs_02.tar', 'labels_00.tar', 'labels_01.tar', 'labels_02.tar'] """ def __init__(self, source_datapipe: IterDataPipe[str]) -> None: super().__init__() self.source_datapipe: IterDataPipe[str] = source_datapipe def __iter__(self) -> Iterator[str]: for path in self.source_datapipe: yield from _shard_expand(path)
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import os import tarfile import warnings from io import BufferedIOBase from typing import cast, IO, Iterable, Iterator, Optional, Tuple from torchdata.datapipes import functional_datapipe from torchdata.datapipes.iter import IterDataPipe from torchdata.datapipes.utils import StreamWrapper from torchdata.datapipes.utils.common import validate_pathname_binary_tuple @functional_datapipe("load_from_tar") class TarArchiveLoaderIterDataPipe(IterDataPipe[Tuple[str, BufferedIOBase]]): r""" Opens/decompresses tar binary streams from an Iterable DataPipe which contains tuples of path name and tar binary stream, and yields a tuple of path name and extracted binary stream (functional name: ``load_from_tar``). Args: datapipe: Iterable DataPipe that provides tuples of path name and tar binary stream mode: File mode used by `tarfile.open` to read file object. Mode has to be a string of the form `'filemode[:compression]'` length: a nominal length of the DataPipe Note: The opened file handles will be closed automatically if the default ``DecoderDataPipe`` is attached. Otherwise, user should be responsible to close file handles explicitly or let Python's GC close them periodically. Example: >>> from torchdata.datapipes.iter import FileLister, FileOpener >>> datapipe1 = FileLister(".", "*.tar") >>> datapipe2 = FileOpener(datapipe1, mode="b") >>> tar_loader_dp = datapipe2.load_from_tar() >>> for _, stream in tar_loader_dp: >>> print(stream.read()) b'0123456789abcdef' """ def __init__(self, datapipe: Iterable[Tuple[str, BufferedIOBase]], mode: str = "r:*", length: int = -1) -> None: super().__init__() self.datapipe: Iterable[Tuple[str, BufferedIOBase]] = datapipe self.mode: str = mode self.length: int = length def __iter__(self) -> Iterator[Tuple[str, BufferedIOBase]]: for data in self.datapipe: validate_pathname_binary_tuple(data) pathname, data_stream = data try: if isinstance(data_stream, StreamWrapper) and isinstance(data_stream.file_obj, tarfile.TarFile): tar = data_stream.file_obj else: reading_mode = ( self.mode if hasattr(data_stream, "seekable") and data_stream.seekable() else self.mode.replace(":", "|") ) # typing.cast is used here to silence mypy's type checker tar = tarfile.open(fileobj=cast(Optional[IO[bytes]], data_stream), mode=reading_mode) for tarinfo in tar: if not tarinfo.isfile(): continue extracted_fobj = tar.extractfile(tarinfo) if extracted_fobj is None: warnings.warn(f"failed to extract file {tarinfo.name} from source tarfile {pathname}") raise tarfile.ExtractError inner_pathname = os.path.normpath(os.path.join(pathname, tarinfo.name)) yield inner_pathname, StreamWrapper(extracted_fobj, data_stream, name=inner_pathname) # type: ignore[misc] except Exception as e: warnings.warn(f"Unable to extract files from corrupted tarfile stream {pathname} due to: {e}, abort!") raise e finally: if isinstance(data_stream, StreamWrapper): data_stream.autoclose() def __len__(self) -> int: if self.length == -1: raise TypeError(f"{type(self).__name__} instance doesn't have valid length") return self.length
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import random from typing import Dict, final, List, Optional, TypeVar, Union from torchdata.datapipes import functional_datapipe from torchdata.datapipes.iter import IterDataPipe T = TypeVar("T") @functional_datapipe("random_split") class RandomSplitterIterDataPipe(IterDataPipe): r""" Randomly split samples from a source DataPipe into groups (functional name: ``random_split``). Since there is no buffer, only ONE group of samples (i.e. one child DataPipe) can be iterated through at any time. Attempts to iterate through multiple of them simultaneously will fail. Note that by default, multiple iterations of this DataPipe will yield the same split for consistency across epochs. You can invoke ``override_seed`` on the output(s) to update the seed whenever needed (such as per epoch to get a different split per epoch). Args: source_datapipe: Iterable DataPipe being split weights: Dict of weights; the length of this list determines how many output DataPipes there will be. It is recommended to provide integer weights that sum up to ``total_length``, which allows resulting DataPipes' length values to be known in advance. seed: random _seed used to determine the randomness of the split total_length: Length of the ``source_datapipe``, optional but providing an integer is highly encouraged, because not all ``IterDataPipe`` has ``len``, espeically ones that can be easily known in advance. target: Optional key (that must exist in ``weights``) to indicate the specific group to return. If set to the default ``None``, returns ``List[IterDataPipe]``. If target is specified, returns ``IterDataPipe``. Example: >>> from torchdata.datapipes.iter import IterableWrapper >>> dp = IterableWrapper(range(10)) >>> train, valid = dp.random_split(total_length=10, weights={"train": 0.5, "valid": 0.5}, seed=0) >>> list(train) [2, 3, 5, 7, 8] >>> list(valid) [0, 1, 4, 6, 9] >>> # You can also specify a target key if you only need a specific group of samples >>> train = dp.random_split(total_length=10, weights={"train": 0.5, "valid": 0.5}, seed=0, target='train') >>> list(train) [2, 3, 5, 7, 8] >>> # Be careful to use the same seed as before when specifying `target` to get the correct split. >>> valid = dp.random_split(total_length=10, weights={"train": 0.5, "valid": 0.5}, seed=0, target='valid') >>> list(valid) [0, 1, 4, 6, 9] """ def __new__( cls, source_datapipe: IterDataPipe, weights: Dict[T, Union[int, float]], seed, total_length: Optional[int] = None, target: Optional[T] = None, ): if total_length is None: try: # TODO: This is an issue for DataPipes which only have runtime lengths. Revisit to see if this # is problematic. total_length = len(source_datapipe) except TypeError: raise TypeError( "RandomSplitter needs `total_length`, but it is unable to infer it from " f"the `source_datapipe`: {source_datapipe}." ) container = _RandomSplitterIterDataPipe(source_datapipe, total_length, weights, seed) if target is None: return [SplitterIterator(container, k) for k in list(weights.keys())] else: if target in weights.keys(): return SplitterIterator(container, target) else: raise KeyError(f"`target={target}` does not match any key in `weights`.") class _RandomSplitterIterDataPipe(IterDataPipe): def __init__( self, source_datapipe: IterDataPipe, total_length: int, weights: Dict[T, Union[int, float]], seed, ): self.source_datapipe: IterDataPipe = source_datapipe self.total_length: int = total_length self.remaining_length: int = total_length self._seed = seed self.keys: List[T] = list(weights.keys()) self.key_to_index: Dict[T, int] = {k: i for i, k in enumerate(self.keys)} self.norm_weights: List[float] = self.normalize_weights([weights[k] for k in self.keys], total_length) self.weights: List[float] = self.norm_weights.copy() self._rng = random.Random(self._seed) self._lengths: List[int] = [] def draw(self) -> T: selected_key = self._rng.choices(self.keys, self.weights)[0] index = self.key_to_index[selected_key] self.weights[index] -= 1 self.remaining_length -= 1 if self.weights[index] < 0: self.weights[index] = 0 self.weights = self.normalize_weights(self.weights, self.remaining_length) return selected_key @staticmethod def normalize_weights(weights: List[float], total_length: int) -> List[float]: """ Given a ``List`` of weights, normalize them according to ``total_length``. """ total_weight = sum(weights) return [float(w) * total_length / total_weight for w in weights] @final def reset(self) -> None: self._rng = random.Random(self._seed) self.weights = self.norm_weights.copy() self.remaining_length = self.total_length def override_seed(self, seed): """ Update the `seed`. The new `seed` will be used in the next iteration. """ self._seed = seed return self def __getstate__(self): state = ( self.source_datapipe, self.total_length, self._seed, self.norm_weights, self.keys, self.key_to_index, self.weights, self._rng.getstate(), ) if IterDataPipe.getstate_hook is not None: return IterDataPipe.getstate_hook(state) return state def __setstate__(self, state): ( self.source_datapipe, self.total_length, self._seed, self.norm_weights, self.keys, self.key_to_index, self.weights, rng_state, ) = state self._rng = random.Random() self._rng.setstate(rng_state) def get_length(self, target: T) -> int: if not self._lengths: if all(w.is_integer() for w in self.norm_weights) and sum(self.norm_weights) == self.total_length: self._lengths = [int(w) for w in self.norm_weights] else: raise TypeError( "Lengths of the split cannot be known in advance. Please supply " "integer `weights` that sum up to `total_length`.\nAlternatively, " "use `datapipe.set_length(LENGTH)` to manually set the desired length." ) index = self.key_to_index[target] return self._lengths[index] class SplitterIterator(IterDataPipe): def __init__(self, main_datapipe: _RandomSplitterIterDataPipe, target: T): self.main_datapipe = main_datapipe self.target = target def __iter__(self): self.main_datapipe.reset() for sample in self.main_datapipe.source_datapipe: if self.main_datapipe.draw() == self.target: yield sample def override_seed(self, seed): """ Update the `seed`. The new `seed` will be used in the next iteration. For use cases that require a different split for each epoch, you call this method before or after the epoch as necessary. """ self.main_datapipe.override_seed(seed) return self def __len__(self): return self.main_datapipe.get_length(self.target)
# type: ignore # Generated by the protocol buffer compiler. DO NOT EDIT! # source: example.proto import sys _b = sys.version_info[0] < 3 and (lambda x: x) or (lambda x: x.encode("latin1")) from google.protobuf import ( descriptor as _descriptor, descriptor_pb2, message as _message, reflection as _reflection, symbol_database as _symbol_database, ) # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name="example.proto", package="tfrecord", syntax="proto3", serialized_pb=_b( '\n\rexample.proto\x12\x08tfrecord"\x1a\n\tBytesList\x12\r\n\x05value\x18\x01 \x03(\x0c"\x1e\n\tFloatList\x12\x11\n\x05value\x18\x01 \x03(\x02\x42\x02\x10\x01"\x1e\n\tInt64List\x12\x11\n\x05value\x18\x01 \x03(\x03\x42\x02\x10\x01"\x92\x01\n\x07\x46\x65\x61ture\x12)\n\nbytes_list\x18\x01 \x01(\x0b\x32\x13.tfrecord.BytesListH\x00\x12)\n\nfloat_list\x18\x02 \x01(\x0b\x32\x13.tfrecord.FloatListH\x00\x12)\n\nint64_list\x18\x03 \x01(\x0b\x32\x13.tfrecord.Int64ListH\x00\x42\x06\n\x04kind"\x7f\n\x08\x46\x65\x61tures\x12\x30\n\x07\x66\x65\x61ture\x18\x01 \x03(\x0b\x32\x1f.tfrecord.Features.FeatureEntry\x1a\x41\n\x0c\x46\x65\x61tureEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12 \n\x05value\x18\x02 \x01(\x0b\x32\x11.tfrecord.Feature:\x02\x38\x01"1\n\x0b\x46\x65\x61tureList\x12"\n\x07\x66\x65\x61ture\x18\x01 \x03(\x0b\x32\x11.tfrecord.Feature"\x98\x01\n\x0c\x46\x65\x61tureLists\x12=\n\x0c\x66\x65\x61ture_list\x18\x01 \x03(\x0b\x32\'.tfrecord.FeatureLists.FeatureListEntry\x1aI\n\x10\x46\x65\x61tureListEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12$\n\x05value\x18\x02 \x01(\x0b\x32\x15.tfrecord.FeatureList:\x02\x38\x01"/\n\x07\x45xample\x12$\n\x08\x66\x65\x61tures\x18\x01 \x01(\x0b\x32\x12.tfrecord.Features"e\n\x0fSequenceExample\x12#\n\x07\x63ontext\x18\x01 \x01(\x0b\x32\x12.tfrecord.Features\x12-\n\rfeature_lists\x18\x02 \x01(\x0b\x32\x16.tfrecord.FeatureListsB\x03\xf8\x01\x01\x62\x06proto3' ), ) _sym_db.RegisterFileDescriptor(DESCRIPTOR) _BYTESLIST = _descriptor.Descriptor( name="BytesList", full_name="tfrecord.BytesList", filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name="value", full_name="tfrecord.BytesList.value", index=0, number=1, type=12, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, ), ], extensions=[], nested_types=[], enum_types=[], options=None, is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[], serialized_start=27, serialized_end=53, ) _FLOATLIST = _descriptor.Descriptor( name="FloatList", full_name="tfrecord.FloatList", filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name="value", full_name="tfrecord.FloatList.value", index=0, number=1, type=2, cpp_type=6, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=_descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b("\020\001")), ), ], extensions=[], nested_types=[], enum_types=[], options=None, is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[], serialized_start=55, serialized_end=85, ) _INT64LIST = _descriptor.Descriptor( name="Int64List", full_name="tfrecord.Int64List", filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name="value", full_name="tfrecord.Int64List.value", index=0, number=1, type=3, cpp_type=2, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=_descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b("\020\001")), ), ], extensions=[], nested_types=[], enum_types=[], options=None, is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[], serialized_start=87, serialized_end=117, ) _FEATURE = _descriptor.Descriptor( name="Feature", full_name="tfrecord.Feature", filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name="bytes_list", full_name="tfrecord.Feature.bytes_list", index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, ), _descriptor.FieldDescriptor( name="float_list", full_name="tfrecord.Feature.float_list", index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, ), _descriptor.FieldDescriptor( name="int64_list", full_name="tfrecord.Feature.int64_list", index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, ), ], extensions=[], nested_types=[], enum_types=[], options=None, is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[ _descriptor.OneofDescriptor( name="kind", full_name="tfrecord.Feature.kind", index=0, containing_type=None, fields=[] ), ], serialized_start=120, serialized_end=266, ) _FEATURES_FEATUREENTRY = _descriptor.Descriptor( name="FeatureEntry", full_name="tfrecord.Features.FeatureEntry", filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name="key", full_name="tfrecord.Features.FeatureEntry.key", index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode("utf-8"), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, ), _descriptor.FieldDescriptor( name="value", full_name="tfrecord.Features.FeatureEntry.value", index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, ), ], extensions=[], nested_types=[], enum_types=[], options=_descriptor._ParseOptions(descriptor_pb2.MessageOptions(), _b("8\001")), is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[], serialized_start=330, serialized_end=395, ) _FEATURES = _descriptor.Descriptor( name="Features", full_name="tfrecord.Features", filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name="feature", full_name="tfrecord.Features.feature", index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, ), ], extensions=[], nested_types=[ _FEATURES_FEATUREENTRY, ], enum_types=[], options=None, is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[], serialized_start=268, serialized_end=395, ) _FEATURELIST = _descriptor.Descriptor( name="FeatureList", full_name="tfrecord.FeatureList", filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name="feature", full_name="tfrecord.FeatureList.feature", index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, ), ], extensions=[], nested_types=[], enum_types=[], options=None, is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[], serialized_start=397, serialized_end=446, ) _FEATURELISTS_FEATURELISTENTRY = _descriptor.Descriptor( name="FeatureListEntry", full_name="tfrecord.FeatureLists.FeatureListEntry", filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name="key", full_name="tfrecord.FeatureLists.FeatureListEntry.key", index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode("utf-8"), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, ), _descriptor.FieldDescriptor( name="value", full_name="tfrecord.FeatureLists.FeatureListEntry.value", index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, ), ], extensions=[], nested_types=[], enum_types=[], options=_descriptor._ParseOptions(descriptor_pb2.MessageOptions(), _b("8\001")), is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[], serialized_start=528, serialized_end=601, ) _FEATURELISTS = _descriptor.Descriptor( name="FeatureLists", full_name="tfrecord.FeatureLists", filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name="feature_list", full_name="tfrecord.FeatureLists.feature_list", index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, ), ], extensions=[], nested_types=[ _FEATURELISTS_FEATURELISTENTRY, ], enum_types=[], options=None, is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[], serialized_start=449, serialized_end=601, ) _EXAMPLE = _descriptor.Descriptor( name="Example", full_name="tfrecord.Example", filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name="features", full_name="tfrecord.Example.features", index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, ), ], extensions=[], nested_types=[], enum_types=[], options=None, is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[], serialized_start=603, serialized_end=650, ) _SEQUENCEEXAMPLE = _descriptor.Descriptor( name="SequenceExample", full_name="tfrecord.SequenceExample", filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name="context", full_name="tfrecord.SequenceExample.context", index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, ), _descriptor.FieldDescriptor( name="feature_lists", full_name="tfrecord.SequenceExample.feature_lists", index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, ), ], extensions=[], nested_types=[], enum_types=[], options=None, is_extendable=False, syntax="proto3", extension_ranges=[], oneofs=[], serialized_start=652, serialized_end=753, ) _FEATURE.fields_by_name["bytes_list"].message_type = _BYTESLIST _FEATURE.fields_by_name["float_list"].message_type = _FLOATLIST _FEATURE.fields_by_name["int64_list"].message_type = _INT64LIST _FEATURE.oneofs_by_name["kind"].fields.append(_FEATURE.fields_by_name["bytes_list"]) _FEATURE.fields_by_name["bytes_list"].containing_oneof = _FEATURE.oneofs_by_name["kind"] _FEATURE.oneofs_by_name["kind"].fields.append(_FEATURE.fields_by_name["float_list"]) _FEATURE.fields_by_name["float_list"].containing_oneof = _FEATURE.oneofs_by_name["kind"] _FEATURE.oneofs_by_name["kind"].fields.append(_FEATURE.fields_by_name["int64_list"]) _FEATURE.fields_by_name["int64_list"].containing_oneof = _FEATURE.oneofs_by_name["kind"] _FEATURES_FEATUREENTRY.fields_by_name["value"].message_type = _FEATURE _FEATURES_FEATUREENTRY.containing_type = _FEATURES _FEATURES.fields_by_name["feature"].message_type = _FEATURES_FEATUREENTRY _FEATURELIST.fields_by_name["feature"].message_type = _FEATURE _FEATURELISTS_FEATURELISTENTRY.fields_by_name["value"].message_type = _FEATURELIST _FEATURELISTS_FEATURELISTENTRY.containing_type = _FEATURELISTS _FEATURELISTS.fields_by_name["feature_list"].message_type = _FEATURELISTS_FEATURELISTENTRY _EXAMPLE.fields_by_name["features"].message_type = _FEATURES _SEQUENCEEXAMPLE.fields_by_name["context"].message_type = _FEATURES _SEQUENCEEXAMPLE.fields_by_name["feature_lists"].message_type = _FEATURELISTS DESCRIPTOR.message_types_by_name["BytesList"] = _BYTESLIST DESCRIPTOR.message_types_by_name["FloatList"] = _FLOATLIST DESCRIPTOR.message_types_by_name["Int64List"] = _INT64LIST DESCRIPTOR.message_types_by_name["Feature"] = _FEATURE DESCRIPTOR.message_types_by_name["Features"] = _FEATURES DESCRIPTOR.message_types_by_name["FeatureList"] = _FEATURELIST DESCRIPTOR.message_types_by_name["FeatureLists"] = _FEATURELISTS DESCRIPTOR.message_types_by_name["Example"] = _EXAMPLE DESCRIPTOR.message_types_by_name["SequenceExample"] = _SEQUENCEEXAMPLE BytesList = _reflection.GeneratedProtocolMessageType( "BytesList", (_message.Message,), dict( DESCRIPTOR=_BYTESLIST, __module__="example_pb2" # @@protoc_insertion_point(class_scope:tfrecord.BytesList) ), ) _sym_db.RegisterMessage(BytesList) FloatList = _reflection.GeneratedProtocolMessageType( "FloatList", (_message.Message,), dict( DESCRIPTOR=_FLOATLIST, __module__="example_pb2" # @@protoc_insertion_point(class_scope:tfrecord.FloatList) ), ) _sym_db.RegisterMessage(FloatList) Int64List = _reflection.GeneratedProtocolMessageType( "Int64List", (_message.Message,), dict( DESCRIPTOR=_INT64LIST, __module__="example_pb2" # @@protoc_insertion_point(class_scope:tfrecord.Int64List) ), ) _sym_db.RegisterMessage(Int64List) Feature = _reflection.GeneratedProtocolMessageType( "Feature", (_message.Message,), dict( DESCRIPTOR=_FEATURE, __module__="example_pb2" # @@protoc_insertion_point(class_scope:tfrecord.Feature) ), ) _sym_db.RegisterMessage(Feature) Features = _reflection.GeneratedProtocolMessageType( "Features", (_message.Message,), dict( FeatureEntry=_reflection.GeneratedProtocolMessageType( "FeatureEntry", (_message.Message,), dict( DESCRIPTOR=_FEATURES_FEATUREENTRY, __module__="example_pb2" # @@protoc_insertion_point(class_scope:tfrecord.Features.FeatureEntry) ), ), DESCRIPTOR=_FEATURES, __module__="example_pb2" # @@protoc_insertion_point(class_scope:tfrecord.Features) ), ) _sym_db.RegisterMessage(Features) _sym_db.RegisterMessage(Features.FeatureEntry) FeatureList = _reflection.GeneratedProtocolMessageType( "FeatureList", (_message.Message,), dict( DESCRIPTOR=_FEATURELIST, __module__="example_pb2" # @@protoc_insertion_point(class_scope:tfrecord.FeatureList) ), ) _sym_db.RegisterMessage(FeatureList) FeatureLists = _reflection.GeneratedProtocolMessageType( "FeatureLists", (_message.Message,), dict( FeatureListEntry=_reflection.GeneratedProtocolMessageType( "FeatureListEntry", (_message.Message,), dict( DESCRIPTOR=_FEATURELISTS_FEATURELISTENTRY, __module__="example_pb2" # @@protoc_insertion_point(class_scope:tfrecord.FeatureLists.FeatureListEntry) ), ), DESCRIPTOR=_FEATURELISTS, __module__="example_pb2" # @@protoc_insertion_point(class_scope:tfrecord.FeatureLists) ), ) _sym_db.RegisterMessage(FeatureLists) _sym_db.RegisterMessage(FeatureLists.FeatureListEntry) Example = _reflection.GeneratedProtocolMessageType( "Example", (_message.Message,), dict( DESCRIPTOR=_EXAMPLE, __module__="example_pb2" # @@protoc_insertion_point(class_scope:tfrecord.Example) ), ) _sym_db.RegisterMessage(Example) SequenceExample = _reflection.GeneratedProtocolMessageType( "SequenceExample", (_message.Message,), dict( DESCRIPTOR=_SEQUENCEEXAMPLE, __module__="example_pb2" # @@protoc_insertion_point(class_scope:tfrecord.SequenceExample) ), ) _sym_db.RegisterMessage(SequenceExample) DESCRIPTOR.has_options = True DESCRIPTOR._options = _descriptor._ParseOptions(descriptor_pb2.FileOptions(), _b("\370\001\001")) _FLOATLIST.fields_by_name["value"].has_options = True _FLOATLIST.fields_by_name["value"]._options = _descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b("\020\001")) _INT64LIST.fields_by_name["value"].has_options = True _INT64LIST.fields_by_name["value"]._options = _descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b("\020\001")) _FEATURES_FEATUREENTRY.has_options = True _FEATURES_FEATUREENTRY._options = _descriptor._ParseOptions(descriptor_pb2.MessageOptions(), _b("8\001")) _FEATURELISTS_FEATURELISTENTRY.has_options = True _FEATURELISTS_FEATURELISTENTRY._options = _descriptor._ParseOptions(descriptor_pb2.MessageOptions(), _b("8\001")) # @@protoc_insertion_point(module_scope)
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from io import BytesIO from typing import Iterator, List, Tuple, Union import torchdata from torch.utils.data.datapipes.utils.common import match_masks from torchdata.datapipes import functional_datapipe from torchdata.datapipes.iter import IterDataPipe from torchdata.datapipes.utils import StreamWrapper @functional_datapipe("list_files_by_s3") class S3FileListerIterDataPipe(IterDataPipe[str]): r""" Iterable DataPipe that lists Amazon S3 file URLs with the given prefixes (functional name: ``list_files_by_s3``). Acceptable prefixes include ``s3://bucket-name``, ``s3://bucket-name/``, ``s3://bucket-name/folder``. Note: 1. ``source_datapipe`` **must** contain a list of valid S3 URLs 2. ``length`` is `-1` by default, and any call to ``__len__()`` is invalid, because the length is unknown until all files are iterated. 3. ``request_timeout_ms`` and ``region`` will overwrite settings in the configuration file or environment variables. 4. The lack of AWS proper configuration can lead empty response. For more details related to S3 IO DataPipe setup and AWS config, please see the `README file`_. .. _README file: https://github.com/pytorch/data/tree/main/torchdata/datapipes/iter/load#s3-io-datapipe-documentation Args: source_datapipe: a DataPipe that contains URLs/URL prefixes to s3 files length: Nominal length of the datapipe request_timeout_ms: timeout setting for each reqeust (3,000ms by default) region: region for access files (inferred from credentials by default) Example: .. testsetup:: from unittest import mock from torchdata.datapipes.iter import IterableWrapper, S3FileLister file_lister_patch = mock.patch.object(S3FileLister, "__iter__", return_value=iter([])) file_lister_patch.start() .. testcode:: from torchdata.datapipes.iter import IterableWrapper, S3FileLister s3_prefixes = IterableWrapper(['s3://bucket-name/folder/', ...]) dp_s3_urls = S3FileLister(s3_prefixes) for d in dp_s3_urls: pass # Functional API dp_s3_urls = s3_prefixes.list_files_by_s3(request_timeout_ms=100) for d in dp_s3_urls: pass .. testcleanup:: file_lister_patch.stop() """ def __init__( self, source_datapipe: IterDataPipe[str], length: int = -1, request_timeout_ms=-1, region="", masks: Union[str, List[str]] = "", ) -> None: if not hasattr(torchdata, "_torchdata") or not hasattr(torchdata._torchdata, "S3Handler"): raise ModuleNotFoundError("TorchData must be built with BUILD_S3=1 to use this datapipe.") self.source_datapipe: IterDataPipe[str] = source_datapipe self.length: int = length self.handler = torchdata._torchdata.S3Handler(request_timeout_ms, region) self.masks = masks def __iter__(self) -> Iterator[str]: for prefix in self.source_datapipe: while True: urls = self.handler.list_files(prefix) for url in urls: if match_masks(url, self.masks): yield url if not urls: break self.handler.clear_marker() def __len__(self) -> int: if self.length == -1: raise TypeError(f"{type(self).__name__} instance doesn't have valid length") return self.length @functional_datapipe("load_files_by_s3") class S3FileLoaderIterDataPipe(IterDataPipe[Tuple[str, StreamWrapper]]): r""" Iterable DataPipe that loads Amazon S3 files from the given S3 URLs (functional name: ``load_files_by_s3``). ``S3FileLoader`` iterates all given S3 URLs in ``BytesIO`` format with ``(url, BytesIO)`` tuples. Note: 1. ``source_datapipe`` **must** contain a list of valid S3 URLs. 2. ``request_timeout_ms`` and ``region`` will overwrite settings in the configuration file or environment variables. 3. The lack of AWS proper configuration can lead empty response. For more details related to S3 IO DataPipe setup and AWS config, please see the `README file`_. .. _README file: https://github.com/pytorch/data/tree/main/torchdata/datapipes/iter/load#s3-io-datapipe-documentation Args: source_datapipe: a DataPipe that contains URLs to s3 files request_timeout_ms: timeout setting for each reqeust (3,000ms by default) region: region for access files (inferred from credentials by default) buffer_size: buffer size of each chunk to download large files progressively (128Mb by default) multi_part_download: flag to split each chunk into small packets and download those packets in parallel (enabled by default) Example: .. testsetup:: from unittest import mock from torchdata.datapipes.iter import S3FileLister file_lister_patch = mock.patch.object(S3FileLister, "__iter__", return_value=iter([])) file_lister_patch.start() .. testcode:: from torchdata.datapipes.iter import IterableWrapper, S3FileLoader dp_s3_urls = IterableWrapper(['s3://bucket-name/folder/', ...]).list_files_by_s3() # In order to make sure data are shuffled and sharded in the # distributed environment, `shuffle` and `sharding_filter` # are required. For detail, please check our tutorial in: # https://pytorch.org/data/main/tutorial.html#working-with-dataloader sharded_s3_urls = dp_s3_urls.shuffle().sharding_filter() dp_s3_files = S3FileLoader(sharded_s3_urls) for url, fd in dp_s3_files: # Start loading data data = fd.read() # Functional API dp_s3_files = sharded_s3_urls.load_files_by_s3(buffer_size=256) for url, fd in dp_s3_files: data = fd.read() .. testcleanup:: file_lister_patch.stop() """ def __init__( self, source_datapipe: IterDataPipe[str], request_timeout_ms=-1, region="", buffer_size=None, multi_part_download=None, ) -> None: if not hasattr(torchdata, "_torchdata") or not hasattr(torchdata._torchdata, "S3Handler"): raise ModuleNotFoundError("TorchData must be built with BUILD_S3=1 to use this datapipe.") self.source_datapipe: IterDataPipe[str] = source_datapipe self.handler = torchdata._torchdata.S3Handler(request_timeout_ms, region) if buffer_size: self.handler.set_buffer_size(buffer_size) if multi_part_download: self.handler.set_multi_part_download(multi_part_download) def __iter__(self) -> Iterator[Tuple[str, StreamWrapper]]: for url in self.source_datapipe: yield url, StreamWrapper(BytesIO(self.handler.s3_read(url))) def __len__(self) -> int: return len(self.source_datapipe)
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import re import urllib import warnings from typing import Any, Dict, Iterator, Optional, Tuple import requests from torchdata.datapipes import functional_datapipe from torchdata.datapipes.iter import IterDataPipe from torchdata.datapipes.utils import StreamWrapper # TODO(642): Remove this helper function when https://bugs.python.org/issue42627 is resolved def _get_proxies() -> Optional[Dict[str, str]]: import os if os.name == "nt": proxies = urllib.request.getproxies() address = proxies.get("https") # The default proxy type of Windows is HTTP if address and address.startswith("https"): address = "http" + address[5:] proxies["https"] = address return proxies return None def _get_response_from_http( url: str, *, timeout: Optional[float], **query_params: Optional[Dict[str, Any]] ) -> Tuple[str, StreamWrapper]: with requests.Session() as session: proxies = _get_proxies() r = session.get(url, timeout=timeout, proxies=proxies, stream=True, **query_params) # type: ignore[attr-defined] r.raise_for_status() return url, StreamWrapper(r.raw) @functional_datapipe("read_from_http") class HTTPReaderIterDataPipe(IterDataPipe[Tuple[str, StreamWrapper]]): r""" Takes file URLs (HTTP URLs pointing to files), and yields tuples of file URL and IO stream (functional name: ``read_from_http``). Args: source_datapipe: a DataPipe that contains URLs timeout: timeout in seconds for HTTP request skip_on_error: whether to skip over urls causing problems, otherwise an exception is raised **kwargs: a Dictionary to pass optional arguments that requests takes. For the full list check out https://docs.python-requests.org/en/master/api/ Example: .. testcode:: from torchdata.datapipes.iter import IterableWrapper, HttpReader file_url = "https://raw.githubusercontent.com/pytorch/data/main/LICENSE" query_params = {"auth" : ("fake_username", "fake_password"), "allow_redirects" : True} timeout = 120 http_reader_dp = HttpReader(IterableWrapper([file_url]), timeout=timeout, **query_params) reader_dp = http_reader_dp.readlines() it = iter(reader_dp) path, line = next(it) print((path, line)) Output: .. testoutput:: ('https://raw.githubusercontent.com/pytorch/data/main/LICENSE', b'BSD 3-Clause License') """ def __init__( self, source_datapipe: IterDataPipe[str], timeout: Optional[float] = None, skip_on_error: bool = False, **kwargs: Optional[Dict[str, Any]], ) -> None: self.source_datapipe: IterDataPipe[str] = source_datapipe self.timeout = timeout self.skip_on_error = skip_on_error self.query_params = kwargs def __iter__(self) -> Iterator[Tuple[str, StreamWrapper]]: for url in self.source_datapipe: try: yield _get_response_from_http(url, timeout=self.timeout, **self.query_params) except Exception as e: if self.skip_on_error: warnings.warn(f"{e}, skipping...") else: raise def __len__(self) -> int: return len(self.source_datapipe) def _extract_gdrive_api_response(content: str) -> Optional[str]: match = re.search("<title>Google Drive - (?P<api_response>.+?)</title>", content) return match["api_response"] if match is not None else None def _get_response_from_google_drive( url: str, *, timeout: Optional[float], **query_params: Optional[Dict[str, Any]] ) -> Tuple[str, StreamWrapper]: confirm_token = None with requests.Session() as session: response = session.get(url, timeout=timeout, stream=True, **query_params) # type: ignore[attr-defined] response.raise_for_status() for k, v in response.cookies.items(): if k.startswith("download_warning"): confirm_token = v break else: api_response = _extract_gdrive_api_response(response.text) if api_response == "Virus scan warning": confirm_token = "t" elif api_response == "Quota exceeded": raise RuntimeError(f"Google drive link {url} is currently unavailable, because the quota was exceeded.") if confirm_token: url = url + "&confirm=" + confirm_token response = session.get(url, timeout=timeout, stream=True, **query_params) # type: ignore[attr-defined] response.raise_for_status() if "content-disposition" not in response.headers: raise RuntimeError( f"Google drive link {url} internal error: " "headers don't contain content-disposition. This is usually caused by " "using a sharing/viewing link instead of a download link. Click 'Download' on the " "Google Drive page, which should redirect you to a download page, and use the link " "of that page." ) filename = re.findall('filename="(.+)"', response.headers["content-disposition"]) if filename is None: raise RuntimeError(f"Google drive link {url}: filename could not be autodetected") return filename[0], StreamWrapper(response.raw) @functional_datapipe("read_from_gdrive") class GDriveReaderDataPipe(IterDataPipe[Tuple[str, StreamWrapper]]): r""" Takes URLs pointing at GDrive files, and yields tuples of file name and IO stream (functional name: ``read_from_gdrive``). Args: source_datapipe: a DataPipe that contains URLs to GDrive files timeout: timeout in seconds for HTTP request skip_on_error: whether to skip over urls causing problems, otherwise an exception is raised **kwargs: a Dictionary to pass optional arguments that requests takes. For the full list check out https://docs.python-requests.org/en/master/api/ Example: .. testsetup:: from torchdata.datapipes.iter import GDriveReader GDriveReader.readlines = lambda self: [ ("https://drive.google.com/uc?export=download&id=SomeIDToAGDriveFile", b"<First line from the GDrive File>") ] .. testcode:: from torchdata.datapipes.iter import IterableWrapper, GDriveReader gdrive_file_url = "https://drive.google.com/uc?export=download&id=SomeIDToAGDriveFile" gdrive_reader_dp = GDriveReader(IterableWrapper([gdrive_file_url])) reader_dp = gdrive_reader_dp.readlines() it = iter(reader_dp) path, line = next(it) print((path, line)) Output: .. testoutput:: ('https://drive.google.com/uc?export=download&id=SomeIDToAGDriveFile', b'<First line from the GDrive File>') """ source_datapipe: IterDataPipe[str] def __init__( self, source_datapipe: IterDataPipe[str], *, timeout: Optional[float] = None, skip_on_error: bool = False, **kwargs: Optional[Dict[str, Any]], ) -> None: self.source_datapipe = source_datapipe self.timeout = timeout self.skip_on_error = skip_on_error self.query_params = kwargs def __iter__(self) -> Iterator[Tuple[str, StreamWrapper]]: for url in self.source_datapipe: try: yield _get_response_from_google_drive(url, timeout=self.timeout, **self.query_params) except Exception as e: if self.skip_on_error: warnings.warn(f"{e}, skipping...") else: raise def __len__(self) -> int: return len(self.source_datapipe) @functional_datapipe("read_from_remote") class OnlineReaderIterDataPipe(IterDataPipe[Tuple[str, StreamWrapper]]): r""" Takes file URLs (can be HTTP URLs pointing to files or URLs to GDrive files), and yields tuples of file URL and IO stream (functional name: ``read_from_remote``). Args: source_datapipe: a DataPipe that contains URLs timeout: timeout in seconds for HTTP request skip_on_error: whether to skip over urls causing problems, otherwise an exception is raised **kwargs: a Dictionary to pass optional arguments that requests takes. For the full list check out https://docs.python-requests.org/en/master/api/ Example: .. testcode:: from torchdata.datapipes.iter import IterableWrapper, OnlineReader file_url = "https://raw.githubusercontent.com/pytorch/data/main/LICENSE" online_reader_dp = OnlineReader(IterableWrapper([file_url])) reader_dp = online_reader_dp.readlines() it = iter(reader_dp) path, line = next(it) print((path, line)) Output: .. testoutput:: ('https://raw.githubusercontent.com/pytorch/data/main/LICENSE', b'BSD 3-Clause License') """ source_datapipe: IterDataPipe[str] def __init__( self, source_datapipe: IterDataPipe[str], *, timeout: Optional[float] = None, skip_on_error: bool = False, **kwargs: Optional[Dict[str, Any]], ) -> None: self.source_datapipe = source_datapipe self.timeout = timeout self.skip_on_error = skip_on_error self.query_params = kwargs def __iter__(self) -> Iterator[Tuple[str, StreamWrapper]]: for url in self.source_datapipe: parts = urllib.parse.urlparse(url) if re.match(r"(drive|docs)[.]google[.]com", parts.netloc): try: yield _get_response_from_google_drive(url, timeout=self.timeout, **self.query_params) except Exception as e: if self.skip_on_error: warnings.warn(f"{e}, skipping...") else: raise else: try: yield _get_response_from_http(url, timeout=self.timeout, **self.query_params) except Exception as e: if self.skip_on_error: warnings.warn(f"{e}, skipping...") else: raise def __len__(self) -> int: return len(self.source_datapipe)
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree.
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from typing import Iterator, Tuple from torchdata.datapipes import functional_datapipe from torchdata.datapipes.iter import IterDataPipe from torchdata.datapipes.utils import StreamWrapper try: from aistore.client import Client from aistore.pytorch.utils import parse_url, unparse_url HAS_AIS = True except ImportError: HAS_AIS = False try: import aistore from packaging.version import parse as parse_version AIS_VERSION_CHECK = parse_version(aistore.__version__) >= parse_version("1.0.2") except (ImportError, AttributeError): AIS_VERSION_CHECK = False def _assert_aistore() -> None: if not HAS_AIS: raise ModuleNotFoundError( "Package `aistore` (>=1.0.2) is required to be installed to use this datapipe." "Please run `pip install --upgrade aistore` or `conda install aistore` to install the package" "For more info visit: https://github.com/NVIDIA/aistore/blob/master/sdk/python/" ) def _assert_aistore_version() -> None: if not AIS_VERSION_CHECK: raise ImportError( "AIStore version >= 1.0.2 required" "Please run `pip install --upgrade aistore` or `conda update aistore` to install the latest version" ) @functional_datapipe("list_files_by_ais") class AISFileListerIterDataPipe(IterDataPipe[str]): """ Iterable Datapipe that lists files from the AIStore backends with the given URL prefixes (functional name: ``list_files_by_ais``). Acceptable prefixes include but not limited to - `ais://bucket-name`, `ais://bucket-name/` Note: - This function also supports files from multiple backends (`aws://..`, `gcp://..`, `azure://..`, etc) - Input must be a list and direct URLs are not supported. - length is -1 by default, all calls to len() are invalid as not all items are iterated at the start. - This internally uses AIStore Python SDK. Args: source_datapipe(IterDataPipe[str]): a DataPipe that contains URLs/URL prefixes to objects on AIS url(str): AIStore endpoint length(int): length of the datapipe Example: >>> from torchdata.datapipes.iter import IterableWrapper, AISFileLister >>> ais_prefixes = IterableWrapper(['gcp://bucket-name/folder/', 'aws:bucket-name/folder/', 'ais://bucket-name/folder/', ...]) >>> dp_ais_urls = AISFileLister(url='localhost:8080', source_datapipe=ais_prefixes) >>> for url in dp_ais_urls: ... pass >>> # Functional API >>> dp_ais_urls = ais_prefixes.list_files_by_ais(url='localhost:8080') >>> for url in dp_ais_urls: ... pass """ def __init__(self, source_datapipe: IterDataPipe[str], url: str, length: int = -1) -> None: _assert_aistore() _assert_aistore_version() self.source_datapipe: IterDataPipe[str] = source_datapipe self.length: int = length self.client = Client(url) def __iter__(self) -> Iterator[str]: for prefix in self.source_datapipe: provider, bck_name, prefix = parse_url(prefix) obj_iter = self.client.bucket(bck_name, provider).list_objects_iter(prefix=prefix) for entry in obj_iter: yield unparse_url(provider=provider, bck_name=bck_name, obj_name=entry.name) def __len__(self) -> int: if self.length == -1: raise TypeError(f"{type(self).__name__} instance doesn't have valid length") return self.length @functional_datapipe("load_files_by_ais") class AISFileLoaderIterDataPipe(IterDataPipe[Tuple[str, StreamWrapper]]): """ Iterable DataPipe that loads files from AIStore with the given URLs (functional name: ``load_files_by_ais``). Iterates all files in BytesIO format and returns a tuple (url, BytesIO). Note: - This function also supports files from multiple backends (`aws://..`, `gcp://..`, `azure://..`, etc) - Input must be a list and direct URLs are not supported. - This internally uses AIStore Python SDK. Args: source_datapipe(IterDataPipe[str]): a DataPipe that contains URLs/URL prefixes to objects url(str): AIStore endpoint length(int): length of the datapipe Example: >>> from torchdata.datapipes.iter import IterableWrapper, AISFileLister,AISFileLoader >>> ais_prefixes = IterableWrapper(['gcp://bucket-name/folder/', 'aws:bucket-name/folder/', 'ais://bucket-name/folder/', ...]) >>> dp_ais_urls = AISFileLister(url='localhost:8080', source_datapipe=ais_prefixes) >>> dp_cloud_files = AISFileLoader(url='localhost:8080', source_datapipe=dp_ais_urls) >>> for url, file in dp_cloud_files: ... pass >>> # Functional API >>> dp_cloud_files = dp_ais_urls.load_files_by_ais(url='localhost:8080') >>> for url, file in dp_cloud_files: ... pass """ def __init__(self, source_datapipe: IterDataPipe[str], url: str, length: int = -1) -> None: _assert_aistore() _assert_aistore_version() self.source_datapipe: IterDataPipe[str] = source_datapipe self.length = length self.client = Client(url) def __iter__(self) -> Iterator[Tuple[str, StreamWrapper]]: for url in self.source_datapipe: provider, bck_name, obj_name = parse_url(url) yield url, StreamWrapper( self.client.bucket(bck_name=bck_name, provider=provider).object(obj_name=obj_name).get().raw() ) def __len__(self) -> int: return len(self.source_datapipe)
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import os import posixpath from typing import Any, Callable, Dict, Iterator, List, Optional, Sequence, Tuple, Union from torch.utils.data.datapipes.utils.common import match_masks from torchdata.datapipes import functional_datapipe from torchdata.datapipes.iter import IterableWrapper, IterDataPipe from torchdata.datapipes.utils import StreamWrapper try: import fsspec except ImportError: fsspec = None U = Union[bytes, bytearray, str] def _assert_fsspec() -> None: if fsspec is None: raise ModuleNotFoundError( "Package `fsspec` is required to be installed to use this datapipe." "Please use `pip install fsspec` or `conda install -c conda-forge fsspec`" "to install the package" ) @functional_datapipe("list_files_by_fsspec") class FSSpecFileListerIterDataPipe(IterDataPipe[str]): r""" Lists the contents of the directory at the provided ``root`` pathname or URL, and yields the full pathname or URL for each file within the directory (functional name: ``list_files_by_fsspec``). Args: root: The root `fsspec` path directory or list of path directories to list files from masks: Unix style filter string or string list for filtering file name(s) kwargs: Extra options that make sense to a particular storage connection, e.g. host, port, username, password, etc. Example: .. testsetup:: dir_path = "path" .. testcode:: from torchdata.datapipes.iter import FSSpecFileLister datapipe = FSSpecFileLister(root=dir_path) """ def __init__( self, root: Union[str, Sequence[str], IterDataPipe], masks: Union[str, List[str]] = "", **kwargs, ) -> None: _assert_fsspec() if isinstance(root, str): root = [ root, ] if not isinstance(root, IterDataPipe): self.datapipe: IterDataPipe = IterableWrapper(root) # type: ignore[assignment] else: self.datapipe = root self.masks = masks self.kwargs_for_connection = kwargs def __iter__(self) -> Iterator[str]: for root in self.datapipe: fs, path = fsspec.core.url_to_fs(root, **self.kwargs_for_connection) if isinstance(fs.protocol, str): protocol_list = [fs.protocol] else: protocol_list = fs.protocol # fspec.core.url_to_fs will return "abfs" for both, "az://" and "abfs://" urls if "abfs" in protocol_list: protocol_list.append("az") is_local = fs.protocol == "file" or not any(root.startswith(protocol) for protocol in protocol_list) if fs.isfile(path): yield root else: for file_name in fs.ls(path, detail=False): # Ensure it returns List[str], not List[Dict] if not match_masks(file_name, self.masks): continue # ensure the file name has the full fsspec protocol path if any(file_name.startswith(protocol) for protocol in protocol_list): yield file_name else: if is_local: abs_path = os.path.join(path, file_name) elif not file_name.startswith(path): abs_path = posixpath.join(path, file_name) else: abs_path = file_name starts_with = False for protocol in protocol_list: if root.startswith(protocol): starts_with = True yield protocol + "://" + abs_path break if not starts_with: yield abs_path @functional_datapipe("open_files_by_fsspec") class FSSpecFileOpenerIterDataPipe(IterDataPipe[Tuple[str, StreamWrapper]]): r""" Opens files from input datapipe which contains `fsspec` paths and yields a tuple of pathname and opened file stream (functional name: ``open_files_by_fsspec``). Args: source_datapipe: Iterable DataPipe that provides the pathnames or URLs mode: An optional string that specifies the mode in which the file is opened (``"r"`` by default) kwargs_for_open: Optional Dict to specify kwargs for opening files (``fs.open()``) kwargs: Extra options that are used to establish a particular storage connection, e.g. host, port, username, password, etc. Example: .. testsetup:: dir_path = "path" .. testcode:: from torchdata.datapipes.iter import FSSpecFileLister datapipe = FSSpecFileLister(root=dir_path) file_dp = datapipe.open_files_by_fsspec() """ def __init__( self, source_datapipe: IterDataPipe[str], mode: str = "r", *, kwargs_for_open: Optional[Dict] = None, **kwargs ) -> None: _assert_fsspec() self.source_datapipe: IterDataPipe[str] = source_datapipe self.mode: str = mode self.kwargs_for_open = kwargs_for_open if kwargs_for_open is not None else {} self.kwargs_for_connection = kwargs def __iter__(self) -> Iterator[Tuple[str, StreamWrapper]]: for file_uri in self.source_datapipe: fs, path = fsspec.core.url_to_fs(file_uri, **self.kwargs_for_connection) file = fs.open(path, self.mode, **self.kwargs_for_open) yield file_uri, StreamWrapper(file) def __len__(self) -> int: return len(self.source_datapipe) @functional_datapipe("save_by_fsspec") class FSSpecSaverIterDataPipe(IterDataPipe[str]): r""" Takes in a DataPipe of tuples of metadata and data, saves the data to the target path (generated by the filepath_fn and metadata), and yields the resulting `fsspec` path (functional name: ``save_by_fsspec``). Args: source_datapipe: Iterable DataPipe with tuples of metadata and data mode: Mode in which the file will be opened for write the data (``"w"`` by default) filepath_fn: Function that takes in metadata and returns the target path of the new file kwargs_for_open: Optional Dict to specify kwargs for opening files (``fs.open()``) kwargs: Extra options that are used to establish a particular storage connection, e.g. host, port, username, password, etc. Example: .. testsetup:: file_prefix = "file" .. testcode:: from torchdata.datapipes.iter import IterableWrapper def filepath_fn(name: str) -> str: return file_prefix + name name_to_data = {"1.txt": b"DATA1", "2.txt": b"DATA2", "3.txt": b"DATA3"} source_dp = IterableWrapper(sorted(name_to_data.items())) fsspec_saver_dp = source_dp.save_by_fsspec(filepath_fn=filepath_fn, mode="wb") res_file_paths = list(fsspec_saver_dp) .. testcleanup:: import os for name in name_to_data.keys(): os.remove(file_prefix + name) """ def __init__( self, source_datapipe: IterDataPipe[Tuple[Any, U]], mode: str = "w", filepath_fn: Optional[Callable] = None, *, kwargs_for_open: Optional[Dict] = None, **kwargs, ): _assert_fsspec() self.source_datapipe: IterDataPipe[Tuple[Any, U]] = source_datapipe self.mode: str = mode self.filepath_fn: Optional[Callable] = filepath_fn self.kwargs_for_open = kwargs_for_open if kwargs_for_open is not None else {} self.kwargs_for_connection = kwargs def __iter__(self) -> Iterator[str]: for meta, data in self.source_datapipe: filepath = meta if self.filepath_fn is None else self.filepath_fn(meta) fs, path = fsspec.core.url_to_fs(filepath, **self.kwargs_for_connection) with fs.open(path, self.mode, **self.kwargs_for_open) as f: f.write(data) yield filepath def __len__(self) -> int: return len(self.source_datapipe)
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from typing import Any, Iterator, Tuple from torchdata.datapipes.iter import IterDataPipe from torchdata.datapipes.utils import StreamWrapper try: import datasets except ImportError: datasets = None def _get_response_from_huggingface_hub( dataset: str, streaming: bool = True, **config_kwargs, ) -> Iterator[Any]: hf_dataset = datasets.load_dataset(path=dataset, streaming=streaming, **config_kwargs) return iter(hf_dataset) class HuggingFaceHubReaderIterDataPipe(IterDataPipe[Tuple[str, StreamWrapper]]): r""" Takes in dataset names and returns an Iterable HuggingFace dataset. Please refer to https://huggingface.co/docs/datasets/loading for the meaning and type of each argument. Contrary to their implementation, default behavior differs in the following: * ``streaming`` is set to ``True`` Args: dataset: path or name of the dataset **config_kwargs: additional arguments for ``datasets.load_dataset()`` Example: .. testsetup:: import datasets from torchdata.datapipes.iter import IterableWrapper, HuggingFaceHubReader from unittest.mock import MagicMock datasets.load_dataset = MagicMock(return_value=datasets.Dataset.from_dict( {"id": ["7bd227d9-afc9-11e6-aba1-c4b301cdf627", "7bd22905-afc9-11e6-a5dc-c4b301cdf627" ], "package_name": ["com.mantz_it.rfanalyzer"] * 2} )) .. testcode:: huggingface_reader_dp = HuggingFaceHubReader("lhoestq/demo1", revision="main") elem = next(iter(huggingface_reader_dp)) assert elem["package_name"] == "com.mantz_it.rfanalyzer" """ def __init__( self, dataset: str, **config_kwargs, ) -> None: if datasets is None: raise ModuleNotFoundError( "Package `datasets` is required to be installed to use this datapipe." "Please use `pip install datasets` or `conda install -c conda-forge datasets`" "to install the package" ) self.dataset = dataset self.config_kwargs = config_kwargs def __iter__(self) -> Iterator[Any]: return _get_response_from_huggingface_hub(dataset=self.dataset, **self.config_kwargs) def __len__(self) -> int: raise TypeError(f"{type(self).__name__} instance doesn't have valid length")
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import os from typing import Any, Callable, Iterator, List, Optional, Sequence, Tuple, Union from torch.utils.data.datapipes.utils.common import match_masks from torchdata.datapipes import functional_datapipe from torchdata.datapipes.iter import IterableWrapper, IterDataPipe from torchdata.datapipes.utils import StreamWrapper try: import iopath except ImportError: iopath = None U = Union[bytes, bytearray, str] def _create_default_pathmanager(): from iopath.common.file_io import HTTPURLHandler, OneDrivePathHandler, PathManager pathmgr = PathManager() pathmgr.register_handler(HTTPURLHandler(), allow_override=True) pathmgr.register_handler(OneDrivePathHandler(), allow_override=True) # S3PathHandler is not included in 0.1.8 try: from iopath.common.s3 import S3PathHandler pathmgr.register_handler(S3PathHandler(), allow_override=True) except ImportError: pass return pathmgr @functional_datapipe("list_files_by_iopath") class IoPathFileListerIterDataPipe(IterDataPipe[str]): r""" Lists the contents of the directory at the provided ``root`` pathname or URL, and yields the full pathname or URL for each file within the directory (functional name: ``list_files_by_iopath``). Args: root: The root local filepath or URL directory or list of roots to list files from masks: Unix style filter string or string list for filtering file name(s) pathmgr: Custom ``iopath.PathManager``. If not specified, a default ``PathManager`` is created. Note: Default ``PathManager`` currently supports local file path, normal HTTP URL and OneDrive URL. S3 URL is supported only with ``iopath``>=0.1.9. Example: .. testsetup:: s3_url = "path" .. testcode:: from torchdata.datapipes.iter import IoPathFileLister datapipe = IoPathFileLister(root=s3_url) """ def __init__( self, root: Union[str, Sequence[str], IterDataPipe], masks: Union[str, List[str]] = "", *, pathmgr=None, handler=None, ) -> None: if iopath is None: raise ModuleNotFoundError( "Package `iopath` is required to be installed to use this datapipe." "Please use `pip install iopath` or `conda install -c conda-forge iopath`" "to install the package" ) if isinstance(root, str): root = [ root, ] if not isinstance(root, IterDataPipe): self.datapipe: IterDataPipe = IterableWrapper(root) # type: ignore[assignment] else: self.datapipe = root self.pathmgr = _create_default_pathmanager() if pathmgr is None else pathmgr self.masks = masks if handler is not None: self.register_handler(handler, allow_override=True) def register_handler(self, handler, allow_override=False): self.pathmgr.register_handler(handler, allow_override=allow_override) def __iter__(self) -> Iterator[str]: for path in self.datapipe: if self.pathmgr.isfile(path): yield path else: for file_name in self.pathmgr.ls(path): if match_masks(file_name, self.masks): yield os.path.join(path, file_name) @functional_datapipe("open_files_by_iopath") class IoPathFileOpenerIterDataPipe(IterDataPipe[Tuple[str, StreamWrapper]]): r""" Opens files from input datapipe which contains pathnames or URLs, and yields a tuple of pathname and opened file stream (functional name: ``open_files_by_iopath``). Args: source_datapipe: Iterable DataPipe that provides the pathnames or URLs mode: An optional string that specifies the mode in which the file is opened (``"r"`` by default) pathmgr: Custom ``iopath.PathManager``. If not specified, a default ``PathManager`` is created. Note: Default ``PathManager`` currently supports local file path, normal HTTP URL and OneDrive URL. S3 URL is supported only with `iopath`>=0.1.9. Example: .. testsetup:: s3_url = "path" .. testcode:: from torchdata.datapipes.iter import IoPathFileLister datapipe = IoPathFileLister(root=s3_url) file_dp = datapipe.open_files_by_iopath() """ def __init__(self, source_datapipe: IterDataPipe[str], mode: str = "r", pathmgr=None, handler=None) -> None: if iopath is None: raise ModuleNotFoundError( "Package `iopath` is required to be installed to use this datapipe." "Please use `pip install iopath` or `conda install -c conda-forge iopath`" "to install the package" ) self.source_datapipe: IterDataPipe[str] = source_datapipe self.pathmgr = _create_default_pathmanager() if pathmgr is None else pathmgr self.mode: str = mode if handler is not None: self.register_handler(handler, allow_override=True) def register_handler(self, handler, allow_override=False): self.pathmgr.register_handler(handler, allow_override=allow_override) def __iter__(self) -> Iterator[Tuple[str, StreamWrapper]]: for file_uri in self.source_datapipe: file = self.pathmgr.open(file_uri, self.mode) yield file_uri, StreamWrapper(file) def __len__(self) -> int: return len(self.source_datapipe) @functional_datapipe("save_by_iopath") class IoPathSaverIterDataPipe(IterDataPipe[str]): r""" Takes in a DataPipe of tuples of metadata and data, saves the data to the target path which is generated by the ``filepath_fn`` and metadata, and yields the resulting path in `iopath` format (functional name: ``save_by_iopath``). Args: source_datapipe: Iterable DataPipe with tuples of metadata and data mode: Mode in which the file will be opened for write the data (``"w"`` by default) filepath_fn: Function that takes in metadata and returns the target path of the new file pathmgr: Custom ``iopath.PathManager``. If not specified, a default ``PathManager`` is created. Note: Default ``PathManager`` currently supports local file path, normal HTTP URL and OneDrive URL. S3 URL is supported only with `iopath`>=0.1.9. Example: .. testsetup:: s3_url = "url" .. testcode:: from torchdata.datapipes.iter import IterableWrapper def filepath_fn(name: str) -> str: return s3_url + name name_to_data = {"1.txt": b"DATA1", "2.txt": b"DATA2", "3.txt": b"DATA3"} source_dp = IterableWrapper(sorted(name_to_data.items())) iopath_saver_dp = source_dp.save_by_iopath(filepath_fn=filepath_fn, mode="wb") res_file_paths = list(iopath_saver_dp) .. testcleanup:: import os for file in ["1.txt", "1.txt.lock", "2.txt", "2.txt.lock", "3.txt", "3.txt.lock"]: os.remove(s3_url + file) """ def __init__( self, source_datapipe: IterDataPipe[Tuple[Any, U]], mode: str = "w", filepath_fn: Optional[Callable] = None, *, pathmgr=None, handler=None, ): if iopath is None: raise ModuleNotFoundError( "Package `iopath` is required to be installed to use this datapipe." "Please use `pip install iopath` or `conda install -c conda-forge iopath`" "to install the package" ) self.source_datapipe: IterDataPipe[Tuple[Any, U]] = source_datapipe self.mode: str = mode self.filepath_fn: Optional[Callable] = filepath_fn self.pathmgr = _create_default_pathmanager() if pathmgr is None else pathmgr if handler is not None: self.register_handler(handler, allow_override=True) def __iter__(self) -> Iterator[str]: for meta, data in self.source_datapipe: filepath = meta if self.filepath_fn is None else self.filepath_fn(meta) with iopath.file_lock(filepath): if not os.path.exists(filepath): with self.pathmgr.open(filepath, self.mode) as f: f.write(data) yield filepath def register_handler(self, handler, allow_override=False): self.pathmgr.register_handler(handler, allow_override=allow_override) def __len__(self) -> int: return len(self.source_datapipe)
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import asyncio import inspect import random import warnings from collections import deque from concurrent import futures from typing import Callable, Hashable, Iterator, List, Optional, Set, Sized, TypeVar, Union import torch from torch.utils.data.datapipes.utils.common import _check_unpickable_fn, validate_input_col from torchdata.datapipes import functional_datapipe from torchdata.datapipes.iter import IterDataPipe T_co = TypeVar("T_co", covariant=True) def _no_op_fn(*args): """ No-operation function, returns passed arguments. """ if len(args) == 1: return args[0] return args @functional_datapipe("map_batches") class BatchMapperIterDataPipe(IterDataPipe[T_co]): r""" Combines elements from the source DataPipe to batches and applies a function over each batch, then flattens the outputs to a single, unnested IterDataPipe (functional name: ``map_batches``). Args: datapipe: Source IterDataPipe fn: The function to be applied to each batch of data batch_size: The size of batch to be aggregated from ``datapipe`` input_col: Index or indices of data which ``fn`` is applied, such as: - ``None`` as default to apply ``fn`` to the data directly. - Integer(s) is used for list/tuple. - Key(s) is used for dict. Example: >>> from torchdata.datapipes.iter import IterableWrapper >>> def fn(batch): >>> return [d + 1 for d in batch] >>> source_dp = IterableWrapper(list(range(5))) >>> mapped_dp = source_dp.map_batches(fn, batch_size=3) >>> list(mapped_dp) [1, 2, 3, 4, 5] Notes: Compared with ``map``, the reason that ``map_batches`` doesn't take ``output_col`` argument is the size of ``fn`` output is not guaranteed to be the same as input batch. With different size, this operation cannot assign data back to original data structure. And, this operation is introduced based on the use case from `TorchText`. A pybinded C++ vectorized function can be applied for efficiency. """ datapipe: IterDataPipe fn: Callable batch_size: int def __init__( self, datapipe: IterDataPipe, fn: Callable, batch_size: int, input_col=None, ) -> None: self.datapipe = datapipe _check_unpickable_fn(fn) self.fn = fn # type: ignore[assignment] assert batch_size > 0, "Batch size is required to be larger than 0!" self.batch_size = batch_size self.input_col = input_col def _apply_fn(self, batch): if self.input_col is None: return self.fn(batch) if isinstance(self.input_col, (list, tuple)): args = [[data[idx] for idx in self.input_col] for data in batch] else: args = [data[self.input_col] for data in batch] return self.fn(args) def __iter__(self) -> Iterator[T_co]: batch: List = [] for d in self.datapipe: batch.append(d) if len(batch) == self.batch_size: yield from self._apply_fn(batch) batch = [] if batch: yield from self._apply_fn(batch) def __len__(self) -> int: raise TypeError(f"{type(self).__name__}'s length relies on the output of its function.") @functional_datapipe("flatmap") class FlatMapperIterDataPipe(IterDataPipe[T_co]): r""" Applies a function over each item from the source DataPipe, then flattens the outputs to a single, unnested IterDataPipe (functional name: ``flatmap``). Note: The output from ``fn`` must be a Sequence. Otherwise, an error will be raised. If ``fn`` is ``None``, source DataPipe will be just flattened vertically, provided that items can be unpacked. Args: datapipe: Source IterDataPipe fn: the function to be applied to each element in the DataPipe, the output must be a Sequence input_col: Index or indices of data which ``fn`` is applied, such as: - ``None`` as default to apply ``fn`` to the data directly. - Integer(s) is/are used for list/tuple. - Key(s) is/are used for dict. Example: >>> from torchdata.datapipes.iter import IterableWrapper >>> def fn(e): >>> return [e, e * 10] >>> source_dp = IterableWrapper(list(range(5))) >>> flatmapped_dp = source_dp.flatmap(fn) >>> list(flatmapped_dp) [0, 0, 1, 10, 2, 20, 3, 30, 4, 40] >>> >>> source_dp = IterableWrapper([[1, 2, 3], [4, 5, 6]]) >>> flatmapped_dp = source_dp.flatmap() >>> list(flatmapped_dp) [1, 2, 3, 4, 5, 6] """ datapipe: IterDataPipe fn: Optional[Callable] def __init__(self, datapipe: IterDataPipe, fn: Optional[Callable] = None, input_col=None) -> None: self.datapipe = datapipe if fn is None: fn = _no_op_fn _check_unpickable_fn(fn) self.fn = fn # type: ignore[assignment] self.input_col = input_col validate_input_col(fn, input_col) def _apply_fn(self, data): if self.input_col is None: return self.fn(data) # type: ignore[misc] elif isinstance(self.input_col, (list, tuple)): args = tuple(data[col] for col in self.input_col) return self.fn(*args) # type: ignore[misc] else: return self.fn(data[self.input_col]) # type: ignore[misc] def __iter__(self) -> Iterator[T_co]: for d in self.datapipe: yield from self._apply_fn(d) def __len__(self) -> int: raise TypeError(f"{type(self).__name__}'s length relies on the output of its function.") @functional_datapipe("shuffled_flatmap") class ShuffledFlatMapperIterDataPipe(IterDataPipe): r""" Applies a function over each item from the source DataPipe, then collects the iterables returned in a buffer, then, at every iteration, chooses at random one of the iterables in the buffer and yields one item from this iterable (functional name: ``shuffled_flatmap``). When the buffer is full, the DataPipe will begin to yield elements from iterables within the buffer. New iterables will be added to the buffer once the existing ones run out of elements. Note: The output from ``fn`` must be an Iterable. Otherwise, an error will be raised. If ``fn`` is ``None``, source DataPipe will be just flattened vertically, provided that items can be unpacked. Args: datapipe: Source IterDataPipe fn: the function to be applied to each element in the DataPipe, the output must be a Sequence input_col: Index or indices of data which ``fn`` is applied, such as: - ``None`` as default to apply ``fn`` to the data directly. - Integer(s) is/are used for list/tuple. - Key(s) is/are used for dict. buffer_size: the max number of iterables this DataPipe can hold at a time (default to ``100``) Example: >>> from torchdata.datapipes.iter import IterableWrapper >>> source_dp = IterableWrapper([[1, 2, 3, 4], 'abcd', 'ABCD']) >>> shuffled_flatmapped_dp = source_dp.shuffled_flatmap(buffer_size=2) >>> list(shuffled_flatmapped_dp) ['a', 'b', 'c', 1, 'd', 'A', 'B', 'C', 2, 'D', 3, 4] >>> >>> # To shuffle all the elements, you can combine `shuffled_flatmap` with `in_batch_shuffle` like this: >>> fully_shuffled_flatmapped_dp = source_dp.in_batch_shuffle() >>> fully_shuffled_flatmapped_dp = fully_shuffled_flatmapped_dp.shuffled_flatmap() >>> list(fully_shuffled_flatmapped_dp) ['b', 3, 'c', 'd', 'C', 'A', 'a', 2, 'B', 'D', 4, 1] """ datapipe: IterDataPipe fn: Optional[Callable] buffer_size: int _buffer: List[Iterator] _enabled: bool _seed: Optional[int] _rng: random.Random _no_op_fn: bool = False def __init__( self, datapipe: IterDataPipe, fn: Optional[Callable] = None, input_col=None, buffer_size: int = 100 ) -> None: super().__init__() self._buffer = [] self.datapipe = datapipe if fn is None: fn = _no_op_fn self._no_op_fn = True _check_unpickable_fn(fn) self.fn = fn # type: ignore[assignment] self.input_col = input_col validate_input_col(fn, input_col) assert buffer_size > 0, "buffer_size should be larger than 0" self.buffer_size = buffer_size self._enabled = True self._seed = None self._rng = random.Random() def set_shuffle(self, shuffle=True): self._enabled = shuffle return self def set_seed(self, seed: int): self._seed = seed return self def reset(self) -> None: self._buffer = [] if self._enabled: if self._seed is None: self._seed = int(torch.empty((), dtype=torch.int64).random_().item()) self._rng.seed(self._seed) self._seed = None def _apply_fn(self, data): if self.input_col is None: return self.fn(data) # type: ignore[misc] elif isinstance(self.input_col, (list, tuple)): args = tuple(data[col] for col in self.input_col) return self.fn(*args) # type: ignore[misc] else: return self.fn(data[self.input_col]) # type: ignore[misc] def __iter__(self) -> Iterator[T_co]: if not self._enabled: # equivalent to flatmap for x in self.datapipe: yield from self._apply_fn(x) else: idx = self._rng.randint(0, self.buffer_size - 1) for x in self.datapipe: while len(self._buffer) == self.buffer_size: try: yield next(self._buffer[idx]) idx = self._rng.randint(0, self.buffer_size - 1) except StopIteration: self._buffer.pop(idx) self._buffer.append(iter(self._apply_fn(x))) while self._buffer: try: idx = self._rng.randint(0, len(self._buffer) - 1) yield next(self._buffer[idx]) except StopIteration: self._buffer.pop(idx) def __len__(self) -> int: if self._no_op_fn: return sum(map(len, self.datapipe)) raise TypeError(f"{type(self).__name__}'s length relies on the output of its function.") def __getstate__(self): state = ( self.datapipe, self.fn, self.input_col, self.buffer_size, self._buffer, self._enabled, self._seed, self._rng.getstate(), self._valid_iterator_id, self._number_of_samples_yielded, ) if IterDataPipe.getstate_hook is not None: return IterDataPipe.getstate_hook(state) return state def __setstate__(self, state): ( self.datapipe, self.fn, self.input_col, self.buffer_size, self._buffer, self._enabled, self._seed, rng_state, self._valid_iterator_id, self._number_of_samples_yielded, ) = state self._rng = random.Random() self._rng.setstate(rng_state) def __del__(self): self._buffer.clear() @functional_datapipe("drop") class DropperIterDataPipe(IterDataPipe[T_co]): r""" Drop columns/elements in input DataPipe via its indices (functional name: ``drop``). Args: datapipe: IterDataPipe with columns to be dropped indices: a single column index to be dropped or a list of indices - Integer(s) is/are used for list/tuple. - Key(s) is/are used for dict. Example: >>> from torchdata.datapipes.iter import IterableWrapper, ZipperMapDataPipe >>> dp1 = IterableWrapper(range(5)) >>> dp2 = IterableWrapper(range(10, 15)) >>> dp = dp1.zip(dp2) >>> list(dp) [(0, 10), (1, 11), (2, 12), (3, 13), (4, 14)] >>> drop_dp = dp.drop(1) >>> list(drop_dp) [(0), (1), (2), (3), (4)] """ datapipe: IterDataPipe def __init__( self, datapipe: IterDataPipe, indices: Union[Hashable, List[Hashable]], ) -> None: super().__init__() self.datapipe = datapipe if isinstance(indices, list): self.indices = set(indices) else: self.indices = {indices} def __iter__(self) -> Iterator[T_co]: for old_item in self.datapipe: if isinstance(old_item, tuple): new_item = tuple(x for i, x in enumerate(old_item) if i not in self.indices) # type: ignore[assignment] elif isinstance(old_item, list): new_item = [x for i, x in enumerate(old_item) if i not in self.indices] # type: ignore[assignment] elif isinstance(old_item, dict): new_item = {k: v for (k, v) in old_item.items() if k not in self.indices} # type: ignore[assignment] else: new_item = old_item warnings.warn( "The next item was not an iterable and cannot be filtered, " "please be aware that no filter was done or new item created." ) # check to make sure all indices requested were in the item. warn if not try: for i in self.indices: old_item[i] except (IndexError, KeyError): warnings.warn( "At least one index in the filter is not present in the item being returned," " please be aware that expected columns/keys may be missing." ) yield new_item # type: ignore[misc] def __len__(self) -> int: if isinstance(self.datapipe, Sized): return len(self.datapipe) raise TypeError(f"{type(self).__name__} instance doesn't have valid length") @functional_datapipe("slice") class SliceIterDataPipe(IterDataPipe[T_co]): r""" returns a slice of elements in input DataPipe via start/stop/step or indices (functional name: ``slice``). Args: datapipe: IterDataPipe with iterable elements index: a single start index for the slice or a list of indices to be returned instead of a start/stop slice - Integer(s) is/are used for list/tuple. - Key(s) is/are used for dict. stop: the slice stop. ignored if index is a list or if element is a dict step: step to be taken from start to stop. ignored if index is a list or if element is a dict Example: >>> from torchdata.datapipes.iter import IterableWrapper >>> dp = IterableWrapper([(0, 10, 100), (1, 11, 111), (2, 12, 122), (3, 13, 133), (4, 14, 144)]) >>> slice_dp = dp.slice(0, 2) >>> list(slice_dp) [(0, 10), (1, 11), (2, 12), (3, 13), (4, 14)] """ datapipe: IterDataPipe def __init__( self, datapipe: IterDataPipe, index: Union[int, List[Hashable]], stop: Optional[int] = None, step: Optional[int] = None, ) -> None: super().__init__() self.datapipe = datapipe self.index = index self.stop = stop self.step = step if isinstance(index, list): if stop or step: warnings.warn( "A list of indices was passed as well as a stop or step for the slice, " "these arguments can't be used together so only the indices list will be used." ) def __iter__(self) -> Iterator[T_co]: for old_item in self.datapipe: if isinstance(old_item, tuple): if isinstance(self.index, list): new_item = tuple(x for i, x in enumerate(old_item) if i in self.index) # type: ignore[assignment] else: new_item = old_item[self.index : self.stop : self.step] # type: ignore[assignment] elif isinstance(old_item, list): if isinstance(self.index, list): new_item = [x for i, x in enumerate(old_item) if i in self.index] # type: ignore[assignment] else: new_item = old_item[self.index : self.stop : self.step] # type: ignore[assignment] elif isinstance(old_item, dict): if isinstance(self.index, list): new_item = {k: v for (k, v) in old_item.items() if k in self.index} # type: ignore[assignment] elif self.index in old_item.keys(): new_item = {self.index: old_item.get(self.index)} # type: ignore[assignment] else: new_item = old_item # type: ignore[assignment] warnings.warn( "Dictionaries are not sliced by steps, only direct index. " "Please be aware that no filter was done or new item created." ) else: new_item = old_item # type: ignore[assignment] warnings.warn( "The next item was not an iterable and cannot be filtered, " "please be aware that no filter was done or new item created." ) if isinstance(self.index, list): # check to make sure all indices requested were in the item. warn if not try: for i in self.index: old_item[i] except (IndexError, KeyError): warnings.warn( "At least one index in the filter is not present in the item being returned," " please be aware that expected columns/keys may be missing." ) yield new_item # type: ignore[misc] def __len__(self) -> int: if isinstance(self.datapipe, Sized): return len(self.datapipe) raise TypeError(f"{type(self).__name__} instance doesn't have valid length") @functional_datapipe("flatten") class FlattenIterDataPipe(IterDataPipe[T_co]): r""" returns a flattened copy of the input DataPipe at the per sample/element level based on provided indices (functional name: ``flatten``). Note: no args will flatten each item in the datapipe 1 level Args: datapipe: IterDataPipe with iterable elements indices: a single index/key for the item to flatten from an iterator item or a list of indices/keys to be flattened - Integer(s) is/are used for list/tuple. - Key(s) is/are used for dict. Example: >>> from torchdata.datapipes.iter import IterableWrapper >>> dp = IterableWrapper([(0, 10, (100, 1000)), (1, 11, (111, 1001)), (2, 12, (122, 1002)), (3, 13, (133, 1003)), (4, 14, (144, 1004))]) >>> flatten_dp = dp.flatten(2) >>> list(flatten_dp) [(0, 10, 100, 1000), (1, 11, 111, 1001), (2, 12, 122, 1002), (3, 13, 133, 1003), (4, 14, 144, 1004)] >>> >>> dp = IterableWrapper([(0, (1, 2)), (3, (4, 5)), (6, (7, 8))]) >>> flatten_dp = dp.flatten() >>> list(flatten_dp) [(0, 1, 2), (3, 4, 5), (6, 7, 8)] """ datapipe: IterDataPipe indices: Set[Hashable] = set() def __init__( self, datapipe: IterDataPipe, indices: Optional[Union[Hashable, List[Hashable]]] = None, ) -> None: super().__init__() self.datapipe = datapipe if indices: if isinstance(indices, list): self.indices = set(indices) else: self.indices = {indices} def __iter__(self) -> Iterator[T_co]: flatten_all = False if not self.indices: flatten_all = True for old_item in self.datapipe: if isinstance(old_item, dict): new_item = {} # type: ignore[assignment] for k, v in old_item.items(): if k in self.indices: pass if (flatten_all or (k in self.indices)) and isinstance(v, dict): for k_sub, v_sub in v.items(): if k_sub not in old_item: new_item[k_sub] = v_sub else: warnings.warn( "Flattener tried to insert the same key twice into the dict item," "the second key,value pair has been dropped." ) else: if k not in new_item: new_item[k] = v else: warnings.warn( "Flattener tried to insert the same key twice into the dict item," "the second key,value pair has been dropped." ) else: is_tuple = False new_item = [] # type: ignore[assignment] if isinstance(old_item, tuple): is_tuple = True old_item = list(old_item) for i, item in enumerate(old_item): if (flatten_all or (i in self.indices)) and isinstance(item, (list, tuple)): new_item.extend(list(item)) # type: ignore[attr-defined] else: new_item.append(item) # type: ignore[attr-defined] if is_tuple: new_item = tuple(new_item) # type: ignore[assignment] # check to make sure all indices requested were in the item. warn if not try: if self.indices: for index in self.indices: old_item[index] except (IndexError, KeyError): warnings.warn( "At least one index in the filter is not present in the item being returned," " please be aware that expected columns/keys may be missing." ) yield new_item # type: ignore[misc] def __len__(self) -> int: if isinstance(self.datapipe, Sized): return len(self.datapipe) raise TypeError(f"{type(self).__name__} instance doesn't have valid length") class _BatchAsyncMapperIterDataPipe(IterDataPipe): datapipe: IterDataPipe async_fn: Callable def __init__( self, source_datapipe: IterDataPipe, async_fn: Callable, input_col=None, output_col=None, max_concurrency: int = 32, ): self.source_datapipe = source_datapipe if not inspect.iscoroutinefunction(async_fn): raise ValueError(f"Expected a corotine function with an async def syntax, but got a {type(async_fn)}") self.async_fn = async_fn # type: ignore[assignment] if input_col is None and output_col is not None: raise ValueError("`output_col` must be None when `input_col` is None.") self.input_col = input_col if isinstance(output_col, (list, tuple)): if len(output_col) > 1: raise ValueError("`output_col` must be a single-element list or tuple") output_col = output_col[0] self.output_col = output_col self.max_concurrency = max_concurrency def __iter__(self): policy = asyncio.get_event_loop_policy() loop = policy.new_event_loop() try: for batch in self.source_datapipe: policy.set_event_loop(loop) new_batch = loop.run_until_complete(self.processbatch(batch)) yield new_batch finally: loop.run_until_complete(loop.shutdown_asyncgens()) loop.close() async def processbatch(self, batch): sem = asyncio.Semaphore(self.max_concurrency) async def controlled_async_fn(async_fn, *data): async with sem: return await async_fn(*data) coroutines = [] if self.input_col is None: for data in batch: coroutines.append(controlled_async_fn(self.async_fn, data)) results = await asyncio.gather(*coroutines) return results for data in batch: if isinstance(self.input_col, (list, tuple)): args = tuple(data[col] for col in self.input_col) coroutines.append(controlled_async_fn(self.async_fn, *args)) else: coroutines.append(controlled_async_fn(self.async_fn, data[self.input_col])) results = await asyncio.gather(*coroutines) new_batch = [] for data, res in zip(batch, results): t_flag = isinstance(data, tuple) if t_flag: data = list(data) if self.output_col is None: if isinstance(self.input_col, (list, tuple)): data[self.input_col[0]] = res for idx in sorted(self.input_col[1:], reverse=True): del data[idx] else: data[self.input_col] = res elif self.output_col == -1: data.append(res) else: data[self.output_col] = res if t_flag: data = tuple(data) new_batch.append(data) return new_batch def __len__(self): return len(self.source_datapipe) @functional_datapipe("async_map_batches") class BatchAsyncMapperIterDataPipe(IterDataPipe): r""" Combines elements from the source DataPipe to batches and applies a coroutine function over each element within the batch concurrently, then flattens the outpus to a single, unnested IterDataPipe (functional name: ``async_map_batches``). Args: source_datapipe: Source IterDataPipe async_fn: The coroutine function to be applied to each batch of data batch_size: The size of batch to be aggregated from ``source_datapipe`` input_col: Index or indices of data which ``fn`` is applied, such as: - ``None`` as default to apply ``fn`` to the data directly. - Integer(s) is used for list/tuple. - Key(s) is used for dict. output_col: Index of data where result of ``fn`` is placed. ``output_col`` can be specified only when ``input_col`` is not ``None`` - ``None`` as default to replace the index that ``input_col`` specified; For ``input_col`` with multiple indices, the left-most one is used, and other indices will be removed. - Integer is used for list/tuple. ``-1`` represents to append result at the end. - Key is used for dict. New key is acceptable. max_concurrency: Maximum concurrency to call async functions. (Default: ``32``) flatten: Determine if the batches get flatten in the end (Default: ``True``) If ``False``, outputs will be in batches of size ``batch_size`` Example: >>> from torchdata.datapipes.iter import IterableWrapper >>> async def mul_ten(x): ... await asyncio.sleep(1) ... return x * 10 >>> dp = IterableWrapper(range(50)) >>> dp = dp.async_map_batches(mul_ten, 16) >>> list(dp) [0, 10, 20, 30, ...] >>> dp = IterableWrapper([(i, i) for i in range(50)]) >>> dp = dp.async_map_batches(mul_ten, 16, input_col=1) >>> list(dp) [(0, 0), (1, 10), (2, 20), (3, 30), ...] >>> dp = IterableWrapper([(i, i) for i in range(50)]) >>> dp = dp.async_map_batches(mul_ten, 16, input_col=1, output_col=-1) >>> list(dp) [(0, 0, 0), (1, 1, 10), (2, 2, 20), (3, 3, 30), ...] # Async fetching html from remote >>> from aiohttp import ClientSession >>> async def fetch_html(url: str, **kwargs): ... async with ClientSession() as session: ... resp = await session.request(method="GET", url=url, **kwargs) ... resp.raise_for_status() ... html = await resp.text() ... return html >>> dp = IterableWrapper(urls) >>> dp = dp.async_map_batches(fetch_html, 16) """ def __new__( self, source_datapipe, async_fn: Callable, batch_size: int, input_col=None, output_col=None, max_concurrency: int = 32, flatten: bool = True, ): dp = source_datapipe.batch(batch_size) dp = _BatchAsyncMapperIterDataPipe(dp, async_fn, input_col, output_col, max_concurrency) if flatten: dp = dp.flatmap() try: source_length = len(source_datapipe) if isinstance(source_length, int) and source_length >= 0: dp = dp.set_length(source_length) except (TypeError, NotImplementedError): pass return dp @functional_datapipe("threadpool_map") class ThreadPoolMapperIterDataPipe(IterDataPipe[T_co]): r""" Applies a function over each item from the source DataPipe concurrently using ``ThreadPoolExecutor`` (functional name: ``threadpool_map``). The function can be any regular Python function or partial object. Lambda function is not recommended as it is not supported by pickle. Args: source_datapipe: Source IterDataPipe fn: Function being applied over each item input_col: Index or indices of data which ``fn`` is applied, such as: - ``None`` as default to apply ``fn`` to the data directly. - Integer(s) is used for list/tuple. - Key(s) is used for dict. output_col: Index of data where result of ``fn`` is placed. ``output_col`` can be specified only when ``input_col`` is not ``None`` - ``None`` as default to replace the index that ``input_col`` specified; For ``input_col`` with multiple indices, the left-most one is used, and other indices will be removed. - Integer is used for list/tuple. ``-1`` represents to append result at the end. - Key is used for dict. New key is acceptable. scheduled_tasks: How many tasks will be scheduled at any given time (Default value: 128) max_workers: Maximum number of threads to execute function calls **threadpool_kwargs: additional arguments to be given to the ``ThreadPoolExecutor`` Note: For more information about ``max_workers`` and additional arguments for the ``ThreadPoolExecutor`` please refer to: https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.ThreadPoolExecutor Note: For optimal use of all threads, ``scheduled_tasks`` > ``max_workers`` is strongly recommended. The higher the variance of the time needed to finish execution of the given ``fn`` is, the higher the value of ``scheduled_tasks`` needs to be to avoid threads sitting idle while waiting for the next result (as results are returned in correct order). However, too high value of ``scheduled_tasks`` might lead to long waiting period until the first element is yielded as ``next`` is called ``scheduled_tasks`` many times on ``source_datapipe`` before yielding. We encourage you to try out different values of ``max_workers`` and ``scheduled_tasks`` in search for optimal values for your use-case. Example: .. testsetup:: from torchdata.datapipes.iter import IterableWrapper import requests import time from unittest.mock import MagicMock requests.get = MagicMock() urls = [] .. testcode:: # fetching html from remote def fetch_html(url: str, **kwargs): r = requests.get(url, **kwargs) r.raise_for_status() return r.content dp = IterableWrapper(urls) dp = dp.threadpool_map(fetch_html,max_workers=16) .. testcode:: def mul_ten(x): time.sleep(0.1) return x * 10 dp = IterableWrapper([(i, i) for i in range(50)]) dp = dp.threadpool_map(mul_ten, input_col=1) print(list(dp)) .. testoutput:: [(0, 0), (1, 10), (2, 20), (3, 30), ...] .. testcode:: dp = IterableWrapper([(i, i) for i in range(50)]) dp = dp.threadpool_map(mul_ten, input_col=1, output_col=-1) print(list(dp)) .. testoutput:: [(0, 0, 0), (1, 1, 10), (2, 2, 20), (3, 3, 30), ...] """ datapipe: IterDataPipe fn: Callable def __init__( self, source_datapipe: IterDataPipe, fn: Callable, input_col=None, output_col=None, scheduled_tasks: int = 128, max_workers: Optional[int] = None, **threadpool_kwargs, ) -> None: super().__init__() self.datapipe = source_datapipe _check_unpickable_fn(fn) self.fn = fn # type: ignore[assignment] if scheduled_tasks <= 0: raise ValueError("'scheduled_tasks' is required to be a positive integer.") self.scheduled_tasks = scheduled_tasks if max_workers is not None and max_workers <= 0: raise ValueError("'max_workers' is required to be a positive integer.") self.max_workers = max_workers self.threadpool_kwargs = threadpool_kwargs self.input_col = input_col if input_col is None and output_col is not None: raise ValueError("`output_col` must be None when `input_col` is None.") if isinstance(output_col, (list, tuple)): if len(output_col) > 1: raise ValueError("`output_col` must be a single-element list or tuple") output_col = output_col[0] self.output_col = output_col validate_input_col(fn, input_col) def _apply_fn(self, data): if self.input_col is None and self.output_col is None: return self.fn(data) if self.input_col is None: res = self.fn(data) elif isinstance(self.input_col, (list, tuple)): args = tuple(data[col] for col in self.input_col) res = self.fn(*args) else: res = self.fn(data[self.input_col]) # Copy tuple to list and run in-place modification because tuple is immutable. if isinstance(data, tuple): t_flag = True data = list(data) else: t_flag = False if self.output_col is None: if isinstance(self.input_col, (list, tuple)): data[self.input_col[0]] = res for idx in sorted(self.input_col[1:], reverse=True): del data[idx] else: data[self.input_col] = res else: if self.output_col == -1: data.append(res) else: data[self.output_col] = res # Convert list back to tuple return tuple(data) if t_flag else data def __iter__(self) -> Iterator[T_co]: with futures.ThreadPoolExecutor(max_workers=self.max_workers, **self.threadpool_kwargs) as executor: futures_deque: deque = deque() has_next = True itr = iter(self.datapipe) for _ in range(self.scheduled_tasks): try: futures_deque.append(executor.submit(self._apply_fn, next(itr))) except StopIteration: has_next = False break while len(futures_deque) > 0: if has_next: try: futures_deque.append(executor.submit(self._apply_fn, next(itr))) except StopIteration: has_next = False yield futures_deque.popleft().result() def __len__(self) -> int: if isinstance(self.datapipe, Sized): return len(self.datapipe) raise TypeError(f"{type(self).__name__} instance doesn't have valid length")
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree.
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import heapq import random from dataclasses import dataclass, field from functools import partial from typing import Callable, final, Generic, Iterator, List, Optional, TypeVar import torch from torchdata.datapipes import DataChunk, functional_datapipe from torchdata.datapipes.iter import IterDataPipe T = TypeVar("T") T_co = TypeVar("T_co", covariant=True) @functional_datapipe("in_batch_shuffle") class InBatchShufflerIterDataPipe(IterDataPipe[DataChunk[T_co]]): r""" Shuffles each mini-batch from the prior DataPipe (functional name: ``in_batch_shuffle``). Args: datapipe: Iterable DataPipe with batched data Example: >>> from torchdata.datapipes.iter import IterableWrapper >>> source_dp = IterableWrapper(range(10)) >>> batch_dp = source_dp.batch(batch_size=3, drop_last=True) >>> list(batch_dp) [[0, 1, 2], [3, 4, 5], [6, 7, 8]] >>> in_batch_shuffle_dp = batch_dp.in_batch_shuffle() >>> list(in_batch_shuffle_dp) [[2, 0, 1], [3, 5, 4], [7, 8, 6]] """ def __init__(self, datapipe: IterDataPipe[DataChunk[T_co]]): self.datapipe = datapipe self._enabled = True self._seed: Optional[int] = None self._rng = random.Random() def set_shuffle(self, shuffle=True): self._enabled = shuffle return self def set_seed(self, seed: int): self._seed = seed return self def __iter__(self) -> Iterator[DataChunk[T_co]]: if not self._enabled: for batch in self.datapipe: yield batch else: for batch in self.datapipe: new_batch = self._rng.sample(batch, len(batch)) yield DataChunk(new_batch) @final def reset(self) -> None: if self._enabled: if self._seed is None: self._seed = int(torch.empty((), dtype=torch.int64).random_().item()) self._rng.seed(self._seed) self._seed = None def __len__(self) -> int: return len(self.datapipe) def __getstate__(self): state = ( self.datapipe, self._enabled, self._seed, self._rng.getstate(), self._valid_iterator_id, self._number_of_samples_yielded, ) if IterDataPipe.getstate_hook is not None: return IterDataPipe.getstate_hook(state) return state def __setstate__(self, state): ( self.datapipe, self._enabled, self._seed, rng_state, self._valid_iterator_id, self._number_of_samples_yielded, ) = state self._rng = random.Random() self._rng.setstate(rng_state) @functional_datapipe("bucketbatch") class BucketBatcherIterDataPipe(IterDataPipe[DataChunk[T_co]]): r""" Creates mini-batches of data from sorted bucket (functional name: ``bucketbatch``). An outer dimension will be added as ``batch_size`` if ``drop_last`` is set to ``True``, or ``length % batch_size`` for the last batch if ``drop_last`` is set to ``False``. The purpose of this DataPipe is to batch samples with some similarity according to the sorting function being passed. For an example in the text domain, it may be batching examples with similar number of tokens to minimize padding and to increase throughput. Args: datapipe: Iterable DataPipe being batched batch_size: The size of each batch drop_last: Option to drop the last batch if it's not full batch_num: Number of batches within a bucket (i.e. `bucket_size = batch_size * batch_num`) bucket_num: Number of buckets to consist a pool for shuffling (i.e. `pool_size = bucket_size * bucket_num`) sort_key: Callable to sort a bucket (list) use_in_batch_shuffle: if True, do in-batch shuffle; if False, buffer shuffle Example: >>> from torchdata.datapipes.iter import IterableWrapper >>> source_dp = IterableWrapper(range(10)) >>> batch_dp = source_dp.bucketbatch(batch_size=3, drop_last=True) >>> list(batch_dp) [[5, 6, 7], [9, 0, 1], [4, 3, 2]] >>> def sort_bucket(bucket): >>> return sorted(bucket) >>> batch_dp = source_dp.bucketbatch( >>> batch_size=3, drop_last=True, batch_num=100, >>> bucket_num=1, use_in_batch_shuffle=False, sort_key=sort_bucket >>> ) >>> list(batch_dp) [[3, 4, 5], [6, 7, 8], [0, 1, 2]] """ datapipe: IterDataPipe[T_co] batch_size: int drop_last: bool batch_num: int bucket_num: int sort_key: Optional[Callable] use_in_batch_shuffle: bool def __new__( cls, datapipe: IterDataPipe[T_co], batch_size: int, drop_last: bool = False, batch_num: int = 100, bucket_num: int = 1, sort_key: Optional[Callable] = None, use_in_batch_shuffle: bool = True, ): assert batch_size > 0, "Batch size is required to be larger than 0!" assert batch_num > 0, "Number of batches is required to be larger than 0!" assert bucket_num > 0, "Number of buckets is required to be larger than 0!" bucket_size = batch_size * batch_num pool_size = bucket_size * bucket_num # Shuffle by pool_size if bucket_num > 1 or sort_key is None: if use_in_batch_shuffle: datapipe = datapipe.batch(batch_size=pool_size, drop_last=False).in_batch_shuffle().unbatch() else: datapipe = datapipe.shuffle(buffer_size=pool_size) # Sort by bucket_size if sort_key is given if sort_key is not None: datapipe = datapipe.batch(bucket_size).map(fn=sort_key).unbatch() # Batch and drop last (if needed) datapipe = datapipe.batch(batch_size, drop_last=drop_last) # Shuffle the batched data if sort_key is not None: # In-batch shuffle each bucket seems not that useful, it seems misleading since .batch is called prior. if use_in_batch_shuffle: datapipe = datapipe.batch(batch_size=bucket_num, drop_last=False).in_batch_shuffle().unbatch() else: datapipe = datapipe.shuffle(buffer_size=bucket_size) return datapipe def _default_len_fn(token): return len(token) @dataclass(order=True, frozen=True) class PrioritizedItem(Generic[T_co]): length: int data: T_co = field(compare=False) def _token_len_fn(token: T, len_fn: Callable) -> PrioritizedItem[T]: return PrioritizedItem(length=len_fn(token), data=token) def _token_filter_fn(data, *, min_len, max_len): return data.length >= min_len and data.length <= max_len @functional_datapipe("max_token_bucketize") class MaxTokenBucketizerIterDataPipe(IterDataPipe[DataChunk[T_co]]): r""" Creates mini-batches of data from a min-heap with limited size, and the total length of samples returned by ``len_fn`` within each batch will be limited by ``max_token_count`` (functional name: ``max_token_bucketize``). If ``min_len`` or ``max_len`` is set, the samples with length that is out of ``[min_len, max_len]`` will be filtered out. The purpose of this DataPipe is to batch samples with similar length according to ``len_fn``. Min-heap is used here to make sure the samples are sorted incrementally based on the length. And, the total length of samples in each batch is guaranteed to be smaller than ``max_token_count``. For an example in the audio domain, it may be batching samples with similar length. Then, given the ``max_token_count``, each batch may be concatenated to a Tensor with the same size and minimum padding. If ``include_padding`` is set to ``True``, the token count of each batch includes the padding a succeeding DataPipe could add. This guarentees that even after the batch is padded, ``max_token_count`` will not be exceeded. This can prevent out-of-memory issues for data with large variations in length. Note that batches are bucketized starting from the smallest size in a buffer. This can limit the variablity of batches if ``buffer_size`` is large. To increase variablity, apply ``torchdata.datapipes.iter.Shuffler`` before and after this DataPipe, and keep ``buffer_size`` small. Args: datapipe: Iterable DataPipe being batched max_token_count: Maximum length of total length of data in each batch len_fn: Function to be applied to each element to get lengths. ``len(data)`` is used by default. min_len: Optional minimum length to be included into each batch max_len: Optional maximum length to be included into each batch. buffer_size: This restricts how many samples are taken from prior DataPipe to bucketize include_padding: If True, the size of each batch includes the extra padding to the largest length in the batch. Example: >>> from torchdata.datapipes.iter import IterableWrapper >>> source_dp = IterableWrapper(['1', '11', '1', '1111', '111', '1', '11', '11', '111']) >>> # Using default len_fn to sort samples based on length (string length in this case) >>> batch_dp = source_dp.max_token_bucketize(max_token_count=5) >>> list(batch_dp) [['1', '1', '1', '11'], ['11', '11'], ['111'], ['111'], ['1111']] >>> batch_dp = source_dp.max_token_bucketize(max_token_count=4, buffer_size=4) >>> list(batch_dp) [['1', '1', '1'], ['11', '11'], ['11'], ['111'], ['111'], ['1111']] """ datapipe: IterDataPipe[PrioritizedItem[T_co]] max_token_count: int len_fn: Callable min_len: int max_len: Optional[int] buffer_size: int def __init__( self, datapipe: IterDataPipe[T_co], max_token_count: int, len_fn: Callable = _default_len_fn, min_len: int = 0, max_len: Optional[int] = None, buffer_size: int = 1000, include_padding: bool = False, ) -> None: if max_len is None: max_len = max_token_count if min_len < 0 or min_len > max_len: raise ValueError("``min_len`` should be larger than 0 and equal to or smaller than ``max_len``.") if max_len > max_token_count: raise ValueError("``max_token_count`` must be equal to or greater than ``max_len``.") if buffer_size <= 0: raise ValueError("'buffer_size' is required to be a positive integer.") self.datapipe = datapipe.map(partial(_token_len_fn, len_fn=len_fn)) self.datapipe = self.datapipe.filter(partial(_token_filter_fn, min_len=min_len, max_len=max_len)) self.max_token_count = max_token_count self.buffer_size = buffer_size self.include_padding = include_padding def __iter__(self) -> Iterator[DataChunk[T_co]]: buffer: List[PrioritizedItem[T_co]] = [] batch: List[T_co] = [] batch_size: int = 0 max_length: int = 0 for d in self.datapipe: heapq.heappush(buffer, d) if len(buffer) == self.buffer_size: buffer, batch, batch_size, max_length, data_chunk = self._pop_buffer( buffer, batch, batch_size, max_length ) if data_chunk is not None: yield data_chunk while buffer: buffer, batch, batch_size, max_length, data_chunk = self._pop_buffer(buffer, batch, batch_size, max_length) if data_chunk is not None: yield data_chunk if batch: yield DataChunk(batch) def _pop_buffer(self, buffer: List[PrioritizedItem[T_co]], batch: List[T_co], batch_size: int, max_length: int): data_chunk_to_yield = None d: PrioritizedItem[T_co] = heapq.heappop(buffer) length = d.length token = d.data if self.include_padding: max_length = max(length, max_length) new_batch_size = (len(batch) + 1) * max_length else: new_batch_size = batch_size + length if new_batch_size > self.max_token_count: data_chunk_to_yield = DataChunk(batch) batch = [token] batch_size = length max_length = length else: batch.append(token) batch_size = new_batch_size return buffer, batch, batch_size, max_length, data_chunk_to_yield
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import collections def pin_memory_fn(data, device=None): r""" Utility function to move data to pinned memory. If special treatment is needed to move the input data to pinned memory, please attach a ``pin_memory`` method to the expected data class. """ if hasattr(data, "pin_memory"): # Including torch.Tensor return data.pin_memory(device) elif isinstance(data, (str, bytes)): return data elif isinstance(data, collections.abc.Mapping): pinned_data = {k: pin_memory_fn(sample, device) for k, sample in data.items()} try: return type(data)(pinned_data) # type: ignore[call-arg] except TypeError: # The mapping type may not support `__init__(iterable)`. return pinned_data elif isinstance(data, collections.abc.Sequence): pinned_data = [pin_memory_fn(sample, device) for sample in data] # type: ignore[assignment] try: return type(data)(pinned_data) # type: ignore[call-arg] except TypeError: # The sequence type may not support `__init__(iterable)` (e.g., `range`). return pinned_data else: return data
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from torch.utils.data.datapipes.utils.common import StreamWrapper from torchdata.datapipes.utils._visualization import to_graph from torchdata.datapipes.utils.janitor import janitor from torchdata.datapipes.utils.pin_memory import pin_memory_fn __all__ = [ "StreamWrapper", "janitor", "pin_memory_fn", "to_graph", ] # Please keep this list sorted assert __all__ == sorted(__all__)
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from io import IOBase from typing import Tuple from torchdata.datapipes.utils import StreamWrapper def validate_pathname_binary_tuple(data: Tuple[str, IOBase]): if not isinstance(data, tuple): raise TypeError(f"pathname binary data should be tuple type, but it is type {type(data)}") if len(data) != 2: raise TypeError(f"pathname binary stream tuple length should be 2, but got {len(data)}") if not isinstance(data[0], str): raise TypeError(f"pathname within the tuple should have string type pathname, but it is type {type(data[0])}") if not isinstance(data[1], IOBase) and not isinstance(data[1], StreamWrapper): raise TypeError( f"binary stream within the tuple should have IOBase or" f"its subclasses as type, but it is type {type(data[1])}" )
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import itertools from collections import defaultdict from typing import Optional, Set, TYPE_CHECKING from torch.utils.data.datapipes.iter.combining import _ChildDataPipe, IterDataPipe from torch.utils.data.graph import traverse_dps if TYPE_CHECKING: import graphviz class Node: def __init__(self, dp, *, name=None): self.dp = dp self.name = name or type(dp).__name__.replace("IterDataPipe", "") self.childs = set() self.parents = set() def add_child(self, child): self.childs.add(child) child.parents.add(self) def remove_child(self, child): self.childs.remove(child) child.parents.remove(self) def add_parent(self, parent): self.parents.add(parent) parent.childs.add(self) def remove_parent(self, parent): self.parents.remove(parent) parent.childs.remove(self) def __eq__(self, other): if not isinstance(other, Node): return NotImplemented return hash(self) == hash(other) def __hash__(self): return hash(self.dp) def __str__(self): return self.name def __repr__(self): return f"{self}-{hash(self)}" def to_nodes(dp, *, debug: bool) -> Set[Node]: def recurse(dp_graph, child=None): for _dp_id, (dp_node, dp_parents) in dp_graph.items(): node = Node(dp_node) if child is not None: node.add_child(child) yield node yield from recurse(dp_parents, child=node) def aggregate(nodes): groups = defaultdict(list) for node in nodes: groups[node].append(node) nodes = set() for node, group in groups.items(): if len(group) == 1: nodes.add(node) continue aggregated_node = Node(node.dp) for duplicate_node in group: for child in duplicate_node.childs.copy(): duplicate_node.remove_child(child) aggregated_node.add_child(child) for parent in duplicate_node.parents.copy(): duplicate_node.remove_parent(parent) aggregated_node.add_parent(parent) nodes.add(aggregated_node) if debug: return nodes child_dp_nodes = set( itertools.chain.from_iterable(node.parents for node in nodes if isinstance(node.dp, _ChildDataPipe)) ) if not child_dp_nodes: return nodes for node in child_dp_nodes: fixed_parent_node = Node( type(str(node).lstrip("_"), (IterDataPipe,), dict(dp=node.dp, childs=node.childs))() ) nodes.remove(node) nodes.add(fixed_parent_node) for parent in node.parents.copy(): node.remove_parent(parent) fixed_parent_node.add_parent(parent) for child in node.childs: nodes.remove(child) for actual_child in child.childs.copy(): actual_child.remove_parent(child) actual_child.add_parent(fixed_parent_node) return nodes return aggregate(recurse(traverse_dps(dp))) def to_graph(dp, *, debug: bool = False) -> "graphviz.Digraph": """Visualizes a DataPipe by returning a :class:`graphviz.Digraph`, which is a graph of the data pipeline. This allows you to visually inspect all the transformation that takes place in your DataPipes. .. note:: The package :mod:`graphviz` is required to use this function. .. note:: The most common interfaces for the returned graph object are: - :meth:`~graphviz.Digraph.render`: Save the graph to a file. - :meth:`~graphviz.Digraph.view`: Open the graph in a viewer. Args: dp: DataPipe that you would like to visualize (generally the last one in a chain of DataPipes). debug (bool): If ``True``, renders internal datapipes that are usually hidden from the user (such as ``ChildDataPipe`` of `demux` and `fork`). Defaults to ``False``. Example: >>> from torchdata.datapipes.iter import IterableWrapper >>> from torchdata.datapipes.utils import to_graph >>> dp = IterableWrapper(range(10)) >>> dp1, dp2 = dp.demux(num_instances=2, classifier_fn=lambda x: x % 2) >>> dp1 = dp1.map(lambda x: x + 1) >>> dp2 = dp2.filter(lambda _: True) >>> dp3 = dp1.zip(dp2).map(lambda t: t[0] + t[1]) >>> g = to_graph(dp3) >>> g.view() # This will open the graph in a viewer """ try: import graphviz except ModuleNotFoundError: raise ModuleNotFoundError( "The package `graphviz` is required to be installed to use this function. " "Please `pip install graphviz` or `conda install -c conda-forge graphviz`." ) from None # The graph style as well as the color scheme below was copied from https://github.com/szagoruyko/pytorchviz/ # https://github.com/szagoruyko/pytorchviz/blob/0adcd83af8aa7ab36d6afd139cabbd9df598edb7/torchviz/dot.py#L78-L85 node_attr = dict( style="filled", shape="box", align="left", fontsize="10", ranksep="0.1", height="0.2", fontname="monospace", ) graph = graphviz.Digraph(node_attr=node_attr, graph_attr=dict(size="12,12")) for node in to_nodes(dp, debug=debug): fillcolor: Optional[str] if not node.parents: fillcolor = "lightblue" elif not node.childs: fillcolor = "darkolivegreen1" else: fillcolor = None graph.node(name=repr(node), label=str(node), fillcolor=fillcolor) for child in node.childs: graph.edge(repr(node), repr(child)) return graph
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from torchdata.datapipes.utils import StreamWrapper def janitor(obj): """ Invokes various `obj` cleanup procedures such as: - Closing streams """ # TODO(632): We can also release caching locks here to allow filtering StreamWrapper.close_streams(obj)
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from torch.utils.data import MapDataPipe from torch.utils.data.datapipes.map import Batcher, Concater, Mapper, SequenceWrapper, Shuffler, Zipper from torchdata.datapipes.iter.util.converter import IterToMapConverterMapDataPipe as IterToMapConverter from torchdata.datapipes.map.util.cacheholder import InMemoryCacheHolderMapDataPipe as InMemoryCacheHolder from torchdata.datapipes.map.util.unzipper import UnZipperMapDataPipe as UnZipper __all__ = [ "Batcher", "Concater", "InMemoryCacheHolder", "IterToMapConverter", "MapDataPipe", "Mapper", "SequenceWrapper", "Shuffler", "UnZipper", "Zipper", ] # Please keep this list sorted assert __all__ == sorted(__all__)
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from typing import List, Optional from torch.utils.data import IterDataPipe, MapDataPipe # @functional_datapipe("to_iter_datapipe") # This line must be kept for .pyi signature parser class MapToIterConverterIterDataPipe(IterDataPipe): """ Convert a ``MapDataPipe`` to an ``IterDataPipe`` (functional name: ``to_iter_datapipe``). It uses ``indices`` to iterate through the ``MapDataPipe``, defaults to ``range(len(mapdatapipe))`` if not given. For the opposite converter, use :class:`.IterToMapConverter`. Args: datapipe: source MapDataPipe with data indices: optional list of indices that will dictate how the datapipe will be iterated over Example: >>> from torchdata.datapipes.map import SequenceWrapper >>> source_dp = SequenceWrapper(range(10)) >>> iter_dp = source_dp.to_iter_datapipe() >>> list(iter_dp) [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] >>> source_dp2 = SequenceWrapper({'a': 1, 'b': 2, 'c': 3}) >>> iter_dp2 = source_dp2.to_iter_datapipe(indices=['a', 'b', 'c']) >>> list(iter_dp2) [1, 2, 3] """ # Note that ``indices`` has ``Optional[List]`` instead of ``Optional[Iterable]`` as type because a generator # can be passed in as an iterable, which will complicate the serialization process as we will have # to materialize ``indices`` and store it. def __init__(self, datapipe: MapDataPipe, indices: Optional[List] = None): if not isinstance(datapipe, MapDataPipe): raise TypeError(f"MapToIterConverter can only apply on MapDataPipe, but found {type(datapipe)}") self.datapipe: MapDataPipe = datapipe self.indices = indices if indices else range(len(datapipe)) def __iter__(self): for idx in self.indices: yield self.datapipe[idx] def __len__(self): return len(self.indices) MapDataPipe.register_datapipe_as_function("to_iter_datapipe", MapToIterConverterIterDataPipe)
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree.
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from typing import Any, Dict, TypeVar from torchdata.datapipes import functional_datapipe from torchdata.datapipes.map import MapDataPipe T_co = TypeVar("T_co", covariant=True) @functional_datapipe("in_memory_cache") class InMemoryCacheHolderMapDataPipe(MapDataPipe[T_co]): r""" Stores elements from the source DataPipe in memory (functional name: ``in_memory_cache``). Once an item is stored, it will remain unchanged and subsequent retrivals will return the same element. Since items from ``MapDataPipe`` are lazily computed, this can be used to store the results from previous ``MapDataPipe`` and reduce the number of duplicate computations. Note: The default ``cache`` is a ``Dict``. If another data structure is more suitable as cache for your use Args: source_dp: source DataPipe from which elements are read and stored in memory Example: >>> from torchdata.datapipes.map import SequenceWrapper >>> source_dp = SequenceWrapper(range(10)) >>> cache_dp = source_dp.in_memory_cache() >>> list(cache_dp) [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] """ def __init__(self, source_dp: MapDataPipe[T_co]) -> None: self.source_dp: MapDataPipe[T_co] = source_dp self.cache: Dict[Any, T_co] = {} def __getitem__(self, index) -> T_co: if index not in self.cache: self.cache[index] = self.source_dp[index] # type: ignore[index] return self.cache[index] # type: ignore[index] # We can potentially remove `self.source_dp` to save memory once `len(self.cache) == len(self.source_dp)` # Be careful about how that may interact with and graph traversal and other features def __len__(self) -> int: return len(self.source_dp)
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from typing import Optional, Sequence, TypeVar from torchdata.datapipes import functional_datapipe from torchdata.datapipes.map import MapDataPipe T = TypeVar("T") @functional_datapipe("unzip") class UnZipperMapDataPipe(MapDataPipe): """ Takes in a DataPipe of Sequences, unpacks each Sequence, and return the elements in separate DataPipes based on their position in the Sequence (functional name: ``unzip``). The number of instances produced equals to the ``sequence_legnth`` minus the number of columns to skip. Note: Each sequence within the DataPipe should have the same length, specified by the input argument `sequence_length`. Args: source_datapipe: Iterable DataPipe with sequences of data sequence_length: Length of the sequence within the source_datapipe. All elements should have the same length. columns_to_skip: optional indices of columns that the DataPipe should skip (each index should be an integer from 0 to sequence_length - 1) Example: >>> from torchdata.datapipes.map import SequenceWrapper >>> source_dp = SequenceWrapper([(i, i + 10, i + 20) for i in range(3)]) >>> dp1, dp2, dp3 = source_dp.unzip(sequence_length=3) >>> list(dp1) [0, 1, 2] >>> list(dp2) [10, 11, 12] >>> list(dp3) [20, 21, 22] """ def __new__( cls, source_datapipe: MapDataPipe[Sequence[T]], sequence_length: int, columns_to_skip: Optional[Sequence[int]] = None, ): if sequence_length < 1: raise ValueError(f"Expected `sequence_length` larger than 0, but {sequence_length} is found") if columns_to_skip is None: instance_ids = list(range(sequence_length)) else: skips = set(columns_to_skip) instance_ids = [i for i in range(sequence_length) if i not in skips] if len(instance_ids) == 0: raise RuntimeError( f"All instances are being filtered out in {cls.__name__}. Please check" "the input `sequence_length` and `columns_to_skip`." ) return [_UnZipperMapDataPipe(source_datapipe, i) for i in instance_ids] class _UnZipperMapDataPipe(MapDataPipe[T]): def __init__(self, main_datapipe: MapDataPipe[Sequence[T]], instance_id: int): self.main_datapipe = main_datapipe self.instance_id = instance_id def __getitem__(self, index) -> T: return self.main_datapipe[index][self.instance_id] def __len__(self) -> int: return len(self.main_datapipe)
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree.
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree.
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree.
#!/usr/bin/env python3 import typing from typing import Any, Callable, cast, List, Tuple, Union import torch from captum._utils.typing import BaselineType, TargetType, TensorOrTupleOfTensorsGeneric from captum.attr import ( DeepLift, GradientShap, GuidedBackprop, IntegratedGradients, Saliency, ) from captum.metrics import sensitivity_max from captum.metrics._core.sensitivity import default_perturb_func from tests.helpers.basic import assertTensorAlmostEqual, BaseTest from tests.helpers.basic_models import ( BasicModel2, BasicModel4_MultiArgs, BasicModel_ConvNet_One_Conv, BasicModel_MultiLayer, ) from torch import Tensor @typing.overload def _perturb_func(inputs: Tensor) -> Tensor: ... @typing.overload def _perturb_func(inputs: Tuple[Tensor, ...]) -> Tuple[Tensor, ...]: ... def _perturb_func( inputs: TensorOrTupleOfTensorsGeneric, ) -> Union[Tensor, Tuple[Tensor, ...]]: def perturb_ratio(input): return ( torch.arange(-torch.numel(input[0]) // 2, torch.numel(input[0]) // 2) .view(input[0].shape) .float() / 100 ) input2 = None if isinstance(inputs, tuple): input1 = inputs[0] input2 = inputs[1] else: input1 = cast(Tensor, inputs) perturbed_input1 = input1 + perturb_ratio(input1) if input2 is None: return perturbed_input1 return perturbed_input1, input2 + perturb_ratio(input2) class Test(BaseTest): def test_basic_sensitivity_max_single(self) -> None: model = BasicModel2() sa = Saliency(model) input1 = torch.tensor([3.0]) input2 = torch.tensor([1.0]) self.sensitivity_max_assert( sa.attribute, (input1, input2), torch.zeros(1), perturb_func=default_perturb_func, ) def test_basic_sensitivity_max_multiple(self) -> None: model = BasicModel2() sa = Saliency(model) input1 = torch.tensor([3.0] * 20) input2 = torch.tensor([1.0] * 20) self.sensitivity_max_assert( sa.attribute, (input1, input2), torch.zeros(20), max_examples_per_batch=21 ) self.sensitivity_max_assert( sa.attribute, (input1, input2), torch.zeros(20), max_examples_per_batch=60 ) def test_basic_sensitivity_max_multiple_gradshap(self) -> None: model = BasicModel2() gs = GradientShap(model) input1 = torch.tensor([0.0] * 5) input2 = torch.tensor([0.0] * 5) baseline1 = torch.arange(0, 2).float() / 1000 baseline2 = torch.arange(0, 2).float() / 1000 self.sensitivity_max_assert( gs.attribute, (input1, input2), torch.zeros(5), baselines=(baseline1, baseline2), max_examples_per_batch=2, ) self.sensitivity_max_assert( gs.attribute, (input1, input2), torch.zeros(5), baselines=(baseline1, baseline2), max_examples_per_batch=20, ) def test_convnet_multi_target(self) -> None: r""" Another test with Saliency, local sensitivity and more complex model with higher dimensional input. """ model = BasicModel_ConvNet_One_Conv() sa = Saliency(model) input = torch.stack([torch.arange(1, 17).float()] * 20, dim=0).view(20, 1, 4, 4) self.sensitivity_max_assert( sa.attribute, input, torch.zeros(20), target=torch.tensor([1] * 20), n_perturb_samples=10, max_examples_per_batch=40, ) def test_convnet_multi_target_and_default_pert_func(self) -> None: r""" Similar to previous example but here we also test default perturbation function. """ model = BasicModel_ConvNet_One_Conv() gbp = GuidedBackprop(model) input = torch.stack([torch.arange(1, 17).float()] * 20, dim=0).view(20, 1, 4, 4) sens1 = self.sensitivity_max_assert( gbp.attribute, input, torch.zeros(20), perturb_func=default_perturb_func, target=torch.tensor([1] * 20), n_perturb_samples=10, max_examples_per_batch=40, ) sens2 = self.sensitivity_max_assert( gbp.attribute, input, torch.zeros(20), perturb_func=default_perturb_func, target=torch.tensor([1] * 20), n_perturb_samples=10, max_examples_per_batch=5, ) assertTensorAlmostEqual(self, sens1, sens2) def test_sensitivity_max_multi_dim(self) -> None: model = BasicModel_MultiLayer() input = torch.arange(1.0, 13.0).view(4, 3) additional_forward_args = (None, True) targets: List = [(0, 1, 1), (0, 1, 1), (1, 1, 1), (0, 1, 1)] ig = IntegratedGradients(model) self.sensitivity_max_assert( ig.attribute, input, torch.tensor([0.006, 0.01, 0.001, 0.008]), n_perturb_samples=1, max_examples_per_batch=4, perturb_func=_perturb_func, target=targets, additional_forward_args=additional_forward_args, ) def test_sensitivity_max_multi_dim_batching(self) -> None: model = BasicModel_MultiLayer() input = torch.arange(1.0, 16.0).view(5, 3) additional_forward_args = (torch.ones(5, 3).float(), False) targets: List = [0, 0, 0, 0, 0] sa = Saliency(model) sensitivity1 = self.sensitivity_max_assert( sa.attribute, input, torch.zeros(5), n_perturb_samples=1, max_examples_per_batch=None, perturb_func=_perturb_func, target=targets, additional_forward_args=additional_forward_args, ) sensitivity2 = self.sensitivity_max_assert( sa.attribute, input, torch.zeros(5), n_perturb_samples=10, max_examples_per_batch=10, perturb_func=_perturb_func, target=targets, additional_forward_args=additional_forward_args, ) assertTensorAlmostEqual(self, sensitivity1, sensitivity2, 0.0) def test_sensitivity_additional_forward_args_multi_args(self) -> None: model = BasicModel4_MultiArgs() input1 = torch.tensor([[1.5, 2.0, 3.3]]) input2 = torch.tensor([[3.0, 3.5, 2.2]]) args = torch.tensor([[1.0, 3.0, 4.0]]) ig = DeepLift(model) sensitivity1 = self.sensitivity_max_assert( ig.attribute, (input1, input2), torch.zeros(1), additional_forward_args=args, n_perturb_samples=1, max_examples_per_batch=1, perturb_func=_perturb_func, ) sensitivity2 = self.sensitivity_max_assert( ig.attribute, (input1, input2), torch.zeros(1), additional_forward_args=args, n_perturb_samples=4, max_examples_per_batch=2, perturb_func=_perturb_func, ) assertTensorAlmostEqual(self, sensitivity1, sensitivity2, 0.0) def test_classification_sensitivity_tpl_target_w_baseline(self) -> None: model = BasicModel_MultiLayer() input = torch.arange(1.0, 13.0).view(4, 3) baseline = torch.ones(4, 3) additional_forward_args = (torch.arange(1, 13).view(4, 3).float(), True) targets: List = [(0, 1, 1), (0, 1, 1), (1, 1, 1), (0, 1, 1)] dl = DeepLift(model) sens1 = self.sensitivity_max_assert( dl.attribute, input, torch.tensor([0.01, 0.003, 0.001, 0.001]), additional_forward_args=additional_forward_args, baselines=baseline, target=targets, n_perturb_samples=10, perturb_func=_perturb_func, ) sens2 = self.sensitivity_max_assert( dl.attribute, input, torch.zeros(4), additional_forward_args=additional_forward_args, baselines=baseline, target=targets, n_perturb_samples=10, perturb_func=_perturb_func, max_examples_per_batch=30, ) assertTensorAlmostEqual(self, sens1, sens2) def sensitivity_max_assert( self, expl_func: Callable, inputs: TensorOrTupleOfTensorsGeneric, expected_sensitivity: Tensor, perturb_func: Callable = _perturb_func, n_perturb_samples: int = 5, max_examples_per_batch: int = None, baselines: BaselineType = None, target: TargetType = None, additional_forward_args: Any = None, ) -> Tensor: if baselines is None: sens = sensitivity_max( expl_func, inputs, perturb_func=perturb_func, target=target, additional_forward_args=additional_forward_args, n_perturb_samples=n_perturb_samples, max_examples_per_batch=max_examples_per_batch, ) else: sens = sensitivity_max( expl_func, inputs, perturb_func=perturb_func, baselines=baselines, target=target, additional_forward_args=additional_forward_args, n_perturb_samples=n_perturb_samples, max_examples_per_batch=max_examples_per_batch, ) assertTensorAlmostEqual(self, sens, expected_sensitivity, 0.05) return sens
#!/usr/bin/env python3 import typing from typing import Any, Callable, cast, List, Tuple, Union import torch from captum._utils.typing import BaselineType, TargetType, TensorOrTupleOfTensorsGeneric from captum.attr import ( Attribution, DeepLift, FeatureAblation, IntegratedGradients, Saliency, ) from captum.metrics import infidelity, infidelity_perturb_func_decorator from tests.helpers.basic import assertTensorAlmostEqual, BaseTest from tests.helpers.basic_models import ( BasicModel2, BasicModel4_MultiArgs, BasicModel_ConvNet_One_Conv, BasicModel_MultiLayer, ) from torch import Tensor from torch.nn import Module @infidelity_perturb_func_decorator(False) def _local_perturb_func_default( inputs: TensorOrTupleOfTensorsGeneric, ) -> TensorOrTupleOfTensorsGeneric: return _local_perturb_func(inputs)[1] @typing.overload def _local_perturb_func(inputs: Tensor) -> Tuple[Tensor, Tensor]: ... @typing.overload def _local_perturb_func( inputs: Tuple[Tensor, ...] ) -> Tuple[Tuple[Tensor, ...], Tuple[Tensor, ...]]: ... def _local_perturb_func( inputs: TensorOrTupleOfTensorsGeneric, ) -> Tuple[Union[Tensor, Tuple[Tensor, ...]], Union[Tensor, Tuple[Tensor, ...]]]: input2 = None if isinstance(inputs, tuple): input1 = inputs[0] input2 = inputs[1] else: input1 = cast(Tensor, inputs) perturb1 = 0.0009 * torch.ones_like(input1) if input2 is None: return perturb1, input1 - perturb1 perturb2 = 0.0121 * torch.ones_like(input2) return (perturb1, perturb2), (input1 - perturb1, input2 - perturb2) @infidelity_perturb_func_decorator(True) def _global_perturb_func1_default( inputs: TensorOrTupleOfTensorsGeneric, ) -> TensorOrTupleOfTensorsGeneric: return _global_perturb_func1(inputs)[1] @typing.overload def _global_perturb_func1(inputs: Tensor) -> Tuple[Tensor, Tensor]: ... @typing.overload def _global_perturb_func1( inputs: Tuple[Tensor, ...] ) -> Tuple[Tuple[Tensor, ...], Tuple[Tensor, ...]]: ... # sensitivity-N, N = #input features def _global_perturb_func1( inputs: TensorOrTupleOfTensorsGeneric, ) -> Tuple[Union[Tensor, Tuple[Tensor, ...]], Union[Tensor, Tuple[Tensor, ...]]]: input2 = None if isinstance(inputs, tuple): input1 = inputs[0] input2 = inputs[1] else: input1 = cast(Tensor, inputs) pert1 = torch.ones(input1.shape) if input2 is None: return pert1, torch.zeros(input1.shape) pert2 = torch.ones(input2.shape) return (pert1, pert2), (torch.zeros(input1.shape), torch.zeros(input2.shape)) class Test(BaseTest): def test_basic_infidelity_single(self) -> None: input1 = torch.tensor([3.0]) input2 = torch.tensor([1.0]) inputs = (input1, input2) expected = torch.zeros(1) self.basic_model_assert(BasicModel2(), inputs, expected) def test_basic_infidelity_multiple(self) -> None: input1 = torch.tensor([3.0] * 3) input2 = torch.tensor([1.0] * 3) inputs = (input1, input2) expected = torch.zeros(3) infid = self.basic_model_assert(BasicModel2(), inputs, expected) infid_w_common_func = self.basic_model_assert( BasicModel2(), inputs, expected, perturb_func=_local_perturb_func_default, multiply_by_inputs=False, ) assertTensorAlmostEqual(self, infid, infid_w_common_func) def test_basic_infidelity_multiple_with_batching(self) -> None: input1 = torch.tensor([3.0] * 20) input2 = torch.tensor([1.0] * 20) expected = torch.zeros(20) infid1 = self.basic_model_assert( BasicModel2(), (input1, input2), expected, n_perturb_samples=5, max_batch_size=21, ) infid2 = self.basic_model_assert( BasicModel2(), (input1, input2), expected, n_perturb_samples=5, max_batch_size=60, ) assertTensorAlmostEqual(self, infid1, infid2, delta=0.01, mode="max") def test_basic_infidelity_additional_forward_args1(self) -> None: model = BasicModel4_MultiArgs() input1 = torch.tensor([[1.5, 2.0, 3.3]]) input2 = torch.tensor([[3.0, 3.5, 2.2]]) args = torch.tensor([[1.0, 3.0, 4.0]]) ig = IntegratedGradients(model) infidelity1 = self.basic_model_global_assert( ig, model, (input1, input2), torch.zeros(1), additional_args=args, n_perturb_samples=1, max_batch_size=1, perturb_func=_global_perturb_func1, ) infidelity2 = self.basic_model_global_assert( ig, model, (input1, input2), torch.zeros(1), additional_args=args, n_perturb_samples=5, max_batch_size=2, perturb_func=_global_perturb_func1, ) infidelity2_w_custom_pert_func = self.basic_model_global_assert( ig, model, (input1, input2), torch.zeros(1), additional_args=args, n_perturb_samples=5, max_batch_size=2, perturb_func=_global_perturb_func1_default, ) assertTensorAlmostEqual(self, infidelity1, infidelity2, 0.0) assertTensorAlmostEqual(self, infidelity2_w_custom_pert_func, infidelity2, 0.0) def test_classification_infidelity_convnet_multi_targets(self) -> None: model = BasicModel_ConvNet_One_Conv() dl = DeepLift(model) input = torch.stack([torch.arange(1, 17).float()] * 20, dim=0).view(20, 1, 4, 4) self.infidelity_assert( model, dl.attribute(input, target=torch.tensor([1] * 20)) / input, input, torch.zeros(20), target=torch.tensor([1] * 20), multi_input=False, n_perturb_samples=500, max_batch_size=120, ) def test_classification_infidelity_tpl_target(self) -> None: model = BasicModel_MultiLayer() input = torch.arange(1.0, 13.0).view(4, 3) additional_forward_args = (torch.arange(1, 13).view(4, 3).float(), True) targets: List = [(0, 1, 1), (0, 1, 1), (1, 1, 1), (0, 1, 1)] sa = Saliency(model) infid1 = self.infidelity_assert( model, sa.attribute( input, target=targets, additional_forward_args=additional_forward_args ), input, torch.zeros(4), additional_args=additional_forward_args, target=targets, multi_input=False, ) infid2 = self.infidelity_assert( model, sa.attribute( input, target=targets, additional_forward_args=additional_forward_args ), input, torch.zeros(4), additional_args=additional_forward_args, target=targets, max_batch_size=2, multi_input=False, ) assertTensorAlmostEqual(self, infid1, infid2, delta=1e-05, mode="max") def test_classification_infidelity_tpl_target_w_baseline(self) -> None: model = BasicModel_MultiLayer() input = torch.arange(1.0, 13.0).view(4, 3) baseline = torch.ones(4, 3) additional_forward_args = (torch.arange(1, 13).view(4, 3).float(), True) targets: List = [(0, 1, 1), (0, 1, 1), (1, 1, 1), (0, 1, 1)] ig = IntegratedGradients(model) def perturbed_func2(inputs, baselines): return torch.ones(baselines.shape), baselines @infidelity_perturb_func_decorator(True) def perturbed_func3(inputs, baselines): return baselines attr, delta = ig.attribute( input, target=targets, additional_forward_args=additional_forward_args, baselines=baseline, return_convergence_delta=True, ) infid = self.infidelity_assert( model, attr, input, torch.tensor([0.10686, 0.0, 0.0, 0.0]), additional_args=additional_forward_args, baselines=baseline, target=targets, multi_input=False, n_perturb_samples=3, perturb_func=perturbed_func3, ) infid2 = self.infidelity_assert( model, attr, input, torch.tensor([0.10686, 0.0, 0.0, 0.0]), additional_args=additional_forward_args, baselines=baseline, target=targets, multi_input=False, n_perturb_samples=3, perturb_func=perturbed_func2, ) assertTensorAlmostEqual(self, infid, delta * delta) assertTensorAlmostEqual(self, infid, infid2) def test_basic_infidelity_multiple_with_normalize(self) -> None: input1 = torch.tensor([3.0] * 3) input2 = torch.tensor([1.0] * 3) inputs = (input1, input2) expected = torch.zeros(3) model = BasicModel2() ig = IntegratedGradients(model) attrs = ig.attribute(inputs) scaled_attrs = tuple(attr * 100 for attr in attrs) infid = self.infidelity_assert(model, attrs, inputs, expected, normalize=True) scaled_infid = self.infidelity_assert( model, scaled_attrs, inputs, expected, normalize=True, ) # scaling attr should not change normalized infidelity assertTensorAlmostEqual(self, infid, scaled_infid) def test_sensitivity_n_ig(self) -> None: model = BasicModel_MultiLayer() ig = IntegratedGradients(model) self.basic_multilayer_sensitivity_n(ig, model) def test_sensitivity_n_fa(self) -> None: model = BasicModel_MultiLayer() fa = FeatureAblation(model) self.basic_multilayer_sensitivity_n(fa, model) def basic_multilayer_sensitivity_n( self, attr_algo: Attribution, model: Module ) -> None: # sensitivity-2 def _global_perturb_func2(input): pert = torch.tensor([[0, 1, 1], [1, 1, 0], [1, 0, 1]]).float() return pert, (1 - pert) * input # sensitivity-1 def _global_perturb_func3(input): pert = torch.tensor([[0, 0, 1], [1, 0, 0], [0, 1, 0]]).float() return pert, (1 - pert) * input @infidelity_perturb_func_decorator(True) def _global_perturb_func3_custom(input): return _global_perturb_func3(input)[1] input = torch.tensor([[1.0, 2.5, 3.3]]) # infidelity for sensitivity-1 infid = self.basic_model_global_assert( attr_algo, model, input, torch.zeros(1), additional_args=None, target=0, n_perturb_samples=3, max_batch_size=None, perturb_func=_global_perturb_func3, ) infid_w_default = self.basic_model_global_assert( attr_algo, model, input, torch.zeros(1), additional_args=None, target=0, n_perturb_samples=3, max_batch_size=None, perturb_func=_global_perturb_func3_custom, ) assertTensorAlmostEqual(self, infid, infid_w_default) # infidelity for sensitivity-2 self.basic_model_global_assert( attr_algo, model, input, torch.zeros(1), additional_args=None, target=0, n_perturb_samples=3, max_batch_size=None, perturb_func=_global_perturb_func2, ) # infidelity for sensitivity-3 self.basic_model_global_assert( attr_algo, model, input, torch.zeros(1), additional_args=None, target=0, n_perturb_samples=3, max_batch_size=None, perturb_func=_global_perturb_func1, ) def basic_model_assert( self, model: Module, inputs: TensorOrTupleOfTensorsGeneric, expected: Tensor, n_perturb_samples: int = 10, max_batch_size: int = None, perturb_func: Callable = _local_perturb_func, multiply_by_inputs: bool = False, normalize: bool = False, ) -> Tensor: ig = IntegratedGradients(model) if multiply_by_inputs: attrs = cast( TensorOrTupleOfTensorsGeneric, tuple( attr / input for input, attr in zip(inputs, ig.attribute(inputs)) ), ) else: attrs = ig.attribute(inputs) return self.infidelity_assert( model, attrs, inputs, expected, n_perturb_samples=n_perturb_samples, max_batch_size=max_batch_size, perturb_func=perturb_func, normalize=normalize, ) def basic_model_global_assert( self, attr_algo: Attribution, model: Module, inputs: TensorOrTupleOfTensorsGeneric, expected: Tensor, additional_args: Any = None, target: TargetType = None, n_perturb_samples: int = 10, max_batch_size: int = None, perturb_func: Callable = _global_perturb_func1, normalize: bool = False, ) -> Tensor: attrs = attr_algo.attribute( inputs, additional_forward_args=additional_args, target=target ) infid = self.infidelity_assert( model, attrs, inputs, expected, additional_args=additional_args, perturb_func=perturb_func, target=target, n_perturb_samples=n_perturb_samples, max_batch_size=max_batch_size, normalize=normalize, ) return infid def infidelity_assert( self, model: Module, attributions: TensorOrTupleOfTensorsGeneric, inputs: TensorOrTupleOfTensorsGeneric, expected: Tensor, additional_args: Any = None, baselines: BaselineType = None, n_perturb_samples: int = 10, target: TargetType = None, max_batch_size: int = None, multi_input: bool = True, perturb_func: Callable = _local_perturb_func, normalize: bool = False, **kwargs: Any, ) -> Tensor: infid = infidelity( model, perturb_func, inputs, attributions, additional_forward_args=additional_args, target=target, baselines=baselines, n_perturb_samples=n_perturb_samples, max_examples_per_batch=max_batch_size, normalize=normalize, ) assertTensorAlmostEqual(self, infid, expected, 0.05) return infid
from unittest.mock import patch import torch from captum.insights.attr_vis.features import ( _convert_figure_base64, EmptyFeature, FeatureOutput, GeneralFeature, ImageFeature, TextFeature, ) from matplotlib.figure import Figure from tests.helpers.basic import BaseTest class TestTextFeature(BaseTest): FEATURE_NAME = "question" def test_text_feature_returns_text_as_visualization_type(self) -> None: feature = TextFeature(self.FEATURE_NAME, None, None, None) self.assertEqual(feature.visualization_type(), "text") def test_text_feature_uses_visualization_transform_if_provided(self) -> None: input_data = torch.rand(2, 2) transformed_data = torch.rand(1, 1) def mock_transform(data): return transformed_data feature = TextFeature( name=self.FEATURE_NAME, baseline_transforms=None, input_transforms=None, visualization_transform=mock_transform, ) feature_output = feature.visualize( attribution=torch.rand(1, 1), data=input_data, contribution_frac=1.0 ) # has transformed data self.assertEqual(feature_output.base, transformed_data) feature = TextFeature( name=self.FEATURE_NAME, baseline_transforms=None, input_transforms=None, visualization_transform=None, ) feature_output = feature.visualize( attribution=torch.rand(1, 1), data=input_data, contribution_frac=1.0 ) # has original data self.assertIs(feature_output.base, input_data) def test_text_feature_generates_correct_visualization_output(self) -> None: attribution = torch.tensor([0.1, 0.2, 0.3, 0.4]) input_data = torch.rand(1, 2) expected_modified = [100 * x for x in (attribution / attribution.max())] contribution_frac = torch.rand(1).item() feature = TextFeature( name=self.FEATURE_NAME, baseline_transforms=None, input_transforms=None, visualization_transform=None, ) feature_output = feature.visualize(attribution, input_data, contribution_frac) expected_feature_output = FeatureOutput( name=self.FEATURE_NAME, base=input_data, modified=expected_modified, type="text", contribution=contribution_frac, ) self.assertEqual(expected_feature_output, feature_output) class TestEmptyFeature(BaseTest): def test_empty_feature_should_generate_fixed_output(self) -> None: feature = EmptyFeature() contribution = torch.rand(1).item() expected_output = FeatureOutput( name="empty", base=None, modified=None, type="empty", contribution=contribution, ) self.assertEqual(expected_output, feature.visualize(None, None, contribution)) class TestImageFeature(BaseTest): def test_image_feature_generates_correct_ouput(self) -> None: attribution = torch.zeros(1, 3, 4, 4) data = torch.ones(1, 3, 4, 4) contribution = 1.0 name = "photo" orig_fig = Figure(figsize=(4, 4)) attr_fig = Figure(figsize=(4, 4)) def mock_viz_attr(*args, **kwargs): if kwargs["method"] == "original_image": return orig_fig, None else: return attr_fig, None feature = ImageFeature( name=name, baseline_transforms=None, input_transforms=None, visualization_transform=None, ) with patch( "captum.attr._utils.visualization.visualize_image_attr", mock_viz_attr ): feature_output = feature.visualize(attribution, data, contribution) expected_feature_output = FeatureOutput( name=name, base=_convert_figure_base64(orig_fig), modified=_convert_figure_base64(attr_fig), type="image", contribution=contribution, ) self.assertEqual(expected_feature_output, feature_output) class TestGeneralFeature(BaseTest): def test_general_feature_generates_correct_output(self) -> None: name = "general_feature" categories = ["cat1", "cat2", "cat3", "cat4"] attribution = torch.Tensor(1, 4) attribution.fill_(0.5) data = torch.rand(1, 4) contribution = torch.rand(1).item() attr_squeezed = attribution.squeeze(0) expected_modified = [ x * 100 for x in (attr_squeezed / attr_squeezed.norm()).tolist() ] expected_base = [ f"{c}: {d:.2f}" for c, d in zip(categories, data.squeeze().tolist()) ] feature = GeneralFeature(name, categories) feature_output = feature.visualize( attribution=attribution, data=data, contribution_frac=contribution ) expected_feature_output = FeatureOutput( name=name, base=expected_base, modified=expected_modified, type="general", contribution=contribution, ) self.assertEqual(expected_feature_output, feature_output)
#!/usr/bin/env python3 import unittest from typing import Callable, List, Union import torch import torch.nn as nn from captum.insights import AttributionVisualizer, Batch from captum.insights.attr_vis.app import FilterConfig from captum.insights.attr_vis.features import BaseFeature, FeatureOutput, ImageFeature from tests.helpers.basic import BaseTest class RealFeature(BaseFeature): def __init__( self, name: str, baseline_transforms: Union[Callable, List[Callable]], input_transforms: Union[Callable, List[Callable]], visualization_transforms: Union[None, Callable, List[Callable]] = None, ) -> None: super().__init__( name, baseline_transforms=baseline_transforms, input_transforms=input_transforms, visualization_transform=None, ) def visualization_type(self) -> str: return "real" def visualize(self, attribution, data, contribution_frac) -> FeatureOutput: return FeatureOutput( name=self.name, base=data, modified=data, type=self.visualization_type(), contribution=contribution_frac, ) def _get_classes(): classes = [ "Plane", "Car", "Bird", "Cat", "Deer", "Dog", "Frog", "Horse", "Ship", "Truck", ] return classes class TinyCnn(nn.Module): def __init__(self, feature_extraction=False) -> None: super().__init__() self.feature_extraction = feature_extraction self.conv1 = nn.Conv2d(3, 3, 5) self.relu1 = nn.ReLU() self.pool1 = nn.MaxPool2d(2, 2) if not self.feature_extraction: self.conv2 = nn.Conv2d(3, 10, 2) def forward(self, x): x = self.pool1(self.relu1(self.conv1(x))) if not self.feature_extraction: x = self.conv2(x) x = x.view(-1, 10) else: x = x.view(-1, 12) return x class TinyMultiModal(nn.Module): def __init__(self, input_size=256, pretrained=False) -> None: super().__init__() if pretrained: self.img_model = _get_cnn(feature_extraction=True) else: self.img_model = TinyCnn(feature_extraction=True) self.misc_model = nn.Sequential(nn.Linear(input_size, 12), nn.ReLU()) self.fc = nn.Linear(12 * 2, 10) def forward(self, img, misc): img = self.img_model(img) misc = self.misc_model(misc) x = torch.cat((img, misc), dim=-1) return self.fc(x) def _labelled_img_data(num_samples=10, width=8, height=8, depth=3, num_labels=10): for _ in range(num_samples): yield torch.empty(depth, height, width).uniform_(0, 1), torch.randint( num_labels, (1,) ) def _multi_modal_data(img_dataset, feature_size=256): def misc_data(length, feature_size=None): for _ in range(length): yield torch.randn(feature_size) misc_dataset = misc_data(length=len(img_dataset), feature_size=feature_size) # re-arrange dataset for (img, label), misc in zip(img_dataset, misc_dataset): yield ((img, misc), label) def _get_cnn(feature_extraction=False): return TinyCnn(feature_extraction=feature_extraction) def _get_multimodal(input_size=256): return TinyMultiModal(input_size=input_size, pretrained=True) def to_iter(data_loader): # TODO: not sure how to make this cleaner for x, y in data_loader: # if it's not multi input # NOTE: torch.utils.data.DataLoader returns a list in this case if not isinstance(x, list): x = (x,) yield Batch(inputs=tuple(x), labels=y) class Test(BaseTest): def test_one_feature(self) -> None: batch_size = 2 classes = _get_classes() dataset = list( _labelled_img_data(num_labels=len(classes), num_samples=batch_size) ) # NOTE: using DataLoader to batch the inputs # since AttributionVisualizer requires the input to be of size `B x ...` data_loader = torch.utils.data.DataLoader( list(dataset), batch_size=batch_size, shuffle=False, num_workers=0 ) visualizer = AttributionVisualizer( models=[_get_cnn()], classes=classes, features=[ ImageFeature( "Photo", input_transforms=[lambda x: x], baseline_transforms=[lambda x: x * 0], ) ], dataset=to_iter(data_loader), score_func=None, ) visualizer._config = FilterConfig(attribution_arguments={"n_steps": 2}) outputs = visualizer.visualize() for output in outputs: total_contrib = sum(abs(f.contribution) for f in output[0].feature_outputs) self.assertAlmostEqual(total_contrib, 1.0, places=6) def test_multi_features(self) -> None: batch_size = 2 classes = _get_classes() img_dataset = list( _labelled_img_data(num_labels=len(classes), num_samples=batch_size) ) misc_feature_size = 2 dataset = _multi_modal_data( img_dataset=img_dataset, feature_size=misc_feature_size ) # NOTE: using DataLoader to batch the inputs since # AttributionVisualizer requires the input to be of size `N x ...` data_loader = torch.utils.data.DataLoader( list(dataset), batch_size=batch_size, shuffle=False, num_workers=0 ) visualizer = AttributionVisualizer( models=[_get_multimodal(input_size=misc_feature_size)], classes=classes, features=[ ImageFeature( "Photo", input_transforms=[lambda x: x], baseline_transforms=[lambda x: x * 0], ), RealFeature( "Random", input_transforms=[lambda x: x], baseline_transforms=[lambda x: x * 0], ), ], dataset=to_iter(data_loader), score_func=None, ) visualizer._config = FilterConfig(attribution_arguments={"n_steps": 2}) outputs = visualizer.visualize() for output in outputs: total_contrib = sum(abs(f.contribution) for f in output[0].feature_outputs) self.assertAlmostEqual(total_contrib, 1.0, places=6) # TODO: add test for multiple models (related to TODO in captum/insights/api.py) # # TODO: add test to make the attribs == 0 -- error occurs # I know (through manual testing) that this breaks some existing code if __name__ == "__main__": unittest.main()
#!/usr/bin/env python3 import collections from typing import List import torch from captum.robust import AttackComparator, FGSM from tests.helpers.basic import assertTensorAlmostEqual, BaseTest from tests.helpers.basic_models import BasicModel, BasicModel_MultiLayer from torch import Tensor def float_metric(model_out: Tensor, target: int): return model_out[:, target] ModelResult = collections.namedtuple("ModelResult", "accuracy output") def tuple_metric(model_out: Tensor, target: int, named_tuple=False): _, pred = torch.max(model_out, dim=1) acc = (pred == target).float() output = model_out[:, target] if named_tuple: return ModelResult( accuracy=acc.item() if acc.numel() == 1 else acc, output=output.item() if output.numel() == 1 else output, ) return (acc, output) def drop_column_perturb(inp: Tensor, column: int) -> Tensor: mask = torch.ones_like(inp) mask[:, column] = 0.0 return mask * inp def text_preproc_fn(inp: List[str]) -> Tensor: return torch.tensor([float(ord(elem[0])) for elem in inp]).unsqueeze(0) def batch_text_preproc_fn(inp: List[List[str]]) -> Tensor: return torch.cat([text_preproc_fn(elem) for elem in inp]) def string_perturb(inp: List[str]) -> List[str]: return ["a" + elem for elem in inp] def string_batch_perturb(inp: List[List[str]]) -> List[List[str]]: return [string_perturb(elem) for elem in inp] class SamplePerturb: def __init__(self) -> None: self.count = 0 def perturb(self, inp: Tensor) -> Tensor: mask = torch.ones_like(inp) mask[:, self.count % mask.shape[1]] = 0.0 self.count += 1 return mask * inp class Test(BaseTest): def test_attack_comparator_basic(self) -> None: model = BasicModel() inp = torch.tensor([[2.0, -9.0, 9.0, 1.0, -3.0]]) attack_comp = AttackComparator( forward_func=lambda x: model(x) + torch.tensor([[0.000001, 0.0, 0.0, 0.0, 0.0]]), metric=tuple_metric, ) attack_comp.add_attack( drop_column_perturb, name="first_column_perturb", attack_kwargs={"column": 0}, ) attack_comp.add_attack( drop_column_perturb, name="last_column_perturb", attack_kwargs={"column": -1}, ) attack_comp.add_attack( FGSM(model), attack_kwargs={"epsilon": 0.5}, additional_attack_arg_names=["target"], ) batch_results = attack_comp.evaluate(inp, target=0, named_tuple=True) expected_first_results = { "Original": (1.0, 1.0), "first_column_perturb": {"mean": (0.0, 0.0)}, "last_column_perturb": {"mean": (1.0, 1.0)}, "FGSM": {"mean": (1.0, 1.0)}, } self._compare_results(batch_results, expected_first_results) alt_inp = torch.tensor([[1.0, 2.0, -3.0, 4.0, -5.0]]) second_batch_results = attack_comp.evaluate(alt_inp, target=4, named_tuple=True) expected_second_results = { "Original": (0.0, -5.0), "first_column_perturb": {"mean": (0.0, -5.0)}, "last_column_perturb": {"mean": (0.0, 0.0)}, "FGSM": {"mean": (0.0, -4.5)}, } self._compare_results(second_batch_results, expected_second_results) expected_summary_results = { "Original": {"mean": (0.5, -2.0)}, "first_column_perturb": {"mean": (0.0, -2.5)}, "last_column_perturb": {"mean": (0.5, 0.5)}, "FGSM": {"mean": (0.5, -1.75)}, } self._compare_results(attack_comp.summary(), expected_summary_results) def test_attack_comparator_with_preproc(self) -> None: model = BasicModel_MultiLayer() text_inp = ["abc", "zyd", "ghi"] attack_comp = AttackComparator( forward_func=model, metric=tuple_metric, preproc_fn=text_preproc_fn ) attack_comp.add_attack( SamplePerturb().perturb, name="Sequence Column Perturb", num_attempts=5, apply_before_preproc=False, ) attack_comp.add_attack( string_perturb, name="StringPerturb", apply_before_preproc=True, ) batch_results = attack_comp.evaluate( text_inp, target=0, named_tuple=True, perturbations_per_eval=3 ) expected_first_results = { "Original": (0.0, 1280.0), "Sequence Column Perturb": { "mean": (0.0, 847.2), "max": (0.0, 892.0), "min": (0.0, 792.0), }, "StringPerturb": {"mean": (0.0, 1156.0)}, } self._compare_results(batch_results, expected_first_results) expected_summary_results = { "Original": {"mean": (0.0, 1280.0)}, "Sequence Column Perturb Mean Attempt": {"mean": (0.0, 847.2)}, "Sequence Column Perturb Min Attempt": {"mean": (0.0, 792.0)}, "Sequence Column Perturb Max Attempt": {"mean": (0.0, 892.0)}, "StringPerturb": {"mean": (0.0, 1156.0)}, } self._compare_results(attack_comp.summary(), expected_summary_results) def test_attack_comparator_with_additional_args(self) -> None: model = BasicModel_MultiLayer() text_inp = [["abc", "zyd", "ghi"], ["mnop", "qrs", "Tuv"]] additional_forward_args = torch.ones((2, 3)) * -97 attack_comp = AttackComparator( forward_func=model, metric=tuple_metric, preproc_fn=batch_text_preproc_fn ) attack_comp.add_attack( SamplePerturb().perturb, name="Sequence Column Perturb", num_attempts=5, apply_before_preproc=False, ) attack_comp.add_attack( string_batch_perturb, name="StringPerturb", apply_before_preproc=True, ) batch_results = attack_comp.evaluate( text_inp, additional_forward_args=additional_forward_args, target=0, named_tuple=True, perturbations_per_eval=2, ) expected_first_results = { "Original": ([0.0, 0.0], [116.0, 52.0]), "Sequence Column Perturb": { "mean": ([0.0, 0.0], [-1.0, -1.0]), "max": ([0.0, 0.0], [-1.0, -1.0]), "min": ([0.0, 0.0], [-1.0, -1.0]), }, "StringPerturb": {"mean": ([0.0, 0.0], [2.0, 2.0])}, } self._compare_results(batch_results, expected_first_results) expected_summary_results = { "Original": { "mean": (0.0, 84.0), }, "Sequence Column Perturb Mean Attempt": {"mean": (0.0, -1.0)}, "Sequence Column Perturb Min Attempt": {"mean": (0.0, -1.0)}, "Sequence Column Perturb Max Attempt": {"mean": (0.0, -1.0)}, "StringPerturb": {"mean": (0.0, 2.0)}, } self._compare_results(attack_comp.summary(), expected_summary_results) attack_comp.reset() self.assertEqual(len(attack_comp.summary()), 0) def _compare_results(self, obtained, expected) -> None: if isinstance(expected, dict): self.assertIsInstance(obtained, dict) for key in expected: self._compare_results(obtained[key], expected[key]) elif isinstance(expected, tuple): self.assertIsInstance(obtained, tuple) for i in range(len(expected)): self._compare_results(obtained[i], expected[i]) else: assertTensorAlmostEqual(self, obtained, expected)
#!/usr/bin/env python3 from typing import Any, Callable, List, Optional, Tuple, Union import torch from captum._utils.typing import TensorLikeList, TensorOrTupleOfTensorsGeneric from captum.robust import FGSM from tests.helpers.basic import assertTensorAlmostEqual, BaseTest from tests.helpers.basic_models import BasicModel, BasicModel2, BasicModel_MultiLayer from torch import Tensor from torch.nn import CrossEntropyLoss class Test(BaseTest): def test_attack_nontargeted(self) -> None: model = BasicModel() input = torch.tensor([[2.0, -9.0, 9.0, 1.0, -3.0]]) self._FGSM_assert(model, input, 1, 0.1, [[2.0, -8.9, 9.0, 1.0, -3.0]]) def test_attack_targeted(self) -> None: model = BasicModel() input = torch.tensor([[9.0, 10.0, -6.0, -1.0]]) self._FGSM_assert( model, input, 3, 0.2, [[9.0, 10.0, -6.0, -1.2]], targeted=True ) def test_attack_multiinput(self) -> None: model = BasicModel2() input1 = torch.tensor([[4.0, -1.0], [3.0, 10.0]], requires_grad=True) input2 = torch.tensor([[2.0, -5.0], [-2.0, 1.0]], requires_grad=True) self._FGSM_assert( model, (input1, input2), 0, 0.25, ([[3.75, -1.0], [2.75, 10.0]], [[2.25, -5.0], [-2.0, 1.0]]), ) def test_attack_label_list(self) -> None: model = BasicModel2() input1 = torch.tensor([[4.0, -1.0], [3.0, 10.0]], requires_grad=True) input2 = torch.tensor([[2.0, -5.0], [-2.0, 1.0]], requires_grad=True) self._FGSM_assert( model, (input1, input2), [0, 1], 0.1, ([[3.9, -1.0], [3.0, 9.9]], [[2.1, -5.0], [-2.0, 1.1]]), ) def test_attack_label_tensor(self) -> None: model = BasicModel2() input1 = torch.tensor([[4.0, -1.0], [3.0, 10.0]], requires_grad=True) input2 = torch.tensor([[2.0, -5.0], [-2.0, 1.0]], requires_grad=True) labels = torch.tensor([0, 1]) self._FGSM_assert( model, (input1, input2), labels, 0.1, ([[4.1, -1.0], [3.0, 10.1]], [[1.9, -5.0], [-2.0, 0.9]]), targeted=True, ) def test_attack_label_tuple(self) -> None: model = BasicModel() input = torch.tensor( [[[4.0, 2.0], [-1.0, -2.0]], [[3.0, -4.0], [10.0, 5.0]]], requires_grad=True ) labels = (0, 1) self._FGSM_assert( model, input, labels, 0.1, [[[4.0, 2.0], [-1.0, -2.0]], [[3.0, -3.9], [10.0, 5.0]]], ) def test_attack_label_listtuple(self) -> None: model = BasicModel() input = torch.tensor( [[[4.0, 2.0], [-1.0, -2.0]], [[3.0, -4.0], [10.0, 5.0]]], requires_grad=True ) labels: List[Tuple[int, ...]] = [(1, 1), (0, 1)] self._FGSM_assert( model, input, labels, 0.1, [[[4.0, 2.0], [-1.0, -1.9]], [[3.0, -3.9], [10.0, 5.0]]], ) def test_attack_additional_inputs(self) -> None: model = BasicModel_MultiLayer() add_input = torch.tensor([[-1.0, 2.0, 2.0]], requires_grad=True) input = torch.tensor([[1.0, 6.0, -3.0]], requires_grad=True) self._FGSM_assert( model, input, 0, 0.2, [[0.8, 5.8, -3.2]], additional_inputs=(add_input,) ) self._FGSM_assert( model, input, 0, 0.2, [[0.8, 5.8, -3.2]], additional_inputs=add_input ) def test_attack_loss_defined(self) -> None: model = BasicModel_MultiLayer() add_input = torch.tensor([[-1.0, 2.0, 2.0]]) input = torch.tensor([[1.0, 6.0, -3.0]]) labels = torch.tensor([0]) loss_func = CrossEntropyLoss(reduction="none") adv = FGSM(model, loss_func) perturbed_input = adv.perturb( input, 0.2, labels, additional_forward_args=(add_input,) ) assertTensorAlmostEqual( self, perturbed_input, [[1.0, 6.0, -3.0]], delta=0.01, mode="max" ) def test_attack_bound(self) -> None: model = BasicModel() input = torch.tensor([[9.0, 10.0, -6.0, -1.0]]) self._FGSM_assert( model, input, 3, 0.2, [[5.0, 5.0, -5.0, -1.2]], targeted=True, lower_bound=-5.0, upper_bound=5.0, ) def test_attack_masked_tensor(self) -> None: model = BasicModel() input = torch.tensor([[2.0, -9.0, 9.0, 1.0, -3.0]], requires_grad=True) mask = torch.tensor([[1, 0, 0, 1, 1]]) self._FGSM_assert( model, input, 1, 0.1, [[2.0, -9.0, 9.0, 1.0, -3.0]], mask=mask ) def test_attack_masked_multiinput(self) -> None: model = BasicModel2() input1 = torch.tensor([[4.0, -1.0], [3.0, 10.0]], requires_grad=True) input2 = torch.tensor([[2.0, -5.0], [-2.0, 1.0]], requires_grad=True) mask1 = torch.tensor([[1, 0], [1, 0]]) mask2 = torch.tensor([[0, 0], [0, 0]]) self._FGSM_assert( model, (input1, input2), 0, 0.25, ([[3.75, -1.0], [2.75, 10.0]], [[2.0, -5.0], [-2.0, 1.0]]), mask=(mask1, mask2), ) def test_attack_masked_loss_defined(self) -> None: model = BasicModel_MultiLayer() add_input = torch.tensor([[-1.0, 2.0, 2.0]]) input = torch.tensor([[1.0, 6.0, -3.0]]) labels = torch.tensor([0]) mask = torch.tensor([[0, 0, 1]]) loss_func = CrossEntropyLoss(reduction="none") adv = FGSM(model, loss_func) perturbed_input = adv.perturb( input, 0.2, labels, additional_forward_args=(add_input,), mask=mask ) assertTensorAlmostEqual( self, perturbed_input, [[1.0, 6.0, -3.0]], delta=0.01, mode="max" ) def test_attack_masked_bound(self) -> None: model = BasicModel() input = torch.tensor([[9.0, 10.0, -6.0, -1.0]]) mask = torch.tensor([[1, 0, 1, 0]]) self._FGSM_assert( model, input, 3, 0.2, [[5.0, 5.0, -5.0, -1.0]], targeted=True, lower_bound=-5.0, upper_bound=5.0, mask=mask, ) def _FGSM_assert( self, model: Callable, inputs: TensorOrTupleOfTensorsGeneric, target: Any, epsilon: float, answer: Union[TensorLikeList, Tuple[TensorLikeList, ...]], targeted=False, additional_inputs: Any = None, lower_bound: float = float("-inf"), upper_bound: float = float("inf"), mask: Optional[TensorOrTupleOfTensorsGeneric] = None, ) -> None: adv = FGSM(model, lower_bound=lower_bound, upper_bound=upper_bound) perturbed_input = adv.perturb( inputs, epsilon, target, additional_inputs, targeted, mask ) if isinstance(perturbed_input, Tensor): assertTensorAlmostEqual( self, perturbed_input, answer, delta=0.01, mode="max" ) else: for i in range(len(perturbed_input)): assertTensorAlmostEqual( self, perturbed_input[i], answer[i], delta=0.01, mode="max" )
#!/usr/bin/env python3 from typing import cast, List import torch from captum.robust import MinParamPerturbation from tests.helpers.basic import assertTensorAlmostEqual, BaseTest from tests.helpers.basic_models import BasicModel, BasicModel_MultiLayer from torch import Tensor def inp_subtract(inp: Tensor, ind: int = 0, add_arg: int = 0) -> Tensor: inp_repeat = 1.0 * inp inp_repeat[0][ind] -= add_arg return inp_repeat def add_char(inp: List[str], ind: int = 0, char_val: int = 0) -> List[str]: list_copy = list(inp) list_copy[ind] = chr(122 - char_val) + list_copy[ind] return list_copy def add_char_batch(inp: List[List[str]], ind: int, char_val: int) -> List[List[str]]: return [add_char(elem, ind, char_val) for elem in inp] def text_preproc_fn(inp: List[str]) -> Tensor: return torch.tensor([float(ord(elem[0])) for elem in inp]).unsqueeze(0) def batch_text_preproc_fn(inp: List[List[str]]) -> Tensor: return torch.cat([text_preproc_fn(elem) for elem in inp]) def alt_correct_fn(model_out: Tensor, target: int, threshold: float) -> bool: if all(model_out[:, target] > threshold): return True return False class Test(BaseTest): def test_minimal_pert_basic_linear(self) -> None: model = BasicModel() inp = torch.tensor([[2.0, -9.0, 9.0, 1.0, -3.0]]) minimal_pert = MinParamPerturbation( forward_func=lambda x: model(x) + torch.tensor([[0.000001, 0.0, 0.0, 0.0, 0.0]]), attack=inp_subtract, arg_name="add_arg", arg_min=0.0, arg_max=1000.0, arg_step=1.0, ) target_inp, pert = minimal_pert.evaluate( inp, target=0, attack_kwargs={"ind": 0} ) self.assertAlmostEqual(cast(float, pert), 2.0) assertTensorAlmostEqual( self, target_inp, torch.tensor([[0.0, -9.0, 9.0, 1.0, -3.0]]) ) def test_minimal_pert_basic_binary(self) -> None: model = BasicModel() inp = torch.tensor([[2.0, -9.0, 9.0, 1.0, -3.0]]) minimal_pert = MinParamPerturbation( forward_func=lambda x: model(x) + torch.tensor([[0.000001, 0.0, 0.0, 0.0, 0.0]]), attack=inp_subtract, arg_name="add_arg", arg_min=0.0, arg_max=1000.0, arg_step=1.0, mode="binary", ) target_inp, pert = minimal_pert.evaluate( inp, target=0, attack_kwargs={"ind": 0}, perturbations_per_eval=10, ) self.assertAlmostEqual(cast(float, pert), 2.0) assertTensorAlmostEqual( self, target_inp, torch.tensor([[0.0, -9.0, 9.0, 1.0, -3.0]]) ) def test_minimal_pert_preproc(self) -> None: model = BasicModel_MultiLayer() text_inp = ["abc", "zyd", "ghi"] minimal_pert = MinParamPerturbation( forward_func=model, attack=add_char, arg_name="char_val", arg_min=0, arg_max=26, arg_step=1, preproc_fn=text_preproc_fn, apply_before_preproc=True, ) target_inp, pert = minimal_pert.evaluate( text_inp, target=1, attack_kwargs={"ind": 1} ) self.assertEqual(pert, None) self.assertEqual(target_inp, None) def test_minimal_pert_alt_correct(self) -> None: model = BasicModel_MultiLayer() text_inp = ["abc", "zyd", "ghi"] minimal_pert = MinParamPerturbation( forward_func=model, attack=add_char, arg_name="char_val", arg_min=0, arg_max=26, arg_step=1, preproc_fn=text_preproc_fn, apply_before_preproc=True, correct_fn=alt_correct_fn, num_attempts=5, ) expected_list = ["abc", "ezyd", "ghi"] target_inp, pert = minimal_pert.evaluate( text_inp, target=1, attack_kwargs={"ind": 1}, correct_fn_kwargs={"threshold": 1200}, perturbations_per_eval=5, ) self.assertEqual(pert, 21) self.assertListEqual(target_inp, expected_list) target_inp_single, pert_single = minimal_pert.evaluate( text_inp, target=1, attack_kwargs={"ind": 1}, correct_fn_kwargs={"threshold": 1200}, ) self.assertEqual(pert_single, 21) self.assertListEqual(target_inp_single, expected_list) def test_minimal_pert_additional_forward_args(self) -> None: model = BasicModel_MultiLayer() text_inp = [["abc", "zyd", "ghi"], ["abc", "uyd", "ghi"]] additional_forward_args = torch.ones((2, 3)) * -97 model = BasicModel_MultiLayer() minimal_pert = MinParamPerturbation( forward_func=model, attack=add_char_batch, arg_name="char_val", arg_min=0, arg_max=26, arg_step=1, preproc_fn=batch_text_preproc_fn, apply_before_preproc=True, correct_fn=alt_correct_fn, ) expected_list = [["abc", "uzyd", "ghi"], ["abc", "uuyd", "ghi"]] target_inp, pert = minimal_pert.evaluate( text_inp, target=1, attack_kwargs={"ind": 1}, correct_fn_kwargs={"threshold": 100}, perturbations_per_eval=15, additional_forward_args=(additional_forward_args,), ) self.assertEqual(pert, 5) self.assertListEqual(target_inp, expected_list) target_inp_single, pert_single = minimal_pert.evaluate( text_inp, target=1, attack_kwargs={"ind": 1}, correct_fn_kwargs={"threshold": 100}, additional_forward_args=(additional_forward_args,), ) self.assertEqual(pert_single, 5) self.assertListEqual(target_inp_single, expected_list) def test_minimal_pert_tuple_test(self) -> None: model = BasicModel_MultiLayer() text_inp = ( [["abc", "zyd", "ghi"], ["abc", "uyd", "ghi"]], torch.ones((2, 3)) * -97, ) model = BasicModel_MultiLayer() minimal_pert = MinParamPerturbation( forward_func=lambda x: model(*x), attack=lambda x, ind, char_val: (add_char_batch(x[0], ind, char_val), x[1]), arg_name="char_val", arg_min=0, arg_max=26, arg_step=1, preproc_fn=lambda x: (batch_text_preproc_fn(x[0]), x[1]), apply_before_preproc=True, correct_fn=alt_correct_fn, ) expected_list = [["abc", "uzyd", "ghi"], ["abc", "uuyd", "ghi"]] target_inp, pert = minimal_pert.evaluate( text_inp, target=1, attack_kwargs={"ind": 1}, correct_fn_kwargs={"threshold": 100}, perturbations_per_eval=15, ) self.assertEqual(pert, 5) self.assertListEqual(target_inp[0], expected_list)
#!/usr/bin/env python3 import torch from captum.robust import PGD from tests.helpers.basic import assertTensorAlmostEqual, BaseTest from tests.helpers.basic_models import BasicModel, BasicModel2, BasicModel_MultiLayer from torch.nn import CrossEntropyLoss class Test(BaseTest): def test_attack_nontargeted(self) -> None: model = BasicModel() input = torch.tensor([[2.0, -9.0, 9.0, 1.0, -3.0]]) adv = PGD(model) perturbed_input = adv.perturb(input, 0.25, 0.1, 2, 4) assertTensorAlmostEqual( self, perturbed_input, [[2.0, -9.0, 9.0, 1.0, -2.8]], delta=0.01, mode="max", ) def test_attack_targeted(self) -> None: model = BasicModel() input = torch.tensor([[9.0, 10.0, -6.0, -1.0]], requires_grad=True) adv = PGD(model) perturbed_input = adv.perturb(input, 0.2, 0.1, 3, 3, targeted=True) assertTensorAlmostEqual( self, perturbed_input, [[9.0, 10.0, -6.0, -1.2]], delta=0.01, mode="max", ) def test_attack_l2norm(self) -> None: model = BasicModel() input = torch.tensor([[9.0, 10.0, -6.0, -1.0]], requires_grad=True) adv = PGD(model) perturbed_input = adv.perturb(input, 0.2, 0.1, 3, 2, targeted=True, norm="L2") assertTensorAlmostEqual( self, perturbed_input, [[9.0, 10.0, -6.2, -1.0]], delta=0.01, mode="max", ) def test_attack_multiinput(self) -> None: model = BasicModel2() input1 = torch.tensor([[4.0, -1.0], [3.0, 10.0]], requires_grad=True) input2 = torch.tensor([[2.0, -5.0], [-2.0, 1.0]], requires_grad=True) adv = PGD(model) perturbed_input = adv.perturb((input1, input2), 0.25, 0.1, 3, 0, norm="L2") answer = ([[3.75, -1.0], [2.75, 10.0]], [[2.25, -5.0], [-2.0, 1.0]]) for i in range(len(perturbed_input)): assertTensorAlmostEqual( self, perturbed_input[i], answer[i], delta=0.01, mode="max", ) def test_attack_3dimensional_input(self) -> None: model = BasicModel() input = torch.tensor( [[[4.0, 2.0], [-1.0, -2.0]], [[3.0, -4.0], [10.0, 5.0]]], requires_grad=True ) adv = PGD(model) perturbed_input = adv.perturb(input, 0.25, 0.1, 3, (0, 1)) assertTensorAlmostEqual( self, perturbed_input, [[[4.0, 2.0], [-1.0, -2.0]], [[3.0, -3.75], [10.0, 5.0]]], delta=0.01, mode="max", ) def test_attack_loss_defined(self) -> None: model = BasicModel_MultiLayer() add_input = torch.tensor([[-1.0, 2.0, 2.0]]) input = torch.tensor([[1.0, 6.0, -3.0]]) labels = torch.tensor([0]) loss_func = CrossEntropyLoss(reduction="none") adv = PGD(model, loss_func) perturbed_input = adv.perturb( input, 0.25, 0.1, 3, labels, additional_forward_args=(add_input,) ) assertTensorAlmostEqual( self, perturbed_input, [[1.0, 6.0, -3.0]], delta=0.01, mode="max" ) def test_attack_random_start(self) -> None: model = BasicModel() input = torch.tensor([[2.0, -9.0, 9.0, 1.0, -3.0]]) adv = PGD(model) perturbed_input = adv.perturb(input, 0.25, 0.1, 0, 4, random_start=True) assertTensorAlmostEqual( self, perturbed_input, [[2.0, -9.0, 9.0, 1.0, -3.0]], delta=0.25, mode="max", ) perturbed_input = adv.perturb( input, 0.25, 0.1, 0, 4, norm="L2", random_start=True ) norm = torch.norm((perturbed_input - input).squeeze()).numpy() self.assertLessEqual(norm, 0.25) def test_attack_masked_nontargeted(self) -> None: model = BasicModel() input = torch.tensor([[2.0, -9.0, 9.0, 1.0, -3.0]]) mask = torch.tensor([[1, 1, 0, 0, 0]]) adv = PGD(model) perturbed_input = adv.perturb(input, 0.25, 0.1, 2, 4, mask=mask) assertTensorAlmostEqual( self, perturbed_input, [[2.0, -9.0, 9.0, 1.0, -3.0]], delta=0.01, mode="max", ) def test_attack_masked_targeted(self) -> None: model = BasicModel() input = torch.tensor([[9.0, 10.0, -6.0, -1.0]], requires_grad=True) mask = torch.tensor([[1, 1, 1, 0]]) adv = PGD(model) perturbed_input = adv.perturb(input, 0.2, 0.1, 3, 3, targeted=True, mask=mask) assertTensorAlmostEqual( self, perturbed_input, [[9.0, 10.0, -6.0, -1.0]], delta=0.01, mode="max", ) def test_attack_masked_multiinput(self) -> None: model = BasicModel2() input1 = torch.tensor([[4.0, -1.0], [3.0, 10.0]], requires_grad=True) input2 = torch.tensor([[2.0, -5.0], [-2.0, 1.0]], requires_grad=True) mask1 = torch.tensor([[1, 1], [0, 0]]) mask2 = torch.tensor([[0, 1], [0, 1]]) adv = PGD(model) perturbed_input = adv.perturb( (input1, input2), 0.25, 0.1, 3, 0, norm="L2", mask=(mask1, mask2) ) answer = ([[3.75, -1.0], [3.0, 10.0]], [[2.0, -5.0], [-2.0, 1.0]]) for i in range(len(perturbed_input)): assertTensorAlmostEqual( self, perturbed_input[i], answer[i], delta=0.01, mode="max", ) def test_attack_masked_random_start(self) -> None: model = BasicModel() input = torch.tensor([[2.0, -9.0, 9.0, 1.0, -3.0]]) mask = torch.tensor([[1, 0, 1, 0, 1]]) adv = PGD(model) perturbed_input = adv.perturb( input, 0.25, 0.1, 0, 4, random_start=True, mask=mask ) assertTensorAlmostEqual( self, perturbed_input, [[2.0, -9.0, 9.0, 1.0, -3.0]], delta=0.25, mode="max", ) perturbed_input = adv.perturb( input, 0.25, 0.1, 0, 4, norm="L2", random_start=True, mask=mask ) norm = torch.norm((perturbed_input - input).squeeze()).numpy() self.assertLessEqual(norm, 0.25) def test_attack_masked_3dimensional_input(self) -> None: model = BasicModel() input = torch.tensor( [[[4.0, 2.0], [-1.0, -2.0]], [[3.0, -4.0], [10.0, 5.0]]], requires_grad=True ) mask = torch.tensor([[[1, 0], [0, 1]], [[1, 0], [1, 1]]]) adv = PGD(model) perturbed_input = adv.perturb(input, 0.25, 0.1, 3, (0, 1), mask=mask) assertTensorAlmostEqual( self, perturbed_input, [[[4.0, 2.0], [-1.0, -2.0]], [[3.0, -4.0], [10.0, 5.0]]], delta=0.01, mode="max", ) def test_attack_masked_loss_defined(self) -> None: model = BasicModel_MultiLayer() add_input = torch.tensor([[-1.0, 2.0, 2.0]]) input = torch.tensor([[1.0, 6.0, -3.0]]) mask = torch.tensor([[0, 1, 0]]) labels = torch.tensor([0]) loss_func = CrossEntropyLoss(reduction="none") adv = PGD(model, loss_func) perturbed_input = adv.perturb( input, 0.25, 0.1, 3, labels, additional_forward_args=(add_input,), mask=mask ) assertTensorAlmostEqual( self, perturbed_input, [[1.0, 6.0, -3.0]], delta=0.01, mode="max" )
import inspect import os import unittest from functools import partial from typing import Callable, Iterator, List, Optional, Tuple, Union import torch import torch.nn as nn import torch.nn.functional as F from captum.influence import DataInfluence from captum.influence._core.tracincp_fast_rand_proj import ( TracInCPFast, TracInCPFastRandProj, ) from parameterized import parameterized from parameterized.parameterized import param from torch import Tensor from torch.nn import Module from torch.utils.data import DataLoader, Dataset def _isSorted(x, key=lambda x: x, descending=True): if descending: return all([key(x[i]) >= key(x[i + 1]) for i in range(len(x) - 1)]) else: return all([key(x[i]) <= key(x[i + 1]) for i in range(len(x) - 1)]) def _wrap_model_in_dataparallel(net): alt_device_ids = [0] + [x for x in range(torch.cuda.device_count() - 1, 0, -1)] net = net.cuda() return torch.nn.DataParallel(net, device_ids=alt_device_ids) def _move_sample_to_cuda(samples): return [s.cuda() for s in samples] class ExplicitDataset(Dataset): def __init__(self, samples, labels, use_gpu=False) -> None: self.samples, self.labels = samples, labels if use_gpu: self.samples = ( _move_sample_to_cuda(self.samples) if isinstance(self.samples, list) else self.samples.cuda() ) self.labels = self.labels.cuda() def __len__(self) -> int: return len(self.samples) def __getitem__(self, idx): return (self.samples[idx], self.labels[idx]) class UnpackDataset(Dataset): def __init__(self, samples, labels, use_gpu=False) -> None: self.samples, self.labels = samples, labels if use_gpu: self.samples = ( _move_sample_to_cuda(self.samples) if isinstance(self.samples, list) else self.samples.cuda() ) self.labels = self.labels.cuda() def __len__(self) -> int: return len(self.samples[0]) def __getitem__(self, idx): """ The signature of the returning item is: List[List], where the contents are: [sample_0, sample_1, ...] + [labels] (two lists concacenated). """ return [lst[idx] for lst in self.samples] + [self.labels[idx]] class IdentityDataset(ExplicitDataset): def __init__(self, num_features, use_gpu=False) -> None: self.samples = torch.diag(torch.ones(num_features)) self.labels = torch.zeros(num_features).unsqueeze(1) if use_gpu: self.samples = self.samples.cuda() self.labels = self.labels.cuda() class RangeDataset(ExplicitDataset): def __init__(self, low, high, num_features, use_gpu=False) -> None: self.samples = ( torch.arange(start=low, end=high, dtype=torch.float) .repeat(num_features, 1) .transpose(1, 0) ) self.labels = torch.arange(start=low, end=high, dtype=torch.float).unsqueeze(1) if use_gpu: self.samples = self.samples.cuda() self.labels = self.labels.cuda() class BinaryDataset(ExplicitDataset): def __init__(self, use_gpu=False) -> None: self.samples = F.normalize( torch.stack( ( torch.Tensor([1, 1]), torch.Tensor([2, 1]), torch.Tensor([1, 2]), torch.Tensor([1, 5]), torch.Tensor([0.01, 1]), torch.Tensor([5, 1]), torch.Tensor([1, 0.01]), torch.Tensor([-1, -1]), torch.Tensor([-2, -1]), torch.Tensor([-1, -2]), torch.Tensor([-1, -5]), torch.Tensor([-5, -1]), torch.Tensor([1, -1]), torch.Tensor([2, -1]), torch.Tensor([1, -2]), torch.Tensor([1, -5]), torch.Tensor([0.01, -1]), torch.Tensor([5, -1]), torch.Tensor([-1, 1]), torch.Tensor([-2, 1]), torch.Tensor([-1, 2]), torch.Tensor([-1, 5]), torch.Tensor([-5, 1]), torch.Tensor([-1, 0.01]), ) ) ) self.labels = torch.cat( ( torch.Tensor([1]).repeat(12, 1), torch.Tensor([-1]).repeat(12, 1), ) ) super().__init__(self.samples, self.labels, use_gpu) class CoefficientNet(nn.Module): def __init__(self, in_features=1) -> None: super().__init__() self.fc1 = nn.Linear(in_features, 1, bias=False) self.fc1.weight.data.fill_(0.01) def forward(self, x): x = self.fc1(x) return x class BasicLinearNet(nn.Module): def __init__(self, in_features, hidden_nodes, out_features) -> None: super().__init__() self.linear1 = nn.Linear(in_features, hidden_nodes) self.linear2 = nn.Linear(hidden_nodes, out_features) def forward(self, input): x = torch.tanh(self.linear1(input)) return torch.tanh(self.linear2(x)) class MultLinearNet(nn.Module): def __init__(self, in_features, hidden_nodes, out_features, num_inputs) -> None: super().__init__() self.pre = nn.Linear(in_features * num_inputs, in_features) self.linear1 = nn.Linear(in_features, hidden_nodes) self.linear2 = nn.Linear(hidden_nodes, out_features) def forward(self, *inputs): """ The signature of inputs is List[torch.Tensor], where torch.Tensor has the dimensions [num_inputs x in_features]. It first concacenates the list and a linear layer to reduce the dimension. """ inputs = self.pre(torch.cat(inputs, dim=1)) x = torch.tanh(self.linear1(inputs)) return torch.tanh(self.linear2(x)) def get_random_model_and_data( tmpdir, unpack_inputs, return_test_data=True, use_gpu=False ): in_features, hidden_nodes, out_features = 5, 4, 3 num_inputs = 2 net = ( BasicLinearNet(in_features, hidden_nodes, out_features) if not unpack_inputs else MultLinearNet(in_features, hidden_nodes, out_features, num_inputs) ).double() num_checkpoints = 5 for i in range(num_checkpoints): net.linear1.weight.data = torch.normal( 3, 4, (hidden_nodes, in_features) ).double() net.linear2.weight.data = torch.normal( 5, 6, (out_features, hidden_nodes) ).double() if unpack_inputs: net.pre.weight.data = torch.normal( 3, 4, (in_features, in_features * num_inputs) ) if hasattr(net, "pre"): net.pre.weight.data = net.pre.weight.data.double() checkpoint_name = "-".join(["checkpoint-reg", str(i + 1) + ".pt"]) net_adjusted = _wrap_model_in_dataparallel(net) if use_gpu else net torch.save(net_adjusted.state_dict(), os.path.join(tmpdir, checkpoint_name)) num_samples = 50 num_train = 32 all_labels = torch.normal(1, 2, (num_samples, out_features)).double() train_labels = all_labels[:num_train] test_labels = all_labels[num_train:] if unpack_inputs: all_samples = [ torch.normal(0, 1, (num_samples, in_features)).double() for _ in range(num_inputs) ] train_samples = [ts[:num_train] for ts in all_samples] test_samples = [ts[num_train:] for ts in all_samples] else: all_samples = torch.normal(0, 1, (num_samples, in_features)).double() train_samples = all_samples[:num_train] test_samples = all_samples[num_train:] dataset = ( ExplicitDataset(train_samples, train_labels, use_gpu) if not unpack_inputs else UnpackDataset(train_samples, train_labels, use_gpu) ) if return_test_data: return ( _wrap_model_in_dataparallel(net) if use_gpu else net, dataset, _move_sample_to_cuda(test_samples) if isinstance(test_samples, list) and use_gpu else test_samples.cuda() if use_gpu else test_samples, test_labels.cuda() if use_gpu else test_labels, ) else: return _wrap_model_in_dataparallel(net) if use_gpu else net, dataset class DataInfluenceConstructor: name: str = "" data_influence_class: type def __init__( self, data_influence_class: type, name: Optional[str] = None, duplicate_loss_fn: bool = False, **kwargs, ) -> None: """ if `duplicate_loss_fn` is True, will explicitly pass the provided `loss_fn` as the `test_loss_fn` when constructing the TracInCPBase instance """ self.data_influence_class = data_influence_class self.name = name if name else data_influence_class.__name__ self.duplicate_loss_fn = duplicate_loss_fn self.kwargs = kwargs def __repr__(self) -> str: return self.name def __call__( self, net: Module, dataset: Union[Dataset, DataLoader], tmpdir: Union[str, List[str], Iterator], batch_size: Union[int, None], loss_fn: Optional[Union[Module, Callable]], **kwargs, ) -> DataInfluence: constructor_kwargs = self.kwargs.copy() constructor_kwargs.update(kwargs) # if `self.duplicate_loss_fn`, explicitly pass in `loss_fn` as `test_loss_fn` # when constructing the instance. Doing so should not affect the behavior of # the returned tracincp instance, since if `test_loss_fn` is not passed in, # the constructor sets `test_loss_fn` to be the same as `loss_fn` if self.duplicate_loss_fn: constructor_kwargs["test_loss_fn"] = loss_fn if self.data_influence_class is TracInCPFastRandProj: self.check_annoy() if self.data_influence_class in [TracInCPFast, TracInCPFastRandProj]: return self.data_influence_class( net, list(net.children())[-1], dataset, tmpdir, loss_fn=loss_fn, batch_size=batch_size, **constructor_kwargs, ) else: return self.data_influence_class( net, dataset, tmpdir, batch_size=batch_size, loss_fn=loss_fn, **constructor_kwargs, ) def check_annoy(self) -> None: try: import annoy # noqa except ImportError: raise unittest.SkipTest( ( f"Skipping tests for {self.data_influence_class.__name__}, " "because it requires the Annoy module." ) ) def generate_test_name( testcase_func: Callable, param_num: str, param: param, args_to_skip: Optional[List[str]] = None, ) -> str: """ Creates human readable names for parameterized tests """ if args_to_skip is None: args_to_skip = [] param_strs = [] func_param_names = list(inspect.signature(testcase_func).parameters) # skip the first 'self' parameter if func_param_names[0] == "self": func_param_names = func_param_names[1:] for i, arg in enumerate(param.args): if func_param_names[i] in args_to_skip: continue if isinstance(arg, bool): if arg: param_strs.append(func_param_names[i]) else: args_str = str(arg) if args_str.isnumeric(): param_strs.append(func_param_names[i]) param_strs.append(args_str) return "%s_%s" % ( testcase_func.__name__, parameterized.to_safe_name("_".join(param_strs)), ) def build_test_name_func(args_to_skip: Optional[List[str]] = None): """ Returns function to generate human readable names for parameterized tests """ return partial(generate_test_name, args_to_skip=args_to_skip) def _format_batch_into_tuple( inputs: Union[Tuple, Tensor], targets: Tensor, unpack_inputs: bool ): if unpack_inputs: return (*inputs, targets) else: return (inputs, targets)
import tempfile from typing import Callable import torch.nn as nn from captum.influence._core.tracincp import TracInCP from captum.influence._core.tracincp_fast_rand_proj import ( TracInCPFast, TracInCPFastRandProj, ) from parameterized import parameterized from tests.helpers.basic import assertTensorAlmostEqual, BaseTest from tests.influence._utils.common import ( _format_batch_into_tuple, build_test_name_func, DataInfluenceConstructor, get_random_model_and_data, ) from torch.utils.data import DataLoader class TestTracInDataLoader(BaseTest): """ This tests that the influence score computed when a Dataset is fed to the `self.tracin_constructor` and when a DataLoader constructed using the same Dataset is fed to `self.tracin_constructor` gives the same results. """ @parameterized.expand( [ ( reduction, constr, unpack_inputs, ) for unpack_inputs in [False, True] for reduction, constr in [ ("none", DataInfluenceConstructor(TracInCP)), ("sum", DataInfluenceConstructor(TracInCPFast)), ("sum", DataInfluenceConstructor(TracInCPFastRandProj)), ( "sum", DataInfluenceConstructor( TracInCPFastRandProj, name="TracInCPFastRandProj_1DProj", projection_dim=1, ), ), ] ], name_func=build_test_name_func(args_to_skip=["reduction"]), ) def test_tracin_dataloader( self, reduction: str, tracin_constructor: Callable, unpack_inputs: bool ) -> None: with tempfile.TemporaryDirectory() as tmpdir: batch_size = 5 ( net, train_dataset, test_samples, test_labels, ) = get_random_model_and_data(tmpdir, unpack_inputs, return_test_data=True) self.assertTrue(isinstance(reduction, str)) criterion = nn.MSELoss(reduction=reduction) self.assertTrue(callable(tracin_constructor)) tracin = tracin_constructor( net, train_dataset, tmpdir, batch_size, criterion, ) train_scores = tracin.influence( _format_batch_into_tuple(test_samples, test_labels, unpack_inputs), k=None, ) tracin_dataloader = tracin_constructor( net, DataLoader(train_dataset, batch_size=batch_size, shuffle=False), tmpdir, None, criterion, ) train_scores_dataloader = tracin_dataloader.influence( _format_batch_into_tuple(test_samples, test_labels, unpack_inputs), k=None, ) assertTensorAlmostEqual( self, train_scores, train_scores_dataloader, delta=0.0, mode="max", )
import tempfile from typing import Callable import torch import torch.nn as nn from captum.influence._core.tracincp import TracInCP from parameterized import parameterized from tests.helpers.basic import assertTensorAlmostEqual, BaseTest from tests.influence._utils.common import ( _format_batch_into_tuple, build_test_name_func, DataInfluenceConstructor, get_random_model_and_data, ) class TestTracInGetKMostInfluential(BaseTest): use_gpu_list = ( [True, False] if torch.cuda.is_available() and torch.cuda.device_count() != 0 else [False] ) param_list = [] for (batch_size, k) in [(4, 7), (7, 4), (40, 5), (5, 40), (40, 45)]: for unpack_inputs in [True, False]: for proponents in [True, False]: for use_gpu in use_gpu_list: for reduction, constr in [ ( "none", DataInfluenceConstructor( TracInCP, name="TracInCP_all_layers" ), ), ( "none", DataInfluenceConstructor( TracInCP, name="linear2", layers=["module.linear2"] if use_gpu else ["linear2"], ), ), ]: if not ( "sample_wise_grads_per_batch" in constr.kwargs and constr.kwargs["sample_wise_grads_per_batch"] and use_gpu ): param_list.append( ( reduction, constr, unpack_inputs, proponents, batch_size, k, use_gpu, ) ) @parameterized.expand( param_list, name_func=build_test_name_func(), ) def test_tracin_k_most_influential( self, reduction: str, tracin_constructor: Callable, unpack_inputs: bool, proponents: bool, batch_size: int, k: int, use_gpu: bool, ) -> None: """ This test constructs a random BasicLinearNet, and checks that the proponents obtained by calling `influence` and sorting are equal to the proponents obtained by calling `_k_most_influential`. Those calls are made through the calls to wrapper method `influence`. """ with tempfile.TemporaryDirectory() as tmpdir: ( net, train_dataset, test_samples, test_labels, ) = get_random_model_and_data( tmpdir, unpack_inputs, True, use_gpu, ) self.assertTrue(isinstance(reduction, str)) self.assertTrue(callable(tracin_constructor)) criterion = nn.MSELoss(reduction=reduction) tracin = tracin_constructor( net, train_dataset, tmpdir, batch_size, criterion, ) train_scores = tracin.influence( _format_batch_into_tuple(test_samples, test_labels, unpack_inputs), k=None, ) sort_idx = torch.argsort(train_scores, dim=1, descending=proponents)[:, 0:k] idx, _train_scores = tracin.influence( _format_batch_into_tuple(test_samples, test_labels, unpack_inputs), k=k, proponents=proponents, ) for i in range(len(idx)): # check that idx[i] is correct assertTensorAlmostEqual( self, train_scores[i, idx[i]], train_scores[i, sort_idx[i]], delta=0.0, mode="max", ) # check that _train_scores[i] is correct assertTensorAlmostEqual( self, _train_scores[i], train_scores[i, sort_idx[i]], delta=0.001, mode="max", )
import tempfile from typing import Callable import torch import torch.nn as nn from captum.influence._core.tracincp import TracInCP from captum.influence._core.tracincp_fast_rand_proj import TracInCPFast from parameterized import parameterized from tests.helpers.basic import assertTensorAlmostEqual, BaseTest from tests.influence._utils.common import ( _format_batch_into_tuple, build_test_name_func, DataInfluenceConstructor, get_random_model_and_data, ) from torch.utils.data import DataLoader class TestTracInSelfInfluence(BaseTest): use_gpu_list = ( [True, False] if torch.cuda.is_available() and torch.cuda.device_count() != 0 else [False] ) param_list = [] for unpack_inputs in [True, False]: for use_gpu in use_gpu_list: for (reduction, constructor) in [ ( "none", DataInfluenceConstructor(TracInCP, name="TracInCP_all_layers"), ), ( "none", DataInfluenceConstructor( TracInCP, name="TracInCP_linear1", layers=["module.linear1"] if use_gpu else ["linear1"], ), ), ( "none", DataInfluenceConstructor( TracInCP, name="TracInCP_linear1_linear2", layers=["module.linear1", "module.linear2"] if use_gpu else ["linear1", "linear2"], ), ), ( "sum", DataInfluenceConstructor( TracInCP, name="TracInCP_sample_wise_grads_per_batch_all_layers", sample_wise_grads_per_batch=True, ), ), ( "sum", DataInfluenceConstructor( TracInCPFast, "TracInCPFast_last_fc_layer" ), ), ( "mean", DataInfluenceConstructor( TracInCPFast, "TracInCPFast_last_fc_layer" ), ), ]: if not ( "sample_wise_grads_per_batch" in constructor.kwargs and constructor.kwargs["sample_wise_grads_per_batch"] and use_gpu ): param_list.append((reduction, constructor, unpack_inputs, use_gpu)) @parameterized.expand( param_list, name_func=build_test_name_func(), ) def test_tracin_self_influence( self, reduction: str, tracin_constructor: Callable, unpack_inputs: bool, use_gpu: bool, ) -> None: with tempfile.TemporaryDirectory() as tmpdir: (net, train_dataset,) = get_random_model_and_data( tmpdir, unpack_inputs, False, use_gpu, ) # compute tracin_scores of training data on training data criterion = nn.MSELoss(reduction=reduction) batch_size = 5 tracin = tracin_constructor( net, train_dataset, tmpdir, batch_size, criterion, ) train_scores = tracin.influence( _format_batch_into_tuple( train_dataset.samples, train_dataset.labels, unpack_inputs ), k=None, ) # calculate self_tracin_scores self_tracin_scores = tracin.self_influence( outer_loop_by_checkpoints=False, ) # check that self_tracin scores equals the diagonal of influence scores assertTensorAlmostEqual( self, torch.diagonal(train_scores), self_tracin_scores, delta=0.01, mode="max", ) # check that setting `outer_loop_by_checkpoints=False` and # `outer_loop_by_checkpoints=True` gives the same self influence scores self_tracin_scores_by_checkpoints = tracin.self_influence( DataLoader(train_dataset, batch_size=batch_size), outer_loop_by_checkpoints=True, ) assertTensorAlmostEqual( self, self_tracin_scores_by_checkpoints, self_tracin_scores, delta=0.01, mode="max", ) @parameterized.expand( [ (reduction, constructor, unpack_inputs) for unpack_inputs in [True, False] for (reduction, constructor) in [ ("none", DataInfluenceConstructor(TracInCP)), ( "sum", DataInfluenceConstructor( TracInCP, sample_wise_grads_per_batch=True, ), ), ("sum", DataInfluenceConstructor(TracInCPFast)), ("mean", DataInfluenceConstructor(TracInCPFast)), ] ], name_func=build_test_name_func(), ) def test_tracin_self_influence_dataloader_vs_single_batch( self, reduction: str, tracin_constructor: Callable, unpack_inputs: bool ) -> None: # tests that the result of calling the public method `self_influence` for a # DataLoader of batches is the same as when the batches are collated into a # single batch with tempfile.TemporaryDirectory() as tmpdir: ( net, train_dataset, ) = get_random_model_and_data(tmpdir, unpack_inputs, return_test_data=False) # create a single batch representing the entire dataset single_batch = next( iter(DataLoader(train_dataset, batch_size=len(train_dataset))) ) # create a dataloader that yields batches from the dataset dataloader = DataLoader(train_dataset, batch_size=5) # create tracin instance criterion = nn.MSELoss(reduction=reduction) batch_size = 5 tracin = tracin_constructor( net, train_dataset, tmpdir, batch_size, criterion, ) # compute self influence using `self_influence` when passing in a single # batch single_batch_self_influence = tracin.self_influence(single_batch) # compute self influence using `self_influence` when passing in a # dataloader with the same examples dataloader_self_influence = tracin.self_influence(dataloader) # the two self influences should be equal assertTensorAlmostEqual( self, single_batch_self_influence, dataloader_self_influence, delta=0.01, # due to numerical issues, we can't set this to 0.0 mode="max", )
import tempfile from typing import Callable import torch.nn as nn from captum.influence._core.tracincp import TracInCP from captum.influence._core.tracincp_fast_rand_proj import TracInCPFast from parameterized import parameterized from tests.helpers.basic import BaseTest from tests.influence._utils.common import ( build_test_name_func, DataInfluenceConstructor, get_random_model_and_data, ) class TestTracinValidator(BaseTest): param_list = [] for reduction, constr in [ ( "none", DataInfluenceConstructor(TracInCP, name="TracInCP"), ), ( "mean", DataInfluenceConstructor( TracInCPFast, name="TracInCpFast", ), ), ]: param_list.append((reduction, constr)) @parameterized.expand( param_list, name_func=build_test_name_func(), ) def test_tracin_require_inputs_dataset( self, reduction, tracin_constructor: Callable, ) -> None: """ This test verifies that tracinCP and tracinCPFast influence methods required `inputs_dataset`. """ with tempfile.TemporaryDirectory() as tmpdir: ( net, train_dataset, test_samples, test_labels, ) = get_random_model_and_data(tmpdir, unpack_inputs=False) criterion = nn.MSELoss(reduction=reduction) tracin = tracin_constructor( net, train_dataset, tmpdir, loss_fn=criterion, batch_size=1, ) with self.assertRaisesRegex(AssertionError, "required."): tracin.influence(None, k=None)
import os import tempfile from collections import OrderedDict from typing import Callable, cast, Optional import torch import torch.nn as nn import torch.nn.functional as F from captum.influence._core.tracincp import TracInCP from parameterized import parameterized from tests.helpers.basic import assertTensorAlmostEqual, BaseTest from tests.influence._utils.common import ( _wrap_model_in_dataparallel, BasicLinearNet, BinaryDataset, build_test_name_func, DataInfluenceConstructor, ) class TestTracInXOR(BaseTest): # TODO: Move test setup to use setUp and tearDown method overrides. def _test_tracin_xor_setup(self, tmpdir: str, use_gpu: bool = False): net = BasicLinearNet(2, 2, 1) state = OrderedDict( [ ( "linear1.weight", torch.Tensor([[-1.2956, -1.4465], [-0.3890, -0.7420]]), ), ("linear1.bias", torch.Tensor([1.2924, 0.0021])), ("linear2.weight", torch.Tensor([[-1.2013, 0.7174]])), ("linear2.bias", torch.Tensor([0.5880])), ] ) net.load_state_dict(state) net_adjusted = _wrap_model_in_dataparallel(net) if use_gpu else net checkpoint_name = "-".join(["checkpoint", "class", "0" + ".pt"]) torch.save(net_adjusted.state_dict(), os.path.join(tmpdir, checkpoint_name)) state = OrderedDict( [ ( "linear1.weight", torch.Tensor([[-1.3238, -1.4899], [-0.4544, -0.7448]]), ), ("linear1.bias", torch.Tensor([1.3185, -0.0317])), ("linear2.weight", torch.Tensor([[-1.2342, 0.7741]])), ("linear2.bias", torch.Tensor([0.6234])), ] ) net.load_state_dict(state) net_adjusted = _wrap_model_in_dataparallel(net) if use_gpu else net checkpoint_name = "-".join(["checkpoint", "class", "1" + ".pt"]) torch.save(net_adjusted.state_dict(), os.path.join(tmpdir, checkpoint_name)) state = OrderedDict( [ ( "linear1.weight", torch.Tensor([[-1.3546, -1.5288], [-0.5250, -0.7591]]), ), ("linear1.bias", torch.Tensor([1.3432, -0.0684])), ("linear2.weight", torch.Tensor([[-1.2490, 0.8534]])), ("linear2.bias", torch.Tensor([0.6749])), ] ) net.load_state_dict(state) net_adjusted = _wrap_model_in_dataparallel(net) if use_gpu else net checkpoint_name = "-".join(["checkpoint", "class", "2" + ".pt"]) torch.save(net_adjusted.state_dict(), os.path.join(tmpdir, checkpoint_name)) state = OrderedDict( [ ( "linear1.weight", torch.Tensor([[-1.4022, -1.5485], [-0.5688, -0.7607]]), ), ("linear1.bias", torch.Tensor([1.3740, -0.1571])), ("linear2.weight", torch.Tensor([[-1.3412, 0.9013]])), ("linear2.bias", torch.Tensor([0.6468])), ] ) net.load_state_dict(state) net_adjusted = _wrap_model_in_dataparallel(net) if use_gpu else net checkpoint_name = "-".join(["checkpoint", "class", "3" + ".pt"]) torch.save(net_adjusted.state_dict(), os.path.join(tmpdir, checkpoint_name)) state = OrderedDict( [ ( "linear1.weight", torch.Tensor([[-1.4464, -1.5890], [-0.6348, -0.7665]]), ), ("linear1.bias", torch.Tensor([1.3791, -0.2008])), ("linear2.weight", torch.Tensor([[-1.3818, 0.9586]])), ("linear2.bias", torch.Tensor([0.6954])), ] ) net.load_state_dict(state) net_adjusted = _wrap_model_in_dataparallel(net) if use_gpu else net checkpoint_name = "-".join(["checkpoint", "class", "4" + ".pt"]) torch.save(net_adjusted.state_dict(), os.path.join(tmpdir, checkpoint_name)) state = OrderedDict( [ ( "linear1.weight", torch.Tensor([[-1.5217, -1.6242], [-0.6644, -0.7842]]), ), ("linear1.bias", torch.Tensor([1.3500, -0.2418])), ("linear2.weight", torch.Tensor([[-1.4304, 0.9980]])), ("linear2.bias", torch.Tensor([0.7567])), ] ) net.load_state_dict(state) net_adjusted = _wrap_model_in_dataparallel(net) if use_gpu else net checkpoint_name = "-".join(["checkpoint", "class", "5" + ".pt"]) torch.save(net_adjusted.state_dict(), os.path.join(tmpdir, checkpoint_name)) state = OrderedDict( [ ( "linear1.weight", torch.Tensor([[-1.5551, -1.6631], [-0.7420, -0.8025]]), ), ("linear1.bias", torch.Tensor([1.3508, -0.2618])), ("linear2.weight", torch.Tensor([[-1.4272, 1.0772]])), ("linear2.bias", torch.Tensor([0.8427])), ] ) net.load_state_dict(state) net_adjusted = _wrap_model_in_dataparallel(net) if use_gpu else net checkpoint_name = "-".join(["checkpoint", "class", "6" + ".pt"]) torch.save(net_adjusted.state_dict(), os.path.join(tmpdir, checkpoint_name)) state = OrderedDict( [ ( "linear1.weight", torch.Tensor([[-1.5893, -1.6656], [-0.7863, -0.8369]]), ), ("linear1.bias", torch.Tensor([1.3949, -0.3215])), ("linear2.weight", torch.Tensor([[-1.4555, 1.1600]])), ("linear2.bias", torch.Tensor([0.8730])), ] ) net.load_state_dict(state) net_adjusted = _wrap_model_in_dataparallel(net) if use_gpu else net checkpoint_name = "-".join(["checkpoint", "class", "7" + ".pt"]) torch.save(net_adjusted.state_dict(), os.path.join(tmpdir, checkpoint_name)) dataset = BinaryDataset(use_gpu) return net_adjusted, dataset parametrized_list = [ ( "none", DataInfluenceConstructor( TracInCP, name="TracInCP_linear1", layers=["linear1"] ), "check_idx", False, ), ( "none", DataInfluenceConstructor(TracInCP, name="TracInCP_all_layers"), "check_idx", False, ), ( None, DataInfluenceConstructor(TracInCP, name="TracInCP_all_layers"), "sample_wise_trick", False, ), ( None, DataInfluenceConstructor( TracInCP, name="TracInCP_linear1_linear2", layers=["linear1", "linear2"] ), "sample_wise_trick", False, ), ] if torch.cuda.is_available() and torch.cuda.device_count() != 0: parametrized_list.extend( [ ( "none", DataInfluenceConstructor(TracInCP, name="TracInCP_all_layers"), "check_idx", True, ), ( "none", DataInfluenceConstructor( TracInCP, name="TracInCP_linear1_linear2", layers=["module.linear1", "module.linear2"], ), "check_idx", True, ), ], ) @parameterized.expand( parametrized_list, name_func=build_test_name_func(args_to_skip=["reduction"]), ) def test_tracin_xor( self, reduction: Optional[str], tracin_constructor: Callable, mode: str, use_gpu: bool, ) -> None: with tempfile.TemporaryDirectory() as tmpdir: batch_size = 4 net, dataset = self._test_tracin_xor_setup(tmpdir, use_gpu) testset = F.normalize(torch.empty(100, 2).normal_(mean=0, std=0.5), dim=1) mask = ~torch.logical_xor(testset[:, 0] > 0, testset[:, 1] > 0) testlabels = ( torch.where(mask, torch.tensor(1), torch.tensor(-1)) .unsqueeze(1) .float() ) if use_gpu: testset = testset.cuda() testlabels = testlabels.cuda() self.assertTrue(callable(tracin_constructor)) if mode == "check_idx": self.assertTrue(isinstance(reduction, str)) criterion = nn.MSELoss(reduction=cast(str, reduction)) tracin = tracin_constructor( net, dataset, tmpdir, batch_size, criterion, ) test_scores = tracin.influence((testset, testlabels)) idx = torch.argsort(test_scores, dim=1, descending=True) # check that top 5 influences have matching binary classification for i in range(len(idx)): influence_labels = dataset.labels[idx[i][0:5], 0] self.assertTrue(torch.all(testlabels[i, 0] == influence_labels)) if mode == "sample_wise_trick": criterion = nn.MSELoss(reduction="none") tracin = tracin_constructor( net, dataset, tmpdir, batch_size, criterion, sample_wise_grads_per_batch=False, ) # With sample-wise trick criterion = nn.MSELoss(reduction="sum") tracin_sample_wise_trick = tracin_constructor( net, dataset, tmpdir, batch_size, criterion, sample_wise_grads_per_batch=True, ) test_scores = tracin.influence((testset, testlabels)) test_scores_sample_wise_trick = tracin_sample_wise_trick.influence( (testset, testlabels) ) assertTensorAlmostEqual( self, test_scores, test_scores_sample_wise_trick )
import os import tempfile from typing import Callable, cast, Optional import torch import torch.nn as nn from captum.influence._core.tracincp import TracInCP from captum.influence._core.tracincp_fast_rand_proj import ( TracInCPFast, TracInCPFastRandProj, ) from parameterized import parameterized from tests.helpers.basic import assertTensorAlmostEqual, BaseTest from tests.influence._utils.common import ( _isSorted, _wrap_model_in_dataparallel, build_test_name_func, CoefficientNet, DataInfluenceConstructor, IdentityDataset, RangeDataset, ) class TestTracInRegression(BaseTest): def _test_tracin_regression_setup( self, tmpdir: str, features: int, use_gpu: bool = False ): low = 1 high = 17 dataset = RangeDataset(low, high, features, use_gpu) net = CoefficientNet(in_features=features) checkpoint_name = "-".join(["checkpoint-reg", "0" + ".pt"]) torch.save(net.state_dict(), os.path.join(tmpdir, checkpoint_name)) weights = [0.4379, 0.1653, 0.5132, 0.3651, 0.9992] for i, weight in enumerate(weights): net.fc1.weight.data.fill_(weight) net_adjusted = _wrap_model_in_dataparallel(net) if use_gpu else net checkpoint_name = "-".join(["checkpoint-reg", str(i + 1) + ".pt"]) torch.save(net_adjusted.state_dict(), os.path.join(tmpdir, checkpoint_name)) return dataset, net_adjusted use_gpu_list = ( [True, False] if torch.cuda.is_available() and torch.cuda.device_count() != 0 else [False] ) param_list = [] for use_gpu in use_gpu_list: for dim in [1, 20]: for (mode, reduction, constructor) in [ ( "check_idx", "none", DataInfluenceConstructor(TracInCP, name="TracInCP_all_layers"), ), ( "check_idx", "none", DataInfluenceConstructor( TracInCP, name="TracInCP_fc1", layers=["module.fc1"] if use_gpu else ["fc1"], ), ), ( "sample_wise_trick", None, DataInfluenceConstructor(TracInCP, name="TracInCP_fc1"), ), ( "check_idx", "sum", DataInfluenceConstructor( TracInCPFast, name="TracInCPFast_last_fc_layer" ), ), ( "check_idx", "sum", DataInfluenceConstructor( TracInCPFastRandProj, name="TracInCPFast_last_fc_layer" ), ), ( "check_idx", "mean", DataInfluenceConstructor( TracInCPFast, name="TracInCPFast_last_fc_layer" ), ), ( "check_idx", "mean", DataInfluenceConstructor( TracInCPFastRandProj, name="TracInCPFastRandProj_last_fc_layer" ), ), ( "check_idx", "sum", DataInfluenceConstructor( TracInCPFastRandProj, name="TracInCPFastRandProj1DimensionalProjection_last_fc_layer", projection_dim=1, ), ), ( "check_idx", "mean", DataInfluenceConstructor( TracInCPFast, name="TracInCPFastDuplicateLossFn", duplicate_loss_fn=True, ), ), # add a test where `duplicate_loss_fn` is True ( "check_idx", "mean", DataInfluenceConstructor( TracInCPFastRandProj, name="TracInCPFastRandProjDuplicateLossFn", duplicate_loss_fn=True, ), # add a test where `duplicate_loss_fn` is True ), ]: if not (mode == "sample_wise_trick" and use_gpu): param_list.append((reduction, constructor, mode, dim, use_gpu)) @parameterized.expand( param_list, name_func=build_test_name_func(args_to_skip=["reduction"]), ) def test_tracin_regression( self, reduction: Optional[str], tracin_constructor: Callable, mode: str, features: int, use_gpu: bool, ) -> None: with tempfile.TemporaryDirectory() as tmpdir: batch_size = 4 dataset, net = self._test_tracin_regression_setup( tmpdir, features, use_gpu, ) # and not mode == 'sample_wise_trick' # check influence scores of training data train_inputs = dataset.samples train_labels = dataset.labels test_inputs = ( torch.arange(17, 33, dtype=torch.float).unsqueeze(1).repeat(1, features) ) if use_gpu: test_inputs = test_inputs.cuda() test_labels = test_inputs self.assertTrue(callable(tracin_constructor)) if mode == "check_idx": self.assertTrue(isinstance(reduction, str)) criterion = nn.MSELoss(reduction=cast(str, reduction)) tracin = tracin_constructor( net, dataset, tmpdir, batch_size, criterion, ) train_scores = tracin.influence((train_inputs, train_labels)) idx, _ = tracin.influence( (train_inputs, train_labels), k=len(dataset), proponents=True ) # check that top influence is one with maximal value # (and hence gradient) for i in range(len(idx)): self.assertEqual(idx[i][0], 15) # check influence scores of test data test_scores = tracin.influence((test_inputs, test_labels)) idx, _ = tracin.influence( (test_inputs, test_labels), k=len(test_inputs), proponents=True ) # check that top influence is one with maximal value # (and hence gradient) for i in range(len(idx)): self.assertTrue(_isSorted(idx[i])) if mode == "sample_wise_trick": criterion = nn.MSELoss(reduction="none") tracin = tracin_constructor( net, dataset, tmpdir, batch_size, criterion, sample_wise_grads_per_batch=False, ) # With sample-wise trick criterion = nn.MSELoss(reduction="sum") tracin_sample_wise_trick = tracin_constructor( net, dataset, tmpdir, batch_size, criterion, sample_wise_grads_per_batch=True, ) train_scores = tracin.influence((train_inputs, train_labels)) train_scores_sample_wise_trick = tracin_sample_wise_trick.influence( (train_inputs, train_labels) ) assertTensorAlmostEqual( self, train_scores, train_scores_sample_wise_trick ) test_scores = tracin.influence((test_inputs, test_labels)) test_scores_sample_wise_trick = tracin_sample_wise_trick.influence( (test_inputs, test_labels) ) assertTensorAlmostEqual( self, test_scores, test_scores_sample_wise_trick ) @parameterized.expand( [ ( "sum", DataInfluenceConstructor(TracInCP, sample_wise_grads_per_batch=True), ), ("sum", DataInfluenceConstructor(TracInCPFast)), ("sum", DataInfluenceConstructor(TracInCPFastRandProj)), ("mean", DataInfluenceConstructor(TracInCPFast)), ("mean", DataInfluenceConstructor(TracInCPFastRandProj)), ], name_func=build_test_name_func(), ) def test_tracin_regression_1D_numerical( self, reduction: str, tracin_constructor: Callable ) -> None: low = 1 high = 17 features = 1 dataset = RangeDataset(low, high, features) net = CoefficientNet() self.assertTrue(isinstance(reduction, str)) criterion = nn.MSELoss(reduction=cast(str, reduction)) batch_size = 4 weights = [0.4379, 0.1653, 0.5132, 0.3651, 0.9992] train_inputs = dataset.samples train_labels = dataset.labels with tempfile.TemporaryDirectory() as tmpdir: for i, weight in enumerate(weights): net.fc1.weight.data.fill_(weight) checkpoint_name = "-".join(["checkpoint-reg", str(i + 1) + ".pt"]) torch.save(net.state_dict(), os.path.join(tmpdir, checkpoint_name)) self.assertTrue(callable(tracin_constructor)) tracin = tracin_constructor( net, dataset, tmpdir, batch_size, criterion, ) train_scores = tracin.influence((train_inputs, train_labels), k=None) r""" Derivation for gradient / resulting TracIn score: For each checkpoint: $y = Wx,$ and $loss = (y - label)^2.$ Recall for this test case, there is no activation on y. For this example, $label = x.$ Fast Rand Proj gives $\nabla_W loss = \nabla_y loss (x^T).$ We have $x$ and y as scalars so we can simply multiply. So then, \[\nabla_y loss * x = 2(y-x)*x = 2(Wx -x)*x = 2x^2 (w - 1).\] And we simply multiply these for x, x'. In this case, $x, x' \in [1..16]$. """ for i in range(train_scores.shape[0]): for j in range(len(train_scores[0])): _weights = torch.Tensor(weights) num = 2 * (i + 1) * (i + 1) * (_weights - 1) num *= 2 * (j + 1) * (j + 1) * (_weights - 1) assertTensorAlmostEqual( self, torch.sum(num), train_scores[i][j], delta=0.1 ) def _test_tracin_identity_regression_setup(self, tmpdir: str): num_features = 7 dataset = IdentityDataset(num_features) net = CoefficientNet() num_checkpoints = 5 for i in range(num_checkpoints): net.fc1.weight.data = torch.rand((1, num_features)) checkpoint_name = "-".join(["checkpoint-reg", str(i) + ".pt"]) torch.save(net.state_dict(), os.path.join(tmpdir, checkpoint_name)) return dataset, net @parameterized.expand( [ ("check_idx", "none", DataInfluenceConstructor(TracInCP)), ("check_idx", "none", DataInfluenceConstructor(TracInCP, layers=["fc1"])), ("sample_wise_trick", None, DataInfluenceConstructor(TracInCP)), ( "sample_wise_trick", None, DataInfluenceConstructor(TracInCP, layers=["fc1"]), ), ("check_idx", "sum", DataInfluenceConstructor(TracInCPFast)), ("check_idx", "sum", DataInfluenceConstructor(TracInCPFastRandProj)), ("check_idx", "mean", DataInfluenceConstructor(TracInCPFast)), ("check_idx", "mean", DataInfluenceConstructor(TracInCPFastRandProj)), ], name_func=build_test_name_func(), ) def test_tracin_identity_regression( self, mode: str, reduction: Optional[str], tracin_constructor: Callable ) -> None: """ This test uses a linear model with positive coefficients, where input feature matrix is the identity matrix. Since the dot product between 2 different training instances is always 0, when calculating influence scores on the training data, only self influence scores will be nonzero. Since the linear model has positive coefficients, self influence scores will be positive. Thus, the training instance with the largest influence on another training instance is itself. """ with tempfile.TemporaryDirectory() as tmpdir: batch_size = 4 dataset, net = self._test_tracin_identity_regression_setup(tmpdir) train_inputs = dataset.samples train_labels = dataset.labels self.assertTrue(callable(tracin_constructor)) if mode == "check_idx": self.assertTrue(isinstance(reduction, str)) criterion = nn.MSELoss(reduction=cast(str, reduction)) tracin = tracin_constructor( net, dataset, tmpdir, batch_size, criterion, ) # check influence scores of training data train_scores = tracin.influence((train_inputs, train_labels)) idx, _ = tracin.influence( (train_inputs, train_labels), k=len(dataset), proponents=True ) # check that top influence for an instance is itself for i in range(len(idx)): self.assertEqual(idx[i][0], i) if mode == "sample_wise_trick": criterion = nn.MSELoss(reduction="none") tracin = tracin_constructor( net, dataset, tmpdir, batch_size, criterion, sample_wise_grads_per_batch=False, ) # With sample-wise trick criterion = nn.MSELoss(reduction="sum") tracin_sample_wise_trick = tracin_constructor( net, dataset, tmpdir, batch_size, criterion, sample_wise_grads_per_batch=True, ) train_scores = tracin.influence((train_inputs, train_labels)) train_scores_tracin_sample_wise_trick = ( tracin_sample_wise_trick.influence((train_inputs, train_labels)) ) assertTensorAlmostEqual( self, train_scores, train_scores_tracin_sample_wise_trick ) @parameterized.expand( [ ("none", "none", DataInfluenceConstructor(TracInCP)), ( "mean", "mean", DataInfluenceConstructor(TracInCP, sample_wise_grads_per_batch=True), ), ("sum", "sum", DataInfluenceConstructor(TracInCPFast)), ("mean", "mean", DataInfluenceConstructor(TracInCPFast)), ("sum", "sum", DataInfluenceConstructor(TracInCPFastRandProj)), ("mean", "mean", DataInfluenceConstructor(TracInCPFastRandProj)), ], name_func=build_test_name_func(), ) def test_tracin_constant_test_loss_fn( self, reduction: Optional[str], test_reduction: Optional[str], tracin_constructor: Callable, ) -> None: """ All implementations of `TracInCPBase` can accept `test_loss_fn` in initialization, which sets the loss function applied to test examples, which can thus be different from the loss function applied to training examples. This test passes `test_loss_fn` to be a constant function. Then, the influence scores should all be 0, because gradients w.r.t. `test_loss_fn` will all be 0. It re-uses the dataset and model from `test_tracin_identity_regression`. The reduction for `loss_fn` and `test_loss_fn` initialization arguments is the same for all parameterized tests, for simplicity, and also because for `TracInCP`, both loss functions must both be reduction loss functions (i.e. reduction is "mean" or "sum"), or both be per-example loss functions (i.e. reduction is "none"). Recall that for `TracInCP`, the `sample_wise_grads_per_batch` initialization argument determines which of those cases holds. """ with tempfile.TemporaryDirectory() as tmpdir: batch_size = 4 dataset, net = self._test_tracin_identity_regression_setup(tmpdir) train_inputs = dataset.samples train_labels = dataset.labels self.assertTrue(callable(tracin_constructor)) self.assertTrue(isinstance(reduction, str)) criterion = nn.MSELoss(reduction=cast(str, reduction)) # the output of `net`, i.e. `input` for the loss functions below, is a # batch_size x 1 2D tensor if test_reduction == "none": # loss function returns 1D tensor of all 0's, so is constant def test_loss_fn(input, target): return input.squeeze() * 0.0 elif test_reduction in ["sum", "mean"]: # loss function returns scalar tensor of all 0's, so is constant def test_loss_fn(input, target): return input.mean() * 0.0 tracin = tracin_constructor( net, dataset, tmpdir, batch_size, criterion, test_loss_fn=test_loss_fn, ) # check influence scores of training data. they should all be 0 train_scores = tracin.influence((train_inputs, train_labels), k=None) assertTensorAlmostEqual(self, train_scores, torch.zeros(train_scores.shape))
import io import tempfile import unittest import unittest.mock from typing import Callable import torch.nn as nn from captum.influence._core.tracincp import TracInCP from captum.influence._core.tracincp_fast_rand_proj import TracInCPFast from parameterized import parameterized from tests.helpers.basic import BaseTest from tests.influence._utils.common import ( build_test_name_func, DataInfluenceConstructor, get_random_model_and_data, ) from torch.utils.data import DataLoader class TestTracInShowProgress(BaseTest): """ This tests that the progress bar correctly shows a "100%" message at some point in the relevant computations. Progress bars are shown for calls to the `influence` method for all 3 modes. This is why 3 different modes are tested, and the mode being tested is a parameter in the test. `TracInCPFastRandProj.influence` is not tested, because none of its modes involve computations over the entire training dataset, so that no progress bar is shown (the computation is instead done in `TracInCPFastRandProj.__init__`. TODO: add progress bar for computations done in `TracInCPFastRandProj.__init__`). """ def _check_error_msg_multiplicity( self, mock_stderr: io.StringIO, msg: str, msg_multiplicity: int, greater_than: bool = True, ): """ Checks that in `mock_stderr`, the error msg `msg` occurs `msg_multiplicity` times. If 'greater_than' is true, it checks that the `msg` occurs at least `msg_multiplicity` times. Otherwise, it checks that `msg` occurs exactly `msg_multiplicity` times. The reason to let `greater_than` as true by default is that tqdm sometimes displays the "100%" more than once for each progress bar because it may want to correct its estimation of it/s. In this case, the tqdm could remove the original "100%" and then re-display "100%" with the updated estimate of it/s. """ output = mock_stderr.getvalue() actual_msg_multiplicity = output.count(msg) assert isinstance(actual_msg_multiplicity, int) error_msg = ( f"Error in progress of batches with output looking for '{msg}'" f" at least {msg_multiplicity} times" f"(found {actual_msg_multiplicity}) in {repr(output)}" ) if greater_than: self.assertGreaterEqual( actual_msg_multiplicity, msg_multiplicity, error_msg ) else: self.assertEqual( actual_msg_multiplicity, msg_multiplicity, error_msg, ) @parameterized.expand( [ ( reduction, constr, mode, ) for reduction, constr in [ ( "none", DataInfluenceConstructor(TracInCP), ), ( "sum", DataInfluenceConstructor(TracInCPFast), ), ] for mode in [ "self influence by checkpoints", "self influence by batches", "influence", "k-most", ] ], name_func=build_test_name_func(args_to_skip=["reduction"]), ) def test_tracin_show_progress( self, reduction: str, tracin_constructor: Callable, mode: str, ) -> None: with unittest.mock.patch("sys.stderr", new_callable=io.StringIO) as mock_stderr: with tempfile.TemporaryDirectory() as tmpdir: batch_size = 5 ( net, train_dataset, test_samples, test_labels, ) = get_random_model_and_data( tmpdir, unpack_inputs=False, return_test_data=True ) self.assertTrue(isinstance(reduction, str)) criterion = nn.MSELoss(reduction=reduction) self.assertTrue(callable(tracin_constructor)) tracin = tracin_constructor( net, train_dataset, tmpdir, batch_size, criterion, ) if mode == "self influence by checkpoints": # this tests progress for computing self influence scores, when # `outer_loop_by_checkpoints` is True. In this case, we should see a # single outer progress bar over checkpoints, and for every # checkpoints, a separate progress bar over batches tracin.self_influence( DataLoader(train_dataset, batch_size=batch_size), show_progress=True, outer_loop_by_checkpoints=True, ) # We are showing nested progress bars for the `self_influence` # method, with the outer progress bar over checkpoints, and # the inner progress bar over batches. First, we check that # the outer progress bar reaches 100% once self._check_error_msg_multiplicity( mock_stderr, ( f"Using {tracin.get_name()} to compute self influence. " "Processing checkpoint: 100%" ), 1, ) # Second, we check that the inner progress bar reaches 100% # once for each checkpoint in `tracin.checkpoints` self._check_error_msg_multiplicity( mock_stderr, ( f"Using {tracin.get_name()} to compute self influence. " "Processing batch: 100%" ), len(tracin.checkpoints), ) elif mode == "self influence by batches": # This tests progress for computing self influence scores, when # `outer_loop_by_checkpoints` is False. In this case, we should see # a single outer progress bar over batches. tracin.self_influence( DataLoader(train_dataset, batch_size=batch_size), show_progress=True, outer_loop_by_checkpoints=False, ) self._check_error_msg_multiplicity( mock_stderr, ( f"Using {tracin.get_name()} to compute self influence. " "Processing batch: 100%" ), 1, ) elif mode == "influence": tracin.influence( (test_samples, test_labels), k=None, show_progress=True, ) # Since the computation iterates once over training batches, we # check that the progress bar over batches reaches 100% once self._check_error_msg_multiplicity( mock_stderr, ( f"Using {tracin.get_name()} to compute influence " "for training batches: 100%" ), 1, ) elif mode == "k-most": tracin.influence( (test_samples, test_labels), k=2, proponents=True, show_progress=True, ) # Since the computation iterates once over training batches, we # check that the progress bar over batches reaches 100% once, and # that the message is specific for finding proponents. self._check_error_msg_multiplicity( mock_stderr, ( f"Using {tracin.get_name()} to perform computation for " "getting proponents. Processing training batches: 100%" ), 1, ) mock_stderr.seek(0) mock_stderr.truncate(0) tracin.influence( (test_samples, test_labels), k=2, proponents=False, show_progress=True, ) # Since the computation iterates once over training batches, we # check that the progress bar over batches reaches 100% once, and # that the message is specific for finding opponents. self._check_error_msg_multiplicity( mock_stderr, ( f"Using {tracin.get_name()} to perform computation for " "getting opponents. Processing training batches: 100%" ), 1, ) else: raise Exception("unknown test mode") mock_stderr.seek(0) mock_stderr.truncate(0)
import tempfile from typing import Callable import torch import torch.nn as nn from captum.influence._core.tracincp import TracInCP from captum.influence._core.tracincp_fast_rand_proj import ( TracInCPFast, TracInCPFastRandProj, ) from parameterized import parameterized from tests.helpers.basic import assertTensorAlmostEqual, BaseTest from tests.influence._utils.common import ( _format_batch_into_tuple, build_test_name_func, DataInfluenceConstructor, get_random_model_and_data, ) from torch.utils.data import DataLoader class TestTracInIntermediateQuantities(BaseTest): @parameterized.expand( [ (reduction, constructor, unpack_inputs) for unpack_inputs in [True, False] for (reduction, constructor) in [ ("none", DataInfluenceConstructor(TracInCP)), ] ], name_func=build_test_name_func(), ) def test_tracin_intermediate_quantities_aggregate( self, reduction: str, tracin_constructor: Callable, unpack_inputs: bool ) -> None: """ tests that calling `compute_intermediate_quantities` with `aggregate=True` does give the same result as calling it with `aggregate=False`, and then summing """ with tempfile.TemporaryDirectory() as tmpdir: (net, train_dataset,) = get_random_model_and_data( tmpdir, unpack_inputs, return_test_data=False, ) # create a dataloader that yields batches from the dataset train_dataset = DataLoader(train_dataset, batch_size=5) # create tracin instance criterion = nn.MSELoss(reduction=reduction) batch_size = 5 tracin = tracin_constructor( net, train_dataset, tmpdir, batch_size, criterion, ) intermediate_quantities = tracin.compute_intermediate_quantities( train_dataset, aggregate=False ) aggregated_intermediate_quantities = tracin.compute_intermediate_quantities( train_dataset, aggregate=True ) assertTensorAlmostEqual( self, torch.sum(intermediate_quantities, dim=0, keepdim=True), aggregated_intermediate_quantities, delta=1e-4, # due to numerical issues, we can't set this to 0.0 mode="max", ) @parameterized.expand( [ (reduction, constructor, unpack_inputs) for unpack_inputs in [True, False] for (reduction, constructor) in [ ("sum", DataInfluenceConstructor(TracInCPFastRandProj)), ("none", DataInfluenceConstructor(TracInCP)), ] ], name_func=build_test_name_func(), ) def test_tracin_intermediate_quantities_api( self, reduction: str, tracin_constructor: Callable, unpack_inputs: bool ) -> None: """ tests that the result of calling the public method `compute_intermediate_quantities` for a DataLoader of batches is the same as when the batches are collated into a single batch """ with tempfile.TemporaryDirectory() as tmpdir: (net, train_dataset,) = get_random_model_and_data( tmpdir, unpack_inputs, return_test_data=False, ) # create a single batch representing the entire dataset single_batch = next( iter(DataLoader(train_dataset, batch_size=len(train_dataset))) ) # create a dataloader that yields batches from the dataset dataloader = DataLoader(train_dataset, batch_size=5) # create tracin instance criterion = nn.MSELoss(reduction=reduction) batch_size = 5 tracin = tracin_constructor( net, train_dataset, tmpdir, batch_size, criterion, ) # compute intermediate quantities using `compute_intermediate_quantities` # when passing in a single batch single_batch_intermediate_quantities = ( tracin.compute_intermediate_quantities(single_batch) ) # compute intermediate quantities using `compute_intermediate_quantities` # when passing in a dataloader with the same examples dataloader_intermediate_quantities = tracin.compute_intermediate_quantities( dataloader, ) # the two self influences should be equal assertTensorAlmostEqual( self, single_batch_intermediate_quantities, dataloader_intermediate_quantities, delta=0.01, # due to numerical issues, we can't set this to 0.0 mode="max", ) @parameterized.expand( [ ( reduction, constructor, intermediate_quantities_tracin_constructor, unpack_inputs, ) for unpack_inputs in [True, False] for ( reduction, constructor, intermediate_quantities_tracin_constructor, ) in [ ( "sum", DataInfluenceConstructor(TracInCPFast), DataInfluenceConstructor(TracInCPFastRandProj), ), ( "none", DataInfluenceConstructor(TracInCP), DataInfluenceConstructor(TracInCP), ), ] ], name_func=build_test_name_func(), ) def test_tracin_intermediate_quantities_consistent( self, reduction: str, tracin_constructor: Callable, intermediate_quantities_tracin_constructor: Callable, unpack_inputs: bool, ) -> None: """ Since the influence score of a test batch on a training data should be the dot product of their intermediate quantities, checks that this is the case, by computing the influence score 2 different ways and checking they give the same results: 1) with the `influence` method, and by using the `compute_intermediate_quantities` method on the test and training data, and taking the dot product. No projection should be done. Otherwise, the projection will cause error. For 1), we use an implementation that does not use intermediate quantities, i.e. `TracInCPFast`. For 2), we use a method that does use intermediate quantities, i.e. `TracInCPFastRandProj`. Since the methods for the 2 cases are different, we need to parametrize the test with 2 different tracin constructors. `tracin_constructor` is the constructor for the tracin implementation for case 1. `intermediate_quantities_tracin_constructor` is the constructor for the tracin implementation for case 2. """ with tempfile.TemporaryDirectory() as tmpdir: ( net, train_dataset, test_features, test_labels, ) = get_random_model_and_data(tmpdir, unpack_inputs, return_test_data=True) # create a dataloader that yields batches from the dataset train_dataset = DataLoader(train_dataset, batch_size=5) # create tracin instance criterion = nn.MSELoss(reduction=reduction) batch_size = 5 tracin = tracin_constructor( net, train_dataset, tmpdir, batch_size, criterion, ) # create tracin instance which exposes `intermediate_quantities` intermediate_quantities_tracin = intermediate_quantities_tracin_constructor( net, train_dataset, tmpdir, batch_size, criterion, ) # compute influence scores without using `compute_intermediate_quantities` test_batch = _format_batch_into_tuple( test_features, test_labels, unpack_inputs ) scores = tracin.influence( test_batch, ) # the influence score is the dot product of intermediate quantities intermediate_quantities_scores = torch.matmul( intermediate_quantities_tracin.compute_intermediate_quantities( test_batch ), intermediate_quantities_tracin.compute_intermediate_quantities( train_dataset ).T, ) # the scores computed using the two methods should be the same assertTensorAlmostEqual( self, scores, intermediate_quantities_scores, delta=0.01, # due to numerical issues, we can't set this to 0.0 mode="max", ) @parameterized.expand( [ (reduction, constructor, projection_dim, unpack_inputs) for unpack_inputs in [False] for (reduction, constructor, projection_dim) in [ ("sum", DataInfluenceConstructor(TracInCPFastRandProj), None), ("sum", DataInfluenceConstructor(TracInCPFastRandProj), 2), ("sum", DataInfluenceConstructor(TracInCPFastRandProj), 4), ("sum", DataInfluenceConstructor(TracInCPFastRandProj), 9), ("sum", DataInfluenceConstructor(TracInCPFastRandProj), 10), ("sum", DataInfluenceConstructor(TracInCPFastRandProj), 12), ] ], name_func=build_test_name_func(), ) def test_tracin_intermediate_quantities_projection_consistency( self, reduction: str, tracin_constructor: Callable, projection_dim: int, unpack_inputs: bool, ) -> None: """ tests that the result of calling the public method "compute_intermediate_quantities" with TracInCPFastRandProj with/without projection_dim gives embedding of correct size. if projection_dim None, size should be dim of input to final layer * num classes * num checkpoints. otherwise it should be "at most" projection_dim * num checkpoints. See inline comments for "at most" caveat """ with tempfile.TemporaryDirectory() as tmpdir: (net, train_dataset,) = get_random_model_and_data( tmpdir, unpack_inputs, return_test_data=False, ) # create a single batch batch_size = 1 single_batch = next(iter(DataLoader(train_dataset, batch_size=batch_size))) # NOW add projection_dim as a parameter passed in kwargs = {"projection_dim": projection_dim} # create tracin instance criterion = nn.MSELoss(reduction=reduction) tracin = tracin_constructor( net, train_dataset, tmpdir, batch_size, criterion, **kwargs ) # compute intermediate quantities using `compute_intermediate_quantities` # when passing in a single batch single_batch_intermediate_quantities = ( tracin.compute_intermediate_quantities(single_batch) ) """ net has in_features = 5, hidden_nodes (layer_input_dim) = 4, out_features (jacobian_dim) = 3 and 5 checkpoints projection only happens (A) if project_dim < layer_input_dim * jacobian_dim ( 4 * 3 = 12 here ) also if jacobian_dim < int(sqrt(projection dim)), then jacobian_dim is not projected down similarly if layer_input_dim < int(sqrt(projection dim)), then it is not projected down in other words, jacobian_dim_post = min(jacobian_dim, int(sqrt(projection dim))) layer_input_dim_post = min(layer_input_dim, int(sqrt(projection dim))) and if not None and projection_dim < layer_input_dim * jacobian_dim (B) final_projection_dim = jacobian_dim_post * layer_input_dim_post * num_checkpoints if project dim = None we expect final dimension size of layer_input * jacobian_dim * num checkpoints = 4 * 3 * 5 = 60 dimension otherwise using (B) if project dim = 2 we expect 1 * 1 * 5 = 5 project dim = 4 we expect 2 * 2 * 5 = 20 project dim = 9 we expect 3 * 3 * 5 = 45 project dim = 10 we expect 3 * 3 * 5 = 45 project dim = 12 we expect 4 * 3 * 5 = 60 ( don't project since not (A)) """ # print(single_batch_intermediate_quantities.shape) expected_dim = {None: 60, 2: 5, 4: 20, 9: 45, 10: 45, 12: 60} self.assertEqual( expected_dim[projection_dim], single_batch_intermediate_quantities.shape[1], )
import tempfile from typing import List import torch import torch.nn as nn from captum.influence._core.similarity_influence import ( cosine_similarity, euclidean_distance, SimilarityInfluence, ) from tests.helpers.basic import assertTensorAlmostEqual, BaseTest from torch.utils.data import Dataset class BasicLinearNet(nn.Module): def __init__(self, num_features) -> None: super().__init__() self.fc1 = nn.Linear(num_features, 5, bias=False) self.fc1.weight.data.fill_(0.02) self.relu1 = nn.ReLU() self.fc2 = nn.Linear(5, 1, bias=False) self.fc2.weight.data.fill_(0.02) def forward(self, x): x = self.fc1(x) x = self.relu1(x) x = self.fc2(x) return x class RangeDataset(Dataset): def __init__(self, low, high, num_features) -> None: self.samples = ( torch.arange(start=low, end=high, dtype=torch.float) .repeat(num_features, 1) .transpose(1, 0) ) def __len__(self) -> int: return len(self.samples) def __getitem__(self, idx): return self.samples[idx] class Test(BaseTest): def test_cosine_with_zeros(self) -> None: a = torch.cat((torch.zeros((1, 3, 16, 16)), torch.rand((1, 3, 16, 16)))) b = torch.rand((2, 3, 16, 16)) similarity = cosine_similarity(a, b) self.assertFalse(torch.any(torch.isnan(similarity))) def test_correct_influences_standard(self) -> None: with tempfile.TemporaryDirectory() as tmpdir: num_features = 4 low, high = 0, 16 batch_size = high // 2 mymodel = BasicLinearNet(num_features) mydata = RangeDataset(low, high, num_features) layers = [] for name, _module in mymodel.named_modules(): layers.append(name) layers: List[str] = list(filter(None, layers)) testlayers = layers[1:] sim = SimilarityInfluence( mymodel, testlayers, mydata, tmpdir, "linear", batch_size=batch_size, similarity_metric=euclidean_distance, similarity_direction="min", ) inputs = torch.stack((mydata[1], mydata[8], mydata[14])) influences = sim.influence(inputs, top_k=3) self.assertEqual(len(influences), len(testlayers)) assertTensorAlmostEqual( self, torch.sum(influences[layers[1]][0], 1), torch.sum(torch.Tensor([[1, 0, 2], [8, 7, 9], [14, 15, 13]]), 1), ) assertTensorAlmostEqual( self, torch.sum(influences[layers[2]][0], 1), torch.sum(torch.Tensor([[1, 0, 2], [8, 7, 9], [14, 15, 13]]), 1), ) def test_correct_influences_batch_single(self) -> None: with tempfile.TemporaryDirectory() as tmpdir: num_features = 4 low, high = 0, 16 batch_size = 1 mymodel = BasicLinearNet(num_features) mydata = RangeDataset(low, high, num_features) layers = [] for name, _module in mymodel.named_modules(): layers.append(name) layers: List[str] = list(filter(None, layers)) testlayers = layers[1:] sim = SimilarityInfluence( mymodel, testlayers, mydata, tmpdir, "linear", batch_size=batch_size, similarity_metric=euclidean_distance, similarity_direction="min", ) inputs = torch.stack((mydata[1], mydata[8], mydata[14])) influences = sim.influence(inputs, top_k=3) self.assertEqual(len(influences), len(testlayers)) assertTensorAlmostEqual( self, torch.sum(influences[layers[1]][0], 1), torch.sum(torch.Tensor([[1, 0, 2], [8, 7, 9], [14, 15, 13]]), 1), ) assertTensorAlmostEqual( self, torch.sum(influences[layers[2]][0], 1), torch.sum(torch.Tensor([[1, 0, 2], [8, 7, 9], [14, 15, 13]]), 1), ) def test_correct_influences_batch_overflow(self) -> None: with tempfile.TemporaryDirectory() as tmpdir: num_features = 4 low, high = 0, 16 batch_size = 12 mymodel = BasicLinearNet(num_features) mydata = RangeDataset(low, high, num_features) layers = [] for name, _module in mymodel.named_modules(): layers.append(name) layers: List[str] = list(filter(None, layers)) testlayers = layers[1:] sim = SimilarityInfluence( mymodel, testlayers, mydata, tmpdir, "linear", batch_size=batch_size, similarity_metric=euclidean_distance, similarity_direction="min", ) inputs = torch.stack((mydata[1], mydata[8], mydata[14])) influences = sim.influence(inputs, top_k=3) self.assertEqual(len(influences), len(testlayers)) assertTensorAlmostEqual( self, torch.sum(influences[layers[1]][0], 1), torch.sum(torch.Tensor([[1, 0, 2], [8, 7, 9], [14, 15, 13]]), 1), ) assertTensorAlmostEqual( self, torch.sum(influences[layers[2]][0], 1), torch.sum(torch.Tensor([[1, 0, 2], [8, 7, 9], [14, 15, 13]]), 1), ) def test_zero_activations(self) -> None: with tempfile.TemporaryDirectory() as tmpdir: num_features = 4 low, high = 0, 16 batch_size = high // 2 mymodel = BasicLinearNet(num_features) mydata = RangeDataset(low, high, num_features) layers = [] for name, _module in mymodel.named_modules(): layers.append(name) layers: List[str] = list(filter(None, layers)) testlayers = layers[1:] sim1 = SimilarityInfluence( mymodel, testlayers, mydata, tmpdir, "linear", batch_size=batch_size ) inputs = torch.stack((mydata[1], mydata[8], mydata[14])) influences = sim1.influence(inputs, top_k=3) self.assertEqual(len(influences), len(layers[1:]) + 1) # zero_acts included self.assertTrue("zero_acts-fc2" in influences)
#!/usr/bin/env fbpython # (c) Meta Platforms, Inc. and affiliates. Confidential and proprietary. import unittest import torch from captum.module.gaussian_stochastic_gates import GaussianStochasticGates from parameterized import parameterized_class from tests.helpers.basic import assertTensorAlmostEqual, BaseTest @parameterized_class( [ {"testing_device": "cpu"}, {"testing_device": "cuda"}, ] ) class TestGaussianStochasticGates(BaseTest): def setUp(self) -> None: super().setUp() if self.testing_device == "cuda" and not torch.cuda.is_available(): raise unittest.SkipTest("Skipping GPU test since CUDA not available.") def test_gstg_1d_input(self) -> None: dim = 3 gstg = GaussianStochasticGates(dim).to(self.testing_device) input_tensor = torch.tensor( [ [0.0, 0.1, 0.2], [0.3, 0.4, 0.5], ] ).to(self.testing_device) gated_input, reg = gstg(input_tensor) expected_reg = 2.5213 if self.testing_device == "cpu": expected_gated_input = [[0.0000, 0.0198, 0.1483], [0.1848, 0.3402, 0.1782]] elif self.testing_device == "cuda": expected_gated_input = [[0.0000, 0.0788, 0.0470], [0.0134, 0.0000, 0.1884]] assertTensorAlmostEqual(self, gated_input, expected_gated_input, mode="max") assertTensorAlmostEqual(self, reg, expected_reg) def test_gstg_1d_input_with_reg_reduction(self) -> None: dim = 3 mean_gstg = GaussianStochasticGates(dim, reg_reduction="mean").to( self.testing_device ) none_gstg = GaussianStochasticGates(dim, reg_reduction="none").to( self.testing_device ) input_tensor = torch.tensor( [ [0.0, 0.1, 0.2], [0.3, 0.4, 0.5], ] ).to(self.testing_device) _, mean_reg = mean_gstg(input_tensor) _, none_reg = none_gstg(input_tensor) expected_mean_reg = 0.8404 expected_none_reg = torch.tensor([0.8424, 0.8384, 0.8438]) assertTensorAlmostEqual(self, mean_reg, expected_mean_reg) assertTensorAlmostEqual(self, none_reg, expected_none_reg) def test_gstg_1d_input_with_n_gates_error(self) -> None: dim = 3 gstg = GaussianStochasticGates(dim).to(self.testing_device) input_tensor = torch.tensor([0.0, 0.1, 0.2]).to(self.testing_device) with self.assertRaises(AssertionError): gstg(input_tensor) def test_gstg_1d_input_with_mask(self) -> None: dim = 2 mask = torch.tensor([0, 0, 1]).to(self.testing_device) gstg = GaussianStochasticGates(dim, mask=mask).to(self.testing_device) input_tensor = torch.tensor( [ [0.0, 0.1, 0.2], [0.3, 0.4, 0.5], ] ).to(self.testing_device) gated_input, reg = gstg(input_tensor) expected_reg = 1.6849 if self.testing_device == "cpu": expected_gated_input = [[0.0000, 0.0000, 0.1225], [0.0583, 0.0777, 0.3779]] elif self.testing_device == "cuda": expected_gated_input = [[0.0000, 0.0000, 0.1577], [0.0736, 0.0981, 0.0242]] assertTensorAlmostEqual(self, gated_input, expected_gated_input, mode="max") assertTensorAlmostEqual(self, reg, expected_reg) def test_gates_values_matching_dim_when_eval(self) -> None: dim = 3 gstg = GaussianStochasticGates(dim).to(self.testing_device) input_tensor = torch.tensor( [ [0.0, 0.1, 0.2], [0.3, 0.4, 0.5], ] ).to(self.testing_device) gstg.train(False) gated_input, reg = gstg(input_tensor) assert gated_input.shape == input_tensor.shape def test_gstg_2d_input(self) -> None: dim = 3 * 2 gstg = GaussianStochasticGates(dim).to(self.testing_device) # shape(2,3,2) input_tensor = torch.tensor( [ [ [0.0, 0.1], [0.2, 0.3], [0.4, 0.5], ], [ [0.6, 0.7], [0.8, 0.9], [1.0, 1.1], ], ] ).to(self.testing_device) gated_input, reg = gstg(input_tensor) expected_reg = 5.0458 if self.testing_device == "cpu": expected_gated_input = [ [[0.0000, 0.0851], [0.0713, 0.3000], [0.2180, 0.1878]], [[0.2538, 0.0000], [0.3391, 0.8501], [0.3633, 0.8913]], ] elif self.testing_device == "cuda": expected_gated_input = [ [[0.0000, 0.0788], [0.0470, 0.0139], [0.0000, 0.1960]], [[0.0000, 0.7000], [0.1052, 0.2120], [0.5978, 0.0166]], ] assertTensorAlmostEqual(self, gated_input, expected_gated_input, mode="max") assertTensorAlmostEqual(self, reg, expected_reg) def test_gstg_2d_input_with_n_gates_error(self) -> None: dim = 5 gstg = GaussianStochasticGates(dim).to(self.testing_device) input_tensor = torch.tensor( [ [ [0.0, 0.1], [0.2, 0.3], [0.4, 0.5], ], ] ).to(self.testing_device) with self.assertRaises(AssertionError): gstg(input_tensor) def test_gstg_2d_input_with_mask(self) -> None: dim = 3 mask = torch.tensor( [ [0, 1], [1, 1], [0, 2], ] ).to(self.testing_device) gstg = GaussianStochasticGates(dim, mask=mask).to(self.testing_device) # shape(2,3,2) input_tensor = torch.tensor( [ [ [0.0, 0.1], [0.2, 0.3], [0.4, 0.5], ], [ [0.6, 0.7], [0.8, 0.9], [1.0, 1.1], ], ] ).to(self.testing_device) gated_input, reg = gstg(input_tensor) expected_reg = 2.5213 if self.testing_device == "cpu": expected_gated_input = [ [[0.0000, 0.0198], [0.0396, 0.0594], [0.2435, 0.3708]], [[0.3696, 0.5954], [0.6805, 0.7655], [0.6159, 0.3921]], ] elif self.testing_device == "cuda": expected_gated_input = [ [[0.0000, 0.0788], [0.1577, 0.2365], [0.0000, 0.1174]], [[0.0269, 0.0000], [0.0000, 0.0000], [0.0448, 0.4145]], ] assertTensorAlmostEqual(self, gated_input, expected_gated_input, mode="max") assertTensorAlmostEqual(self, reg, expected_reg) def test_get_gate_values_1d_input(self) -> None: dim = 3 gstg = GaussianStochasticGates(dim).to(self.testing_device) input_tensor = torch.tensor( [ [0.0, 0.1, 0.2], [0.3, 0.4, 0.5], ] ).to(self.testing_device) gstg(input_tensor) gate_values = gstg.get_gate_values() expected_gate_values = [0.5005, 0.5040, 0.4899] assertTensorAlmostEqual(self, gate_values, expected_gate_values, mode="max") def test_get_gate_values_1d_input_with_mask(self) -> None: dim = 2 mask = torch.tensor([0, 1, 1]) gstg = GaussianStochasticGates(dim, mask=mask).to(self.testing_device) input_tensor = torch.tensor( [ [0.0, 0.1, 0.2], [0.3, 0.4, 0.5], ] ).to(self.testing_device) gstg(input_tensor) gate_values = gstg.get_gate_values() expected_gate_values = [0.5005, 0.5040] assertTensorAlmostEqual(self, gate_values, expected_gate_values, mode="max") def test_get_gate_values_2d_input(self) -> None: dim = 3 * 2 gstg = GaussianStochasticGates(dim).to(self.testing_device) # shape(2,3,2) input_tensor = torch.tensor( [ [ [0.0, 0.1], [0.2, 0.3], [0.4, 0.5], ], [ [0.6, 0.7], [0.8, 0.9], [1.0, 1.1], ], ] ).to(self.testing_device) gstg(input_tensor) gate_values = gstg.get_gate_values() expected_gate_values = [0.5005, 0.5040, 0.4899, 0.5022, 0.4939, 0.5050] assertTensorAlmostEqual(self, gate_values, expected_gate_values, mode="max") def test_get_gate_values_2d_input_with_mask(self) -> None: dim = 3 mask = torch.tensor( [ [0, 1], [1, 1], [0, 2], ] ) gstg = GaussianStochasticGates(dim, mask=mask).to(self.testing_device) input_tensor = torch.tensor( [ [ [0.0, 0.1], [0.2, 0.3], [0.4, 0.5], ], [ [0.6, 0.7], [0.8, 0.9], [1.0, 1.1], ], ] ).to(self.testing_device) gstg(input_tensor) gate_values = gstg.get_gate_values() expected_gate_values = [0.5005, 0.5040, 0.4899] assertTensorAlmostEqual(self, gate_values, expected_gate_values, mode="max") def test_get_gate_values_clamp(self) -> None: gstg = GaussianStochasticGates._from_pretrained( torch.tensor([2.0, -2.0, 2.0]) ).to(self.testing_device) clamped_gate_values = gstg.get_gate_values().cpu().tolist() assert clamped_gate_values == [1.0, 0.0, 1.0] unclamped_gate_values = gstg.get_gate_values(clamp=False).cpu().tolist() assert ( unclamped_gate_values[0] > 1 and unclamped_gate_values[1] < 0 and unclamped_gate_values[2] > 1 ) def test_get_gate_active_probs_1d_input(self) -> None: dim = 3 gstg = GaussianStochasticGates(dim).to(self.testing_device) input_tensor = torch.tensor( [ [0.0, 0.1, 0.2], [0.3, 0.4, 0.5], ] ).to(self.testing_device) gstg(input_tensor) gate_active_probs = gstg.get_gate_active_probs() expected_gate_active_probs = [0.8416, 0.8433, 0.8364] assertTensorAlmostEqual( self, gate_active_probs, expected_gate_active_probs, mode="max" ) def test_get_gate_active_probs_1d_input_with_mask(self) -> None: dim = 2 mask = torch.tensor([0, 1, 1]) gstg = GaussianStochasticGates(dim, mask=mask).to(self.testing_device) input_tensor = torch.tensor( [ [0.0, 0.1, 0.2], [0.3, 0.4, 0.5], ] ).to(self.testing_device) gstg(input_tensor) gate_active_probs = gstg.get_gate_active_probs() expected_gate_active_probs = [0.8416, 0.8433] assertTensorAlmostEqual( self, gate_active_probs, expected_gate_active_probs, mode="max" ) def test_get_gate_active_probs_2d_input(self) -> None: dim = 3 * 2 gstg = GaussianStochasticGates(dim).to(self.testing_device) # shape(2,3,2) input_tensor = torch.tensor( [ [ [0.0, 0.1], [0.2, 0.3], [0.4, 0.5], ], [ [0.6, 0.7], [0.8, 0.9], [1.0, 1.1], ], ] ).to(self.testing_device) gstg(input_tensor) gate_active_probs = gstg.get_gate_active_probs() expected_gate_active_probs = [0.8416, 0.8433, 0.8364, 0.8424, 0.8384, 0.8438] assertTensorAlmostEqual( self, gate_active_probs, expected_gate_active_probs, mode="max" ) def test_get_gate_active_probs_2d_input_with_mask(self) -> None: dim = 3 mask = torch.tensor( [ [0, 1], [1, 1], [0, 2], ] ) gstg = GaussianStochasticGates(dim, mask=mask).to(self.testing_device) input_tensor = torch.tensor( [ [ [0.0, 0.1], [0.2, 0.3], [0.4, 0.5], ], [ [0.6, 0.7], [0.8, 0.9], [1.0, 1.1], ], ] ).to(self.testing_device) gstg(input_tensor) gate_active_probs = gstg.get_gate_active_probs() expected_gate_active_probs = [0.8416, 0.8433, 0.8364] assertTensorAlmostEqual( self, gate_active_probs, expected_gate_active_probs, mode="max" ) def test_from_pretrained(self) -> None: mu = torch.tensor([0.1, 0.2, 0.3, 0.4]) kwargs = { "mask": torch.tensor([0, 1, 1, 0, 2, 3]), "reg_weight": 0.1, "std": 0.01, } stg = GaussianStochasticGates._from_pretrained(mu, **kwargs) for key, expected_val in kwargs.items(): val = getattr(stg, key) if isinstance(expected_val, torch.Tensor): assertTensorAlmostEqual(self, val, expected_val, mode="max") else: assert val == expected_val
#!/usr/bin/env python3 import unittest import torch from captum.module.binary_concrete_stochastic_gates import BinaryConcreteStochasticGates from parameterized import parameterized_class from tests.helpers.basic import assertTensorAlmostEqual, BaseTest @parameterized_class( [ {"testing_device": "cpu"}, {"testing_device": "cuda"}, ] ) class TestBinaryConcreteStochasticGates(BaseTest): def setUp(self): super().setUp() if self.testing_device == "cuda" and not torch.cuda.is_available(): raise unittest.SkipTest("Skipping GPU test since CUDA not available.") def test_bcstg_1d_input(self) -> None: dim = 3 bcstg = BinaryConcreteStochasticGates(dim).to(self.testing_device) input_tensor = torch.tensor( [ [0.0, 0.1, 0.2], [0.3, 0.4, 0.5], ] ).to(self.testing_device) gated_input, reg = bcstg(input_tensor) expected_reg = 2.4947 if self.testing_device == "cpu": expected_gated_input = [[0.0000, 0.0212, 0.1892], [0.1839, 0.3753, 0.4937]] elif self.testing_device == "cuda": expected_gated_input = [[0.0000, 0.0985, 0.1149], [0.2329, 0.0497, 0.5000]] assertTensorAlmostEqual(self, gated_input, expected_gated_input, mode="max") assertTensorAlmostEqual(self, reg, expected_reg) def test_bcstg_1d_input_with_reg_reduction(self) -> None: dim = 3 mean_bcstg = BinaryConcreteStochasticGates(dim, reg_reduction="mean").to( self.testing_device ) none_bcstg = BinaryConcreteStochasticGates(dim, reg_reduction="none").to( self.testing_device ) input_tensor = torch.tensor( [ [0.0, 0.1, 0.2], [0.3, 0.4, 0.5], ] ).to(self.testing_device) mean_gated_input, mean_reg = mean_bcstg(input_tensor) none_gated_input, none_reg = none_bcstg(input_tensor) expected_mean_reg = 0.8316 expected_none_reg = torch.tensor([0.8321, 0.8310, 0.8325]) assertTensorAlmostEqual(self, mean_reg, expected_mean_reg) assertTensorAlmostEqual(self, none_reg, expected_none_reg) def test_bcstg_1d_input_with_n_gates_error(self) -> None: dim = 3 bcstg = BinaryConcreteStochasticGates(dim).to(self.testing_device) input_tensor = torch.tensor([0.0, 0.1, 0.2]).to(self.testing_device) with self.assertRaises(AssertionError): bcstg(input_tensor) def test_bcstg_num_mask_not_equal_dim_error(self) -> None: dim = 3 mask = torch.tensor([0, 0, 1]) # only two distinct masks, but given dim is 3 with self.assertRaises(AssertionError): BinaryConcreteStochasticGates(dim, mask=mask).to(self.testing_device) def test_gates_values_matching_dim_when_eval(self) -> None: dim = 3 bcstg = BinaryConcreteStochasticGates(dim).to(self.testing_device) input_tensor = torch.tensor( [ [0.0, 0.1, 0.2], [0.3, 0.4, 0.5], ] ).to(self.testing_device) bcstg.train(False) gated_input, reg = bcstg(input_tensor) assert gated_input.shape == input_tensor.shape def test_bcstg_1d_input_with_mask(self) -> None: dim = 2 mask = torch.tensor([0, 0, 1]).to(self.testing_device) bcstg = BinaryConcreteStochasticGates(dim, mask=mask).to(self.testing_device) input_tensor = torch.tensor( [ [0.0, 0.1, 0.2], [0.3, 0.4, 0.5], ] ).to(self.testing_device) gated_input, reg = bcstg(input_tensor) expected_reg = 1.6643 if self.testing_device == "cpu": expected_gated_input = [[0.0000, 0.0000, 0.1679], [0.0000, 0.0000, 0.2223]] elif self.testing_device == "cuda": expected_gated_input = [[0.0000, 0.0000, 0.1971], [0.1737, 0.2317, 0.3888]] assertTensorAlmostEqual(self, gated_input, expected_gated_input, mode="max") assertTensorAlmostEqual(self, reg, expected_reg) def test_bcstg_2d_input(self) -> None: dim = 3 * 2 bcstg = BinaryConcreteStochasticGates(dim).to(self.testing_device) # shape(2,3,2) input_tensor = torch.tensor( [ [ [0.0, 0.1], [0.2, 0.3], [0.4, 0.5], ], [ [0.6, 0.7], [0.8, 0.9], [1.0, 1.1], ], ] ).to(self.testing_device) gated_input, reg = bcstg(input_tensor) expected_reg = 4.9903 if self.testing_device == "cpu": expected_gated_input = [ [[0.0000, 0.0990], [0.0261, 0.2431], [0.0551, 0.3863]], [[0.0476, 0.6177], [0.5400, 0.1530], [0.0984, 0.8013]], ] elif self.testing_device == "cuda": expected_gated_input = [ [[0.0000, 0.0985], [0.1149, 0.2331], [0.0486, 0.5000]], [[0.1840, 0.1571], [0.4612, 0.7937], [0.2975, 0.7393]], ] assertTensorAlmostEqual(self, gated_input, expected_gated_input, mode="max") assertTensorAlmostEqual(self, reg, expected_reg) def test_bcstg_2d_input_with_n_gates_error(self) -> None: dim = 5 bcstg = BinaryConcreteStochasticGates(dim).to(self.testing_device) input_tensor = torch.tensor( [ [ [0.0, 0.1], [0.2, 0.3], [0.4, 0.5], ], ] ).to(self.testing_device) with self.assertRaises(AssertionError): bcstg(input_tensor) def test_bcstg_2d_input_with_mask(self) -> None: dim = 3 mask = torch.tensor( [ [0, 1], [1, 1], [0, 2], ] ).to(self.testing_device) bcstg = BinaryConcreteStochasticGates(dim, mask=mask).to(self.testing_device) # shape(2,3,2) input_tensor = torch.tensor( [ [ [0.0, 0.1], [0.2, 0.3], [0.4, 0.5], ], [ [0.6, 0.7], [0.8, 0.9], [1.0, 1.1], ], ] ).to(self.testing_device) gated_input, reg = bcstg(input_tensor) expected_reg = 2.4947 if self.testing_device == "cpu": expected_gated_input = [ [[0.0000, 0.0212], [0.0424, 0.0636], [0.3191, 0.4730]], [[0.3678, 0.6568], [0.7507, 0.8445], [0.6130, 1.0861]], ] elif self.testing_device == "cuda": expected_gated_input = [ [[0.0000, 0.0985], [0.1971, 0.2956], [0.0000, 0.2872]], [[0.4658, 0.0870], [0.0994, 0.1119], [0.7764, 1.1000]], ] assertTensorAlmostEqual(self, gated_input, expected_gated_input, mode="max") assertTensorAlmostEqual(self, reg, expected_reg) def test_get_gate_values_1d_input(self) -> None: dim = 3 bcstg = BinaryConcreteStochasticGates(dim).to(self.testing_device) input_tensor = torch.tensor( [ [0.0, 0.1, 0.2], [0.3, 0.4, 0.5], ] ).to(self.testing_device) bcstg(input_tensor) gate_values = bcstg.get_gate_values() expected_gate_values = [0.5001, 0.5012, 0.4970] assertTensorAlmostEqual(self, gate_values, expected_gate_values, mode="max") def test_get_gate_values_1d_input_with_mask(self) -> None: dim = 2 mask = torch.tensor([0, 1, 1]) bcstg = BinaryConcreteStochasticGates(dim, mask=mask).to(self.testing_device) input_tensor = torch.tensor( [ [0.0, 0.1, 0.2], [0.3, 0.4, 0.5], ] ).to(self.testing_device) bcstg(input_tensor) gate_values = bcstg.get_gate_values() expected_gate_values = [0.5001, 0.5012] assertTensorAlmostEqual(self, gate_values, expected_gate_values, mode="max") def test_get_gate_values_2d_input(self) -> None: dim = 3 * 2 bcstg = BinaryConcreteStochasticGates(dim).to(self.testing_device) # shape(2,3,2) input_tensor = torch.tensor( [ [ [0.0, 0.1], [0.2, 0.3], [0.4, 0.5], ], [ [0.6, 0.7], [0.8, 0.9], [1.0, 1.1], ], ] ).to(self.testing_device) bcstg(input_tensor) gate_values = bcstg.get_gate_values() expected_gate_values = [0.5001, 0.5012, 0.4970, 0.5007, 0.4982, 0.5015] assertTensorAlmostEqual(self, gate_values, expected_gate_values, mode="max") def test_get_gate_values_clamp(self) -> None: # enlarge the bounds & extremify log_alpha to mock gate values beyond 0 & 1 bcstg = BinaryConcreteStochasticGates._from_pretrained( torch.tensor([10.0, -10.0, 10.0]), lower_bound=-2, upper_bound=2 ).to(self.testing_device) clamped_gate_values = bcstg.get_gate_values().cpu().tolist() assert clamped_gate_values == [1.0, 0.0, 1.0] unclamped_gate_values = bcstg.get_gate_values(clamp=False).cpu().tolist() assert ( unclamped_gate_values[0] > 1 and unclamped_gate_values[1] < 0 and unclamped_gate_values[2] > 1 ) def test_get_gate_values_2d_input_with_mask(self) -> None: dim = 3 mask = torch.tensor( [ [0, 1], [1, 1], [0, 2], ] ) bcstg = BinaryConcreteStochasticGates(dim, mask=mask).to(self.testing_device) input_tensor = torch.tensor( [ [ [0.0, 0.1], [0.2, 0.3], [0.4, 0.5], ], [ [0.6, 0.7], [0.8, 0.9], [1.0, 1.1], ], ] ).to(self.testing_device) bcstg(input_tensor) gate_values = bcstg.get_gate_values() expected_gate_values = [0.5001, 0.5012, 0.4970] assertTensorAlmostEqual(self, gate_values, expected_gate_values, mode="max") def test_get_gate_active_probs_1d_input(self) -> None: dim = 3 bcstg = BinaryConcreteStochasticGates(dim).to(self.testing_device) input_tensor = torch.tensor( [ [0.0, 0.1, 0.2], [0.3, 0.4, 0.5], ] ).to(self.testing_device) bcstg(input_tensor) gate_active_probs = bcstg.get_gate_active_probs() expected_gate_active_probs = [0.8319, 0.8324, 0.8304] assertTensorAlmostEqual( self, gate_active_probs, expected_gate_active_probs, mode="max" ) def test_get_gate_active_probs_1d_input_with_mask(self) -> None: dim = 2 mask = torch.tensor([0, 1, 1]) bcstg = BinaryConcreteStochasticGates(dim, mask=mask).to(self.testing_device) input_tensor = torch.tensor( [ [0.0, 0.1, 0.2], [0.3, 0.4, 0.5], ] ).to(self.testing_device) bcstg(input_tensor) gate_active_probs = bcstg.get_gate_active_probs() expected_gate_active_probs = [0.8319, 0.8324] assertTensorAlmostEqual( self, gate_active_probs, expected_gate_active_probs, mode="max" ) def test_get_gate_active_probs_2d_input(self) -> None: dim = 3 * 2 bcstg = BinaryConcreteStochasticGates(dim).to(self.testing_device) # shape(2,3,2) input_tensor = torch.tensor( [ [ [0.0, 0.1], [0.2, 0.3], [0.4, 0.5], ], [ [0.6, 0.7], [0.8, 0.9], [1.0, 1.1], ], ] ).to(self.testing_device) bcstg(input_tensor) gate_active_probs = bcstg.get_gate_active_probs() expected_gate_active_probs = [0.8319, 0.8324, 0.8304, 0.8321, 0.8310, 0.8325] assertTensorAlmostEqual( self, gate_active_probs, expected_gate_active_probs, mode="max" ) def test_get_gate_active_probs_2d_input_with_mask(self) -> None: dim = 3 mask = torch.tensor( [ [0, 1], [1, 1], [0, 2], ] ) bcstg = BinaryConcreteStochasticGates(dim, mask=mask).to(self.testing_device) input_tensor = torch.tensor( [ [ [0.0, 0.1], [0.2, 0.3], [0.4, 0.5], ], [ [0.6, 0.7], [0.8, 0.9], [1.0, 1.1], ], ] ).to(self.testing_device) bcstg(input_tensor) gate_active_probs = bcstg.get_gate_active_probs() expected_gate_active_probs = [0.8319, 0.8324, 0.8304] assertTensorAlmostEqual( self, gate_active_probs, expected_gate_active_probs, mode="max" ) def test_from_pretrained(self) -> None: log_alpha_param = torch.tensor([0.1, 0.2, 0.3, 0.4]) kwargs = { "mask": torch.tensor([0, 1, 1, 0, 2, 3]), "reg_weight": 0.1, "lower_bound": -0.2, "upper_bound": 1.2, } stg = BinaryConcreteStochasticGates._from_pretrained(log_alpha_param, **kwargs) for key, expected_val in kwargs.items(): val = getattr(stg, key) if isinstance(expected_val, torch.Tensor): assertTensorAlmostEqual(self, val, expected_val, mode="max") else: assert val == expected_val
#!/usr/bin/env python3 from typing import List, Tuple import torch from captum._utils.gradient import ( apply_gradient_requirements, compute_gradients, compute_layer_gradients_and_eval, undo_gradient_requirements, ) from tests.helpers.basic import assertTensorAlmostEqual, BaseTest from tests.helpers.basic_models import ( BasicModel, BasicModel2, BasicModel4_MultiArgs, BasicModel5_MultiArgs, BasicModel6_MultiTensor, BasicModel_MultiLayer, ) class Test(BaseTest): def test_apply_gradient_reqs(self) -> None: initial_grads = [False, True, False] test_tensor = torch.tensor([[6.0]], requires_grad=True) test_tensor.grad = torch.tensor([[7.0]]) test_tensor_tuple = (torch.tensor([[5.0]]), test_tensor, torch.tensor([[7.0]])) out_mask = apply_gradient_requirements(test_tensor_tuple) for i in range(len(test_tensor_tuple)): self.assertTrue(test_tensor_tuple[i].requires_grad) self.assertEqual(out_mask[i], initial_grads[i]) def test_undo_gradient_reqs(self) -> None: initial_grads = [False, True, False] test_tensor = torch.tensor([[6.0]], requires_grad=True) test_tensor.grad = torch.tensor([[7.0]]) test_tensor_tuple = ( torch.tensor([[6.0]], requires_grad=True), test_tensor, torch.tensor([[7.0]], requires_grad=True), ) undo_gradient_requirements(test_tensor_tuple, initial_grads) for i in range(len(test_tensor_tuple)): self.assertEqual(test_tensor_tuple[i].requires_grad, initial_grads[i]) def test_gradient_basic(self) -> None: model = BasicModel() input = torch.tensor([[5.0]], requires_grad=True) input.grad = torch.tensor([[9.0]]) grads = compute_gradients(model, input)[0] assertTensorAlmostEqual(self, grads, [[0.0]], delta=0.01, mode="max") # Verify grad attribute is not altered assertTensorAlmostEqual(self, input.grad, [[9.0]], delta=0.0, mode="max") def test_gradient_basic_2(self) -> None: model = BasicModel() input = torch.tensor([[-3.0]], requires_grad=True) input.grad = torch.tensor([[14.0]]) grads = compute_gradients(model, input)[0] assertTensorAlmostEqual(self, grads, [[1.0]], delta=0.01, mode="max") # Verify grad attribute is not altered assertTensorAlmostEqual(self, input.grad, [[14.0]], delta=0.0, mode="max") def test_gradient_multiinput(self) -> None: model = BasicModel6_MultiTensor() input1 = torch.tensor([[-3.0, -5.0]], requires_grad=True) input2 = torch.tensor([[-5.0, 2.0]], requires_grad=True) grads = compute_gradients(model, (input1, input2)) assertTensorAlmostEqual(self, grads[0], [[0.0, 1.0]], delta=0.01, mode="max") assertTensorAlmostEqual(self, grads[1], [[0.0, 1.0]], delta=0.01, mode="max") def test_gradient_additional_args(self) -> None: model = BasicModel4_MultiArgs() input1 = torch.tensor([[10.0]], requires_grad=True) input2 = torch.tensor([[8.0]], requires_grad=True) grads = compute_gradients(model, (input1, input2), additional_forward_args=(2,)) assertTensorAlmostEqual(self, grads[0], [[1.0]], delta=0.01, mode="max") assertTensorAlmostEqual(self, grads[1], [[-0.5]], delta=0.01, mode="max") def test_gradient_additional_args_2(self) -> None: model = BasicModel5_MultiArgs() input1 = torch.tensor([[-10.0]], requires_grad=True) input2 = torch.tensor([[6.0]], requires_grad=True) grads = compute_gradients( model, (input1, input2), additional_forward_args=([3, -4],) ) assertTensorAlmostEqual(self, grads[0], [[0.0]], delta=0.01, mode="max") assertTensorAlmostEqual(self, grads[1], [[4.0]], delta=0.01, mode="max") def test_gradient_target_int(self) -> None: model = BasicModel2() input1 = torch.tensor([[4.0, -1.0]], requires_grad=True) input2 = torch.tensor([[2.0, 5.0]], requires_grad=True) grads0 = compute_gradients(model, (input1, input2), target_ind=0) grads1 = compute_gradients(model, (input1, input2), target_ind=1) assertTensorAlmostEqual(self, grads0[0], [[1.0, 0.0]], delta=0.01, mode="max") assertTensorAlmostEqual(self, grads0[1], [[-1.0, 0.0]], delta=0.01, mode="max") assertTensorAlmostEqual(self, grads1[0], [[0.0, 0.0]], delta=0.01, mode="max") assertTensorAlmostEqual(self, grads1[1], [[0.0, 0.0]], delta=0.01, mode="max") def test_gradient_target_list(self) -> None: model = BasicModel2() input1 = torch.tensor([[4.0, -1.0], [3.0, 10.0]], requires_grad=True) input2 = torch.tensor([[2.0, -5.0], [-2.0, 1.0]], requires_grad=True) grads = compute_gradients(model, (input1, input2), target_ind=[0, 1]) assertTensorAlmostEqual( self, grads[0], [[1.0, 0.0], [0.0, 1.0]], delta=0.01, mode="max", ) assertTensorAlmostEqual( self, grads[1], [[-1.0, 0.0], [0.0, -1.0]], delta=0.01, mode="max", ) def test_gradient_target_tuple(self) -> None: model = BasicModel() input = torch.tensor( [[[4.0, 2.0], [-1.0, -2.0]], [[3.0, -4.0], [10.0, 5.0]]], requires_grad=True ) grads = compute_gradients(model, input, target_ind=(0, 1))[0] assertTensorAlmostEqual( self, grads, [[[0.0, 0.0], [0.0, 0.0]], [[0.0, 1.0], [0.0, 0.0]]], delta=0.01, mode="max", ) def test_gradient_target_listtuple(self) -> None: model = BasicModel() input = torch.tensor( [[[4.0, 2.0], [-1.0, -2.0]], [[3.0, -4.0], [10.0, 5.0]]], requires_grad=True ) target: List[Tuple[int, ...]] = [(1, 1), (0, 1)] grads = compute_gradients(model, input, target_ind=target)[0] assertTensorAlmostEqual( self, grads, [[[0.0, 0.0], [0.0, 1.0]], [[0.0, 1.0], [0.0, 0.0]]], delta=0.01, mode="max", ) def test_gradient_inplace(self) -> None: model = BasicModel_MultiLayer(inplace=True) input = torch.tensor([[1.0, 6.0, -3.0]], requires_grad=True) grads = compute_gradients(model, input, target_ind=0)[0] assertTensorAlmostEqual(self, grads, [[3.0, 3.0, 3.0]], delta=0.01, mode="max") def test_layer_gradient_linear0(self) -> None: model = BasicModel_MultiLayer() input = torch.tensor([[5.0, -11.0, 23.0]], requires_grad=True) grads, eval = compute_layer_gradients_and_eval( model, model.linear0, input, target_ind=0 ) assertTensorAlmostEqual( self, grads[0], [[4.0, 4.0, 4.0]], delta=0.01, mode="max" ) assertTensorAlmostEqual( self, eval[0], [[5.0, -11.0, 23.0]], delta=0.01, mode="max", ) def test_layer_gradient_linear1(self) -> None: model = BasicModel_MultiLayer() input = torch.tensor([[5.0, 2.0, 1.0]], requires_grad=True) grads, eval = compute_layer_gradients_and_eval( model, model.linear1, input, target_ind=1 ) assertTensorAlmostEqual( self, grads[0], [[0.0, 1.0, 1.0, 1.0]], delta=0.01, mode="max", ) assertTensorAlmostEqual( self, eval[0], [[-2.0, 9.0, 9.0, 9.0]], delta=0.01, mode="max", ) def test_layer_gradient_linear1_inplace(self) -> None: model = BasicModel_MultiLayer(inplace=True) input = torch.tensor([[5.0, 2.0, 1.0]], requires_grad=True) grads, eval = compute_layer_gradients_and_eval( model, model.linear1, input, target_ind=1 ) assertTensorAlmostEqual( self, grads[0], [[0.0, 1.0, 1.0, 1.0]], delta=0.01, mode="max", ) assertTensorAlmostEqual( self, eval[0], [[-2.0, 9.0, 9.0, 9.0]], delta=0.01, mode="max", ) def test_layer_gradient_relu_input_inplace(self) -> None: model = BasicModel_MultiLayer(inplace=True) input = torch.tensor([[5.0, 2.0, 1.0]], requires_grad=True) grads, eval = compute_layer_gradients_and_eval( model, model.relu, input, target_ind=1, attribute_to_layer_input=True ) assertTensorAlmostEqual( self, grads[0], [[0.0, 1.0, 1.0, 1.0]], delta=0.01, mode="max", ) assertTensorAlmostEqual( self, eval[0], [[-2.0, 9.0, 9.0, 9.0]], delta=0.01, mode="max", ) def test_layer_gradient_output(self) -> None: model = BasicModel_MultiLayer() input = torch.tensor([[5.0, 2.0, 1.0]], requires_grad=True) grads, eval = compute_layer_gradients_and_eval( model, model.linear2, input, target_ind=1 ) assertTensorAlmostEqual(self, grads[0], [[0.0, 1.0]], delta=0.01, mode="max") assertTensorAlmostEqual(self, eval[0], [[26.0, 28.0]], delta=0.01, mode="max")
#!/usr/bin/env python3 from typing import cast, List, Tuple import torch from captum._utils.common import ( _format_feature_mask, _get_max_feature_index, _parse_version, _reduce_list, _select_targets, _sort_key_list, safe_div, ) from tests.helpers.basic import ( assertTensorAlmostEqual, assertTensorTuplesAlmostEqual, BaseTest, ) class Test(BaseTest): def test_safe_div_number_denom(self) -> None: num = torch.tensor(4.0) assert safe_div(num, 2) == 2.0 assert safe_div(num, 0, 2) == 2.0 assert safe_div(num, 2.0) == 2.0 assert safe_div(num, 0.0, 2.0) == 2.0 def test_safe_div_tensor_denom(self) -> None: num = torch.tensor([4.0, 6.0]) exp = torch.tensor([2.0, 3.0]) assert (safe_div(num, torch.tensor([2.0, 2.0])) == exp).all() # tensor default denom assert (safe_div(num, torch.tensor([0.0, 0.0]), torch.tensor(2.0)) == exp).all() assert ( safe_div( num, torch.tensor([0.0, 0.0]), torch.tensor([2.0, 2.0]), ) == exp ).all() # float default denom assert (safe_div(num, torch.tensor([0.0, 0.0]), 2.0) == exp).all() def test_reduce_list_tensors(self) -> None: tensors = [torch.tensor([[3, 4, 5]]), torch.tensor([[0, 1, 2]])] reduced = _reduce_list(tensors) assertTensorAlmostEqual(self, reduced, [[3, 4, 5], [0, 1, 2]]) def test_reduce_list_tuples(self): tensors = [ (torch.tensor([[3, 4, 5]]), torch.tensor([[0, 1, 2]])), (torch.tensor([[3, 4, 5]]), torch.tensor([[0, 1, 2]])), ] reduced = _reduce_list(tensors) assertTensorAlmostEqual(self, reduced[0], [[3, 4, 5], [3, 4, 5]]) assertTensorAlmostEqual(self, reduced[1], [[0, 1, 2], [0, 1, 2]]) def test_sort_key_list(self) -> None: key_list = [ torch.device("cuda:13"), torch.device("cuda:17"), torch.device("cuda:10"), torch.device("cuda:0"), ] device_index_list = [0, 10, 13, 17] sorted_keys = _sort_key_list(key_list, device_index_list) for i in range(len(key_list)): self.assertEqual(sorted_keys[i].index, device_index_list[i]) def test_sort_key_list_incomplete(self) -> None: key_list = [torch.device("cuda:10"), torch.device("cuda:0")] device_index_list = [0, 10, 13, 17] sorted_keys = _sort_key_list(key_list, device_index_list) for i in range(len(key_list)): self.assertEqual(sorted_keys[i].index, device_index_list[i]) def test_select_target_2d(self) -> None: output_tensor = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) assertTensorAlmostEqual(self, _select_targets(output_tensor, 1), [2, 5, 8]) assertTensorAlmostEqual( self, _select_targets(output_tensor, torch.tensor(0)), [1, 4, 7] ) assertTensorAlmostEqual( self, _select_targets(output_tensor, torch.tensor([1, 2, 0])), [[2], [6], [7]], ) assertTensorAlmostEqual( self, _select_targets(output_tensor, [1, 2, 0]), [[2], [6], [7]] ) # Verify error is raised if too many dimensions are provided. with self.assertRaises(AssertionError): _select_targets(output_tensor, (1, 2)) def test_select_target_3d(self) -> None: output_tensor = torch.tensor( [[[1, 2, 3], [4, 5, 6], [7, 8, 9]], [[9, 8, 7], [6, 5, 4], [3, 2, 1]]] ) assertTensorAlmostEqual(self, _select_targets(output_tensor, (0, 1)), [2, 8]) assertTensorAlmostEqual( self, _select_targets( output_tensor, cast(List[Tuple[int, ...]], [(0, 1), (2, 0)]) ), [2, 3], ) # Verify error is raised if list is longer than number of examples. with self.assertRaises(AssertionError): _select_targets( output_tensor, cast(List[Tuple[int, ...]], [(0, 1), (2, 0), (3, 2)]) ) # Verify error is raised if too many dimensions are provided. with self.assertRaises(AssertionError): _select_targets(output_tensor, (1, 2, 3)) def test_format_feature_mask_of_tensor(self) -> None: formatted_inputs = (torch.tensor([[0.0, 0.0], [0.0, 0.0]]),) tensor_mask = torch.tensor([[0, 1]]) formatted_tensor_mask = _format_feature_mask(tensor_mask, formatted_inputs) self.assertEqual(type(formatted_tensor_mask), tuple) assertTensorTuplesAlmostEqual(self, formatted_tensor_mask, (tensor_mask,)) def test_format_feature_mask_of_tuple(self) -> None: formatted_inputs = ( torch.tensor([[0.0, 0.0], [0.0, 0.0]]), torch.tensor([[0.0, 0.0], [0.0, 0.0]]), ) tuple_mask = ( torch.tensor([[0, 1], [2, 3]]), torch.tensor([[4, 5], [6, 6]]), ) formatted_tuple_mask = _format_feature_mask(tuple_mask, formatted_inputs) self.assertEqual(type(formatted_tuple_mask), tuple) assertTensorTuplesAlmostEqual(self, formatted_tuple_mask, tuple_mask) def test_format_feature_mask_of_none(self) -> None: formatted_inputs = ( torch.tensor([[0.0, 0.0], [0.0, 0.0]]), torch.tensor([]), # empty tensor torch.tensor([[0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]), ) expected_mask = ( torch.tensor([[0, 1]]), torch.tensor([]), torch.tensor([[2, 3, 4]]), ) formatted_none_mask = _format_feature_mask(None, formatted_inputs) self.assertEqual(type(formatted_none_mask), tuple) assertTensorTuplesAlmostEqual(self, formatted_none_mask, expected_mask) def test_get_max_feature_index(self) -> None: mask = ( torch.tensor([[0, 1], [2, 3]]), torch.tensor([]), torch.tensor([[4, 5], [6, 100]]), torch.tensor([[0, 1], [2, 3]]), ) assert _get_max_feature_index(mask) == 100 class TestParseVersion(BaseTest): def test_parse_version_dev(self) -> None: version_str = "1.12.0.dev20201109" output = _parse_version(version_str) self.assertEqual(output, (1, 12, 0)) def test_parse_version_post(self) -> None: version_str = "1.3.0.post2" output = _parse_version(version_str) self.assertEqual(output, (1, 3, 0)) def test_parse_version_1_12_0(self) -> None: version_str = "1.12.0" output = _parse_version(version_str) self.assertEqual(output, (1, 12, 0)) def test_parse_version_1_12_2(self) -> None: version_str = "1.12.2" output = _parse_version(version_str) self.assertEqual(output, (1, 12, 2)) def test_parse_version_1_6_0(self) -> None: version_str = "1.6.0" output = _parse_version(version_str) self.assertEqual(output, (1, 6, 0)) def test_parse_version_1_12(self) -> None: version_str = "1.12" output = _parse_version(version_str) self.assertEqual(output, (1, 12))
#!/usr/bin/env python3 import torch import torch.nn as nn from captum._utils.gradient import ( _compute_jacobian_wrt_params, _compute_jacobian_wrt_params_with_sample_wise_trick, ) from tests.helpers.basic import assertTensorAlmostEqual, BaseTest from tests.helpers.basic_models import BasicLinearModel2, BasicLinearModel_Multilayer class Test(BaseTest): def test_jacobian_scores_single_scalar(self) -> None: model = BasicLinearModel2(5, 1) model.linear.weight = nn.Parameter(torch.arange(0, 5).float().reshape(1, 5)) a = torch.ones(5).unsqueeze(0) grads = _compute_jacobian_wrt_params(model, (a,)) assertTensorAlmostEqual(self, grads[0][0], a) grads = _compute_jacobian_wrt_params_with_sample_wise_trick(model, (a,)) assertTensorAlmostEqual(self, grads[0][0], a) def test_jacobian_scores_single_vector(self) -> None: model = BasicLinearModel2(5, 2) model.linear.weight = nn.Parameter(torch.arange(0, 10).view(2, 5).float()) a = torch.ones(5).unsqueeze(0) grads = _compute_jacobian_wrt_params(model, (a,)) assertTensorAlmostEqual(self, grads[0][0], torch.cat((a, a))) grads = _compute_jacobian_wrt_params_with_sample_wise_trick(model, (a,)) assertTensorAlmostEqual(self, grads[0][0], torch.cat((a, a))) def test_jacobian_scores_single_scalar_multilayer(self) -> None: model = BasicLinearModel_Multilayer(5, 2, 1) model.linear1.weight = nn.Parameter(torch.arange(0, 10).view(2, 5).float()) model.linear2.weight = nn.Parameter(torch.arange(1, 3).view(1, 2).float()) a = torch.ones(5).unsqueeze(0) grads = _compute_jacobian_wrt_params(model, (a,)) assertTensorAlmostEqual(self, grads[0][0], torch.cat((a, 2 * a))) assertTensorAlmostEqual(self, grads[1][0], torch.Tensor([[10, 35]])) grads = _compute_jacobian_wrt_params_with_sample_wise_trick(model, (a,)) assertTensorAlmostEqual(self, grads[0][0], torch.cat((a, 2 * a))) assertTensorAlmostEqual(self, grads[1][0], torch.Tensor([[10, 35]])) def test_jacobian_scores_single_vector_multilayer(self) -> None: model = BasicLinearModel_Multilayer(5, 2, 2) model.linear1.weight = nn.Parameter(torch.arange(0, 10).view(2, 5).float()) model.linear2.weight = nn.Parameter(torch.arange(0, 4).view(2, 2).float()) a = torch.ones(5).unsqueeze(0) grads = _compute_jacobian_wrt_params(model, (a,)) assertTensorAlmostEqual(self, grads[0][0], torch.cat((2 * a, 4 * a))) assertTensorAlmostEqual(self, grads[1][0], torch.Tensor([[10, 35], [10, 35]])) grads = _compute_jacobian_wrt_params_with_sample_wise_trick(model, (a,)) assertTensorAlmostEqual(self, grads[0][0], torch.cat((2 * a, 4 * a))) assertTensorAlmostEqual(self, grads[1][0], torch.Tensor([[10, 35], [10, 35]])) def test_jacobian_scores_batch_scalar(self) -> None: model = BasicLinearModel2(5, 1) model.linear.weight = nn.Parameter(torch.arange(0, 5).float().reshape(1, 5)) a = torch.stack((torch.ones(5), torch.ones(5) * 2)) grads = _compute_jacobian_wrt_params(model, (a,)) assertTensorAlmostEqual(self, grads[0][0], a[0:1]) assertTensorAlmostEqual(self, grads[0][1], a[1:2]) grads = _compute_jacobian_wrt_params_with_sample_wise_trick(model, (a,)) assertTensorAlmostEqual(self, grads[0][0], a[0:1]) assertTensorAlmostEqual(self, grads[0][1], a[1:2]) def test_jacobian_scores_batch_vector(self) -> None: model = BasicLinearModel2(5, 2) model.linear.weight = nn.Parameter(torch.arange(0, 10).view(2, 5).float()) a = torch.stack((torch.ones(5), torch.ones(5) * 2)) grads = _compute_jacobian_wrt_params(model, (a,)) assertTensorAlmostEqual(self, grads[0][0], torch.stack((a[0], a[0]))) assertTensorAlmostEqual(self, grads[0][1], torch.stack((a[1], a[1]))) grads = _compute_jacobian_wrt_params_with_sample_wise_trick(model, (a,)) assertTensorAlmostEqual(self, grads[0][0], torch.stack((a[0], a[0]))) assertTensorAlmostEqual(self, grads[0][1], torch.stack((a[1], a[1]))) def test_jacobian_scores_batch_scalar_multilayer(self) -> None: model = BasicLinearModel_Multilayer(5, 2, 1) model.linear1.weight = nn.Parameter(torch.arange(0, 10).view(2, 5).float()) model.linear2.weight = nn.Parameter(torch.arange(1, 3).view(1, 2).float()) a = torch.stack((torch.ones(5), torch.ones(5) * 2)) grads = _compute_jacobian_wrt_params(model, (a,)) assertTensorAlmostEqual(self, grads[0][0], torch.stack((a[0], 2 * a[0]))) assertTensorAlmostEqual(self, grads[1][0], torch.Tensor([[10, 35]])) assertTensorAlmostEqual(self, grads[0][1], torch.stack((a[1], 2 * a[1]))) assertTensorAlmostEqual(self, grads[1][1], torch.Tensor([[20, 70]])) grads = _compute_jacobian_wrt_params_with_sample_wise_trick(model, (a,)) assertTensorAlmostEqual(self, grads[0][0], torch.stack((a[0], 2 * a[0]))) assertTensorAlmostEqual(self, grads[1][0], torch.Tensor([[10, 35]])) assertTensorAlmostEqual(self, grads[0][1], torch.stack((a[1], 2 * a[1]))) assertTensorAlmostEqual(self, grads[1][1], torch.Tensor([[20, 70]])) def test_jacobian_scores_batch_vector_multilayer(self) -> None: model = BasicLinearModel_Multilayer(5, 2, 2) model.linear1.weight = nn.Parameter(torch.arange(0, 10).view(2, 5).float()) model.linear2.weight = nn.Parameter(torch.arange(0, 4).view(2, 2).float()) a = torch.stack((torch.ones(5), torch.ones(5) * 2)) grads = _compute_jacobian_wrt_params(model, (a,)) assertTensorAlmostEqual(self, grads[0][0], torch.stack((2 * a[0], 4 * a[0]))) assertTensorAlmostEqual(self, grads[1][0], torch.Tensor([[10, 35], [10, 35]])) assertTensorAlmostEqual(self, grads[0][1], torch.stack((2 * a[1], 4 * a[1]))) assertTensorAlmostEqual(self, grads[1][1], torch.Tensor([[20, 70], [20, 70]])) grads = _compute_jacobian_wrt_params_with_sample_wise_trick(model, (a,)) assertTensorAlmostEqual(self, grads[0][0], torch.stack((2 * a[0], 4 * a[0]))) assertTensorAlmostEqual(self, grads[1][0], torch.Tensor([[10, 35], [10, 35]])) assertTensorAlmostEqual(self, grads[0][1], torch.stack((2 * a[1], 4 * a[1]))) assertTensorAlmostEqual(self, grads[1][1], torch.Tensor([[20, 70], [20, 70]])) def test_jacobian_loss_single_scalar(self) -> None: model = BasicLinearModel2(5, 1) model.linear.weight = nn.Parameter(torch.arange(0, 5).view(1, 5).float()) a = torch.ones(5).unsqueeze(0) label = torch.Tensor([9]) loss_fn = nn.MSELoss(reduction="none") grads = _compute_jacobian_wrt_params(model, (a,), label, loss_fn) assertTensorAlmostEqual(self, grads[0][0], 2 * (10 - 9) * a) loss_fn = nn.MSELoss(reduction="sum") grads = _compute_jacobian_wrt_params_with_sample_wise_trick( model, (a,), label, loss_fn ) assertTensorAlmostEqual(self, grads[0][0], 2 * (10 - 9) * a) def test_jacobian_loss_single_vector(self) -> None: model = BasicLinearModel2(5, 2) model.linear.weight = nn.Parameter(torch.arange(0, 10).view(2, 5).float()) a = torch.ones(5).unsqueeze(0) label = torch.Tensor([[9, 38]]) loss_fn = nn.MSELoss(reduction="none") grads = _compute_jacobian_wrt_params(model, (a,), label, loss_fn) assertTensorAlmostEqual( self, grads[0][0], torch.cat((2 * (10 - 9) * a, 2 * (35 - 38) * a)) ) loss_fn = nn.MSELoss(reduction="sum") grads = _compute_jacobian_wrt_params_with_sample_wise_trick( model, (a,), label, loss_fn ) assertTensorAlmostEqual( self, grads[0][0], torch.cat((2 * (10 - 9) * a, 2 * (35 - 38) * a)) ) def test_jacobian_loss_batch_scalar(self) -> None: model = BasicLinearModel2(5, 1) model.linear.weight = nn.Parameter(torch.arange(0, 5).float().reshape(1, 5)) a = torch.stack((torch.ones(5), torch.ones(5) * 2)) label = torch.Tensor([[9], [18]]) loss_fn = nn.MSELoss(reduction="none") grads = _compute_jacobian_wrt_params(model, (a,), label, loss_fn) assertTensorAlmostEqual(self, grads[0][0], 2 * (10 - 9) * a[0:1]) assertTensorAlmostEqual(self, grads[0][1], 2 * (20 - 18) * a[1:2]) loss_fn = nn.MSELoss(reduction="sum") grads = _compute_jacobian_wrt_params_with_sample_wise_trick( model, (a,), label, loss_fn ) assertTensorAlmostEqual(self, grads[0][0], 2 * (10 - 9) * a[0:1]) assertTensorAlmostEqual(self, grads[0][1], 2 * (20 - 18) * a[1:2]) def test_jacobian_loss_batch_vector(self) -> None: model = BasicLinearModel2(5, 2) model.linear.weight = nn.Parameter(torch.arange(0, 10).view(2, 5).float()) a = torch.stack((torch.ones(5), torch.ones(5) * 2)) label = torch.Tensor([[9, 38], [18, 74]]) loss_fn = nn.MSELoss(reduction="none") grads = _compute_jacobian_wrt_params(model, (a,), label, loss_fn) assertTensorAlmostEqual( self, grads[0][0], torch.stack((2 * (10 - 9) * a[0], 2 * (35 - 38) * a[0])) ) assertTensorAlmostEqual( self, grads[0][1], torch.stack((2 * (20 - 18) * a[1], 2 * (70 - 74) * a[1])) ) loss_fn = nn.MSELoss(reduction="sum") grads = _compute_jacobian_wrt_params_with_sample_wise_trick( model, (a,), label, loss_fn ) assertTensorAlmostEqual( self, grads[0][0], torch.stack((2 * (10 - 9) * a[0], 2 * (35 - 38) * a[0])) ) assertTensorAlmostEqual( self, grads[0][1], torch.stack((2 * (20 - 18) * a[1], 2 * (70 - 74) * a[1])) ) def test_jacobian_loss_single_scalar_multilayer(self) -> None: model = BasicLinearModel_Multilayer(5, 2, 1) model.linear1.weight = nn.Parameter(torch.arange(0, 10).view(2, 5).float()) model.linear2.weight = nn.Parameter(torch.arange(1, 3).view(1, 2).float()) a = torch.ones(5).unsqueeze(0) label = torch.Tensor([[78]]) loss_fn = nn.MSELoss(reduction="none") grads = _compute_jacobian_wrt_params(model, (a,), label, loss_fn) assertTensorAlmostEqual( self, grads[0][0], torch.cat((2 * (80 - 78) * a, 2 * 2 * (80 - 78) * a)) ) assertTensorAlmostEqual( self, grads[1][0], 2 * (80 - 78) * torch.Tensor([[10, 35]]) ) loss_fn = nn.MSELoss(reduction="sum") grads = _compute_jacobian_wrt_params_with_sample_wise_trick( model, (a,), label, loss_fn ) assertTensorAlmostEqual( self, grads[0][0], torch.cat((2 * (80 - 78) * a, 2 * 2 * (80 - 78) * a)) ) assertTensorAlmostEqual( self, grads[1][0], 2 * (80 - 78) * torch.Tensor([[10, 35]]) ) def test_jacobian_loss_batch_vector_multilayer(self) -> None: model = BasicLinearModel_Multilayer(5, 2, 2) model.linear1.weight = nn.Parameter(torch.arange(0, 10).view(2, 5).float()) model.linear2.weight = nn.Parameter(torch.arange(0, 4).view(2, 2).float()) a = torch.stack((torch.ones(5), torch.ones(5) * 2)) label = torch.Tensor([[33, 124], [69, 256]]) loss_fn = nn.MSELoss(reduction="none") grads = _compute_jacobian_wrt_params(model, (a,), label, loss_fn) assertTensorAlmostEqual( self, grads[0][0], torch.stack( ( 2 * (0 * (35 - 33) + 2 * (125 - 124)) * a[0], 2 * (1 * (35 - 33) + 3 * (125 - 124)) * a[0], ) ), ) assertTensorAlmostEqual( self, grads[1][0], torch.Tensor( [ [2 * (35 - 33) * 10, 2 * (35 - 33) * 35], [2 * (125 - 124) * 10, 2 * (125 - 124) * 35], ] ), ) assertTensorAlmostEqual( self, grads[0][1], torch.stack( ( 2 * (0 * (70 - 69) + 2 * (250 - 256)) * a[1], 2 * (1 * (70 - 69) + 3 * (250 - 256)) * a[1], ) ), ) assertTensorAlmostEqual( self, grads[1][1], torch.Tensor( [ [2 * (70 - 69) * 10 * 2, 2 * (70 - 69) * 35 * 2], [2 * (250 - 256) * 10 * 2, 2 * (250 - 256) * 35 * 2], ] ), ) loss_fn = nn.MSELoss(reduction="sum") grads_h = _compute_jacobian_wrt_params_with_sample_wise_trick( model, (a,), label, loss_fn ) assertTensorAlmostEqual(self, grads_h[0][0], grads[0][0]) assertTensorAlmostEqual(self, grads_h[1][0], grads[1][0]) assertTensorAlmostEqual(self, grads_h[0][1], grads[0][1]) assertTensorAlmostEqual(self, grads_h[1][1], grads[1][1]) def test_jacobian_loss_custom_correct(self) -> None: model = BasicLinearModel2(5, 2) model.linear.weight = nn.Parameter(torch.arange(0, 10).view(2, 5).float()) def my_loss(out, label): return (out - label).pow(2) a = torch.stack((torch.ones(5), torch.ones(5) * 2)) label = torch.Tensor([[9, 38], [18, 74]]) grads = _compute_jacobian_wrt_params(model, (a,), label, my_loss) assertTensorAlmostEqual( self, grads[0][0], torch.stack((2 * (10 - 9) * a[0], 2 * (35 - 38) * a[0])) ) assertTensorAlmostEqual( self, grads[0][1], torch.stack((2 * (20 - 18) * a[1], 2 * (70 - 74) * a[1])) ) def test_jacobian_loss_custom_wrong(self) -> None: model = BasicLinearModel2(5, 2) model.linear.weight = nn.Parameter(torch.arange(0, 10).view(2, 5).float()) def my_loss(out, label): return torch.sum((out - label).pow(2)) a = torch.stack((torch.ones(5), torch.ones(5) * 2)) label = torch.Tensor([[9, 38], [18, 74]]) with self.assertRaises(AssertionError): _compute_jacobian_wrt_params(model, (a,), label, my_loss) def test_jacobian_loss_custom_correct_sample_wise_trick(self) -> None: model = BasicLinearModel2(5, 2) model.linear.weight = nn.Parameter(torch.arange(0, 10).view(2, 5).float()) def my_loss(out, label): return torch.sum((out - label).pow(2)) a = torch.stack((torch.ones(5), torch.ones(5) * 2)) label = torch.Tensor([[9, 38], [18, 74]]) grads = _compute_jacobian_wrt_params_with_sample_wise_trick( model, (a,), label, my_loss # type: ignore ) assertTensorAlmostEqual( self, grads[0][0], torch.stack((2 * (10 - 9) * a[0], 2 * (35 - 38) * a[0])) ) assertTensorAlmostEqual( self, grads[0][1], torch.stack((2 * (20 - 18) * a[1], 2 * (70 - 74) * a[1])) ) def test_jacobian_loss_custom_wrong_sample_wise_trick(self) -> None: model = BasicLinearModel2(5, 2) model.linear.weight = nn.Parameter(torch.arange(0, 10).view(2, 5).float()) def my_loss(out, label): return (out - label).pow(2) a = torch.stack((torch.ones(5), torch.ones(5) * 2)) label = torch.Tensor([[9, 38], [18, 74]]) with self.assertRaises(AssertionError): _compute_jacobian_wrt_params_with_sample_wise_trick( model, (a,), label, my_loss # type: ignore ) def test_jacobian_loss_wrong_reduction_sample_wise_trick(self) -> None: model = BasicLinearModel2(5, 2) model.linear.weight = nn.Parameter(torch.arange(0, 10).view(2, 5).float()) loss_fn = nn.MSELoss(reduction="none") a = torch.stack((torch.ones(5), torch.ones(5) * 2)) label = torch.Tensor([[9, 38], [18, 74]]) with self.assertRaises(AssertionError): _compute_jacobian_wrt_params_with_sample_wise_trick( model, (a,), label, loss_fn )
#!/usr/bin/env python3 import io import unittest import unittest.mock from captum._utils.progress import NullProgress, progress from tests.helpers.basic import BaseTest class Test(BaseTest): @unittest.mock.patch("sys.stderr", new_callable=io.StringIO) def test_nullprogress(self, mock_stderr) -> None: count = 0 with NullProgress(["x", "y", "z"]) as np: for _ in np: for _ in NullProgress([1, 2, 3]): count += 1 self.assertEqual(count, 9) output = mock_stderr.getvalue() self.assertEqual(output, "") @unittest.mock.patch("sys.stderr", new_callable=io.StringIO) def test_nested_progress_tqdm(self, mock_stderr) -> None: try: import tqdm # noqa: F401 except ImportError: raise unittest.SkipTest("Skipping tqdm test, tqdm not available.") parent_data = ["x", "y", "z"] test_data = [1, 2, 3] with progress(parent_data, desc="parent progress") as parent: for item in parent: for _ in progress(test_data, desc=f"test progress {item}"): pass output = mock_stderr.getvalue() self.assertIn("parent progress:", output) for item in parent_data: self.assertIn(f"test progress {item}:", output) @unittest.mock.patch("sys.stderr", new_callable=io.StringIO) def test_nested_simple_progress(self, mock_stderr) -> None: parent_data = ["x", "y", "z"] test_data = [1, 2, 3] with progress( parent_data, desc="parent progress", use_tqdm=False, mininterval=0.0 ) as parent: for item in parent: for _ in progress( test_data, desc=f"test progress {item}", use_tqdm=False ): pass output = mock_stderr.getvalue() self.assertEqual( output.count("parent progress:"), 5, "5 'parent' progress bar expected" ) for item in parent_data: self.assertIn(f"test progress {item}:", output) @unittest.mock.patch("sys.stderr", new_callable=io.StringIO) def test_progress_tqdm(self, mock_stderr) -> None: try: import tqdm # noqa: F401 except ImportError: raise unittest.SkipTest("Skipping tqdm test, tqdm not available.") test_data = [1, 3, 5] progressed = progress(test_data, desc="test progress") assert list(progressed) == test_data assert "test progress: " in mock_stderr.getvalue() @unittest.mock.patch("sys.stderr", new_callable=io.StringIO) def test_simple_progress(self, mock_stderr) -> None: test_data = [1, 3, 5] desc = "test progress" progressed = progress(test_data, desc=desc, use_tqdm=False) assert list(progressed) == test_data assert mock_stderr.getvalue().startswith(f"\r{desc}: 0% 0/3") assert mock_stderr.getvalue().endswith(f"\r{desc}: 100% 3/3\n") # progress iterable without len but explicitly specify total def gen(): for n in test_data: yield n mock_stderr.seek(0) mock_stderr.truncate(0) progressed = progress(gen(), desc=desc, total=len(test_data), use_tqdm=False) assert list(progressed) == test_data assert mock_stderr.getvalue().startswith(f"\r{desc}: 0% 0/3") assert mock_stderr.getvalue().endswith(f"\r{desc}: 100% 3/3\n") @unittest.mock.patch("sys.stderr", new_callable=io.StringIO) def test_simple_progress_without_total(self, mock_stderr) -> None: test_data = [1, 3, 5] desc = "test progress" def gen(): for n in test_data: yield n progressed = progress(gen(), desc=desc, use_tqdm=False) assert list(progressed) == test_data assert mock_stderr.getvalue().startswith(f"\r{desc}: ") assert mock_stderr.getvalue().endswith(f"\r{desc}: ...\n") @unittest.mock.patch("sys.stderr", new_callable=io.StringIO) def test_simple_progress_update_manually(self, mock_stderr) -> None: desc = "test progress" p = progress(total=5, desc=desc, use_tqdm=False) p.update(0) p.update(2) p.update(2) p.update(1) p.close() assert mock_stderr.getvalue().startswith(f"\r{desc}: 0% 0/5") assert mock_stderr.getvalue().endswith(f"\r{desc}: 100% 5/5\n")
import glob import tempfile from datetime import datetime from typing import cast, List import torch from captum._utils.av import AV from tests.helpers.basic import assertTensorAlmostEqual, BaseTest from tests.helpers.basic_models import BasicLinearReLULinear from torch.utils.data import DataLoader, Dataset DEFAULT_IDENTIFIER = "default_identifier" class RangeDataset(Dataset): def __init__(self, low, high, num_features) -> None: self.samples = ( torch.arange(start=low, end=high, dtype=torch.float) .repeat(num_features, 1) .transpose(1, 0) ) def __len__(self) -> int: return len(self.samples) def __getitem__(self, idx): return self.samples[idx] class Test(BaseTest): def test_exists_without_version(self) -> None: with tempfile.TemporaryDirectory() as tmpdir: av_0 = torch.randn(64, 16) self.assertFalse(AV.exists(tmpdir, "dummy", "layer1.0.conv1")) AV.save(tmpdir, "dummy", DEFAULT_IDENTIFIER, "layer1.0.conv1", av_0, "0") self.assertTrue( AV.exists( tmpdir, "dummy", DEFAULT_IDENTIFIER, "layer1.0.conv1", ) ) def test_exists_with_version(self) -> None: with tempfile.TemporaryDirectory() as tmpdir: idf1 = str(int(datetime.now().microsecond)) idf2 = "idf2" av_0 = torch.randn(64, 16) self.assertFalse(AV.exists(tmpdir, "dummy", "layer1.0.conv1", idf1)) self.assertFalse(AV.exists(tmpdir, "dummy", "layer1.0.conv1", idf2)) AV.save(tmpdir, "dummy", idf1, "layer1.0.conv1", av_0, "0") self.assertTrue(AV.exists(tmpdir, "dummy", idf1, "layer1.0.conv1")) self.assertFalse(AV.exists(tmpdir, "dummy", idf2, "layer1.0.conv1")) AV.save(tmpdir, "dummy", idf2, "layer1.0.conv1", av_0, "0") self.assertTrue(AV.exists(tmpdir, "dummy", idf2, "layer1.0.conv1")) def test_av_save_two_layers(self) -> None: with tempfile.TemporaryDirectory() as tmpdir: av_0 = torch.randn(64, 16) AV.save(tmpdir, "dummy", DEFAULT_IDENTIFIER, "layer1.0.conv1", av_0, "0") self.assertTrue( AV.exists(tmpdir, "dummy", DEFAULT_IDENTIFIER, "layer1.0.conv1") ) self.assertFalse( AV.exists(tmpdir, "dummy", DEFAULT_IDENTIFIER, "layer1.0.conv2") ) # experimenting with adding to another layer av_1 = torch.randn(64, 16) AV.save(tmpdir, "dummy", DEFAULT_IDENTIFIER, "layer1.0.conv2", av_1, "0") self.assertTrue( AV.exists(tmpdir, "dummy", DEFAULT_IDENTIFIER, "layer1.0.conv2") ) def test_av_save_multi_layer(self) -> None: with tempfile.TemporaryDirectory() as tmpdir: av_0 = torch.randn(64, 16) av_1 = torch.randn(64, 16) av_2 = torch.randn(64, 16) model_path = AV._assemble_model_dir(tmpdir, "dummy") # save first layer AV.save(tmpdir, "dummy", DEFAULT_IDENTIFIER, "layer1.0.conv1", av_0, "0") self.assertEqual(len(glob.glob(model_path + "*")), 1) # add two new layers at once AV.save( tmpdir, "dummy", DEFAULT_IDENTIFIER, ["layer1.0.conv2", "layer1.1.conv1"], [av_1, av_2], "0", ) self.assertEqual(len(glob.glob(model_path + "/*/*/*")), 3) # overwrite the first saved layer AV.save(tmpdir, "dummy", DEFAULT_IDENTIFIER, "layer1.0.conv1", av_0, "0") self.assertEqual(len(glob.glob(model_path + "/*/*/*")), 3) # save a new version of the first layer idf1 = str(int(datetime.now().microsecond)) self.assertFalse(AV.exists(tmpdir, "dummy", idf1, "layer1.0.conv1")) AV.save(tmpdir, "dummy", idf1, "layer1.0.conv1", av_0, "0") self.assertTrue(AV.exists(tmpdir, "dummy", idf1, "layer1.0.conv1")) self.assertEqual(len(glob.glob(model_path + "/*/*/*")), 4) def test_av_save_multiple_batches_per_layer(self) -> None: def save_and_assert_batch(layer_path, total_num_batches, batch, n_batch_name): # save n-th batch and verify the number of saved batches AV.save( tmpdir, model_id, DEFAULT_IDENTIFIER, "layer1.0.conv1", batch, n_batch_name, ) self.assertEqual( len(glob.glob("/".join([layer_path, "*.pt"]))), total_num_batches, ) self.assertTrue( AV.exists( tmpdir, model_id, DEFAULT_IDENTIFIER, "layer1.0.conv1", n_batch_name ) ) with tempfile.TemporaryDirectory() as tmpdir: b0 = torch.randn(64, 16) b1 = torch.randn(64, 16) b2 = torch.randn(64, 16) model_id = "dummy" model_path = AV._assemble_model_dir(tmpdir, model_id) layer_path = AV._assemble_file_path( model_path, DEFAULT_IDENTIFIER, "layer1.0.conv1" ) # save first batch and verify the number of saved batches save_and_assert_batch(layer_path, 1, b0, "0") # save second batch and verify the number of saved batches save_and_assert_batch(layer_path, 2, b1, "1") # save third batch and verify the number of saved batches save_and_assert_batch(layer_path, 3, b2, "2") def test_av_load_multiple_batches_per_layer(self) -> None: def save_load_and_assert_batch( layer_path, total_num_batches, batch, n_batch_name ): # save n-th batch and verify the number of saved batches AV.save( tmpdir, model_id, DEFAULT_IDENTIFIER, "layer1.0.conv1", batch, n_batch_name, ) loaded_dataset = AV.load( tmpdir, model_id, DEFAULT_IDENTIFIER, "layer1.0.conv1", n_batch_name ) assertTensorAlmostEqual(self, next(iter(loaded_dataset)), batch, 0.0) loaded_dataset_for_layer = AV.load( tmpdir, model_id, DEFAULT_IDENTIFIER, "layer1.0.conv1" ) self.assertEqual( loaded_dataset_for_layer.__len__(), total_num_batches, ) with tempfile.TemporaryDirectory() as tmpdir: b0 = torch.randn(64, 16) b1 = torch.randn(64, 16) b2 = torch.randn(64, 16) model_id = "dummy" model_path = AV._assemble_model_dir(tmpdir, model_id) layer_path = AV._assemble_file_path( model_path, DEFAULT_IDENTIFIER, "layer1.0.conv1" ) # save first batch and verify the number of saved batches save_load_and_assert_batch(layer_path, 1, b0, "0") # save second batch and verify the number of saved batches save_load_and_assert_batch(layer_path, 2, b1, "1") # save third batch and verify the number of saved batches save_load_and_assert_batch(layer_path, 3, b2, "2") def test_av_load_non_saved_layer(self) -> None: with tempfile.TemporaryDirectory() as tmpdir: model_id = "dummy" with self.assertRaises(RuntimeError) as context: AV.load(tmpdir, model_id) self.assertTrue( ( f"Activation vectors for model {model_id} " f"was not found at path {tmpdir}" ) == str(context.exception) ) def test_av_load_one_batch(self) -> None: with tempfile.TemporaryDirectory() as tmpdir: av_0 = torch.randn(64, 16) av_1 = torch.randn(36, 16) avs = [av_0, av_1] # add av_0 to the list of activations model_id = "dummy" with self.assertRaises(RuntimeError) as context: AV.load(tmpdir, model_id) self.assertTrue( ( f"Activation vectors for model {model_id} " f"was not found at path {tmpdir}" ) == str(context.exception) ) AV.save(tmpdir, "dummy", DEFAULT_IDENTIFIER, "layer1.0.conv1", av_0, "0") model_id = "dummy" dataset = AV.load(tmpdir, model_id, identifier=DEFAULT_IDENTIFIER) for i, av in enumerate(DataLoader(cast(Dataset, dataset))): assertTensorAlmostEqual(self, av, avs[i].unsqueeze(0)) # add av_1 to the list of activations dataloader_2 = DataLoader( cast( Dataset, AV.load(tmpdir, "dummy", DEFAULT_IDENTIFIER, "layer1.0.conv2"), ) ) self.assertEqual(len(dataloader_2), 0) AV.save(tmpdir, "dummy", DEFAULT_IDENTIFIER, "layer1.0.conv2", av_1, "0") dataset = AV.load(tmpdir, "dummy", identifier=DEFAULT_IDENTIFIER) dataloader = DataLoader(cast(Dataset, dataset)) self.assertEqual(len(dataloader), 2) for i, av in enumerate(dataloader): assertTensorAlmostEqual(self, av, avs[i].unsqueeze(0)) def test_av_load_all_identifiers_one_layer(self) -> None: with tempfile.TemporaryDirectory() as tmpdir: av_0 = torch.randn(64, 16) av_1 = torch.randn(36, 16) av_2 = torch.randn(16, 16) av_3 = torch.randn(4, 16) avs = [av_1, av_2, av_3] idf1, idf2, idf3 = "idf1", "idf2", "idf3" AV.save(tmpdir, "dummy", DEFAULT_IDENTIFIER, "layer1.0.conv1", av_0, "0") dataloader = DataLoader( cast(Dataset, AV.load(tmpdir, "dummy", identifier=DEFAULT_IDENTIFIER)) ) self.assertEqual(len(dataloader), 1) # add activations for another layer AV.save(tmpdir, "dummy", idf1, "layer1.0.conv2", av_1, "0") AV.save(tmpdir, "dummy", idf2, "layer1.0.conv2", av_2, "0") AV.save(tmpdir, "dummy", idf3, "layer1.0.conv2", av_3, "0") dataloader_layer = DataLoader( cast( Dataset, AV.load( tmpdir, "dummy", layer="layer1.0.conv2", ), ) ) self.assertEqual(len(dataloader_layer), 3) for i, av in enumerate(dataloader_layer): assertTensorAlmostEqual(self, av, avs[i].unsqueeze(0)) dataloader = DataLoader(cast(Dataset, AV.load(tmpdir, "dummy"))) self.assertEqual(len(dataloader), 4) def test_av_load_all_layers_one_identifier(self) -> None: with tempfile.TemporaryDirectory() as tmpdir: av_01 = torch.randn(36, 16) av_02 = torch.randn(16, 16) av_03 = torch.randn(4, 16) avs_0 = [av_01, av_02, av_03] av_11 = torch.randn(36, 16) av_12 = torch.randn(16, 16) av_13 = torch.randn(4, 16) avs_1 = [av_11, av_12, av_13] idf1, idf2 = "idf1", "idf2" AV.save( tmpdir, "dummy", idf1, ["layer1.0.conv1", "layer1.0.conv2", "layer1.1.conv1"], avs_0, "0", ) dataloader = DataLoader(cast(Dataset, AV.load(tmpdir, "dummy"))) self.assertEqual(len(dataloader), 3) AV.save( tmpdir, "dummy", idf2, ["layer1.0.conv1", "layer1.0.conv2", "layer1.1.conv1"], avs_1, "0", ) dataloader = DataLoader(cast(Dataset, AV.load(tmpdir, "dummy"))) self.assertEqual(len(dataloader), 6) # check activations for idf1 dataloader_layer = DataLoader( cast(Dataset, AV.load(tmpdir, "dummy", identifier=idf1)) ) self.assertEqual(len(dataloader_layer), 3) for i, av in enumerate(dataloader_layer): assertTensorAlmostEqual(self, av, avs_0[i].unsqueeze(0)) # check activations for idf2 dataloader_layer = DataLoader( cast(Dataset, AV.load(tmpdir, "dummy", identifier=idf2)) ) self.assertEqual(len(dataloader_layer), 3) for i, av in enumerate(dataloader_layer): assertTensorAlmostEqual(self, av, avs_1[i].unsqueeze(0)) def test_av_sort_files(self) -> None: files = ["resnet50-cifar-3000", "resnet50-cifar-1000", "resnet50-cifar-2000"] exp_files = [ "resnet50-cifar-1000", "resnet50-cifar-2000", "resnet50-cifar-3000", ] files = AV.sort_files(files) self.assertEqual(files, exp_files) files = ["resnet50-cifar-0900", "resnet50-cifar-0000", "resnet50-cifar-1000"] exp_files = [ "resnet50-cifar-0000", "resnet50-cifar-0900", "resnet50-cifar-1000", ] files = AV.sort_files(files) self.assertEqual(files, exp_files) files = ["resnet50-cifar-100", "resnet50-cifar-90", "resnet50-cifar-3000"] exp_files = [ "resnet50-cifar-90", "resnet50-cifar-100", "resnet50-cifar-3000", ] files = AV.sort_files(files) self.assertEqual(files, exp_files) files = [ "av/pretrained-net-0/fc1-src10-710935.pt", "av/pretrained-net-0/fc1-src11-755317.pt", "av/pretrained-net-0/fc3-src2-655646.pt", "av/pretrained-net-0/fc1-src9-952381.pt", "av/pretrained-net-0/conv2-src7-811286.pt", "av/pretrained-net-0/fc1-src10-176141.pt", "av/pretrained-net-0/conv11-src9-384927.pt", ] exp_files = [ "av/pretrained-net-0/conv2-src7-811286.pt", "av/pretrained-net-0/conv11-src9-384927.pt", "av/pretrained-net-0/fc1-src9-952381.pt", "av/pretrained-net-0/fc1-src10-176141.pt", "av/pretrained-net-0/fc1-src10-710935.pt", "av/pretrained-net-0/fc1-src11-755317.pt", "av/pretrained-net-0/fc3-src2-655646.pt", ] files = AV.sort_files(files) self.assertEqual(files, exp_files) def test_generate_activation(self) -> None: with tempfile.TemporaryDirectory() as tmpdir: num_features = 4 low, high = 0, 16 mymodel = BasicLinearReLULinear(num_features) mydata = RangeDataset(low, high, num_features) layers: List[str] = [ value[0] for value in mymodel.named_modules() if value[0] ] # First AV generation on last 2 layers inputs = torch.stack((mydata[1], mydata[8], mydata[14])) AV._compute_and_save_activations( tmpdir, mymodel, "model_id_1", layers[1:], inputs, "test", "0" ) av_test = AV._construct_file_search(tmpdir, "model_id_1", identifier="test") av_test = glob.glob(av_test) self.assertEqual(len(av_test), len(layers[1:])) # Second AV generation on first 2 layers. # Second layer overlaps with existing activations, should be loaded. inputs = torch.stack((mydata[0], mydata[7], mydata[13])) AV._compute_and_save_activations( tmpdir, mymodel, "model_id_1", layers[:2], inputs, "test", "0" ) av_test = AV._construct_file_search(tmpdir, "model_id_1", identifier="test") av_test = glob.glob(av_test) self.assertEqual(len(av_test), len(layers)) def test_generate_dataset_activations(self) -> None: with tempfile.TemporaryDirectory() as tmpdir: num_features = 4 low, high = 0, 16 batch_size = high // 2 mymodel = BasicLinearReLULinear(num_features) mydata = RangeDataset(low, high, num_features) layers: List[str] = [ value[0] for value in mymodel.named_modules() if value[0] ] # First AV generation on last 2 layers layer_AVDatasets = AV.generate_dataset_activations( tmpdir, mymodel, "model_id1", layers[1:], DataLoader(mydata, batch_size, shuffle=False), "src", return_activations=True, ) av_src = AV._construct_file_search( tmpdir, model_id="model_id1", identifier="src" ) av_src = glob.glob(av_src) self.assertEqual(len(av_src), high / batch_size * len(layers[1:])) self.assertTrue(isinstance(layer_AVDatasets, list)) layer_AVDatasets = cast(list, layer_AVDatasets) self.assertEqual(len(layer_AVDatasets), len(layers[1:])) for layer_AVDataset in layer_AVDatasets: self.assertEqual(len(layer_AVDataset), high / batch_size) # Second AV generation on first 2 layers. # Second layer overlaps with existing activations, should be loaded. layer_AVDatasets = AV.generate_dataset_activations( tmpdir, mymodel, "model_id1", layers[:2], DataLoader(mydata, batch_size, shuffle=False), "src", return_activations=True, ) av_src = AV._construct_file_search( tmpdir, model_id="model_id1", identifier="src" ) av_src = glob.glob(av_src) self.assertEqual(len(av_src), high / batch_size * len(layers)) self.assertTrue(isinstance(layer_AVDatasets, list)) layer_AVDatasets = cast(list, layer_AVDatasets) self.assertEqual(len(layer_AVDatasets), len(layers[:2])) for layer_AVDataset in layer_AVDatasets: self.assertEqual(len(layer_AVDataset), high / batch_size) # check that if return_activations is False, None is returned self.assertIsNone( AV.generate_dataset_activations( tmpdir, mymodel, "model_id1", layers[:2], DataLoader(mydata, batch_size, shuffle=False), "src", return_activations=False, ) ) def test_equal_activation(self) -> None: with tempfile.TemporaryDirectory() as tmpdir: num_features = 4 low, high = 0, 16 mymodel = BasicLinearReLULinear(num_features) mydata = RangeDataset(low, high, num_features) layers: List[str] = [ value[0] for value in mymodel.named_modules() if value[0] ] # First AV generation on last 2 layers test_input = mydata[1].unsqueeze(0) model_id = "id_1" identifier = "test" num_id = "0" AV._compute_and_save_activations( tmpdir, mymodel, model_id, layers[2], test_input, identifier, num_id ) act_dataset = AV.load(tmpdir, model_id, identifier, layers[2], num_id) _layer_act = [act.squeeze(0) for act in DataLoader(act_dataset)] act = torch.cat(_layer_act) out = mymodel(test_input) assertTensorAlmostEqual(self, out, act)
#!/usr/bin/env python3 import torch from captum._utils.models.linear_model.model import ( SGDLasso, SGDLinearRegression, SGDRidge, ) from tests.helpers.basic import assertTensorAlmostEqual, BaseTest def _evaluate(test_data, classifier): classifier.eval() l1_loss = 0.0 l2_loss = 0.0 n = 0 l2_losses = [] with torch.no_grad(): for data in test_data: if len(data) == 2: x, y = data w = None else: x, y, w = data out = classifier(x) y = y.view(x.shape[0], -1) assert y.shape == out.shape if w is None: l1_loss += (out - y).abs().sum(0).to(dtype=torch.float64) l2_loss += ((out - y) ** 2).sum(0).to(dtype=torch.float64) l2_losses.append(((out - y) ** 2).to(dtype=torch.float64)) else: l1_loss += ( (w.view(-1, 1) * (out - y)).abs().sum(0).to(dtype=torch.float64) ) l2_loss += ( (w.view(-1, 1) * ((out - y) ** 2)).sum(0).to(dtype=torch.float64) ) l2_losses.append( (w.view(-1, 1) * ((out - y) ** 2)).to(dtype=torch.float64) ) n += x.shape[0] l2_losses = torch.cat(l2_losses, dim=0) assert n > 0 # just to double check assert ((l2_losses.mean(0) - l2_loss / n).abs() <= 0.1).all() classifier.train() return {"l1": l1_loss / n, "l2": l2_loss / n} class TestLinearModel(BaseTest): MAX_POINTS: int = 3 def train_and_compare( self, model_type, xs, ys, expected_loss, expected_reg=0.0, expected_hyperplane=None, norm_hyperplane=True, weights=None, delta=0.1, init_scheme="zeros", objective="lasso", bias=True, ): assert objective in ["lasso", "ridge", "ols"] if weights is None: train_dataset = torch.utils.data.TensorDataset(xs, ys) else: train_dataset = torch.utils.data.TensorDataset(xs, ys, weights) train_loader = torch.utils.data.DataLoader( train_dataset, batch_size=len(train_dataset), num_workers=0 ) model = model_type(bias=bias) model.fit( train_loader, init_scheme=init_scheme, max_epoch=150, initial_lr=0.1, patience=5, ) self.assertTrue(model.bias() is not None if bias else model.bias() is None) l2_loss = _evaluate(train_loader, model)["l2"] if objective == "lasso": reg = model.representation().norm(p=1).view_as(l2_loss) elif objective == "ridge": reg = model.representation().norm(p=2).view_as(l2_loss) else: assert objective == "ols" reg = torch.zeros_like(l2_loss) if not isinstance(expected_loss, torch.Tensor): expected_loss = torch.tensor([expected_loss], dtype=l2_loss.dtype).view(1) if not isinstance(expected_reg, torch.Tensor): expected_reg = torch.tensor([expected_reg], dtype=reg.dtype) assertTensorAlmostEqual(self, l2_loss, expected_loss, delta=delta) assertTensorAlmostEqual(self, reg, expected_reg, delta=delta) if expected_hyperplane is not None: h = model.representation() if norm_hyperplane: h /= h.norm(p=2) assertTensorAlmostEqual(self, h, expected_hyperplane, delta=delta) def test_simple_linear_regression(self) -> None: xs = torch.randn(TestLinearModel.MAX_POINTS, 1) ys = 3 * xs + 1 self.train_and_compare( SGDLinearRegression, xs, ys, expected_loss=0, expected_reg=0, objective="ols", ) self.train_and_compare( SGDLasso, xs, ys, expected_loss=3, expected_reg=0, objective="lasso", delta=0.2, ) self.train_and_compare( SGDRidge, xs, ys, expected_loss=3, expected_reg=0, objective="ridge", delta=0.2, ) def test_simple_multi_output(self) -> None: xs = torch.randn(TestLinearModel.MAX_POINTS, 1) y1 = 3 * xs + 1 y2 = -5 * xs ys = torch.stack((y1, y2), dim=1).squeeze() self.train_and_compare( SGDLinearRegression, xs, ys, expected_loss=torch.DoubleTensor([0, 0]), expected_reg=torch.DoubleTensor([0, 0]), objective="ols", ) def test_simple_linear_classification(self) -> None: xs = torch.tensor([[0.5, 0.5], [-0.5, -0.5], [0.5, -0.5], [-0.5, 0.5]]) ys = torch.tensor([1.0, -1.0, 1.0, -1.0]) self.train_and_compare( SGDLinearRegression, xs, ys, expected_loss=0, expected_reg=0, objective="ols", ) self.train_and_compare( SGDLasso, xs, ys, expected_loss=1, expected_reg=0.0, objective="lasso" ) self.train_and_compare( SGDRidge, xs, ys, expected_loss=1, expected_reg=0.0, objective="ridge" ) ys = torch.tensor([1.0, 0.0, 1.0, 0.0]) self.train_and_compare( SGDLinearRegression, xs, ys, expected_loss=0, expected_reg=0, objective="ols", ) self.train_and_compare( SGDLasso, xs, ys, expected_loss=0.25, expected_reg=0, objective="lasso" ) self.train_and_compare( SGDRidge, xs, ys, expected_loss=0.25, expected_reg=0, objective="ridge" ) def test_simple_xor_problem(self) -> None: r""" ^ o | x ---|---> x | o """ xs = torch.tensor([[0.5, 0.5], [-0.5, -0.5], [0.5, -0.5], [-0.5, 0.5]]) ys = torch.tensor([1.0, 1.0, -1.0, -1.0]) expected_hyperplane = torch.Tensor([[0, 0]]) self.train_and_compare( SGDLinearRegression, xs, ys, expected_loss=1, expected_reg=0, objective="ols", expected_hyperplane=expected_hyperplane, norm_hyperplane=False, bias=False, ) self.train_and_compare( SGDLasso, xs, ys, expected_loss=1, expected_reg=0, objective="lasso", expected_hyperplane=expected_hyperplane, norm_hyperplane=False, bias=False, ) self.train_and_compare( SGDRidge, xs, ys, expected_loss=1, expected_reg=0, objective="ridge", expected_hyperplane=expected_hyperplane, norm_hyperplane=False, bias=False, ) def test_weighted_problem(self) -> None: r""" ^ 0 | x ---|---> 0 | o """ xs = torch.tensor([[0.5, 0.5], [-0.5, -0.5], [0.5, -0.5], [-0.5, 0.5]]) ys = torch.tensor([1.0, 1.0, -1.0, -1.0]) weights = torch.tensor([1.0, 0.0, 1.0, 0.0]) self.train_and_compare( SGDLinearRegression, xs, ys, expected_loss=0, expected_reg=0, expected_hyperplane=torch.Tensor([[0.0, 1.0]]), weights=weights, norm_hyperplane=True, init_scheme="zeros", objective="ols", bias=False, ) self.train_and_compare( SGDLasso, xs, ys, expected_loss=0.5, expected_reg=0, expected_hyperplane=torch.Tensor([[0.0, 0.0]]), weights=weights, norm_hyperplane=False, init_scheme="zeros", objective="lasso", bias=False, ) self.train_and_compare( SGDRidge, xs, ys, expected_loss=0.5, expected_reg=0, expected_hyperplane=torch.Tensor([[0.0, 0.0]]), weights=weights, norm_hyperplane=False, init_scheme="zeros", objective="ridge", bias=False, )
#!/usr/bin/env python3 import torch from tests.helpers.basic import assertTensorAlmostEqual, BaseTest class HelpersTest(BaseTest): def test_assert_tensor_almost_equal(self) -> None: with self.assertRaises(AssertionError) as cm: assertTensorAlmostEqual(self, [[1.0]], [[1.0]]) self.assertEqual( cm.exception.args, ("Actual parameter given for comparison must be a tensor.",), ) with self.assertRaises(AssertionError) as cm: assertTensorAlmostEqual(self, torch.tensor([[]]), torch.tensor([[1.0]])) self.assertEqual( cm.exception.args, ( "Expected tensor with shape: torch.Size([1, 1]). Actual shape torch.Size([1, 0]).", # noqa: E501 ), ) assertTensorAlmostEqual(self, torch.tensor([[1.0]]), [[1.0]]) with self.assertRaises(AssertionError) as cm: assertTensorAlmostEqual(self, torch.tensor([[1.0]]), [1.0]) self.assertEqual( cm.exception.args, ( "Expected tensor with shape: torch.Size([1]). Actual shape torch.Size([1, 1]).", # noqa: E501 ), ) assertTensorAlmostEqual( self, torch.tensor([[1.0, 1.0]]), [[1.0, 0.0]], delta=1.0, mode="max" ) with self.assertRaises(AssertionError) as cm: assertTensorAlmostEqual( self, torch.tensor([[1.0, 1.0]]), [[1.0, 0.0]], mode="max" ) self.assertEqual( cm.exception.args, ( "Values at index 0, tensor([1., 1.]) and tensor([1., 0.]), differ more than by 0.0001", # noqa: E501 ), ) assertTensorAlmostEqual( self, torch.tensor([[1.0, 1.0]]), [[1.0, 0.0]], delta=1.0 ) with self.assertRaises(AssertionError): assertTensorAlmostEqual(self, torch.tensor([[1.0, 1.0]]), [[1.0, 0.0]])
#!/usr/bin/env python3 import unittest from typing import Callable, Tuple import torch from captum._utils.gradient import apply_gradient_requirements from captum._utils.sample_gradient import ( _reset_sample_grads, SampleGradientWrapper, SUPPORTED_MODULES, ) from packaging import version from tests.helpers.basic import assertTensorAlmostEqual, BaseTest from tests.helpers.basic_models import ( BasicModel_ConvNet_One_Conv, BasicModel_ConvNetWithPaddingDilation, BasicModel_MultiLayer, ) from torch import Tensor from torch.nn import Module class Test(BaseTest): def test_sample_grads_linear_sum(self) -> None: model = BasicModel_MultiLayer(multi_input_module=True) inp = (torch.randn(6, 3), torch.randn(6, 3)) self._compare_sample_grads_per_sample(model, inp, lambda x: torch.sum(x), "sum") def test_sample_grads_linear_mean(self) -> None: model = BasicModel_MultiLayer(multi_input_module=True) inp = (20 * torch.randn(6, 3),) self._compare_sample_grads_per_sample(model, inp, lambda x: torch.mean(x)) def test_sample_grads_conv_sum(self) -> None: model = BasicModel_ConvNet_One_Conv() inp = (123 * torch.randn(6, 1, 4, 4),) self._compare_sample_grads_per_sample(model, inp, lambda x: torch.sum(x), "sum") def test_sample_grads_conv_mean_multi_inp(self) -> None: model = BasicModel_ConvNet_One_Conv() inp = (20 * torch.randn(6, 1, 4, 4), 9 * torch.randn(6, 1, 4, 4)) self._compare_sample_grads_per_sample(model, inp, lambda x: torch.mean(x)) def test_sample_grads_modified_conv_mean(self) -> None: if version.parse(torch.__version__) < version.parse("1.8.0"): raise unittest.SkipTest( "Skipping sample gradient test with 3D linear module" "since torch version < 1.8" ) model = BasicModel_ConvNetWithPaddingDilation() inp = (20 * torch.randn(6, 1, 5, 5),) self._compare_sample_grads_per_sample( model, inp, lambda x: torch.mean(x), "mean" ) def test_sample_grads_modified_conv_sum(self) -> None: if version.parse(torch.__version__) < version.parse("1.8.0"): raise unittest.SkipTest( "Skipping sample gradient test with 3D linear module" "since torch version < 1.8" ) model = BasicModel_ConvNetWithPaddingDilation() inp = (20 * torch.randn(6, 1, 5, 5),) self._compare_sample_grads_per_sample(model, inp, lambda x: torch.sum(x), "sum") def _compare_sample_grads_per_sample( self, model: Module, inputs: Tuple[Tensor, ...], loss_fn: Callable, loss_type: str = "mean", ): wrapper = SampleGradientWrapper(model) wrapper.add_hooks() apply_gradient_requirements(inputs) out = model(*inputs) wrapper.compute_param_sample_gradients(loss_fn(out), loss_type) batch_size = inputs[0].shape[0] for i in range(batch_size): model.zero_grad() single_inp = tuple(inp[i : i + 1] for inp in inputs) out = model(*single_inp) loss_fn(out).backward() for layer in model.modules(): if isinstance(layer, tuple(SUPPORTED_MODULES.keys())): assertTensorAlmostEqual( self, layer.weight.grad, layer.weight.sample_grad[i], # type: ignore mode="max", ) assertTensorAlmostEqual( self, layer.bias.grad, layer.bias.sample_grad[i], # type: ignore mode="max", ) def test_sample_grads_layer_modules(self): """ tests that if `layer_modules` argument is specified for `SampleGradientWrapper` that only per-sample gradients for the specified layers are calculated """ model = BasicModel_ConvNet_One_Conv() inp = (20 * torch.randn(6, 1, 4, 4), 9 * torch.randn(6, 1, 4, 4)) # possible candidates for `layer_modules`, which are the modules whose # parameters we want to compute sample grads for layer_moduless = [[model.conv1], [model.fc1], [model.conv1, model.fc1]] # hard coded all modules we want to check all_modules = [model.conv1, model.fc1] for layer_modules in layer_moduless: # we will call the wrapper multiple times, so should reset each time for module in all_modules: _reset_sample_grads(module) # compute sample grads wrapper = SampleGradientWrapper(model, layer_modules) wrapper.add_hooks() apply_gradient_requirements(inp) out = model(*inp) wrapper.compute_param_sample_gradients(torch.sum(out), "sum") for module in all_modules: if module in layer_modules: # If we calculated the sample grads for the layer, none # of its parameters' `sample_grad` attributes` would be an int, # since even though they were all set to 0 in beginning of loop # computing sample grads would override that 0. # So, check that we did calculate sample grads for the desired # layers via the above checking approach. for parameter in module.parameters(): assert not isinstance(parameter.sample_grad, int) else: # For the layers we do not want sample grads for, their # `sample_grad` should still be 0, since they should not have been # over-written. for parameter in module.parameters(): assert parameter.sample_grad == 0
import argparse import random from typing import Optional import captum._utils.models.linear_model.model as pytorch_model_module import numpy as np import sklearn.datasets as datasets import torch from tests.utils.test_linear_model import _evaluate from torch.utils.data import DataLoader, TensorDataset def sklearn_dataset_to_loaders( data, train_prop=0.7, batch_size=64, num_workers=4, shuffle=False, one_hot=False ): xs, ys = data if one_hot and ys.dtype != float: oh = np.zeros((ys.size, ys.max() + 1)) oh[np.arange(ys.size), ys] = 1 ys = oh dataset = TensorDataset(torch.FloatTensor(xs), torch.FloatTensor(ys)) lens = [int(train_prop * len(xs))] lens += [len(xs) - lens[0]] train_dset, val_dset = torch.utils.data.random_split(dataset, lens) train_loader = DataLoader( train_dset, batch_size=min(batch_size, lens[0]), shuffle=shuffle, num_workers=num_workers, ) val_loader = DataLoader( val_dset, batch_size=min(batch_size, lens[1]), num_workers=num_workers, shuffle=False, ) return train_loader, val_loader, xs.shape[1], xs.shape[0] def compare_to_sk_learn( max_epoch: int, train_loader: DataLoader, val_loader: DataLoader, train_prop: float, sklearn_model_type: str, pytorch_model_type: str, norm_type: Optional[str], objective: str, alpha: float, init_scheme: str = "zeros", ): if "LinearRegression" not in sklearn_model_type: sklearn_classifier = getattr(pytorch_model_module, sklearn_model_type)( alpha=alpha ) else: sklearn_classifier = getattr(pytorch_model_module, sklearn_model_type)() pytorch_classifier = getattr(pytorch_model_module, pytorch_model_type)( norm_type=args.norm_type, ) sklearn_stats = sklearn_classifier.fit( train_data=train_loader, norm_input=args.norm_sklearn, ) pytorch_stats = pytorch_classifier.fit( train_data=train_loader, max_epoch=max_epoch, init_scheme=init_scheme, alpha=alpha, ) sklearn_stats.update(_evaluate(val_loader, sklearn_classifier)) pytorch_stats.update(_evaluate(val_loader, pytorch_classifier)) train_stats_pytorch = _evaluate(train_loader, pytorch_classifier) train_stats_sklearn = _evaluate(train_loader, sklearn_classifier) o_pytorch = {"l2": train_stats_pytorch["l2"]} o_sklearn = {"l2": train_stats_sklearn["l2"]} pytorch_h = pytorch_classifier.representation() sklearn_h = sklearn_classifier.representation() if objective == "ridge": o_pytorch["l2_reg"] = alpha * pytorch_h.norm(p=2, dim=-1) o_sklearn["l2_reg"] = alpha * sklearn_h.norm(p=2, dim=-1) elif objective == "lasso": o_pytorch["l1_reg"] = alpha * pytorch_h.norm(p=1, dim=-1) o_sklearn["l1_reg"] = alpha * sklearn_h.norm(p=1, dim=-1) rel_diff = (sum(o_sklearn.values()) - sum(o_pytorch.values())) / abs( sum(o_sklearn.values()) ) return ( { "objective_rel_diff": rel_diff.tolist(), "objective_pytorch": o_pytorch, "objective_sklearn": o_sklearn, }, sklearn_stats, pytorch_stats, ) def main(args): if args.seed: torch.manual_seed(0) random.seed(0) assert args.norm_type in [None, "layer_norm", "batch_norm"] print( "dataset,num_samples,dimensionality,objective_diff,objective_pytorch," + "objective_sklearn,pytorch_time,sklearn_time,pytorch_l2_val,sklearn_l2_val" ) for dataset in args.datasets: dataset_fn = getattr(datasets, dataset) data = dataset_fn(return_X_y=True) ( train_loader, val_loader, in_features, num_samples, ) = sklearn_dataset_to_loaders( data, batch_size=args.batch_size, num_workers=args.workers, shuffle=args.shuffle, one_hot=args.one_hot, ) similarity, sklearn_stats, pytorch_stats = compare_to_sk_learn( alpha=args.alpha, max_epoch=args.max_epoch, train_loader=train_loader, val_loader=val_loader, train_prop=args.training_prop, pytorch_model_type=args.pytorch_model_type, sklearn_model_type=args.sklearn_model_type, norm_type=args.norm_type, init_scheme=args.init_scheme, objective=args.objective, ) print( f"{dataset},{num_samples},{in_features},{similarity['objective_rel_diff']}," + f"{similarity['objective_pytorch']},{similarity['objective_sklearn']}," + f"{pytorch_stats['train_time']},{sklearn_stats['train_time']}," + f"{pytorch_stats['l2']},{sklearn_stats['l2']}" ) if __name__ == "__main__": parser = argparse.ArgumentParser( description="train & test linear model with SGD + compare to sklearn" ) parser.add_argument( "--norm_type", type=str, default=None, ) parser.add_argument( "--datasets", type=str, nargs="+", default=[ "load_boston", "load_breast_cancer", "load_diabetes", "fetch_california_housing", ], ) parser.add_argument("--initial_lr", type=float, default=0.01) parser.add_argument("--alpha", type=float, default=1.0) parser.add_argument("--max_epoch", type=int, default=100) parser.add_argument("--seed", type=int, default=None) parser.add_argument("--shuffle", default=False, action="store_true") parser.add_argument("--one_hot", default=False, action="store_true") parser.add_argument("--batch_size", type=int, default=256) parser.add_argument("--training_prop", type=float, default=0.7) parser.add_argument("--workers", type=int, default=1) parser.add_argument("--sklearn_model_type", type=str, default="Lasso") parser.add_argument("--pytorch_model_type", type=str, default="SGDLasso") parser.add_argument("--init_scheme", type=str, default="xavier") parser.add_argument("--norm_sklearn", default=False, action="store_true") parser.add_argument("--objective", type=str, default="lasso") args = parser.parse_args() main(args)