python_code
stringlengths
0
229k
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from __future__ import annotations import argparse import re def patch_config( config_file: str, base_url: str = None, disable_algolia: bool = True ) -> None: config = open(config_file, "r").read() if base_url is not None: config = re.sub("baseUrl = '/';", "baseUrl = '{}';".format(base_url), config) if disable_algolia is True: config = re.sub( "const includeAlgolia = true;", "const includeAlgolia = false;", config ) with open(config_file, "w") as outfile: outfile.write(config) if __name__ == "__main__": parser = argparse.ArgumentParser( description="Path Docusaurus siteConfig.js file when building site." ) parser.add_argument( "-f", "--config_file", metavar="path", required=True, help="Path to configuration file.", ) parser.add_argument( "-b", "--base_url", type=str, required=False, help="Value for baseUrl.", default=None, ) parser.add_argument( "--disable_algolia", required=False, action="store_true", help="Disable algolia.", ) args = parser.parse_args() patch_config(args.config_file, args.base_url, args.disable_algolia)
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from __future__ import annotations import argparse import os import pkgutil import re from typing import Set # Paths are relative to top-level botorch directory (passed as arg below) SPHINX_RST_PATH = os.path.join("sphinx", "source") BOTORCH_LIBRARY_PATH = "botorch" # Regex for automodule directive used in Sphinx docs AUTOMODULE_REGEX = re.compile(r"\.\. automodule:: ([\.\w]*)") # The top-level modules in botorch not to be validated EXCLUDED_MODULES = {"version"} def parse_rst(rst_filename: str) -> Set[str]: """Extract automodule directives from rst.""" ret = set() with open(rst_filename, "r") as f: lines = f.readlines() for line in lines: line = line.strip() name = AUTOMODULE_REGEX.findall(line) if name: ret.add(name[0]) return ret def validate_complete_sphinx(path_to_botorch: str) -> None: """Validate that Sphinx-based API documentation is complete. - Every top-level module (e.g., acquisition, models, etc.) should have a corresponding .rst sphix source file in sphinx/source. - Every single non-package (i.e. py file) module should be included in an .rst file `automodule::` directive. Sphinx will then automatically include all members from the module in the documentation. Note: this function does not validate any documentation, only its presence. Args: path_to_botorch: the path to the top-level botorch directory (directory that includes botorch library, sphinx, website, etc.). """ # Load top-level modules used in botorch (e.g., acquisition, models) # Exclude auxiliary packages modules = { modname for importer, modname, ispkg in pkgutil.walk_packages( path=[BOTORCH_LIBRARY_PATH], onerror=lambda x: None ) if modname not in EXCLUDED_MODULES } # Load all rst files (these contain the documentation for Sphinx) rstpath = os.path.join(path_to_botorch, SPHINX_RST_PATH) rsts = {f.replace(".rst", "") for f in os.listdir(rstpath) if f.endswith(".rst")} # Verify that all top-level modules have a corresponding rst missing_rsts = modules.difference(rsts) if not len(missing_rsts) == 0: raise RuntimeError( f"""Not all modules have corresponding rst: {missing_rsts} Please add them to the appropriate rst file in {SPHINX_RST_PATH}. """ ) # Track all modules that are not in docs (so can print all) modules_not_in_docs = [] # Iterate over top-level modules for module in modules.intersection(rsts): # Parse rst & extract all modules use automodule directive modules_in_rst = parse_rst(os.path.join(rstpath, module + ".rst")) # Extract all non-package modules for _importer, modname, ispkg in pkgutil.walk_packages( path=[ os.path.join(BOTORCH_LIBRARY_PATH, module) ], # botorch.__path__[0], module), prefix="botorch." + module + ".", onerror=lambda x: None, ): if not ispkg and ".tests" not in modname and modname not in modules_in_rst: modules_not_in_docs.append(modname) if not len(modules_not_in_docs) == 0: raise RuntimeError(f"Not all modules are documented: {modules_not_in_docs}") if __name__ == "__main__": parser = argparse.ArgumentParser( description="Validate that Sphinx documentation is complete." ) parser.add_argument( "-p", "--path", metavar="path", required=True, help="Path to the top-level botorch directory.", ) args = parser.parse_args() validate_complete_sphinx(args.path)
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import torch LOG_LEVEL_DEFAULT = logging.CRITICAL def _get_logger( name: str = "botorch", level: int = LOG_LEVEL_DEFAULT ) -> logging.Logger: """Gets a default botorch logger Logging level can be tuned via botorch.setting.log_level Args: name: Name for logger instance level: Logging threshhold for the given logger. Logs of greater or equal severity will be printed to STDERR """ logger = logging.getLogger(name) logger.setLevel(level) # Add timestamps to log messages. console = logging.StreamHandler() formatter = logging.Formatter( fmt="[%(levelname)s %(asctime)s] %(name)s: %(message)s", datefmt="%m-%d %H:%M:%S", ) console.setFormatter(formatter) logger.addHandler(console) logger.propagate = False return logger def shape_to_str(shape: torch.Size) -> str: return f"`{' x '.join(str(i) for i in shape)}`" logger = _get_logger()
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. r"""Model fitting routines.""" from __future__ import annotations import logging from contextlib import nullcontext from functools import partial from itertools import filterfalse from typing import Any, Callable, Dict, Iterable, Optional, Sequence, Tuple, Type, Union from warnings import catch_warnings, simplefilter, warn, warn_explicit, WarningMessage from botorch.exceptions.errors import ModelFittingError, UnsupportedError from botorch.exceptions.warnings import OptimizationWarning from botorch.models.approximate_gp import ApproximateGPyTorchModel from botorch.models.fully_bayesian import SaasFullyBayesianSingleTaskGP from botorch.models.fully_bayesian_multitask import SaasFullyBayesianMultiTaskGP from botorch.models.model_list_gp_regression import ModelListGP from botorch.optim.closures import get_loss_closure_with_grads from botorch.optim.core import _LBFGSB_MAXITER_MAXFUN_REGEX from botorch.optim.fit import fit_gpytorch_mll_scipy, fit_gpytorch_mll_torch from botorch.optim.utils import ( _warning_handler_template, get_parameters, sample_all_priors, ) from botorch.settings import debug from botorch.utils.context_managers import ( module_rollback_ctx, parameter_rollback_ctx, requires_grad_ctx, TensorCheckpoint, ) from botorch.utils.dispatcher import Dispatcher, type_bypassing_encoder from gpytorch.likelihoods import Likelihood from gpytorch.mlls._approximate_mll import _ApproximateMarginalLogLikelihood from gpytorch.mlls.marginal_log_likelihood import MarginalLogLikelihood from gpytorch.mlls.sum_marginal_log_likelihood import SumMarginalLogLikelihood from linear_operator.utils.errors import NotPSDError from pyro.infer.mcmc import MCMC, NUTS from torch import device, Tensor from torch.nn import Parameter from torch.utils.data import DataLoader def _debug_warn(w: WarningMessage) -> bool: if _LBFGSB_MAXITER_MAXFUN_REGEX.search(str(w.message)): return True # TODO: Better handle cases where warning handling logic # affects both debug and rethrow functions. return False def _rethrow_warn(w: WarningMessage) -> bool: if not issubclass(w.category, OptimizationWarning): return True if "Optimization timed out after" in str(w.message): return True return False DEFAULT_WARNING_HANDLER = partial( _warning_handler_template, debug=_debug_warn, rethrow=_rethrow_warn, ) FitGPyTorchMLL = Dispatcher("fit_gpytorch_mll", encoder=type_bypassing_encoder) def fit_gpytorch_mll( mll: MarginalLogLikelihood, closure: Optional[Callable[[], Tuple[Tensor, Sequence[Optional[Tensor]]]]] = None, optimizer: Optional[Callable] = None, closure_kwargs: Optional[Dict[str, Any]] = None, optimizer_kwargs: Optional[Dict[str, Any]] = None, **kwargs: Any, ) -> MarginalLogLikelihood: r"""Clearing house for fitting models passed as GPyTorch MarginalLogLikelihoods. Args: mll: A GPyTorch MarginalLogLikelihood instance. closure: Forward-backward closure for obtaining objective values and gradients. Responsible for setting parameters' `grad` attributes. If no closure is provided, one will be obtained by calling `get_loss_closure_with_grads`. optimizer: User specified optimization algorithm. When `optimizer is None`, this keyword argument is omitted when calling the dispatcher. closure_kwargs: Keyword arguments passed when calling `closure`. optimizer_kwargs: A dictionary of keyword arguments passed when calling `optimizer`. **kwargs: Keyword arguments passed down through the dispatcher to fit subroutines. Unexpected keywords are ignored. Returns: The `mll` instance. If fitting succeeded, then `mll` will be in evaluation mode, i.e. `mll.training == False`. Otherwise, `mll` will be in training mode. """ if optimizer is not None: # defer to per-method defaults kwargs["optimizer"] = optimizer return FitGPyTorchMLL( mll, type(mll.likelihood), type(mll.model), closure=closure, closure_kwargs=closure_kwargs, optimizer_kwargs=optimizer_kwargs, **kwargs, ) def fit_gpytorch_model( mll: MarginalLogLikelihood, optimizer: Optional[Callable] = None, optimizer_kwargs: Optional[dict] = None, exclude: Optional[Iterable[str]] = None, max_retries: Optional[int] = None, **kwargs: Any, ) -> MarginalLogLikelihood: r"""Convenience method for fitting GPyTorch models using legacy API. For more details, see `fit_gpytorch_mll`. Args: mll: A GPyTorch MarginalLogLikelihood instance. optimizer: User specified optimization algorithm. When `optimizer is None`, this keyword argument is omitted when calling the dispatcher from inside `fit_gpytorch_mll`. optimizer_kwargs: Keyword arguments passed to `optimizer`. exclude: Legacy argument for specifying parameters `x` that should be held fixed during optimization. Internally, used to temporarily set `x.requires_grad` to False. max_retries: Legacy name for `max_attempts`. When `max_retries is None`, this keyword argument is omitted when calling `fit_gpytorch_mll`. """ warn( "`fit_gpytorch_model` is marked for deprecation, consider using " "`fit_gpytorch_mll` instead.", DeprecationWarning, ) if max_retries is not None: kwargs["max_attempts"] = max_retries optimizer_kwargs = {} if optimizer_kwargs is None else optimizer_kwargs for key in ("bounds", "options"): if key not in kwargs: continue val = kwargs.pop(key) if key in optimizer_kwargs and val is not optimizer_kwargs[key]: raise SyntaxError(f"keyword argument repeated: {key}") optimizer_kwargs[key] = val with ( nullcontext() if exclude is None else requires_grad_ctx(mll, assignments={name: False for name in exclude}) ): try: mll = fit_gpytorch_mll( mll, optimizer=optimizer, optimizer_kwargs=optimizer_kwargs, **kwargs, ) except ModelFittingError as err: warn(str(err), RuntimeWarning) return mll @FitGPyTorchMLL.register(MarginalLogLikelihood, object, object) def _fit_fallback( mll: MarginalLogLikelihood, _: Type[object], __: Type[object], *, closure: Optional[Callable[[], Tuple[Tensor, Sequence[Optional[Tensor]]]]] = None, optimizer: Optional[Callable] = fit_gpytorch_mll_scipy, closure_kwargs: Optional[Dict[str, Any]] = None, optimizer_kwargs: Optional[Dict[str, Any]] = None, max_attempts: int = 5, warning_handler: Callable[[WarningMessage], bool] = DEFAULT_WARNING_HANDLER, caught_exception_types: Tuple[Type[BaseException], ...] = (NotPSDError,), **ignore: Any, ) -> MarginalLogLikelihood: r"""Generic fallback method for fitting Gaussian processes. Attempts to fit a model using the provided optimizer, then determines whether or not to retry by evaluating a given policy on emitted warning messages. The first attempt is run using the initialized parameter values; subsequent attempts begin by resampling tunable parameters. Args: closure: Forward-backward closure for obtaining objective values and gradients. Responsible for setting parameters' `grad` attributes. If no closure is provided, one will be obtained by calling `get_loss_closure_with_grads`. optimizer: The underlying optimization algorithm to run. closure_kwargs: Keyword arguments passed to `closure`. optimizer_kwargs: Keyword arguments passed to `optimizer`. max_attempts: The maximum number of fit attempts allowed. The attempt budget is NOT shared between calls to this method. warning_handler: A function used to filter warnings produced when calling `optimizer`. Any unfiltered warnings (those for which `warning_handler` returns `False`) will be rethrown and trigger a model fitting retry. caught_exception_types: A tuple of exception types whose instances should be redirected to `logging.DEBUG`. **ignore: This function ignores unrecognized keyword arguments. Returns: The `mll` instance. If fitting succeeded, then `mll` will be in evaluation mode, i.e. `mll.training == False`. Otherwise, `mll` will be in training mode. """ # Setup optimizer_kwargs = {} if optimizer_kwargs is None else optimizer_kwargs params_nograd: Dict[str, Parameter] = None # pyre-ignore [9] ckpt_nograd: Dict[str, TensorCheckpoint] = None # pyre-ignore [9] ckpt: Dict[str, TensorCheckpoint] = None # pyre-ignore [9] # Build closure mll.train() if closure is None: closure = get_loss_closure_with_grads( mll, parameters=get_parameters(mll, requires_grad=True) ) if closure_kwargs is not None: closure = partial(closure, **closure_kwargs) # Attempt to fit the model for attempt in range(1, 1 + max_attempts): # Wrap with rollback contextmanager so that each loop iteration reloads the # original state_dict upon exiting (unless we clear `ckpt`). with module_rollback_ctx(mll, checkpoint=ckpt, device=device("cpu")) as ckpt: if attempt > 1: # resample free parameters if params_nograd is None: params_nograd = get_parameters(mll, requires_grad=False) if ckpt_nograd is None: # reuse primary checkpoint ckpt_nograd = {name: ckpt[name] for name in params_nograd} with parameter_rollback_ctx(params_nograd, checkpoint=ckpt_nograd): sample_all_priors(mll.model) try: # Fit the model with catch_warnings(record=True) as warning_list, debug(True): simplefilter("always", category=OptimizationWarning) optimizer(mll, closure=closure, **optimizer_kwargs) # Resolved warnings and determine whether or not to retry done = True for w in filterfalse(warning_handler, warning_list): warn_explicit(str(w.message), w.category, w.filename, w.lineno) done = False if done: ckpt.clear() # do not rollback upon exiting return mll.eval() # Ensure mll is in the right mode if fitting failed mll = mll if mll.training else mll.train() logging.log( logging.DEBUG, f"Fit attempt #{attempt} of {max_attempts} triggered retry policy" f"{'.' if attempt == max_attempts else '; retrying...'}", ) except caught_exception_types as err: logging.log( logging.DEBUG, f"Fit attempt #{attempt} of {max_attempts} failed with exception: " f"{err}", ) msg = "All attempts to fit the model have failed." if debug.off(): msg = msg + " For more information, try enabling botorch.settings.debug mode." raise ModelFittingError(msg) @FitGPyTorchMLL.register(SumMarginalLogLikelihood, object, ModelListGP) def _fit_list( mll: SumMarginalLogLikelihood, _: Type[Likelihood], __: Type[ModelListGP], **kwargs: Any, ) -> SumMarginalLogLikelihood: r"""Fitting routine for lists of independent Gaussian processes. Args: **kwargs: Passed to each of `mll.mlls`. Returns: The `mll` instance. If fitting succeeded for all of `mll.mlls`, then `mll` will be in evaluation mode, i.e. `mll.training == False`. Otherwise, `mll` will be in training mode. """ mll.train() for sub_mll in mll.mlls: fit_gpytorch_mll(sub_mll, **kwargs) return mll.eval() if not any(sub_mll.training for sub_mll in mll.mlls) else mll @FitGPyTorchMLL.register(_ApproximateMarginalLogLikelihood, object, object) def _fit_fallback_approximate( mll: _ApproximateMarginalLogLikelihood, _: Type[Likelihood], __: Type[ApproximateGPyTorchModel], *, closure: Optional[Callable[[], Tuple[Tensor, Sequence[Optional[Tensor]]]]] = None, data_loader: Optional[DataLoader] = None, optimizer: Optional[Callable] = None, full_batch_limit: int = 1024, **kwargs: Any, ) -> _ApproximateMarginalLogLikelihood: r"""Fallback method for fitting approximate Gaussian processes. Args: closure: Forward-backward closure for obtaining objective values and gradients. Responsible for setting parameters' `grad` attributes. If no closure is provided, one will be obtained by calling `get_loss_closure_with_grads`. optimizer: The underlying optimization algorithm to run. Default to `fit_gpytorch_mll_scipy` when `closure=None` and the model's internal training set has no more than `full_batch_cutoff` observations; otherwise, defaults to `fit_gpytorch_mll_torch`. data_loader: An optional DataLoader to pass to `get_loss_closure_with_grads`. May only be provided when `closure=None`. full_batch_limit: Threshold for determining the default choice of `optimizer` when `closure=None`. **kwargs: Keyword arguments passed to `_fit_fallback`. """ if data_loader is not None: if closure is not None: raise UnsupportedError( "Only one of `data_loader` or `closure` may be passed." ) closure = get_loss_closure_with_grads( mll=mll, data_loader=data_loader, parameters=get_parameters(mll, requires_grad=True), ) if optimizer is None: optimizer = ( fit_gpytorch_mll_scipy if closure is None and len(mll.model.train_targets) <= full_batch_limit else fit_gpytorch_mll_torch ) return _fit_fallback(mll, _, __, closure=closure, optimizer=optimizer, **kwargs) def fit_fully_bayesian_model_nuts( model: Union[SaasFullyBayesianSingleTaskGP, SaasFullyBayesianMultiTaskGP], max_tree_depth: int = 6, warmup_steps: int = 512, num_samples: int = 256, thinning: int = 16, disable_progbar: bool = False, jit_compile: bool = False, ) -> None: r"""Fit a fully Bayesian model using the No-U-Turn-Sampler (NUTS) Args: model: SaasFullyBayesianSingleTaskGP to be fitted. max_tree_depth: Maximum tree depth for NUTS warmup_steps: The number of burn-in steps for NUTS. num_samples: The number of MCMC samples. Note that with thinning, num_samples / thinning samples are retained. thinning: The amount of thinning. Every nth sample is retained. disable_progbar: A boolean indicating whether to print the progress bar and diagnostics during MCMC. jit_compile: Whether to use jit. Using jit may be ~2X faster (rough estimate), but it will also increase the memory usage and sometimes result in runtime errors, e.g., https://github.com/pyro-ppl/pyro/issues/3136. Example: >>> gp = SaasFullyBayesianSingleTaskGP(train_X, train_Y) >>> fit_fully_bayesian_model_nuts(gp) """ model.train() # Do inference with NUTS nuts = NUTS( model.pyro_model.sample, jit_compile=jit_compile, full_mass=True, ignore_jit_warnings=True, max_tree_depth=max_tree_depth, ) mcmc = MCMC( nuts, warmup_steps=warmup_steps, num_samples=num_samples, disable_progbar=disable_progbar, ) mcmc.run() # Get final MCMC samples from the Pyro model mcmc_samples = model.pyro_model.postprocess_mcmc_samples( mcmc_samples=mcmc.get_samples() ) for k, v in mcmc_samples.items(): mcmc_samples[k] = v[::thinning] # Load the MCMC samples back into the BoTorch model model.load_mcmc_samples(mcmc_samples) model.eval()
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import gpytorch.settings as gp_settings import linear_operator.settings as linop_settings from botorch import ( acquisition, exceptions, models, optim, posteriors, settings, test_functions, ) from botorch.cross_validation import batch_cross_validation from botorch.fit import ( fit_fully_bayesian_model_nuts, fit_gpytorch_mll, fit_gpytorch_model, ) from botorch.generation.gen import ( gen_candidates_scipy, gen_candidates_torch, get_best_candidates, ) from botorch.logging import logger from botorch.utils import manual_seed try: from botorch.version import version as __version__ except Exception: # pragma: no cover __version__ = "Unknown" # pragma: no cover logger.info( "Turning off `fast_computations` in linear operator and increasing " "`max_cholesky_size` and `max_eager_kernel_size` to 4096, and " "`cholesky_max_tries` to 6. The approximate computations available in " "GPyTorch aim to speed up GP training and inference in large data " "regime but they are generally not robust enough to be used in a BO-loop. " "See gpytorch.settings & linear_operator.settings for more details." ) linop_settings._fast_covar_root_decomposition._default = False linop_settings._fast_log_prob._default = False linop_settings._fast_solves._default = False linop_settings.cholesky_max_tries._global_value = 6 linop_settings.max_cholesky_size._global_value = 4096 gp_settings.max_eager_kernel_size._global_value = 4096 __all__ = [ "acquisition", "batch_cross_validation", "exceptions", "fit_fully_bayesian_model_nuts", "fit_gpytorch_mll", "fit_gpytorch_model", "gen_candidates_scipy", "gen_candidates_torch", "get_best_candidates", "manual_seed", "models", "optim", "posteriors", "settings", "test_functions", ]
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. r""" BoTorch settings. """ from __future__ import annotations from botorch.logging import LOG_LEVEL_DEFAULT, logger class _Flag: r"""Base class for context managers for a binary setting.""" _state: bool = False @classmethod def on(cls) -> bool: return cls._state @classmethod def off(cls) -> bool: return not cls._state @classmethod def _set_state(cls, state: bool) -> None: cls._state = state def __init__(self, state: bool = True) -> None: self.prev = self.__class__.on() self.state = state def __enter__(self) -> None: self.__class__._set_state(self.state) def __exit__(self, *args) -> None: self.__class__._set_state(self.prev) class propagate_grads(_Flag): r"""Flag for propagating gradients to model training inputs / training data. When set to `True`, gradients will be propagated to the training inputs. This is useful in particular for propating gradients through fantasy models. """ _state: bool = False class debug(_Flag): r"""Flag for printing verbose warnings. To make sure a warning is only raised in debug mode: >>> if debug.on(): >>> warnings.warn(<some warning>) """ _state: bool = False @classmethod def _set_state(cls, state: bool) -> None: cls._state = state class validate_input_scaling(_Flag): r"""Flag for validating input normalization/standardization. When set to `True`, standard botorch models will validate (up to reasonable tolerance) that (i) none of the inputs contain NaN values (ii) the training data (`train_X`) is normalized to the unit cube (iii) the training targets (`train_Y`) are standardized (zero mean, unit var) No checks (other than the NaN check) are performed for observed variances (`train_Y_var`) at this point. """ _state: bool = True class log_level: r"""Flag for printing verbose logging statements. Applies the given level to logging.getLogger('botorch') calls. For instance, when set to logging.INFO, all logger calls of level INFO or above will be printed to STDERR """ level: int = LOG_LEVEL_DEFAULT @classmethod def _set_level(cls, level: int) -> None: cls.level = level logger.setLevel(level) def __init__(self, level: int = LOG_LEVEL_DEFAULT) -> None: r""" Args: level: The log level. Defaults to LOG_LEVEL_DEFAULT. """ self.prev = self.__class__.level self.level = level def __enter__(self) -> None: self.__class__._set_level(self.level) def __exit__(self, *args) -> None: self.__class__._set_level(self.prev)
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. r""" Cross-validation utilities using batch evaluation mode. """ from __future__ import annotations from typing import Any, Dict, NamedTuple, Optional, Type import torch from botorch.fit import fit_gpytorch_mll from botorch.models.gpytorch import GPyTorchModel from botorch.optim.utils import _filter_kwargs from botorch.posteriors.gpytorch import GPyTorchPosterior from gpytorch.mlls.marginal_log_likelihood import MarginalLogLikelihood from torch import Tensor class CVFolds(NamedTuple): train_X: Tensor test_X: Tensor train_Y: Tensor test_Y: Tensor train_Yvar: Optional[Tensor] = None test_Yvar: Optional[Tensor] = None class CVResults(NamedTuple): model: GPyTorchModel posterior: GPyTorchPosterior observed_Y: Tensor observed_Yvar: Optional[Tensor] = None def gen_loo_cv_folds( train_X: Tensor, train_Y: Tensor, train_Yvar: Optional[Tensor] = None ) -> CVFolds: r"""Generate LOO CV folds w.r.t. to `n`. Args: train_X: A `n x d` or `batch_shape x n x d` (batch mode) tensor of training features. train_Y: A `n x (m)` or `batch_shape x n x (m)` (batch mode) tensor of training observations. train_Yvar: A `batch_shape x n x (m)` or `batch_shape x n x (m)` (batch mode) tensor of observed measurement noise. Returns: CVFolds tuple with the following fields - train_X: A `n x (n-1) x d` or `batch_shape x n x (n-1) x d` tensor of training features. - test_X: A `n x 1 x d` or `batch_shape x n x 1 x d` tensor of test features. - train_Y: A `n x (n-1) x m` or `batch_shape x n x (n-1) x m` tensor of training observations. - test_Y: A `n x 1 x m` or `batch_shape x n x 1 x m` tensor of test observations. - train_Yvar: A `n x (n-1) x m` or `batch_shape x n x (n-1) x m` tensor of observed measurement noise. - test_Yvar: A `n x 1 x m` or `batch_shape x n x 1 x m` tensor of observed measurement noise. Example: >>> train_X = torch.rand(10, 1) >>> train_Y = torch.sin(6 * train_X) + 0.2 * torch.rand_like(train_X) >>> cv_folds = gen_loo_cv_folds(train_X, train_Y) """ masks = torch.eye(train_X.shape[-2], dtype=torch.uint8, device=train_X.device) masks = masks.to(dtype=torch.bool) if train_Y.dim() < train_X.dim(): # add output dimension train_Y = train_Y.unsqueeze(-1) if train_Yvar is not None: train_Yvar = train_Yvar.unsqueeze(-1) train_X_cv = torch.cat( [train_X[..., ~m, :].unsqueeze(dim=-3) for m in masks], dim=-3 ) test_X_cv = torch.cat([train_X[..., m, :].unsqueeze(dim=-3) for m in masks], dim=-3) train_Y_cv = torch.cat( [train_Y[..., ~m, :].unsqueeze(dim=-3) for m in masks], dim=-3 ) test_Y_cv = torch.cat([train_Y[..., m, :].unsqueeze(dim=-3) for m in masks], dim=-3) if train_Yvar is None: train_Yvar_cv = None test_Yvar_cv = None else: train_Yvar_cv = torch.cat( [train_Yvar[..., ~m, :].unsqueeze(dim=-3) for m in masks], dim=-3 ) test_Yvar_cv = torch.cat( [train_Yvar[..., m, :].unsqueeze(dim=-3) for m in masks], dim=-3 ) return CVFolds( train_X=train_X_cv, test_X=test_X_cv, train_Y=train_Y_cv, test_Y=test_Y_cv, train_Yvar=train_Yvar_cv, test_Yvar=test_Yvar_cv, ) def batch_cross_validation( model_cls: Type[GPyTorchModel], mll_cls: Type[MarginalLogLikelihood], cv_folds: CVFolds, fit_args: Optional[Dict[str, Any]] = None, observation_noise: bool = False, ) -> CVResults: r"""Perform cross validation by using gpytorch batch mode. Args: model_cls: A GPyTorchModel class. This class must initialize the likelihood internally. Note: Multi-task GPs are not currently supported. mll_cls: A MarginalLogLikelihood class. cv_folds: A CVFolds tuple. fit_args: Arguments passed along to fit_gpytorch_mll. Returns: A CVResults tuple with the following fields - model: GPyTorchModel for batched cross validation - posterior: GPyTorchPosterior where the mean has shape `n x 1 x m` or `batch_shape x n x 1 x m` - observed_Y: A `n x 1 x m` or `batch_shape x n x 1 x m` tensor of observations. - observed_Yvar: A `n x 1 x m` or `batch_shape x n x 1 x m` tensor of observed measurement noise. Example: >>> train_X = torch.rand(10, 1) >>> train_Y = torch.sin(6 * train_X) + 0.2 * torch.rand_like(train_X) >>> cv_folds = gen_loo_cv_folds(train_X, train_Y) >>> cv_results = batch_cross_validation( >>> SingleTaskGP, >>> ExactMarginalLogLikelihood, >>> cv_folds, >>> ) WARNING: This function is currently very memory inefficient, use it only for problems of small size. """ fit_args = fit_args or {} kwargs = { "train_X": cv_folds.train_X, "train_Y": cv_folds.train_Y, "train_Yvar": cv_folds.train_Yvar, } model_cv = model_cls(**_filter_kwargs(model_cls, **kwargs)) mll_cv = mll_cls(model_cv.likelihood, model_cv) mll_cv.to(cv_folds.train_X) mll_cv = fit_gpytorch_mll(mll_cv, **fit_args) # Evaluate on the hold-out set in batch mode with torch.no_grad(): posterior = model_cv.posterior( cv_folds.test_X, observation_noise=observation_noise ) return CVResults( model=model_cv, posterior=posterior, observed_Y=cv_folds.test_Y, observed_Yvar=cv_folds.test_Yvar, )
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. r""" Synthetic functions for optimization benchmarks. Most test functions (if not indicated otherwise) are taken from [Bingham2013virtual]_. References: .. [Bingham2013virtual] D. Bingham, S. Surjanovic. Virtual Library of Simulation Experiments. https://www.sfu.ca/~ssurjano/optimization.html .. [CoelloCoello2002constraint] C. A. Coello Coello and E. Mezura Montes. Constraint-handling in genetic algorithms through the use of dominance-based tournament selection. Advanced Engineering Informatics, 16(3):193–203, 2002. .. [Hedar2006derivfree] A.-R. Hedar and M. Fukushima. Derivative-free filter simulated annealing method for constrained continuous global optimization. Journal of Global Optimization, 35(4):521–549, 2006. .. [Lemonge2010constrained] A. C. C. Lemonge, H. J. C. Barbosa, C. C. H. Borges, and F. B. dos Santos Silva. Constrained optimization problems in mechanical engineering design using a real-coded steady-state genetic algorithm. Mecánica Computacional, XXIX:9287–9303, 2010. """ from __future__ import annotations import math from typing import List, Optional, Tuple import torch from botorch.test_functions.base import BaseTestProblem, ConstrainedBaseTestProblem from botorch.test_functions.utils import round_nearest from torch import Tensor class SyntheticTestFunction(BaseTestProblem): r"""Base class for synthetic test functions.""" _optimal_value: float _optimizers: Optional[List[Tuple[float, ...]]] = None num_objectives: int = 1 def __init__( self, noise_std: Optional[float] = None, negate: bool = False, bounds: Optional[List[Tuple[float, float]]] = None, ) -> None: r""" Args: noise_std: Standard deviation of the observation noise. negate: If True, negate the function. bounds: Custom bounds for the function specified as (lower, upper) pairs. """ if bounds is not None: self._bounds = bounds super().__init__(noise_std=noise_std, negate=negate) if self._optimizers is not None: if bounds is not None: # Ensure at least one optimizer lies within the custom bounds def in_bounds( optimizer: Tuple[float, ...], bounds: List[Tuple[float, float]] ) -> bool: for i, xopt in enumerate(optimizer): lower, upper = bounds[i] if xopt < lower or xopt > upper: return False return True if not any( in_bounds(optimizer=optimizer, bounds=bounds) for optimizer in self._optimizers ): raise ValueError( "No global optimum found within custom bounds. Please specify " "bounds which include at least one point in " f"`{self.__class__.__name__}._optimizers`." ) self.register_buffer( "optimizers", torch.tensor(self._optimizers, dtype=torch.float) ) @property def optimal_value(self) -> float: r"""The global minimum (maximum if negate=True) of the function.""" return -self._optimal_value if self.negate else self._optimal_value class Ackley(SyntheticTestFunction): r"""Ackley test function. d-dimensional function (usually evaluated on `[-32.768, 32.768]^d`): f(x) = -A exp(-B sqrt(1/d sum_{i=1}^d x_i^2)) - exp(1/d sum_{i=1}^d cos(c x_i)) + A + exp(1) f has one minimizer for its global minimum at `z_1 = (0, 0, ..., 0)` with `f(z_1) = 0`. """ _optimal_value = 0.0 _check_grad_at_opt: bool = False def __init__( self, dim: int = 2, noise_std: Optional[float] = None, negate: bool = False, bounds: Optional[List[Tuple[float, float]]] = None, ) -> None: r""" Args: dim: The (input) dimension. noise_std: Standard deviation of the observation noise. negate: If True, negate the function. bounds: Custom bounds for the function specified as (lower, upper) pairs. """ self.dim = dim if bounds is None: bounds = [(-32.768, 32.768) for _ in range(self.dim)] self._optimizers = [tuple(0.0 for _ in range(self.dim))] super().__init__(noise_std=noise_std, negate=negate, bounds=bounds) self.a = 20 self.b = 0.2 self.c = 2 * math.pi def evaluate_true(self, X: Tensor) -> Tensor: a, b, c = self.a, self.b, self.c part1 = -a * torch.exp(-b / math.sqrt(self.dim) * torch.linalg.norm(X, dim=-1)) part2 = -(torch.exp(torch.mean(torch.cos(c * X), dim=-1))) return part1 + part2 + a + math.e class Beale(SyntheticTestFunction): dim = 2 _optimal_value = 0.0 _bounds = [(-4.5, 4.5), (-4.5, 4.5)] _optimizers = [(3.0, 0.5)] def evaluate_true(self, X: Tensor) -> Tensor: x1, x2 = X[..., 0], X[..., 1] part1 = (1.5 - x1 + x1 * x2) ** 2 part2 = (2.25 - x1 + x1 * x2**2) ** 2 part3 = (2.625 - x1 + x1 * x2**3) ** 2 return part1 + part2 + part3 class Branin(SyntheticTestFunction): r"""Branin test function. Two-dimensional function (usually evaluated on `[-5, 10] x [0, 15]`): B(x) = (x_2 - b x_1^2 + c x_1 - r)^2 + 10 (1-t) cos(x_1) + 10 Here `b`, `c`, `r` and `t` are constants where `b = 5.1 / (4 * math.pi ** 2)` `c = 5 / math.pi`, `r = 6`, `t = 1 / (8 * math.pi)` B has 3 minimizers for its global minimum at `z_1 = (-pi, 12.275)`, `z_2 = (pi, 2.275)`, `z_3 = (9.42478, 2.475)` with `B(z_i) = 0.397887`. """ dim = 2 _bounds = [(-5.0, 10.0), (0.0, 15.0)] _optimal_value = 0.397887 _optimizers = [(-math.pi, 12.275), (math.pi, 2.275), (9.42478, 2.475)] def evaluate_true(self, X: Tensor) -> Tensor: t1 = ( X[..., 1] - 5.1 / (4 * math.pi**2) * X[..., 0] ** 2 + 5 / math.pi * X[..., 0] - 6 ) t2 = 10 * (1 - 1 / (8 * math.pi)) * torch.cos(X[..., 0]) return t1**2 + t2 + 10 class Bukin(SyntheticTestFunction): dim = 2 _bounds = [(-15.0, -5.0), (-3.0, 3.0)] _optimal_value = 0.0 _optimizers = [(-10.0, 1.0)] _check_grad_at_opt: bool = False def evaluate_true(self, X: Tensor) -> Tensor: part1 = 100.0 * torch.sqrt(torch.abs(X[..., 1] - 0.01 * X[..., 0] ** 2)) part2 = 0.01 * torch.abs(X[..., 0] + 10.0) return part1 + part2 class Cosine8(SyntheticTestFunction): r"""Cosine Mixture test function. 8-dimensional function (usually evaluated on `[-1, 1]^8`): f(x) = 0.1 sum_{i=1}^8 cos(5 pi x_i) - sum_{i=1}^8 x_i^2 f has one maximizer for its global maximum at `z_1 = (0, 0, ..., 0)` with `f(z_1) = 0.8` """ dim = 8 _bounds = [(-1.0, 1.0) for _ in range(8)] _optimal_value = 0.8 _optimizers = [tuple(0.0 for _ in range(8))] def evaluate_true(self, X: Tensor) -> Tensor: return torch.sum(0.1 * torch.cos(5 * math.pi * X) - X**2, dim=-1) class DropWave(SyntheticTestFunction): dim = 2 _bounds = [(-5.12, 5.12), (-5.12, 5.12)] _optimal_value = -1.0 _optimizers = [(0.0, 0.0)] _check_grad_at_opt = False def evaluate_true(self, X: Tensor) -> Tensor: norm = torch.linalg.norm(X, dim=-1) part1 = 1.0 + torch.cos(12.0 * norm) part2 = 0.5 * norm.pow(2) + 2.0 return -part1 / part2 class DixonPrice(SyntheticTestFunction): _optimal_value = 0.0 def __init__( self, dim=2, noise_std: Optional[float] = None, negate: bool = False, bounds: Optional[List[Tuple[float, float]]] = None, ) -> None: r""" Args: dim: The (input) dimension. noise_std: Standard deviation of the observation noise. negate: If True, negate the function. """ self.dim = dim if bounds is None: bounds = [(-10.0, 10.0) for _ in range(self.dim)] self._optimizers = [ tuple( math.pow(2.0, -(1.0 - 2.0 ** (-(i - 1)))) for i in range(1, self.dim + 1) ) ] super().__init__(noise_std=noise_std, negate=negate, bounds=bounds) def evaluate_true(self, X: Tensor) -> Tensor: d = self.dim part1 = (X[..., 0] - 1) ** 2 i = X.new(range(2, d + 1)) part2 = torch.sum(i * (2.0 * X[..., 1:] ** 2 - X[..., :-1]) ** 2, dim=-1) return part1 + part2 class EggHolder(SyntheticTestFunction): r"""Eggholder test function. Two-dimensional function (usually evaluated on `[-512, 512]^2`): E(x) = (x_2 + 47) sin(R1(x)) - x_1 * sin(R2(x)) where `R1(x) = sqrt(|x_2 + x_1 / 2 + 47|)`, `R2(x) = sqrt|x_1 - (x_2 + 47)|)`. """ dim = 2 _bounds = [(-512.0, 512.0), (-512.0, 512.0)] _optimal_value = -959.6407 _optimizers = [(512.0, 404.2319)] _check_grad_at_opt: bool = False def evaluate_true(self, X: Tensor) -> Tensor: x1, x2 = X[..., 0], X[..., 1] part1 = -(x2 + 47.0) * torch.sin(torch.sqrt(torch.abs(x2 + x1 / 2.0 + 47.0))) part2 = -x1 * torch.sin(torch.sqrt(torch.abs(x1 - (x2 + 47.0)))) return part1 + part2 class Griewank(SyntheticTestFunction): _optimal_value = 0.0 def __init__( self, dim=2, noise_std: Optional[float] = None, negate: bool = False, bounds: Optional[List[Tuple[float, float]]] = None, ) -> None: r""" Args: dim: The (input) dimension. noise_std: Standard deviation of the observation noise. negate: If True, negate the function. bounds: Custom bounds for the function specified as (lower, upper) pairs. """ self.dim = dim if bounds is None: bounds = [(-600.0, 600.0) for _ in range(self.dim)] self._optimizers = [tuple(0.0 for _ in range(self.dim))] super().__init__(noise_std=noise_std, negate=negate, bounds=bounds) def evaluate_true(self, X: Tensor) -> Tensor: part1 = torch.sum(X**2 / 4000.0, dim=-1) d = X.shape[-1] part2 = -(torch.prod(torch.cos(X / torch.sqrt(X.new(range(1, d + 1)))), dim=-1)) return part1 + part2 + 1.0 class Hartmann(SyntheticTestFunction): r"""Hartmann synthetic test function. Most commonly used is the six-dimensional version (typically evaluated on `[0, 1]^6`): H(x) = - sum_{i=1}^4 ALPHA_i exp( - sum_{j=1}^6 A_ij (x_j - P_ij)**2 ) H has a 6 local minima and a global minimum at z = (0.20169, 0.150011, 0.476874, 0.275332, 0.311652, 0.6573) with `H(z) = -3.32237`. """ def __init__( self, dim=6, noise_std: Optional[float] = None, negate: bool = False, bounds: Optional[List[Tuple[float, float]]] = None, ) -> None: r""" Args: dim: The (input) dimension. noise_std: Standard deviation of the observation noise. negate: If True, negate the function. bounds: Custom bounds for the function specified as (lower, upper) pairs. """ if dim not in (3, 4, 6): raise ValueError(f"Hartmann with dim {dim} not defined") self.dim = dim if bounds is None: bounds = [(0.0, 1.0) for _ in range(self.dim)] # optimizers and optimal values for dim=4 not implemented optvals = {3: -3.86278, 6: -3.32237} optimizers = { 3: [(0.114614, 0.555649, 0.852547)], 6: [(0.20169, 0.150011, 0.476874, 0.275332, 0.311652, 0.6573)], } self._optimal_value = optvals.get(self.dim) self._optimizers = optimizers.get(self.dim) super().__init__(noise_std=noise_std, negate=negate, bounds=bounds) self.register_buffer("ALPHA", torch.tensor([1.0, 1.2, 3.0, 3.2])) if dim == 3: A = [[3.0, 10, 30], [0.1, 10, 35], [3.0, 10, 30], [0.1, 10, 35]] P = [ [3689, 1170, 2673], [4699, 4387, 7470], [1091, 8732, 5547], [381, 5743, 8828], ] elif dim == 4: A = [ [10, 3, 17, 3.5], [0.05, 10, 17, 0.1], [3, 3.5, 1.7, 10], [17, 8, 0.05, 10], ] P = [ [1312, 1696, 5569, 124], [2329, 4135, 8307, 3736], [2348, 1451, 3522, 2883], [4047, 8828, 8732, 5743], ] elif dim == 6: A = [ [10, 3, 17, 3.5, 1.7, 8], [0.05, 10, 17, 0.1, 8, 14], [3, 3.5, 1.7, 10, 17, 8], [17, 8, 0.05, 10, 0.1, 14], ] P = [ [1312, 1696, 5569, 124, 8283, 5886], [2329, 4135, 8307, 3736, 1004, 9991], [2348, 1451, 3522, 2883, 3047, 6650], [4047, 8828, 8732, 5743, 1091, 381], ] self.register_buffer("A", torch.tensor(A, dtype=torch.float)) self.register_buffer("P", torch.tensor(P, dtype=torch.float)) @property def optimal_value(self) -> float: if self.dim == 4: raise NotImplementedError() return super().optimal_value @property def optimizers(self) -> Tensor: if self.dim == 4: raise NotImplementedError() return super().optimizers def evaluate_true(self, X: Tensor) -> Tensor: self.to(device=X.device, dtype=X.dtype) inner_sum = torch.sum(self.A * (X.unsqueeze(-2) - 0.0001 * self.P) ** 2, dim=-1) H = -(torch.sum(self.ALPHA * torch.exp(-inner_sum), dim=-1)) if self.dim == 4: H = (1.1 + H) / 0.839 return H class HolderTable(SyntheticTestFunction): r"""Holder Table synthetic test function. Two-dimensional function (typically evaluated on `[0, 10] x [0, 10]`): `H(x) = - | sin(x_1) * cos(x_2) * exp(| 1 - ||x|| / pi | ) |` H has 4 global minima with `H(z_i) = -19.2085` at z_1 = ( 8.05502, 9.66459) z_2 = (-8.05502, -9.66459) z_3 = (-8.05502, 9.66459) z_4 = ( 8.05502, -9.66459) """ dim = 2 _bounds = [(-10.0, 10.0), (-10.0, 10.0)] _optimal_value = -19.2085 _optimizers = [ (8.05502, 9.66459), (-8.05502, -9.66459), (-8.05502, 9.66459), (8.05502, -9.66459), ] def evaluate_true(self, X: Tensor) -> Tensor: term = torch.abs(1 - torch.linalg.norm(X, dim=-1) / math.pi) return -( torch.abs(torch.sin(X[..., 0]) * torch.cos(X[..., 1]) * torch.exp(term)) ) class Levy(SyntheticTestFunction): r"""Levy synthetic test function. d-dimensional function (usually evaluated on `[-10, 10]^d`): f(x) = sin^2(pi w_1) + sum_{i=1}^{d-1} (w_i-1)^2 (1 + 10 sin^2(pi w_i + 1)) + (w_d - 1)^2 (1 + sin^2(2 pi w_d)) where `w_i = 1 + (x_i - 1) / 4` for all `i`. f has one minimizer for its global minimum at `z_1 = (1, 1, ..., 1)` with `f(z_1) = 0`. """ _optimal_value = 0.0 def __init__( self, dim=2, noise_std: Optional[float] = None, negate: bool = False, bounds: Optional[List[Tuple[float, float]]] = None, ) -> None: r""" Args: dim: The (input) dimension. noise_std: Standard deviation of the observation noise. negate: If True, negate the function. bounds: Custom bounds for the function specified as (lower, upper) pairs. """ self.dim = dim if bounds is None: bounds = [(-10.0, 10.0) for _ in range(self.dim)] self._optimizers = [tuple(1.0 for _ in range(self.dim))] super().__init__(noise_std=noise_std, negate=negate, bounds=bounds) def evaluate_true(self, X: Tensor) -> Tensor: w = 1.0 + (X - 1.0) / 4.0 part1 = torch.sin(math.pi * w[..., 0]) ** 2 part2 = torch.sum( (w[..., :-1] - 1.0) ** 2 * (1.0 + 10.0 * torch.sin(math.pi * w[..., :-1] + 1.0) ** 2), dim=-1, ) part3 = (w[..., -1] - 1.0) ** 2 * ( 1.0 + torch.sin(2.0 * math.pi * w[..., -1]) ** 2 ) return part1 + part2 + part3 class Michalewicz(SyntheticTestFunction): r"""Michalewicz synthetic test function. d-dim function (usually evaluated on hypercube [0, pi]^d): M(x) = sum_{i=1}^d sin(x_i) (sin(i x_i^2 / pi)^20) """ def __init__( self, dim=2, noise_std: Optional[float] = None, negate: bool = False, bounds: Optional[List[Tuple[float, float]]] = None, ) -> None: r""" Args: dim: The (input) dimension. noise_std: Standard deviation of the observation noise. negate: If True, negate the function. bounds: Custom bounds for the function specified as (lower, upper) pairs. """ self.dim = dim if bounds is None: bounds = [(0.0, math.pi) for _ in range(self.dim)] optvals = {2: -1.80130341, 5: -4.687658, 10: -9.66015} optimizers = {2: [(2.20290552, 1.57079633)]} self._optimal_value = optvals.get(self.dim) self._optimizers = optimizers.get(self.dim) super().__init__(noise_std=noise_std, negate=negate, bounds=bounds) self.register_buffer( "i", torch.tensor(tuple(range(1, self.dim + 1)), dtype=torch.float) ) @property def optimizers(self) -> Tensor: if self.dim in (5, 10): raise NotImplementedError() return super().optimizers def evaluate_true(self, X: Tensor) -> Tensor: self.to(device=X.device, dtype=X.dtype) m = 10 return -( torch.sum( torch.sin(X) * torch.sin(self.i * X**2 / math.pi) ** (2 * m), dim=-1 ) ) class Powell(SyntheticTestFunction): _optimal_value = 0.0 def __init__( self, dim=4, noise_std: Optional[float] = None, negate: bool = False, bounds: Optional[List[Tuple[float, float]]] = None, ) -> None: r""" Args: dim: The (input) dimension. noise_std: Standard deviation of the observation noise. negate: If True, negate the function. bounds: Custom bounds for the function specified as (lower, upper) pairs. """ self.dim = dim if bounds is None: bounds = [(-4.0, 5.0) for _ in range(self.dim)] self._optimizers = [tuple(0.0 for _ in range(self.dim))] super().__init__(noise_std=noise_std, negate=negate, bounds=bounds) def evaluate_true(self, X: Tensor) -> Tensor: result = torch.zeros_like(X[..., 0]) for i in range(self.dim // 4): i_ = i + 1 part1 = (X[..., 4 * i_ - 4] + 10.0 * X[..., 4 * i_ - 3]) ** 2 part2 = 5.0 * (X[..., 4 * i_ - 2] - X[..., 4 * i_ - 1]) ** 2 part3 = (X[..., 4 * i_ - 3] - 2.0 * X[..., 4 * i_ - 2]) ** 4 part4 = 10.0 * (X[..., 4 * i_ - 4] - X[..., 4 * i_ - 1]) ** 4 result += part1 + part2 + part3 + part4 return result class Rastrigin(SyntheticTestFunction): _optimal_value = 0.0 def __init__( self, dim=2, noise_std: Optional[float] = None, negate: bool = False, bounds: Optional[List[Tuple[float, float]]] = None, ) -> None: r""" Args: dim: The (input) dimension. noise_std: Standard deviation of the observation noise. negate: If True, negate the function. bounds: Custom bounds for the function specified as (lower, upper) pairs. """ self.dim = dim if bounds is None: bounds = [(-5.12, 5.12) for _ in range(self.dim)] self._optimizers = [tuple(0.0 for _ in range(self.dim))] super().__init__(noise_std=noise_std, negate=negate, bounds=bounds) def evaluate_true(self, X: Tensor) -> Tensor: return 10.0 * self.dim + torch.sum( X**2 - 10.0 * torch.cos(2.0 * math.pi * X), dim=-1 ) class Rosenbrock(SyntheticTestFunction): r"""Rosenbrock synthetic test function. d-dimensional function (usually evaluated on `[-5, 10]^d`): f(x) = sum_{i=1}^{d-1} (100 (x_{i+1} - x_i^2)^2 + (x_i - 1)^2) f has one minimizer for its global minimum at `z_1 = (1, 1, ..., 1)` with `f(z_i) = 0.0`. """ _optimal_value = 0.0 def __init__( self, dim=2, noise_std: Optional[float] = None, negate: bool = False, bounds: Optional[List[Tuple[float, float]]] = None, ) -> None: r""" Args: dim: The (input) dimension. noise_std: Standard deviation of the observation noise. negate: If True, negate the function. bounds: Custom bounds for the function specified as (lower, upper) pairs. """ self.dim = dim if bounds is None: bounds = [(-5.0, 10.0) for _ in range(self.dim)] self._optimizers = [tuple(1.0 for _ in range(self.dim))] super().__init__(noise_std=noise_std, negate=negate, bounds=bounds) def evaluate_true(self, X: Tensor) -> Tensor: return torch.sum( 100.0 * (X[..., 1:] - X[..., :-1] ** 2) ** 2 + (X[..., :-1] - 1) ** 2, dim=-1, ) class Shekel(SyntheticTestFunction): r"""Shekel synthtetic test function. 4-dimensional function (usually evaluated on `[0, 10]^4`): f(x) = -sum_{i=1}^10 (sum_{j=1}^4 (x_j - A_{ji})^2 + C_i)^{-1} f has one minimizer for its global minimum at `z_1 = (4, 4, 4, 4)` with `f(z_1) = -10.5363`. """ dim = 4 _bounds = [(0.0, 10.0), (0.0, 10.0), (0.0, 10.0), (0.0, 10.0)] _optimizers = [(4.000747, 3.99951, 4.00075, 3.99951)] def __init__( self, m: int = 10, noise_std: Optional[float] = None, negate: bool = False, bounds: Optional[List[Tuple[float, float]]] = None, ) -> None: r""" Args: m: Defaults to 10. noise_std: Standard deviation of the observation noise. negate: If True, negate the function. bounds: Custom bounds for the function specified as (lower, upper) pairs. """ self.m = m optvals = {5: -10.1532, 7: -10.4029, 10: -10.536443} self._optimal_value = optvals[self.m] super().__init__(noise_std=noise_std, negate=negate, bounds=bounds) self.register_buffer( "beta", torch.tensor([1, 2, 2, 4, 4, 6, 3, 7, 5, 5], dtype=torch.float) ) C_t = torch.tensor( [ [4, 1, 8, 6, 3, 2, 5, 8, 6, 7], [4, 1, 8, 6, 7, 9, 3, 1, 2, 3.6], [4, 1, 8, 6, 3, 2, 5, 8, 6, 7], [4, 1, 8, 6, 7, 9, 3, 1, 2, 3.6], ], dtype=torch.float, ) self.register_buffer("C", C_t.transpose(-1, -2)) def evaluate_true(self, X: Tensor) -> Tensor: self.to(device=X.device, dtype=X.dtype) beta = self.beta / 10.0 result = -sum( 1 / (torch.sum((X - self.C[i]) ** 2, dim=-1) + beta[i]) for i in range(self.m) ) return result class SixHumpCamel(SyntheticTestFunction): dim = 2 _bounds = [(-3.0, 3.0), (-2.0, 2.0)] _optimal_value = -1.0316 _optimizers = [(0.0898, -0.7126), (-0.0898, 0.7126)] def evaluate_true(self, X: Tensor) -> Tensor: x1, x2 = X[..., 0], X[..., 1] return ( (4 - 2.1 * x1**2 + x1**4 / 3) * x1**2 + x1 * x2 + (4 * x2**2 - 4) * x2**2 ) class StyblinskiTang(SyntheticTestFunction): r"""Styblinski-Tang synthtetic test function. d-dimensional function (usually evaluated on the hypercube `[-5, 5]^d`): H(x) = 0.5 * sum_{i=1}^d (x_i^4 - 16 * x_i^2 + 5 * x_i) H has a single global mininimum `H(z) = -39.166166 * d` at `z = [-2.903534]^d` """ def __init__( self, dim=2, noise_std: Optional[float] = None, negate: bool = False, bounds: Optional[List[Tuple[float, float]]] = None, ) -> None: r""" Args: dim: The (input) dimension. noise_std: Standard deviation of the observation noise. negate: If True, negate the function. bounds: Custom bounds for the function specified as (lower, upper) pairs. """ self.dim = dim if bounds is None: bounds = [(-5.0, 5.0) for _ in range(self.dim)] self._optimal_value = -39.166166 * self.dim self._optimizers = [tuple(-2.903534 for _ in range(self.dim))] super().__init__(noise_std=noise_std, negate=negate, bounds=bounds) def evaluate_true(self, X: Tensor) -> Tensor: return 0.5 * (X**4 - 16 * X**2 + 5 * X).sum(dim=-1) class ThreeHumpCamel(SyntheticTestFunction): dim = 2 _bounds = [(-5.0, 5.0), (-5.0, 5.0)] _optimal_value = 0.0 _optimizers = [(0.0, 0.0)] def evaluate_true(self, X: Tensor) -> Tensor: x1, x2 = X[..., 0], X[..., 1] return 2.0 * x1**2 - 1.05 * x1**4 + x1**6 / 6.0 + x1 * x2 + x2**2 # ------------ Constrained synthetic test functions ----------- # class PressureVessel(SyntheticTestFunction, ConstrainedBaseTestProblem): r"""Pressure vessel design problem with constraints. The four-dimensional pressure vessel design problem with four black-box constraints from [CoelloCoello2002constraint]_. """ dim = 4 num_constraints = 4 _bounds = [(0.0, 10.0), (0.0, 10.0), (10.0, 50.0), (150.0, 200.0)] def evaluate_true(self, X: Tensor) -> Tensor: x1, x2, x3, x4 = X.unbind(-1) x1 = round_nearest(x1, increment=0.0625, bounds=self._bounds[0]) x2 = round_nearest(x2, increment=0.0625, bounds=self._bounds[1]) return ( 0.6224 * x1 * x3 * x4 + 1.7781 * x2 * (x3**2) + 3.1661 * (x1**2) * x4 + 19.84 * (x1**2) * x3 ) def evaluate_slack_true(self, X: Tensor) -> Tensor: x1, x2, x3, x4 = X.unbind(-1) return -torch.stack( [ -x1 + 0.0193 * x3, -x2 + 0.00954 * x3, -math.pi * (x3**2) * x4 - (4 / 3) * math.pi * (x3**3) + 1296000.0, x4 - 240.0, ], dim=-1, ) class WeldedBeamSO(SyntheticTestFunction, ConstrainedBaseTestProblem): r"""Welded beam design problem with constraints (single-outcome). The four-dimensional welded beam design proble problem with six black-box constraints from [CoelloCoello2002constraint]_. For a (somewhat modified) multi-objective version, see `botorch.test_functions.multi_objective.WeldedBeam`. """ dim = 4 num_constraints = 6 _bounds = [(0.125, 10.0), (0.1, 10.0), (0.1, 10.0), (0.1, 10.0)] def evaluate_true(self, X: Tensor) -> Tensor: x1, x2, x3, x4 = X.unbind(-1) return 1.10471 * (x1**2) * x2 + 0.04811 * x3 * x4 * (14.0 + x2) def evaluate_slack_true(self, X: Tensor) -> Tensor: x1, x2, x3, x4 = X.unbind(-1) P = 6000.0 L = 14.0 E = 30e6 G = 12e6 t_max = 13600.0 s_max = 30000.0 d_max = 0.25 M = P * (L + x2 / 2) R = torch.sqrt(0.25 * (x2**2 + (x1 + x3) ** 2)) J = 2 * math.sqrt(2) * x1 * x2 * (x2**2 / 12 + 0.25 * (x1 + x3) ** 2) P_c = ( 4.013 * E * x3 * (x4**3) * 6 / (L**2) * (1 - 0.25 * x3 * math.sqrt(E / G) / L) ) t1 = P / (math.sqrt(2) * x1 * x2) t2 = M * R / J t = torch.sqrt(t1**2 + t1 * t2 * x2 / R + t2**2) s = 6 * P * L / (x4 * x3**2) d = 4 * P * L**3 / (E * x3**3 * x4) g1 = t - t_max g2 = s - s_max g3 = x1 - x4 g4 = 0.10471 * x1**2 + 0.04811 * x3 * x4 * (14.0 + x2) - 5.0 g5 = d - d_max g6 = P - P_c return -torch.stack([g1, g2, g3, g4, g5, g6], dim=-1) class TensionCompressionString(SyntheticTestFunction, ConstrainedBaseTestProblem): r"""Tension compression string optimization problem with constraints. The three-dimensional tension compression string optimization problem with four black-box constraints from [Hedar2006derivfree]_. """ dim = 3 num_constraints = 4 _bounds = [(0.01, 1.0), (0.01, 1.0), (0.01, 20.0)] def evaluate_true(self, X: Tensor) -> Tensor: x1, x2, x3 = X.unbind(-1) return (x1**2) * x2 * (x3 + 2) def evaluate_slack_true(self, X: Tensor) -> Tensor: x1, x2, x3 = X.unbind(-1) constraints = torch.stack( [ 1 - (x2**3) * x3 / (71785 * (x1**4)), (4 * (x2**2) - x1 * x2) / (12566 * (x1**3) * (x2 - x1)) + 1 / (5108 * (x1**2)) - 1, 1 - 140.45 * x1 / (x3 * (x2**2)), (x1 + x2) / 1.5 - 1, ], dim=-1, ) return -constraints.clamp_max(100) class SpeedReducer(SyntheticTestFunction, ConstrainedBaseTestProblem): r"""Speed Reducer design problem with constraints. The seven-dimensional speed reducer design problem with eleven black-box constraints from [Lemonge2010constrained]_. """ dim = 7 num_constraints = 11 _bounds = [ (2.6, 3.6), (0.7, 0.8), (17.0, 28.0), (7.3, 8.3), (7.8, 8.3), (2.9, 3.9), (5.0, 5.5), ] def evaluate_true(self, X: Tensor) -> Tensor: x1, x2, x3, x4, x5, x6, x7 = X.unbind(-1) return ( 0.7854 * x1 * (x2**2) * (3.3333 * (x3**2) + 14.9334 * x3 - 43.0934) + -1.508 * x1 * (x6**2 + x7**2) + 7.4777 * (x6**3 + x7**3) + 0.7854 * (x4 * (x6**2) + x5 * (x7**2)) ) def evaluate_slack_true(self, X: Tensor) -> Tensor: x1, x2, x3, x4, x5, x6, x7 = X.unbind(-1) return -torch.stack( [ 27.0 * (1 / x1) * (1 / (x2**2)) * (1 / x3) - 1, 397.5 * (1 / x1) * (1 / (x2**2)) * (1 / (x3**2)) - 1, 1.93 * (1 / x2) * (1 / x3) * (x4**3) * (1 / (x6**4)) - 1, 1.93 * (1 / x2) * (1 / x3) * (x5**3) * (1 / (x7**4)) - 1, 1 / (0.1 * (x6**3)) * torch.sqrt((745 * x4 / (x2 * x3)) ** 2 + 16.9 * 1e6) - 1100, 1 / (0.1 * (x7**3)) * torch.sqrt((745 * x5 / (x2 * x3)) ** 2 + 157.5 * 1e6) - 850, x2 * x3 - 40, 5 - x1 / x2, x1 / x2 - 12, (1.5 * x6 + 1.9) / x4 - 1, (1.1 * x7 + 1.9) / x5 - 1, ], dim=-1, )
#! /usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. r""" Multi-objective optimization benchmark problems. References .. [Daulton2022] S. Daulton, S. Cakmak, M. Balandat, M. A. Osborne, E. Zhou, and E. Bakshy. Robust Multi-Objective Bayesian Optimization Under Input Noise. Proceedings of the 39th International Conference on Machine Learning, 2022. .. [Deb2005dtlz] K. Deb, L. Thiele, M. Laumanns, E. Zitzler, A. Abraham, L. Jain, and R. Goldberg. Scalable test problems for evolutionary multi-objective optimization. Evolutionary Multiobjective Optimization, Springer-Verlag, pp. 105-145, 2005. .. [Deb2005robust] K. Deb and H. Gupta. Searching for Robust Pareto-Optimal Solutions in Multi-objective Optimization. Evolutionary Multi-Criterion Optimization, Springer-Berlin, pp. 150-164, 2005. .. [Frohlich2020] L. Frohlich, E. Klenske, J. Vinogradska, C. Daniel, and M. Zeilinger. Noisy-Input Entropy Search for Efficient Robust Bayesian Optimization. Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics, PMLR 108:2262-2272, 2020. .. [GarridoMerchan2020] E. C. Garrido-Merch ́an and D. Hern ́andez-Lobato. Parallel Predictive Entropy Search for Multi-objective Bayesian Optimization with Constraints. arXiv e-prints, arXiv:2004.00601, Apr. 2020. .. [Gelbart2014] Michael A. Gelbart, Jasper Snoek, and Ryan P. Adams. 2014. Bayesian optimization with unknown constraints. In Proceedings of the Thirtieth Conference on Uncertainty in Artificial Intelligence (UAI’14). AUAI Press, Arlington, Virginia, USA, 250–259. .. [Liang2021] Q. Liang and L. Lai, Scalable Bayesian Optimization Accelerates Process Optimization of Penicillin Production. NeurIPS 2021 AI for Science Workshop, 2021. .. [Ma2019] Z. Ma and Y. Wang. Evolutionary Constrained Multiobjective Optimization: Test Suite Construction and Performance Comparisons. IEEE Transactions on Evolutionary Computation, 23(6):972–986, December 2019. .. [Oszycka1995] A. Osyczka and S. Kundu. A new method to solve generalized multicriteria optimization problems using the simple genetic algorithm. In Structural Optimization 10. 94–99, 1995. .. [Tanabe2020] Ryoji Tanabe and Hisao Ishibuchi. An easy-to-use real-world multi-objective optimization problem suite, Applied Soft Computing,Volume 89, 2020. .. [Yang2019a] K. Yang, M. Emmerich, A. Deutz, and T. Bäck. Multi-Objective Bayesian Global Optimization using expected hypervolume improvement gradient. Swarm and evolutionary computation 44, pp. 945--956, 2019. .. [Zitzler2000] E. Zitzler, K. Deb, and L. Thiele. Comparison of multiobjective evolutionary algorithms: Empirical results. Evolutionary Computation, vol. 8, no. 2,pp. 173–195, 2000. """ from __future__ import annotations import math from abc import ABC, abstractmethod from math import pi from typing import Optional import torch from botorch.exceptions.errors import UnsupportedError from botorch.test_functions.base import ( ConstrainedBaseTestProblem, MultiObjectiveTestProblem, ) from botorch.test_functions.synthetic import Branin, Levy from botorch.utils.sampling import sample_hypersphere, sample_simplex from botorch.utils.transforms import unnormalize from scipy.special import gamma from torch import Tensor from torch.distributions import MultivariateNormal class BraninCurrin(MultiObjectiveTestProblem): r"""Two objective problem composed of the Branin and Currin functions. Branin (rescaled): f(x) = ( 15*x_1 - 5.1 * (15 * x_0 - 5) ** 2 / (4 * pi ** 2) + 5 * (15 * x_0 - 5) / pi - 5 ) ** 2 + (10 - 10 / (8 * pi)) * cos(15 * x_0 - 5)) Currin: f(x) = (1 - exp(-1 / (2 * x_1))) * ( 2300 * x_0 ** 3 + 1900 * x_0 ** 2 + 2092 * x_0 + 60 ) / 100 * x_0 ** 3 + 500 * x_0 ** 2 + 4 * x_0 + 20 """ dim = 2 num_objectives = 2 _bounds = [(0.0, 1.0), (0.0, 1.0)] _ref_point = [18.0, 6.0] _max_hv = 59.36011874867746 # this is approximated using NSGA-II def __init__(self, noise_std: Optional[float] = None, negate: bool = False) -> None: r""" Args: noise_std: Standard deviation of the observation noise. negate: If True, negate the objectives. """ super().__init__(noise_std=noise_std, negate=negate) self._branin = Branin() def _rescaled_branin(self, X: Tensor) -> Tensor: # return to Branin bounds x_0 = 15 * X[..., 0] - 5 x_1 = 15 * X[..., 1] return self._branin(torch.stack([x_0, x_1], dim=-1)) @staticmethod def _currin(X: Tensor) -> Tensor: x_0 = X[..., 0] x_1 = X[..., 1] factor1 = 1 - torch.exp(-1 / (2 * x_1)) numer = 2300 * x_0.pow(3) + 1900 * x_0.pow(2) + 2092 * x_0 + 60 denom = 100 * x_0.pow(3) + 500 * x_0.pow(2) + 4 * x_0 + 20 return factor1 * numer / denom def evaluate_true(self, X: Tensor) -> Tensor: # branin rescaled with inputsto [0,1]^2 branin = self._rescaled_branin(X=X) currin = self._currin(X=X) return torch.stack([branin, currin], dim=-1) class DH(MultiObjectiveTestProblem, ABC): r"""Base class for DH problems for robust multi-objective optimization. In their paper, [Deb2005robust]_ consider these problems under a mean-robustness setting, and use uniformly distributed input perturbations from the box with edge lengths `delta_0 = delta`, `delta_i = 2 * delta, i > 0`, with `delta` ranging up to `0.01` for DH1 and DH2, and `delta = 0.03` for DH3 and DH4. These are d-dimensional problems with two objectives: f_0(x) = x_0 f_1(x) = h(x) + g(x) * S(x) for DH1 and DH2 f_1(x) = h(x) * (g(x) + S(x)) for DH3 and DH4 The goal is to minimize both objectives. See [Deb2005robust]_ for more details on DH. The reference points were set using `infer_reference_point`. """ num_objectives = 2 _ref_point: float = [1.1, 1.1] _x_1_lb: float _area_under_curve: float _min_dim: int def __init__( self, dim: int, noise_std: Optional[float] = None, negate: bool = False, ) -> None: r""" Args: dim: The (input) dimension. noise_std: Standard deviation of the observation noise. negate: If True, negate the function. """ if dim < self._min_dim: raise ValueError(f"dim must be >= {self._min_dim}, but got dim={dim}!") self.dim = dim self._bounds = [(0.0, 1.0), (self._x_1_lb, 1.0)] + [ (-1.0, 1.0) for _ in range(dim - 2) ] # max_hv is the area of the box minus the area of the curve formed by the PF. self._max_hv = self._ref_point[0] * self._ref_point[1] - self._area_under_curve super().__init__(noise_std=noise_std, negate=negate) @abstractmethod def _h(self, X: Tensor) -> Tensor: pass # pragma: no cover @abstractmethod def _g(self, X: Tensor) -> Tensor: pass # pragma: no cover @abstractmethod def _S(self, X: Tensor) -> Tensor: pass # pragma: no cover class DH1(DH): r"""DH1 test problem. d-dimensional problem evaluated on `[0, 1] x [-1, 1]^{d-1}`: f_0(x) = x_0 f_1(x) = h(x_0) + g(x) * S(x_0) h(x_0) = 1 - x_0^2 g(x) = \sum_{i=1}^{d-1} (10 + x_i^2 - 10 * cos(4 * pi * x_i)) S(x_0) = alpha / (0.2 + x_0) + beta * x_0^2 where alpha = 1 and beta = 1. The Pareto front corresponds to the equation `f_1 = 1 - f_0^2`, and it is found at `x_i = 0` for `i > 0` and any value of `x_0` in `(0, 1]`. """ alpha = 1.0 beta = 1.0 _x_1_lb = -1.0 _area_under_curve = 2.0 / 3.0 _min_dim = 2 def _h(self, X: Tensor) -> Tensor: return 1 - X[..., 0].pow(2) def _g(self, X: Tensor) -> Tensor: x_1_to = X[..., 1:] return torch.sum( 10 + x_1_to.pow(2) - 10 * torch.cos(4 * math.pi * x_1_to), dim=-1, ) def _S(self, X: Tensor) -> Tensor: x_0 = X[..., 0] return self.alpha / (0.2 + x_0) + self.beta * x_0.pow(2) def evaluate_true(self, X: Tensor) -> Tensor: f_0 = X[..., 0] # This may encounter 0 / 0, which we set to 0. f_1 = self._h(X) + torch.nan_to_num(self._g(X) * self._S(X)) return torch.stack([f_0, f_1], dim=-1) class DH2(DH1): r"""DH2 test problem. This is identical to DH1 except for having `beta = 10.0`. """ beta = 10.0 class DH3(DH): r"""DH3 test problem. d-dimensional problem evaluated on `[0, 1]^2 x [-1, 1]^{d-2}`: f_0(x) = x_0 f_1(x) = h(x_1) * (g(x) + S(x_0)) h(x_1) = 2 - 0.8 * exp(-((x_1 - 0.35) / 0.25)^2) - exp(-((x_1 - 0.85) / 0.03)^2) g(x) = \sum_{i=2}^{d-1} (50 * x_i^2) S(x_0) = 1 - sqrt(x_0) The Pareto front is found at `x_i = 0` for `i > 1`. There's a local and a global Pareto front, which are found at `x_1 = 0.35` and `x_1 = 0.85`, respectively. The approximate relationships between the objectives at local and global Pareto fronts are given by `f_1 = 1.2 (1 - sqrt(f_0))` and `f_1 = 1 - f_0`, respectively. The specific values on the Pareto fronts can be found by varying `x_0`. """ _x_1_lb = 0.0 _area_under_curve = 0.328449169794718 _min_dim = 3 @staticmethod def _exp_args(x: Tensor) -> Tensor: exp_arg_1 = -((x - 0.35) / 0.25).pow(2) exp_arg_2 = -((x - 0.85) / 0.03).pow(2) return exp_arg_1, exp_arg_2 def _h(self, X: Tensor) -> Tensor: exp_arg_1, exp_arg_2 = self._exp_args(X[..., 1]) return 2 - 0.8 * torch.exp(exp_arg_1) - torch.exp(exp_arg_2) def _g(self, X: Tensor) -> Tensor: return 50 * X[..., 2:].pow(2).sum(dim=-1) def _S(self, X: Tensor) -> Tensor: return 1 - X[..., 0].sqrt() def evaluate_true(self, X: Tensor) -> Tensor: f_0 = X[..., 0] f_1 = self._h(X) * (self._g(X) + self._S(X)) return torch.stack([f_0, f_1], dim=-1) class DH4(DH3): r"""DH4 test problem. This is similar to DH3 except that it is evaluated on `[0, 1] x [-0.15, 1] x [-1, 1]^{d-2}` and: h(x_0, x_1) = 2 - x_0 - 0.8 * exp(-((x_0 + x_1 - 0.35) / 0.25)^2) - exp(-((x_0 + x_1 - 0.85) / 0.03)^2) The Pareto front is found at `x_i = 0` for `i > 2`, with the local one being near `x_0 + x_1 = 0.35` and the global one near `x_0 + x_1 = 0.85`. """ _x_1_lb = -0.15 _area_under_curve = 0.22845 def _h(self, X: Tensor) -> Tensor: exp_arg_1, exp_arg_2 = self._exp_args(X[..., :2].sum(dim=-1)) return 2 - X[..., 0] - 0.8 * torch.exp(exp_arg_1) - torch.exp(exp_arg_2) class DTLZ(MultiObjectiveTestProblem): r"""Base class for DTLZ problems. See [Deb2005dtlz]_ for more details on DTLZ. """ def __init__( self, dim: int, num_objectives: int = 2, noise_std: Optional[float] = None, negate: bool = False, ) -> None: r""" Args: dim: The (input) dimension of the function. num_objectives: Must be less than dim. noise_std: Standard deviation of the observation noise. negate: If True, negate the function. """ if dim <= num_objectives: raise ValueError( f"dim must be > num_objectives, but got {dim} and {num_objectives}." ) self.num_objectives = num_objectives self.dim = dim self.k = self.dim - self.num_objectives + 1 self._bounds = [(0.0, 1.0) for _ in range(self.dim)] self._ref_point = [self._ref_val for _ in range(num_objectives)] super().__init__(noise_std=noise_std, negate=negate) class DTLZ1(DTLZ): r"""DLTZ1 test problem. d-dimensional problem evaluated on `[0, 1]^d`: f_0(x) = 0.5 * x_0 * (1 + g(x)) f_1(x) = 0.5 * (1 - x_0) * (1 + g(x)) g(x) = 100 * \sum_{i=m}^{d-1} ( k + (x_i - 0.5)^2 - cos(20 * pi * (x_i - 0.5)) ) where k = d - m + 1. The pareto front is given by the line (or hyperplane) \sum_i f_i(x) = 0.5. The goal is to minimize both objectives. The reference point comes from [Yang2019]_. """ _ref_val = 400.0 @property def _max_hv(self) -> float: return self._ref_val**self.num_objectives - 1 / 2**self.num_objectives def evaluate_true(self, X: Tensor) -> Tensor: X_m = X[..., -self.k :] X_m_minus_half = X_m - 0.5 sum_term = ( X_m_minus_half.pow(2) - torch.cos(20 * math.pi * X_m_minus_half) ).sum(dim=-1) g_X_m = 100 * (self.k + sum_term) g_X_m_term = 0.5 * (1 + g_X_m) fs = [] for i in range(self.num_objectives): idx = self.num_objectives - 1 - i f_i = g_X_m_term * X[..., :idx].prod(dim=-1) if i > 0: f_i *= 1 - X[..., idx] fs.append(f_i) return torch.stack(fs, dim=-1) def gen_pareto_front(self, n: int) -> Tensor: r"""Generate `n` pareto optimal points. The pareto points randomly sampled from the hyperplane sum_i f(x_i) = 0.5. """ f_X = 0.5 * sample_simplex( n=n, d=self.num_objectives, qmc=True, dtype=self.ref_point.dtype, device=self.ref_point.device, ) if self.negate: f_X *= -1 return f_X class DTLZ2(DTLZ): r"""DLTZ2 test problem. d-dimensional problem evaluated on `[0, 1]^d`: f_0(x) = (1 + g(x)) * cos(x_0 * pi / 2) f_1(x) = (1 + g(x)) * sin(x_0 * pi / 2) g(x) = \sum_{i=m}^{d-1} (x_i - 0.5)^2 The pareto front is given by the unit hypersphere \sum{i} f_i^2 = 1. Note: the pareto front is completely concave. The goal is to minimize both objectives. """ _ref_val = 1.1 @property def _max_hv(self) -> float: # hypercube - volume of hypersphere in R^d such that all coordinates are # positive hypercube_vol = self._ref_val**self.num_objectives pos_hypersphere_vol = ( math.pi ** (self.num_objectives / 2) / gamma(self.num_objectives / 2 + 1) / 2**self.num_objectives ) return hypercube_vol - pos_hypersphere_vol def evaluate_true(self, X: Tensor) -> Tensor: X_m = X[..., -self.k :] g_X = (X_m - 0.5).pow(2).sum(dim=-1) g_X_plus1 = 1 + g_X fs = [] pi_over_2 = math.pi / 2 for i in range(self.num_objectives): idx = self.num_objectives - 1 - i f_i = g_X_plus1.clone() f_i *= torch.cos(X[..., :idx] * pi_over_2).prod(dim=-1) if i > 0: f_i *= torch.sin(X[..., idx] * pi_over_2) fs.append(f_i) return torch.stack(fs, dim=-1) def gen_pareto_front(self, n: int) -> Tensor: r"""Generate `n` pareto optimal points. The pareto points are randomly sampled from the hypersphere's positive section. """ f_X = sample_hypersphere( n=n, d=self.num_objectives, dtype=self.ref_point.dtype, device=self.ref_point.device, qmc=True, ).abs() if self.negate: f_X *= -1 return f_X class DTLZ3(DTLZ2): r"""DTLZ3 test problem. d-dimensional problem evaluated on `[0, 1]^d`: f_0(x) = (1 + g(x)) * cos(x_0 * pi / 2) f_1(x) = (1 + g(x)) * sin(x_0 * pi / 2) g(x) = 100 * [k + \sum_{i=m}^{n-1} (x_i - 0.5)^2 - cos(20 * pi * (x_i - 0.5))] `g(x)` introduces (`3k−1`) local Pareto fronts that are parallel to the one global Pareto-optimal front. The global Pareto-optimal front corresponds to x_i = 0.5 for x_i in X_m. """ _ref_val = 10000.0 def evaluate_true(self, X: Tensor) -> Tensor: X_m = X[..., -self.k :] g_X = 100 * ( X_m.shape[-1] + ((X_m - 0.5).pow(2) - torch.cos(20 * math.pi * (X_m - 0.5))).sum(dim=-1) ) g_X_plus1 = 1 + g_X fs = [] pi_over_2 = math.pi / 2 for i in range(self.num_objectives): idx = self.num_objectives - 1 - i f_i = g_X_plus1.clone() f_i *= torch.cos(X[..., :idx] * pi_over_2).prod(dim=-1) if i > 0: f_i *= torch.sin(X[..., idx] * pi_over_2) fs.append(f_i) return torch.stack(fs, dim=-1) class DTLZ4(DTLZ2): r"""DTLZ4 test problem. This is the same as DTLZ2, but with alpha=100 as the exponent, resulting in dense solutions near the f_M-f_1 plane. The global Pareto-optimal front corresponds to x_i = 0.5 for x_i in X_m. """ _alpha = 100.0 class DTLZ5(DTLZ): r"""DTLZ5 test problem. d-dimensional problem evaluated on `[0, 1]^d`: f_0(x) = (1 + g(x)) * cos(theta_0 * pi / 2) f_1(x) = (1 + g(x)) * sin(theta_0 * pi / 2) theta_i = pi / (4 * (1 + g(X_m)) * (1 + 2 * g(X_m) * x_i)) for i = 1, ... , M-2 g(x) = \sum_{i=m}^{d-1} (x_i - 0.5)^2 The global Pareto-optimal front corresponds to x_i = 0.5 for x_i in X_m. """ _ref_val = 10.0 def evaluate_true(self, X: Tensor) -> Tensor: X_m = X[..., -self.k :] X_ = X[..., : -self.k] g_X = (X_m - 0.5).pow(2).sum(dim=-1) theta = 1 / (2 * (1 + g_X.unsqueeze(-1))) * (1 + 2 * g_X.unsqueeze(-1) * X_) theta = torch.cat([X[..., :1], theta[..., 1:]], dim=-1) fs = [] pi_over_2 = math.pi / 2 g_X_plus1 = g_X + 1 for i in range(self.num_objectives): f_i = g_X_plus1.clone() f_i *= torch.cos(theta[..., : theta.shape[-1] - i] * pi_over_2).prod(dim=-1) if i > 0: f_i *= torch.sin(theta[..., theta.shape[-1] - i] * pi_over_2) fs.append(f_i) return torch.stack(fs, dim=-1) class DTLZ7(DTLZ): r"""DTLZ7 test problem. d-dimensional problem evaluated on `[0, 1]^d`: f_0(x) = x_0 f_1(x) = x_1 ... f_{M-1}(x) = (1 + g(X_m)) * h(f_0, f_1, ..., f_{M-2}, g, x) h(f_0, f_1, ..., f_{M-2}, g, x) = M - sum_{i=0}^{M-2} f_i(x)/(1+g(x)) * (1 + sin(3 * pi * f_i(x))) This test problem has 2M-1 disconnected Pareto-optimal regions in the search space. The pareto frontier corresponds to X_m = 0. """ _ref_val = 15.0 def evaluate_true(self, X): f = [] for i in range(0, self.num_objectives - 1): f.append(X[..., i]) f = torch.stack(f, dim=-1) g_X = 1 + 9 / self.k * torch.sum(X[..., -self.k :], dim=-1) h = self.num_objectives - torch.sum( f / (1 + g_X.unsqueeze(-1)) * (1 + torch.sin(3 * math.pi * f)), dim=-1 ) return torch.cat([f, ((1 + g_X) * h).unsqueeze(-1)], dim=-1) class GMM(MultiObjectiveTestProblem): r"""A test problem where each objective is a Gaussian mixture model. This implementation is adapted from the single objective version (proposed by [Frohlich2020]_) at https://github.com/boschresearch/NoisyInputEntropySearch/blob/master/ core/util/objectives.py. See [Daulton2022]_ for details on this multi-objective problem. """ dim = 2 _bounds = [(0.0, 1.0), (0.0, 1.0)] def __init__( self, noise_std: Optional[float] = None, negate: bool = False, num_objectives: int = 2, ) -> None: r""" Args: noise_std: Standard deviation of the observation noise. negate: If True, negate the objectives. num_objectives: The number of objectives. """ if num_objectives not in (2, 3, 4): raise UnsupportedError("GMM only currently supports 2 to 4 objectives.") self._ref_point = [-0.2338, -0.2211] if num_objectives > 2: self._ref_point.append(-0.5180) if num_objectives > 3: self._ref_point.append(-0.1866) self.num_objectives = num_objectives super().__init__(noise_std=noise_std, negate=negate) gmm_pos = torch.tensor( [ [[0.2, 0.2], [0.8, 0.2], [0.5, 0.7]], [[0.07, 0.2], [0.4, 0.8], [0.85, 0.1]], ] ) gmm_var = torch.tensor([[0.20, 0.10, 0.10], [0.2, 0.1, 0.05]]).pow(2) gmm_norm = 2 * pi * gmm_var * torch.tensor([0.5, 0.7, 0.7]) if num_objectives > 2: gmm_pos = torch.cat( [gmm_pos, torch.tensor([[[0.08, 0.21], [0.45, 0.75], [0.86, 0.11]]])], dim=0, ) gmm_var = torch.cat( [gmm_var, torch.tensor([[0.2, 0.1, 0.07]]).pow(2)], dim=0 ) gmm_norm = torch.cat( [ gmm_norm, 2 * pi * gmm_var[2] * torch.tensor([[0.5, 0.7, 0.9]]), ], dim=0, ) if num_objectives > 3: gmm_pos = torch.cat( [gmm_pos, torch.tensor([[[0.09, 0.19], [0.44, 0.72], [0.89, 0.13]]])], dim=0, ) gmm_var = torch.cat( [gmm_var, torch.tensor([[0.15, 0.07, 0.09]]).pow(2)], dim=0 ) gmm_norm = torch.cat( [ gmm_norm, 2 * pi * gmm_var[3] * torch.tensor([[0.5, 0.7, 0.9]]), ], dim=0, ) gmm_covar = gmm_var.view(*gmm_var.shape, 1, 1) * torch.eye( 2, dtype=gmm_var.dtype, device=gmm_var.device ) self.register_buffer("gmm_pos", gmm_pos) self.register_buffer("gmm_covar", gmm_covar) self.register_buffer("gmm_norm", gmm_norm) def evaluate_true(self, X: Tensor) -> Tensor: r"""Evaluate the GMMs.""" # This needs to be reinstantiated because MVN apparently does not # have a `to` method to make it device/dtype agnostic. mvn = MultivariateNormal(loc=self.gmm_pos, covariance_matrix=self.gmm_covar) view_shape = ( X.shape[:-1] + torch.Size([1] * (self.gmm_pos.ndim - 1)) + self.gmm_pos.shape[-1:] ) expand_shape = X.shape[:-1] + self.gmm_pos.shape pdf_X = mvn.log_prob(X.view(view_shape).expand(expand_shape)).exp() # Multiply by -1 to make this a minimization problem by default return -(self.gmm_norm * pdf_X).sum(dim=-1) class Penicillin(MultiObjectiveTestProblem): r"""A penicillin production simulator from [Liang2021]_. This implementation is adapted from https://github.com/HarryQL/TuRBO-Penicillin. The goal is to maximize the penicillin yield while minimizing time to ferment and the CO2 byproduct. The function is defined for minimization of all objectives. The reference point was set using the `infer_reference_point` heuristic on the Pareto frontier over a large discrete set of random designs. """ dim = 7 num_objectives = 3 _bounds = [ (60.0, 120.0), (0.05, 18.0), (293.0, 303.0), (0.05, 18.0), (0.01, 0.5), (500.0, 700.0), (5.0, 6.5), ] _ref_point = [1.85, 86.93, 514.70] Y_xs = 0.45 Y_ps = 0.90 K_1 = 10 ** (-10) K_2 = 7 * 10 ** (-5) m_X = 0.014 alpha_1 = 0.143 alpha_2 = 4 * 10 ** (-7) alpha_3 = 10 ** (-4) mu_X = 0.092 K_X = 0.15 mu_p = 0.005 K_p = 0.0002 K_I = 0.10 K = 0.04 k_g = 7.0 * 10**3 E_g = 5100.0 k_d = 10.0**33 E_d = 50000.0 lambd = 2.5 * 10 ** (-4) T_v = 273.0 # Kelvin T_o = 373.0 R = 1.9872 # CAL/(MOL K) V_max = 180.0 @classmethod def penicillin_vectorized(cls, X_input: Tensor) -> Tensor: r"""Penicillin simulator, simplified and vectorized. The 7 input parameters are (in order): culture volume, biomass concentration, temperature, glucose concentration, substrate feed rate, substrate feed concentration, and H+ concentration. Args: X_input: A `n x 7`-dim tensor of inputs. Returns: An `n x 3`-dim tensor of (negative) penicillin yield, CO2 and time. """ V, X, T, S, F, s_f, H_ = torch.split(X_input, 1, -1) P, CO2 = torch.zeros_like(V), torch.zeros_like(V) H = torch.full_like(H_, 10.0).pow(-H_) active = torch.ones_like(V).bool() t_tensor = torch.full_like(V, 2500) for t in range(1, 2501): if active.sum() == 0: break F_loss = ( V[active] * cls.lambd * (torch.exp(5 * ((T[active] - cls.T_o) / (cls.T_v - cls.T_o))) - 1) ) dV_dt = F[active] - F_loss mu = ( (cls.mu_X / (1 + cls.K_1 / H[active] + H[active] / cls.K_2)) * (S[active] / (cls.K_X * X[active] + S[active])) * ( (cls.k_g * torch.exp(-cls.E_g / (cls.R * T[active]))) - (cls.k_d * torch.exp(-cls.E_d / (cls.R * T[active]))) ) ) dX_dt = mu * X[active] - (X[active] / V[active]) * dV_dt mu_pp = cls.mu_p * ( S[active] / (cls.K_p + S[active] + S[active].pow(2) / cls.K_I) ) dS_dt = ( -(mu / cls.Y_xs) * X[active] - (mu_pp / cls.Y_ps) * X[active] - cls.m_X * X[active] + F[active] * s_f[active] / V[active] - (S[active] / V[active]) * dV_dt ) dP_dt = ( (mu_pp * X[active]) - cls.K * P[active] - (P[active] / V[active]) * dV_dt ) dCO2_dt = cls.alpha_1 * dX_dt + cls.alpha_2 * X[active] + cls.alpha_3 # UPDATE P[active] = P[active] + dP_dt # Penicillin concentration V[active] = V[active] + dV_dt # Culture medium volume X[active] = X[active] + dX_dt # Biomass concentration S[active] = S[active] + dS_dt # Glucose concentration CO2[active] = CO2[active] + dCO2_dt # CO2 concentration # Update active indices full_dpdt = torch.ones_like(P) full_dpdt[active] = dP_dt inactive = (V > cls.V_max) + (S < 0) + (full_dpdt < 10e-12) t_tensor[inactive] = torch.minimum( t_tensor[inactive], torch.full_like(t_tensor[inactive], t) ) active[inactive] = 0 return torch.stack([-P, CO2, t_tensor], dim=-1) def evaluate_true(self, X: Tensor) -> Tensor: # This uses in-place operations. Hence, the clone is to avoid modifying # the original X in-place. return self.penicillin_vectorized(X.view(-1, self.dim).clone()).view( *X.shape[:-1], self.num_objectives ) class ToyRobust(MultiObjectiveTestProblem): r"""A 1D problem where the Pareto frontier is sensitive to input noise. Specifically, the pareto frontier over the nominal objectives is sensitive to input noise. The first objective is a mixture of a linear function and a sinusoidal function, and the second objective is a modified Levy function, where the second parameter is fixed. This function comes from [Daulton2022]_. The reference point was set using the `infer_reference_point` heuristic on the Pareto frontier over a large discrete set of random designs. """ dim = 1 _bounds = [(0.0, 0.7)] _ref_point = [-6.1397, -8.1942] num_objectives = 2 levy = Levy() def f_1(self, X: Tensor) -> Tensor: p1 = 2.4 - 10 * X - 0.1 * X.pow(2) p2 = 2 * X - 0.1 * X.pow(2) smoother = (X - 0.5).pow(2) + torch.sin(30 * X) * 0.1 x_mask = torch.sigmoid((0.2 - X) / 0.005) return -(p1 * x_mask + p2 * (1 - x_mask) + smoother) * 30 + 30 def f_2(self, X: Tensor) -> Tensor: X = torch.cat( [X, torch.zeros_like(X)], dim=-1, ) # Cut out the first part of the function. X = X * 0.95 + 0.03 X = unnormalize(X, self.levy.bounds.to(X)) Y = self.levy(X).unsqueeze(-1) Y -= X[..., :1].pow(2) * 0.75 return Y def evaluate_true(self, X: Tensor) -> Tensor: return -torch.cat([self.f_1(X), self.f_2(X)], dim=-1) class VehicleSafety(MultiObjectiveTestProblem): r"""Optimize Vehicle crash-worthiness. See [Tanabe2020]_ for details. The reference point is 1.1 * the nadir point from approximate front provided by [Tanabe2020]_. The maximum hypervolume is computed using the approximate pareto front from [Tanabe2020]_. """ _ref_point = [1864.72022, 11.81993945, 0.2903999384] _max_hv = 246.81607081187002 _bounds = [(1.0, 3.0)] * 5 dim = 5 num_objectives = 3 def evaluate_true(self, X: Tensor) -> Tensor: X1, X2, X3, X4, X5 = torch.split(X, 1, -1) f1 = ( 1640.2823 + 2.3573285 * X1 + 2.3220035 * X2 + 4.5688768 * X3 + 7.7213633 * X4 + 4.4559504 * X5 ) f2 = ( 6.5856 + 1.15 * X1 - 1.0427 * X2 + 0.9738 * X3 + 0.8364 * X4 - 0.3695 * X1 * X4 + 0.0861 * X1 * X5 + 0.3628 * X2 * X4 - 0.1106 * X1.pow(2) - 0.3437 * X3.pow(2) + 0.1764 * X4.pow(2) ) f3 = ( -0.0551 + 0.0181 * X1 + 0.1024 * X2 + 0.0421 * X3 - 0.0073 * X1 * X2 + 0.024 * X2 * X3 - 0.0118 * X2 * X4 - 0.0204 * X3 * X4 - 0.008 * X3 * X5 - 0.0241 * X2.pow(2) + 0.0109 * X4.pow(2) ) f_X = torch.cat([f1, f2, f3], dim=-1) return f_X class ZDT(MultiObjectiveTestProblem): r"""Base class for ZDT problems. See [Zitzler2000]_ for more details on ZDT. """ _ref_point = [11.0, 11.0] def __init__( self, dim: int, num_objectives: int = 2, noise_std: Optional[float] = None, negate: bool = False, ) -> None: r""" Args: dim: The (input) dimension of the function. num_objectives: Number of objectives. Must not be larger than dim. noise_std: Standard deviation of the observation noise. negate: If True, negate the function. """ if num_objectives != 2: raise NotImplementedError( f"{type(self).__name__} currently only supports 2 objectives." ) if dim < num_objectives: raise ValueError( f"dim must be >= num_objectives, but got {dim} and {num_objectives}" ) self.num_objectives = num_objectives self.dim = dim self._bounds = [(0.0, 1.0) for _ in range(self.dim)] super().__init__(noise_std=noise_std, negate=negate) @staticmethod def _g(X: Tensor) -> Tensor: return 1 + 9 * X[..., 1:].mean(dim=-1) class ZDT1(ZDT): r"""ZDT1 test problem. d-dimensional problem evaluated on `[0, 1]^d`: f_0(x) = x_0 f_1(x) = g(x) * (1 - sqrt(x_0 / g(x)) g(x) = 1 + 9 / (d - 1) * \sum_{i=1}^{d-1} x_i The reference point comes from [Yang2019a]_. The pareto front is convex. """ _max_hv = 120 + 2 / 3 def evaluate_true(self, X: Tensor) -> Tensor: f_0 = X[..., 0] g = self._g(X=X) f_1 = g * (1 - (f_0 / g).sqrt()) return torch.stack([f_0, f_1], dim=-1) def gen_pareto_front(self, n: int) -> Tensor: f_0 = torch.linspace( 0, 1, n, dtype=self.bounds.dtype, device=self.bounds.device ) f_1 = 1 - f_0.sqrt() f_X = torch.stack([f_0, f_1], dim=-1) if self.negate: f_X *= -1 return f_X class ZDT2(ZDT): r"""ZDT2 test problem. d-dimensional problem evaluated on `[0, 1]^d`: f_0(x) = x_0 f_1(x) = g(x) * (1 - (x_0 / g(x))^2) g(x) = 1 + 9 / (d - 1) * \sum_{i=1}^{d-1} x_i The reference point comes from [Yang2019a]_. The pareto front is concave. """ _max_hv = 120 + 1 / 3 def evaluate_true(self, X: Tensor) -> Tensor: f_0 = X[..., 0] g = self._g(X=X) f_1 = g * (1 - (f_0 / g).pow(2)) return torch.stack([f_0, f_1], dim=-1) def gen_pareto_front(self, n: int) -> Tensor: f_0 = torch.linspace( 0, 1, n, dtype=self.bounds.dtype, device=self.bounds.device ) f_1 = 1 - f_0.pow(2) f_X = torch.stack([f_0, f_1], dim=-1) if self.negate: f_X *= -1 return f_X class ZDT3(ZDT): r"""ZDT3 test problem. d-dimensional problem evaluated on `[0, 1]^d`: f_0(x) = x_0 f_1(x) = 1 - sqrt(x_0 / g(x)) - x_0 / g * sin(10 * pi * x_0) g(x) = 1 + 9 / (d - 1) * \sum_{i=1}^{d-1} x_i The reference point comes from [Yang2019a]_. The pareto front consists of several discontinuous convex parts. """ _max_hv = 128.77811613069076060 _parts = [ # this interval includes both end points [0, 0.0830015349], # this interval includes only the right end points [0.1822287280, 0.2577623634], [0.4093136748, 0.4538821041], [0.6183967944, 0.6525117038], [0.8233317983, 0.8518328654], ] # nugget to make sure linspace returns elements within the specified range _eps = 1e-6 def evaluate_true(self, X: Tensor) -> Tensor: f_0 = X[..., 0] g = self._g(X=X) f_1 = 1 - (f_0 / g).sqrt() - f_0 / g * torch.sin(10 * math.pi * f_0) return torch.stack([f_0, f_1], dim=-1) def gen_pareto_front(self, n: int) -> Tensor: n_parts = len(self._parts) n_per_part = torch.full( torch.Size([n_parts]), n // n_parts, dtype=torch.long, device=self.bounds.device, ) left_over = n % n_parts n_per_part[:left_over] += 1 f_0s = [] for i, p in enumerate(self._parts): left, right = p f_0s.append( torch.linspace( left + self._eps, right - self._eps, n_per_part[i], dtype=self.bounds.dtype, device=self.bounds.device, ) ) f_0 = torch.cat(f_0s, dim=0) f_1 = 1 - f_0.sqrt() - f_0 * torch.sin(10 * math.pi * f_0) f_X = torch.stack([f_0, f_1], dim=-1) if self.negate: f_X *= -1 return f_X class CarSideImpact(MultiObjectiveTestProblem): r"""Car side impact problem. See [Tanabe2020]_ for details. The reference point is `nadir + 0.1 * (ideal - nadir)` where the ideal and nadir points come from the approximate Pareto frontier from [Tanabe2020]_. The max_hv was computed based on the approximate Pareto frontier from [Tanabe2020]_. """ num_objectives: int = 4 dim: int = 7 _bounds = [ (0.5, 1.5), (0.45, 1.35), (0.5, 1.5), (0.5, 1.5), (0.875, 2.625), (0.4, 1.2), (0.4, 1.2), ] _ref_point = [45.4872, 4.5114, 13.3394, 10.3942] _max_hv = 484.72654347642793 def evaluate_true(self, X: Tensor) -> Tensor: X1, X2, X3, X4, X5, X6, X7 = torch.split(X, 1, -1) f1 = ( 1.98 + 4.9 * X1 + 6.67 * X2 + 6.98 * X3 + 4.01 * X4 + 1.78 * X5 + 10**-5 * X6 + 2.73 * X7 ) f2 = 4.72 - 0.5 * X4 - 0.19 * X2 * X3 V_MBP = 10.58 - 0.674 * X1 * X2 - 0.67275 * X2 V_FD = 16.45 - 0.489 * X3 * X7 - 0.843 * X5 * X6 f3 = 0.5 * (V_MBP + V_FD) g1 = 1 - 1.16 + 0.3717 * X2 * X4 + 0.0092928 * X3 g2 = ( 0.32 - 0.261 + 0.0159 * X1 * X2 + 0.06486 * X1 + 0.019 * X2 * X7 - 0.0144 * X3 * X5 - 0.0154464 * X6 ) g3 = ( 0.32 - 0.214 - 0.00817 * X5 + 0.045195 * X1 + 0.0135168 * X1 - 0.03099 * X2 * X6 + 0.018 * X2 * X7 - 0.007176 * X3 - 0.023232 * X3 + 0.00364 * X5 * X6 + 0.018 * X2.pow(2) ) g4 = 0.32 - 0.74 + 0.61 * X2 + 0.031296 * X3 + 0.031872 * X7 - 0.227 * X2.pow(2) g5 = 32 - 28.98 - 3.818 * X3 + 4.2 * X1 * X2 - 1.27296 * X6 + 2.68065 * X7 g6 = ( 32 - 33.86 - 2.95 * X3 + 5.057 * X1 * X2 + 3.795 * X2 + 3.4431 * X7 - 1.45728 ) g7 = 32 - 46.36 + 9.9 * X2 + 4.4505 * X1 g8 = 4 - f2 g9 = 9.9 - V_MBP g10 = 15.7 - V_FD g = torch.cat([g1, g2, g3, g4, g5, g6, g7, g8, g9, g10], dim=-1) zero = torch.tensor(0.0, dtype=X.dtype, device=X.device) g = torch.where(g < 0, -g, zero) f4 = g.sum(dim=-1, keepdim=True) return torch.cat([f1, f2, f3, f4], dim=-1) # ------ Constrained Multi-Objective Test Problems ----- # class BNH(MultiObjectiveTestProblem, ConstrainedBaseTestProblem): r"""The constrained BNH problem. See [GarridoMerchan2020]_ for more details on this problem. Note that this is a minimization problem. """ dim = 2 num_objectives = 2 num_constraints = 2 _bounds = [(0.0, 5.0), (0.0, 3.0)] _ref_point = [0.0, 0.0] # TODO: Determine proper reference point def evaluate_true(self, X: Tensor) -> Tensor: return torch.stack( [4.0 * (X**2).sum(dim=-1), ((X - 5.0) ** 2).sum(dim=-1)], dim=-1 ) def evaluate_slack_true(self, X: Tensor) -> Tensor: c1 = 25.0 - (X[..., 0] - 5.0) ** 2 - X[..., 1] ** 2 c2 = (X[..., 0] - 8.0) ** 2 + (X[..., 1] + 3.0) ** 2 - 7.7 return torch.stack([c1, c2], dim=-1) class CONSTR(MultiObjectiveTestProblem, ConstrainedBaseTestProblem): r"""The constrained CONSTR problem. See [GarridoMerchan2020]_ for more details on this problem. Note that this is a minimization problem. """ dim = 2 num_objectives = 2 num_constraints = 2 _bounds = [(0.1, 10.0), (0.0, 5.0)] _ref_point = [10.0, 10.0] def evaluate_true(self, X: Tensor) -> Tensor: obj1 = X[..., 0] obj2 = (1.0 + X[..., 1]) / X[..., 0] return torch.stack([obj1, obj2], dim=-1) def evaluate_slack_true(self, X: Tensor) -> Tensor: c1 = 9.0 * X[..., 0] + X[..., 1] - 6.0 c2 = 9.0 * X[..., 0] - X[..., 1] - 1.0 return torch.stack([c1, c2], dim=-1) class ConstrainedBraninCurrin(BraninCurrin, ConstrainedBaseTestProblem): r"""Constrained Branin Currin Function. This uses the disk constraint from [Gelbart2014]_. """ dim = 2 num_objectives = 2 num_constraints = 1 _bounds = [(0.0, 1.0), (0.0, 1.0)] _con_bounds = [(-5.0, 10.0), (0.0, 15.0)] _ref_point = [80.0, 12.0] _max_hv = 608.4004237022673 # from NSGA-II with 90k evaluations def __init__(self, noise_std: Optional[float] = None, negate: bool = False) -> None: r""" Args: noise_std: Standard deviation of the observation noise. negate: If True, negate the function. """ super().__init__(noise_std=noise_std, negate=negate) con_bounds = torch.tensor(self._con_bounds, dtype=torch.float).transpose(-1, -2) self.register_buffer("con_bounds", con_bounds) def evaluate_slack_true(self, X: Tensor) -> Tensor: X_tf = unnormalize(X, self.con_bounds) return 50 - (X_tf[..., 0:1] - 2.5).pow(2) - (X_tf[..., 1:2] - 7.5).pow(2) class C2DTLZ2(DTLZ2, ConstrainedBaseTestProblem): num_constraints = 1 _r = 0.2 # approximate from nsga-ii, TODO: replace with analytic _max_hv = 0.3996406303723544 def evaluate_slack_true(self, X: Tensor) -> Tensor: if X.ndim > 2: raise NotImplementedError("Batch X is not supported.") f_X = self.evaluate_true(X) term1 = (f_X - 1).pow(2) mask = ~(torch.eye(f_X.shape[-1], device=f_X.device).bool()) indices = torch.arange(f_X.shape[1], device=f_X.device).repeat(f_X.shape[1], 1) indexer = indices[mask].view(f_X.shape[1], f_X.shape[-1] - 1) term2_inner = ( f_X.unsqueeze(1) .expand(f_X.shape[0], f_X.shape[-1], f_X.shape[-1]) .gather(dim=-1, index=indexer.repeat(f_X.shape[0], 1, 1)) ) term2 = (term2_inner.pow(2) - self._r**2).sum(dim=-1) min1 = (term1 + term2).min(dim=-1).values min2 = ((f_X - 1 / math.sqrt(f_X.shape[-1])).pow(2) - self._r**2).sum(dim=-1) return -torch.min(min1, min2).unsqueeze(-1) class DiscBrake(MultiObjectiveTestProblem, ConstrainedBaseTestProblem): r"""The Disc Brake problem. There are 2 objectives and 4 constraints. Both objectives should be minimized. See [Tanabe2020]_ for details. The reference point was set using the `infer_reference_point` heuristic on the Pareto frontier over a large discrete set of random designs. """ dim = 4 num_objectives = 2 num_constraints = 4 _bounds = [(55.0, 80.0), (75.0, 110.0), (1000.0, 3000.0), (11.0, 20.0)] _ref_point = [5.7771, 3.9651] def evaluate_true(self, X: Tensor) -> Tensor: f = torch.zeros( *X.shape[:-1], self.num_objectives, dtype=X.dtype, device=X.device ) X1, X2, X3, X4 = torch.split(X, 1, -1) sq_diff = X2.pow(2) - X1.pow(2) f[..., :1] = 4.9 * 1e-5 * sq_diff * (X4 - 1.0) f[..., 1:] = (9.82 * 1e6) * sq_diff / (X3 * X4 * (X2.pow(3) - X1.pow(3))) return f def evaluate_slack_true(self, X: Tensor) -> Tensor: g = torch.zeros( *X.shape[:-1], self.num_constraints, dtype=X.dtype, device=X.device ) X1, X2, X3, X4 = torch.split(X, 1, -1) sq_diff = X2.pow(2) - X1.pow(2) cub_diff = X2.pow(3) - X1.pow(3) g[..., :1] = X2 - X1 - 20.0 g[..., 1:2] = 0.4 - X3 / (3.14 * sq_diff) g[..., 2:3] = 1.0 - (2.22 * 1e-3 * X3 * cub_diff) / sq_diff.pow(2) g[..., 3:] = (2.66 * 1e-2 * X3 * X4 * cub_diff) / sq_diff - 900.0 return g class MW7(MultiObjectiveTestProblem, ConstrainedBaseTestProblem): r"""The MW7 problem. This problem has 2 objectives, 2 constraints, and a disconnected Pareto frontier. It supports arbitrary input dimension > 1. See [Ma2019]_ for details. This implementation is adapted from: https://github.com/anyoptimization/pymoo/blob/master/pymoo/problems/multi/mw.py """ num_constraints = 2 num_objectives = 2 _ref_point = [1.2, 1.2] def __init__( self, dim: int, noise_std: Optional[float] = None, negate: bool = False, ) -> None: r""" Args: dim: The (input) dimension of the function. Must be at least 2. noise_std: Standard deviation of the observation noise. negate: If True, negate the function. """ if dim < 2: raise ValueError("dim must be greater than or equal to 2.") self.dim = dim self._bounds = [(0.0, 1.0) for _ in range(self.dim)] super().__init__(noise_std=noise_std, negate=negate) def LA2(self, A, B, C, D, theta): return A * torch.sin(B * theta.pow(C)).pow(D) def evaluate_true(self, X: Tensor) -> Tensor: a = X[..., :-1] - 0.5 contrib = 2 * (X[..., 1:] + a.pow(2) - 1).pow(2) g = 1 + contrib.sum(dim=-1) f0 = g * X[..., 0] f1 = g * torch.sqrt(1 - (f0 / g).pow(2)) return torch.stack([f0, f1], dim=-1) def evaluate_slack_true(self, X: Tensor) -> Tensor: ff = self.evaluate_true(X) f0, f1 = ff[..., 0], ff[..., 1] atan = torch.arctan(f1 / f0) g0 = ( f0.pow(2) + f1.pow(2) - (1.2 + (self.LA2(0.4, 4.0, 1.0, 16.0, atan)).abs()).pow(2) ) g1 = (1.15 - self.LA2(0.2, 4.0, 1.0, 8.0, atan)).pow(2) - f0.pow(2) - f1.pow(2) return -torch.stack([g0, g1], dim=-1) class OSY(MultiObjectiveTestProblem, ConstrainedBaseTestProblem): r""" The OSY test problem from [Oszycka1995]_. Implementation from https://github.com/msu-coinlab/pymoo/blob/master/pymoo/problems/multi/osy.py Note that this implementation assumes minimization, so please choose negate=True. """ dim = 6 num_constraints = 6 num_objectives = 2 _bounds = [ (0.0, 10.0), (0.0, 10.0), (1.0, 5.0), (0.0, 6.0), (1.0, 5.0), (0.0, 10.0), ] _ref_point = [-75.0, 75.0] def evaluate_true(self, X: Tensor) -> Tensor: f1 = -( 25 * (X[..., 0] - 2) ** 2 + (X[..., 1] - 2) ** 2 + (X[..., 2] - 1) ** 2 + (X[..., 3] - 4) ** 2 + (X[..., 4] - 1) ** 2 ) f2 = (X**2).sum(-1) return torch.stack([f1, f2], dim=-1) def evaluate_slack_true(self, X: Tensor) -> Tensor: g1 = X[..., 0] + X[..., 1] - 2.0 g2 = 6.0 - X[..., 0] - X[..., 1] g3 = 2.0 - X[..., 1] + X[..., 0] g4 = 2.0 - X[..., 0] + 3.0 * X[..., 1] g5 = 4.0 - (X[..., 2] - 3.0) ** 2 - X[..., 3] g6 = (X[..., 4] - 3.0) ** 2 + X[..., 5] - 4.0 return torch.stack([g1, g2, g3, g4, g5, g6], dim=-1) class SRN(MultiObjectiveTestProblem, ConstrainedBaseTestProblem): r"""The constrained SRN problem. See [GarridoMerchan2020]_ for more details on this problem. Note that this is a minimization problem. """ dim = 2 num_objectives = 2 num_constraints = 2 _bounds = [(-20.0, 20.0), (-20.0, 20.0)] _ref_point = [0.0, 0.0] # TODO: Determine proper reference point def evaluate_true(self, X: Tensor) -> Tensor: obj1 = 2.0 + ((X - 2.0) ** 2).sum(dim=-1) obj2 = 9.0 * X[..., 0] - (X[..., 1] - 1.0) ** 2 return torch.stack([obj1, obj2], dim=-1) def evaluate_slack_true(self, X: Tensor) -> Tensor: c1 = 225.0 - ((X**2) ** 2).sum(dim=-1) c2 = -10.0 - X[..., 0] + 3 * X[..., 1] return torch.stack([c1, c2], dim=-1) class WeldedBeam(MultiObjectiveTestProblem, ConstrainedBaseTestProblem): r""" The Welded Beam multi-objective test problem. Similar to `WeldedBeamSO` in `botorch.test_function.synthetic`, but with an additional output, somewhat modified constraints, and a different domain. Implementation from https://github.com/msu-coinlab/pymoo/blob/master/pymoo/problems/multi/welded_beam.py Note that this implementation assumes minimization, so please choose negate=True. """ dim = 4 num_constraints = 4 num_objectives = 2 _bounds = [ (0.125, 5.0), (0.1, 10.0), (0.1, 10.0), (0.125, 5.0), ] _ref_point = [40, 0.015] def evaluate_true(self, X: Tensor) -> Tensor: # We could do the following, but the constraints are using somewhat # different numbers (see below). # f1 = WeldedBeam.evaluate_true(self, X) x1, x2, x3, x4 = X.unbind(-1) f1 = 1.10471 * (x1**2) * x2 + 0.04811 * x3 * x4 * (14.0 + x2) f2 = 2.1952 / (x4 * x3**3) return torch.stack([f1, f2], dim=-1) def evaluate_slack_true(self, X: Tensor) -> Tensor: x1, x2, x3, x4 = X.unbind(-1) P = 6000.0 L = 14.0 t_max = 13600.0 s_max = 30000.0 # Ideally, we could just do the following, but the numbers in the # single-outcome WeldedBeam are different (see below) # g1_, g2_, g3_, _, _, g6_ = WeldedBeam.evaluate_slack_true(self, X) # g1 = g1_ / t_max # g2 = g2_ / s_max # g3 = 1 / (5 - 0.125) * g3_ # g4 = 1 / P * g6_ R = torch.sqrt(0.25 * (x2**2 + (x1 + x3) ** 2)) M = P * (L + x2 / 2) # This `J` is different than the one in [CoelloCoello2002constraint]_ # by a factor of 2 (sqrt(2) instead of sqrt(0.5)) J = 2 * math.sqrt(0.5) * x1 * x2 * (x2**2 / 12 + 0.25 * (x1 + x3) ** 2) t1 = P / (math.sqrt(2) * x1 * x2) t2 = M * R / J t = torch.sqrt(t1**2 + t1 * t2 * x2 / R + t2**2) s = 6 * P * L / (x4 * x3**2) # These numbers are also different from [CoelloCoello2002constraint]_ P_c = 64746.022 * (1 - 0.0282346 * x3) * x3 * x4**3 g1 = (t - t_max) / t_max g2 = (s - s_max) / s_max g3 = 1 / (5 - 0.125) * (x1 - x4) g4 = (P - P_c) / P return torch.stack([g1, g2, g3, g4], dim=-1)
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. r""" Multi-objective multi-fidelity optimization benchmark problems. References .. [Irshad2021] F. Irshad, S. Karsch, and A. Döpp. Expected hypervolume improvement for simultaneous multi-objective and multi-fidelity optimization. arXiv preprint arXiv:2112.13901, 2021. """ import math import torch from botorch.test_functions.base import MultiObjectiveTestProblem from torch import Tensor class MOMFBraninCurrin(MultiObjectiveTestProblem): r"""Branin-Currin problem for multi-objective-multi-fidelity optimization. (2+1)-dimensional function with domain `[0,1]^3` where the last dimension is the fidelity parameter `s`. Both functions assume minimization. See [Irshad2021]_ for more details. Modified Branin function: B(x,s) = 21-(( 15*x_2 - b(s) * (15 * x_1 - 5) ** 2 + c(s) * (15 * x_1 - 5) - 6 ) ** 2 + 10 * (1 - t(s)) * cos(15 * x_1 - 5)+10)/22 Here `b`, `c`, `r` and `t` are constants and `s` is the fidelity parameter: where `b = 5.1 / (4 * math.pi ** 2) - 0.01(1-s)`, `c = 5 / math.pi - 0.1*(1 - s)`, `r = 6`, `t = 1 / (8 * math.pi) + 0.05*(1-s)` Modified Currin function: C(x) = 14-((1 - 0.1(1-s)exp(-1 / (2 * x_2))) * ( 2300 * x_1 ** 3 + 1900 * x_1 ** 2 + 2092 * x_1 + 60 ) / 100 * x_1 ** 3 + 500 * x_1 ** 2 + 4 * x_2 + 20)/15 """ dim = 3 num_objectives = 2 _bounds = [(0.0, 1.0) for _ in range(dim)] _ref_point = [0, 0] _max_hv = 0.5235514158034145 def _branin(self, X: Tensor) -> Tensor: x1 = X[..., 0] x2 = X[..., 1] s = X[..., 2] x11 = 15 * x1 - 5 x22 = 15 * x2 b = 5.1 / (4 * math.pi**2) - 0.01 * (1 - s) c = 5 / math.pi - 0.1 * (1 - s) r = 6 t = 1 / (8 * math.pi) + 0.05 * (1 - s) y = (x22 - b * x11**2 + c * x11 - r) ** 2 + 10 * (1 - t) * torch.cos(x11) + 10 B = 21 - y return B / 22 def _currin(self, X: Tensor) -> Tensor: x1 = X[..., 0] x2 = X[..., 1] s = X[..., 2] A = 2300 * x1**3 + 1900 * x1**2 + 2092 * x1 + 60 B = 100 * x1**3 + 500 * x1**2 + 4 * x1 + 20 y = (1 - 0.1 * (1 - s) * torch.exp(-1 / (2 * x2))) * A / B C = -y + 14 return C / 15 def evaluate_true(self, X: Tensor) -> Tensor: branin = self._branin(X) currin = self._currin(X) return torch.stack([-branin, -currin], dim=-1) class MOMFPark(MultiObjectiveTestProblem): r"""Modified Park test functions for multi-objective multi-fidelity optimization. (4+1)-dimensional function with domain `[0,1]^5` where the last dimension is the fidelity parameter `s`. See [Irshad2021]_ for more details. The first modified Park function is P1(x, s)=A*(T1(x,s)+T2(x,s)-B)/22-0.8 The second modified Park function is P2(x,s)=A*(5-2/3*exp(x1+x2)-x4*sin(x3)*A+x3-B)/4 - 0.7 Here T_1(x,s) = (x1+0.001*(1-s))/2*sqrt(1+(x2+x3**2)*x4/(x1**2)) T_2(x, s) = (x1+3*x4)*exp(1+sin(x3)) and `A(s)=(0.9+0.1*s)`, `B(s)=0.1*(1-s)`. """ dim = 5 num_objectives = 2 _bounds = [(0.0, 1.0) for _ in range(dim)] _ref_point = [0, 0] _max_hv = 0.08551927363087991 def _transform(self, X: Tensor) -> Tensor: x1 = X[..., 0] x2 = X[..., 1] x3 = X[..., 2] x4 = X[..., 3] s = X[..., 4] _x1 = 1 - 2 * (x1 - 0.6) ** 2 _x2 = x2 _x3 = 1 - 3 * (x3 - 0.5) ** 2 _x4 = 1 - (x4 - 0.8) ** 2 return torch.stack([_x1, _x2, _x3, _x4, s], dim=-1) def _park1(self, X: Tensor) -> Tensor: x1 = X[..., 0] x2 = X[..., 1] x3 = X[..., 2] x4 = X[..., 3] s = X[..., 4] T1 = ( (x1 + 1e-3 * (1 - s)) / 2 * torch.sqrt(1 + (x2 + x3**2) * x4 / (x1**2 + 1e-4)) ) T2 = (x1 + 3 * x4) * torch.exp(1 + torch.sin(x3)) A = 0.9 + 0.1 * s B = 0.1 * (1 - s) return A * (T1 + T2 - B) / 22 - 0.8 def _park2(self, X: Tensor) -> Tensor: x1 = X[..., 0] x2 = X[..., 1] x3 = X[..., 2] x4 = X[..., 3] s = X[..., 4] A = 0.9 + 0.1 * s B = 0.1 * (1 - s) return ( A * (5 - 2 / 3 * torch.exp(x1 + x2) + x4 * torch.sin(x3) * A - x3 + B) / 4 - 0.7 ) def evaluate_true(self, X: Tensor) -> Tensor: X = self._transform(X) park1 = self._park1(X) park2 = self._park2(X) return torch.stack([-park1, -park2], dim=-1)
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from botorch.test_functions.multi_fidelity import ( AugmentedBranin, AugmentedHartmann, AugmentedRosenbrock, ) from botorch.test_functions.multi_objective import ( BNH, BraninCurrin, C2DTLZ2, CarSideImpact, CONSTR, ConstrainedBraninCurrin, DiscBrake, DTLZ1, DTLZ2, DTLZ3, DTLZ4, DTLZ5, DTLZ7, GMM, MW7, OSY, Penicillin, SRN, ToyRobust, VehicleSafety, WeldedBeam, ZDT1, ZDT2, ZDT3, ) from botorch.test_functions.multi_objective_multi_fidelity import ( MOMFBraninCurrin, MOMFPark, ) from botorch.test_functions.synthetic import ( Ackley, Beale, Branin, Bukin, Cosine8, DixonPrice, DropWave, EggHolder, Griewank, Hartmann, HolderTable, Levy, Michalewicz, Powell, PressureVessel, Rastrigin, Rosenbrock, Shekel, SixHumpCamel, SpeedReducer, StyblinskiTang, SyntheticTestFunction, TensionCompressionString, ThreeHumpCamel, WeldedBeamSO, ) __all__ = [ "Ackley", "AugmentedBranin", "AugmentedHartmann", "AugmentedRosenbrock", "Beale", "BNH", "Branin", "BraninCurrin", "Bukin", "CONSTR", "Cosine8", "CarSideImpact", "ConstrainedBraninCurrin", "C2DTLZ2", "DiscBrake", "DixonPrice", "DropWave", "DTLZ1", "DTLZ2", "DTLZ3", "DTLZ4", "DTLZ5", "DTLZ7", "EggHolder", "GMM", "Griewank", "Hartmann", "HolderTable", "Levy", "Michalewicz", "MW7", "OSY", "Penicillin", "Powell", "PressureVessel", "Rastrigin", "Rosenbrock", "Shekel", "SixHumpCamel", "SpeedReducer", "SRN", "StyblinskiTang", "SyntheticTestFunction", "TensionCompressionString", "ThreeHumpCamel", "ToyRobust", "VehicleSafety", "WeldedBeam", "WeldedBeamSO", "ZDT1", "ZDT2", "ZDT3", "MOMFBraninCurrin", "MOMFPark", ]
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math from typing import List, Optional, Tuple import torch from botorch.test_functions.synthetic import SyntheticTestFunction from torch import Tensor class Ishigami(SyntheticTestFunction): r"""Ishigami test function. three-dimensional function (usually evaluated on `[-pi, pi]^3`): f(x) = sin(x_1) + a sin(x_2)^2 + b x_3^4 sin(x_1) Here `a` and `b` are constants where a=7 and b=0.1 or b=0.05 Proposed to test sensitivity analysis methods because it exhibits strong nonlinearity and nonmonotonicity and a peculiar dependence on x_3. """ def __init__( self, b: float = 0.1, noise_std: Optional[float] = None, negate: bool = False ) -> None: r""" Args: b: the b constant, should be 0.1 or 0.05. noise_std: Standard deviation of the observation noise. negative: If True, negative the objective. """ self._optimizers = None if b not in (0.1, 0.05): raise ValueError("b parameter should be 0.1 or 0.05") self.dim = 3 if b == 0.1: self.si = [0.3138, 0.4424, 0] self.si_t = [0.558, 0.442, 0.244] self.s_ij = [0, 0.244, 0] self.dgsm_gradient = [-0.0004, -0.0004, -0.0004] self.dgsm_gradient_abs = [1.9, 4.45, 1.97] self.dgsm_gradient_square = [7.7, 24.5, 11] elif b == 0.05: self.si = [0.218, 0.687, 0] self.si_t = [0.3131, 0.6868, 0.095] self.s_ij = [0, 0.094, 0] self.dgsm_gradient = [-0.0002, -0.0002, -0.0002] self.dgsm_gradient_abs = [1.26, 4.45, 1.97] self.dgsm_gradient_square = [2.8, 24.5, 11] self._bounds = [(-math.pi, math.pi) for _ in range(self.dim)] self.b = b super().__init__(noise_std=noise_std, negate=negate) @property def _optimal_value(self) -> float: raise NotImplementedError def compute_dgsm(self, X: Tensor) -> Tuple[List[float], List[float], List[float]]: r"""Compute derivative global sensitivity measures. This function can be called separately to estimate the dgsm measure The exact global integrals of these values are already added under as attributes dgsm_gradient, dgsm_gradient_bas, and dgsm_gradient_square. Args: X: Set of points at which to compute derivative measures. Returns: The average gradient, absolute gradient, and square gradients. """ dx_1 = torch.cos(X[..., 0]) * (1 + self.b * (X[..., 2] ** 4)) dx_2 = 14 * torch.cos(X[..., 1]) * torch.sin(X[..., 1]) dx_3 = 0.4 * (X[..., 2] ** 3) * torch.sin(X[..., 0]) gradient_measure = [ torch.mean(dx_1).item(), torch.mean(dx_1).item(), torch.mean(dx_1).item(), ] gradient_absolute_measure = [ torch.mean(torch.abs(dx_1)).item(), torch.mean(torch.abs(dx_2)).item(), torch.mean(torch.abs(dx_3)).item(), ] gradient_square_measure = [ torch.mean(torch.pow(dx_1, 2)).item(), torch.mean(torch.pow(dx_2, 2)).item(), torch.mean(torch.pow(dx_3, 2)).item(), ] return gradient_measure, gradient_absolute_measure, gradient_square_measure def evaluate_true(self, X: Tensor) -> Tensor: self.to(device=X.device, dtype=X.dtype) t = ( torch.sin(X[..., 0]) + 7 * (torch.sin(X[..., 1]) ** 2) + self.b * (X[..., 2] ** 4) * torch.sin(X[..., 0]) ) return t class Gsobol(SyntheticTestFunction): r"""Gsobol test function. d-dimensional function (usually evaluated on `[0, 1]^d`): f(x) = Prod_{i=1}\^{d} ((\|4x_i-2\|+a_i)/(1+a_i)), a_i >=0 common combinations of dimension and a vector: dim=8, a= [0, 1, 4.5, 9, 99, 99, 99, 99] dim=6, a=[0, 0.5, 3, 9, 99, 99] dim = 15, a= [1, 2, 5, 10, 20, 50, 100, 500, 1000, ..., 1000] Proposed to test sensitivity analysis methods First order Sobol indices have closed form expression S_i=V_i/V with : V_i= 1/(3(1+a_i)\^2) V= Prod_{i=1}\^{d} (1+V_i) - 1 """ def __init__( self, dim: int, a: List = None, noise_std: Optional[float] = None, negate: bool = False, ) -> None: r""" Args: dim: Dimensionality of the problem. If 6, 8, or 15, will use standard a. a: a parameter, unless dim is 6, 8, or 15. noise_std: Standard deviation of observation noise. negate: Return negatie of function. """ self._optimizers = None self.dim = dim self._bounds = [(0, 1) for _ in range(self.dim)] if self.dim == 6: self.a = [0, 0.5, 3, 9, 99, 99] elif self.dim == 8: self.a = [0, 1, 4.5, 9, 99, 99, 99, 99] elif self.dim == 15: self.a = [ 1, 2, 5, 10, 20, 50, 100, 500, 1000, 1000, 1000, 1000, 1000, 1000, 1000, ] else: self.a = a self.optimal_sobol_indicies() super().__init__(noise_std=noise_std, negate=negate) @property def _optimal_value(self) -> float: raise NotImplementedError def optimal_sobol_indicies(self): vi = [] for i in range(self.dim): vi.append(1 / (3 * ((1 + self.a[i]) ** 2))) self.vi = Tensor(vi) self.V = torch.prod((1 + self.vi)) - 1 self.si = self.vi / self.V si_t = [] for i in range(self.dim): si_t.append( ( self.vi[i] * torch.prod(self.vi[:i] + 1) * torch.prod(self.vi[i + 1 :] + 1) ) / self.V ) self.si_t = Tensor(si_t) def evaluate_true(self, X: Tensor) -> Tensor: self.to(device=X.device, dtype=X.dtype) t = 1 for i in range(self.dim): t = t * (torch.abs(4 * X[..., i] - 2) + self.a[i]) / (1 + self.a[i]) return t class Morris(SyntheticTestFunction): r"""Morris test function. 20-dimensional function (usually evaluated on `[0, 1]^20`): f(x) = sum_{i=1}\^20 beta_i w_i + sum_{i<j}\^20 beta_ij w_i w_j + sum_{i<j<l}\^20 beta_ijl w_i w_j w_l + 5w_1 w_2 w_3 w_4 Proposed to test sensitivity analysis methods """ def __init__(self, noise_std: Optional[float] = None, negate: bool = False) -> None: r""" Args: noise_std: Standard deviation of observation noise. negate: Return negative of function. """ self._optimizers = None self.dim = 20 self._bounds = [(0, 1) for _ in range(self.dim)] self.si = [ 0.005, 0.008, 0.017, 0.009, 0.016, 0, 0.069, 0.1, 0.15, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ] super().__init__(noise_std=noise_std, negate=negate) @property def _optimal_value(self) -> float: raise NotImplementedError def evaluate_true(self, X: Tensor) -> Tensor: self.to(device=X.device, dtype=X.dtype) W = [] t1 = 0 t2 = 0 t3 = 0 for i in range(self.dim): if i in [2, 4, 6]: wi = 2 * (1.1 * X[..., i] / (X[..., i] + 0.1) - 0.5) else: wi = 2 * (X[..., i] - 0.5) W.append(wi) if i < 10: betai = 20 else: betai = (-1) ** (i + 1) t1 = t1 + betai * wi for i in range(self.dim): for j in range(i + 1, self.dim): if i < 6 or j < 6: beta_ij = -15 else: beta_ij = (-1) ** (i + j + 2) t2 = t2 + beta_ij * W[i] * W[j] for k in range(j + 1, self.dim): if i < 5 or j < 5 or k < 5: beta_ijk = -10 else: beta_ijk = 0 t3 = t3 + beta_ijk * W[i] * W[j] * W[k] t4 = 5 * W[0] * W[1] * W[2] * W[3] return t1 + t2 + t3 + t4
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from __future__ import annotations from typing import Optional, Tuple import torch from torch import Tensor def round_nearest( X: Tensor, increment: float, bounds: Optional[Tuple[float, float]] ) -> Tensor: r"""Rounds the input tensor to the nearest multiple of `increment`. Args: X: The input to be rounded. increment: The increment to round to. bounds: An optional tuple of two floats representing the lower and upper bounds on `X`. If provided, this will round to the nearest multiple of `increment` that lies within the bounds. Returns: The rounded input. """ X_round = torch.round(X / increment) * increment if bounds is not None: X_round = torch.where(X_round < bounds[0], X_round + increment, X_round) X_round = torch.where(X_round > bounds[1], X_round - increment, X_round) return X_round
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. r""" Base class for test functions for optimization benchmarks. """ from __future__ import annotations from abc import ABC, abstractmethod from typing import List, Optional, Tuple import torch from botorch.exceptions.errors import InputDataError from torch import Tensor from torch.nn import Module class BaseTestProblem(Module, ABC): r"""Base class for test functions.""" dim: int _bounds: List[Tuple[float, float]] _check_grad_at_opt: bool = True def __init__(self, noise_std: Optional[float] = None, negate: bool = False) -> None: r"""Base constructor for test functions. Args: noise_std: Standard deviation of the observation noise. negate: If True, negate the function. """ super().__init__() self.noise_std = noise_std self.negate = negate if len(self._bounds) != self.dim: raise InputDataError( "Expected the bounds to match the dimensionality of the domain. " f"Got {self.dim=} and {len(self._bounds)=}." ) self.register_buffer( "bounds", torch.tensor(self._bounds, dtype=torch.double).transpose(-1, -2) ) def forward(self, X: Tensor, noise: bool = True) -> Tensor: r"""Evaluate the function on a set of points. Args: X: A `batch_shape x d`-dim tensor of point(s) at which to evaluate the function. noise: If `True`, add observation noise as specified by `noise_std`. Returns: A `batch_shape`-dim tensor ouf function evaluations. """ batch = X.ndimension() > 1 X = X if batch else X.unsqueeze(0) f = self.evaluate_true(X=X) if noise and self.noise_std is not None: f += self.noise_std * torch.randn_like(f) if self.negate: f = -f return f if batch else f.squeeze(0) @abstractmethod def evaluate_true(self, X: Tensor) -> Tensor: r"""Evaluate the function (w/o observation noise) on a set of points.""" pass # pragma: no cover class ConstrainedBaseTestProblem(BaseTestProblem, ABC): r"""Base class for test functions with constraints. In addition to one or more objectives, a problem may have a number of outcome constraints of the form `c_i(x) >= 0` for `i=1, ..., n_c`. This base class provides common functionality for such problems. """ num_constraints: int _check_grad_at_opt: bool = False def evaluate_slack(self, X: Tensor, noise: bool = True) -> Tensor: r"""Evaluate the constraint slack on a set of points. Constraints `i` is assumed to be feasible at `x` if the associated slack `c_i(x)` is positive. Zero slack means that the constraint is active. Negative slack means that the constraint is violated. Args: X: A `batch_shape x d`-dim tensor of point(s) at which to evaluate the constraint slacks: `c_1(X), ...., c_{n_c}(X)`. noise: If `True`, add observation noise to the slack as specified by `noise_std`. Returns: A `batch_shape x n_c`-dim tensor of constraint slack (where positive slack corresponds to the constraint being feasible). """ cons = self.evaluate_slack_true(X=X) if noise and self.noise_std is not None: # TODO: Allow different noise levels for objective and constraints (and # different noise levels between different constraints) cons += self.noise_std * torch.randn_like(cons) return cons def is_feasible(self, X: Tensor, noise: bool = True) -> Tensor: r"""Evaluate whether the constraints are feasible on a set of points. Args: X: A `batch_shape x d`-dim tensor of point(s) at which to evaluate the constraints. noise: If `True`, add observation noise as specified by `noise_std`. Returns: A `batch_shape`-dim boolean tensor that is `True` iff all constraint slacks (potentially including observation noise) are positive. """ return (self.evaluate_slack(X=X, noise=noise) >= 0.0).all(dim=-1) @abstractmethod def evaluate_slack_true(self, X: Tensor) -> Tensor: r"""Evaluate the constraint slack (w/o observation noise) on a set of points. Args: X: A `batch_shape x d`-dim tensor of point(s) at which to evaluate the constraint slacks: `c_1(X), ...., c_{n_c}(X)`. Returns: A `batch_shape x n_c`-dim tensor of constraint slack (where positive slack corresponds to the constraint being feasible). """ pass # pragma: no cover class MultiObjectiveTestProblem(BaseTestProblem): r"""Base class for test multi-objective test functions. TODO: add a pareto distance function that returns the distance between a provided point and the closest point on the true pareto front. """ num_objectives: int _ref_point: List[float] _max_hv: float def __init__(self, noise_std: Optional[float] = None, negate: bool = False) -> None: r"""Base constructor for multi-objective test functions. Args: noise_std: Standard deviation of the observation noise. negate: If True, negate the objectives. """ super().__init__(noise_std=noise_std, negate=negate) ref_point = torch.tensor(self._ref_point, dtype=torch.float) if negate: ref_point *= -1 self.register_buffer("ref_point", ref_point) @property def max_hv(self) -> float: try: return self._max_hv except AttributeError: raise NotImplementedError( f"Problem {self.__class__.__name__} does not specify maximal " "hypervolume." ) def gen_pareto_front(self, n: int) -> Tensor: r"""Generate `n` pareto optimal points.""" raise NotImplementedError
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. r""" Synthetic functions for multi-fidelity optimization benchmarks. """ from __future__ import annotations import math from typing import Optional import torch from botorch.test_functions.synthetic import SyntheticTestFunction from torch import Tensor class AugmentedBranin(SyntheticTestFunction): r"""Augmented Branin test function for multi-fidelity optimization. 3-dimensional function with domain `[-5, 10] x [0, 15] * [0,1]`, where the last dimension of is the fidelity parameter: B(x) = (x_2 - (b - 0.1 * (1 - x_3))x_1^2 + c x_1 - r)^2 + 10 (1-t) cos(x_1) + 10 Here `b`, `c`, `r` and `t` are constants where `b = 5.1 / (4 * math.pi ** 2)` `c = 5 / math.pi`, `r = 6`, `t = 1 / (8 * math.pi)`. B has infinitely many minimizers with `x_1 = -pi, pi, 3pi` and `B_min = 0.397887` """ dim = 3 _bounds = [(-5.0, 10.0), (0.0, 15.0), (0.0, 1.0)] _optimal_value = 0.397887 _optimizers = [ # this is a subset, ther are infinitely many optimizers (-math.pi, 12.275, 1), (math.pi, 1.3867356039019576, 0.1), (math.pi, 1.781519779945532, 0.5), (math.pi, 2.1763039559891064, 0.9), ] def evaluate_true(self, X: Tensor) -> Tensor: t1 = ( X[..., 1] - (5.1 / (4 * math.pi**2) - 0.1 * (1 - X[:, 2])) * X[:, 0] ** 2 + 5 / math.pi * X[..., 0] - 6 ) t2 = 10 * (1 - 1 / (8 * math.pi)) * torch.cos(X[..., 0]) return t1**2 + t2 + 10 class AugmentedHartmann(SyntheticTestFunction): r"""Augmented Hartmann synthetic test function. 7-dimensional function (typically evaluated on `[0, 1]^7`), where the last dimension is the fidelity parameter. H(x) = -(ALPHA_1 - 0.1 * (1-x_7)) * exp(- sum_{j=1}^6 A_1j (x_j - P_1j) ** 2) - sum_{i=2}^4 ALPHA_i exp( - sum_{j=1}^6 A_ij (x_j - P_ij) ** 2) H has a unique global minimizer `x = [0.20169, 0.150011, 0.476874, 0.275332, 0.311652, 0.6573, 1.0]` with `H_min = -3.32237` """ dim = 7 _bounds = [(0.0, 1.0) for _ in range(7)] _optimal_value = -3.32237 _optimizers = [(0.20169, 0.150011, 0.476874, 0.275332, 0.311652, 0.6573, 1.0)] _check_grad_at_opt = False def __init__(self, noise_std: Optional[float] = None, negate: bool = False) -> None: r""" Args: noise_std: Standard deviation of the observation noise. negate: If True, negate the function. """ super().__init__(noise_std=noise_std, negate=negate) self.register_buffer("ALPHA", torch.tensor([1.0, 1.2, 3.0, 3.2])) A = [ [10, 3, 17, 3.5, 1.7, 8], [0.05, 10, 17, 0.1, 8, 14], [3, 3.5, 1.7, 10, 17, 8], [17, 8, 0.05, 10, 0.1, 14], ] P = [ [1312, 1696, 5569, 124, 8283, 5886], [2329, 4135, 8307, 3736, 1004, 9991], [2348, 1451, 3522, 2883, 3047, 6650], [4047, 8828, 8732, 5743, 1091, 381], ] self.register_buffer("A", torch.tensor(A, dtype=torch.float)) self.register_buffer("P", torch.tensor(P, dtype=torch.float)) def evaluate_true(self, X: Tensor) -> Tensor: self.to(device=X.device, dtype=X.dtype) inner_sum = torch.sum( self.A * (X[..., :6].unsqueeze(-2) - 0.0001 * self.P) ** 2, dim=-1 ) alpha1 = self.ALPHA[0] - 0.1 * (1 - X[..., 6]) H = ( -(torch.sum(self.ALPHA[1:] * torch.exp(-inner_sum)[..., 1:], dim=-1)) - alpha1 * torch.exp(-inner_sum)[..., 0] ) return H class AugmentedRosenbrock(SyntheticTestFunction): r"""Augmented Rosenbrock synthetic test function for multi-fidelity optimization. d-dimensional function (usually evaluated on `[-5, 10]^(d-2) * [0, 1]^2`), where the last two dimensions are the fidelity parameters: f(x) = sum_{i=1}^{d-1} (100 (x_{i+1} - x_i^2 + 0.1 * (1-x_{d-1}))^2 + (x_i - 1 + 0.1 * (1 - x_d)^2)^2) f has one minimizer for its global minimum at `z_1 = (1, 1, ..., 1)` with `f(z_i) = 0.0`. """ _optimal_value = 0.0 def __init__( self, dim=3, noise_std: Optional[float] = None, negate: bool = False ) -> None: r""" Args: dim: The (input) dimension. Must be at least 3. noise_std: Standard deviation of the observation noise. negate: If True, negate the function. """ if dim < 3: raise ValueError( "AugmentedRosenbrock must be defined it at least 3 dimensions" ) self.dim = dim self._bounds = [(-5.0, 10.0) for _ in range(self.dim)] self._optimizers = [tuple(1.0 for _ in range(self.dim))] super().__init__(noise_std=noise_std, negate=negate) def evaluate_true(self, X: Tensor) -> Tensor: X_curr = X[..., :-3] X_next = X[..., 1:-2] t1 = 100 * (X_next - X_curr**2 + 0.1 * (1 - X[..., -2:-1])) ** 2 t2 = (X_curr - 1 + 0.1 * (1 - X[..., -1:]) ** 2) ** 2 return -((t1 + t2).sum(dim=-1))
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. r""" Preference acquisition functions. This includes: Analytical EUBO acquisition function as introduced in [Lin2022preference]_. .. [Lin2022preference] Lin, Z.J., Astudillo, R., Frazier, P.I. and Bakshy, E. Preference Exploration for Efficient Bayesian Optimization with Multiple Outcomes. International Conference on Artificial Intelligence and Statistics (AISTATS), 2022. .. [Houlsby2011bald] Houlsby, N., Huszár, F., Ghahramani, Z. and Lengyel, M. Bayesian Active Learning for Gaussian Process Classification. NIPS Workshop on Bayesian optimization, experimental design and bandits: Theory and applications, 2011. """ from __future__ import annotations from typing import Any, Optional import torch from botorch.acquisition import AnalyticAcquisitionFunction from botorch.acquisition.monte_carlo import MCAcquisitionFunction from botorch.exceptions.errors import UnsupportedError from botorch.models.deterministic import DeterministicModel from botorch.models.model import Model from botorch.utils.transforms import match_batch_shape, t_batch_mode_transform from torch import Tensor from torch.distributions import Bernoulli, Normal SIGMA_JITTER = 1e-8 class AnalyticExpectedUtilityOfBestOption(AnalyticAcquisitionFunction): r"""Analytic Prefential Expected Utility of Best Options, i.e., Analytical EUBO""" def __init__( self, pref_model: Model, outcome_model: Optional[DeterministicModel] = None, previous_winner: Optional[Tensor] = None, ) -> None: r"""Analytic implementation of Expected Utility of the Best Option under the Laplace model (assumes a PairwiseGP is used as the preference model) as proposed in [Lin2022preference]_. Args: pref_model: The preference model that maps the outcomes (i.e., Y) to scalar-valued utility. outcome_model: A deterministic model that maps parameters (i.e., X) to outcomes (i.e., Y). The outcome model f defines the search space of Y = f(X). If model is None, we are directly calculating EUBO on the parameter space. When used with `OneSamplePosteriorDrawModel`, we are obtaining EUBO-zeta as described in [Lin2022preference]_. previous_winner: Tensor representing the previous winner in the Y space. """ super().__init__(model=pref_model) # ensure the model is in eval mode self.add_module("outcome_model", outcome_model) self.register_buffer("previous_winner", previous_winner) tkwargs = { "dtype": pref_model.datapoints.dtype, "device": pref_model.datapoints.device, } std_norm = torch.distributions.normal.Normal( torch.zeros(1, **tkwargs), torch.ones(1, **tkwargs), ) self.std_norm = std_norm @t_batch_mode_transform() def forward(self, X: Tensor) -> Tensor: r"""Evaluate analytical EUBO on the candidate set X. Args: X: A `batch_shape x q x d`-dim Tensor, where `q = 2` if `previous_winner` is not `None`, and `q = 1` otherwise. Returns: The acquisition value for each batch as a tensor of shape `batch_shape`. """ if not ( ((X.shape[-2] == 2) and (self.previous_winner is None)) or ((X.shape[-2] == 1) and (self.previous_winner is not None)) ): raise UnsupportedError( f"{self.__class__.__name__} only support q=2 or q=1" "with a previous winner specified" ) Y = X if self.outcome_model is None else self.outcome_model(X) if self.previous_winner is not None: Y = torch.cat([Y, match_batch_shape(self.previous_winner, Y)], dim=-2) pref_posterior = self.model.posterior(Y) pref_mean = pref_posterior.mean.squeeze(-1) pref_cov = pref_posterior.covariance_matrix delta = pref_mean[..., 0] - pref_mean[..., 1] w = torch.tensor([1.0, -1.0], dtype=pref_cov.dtype, device=pref_cov.device) var = w @ pref_cov @ w sigma = torch.sqrt(var.clamp(min=SIGMA_JITTER)) u = delta / sigma ucdf = self.std_norm.cdf(u) updf = torch.exp(self.std_norm.log_prob(u)) acqf_val = sigma * (updf + u * ucdf) if self.previous_winner is None: acqf_val = acqf_val + pref_mean[..., 1] return acqf_val class PairwiseBayesianActiveLearningByDisagreement(MCAcquisitionFunction): r"""MC Bayesian Active Learning by Disagreement""" def __init__( self, pref_model: Model, outcome_model: Optional[DeterministicModel] = None, num_samples: Optional[int] = 1024, std_noise: Optional[float] = 0.0, **kwargs: Any, ) -> None: """ Monte Carlo implementation of Bayesian Active Learning by Disagreement (BALD) proposed in [Houlsby2011bald]_. Args: pref_model: The preference model that maps the outcomes (i.e., Y) to scalar-valued utility. outcome_model: A deterministic model that maps parameters (i.e., X) to outcomes (i.e., Y). The outcome model f defines the search space of Y = f(X). If model is None, we are directly calculating BALD on the parameter space. num_samples: number of samples to approximate the conditional_entropy. std_noise: Additional observational noise to include. Defaults to 0. """ super().__init__(model=pref_model) # ensure the model is in eval mode self.add_module("outcome_model", outcome_model) self.num_samples = num_samples # assuming the relative observation noise is fixed at 1.0 (e.g., in PairwiseGP) self.std_noise = std_noise self.std_normal = Normal(0, 1) @t_batch_mode_transform(expected_q=2) def forward(self, X: Tensor) -> Tensor: r"""Evaluate MC BALD on the candidate set `X`. Args: X: A `batch_shape x 2 x d`-dim Tensor of t-batches with `q=2` `d`-dim design points each. Returns: A `batch_shape'`-dim Tensor of MC BALD values at the given design points pair `X`, where `batch_shape'` is the broadcasted batch shape of model and input `X`. """ Y = X if self.outcome_model is None else self.outcome_model(X) pref_posterior = self.model.posterior(Y) pref_mean = pref_posterior.mean.squeeze(-1) pref_cov = pref_posterior.covariance_matrix mu = pref_mean[..., 0] - pref_mean[..., 1] w = torch.tensor([1.0, -1.0], dtype=pref_cov.dtype, device=pref_cov.device) var = 2 * self.std_noise + w @ pref_cov @ w sigma = torch.sqrt(var.clamp(min=SIGMA_JITTER)) # eq (3) in Houlsby, et al. (2011) posterior_entropies = Bernoulli( self.std_normal.cdf(mu / torch.sqrt(var + 1)) ).entropy() # Sample-based approx to eq (4) in Houlsby, et al. (2011) obj_samples = self.std_normal.cdf( Normal(loc=mu, scale=sigma).rsample(torch.Size([self.num_samples])) ) sample_entropies = Bernoulli(obj_samples).entropy() conditional_entropies = sample_entropies.mean(dim=0) return posterior_entropies - conditional_entropies
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. r""" Modules to add regularization to acquisition functions. """ from __future__ import annotations import math from typing import Any, Callable, List, Optional import torch from botorch.acquisition.acquisition import AcquisitionFunction from botorch.acquisition.analytic import AnalyticAcquisitionFunction from botorch.acquisition.objective import GenericMCObjective from botorch.exceptions import UnsupportedError from torch import Tensor class L2Penalty(torch.nn.Module): r"""L2 penalty class to be added to any arbitrary acquisition function to construct a PenalizedAcquisitionFunction.""" def __init__(self, init_point: Tensor): r"""Initializing L2 regularization. Args: init_point: The "1 x dim" reference point against which we want to regularize. """ super().__init__() self.init_point = init_point def forward(self, X: Tensor) -> Tensor: r""" Args: X: A "batch_shape x q x dim" representing the points to be evaluated. Returns: A tensor of size "batch_shape" representing the acqfn for each q-batch. """ regularization_term = ( torch.linalg.norm((X - self.init_point), ord=2, dim=-1).max(dim=-1).values ** 2 ) return regularization_term class L1Penalty(torch.nn.Module): r"""L1 penalty class to be added to any arbitrary acquisition function to construct a PenalizedAcquisitionFunction.""" def __init__(self, init_point: Tensor): r"""Initializing L1 regularization. Args: init_point: The "1 x dim" reference point against which we want to regularize. """ super().__init__() self.init_point = init_point def forward(self, X: Tensor) -> Tensor: r""" Args: X: A "batch_shape x q x dim" representing the points to be evaluated. Returns: A tensor of size "batch_shape" representing the acqfn for each q-batch. """ regularization_term = ( torch.linalg.norm((X - self.init_point), ord=1, dim=-1).max(dim=-1).values ) return regularization_term class GaussianPenalty(torch.nn.Module): r"""Gaussian penalty class to be added to any arbitrary acquisition function to construct a PenalizedAcquisitionFunction.""" def __init__(self, init_point: Tensor, sigma: float): r"""Initializing Gaussian regularization. Args: init_point: The "1 x dim" reference point against which we want to regularize. sigma: The parameter used in gaussian function. """ super().__init__() self.init_point = init_point self.sigma = sigma def forward(self, X: Tensor) -> Tensor: r""" Args: X: A "batch_shape x q x dim" representing the points to be evaluated. Returns: A tensor of size "batch_shape" representing the acqfn for each q-batch. """ sq_diff = torch.linalg.norm((X - self.init_point), ord=2, dim=-1) ** 2 pdf = torch.exp(sq_diff / 2 / self.sigma**2) regularization_term = pdf.max(dim=-1).values return regularization_term class GroupLassoPenalty(torch.nn.Module): r"""Group lasso penalty class to be added to any arbitrary acquisition function to construct a PenalizedAcquisitionFunction.""" def __init__(self, init_point: Tensor, groups: List[List[int]]): r"""Initializing Group-Lasso regularization. Args: init_point: The "1 x dim" reference point against which we want to regularize. groups: Groups of indices used in group lasso. """ super().__init__() self.init_point = init_point self.groups = groups def forward(self, X: Tensor) -> Tensor: r""" X should be batch_shape x 1 x dim tensor. Evaluation for q-batch is not implemented yet. """ if X.shape[-2] != 1: raise NotImplementedError( "group-lasso has not been implemented for q>1 yet." ) regularization_term = group_lasso_regularizer( X=X.squeeze(-2) - self.init_point, groups=self.groups ) return regularization_term def narrow_gaussian(X: Tensor, a: Tensor) -> Tensor: return torch.exp(-0.5 * (X / a) ** 2) def nnz_approx(X: Tensor, target_point: Tensor, a: Tensor) -> Tensor: r"""Differentiable relaxation of ||X - target_point||_0 Args: X: An `n x d` tensor of inputs. target_point: A tensor of size `n` corresponding to the target point. a: A scalar tensor that controls the differentiable relaxation. """ d = X.shape[-1] if d != target_point.shape[-1]: raise ValueError("X and target_point have different shapes.") return d - narrow_gaussian(X - target_point, a).sum(dim=-1, keepdim=True) class L0Approximation(torch.nn.Module): r"""Differentiable relaxation of the L0 norm using a Gaussian basis function.""" def __init__(self, target_point: Tensor, a: float = 1.0, **tkwargs: Any) -> None: r"""Initializing L0 penalty with differentiable relaxation. Args: target_point: A tensor corresponding to the target point. a: A hyperparameter that controls the differentiable relaxation. """ super().__init__() self.target_point = target_point # hyperparameter to control the differentiable relaxation in L0 norm function. self.register_buffer("a", torch.tensor(a, **tkwargs)) def __call__(self, X: Tensor) -> Tensor: return nnz_approx(X=X, target_point=self.target_point, a=self.a) class L0PenaltyApprox(L0Approximation): r"""Differentiable relaxation of the L0 norm to be added to any arbitrary acquisition function to construct a PenalizedAcquisitionFunction.""" def __init__(self, target_point: Tensor, a: float = 1.0, **tkwargs: Any) -> None: r"""Initializing L0 penalty with differentiable relaxation. Args: target_point: A tensor corresponding to the target point. a: A hyperparameter that controls the differentiable relaxation. """ super().__init__(target_point=target_point, a=a, **tkwargs) def __call__(self, X: Tensor) -> Tensor: r""" Args: X: A "batch_shape x q x dim" representing the points to be evaluated. Returns: A tensor of size "batch_shape" representing the acqfn for each q-batch. """ return super().__call__(X=X).squeeze(dim=-1).min(dim=-1).values class PenalizedAcquisitionFunction(AcquisitionFunction): r"""Single-outcome acquisition function regularized by the given penalty. The usage is similar to: raw_acqf = NoisyExpectedImprovement(...) penalty = GroupLassoPenalty(...) acqf = PenalizedAcquisitionFunction(raw_acqf, penalty) """ def __init__( self, raw_acqf: AcquisitionFunction, penalty_func: torch.nn.Module, regularization_parameter: float, ) -> None: r"""Initializing Group-Lasso regularization. Args: raw_acqf: The raw acquisition function that is going to be regularized. penalty_func: The regularization function. regularization_parameter: Regularization parameter used in optimization. """ super().__init__(model=raw_acqf.model) self.raw_acqf = raw_acqf self.penalty_func = penalty_func self.regularization_parameter = regularization_parameter def forward(self, X: Tensor) -> Tensor: raw_value = self.raw_acqf(X=X) penalty_term = self.penalty_func(X) return raw_value - self.regularization_parameter * penalty_term @property def X_pending(self) -> Optional[Tensor]: return self.raw_acqf.X_pending def set_X_pending(self, X_pending: Optional[Tensor] = None) -> None: if not isinstance(self.raw_acqf, AnalyticAcquisitionFunction): self.raw_acqf.set_X_pending(X_pending=X_pending) else: raise UnsupportedError( "The raw acquisition function is Analytic and does not account " "for X_pending yet." ) def group_lasso_regularizer(X: Tensor, groups: List[List[int]]) -> Tensor: r"""Computes the group lasso regularization function for the given point. Args: X: A bxd tensor representing the points to evaluate the regularization at. groups: List of indices of different groups. Returns: Computed group lasso norm of at the given points. """ return torch.sum( torch.stack( [ math.sqrt(len(g)) * torch.linalg.norm(X[..., g], ord=2, dim=-1) for g in groups ], dim=-1, ), dim=-1, ) class L1PenaltyObjective(torch.nn.Module): r""" L1 penalty objective class. An instance of this class can be added to any arbitrary objective to construct a PenalizedMCObjective. """ def __init__(self, init_point: Tensor): r"""Initializing L1 penalty objective. Args: init_point: The "1 x dim" reference point against which we want to regularize. """ super().__init__() self.init_point = init_point def forward(self, X: Tensor) -> Tensor: r""" Args: X: A "batch_shape x q x dim" representing the points to be evaluated. Returns: A "1 x batch_shape x q" tensor representing the penalty for each point. The first dimension corresponds to the dimension of MC samples. """ return torch.linalg.norm((X - self.init_point), ord=1, dim=-1).unsqueeze(dim=0) class PenalizedMCObjective(GenericMCObjective): r"""Penalized MC objective. Allows to construct a penaltized MC-objective by adding a penalty term to the original objective. mc_acq(X) = objective(X) + penalty_objective(X) Note: PenalizedMCObjective allows adding penalty at the MCObjective level, different from the AcquisitionFunction level in PenalizedAcquisitionFunction. Example: >>> regularization_parameter = 0.01 >>> init_point = torch.zeros(3) # assume data dim is 3 >>> objective = lambda Y, X: torch.sqrt(Y).sum(dim=-1) >>> l1_penalty_objective = L1PenaltyObjective(init_point=init_point) >>> l1_penalized_objective = PenalizedMCObjective( objective, l1_penalty_objective, regularization_parameter ) >>> samples = sampler(posterior) objective, l1_penalty_objective, regularization_parameter """ def __init__( self, objective: Callable[[Tensor, Optional[Tensor]], Tensor], penalty_objective: torch.nn.Module, regularization_parameter: float, expand_dim: Optional[int] = None, ) -> None: r"""Penalized MC objective. Args: objective: A callable `f(samples, X)` mapping a `sample_shape x batch-shape x q x m`-dim Tensor `samples` and an optional `batch-shape x q x d`-dim Tensor `X` to a `sample_shape x batch-shape x q`-dim Tensor of objective values. penalty_objective: A torch.nn.Module `f(X)` that takes in a `batch-shape x q x d`-dim Tensor `X` and outputs a `1 x batch-shape x q`-dim Tensor of penalty objective values. regularization_parameter: weight of the penalty (regularization) term expand_dim: dim to expand penalty_objective to match with objective when fully bayesian model is used. If None, no expansion is performed. """ super().__init__(objective=objective) self.penalty_objective = penalty_objective self.regularization_parameter = regularization_parameter self.expand_dim = expand_dim def forward(self, samples: Tensor, X: Optional[Tensor] = None) -> Tensor: r"""Evaluate the penalized objective on the samples. Args: samples: A `sample_shape x batch_shape x q x m`-dim Tensors of samples from a model posterior. X: A `batch_shape x q x d`-dim tensor of inputs. Relevant only if the objective depends on the inputs explicitly. Returns: A `sample_shape x batch_shape x q`-dim Tensor of objective values with penalty added for each point. """ obj = super().forward(samples=samples, X=X) penalty_obj = self.penalty_objective(X) # when fully bayesian model is used, we pass unmarginalize_dim to match the # shape between obj `sample_shape x batch-shape x mcmc_samples x q` and # penalty_obj `1 x batch-shape x q` if self.expand_dim is not None: # reshape penalty_obj to match the dim penalty_obj = penalty_obj.unsqueeze(self.expand_dim) return obj - self.regularization_parameter * penalty_obj class L0PenaltyApproxObjective(L0Approximation): r"""Differentiable relaxation of the L0 norm penalty objective class. An instance of this class can be added to any arbitrary objective to construct a PenalizedMCObjective. """ def __init__(self, target_point: Tensor, a: float = 1.0, **tkwargs: Any) -> None: r"""Initializing L0 penalty with differentiable relaxation. Args: target_point: A tensor corresponding to the target point. a: A hyperparameter that controls the differentiable relaxation. """ super().__init__(target_point=target_point, a=a, **tkwargs) def __call__(self, X: Tensor) -> Tensor: r""" Args: X: A "batch_shape x q x dim" representing the points to be evaluated. Returns: A "1 x batch_shape x q" tensor representing the penalty for each point. The first dimension corresponds to the dimension of MC samples. """ return super().__call__(X=X).squeeze(dim=-1).unsqueeze(dim=0)
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. r"""Objective Modules to be used with acquisition functions.""" from __future__ import annotations import inspect import warnings from abc import ABC, abstractmethod from typing import Callable, List, Optional, TYPE_CHECKING, Union import torch from botorch.exceptions.errors import BotorchTensorDimensionError, UnsupportedError from botorch.exceptions.warnings import InputDataWarning from botorch.models.model import Model from botorch.models.transforms.outcome import Standardize from botorch.posteriors.gpytorch import GPyTorchPosterior, scalarize_posterior from botorch.sampling import IIDNormalSampler, MCSampler from botorch.utils import apply_constraints from gpytorch.distributions import MultitaskMultivariateNormal, MultivariateNormal from linear_operator.operators.dense_linear_operator import to_linear_operator from torch import Tensor from torch.nn import Module if TYPE_CHECKING: from botorch.posteriors.posterior import Posterior # pragma: no cover from botorch.posteriors.posterior_list import PosteriorList # pragma: no cover class PosteriorTransform(Module, ABC): r""" Abstract base class for objectives that transform the posterior. :meta private: """ @abstractmethod def evaluate(self, Y: Tensor) -> Tensor: r"""Evaluate the transform on a set of outcomes. Args: Y: A `batch_shape x q x m`-dim tensor of outcomes. Returns: A `batch_shape x q' [x m']`-dim tensor of transformed outcomes. """ pass # pragma: no cover @abstractmethod def forward(self, posterior) -> Posterior: r"""Compute the transformed posterior. Args: posterior: The posterior to be transformed. Returns: The transformed posterior object. """ pass # pragma: no cover # import DeterministicModel after PosteriorTransform to avoid circular import from botorch.models.deterministic import DeterministicModel # noqa class ScalarizedPosteriorTransform(PosteriorTransform): r"""An affine posterior transform for scalarizing multi-output posteriors. For a Gaussian posterior at a single point (`q=1`) with mean `mu` and covariance matrix `Sigma`, this yields a single-output posterior with mean `weights^T * mu` and variance `weights^T Sigma w`. Example: Example for a model with two outcomes: >>> weights = torch.tensor([0.5, 0.25]) >>> posterior_transform = ScalarizedPosteriorTransform(weights) >>> EI = ExpectedImprovement( ... model, best_f=0.1, posterior_transform=posterior_transform ... ) """ scalarize: bool = True def __init__(self, weights: Tensor, offset: float = 0.0) -> None: r""" Args: weights: A one-dimensional tensor with `m` elements representing the linear weights on the outputs. offset: An offset to be added to posterior mean. """ if weights.dim() != 1: raise ValueError("weights must be a one-dimensional tensor.") super().__init__() self.register_buffer("weights", weights) self.offset = offset def evaluate(self, Y: Tensor) -> Tensor: r"""Evaluate the transform on a set of outcomes. Args: Y: A `batch_shape x q x m`-dim tensor of outcomes. Returns: A `batch_shape x q`-dim tensor of transformed outcomes. """ return self.offset + Y @ self.weights def forward( self, posterior: Union[GPyTorchPosterior, PosteriorList] ) -> GPyTorchPosterior: r"""Compute the posterior of the affine transformation. Args: posterior: A posterior with the same number of outputs as the elements in `self.weights`. Returns: A single-output posterior. """ return scalarize_posterior( posterior=posterior, weights=self.weights, offset=self.offset ) class ExpectationPosteriorTransform(PosteriorTransform): r"""Transform the `batch x (q * n_w) x m` posterior into a `batch x q x m` posterior of the expectation. The expectation is calculated over each consecutive `n_w` block of points in the posterior. This is intended for use with `InputPerturbation` or `AppendFeatures` for optimizing the expectation over `n_w` points. This should not be used when there are constraints present, since this does not take into account the feasibility of the objectives. Note: This is different than `ScalarizedPosteriorTransform` in that this operates over the q-batch dimension. """ def __init__(self, n_w: int, weights: Optional[Tensor] = None) -> None: r"""A posterior transform calculating the expectation over the q-batch dimension. Args: n_w: The number of points in the q-batch of the posterior to compute the expectation over. This corresponds to the size of the `feature_set` of `AppendFeatures` or the size of the `perturbation_set` of `InputPerturbation`. weights: An optional `n_w x m`-dim tensor of weights. Can be used to compute a weighted expectation. Weights are normalized before use. """ super().__init__() if weights is not None: if weights.dim() != 2 or weights.shape[0] != n_w: raise ValueError("`weights` must be a tensor of size `n_w x m`.") if torch.any(weights < 0): raise ValueError("`weights` must be non-negative.") else: weights = torch.ones(n_w, 1) # Normalize the weights. weights = weights / weights.sum(dim=0) self.register_buffer("weights", weights) self.n_w = n_w def evaluate(self, Y: Tensor) -> Tensor: r"""Evaluate the expectation of a set of outcomes. Args: Y: A `batch_shape x (q * n_w) x m`-dim tensor of outcomes. Returns: A `batch_shape x q x m`-dim tensor of expectation outcomes. """ batch_shape, m = Y.shape[:-2], Y.shape[-1] weighted_Y = Y.view(*batch_shape, -1, self.n_w, m) * self.weights.to(Y) return weighted_Y.sum(dim=-2) def forward(self, posterior: GPyTorchPosterior) -> GPyTorchPosterior: r"""Compute the posterior of the expectation. Args: posterior: An `m`-outcome joint posterior over `q * n_w` points. Returns: An `m`-outcome joint posterior over `q` expectations. """ org_mvn = posterior.distribution if getattr(org_mvn, "_interleaved", False): raise UnsupportedError( "`ExpectationPosteriorTransform` does not support " "interleaved posteriors." ) # Initialize the weight matrix of shape compatible with the mvn. org_event_shape = org_mvn.event_shape batch_shape = org_mvn.batch_shape q = org_event_shape[0] // self.n_w m = 1 if len(org_event_shape) == 1 else org_event_shape[-1] tkwargs = {"device": org_mvn.loc.device, "dtype": org_mvn.loc.dtype} weights = torch.zeros(q * m, q * self.n_w * m, **tkwargs) # Make sure self.weights has the correct dtype/device and shape. self.weights = self.weights.to(org_mvn.loc).expand(self.n_w, m) # Fill in the non-zero entries of the weight matrix. # We want each row to have non-zero weights for the corresponding # `n_w` sized diagonal. The `m` outcomes are not interleaved. for i in range(q * m): weights[i, self.n_w * i : self.n_w * (i + 1)] = self.weights[:, i // q] # Trasform the mean. new_loc = ( (weights @ org_mvn.loc.unsqueeze(-1)) .view(*batch_shape, m, q) .transpose(-1, -2) ) # Transform the covariance matrix. org_cov = ( org_mvn.lazy_covariance_matrix if org_mvn.islazy else org_mvn.covariance_matrix ) new_cov = weights @ (org_cov @ weights.t()) if m == 1: new_mvn = MultivariateNormal( new_loc.squeeze(-1), to_linear_operator(new_cov) ) else: # Using MTMVN since we pass a single loc and covar for all `m` outputs. new_mvn = MultitaskMultivariateNormal( new_loc, to_linear_operator(new_cov), interleaved=False ) return GPyTorchPosterior(distribution=new_mvn) class UnstandardizePosteriorTransform(PosteriorTransform): r"""Posterior transform that unstandardizes the posterior. TODO: remove this when MultiTask models support outcome transforms. Example: >>> unstd_transform = UnstandardizePosteriorTransform(Y_mean, Y_std) >>> unstd_posterior = unstd_transform(posterior) """ def __init__(self, Y_mean: Tensor, Y_std: Tensor) -> None: r"""Initialize objective. Args: Y_mean: `m`-dim tensor of outcome means Y_std: `m`-dim tensor of outcome standard deviations """ if Y_mean.ndim > 1 or Y_std.ndim > 1: raise BotorchTensorDimensionError( "Y_mean and Y_std must both be 1-dimensional, but got " f"{Y_mean.ndim} and {Y_std.ndim}" ) super().__init__() self.outcome_transform = Standardize(m=Y_mean.shape[0]).to(Y_mean) Y_std_unsqueezed = Y_std.unsqueeze(0) self.outcome_transform.means = Y_mean.unsqueeze(0) self.outcome_transform.stdvs = Y_std_unsqueezed self.outcome_transform._stdvs_sq = Y_std_unsqueezed.pow(2) self.outcome_transform._is_trained = torch.tensor(True) self.outcome_transform.eval() def evaluate(self, Y: Tensor) -> Tensor: return self.outcome_transform.untransform(Y)[0] def forward(self, posterior: GPyTorchPosterior) -> Tensor: return self.outcome_transform.untransform_posterior(posterior) class MCAcquisitionObjective(Module, ABC): r"""Abstract base class for MC-based objectives. Args: _verify_output_shape: If True and `X` is given, check that the q-batch shape of the objectives agrees with that of X. _is_mo: A boolean denoting whether the objectives are multi-output. :meta private: """ _verify_output_shape: bool = True _is_mo: bool = False @abstractmethod def forward(self, samples: Tensor, X: Optional[Tensor] = None) -> Tensor: r"""Evaluate the objective on the samples. Args: samples: A `sample_shape x batch_shape x q x m`-dim Tensors of samples from a model posterior. X: A `batch_shape x q x d`-dim tensor of inputs. Relevant only if the objective depends on the inputs explicitly. Returns: Tensor: A `sample_shape x batch_shape x q`-dim Tensor of objective values (assuming maximization). This method is usually not called directly, but via the objectives. Example: >>> # `__call__` method: >>> samples = sampler(posterior) >>> outcome = mc_obj(samples) """ pass # pragma: no cover def __call__( self, samples: Tensor, X: Optional[Tensor] = None, *args, **kwargs ) -> Tensor: output = super().__call__(samples=samples, X=X, *args, **kwargs) # q-batch dimension is at -1 for single-output objectives and at # -2 for multi-output objectives. q_batch_idx = -2 if self._is_mo else -1 if ( X is not None and self._verify_output_shape and output.shape[q_batch_idx] != X.shape[-2] ): raise RuntimeError( "The q-batch shape of the objective values does not agree with " f"the q-batch shape of X. Got {output.shape[q_batch_idx]} and " f"{X.shape[-2]}. This may happen if you used a one-to-many input " "transform but forgot to use a corresponding objective." ) return output class IdentityMCObjective(MCAcquisitionObjective): r"""Trivial objective extracting the last dimension. Example: >>> identity_objective = IdentityMCObjective() >>> samples = sampler(posterior) >>> objective = identity_objective(samples) """ def forward(self, samples: Tensor, X: Optional[Tensor] = None) -> Tensor: return samples.squeeze(-1) class LinearMCObjective(MCAcquisitionObjective): r"""Linear objective constructed from a weight tensor. For input `samples` and `mc_obj = LinearMCObjective(weights)`, this produces `mc_obj(samples) = sum_{i} weights[i] * samples[..., i]` Example: Example for a model with two outcomes: >>> weights = torch.tensor([0.75, 0.25]) >>> linear_objective = LinearMCObjective(weights) >>> samples = sampler(posterior) >>> objective = linear_objective(samples) """ def __init__(self, weights: Tensor) -> None: r""" Args: weights: A one-dimensional tensor with `m` elements representing the linear weights on the outputs. """ super().__init__() if weights.dim() != 1: raise ValueError("weights must be a one-dimensional tensor.") self.register_buffer("weights", weights) def forward(self, samples: Tensor, X: Optional[Tensor] = None) -> Tensor: r"""Evaluate the linear objective on the samples. Args: samples: A `sample_shape x batch_shape x q x m`-dim tensors of samples from a model posterior. X: A `batch_shape x q x d`-dim tensor of inputs. Relevant only if the objective depends on the inputs explicitly. Returns: A `sample_shape x batch_shape x q`-dim tensor of objective values. """ if samples.shape[-1] != self.weights.shape[-1]: raise RuntimeError("Output shape of samples not equal to that of weights") return torch.einsum("...m, m", [samples, self.weights]) class GenericMCObjective(MCAcquisitionObjective): r"""Objective generated from a generic callable. Allows to construct arbitrary MC-objective functions from a generic callable. In order to be able to use gradient-based acquisition function optimization it should be possible to backpropagate through the callable. Example: >>> generic_objective = GenericMCObjective( lambda Y, X: torch.sqrt(Y).sum(dim=-1), ) >>> samples = sampler(posterior) >>> objective = generic_objective(samples) """ def __init__(self, objective: Callable[[Tensor, Optional[Tensor]], Tensor]) -> None: r""" Args: objective: A callable `f(samples, X)` mapping a `sample_shape x batch-shape x q x m`-dim Tensor `samples` and an optional `batch-shape x q x d`-dim Tensor `X` to a `sample_shape x batch-shape x q`-dim Tensor of objective values. """ super().__init__() if len(inspect.signature(objective).parameters) == 1: warnings.warn( "The `objective` callable of `GenericMCObjective` is expected to " "take two arguments. Passing a callable that expects a single " "argument will result in an error in future versions.", DeprecationWarning, ) def obj(samples: Tensor, X: Optional[Tensor] = None) -> Tensor: return objective(samples) self.objective = obj else: self.objective = objective def forward(self, samples: Tensor, X: Optional[Tensor] = None) -> Tensor: r"""Evaluate the objective on the samples. Args: samples: A `sample_shape x batch_shape x q x m`-dim Tensors of samples from a model posterior. X: A `batch_shape x q x d`-dim tensor of inputs. Relevant only if the objective depends on the inputs explicitly. Returns: A `sample_shape x batch_shape x q`-dim Tensor of objective values. """ return self.objective(samples, X=X) class ConstrainedMCObjective(GenericMCObjective): r"""Feasibility-weighted objective. An Objective allowing to maximize some scalable objective on the model outputs subject to a number of constraints. Constraint feasibilty is approximated by a sigmoid function. mc_acq(X) = ( (objective(X) + infeasible_cost) * \prod_i (1 - sigmoid(constraint_i(X))) ) - infeasible_cost See `botorch.utils.objective.apply_constraints` for details on the constraint handling. Example: >>> bound = 0.0 >>> objective = lambda Y: Y[..., 0] >>> # apply non-negativity constraint on f(x)[1] >>> constraint = lambda Y: bound - Y[..., 1] >>> constrained_objective = ConstrainedMCObjective(objective, [constraint]) >>> samples = sampler(posterior) >>> objective = constrained_objective(samples) TODO: Deprecate this as default way to handle constraints with MC acquisition functions once we have data on how well SampleReducingMCAcquisitionFunction works. """ def __init__( self, objective: Callable[[Tensor, Optional[Tensor]], Tensor], constraints: List[Callable[[Tensor], Tensor]], infeasible_cost: Union[Tensor, float] = 0.0, eta: Union[Tensor, float] = 1e-3, ) -> None: r""" Args: objective: A callable `f(samples, X)` mapping a `sample_shape x batch-shape x q x m`-dim Tensor `samples` and an optional `batch-shape x q x d`-dim Tensor `X` to a `sample_shape x batch-shape x q`-dim Tensor of objective values. constraints: A list of callables, each mapping a Tensor of dimension `sample_shape x batch-shape x q x m` to a Tensor of dimension `sample_shape x batch-shape x q`, where negative values imply feasibility. infeasible_cost: The cost of a design if all associated samples are infeasible. eta: The temperature parameter of the sigmoid function approximating the constraint. Can be either a float or a 1-dim tensor. In case of a float the same eta is used for every constraint in constraints. In case of a tensor the length of the tensor must match the number of provided constraints. The i-th constraint is then estimated with the i-th eta value. """ super().__init__(objective=objective) self.constraints = constraints if type(eta) is not Tensor: eta = torch.full((len(constraints),), eta) self.register_buffer("eta", eta) self.register_buffer("infeasible_cost", torch.as_tensor(infeasible_cost)) def forward(self, samples: Tensor, X: Optional[Tensor] = None) -> Tensor: r"""Evaluate the feasibility-weighted objective on the samples. Args: samples: A `sample_shape x batch_shape x q x m`-dim Tensors of samples from a model posterior. X: A `batch_shape x q x d`-dim tensor of inputs. Relevant only if the objective depends on the inputs explicitly. Returns: A `sample_shape x batch_shape x q`-dim Tensor of objective values weighted by feasibility (assuming maximization). """ obj = super().forward(samples=samples) return apply_constraints( obj=obj, constraints=self.constraints, samples=samples, infeasible_cost=self.infeasible_cost, eta=self.eta, ) LEARNED_OBJECTIVE_PREF_MODEL_MIXED_DTYPE_WARN = ( "pref_model has double-precision data, but single-precision data " "was passed to the LearnedObjective. Upcasting to double." ) class LearnedObjective(MCAcquisitionObjective): r"""Learned preference objective constructed from a preference model. For input `samples`, it samples each individual sample again from the latent preference posterior distribution using `pref_model` and return the posterior mean. Example: >>> train_X = torch.rand(2, 2) >>> train_comps = torch.LongTensor([[0, 1]]) >>> pref_model = PairwiseGP(train_X, train_comps) >>> learned_pref_obj = LearnedObjective(pref_model) >>> samples = sampler(posterior) >>> objective = learned_pref_obj(samples) """ def __init__( self, pref_model: Model, sampler: Optional[MCSampler] = None, ): r""" Args: pref_model: A BoTorch model, which models the latent preference/utility function. Given an input tensor of size `sample_size x batch_shape x N x d`, its `posterior` method should return a `Posterior` object with single outcome representing the utility values of the input. sampler: Sampler for the preference model to account for uncertainty in preferece when calculating the objective; it's not the one used in MC acquisition functions. If None, it uses `IIDNormalSampler(sample_shape=torch.Size([1]))`. """ super().__init__() self.pref_model = pref_model if isinstance(pref_model, DeterministicModel): assert sampler is None self.sampler = None else: if sampler is None: self.sampler = IIDNormalSampler(sample_shape=torch.Size([1])) else: self.sampler = sampler def forward(self, samples: Tensor, X: Optional[Tensor] = None) -> Tensor: r"""Sample each element of samples. Args: samples: A `sample_size x batch_shape x N x d`-dim Tensors of samples from a model posterior. Returns: A `(sample_size * num_samples) x batch_shape x N`-dim Tensor of objective values sampled from utility posterior using `pref_model`. """ if samples.dtype == torch.float32 and any( d == torch.float64 for d in self.pref_model.dtypes_of_buffers ): warnings.warn( LEARNED_OBJECTIVE_PREF_MODEL_MIXED_DTYPE_WARN, InputDataWarning, stacklevel=2, ) samples = samples.to(torch.float64) post = self.pref_model.posterior(samples) if isinstance(self.pref_model, DeterministicModel): # return preference posterior mean return post.mean.squeeze(-1) else: # return preference posterior sample mean samples = self.sampler(post).squeeze(-1) return samples.reshape(-1, *samples.shape[2:]) # batch_shape x N
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. r""" Abstract class for acquisition functions leveraging a cached Cholesky decomposition of the posterior covaiance over f(X_baseline). """ from __future__ import annotations import warnings from abc import ABC import torch from botorch.exceptions.warnings import BotorchWarning from botorch.models.gpytorch import GPyTorchModel from botorch.models.higher_order_gp import HigherOrderGP from botorch.models.model import Model from botorch.models.model_list_gp_regression import ModelListGP from botorch.models.multitask import KroneckerMultiTaskGP, MultiTaskGP from botorch.posteriors.gpytorch import GPyTorchPosterior from botorch.posteriors.posterior import Posterior from botorch.utils.low_rank import extract_batch_covar, sample_cached_cholesky from gpytorch.distributions.multitask_multivariate_normal import ( MultitaskMultivariateNormal, ) from linear_operator.utils.errors import NanError, NotPSDError from torch import Tensor def supports_cache_root(model: Model) -> bool: r"""Checks if a model supports the cache_root functionality. The two criteria are that the model is not multi-task and the model produces a GPyTorchPosterior. """ if isinstance(model, ModelListGP): return all(supports_cache_root(m) for m in model.models) # Multi task models and non-GPyTorch models are not supported. if isinstance( model, (MultiTaskGP, KroneckerMultiTaskGP, HigherOrderGP) ) or not isinstance(model, GPyTorchModel): return False # Models that return a TransformedPosterior are not supported. if hasattr(model, "outcome_transform") and (not model.outcome_transform._is_linear): return False return True def _get_cache_root_not_supported_message(model_cls: type) -> str: msg = ( "`cache_root` is only supported for GPyTorchModels that " "are not MultiTask models and don't produce a " f"TransformedPosterior. Got a model of type {model_cls}. Setting " "`cache_root = False`." ) return msg class CachedCholeskyMCAcquisitionFunction(ABC): r"""Abstract class for acquisition functions using a cached Cholesky. Specifically, this is for acquisition functions that require sampling from the posterior P(f(X_baseline, X) | D). The Cholesky of the posterior covariance over f(X_baseline) is cached. :meta private: """ def _setup( self, model: Model, cache_root: bool = False, ) -> None: r"""Set class attributes and perform compatibility checks. Args: model: A model. cache_root: A boolean indicating whether to cache the Cholesky. This might be overridden in the model is not compatible. """ if cache_root and not supports_cache_root(model): warnings.warn( _get_cache_root_not_supported_message(type(model)), RuntimeWarning, ) cache_root = False self._cache_root = cache_root def _compute_root_decomposition( self, posterior: Posterior, ) -> Tensor: r"""Cache Cholesky of the posterior covariance over f(X_baseline). Because `LinearOperator.root_decomposition` is decorated with LinearOperator's @cached decorator, this function is doing a lot implicitly: 1) Check if a root decomposition has already been cached to `lazy_covar`. Note that it will not have been if `posterior.mvn` is a `MultitaskMultivariateNormal`, since we construct `lazy_covar` in that case. 2) If the root decomposition has not been found in the cache, compute it. 3) Write it to the cache of `lazy_covar`. Note that this will become inacessible if `posterior.mvn` is a `MultitaskMultivariateNormal`, since in that case `lazy_covar`'s scope is only this function. Args: posterior: The posterior over f(X_baseline). """ if isinstance(posterior.distribution, MultitaskMultivariateNormal): lazy_covar = extract_batch_covar(posterior.distribution) else: lazy_covar = posterior.distribution.lazy_covariance_matrix lazy_covar_root = lazy_covar.root_decomposition() return lazy_covar_root.root.to_dense() def _get_f_X_samples(self, posterior: GPyTorchPosterior, q_in: int) -> Tensor: r"""Get posterior samples at the `q_in` new points from the joint posterior. Args: posterior: The joint posterior is over (X_baseline, X). q_in: The number of new points in the posterior. See `_set_sampler` for more information. Returns: A `sample_shape x batch_shape x q x m`-dim tensor of posterior samples at the new points. """ # Technically we should make sure that we add a consistent nugget to the # cached covariance (and box decompositions) and the new block. # But recomputing box decompositions every time the jitter changes would # be quite slow. if self._cache_root and hasattr(self, "_baseline_L"): try: return sample_cached_cholesky( posterior=posterior, baseline_L=self._baseline_L, q=q_in, base_samples=self.sampler.base_samples, sample_shape=self.sampler.sample_shape, ) except (NanError, NotPSDError): warnings.warn( "Low-rank cholesky updates failed due NaNs or due to an " "ill-conditioned covariance matrix. " "Falling back to standard sampling.", BotorchWarning, ) # TODO: improve efficiency for multi-task models samples = self.get_posterior_samples(posterior) if isinstance(self.model, HigherOrderGP): # Select the correct q-batch dimension for HOGP. q_dim = -self.model._num_dimensions q_idcs = ( torch.arange(-q_in, 0, device=samples.device) + samples.shape[q_dim] ) return samples.index_select(q_dim, q_idcs) else: return samples[..., -q_in:, :] def _set_sampler( self, q_in: int, posterior: Posterior, ) -> None: r"""Update the sampler to use the original base samples for X_baseline. Args: q_in: The effective input batch size. This is typically equal to the q-batch size of `X`. However, if using a one-to-many input transform, e.g., `InputPerturbation` with `n_w` perturbations, the posterior will have `n_w` points on the q-batch for each point on the q-batch of `X`. In which case, `q_in = q * n_w` is used. posterior: The posterior. """ if self.q_in != q_in and self.base_sampler is not None: self.sampler._update_base_samples( posterior=posterior, base_sampler=self.base_sampler ) self.q_in = q_in
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. r""" A wrapper around AcquisitionFunctions to add proximal weighting of the acquisition function. """ from __future__ import annotations from typing import Optional import torch from botorch.acquisition import AcquisitionFunction from botorch.exceptions.errors import UnsupportedError from botorch.models import ModelListGP from botorch.models.gpytorch import BatchedMultiOutputGPyTorchModel from botorch.models.model import Model from botorch.models.transforms.input import InputTransform from botorch.utils import t_batch_mode_transform from torch import Tensor from torch.nn import Module class ProximalAcquisitionFunction(AcquisitionFunction): """A wrapper around AcquisitionFunctions to add proximal weighting of the acquisition function. The acquisition function is weighted via a squared exponential centered at the last training point, with varying lengthscales corresponding to `proximal_weights`. Can only be used with acquisition functions based on single batch models. Acquisition functions must be positive or `beta` must be specified to apply a SoftPlus transform before proximal weighting. Small values of `proximal_weights` corresponds to strong biasing towards recently observed points, which smoothes optimization with a small potential decrese in convergence rate. Example: >>> model = SingleTaskGP(train_X, train_Y) >>> EI = ExpectedImprovement(model, best_f=0.0) >>> proximal_weights = torch.ones(d) >>> EI_proximal = ProximalAcquisitionFunction(EI, proximal_weights) >>> eip = EI_proximal(test_X) """ def __init__( self, acq_function: AcquisitionFunction, proximal_weights: Tensor, transformed_weighting: Optional[bool] = True, beta: Optional[float] = None, ) -> None: r"""Derived Acquisition Function weighted by proximity to recently observed point. Args: acq_function: The base acquisition function, operating on input tensors of feature dimension `d`. proximal_weights: A `d` dim tensor used to bias locality along each axis. transformed_weighting: If True, the proximal weights are applied in the transformed input space given by `acq_function.model.input_transform` (if available), otherwise proximal weights are applied in real input space. beta: If not None, apply a softplus transform to the base acquisition function, allows negative base acquisition function values. """ Module.__init__(self) self.acq_func = acq_function model = self.acq_func.model if hasattr(acq_function, "X_pending"): if acq_function.X_pending is not None: raise UnsupportedError( "Proximal acquisition function requires `X_pending` to be None." ) self.X_pending = acq_function.X_pending self.register_buffer("proximal_weights", proximal_weights) self.register_buffer( "transformed_weighting", torch.tensor(transformed_weighting) ) self.register_buffer("beta", None if beta is None else torch.tensor(beta)) _validate_model(model, proximal_weights) @t_batch_mode_transform(expected_q=1, assert_output_shape=False) def forward(self, X: Tensor) -> Tensor: r"""Evaluate base acquisition function with proximal weighting. Args: X: Input tensor of feature dimension `d` . Returns: Base acquisition function evaluated on tensor `X` multiplied by proximal weighting. """ model = self.acq_func.model train_inputs = model.train_inputs[0] # if the model is ModelListGP then get the first model if isinstance(model, ModelListGP): train_inputs = train_inputs[0] model = model.models[0] # if the model has more than one output get the first copy of training inputs if isinstance(model, BatchedMultiOutputGPyTorchModel) and model.num_outputs > 1: train_inputs = train_inputs[0] input_transform = _get_input_transform(model) last_X = train_inputs[-1].reshape(1, 1, -1) # if transformed_weighting, transform X to calculate diff # (proximal weighting in transformed space) # otherwise,un-transform the last observed point to real space # (proximal weighting in real space) if input_transform is not None: if self.transformed_weighting: # transformed space weighting diff = input_transform.transform(X) - last_X else: # real space weighting diff = X - input_transform.untransform(last_X) else: # no transformation diff = X - last_X M = torch.linalg.norm(diff / self.proximal_weights, dim=-1) ** 2 proximal_acq_weight = torch.exp(-0.5 * M) base_acqf = self.acq_func(X) if self.beta is None: if torch.any(base_acqf < 0): raise RuntimeError( "Cannot use proximal biasing for negative " "acquisition function values, set a value for beta to " "fix this with a softplus transform" ) else: base_acqf = torch.nn.functional.softplus(base_acqf, beta=self.beta) return base_acqf * proximal_acq_weight.flatten() def _validate_model(model: Model, proximal_weights: Tensor) -> None: r"""Validate model Perform vaidation checks on model used in base acquisition function to make sure it is compatible with proximal weighting. Args: model: Model associated with base acquisition function to be validated. proximal_weights: A `d` dim tensor used to bias locality along each axis. """ # check model for train_inputs and single batch if not hasattr(model, "train_inputs"): raise UnsupportedError("Acquisition function model must have `train_inputs`.") # get train inputs for each type of possible model if isinstance(model, ModelListGP): # ModelListGP models # check to make sure that the training inputs and input transformers for each # model match and are reversible train_inputs = model.train_inputs[0][0] input_transform = _get_input_transform(model.models[0]) for i in range(len(model.train_inputs)): if not torch.equal(train_inputs, model.train_inputs[i][0]): raise UnsupportedError( "Proximal acquisition function does not support unequal " "training inputs" ) if not input_transform == _get_input_transform(model.models[i]): raise UnsupportedError( "Proximal acquisition function does not support non-identical " "input transforms" ) else: # any non-ModelListGP model train_inputs = model.train_inputs[0] # check to make sure that the model is single t-batch (q-batches are allowed) if model.batch_shape != torch.Size([]) and train_inputs.shape[1] != 1: raise UnsupportedError( "Proximal acquisition function requires a single batch model" ) # check to make sure that weights match the training data shape if ( len(proximal_weights.shape) != 1 or proximal_weights.shape[0] != train_inputs.shape[-1] ): raise ValueError( "`proximal_weights` must be a one dimensional tensor with " "same feature dimension as model." ) def _get_input_transform(model: Model) -> Optional[InputTransform]: """get input transform if defined""" try: return model.input_transform except AttributeError: return None
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. r""" Active learning acquisition functions. .. [Seo2014activedata] S. Seo, M. Wallat, T. Graepel, and K. Obermayer. Gaussian process regression: Active data selection and test point rejection. IJCNN 2000. .. [Chen2014seqexpdesign] X. Chen and Q. Zhou. Sequential experimental designs for stochastic kriging. Winter Simulation Conference 2014. .. [Binois2017repexp] M. Binois, J. Huang, R. B. Gramacy, and M. Ludkovski. Replication or exploration? Sequential design for stochastic simulation experiments. ArXiv 2017. """ from __future__ import annotations from typing import Optional import torch from botorch import settings from botorch.acquisition.analytic import AnalyticAcquisitionFunction from botorch.acquisition.monte_carlo import MCAcquisitionFunction from botorch.acquisition.objective import MCAcquisitionObjective, PosteriorTransform from botorch.models.model import Model from botorch.sampling.base import MCSampler from botorch.sampling.normal import SobolQMCNormalSampler from botorch.utils.transforms import concatenate_pending_points, t_batch_mode_transform from torch import Tensor class qNegIntegratedPosteriorVariance(AnalyticAcquisitionFunction): r"""Batch Integrated Negative Posterior Variance for Active Learning. This acquisition function quantifies the (negative) integrated posterior variance (excluding observation noise, computed using MC integration) of the model. In that, it is a proxy for global model uncertainty, and thus purely focused on "exploration", rather the "exploitation" of many of the classic Bayesian Optimization acquisition functions. See [Seo2014activedata]_, [Chen2014seqexpdesign]_, and [Binois2017repexp]_. """ def __init__( self, model: Model, mc_points: Tensor, sampler: Optional[MCSampler] = None, posterior_transform: Optional[PosteriorTransform] = None, X_pending: Optional[Tensor] = None, ) -> None: r"""q-Integrated Negative Posterior Variance. Args: model: A fitted model. mc_points: A `batch_shape x N x d` tensor of points to use for MC-integrating the posterior variance. Usually, these are qMC samples on the whole design space, but biased sampling directly allows weighted integration of the posterior variance. sampler: The sampler used for drawing fantasy samples. In the basic setting of a standard GP (default) this is a dummy, since the variance of the model after conditioning does not actually depend on the sampled values. posterior_transform: A PosteriorTransform. If using a multi-output model, a PosteriorTransform that transforms the multi-output posterior into a single-output posterior is required. X_pending: A `n' x d`-dim Tensor of `n'` design points that have points that have been submitted for function evaluation but have not yet been evaluated. """ super().__init__(model=model, posterior_transform=posterior_transform) if sampler is None: # If no sampler is provided, we use the following dummy sampler for the # fantasize() method in forward. IMPORTANT: This assumes that the posterior # variance does not depend on the samples y (only on x), which is true for # standard GP models, but not in general (e.g. for other likelihoods or # heteroskedastic GPs using a separate noise model fit on data). sampler = SobolQMCNormalSampler(sample_shape=torch.Size([1])) self.sampler = sampler self.X_pending = X_pending self.register_buffer("mc_points", mc_points) @concatenate_pending_points @t_batch_mode_transform() def forward(self, X: Tensor) -> Tensor: # Construct the fantasy model (we actually do not use the full model, # this is just a convenient way of computing fast posterior covariances fantasy_model = self.model.fantasize( X=X, sampler=self.sampler, observation_noise=True ) bdims = tuple(1 for _ in X.shape[:-2]) if self.model.num_outputs > 1: # We use q=1 here b/c ScalarizedObjective currently does not fully exploit # LinearOperator operations and thus may be slow / overly memory-hungry. # TODO (T52818288): Properly use LinearOperators in scalarize_posterior mc_points = self.mc_points.view(-1, *bdims, 1, X.size(-1)) else: # While we only need marginal variances, we can evaluate for q>1 # b/c for GPyTorch models lazy evaluation can make this quite a bit # faster than evaluting in t-batch mode with q-batch size of 1 mc_points = self.mc_points.view(*bdims, -1, X.size(-1)) # evaluate the posterior at the grid points with settings.propagate_grads(True): posterior = fantasy_model.posterior( mc_points, posterior_transform=self.posterior_transform ) neg_variance = posterior.variance.mul(-1.0) if self.posterior_transform is None: # if single-output, shape is 1 x batch_shape x num_grid_points x 1 return neg_variance.mean(dim=-2).squeeze(-1).squeeze(0) else: # if multi-output + obj, shape is num_grid_points x batch_shape x 1 x 1 return neg_variance.mean(dim=0).squeeze(-1).squeeze(-1) class PairwiseMCPosteriorVariance(MCAcquisitionFunction): r"""Variance of difference for Active Learning Given a model and an objective, calculate the posterior sample variance of the objective on the difference of pairs of points. See more implementation details in `forward`. This acquisition function is typically used with a pairwise model (e.g., PairwiseGP) and a likelihood/link function on the pair difference (e.g., logistic or probit) for pure exploration """ def __init__( self, model: Model, objective: MCAcquisitionObjective, sampler: Optional[MCSampler] = None, ) -> None: r"""Pairwise Monte Carlo Posterior Variance Args: model: A fitted model. objective: An MCAcquisitionObjective representing the link function (e.g., logistic or probit.) applied on the difference of (usually 1-d) two samples. Can be implemented via GenericMCObjective. sampler: The sampler used for drawing MC samples. """ super().__init__( model=model, sampler=sampler, objective=objective, X_pending=None ) @t_batch_mode_transform() def forward(self, X: Tensor) -> Tensor: r"""Evaluate PairwiseMCPosteriorVariance on the candidate set `X`. Args: X: A `batch_size x q x d`-dim Tensor. q should be a multiple of 2. Returns: Tensor of shape `batch_size x q` representing the posterior variance of link function at X that active learning hopes to maximize """ if X.shape[-2] == 0 or X.shape[-2] % 2 != 0: raise RuntimeError( "q must be a multiple of 2 for PairwiseMCPosteriorVariance" ) # The output is of shape batch_shape x 2 x d # For PairwiseGP, d = 1 post = self.model.posterior(X) samples = self.get_posterior_samples(post) # num_samples x batch_shape x 2 x d # The output is of shape num_samples x batch_shape x q/2 x d # assuming the comparison is made between the 2 * i and 2 * i + 1 elements samples_diff = samples[..., ::2, :] - samples[..., 1::2, :] mc_var = self.objective(samples_diff).var(dim=0) mean_mc_var = mc_var.mean(dim=-1) return mean_mc_var
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. r""" Risk Measures implemented as Monte-Carlo objectives, based on Bayesian optimization of risk measures as introduced in [Cakmak2020risk]_. For a broader discussion of Monte-Carlo methods for VaR and CVaR risk measures, see also [Hong2014review]_. .. [Cakmak2020risk] S. Cakmak, R. Astudillo, P. Frazier, and E. Zhou. Bayesian Optimization of Risk Measures. Advances in Neural Information Processing Systems 33, 2020. .. [Hong2014review] L. J. Hong, Z. Hu, and G. Liu. Monte carlo methods for value-at-risk and conditional value-at-risk: a review. ACM Transactions on Modeling and Computer Simulation, 2014. """ from abc import ABC, abstractmethod from math import ceil from typing import Callable, Optional import torch from botorch.acquisition.multi_objective.objective import IdentityMCMultiOutputObjective from botorch.acquisition.objective import IdentityMCObjective, MCAcquisitionObjective from torch import Tensor class RiskMeasureMCObjective(MCAcquisitionObjective, ABC): r"""Objective transforming the posterior samples to samples of a risk measure. The risk measure is calculated over joint q-batch samples from the posterior. If the q-batch includes samples corresponding to multiple inputs, it is assumed that first `n_w` samples correspond to first input, second `n_w` samples correspond to second input etc. The risk measures are commonly defined for minimization by considering the upper tail of the distribution, i.e., treating larger values as being undesirable. BoTorch by default assumes a maximization objective, so the default behavior here is to calculate the risk measures w.r.t. the lower tail of the distribution. This can be changed by passing a preprocessing function with `weights=torch.tensor([-1.0])`. :meta private: """ def __init__( self, n_w: int, preprocessing_function: Optional[Callable[[Tensor], Tensor]] = None, ) -> None: r"""Transform the posterior samples to samples of a risk measure. Args: n_w: The size of the `w_set` to calculate the risk measure over. preprocessing_function: A preprocessing function to apply to the samples before computing the risk measure. This can be used to scalarize multi-output samples before calculating the risk measure. For constrained optimization, this should also apply feasibility-weighting to samples. Given a `batch x m`-dim tensor of samples, this should return a `batch`-dim tensor. """ super().__init__() self.n_w = n_w if preprocessing_function is None: if self._is_mo: preprocessing_function = IdentityMCMultiOutputObjective() else: preprocessing_function = IdentityMCObjective() self.preprocessing_function = preprocessing_function def _prepare_samples(self, samples: Tensor) -> Tensor: r"""Prepare samples for risk measure calculations by scalarizing and separating out the q-batch dimension. Args: samples: A `sample_shape x batch_shape x (q * n_w) x m`-dim tensor of posterior samples. The q-batches should be ordered so that each `n_w` block of samples correspond to the same input. Returns: A `sample_shape x batch_shape x q x n_w`-dim tensor of prepared samples. """ if samples.shape[-1] > 1 and isinstance( self.preprocessing_function, IdentityMCObjective ): raise RuntimeError( "Multi-output samples should be scalarized using a " "`preprocessing_function`." ) samples = self.preprocessing_function(samples) return samples.view(*samples.shape[:-1], -1, self.n_w) @abstractmethod def forward(self, samples: Tensor, X: Optional[Tensor] = None) -> Tensor: r"""Calculate the risk measure corresponding to the given samples. Args: samples: A `sample_shape x batch_shape x (q * n_w) x m`-dim tensor of posterior samples. The q-batches should be ordered so that each `n_w` block of samples correspond to the same input. X: A `batch_shape x q x d`-dim tensor of inputs. Ignored. Returns: A `sample_shape x batch_shape x q`-dim tensor of risk measure samples. """ pass # pragma: no cover class CVaR(RiskMeasureMCObjective): r"""The Conditional Value-at-Risk risk measure. The Conditional Value-at-Risk measures the expectation of the worst outcomes (small rewards or large losses) with a total probability of `1 - alpha`. It is commonly defined as the conditional expectation of the reward function, with the condition that the reward is smaller than the corresponding Value-at-Risk (also defined below). Note: Due to the use of a discrete `w_set` of samples, the VaR and CVaR calculated here are (possibly biased) Monte-Carlo approximations of the true risk measures. """ def __init__( self, alpha: float, n_w: int, preprocessing_function: Optional[Callable[[Tensor], Tensor]] = None, ) -> None: r"""Transform the posterior samples to samples of a risk measure. Args: alpha: The risk level, float in `(0.0, 1.0]`. n_w: The size of the `w_set` to calculate the risk measure over. preprocessing_function: A preprocessing function to apply to the samples before computing the risk measure. This can be used to scalarize multi-output samples before calculating the risk measure. For constrained optimization, this should also apply feasibility-weighting to samples. Given a `batch x m`-dim tensor of samples, this should return a `batch`-dim tensor. """ super().__init__(n_w=n_w, preprocessing_function=preprocessing_function) if not 0 < alpha <= 1: raise ValueError("alpha must be in (0.0, 1.0]") self.alpha = alpha self.alpha_idx = ceil(n_w * alpha) - 1 def forward(self, samples: Tensor, X: Optional[Tensor] = None) -> Tensor: r"""Calculate the CVaR corresponding to the given samples. Args: samples: A `sample_shape x batch_shape x (q * n_w) x m`-dim tensor of posterior samples. The q-batches should be ordered so that each `n_w` block of samples correspond to the same input. X: A `batch_shape x q x d`-dim tensor of inputs. Ignored. Returns: A `sample_shape x batch_shape x q`-dim tensor of CVaR samples. """ prepared_samples = self._prepare_samples(samples) return torch.topk( prepared_samples, k=prepared_samples.shape[-1] - self.alpha_idx, largest=False, dim=-1, ).values.mean(dim=-1) class VaR(CVaR): r"""The Value-at-Risk risk measure. Value-at-Risk measures the smallest possible reward (or largest possible loss) after excluding the worst outcomes with a total probability of `1 - alpha`. It is commonly used in financial risk management, and it corresponds to the `1 - alpha` quantile of a given random variable. """ def __init__( self, alpha: float, n_w: int, preprocessing_function: Optional[Callable[[Tensor], Tensor]] = None, ) -> None: r"""Transform the posterior samples to samples of a risk measure. Args: alpha: The risk level, float in `(0.0, 1.0]`. n_w: The size of the `w_set` to calculate the risk measure over. preprocessing_function: A preprocessing function to apply to the samples before computing the risk measure. This can be used to scalarize multi-output samples before calculating the risk measure. For constrained optimization, this should also apply feasibility-weighting to samples. Given a `batch x m`-dim tensor of samples, this should return a `batch`-dim tensor. """ super().__init__( n_w=n_w, alpha=alpha, preprocessing_function=preprocessing_function, ) self._q = 1 - self.alpha_idx / n_w def forward(self, samples: Tensor, X: Optional[Tensor] = None) -> Tensor: r"""Calculate the VaR corresponding to the given samples. Args: samples: A `sample_shape x batch_shape x (q * n_w) x m`-dim tensor of posterior samples. The q-batches should be ordered so that each `n_w` block of samples correspond to the same input. X: A `batch_shape x q x d`-dim tensor of inputs. Ignored. Returns: A `sample_shape x batch_shape x q`-dim tensor of VaR samples. """ prepared_samples = self._prepare_samples(samples) # this is equivalent to sorting along dim=-1 in descending order # and taking the values at index self.alpha_idx. E.g. # >>> sorted_res = prepared_samples.sort(dim=-1, descending=True) # >>> sorted_res.values[..., self.alpha_idx] # Using quantile is far more memory efficient since `torch.sort` # produces values and indices tensors with shape # `sample_shape x batch_shape x (q * n_w) x m` return torch.quantile( input=prepared_samples, q=self._q, dim=-1, keepdim=False, interpolation="lower", ) class WorstCase(RiskMeasureMCObjective): r"""The worst-case risk measure.""" def forward(self, samples: Tensor, X: Optional[Tensor] = None) -> Tensor: r"""Calculate the worst-case measure corresponding to the given samples. Args: samples: A `sample_shape x batch_shape x (q * n_w) x m`-dim tensor of posterior samples. The q-batches should be ordered so that each `n_w` block of samples correspond to the same input. X: A `batch_shape x q x d`-dim tensor of inputs. Ignored. Returns: A `sample_shape x batch_shape x q`-dim tensor of worst-case samples. """ prepared_samples = self._prepare_samples(samples) return prepared_samples.min(dim=-1).values class Expectation(RiskMeasureMCObjective): r"""The expectation risk measure. For unconstrained problems, we recommend using the `ExpectationPosteriorTransform` instead. `ExpectationPosteriorTransform` directly transforms the posterior distribution over `q * n_w` to a posterior of `q` expectations, significantly reducing the cost of posterior sampling as a result. """ def forward(self, samples: Tensor, X: Optional[Tensor] = None) -> Tensor: r"""Calculate the expectation corresponding to the given samples. This calculates the expectation / mean / average of each `n_w` samples across the q-batch dimension. If `self.weights` is given, the samples are scalarized across the output dimension before taking the expectation. Args: samples: A `sample_shape x batch_shape x (q * n_w) x m`-dim tensor of posterior samples. The q-batches should be ordered so that each `n_w` block of samples correspond to the same input. X: A `batch_shape x q x d`-dim tensor of inputs. Ignored. Returns: A `sample_shape x batch_shape x q`-dim tensor of expectation samples. """ prepared_samples = self._prepare_samples(samples) return prepared_samples.mean(dim=-1)
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from botorch.acquisition.acquisition import ( AcquisitionFunction, OneShotAcquisitionFunction, ) from botorch.acquisition.active_learning import ( PairwiseMCPosteriorVariance, qNegIntegratedPosteriorVariance, ) from botorch.acquisition.analytic import ( AnalyticAcquisitionFunction, ConstrainedExpectedImprovement, ExpectedImprovement, LogExpectedImprovement, LogNoisyExpectedImprovement, NoisyExpectedImprovement, PosteriorMean, ProbabilityOfImprovement, qAnalyticProbabilityOfImprovement, UpperConfidenceBound, ) from botorch.acquisition.cost_aware import ( GenericCostAwareUtility, InverseCostWeightedUtility, ) from botorch.acquisition.decoupled import DecoupledAcquisitionFunction from botorch.acquisition.factory import get_acquisition_function from botorch.acquisition.fixed_feature import FixedFeatureAcquisitionFunction from botorch.acquisition.input_constructors import get_acqf_input_constructor from botorch.acquisition.knowledge_gradient import ( qKnowledgeGradient, qMultiFidelityKnowledgeGradient, ) from botorch.acquisition.logei import ( LogImprovementMCAcquisitionFunction, qLogExpectedImprovement, qLogNoisyExpectedImprovement, ) from botorch.acquisition.max_value_entropy_search import ( MaxValueBase, qLowerBoundMaxValueEntropy, qMaxValueEntropy, qMultiFidelityLowerBoundMaxValueEntropy, qMultiFidelityMaxValueEntropy, ) from botorch.acquisition.monte_carlo import ( MCAcquisitionFunction, qExpectedImprovement, qNoisyExpectedImprovement, qProbabilityOfImprovement, qSimpleRegret, qUpperConfidenceBound, SampleReducingMCAcquisitionFunction, ) from botorch.acquisition.multi_step_lookahead import qMultiStepLookahead from botorch.acquisition.objective import ( ConstrainedMCObjective, GenericMCObjective, IdentityMCObjective, LearnedObjective, LinearMCObjective, MCAcquisitionObjective, ScalarizedPosteriorTransform, ) from botorch.acquisition.preference import ( AnalyticExpectedUtilityOfBestOption, PairwiseBayesianActiveLearningByDisagreement, ) from botorch.acquisition.prior_guided import PriorGuidedAcquisitionFunction from botorch.acquisition.proximal import ProximalAcquisitionFunction __all__ = [ "AcquisitionFunction", "AnalyticAcquisitionFunction", "AnalyticExpectedUtilityOfBestOption", "ConstrainedExpectedImprovement", "DecoupledAcquisitionFunction", "ExpectedImprovement", "LogExpectedImprovement", "LogNoisyExpectedImprovement", "FixedFeatureAcquisitionFunction", "GenericCostAwareUtility", "InverseCostWeightedUtility", "NoisyExpectedImprovement", "OneShotAcquisitionFunction", "PairwiseBayesianActiveLearningByDisagreement", "PairwiseMCPosteriorVariance", "PosteriorMean", "PriorGuidedAcquisitionFunction", "ProbabilityOfImprovement", "ProximalAcquisitionFunction", "UpperConfidenceBound", "qAnalyticProbabilityOfImprovement", "qExpectedImprovement", "LogImprovementMCAcquisitionFunction", "qLogExpectedImprovement", "qLogNoisyExpectedImprovement", "qKnowledgeGradient", "MaxValueBase", "qMultiFidelityKnowledgeGradient", "qMaxValueEntropy", "qMultiFidelityLowerBoundMaxValueEntropy", "qLowerBoundMaxValueEntropy", "qMultiFidelityMaxValueEntropy", "qMultiStepLookahead", "qNoisyExpectedImprovement", "qNegIntegratedPosteriorVariance", "qProbabilityOfImprovement", "qSimpleRegret", "qUpperConfidenceBound", "ConstrainedMCObjective", "GenericMCObjective", "IdentityMCObjective", "LearnedObjective", "LinearMCObjective", "MCAcquisitionFunction", "SampleReducingMCAcquisitionFunction", "MCAcquisitionObjective", "ScalarizedPosteriorTransform", "get_acquisition_function", "get_acqf_input_constructor", ]
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. r""" Batch Knowledge Gradient (KG) via one-shot optimization as introduced in [Balandat2020botorch]_. For broader discussion of KG see also [Frazier2008knowledge]_ and [Wu2016parallelkg]_. .. [Balandat2020botorch] M. Balandat, B. Karrer, D. R. Jiang, S. Daulton, B. Letham, A. G. Wilson, and E. Bakshy. BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization. Advances in Neural Information Processing Systems 33, 2020. .. [Frazier2008knowledge] P. Frazier, W. Powell, and S. Dayanik. A Knowledge-Gradient policy for sequential information collection. SIAM Journal on Control and Optimization, 2008. .. [Wu2016parallelkg] J. Wu and P. Frazier. The parallel knowledge gradient method for batch bayesian optimization. NIPS 2016. """ from __future__ import annotations from copy import deepcopy from typing import Any, Callable, Dict, Optional, Tuple, Type import torch from botorch import settings from botorch.acquisition.acquisition import ( AcquisitionFunction, MCSamplerMixin, OneShotAcquisitionFunction, ) from botorch.acquisition.analytic import PosteriorMean from botorch.acquisition.cost_aware import CostAwareUtility from botorch.acquisition.monte_carlo import MCAcquisitionFunction, qSimpleRegret from botorch.acquisition.objective import MCAcquisitionObjective, PosteriorTransform from botorch.exceptions.errors import UnsupportedError from botorch.models.model import Model from botorch.sampling.base import MCSampler from botorch.sampling.normal import SobolQMCNormalSampler from botorch.utils.transforms import ( concatenate_pending_points, match_batch_shape, t_batch_mode_transform, ) from torch import Tensor class qKnowledgeGradient(MCAcquisitionFunction, OneShotAcquisitionFunction): r"""Batch Knowledge Gradient using one-shot optimization. This computes the batch Knowledge Gradient using fantasies for the outer expectation and either the model posterior mean or MC-sampling for the inner expectation. In addition to the design variables, the input `X` also includes variables for the optimal designs for each of the fantasy models. For a fixed number of fantasies, all parts of `X` can be optimized in a "one-shot" fashion. """ def __init__( self, model: Model, num_fantasies: Optional[int] = 64, sampler: Optional[MCSampler] = None, objective: Optional[MCAcquisitionObjective] = None, posterior_transform: Optional[PosteriorTransform] = None, inner_sampler: Optional[MCSampler] = None, X_pending: Optional[Tensor] = None, current_value: Optional[Tensor] = None, ) -> None: r"""q-Knowledge Gradient (one-shot optimization). Args: model: A fitted model. Must support fantasizing. num_fantasies: The number of fantasy points to use. More fantasy points result in a better approximation, at the expense of memory and wall time. Unused if `sampler` is specified. sampler: The sampler used to sample fantasy observations. Optional if `num_fantasies` is specified. objective: The objective under which the samples are evaluated. If `None`, then the analytic posterior mean is used. Otherwise, the objective is MC-evaluated (using inner_sampler). posterior_transform: An optional PosteriorTransform. If given, this transforms the posterior before evaluation. If `objective is None`, then the analytic posterior mean of the transformed posterior is used. If `objective` is given, the `inner_sampler` is used to draw samples from the transformed posterior, which are then evaluated under the `objective`. inner_sampler: The sampler used for inner sampling. Ignored if the objective is `None`. X_pending: A `m x d`-dim Tensor of `m` design points that have points that have been submitted for function evaluation but have not yet been evaluated. current_value: The current value, i.e. the expected best objective given the observed points `D`. If omitted, forward will not return the actual KG value, but the expected best objective given the data set `D u X`. """ if sampler is None: if num_fantasies is None: raise ValueError( "Must specify `num_fantasies` if no `sampler` is provided." ) # base samples should be fixed for joint optimization over X, X_fantasies sampler = SobolQMCNormalSampler(sample_shape=torch.Size([num_fantasies])) elif num_fantasies is not None: if sampler.sample_shape != torch.Size([num_fantasies]): raise ValueError( f"The sampler shape must match num_fantasies={num_fantasies}." ) else: num_fantasies = sampler.sample_shape[0] super(MCAcquisitionFunction, self).__init__(model=model) MCSamplerMixin.__init__(self, sampler=sampler) # if not explicitly specified, we use the posterior mean for linear objs if isinstance(objective, MCAcquisitionObjective) and inner_sampler is None: inner_sampler = SobolQMCNormalSampler(sample_shape=torch.Size([128])) elif objective is not None and not isinstance( objective, MCAcquisitionObjective ): raise UnsupportedError( "Objectives that are not an `MCAcquisitionObjective` are not supported." ) if objective is None and model.num_outputs != 1: if posterior_transform is None: raise UnsupportedError( "Must specify an objective or a posterior transform when using " "a multi-output model." ) elif not posterior_transform.scalarize: raise UnsupportedError( "If using a multi-output model without an objective, " "posterior_transform must scalarize the output." ) self.objective = objective self.posterior_transform = posterior_transform self.set_X_pending(X_pending) self.X_pending: Tensor = self.X_pending self.inner_sampler = inner_sampler self.num_fantasies: int = num_fantasies self.current_value = current_value @t_batch_mode_transform() def forward(self, X: Tensor) -> Tensor: r"""Evaluate qKnowledgeGradient on the candidate set `X`. Args: X: A `b x (q + num_fantasies) x d` Tensor with `b` t-batches of `q + num_fantasies` design points each. We split this X tensor into two parts in the `q` dimension (`dim=-2`). The first `q` are the q-batch of design points and the last num_fantasies are the current solutions of the inner optimization problem. `X_fantasies = X[..., -num_fantasies:, :]` `X_fantasies.shape = b x num_fantasies x d` `X_actual = X[..., :-num_fantasies, :]` `X_actual.shape = b x q x d` Returns: A Tensor of shape `b`. For t-batch b, the q-KG value of the design `X_actual[b]` is averaged across the fantasy models, where `X_fantasies[b, i]` is chosen as the final selection for the `i`-th fantasy model. NOTE: If `current_value` is not provided, then this is not the true KG value of `X_actual[b]`, and `X_fantasies[b, : ]` must be maximized at fixed `X_actual[b]`. """ X_actual, X_fantasies = _split_fantasy_points(X=X, n_f=self.num_fantasies) # We only concatenate X_pending into the X part after splitting if self.X_pending is not None: X_actual = torch.cat( [X_actual, match_batch_shape(self.X_pending, X_actual)], dim=-2 ) # construct the fantasy model of shape `num_fantasies x b` fantasy_model = self.model.fantasize( X=X_actual, sampler=self.sampler, observation_noise=True ) # get the value function value_function = _get_value_function( model=fantasy_model, objective=self.objective, posterior_transform=self.posterior_transform, sampler=self.inner_sampler, ) # make sure to propagate gradients to the fantasy model train inputs with settings.propagate_grads(True): values = value_function(X=X_fantasies) # num_fantasies x b if self.current_value is not None: values = values - self.current_value # return average over the fantasy samples return values.mean(dim=0) @concatenate_pending_points @t_batch_mode_transform() def evaluate(self, X: Tensor, bounds: Tensor, **kwargs: Any) -> Tensor: r"""Evaluate qKnowledgeGradient on the candidate set `X_actual` by solving the inner optimization problem. Args: X: A `b x q x d` Tensor with `b` t-batches of `q` design points each. Unlike `forward()`, this does not include solutions of the inner optimization problem. bounds: A `2 x d` tensor of lower and upper bounds for each column of the solutions to the inner problem. kwargs: Additional keyword arguments. This includes the options for optimization of the inner problem, i.e. `num_restarts`, `raw_samples`, an `options` dictionary to be passed on to the optimization helpers, and a `scipy_options` dictionary to be passed to `scipy.minimize`. Returns: A Tensor of shape `b`. For t-batch b, the q-KG value of the design `X[b]` is averaged across the fantasy models. NOTE: If `current_value` is not provided, then this is not the true KG value of `X[b]`. """ if hasattr(self, "expand"): X = self.expand(X) # construct the fantasy model of shape `num_fantasies x b` fantasy_model = self.model.fantasize( X=X, sampler=self.sampler, observation_noise=True ) # get the value function value_function = _get_value_function( model=fantasy_model, objective=self.objective, posterior_transform=self.posterior_transform, sampler=self.inner_sampler, project=getattr(self, "project", None), ) from botorch.generation.gen import gen_candidates_scipy # optimize the inner problem from botorch.optim.initializers import gen_value_function_initial_conditions initial_conditions = gen_value_function_initial_conditions( acq_function=value_function, bounds=bounds, num_restarts=kwargs.get("num_restarts", 20), raw_samples=kwargs.get("raw_samples", 1024), current_model=self.model, options={**kwargs.get("options", {}), **kwargs.get("scipy_options", {})}, ) _, values = gen_candidates_scipy( initial_conditions=initial_conditions, acquisition_function=value_function, lower_bounds=bounds[0], upper_bounds=bounds[1], options=kwargs.get("scipy_options"), ) # get the maximizer for each batch values, _ = torch.max(values, dim=0) if self.current_value is not None: values = values - self.current_value # NOTE: using getattr to cover both no-attribute with qKG and None with qMFKG if getattr(self, "cost_aware_utility", None) is not None: values = self.cost_aware_utility( X=X, deltas=values, sampler=self.cost_sampler ) # return average over the fantasy samples return values.mean(dim=0) def get_augmented_q_batch_size(self, q: int) -> int: r"""Get augmented q batch size for one-shot optimization. Args: q: The number of candidates to consider jointly. Returns: The augmented size for one-shot optimization (including variables parameterizing the fantasy solutions). """ return q + self.num_fantasies def extract_candidates(self, X_full: Tensor) -> Tensor: r"""We only return X as the set of candidates post-optimization. Args: X_full: A `b x (q + num_fantasies) x d`-dim Tensor with `b` t-batches of `q + num_fantasies` design points each. Returns: A `b x q x d`-dim Tensor with `b` t-batches of `q` design points each. """ return X_full[..., : -self.num_fantasies, :] class qMultiFidelityKnowledgeGradient(qKnowledgeGradient): r"""Batch Knowledge Gradient for multi-fidelity optimization. A version of `qKnowledgeGradient` that supports multi-fidelity optimization via a `CostAwareUtility` and the `project` and `expand` operators. If none of these are set, this acquisition function reduces to `qKnowledgeGradient`. Through `valfunc_cls` and `valfunc_argfac`, this can be changed into a custom multi-fidelity acquisition function (it is only KG if the terminal value is computed using a posterior mean). """ def __init__( self, model: Model, num_fantasies: Optional[int] = 64, sampler: Optional[MCSampler] = None, objective: Optional[MCAcquisitionObjective] = None, posterior_transform: Optional[PosteriorTransform] = None, inner_sampler: Optional[MCSampler] = None, X_pending: Optional[Tensor] = None, current_value: Optional[Tensor] = None, cost_aware_utility: Optional[CostAwareUtility] = None, project: Callable[[Tensor], Tensor] = lambda X: X, expand: Callable[[Tensor], Tensor] = lambda X: X, valfunc_cls: Optional[Type[AcquisitionFunction]] = None, valfunc_argfac: Optional[Callable[[Model], Dict[str, Any]]] = None, ) -> None: r"""Multi-Fidelity q-Knowledge Gradient (one-shot optimization). Args: model: A fitted model. Must support fantasizing. num_fantasies: The number of fantasy points to use. More fantasy points result in a better approximation, at the expense of memory and wall time. Unused if `sampler` is specified. sampler: The sampler used to sample fantasy observations. Optional if `num_fantasies` is specified. objective: The objective under which the samples are evaluated. If `None`, then the analytic posterior mean is used. Otherwise, the objective is MC-evaluated (using inner_sampler). posterior_transform: An optional PosteriorTransform. If given, this transforms the posterior before evaluation. If `objective is None`, then the analytic posterior mean of the transformed posterior is used. If `objective` is given, the `inner_sampler` is used to draw samples from the transformed posterior, which are then evaluated under the `objective`. inner_sampler: The sampler used for inner sampling. Ignored if the objective is `None`. X_pending: A `m x d`-dim Tensor of `m` design points that have points that have been submitted for function evaluation but have not yet been evaluated. current_value: The current value, i.e. the expected best objective given the observed points `D`. If omitted, forward will not return the actual KG value, but the expected best objective given the data set `D u X`. cost_aware_utility: A CostAwareUtility computing the cost-transformed utility from a candidate set and samples of increases in utility. project: A callable mapping a `batch_shape x q x d` tensor of design points to a tensor with shape `batch_shape x q_term x d` projected to the desired target set (e.g. the target fidelities in case of multi-fidelity optimization). For the basic case, `q_term = q`. expand: A callable mapping a `batch_shape x q x d` input tensor to a `batch_shape x (q + q_e)' x d`-dim output tensor, where the `q_e` additional points in each q-batch correspond to additional ("trace") observations. valfunc_cls: An acquisition function class to be used as the terminal value function. valfunc_argfac: An argument factory, i.e. callable that maps a `Model` to a dictionary of kwargs for the terminal value function (e.g. `best_f` for `ExpectedImprovement`). """ if current_value is None and cost_aware_utility is not None: raise UnsupportedError( "Cost-aware KG requires current_value to be specified." ) super().__init__( model=model, num_fantasies=num_fantasies, sampler=sampler, objective=objective, posterior_transform=posterior_transform, inner_sampler=inner_sampler, X_pending=X_pending, current_value=current_value, ) self.cost_aware_utility = cost_aware_utility self.project = project self.expand = expand self._cost_sampler = None self.valfunc_cls = valfunc_cls self.valfunc_argfac = valfunc_argfac @property def cost_sampler(self): if self._cost_sampler is None: # Note: Using the deepcopy here is essential. Removing this poses a # problem if the base model and the cost model have a different number # of outputs or test points (this would be caused by expand), as this # would trigger re-sampling the base samples in the fantasy sampler. # By cloning the sampler here, the right thing will happen if the # the sizes are compatible, if they are not this will result in # samples being drawn using different base samples, but it will at # least avoid changing state of the fantasy sampler. self._cost_sampler = deepcopy(self.sampler) return self._cost_sampler @t_batch_mode_transform() def forward(self, X: Tensor) -> Tensor: r"""Evaluate qMultiFidelityKnowledgeGradient on the candidate set `X`. Args: X: A `b x (q + num_fantasies) x d` Tensor with `b` t-batches of `q + num_fantasies` design points each. We split this X tensor into two parts in the `q` dimension (`dim=-2`). The first `q` are the q-batch of design points and the last num_fantasies are the current solutions of the inner optimization problem. `X_fantasies = X[..., -num_fantasies:, :]` `X_fantasies.shape = b x num_fantasies x d` `X_actual = X[..., :-num_fantasies, :]` `X_actual.shape = b x q x d` In addition, `X` may be augmented with fidelity parameteres as part of thee `d`-dimension. Projecting fidelities to the target fidelity is handled by `project`. Returns: A Tensor of shape `b`. For t-batch b, the q-KG value of the design `X_actual[b]` is averaged across the fantasy models, where `X_fantasies[b, i]` is chosen as the final selection for the `i`-th fantasy model. NOTE: If `current_value` is not provided, then this is not the true KG value of `X_actual[b]`, and `X_fantasies[b, : ]` must be maximized at fixed `X_actual[b]`. """ X_actual, X_fantasies = _split_fantasy_points(X=X, n_f=self.num_fantasies) # We only concatenate X_pending into the X part after splitting if self.X_pending is not None: X_eval = torch.cat( [X_actual, match_batch_shape(self.X_pending, X_actual)], dim=-2 ) else: X_eval = X_actual # construct the fantasy model of shape `num_fantasies x b` # expand X (to potentially add trace observations) fantasy_model = self.model.fantasize( X=self.expand(X_eval), sampler=self.sampler, observation_noise=True ) # get the value function value_function = _get_value_function( model=fantasy_model, objective=self.objective, posterior_transform=self.posterior_transform, sampler=self.inner_sampler, project=self.project, valfunc_cls=self.valfunc_cls, valfunc_argfac=self.valfunc_argfac, ) # make sure to propagate gradients to the fantasy model train inputs # project the fantasy points with settings.propagate_grads(True): values = value_function(X=X_fantasies) # num_fantasies x b if self.current_value is not None: values = values - self.current_value if self.cost_aware_utility is not None: values = self.cost_aware_utility( X=X_actual, deltas=values, sampler=self.cost_sampler ) # return average over the fantasy samples return values.mean(dim=0) class ProjectedAcquisitionFunction(AcquisitionFunction): r""" Defines a wrapper around an `AcquisitionFunction` that incorporates the project operator. Typically used to handle value functions in look-ahead methods. """ def __init__( self, base_value_function: AcquisitionFunction, project: Callable[[Tensor], Tensor], ) -> None: r""" Args: base_value_function: The wrapped `AcquisitionFunction`. project: A callable mapping a `batch_shape x q x d` tensor of design points to a tensor with shape `batch_shape x q_term x d` projected to the desired target set (e.g. the target fidelities in case of multi-fidelity optimization). For the basic case, `q_term = q`. """ super().__init__(base_value_function.model) self.base_value_function = base_value_function self.project = project self.objective = getattr(base_value_function, "objective", None) self.posterior_transform = base_value_function.posterior_transform self.sampler = getattr(base_value_function, "sampler", None) def forward(self, X: Tensor) -> Tensor: return self.base_value_function(self.project(X)) def _get_value_function( model: Model, objective: Optional[MCAcquisitionObjective] = None, posterior_transform: Optional[PosteriorTransform] = None, sampler: Optional[MCSampler] = None, project: Optional[Callable[[Tensor], Tensor]] = None, valfunc_cls: Optional[Type[AcquisitionFunction]] = None, valfunc_argfac: Optional[Callable[[Model], Dict[str, Any]]] = None, ) -> AcquisitionFunction: r"""Construct value function (i.e. inner acquisition function).""" if valfunc_cls is not None: common_kwargs: Dict[str, Any] = { "model": model, "posterior_transform": posterior_transform, } if issubclass(valfunc_cls, MCAcquisitionFunction): common_kwargs["sampler"] = sampler common_kwargs["objective"] = objective kwargs = valfunc_argfac(model=model) if valfunc_argfac is not None else {} base_value_function = valfunc_cls(**common_kwargs, **kwargs) else: if objective is not None: base_value_function = qSimpleRegret( model=model, sampler=sampler, objective=objective, posterior_transform=posterior_transform, ) else: base_value_function = PosteriorMean( model=model, posterior_transform=posterior_transform ) if project is None: return base_value_function else: return ProjectedAcquisitionFunction( base_value_function=base_value_function, project=project, ) def _split_fantasy_points(X: Tensor, n_f: int) -> Tuple[Tensor, Tensor]: r"""Split a one-shot optimization input into actual and fantasy points Args: X: A `batch_shape x (q + n_f) x d`-dim tensor of actual and fantasy points Returns: 2-element tuple containing - A `batch_shape x q x d`-dim tensor `X_actual` of input candidates. - A `n_f x batch_shape x 1 x d`-dim tensor `X_fantasies` of fantasy points, where `X_fantasies[i, batch_idx]` is the i-th fantasy point associated with the batch indexed by `batch_idx`. """ if n_f > X.size(-2): raise ValueError( f"n_f ({n_f}) must be less than the q-batch dimension of X ({X.size(-2)})" ) split_sizes = [X.size(-2) - n_f, n_f] X_actual, X_fantasies = torch.split(X, split_sizes, dim=-2) # X_fantasies is b x num_fantasies x d, needs to be num_fantasies x b x 1 x d # for batch mode evaluation with batch shape num_fantasies x b. # b x num_fantasies x d --> num_fantasies x b x d X_fantasies = X_fantasies.permute(-2, *range(X_fantasies.dim() - 2), -1) # num_fantasies x b x 1 x d X_fantasies = X_fantasies.unsqueeze(dim=-2) return X_actual, X_fantasies
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. r""" Batch acquisition functions using the reparameterization trick in combination with (quasi) Monte-Carlo sampling. See [Rezende2014reparam]_, [Wilson2017reparam]_ and [Balandat2020botorch]_. .. [Rezende2014reparam] D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and approximate inference in deep generative models. ICML 2014. .. [Wilson2017reparam] J. T. Wilson, R. Moriconi, F. Hutter, and M. P. Deisenroth. The reparameterization trick for acquisition functions. ArXiv 2017. """ from __future__ import annotations import math from abc import ABC, abstractmethod from copy import deepcopy from functools import partial from typing import Callable, List, Optional, Protocol, Tuple, Union import torch from botorch.acquisition.acquisition import AcquisitionFunction, MCSamplerMixin from botorch.acquisition.cached_cholesky import CachedCholeskyMCAcquisitionFunction from botorch.acquisition.objective import ( ConstrainedMCObjective, IdentityMCObjective, MCAcquisitionObjective, PosteriorTransform, ) from botorch.acquisition.utils import ( compute_best_feasible_objective, prune_inferior_points, ) from botorch.exceptions.errors import UnsupportedError from botorch.models.model import Model from botorch.sampling.base import MCSampler from botorch.utils.objective import compute_smoothed_feasibility_indicator from botorch.utils.transforms import ( concatenate_pending_points, match_batch_shape, t_batch_mode_transform, ) from torch import Tensor class MCAcquisitionFunction(AcquisitionFunction, MCSamplerMixin, ABC): r""" Abstract base class for Monte-Carlo based batch acquisition functions. :meta private: """ def __init__( self, model: Model, sampler: Optional[MCSampler] = None, objective: Optional[MCAcquisitionObjective] = None, posterior_transform: Optional[PosteriorTransform] = None, X_pending: Optional[Tensor] = None, ) -> None: r""" Args: model: A fitted model. sampler: The sampler used to draw base samples. If not given, a sampler is generated on the fly within the `get_posterior_samples` method using `botorch.sampling.get_sampler`. NOTE: For posteriors that do not support base samples, a sampler compatible with intended use case must be provided. See `ForkedRNGSampler` and `StochasticSampler` as examples. objective: The MCAcquisitionObjective under which the samples are evaluated. Defaults to `IdentityMCObjective()`. posterior_transform: A PosteriorTransform (optional). X_pending: A `batch_shape, m x d`-dim Tensor of `m` design points that have points that have been submitted for function evaluation but have not yet been evaluated. """ super().__init__(model=model) MCSamplerMixin.__init__(self, sampler=sampler) if objective is None and model.num_outputs != 1: if posterior_transform is None: raise UnsupportedError( "Must specify an objective or a posterior transform when using " "a multi-output model." ) elif not posterior_transform.scalarize: raise UnsupportedError( "If using a multi-output model without an objective, " "posterior_transform must scalarize the output." ) if objective is None: objective = IdentityMCObjective() self.posterior_transform = posterior_transform self.objective: MCAcquisitionObjective = objective self.set_X_pending(X_pending) def _get_samples_and_objectives(self, X: Tensor) -> Tuple[Tensor, Tensor]: """Computes posterior samples and objective values at input X. Args: X: A `batch_shape x q x d`-dim Tensor of model inputs. Returns: A two-tuple `(samples, obj)`, where `samples` is a tensor of posterior samples with shape `sample_shape x batch_shape x q x m`, and `obj` is a tensor of MC objective values with shape `sample_shape x batch_shape x q`. """ posterior = self.model.posterior( X=X, posterior_transform=self.posterior_transform ) samples = self.get_posterior_samples(posterior) return samples, self.objective(samples=samples, X=X) @abstractmethod def forward(self, X: Tensor) -> Tensor: r"""Takes in a `batch_shape x q x d` X Tensor of t-batches with `q` `d`-dim design points each, and returns a Tensor with shape `batch_shape'`, where `batch_shape'` is the broadcasted batch shape of model and input `X`. Should utilize the result of `set_X_pending` as needed to account for pending function evaluations. """ pass # pragma: no cover class SampleReductionProtocol(Protocol): """For static type check of SampleReducingMCAcquisitionFunction's mc_reduction.""" @staticmethod def __call__(X: Tensor, *, dim: torch.Size) -> Tensor: pass # pragma: no cover class SampleReducingMCAcquisitionFunction(MCAcquisitionFunction): r"""MC-based batch acquisition function that reduces across samples and implements a general treatment of outcome constraints. This class's `forward` computes the - possibly constrained - acquisition value by (1) computing the unconstrained utility for each MC sample using `_sample_forward`, (2) weighing the utility values by the constraint indicator per MC sample, and (3) reducing (e.g. averaging) the weighted utility values over the MC dimension. NOTE: Do *NOT* override the `forward` method, unless you have thought about it well. `forward` is implemented generically to incorporate constraints in a principled way, and takes care of reducing over the Monte Carlo and batch dimensions via the `sample_reduction` and `q_reduction` arguments, which default to `torch.mean` and `torch.max`, respectively. In order to implement a custom SampleReducingMCAcquisitionFunction, we only need to implement the `_sample_forward(obj: Tensor) -> Tensor` method, which maps objective samples to acquisition utility values without reducing the Monte Carlo and batch (i.e. q) dimensions (see details in the docstring of `_sample_forward`). A note on design choices: The primary purpose of `SampleReducingMCAcquisitionFunction`is to support outcome constraints. On the surface, designing a wrapper `ConstrainedMCAcquisitionFunction` could be an elegant solution to this end, but it would still require the acquisition functions to implement a `_sample_forward` method to weigh acquisition utilities at the sample level. Further, `qNoisyExpectedImprovement` is a special case that is hard to encompass in this pattern, since it requires the computation of the best *feasible* objective, which requires access to the constraint functions. However, if the constraints are stored in a wrapper class, they will be inaccessible to the forward pass. These problems are circumvented by the design of this class. """ _log: bool = False # whether the acquisition utilities are in log-space def __init__( self, model: Model, sampler: Optional[MCSampler] = None, objective: Optional[MCAcquisitionObjective] = None, posterior_transform: Optional[PosteriorTransform] = None, X_pending: Optional[Tensor] = None, sample_reduction: SampleReductionProtocol = torch.mean, q_reduction: SampleReductionProtocol = torch.amax, constraints: Optional[List[Callable[[Tensor], Tensor]]] = None, eta: Union[Tensor, float] = 1e-3, fat: bool = False, ): r"""Constructor of SampleReducingMCAcquisitionFunction. Args: model: A fitted model. sampler: The sampler used to draw base samples. If not given, a sampler is generated on the fly within the `get_posterior_samples` method using `botorch.sampling.get_sampler`. NOTE: For posteriors that do not support base samples, a sampler compatible with intended use case must be provided. See `ForkedRNGSampler` and `StochasticSampler` as examples. objective: The MCAcquisitionObjective under which the samples are evaluated. Defaults to `IdentityMCObjective()`. NOTE: `ConstrainedMCObjective` for outcome constraints is deprecated in favor of passing the `constraints` directly to this constructor. posterior_transform: A `PosteriorTransform` (optional). X_pending: A `batch_shape, m x d`-dim Tensor of `m` design points that have points that have been submitted for function evaluation but have not yet been evaluated. sample_reduction: A callable that takes in a `sample_shape x batch_shape` Tensor of acquisition utility values, a keyword-argument `dim` that specifies the sample dimensions to reduce over, and returns a `batch_shape`-dim Tensor of acquisition values. q_reduction: A callable that takes in a `sample_shape x batch_shape x q` Tensor of acquisition utility values, a keyword-argument `dim` that specifies the q dimension to reduce over (i.e. -1), and returns a `sample_shape x batch_shape`-dim Tensor of acquisition values. constraints: A list of constraint callables which map a Tensor of posterior samples of dimension `sample_shape x batch-shape x q x m`-dim to a `sample_shape x batch-shape x q`-dim Tensor. The associated constraints are considered satisfied if the output is less than zero. NOTE: Constraint-weighting is only compatible with non-negative acquistion utilities, e.g. all improvement-based acquisition functions. eta: Temperature parameter(s) governing the smoothness of the sigmoid approximation to the constraint indicators. For more details, on this parameter, see the docs of `compute_smoothed_feasibility_indicator`. fat: Wether to apply a fat-tailed smooth approximation to the feasibility indicator or the canonical sigmoid approximation. """ if constraints is not None and isinstance(objective, ConstrainedMCObjective): raise ValueError( "ConstrainedMCObjective as well as constraints passed to constructor." "Choose one or the other, preferably the latter." ) # TODO: deprecate ConstrainedMCObjective super().__init__( model=model, sampler=sampler, objective=objective, posterior_transform=posterior_transform, X_pending=X_pending, ) # Shall the need arise, sample_dim could be exposed in the constructor. sample_dim = tuple(range(len(self.sample_shape))) self._sample_reduction = partial(sample_reduction, dim=sample_dim) self._q_reduction = partial(q_reduction, dim=-1) self._constraints = constraints self._eta = eta self._fat = fat @concatenate_pending_points @t_batch_mode_transform() def forward(self, X: Tensor) -> Tensor: r"""Computes the acquisition value associated with the input `X`. Weighs the acquisition utility values by smoothed constraint indicators if `constraints` was passed to the constructor of the class. Applies `self.sample_reduction` and `self.q_reduction` to reduce over the Monte Carlo and batch (q) dimensions. NOTE: Do *NOT* override the `forward` method for a custom acquisition function. Instead, implement the `_sample_forward` method. See the docstring of this class for details. Args: X: A `batch_shape x q x d` Tensor of t-batches with `q` `d`-dim design points each. Returns: A Tensor with shape `batch_shape'`, where `batch_shape'` is the broadcasted batch shape of model and input `X`. """ non_reduced_acqval = self._non_reduced_forward(X=X) return self._sample_reduction(self._q_reduction(non_reduced_acqval)) def _non_reduced_forward(self, X: Tensor) -> Tensor: """Compute the constrained acquisition values at the MC-sample, q level. Args: X: A `batch_shape x q x d` Tensor of t-batches with `q` `d`-dim design points each. Returns: A Tensor with shape `sample_sample x batch_shape x q`. """ samples, obj = self._get_samples_and_objectives(X) acqval = self._sample_forward(obj) # `sample_sample x batch_shape x q` return self._apply_constraints(acqval=acqval, samples=samples) @abstractmethod def _sample_forward(self, obj: Tensor) -> Tensor: """Evaluates the acquisition utility per MC sample based on objective value obj. Should utilize the result of `set_X_pending` as needed to account for pending function evaluations. Args: obj: A `sample_shape x batch_shape x q`-dim Tensor of MC objective values. Returns: A `sample_shape x batch_shape x q`-dim Tensor of acquisition utility values. """ pass # pragma: no cover def _apply_constraints(self, acqval: Tensor, samples: Tensor) -> Tensor: """Multiplies the acquisition utility by constraint indicators. Args: acqval: `sample_shape x batch_shape x q`-dim acquisition utility values. samples: `sample_shape x batch_shape x q x m`-dim posterior samples. Returns: A `sample_shape x batch_shape x q`-dim Tensor of acquisition utility values multiplied by a smoothed constraint indicator per sample. """ if self._constraints is not None: if not self._log and (acqval < 0).any(): raise ValueError( "Constraint-weighting requires unconstrained " "acquisition values to be non-negative." ) ind = compute_smoothed_feasibility_indicator( constraints=self._constraints, samples=samples, eta=self._eta, log=self._log, fat=self._fat, ) acqval = acqval.add(ind) if self._log else acqval.mul(ind) return acqval class qExpectedImprovement(SampleReducingMCAcquisitionFunction): r"""MC-based batch Expected Improvement. This computes qEI by (1) sampling the joint posterior over q points (2) evaluating the improvement over the current best for each sample (3) maximizing over q (4) averaging over the samples `qEI(X) = E(max(max Y - best_f, 0)), Y ~ f(X), where X = (x_1,...,x_q)` Example: >>> model = SingleTaskGP(train_X, train_Y) >>> best_f = train_Y.max()[0] >>> sampler = SobolQMCNormalSampler(1024) >>> qEI = qExpectedImprovement(model, best_f, sampler) >>> qei = qEI(test_X) """ def __init__( self, model: Model, best_f: Union[float, Tensor], sampler: Optional[MCSampler] = None, objective: Optional[MCAcquisitionObjective] = None, posterior_transform: Optional[PosteriorTransform] = None, X_pending: Optional[Tensor] = None, constraints: Optional[List[Callable[[Tensor], Tensor]]] = None, eta: Union[Tensor, float] = 1e-3, ) -> None: r"""q-Expected Improvement. Args: model: A fitted model. best_f: The best objective value observed so far (assumed noiseless). Can be a `batch_shape`-shaped tensor, which in case of a batched model specifies potentially different values for each element of the batch. sampler: The sampler used to draw base samples. See `MCAcquisitionFunction` more details. objective: The MCAcquisitionObjective under which the samples are evaluated. Defaults to `IdentityMCObjective()`. NOTE: `ConstrainedMCObjective` for outcome constraints is deprecated in favor of passing the `constraints` directly to this constructor. posterior_transform: A PosteriorTransform (optional). X_pending: A `m x d`-dim Tensor of `m` design points that have been submitted for function evaluation but have not yet been evaluated. Concatenated into X upon forward call. Copied and set to have no gradient. constraints: A list of constraint callables which map a Tensor of posterior samples of dimension `sample_shape x batch-shape x q x m`-dim to a `sample_shape x batch-shape x q`-dim Tensor. The associated constraints are considered satisfied if the output is less than zero. eta: Temperature parameter(s) governing the smoothness of the sigmoid approximation to the constraint indicators. For more details, on this parameter, see the docs of `compute_smoothed_feasibility_indicator`. """ super().__init__( model=model, sampler=sampler, objective=objective, posterior_transform=posterior_transform, X_pending=X_pending, constraints=constraints, eta=eta, ) self.register_buffer("best_f", torch.as_tensor(best_f, dtype=float)) def _sample_forward(self, obj: Tensor) -> Tensor: r"""Evaluate qExpectedImprovement per sample on the candidate set `X`. Args: obj: A `sample_shape x batch_shape x q`-dim Tensor of MC objective values. Returns: A `sample_shape x batch_shape x q`-dim Tensor of improvement utility values. """ return (obj - self.best_f.unsqueeze(-1).to(obj)).clamp_min(0) class qNoisyExpectedImprovement( SampleReducingMCAcquisitionFunction, CachedCholeskyMCAcquisitionFunction ): r"""MC-based batch Noisy Expected Improvement. This function does not assume a `best_f` is known (which would require noiseless observations). Instead, it uses samples from the joint posterior over the `q` test points and previously observed points. The improvement over previously observed points is computed for each sample and averaged. `qNEI(X) = E(max(max Y - max Y_baseline, 0))`, where `(Y, Y_baseline) ~ f((X, X_baseline)), X = (x_1,...,x_q)` Example: >>> model = SingleTaskGP(train_X, train_Y) >>> sampler = SobolQMCNormalSampler(1024) >>> qNEI = qNoisyExpectedImprovement(model, train_X, sampler) >>> qnei = qNEI(test_X) """ def __init__( self, model: Model, X_baseline: Tensor, sampler: Optional[MCSampler] = None, objective: Optional[MCAcquisitionObjective] = None, posterior_transform: Optional[PosteriorTransform] = None, X_pending: Optional[Tensor] = None, prune_baseline: bool = True, cache_root: bool = True, constraints: Optional[List[Callable[[Tensor], Tensor]]] = None, eta: Union[Tensor, float] = 1e-3, marginalize_dim: Optional[int] = None, ) -> None: r"""q-Noisy Expected Improvement. Args: model: A fitted model. X_baseline: A `batch_shape x r x d`-dim Tensor of `r` design points that have already been observed. These points are considered as the potential best design point. sampler: The sampler used to draw base samples. See `MCAcquisitionFunction` more details. objective: The MCAcquisitionObjective under which the samples are evaluated. Defaults to `IdentityMCObjective()`. NOTE: `ConstrainedMCObjective` for outcome constraints is deprecated in favor of passing the `constraints` directly to this constructor. posterior_transform: A PosteriorTransform (optional). X_pending: A `batch_shape x m x d`-dim Tensor of `m` design points that have points that have been submitted for function evaluation but have not yet been evaluated. Concatenated into `X` upon forward call. Copied and set to have no gradient. prune_baseline: If True, remove points in `X_baseline` that are highly unlikely to be the best point. This can significantly improve performance and is generally recommended. In order to customize pruning parameters, instead manually call `botorch.acquisition.utils.prune_inferior_points` on `X_baseline` before instantiating the acquisition function. cache_root: A boolean indicating whether to cache the root decomposition over `X_baseline` and use low-rank updates. constraints: A list of constraint callables which map a Tensor of posterior samples of dimension `sample_shape x batch-shape x q x m`-dim to a `sample_shape x batch-shape x q`-dim Tensor. The associated constraints are considered satisfied if the output is less than zero. eta: Temperature parameter(s) governing the smoothness of the sigmoid approximation to the constraint indicators. For more details, on this parameter, see the docs of `compute_smoothed_feasibility_indicator`. marginalize_dim: The dimension to marginalize over. TODO: similar to qNEHVI, when we are using sequential greedy candidate selection, we could incorporate pending points X_baseline and compute the incremental qNEI from the new point. This would greatly increase efficiency for large batches. """ super().__init__( model=model, sampler=sampler, objective=objective, posterior_transform=posterior_transform, X_pending=X_pending, constraints=constraints, eta=eta, ) self._setup(model=model, cache_root=cache_root) if prune_baseline: X_baseline = prune_inferior_points( model=model, X=X_baseline, objective=objective, posterior_transform=posterior_transform, marginalize_dim=marginalize_dim, ) self.register_buffer("X_baseline", X_baseline) # registering buffers for _get_samples_and_objectives in the next `if` block self.register_buffer("baseline_samples", None) self.register_buffer("baseline_obj", None) if self._cache_root: self.q_in = -1 # set baseline samples with torch.no_grad(): # this is _get_samples_and_objectives(X_baseline) posterior = self.model.posterior( X_baseline, posterior_transform=self.posterior_transform ) # Note: The root decomposition is cached in two different places. It # may be confusing to have two different caches, but this is not # trivial to change since each is needed for a different reason: # - LinearOperator caching to `posterior.mvn` allows for reuse within # this function, which may be helpful if the same root decomposition # is produced by the calls to `self.base_sampler` and # `self._cache_root_decomposition`. # - self._baseline_L allows a root decomposition to be persisted outside # this method. baseline_samples = self.get_posterior_samples(posterior) baseline_obj = self.objective(baseline_samples, X=X_baseline) # We make a copy here because we will write an attribute `base_samples` # to `self.base_sampler.base_samples`, and we don't want to mutate # `self.sampler`. self.base_sampler = deepcopy(self.sampler) self.baseline_samples = baseline_samples self.baseline_obj = baseline_obj self.register_buffer( "_baseline_best_f", self._compute_best_feasible_objective( samples=baseline_samples, obj=baseline_obj ), ) self._baseline_L = self._compute_root_decomposition(posterior=posterior) def compute_best_f(self, obj: Tensor) -> Tensor: """Computes the best (feasible) noisy objective value. Args: obj: `sample_shape x batch_shape x q`-dim Tensor of objectives in forward. Returns: A `sample_shape x batch_shape x 1`-dim Tensor of best feasible objectives. """ if self._cache_root: val = self._baseline_best_f else: val = self._compute_best_feasible_objective( samples=self.baseline_samples, obj=self.baseline_obj ) # ensuring shape, dtype, device compatibility with obj n_sample_dims = len(self.sample_shape) view_shape = torch.Size( [ *val.shape[:n_sample_dims], # sample dimensions *(1,) * (obj.ndim - val.ndim), # pad to match obj *val.shape[n_sample_dims:], # the rest ] ) return val.view(view_shape).to(obj) def _sample_forward(self, obj: Tensor) -> Tensor: """Evaluate qNoisyExpectedImprovement per objective value in `obj`. Args: obj: A `sample_shape x batch_shape x q`-dim Tensor of MC objective values. Returns: A `sample_shape x batch_shape x q`-dim Tensor of noisy improvement values. """ return (obj - self.compute_best_f(obj)).clamp_min(0) def _get_samples_and_objectives(self, X: Tensor) -> Tuple[Tensor, Tensor]: r"""Compute samples at new points, using the cached root decomposition. Args: X: A `batch_shape x q x d`-dim tensor of inputs. Returns: A two-tuple `(samples, obj)`, where `samples` is a tensor of posterior samples with shape `sample_shape x batch_shape x q x m`, and `obj` is a tensor of MC objective values with shape `sample_shape x batch_shape x q`. """ q = X.shape[-2] X_full = torch.cat([match_batch_shape(self.X_baseline, X), X], dim=-2) # TODO: Implement more efficient way to compute posterior over both training and # test points in GPyTorch (https://github.com/cornellius-gp/gpytorch/issues/567) posterior = self.model.posterior( X_full, posterior_transform=self.posterior_transform ) if not self._cache_root: samples_full = super().get_posterior_samples(posterior) samples = samples_full[..., -q:, :] obj_full = self.objective(samples_full, X=X_full) # assigning baseline buffers so `best_f` can be computed in _sample_forward self.baseline_obj, obj = obj_full[..., :-q], obj_full[..., -q:] self.baseline_samples = samples_full[..., :-q, :] return samples, obj # handle one-to-many input transforms n_plus_q = X_full.shape[-2] n_w = posterior._extended_shape()[-2] // n_plus_q q_in = q * n_w self._set_sampler(q_in=q_in, posterior=posterior) samples = self._get_f_X_samples(posterior=posterior, q_in=q_in) obj = self.objective(samples, X=X_full[..., -q:, :]) return samples, obj def _compute_best_feasible_objective(self, samples: Tensor, obj: Tensor) -> Tensor: r"""Computes best feasible objective value from samples. Args: samples: `sample_shape x batch_shape x q x m`-dim posterior samples. obj: A `sample_shape x batch_shape x q`-dim Tensor of MC objective values. Returns: A `sample_shape x batch_shape x 1`-dim Tensor of best feasible objectives. """ return compute_best_feasible_objective( samples=samples, obj=obj, constraints=self._constraints, model=self.model, objective=self.objective, posterior_transform=self.posterior_transform, X_baseline=self.X_baseline, ) class qProbabilityOfImprovement(SampleReducingMCAcquisitionFunction): r"""MC-based batch Probability of Improvement. Estimates the probability of improvement over the current best observed value by sampling from the joint posterior distribution of the q-batch. MC-based estimates of a probability involves taking expectation of an indicator function; to support auto-differntiation, the indicator is replaced with a sigmoid function with temperature parameter `tau`. `qPI(X) = P(max Y >= best_f), Y ~ f(X), X = (x_1,...,x_q)` Example: >>> model = SingleTaskGP(train_X, train_Y) >>> best_f = train_Y.max()[0] >>> sampler = SobolQMCNormalSampler(1024) >>> qPI = qProbabilityOfImprovement(model, best_f, sampler) >>> qpi = qPI(test_X) """ def __init__( self, model: Model, best_f: Union[float, Tensor], sampler: Optional[MCSampler] = None, objective: Optional[MCAcquisitionObjective] = None, posterior_transform: Optional[PosteriorTransform] = None, X_pending: Optional[Tensor] = None, tau: float = 1e-3, constraints: Optional[List[Callable[[Tensor], Tensor]]] = None, eta: Union[Tensor, float] = 1e-3, ) -> None: r"""q-Probability of Improvement. Args: model: A fitted model. best_f: The best objective value observed so far (assumed noiseless). Can be a `batch_shape`-shaped tensor, which in case of a batched model specifies potentially different values for each element of the batch. sampler: The sampler used to draw base samples. See `MCAcquisitionFunction` more details. objective: The MCAcquisitionObjective under which the samples are evaluated. Defaults to `IdentityMCObjective()`. NOTE: `ConstrainedMCObjective` for outcome constraints is deprecated in favor of passing the `constraints` directly to this constructor. posterior_transform: A PosteriorTransform (optional). X_pending: A `m x d`-dim Tensor of `m` design points that have points that have been submitted for function evaluation but have not yet been evaluated. Concatenated into X upon forward call. Copied and set to have no gradient. tau: The temperature parameter used in the sigmoid approximation of the step function. Smaller values yield more accurate approximations of the function, but result in gradients estimates with higher variance. constraints: A list of constraint callables which map posterior samples to a scalar. The associated constraint is considered satisfied if this scalar is less than zero. eta: Temperature parameter(s) governing the smoothness of the sigmoid approximation to the constraint indicators. For more details, on this parameter, see the docs of `compute_smoothed_feasibility_indicator`. """ super().__init__( model=model, sampler=sampler, objective=objective, posterior_transform=posterior_transform, X_pending=X_pending, constraints=constraints, eta=eta, ) best_f = torch.as_tensor(best_f, dtype=float).unsqueeze(-1) # adding batch dim self.register_buffer("best_f", best_f) self.register_buffer("tau", torch.as_tensor(tau, dtype=float)) def _sample_forward(self, obj: Tensor) -> Tensor: r"""Evaluate qProbabilityOfImprovement per sample on the candidate set `X`. Args: obj: A `sample_shape x batch_shape x q`-dim Tensor of MC objective values. Returns: A `sample_shape x batch_shape x q`-dim Tensor of improvement indicators. """ improvement = obj - self.best_f.to(obj) return torch.sigmoid(improvement / self.tau) class qSimpleRegret(SampleReducingMCAcquisitionFunction): r"""MC-based batch Simple Regret. Samples from the joint posterior over the q-batch and computes the simple regret. `qSR(X) = E(max Y), Y ~ f(X), X = (x_1,...,x_q)` Example: >>> model = SingleTaskGP(train_X, train_Y) >>> sampler = SobolQMCNormalSampler(1024) >>> qSR = qSimpleRegret(model, sampler) >>> qsr = qSR(test_X) """ def _sample_forward(self, obj: Tensor) -> Tensor: r"""Evaluate qSimpleRegret per sample on the candidate set `X`. Args: obj: A `sample_shape x batch_shape x q`-dim Tensor of MC objective values. Returns: A `sample_shape x batch_shape x q`-dim Tensor of simple regret values. """ return obj class qUpperConfidenceBound(SampleReducingMCAcquisitionFunction): r"""MC-based batch Upper Confidence Bound. Uses a reparameterization to extend UCB to qUCB for q > 1 (See Appendix A of [Wilson2017reparam].) `qUCB = E(max(mu + |Y_tilde - mu|))`, where `Y_tilde ~ N(mu, beta pi/2 Sigma)` and `f(X)` has distribution `N(mu, Sigma)`. Example: >>> model = SingleTaskGP(train_X, train_Y) >>> sampler = SobolQMCNormalSampler(1024) >>> qUCB = qUpperConfidenceBound(model, 0.1, sampler) >>> qucb = qUCB(test_X) """ def __init__( self, model: Model, beta: float, sampler: Optional[MCSampler] = None, objective: Optional[MCAcquisitionObjective] = None, posterior_transform: Optional[PosteriorTransform] = None, X_pending: Optional[Tensor] = None, ) -> None: r"""q-Upper Confidence Bound. Args: model: A fitted model. beta: Controls tradeoff between mean and standard deviation in UCB. sampler: The sampler used to draw base samples. See `MCAcquisitionFunction` more details. objective: The MCAcquisitionObjective under which the samples are evaluated. Defaults to `IdentityMCObjective()`. posterior_transform: A PosteriorTransform (optional). X_pending: A `batch_shape x m x d`-dim Tensor of `m` design points that have points that have been submitted for function evaluation but have not yet been evaluated. Concatenated into X upon forward call. Copied and set to have no gradient. """ super().__init__( model=model, sampler=sampler, objective=objective, posterior_transform=posterior_transform, X_pending=X_pending, ) self.beta_prime = math.sqrt(beta * math.pi / 2) def _sample_forward(self, obj: Tensor) -> Tensor: r"""Evaluate qUpperConfidenceBound per sample on the candidate set `X`. Args: obj: A `sample_shape x batch_shape x q`-dim Tensor of MC objective values. Returns: A `sample_shape x batch_shape x q`-dim Tensor of acquisition values. """ mean = obj.mean(dim=0) return mean + self.beta_prime * (obj - mean).abs()
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. r""" Utilities for acquisition functions. """ from __future__ import annotations from typing import Callable, List, Optional, Union import torch from botorch.acquisition import monte_carlo from botorch.acquisition.multi_objective import monte_carlo as moo_monte_carlo from botorch.acquisition.objective import MCAcquisitionObjective, PosteriorTransform from botorch.acquisition.utils import compute_best_feasible_objective from botorch.models.model import Model from botorch.sampling.get_sampler import get_sampler from botorch.utils.multi_objective.box_decompositions.non_dominated import ( FastNondominatedPartitioning, NondominatedPartitioning, ) from torch import Tensor def get_acquisition_function( acquisition_function_name: str, model: Model, objective: MCAcquisitionObjective, X_observed: Tensor, posterior_transform: Optional[PosteriorTransform] = None, X_pending: Optional[Tensor] = None, constraints: Optional[List[Callable[[Tensor], Tensor]]] = None, eta: Optional[Union[Tensor, float]] = 1e-3, mc_samples: int = 512, seed: Optional[int] = None, *, # optional parameters that are only needed for certain acquisition functions tau: float = 1e-3, prune_baseline: bool = True, marginalize_dim: Optional[int] = None, cache_root: bool = True, beta: Optional[float] = None, ref_point: Union[None, List[float], Tensor] = None, Y: Optional[Tensor] = None, alpha: float = 0.0, ) -> monte_carlo.MCAcquisitionFunction: r"""Convenience function for initializing botorch acquisition functions. Args: acquisition_function_name: Name of the acquisition function. model: A fitted model. objective: A MCAcquisitionObjective. X_observed: A `m1 x d`-dim Tensor of `m1` design points that have already been observed. posterior_transform: A PosteriorTransform (optional). X_pending: A `m2 x d`-dim Tensor of `m2` design points whose evaluation is pending. constraints: A list of callables, each mapping a Tensor of dimension `sample_shape x batch-shape x q x m` to a Tensor of dimension `sample_shape x batch-shape x q`, where negative values imply feasibility. Used for all acquisition functions except qSR and qUCB. eta: The temperature parameter for the sigmoid function used for the differentiable approximation of the constraints. In case of a float the same eta is used for every constraint in constraints. In case of a tensor the length of the tensor must match the number of provided constraints. The i-th constraint is then estimated with the i-th eta value. Used for all acquisition functions except qSR and qUCB. mc_samples: The number of samples to use for (q)MC evaluation of the acquisition function. seed: If provided, perform deterministic optimization (i.e. the function to optimize is fixed and not stochastic). Returns: The requested acquisition function. Example: >>> model = SingleTaskGP(train_X, train_Y) >>> obj = LinearMCObjective(weights=torch.tensor([1.0, 2.0])) >>> acqf = get_acquisition_function("qEI", model, obj, train_X) """ # initialize the sampler sampler = get_sampler( posterior=model.posterior(X_observed[:1]), sample_shape=torch.Size([mc_samples]), seed=seed, ) if posterior_transform is not None and acquisition_function_name in [ "qEHVI", "qNEHVI", ]: raise NotImplementedError( "PosteriorTransforms are not yet implemented for multi-objective " "acquisition functions." ) # instantiate and return the requested acquisition function if acquisition_function_name in ("qEI", "qLogEI", "qPI"): # Since these are the non-noisy variants, use the posterior mean at the observed # inputs directly to compute the best feasible value without sampling. Y = model.posterior(X_observed, posterior_transform=posterior_transform).mean obj = objective(samples=Y, X=X_observed) best_f = compute_best_feasible_objective( samples=Y, obj=obj, constraints=constraints, model=model, objective=objective, posterior_transform=posterior_transform, X_baseline=X_observed, ) if acquisition_function_name == "qEI": return monte_carlo.qExpectedImprovement( model=model, best_f=best_f, sampler=sampler, objective=objective, posterior_transform=posterior_transform, X_pending=X_pending, constraints=constraints, eta=eta, ) if acquisition_function_name == "qLogEI": # putting the import here to avoid circular imports # ideally, the entire function should be moved out of this file, # but since it is used for legacy code to be deprecated, we keep it here. from botorch.acquisition.logei import qLogExpectedImprovement return qLogExpectedImprovement( model=model, best_f=best_f, sampler=sampler, objective=objective, posterior_transform=posterior_transform, X_pending=X_pending, constraints=constraints, eta=eta, ) elif acquisition_function_name == "qPI": return monte_carlo.qProbabilityOfImprovement( model=model, best_f=best_f, sampler=sampler, objective=objective, posterior_transform=posterior_transform, X_pending=X_pending, tau=tau, constraints=constraints, eta=eta, ) elif acquisition_function_name == "qNEI": return monte_carlo.qNoisyExpectedImprovement( model=model, X_baseline=X_observed, sampler=sampler, objective=objective, posterior_transform=posterior_transform, X_pending=X_pending, prune_baseline=prune_baseline, marginalize_dim=marginalize_dim, cache_root=cache_root, constraints=constraints, eta=eta, ) elif acquisition_function_name == "qLogNEI": from botorch.acquisition.logei import qLogNoisyExpectedImprovement return qLogNoisyExpectedImprovement( model=model, X_baseline=X_observed, sampler=sampler, objective=objective, posterior_transform=posterior_transform, X_pending=X_pending, prune_baseline=prune_baseline, marginalize_dim=marginalize_dim, cache_root=cache_root, constraints=constraints, eta=eta, ) elif acquisition_function_name == "qSR": return monte_carlo.qSimpleRegret( model=model, sampler=sampler, objective=objective, posterior_transform=posterior_transform, X_pending=X_pending, ) elif acquisition_function_name == "qUCB": if beta is None: raise ValueError("`beta` must be not be None for qUCB.") return monte_carlo.qUpperConfidenceBound( model=model, beta=beta, sampler=sampler, objective=objective, posterior_transform=posterior_transform, X_pending=X_pending, ) elif acquisition_function_name == "qEHVI": if Y is None: raise ValueError("`Y` must not be None for qEHVI") if ref_point is None: raise ValueError("`ref_point` must not be None for qEHVI") # get feasible points if constraints is not None: feas = torch.stack([c(Y) <= 0 for c in constraints], dim=-1).all(dim=-1) Y = Y[feas] obj = objective(Y) if alpha > 0: partitioning = NondominatedPartitioning( ref_point=torch.as_tensor(ref_point, dtype=Y.dtype, device=Y.device), Y=obj, alpha=alpha, ) else: partitioning = FastNondominatedPartitioning( ref_point=torch.as_tensor(ref_point, dtype=Y.dtype, device=Y.device), Y=obj, ) return moo_monte_carlo.qExpectedHypervolumeImprovement( model=model, ref_point=ref_point, partitioning=partitioning, sampler=sampler, objective=objective, constraints=constraints, eta=eta, X_pending=X_pending, ) elif acquisition_function_name == "qNEHVI": if ref_point is None: raise ValueError("`ref_point` must not be None for qNEHVI") return moo_monte_carlo.qNoisyExpectedHypervolumeImprovement( model=model, ref_point=ref_point, X_baseline=X_observed, sampler=sampler, objective=objective, constraints=constraints, eta=eta, prune_baseline=prune_baseline, alpha=alpha, X_pending=X_pending, marginalize_dim=marginalize_dim, cache_root=cache_root, ) raise NotImplementedError( f"Unknown acquisition function {acquisition_function_name}" )
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. r""" Acquisition function for joint entropy search (JES). .. [Hvarfner2022joint] C. Hvarfner, F. Hutter, L. Nardi, Joint Entropy Search for Maximally-informed Bayesian Optimization. In Proceedings of the Annual Conference on Neural Information Processing Systems (NeurIPS), 2022. .. [Tu2022joint] B. Tu, A. Gandy, N. Kantas, B. Shafei, Joint Entropy Search for Multi-objective Bayesian Optimization. In Proceedings of the Annual Conference on Neural Information Processing Systems (NeurIPS), 2022. """ from __future__ import annotations import warnings from math import log, pi from typing import Optional import torch from botorch import settings from botorch.acquisition.acquisition import AcquisitionFunction, MCSamplerMixin from botorch.acquisition.objective import PosteriorTransform from botorch.models.fully_bayesian import SaasFullyBayesianSingleTaskGP from botorch.models.gp_regression import MIN_INFERRED_NOISE_LEVEL from botorch.models.model import Model from botorch.models.utils import check_no_nans, fantasize as fantasize_flag from botorch.sampling.normal import SobolQMCNormalSampler from botorch.utils.transforms import concatenate_pending_points, t_batch_mode_transform from torch import Tensor from torch.distributions import Normal MCMC_DIM = -3 # Only relevant if you do Fully Bayesian GPs. ESTIMATION_TYPES = ["MC", "LB"] MC_ADD_TERM = 0.5 * (1 + log(2 * pi)) # The CDF query cannot be strictly zero in the division # and this clamping helps assure that it is always positive. CLAMP_LB = torch.finfo(torch.float32).eps FULLY_BAYESIAN_ERROR_MSG = ( "JES is not yet available with Fully Bayesian GPs. Track the issue, " "which regards conditioning on a number of optima on a collection " "of models, in detail at https://github.com/pytorch/botorch/issues/1680" ) class qJointEntropySearch(AcquisitionFunction, MCSamplerMixin): r"""The acquisition function for the Joint Entropy Search, where the batches `q > 1` are supported through the lower bound formulation. This acquisition function computes the mutual information between the observation at a candidate point `X` and the optimal input-output pair. See [Tu2022joint]_ for a discussion on the estimation procedure. """ def __init__( self, model: Model, optimal_inputs: Tensor, optimal_outputs: Tensor, condition_noiseless: bool = True, posterior_transform: Optional[PosteriorTransform] = None, X_pending: Optional[Tensor] = None, estimation_type: str = "LB", maximize: bool = True, num_samples: int = 64, ) -> None: r"""Joint entropy search acquisition function. Args: model: A fitted single-outcome model. optimal_inputs: A `num_samples x d`-dim tensor containing the sampled optimal inputs of dimension `d`. We assume for simplicity that each sample only contains one optimal set of inputs. optimal_outputs: A `num_samples x 1`-dim Tensor containing the optimal set of objectives of dimension `1`. condition_noiseless: Whether to condition on noiseless optimal observations `f*` [Hvarfner2022joint]_ or noisy optimal observations `y*` [Tu2022joint]_. These are sampled identically, so this only controls the fashion in which the GP is reshaped as a result of conditioning on the optimum. estimation_type: estimation_type: A string to determine which entropy estimate is computed: Lower bound" ("LB") or "Monte Carlo" ("MC"). Lower Bound is recommended due to the relatively high variance of the MC estimator. maximize: If true, we consider a maximization problem. X_pending: A `m x d`-dim Tensor of `m` design points that have been submitted for function evaluation, but have not yet been evaluated. num_samples: The number of Monte Carlo samples used for the Monte Carlo estimate. """ super().__init__(model=model) sampler = SobolQMCNormalSampler(sample_shape=torch.Size([num_samples])) MCSamplerMixin.__init__(self, sampler=sampler) # To enable fully bayesian GP conditioning, we need to unsqueeze # to get num_optima x num_gps unique GPs # inputs come as num_optima_per_model x (num_models) x d # but we want it four-dimensional in the Fully bayesian case, # and three-dimensional otherwise. self.optimal_inputs = optimal_inputs.unsqueeze(-2) self.optimal_outputs = optimal_outputs.unsqueeze(-2) self.posterior_transform = posterior_transform self.maximize = maximize # The optima (can be maxima, can be minima) come in as the largest # values if we optimize, or the smallest (likely substantially negative) # if we minimize. Inside the acquisition function, however, we always # want to consider MAX-values. As such, we need to flip them if # we want to minimize. if not self.maximize: optimal_outputs = -optimal_outputs self.num_samples = optimal_inputs.shape[0] self.condition_noiseless = condition_noiseless self.initial_model = model # Here, the optimal inputs have shapes num_optima x [num_models if FB] x 1 x D # and the optimal outputs have shapes num_optima x [num_models if FB] x 1 x 1 # The third dimension equaling 1 is required to get one optimum per model, # which raises a BotorchTensorDimensionWarning. if isinstance(model, SaasFullyBayesianSingleTaskGP): raise NotImplementedError(FULLY_BAYESIAN_ERROR_MSG) with warnings.catch_warnings(): warnings.filterwarnings("ignore") with fantasize_flag(): with settings.propagate_grads(False): # We must do a forward pass one before conditioning. self.initial_model.posterior( self.optimal_inputs[:1], observation_noise=False ) # This equates to the JES version proposed by Hvarfner et. al. if self.condition_noiseless: opt_noise = torch.full_like( self.optimal_outputs, MIN_INFERRED_NOISE_LEVEL ) # conditional (batch) model of shape (num_models) # x num_optima_per_model self.conditional_model = ( self.initial_model.condition_on_observations( X=self.initial_model.transform_inputs(self.optimal_inputs), Y=self.optimal_outputs, noise=opt_noise, ) ) else: self.conditional_model = ( self.initial_model.condition_on_observations( X=self.initial_model.transform_inputs(self.optimal_inputs), Y=self.optimal_outputs, ) ) self.estimation_type = estimation_type self.set_X_pending(X_pending) @concatenate_pending_points @t_batch_mode_transform() def forward(self, X: Tensor) -> Tensor: r"""Evaluates qJointEntropySearch at the design points `X`. Args: X: A `batch_shape x q x d`-dim Tensor of `batch_shape` t-batches with `q` `d`-dim design points each. Returns: A `batch_shape`-dim Tensor of acquisition values at the given design points `X`. """ if self.estimation_type == "LB": res = self._compute_lower_bound_information_gain(X) elif self.estimation_type == "MC": res = self._compute_monte_carlo_information_gain(X) else: raise ValueError( f"Estimation type {self.estimation_type} is not valid. " f"Please specify any of {ESTIMATION_TYPES}" ) return res def _compute_lower_bound_information_gain( self, X: Tensor, return_parts: bool = False ) -> Tensor: r"""Evaluates the lower bound information gain at the design points `X`. Args: X: A `batch_shape x q x d`-dim Tensor of `batch_shape` t-batches with `q` `d`-dim design points each. Returns: A `batch_shape`-dim Tensor of acquisition values at the given design points `X`. """ initial_posterior = self.initial_model.posterior(X, observation_noise=True) # need to check if there is a two-dimensional batch shape - # the sampled optima appear in the dimension right after batch_shape = X.shape[:-2] sample_dim = len(batch_shape) # We DISREGARD the additional constant term. initial_entropy = 0.5 * torch.logdet( initial_posterior.mvn.lazy_covariance_matrix ) # initial_entropy of shape batch_size or batch_size x num_models if FBGP # first need to unsqueeze the sample dim (after batch dim) and then the two last initial_entropy = ( initial_entropy.unsqueeze(sample_dim).unsqueeze(-1).unsqueeze(-1) ) # Compute the mixture mean and variance posterior_m = self.conditional_model.posterior( X.unsqueeze(MCMC_DIM), observation_noise=True ) noiseless_var = self.conditional_model.posterior( X.unsqueeze(MCMC_DIM), observation_noise=False ).variance mean_m = posterior_m.mean if not self.maximize: mean_m = -mean_m variance_m = posterior_m.variance check_no_nans(variance_m) # get stdv of noiseless variance stdv = noiseless_var.sqrt() # batch_shape x 1 normal = Normal( torch.zeros(1, device=X.device, dtype=X.dtype), torch.ones(1, device=X.device, dtype=X.dtype), ) normalized_mvs = (self.optimal_outputs - mean_m) / stdv cdf_mvs = normal.cdf(normalized_mvs).clamp_min(CLAMP_LB) pdf_mvs = torch.exp(normal.log_prob(normalized_mvs)) ratio = pdf_mvs / cdf_mvs var_truncated = noiseless_var * ( 1 - (normalized_mvs + ratio) * ratio ).clamp_min(CLAMP_LB) var_truncated = var_truncated + (variance_m - noiseless_var) conditional_entropy = 0.5 * torch.log(var_truncated) # Shape batch_size x num_optima x [num_models if FB] x q x num_outputs # squeeze the num_outputs dim (since it's 1) entropy_reduction = ( initial_entropy - conditional_entropy.sum(dim=-2, keepdim=True) ).squeeze(-1) # average over the number of optima and squeeze the q-batch entropy_reduction = entropy_reduction.mean(dim=sample_dim).squeeze(-1) return entropy_reduction def _compute_monte_carlo_variables(self, posterior): """Retrieves monte carlo samples and their log probabilities from the posterior. Args: posterior: The posterior distribution. Returns: A two-element tuple containing: - samples: a num_optima x batch_shape x num_mc_samples x q x 1 tensor of samples drawn from the posterior. - samples_log_prob: a num_optima x batch_shape x num_mc_samples x q x 1 tensor of associated probabilities. """ samples = self.get_posterior_samples(posterior) samples_log_prob = ( posterior.mvn.log_prob(samples.squeeze(-1)).unsqueeze(-1).unsqueeze(-1) ) return samples, samples_log_prob def _compute_monte_carlo_information_gain( self, X: Tensor, return_parts: bool = False ) -> Tensor: r"""Evaluates the lower bound information gain at the design points `X`. Args: X: A `batch_shape x q x d`-dim Tensor of `batch_shape` t-batches with `q` `d`-dim design points each. Returns: A `batch_shape`-dim Tensor of acquisition values at the given design points `X`. """ initial_posterior = self.initial_model.posterior(X, observation_noise=True) batch_shape = X.shape[:-2] sample_dim = len(batch_shape) # We DISREGARD the additional constant term. initial_entropy = MC_ADD_TERM + 0.5 * torch.logdet( initial_posterior.mvn.lazy_covariance_matrix ) # initial_entropy of shape batch_size or batch_size x num_models if FBGP # first need to unsqueeze the sample dim (after batch dim), then the two last initial_entropy = ( initial_entropy.unsqueeze(sample_dim).unsqueeze(-1).unsqueeze(-1) ) # Compute the mixture mean and variance posterior_m = self.conditional_model.posterior( X.unsqueeze(MCMC_DIM), observation_noise=True ) noiseless_var = self.conditional_model.posterior( X.unsqueeze(MCMC_DIM), observation_noise=False ).variance mean_m = posterior_m.mean if not self.maximize: mean_m = -mean_m variance_m = posterior_m.variance.clamp_min(CLAMP_LB) conditional_samples, conditional_logprobs = self._compute_monte_carlo_variables( posterior_m ) normalized_samples = (conditional_samples - mean_m) / variance_m.sqrt() # Correlation between noisy observations and noiseless values f rho = (noiseless_var / variance_m).sqrt() normal = Normal( torch.zeros(1, device=X.device, dtype=X.dtype), torch.ones(1, device=X.device, dtype=X.dtype), ) # prepare max value quantities and re-scale as required normalized_mvs = (self.optimal_outputs - mean_m) / noiseless_var.sqrt() mvs_rescaled_mc = (normalized_mvs - rho * normalized_samples) / (1 - rho**2) cdf_mvs = normal.cdf(normalized_mvs).clamp_min(CLAMP_LB) cdf_rescaled_mvs = normal.cdf(mvs_rescaled_mc).clamp_min(CLAMP_LB) mv_ratio = cdf_rescaled_mvs / cdf_mvs log_term = torch.log(mv_ratio) + conditional_logprobs conditional_entropy = -(mv_ratio * log_term).mean(0) entropy_reduction = ( initial_entropy - conditional_entropy.sum(dim=-2, keepdim=True) ).squeeze(-1) # average over the number of optima and squeeze the q-batch entropy_reduction = entropy_reduction.mean(dim=sample_dim).squeeze(-1) return entropy_reduction
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. r""" A registry of helpers for generating inputs to acquisition function constructors programmatically from a consistent input format. """ from __future__ import annotations import inspect from typing import ( Any, Callable, Dict, Hashable, Iterable, List, Optional, Sequence, Tuple, Type, TypeVar, Union, ) import torch from botorch.acquisition.acquisition import AcquisitionFunction from botorch.acquisition.analytic import ( ConstrainedExpectedImprovement, ExpectedImprovement, LogConstrainedExpectedImprovement, LogExpectedImprovement, LogNoisyExpectedImprovement, LogProbabilityOfImprovement, NoisyExpectedImprovement, PosteriorMean, ProbabilityOfImprovement, UpperConfidenceBound, ) from botorch.acquisition.cost_aware import InverseCostWeightedUtility from botorch.acquisition.fixed_feature import FixedFeatureAcquisitionFunction from botorch.acquisition.joint_entropy_search import qJointEntropySearch from botorch.acquisition.knowledge_gradient import ( qKnowledgeGradient, qMultiFidelityKnowledgeGradient, ) from botorch.acquisition.logei import ( qLogExpectedImprovement, qLogNoisyExpectedImprovement, TAU_MAX, TAU_RELU, ) from botorch.acquisition.max_value_entropy_search import ( qMaxValueEntropy, qMultiFidelityMaxValueEntropy, ) from botorch.acquisition.monte_carlo import ( qExpectedImprovement, qNoisyExpectedImprovement, qProbabilityOfImprovement, qSimpleRegret, qUpperConfidenceBound, ) from botorch.acquisition.multi_objective import ( ExpectedHypervolumeImprovement, MCMultiOutputObjective, qExpectedHypervolumeImprovement, qNoisyExpectedHypervolumeImprovement, ) from botorch.acquisition.multi_objective.objective import ( AnalyticMultiOutputObjective, IdentityAnalyticMultiOutputObjective, IdentityMCMultiOutputObjective, ) from botorch.acquisition.multi_objective.utils import get_default_partitioning_alpha from botorch.acquisition.objective import ( IdentityMCObjective, MCAcquisitionObjective, PosteriorTransform, ) from botorch.acquisition.preference import AnalyticExpectedUtilityOfBestOption from botorch.acquisition.risk_measures import RiskMeasureMCObjective from botorch.acquisition.utils import ( compute_best_feasible_objective, expand_trace_observations, get_optimal_samples, project_to_target_fidelity, ) from botorch.exceptions.errors import UnsupportedError from botorch.models.cost import AffineFidelityCostModel from botorch.models.deterministic import FixedSingleSampleModel from botorch.models.gpytorch import GPyTorchModel from botorch.models.model import Model from botorch.optim.optimize import optimize_acqf from botorch.sampling.base import MCSampler from botorch.sampling.normal import IIDNormalSampler, SobolQMCNormalSampler from botorch.utils.containers import BotorchContainer from botorch.utils.datasets import SupervisedDataset from botorch.utils.multi_objective.box_decompositions.non_dominated import ( FastNondominatedPartitioning, NondominatedPartitioning, ) from torch import Tensor ACQF_INPUT_CONSTRUCTOR_REGISTRY = {} T = TypeVar("T") MaybeDict = Union[T, Dict[Hashable, T]] TOptimizeObjectiveKwargs = Union[ None, MCAcquisitionObjective, PosteriorTransform, Tuple[Tensor, Tensor], Dict[int, float], bool, int, Dict[str, Any], Callable[[Tensor], Tensor], Tensor, ] def _field_is_shared( datasets: Union[Iterable[SupervisedDataset], Dict[Hashable, SupervisedDataset]], fieldname: str, ) -> bool: r"""Determines whether or not a given field is shared by all datasets.""" if isinstance(datasets, dict): datasets = datasets.values() base = None for dataset in datasets: if not hasattr(dataset, fieldname): raise AttributeError(f"{type(dataset)} object has no field `{fieldname}`.") obj = getattr(dataset, fieldname) if base is None: base = obj elif isinstance(base, Tensor): if not torch.equal(base, obj): return False elif base != obj: # pragma: no cover return False return True def _get_dataset_field( dataset: MaybeDict[SupervisedDataset], fieldname: str, transform: Optional[Callable[[BotorchContainer], Any]] = None, join_rule: Optional[Callable[[Sequence[Any]], Any]] = None, first_only: bool = False, assert_shared: bool = False, ) -> Any: r"""Convenience method for extracting a given field from one or more datasets.""" if isinstance(dataset, dict): if assert_shared and not _field_is_shared(dataset, fieldname): raise ValueError(f"Field `{fieldname}` must be shared.") if not first_only: fields = ( _get_dataset_field(d, fieldname, transform) for d in dataset.values() ) return join_rule(tuple(fields)) if join_rule else tuple(fields) dataset = next(iter(dataset.values())) field = getattr(dataset, fieldname) return transform(field) if transform else field def get_acqf_input_constructor( acqf_cls: Type[AcquisitionFunction], ) -> Callable[..., Dict[str, Any]]: r"""Get acqusition function input constructor from registry. Args: acqf_cls: The AcquisitionFunction class (not instance) for which to retrieve the input constructor. Returns: The input constructor associated with `acqf_cls`. """ if acqf_cls not in ACQF_INPUT_CONSTRUCTOR_REGISTRY: raise RuntimeError( f"Input constructor for acquisition class `{acqf_cls.__name__}` not " "registered. Use the `@acqf_input_constructor` decorator to register " "a new method." ) return ACQF_INPUT_CONSTRUCTOR_REGISTRY[acqf_cls] def allow_only_specific_variable_kwargs(f: Callable[..., T]) -> Callable[..., T]: """ Decorator for allowing a function to accept keyword arguments that are not explicitly listed in the function signature, but only specific ones. This decorator is applied in `acqf_input_constructor` so that all constructors obtained with `acqf_input_constructor` allow keyword arguments such as `training_data` and `objective`, even if they do not appear in the signature of `f`. Any other keyword arguments will raise an error. """ allowed = { "training_data", "objective", "posterior_transform", "X_baseline", "X_pending", "objective_thresholds", "constraints", "target_fidelities", "bounds", } def g(*args: Any, **kwargs: Any) -> T: new_kwargs = {} accepted_kwargs = inspect.signature(f).parameters.keys() for k, v in kwargs.items(): if k in accepted_kwargs: new_kwargs[k] = v elif k not in allowed: raise TypeError( f"Unexpected keyword argument `{k}` when" f" constructing input arguments for {f.__name__}." ) return f(*args, **new_kwargs) return g def acqf_input_constructor( *acqf_cls: Type[AcquisitionFunction], ) -> Callable[..., AcquisitionFunction]: r"""Decorator for registering acquisition function input constructors. Args: acqf_cls: The AcquisitionFunction classes (not instances) for which to register the input constructor. """ for acqf_cls_ in acqf_cls: if acqf_cls_ in ACQF_INPUT_CONSTRUCTOR_REGISTRY: raise ValueError( "Cannot register duplicate arg constructor for acquisition " f"class `{acqf_cls_.__name__}`" ) def decorator(method): method_kwargs = allow_only_specific_variable_kwargs(method) for acqf_cls_ in acqf_cls: ACQF_INPUT_CONSTRUCTOR_REGISTRY[acqf_cls_] = method_kwargs return method return decorator def _register_acqf_input_constructor( acqf_cls: Type[AcquisitionFunction], input_constructor: Callable[..., Dict[str, Any]], ) -> None: ACQF_INPUT_CONSTRUCTOR_REGISTRY[acqf_cls] = input_constructor # --------------------- Input argument constructors --------------------- # @acqf_input_constructor(PosteriorMean) def construct_inputs_posterior_mean( model: Model, posterior_transform: Optional[PosteriorTransform] = None, ) -> Dict[str, Union[Model, Optional[PosteriorTransform]]]: r"""Construct kwargs for PosteriorMean acquisition function. Args: model: The model to be used in the acquisition function. posterior_transform: The posterior transform to be used in the acquisition function. Returns: A dict mapping kwarg names of the constructor to values. """ return {"model": model, "posterior_transform": posterior_transform} @acqf_input_constructor( ExpectedImprovement, LogExpectedImprovement, ProbabilityOfImprovement, LogProbabilityOfImprovement, ) def construct_inputs_best_f( model: Model, training_data: MaybeDict[SupervisedDataset], posterior_transform: Optional[PosteriorTransform] = None, best_f: Optional[Union[float, Tensor]] = None, maximize: bool = True, ) -> Dict[str, Any]: r"""Construct kwargs for the acquisition functions requiring `best_f`. Args: model: The model to be used in the acquisition function. training_data: Dataset(s) used to train the model. Used to determine default value for `best_f`. best_f: Threshold above (or below) which improvement is defined. posterior_transform: The posterior transform to be used in the acquisition function. maximize: If True, consider the problem a maximization problem. Returns: A dict mapping kwarg names of the constructor to values. """ if best_f is None: best_f = get_best_f_analytic( training_data=training_data, posterior_transform=posterior_transform, ) return { "model": model, "posterior_transform": posterior_transform, "best_f": best_f, "maximize": maximize, } @acqf_input_constructor(UpperConfidenceBound) def construct_inputs_ucb( model: Model, posterior_transform: Optional[PosteriorTransform] = None, beta: Union[float, Tensor] = 0.2, maximize: bool = True, ) -> Dict[str, Any]: r"""Construct kwargs for `UpperConfidenceBound`. Args: model: The model to be used in the acquisition function. posterior_transform: The posterior transform to be used in the acquisition function. beta: Either a scalar or a one-dim tensor with `b` elements (batch mode) representing the trade-off parameter between mean and covariance maximize: If True, consider the problem a maximization problem. Returns: A dict mapping kwarg names of the constructor to values. """ return { "model": model, "posterior_transform": posterior_transform, "beta": beta, "maximize": maximize, } @acqf_input_constructor( ConstrainedExpectedImprovement, LogConstrainedExpectedImprovement ) def construct_inputs_constrained_ei( model: Model, training_data: MaybeDict[SupervisedDataset], objective_index: int, constraints: Dict[int, Tuple[Optional[float], Optional[float]]], maximize: bool = True, ) -> Dict[str, Any]: r"""Construct kwargs for `ConstrainedExpectedImprovement`. Args: model: The model to be used in the acquisition function. training_data: Dataset(s) used to train the model. objective_index: The index of the objective. constraints: A dictionary of the form `{i: [lower, upper]}`, where `i` is the output index, and `lower` and `upper` are lower and upper bounds on that output (resp. interpreted as -Inf / Inf if None) maximize: If True, consider the problem a maximization problem. Returns: A dict mapping kwarg names of the constructor to values. """ # TODO: Implement best point computation from training data # best_f = # return { # "model": model, # "best_f": best_f, # "objective_index": objective_index, # "constraints": constraints, # "maximize": maximize, # } raise NotImplementedError # pragma: nocover @acqf_input_constructor(NoisyExpectedImprovement, LogNoisyExpectedImprovement) def construct_inputs_noisy_ei( model: Model, training_data: MaybeDict[SupervisedDataset], num_fantasies: int = 20, maximize: bool = True, ) -> Dict[str, Any]: r"""Construct kwargs for `NoisyExpectedImprovement`. Args: model: The model to be used in the acquisition function. training_data: Dataset(s) used to train the model. num_fantasies: The number of fantasies to generate. The higher this number the more accurate the model (at the expense of model complexity and performance). maximize: If True, consider the problem a maximization problem. Returns: A dict mapping kwarg names of the constructor to values. """ # TODO: Add prune_baseline functionality as for qNEI X = _get_dataset_field(training_data, "X", first_only=True, assert_shared=True) return { "model": model, "X_observed": X, "num_fantasies": num_fantasies, "maximize": maximize, } @acqf_input_constructor(qSimpleRegret) def construct_inputs_qSimpleRegret( model: Model, objective: Optional[MCAcquisitionObjective] = None, posterior_transform: Optional[PosteriorTransform] = None, X_pending: Optional[Tensor] = None, sampler: Optional[MCSampler] = None, ) -> Dict[str, Any]: r"""Construct kwargs for qSimpleRegret. Args: model: The model to be used in the acquisition function. objective: The objective to be used in the acquisition function. posterior_transform: The posterior transform to be used in the acquisition function. X_pending: A `batch_shape, m x d`-dim Tensor of `m` design points that have points that have been submitted for function evaluation but have not yet been evaluated. sampler: The sampler used to draw base samples. If omitted, uses the acquisition functions's default sampler. Returns: A dict mapping kwarg names of the constructor to values. """ return { "model": model, "objective": objective, "posterior_transform": posterior_transform, "X_pending": X_pending, "sampler": sampler, } @acqf_input_constructor(qExpectedImprovement) def construct_inputs_qEI( model: Model, training_data: MaybeDict[SupervisedDataset], objective: Optional[MCAcquisitionObjective] = None, posterior_transform: Optional[PosteriorTransform] = None, X_pending: Optional[Tensor] = None, sampler: Optional[MCSampler] = None, best_f: Optional[Union[float, Tensor]] = None, constraints: Optional[List[Callable[[Tensor], Tensor]]] = None, eta: Union[Tensor, float] = 1e-3, ) -> Dict[str, Any]: r"""Construct kwargs for the `qExpectedImprovement` constructor. Args: model: The model to be used in the acquisition function. training_data: Dataset(s) used to train the model. objective: The objective to be used in the acquisition function. posterior_transform: The posterior transform to be used in the acquisition function. X_pending: A `m x d`-dim Tensor of `m` design points that have been submitted for function evaluation but have not yet been evaluated. Concatenated into X upon forward call. sampler: The sampler used to draw base samples. If omitted, uses the acquisition functions's default sampler. best_f: Threshold above (or below) which improvement is defined. constraints: A list of constraint callables which map a Tensor of posterior samples of dimension `sample_shape x batch-shape x q x m`-dim to a `sample_shape x batch-shape x q`-dim Tensor. The associated constraints are considered satisfied if the output is less than zero. eta: Temperature parameter(s) governing the smoothness of the sigmoid approximation to the constraint indicators. For more details, on this parameter, see the docs of `compute_smoothed_feasibility_indicator`. Returns: A dict mapping kwarg names of the constructor to values. """ if best_f is None: best_f = get_best_f_mc( training_data=training_data, objective=objective, posterior_transform=posterior_transform, constraints=constraints, model=model, ) return { "model": model, "objective": objective, "posterior_transform": posterior_transform, "X_pending": X_pending, "sampler": sampler, "best_f": best_f, "constraints": constraints, "eta": eta, } @acqf_input_constructor(qLogExpectedImprovement) def construct_inputs_qLogEI( model: Model, training_data: MaybeDict[SupervisedDataset], objective: Optional[MCAcquisitionObjective] = None, posterior_transform: Optional[PosteriorTransform] = None, X_pending: Optional[Tensor] = None, sampler: Optional[MCSampler] = None, best_f: Optional[Union[float, Tensor]] = None, constraints: Optional[List[Callable[[Tensor], Tensor]]] = None, eta: Union[Tensor, float] = 1e-3, fat: bool = True, tau_max: float = TAU_MAX, tau_relu: float = TAU_RELU, ) -> Dict[str, Any]: r"""Construct kwargs for the `qExpectedImprovement` constructor. Args: model: The model to be used in the acquisition function. training_data: Dataset(s) used to train the model. objective: The objective to be used in the acquisition function. posterior_transform: The posterior transform to be used in the acquisition function. X_pending: A `m x d`-dim Tensor of `m` design points that have been submitted for function evaluation but have not yet been evaluated. Concatenated into X upon forward call. sampler: The sampler used to draw base samples. If omitted, uses the acquisition functions's default sampler. best_f: Threshold above (or below) which improvement is defined. constraints: A list of constraint callables which map a Tensor of posterior samples of dimension `sample_shape x batch-shape x q x m`-dim to a `sample_shape x batch-shape x q`-dim Tensor. The associated constraints are considered satisfied if the output is less than zero. eta: Temperature parameter(s) governing the smoothness of the sigmoid approximation to the constraint indicators. For more details, on this parameter, see the docs of `compute_smoothed_feasibility_indicator`. fat: Toggles the logarithmic / linear asymptotic behavior of the smooth approximation to the ReLU. tau_max: Temperature parameter controlling the sharpness of the smooth approximations to max. tau_relu: Temperature parameter controlling the sharpness of the smooth approximations to ReLU. Returns: A dict mapping kwarg names of the constructor to values. """ return { **construct_inputs_qEI( model=model, training_data=training_data, objective=objective, posterior_transform=posterior_transform, X_pending=X_pending, sampler=sampler, best_f=best_f, constraints=constraints, eta=eta, ), "fat": fat, "tau_max": tau_max, "tau_relu": tau_relu, } @acqf_input_constructor(qNoisyExpectedImprovement) def construct_inputs_qNEI( model: Model, training_data: MaybeDict[SupervisedDataset], objective: Optional[MCAcquisitionObjective] = None, posterior_transform: Optional[PosteriorTransform] = None, X_pending: Optional[Tensor] = None, sampler: Optional[MCSampler] = None, X_baseline: Optional[Tensor] = None, prune_baseline: Optional[bool] = True, cache_root: Optional[bool] = True, constraints: Optional[List[Callable[[Tensor], Tensor]]] = None, eta: Union[Tensor, float] = 1e-3, ) -> Dict[str, Any]: r"""Construct kwargs for the `qNoisyExpectedImprovement` constructor. Args: model: The model to be used in the acquisition function. training_data: Dataset(s) used to train the model. objective: The objective to be used in the acquisition function. posterior_transform: The posterior transform to be used in the acquisition function. X_pending: A `m x d`-dim Tensor of `m` design points that have been submitted for function evaluation but have not yet been evaluated. Concatenated into X upon forward call. sampler: The sampler used to draw base samples. If omitted, uses the acquisition functions's default sampler. X_baseline: A `batch_shape x r x d`-dim Tensor of `r` design points that have already been observed. These points are considered as the potential best design point. If omitted, checks that all training_data have the same input features and take the first `X`. prune_baseline: If True, remove points in `X_baseline` that are highly unlikely to be the best point. This can significantly improve performance and is generally recommended. constraints: A list of constraint callables which map a Tensor of posterior samples of dimension `sample_shape x batch-shape x q x m`-dim to a `sample_shape x batch-shape x q`-dim Tensor. The associated constraints are considered satisfied if the output is less than zero. eta: Temperature parameter(s) governing the smoothness of the sigmoid approximation to the constraint indicators. For more details, on this parameter, see the docs of `compute_smoothed_feasibility_indicator`. Returns: A dict mapping kwarg names of the constructor to values. """ if X_baseline is None: X_baseline = _get_dataset_field( training_data, fieldname="X", assert_shared=True, first_only=True, ) return { "model": model, "objective": objective, "posterior_transform": posterior_transform, "X_pending": X_pending, "sampler": sampler, "X_baseline": X_baseline, "prune_baseline": prune_baseline, "cache_root": cache_root, "constraints": constraints, "eta": eta, } @acqf_input_constructor(qLogNoisyExpectedImprovement) def construct_inputs_qLogNEI( model: Model, training_data: MaybeDict[SupervisedDataset], objective: Optional[MCAcquisitionObjective] = None, posterior_transform: Optional[PosteriorTransform] = None, X_pending: Optional[Tensor] = None, sampler: Optional[MCSampler] = None, X_baseline: Optional[Tensor] = None, prune_baseline: Optional[bool] = True, cache_root: Optional[bool] = True, constraints: Optional[List[Callable[[Tensor], Tensor]]] = None, eta: Union[Tensor, float] = 1e-3, fat: bool = True, tau_max: float = TAU_MAX, tau_relu: float = TAU_RELU, ): r"""Construct kwargs for the `qLogNoisyExpectedImprovement` constructor. Args: model: The model to be used in the acquisition function. training_data: Dataset(s) used to train the model. objective: The objective to be used in the acquisition function. posterior_transform: The posterior transform to be used in the acquisition function. X_pending: A `m x d`-dim Tensor of `m` design points that have been submitted for function evaluation but have not yet been evaluated. Concatenated into X upon forward call. sampler: The sampler used to draw base samples. If omitted, uses the acquisition functions's default sampler. X_baseline: A `batch_shape x r x d`-dim Tensor of `r` design points that have already been observed. These points are considered as the potential best design point. If omitted, checks that all training_data have the same input features and take the first `X`. prune_baseline: If True, remove points in `X_baseline` that are highly unlikely to be the best point. This can significantly improve performance and is generally recommended. constraints: A list of constraint callables which map a Tensor of posterior samples of dimension `sample_shape x batch-shape x q x m`-dim to a `sample_shape x batch-shape x q`-dim Tensor. The associated constraints are considered satisfied if the output is less than zero. eta: Temperature parameter(s) governing the smoothness of the sigmoid approximation to the constraint indicators. For more details, on this parameter, see the docs of `compute_smoothed_feasibility_indicator`. fat: Toggles the logarithmic / linear asymptotic behavior of the smooth approximation to the ReLU. tau_max: Temperature parameter controlling the sharpness of the smooth approximations to max. tau_relu: Temperature parameter controlling the sharpness of the smooth approximations to ReLU. Returns: A dict mapping kwarg names of the constructor to values. """ return { **construct_inputs_qNEI( model=model, training_data=training_data, objective=objective, posterior_transform=posterior_transform, X_pending=X_pending, sampler=sampler, X_baseline=X_baseline, prune_baseline=prune_baseline, cache_root=cache_root, constraints=constraints, eta=eta, ), "fat": fat, "tau_max": tau_max, "tau_relu": tau_relu, } @acqf_input_constructor(qProbabilityOfImprovement) def construct_inputs_qPI( model: Model, training_data: MaybeDict[SupervisedDataset], objective: Optional[MCAcquisitionObjective] = None, posterior_transform: Optional[PosteriorTransform] = None, X_pending: Optional[Tensor] = None, sampler: Optional[MCSampler] = None, tau: float = 1e-3, best_f: Optional[Union[float, Tensor]] = None, constraints: Optional[List[Callable[[Tensor], Tensor]]] = None, eta: Union[Tensor, float] = 1e-3, ) -> Dict[str, Any]: r"""Construct kwargs for the `qProbabilityOfImprovement` constructor. Args: model: The model to be used in the acquisition function. training_data: Dataset(s) used to train the model. objective: The objective to be used in the acquisition function. posterior_transform: The posterior transform to be used in the acquisition function. X_pending: A `m x d`-dim Tensor of `m` design points that have been submitted for function evaluation but have not yet been evaluated. Concatenated into X upon forward call. sampler: The sampler used to draw base samples. If omitted, uses the acquisition functions's default sampler. tau: The temperature parameter used in the sigmoid approximation of the step function. Smaller values yield more accurate approximations of the function, but result in gradients estimates with higher variance. best_f: The best objective value observed so far (assumed noiseless). Can be a `batch_shape`-shaped tensor, which in case of a batched model specifies potentially different values for each element of the batch. constraints: A list of constraint callables which map a Tensor of posterior samples of dimension `sample_shape x batch-shape x q x m`-dim to a `sample_shape x batch-shape x q`-dim Tensor. The associated constraints are considered satisfied if the output is less than zero. eta: Temperature parameter(s) governing the smoothness of the sigmoid approximation to the constraint indicators. For more details, on this parameter, see the docs of `compute_smoothed_feasibility_indicator`. Returns: A dict mapping kwarg names of the constructor to values. """ if best_f is None: best_f = get_best_f_mc( training_data=training_data, objective=objective, posterior_transform=posterior_transform, constraints=constraints, model=model, ) return { "model": model, "objective": objective, "posterior_transform": posterior_transform, "X_pending": X_pending, "sampler": sampler, "tau": tau, "best_f": best_f, "constraints": constraints, "eta": eta, } @acqf_input_constructor(qUpperConfidenceBound) def construct_inputs_qUCB( model: Model, objective: Optional[MCAcquisitionObjective] = None, posterior_transform: Optional[PosteriorTransform] = None, X_pending: Optional[Tensor] = None, sampler: Optional[MCSampler] = None, beta: float = 0.2, ) -> Dict[str, Any]: r"""Construct kwargs for the `qUpperConfidenceBound` constructor. Args: model: The model to be used in the acquisition function. objective: The objective to be used in the acquisition function. posterior_transform: The posterior transform to be used in the acquisition function. X_pending: A `m x d`-dim Tensor of `m` design points that have been submitted for function evaluation but have not yet been evaluated. Concatenated into X upon forward call. sampler: The sampler used to draw base samples. If omitted, uses the acquisition functions's default sampler. beta: Controls tradeoff between mean and standard deviation in UCB. Returns: A dict mapping kwarg names of the constructor to values. """ return { "model": model, "objective": objective, "posterior_transform": posterior_transform, "X_pending": X_pending, "sampler": sampler, "beta": beta, } def _get_sampler(mc_samples: int, qmc: bool) -> MCSampler: """Set up MC sampler for q(N)EHVI.""" # initialize the sampler shape = torch.Size([mc_samples]) if qmc: return SobolQMCNormalSampler(sample_shape=shape) return IIDNormalSampler(sample_shape=shape) @acqf_input_constructor(ExpectedHypervolumeImprovement) def construct_inputs_EHVI( model: Model, training_data: MaybeDict[SupervisedDataset], objective_thresholds: Tensor, objective: Optional[AnalyticMultiOutputObjective] = None, constraints: Optional[List[Callable[[Tensor], Tensor]]] = None, alpha: Optional[float] = None, Y_pmean: Optional[Tensor] = None, ) -> Dict[str, Any]: r"""Construct kwargs for `ExpectedHypervolumeImprovement` constructor.""" num_objectives = objective_thresholds.shape[0] if constraints is not None: raise NotImplementedError("EHVI does not yet support outcome constraints.") X = _get_dataset_field( training_data, fieldname="X", first_only=True, assert_shared=True, ) alpha = ( get_default_partitioning_alpha(num_objectives=num_objectives) if alpha is None else alpha ) # This selects the objectives (a subset of the outcomes) and set each # objective threhsold to have the proper optimization direction. if objective is None: objective = IdentityAnalyticMultiOutputObjective() if isinstance(objective, RiskMeasureMCObjective): pre_obj = objective.preprocessing_function else: pre_obj = objective ref_point = pre_obj(objective_thresholds) # Compute posterior mean (for ref point computation ref pareto frontier) # if one is not provided among arguments. if Y_pmean is None: with torch.no_grad(): Y_pmean = model.posterior(X).mean if alpha > 0: partitioning = NondominatedPartitioning( ref_point=ref_point, Y=pre_obj(Y_pmean), alpha=alpha, ) else: partitioning = FastNondominatedPartitioning( ref_point=ref_point, Y=pre_obj(Y_pmean), ) return { "model": model, "ref_point": ref_point, "partitioning": partitioning, "objective": objective, } @acqf_input_constructor(qExpectedHypervolumeImprovement) def construct_inputs_qEHVI( model: Model, training_data: MaybeDict[SupervisedDataset], objective_thresholds: Tensor, objective: Optional[MCMultiOutputObjective] = None, constraints: Optional[List[Callable[[Tensor], Tensor]]] = None, alpha: Optional[float] = None, sampler: Optional[MCSampler] = None, X_pending: Optional[Tensor] = None, eta: float = 1e-3, mc_samples: int = 128, qmc: bool = True, ) -> Dict[str, Any]: r"""Construct kwargs for `qExpectedHypervolumeImprovement` constructor.""" X = _get_dataset_field( training_data, fieldname="X", first_only=True, assert_shared=True, ) # compute posterior mean (for ref point computation ref pareto frontier) with torch.no_grad(): Y_pmean = model.posterior(X).mean # For HV-based acquisition functions we pass the constraint transform directly if constraints is not None: # Adjust `Y_pmean` to contrain feasible points only. feas = torch.stack([c(Y_pmean) <= 0 for c in constraints], dim=-1).all(dim=-1) Y_pmean = Y_pmean[feas] if objective is None: objective = IdentityMCMultiOutputObjective() ehvi_kwargs = construct_inputs_EHVI( model=model, training_data=training_data, objective_thresholds=objective_thresholds, objective=objective, constraints=None, alpha=alpha, # Pass `Y_pmean` that accounts for constraints to `construct_inputs_EHVI` # to ensure that correct non-dominated partitioning is produced. Y_pmean=Y_pmean, ) if sampler is None and isinstance(model, GPyTorchModel): sampler = _get_sampler(mc_samples=mc_samples, qmc=qmc) add_qehvi_kwargs = { "sampler": sampler, "X_pending": X_pending, "constraints": constraints, "eta": eta, } return {**ehvi_kwargs, **add_qehvi_kwargs} @acqf_input_constructor(qNoisyExpectedHypervolumeImprovement) def construct_inputs_qNEHVI( model: Model, training_data: MaybeDict[SupervisedDataset], objective_thresholds: Tensor, objective: Optional[MCMultiOutputObjective] = None, X_baseline: Optional[Tensor] = None, constraints: Optional[List[Callable[[Tensor], Tensor]]] = None, alpha: Optional[float] = None, sampler: Optional[MCSampler] = None, X_pending: Optional[Tensor] = None, eta: float = 1e-3, mc_samples: int = 128, qmc: bool = True, prune_baseline: bool = True, cache_pending: bool = True, max_iep: int = 0, incremental_nehvi: bool = True, cache_root: bool = True, ) -> Dict[str, Any]: r"""Construct kwargs for `qNoisyExpectedHypervolumeImprovement` constructor.""" if X_baseline is None: X_baseline = _get_dataset_field( training_data, fieldname="X", first_only=True, assert_shared=True, ) # This selects the objectives (a subset of the outcomes) and set each # objective threhsold to have the proper optimization direction. if objective is None: objective = IdentityMCMultiOutputObjective() if constraints is not None: if isinstance(objective, RiskMeasureMCObjective): raise UnsupportedError( "Outcome constraints are not supported with risk measures. " "Use a feasibility-weighted risk measure instead." ) if sampler is None and isinstance(model, GPyTorchModel): sampler = _get_sampler(mc_samples=mc_samples, qmc=qmc) if isinstance(objective, RiskMeasureMCObjective): ref_point = objective.preprocessing_function(objective_thresholds) else: ref_point = objective(objective_thresholds) num_objectives = objective_thresholds[~torch.isnan(objective_thresholds)].shape[0] if alpha is None: alpha = get_default_partitioning_alpha(num_objectives=num_objectives) return { "model": model, "ref_point": ref_point, "X_baseline": X_baseline, "sampler": sampler, "objective": objective, "constraints": constraints, "X_pending": X_pending, "eta": eta, "prune_baseline": prune_baseline, "alpha": alpha, "cache_pending": cache_pending, "max_iep": max_iep, "incremental_nehvi": incremental_nehvi, "cache_root": cache_root, } @acqf_input_constructor(qMaxValueEntropy) def construct_inputs_qMES( model: Model, training_data: MaybeDict[SupervisedDataset], bounds: List[Tuple[float, float]], candidate_size: int = 1000, maximize: bool = True, # TODO: qMES also supports other inputs, such as num_fantasies ) -> Dict[str, Any]: r"""Construct kwargs for `qMaxValueEntropy` constructor.""" X = _get_dataset_field(training_data, "X", first_only=True) _kw = {"device": X.device, "dtype": X.dtype} _rvs = torch.rand(candidate_size, len(bounds), **_kw) _bounds = torch.tensor(bounds, **_kw).transpose(0, 1) return { "model": model, "candidate_set": _bounds[0] + (_bounds[1] - _bounds[0]) * _rvs, "maximize": maximize, } def construct_inputs_mf_base( target_fidelities: Dict[int, Union[int, float]], fidelity_weights: Optional[Dict[int, float]] = None, cost_intercept: float = 1.0, num_trace_observations: int = 0, ) -> Dict[str, Any]: r"""Construct kwargs for a multifidelity acquisition function's constructor.""" if fidelity_weights is None: fidelity_weights = {f: 1.0 for f in target_fidelities} if set(target_fidelities) != set(fidelity_weights): raise RuntimeError( "Must provide the same indices for target_fidelities " f"({set(target_fidelities)}) and fidelity_weights " f" ({set(fidelity_weights)})." ) cost_aware_utility = InverseCostWeightedUtility( cost_model=AffineFidelityCostModel( fidelity_weights=fidelity_weights, fixed_cost=cost_intercept ) ) return { "cost_aware_utility": cost_aware_utility, "expand": lambda X: expand_trace_observations( X=X, fidelity_dims=sorted(target_fidelities), num_trace_obs=num_trace_observations, ), "project": lambda X: project_to_target_fidelity( X=X, target_fidelities=target_fidelities ), } @acqf_input_constructor(qKnowledgeGradient) def construct_inputs_qKG( model: Model, training_data: MaybeDict[SupervisedDataset], bounds: List[Tuple[float, float]], objective: Optional[MCAcquisitionObjective] = None, posterior_transform: Optional[PosteriorTransform] = None, num_fantasies: int = 64, **optimize_objective_kwargs: TOptimizeObjectiveKwargs, ) -> Dict[str, Any]: r"""Construct kwargs for `qKnowledgeGradient` constructor.""" X = _get_dataset_field(training_data, "X", first_only=True) _bounds = torch.tensor(bounds, dtype=X.dtype, device=X.device) _, current_value = optimize_objective( model=model, bounds=_bounds.t(), q=1, objective=objective, posterior_transform=posterior_transform, **optimize_objective_kwargs, ) return { "model": model, "objective": objective, "posterior_transform": posterior_transform, "num_fantasies": num_fantasies, "current_value": current_value.detach().cpu().max(), } @acqf_input_constructor(qMultiFidelityKnowledgeGradient) def construct_inputs_qMFKG( model: Model, training_data: MaybeDict[SupervisedDataset], bounds: List[Tuple[float, float]], target_fidelities: Dict[int, Union[int, float]], objective: Optional[MCAcquisitionObjective] = None, posterior_transform: Optional[PosteriorTransform] = None, fidelity_weights: Optional[Dict[int, float]] = None, cost_intercept: float = 1.0, num_trace_observations: int = 0, num_fantasies: int = 64, ) -> Dict[str, Any]: r"""Construct kwargs for `qMultiFidelityKnowledgeGradient` constructor.""" inputs_mf = construct_inputs_mf_base( target_fidelities=target_fidelities, fidelity_weights=fidelity_weights, cost_intercept=cost_intercept, num_trace_observations=num_trace_observations, ) inputs_kg = construct_inputs_qKG( model=model, training_data=training_data, bounds=bounds, objective=objective, posterior_transform=posterior_transform, num_fantasies=num_fantasies, ) return {**inputs_mf, **inputs_kg} @acqf_input_constructor(qMultiFidelityMaxValueEntropy) def construct_inputs_qMFMES( model: Model, training_data: MaybeDict[SupervisedDataset], bounds: List[Tuple[float, float]], target_fidelities: Dict[int, Union[int, float]], objective: Optional[MCAcquisitionObjective] = None, posterior_transform: Optional[PosteriorTransform] = None, num_fantasies: int = 64, X_baseline: Optional[Tensor] = None, X_pending: Optional[Tensor] = None, objective_thresholds: Optional[Tensor] = None, outcome_constraints: Optional[List[Tuple[Tensor, Tensor]]] = None, fidelity_weights: Optional[Dict[int, float]] = None, cost_intercept: float = 1.0, num_trace_observations: int = 0, candidate_size: int = 1000, maximize: bool = True, **optimize_objective_kwargs: TOptimizeObjectiveKwargs, ) -> Dict[str, Any]: r"""Construct kwargs for `qMultiFidelityMaxValueEntropy` constructor.""" inputs_mf = construct_inputs_mf_base( target_fidelities=target_fidelities, fidelity_weights=fidelity_weights, cost_intercept=cost_intercept, num_trace_observations=num_trace_observations, ) inputs_qmes = construct_inputs_qMES( model=model, training_data=training_data, bounds=bounds, candidate_size=candidate_size, maximize=maximize, ) X = _get_dataset_field(training_data, "X", first_only=True) _bounds = torch.tensor(bounds, dtype=X.dtype, device=X.device) _, current_value = optimize_objective( model=model, bounds=_bounds.t(), q=1, objective=objective, posterior_transform=posterior_transform, **optimize_objective_kwargs, ) return { **inputs_mf, **inputs_qmes, "current_value": current_value.detach().cpu().max(), "target_fidelities": target_fidelities, } @acqf_input_constructor(AnalyticExpectedUtilityOfBestOption) def construct_inputs_analytic_eubo( model: Model, pref_model: Model, previous_winner: Optional[Tensor] = None, sample_multiplier: Optional[float] = 1.0, ) -> Dict[str, Any]: r"""Construct kwargs for the `AnalyticExpectedUtilityOfBestOption` constructor. Args: model: The outcome model to be used in the acquisition function. pref_model: The preference model to be used in preference exploration. previous_winner: The previous winner of the best option. sample_multiplier: The scale factor for the single-sample model. Returns: A dict mapping kwarg names of the constructor to values. """ # construct a deterministic fixed single sample model from `model` # i.e., performing EUBO-zeta by default as described # in https://arxiv.org/abs/2203.11382 # using pref_model.dim instead of model.num_outputs here as MTGP's # num_outputs could be tied to the number of tasks w = torch.randn(pref_model.dim) * sample_multiplier one_sample_outcome_model = FixedSingleSampleModel(model=model, w=w) return { "pref_model": pref_model, "outcome_model": one_sample_outcome_model, "previous_winner": previous_winner, } def get_best_f_analytic( training_data: MaybeDict[SupervisedDataset], posterior_transform: Optional[PosteriorTransform] = None, ) -> Tensor: if isinstance(training_data, dict) and not _field_is_shared( training_data, fieldname="X" ): raise NotImplementedError("Currently only block designs are supported.") Y = _get_dataset_field( training_data, fieldname="Y", join_rule=lambda field_tensors: torch.cat(field_tensors, dim=-1), ) if posterior_transform is not None: return posterior_transform.evaluate(Y).max(-1).values if Y.shape[-1] > 1: raise NotImplementedError( "Analytic acquisition functions currently only work with " "multi-output models if provided with a `ScalarizedObjective`." ) return Y.max(-2).values.squeeze(-1) def get_best_f_mc( training_data: MaybeDict[SupervisedDataset], objective: Optional[MCAcquisitionObjective] = None, posterior_transform: Optional[PosteriorTransform] = None, constraints: Optional[List[Callable[[Tensor], Tensor]]] = None, model: Optional[Model] = None, ) -> Tensor: if isinstance(training_data, dict) and not _field_is_shared( training_data, fieldname="X" ): raise NotImplementedError("Currently only block designs are supported.") X_baseline = _get_dataset_field( training_data, fieldname="X", assert_shared=True, first_only=True, ) Y = _get_dataset_field( training_data, fieldname="Y", join_rule=lambda field_tensors: torch.cat(field_tensors, dim=-1), ) # batch_shape x n x d if posterior_transform is not None: # retain the original tensor dimension since objective expects explicit # output dimension. Y_dim = Y.dim() Y = posterior_transform.evaluate(Y) if Y.dim() < Y_dim: Y = Y.unsqueeze(-1) if objective is None: if Y.shape[-1] > 1: raise UnsupportedError( "Acquisition functions require an objective when " "used with multi-output models (execpt for multi-objective" "acquisition functions)." ) objective = IdentityMCObjective() obj = objective(Y, X=X_baseline) # batch_shape x n return compute_best_feasible_objective( samples=Y, obj=obj, constraints=constraints, model=model, objective=objective, posterior_transform=posterior_transform, X_baseline=X_baseline, ) def optimize_objective( model: Model, bounds: Tensor, q: int, objective: Optional[MCAcquisitionObjective] = None, posterior_transform: Optional[PosteriorTransform] = None, linear_constraints: Optional[Tuple[Tensor, Tensor]] = None, fixed_features: Optional[Dict[int, float]] = None, qmc: bool = True, mc_samples: int = 512, seed_inner: Optional[int] = None, optimizer_options: Optional[Dict[str, Any]] = None, post_processing_func: Optional[Callable[[Tensor], Tensor]] = None, batch_initial_conditions: Optional[Tensor] = None, sequential: bool = False, ) -> Tuple[Tensor, Tensor]: r"""Optimize an objective under the given model. Args: model: The model to be used in the objective. bounds: A `2 x d` tensor of lower and upper bounds for each column of `X`. q: The cardinality of input sets on which the objective is to be evaluated. objective: The objective to optimize. posterior_transform: The posterior transform to be used in the acquisition function. linear_constraints: A tuple of (A, b). Given `k` linear constraints on a `d`-dimensional space, `A` is `k x d` and `b` is `k x 1` such that `A x <= b`. (Not used by single task models). fixed_features: A dictionary of feature assignments `{feature_index: value}` to hold fixed during generation. qmc: Toggle for enabling (qmc=1) or disabling (qmc=0) use of Quasi Monte Carlo. mc_samples: Integer number of samples used to estimate Monte Carlo objectives. seed_inner: Integer seed used to initialize the sampler passed to MCObjective. optimizer_options: Table used to lookup keyword arguments for the optimizer. post_processing_func: A function that post-processes an optimization result appropriately (i.e. according to `round-trip` transformations). batch_initial_conditions: A Tensor of initial values for the optimizer. sequential: If False, uses joint optimization, otherwise uses sequential optimization. Returns: A tuple containing the best input locations and corresponding objective values. """ if optimizer_options is None: optimizer_options = {} if objective is not None: sampler_cls = SobolQMCNormalSampler if qmc else IIDNormalSampler acq_function = qSimpleRegret( model=model, objective=objective, posterior_transform=posterior_transform, sampler=sampler_cls(sample_shape=torch.Size([mc_samples]), seed=seed_inner), ) else: acq_function = PosteriorMean( model=model, posterior_transform=posterior_transform ) if fixed_features: acq_function = FixedFeatureAcquisitionFunction( acq_function=acq_function, d=bounds.shape[-1], columns=list(fixed_features.keys()), values=list(fixed_features.values()), ) free_feature_dims = list(range(len(bounds)) - fixed_features.keys()) free_feature_bounds = bounds[:, free_feature_dims] # (2, d' <= d) else: free_feature_bounds = bounds if linear_constraints is None: inequality_constraints = None else: A, b = linear_constraints inequality_constraints = [] k, d = A.shape for i in range(k): indicies = A[i, :].nonzero(as_tuple=False).squeeze() coefficients = -A[i, indicies] rhs = -b[i, 0] inequality_constraints.append((indicies, coefficients, rhs)) return optimize_acqf( acq_function=acq_function, bounds=free_feature_bounds, q=q, num_restarts=optimizer_options.get("num_restarts", 60), raw_samples=optimizer_options.get("raw_samples", 1024), options={ "batch_limit": optimizer_options.get("batch_limit", 8), "maxiter": optimizer_options.get("maxiter", 200), "nonnegative": optimizer_options.get("nonnegative", False), "method": optimizer_options.get("method", "L-BFGS-B"), }, inequality_constraints=inequality_constraints, fixed_features=None, # handled inside the acquisition function post_processing_func=post_processing_func, batch_initial_conditions=batch_initial_conditions, return_best_only=True, sequential=sequential, ) @acqf_input_constructor(qJointEntropySearch) def construct_inputs_qJES( model: Model, bounds: List[Tuple[float, float]], num_optima: int = 64, maximize: bool = True, condition_noiseless: bool = True, X_pending: Optional[Tensor] = None, estimation_type: str = "LB", num_samples: int = 64, ): dtype = model.train_targets.dtype optimal_inputs, optimal_outputs = get_optimal_samples( model=model, bounds=torch.as_tensor(bounds, dtype=dtype).T, num_optima=num_optima, maximize=maximize, ) inputs = { "model": model, "optimal_inputs": optimal_inputs, "optimal_outputs": optimal_outputs, "condition_noiseless": condition_noiseless, "maximize": maximize, "X_pending": X_pending, "estimation_type": estimation_type, "num_samples": num_samples, } return inputs
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. r""" A general implementation of multi-step look-ahead acquistion function with configurable value functions. See [Jiang2020multistep]_. .. [Jiang2020multistep] S. Jiang, D. R. Jiang, M. Balandat, B. Karrer, J. Gardner, and R. Garnett. Efficient Nonmyopic Bayesian Optimization via One-Shot Multi-Step Trees. In Advances in Neural Information Processing Systems 33, 2020. """ from __future__ import annotations import math import warnings from typing import Any, Callable, Dict, List, Optional, Tuple, Type import numpy as np import torch from botorch.acquisition import AcquisitionFunction, OneShotAcquisitionFunction from botorch.acquisition.analytic import AnalyticAcquisitionFunction, PosteriorMean from botorch.acquisition.monte_carlo import MCAcquisitionFunction from botorch.acquisition.objective import MCAcquisitionObjective, PosteriorTransform from botorch.exceptions.errors import UnsupportedError from botorch.exceptions.warnings import BotorchWarning from botorch.models.model import Model from botorch.optim.initializers import initialize_q_batch from botorch.sampling.base import MCSampler from botorch.sampling.normal import SobolQMCNormalSampler from botorch.utils.transforms import ( match_batch_shape, t_batch_mode_transform, unnormalize, ) from torch import Size, Tensor from torch.distributions import Beta from torch.nn import ModuleList TAcqfArgConstructor = Callable[[Model, Tensor], Dict[str, Any]] class qMultiStepLookahead(MCAcquisitionFunction, OneShotAcquisitionFunction): r"""MC-based batch Multi-Step Look-Ahead (one-shot optimization).""" def __init__( self, model: Model, batch_sizes: List[int], num_fantasies: Optional[List[int]] = None, samplers: Optional[List[MCSampler]] = None, valfunc_cls: Optional[List[Optional[Type[AcquisitionFunction]]]] = None, valfunc_argfacs: Optional[List[Optional[TAcqfArgConstructor]]] = None, objective: Optional[MCAcquisitionObjective] = None, posterior_transform: Optional[PosteriorTransform] = None, inner_mc_samples: Optional[List[int]] = None, X_pending: Optional[Tensor] = None, collapse_fantasy_base_samples: bool = True, ) -> None: r"""q-Multi-Step Look-Ahead (one-shot optimization). Performs a `k`-step lookahead by means of repeated fantasizing. Allows to specify the stage value functions by passing the respective class objects via the `valfunc_cls` list. Optionally, `valfunc_argfacs` takes a list of callables that generate additional kwargs for these constructors. By default, `valfunc_cls` will be chosen as `[None, ..., None, PosteriorMean]`, which corresponds to the (parallel) multi-step KnowledgeGradient. If, in addition, `k=1` and `q_1 = 1`, this reduces to the classic Knowledge Gradient. WARNING: The complexity of evaluating this function is exponential in the number of lookahead steps! Args: model: A fitted model. batch_sizes: A list `[q_1, ..., q_k]` containing the batch sizes for the `k` look-ahead steps. num_fantasies: A list `[f_1, ..., f_k]` containing the number of fantasy points to use for the `k` look-ahead steps. samplers: A list of MCSampler objects to be used for sampling fantasies in each stage. valfunc_cls: A list of `k + 1` acquisition function classes to be used as the (stage + terminal) value functions. Each element (except for the last one) can be `None`, in which case a zero stage value is assumed for the respective stage. If `None`, this defaults to `[None, ..., None, PosteriorMean]` valfunc_argfacs: A list of `k + 1` "argument factories", i.e. callables that map a `Model` and input tensor `X` to a dictionary of kwargs for the respective stage value function constructor (e.g. `best_f` for `ExpectedImprovement`). If None, only the standard (`model`, `sampler` and `objective`) kwargs will be used. objective: The objective under which the output is evaluated. If `None`, use the model output (requires a single-output model or a posterior transform). Otherwise the objective is MC-evaluated (using `inner_sampler`). posterior_transform: An optional PosteriorTransform. If given, this transforms the posterior before evaluation. If `objective is None`, then the output of the transformed posterior is used. If `objective` is given, the `inner_sampler` is used to draw samples from the transformed posterior, which are then evaluated under the `objective`. inner_mc_samples: A list `[n_0, ..., n_k]` containing the number of MC samples to be used for evaluating the stage value function. Ignored if the objective is `None`. X_pending: A `m x d`-dim Tensor of `m` design points that have points that have been submitted for function evaluation but have not yet been evaluated. Concatenated into `X` upon forward call. Copied and set to have no gradient. collapse_fantasy_base_samples: If True, collapse_batch_dims of the Samplers will be applied on fantasy batch dimensions as well, meaning that base samples are the same in all subtrees starting from the same level. """ if objective is not None and not isinstance(objective, MCAcquisitionObjective): raise UnsupportedError( "`qMultiStepLookahead` got a non-MC `objective`. This is not supported." " Use `posterior_transform` and `objective=None` instead." ) super(MCAcquisitionFunction, self).__init__(model=model) self.batch_sizes = batch_sizes if not ((num_fantasies is None) ^ (samplers is None)): raise UnsupportedError( "qMultiStepLookahead requires exactly one of `num_fantasies` or " "`samplers` as arguments." ) if samplers is None: # If collapse_fantasy_base_samples is False, the `batch_range_override` # is set on the samplers during the forward call. samplers: List[MCSampler] = [ SobolQMCNormalSampler(sample_shape=torch.Size([nf])) for nf in num_fantasies ] else: num_fantasies = [sampler.sample_shape[0] for sampler in samplers] self.num_fantasies = num_fantasies # By default do not use stage values and use PosteriorMean as terminal value # function (= multi-step KG) if valfunc_cls is None: valfunc_cls = [None for _ in num_fantasies] + [PosteriorMean] if inner_mc_samples is None: inner_mc_samples = [None] * (1 + len(num_fantasies)) # TODO: Allow passing in inner samplers directly inner_samplers = _construct_inner_samplers( batch_sizes=batch_sizes, valfunc_cls=valfunc_cls, objective=objective, inner_mc_samples=inner_mc_samples, ) if valfunc_argfacs is None: valfunc_argfacs = [None] * (1 + len(batch_sizes)) self.objective = objective self.posterior_transform = posterior_transform self.set_X_pending(X_pending) self.samplers = ModuleList(samplers) self.inner_samplers = ModuleList(inner_samplers) self._valfunc_cls = valfunc_cls self._valfunc_argfacs = valfunc_argfacs self._collapse_fantasy_base_samples = collapse_fantasy_base_samples @t_batch_mode_transform() def forward(self, X: Tensor) -> Tensor: r"""Evaluate qMultiStepLookahead on the candidate set X. Args: X: A `batch_shape x q' x d`-dim Tensor with `q'` design points for each batch, where `q' = q_0 + f_1 q_1 + f_2 f_1 q_2 + ...`. Here `q_i` is the number of candidates jointly considered in look-ahead step `i`, and `f_i` is respective number of fantasies. Returns: The acquisition value for each batch as a tensor of shape `batch_shape`. """ Xs = self.get_multi_step_tree_input_representation(X) # set batch_range on samplers if not collapsing on fantasy dims if not self._collapse_fantasy_base_samples: self._set_samplers_batch_range(batch_shape=X.shape[:-2]) return _step( model=self.model, Xs=Xs, samplers=self.samplers, valfunc_cls=self._valfunc_cls, valfunc_argfacs=self._valfunc_argfacs, inner_samplers=self.inner_samplers, objective=self.objective, posterior_transform=self.posterior_transform, running_val=None, ) @property def _num_auxiliary(self) -> int: r"""Number of auxiliary variables in the q-batch dimension. Returns: `q_aux` s.t. `q + q_aux = augmented_q_batch_size` """ return np.dot(self.batch_sizes, np.cumprod(self.num_fantasies)).item() def _set_samplers_batch_range(self, batch_shape: Size) -> None: r"""Set batch_range on samplers. Args: batch_shape: The batch shape of the input tensor `X`. """ tbatch_dim_start = -2 - len(batch_shape) for s in self.samplers: s.batch_range_override = (tbatch_dim_start, -2) def get_augmented_q_batch_size(self, q: int) -> int: r"""Get augmented q batch size for one-shot optimzation. Args: q: The number of candidates to consider jointly. Returns: The augmented size for one-shot optimzation (including variables parameterizing the fantasy solutions): `q_0 + f_1 q_1 + f_2 f_1 q_2 + ...` """ return q + self._num_auxiliary def get_split_shapes(self, X: Tensor) -> Tuple[Size, List[Size], List[int]]: r"""Get the split shapes from X. Args: X: A `batch_shape x q_aug x d`-dim tensor including fantasy points. Returns: A 3-tuple `(batch_shape, shapes, sizes)`, where `shape[i] = f_i x .... x f_1 x batch_shape x q_i x d` and `size[i] = f_i * ... f_1 * q_i`. """ batch_shape, (q_aug, d) = X.shape[:-2], X.shape[-2:] q = q_aug - self._num_auxiliary batch_sizes = [q] + self.batch_sizes # X_i needs to have shape f_i x .... x f_1 x batch_shape x q_i x d shapes = [ torch.Size(self.num_fantasies[:i][::-1] + [*batch_shape, q_i, d]) for i, q_i in enumerate(batch_sizes) ] # Each X_i in the split X has shape batch_shape x qtilde x d with # qtilde = f_i * ... * f_1 * q_i sizes = [s[: (-2 - len(batch_shape))].numel() * s[-2] for s in shapes] return batch_shape, shapes, sizes def get_multi_step_tree_input_representation(self, X: Tensor) -> List[Tensor]: r"""Get the multi-step tree representation of X. Args: X: A `batch_shape x q' x d`-dim Tensor with `q'` design points for each batch, where `q' = q_0 + f_1 q_1 + f_2 f_1 q_2 + ...`. Here `q_i` is the number of candidates jointly considered in look-ahead step `i`, and `f_i` is respective number of fantasies. Returns: A list `[X_j, ..., X_k]` of tensors, where `X_i` has shape `f_i x .... x f_1 x batch_shape x q_i x d`. """ batch_shape, shapes, sizes = self.get_split_shapes(X=X) # Each X_i in Xsplit has shape batch_shape x qtilde x d with # qtilde = f_i * ... * f_1 * q_i Xsplit = torch.split(X, sizes, dim=-2) # now reshape (need to permute batch_shape and qtilde dimensions for i > 0) perm = [-2] + list(range(len(batch_shape))) + [-1] X0 = Xsplit[0].reshape(shapes[0]) Xother = [ X.permute(*perm).reshape(shape) for X, shape in zip(Xsplit[1:], shapes[1:]) ] # concatenate in pending points if self.X_pending is not None: X0 = torch.cat([X0, match_batch_shape(self.X_pending, X0)], dim=-2) return [X0] + Xother def extract_candidates(self, X_full: Tensor) -> Tensor: r"""We only return X as the set of candidates post-optimization. Args: X_full: A `batch_shape x q' x d`-dim Tensor with `q'` design points for each batch, where `q' = q + f_1 q_1 + f_2 f_1 q_2 + ...`. Returns: A `batch_shape x q x d`-dim Tensor with `q` design points for each batch. """ return X_full[..., : -self._num_auxiliary, :] def get_induced_fantasy_model(self, X: Tensor) -> Model: r"""Fantasy model induced by X. Args: X: A `batch_shape x q' x d`-dim Tensor with `q'` design points for each batch, where `q' = q_0 + f_1 q_1 + f_2 f_1 q_2 + ...`. Here `q_i` is the number of candidates jointly considered in look-ahead step `i`, and `f_i` is respective number of fantasies. Returns: The fantasy model induced by X. """ Xs = self.get_multi_step_tree_input_representation(X) # set batch_range on samplers if not collapsing on fantasy dims if not self._collapse_fantasy_base_samples: self._set_samplers_batch_range(batch_shape=X.shape[:-2]) return _get_induced_fantasy_model( model=self.model, Xs=Xs, samplers=self.samplers ) def _step( model: Model, Xs: List[Tensor], samplers: List[Optional[MCSampler]], valfunc_cls: List[Optional[Type[AcquisitionFunction]]], valfunc_argfacs: List[Optional[TAcqfArgConstructor]], inner_samplers: List[Optional[MCSampler]], objective: MCAcquisitionObjective, posterior_transform: Optional[PosteriorTransform], running_val: Optional[Tensor] = None, sample_weights: Optional[Tensor] = None, step_index: int = 0, ) -> Tensor: r"""Recursive multi-step look-ahead computation. Helper function computing the "value-to-go" of a multi-step lookahead scheme. Args: model: A Model of appropriate batch size. Specifically, it must be possible to evaluate the model's posterior at `Xs[0]`. Xs: A list `[X_j, ..., X_k]` of tensors, where `X_i` has shape `f_i x .... x f_1 x batch_shape x q_i x d`. samplers: A list of `k - j` samplers, such that the number of samples of sampler `i` is `f_i`. The last element of this list is considered the "inner sampler", which is used for evaluating the objective in case it is an MCAcquisitionObjective. valfunc_cls: A list of acquisition function class to be used as the (stage + terminal) value functions. Each element (except for the last one) can be `None`, in which case a zero stage value is assumed for the respective stage. valfunc_argfacs: A list of callables that map a `Model` and input tensor `X` to a dictionary of kwargs for the respective stage value function constructor. If `None`, only the standard `model`, `sampler` and `objective` kwargs will be used. inner_samplers: A list of `MCSampler` objects, each to be used in the stage value function at the corresponding index. objective: The MCAcquisitionObjective under which the model output is evaluated. posterior_transform: A PosteriorTransform. Used to transform the posterior before sampling / evaluating the model output. running_val: As `batch_shape`-dim tensor containing the current running value. sample_weights: A tensor of shape `f_i x .... x f_1 x batch_shape` when called in the `i`-th step by which to weight the stage value samples. Used in conjunction with Gauss-Hermite integration or importance sampling. Assumed to be `None` in the initial step (when `step_index=0`). step_index: The index of the look-ahead step. `step_index=0` indicates the initial step. Returns: A `b`-dim tensor containing the multi-step value of the design `X`. """ X = Xs[0] if sample_weights is None: # only happens in the initial step sample_weights = torch.ones(*X.shape[:-2], device=X.device, dtype=X.dtype) # compute stage value stage_val = _compute_stage_value( model=model, valfunc_cls=valfunc_cls[0], X=X, objective=objective, posterior_transform=posterior_transform, inner_sampler=inner_samplers[0], arg_fac=valfunc_argfacs[0], ) if stage_val is not None: # update running value # if not None, running_val has shape f_{i-1} x ... x f_1 x batch_shape # stage_val has shape f_i x ... x f_1 x batch_shape # this sum will add a dimension to running_val so that # updated running_val has shape f_i x ... x f_1 x batch_shape running_val = stage_val if running_val is None else running_val + stage_val # base case: no more fantasizing, return value if len(Xs) == 1: # compute weighted average over all leaf nodes of the tree batch_shape = running_val.shape[step_index:] # expand sample weights to make sure it is the same shape as running_val, # because we need to take a sum over sample weights for computing the # weighted average sample_weights = sample_weights.expand(running_val.shape) return (running_val * sample_weights).view(-1, *batch_shape).sum(dim=0) # construct fantasy model (with batch shape f_{j+1} x ... x f_1 x batch_shape) prop_grads = step_index > 0 # need to propagate gradients for steps > 0 fantasy_model = model.fantasize( X=X, sampler=samplers[0], observation_noise=True, propagate_grads=prop_grads ) # augment sample weights appropriately sample_weights = _construct_sample_weights( prev_weights=sample_weights, sampler=samplers[0] ) return _step( model=fantasy_model, Xs=Xs[1:], samplers=samplers[1:], valfunc_cls=valfunc_cls[1:], valfunc_argfacs=valfunc_argfacs[1:], inner_samplers=inner_samplers[1:], objective=objective, posterior_transform=posterior_transform, sample_weights=sample_weights, running_val=running_val, step_index=step_index + 1, ) def _compute_stage_value( model: Model, valfunc_cls: Optional[Type[AcquisitionFunction]], X: Tensor, objective: MCAcquisitionObjective, posterior_transform: Optional[PosteriorTransform], inner_sampler: Optional[MCSampler] = None, arg_fac: Optional[TAcqfArgConstructor] = None, ) -> Optional[Tensor]: r"""Compute the stage value of a multi-step look-ahead policy. Args: model: A Model of appropriate batch size. Specifically, it must be possible to evaluate the model's posterior at `Xs[0]`. valfunc_cls: The acquisition function class to be used as the stage value functions. If `None`, a zero stage value is assumed (returns `None`) X: A tensor with shape `f_i x .... x f_1 x batch_shape x q_i x d` when called in the `i`-th step. objective: The MCAcquisitionObjective under which the model output is evaluated. posterior_transform: A PosteriorTransform. inner_sampler: An `MCSampler` object to be used in the stage value function. Can be `None` for analytic acquisition functions or when using the default sampler of the acquisition function class. arg_fac: A callable mapping a `Model` and the input tensor `X` to a dictionary of kwargs for the stage value function constructor. If `None`, only the standard `model`, `sampler` and `objective` kwargs will be used. Returns: A `f_i x ... x f_1 x batch_shape`-dim tensor of stage values, or `None` (= zero stage value). """ if valfunc_cls is None: return None common_kwargs: Dict[str, Any] = { "model": model, "posterior_transform": posterior_transform, } if issubclass(valfunc_cls, MCAcquisitionFunction): common_kwargs["sampler"] = inner_sampler common_kwargs["objective"] = objective kwargs = arg_fac(model=model, X=X) if arg_fac is not None else {} stage_val_func = valfunc_cls(**common_kwargs, **kwargs) # shape of stage_val is f_i x ... x f_1 x batch_shape stage_val = stage_val_func(X=X) return stage_val def _construct_sample_weights( prev_weights: Tensor, sampler: MCSampler ) -> Optional[Tensor]: r"""Iteratively construct tensor of sample weights for multi-step look-ahead. Args: prev_weights: A `f_i x .... x f_1 x batch_shape` tensor of previous sample weights. sampler: A `MCSampler` that may have sample weights as the `base_weights` attribute. If the sampler does not have a `base_weights` attribute, samples are weighted uniformly. Returns: A `f_{i+1} x .... x f_1 x batch_shape` tensor of sample weights for the next step. """ new_weights = getattr(sampler, "base_weights", None) # TODO: generalize this if new_weights is None: # uniform weights nf = sampler.sample_shape[0] new_weights = torch.ones( nf, device=prev_weights.device, dtype=prev_weights.dtype ) # reshape new_weights to be f_{i+1} x 1 x ... x 1 new_weights = new_weights.view(-1, *(1 for _ in prev_weights.shape)) # normalize new_weights to sum to 1.0 new_weights = new_weights / new_weights.sum() return new_weights * prev_weights def _construct_inner_samplers( batch_sizes: List[int], valfunc_cls: List[Optional[Type[AcquisitionFunction]]], inner_mc_samples: List[Optional[int]], objective: Optional[MCAcquisitionObjective] = None, ) -> List[Optional[MCSampler]]: r"""Check validity of inputs and construct inner samplers. Helper function to be used internally for constructing inner samplers. Args: batch_sizes: A list `[q_1, ..., q_k]` containing the batch sizes for the `k` look-ahead steps. valfunc_cls: A list of `k + 1` acquisition function classes to be used as the (stage + terminal) value functions. Each element (except for the last one) can be `None`, in which case a zero stage value is assumed for the respective stage. inner_mc_samples: A list `[n_0, ..., n_k]` containing the number of MC samples to be used for evaluating the stage value function. Ignored if the objective is `None`. objective: The objective under which the output is evaluated. If `None`, use the model output (requires a single-output model or a posterior transform). Otherwise the objective is MC-evaluated (using `inner_sampler`). Returns: A list with `k + 1` elements that are either `MCSampler`s or `None. """ inner_samplers = [] for q, vfc, mcs in zip([None] + batch_sizes, valfunc_cls, inner_mc_samples): if vfc is None: inner_samplers.append(None) elif vfc == qMultiStepLookahead: raise UnsupportedError( "qMultiStepLookahead not supported as a value function " "(I see what you did there, nice try...)." ) elif issubclass(vfc, AnalyticAcquisitionFunction): if objective is not None: raise UnsupportedError( "Only PosteriorTransforms are supported for analytic value " f"functions. Received a {objective.__class__.__name__}." ) # At this point, we don't know the initial q-batch size here if q is not None and q > 1: raise UnsupportedError( "Only batch sizes of q=1 are supported for analytic value " "functions." ) if q is not None and mcs is not None: warnings.warn( "inner_mc_samples is ignored for analytic acquistion functions", BotorchWarning, ) inner_samplers.append(None) else: inner_sampler = SobolQMCNormalSampler( sample_shape=torch.Size([32 if mcs is None else mcs]) ) inner_samplers.append(inner_sampler) return inner_samplers def _get_induced_fantasy_model( model: Model, Xs: List[Tensor], samplers: List[Optional[MCSampler]] ) -> Model: r"""Recursive computation of the fantasy model induced by an input tree. Args: model: A Model of appropriate batch size. Specifically, it must be possible to evaluate the model's posterior at `Xs[0]`. Xs: A list `[X_j, ..., X_k]` of tensors, where `X_i` has shape `f_i x .... x f_1 x batch_shape x q_i x d`. samplers: A list of `k - j` samplers, such that the number of samples of sampler `i` is `f_i`. The last element of this list is considered the "inner sampler", which is used for evaluating the objective in case it is an MCAcquisitionObjective. Returns: A Model obtained by iteratively fantasizing over the input tree `Xs`. """ if len(Xs) == 1: return model else: fantasy_model = model.fantasize( X=Xs[0], sampler=samplers[0], observation_noise=True, ) return _get_induced_fantasy_model( model=fantasy_model, Xs=Xs[1:], samplers=samplers[1:] ) def warmstart_multistep( acq_function: qMultiStepLookahead, bounds: Tensor, num_restarts: int, raw_samples: int, full_optimizer: Tensor, **kwargs: Any, ) -> Tensor: r"""Warm-start initialization for multi-step look-ahead acquisition functions. For now uses the same q' as in `full_optimizer`. TODO: allow different `q`. Args: acq_function: A qMultiStepLookahead acquisition function. bounds: A `2 x d` tensor of lower and upper bounds for each column of features. num_restarts: The number of starting points for multistart acquisition function optimization. raw_samples: The number of raw samples to consider in the initialization heuristic. full_optimizer: The full tree of optimizers of the previous iteration of shape `batch_shape x q' x d`. Typically obtained by passing `return_best_only=False` and `return_full_tree=True` into `optimize_acqf`. kwargs: Optimization kwargs. Returns: A `num_restarts x q' x d` tensor for initial points for optimization. This is a very simple initialization heuristic. TODO: Use the observed values to identify the fantasy sub-tree that is closest to the observed value. """ batch_shape, shapes, sizes = acq_function.get_split_shapes(full_optimizer) Xopts = torch.split(full_optimizer, sizes, dim=-2) tkwargs = {"device": Xopts[0].device, "dtype": Xopts[0].dtype} B = Beta(torch.ones(1, **tkwargs), 3 * torch.ones(1, **tkwargs)) def mixin_layer(X: Tensor, bounds: Tensor, eta: float) -> Tensor: perturbations = unnormalize(B.sample(X.shape).squeeze(-1), bounds) return (1 - eta) * X + eta * perturbations def make_init_tree(Xopts: List[Tensor], bounds: Tensor, etas: Tensor) -> Tensor: Xtrs = [mixin_layer(X=X, bounds=bounds, eta=eta) for eta, X in zip(etas, Xopts)] return torch.cat(Xtrs, dim=-2) def mixin_tree(T: Tensor, bounds: Tensor, alpha: float) -> Tensor: return (1 - alpha) * T + alpha * unnormalize(torch.rand_like(T), bounds) n_repeat = math.ceil(raw_samples / batch_shape[0]) alphas = torch.linspace(0, 0.75, n_repeat, **tkwargs) etas = torch.linspace(0.1, 1.0, len(Xopts), **tkwargs) X_full = torch.cat( [ mixin_tree( T=make_init_tree(Xopts=Xopts, bounds=bounds, etas=etas), bounds=bounds, alpha=alpha, ) for alpha in alphas ], dim=0, ) with torch.no_grad(): Y_full = acq_function(X_full) X_init = initialize_q_batch(X=X_full, Y=Y_full, n=num_restarts, eta=1.0) return X_init[:raw_samples] def make_best_f(model: Model, X: Tensor) -> Dict[str, Any]: r"""Extract the best observed training input from the model.""" return {"best_f": model.train_targets.max(dim=-1).values}
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. r""" A wrapper around AquisitionFunctions to fix certain features for optimization. This is useful e.g. for performing contextual optimization. """ from __future__ import annotations from numbers import Number from typing import List, Optional, Sequence, Union import torch from botorch.acquisition.acquisition import AcquisitionFunction from torch import Tensor from torch.nn import Module def get_dtype_of_sequence(values: Sequence[Union[Tensor, float]]) -> torch.dtype: """ Return torch.float32 if everything is single-precision and torch.float64 otherwise. Numbers (non-tensors) are double-precision. """ def _is_single(value: Union[Tensor, float]) -> bool: return isinstance(value, Tensor) and value.dtype == torch.float32 all_single_precision = all(_is_single(value) for value in values) return torch.float32 if all_single_precision else torch.float64 def get_device_of_sequence(values: Sequence[Union[Tensor, float]]) -> torch.dtype: """ CPU if everything is on the CPU; Cuda otherwise. Numbers (non-tensors) are considered to be on the CPU. """ def _is_cuda(value: Union[Tensor, float]) -> bool: return hasattr(value, "device") and value.device == torch.device("cuda") any_cuda = any(_is_cuda(value) for value in values) return torch.device("cuda") if any_cuda else torch.device("cpu") class FixedFeatureAcquisitionFunction(AcquisitionFunction): """A wrapper around AquisitionFunctions to fix a subset of features. Example: >>> model = SingleTaskGP(train_X, train_Y) # d = 5 >>> qEI = qExpectedImprovement(model, best_f=0.0) >>> columns = [2, 4] >>> values = X[..., columns] >>> qEI_FF = FixedFeatureAcquisitionFunction(qEI, 5, columns, values) >>> qei = qEI_FF(test_X) # d' = 3 """ def __init__( self, acq_function: AcquisitionFunction, d: int, columns: List[int], values: Union[Tensor, Sequence[Union[Tensor, float]]], ) -> None: r"""Derived Acquisition Function by fixing a subset of input features. Args: acq_function: The base acquisition function, operating on input tensors `X_full` of feature dimension `d`. d: The feature dimension expected by `acq_function`. columns: `d_f < d` indices of columns in `X_full` that are to be fixed to the provided values. values: The values to which to fix the columns in `columns`. Either a full `batch_shape x q x d_f` tensor of values (if values are different for each of the `q` input points), or an array-like of values that is broadcastable to the input across `t`-batch and `q`-batch dimensions, e.g. a list of length `d_f` if values are the same across all `t` and `q`-batch dimensions, or a combination of `Tensor`s and numbers which can be broadcasted to form a tensor with trailing dimension size of `d_f`. """ Module.__init__(self) self.acq_func = acq_function self.d = d if isinstance(values, Tensor): new_values = values.detach().clone() else: dtype = get_dtype_of_sequence(values) device = get_device_of_sequence(values) new_values = [] for value in values: if isinstance(value, Number): value = torch.tensor([value], dtype=dtype) else: if value.ndim == 0: # since we can't broadcast with zero-d tensors value = value.unsqueeze(0) value = value.detach().clone() new_values.append(value.to(dtype=dtype, device=device)) # There are 3 cases for when `values` is a `Sequence`. # 1) `values` == list of floats as earlier. # 2) `values` == combination of floats and `Tensor`s. # 3) `values` == a list of `Tensor`s. # For 1), the below step creates a vector of length `len(values)` # For 2), the below step creates a `Tensor` of shape `batch_shape x q x d_f` # with the broadcasting functionality. # For 3), this is simply a concatenation, yielding a `Tensor` with the # same shape as in 2). # The key difference arises when `_construct_X_full` is invoked. # In 1), the expansion (`self.values.expand`) will expand the `Tensor` to # size `batch_shape x q x d_f`. # In 2) and 3), this expansion is a no-op because they are already of the # required size. However, 2) and 3) _cannot_ support varying `batch_shape`, # which means that all calls to `FixedFeatureAcquisitionFunction` have # to have the same size throughout when `values` contains a `Tensor`. # This is consistent with the scenario when a singular `Tensor` is passed # as the `values` argument. new_values = torch.cat(torch.broadcast_tensors(*new_values), dim=-1) self.register_buffer("values", new_values) # build selector for _construct_X_full self._selector = [] idx_X, idx_f = 0, d - new_values.shape[-1] for i in range(self.d): if i in columns: self._selector.append(idx_f) idx_f += 1 else: self._selector.append(idx_X) idx_X += 1 def forward(self, X: Tensor): r"""Evaluate base acquisition function under the fixed features. Args: X: Input tensor of feature dimension `d' < d` such that `d' + d_f = d`. Returns: Base acquisition function evaluated on tensor `X_full` constructed by adding `values` in the appropriate places (see `_construct_X_full`). """ X_full = self._construct_X_full(X) return self.acq_func(X_full) @property def X_pending(self): r"""Return the `X_pending` of the base acquisition function.""" try: return self.acq_func.X_pending except (ValueError, AttributeError): raise ValueError( f"Base acquisition function {type(self.acq_func).__name__} " "does not have an `X_pending` attribute." ) @X_pending.setter def X_pending(self, X_pending: Optional[Tensor]): r"""Sets the `X_pending` of the base acquisition function.""" if X_pending is not None: self.acq_func.X_pending = self._construct_X_full(X_pending) else: self.acq_func.X_pending = X_pending def _construct_X_full(self, X: Tensor) -> Tensor: r"""Constructs the full input for the base acquisition function. Args: X: Input tensor with shape `batch_shape x q x d'` such that `d' + d_f = d`. Returns: Tensor `X_full` of shape `batch_shape x q x d`, where `X_full[..., i] = values[..., i]` if `i in columns`, and `X_full[..., i] = X[..., j]`, with `j = i - sum_{l<=i} 1_{l in fixed_colunns}`. """ d_prime, d_f = X.shape[-1], self.values.shape[-1] if d_prime + d_f != self.d: raise ValueError( f"Feature dimension d' ({d_prime}) of input must be " f"d - d_f ({self.d - d_f})." ) # concatenate values to the end values = self.values.to(X).expand(*X.shape[:-1], d_f) X_perm = torch.cat([X, values], dim=-1) # now select the appropriate column order return X_perm[..., self._selector]
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. r""" Cost functions for cost-aware acquisition functions, e.g. multi-fidelity KG. To be used in a context where there is an objective/cost tradeoff. """ from __future__ import annotations import warnings from abc import ABC, abstractmethod from typing import Any, Callable, Optional, Union import torch from botorch import settings from botorch.acquisition.objective import ( GenericMCObjective, IdentityMCObjective, MCAcquisitionObjective, ) from botorch.exceptions.warnings import CostAwareWarning from botorch.models.deterministic import DeterministicModel from botorch.models.gpytorch import GPyTorchModel from botorch.sampling.base import MCSampler from torch import Tensor from torch.nn import Module class CostAwareUtility(Module, ABC): r""" Abstract base class for cost-aware utilities. :meta private: """ @abstractmethod def forward(self, X: Tensor, deltas: Tensor, **kwargs: Any) -> Tensor: r"""Evaluate the cost-aware utility on the candidates and improvements. Args: X: A `batch_shape x q x d`-dim Tensor of with `q` `d`-dim design points each for each t-batch. deltas: A `num_fantasies x batch_shape`-dim Tensor of `num_fantasy` samples from the marginal improvement in utility over the current state at `X` for each t-batch. Returns: A `num_fantasies x batch_shape`-dim Tensor of cost-transformed utilities. """ pass # pragma: no cover class GenericCostAwareUtility(CostAwareUtility): r"""Generic cost-aware utility wrapping a callable.""" def __init__(self, cost: Callable[[Tensor, Tensor], Tensor]) -> None: r"""Generic cost-aware utility wrapping a callable. Args: cost: A callable mapping a `batch_shape x q x d'`-dim candidate set to a `batch_shape`-dim tensor of costs """ super().__init__() self._cost_callable: Callable[[Tensor, Tensor], Tensor] = cost def forward(self, X: Tensor, deltas: Tensor, **kwargs: Any) -> Tensor: r"""Evaluate the cost function on the candidates and improvements. Args: X: A `batch_shape x q x d'`-dim Tensor of with `q` `d`-dim design points for each t-batch. deltas: A `num_fantasies x batch_shape`-dim Tensor of `num_fantasy` samples from the marginal improvement in utility over the current state at `X` for each t-batch. Returns: A `num_fantasies x batch_shape`-dim Tensor of cost-weighted utilities. """ return self._cost_callable(X, deltas) class InverseCostWeightedUtility(CostAwareUtility): r"""A cost-aware utility using inverse cost weighting based on a model. Computes the cost-aware utility by inverse-weighting samples `U = (u_1, ..., u_N)` of the increase in utility. If `use_mean=True`, this uses the posterior mean `mean_cost` of the cost model, i.e. `weighted utility = mean(U) / mean_cost`. If `use_mean=False`, it uses samples `C = (c_1, ..., c_N)` from the posterior of the cost model and performs the inverse weighting on the sample level: `weighted utility = mean(u_1 / c_1, ..., u_N / c_N)`. The cost is additive across multiple elements of a q-batch. """ def __init__( self, cost_model: Union[DeterministicModel, GPyTorchModel], use_mean: bool = True, cost_objective: Optional[MCAcquisitionObjective] = None, min_cost: float = 1e-2, ) -> None: r"""Cost-aware utility that weights increase in utiltiy by inverse cost. Args: cost_model: A model of the cost of evaluating a candidate set `X`, where `X` are the same features as in the model for the acquisition function this is to be used with. If no cost_objective is specified, the outputs are required to be non-negative. use_mean: If True, use the posterior mean, otherwise use posterior samples from the cost model. cost_objective: If specified, transform the posterior mean / the posterior samples from the cost model. This can be used e.g. to un-transform predictions/samples of a cost model fit on the log-transformed cost (often done to ensure non-negativity). If the cost model is multi-output, then by default this will sum the cost across outputs. min_cost: A value used to clamp the cost samples so that they are not too close to zero, which may cause numerical issues. Returns: The inverse-cost-weighted utiltiy. """ super().__init__() if cost_objective is None: if cost_model.num_outputs == 1: cost_objective = IdentityMCObjective() else: # sum over outputs cost_objective = GenericMCObjective(lambda Y, X: Y.sum(dim=-1)) self.cost_model = cost_model self.cost_objective = cost_objective self._use_mean = use_mean self._min_cost = min_cost def forward( self, X: Tensor, deltas: Tensor, sampler: Optional[MCSampler] = None, X_evaluation_mask: Optional[Tensor] = None, **kwargs: Any, ) -> Tensor: r"""Evaluate the cost function on the candidates and improvements. Args: X: A `batch_shape x q x d`-dim Tensor of with `q` `d`-dim design points each for each t-batch. deltas: A `num_fantasies x batch_shape`-dim Tensor of `num_fantasy` samples from the marginal improvement in utility over the current state at `X` for each t-batch. sampler: A sampler used for sampling from the posterior of the cost model (required if `use_mean=False`, ignored if `use_mean=True`). X_evaluation_mask: A `q x m`-dim boolean tensor indicating which outcomes should be evaluated for each design in the batch. Returns: A `num_fantasies x batch_shape`-dim Tensor of cost-weighted utilities. """ if not self._use_mean and sampler is None: raise RuntimeError("Must provide `sampler` if `use_mean=False`") if X_evaluation_mask is not None: # TODO: support different evaluation masks for each X. This requires # either passing evaluation_mask to `cost_model.posterior` # or assuming that evalauting `cost_model.posterior(X)` on all # `q` points and then only selecting the costs for relevant points # does not change the cost function for each point. This would not be # true for instance if the incremental cost of evalauting an additional # point decreased as the number of points increased. if not all( torch.equal(X_evaluation_mask[0], X_evaluation_mask[i]) for i in range(1, X_evaluation_mask.shape[0]) ): raise NotImplementedError( "Currently, all candidates must be evaluated on the same outputs." ) output_indices = X_evaluation_mask[0].nonzero().view(-1).tolist() else: output_indices = None cost_posterior = self.cost_model.posterior(X, output_indices=output_indices) if self._use_mean: cost = cost_posterior.mean # batch_shape x q x m' else: # This will be of shape num_fantasies x batch_shape x q x m' cost = sampler(cost_posterior) # TODO: Make sure this doesn't change base samples in-place cost = self.cost_objective(cost) # Ensure non-negativity of the cost if settings.debug.on(): if torch.any(cost < -1e-7): warnings.warn( "Encountered negative cost values in InverseCostWeightedUtility", CostAwareWarning, ) # clamp (away from zero) and sum cost across elements of the q-batch - # this will be of shape `num_fantasies x batch_shape` or `batch_shape` cost = cost.clamp_min(self._min_cost).sum(dim=-1) # if we are doing inverse weighting on the sample level, clamp numerator. if not self._use_mean: deltas = deltas.clamp_min(0.0) # compute and return the ratio on the sample level - If `use_mean=True` # this operation involves broadcasting the cost across fantasies return deltas / cost
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. r""" Utilities for acquisition functions. """ from __future__ import annotations import math from typing import Callable, Dict, List, Optional, Tuple import torch from botorch.acquisition.objective import ( IdentityMCObjective, MCAcquisitionObjective, PosteriorTransform, ) from botorch.exceptions.errors import DeprecationError, UnsupportedError from botorch.models.fully_bayesian import MCMC_DIM from botorch.models.model import Model from botorch.sampling.base import MCSampler from botorch.sampling.get_sampler import get_sampler from botorch.sampling.pathwise import draw_matheron_paths from botorch.utils.objective import compute_feasibility_indicator from botorch.utils.sampling import optimize_posterior_samples from botorch.utils.transforms import is_fully_bayesian from torch import Tensor def get_acquisition_function(*args, **kwargs) -> None: raise DeprecationError( "`get_acquisition_function` has been moved to `botorch.acquisition.factory`." ) def compute_best_feasible_objective( samples: Tensor, obj: Tensor, constraints: Optional[List[Callable[[Tensor], Tensor]]], model: Optional[Model] = None, objective: Optional[MCAcquisitionObjective] = None, posterior_transform: Optional[PosteriorTransform] = None, X_baseline: Optional[Tensor] = None, infeasible_obj: Optional[Tensor] = None, ) -> Tensor: """Computes the largest `obj` value that is feasible under the `constraints`. If `constraints` is None, returns the best unconstrained objective value. When no feasible observations exist and `infeasible_obj` is not `None`, returns `infeasible_obj` (potentially reshaped). When no feasible observations exist and `infeasible_obj` is `None`, uses `model`, `objective`, `posterior_transform`, and `X_baseline` to infer and return an `infeasible_obj` `M` s.t. `M < min_x f(x)`. Args: samples: `(sample_shape) x batch_shape x q x m`-dim posterior samples. obj: A `(sample_shape) x batch_shape x q`-dim Tensor of MC objective values. constraints: A list of constraint callables which map posterior samples to a scalar. The associated constraint is considered satisfied if this scalar is less than zero. model: A Model, only required when there are no feasible observations. objective: An MCAcquisitionObjective, only optionally used when there are no feasible observations. posterior_transform: A PosteriorTransform, only optionally used when there are no feasible observations. X_baseline: A `batch_shape x d`-dim Tensor of baseline points, only required when there are no feasible observations. infeasible_obj: A Tensor to be returned when no feasible points exist. Returns: A `(sample_shape) x batch_shape x 1`-dim Tensor of best feasible objectives. """ if constraints is None: # unconstrained case # we don't need to differentiate through X_baseline for now, so taking # the regular max over the n points to get best_f is fine with torch.no_grad(): return obj.amax(dim=-1, keepdim=True) is_feasible = compute_feasibility_indicator( constraints=constraints, samples=samples ) # sample_shape x batch_shape x q if is_feasible.any(dim=-1).all(): infeasible_value = -torch.inf elif infeasible_obj is not None: infeasible_value = infeasible_obj.item() else: if model is None: raise ValueError( "Must specify `model` when no feasible observation exists." ) if X_baseline is None: raise ValueError( "Must specify `X_baseline` when no feasible observation exists." ) infeasible_value = _estimate_objective_lower_bound( model=model, objective=objective, posterior_transform=posterior_transform, X=X_baseline, ).item() obj = torch.where(is_feasible, obj, infeasible_value) with torch.no_grad(): return obj.amax(dim=-1, keepdim=True) def _estimate_objective_lower_bound( model: Model, objective: Optional[MCAcquisitionObjective], posterior_transform: Optional[PosteriorTransform], X: Tensor, ) -> Tensor: """Estimates a lower bound on the objective values by evaluating the model at convex combinations of `X`, returning the 6-sigma lower bound of the computed statistics. Args: model: A fitted model. objective: An MCAcquisitionObjective with `m` outputs. posterior_transform: A PosteriorTransform. X: A `n x d`-dim Tensor of design points from which to draw convex combinations. Returns: A `m`-dimensional Tensor of lower bounds of the objectives. """ convex_weights = torch.rand( 32, X.shape[-2], dtype=X.dtype, device=X.device, ) weights_sum = convex_weights.sum(dim=0, keepdim=True) convex_weights = convex_weights / weights_sum # infeasible cost M is such that -M < min_x f(x), thus # 0 < min_x f(x) - (-M), so we should take -M as a lower # bound on the best feasible objective return -get_infeasible_cost( X=convex_weights @ X, model=model, objective=objective, posterior_transform=posterior_transform, ) def get_infeasible_cost( X: Tensor, model: Model, objective: Optional[Callable[[Tensor, Optional[Tensor]], Tensor]] = None, posterior_transform: Optional[PosteriorTransform] = None, ) -> Tensor: r"""Get infeasible cost for a model and objective. For each outcome, computes an infeasible cost `M` such that `-M < min_x f(x)` almost always, so that feasible points are preferred. Args: X: A `n x d` Tensor of `n` design points to use in evaluating the minimum. These points should cover the design space well. The more points the better the estimate, at the expense of added computation. model: A fitted botorch model with `m` outcomes. objective: The objective with which to evaluate the model output. posterior_transform: A PosteriorTransform (optional). Returns: An `m`-dim tensor of infeasible cost values. Example: >>> model = SingleTaskGP(train_X, train_Y) >>> objective = lambda Y: Y[..., -1] ** 2 >>> M = get_infeasible_cost(train_X, model, obj) """ if objective is None: def objective(Y: Tensor, X: Optional[Tensor] = None): return Y.squeeze(-1) posterior = model.posterior(X, posterior_transform=posterior_transform) lb = objective(posterior.mean - 6 * posterior.variance.clamp_min(0).sqrt(), X=X) if lb.ndim < posterior.mean.ndim: lb = lb.unsqueeze(-1) # Take outcome-wise min. Looping in to handle batched models. while lb.dim() > 1: lb = lb.min(dim=-2).values return -(lb.clamp_max(0.0)) def prune_inferior_points( model: Model, X: Tensor, objective: Optional[MCAcquisitionObjective] = None, posterior_transform: Optional[PosteriorTransform] = None, num_samples: int = 2048, max_frac: float = 1.0, sampler: Optional[MCSampler] = None, marginalize_dim: Optional[int] = None, ) -> Tensor: r"""Prune points from an input tensor that are unlikely to be the best point. Given a model, an objective, and an input tensor `X`, this function returns the subset of points in `X` that have some probability of being the best point under the objective. This function uses sampling to estimate the probabilities, the higher the number of points `n` in `X` the higher the number of samples `num_samples` should be to obtain accurate estimates. Args: model: A fitted model. Batched models are currently not supported. X: An input tensor of shape `n x d`. Batched inputs are currently not supported. objective: The objective under which to evaluate the posterior. posterior_transform: A PosteriorTransform (optional). num_samples: The number of samples used to compute empirical probabilities of being the best point. max_frac: The maximum fraction of points to retain. Must satisfy `0 < max_frac <= 1`. Ensures that the number of elements in the returned tensor does not exceed `ceil(max_frac * n)`. sampler: If provided, will use this customized sampler instead of automatically constructing one with `num_samples`. marginalize_dim: A batch dimension that should be marginalized. For example, this is useful when using a batched fully Bayesian model. Returns: A `n' x d` with subset of points in `X`, where n' = min(N_nz, ceil(max_frac * n)) with `N_nz` the number of points in `X` that have non-zero (empirical, under `num_samples` samples) probability of being the best point. """ if marginalize_dim is None and is_fully_bayesian(model): # TODO: Properly deal with marginalizing fully Bayesian models marginalize_dim = MCMC_DIM if X.ndim > 2: # TODO: support batched inputs (req. dealing with ragged tensors) raise UnsupportedError( "Batched inputs `X` are currently unsupported by prune_inferior_points" ) max_points = math.ceil(max_frac * X.size(-2)) if max_points < 1 or max_points > X.size(-2): raise ValueError(f"max_frac must take values in (0, 1], is {max_frac}") with torch.no_grad(): posterior = model.posterior(X=X, posterior_transform=posterior_transform) if sampler is None: sampler = get_sampler( posterior=posterior, sample_shape=torch.Size([num_samples]) ) samples = sampler(posterior) if objective is None: objective = IdentityMCObjective() obj_vals = objective(samples, X=X) if obj_vals.ndim > 2: if obj_vals.ndim == 3 and marginalize_dim is not None: obj_vals = obj_vals.mean(dim=marginalize_dim) else: # TODO: support batched inputs (req. dealing with ragged tensors) raise UnsupportedError( "Models with multiple batch dims are currently unsupported by" " prune_inferior_points." ) is_best = torch.argmax(obj_vals, dim=-1) idcs, counts = torch.unique(is_best, return_counts=True) if len(idcs) > max_points: counts, order_idcs = torch.sort(counts, descending=True) idcs = order_idcs[:max_points] return X[idcs] def project_to_target_fidelity( X: Tensor, target_fidelities: Optional[Dict[int, float]] = None ) -> Tensor: r"""Project `X` onto the target set of fidelities. This function assumes that the set of feasible fidelities is a box, so projecting here just means setting each fidelity parameter to its target value. Args: X: A `batch_shape x q x d`-dim Tensor of with `q` `d`-dim design points for each t-batch. target_fidelities: A dictionary mapping a subset of columns of `X` (the fidelity parameters) to their respective target fidelity value. If omitted, assumes that the last column of X is the fidelity parameter with a target value of 1.0. Return: A `batch_shape x q x d`-dim Tensor `X_proj` with fidelity parameters projected to the provided fidelity values. """ if target_fidelities is None: target_fidelities = {-1: 1.0} d = X.size(-1) # normalize to positive indices tfs = {k if k >= 0 else d + k: v for k, v in target_fidelities.items()} ones = torch.ones(*X.shape[:-1], device=X.device, dtype=X.dtype) # here we're looping through the feature dimension of X - this could be # slow for large `d`, we should optimize this for that case X_proj = torch.stack( [X[..., i] if i not in tfs else tfs[i] * ones for i in range(d)], dim=-1 ) return X_proj def expand_trace_observations( X: Tensor, fidelity_dims: Optional[List[int]] = None, num_trace_obs: int = 0 ) -> Tensor: r"""Expand `X` with trace observations. Expand a tensor of inputs with "trace observations" that are obtained during the evaluation of the candidate set. This is used in multi-fidelity optimization. It can be though of as augmenting the `q`-batch with additional points that are the expected trace observations. Let `f_i` be the `i`-th fidelity parameter. Then this functions assumes that for each element of the q-batch, besides the fidelity `f_i`, we will observe additonal fidelities `f_i1, ..., f_iK`, where `K = num_trace_obs`, during evaluation of the candidate set `X`. Specifically, this function assumes that `f_ij = (K-j) / (num_trace_obs + 1) * f_i` for all `i`. That is, the expansion is performed in parallel for all fidelities (it does not expand out all possible combinations). Args: X: A `batch_shape x q x d`-dim Tensor of with `q` `d`-dim design points (incl. the fidelity parameters) for each t-batch. fidelity_dims: The indices of the fidelity parameters. If omitted, assumes that the last column of X contains the fidelity parameters. num_trace_obs: The number of trace observations to use. Return: A `batch_shape x (q + num_trace_obs x q) x d` Tensor `X_expanded` that expands `X` with trace observations. """ if num_trace_obs == 0: # No need to expand if we don't use trace observations return X if fidelity_dims is None: fidelity_dims = [-1] # The general strategy in the following is to expand `X` to the desired # shape, and then multiply it (point-wise) with a tensor of scaling factors reps = [1] * (X.ndim - 2) + [1 + num_trace_obs, 1] X_expanded = X.repeat(*reps) # batch_shape x (q + num_trace_obs x q) x d scale_fac = torch.ones_like(X_expanded) s_pad = 1 / (num_trace_obs + 1) # tensor of num_trace_obs scaling factors equally space between 1-s_pad and s_pad sf = torch.linspace(1 - s_pad, s_pad, num_trace_obs, device=X.device, dtype=X.dtype) # repeat each element q times q = X.size(-2) sf = torch.repeat_interleave(sf, q) # num_trace_obs * q # now expand this to num_trace_obs x q x num_fidelities sf = sf.unsqueeze(-1).expand(X_expanded.size(-2) - q, len(fidelity_dims)) # change relevant entries of the scaling tensor scale_fac[..., q:, fidelity_dims] = sf return scale_fac * X_expanded def project_to_sample_points(X: Tensor, sample_points: Tensor) -> Tensor: r"""Augment `X` with sample points at which to take weighted average. Args: X: A `batch_shape x 1 x d`-dim Tensor of with one d`-dim design points for each t-batch. sample_points: `p x d'`-dim Tensor (`d' < d`) of `d'`-dim sample points at which to compute the expectation. The `d'`-dims refer to the trailing columns of X. Returns: A `batch_shape x p x d` Tensor where the q-batch includes the `p` sample points. """ batch_shape = X.shape[:-2] p, d_prime = sample_points.shape X_new = X.repeat(*(1 for _ in batch_shape), p, 1) # batch_shape x p x d X_new[..., -d_prime:] = sample_points return X_new def get_optimal_samples( model: Model, bounds: Tensor, num_optima: int, raw_samples: int = 1024, num_restarts: int = 20, maximize: bool = True, ) -> Tuple[Tensor, Tensor]: """Draws sample paths from the posterior and maximizes the samples using GD. Args: model (Model): The model from which samples are drawn. bounds: (Tensor): Bounds of the search space. If the model inputs are normalized, the bounds should be normalized as well. num_optima (int): The number of paths to be drawn and optimized. raw_samples (int, optional): The number of candidates randomly sample. Defaults to 1024. num_restarts (int, optional): The number of candidates to do gradient-based optimization on. Defaults to 20. maximize: Whether to maximize or minimize the samples. Returns: Tuple[Tensor, Tensor]: The optimal input locations and corresponding outputs, x* and f*. """ paths = draw_matheron_paths(model, sample_shape=torch.Size([num_optima])) optimal_inputs, optimal_outputs = optimize_posterior_samples( paths, bounds=bounds, raw_samples=raw_samples, num_restarts=num_restarts, maximize=maximize, ) return optimal_inputs, optimal_outputs
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. r""" Acquisition function for predictive entropy search (PES). The code utilizes the implementation designed for the multi-objective batch setting. NOTE: The PES acquisition might not be differentiable. As a result, we recommend optimizing the acquisition function using finite differences. """ from __future__ import annotations from typing import Any, Optional from botorch.acquisition.multi_objective.predictive_entropy_search import ( qMultiObjectivePredictiveEntropySearch, ) from botorch.models.model import Model from botorch.utils.transforms import concatenate_pending_points, t_batch_mode_transform from torch import Tensor class qPredictiveEntropySearch(qMultiObjectivePredictiveEntropySearch): r"""The acquisition function for Predictive Entropy Search. This acquisition function approximates the mutual information between the observation at a candidate point `X` and the optimal set of inputs using expectation propagation (EP). NOTES: (i) The expectation propagation procedure can potentially fail due to the unstable EP updates. This is however unlikely to happen in the single-objective setting because we have much fewer EP factors. The jitter added in the training phase (`ep_jitter`) and testing phase (`test_jitter`) can be increased to prevent these failures from happening. More details in the description of `qMultiObjectivePredictiveEntropySearch`. (ii) The estimated acquisition value could be negative. """ def __init__( self, model: Model, optimal_inputs: Tensor, maximize: bool = True, X_pending: Optional[Tensor] = None, max_ep_iterations: int = 250, ep_jitter: float = 1e-4, test_jitter: float = 1e-4, threshold: float = 1e-2, **kwargs: Any, ) -> None: r"""Predictive entropy search acquisition function. Args: model: A fitted single-outcome model. optimal_inputs: A `num_samples x d`-dim tensor containing the sampled optimal inputs of dimension `d`. We assume for simplicity that each sample only contains one optimal set of inputs. maximize: If true, we consider a maximization problem. X_pending: A `m x d`-dim Tensor of `m` design points that have been submitted for function evaluation, but have not yet been evaluated. max_ep_iterations: The maximum number of expectation propagation iterations. (The minimum number of iterations is set at 3.) ep_jitter: The amount of jitter added for the matrix inversion that occurs during the expectation propagation update during the training phase. test_jitter: The amount of jitter added for the matrix inversion that occurs during the expectation propagation update in the testing phase. threshold: The convergence threshold for expectation propagation. This assesses the relative change in the mean and covariance. We default to one percent change i.e. `threshold = 1e-2`. """ super().__init__( model=model, pareto_sets=optimal_inputs.unsqueeze(-2), maximize=maximize, X_pending=X_pending, max_ep_iterations=max_ep_iterations, ep_jitter=ep_jitter, test_jitter=test_jitter, threshold=threshold, ) @concatenate_pending_points @t_batch_mode_transform() def forward(self, X: Tensor) -> Tensor: r"""Evaluate qPredictiveEntropySearch on the candidate set `X`. Args: X: A `batch_shape x q x d`-dim Tensor of t-batches with `q` `d`-dim design points each. Returns: A `batch_shape'`-dim Tensor of Predictive Entropy Search values at the given design points `X`. """ return self._compute_information_gain(X)
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. r""" Acquisition functions for Max-value Entropy Search (MES), General Information-Based Bayesian Optimization (GIBBON), and multi-fidelity MES with noisy observations and trace observations. References .. [Moss2021gibbon] Moss, H. B., et al., GIBBON: General-purpose Information-Based Bayesian OptimisatioN. Journal of Machine Learning Research, 2021. .. [Takeno2020mfmves] S. Takeno, H. Fukuoka, Y. Tsukada, T. Koyama, M. Shiga, I. Takeuchi, M. Karasuyama. Multi-fidelity Bayesian Optimization with Max-value Entropy Search and its Parallelization. Proceedings of the 37th International Conference on Machine Learning, 2020. .. [Wang2017mves] Z. Wang, S. Jegelka, Max-value Entropy Search for Efficient Bayesian Optimization. Proceedings of the 37th International Conference on Machine Learning, 2017. """ from __future__ import annotations from abc import ABC, abstractmethod from copy import deepcopy from math import log from typing import Any, Callable, Optional import numpy as np import torch from botorch.acquisition.acquisition import AcquisitionFunction, MCSamplerMixin from botorch.acquisition.cost_aware import CostAwareUtility, InverseCostWeightedUtility from botorch.acquisition.objective import PosteriorTransform from botorch.exceptions.errors import UnsupportedError from botorch.models.cost import AffineFidelityCostModel from botorch.models.model import Model from botorch.models.utils import check_no_nans from botorch.sampling.normal import SobolQMCNormalSampler from botorch.utils.transforms import match_batch_shape, t_batch_mode_transform from linear_operator.functions import inv_quad from linear_operator.utils.cholesky import psd_safe_cholesky from scipy.optimize import brentq from scipy.stats import norm from torch import Tensor CLAMP_LB = 1.0e-8 class MaxValueBase(AcquisitionFunction, ABC): r"""Abstract base class for acquisition functions based on Max-value Entropy Search. This class provides the basic building blocks for constructing max-value entropy-based acquisition functions along the lines of [Wang2017mves]_. Subclasses need to implement `_sample_max_values` and _compute_information_gain` methods. :meta private: """ def __init__( self, model: Model, num_mv_samples: int, posterior_transform: Optional[PosteriorTransform] = None, maximize: bool = True, X_pending: Optional[Tensor] = None, ) -> None: r"""Single-outcome max-value entropy search-based acquisition functions. Args: model: A fitted single-outcome model. num_mv_samples: Number of max value samples. posterior_transform: A PosteriorTransform. If using a multi-output model, a PosteriorTransform that transforms the multi-output posterior into a single-output posterior is required. maximize: If True, consider the problem a maximization problem. X_pending: A `m x d`-dim Tensor of `m` design points that have been submitted for function evaluation but have not yet been evaluated. """ super().__init__(model=model) if posterior_transform is None and model.num_outputs != 1: raise UnsupportedError( "Must specify a posterior transform when using a multi-output model." ) # Batched GP models are not currently supported try: batch_shape = model.batch_shape except NotImplementedError: batch_shape = torch.Size() if len(batch_shape) > 0: raise NotImplementedError( "Batched GP models (e.g., fantasized models) are not yet " f"supported by `{self.__class__.__name__}`." ) self.num_mv_samples = num_mv_samples self.posterior_transform = posterior_transform self.maximize = maximize self.weight = 1.0 if maximize else -1.0 self.set_X_pending(X_pending) @t_batch_mode_transform(expected_q=1) def forward(self, X: Tensor) -> Tensor: r"""Compute max-value entropy at the design points `X`. Args: X: A `batch_shape x 1 x d`-dim Tensor of `batch_shape` t-batches with `1` `d`-dim design points each. Returns: A `batch_shape`-dim Tensor of MVE values at the given design points `X`. """ # Compute the posterior, posterior mean, variance and std posterior = self.model.posterior( X.unsqueeze(-3), observation_noise=False, posterior_transform=self.posterior_transform, ) # batch_shape x num_fantasies x (m) x 1 mean = self.weight * posterior.mean.squeeze(-1).squeeze(-1) variance = posterior.variance.clamp_min(CLAMP_LB).view_as(mean) ig = self._compute_information_gain( X=X, mean_M=mean, variance_M=variance, covar_mM=variance.unsqueeze(-1) ) return ig.mean(dim=0) # average over fantasies def set_X_pending(self, X_pending: Optional[Tensor] = None) -> None: r"""Set pending design points. Set "pending points" to inform the acquisition function of the candidate points that have been generated but are pending evaluation. Args: X_pending: `n x d` Tensor with `n` `d`-dim design points that have been submitted for evaluation but have not yet been evaluated. """ if X_pending is not None: X_pending = X_pending.detach().clone() self._sample_max_values(num_samples=self.num_mv_samples, X_pending=X_pending) self.X_pending = X_pending # ------- Abstract methods that need to be implemented by subclasses ------- # @abstractmethod def _compute_information_gain(self, X: Tensor, **kwargs: Any) -> Tensor: r"""Compute the information gain at the design points `X`. `num_fantasies = 1` for non-fantasized models. Args: X: A `batch_shape x 1 x d`-dim Tensor of `batch_shape` t-batches with `1` `d`-dim design point each. kwargs: Other keyword arguments used by subclasses. Returns: A `num_fantasies x batch_shape`-dim Tensor of information gains at the given design points `X` (`num_fantasies=1` for non-fantasized models). """ pass # pragma: no cover @abstractmethod def _sample_max_values( self, num_samples: int, X_pending: Optional[Tensor] = None ) -> Tensor: r"""Draw samples from the posterior over maximum values. These samples are used to compute Monte Carlo approximations of expecations over the posterior over the function maximum. Args: num_samples: The number of samples to draw. X_pending: A `m x d`-dim Tensor of `m` design points that have been submitted for function evaluation but have not yet been evaluated. Returns: A `num_samples x num_fantasies` Tensor of posterior max value samples (`num_fantasies=1` for non-fantasized models). """ pass # pragma: no cover class DiscreteMaxValueBase(MaxValueBase): r"""Abstract base class for MES-like methods using discrete max posterior sampling. This class provides basic functionality for sampling posterior maximum values from a surrogate Gaussian process model using a discrete set of candidates. It supports either exact (w.r.t. the candidate set) sampling, or using a Gumbel approximation. """ def __init__( self, model: Model, candidate_set: Tensor, num_mv_samples: int = 10, posterior_transform: Optional[PosteriorTransform] = None, use_gumbel: bool = True, maximize: bool = True, X_pending: Optional[Tensor] = None, train_inputs: Optional[Tensor] = None, ) -> None: r"""Single-outcome MES-like acquisition functions based on discrete MV sampling. Args: model: A fitted single-outcome model. candidate_set: A `n x d` Tensor including `n` candidate points to discretize the design space. Max values are sampled from the (joint) model posterior over these points. num_mv_samples: Number of max value samples. posterior_transform: A PosteriorTransform. If using a multi-output model, a PosteriorTransform that transforms the multi-output posterior into a single-output posterior is required. use_gumbel: If True, use Gumbel approximation to sample the max values. maximize: If True, consider the problem a maximization problem. X_pending: A `m x d`-dim Tensor of `m` design points that have been submitted for function evaluation but have not yet been evaluated. train_inputs: A `n_train x d` Tensor that the model has been fitted on. Not required if the model is an instance of a GPyTorch ExactGP model. """ self.use_gumbel = use_gumbel if train_inputs is None and hasattr(model, "train_inputs"): train_inputs = model.train_inputs[0] if train_inputs is not None: if train_inputs.ndim > 2: raise NotImplementedError( "Batch GP models (e.g. fantasized models) " "are not yet supported by `MaxValueBase`" ) train_inputs = match_batch_shape(train_inputs, candidate_set) candidate_set = torch.cat([candidate_set, train_inputs], dim=0) self.candidate_set = candidate_set super().__init__( model=model, num_mv_samples=num_mv_samples, posterior_transform=posterior_transform, maximize=maximize, X_pending=X_pending, ) def _sample_max_values( self, num_samples: int, X_pending: Optional[Tensor] = None ) -> Tensor: r"""Draw samples from the posterior over maximum values on a discrete set. These samples are used to compute Monte Carlo approximations of expecations over the posterior over the function maximum. Args: num_samples: The number of samples to draw. X_pending: A `m x d`-dim Tensor of `m` design points that have been submitted for function evaluation but have not yet been evaluated. Returns: A `num_samples x num_fantasies` Tensor of posterior max value samples (`num_fantasies=1` for non-fantasized models). """ if self.use_gumbel: sample_max_values = _sample_max_value_Gumbel else: sample_max_values = _sample_max_value_Thompson candidate_set = self.candidate_set with torch.no_grad(): if X_pending is not None: # Append X_pending to candidate set X_pending = match_batch_shape(X_pending, self.candidate_set) candidate_set = torch.cat([self.candidate_set, X_pending], dim=0) # project the candidate_set to the highest fidelity, # which is needed for the multi-fidelity MES try: candidate_set = self.project(candidate_set) except AttributeError: pass self.posterior_max_values = sample_max_values( model=self.model, candidate_set=candidate_set, num_samples=self.num_mv_samples, posterior_transform=self.posterior_transform, maximize=self.maximize, ) class qMaxValueEntropy(DiscreteMaxValueBase, MCSamplerMixin): r"""The acquisition function for Max-value Entropy Search. This acquisition function computes the mutual information of max values and a candidate point X. See [Wang2017mves]_ for a detailed discussion. The model must be single-outcome. The batch case `q > 1` is supported through cyclic optimization and fantasies. Example: >>> model = SingleTaskGP(train_X, train_Y) >>> candidate_set = torch.rand(1000, bounds.size(1)) >>> candidate_set = bounds[0] + (bounds[1] - bounds[0]) * candidate_set >>> MES = qMaxValueEntropy(model, candidate_set) >>> mes = MES(test_X) """ def __init__( self, model: Model, candidate_set: Tensor, num_fantasies: int = 16, num_mv_samples: int = 10, num_y_samples: int = 128, posterior_transform: Optional[PosteriorTransform] = None, use_gumbel: bool = True, maximize: bool = True, X_pending: Optional[Tensor] = None, train_inputs: Optional[Tensor] = None, ) -> None: r"""Single-outcome max-value entropy search acquisition function. Args: model: A fitted single-outcome model. candidate_set: A `n x d` Tensor including `n` candidate points to discretize the design space. Max values are sampled from the (joint) model posterior over these points. num_fantasies: Number of fantasies to generate. The higher this number the more accurate the model (at the expense of model complexity, wall time and memory). Ignored if `X_pending` is `None`. num_mv_samples: Number of max value samples. num_y_samples: Number of posterior samples at specific design point `X`. posterior_transform: A PosteriorTransform. If using a multi-output model, a PosteriorTransform that transforms the multi-output posterior into a single-output posterior is required. use_gumbel: If True, use Gumbel approximation to sample the max values. maximize: If True, consider the problem a maximization problem. X_pending: A `m x d`-dim Tensor of `m` design points that have been submitted for function evaluation but have not yet been evaluated. train_inputs: A `n_train x d` Tensor that the model has been fitted on. Not required if the model is an instance of a GPyTorch ExactGP model. """ super().__init__( model=model, candidate_set=candidate_set, num_mv_samples=num_mv_samples, posterior_transform=posterior_transform, use_gumbel=use_gumbel, maximize=maximize, X_pending=X_pending, train_inputs=train_inputs, ) MCSamplerMixin.__init__( self, sampler=SobolQMCNormalSampler(sample_shape=torch.Size([num_y_samples])), ) self._init_model = model # used for `fantasize()` when setting `X_pending` self.fantasies_sampler = SobolQMCNormalSampler( sample_shape=torch.Size([num_fantasies]) ) self.num_fantasies = num_fantasies self.set_X_pending(X_pending) # this did not happen in the super constructor def set_X_pending(self, X_pending: Optional[Tensor] = None) -> None: r"""Set pending points. Informs the acquisition function about pending design points, fantasizes the model on the pending points and draws max-value samples from the fantasized model posterior. Args: X_pending: `m x d` Tensor with `m` `d`-dim design points that have been submitted for evaluation but have not yet been evaluated. """ try: init_model = self._init_model except AttributeError: # Short-circuit (this allows calling the super constructor) return if X_pending is not None: # fantasize the model and use this as the new model self.model = init_model.fantasize( X=X_pending, sampler=self.fantasies_sampler, observation_noise=True ) else: self.model = init_model super().set_X_pending(X_pending) def _compute_information_gain( self, X: Tensor, mean_M: Tensor, variance_M: Tensor, covar_mM: Tensor ) -> Tensor: r"""Computes the information gain at the design points `X`. Approximately computes the information gain at the design points `X`, for both MES with noisy observations and multi-fidelity MES with noisy observation and trace observations. The implementation is inspired from the papers on multi-fidelity MES by [Takeno2020mfmves]_. The notation in the comments in this function follows the Appendix C of [Takeno2020mfmves]_. `num_fantasies = 1` for non-fantasized models. Args: X: A `batch_shape x 1 x d`-dim Tensor of `batch_shape` t-batches with `1` `d`-dim design point each. mean_M: A `batch_shape x num_fantasies x (m)`-dim Tensor of means. variance_M: A `batch_shape x num_fantasies x (m)`-dim Tensor of variances. covar_mM: A `batch_shape x num_fantasies x (m) x (1 + num_trace_observations)`-dim Tensor of covariances. Returns: A `num_fantasies x batch_shape`-dim Tensor of information gains at the given design points `X` (`num_fantasies=1` for non-fantasized models). """ # compute the std_m, variance_m with noisy observation posterior_m = self.model.posterior( X.unsqueeze(-3), observation_noise=True, posterior_transform=self.posterior_transform, ) # batch_shape x num_fantasies x (m) x (1 + num_trace_observations) mean_m = self.weight * posterior_m.mean.squeeze(-1) # batch_shape x num_fantasies x (m) x (1 + num_trace_observations) variance_m = posterior_m.distribution.covariance_matrix check_no_nans(variance_m) # compute mean and std for fM|ym, x, Dt ~ N(u, s^2) samples_m = self.weight * self.get_posterior_samples(posterior_m).squeeze(-1) # s_m x batch_shape x num_fantasies x (m) (1 + num_trace_observations) L = psd_safe_cholesky(variance_m) temp_term = torch.cholesky_solve(covar_mM.unsqueeze(-1), L).transpose(-2, -1) # equivalent to torch.matmul(covar_mM.unsqueeze(-2), torch.inverse(variance_m)) # batch_shape x num_fantasies (m) x 1 x (1 + num_trace_observations) mean_pt1 = torch.matmul(temp_term, (samples_m - mean_m).unsqueeze(-1)) mean_new = mean_pt1.squeeze(-1).squeeze(-1) + mean_M # s_m x batch_shape x num_fantasies x (m) variance_pt1 = torch.matmul(temp_term, covar_mM.unsqueeze(-1)) variance_new = variance_M - variance_pt1.squeeze(-1).squeeze(-1) # batch_shape x num_fantasies x (m) stdv_new = variance_new.clamp_min(CLAMP_LB).sqrt() # batch_shape x num_fantasies x (m) # define normal distribution to compute cdf and pdf normal = torch.distributions.Normal( torch.zeros(1, device=X.device, dtype=X.dtype), torch.ones(1, device=X.device, dtype=X.dtype), ) # Compute p(fM <= f* | ym, x, Dt) view_shape = torch.Size( [ self.posterior_max_values.shape[0], # add 1s to broadcast across the batch_shape of X *[1 for _ in range(X.ndim - self.posterior_max_values.ndim)], *self.posterior_max_values.shape[1:], ] ) # s_M x batch_shape x num_fantasies x (m) max_vals = self.posterior_max_values.view(view_shape).unsqueeze(1) # s_M x 1 x batch_shape x num_fantasies x (m) normalized_mvs_new = (max_vals - mean_new) / stdv_new # s_M x s_m x batch_shape x num_fantasies x (m) = # s_M x 1 x batch_shape x num_fantasies x (m) # - s_m x batch_shape x num_fantasies x (m) cdf_mvs_new = normal.cdf(normalized_mvs_new).clamp_min(CLAMP_LB) # Compute p(fM <= f* | x, Dt) stdv_M = variance_M.sqrt() normalized_mvs = (max_vals - mean_M) / stdv_M # s_M x 1 x batch_shape x num_fantasies x (m) = # s_M x 1 x 1 x num_fantasies x (m) - batch_shape x num_fantasies x (m) cdf_mvs = normal.cdf(normalized_mvs).clamp_min(CLAMP_LB) # s_M x 1 x batch_shape x num_fantasies x (m) # Compute log(p(ym | x, Dt)) log_pdf_fm = posterior_m.distribution.log_prob( self.weight * samples_m ).unsqueeze(0) # 1 x s_m x batch_shape x num_fantasies x (m) # H0 = H(ym | x, Dt) H0 = posterior_m.distribution.entropy() # batch_shape x num_fantasies x (m) # regression adjusted H1 estimation, H1_hat = H1_bar - beta * (H0_bar - H0) # H1 = E_{f*|x, Dt}[H(ym|f*, x, Dt)] Z = cdf_mvs_new / cdf_mvs # s_M x s_m x batch_shape x num_fantasies x (m) # s_M x s_m x batch_shape x num_fantasies x (m) h1 = -Z * Z.log() - Z * log_pdf_fm check_no_nans(h1) dim = [0, 1] # dimension of fm samples, fM samples H1_bar = h1.mean(dim=dim) h0 = -log_pdf_fm H0_bar = h0.mean(dim=dim) cov = ((h1 - H1_bar) * (h0 - H0_bar)).mean(dim=dim) beta = cov / (h0.var(dim=dim) * h1.var(dim=dim)).sqrt() H1_hat = H1_bar - beta * (H0_bar - H0) ig = H0 - H1_hat # batch_shape x num_fantasies x (m) if self.posterior_max_values.ndim == 2: permute_idcs = [-1, *range(ig.ndim - 1)] else: permute_idcs = [-2, *range(ig.ndim - 2), -1] ig = ig.permute(*permute_idcs) # num_fantasies x batch_shape x (m) return ig class qLowerBoundMaxValueEntropy(DiscreteMaxValueBase): r"""The acquisition function for General-purpose Information-Based Bayesian Optimisation (GIBBON). This acquisition function provides a computationally cheap approximation of the mutual information between max values and a batch of candidate points `X`. See [Moss2021gibbon]_ for a detailed discussion. The model must be single-outcome, unless using a PosteriorTransform. q > 1 is supported through greedy batch filling. Example: >>> model = SingleTaskGP(train_X, train_Y) >>> candidate_set = torch.rand(1000, bounds.size(1)) >>> candidate_set = bounds[0] + (bounds[1] - bounds[0]) * candidate_set >>> qGIBBON = qLowerBoundMaxValueEntropy(model, candidate_set) >>> candidates, _ = optimize_acqf(qGIBBON, bounds, q=5) """ def _compute_information_gain( self, X: Tensor, mean_M: Tensor, variance_M: Tensor, covar_mM: Tensor ) -> Tensor: r"""Compute GIBBON's approximation of information gain at the design points `X`. When using GIBBON for batch optimization (i.e `q > 1`), we calculate the additional information provided by adding a new candidate point to the current batch of design points (`X_pending`), rather than calculating the information provided by the whole batch. This allows a modest computational saving. Args: X: A `batch_shape x 1 x d`-dim Tensor of `batch_shape` t-batches with `1` `d`-dim design point each. mean_M: A `batch_shape x 1`-dim Tensor of means. variance_M: A `batch_shape x 1`-dim Tensor of variances consisting of `batch_shape` t-batches with `num_fantasies` fantasies. covar_mM: A `batch_shape x num_fantasies x (1 + num_trace_observations)` -dim Tensor of covariances. Returns: A `num_fantasies x batch_shape`-dim Tensor of information gains at the given design points `X`. """ # TODO: give the Posterior API an add_observation_noise function to avoid # doing posterior computations twice # compute the mean_m, variance_m with noisy observation posterior_m = self.model.posterior( X, observation_noise=True, posterior_transform=self.posterior_transform ) mean_m = self.weight * posterior_m.mean.squeeze(-1) # batch_shape x 1 variance_m = posterior_m.variance.clamp_min(CLAMP_LB).squeeze(-1) # batch_shape x 1 check_no_nans(variance_m) # get stdv of noiseless variance stdv = variance_M.sqrt() # batch_shape x 1 # define normal distribution to compute cdf and pdf normal = torch.distributions.Normal( torch.zeros(1, device=X.device, dtype=X.dtype), torch.ones(1, device=X.device, dtype=X.dtype), ) # prepare max value quantities required by GIBBON mvs = torch.transpose(self.posterior_max_values, 0, 1) # 1 x s_M normalized_mvs = (mvs - mean_m) / stdv # batch_shape x s_M cdf_mvs = normal.cdf(normalized_mvs).clamp_min(CLAMP_LB) pdf_mvs = torch.exp(normal.log_prob(normalized_mvs)) ratio = pdf_mvs / cdf_mvs check_no_nans(ratio) # prepare squared correlation between current and target fidelity rhos_squared = torch.pow(covar_mM.squeeze(-1), 2) / (variance_m * variance_M) # batch_shape x 1 check_no_nans(rhos_squared) # calculate quality contribution to the GIBBON acqusition function inner_term = 1 - rhos_squared * ratio * (normalized_mvs + ratio) acq = -0.5 * inner_term.clamp_min(CLAMP_LB).log() # average over posterior max samples acq = acq.mean(dim=1).unsqueeze(0) if self.X_pending is None: # for q=1, no replusion term required return acq # for q>1 GIBBON requires repulsion terms r_i, where # r_i = log |C_i| for the predictive # correlation matricies C_i between each candidate point in X and # the m current batch elements in X_pending. # Each predictive covariance matrix can be expressed as # V_i = [[v_i, A_i], [A_i,B]] for a shared m x m tensor B. # So we can efficientely calculate |V_i| using the formula for # determinant of block matricies, i.e. # |V_i| = (v_i - A_i^T * B^{-1} * A_i) * |B| # As the |B| term does not depend on X and we later take its log, # it provides only a translation of the acqusition function surface # and can thus be ignored. if self.posterior_transform is not None: raise UnsupportedError( "qLowerBoundMaxValueEntropy does not support PosteriorTransforms" "when X_pending is not None." ) X_batches = torch.cat( [X, self.X_pending.unsqueeze(0).repeat(X.shape[0], 1, 1)], 1 ) # batch_shape x (1 + m) x d # NOTE: This is the blocker for supporting posterior transforms. # We would have to process this MVN, applying whatever operations # are typically applied for the corresponding posterior, then applying # the posterior transform onto the resulting object. V = self.model(X_batches) # Evaluate terms required for A A = V.lazy_covariance_matrix[:, 0, 1:].unsqueeze(1) # batch_shape x 1 x m # Evaluate terms required for B B = self.model.posterior( self.X_pending, observation_noise=True, posterior_transform=self.posterior_transform, ).distribution.covariance_matrix.unsqueeze(0) # 1 x m x m # use determinant of block matrix formula inv_quad_term = inv_quad(B, A.transpose(1, 2)).unsqueeze(1) # NOTE: Even when using Cholesky to compute inv_quad, `V_determinant` can be # negative due to numerical issues. To avoid this, we clamp the variance # so that `V_determinant` > 0, while still allowing gradients to be # propagated through `inv_quad_term`, as well as through `variance_m` # in the expression for `r` below. # choosing eps to be small while avoiding numerical underflow eps = 1e-6 if inv_quad_term.dtype == torch.float32 else 1e-12 V_determinant = variance_m.clamp(inv_quad_term * (1 + eps)) - inv_quad_term # batch_shape x 1 # Take logs and convert covariances to correlations. r = V_determinant.log() - variance_m.log() # = log(1 - inv_quad / var) r = 0.5 * r.transpose(0, 1) return acq + r class qMultiFidelityMaxValueEntropy(qMaxValueEntropy): r"""Multi-fidelity max-value entropy. The acquisition function for multi-fidelity max-value entropy search with support for trace observations. See [Takeno2020mfmves]_ for a detailed discussion of the basic ideas on multi-fidelity MES (note that this implementation is somewhat different). The model must be single-outcome, unless using a PosteriorTransform. The batch case `q > 1` is supported through cyclic optimization and fantasies. Example: >>> model = SingleTaskGP(train_X, train_Y) >>> candidate_set = torch.rand(1000, bounds.size(1)) >>> candidate_set = bounds[0] + (bounds[1] - bounds[0]) * candidate_set >>> MF_MES = qMultiFidelityMaxValueEntropy(model, candidate_set) >>> mf_mes = MF_MES(test_X) """ def __init__( self, model: Model, candidate_set: Tensor, num_fantasies: int = 16, num_mv_samples: int = 10, num_y_samples: int = 128, posterior_transform: Optional[PosteriorTransform] = None, use_gumbel: bool = True, maximize: bool = True, X_pending: Optional[Tensor] = None, cost_aware_utility: Optional[CostAwareUtility] = None, project: Callable[[Tensor], Tensor] = lambda X: X, expand: Callable[[Tensor], Tensor] = lambda X: X, ) -> None: r"""Single-outcome max-value entropy search acquisition function. Args: model: A fitted single-outcome model. candidate_set: A `n x d` Tensor including `n` candidate points to discretize the design space, which will be used to sample the max values from their posteriors. cost_aware_utility: A CostAwareUtility computing the cost-transformed utility from a candidate set and samples of increases in utility. num_fantasies: Number of fantasies to generate. The higher this number the more accurate the model (at the expense of model complexity and performance) and it's only used when `X_pending` is not `None`. num_mv_samples: Number of max value samples. num_y_samples: Number of posterior samples at specific design point `X`. posterior_transform: A PosteriorTransform. If using a multi-output model, a PosteriorTransform that transforms the multi-output posterior into a single-output posterior is required. use_gumbel: If True, use Gumbel approximation to sample the max values. maximize: If True, consider the problem a maximization problem. X_pending: A `m x d`-dim Tensor of `m` design points that have been submitted for function evaluation but have not yet been evaluated. cost_aware_utility: A CostAwareUtility computing the cost-transformed utility from a candidate set and samples of increases in utility. project: A callable mapping a `batch_shape x q x d` tensor of design points to a tensor of the same shape projected to the desired target set (e.g. the target fidelities in case of multi-fidelity optimization). expand: A callable mapping a `batch_shape x q x d` input tensor to a `batch_shape x (q + q_e)' x d`-dim output tensor, where the `q_e` additional points in each q-batch correspond to additional ("trace") observations. """ super().__init__( model=model, candidate_set=candidate_set, num_fantasies=num_fantasies, num_mv_samples=num_mv_samples, num_y_samples=num_y_samples, posterior_transform=posterior_transform, use_gumbel=use_gumbel, maximize=maximize, X_pending=X_pending, ) if cost_aware_utility is None: cost_model = AffineFidelityCostModel(fidelity_weights={-1: 1.0}) cost_aware_utility = InverseCostWeightedUtility(cost_model=cost_model) self.cost_aware_utility = cost_aware_utility self.expand = expand self.project = project self._cost_sampler = None # @TODO make sure fidelity_dims align in project, expand & cost_aware_utility # It seems very difficult due to the current way of handling project/expand # resample max values after initializing self.project # so that the max value samples are at the highest fidelity self._sample_max_values(self.num_mv_samples) @property def cost_sampler(self): if self._cost_sampler is None: # Note: Using the deepcopy here is essential. Removing this poses a # problem if the base model and the cost model have a different number # of outputs or test points (this would be caused by expand), as this # would trigger re-sampling the base samples in the fantasy sampler. # By cloning the sampler here, the right thing will happen if the # the sizes are compatible, if they are not this will result in # samples being drawn using different base samples, but it will at # least avoid changing state of the fantasy sampler. self._cost_sampler = deepcopy(self.fantasies_sampler) return self._cost_sampler @t_batch_mode_transform(expected_q=1) def forward(self, X: Tensor) -> Tensor: r"""Evaluates `qMultifidelityMaxValueEntropy` at the design points `X` Args: X: A `batch_shape x 1 x d`-dim Tensor of `batch_shape` t-batches with `1` `d`-dim design point each. Returns: A `batch_shape`-dim Tensor of MF-MVES values at the design points `X`. """ X_expand = self.expand(X) # batch_shape x (1 + num_trace_observations) x d X_max_fidelity = self.project(X) # batch_shape x 1 x d X_all = torch.cat((X_expand, X_max_fidelity), dim=-2).unsqueeze(-3) # batch_shape x num_fantasies x (2 + num_trace_observations) x d # Compute the posterior, posterior mean, variance without noise # `_m` and `_M` in the var names means the current and the max fidelity. posterior = self.model.posterior( X_all, observation_noise=False, posterior_transform=self.posterior_transform ) mean_M = self.weight * posterior.mean[..., -1, 0] # batch_shape x num_fantasies variance_M = posterior.variance[..., -1, 0].clamp_min(CLAMP_LB) # get the covariance between the low fidelities and max fidelity covar_mM = posterior.distribution.covariance_matrix[..., :-1, -1] # batch_shape x num_fantasies x (1 + num_trace_observations) check_no_nans(mean_M) check_no_nans(variance_M) check_no_nans(covar_mM) # compute the information gain (IG) ig = self._compute_information_gain( X=X_expand, mean_M=mean_M, variance_M=variance_M, covar_mM=covar_mM ) ig = self.cost_aware_utility(X=X, deltas=ig, sampler=self.cost_sampler) return ig.mean(dim=0) # average over the fantasies class qMultiFidelityLowerBoundMaxValueEntropy(qMultiFidelityMaxValueEntropy): r"""Multi-fidelity acquisition function for General-purpose Information-Based Bayesian optimization (GIBBON). The acquisition function for multi-fidelity max-value entropy search with support for trace observations. See [Takeno2020mfmves]_ for a detailed discussion of the basic ideas on multi-fidelity MES (note that this implementation is somewhat different). This acquisition function is similar to `qMultiFidelityMaxValueEntropy` but computes the information gain from the lower bound described in [Moss2021gibbon]. The model must be single-outcome, unless using a PosteriorTransform. The batch case `q > 1` is supported through cyclic optimization and fantasies. Example: >>> model = SingleTaskGP(train_X, train_Y) >>> candidate_set = torch.rand(1000, bounds.size(1)) >>> candidate_set = bounds[0] + (bounds[1] - bounds[0]) * candidate_set >>> MF_qGIBBON = qMultiFidelityLowerBoundMaxValueEntropy(model, candidate_set) >>> mf_gibbon = MF_qGIBBON(test_X) """ def _compute_information_gain( self, X: Tensor, mean_M: Tensor, variance_M: Tensor, covar_mM: Tensor ) -> Tensor: r"""Compute GIBBON's approximation of information gain at the design points `X`. When using GIBBON for batch optimization (i.e `q > 1`), we calculate the additional information provided by adding a new candidate point to the current batch of design points (`X_pending`), rather than calculating the information provided by the whole batch. This allows a modest computational saving. Args: X: A `batch_shape x 1 x d`-dim Tensor of `batch_shape` t-batches with `1` `d`-dim design point each. mean_M: A `batch_shape x 1`-dim Tensor of means. variance_M: A `batch_shape x 1`-dim Tensor of variances consisting of `batch_shape` t-batches with `num_fantasies` fantasies. covar_mM: A `batch_shape x num_fantasies x (1 + num_trace_observations)` -dim Tensor of covariances. Returns: A `num_fantasies x batch_shape`-dim Tensor of information gains at the given design points `X`. """ return qLowerBoundMaxValueEntropy._compute_information_gain( self, X=X, mean_M=mean_M, variance_M=variance_M, covar_mM=covar_mM ) def _sample_max_value_Thompson( model: Model, candidate_set: Tensor, num_samples: int, posterior_transform: Optional[PosteriorTransform] = None, maximize: bool = True, ) -> Tensor: """Samples the max values by discrete Thompson sampling. Should generally be called within a `with torch.no_grad()` context. Args: model: A fitted single-outcome model. candidate_set: A `n x d` Tensor including `n` candidate points to discretize the design space. num_samples: Number of max value samples. posterior_transform: A PosteriorTransform. If using a multi-output model, a PosteriorTransform that transforms the multi-output posterior into a single-output posterior is required. maximize: If True, consider the problem a maximization problem. Returns: A `num_samples x num_fantasies` Tensor of posterior max value samples. """ posterior = model.posterior(candidate_set, posterior_transform=posterior_transform) weight = 1.0 if maximize else -1.0 samples = weight * posterior.rsample(torch.Size([num_samples])).squeeze(-1) # samples is num_samples x (num_fantasies) x n max_values, _ = samples.max(dim=-1) if len(samples.shape) == 2: max_values = max_values.unsqueeze(-1) # num_samples x num_fantasies return max_values def _sample_max_value_Gumbel( model: Model, candidate_set: Tensor, num_samples: int, posterior_transform: Optional[PosteriorTransform] = None, maximize: bool = True, ) -> Tensor: """Samples the max values by Gumbel approximation. Should generally be called within a `with torch.no_grad()` context. Args: model: A fitted single-outcome model. candidate_set: A `n x d` Tensor including `n` candidate points to discretize the design space. num_samples: Number of max value samples. posterior_transform: A PosteriorTransform. If using a multi-output model, a PosteriorTransform that transforms the multi-output posterior into a single-output posterior is required. maximize: If True, consider the problem a maximization problem. Returns: A `num_samples x num_fantasies` Tensor of posterior max value samples. """ # define the approximate CDF for the max value under the independence assumption posterior = model.posterior(candidate_set, posterior_transform=posterior_transform) weight = 1.0 if maximize else -1.0 mu = weight * posterior.mean sigma = posterior.variance.clamp_min(1e-8).sqrt() # mu, sigma is (num_fantasies) X n X 1 if len(mu.shape) == 3 and mu.shape[-1] == 1: mu = mu.squeeze(-1).T sigma = sigma.squeeze(-1).T # mu, sigma is now n X num_fantasies or n X 1 # bisect search to find the quantiles 25, 50, 75 lo = (mu - 3 * sigma).min(dim=0).values hi = (mu + 5 * sigma).max(dim=0).values num_fantasies = mu.shape[1] device = candidate_set.device dtype = candidate_set.dtype quantiles = torch.zeros(num_fantasies, 3, device=device, dtype=dtype) for i in range(num_fantasies): lo_, hi_ = lo[i], hi[i] N = norm(mu[:, i].cpu().numpy(), sigma[:, i].cpu().numpy()) quantiles[i, :] = torch.tensor( [ brentq(lambda y: np.exp(np.sum(N.logcdf(y))) - p, lo_, hi_) for p in [0.25, 0.50, 0.75] ] ) q25, q50, q75 = quantiles[:, 0], quantiles[:, 1], quantiles[:, 2] # q25, q50, q75 are 1 dimensional tensor with size of either 1 or num_fantasies # parameter fitting based on matching percentiles for the Gumbel distribution b = (q25 - q75) / (log(log(4.0 / 3.0)) - log(log(4.0))) a = q50 + b * log(log(2.0)) # inverse sampling from the fitted Gumbel CDF distribution sample_shape = (num_samples, num_fantasies) eps = torch.rand(*sample_shape, device=device, dtype=dtype) max_values = a - b * eps.log().mul(-1.0).log() return max_values # num_samples x num_fantasies
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. r"""Abstract base module for all botorch acquisition functions.""" from __future__ import annotations import warnings from abc import ABC, abstractmethod from typing import Optional import torch from botorch.exceptions import BotorchWarning from botorch.models.model import Model, ModelDict from botorch.posteriors.posterior import Posterior from botorch.sampling.base import MCSampler from botorch.sampling.get_sampler import get_sampler from torch import Tensor from torch.nn import Module class AcquisitionFunction(Module, ABC): r"""Abstract base class for acquisition functions. Please note that if your acquisition requires a backwards call, you will need to wrap the backwards call inside of an enable_grad context to be able to optimize the acquisition. See #1164. :meta private: """ def __init__(self, model: Model) -> None: r"""Constructor for the AcquisitionFunction base class. Args: model: A fitted model. """ super().__init__() self.model: Model = model def set_X_pending(self, X_pending: Optional[Tensor] = None) -> None: r"""Informs the acquisition function about pending design points. Args: X_pending: `n x d` Tensor with `n` `d`-dim design points that have been submitted for evaluation but have not yet been evaluated. """ if X_pending is not None: if X_pending.requires_grad: warnings.warn( "Pending points require a gradient but the acquisition function" " will not provide a gradient to these points.", BotorchWarning, ) self.X_pending = X_pending.detach().clone() else: self.X_pending = X_pending @abstractmethod def forward(self, X: Tensor) -> Tensor: r"""Evaluate the acquisition function on the candidate set X. Args: X: A `(b) x q x d`-dim Tensor of `(b)` t-batches with `q` `d`-dim design points each. Returns: A `(b)`-dim Tensor of acquisition function values at the given design points `X`. """ pass # pragma: no cover class OneShotAcquisitionFunction(AcquisitionFunction, ABC): r""" Abstract base class for acquisition functions using one-shot optimization :meta private: """ @abstractmethod def get_augmented_q_batch_size(self, q: int) -> int: r"""Get augmented q batch size for one-shot optimziation. Args: q: The number of candidates to consider jointly. Returns: The augmented size for one-shot optimization (including variables parameterizing the fantasy solutions). """ pass # pragma: no cover @abstractmethod def extract_candidates(self, X_full: Tensor) -> Tensor: r"""Extract the candidates from a full "one-shot" parameterization. Args: X_full: A `b x q_aug x d`-dim Tensor with `b` t-batches of `q_aug` design points each. Returns: A `b x q x d`-dim Tensor with `b` t-batches of `q` design points each. """ pass # pragma: no cover class MCSamplerMixin(ABC): r"""A mix-in for adding sampler functionality into an acquisition function class. Attributes: _default_sample_shape: The `sample_shape` for the default sampler. :meta private: """ _default_sample_shape = torch.Size([512]) def __init__(self, sampler: Optional[MCSampler] = None) -> None: r"""Register the sampler on the acquisition function. Args: sampler: The sampler used to draw base samples for MC-based acquisition functions. If `None`, a sampler is generated on the fly within the `get_posterior_samples` method using `get_sampler`. """ self.sampler = sampler def get_posterior_samples(self, posterior: Posterior) -> Tensor: r"""Sample from the posterior using the sampler. Args: posterior: The posterior to sample from. """ if self.sampler is None: self.sampler = get_sampler( posterior=posterior, sample_shape=self._default_sample_shape ) return self.sampler(posterior=posterior) @property def sample_shape(self) -> torch.Size: return ( self.sampler.sample_shape if self.sampler is not None else self._default_sample_shape ) class MultiModelAcquisitionFunction(AcquisitionFunction, ABC): r"""Abstract base class for acquisition functions that require multiple types of models. The intended use case for these acquisition functions are those where we have multiple models, each serving a distinct purpose. As an example, we can have a "regression" model that predicts one or more outcomes, and a "classification" model that predicts the probabilty that a given parameterization is feasible. The multi-model acquisition function can then weight the acquisition value computed with the "regression" model with the feasibility value predicted by the "classification" model to produce the composite acquisition value. This is currently only a placeholder to help with some development in Ax. We plan to add some acquisition functions utilizing multiple models in the future. :meta private: """ def __init__(self, model_dict: ModelDict) -> None: r"""Constructor for the MultiModelAcquisitionFunction base class. Args: model_dict: A ModelDict mapping labels to models. """ super(AcquisitionFunction, self).__init__() self.model_dict: ModelDict = model_dict
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. r""" Batch implementations of the LogEI family of improvements-based acquisition functions. """ from __future__ import annotations from copy import deepcopy from functools import partial from typing import Any, Callable, List, Optional, Tuple, TypeVar, Union import torch from botorch.acquisition.cached_cholesky import CachedCholeskyMCAcquisitionFunction from botorch.acquisition.monte_carlo import SampleReducingMCAcquisitionFunction from botorch.acquisition.objective import ( ConstrainedMCObjective, MCAcquisitionObjective, PosteriorTransform, ) from botorch.acquisition.utils import ( compute_best_feasible_objective, prune_inferior_points, ) from botorch.exceptions.errors import BotorchError from botorch.models.model import Model from botorch.sampling.base import MCSampler from botorch.utils.safe_math import ( fatmax, log_fatplus, log_softplus, logmeanexp, smooth_amax, ) from botorch.utils.transforms import match_batch_shape from torch import Tensor """ NOTE: On the default temperature parameters: tau_relu: It is generally important to set `tau_relu` to be very small, in particular, smaller than the expected improvement value. Otherwise, the optimization can stagnate. By setting `tau_relu=1e-6` by default, stagnation is exceedingly unlikely to occur due to the smooth ReLU approximation for practical applications of BO. IDEA: We could consider shrinking `tau_relu` with the progression of the optimization. tau_max: This is only relevant for the batch (`q > 1`) case, and `tau_max=1e-2` is sufficient to get a good approximation to the maximum improvement in the batch of candidates. If `fat=False`, the smooth approximation to the maximum can saturate numerically. It is therefore recommended to use `fat=True` when optimizing batches of `q > 1` points. """ TAU_RELU = 1e-6 TAU_MAX = 1e-2 FloatOrTensor = TypeVar("FloatOrTensor", float, Tensor) class LogImprovementMCAcquisitionFunction(SampleReducingMCAcquisitionFunction): r""" Abstract base class for Monte-Carlo-based batch LogEI acquisition functions. :meta private: """ _log: bool = True def __init__( self, model: Model, sampler: Optional[MCSampler] = None, objective: Optional[MCAcquisitionObjective] = None, posterior_transform: Optional[PosteriorTransform] = None, X_pending: Optional[Tensor] = None, constraints: Optional[List[Callable[[Tensor], Tensor]]] = None, eta: Union[Tensor, float] = 1e-3, fat: bool = True, tau_max: float = TAU_MAX, ) -> None: r""" Args: model: A fitted model. sampler: The sampler used to draw base samples. If not given, a sampler is generated using `get_sampler`. NOTE: For posteriors that do not support base samples, a sampler compatible with intended use case must be provided. See `ForkedRNGSampler` and `StochasticSampler` as examples. objective: The MCAcquisitionObjective under which the samples are evaluated. Defaults to `IdentityMCObjective()`. posterior_transform: A PosteriorTransform (optional). X_pending: A `batch_shape, m x d`-dim Tensor of `m` design points that have points that have been submitted for function evaluation but have not yet been evaluated. constraints: A list of constraint callables which map a Tensor of posterior samples of dimension `sample_shape x batch-shape x q x m`-dim to a `sample_shape x batch-shape x q`-dim Tensor. The associated constraints are satisfied if `constraint(samples) < 0`. eta: Temperature parameter(s) governing the smoothness of the sigmoid approximation to the constraint indicators. See the docs of `compute_(log_)constraint_indicator` for more details on this parameter. fat: Toggles the logarithmic / linear asymptotic behavior of the smooth approximation to the ReLU. tau_max: Temperature parameter controlling the sharpness of the approximation to the `max` operator over the `q` candidate points. """ if isinstance(objective, ConstrainedMCObjective): raise BotorchError( "Log-Improvement should not be used with `ConstrainedMCObjective`." "Please pass the `constraints` directly to the constructor of the " "acquisition function." ) q_reduction = partial(fatmax if fat else smooth_amax, tau=tau_max) super().__init__( model=model, sampler=sampler, objective=objective, posterior_transform=posterior_transform, X_pending=X_pending, sample_reduction=logmeanexp, q_reduction=q_reduction, constraints=constraints, eta=eta, fat=fat, ) self.tau_max = tau_max class qLogExpectedImprovement(LogImprovementMCAcquisitionFunction): r"""MC-based batch Log Expected Improvement. This computes qLogEI by (1) sampling the joint posterior over q points, (2) evaluating the smoothed log improvement over the current best for each sample, (3) smoothly maximizing over q, and (4) averaging over the samples in log space. `qLogEI(X) ~ log(qEI(X)) = log(E(max(max Y - best_f, 0)))`, where `Y ~ f(X)`, and `X = (x_1,...,x_q)`. Example: >>> model = SingleTaskGP(train_X, train_Y) >>> best_f = train_Y.max()[0] >>> sampler = SobolQMCNormalSampler(1024) >>> qLogEI = qLogExpectedImprovement(model, best_f, sampler) >>> qei = qLogEI(test_X) """ def __init__( self, model: Model, best_f: Union[float, Tensor], sampler: Optional[MCSampler] = None, objective: Optional[MCAcquisitionObjective] = None, posterior_transform: Optional[PosteriorTransform] = None, X_pending: Optional[Tensor] = None, constraints: Optional[List[Callable[[Tensor], Tensor]]] = None, eta: Union[Tensor, float] = 1e-3, fat: bool = True, tau_max: float = TAU_MAX, tau_relu: float = TAU_RELU, ) -> None: r"""q-Log Expected Improvement. Args: model: A fitted model. best_f: The best objective value observed so far (assumed noiseless). Can be a `batch_shape`-shaped tensor, which in case of a batched model specifies potentially different values for each element of the batch. sampler: The sampler used to draw base samples. See `MCAcquisitionFunction` more details. objective: The MCAcquisitionObjective under which the samples are evaluated. Defaults to `IdentityMCObjective()`. posterior_transform: A PosteriorTransform (optional). X_pending: A `m x d`-dim Tensor of `m` design points that have been submitted for function evaluation but have not yet been evaluated. Concatenated into `X` upon forward call. Copied and set to have no gradient. constraints: A list of constraint callables which map a Tensor of posterior samples of dimension `sample_shape x batch-shape x q x m`-dim to a `sample_shape x batch-shape x q`-dim Tensor. The associated constraints are satisfied if `constraint(samples) < 0`. eta: Temperature parameter(s) governing the smoothness of the sigmoid approximation to the constraint indicators. See the docs of `compute_(log_)smoothed_constraint_indicator` for details. fat: Toggles the logarithmic / linear asymptotic behavior of the smooth approximation to the ReLU. tau_max: Temperature parameter controlling the sharpness of the smooth approximations to max. tau_relu: Temperature parameter controlling the sharpness of the smooth approximations to ReLU. """ super().__init__( model=model, sampler=sampler, objective=objective, posterior_transform=posterior_transform, X_pending=X_pending, constraints=constraints, eta=eta, tau_max=check_tau(tau_max, name="tau_max"), fat=fat, ) self.register_buffer("best_f", torch.as_tensor(best_f)) self.tau_relu = check_tau(tau_relu, name="tau_relu") def _sample_forward(self, obj: Tensor) -> Tensor: r"""Evaluate qLogExpectedImprovement on the candidate set `X`. Args: obj: `mc_shape x batch_shape x q`-dim Tensor of MC objective values. Returns: A `mc_shape x batch_shape x q`-dim Tensor of expected improvement values. """ li = _log_improvement( Y=obj, best_f=self.best_f, tau=self.tau_relu, fat=self._fat, ) return li class qLogNoisyExpectedImprovement( LogImprovementMCAcquisitionFunction, CachedCholeskyMCAcquisitionFunction ): r"""MC-based batch Log Noisy Expected Improvement. This function does not assume a `best_f` is known (which would require noiseless observations). Instead, it uses samples from the joint posterior over the `q` test points and previously observed points. A smooth approximation to the canonical improvement over previously observed points is computed for each sample and the logarithm of the average is returned. `qLogNEI(X) ~ log(qNEI(X)) = Log E(max(max Y - max Y_baseline, 0))`, where `(Y, Y_baseline) ~ f((X, X_baseline)), X = (x_1,...,x_q)` Example: >>> model = SingleTaskGP(train_X, train_Y) >>> sampler = SobolQMCNormalSampler(1024) >>> qLogNEI = qLogNoisyExpectedImprovement(model, train_X, sampler) >>> acqval = qLogNEI(test_X) """ def __init__( self, model: Model, X_baseline: Tensor, sampler: Optional[MCSampler] = None, objective: Optional[MCAcquisitionObjective] = None, posterior_transform: Optional[PosteriorTransform] = None, X_pending: Optional[Tensor] = None, constraints: Optional[List[Callable[[Tensor], Tensor]]] = None, eta: Union[Tensor, float] = 1e-3, fat: bool = True, prune_baseline: bool = False, cache_root: bool = True, tau_max: float = TAU_MAX, tau_relu: float = TAU_RELU, **kwargs: Any, ) -> None: r"""q-Noisy Expected Improvement. Args: model: A fitted model. X_baseline: A `batch_shape x r x d`-dim Tensor of `r` design points that have already been observed. These points are considered as the potential best design point. sampler: The sampler used to draw base samples. See `MCAcquisitionFunction` more details. objective: The MCAcquisitionObjective under which the samples are evaluated. Defaults to `IdentityMCObjective()`. posterior_transform: A PosteriorTransform (optional). X_pending: A `batch_shape x m x d`-dim Tensor of `m` design points that have points that have been submitted for function evaluation but have not yet been evaluated. Concatenated into `X` upon forward call. Copied and set to have no gradient. constraints: A list of constraint callables which map a Tensor of posterior samples of dimension `sample_shape x batch-shape x q x m`-dim to a `sample_shape x batch-shape x q`-dim Tensor. The associated constraints are satisfied if `constraint(samples) < 0`. eta: Temperature parameter(s) governing the smoothness of the sigmoid approximation to the constraint indicators. See the docs of `compute_(log_)smoothed_constraint_indicator` for details. fat: Toggles the logarithmic / linear asymptotic behavior of the smooth approximation to the ReLU. prune_baseline: If True, remove points in `X_baseline` that are highly unlikely to be the best point. This can significantly improve performance and is generally recommended. In order to customize pruning parameters, instead manually call `botorch.acquisition.utils.prune_inferior_points` on `X_baseline` before instantiating the acquisition function. cache_root: A boolean indicating whether to cache the root decomposition over `X_baseline` and use low-rank updates. tau_max: Temperature parameter controlling the sharpness of the smooth approximations to max. tau_relu: Temperature parameter controlling the sharpness of the smooth approximations to ReLU. kwargs: Here for qNEI for compatibility. TODO: similar to qNEHVI, when we are using sequential greedy candidate selection, we could incorporate pending points X_baseline and compute the incremental q(Log)NEI from the new point. This would greatly increase efficiency for large batches. """ # TODO: separate out baseline variables initialization and other functions # in qNEI to avoid duplication of both code and work at runtime. super().__init__( model=model, sampler=sampler, objective=objective, posterior_transform=posterior_transform, X_pending=X_pending, constraints=constraints, eta=eta, fat=fat, tau_max=tau_max, ) self.tau_relu = tau_relu self._init_baseline( model=model, X_baseline=X_baseline, sampler=sampler, objective=objective, posterior_transform=posterior_transform, prune_baseline=prune_baseline, cache_root=cache_root, **kwargs, ) def _sample_forward(self, obj: Tensor) -> Tensor: r"""Evaluate qLogNoisyExpectedImprovement per sample on the candidate set `X`. Args: obj: `mc_shape x batch_shape x q`-dim Tensor of MC objective values. Returns: A `sample_shape x batch_shape x q`-dim Tensor of log noisy expected smoothed improvement values. """ return _log_improvement( Y=obj, best_f=self.compute_best_f(obj), tau=self.tau_relu, fat=self._fat, ) def _init_baseline( self, model: Model, X_baseline: Tensor, sampler: Optional[MCSampler] = None, objective: Optional[MCAcquisitionObjective] = None, posterior_transform: Optional[PosteriorTransform] = None, prune_baseline: bool = False, cache_root: bool = True, **kwargs: Any, ) -> None: # setup of CachedCholeskyMCAcquisitionFunction self._setup(model=model, cache_root=cache_root) if prune_baseline: X_baseline = prune_inferior_points( model=model, X=X_baseline, objective=objective, posterior_transform=posterior_transform, marginalize_dim=kwargs.get("marginalize_dim"), ) self.register_buffer("X_baseline", X_baseline) # registering buffers for _get_samples_and_objectives in the next `if` block self.register_buffer("baseline_samples", None) self.register_buffer("baseline_obj", None) if self._cache_root: self.q_in = -1 # set baseline samples with torch.no_grad(): # this is _get_samples_and_objectives(X_baseline) posterior = self.model.posterior( X_baseline, posterior_transform=self.posterior_transform ) # Note: The root decomposition is cached in two different places. It # may be confusing to have two different caches, but this is not # trivial to change since each is needed for a different reason: # - LinearOperator caching to `posterior.mvn` allows for reuse within # this function, which may be helpful if the same root decomposition # is produced by the calls to `self.base_sampler` and # `self._cache_root_decomposition`. # - self._baseline_L allows a root decomposition to be persisted outside # this method. self.baseline_samples = self.get_posterior_samples(posterior) self.baseline_obj = self.objective(self.baseline_samples, X=X_baseline) # We make a copy here because we will write an attribute `base_samples` # to `self.base_sampler.base_samples`, and we don't want to mutate # `self.sampler`. self.base_sampler = deepcopy(self.sampler) self.register_buffer( "_baseline_best_f", self._compute_best_feasible_objective( samples=self.baseline_samples, obj=self.baseline_obj ), ) self._baseline_L = self._compute_root_decomposition(posterior=posterior) def compute_best_f(self, obj: Tensor) -> Tensor: """Computes the best (feasible) noisy objective value. Args: obj: `sample_shape x batch_shape x q`-dim Tensor of objectives in forward. Returns: A `sample_shape x batch_shape x 1`-dim Tensor of best feasible objectives. """ if self._cache_root: val = self._baseline_best_f else: val = self._compute_best_feasible_objective( samples=self.baseline_samples, obj=self.baseline_obj ) # ensuring shape, dtype, device compatibility with obj n_sample_dims = len(self.sample_shape) view_shape = torch.Size( [ *val.shape[:n_sample_dims], # sample dimensions *(1,) * (obj.ndim - val.ndim), # pad to match obj *val.shape[n_sample_dims:], # the rest ] ) return val.view(view_shape).to(obj) def _get_samples_and_objectives(self, X: Tensor) -> Tuple[Tensor, Tensor]: r"""Compute samples at new points, using the cached root decomposition. Args: X: A `batch_shape x q x d`-dim tensor of inputs. Returns: A two-tuple `(samples, obj)`, where `samples` is a tensor of posterior samples with shape `sample_shape x batch_shape x q x m`, and `obj` is a tensor of MC objective values with shape `sample_shape x batch_shape x q`. """ n_baseline, q = self.X_baseline.shape[-2], X.shape[-2] X_full = torch.cat([match_batch_shape(self.X_baseline, X), X], dim=-2) # TODO: Implement more efficient way to compute posterior over both training and # test points in GPyTorch (https://github.com/cornellius-gp/gpytorch/issues/567) posterior = self.model.posterior( X_full, posterior_transform=self.posterior_transform ) if not self._cache_root: samples_full = super().get_posterior_samples(posterior) obj_full = self.objective(samples_full, X=X_full) # assigning baseline buffers so `best_f` can be computed in _sample_forward self.baseline_samples, samples = samples_full.split([n_baseline, q], dim=-2) self.baseline_obj, obj = obj_full.split([n_baseline, q], dim=-1) return samples, obj # handle one-to-many input transforms n_plus_q = X_full.shape[-2] n_w = posterior._extended_shape()[-2] // n_plus_q q_in = q * n_w self._set_sampler(q_in=q_in, posterior=posterior) samples = self._get_f_X_samples(posterior=posterior, q_in=q_in) obj = self.objective(samples, X=X_full[..., -q:, :]) return samples, obj def _compute_best_feasible_objective(self, samples: Tensor, obj: Tensor) -> Tensor: return compute_best_feasible_objective( samples=samples, obj=obj, constraints=self._constraints, model=self.model, objective=self.objective, posterior_transform=self.posterior_transform, X_baseline=self.X_baseline, ) """ ###################################### utils ########################################## """ def _log_improvement( Y: Tensor, best_f: Tensor, tau: Union[float, Tensor], fat: bool, ) -> Tensor: """Computes the logarithm of the softplus-smoothed improvement, i.e. `log_softplus(Y - best_f, beta=(1 / tau))`. Note that softplus is an approximation to the regular ReLU objective whose maximum pointwise approximation error is linear with respect to tau as tau goes to zero. Args: obj: `mc_samples x batch_shape x q`-dim Tensor of output samples. best_f: Best previously observed objective value(s), broadcastable with `obj`. tau: Temperature parameter for smooth approximation of ReLU. as `tau -> 0`, maximum pointwise approximation error is linear w.r.t. `tau`. fat: Toggles the logarithmic / linear asymptotic behavior of the smooth approximation to ReLU. Returns: A `mc_samples x batch_shape x q`-dim Tensor of improvement values. """ log_soft_clamp = log_fatplus if fat else log_softplus Z = Y - best_f.to(Y) return log_soft_clamp(Z, tau=tau) # ~ ((Y - best_f) / Y_std).clamp(0) def check_tau(tau: FloatOrTensor, name: str) -> FloatOrTensor: """Checks the validity of the tau arguments of the functions below, and returns `tau` if it is valid.""" if isinstance(tau, Tensor) and tau.numel() != 1: raise ValueError(name + f" is not a scalar: {tau.numel() = }.") if not (tau > 0): raise ValueError(name + f" is non-positive: {tau = }.") return tau
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. r""" Analytic Acquisition Functions that evaluate the posterior without performing Monte-Carlo sampling. """ from __future__ import annotations import math from abc import ABC from contextlib import nullcontext from copy import deepcopy from typing import Dict, Optional, Tuple, Union import torch from botorch.acquisition.acquisition import AcquisitionFunction from botorch.acquisition.objective import PosteriorTransform from botorch.exceptions import UnsupportedError from botorch.models.gp_regression import FixedNoiseGP from botorch.models.gpytorch import GPyTorchModel from botorch.models.model import Model from botorch.utils.constants import get_constants_like from botorch.utils.probability import MVNXPB from botorch.utils.probability.utils import ( log_ndtr as log_Phi, log_phi, log_prob_normal_in, ndtr as Phi, phi, ) from botorch.utils.safe_math import log1mexp, logmeanexp from botorch.utils.transforms import convert_to_target_pre_hook, t_batch_mode_transform from torch import Tensor from torch.nn.functional import pad # the following two numbers are needed for _log_ei_helper _neg_inv_sqrt2 = -(2**-0.5) _log_sqrt_pi_div_2 = math.log(math.pi / 2) / 2 class AnalyticAcquisitionFunction(AcquisitionFunction, ABC): r""" Base class for analytic acquisition functions. :meta private: """ def __init__( self, model: Model, posterior_transform: Optional[PosteriorTransform] = None, ) -> None: r"""Base constructor for analytic acquisition functions. Args: model: A fitted single-outcome model. posterior_transform: A PosteriorTransform. If using a multi-output model, a PosteriorTransform that transforms the multi-output posterior into a single-output posterior is required. """ super().__init__(model=model) if posterior_transform is None: if model.num_outputs != 1: raise UnsupportedError( "Must specify a posterior transform when using a " "multi-output model." ) else: if not isinstance(posterior_transform, PosteriorTransform): raise UnsupportedError( "AnalyticAcquisitionFunctions only support PosteriorTransforms." ) self.posterior_transform = posterior_transform def set_X_pending(self, X_pending: Optional[Tensor] = None) -> None: raise UnsupportedError( "Analytic acquisition functions do not account for X_pending yet." ) def _mean_and_sigma( self, X: Tensor, compute_sigma: bool = True, min_var: float = 1e-12 ) -> Tuple[Tensor, Optional[Tensor]]: """Computes the first and second moments of the model posterior. Args: X: `batch_shape x q x d`-dim Tensor of model inputs. compute_sigma: Boolean indicating whether or not to compute the second moment (default: True). min_var: The minimum value the variance is clamped too. Should be positive. Returns: A tuple of tensors containing the first and second moments of the model posterior. Removes the last two dimensions if they have size one. Only returns a single tensor of means if compute_sigma is True. """ self.to(device=X.device) # ensures buffers / parameters are on the same device posterior = self.model.posterior( X=X, posterior_transform=self.posterior_transform ) mean = posterior.mean.squeeze(-2).squeeze(-1) # removing redundant dimensions if not compute_sigma: return mean, None sigma = posterior.variance.clamp_min(min_var).sqrt().view(mean.shape) return mean, sigma class LogProbabilityOfImprovement(AnalyticAcquisitionFunction): r"""Single-outcome Log Probability of Improvement. Logarithm of the probability of improvement over the current best observed value, computed using the analytic formula under a Normal posterior distribution. Only supports the case of q=1. Requires the posterior to be Gaussian. The model must be single-outcome. The logarithm of the probability of improvement is numerically better behaved than the original function, which can lead to significantly improved optimization of the acquisition function. This is analogous to the common practice of optimizing the *log* likelihood of a probabilistic model - rather the likelihood - for the sake of maximium likelihood estimation. `logPI(x) = log(P(y >= best_f)), y ~ f(x)` Example: >>> model = SingleTaskGP(train_X, train_Y) >>> LogPI = LogProbabilityOfImprovement(model, best_f=0.2) >>> log_pi = LogPI(test_X) """ def __init__( self, model: Model, best_f: Union[float, Tensor], posterior_transform: Optional[PosteriorTransform] = None, maximize: bool = True, ): r"""Single-outcome Probability of Improvement. Args: model: A fitted single-outcome model. best_f: Either a scalar or a `b`-dim Tensor (batch mode) representing the best function value observed so far (assumed noiseless). posterior_transform: A PosteriorTransform. If using a multi-output model, a PosteriorTransform that transforms the multi-output posterior into a single-output posterior is required. maximize: If True, consider the problem a maximization problem. """ super().__init__(model=model, posterior_transform=posterior_transform) self.register_buffer("best_f", torch.as_tensor(best_f)) self.maximize = maximize @t_batch_mode_transform(expected_q=1) def forward(self, X: Tensor) -> Tensor: r"""Evaluate the Log Probability of Improvement on the candidate set X. Args: X: A `(b1 x ... bk) x 1 x d`-dim batched tensor of `d`-dim design points. Returns: A `(b1 x ... bk)`-dim tensor of Log Probability of Improvement values at the given design points `X`. """ mean, sigma = self._mean_and_sigma(X) u = _scaled_improvement(mean, sigma, self.best_f, self.maximize) return log_Phi(u) class ProbabilityOfImprovement(AnalyticAcquisitionFunction): r"""Single-outcome Probability of Improvement. Probability of improvement over the current best observed value, computed using the analytic formula under a Normal posterior distribution. Only supports the case of q=1. Requires the posterior to be Gaussian. The model must be single-outcome. `PI(x) = P(y >= best_f), y ~ f(x)` Example: >>> model = SingleTaskGP(train_X, train_Y) >>> PI = ProbabilityOfImprovement(model, best_f=0.2) >>> pi = PI(test_X) """ def __init__( self, model: Model, best_f: Union[float, Tensor], posterior_transform: Optional[PosteriorTransform] = None, maximize: bool = True, ): r"""Single-outcome Probability of Improvement. Args: model: A fitted single-outcome model. best_f: Either a scalar or a `b`-dim Tensor (batch mode) representing the best function value observed so far (assumed noiseless). posterior_transform: A PosteriorTransform. If using a multi-output model, a PosteriorTransform that transforms the multi-output posterior into a single-output posterior is required. maximize: If True, consider the problem a maximization problem. """ super().__init__(model=model, posterior_transform=posterior_transform) self.register_buffer("best_f", torch.as_tensor(best_f)) self.maximize = maximize @t_batch_mode_transform(expected_q=1) def forward(self, X: Tensor) -> Tensor: r"""Evaluate the Probability of Improvement on the candidate set X. Args: X: A `(b1 x ... bk) x 1 x d`-dim batched tensor of `d`-dim design points. Returns: A `(b1 x ... bk)`-dim tensor of Probability of Improvement values at the given design points `X`. """ mean, sigma = self._mean_and_sigma(X) u = _scaled_improvement(mean, sigma, self.best_f, self.maximize) return Phi(u) class qAnalyticProbabilityOfImprovement(AnalyticAcquisitionFunction): r"""Approximate, single-outcome batch Probability of Improvement using MVNXPB. This implementation uses MVNXPB, a bivariate conditioning algorithm for approximating P(a <= Y <= b) for multivariate normal Y. See [Trinh2015bivariate]_. This (analytic) approximate q-PI is given by `approx-qPI(X) = P(max Y >= best_f) = 1 - P(Y < best_f), Y ~ f(X), X = (x_1,...,x_q)`, where `P(Y < best_f)` is estimated using MVNXPB. """ def __init__( self, model: Model, best_f: Union[float, Tensor], posterior_transform: Optional[PosteriorTransform] = None, maximize: bool = True, ) -> None: """qPI using an analytic approximation. Args: model: A fitted single-outcome model. best_f: Either a scalar or a `b`-dim Tensor (batch mode) representing the best function value observed so far (assumed noiseless). posterior_transform: A PosteriorTransform. If using a multi-output model, a PosteriorTransform that transforms the multi-output posterior into a single-output posterior is required. maximize: If True, consider the problem a maximization problem. """ super().__init__(model=model, posterior_transform=posterior_transform) self.maximize = maximize if not torch.is_tensor(best_f): best_f = torch.tensor(best_f) self.register_buffer("best_f", best_f) @t_batch_mode_transform() def forward(self, X: Tensor) -> Tensor: """Evaluate approximate qPI on the candidate set X. Args: X: A `batch_shape x q x d`-dim Tensor of t-batches with `q` `d`-dim design points each Returns: A `batch_shape`-dim Tensor of approximate Probability of Improvement values at the given design points `X`, where `batch_shape'` is the broadcasted batch shape of model and input `X`. """ self.best_f = self.best_f.to(X) posterior = self.model.posterior( X=X, posterior_transform=self.posterior_transform ) covariance = posterior.distribution.covariance_matrix bounds = pad( (self.best_f.unsqueeze(-1) - posterior.distribution.mean).unsqueeze(-1), pad=(1, 0) if self.maximize else (0, 1), value=-float("inf") if self.maximize else float("inf"), ) # 1 - P(no improvement over best_f) solver = MVNXPB(covariance_matrix=covariance, bounds=bounds) return -solver.solve().expm1() class ExpectedImprovement(AnalyticAcquisitionFunction): r"""Single-outcome Expected Improvement (analytic). Computes classic Expected Improvement over the current best observed value, using the analytic formula for a Normal posterior distribution. Unlike the MC-based acquisition functions, this relies on the posterior at single test point being Gaussian (and require the posterior to implement `mean` and `variance` properties). Only supports the case of `q=1`. The model must be single-outcome. `EI(x) = E(max(f(x) - best_f, 0)),` where the expectation is taken over the value of stochastic function `f` at `x`. Example: >>> model = SingleTaskGP(train_X, train_Y) >>> EI = ExpectedImprovement(model, best_f=0.2) >>> ei = EI(test_X) NOTE: It is *strongly* recommended to use LogExpectedImprovement instead of regular EI, because it solves the vanishing gradient problem by taking special care of numerical computations and can lead to substantially improved BO performance. """ def __init__( self, model: Model, best_f: Union[float, Tensor], posterior_transform: Optional[PosteriorTransform] = None, maximize: bool = True, ): r"""Single-outcome Expected Improvement (analytic). Args: model: A fitted single-outcome model. best_f: Either a scalar or a `b`-dim Tensor (batch mode) representing the best function value observed so far (assumed noiseless). posterior_transform: A PosteriorTransform. If using a multi-output model, a PosteriorTransform that transforms the multi-output posterior into a single-output posterior is required. maximize: If True, consider the problem a maximization problem. """ super().__init__(model=model, posterior_transform=posterior_transform) self.register_buffer("best_f", torch.as_tensor(best_f)) self.maximize = maximize @t_batch_mode_transform(expected_q=1) def forward(self, X: Tensor) -> Tensor: r"""Evaluate Expected Improvement on the candidate set X. Args: X: A `(b1 x ... bk) x 1 x d`-dim batched tensor of `d`-dim design points. Expected Improvement is computed for each point individually, i.e., what is considered are the marginal posteriors, not the joint. Returns: A `(b1 x ... bk)`-dim tensor of Expected Improvement values at the given design points `X`. """ mean, sigma = self._mean_and_sigma(X) u = _scaled_improvement(mean, sigma, self.best_f, self.maximize) return sigma * _ei_helper(u) class LogExpectedImprovement(AnalyticAcquisitionFunction): r"""Logarithm of single-outcome Expected Improvement (analytic). Computes the logarithm of the classic Expected Improvement acquisition function, in a numerically robust manner. In particular, the implementation takes special care to avoid numerical issues in the computation of the acquisition value and its gradient in regions where improvement is predicted to be virtually impossible. `LogEI(x) = log(E(max(f(x) - best_f, 0))),` where the expectation is taken over the value of stochastic function `f` at `x`. Example: >>> model = SingleTaskGP(train_X, train_Y) >>> LogEI = LogExpectedImprovement(model, best_f=0.2) >>> ei = LogEI(test_X) """ def __init__( self, model: Model, best_f: Union[float, Tensor], posterior_transform: Optional[PosteriorTransform] = None, maximize: bool = True, ): r"""Logarithm of single-outcome Expected Improvement (analytic). Args: model: A fitted single-outcome model. best_f: Either a scalar or a `b`-dim Tensor (batch mode) representing the best function value observed so far (assumed noiseless). posterior_transform: A PosteriorTransform. If using a multi-output model, a PosteriorTransform that transforms the multi-output posterior into a single-output posterior is required. maximize: If True, consider the problem a maximization problem. """ super().__init__(model=model, posterior_transform=posterior_transform) self.register_buffer("best_f", torch.as_tensor(best_f)) self.maximize = maximize @t_batch_mode_transform(expected_q=1) def forward(self, X: Tensor) -> Tensor: r"""Evaluate logarithm of Expected Improvement on the candidate set X. Args: X: A `(b1 x ... bk) x 1 x d`-dim batched tensor of `d`-dim design points. Expected Improvement is computed for each point individually, i.e., what is considered are the marginal posteriors, not the joint. Returns: A `(b1 x ... bk)`-dim tensor of the logarithm of the Expected Improvement values at the given design points `X`. """ mean, sigma = self._mean_and_sigma(X) u = _scaled_improvement(mean, sigma, self.best_f, self.maximize) return _log_ei_helper(u) + sigma.log() class LogConstrainedExpectedImprovement(AnalyticAcquisitionFunction): r"""Log Constrained Expected Improvement (feasibility-weighted). Computes the logarithm of the analytic expected improvement for a Normal posterior distribution weighted by a probability of feasibility. The objective and constraints are assumed to be independent and have Gaussian posterior distributions. Only supports non-batch mode (i.e. `q=1`). The model should be multi-outcome, with the index of the objective and constraints passed to the constructor. `LogConstrainedEI(x) = log(EI(x)) + Sum_i log(P(y_i \in [lower_i, upper_i]))`, where `y_i ~ constraint_i(x)` and `lower_i`, `upper_i` are the lower and upper bounds for the i-th constraint, respectively. Example: # example where the 0th output has a non-negativity constraint and # the 1st output is the objective >>> model = SingleTaskGP(train_X, train_Y) >>> constraints = {0: (0.0, None)} >>> LogCEI = LogConstrainedExpectedImprovement(model, 0.2, 1, constraints) >>> cei = LogCEI(test_X) """ def __init__( self, model: Model, best_f: Union[float, Tensor], objective_index: int, constraints: Dict[int, Tuple[Optional[float], Optional[float]]], maximize: bool = True, ) -> None: r"""Analytic Log Constrained Expected Improvement. Args: model: A fitted multi-output model. best_f: Either a scalar or a `b`-dim Tensor (batch mode) representing the best feasible function value observed so far (assumed noiseless). objective_index: The index of the objective. constraints: A dictionary of the form `{i: [lower, upper]}`, where `i` is the output index, and `lower` and `upper` are lower and upper bounds on that output (resp. interpreted as -Inf / Inf if None) maximize: If True, consider the problem a maximization problem. """ # Use AcquisitionFunction constructor to avoid check for posterior transform. super(AnalyticAcquisitionFunction, self).__init__(model=model) self.posterior_transform = None self.maximize = maximize self.objective_index = objective_index self.constraints = constraints self.register_buffer("best_f", torch.as_tensor(best_f)) _preprocess_constraint_bounds(self, constraints=constraints) self.register_forward_pre_hook(convert_to_target_pre_hook) @t_batch_mode_transform(expected_q=1) def forward(self, X: Tensor) -> Tensor: r"""Evaluate Constrained Log Expected Improvement on the candidate set X. Args: X: A `(b) x 1 x d`-dim Tensor of `(b)` t-batches of `d`-dim design points each. Returns: A `(b)`-dim Tensor of Log Expected Improvement values at the given design points `X`. """ means, sigmas = self._mean_and_sigma(X) # (b) x 1 + (m = num constraints) ind = self.objective_index mean_obj, sigma_obj = means[..., ind], sigmas[..., ind] u = _scaled_improvement(mean_obj, sigma_obj, self.best_f, self.maximize) log_ei = _log_ei_helper(u) + sigma_obj.log() log_prob_feas = _compute_log_prob_feas(self, means=means, sigmas=sigmas) return log_ei + log_prob_feas class ConstrainedExpectedImprovement(AnalyticAcquisitionFunction): r"""Constrained Expected Improvement (feasibility-weighted). Computes the analytic expected improvement for a Normal posterior distribution, weighted by a probability of feasibility. The objective and constraints are assumed to be independent and have Gaussian posterior distributions. Only supports non-batch mode (i.e. `q=1`). The model should be multi-outcome, with the index of the objective and constraints passed to the constructor. `Constrained_EI(x) = EI(x) * Product_i P(y_i \in [lower_i, upper_i])`, where `y_i ~ constraint_i(x)` and `lower_i`, `upper_i` are the lower and upper bounds for the i-th constraint, respectively. Example: # example where the 0th output has a non-negativity constraint and # 1st output is the objective >>> model = SingleTaskGP(train_X, train_Y) >>> constraints = {0: (0.0, None)} >>> cEI = ConstrainedExpectedImprovement(model, 0.2, 1, constraints) >>> cei = cEI(test_X) """ def __init__( self, model: Model, best_f: Union[float, Tensor], objective_index: int, constraints: Dict[int, Tuple[Optional[float], Optional[float]]], maximize: bool = True, ) -> None: r"""Analytic Constrained Expected Improvement. Args: model: A fitted multi-output model. best_f: Either a scalar or a `b`-dim Tensor (batch mode) representing the best feasible function value observed so far (assumed noiseless). objective_index: The index of the objective. constraints: A dictionary of the form `{i: [lower, upper]}`, where `i` is the output index, and `lower` and `upper` are lower and upper bounds on that output (resp. interpreted as -Inf / Inf if None) maximize: If True, consider the problem a maximization problem. """ # Use AcquisitionFunction constructor to avoid check for posterior transform. super(AnalyticAcquisitionFunction, self).__init__(model=model) self.posterior_transform = None self.maximize = maximize self.objective_index = objective_index self.constraints = constraints self.register_buffer("best_f", torch.as_tensor(best_f)) _preprocess_constraint_bounds(self, constraints=constraints) self.register_forward_pre_hook(convert_to_target_pre_hook) @t_batch_mode_transform(expected_q=1) def forward(self, X: Tensor) -> Tensor: r"""Evaluate Constrained Expected Improvement on the candidate set X. Args: X: A `(b) x 1 x d`-dim Tensor of `(b)` t-batches of `d`-dim design points each. Returns: A `(b)`-dim Tensor of Expected Improvement values at the given design points `X`. """ means, sigmas = self._mean_and_sigma(X) # (b) x 1 + (m = num constraints) ind = self.objective_index mean_obj, sigma_obj = means[..., ind], sigmas[..., ind] u = _scaled_improvement(mean_obj, sigma_obj, self.best_f, self.maximize) ei = sigma_obj * _ei_helper(u) log_prob_feas = _compute_log_prob_feas(self, means=means, sigmas=sigmas) return ei.mul(log_prob_feas.exp()) class LogNoisyExpectedImprovement(AnalyticAcquisitionFunction): r"""Single-outcome Log Noisy Expected Improvement (via fantasies). This computes Log Noisy Expected Improvement by averaging over the Expected Improvement values of a number of fantasy models. Only supports the case `q=1`. Assumes that the posterior distribution of the model is Gaussian. The model must be single-outcome. `LogNEI(x) = log(E(max(y - max Y_base), 0))), (y, Y_base) ~ f((x, X_base))`, where `X_base` are previously observed points. Note: This acquisition function currently relies on using a FixedNoiseGP (required for noiseless fantasies). Example: >>> model = FixedNoiseGP(train_X, train_Y, train_Yvar=train_Yvar) >>> LogNEI = LogNoisyExpectedImprovement(model, train_X) >>> nei = LogNEI(test_X) """ def __init__( self, model: GPyTorchModel, X_observed: Tensor, num_fantasies: int = 20, maximize: bool = True, posterior_transform: Optional[PosteriorTransform] = None, ) -> None: r"""Single-outcome Noisy Log Expected Improvement (via fantasies). Args: model: A fitted single-outcome model. X_observed: A `n x d` Tensor of observed points that are likely to be the best observed points so far. num_fantasies: The number of fantasies to generate. The higher this number the more accurate the model (at the expense of model complexity and performance). maximize: If True, consider the problem a maximization problem. """ if not isinstance(model, FixedNoiseGP): raise UnsupportedError( "Only FixedNoiseGPs are currently supported for fantasy LogNEI" ) # sample fantasies from botorch.sampling.normal import SobolQMCNormalSampler # Drop gradients from model.posterior if X_observed does not require gradients # as otherwise, gradients of the GP's kernel's hyper-parameters are tracked # through the rsample_from_base_sample method of GPyTorchPosterior. These # gradients are usually only required w.r.t. the marginal likelihood. with nullcontext() if X_observed.requires_grad else torch.no_grad(): posterior = model.posterior(X=X_observed) sampler = SobolQMCNormalSampler(sample_shape=torch.Size([num_fantasies])) Y_fantasized = sampler(posterior).squeeze(-1) batch_X_observed = X_observed.expand(num_fantasies, *X_observed.shape) # The fantasy model will operate in batch mode fantasy_model = _get_noiseless_fantasy_model( model=model, batch_X_observed=batch_X_observed, Y_fantasized=Y_fantasized ) super().__init__(model=fantasy_model, posterior_transform=posterior_transform) best_f, _ = Y_fantasized.max(dim=-1) if maximize else Y_fantasized.min(dim=-1) self.best_f, self.maximize = best_f, maximize @t_batch_mode_transform(expected_q=1) def forward(self, X: Tensor) -> Tensor: r"""Evaluate logarithm of the mean Expected Improvement on the candidate set X. Args: X: A `b1 x ... bk x 1 x d`-dim batched tensor of `d`-dim design points. Returns: A `b1 x ... bk`-dim tensor of Log Noisy Expected Improvement values at the given design points `X`. """ # add batch dimension for broadcasting to fantasy models mean, sigma = self._mean_and_sigma(X.unsqueeze(-3)) u = _scaled_improvement(mean, sigma, self.best_f, self.maximize) log_ei = _log_ei_helper(u) + sigma.log() # this is mathematically - though not numerically - equivalent to log(mean(ei)) return logmeanexp(log_ei, dim=-1) class NoisyExpectedImprovement(ExpectedImprovement): r"""Single-outcome Noisy Expected Improvement (via fantasies). This computes Noisy Expected Improvement by averaging over the Expected Improvement values of a number of fantasy models. Only supports the case `q=1`. Assumes that the posterior distribution of the model is Gaussian. The model must be single-outcome. `NEI(x) = E(max(y - max Y_baseline), 0)), (y, Y_baseline) ~ f((x, X_baseline))`, where `X_baseline` are previously observed points. Note: This acquisition function currently relies on using a FixedNoiseGP (required for noiseless fantasies). Example: >>> model = FixedNoiseGP(train_X, train_Y, train_Yvar=train_Yvar) >>> NEI = NoisyExpectedImprovement(model, train_X) >>> nei = NEI(test_X) """ def __init__( self, model: GPyTorchModel, X_observed: Tensor, num_fantasies: int = 20, maximize: bool = True, ) -> None: r"""Single-outcome Noisy Expected Improvement (via fantasies). Args: model: A fitted single-outcome model. X_observed: A `n x d` Tensor of observed points that are likely to be the best observed points so far. num_fantasies: The number of fantasies to generate. The higher this number the more accurate the model (at the expense of model complexity and performance). maximize: If True, consider the problem a maximization problem. """ if not isinstance(model, FixedNoiseGP): raise UnsupportedError( "Only FixedNoiseGPs are currently supported for fantasy NEI" ) # sample fantasies from botorch.sampling.normal import SobolQMCNormalSampler # Drop gradients from model.posterior if X_observed does not require gradients # as otherwise, gradients of the GP's kernel's hyper-parameters are tracked # through the rsample_from_base_sample method of GPyTorchPosterior. These # gradients are usually only required w.r.t. the marginal likelihood. with nullcontext() if X_observed.requires_grad else torch.no_grad(): posterior = model.posterior(X=X_observed) sampler = SobolQMCNormalSampler(sample_shape=torch.Size([num_fantasies])) Y_fantasized = sampler(posterior).squeeze(-1) batch_X_observed = X_observed.expand(num_fantasies, *X_observed.shape) # The fantasy model will operate in batch mode fantasy_model = _get_noiseless_fantasy_model( model=model, batch_X_observed=batch_X_observed, Y_fantasized=Y_fantasized ) best_f, _ = Y_fantasized.max(dim=-1) if maximize else Y_fantasized.min(dim=-1) super().__init__(model=fantasy_model, best_f=best_f, maximize=maximize) @t_batch_mode_transform(expected_q=1) def forward(self, X: Tensor) -> Tensor: r"""Evaluate Expected Improvement on the candidate set X. Args: X: A `b1 x ... bk x 1 x d`-dim batched tensor of `d`-dim design points. Returns: A `b1 x ... bk`-dim tensor of Noisy Expected Improvement values at the given design points `X`. """ # add batch dimension for broadcasting to fantasy models mean, sigma = self._mean_and_sigma(X.unsqueeze(-3)) u = _scaled_improvement(mean, sigma, self.best_f, self.maximize) return (sigma * _ei_helper(u)).mean(dim=-1) class UpperConfidenceBound(AnalyticAcquisitionFunction): r"""Single-outcome Upper Confidence Bound (UCB). Analytic upper confidence bound that comprises of the posterior mean plus an additional term: the posterior standard deviation weighted by a trade-off parameter, `beta`. Only supports the case of `q=1` (i.e. greedy, non-batch selection of design points). The model must be single-outcome. `UCB(x) = mu(x) + sqrt(beta) * sigma(x)`, where `mu` and `sigma` are the posterior mean and standard deviation, respectively. Example: >>> model = SingleTaskGP(train_X, train_Y) >>> UCB = UpperConfidenceBound(model, beta=0.2) >>> ucb = UCB(test_X) """ def __init__( self, model: Model, beta: Union[float, Tensor], posterior_transform: Optional[PosteriorTransform] = None, maximize: bool = True, ) -> None: r"""Single-outcome Upper Confidence Bound. Args: model: A fitted single-outcome GP model (must be in batch mode if candidate sets X will be) beta: Either a scalar or a one-dim tensor with `b` elements (batch mode) representing the trade-off parameter between mean and covariance posterior_transform: A PosteriorTransform. If using a multi-output model, a PosteriorTransform that transforms the multi-output posterior into a single-output posterior is required. maximize: If True, consider the problem a maximization problem. """ super().__init__(model=model, posterior_transform=posterior_transform) self.register_buffer("beta", torch.as_tensor(beta)) self.maximize = maximize @t_batch_mode_transform(expected_q=1) def forward(self, X: Tensor) -> Tensor: r"""Evaluate the Upper Confidence Bound on the candidate set X. Args: X: A `(b1 x ... bk) x 1 x d`-dim batched tensor of `d`-dim design points. Returns: A `(b1 x ... bk)`-dim tensor of Upper Confidence Bound values at the given design points `X`. """ mean, sigma = self._mean_and_sigma(X) return (mean if self.maximize else -mean) + self.beta.sqrt() * sigma class PosteriorMean(AnalyticAcquisitionFunction): r"""Single-outcome Posterior Mean. Only supports the case of q=1. Requires the model's posterior to have a `mean` property. The model must be single-outcome. Example: >>> model = SingleTaskGP(train_X, train_Y) >>> PM = PosteriorMean(model) >>> pm = PM(test_X) """ def __init__( self, model: Model, posterior_transform: Optional[PosteriorTransform] = None, maximize: bool = True, ) -> None: r"""Single-outcome Posterior Mean. Args: model: A fitted single-outcome GP model (must be in batch mode if candidate sets X will be) posterior_transform: A PosteriorTransform. If using a multi-output model, a PosteriorTransform that transforms the multi-output posterior into a single-output posterior is required. maximize: If True, consider the problem a maximization problem. Note that if `maximize=False`, the posterior mean is negated. As a consequence `optimize_acqf(PosteriorMean(gp, maximize=False))` actually returns -1 * minimum of the posterior mean. """ super().__init__(model=model, posterior_transform=posterior_transform) self.maximize = maximize @t_batch_mode_transform(expected_q=1) def forward(self, X: Tensor) -> Tensor: r"""Evaluate the posterior mean on the candidate set X. Args: X: A `(b1 x ... bk) x 1 x d`-dim batched tensor of `d`-dim design points. Returns: A `(b1 x ... bk)`-dim tensor of Posterior Mean values at the given design points `X`. """ mean, _ = self._mean_and_sigma(X, compute_sigma=False) return mean if self.maximize else -mean class ScalarizedPosteriorMean(AnalyticAcquisitionFunction): r"""Scalarized Posterior Mean. This acquisition function returns a scalarized (across the q-batch) posterior mean given a vector of weights. """ def __init__( self, model: Model, weights: Tensor, posterior_transform: Optional[PosteriorTransform] = None, ) -> None: r"""Scalarized Posterior Mean. Args: model: A fitted single-outcome model. weights: A tensor of shape `q` for scalarization. In order to minimize the scalarized posterior mean, pass -weights. posterior_transform: A PosteriorTransform. If using a multi-output model, a PosteriorTransform that transforms the multi-output posterior into a single-output posterior is required. """ super().__init__(model=model, posterior_transform=posterior_transform) self.register_buffer("weights", weights) @t_batch_mode_transform() def forward(self, X: Tensor) -> Tensor: r"""Evaluate the scalarized posterior mean on the candidate set X. Args: X: A `(b) x q x d`-dim Tensor of `(b)` t-batches of `d`-dim design points each. Returns: A `(b)`-dim Tensor of Posterior Mean values at the given design points `X`. """ return self._mean_and_sigma(X, compute_sigma=False)[0] @ self.weights # --------------- Helper functions for analytic acquisition functions. --------------- def _scaled_improvement( mean: Tensor, sigma: Tensor, best_f: Tensor, maximize: bool ) -> Tensor: """Returns `u = (mean - best_f) / sigma`, -u if maximize == True.""" u = (mean - best_f) / sigma return u if maximize else -u def _ei_helper(u: Tensor) -> Tensor: """Computes phi(u) + u * Phi(u), where phi and Phi are the standard normal pdf and cdf, respectively. This is used to compute Expected Improvement. """ return phi(u) + u * Phi(u) def _log_ei_helper(u: Tensor) -> Tensor: """Accurately computes log(phi(u) + u * Phi(u)) in a differentiable manner for u in [-10^100, 10^100] in double precision, and [-10^20, 10^20] in single precision. Beyond these intervals, a basic squaring of u can lead to floating point overflow. In contrast, the implementation in _ei_helper only yields usable gradients down to u ~ -10. As a consequence, _log_ei_helper improves the range of inputs for which a backward pass yields usable gradients by many orders of magnitude. """ if not (u.dtype == torch.float32 or u.dtype == torch.float64): raise TypeError( f"LogExpectedImprovement only supports torch.float32 and torch.float64 " f"dtypes, but received {u.dtype = }." ) # The function has two branching decisions. The first is u < bound, and in this # case, just taking the logarithm of the naive _ei_helper implementation works. bound = -1 u_upper = u.masked_fill(u < bound, bound) # mask u to avoid NaNs in gradients log_ei_upper = _ei_helper(u_upper).log() # When u <= bound, we need to be more careful and rearrange the EI formula as # log(phi(u)) + log(1 - exp(w)), where w = log(abs(u) * Phi(u) / phi(u)). # To this end, a second branch is necessary, depending on whether or not u is # smaller than approximately the negative inverse square root of the machine # precision. Below this point, numerical issues in computing log(1 - exp(w)) occur # as w approches zero from below, even though the relative contribution to log_ei # vanishes in machine precision at that point. neg_inv_sqrt_eps = -1e6 if u.dtype == torch.float64 else -1e3 # mask u for to avoid NaNs in gradients in first and second branch u_lower = u.masked_fill(u > bound, bound) u_eps = u_lower.masked_fill(u < neg_inv_sqrt_eps, neg_inv_sqrt_eps) # compute the logarithm of abs(u) * Phi(u) / phi(u) for moderately large negative u w = _log_abs_u_Phi_div_phi(u_eps) # 1) Now, we use a special implementation of log(1 - exp(w)) for moderately # large negative numbers, and # 2) capture the leading order of log(1 - exp(w)) for very large negative numbers. # The second special case is technically only required for single precision numbers # but does "the right thing" regardless. log_ei_lower = log_phi(u) + ( torch.where( u > neg_inv_sqrt_eps, log1mexp(w), # The contribution of the next term relative to log_phi vanishes when # w_lower << eps but captures the leading order of the log1mexp term. -2 * u_lower.abs().log(), ) ) return torch.where(u > bound, log_ei_upper, log_ei_lower) def _log_abs_u_Phi_div_phi(u: Tensor) -> Tensor: """Computes log(abs(u) * Phi(u) / phi(u)), where phi and Phi are the normal pdf and cdf, respectively. The function is valid for u < 0. NOTE: In single precision arithmetic, the function becomes numerically unstable for u < -1e3. For this reason, a second branch in _log_ei_helper is necessary to handle this regime, where this function approaches -abs(u)^-2 asymptotically. The implementation is based on the following implementation of the logarithm of the scaled complementary error function (i.e. erfcx). Since we only require the positive branch for _log_ei_helper, _log_abs_u_Phi_div_phi does not have a branch, but is only valid for u < 0 (so that _neg_inv_sqrt2 * u > 0). def logerfcx(x: Tensor) -> Tensor: return torch.where( x < 0, torch.erfc(x.masked_fill(x > 0, 0)).log() + x**2, torch.special.erfcx(x.masked_fill(x < 0, 0)).log(), ) Further, it is important for numerical accuracy to move u.abs() into the logarithm, rather than adding u.abs().log() to logerfcx. This is the reason for the rather complex name of this function: _log_abs_u_Phi_div_phi. """ # get_constants_like allocates tensors with the appropriate dtype and device and # caches the result, which improves efficiency. a, b = get_constants_like(values=(_neg_inv_sqrt2, _log_sqrt_pi_div_2), ref=u) return torch.log(torch.special.erfcx(a * u) * u.abs()) + b def _get_noiseless_fantasy_model( model: FixedNoiseGP, batch_X_observed: Tensor, Y_fantasized: Tensor ) -> FixedNoiseGP: r"""Construct a fantasy model from a fitted model and provided fantasies. The fantasy model uses the hyperparameters from the original fitted model and assumes the fantasies are noiseless. Args: model: a fitted FixedNoiseGP batch_X_observed: A `b x n x d` tensor of inputs where `b` is the number of fantasies. Y_fantasized: A `b x n` tensor of fantasized targets where `b` is the number of fantasies. Returns: The fantasy model. """ # initialize a copy of FixedNoiseGP on the original training inputs # this makes FixedNoiseGP a non-batch GP, so that the same hyperparameters # are used across all batches (by default, a GP with batched training data # uses independent hyperparameters for each batch). fantasy_model = FixedNoiseGP( train_X=model.train_inputs[0], train_Y=model.train_targets.unsqueeze(-1), train_Yvar=model.likelihood.noise_covar.noise.unsqueeze(-1), ) # update training inputs/targets to be batch mode fantasies fantasy_model.set_train_data( inputs=batch_X_observed, targets=Y_fantasized, strict=False ) # use noiseless fantasies fantasy_model.likelihood.noise_covar.noise = torch.full_like(Y_fantasized, 1e-7) # load hyperparameters from original model state_dict = deepcopy(model.state_dict()) fantasy_model.load_state_dict(state_dict) return fantasy_model def _preprocess_constraint_bounds( acqf: Union[LogConstrainedExpectedImprovement, ConstrainedExpectedImprovement], constraints: Dict[int, Tuple[Optional[float], Optional[float]]], ) -> None: r"""Set up constraint bounds. Args: constraints: A dictionary of the form `{i: [lower, upper]}`, where `i` is the output index, and `lower` and `upper` are lower and upper bounds on that output (resp. interpreted as -Inf / Inf if None) """ con_lower, con_lower_inds = [], [] con_upper, con_upper_inds = [], [] con_both, con_both_inds = [], [] con_indices = list(constraints.keys()) if len(con_indices) == 0: raise ValueError("There must be at least one constraint.") if acqf.objective_index in con_indices: raise ValueError( "Output corresponding to objective should not be a constraint." ) for k in con_indices: if constraints[k][0] is not None and constraints[k][1] is not None: if constraints[k][1] <= constraints[k][0]: raise ValueError("Upper bound is less than the lower bound.") con_both_inds.append(k) con_both.append([constraints[k][0], constraints[k][1]]) elif constraints[k][0] is not None: con_lower_inds.append(k) con_lower.append(constraints[k][0]) elif constraints[k][1] is not None: con_upper_inds.append(k) con_upper.append(constraints[k][1]) # tensor-based indexing is much faster than list-based advanced indexing for name, indices in [ ("con_lower_inds", con_lower_inds), ("con_upper_inds", con_upper_inds), ("con_both_inds", con_both_inds), ("con_both", con_both), ("con_lower", con_lower), ("con_upper", con_upper), ]: acqf.register_buffer(name, tensor=torch.as_tensor(indices)) def _compute_log_prob_feas( acqf: Union[LogConstrainedExpectedImprovement, ConstrainedExpectedImprovement], means: Tensor, sigmas: Tensor, ) -> Tensor: r"""Compute logarithm of the feasibility probability for each batch of X. Args: X: A `(b) x 1 x d`-dim Tensor of `(b)` t-batches of `d`-dim design points each. means: A `(b) x m`-dim Tensor of means. sigmas: A `(b) x m`-dim Tensor of standard deviations. Returns: A `b`-dim tensor of log feasibility probabilities Note: This function does case-work for upper bound, lower bound, and both-sided bounds. Another way to do it would be to use 'inf' and -'inf' for the one-sided bounds and use the logic for the both-sided case. But this causes an issue with autograd since we get 0 * inf. TODO: Investigate further. """ acqf.to(device=means.device) log_prob = torch.zeros_like(means[..., 0]) if len(acqf.con_lower_inds) > 0: i = acqf.con_lower_inds dist_l = (acqf.con_lower - means[..., i]) / sigmas[..., i] log_prob = log_prob + log_Phi(-dist_l).sum(dim=-1) # 1 - Phi(x) = Phi(-x) if len(acqf.con_upper_inds) > 0: i = acqf.con_upper_inds dist_u = (acqf.con_upper - means[..., i]) / sigmas[..., i] log_prob = log_prob + log_Phi(dist_u).sum(dim=-1) if len(acqf.con_both_inds) > 0: i = acqf.con_both_inds con_lower, con_upper = acqf.con_both[:, 0], acqf.con_both[:, 1] # scaled distance to lower and upper constraint boundary: dist_l = (con_lower - means[..., i]) / sigmas[..., i] dist_u = (con_upper - means[..., i]) / sigmas[..., i] log_prob = log_prob + log_prob_normal_in(a=dist_l, b=dist_u).sum(dim=-1) return log_prob
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Prior-Guided Acquisition Functions References .. [Hvarfner2022] C. Hvarfner, D. Stoll, A. Souza, M. Lindauer, F. Hutter, L. Nardi. PiBO: Augmenting Acquisition Functions with User Beliefs for Bayesian Optimization. ICLR 2022. """ from __future__ import annotations from typing import Optional from botorch.acquisition.acquisition import AcquisitionFunction from botorch.acquisition.monte_carlo import SampleReducingMCAcquisitionFunction from botorch.utils.transforms import concatenate_pending_points, t_batch_mode_transform from torch import Tensor from torch.nn import Module class PriorGuidedAcquisitionFunction(AcquisitionFunction): r"""Class for weighting acquisition functions by a prior distribution. Supports MC and batch acquisition functions via SampleReducingAcquisitionFunction. See [Hvarfner2022]_ for details. """ def __init__( self, acq_function: AcquisitionFunction, prior_module: Module, log: bool = False, prior_exponent: float = 1.0, X_pending: Optional[Tensor] = None, ) -> None: r"""Initialize the prior-guided acquisition function. Args: acq_function: The base acquisition function. prior_module: A Module that computes the probability (or log probability) for the provided inputs. `prior_module.forward` should take a `batch_shape x q`-dim tensor of inputs and return a `batch_shape x q`-dim tensor of probabilities. log: A boolean that should be true if the acquisition function emits a log-transformed value and the prior module emits a log probability. prior_exponent: The exponent applied to the prior. This can be used for example to decay the effect the prior over time as in [Hvarfner2022]_. X_pending: `n x d` Tensor with `n` `d`-dim design points that have been submitted for evaluation but have not yet been evaluated. """ super().__init__(model=acq_function.model) self.acq_func = acq_function self.prior_module = prior_module self._log = log self._prior_exponent = prior_exponent self._is_sample_reducing_af = isinstance( acq_function, SampleReducingMCAcquisitionFunction ) self.set_X_pending(X_pending=X_pending) @concatenate_pending_points @t_batch_mode_transform() def forward(self, X: Tensor) -> Tensor: r"""Compute the acquisition function weighted by the prior.""" # batch_shape x q prior = self.prior_module(X) if self._is_sample_reducing_af: # sample_shape x batch_shape x q af_val = self.acq_func._non_reduced_forward(X) else: if prior.shape[-1] > 1: raise NotImplementedError( "q-batches with q>1 are only supported using " "SampleReducingMCAcquisitionFunction." ) # batch_shape x q af_val = self.acq_func(X).unsqueeze(-1) if self._log: weighted_af_val = af_val + prior * self._prior_exponent else: weighted_af_val = af_val * prior.pow(self._prior_exponent) if self._is_sample_reducing_af: return self.acq_func._sample_reduction( self.acq_func._q_reduction(weighted_af_val) ) return weighted_af_val.squeeze(-1) # squeeze q-dim
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. r"""Abstract base module for decoupled acquisition functions.""" from __future__ import annotations import warnings from abc import ABC from typing import Optional import torch from botorch.acquisition.acquisition import AcquisitionFunction from botorch.exceptions import BotorchWarning from botorch.exceptions.errors import BotorchTensorDimensionError from botorch.logging import shape_to_str from botorch.models.model import ModelList from torch import Tensor class DecoupledAcquisitionFunction(AcquisitionFunction, ABC): """ Abstract base class for decoupled acquisition functions. A decoupled acquisition function where one may intend to evaluate a design on only a subset of the outcomes. Typically this would be handled by fantasizing, where one would fantasize as to what the partial observation would be if one were to evaluate a design on the subset of outcomes (e.g. you only fantasize at those outcomes). The `X_evaluation_mask` specifies which outcomes should be evaluated for each design. `X_evaluation_mask` is `q x m`, where there are q design points in the batch and m outcomes. In the asynchronous case, where there are n' pending points, we need to track which outcomes each pending point should be evaluated on. In this case, we concatenate `X_pending_evaluation_mask` with `X_evaluation_mask` to obtain the full evaluation_mask. This abstract class handles generating and updating an evaluation mask, which is a boolean tensor indicating which outcomes a given design is being evaluated on. The evaluation mask has shape `(n' + q) x m`, where n' is the number of pending points and the q represents the new candidates to be generated. If `X(_pending)_evaluation_mas`k is None, it is assumed that `X(_pending)` will be evaluated on all outcomes. """ def __init__( self, model: ModelList, X_evaluation_mask: Optional[Tensor] = None, **kwargs ) -> None: r"""Initialize. Args: model: A model X_evaluation_mask: A `q x m`-dim boolean tensor indicating which outcomes the decoupled acquisition function should generate new candidates for. """ if not isinstance(model, ModelList): raise ValueError(f"{self.__class__.__name__} requires using a ModelList.") super().__init__(model=model, **kwargs) self.num_outputs = model.num_outputs self.X_evaluation_mask = X_evaluation_mask self.X_pending_evaluation_mask = None self.X_pending = None @property def X_evaluation_mask(self) -> Optional[Tensor]: r"""Get the evaluation indices for the new candidate.""" return self._X_evaluation_mask @X_evaluation_mask.setter def X_evaluation_mask(self, X_evaluation_mask: Optional[Tensor] = None) -> None: r"""Set the evaluation indices for the new candidate.""" if X_evaluation_mask is not None: # TODO: Add batch support if ( X_evaluation_mask.ndim != 2 or X_evaluation_mask.shape[-1] != self.num_outputs ): raise BotorchTensorDimensionError( "Expected X_evaluation_mask to be `q x m`, but got shape" f" {shape_to_str(X_evaluation_mask.shape)}." ) self._X_evaluation_mask = X_evaluation_mask def set_X_pending( self, X_pending: Optional[Tensor] = None, X_pending_evaluation_mask: Optional[Tensor] = None, ) -> None: r"""Informs the AF about pending design points for different outcomes. Args: X_pending: A `n' x d` Tensor with `n'` `d`-dim design points that have been submitted for evaluation but have not yet been evaluated. X_pending_evaluation_mask: A `n' x m`-dim tensor of booleans indicating for which outputs the pending point is being evaluated on. If `X_pending_evaluation_mask` is `None`, it is assumed that `X_pending` will be evaluated on all outcomes. """ if X_pending is not None: if X_pending.requires_grad: warnings.warn( "Pending points require a gradient but the acquisition function" " will not provide a gradient to these points.", BotorchWarning, ) self.X_pending = X_pending.detach().clone() if X_pending_evaluation_mask is not None: if ( X_pending_evaluation_mask.ndim != 2 or X_pending_evaluation_mask.shape[0] != X_pending.shape[0] or X_pending_evaluation_mask.shape[1] != self.num_outputs ): raise BotorchTensorDimensionError( f"Expected `X_pending_evaluation_mask` of shape " f"`{X_pending.shape[0]} x {self.num_outputs}`, but " f"got {shape_to_str(X_pending_evaluation_mask.shape)}." ) self.X_pending_evaluation_mask = X_pending_evaluation_mask elif self.X_evaluation_mask is not None: raise ValueError( "If `self.X_evaluation_mask` is not None, then " "`X_pending_evaluation_mask` must be provided." ) else: self.X_pending = X_pending self.X_pending_evaluation_mask = X_pending_evaluation_mask def construct_evaluation_mask(self, X: Tensor) -> Optional[Tensor]: r"""Construct the boolean evaluation mask for X and X_pending Args: X: A `batch_shape x n x d`-dim tensor of designs. Returns: A `n + n' x m`-dim tensor of booleans indicating which outputs should be evaluated. """ if self.X_pending_evaluation_mask is not None: X_evaluation_mask = self.X_evaluation_mask if X_evaluation_mask is None: # evaluate all objectives for X X_evaluation_mask = torch.ones( X.shape[-2], self.num_outputs, dtype=torch.bool, device=X.device ) elif X_evaluation_mask.shape[0] != X.shape[-2]: raise BotorchTensorDimensionError( "Expected the -2 dimension of X and X_evaluation_mask to match." ) # construct mask for X return torch.cat( [X_evaluation_mask, self.X_pending_evaluation_mask], dim=-2 ) return self.X_evaluation_mask
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from __future__ import annotations import warnings from abc import abstractmethod from typing import List, Optional import torch from botorch.acquisition.objective import GenericMCObjective, MCAcquisitionObjective from botorch.exceptions.errors import BotorchError, BotorchTensorDimensionError from botorch.models.model import Model from botorch.posteriors import GPyTorchPosterior from botorch.utils import apply_constraints from botorch.utils.transforms import normalize_indices from torch import Tensor class MCMultiOutputObjective(MCAcquisitionObjective): r"""Abstract base class for MC multi-output objectives. Args: _is_mo: A boolean denoting whether the objectives are multi-output. """ _is_mo: bool = True @abstractmethod def forward(self, samples: Tensor, X: Optional[Tensor] = None, **kwargs) -> Tensor: r"""Evaluate the multi-output objective on the samples. Args: samples: A `sample_shape x batch_shape x q x m`-dim Tensors of samples from a model posterior. X: A `batch_shape x q x d`-dim Tensors of inputs. Returns: A `sample_shape x batch_shape x q x m'`-dim Tensor of objective values with `m'` the output dimension. This assumes maximization in each output dimension). This method is usually not called directly, but via the objectives. Example: >>> # `__call__` method: >>> samples = sampler(posterior) >>> outcomes = multi_obj(samples) """ pass # pragma: no cover class GenericMCMultiOutputObjective(GenericMCObjective, MCMultiOutputObjective): r"""Multi-output objective generated from a generic callable. Allows to construct arbitrary MC-objective functions from a generic callable. In order to be able to use gradient-based acquisition function optimization it should be possible to backpropagate through the callable. """ pass class IdentityMCMultiOutputObjective(MCMultiOutputObjective): r"""Trivial objective that returns the unaltered samples. Example: >>> identity_objective = IdentityMCMultiOutputObjective() >>> samples = sampler(posterior) >>> objective = identity_objective(samples) """ def __init__( self, outcomes: Optional[List[int]] = None, num_outcomes: Optional[int] = None ) -> None: r"""Initialize Objective. Args: outcomes: A list of the `m'` indices that the weights should be applied to. num_outcomes: The total number of outcomes `m` """ super().__init__() if outcomes is not None: if len(outcomes) < 2: raise BotorchTensorDimensionError( "Must specify at least two outcomes for MOO." ) if any(i < 0 for i in outcomes): if num_outcomes is None: raise BotorchError( "num_outcomes is required if any outcomes are less than 0." ) outcomes = normalize_indices(outcomes, num_outcomes) self.register_buffer("outcomes", torch.tensor(outcomes, dtype=torch.long)) def forward(self, samples: Tensor, X: Optional[Tensor] = None) -> Tensor: if hasattr(self, "outcomes"): return samples.index_select(-1, self.outcomes.to(device=samples.device)) return samples class WeightedMCMultiOutputObjective(IdentityMCMultiOutputObjective): r"""Objective that reweights samples by given weights vector. Example: >>> weights = torch.tensor([1.0, -1.0]) >>> weighted_objective = WeightedMCMultiOutputObjective(weights) >>> samples = sampler(posterior) >>> objective = weighted_objective(samples) """ def __init__( self, weights: Tensor, outcomes: Optional[List[int]] = None, num_outcomes: Optional[int] = None, ) -> None: r"""Initialize Objective. Args: weights: `m'`-dim tensor of outcome weights. outcomes: A list of the `m'` indices that the weights should be applied to. num_outcomes: the total number of outcomes `m` """ super().__init__(outcomes=outcomes, num_outcomes=num_outcomes) if weights.ndim != 1: raise BotorchTensorDimensionError( f"weights must be an 1-D tensor, but got {weights.shape}." ) elif outcomes is not None and weights.shape[0] != len(outcomes): raise BotorchTensorDimensionError( "weights must contain the same number of elements as outcomes, " f"but got {weights.numel()} weights and {len(outcomes)} outcomes." ) self.register_buffer("weights", weights) def forward(self, samples: Tensor, X: Optional[Tensor] = None) -> Tensor: samples = super().forward(samples=samples) return samples * self.weights.to(samples) class FeasibilityWeightedMCMultiOutputObjective(MCMultiOutputObjective): def __init__( self, model: Model, X_baseline: Tensor, constraint_idcs: List[int], objective: Optional[MCMultiOutputObjective] = None, ) -> None: r"""Construct a feasibility weighted objective. This applies feasibility weighting before calculating the objective value. Defaults to identity if no constraints or objective is present. NOTE: By passing in a single-output `MCAcquisitionObjective` as the `objective`, this can be used as a single-output `MCAcquisitionObjective` as well. Args: model: A fitted Model. X_baseline: An `n x d`-dim tensor of points already observed. constraint_idcs: The outcome indices of the constraints. Constraints are handled by weighting the samples according to a sigmoid approximation of feasibility. A positive constraint outcome implies feasibility. objective: An optional objective to apply after feasibility-weighting the samples. """ super().__init__() num_outputs = model.num_outputs # Get the non-negative indices. constraint_idcs = [ num_outputs + idx if idx < 0 else idx for idx in constraint_idcs ] if len(constraint_idcs) != len(set(constraint_idcs)): raise ValueError("Received duplicate entries for `constraint_idcs`.") # Extract the indices for objective outcomes. objective_idcs = [i for i in range(num_outputs) if i not in constraint_idcs] if len(constraint_idcs) > 0: # Import locally to avoid circular import. from botorch.acquisition.utils import get_infeasible_cost inf_cost = get_infeasible_cost( X=X_baseline, model=model, objective=lambda y, X: y )[objective_idcs] def apply_feasibility_weights( Y: Tensor, X: Optional[Tensor] = None ) -> Tensor: return apply_constraints( obj=Y[..., objective_idcs], constraints=[lambda Y: -Y[..., i] for i in constraint_idcs], samples=Y, # This ensures that the dtype/device is set properly. infeasible_cost=inf_cost.to(Y), ) self.apply_feasibility_weights = apply_feasibility_weights else: self.apply_feasibility_weights = lambda Y: Y if objective is None: self.objective = lambda Y, X: Y else: self.objective = objective self._verify_output_shape = objective._verify_output_shape def forward(self, samples: Tensor, X: Optional[Tensor] = None) -> Tensor: return self.objective(self.apply_feasibility_weights(samples), X=X) class UnstandardizeMCMultiOutputObjective(IdentityMCMultiOutputObjective): r"""Objective that unstandardizes the samples. TODO: remove this when MultiTask models support outcome transforms. Example: >>> unstd_objective = UnstandardizeMCMultiOutputObjective(Y_mean, Y_std) >>> samples = sampler(posterior) >>> objective = unstd_objective(samples) """ def __init__( self, Y_mean: Tensor, Y_std: Tensor, outcomes: Optional[List[int]] = None ) -> None: r"""Initialize objective. Args: Y_mean: `m`-dim tensor of outcome means. Y_std: `m`-dim tensor of outcome standard deviations. outcomes: A list of `m' <= m` indices that specifies which of the `m` model outputs should be considered as the outcomes for MOO. If omitted, use all model outcomes. Typically used for constrained optimization. """ if Y_mean.ndim > 1 or Y_std.ndim > 1: raise BotorchTensorDimensionError( "Y_mean and Y_std must both be 1-dimensional, but got " f"{Y_mean.ndim} and {Y_std.ndim}" ) elif outcomes is not None and len(outcomes) > Y_mean.shape[-1]: raise BotorchTensorDimensionError( f"Cannot specify more ({len(outcomes)}) outcomes than are present in " f"the normalization inputs ({Y_mean.shape[-1]})." ) super().__init__(outcomes=outcomes, num_outcomes=Y_mean.shape[-1]) if outcomes is not None: Y_mean = Y_mean.index_select(-1, self.outcomes.to(Y_mean.device)) Y_std = Y_std.index_select(-1, self.outcomes.to(Y_mean.device)) self.register_buffer("Y_mean", Y_mean) self.register_buffer("Y_std", Y_std) def forward(self, samples: Tensor, X: Optional[Tensor] = None) -> Tensor: samples = super().forward(samples=samples) return samples * self.Y_std + self.Y_mean class AnalyticMultiOutputObjective(torch.nn.Module): r"""Abstract base class for multi-output analyic objectives. DEPRECATED - This will be removed in the next version. """ def __init__(self, *args, **kwargs) -> None: """Initialize objective.""" warnings.warn("AnalyticMultiOutputObjective is deprecated.", DeprecationWarning) super().__init__(*args, **kwargs) class IdentityAnalyticMultiOutputObjective(AnalyticMultiOutputObjective): """DEPRECATED - This will be removed in the next version.""" def __init__(self): """Initialize objective.""" super().__init__() def forward(self, posterior: GPyTorchPosterior) -> GPyTorchPosterior: return posterior
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from botorch.acquisition.multi_objective.analytic import ( ExpectedHypervolumeImprovement, MultiObjectiveAnalyticAcquisitionFunction, ) from botorch.acquisition.multi_objective.max_value_entropy_search import ( qMultiObjectiveMaxValueEntropy, ) from botorch.acquisition.multi_objective.monte_carlo import ( MultiObjectiveMCAcquisitionFunction, qExpectedHypervolumeImprovement, qNoisyExpectedHypervolumeImprovement, ) from botorch.acquisition.multi_objective.multi_fidelity import MOMF from botorch.acquisition.multi_objective.objective import ( AnalyticMultiOutputObjective, IdentityAnalyticMultiOutputObjective, IdentityMCMultiOutputObjective, MCMultiOutputObjective, UnstandardizeMCMultiOutputObjective, WeightedMCMultiOutputObjective, ) from botorch.acquisition.multi_objective.utils import ( get_default_partitioning_alpha, prune_inferior_points_multi_objective, ) __all__ = [ "get_default_partitioning_alpha", "prune_inferior_points_multi_objective", "qExpectedHypervolumeImprovement", "qNoisyExpectedHypervolumeImprovement", "MOMF", "qMultiObjectiveMaxValueEntropy", "AnalyticMultiOutputObjective", "ExpectedHypervolumeImprovement", "IdentityAnalyticMultiOutputObjective", "IdentityMCMultiOutputObjective", "MCMultiOutputObjective", "MultiObjectiveAnalyticAcquisitionFunction", "MultiObjectiveMCAcquisitionFunction", "UnstandardizeMCMultiOutputObjective", "WeightedMCMultiOutputObjective", ]
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. r""" Monte-Carlo Acquisition Functions for Multi-objective Bayesian optimization. References .. [Daulton2020qehvi] S. Daulton, M. Balandat, and E. Bakshy. Differentiable Expected Hypervolume Improvement for Parallel Multi-Objective Bayesian Optimization. Advances in Neural Information Processing Systems 33, 2020. .. [Daulton2021nehvi] S. Daulton, M. Balandat, and E. Bakshy. Parallel Bayesian Optimization of Multiple Noisy Objectives with Expected Hypervolume Improvement. Advances in Neural Information Processing Systems 34, 2021. """ from __future__ import annotations import warnings from abc import ABC, abstractmethod from copy import deepcopy from itertools import combinations from typing import Callable, List, Optional, Union import torch from botorch.acquisition.acquisition import AcquisitionFunction, MCSamplerMixin from botorch.acquisition.cached_cholesky import CachedCholeskyMCAcquisitionFunction from botorch.acquisition.multi_objective.objective import ( IdentityMCMultiOutputObjective, MCMultiOutputObjective, ) from botorch.acquisition.multi_objective.utils import ( prune_inferior_points_multi_objective, ) from botorch.exceptions.errors import UnsupportedError from botorch.exceptions.warnings import BotorchWarning from botorch.models.model import Model from botorch.models.transforms.input import InputPerturbation from botorch.sampling.base import MCSampler from botorch.utils.multi_objective.box_decompositions.box_decomposition_list import ( BoxDecompositionList, ) from botorch.utils.multi_objective.box_decompositions.dominated import ( DominatedPartitioning, ) from botorch.utils.multi_objective.box_decompositions.non_dominated import ( FastNondominatedPartitioning, NondominatedPartitioning, ) from botorch.utils.multi_objective.box_decompositions.utils import ( _pad_batch_pareto_frontier, ) from botorch.utils.objective import compute_smoothed_feasibility_indicator from botorch.utils.torch import BufferDict from botorch.utils.transforms import ( concatenate_pending_points, is_fully_bayesian, match_batch_shape, t_batch_mode_transform, ) from torch import Tensor class MultiObjectiveMCAcquisitionFunction(AcquisitionFunction, MCSamplerMixin, ABC): r"""Abstract base class for Multi-Objective batch acquisition functions. NOTE: This does not inherit from `MCAcquisitionFunction` to avoid circular imports. Args: _default_sample_shape: The `sample_shape` for the default sampler. """ _default_sample_shape = torch.Size([128]) def __init__( self, model: Model, sampler: Optional[MCSampler] = None, objective: Optional[MCMultiOutputObjective] = None, constraints: Optional[List[Callable[[Tensor], Tensor]]] = None, eta: Optional[Union[Tensor, float]] = 1e-3, X_pending: Optional[Tensor] = None, ) -> None: r"""Constructor for the MCAcquisitionFunction base class. Args: model: A fitted model. sampler: The sampler used to draw base samples. If not given, a sampler is generated using `get_sampler`. NOTE: For posteriors that do not support base samples, a sampler compatible with intended use case must be provided. See `ForkedRNGSampler` and `StochasticSampler` as examples. objective: The MCMultiOutputObjective under which the samples are evaluated. Defaults to `IdentityMultiOutputObjective()`. constraints: A list of callables, each mapping a Tensor of dimension `sample_shape x batch-shape x q x m` to a Tensor of dimension `sample_shape x batch-shape x q`, where negative values imply feasibility. eta: The temperature parameter for the sigmoid function used for the differentiable approximation of the constraints. In case of a float the same eta is used for every constraint in constraints. In case of a tensor the length of the tensor must match the number of provided constraints. The i-th constraint is then estimated with the i-th eta value. X_pending: A `m x d`-dim Tensor of `m` design points that have points that have been submitted for function evaluation but have not yet been evaluated. """ super().__init__(model=model) MCSamplerMixin.__init__(self, sampler=sampler) if objective is None: objective = IdentityMCMultiOutputObjective() elif not isinstance(objective, MCMultiOutputObjective): raise UnsupportedError( "Only objectives of type MCMultiOutputObjective are supported for " "Multi-Objective MC acquisition functions." ) if ( hasattr(model, "input_transform") and isinstance(model.input_transform, InputPerturbation) and constraints is not None ): raise UnsupportedError( "Constraints are not supported with input perturbations, due to" "sample q-batch shape being different than that of the inputs." "Use a composite objective that applies feasibility weighting to" "samples before calculating the risk measure." ) self.add_module("objective", objective) self.constraints = constraints if constraints: if type(eta) is not Tensor: eta = torch.full((len(constraints),), eta) self.register_buffer("eta", eta) self.X_pending = None if X_pending is not None: self.set_X_pending(X_pending) @abstractmethod def forward(self, X: Tensor) -> Tensor: r"""Takes in a `batch_shape x q x d` X Tensor of t-batches with `q` `d`-dim design points each, and returns a Tensor with shape `batch_shape'`, where `batch_shape'` is the broadcasted batch shape of model and input `X`. Should utilize the result of `set_X_pending` as needed to account for pending function evaluations. """ pass # pragma: no cover class qExpectedHypervolumeImprovement(MultiObjectiveMCAcquisitionFunction): def __init__( self, model: Model, ref_point: Union[List[float], Tensor], partitioning: NondominatedPartitioning, sampler: Optional[MCSampler] = None, objective: Optional[MCMultiOutputObjective] = None, constraints: Optional[List[Callable[[Tensor], Tensor]]] = None, X_pending: Optional[Tensor] = None, eta: Optional[Union[Tensor, float]] = 1e-3, ) -> None: r"""q-Expected Hypervolume Improvement supporting m>=2 outcomes. See [Daulton2020qehvi]_ for details. Example: >>> model = SingleTaskGP(train_X, train_Y) >>> ref_point = [0.0, 0.0] >>> qEHVI = qExpectedHypervolumeImprovement(model, ref_point, partitioning) >>> qehvi = qEHVI(test_X) Args: model: A fitted model. ref_point: A list or tensor with `m` elements representing the reference point (in the outcome space) w.r.t. to which compute the hypervolume. This is a reference point for the objective values (i.e. after applying`objective` to the samples). partitioning: A `NondominatedPartitioning` module that provides the non- dominated front and a partitioning of the non-dominated space in hyper- rectangles. If constraints are present, this partitioning must only include feasible points. sampler: The sampler used to draw base samples. If not given, a sampler is generated using `get_sampler`. objective: The MCMultiOutputObjective under which the samples are evaluated. Defaults to `IdentityMultiOutputObjective()`. constraints: A list of callables, each mapping a Tensor of dimension `sample_shape x batch-shape x q x m` to a Tensor of dimension `sample_shape x batch-shape x q`, where negative values imply feasibility. The acqusition function will compute expected feasible hypervolume. X_pending: A `batch_shape x m x d`-dim Tensor of `m` design points that have points that have been submitted for function evaluation but have not yet been evaluated. Concatenated into `X` upon forward call. Copied and set to have no gradient. eta: The temperature parameter for the sigmoid function used for the differentiable approximation of the constraints. In case of a float the same eta is used for every constraint in constraints. In case of a tensor the length of the tensor must match the number of provided constraints. The i-th constraint is then estimated with the i-th eta value. """ if len(ref_point) != partitioning.num_outcomes: raise ValueError( "The length of the reference point must match the number of outcomes. " f"Got ref_point with {len(ref_point)} elements, but expected " f"{partitioning.num_outcomes}." ) ref_point = torch.as_tensor( ref_point, dtype=partitioning.pareto_Y.dtype, device=partitioning.pareto_Y.device, ) super().__init__( model=model, sampler=sampler, objective=objective, constraints=constraints, eta=eta, X_pending=X_pending, ) self.register_buffer("ref_point", ref_point) cell_bounds = partitioning.get_hypercell_bounds() self.register_buffer("cell_lower_bounds", cell_bounds[0]) self.register_buffer("cell_upper_bounds", cell_bounds[1]) self.q_out = -1 self.q_subset_indices = BufferDict() def _cache_q_subset_indices(self, q_out: int) -> None: r"""Cache indices corresponding to all subsets of `q_out`. This means that consecutive calls to `forward` with the same `q_out` will not recompute the indices for all (2^q_out - 1) subsets. Note: this will use more memory than regenerating the indices for each i and then deleting them, but it will be faster for repeated evaluations (e.g. during optimization). Args: q_out: The batch size of the objectives. This is typically equal to the q-batch size of `X`. However, if using a set valued objective (e.g., MVaR) that produces `s` objective values for each point on the q-batch of `X`, we need to properly account for each objective while calculating the hypervolume contributions by using `q_out = q * s`. """ if q_out != self.q_out: indices = list(range(q_out)) tkwargs = {"dtype": torch.long, "device": self.ref_point.device} self.q_subset_indices = BufferDict( { f"q_choose_{i}": torch.tensor( list(combinations(indices, i)), **tkwargs ) for i in range(1, q_out + 1) } ) self.q_out = q_out def _compute_qehvi(self, samples: Tensor, X: Optional[Tensor] = None) -> Tensor: r"""Compute the expected (feasible) hypervolume improvement given MC samples. Args: samples: A `n_samples x batch_shape x q' x m`-dim tensor of samples. X: A `batch_shape x q x d`-dim tensor of inputs. Returns: A `batch_shape x (model_batch_shape)`-dim tensor of expected hypervolume improvement for each batch. """ # Note that the objective may subset the outcomes (e.g. this will usually happen # if there are constraints present). obj = self.objective(samples, X=X) q = obj.shape[-2] if self.constraints is not None: feas_weights = compute_smoothed_feasibility_indicator( constraints=self.constraints, samples=samples, eta=self.eta ) # `sample_shape x batch-shape x q` self._cache_q_subset_indices(q_out=q) batch_shape = obj.shape[:-2] # this is n_samples x input_batch_shape x areas_per_segment = torch.zeros( *batch_shape, self.cell_lower_bounds.shape[-2], dtype=obj.dtype, device=obj.device, ) cell_batch_ndim = self.cell_lower_bounds.ndim - 2 sample_batch_view_shape = torch.Size( [ batch_shape[0] if cell_batch_ndim > 0 else 1, *[1 for _ in range(len(batch_shape) - max(cell_batch_ndim, 1))], *self.cell_lower_bounds.shape[1:-2], ] ) view_shape = ( *sample_batch_view_shape, self.cell_upper_bounds.shape[-2], 1, self.cell_upper_bounds.shape[-1], ) for i in range(1, self.q_out + 1): # TODO: we could use batches to compute (q choose i) and (q choose q-i) # simultaneously since subsets of size i and q-i have the same number of # elements. This would decrease the number of iterations, but increase # memory usage. q_choose_i = self.q_subset_indices[f"q_choose_{i}"] # this tensor is mc_samples x batch_shape x i x q_choose_i x m obj_subsets = obj.index_select(dim=-2, index=q_choose_i.view(-1)) obj_subsets = obj_subsets.view( obj.shape[:-2] + q_choose_i.shape + obj.shape[-1:] ) # since all hyperrectangles share one vertex, the opposite vertex of the # overlap is given by the component-wise minimum. # take the minimum in each subset overlap_vertices = obj_subsets.min(dim=-2).values # add batch-dim to compute area for each segment (pseudo-pareto-vertex) # this tensor is mc_samples x batch_shape x num_cells x q_choose_i x m overlap_vertices = torch.min( overlap_vertices.unsqueeze(-3), self.cell_upper_bounds.view(view_shape) ) # substract cell lower bounds, clamp min at zero lengths_i = ( overlap_vertices - self.cell_lower_bounds.view(view_shape) ).clamp_min(0.0) # take product over hyperrectangle side lengths to compute area # sum over all subsets of size i areas_i = lengths_i.prod(dim=-1) # if constraints are present, apply a differentiable approximation of # the indicator function if self.constraints is not None: feas_subsets = feas_weights.index_select( dim=-1, index=q_choose_i.view(-1) ).view(feas_weights.shape[:-1] + q_choose_i.shape) areas_i = areas_i * feas_subsets.unsqueeze(-3).prod(dim=-1) areas_i = areas_i.sum(dim=-1) # Using the inclusion-exclusion principle, set the sign to be positive # for subsets of odd sizes and negative for subsets of even size areas_per_segment += (-1) ** (i + 1) * areas_i # sum over segments and average over MC samples return areas_per_segment.sum(dim=-1).mean(dim=0) @concatenate_pending_points @t_batch_mode_transform() def forward(self, X: Tensor) -> Tensor: posterior = self.model.posterior(X) samples = self.get_posterior_samples(posterior) return self._compute_qehvi(samples=samples, X=X) class qNoisyExpectedHypervolumeImprovement( qExpectedHypervolumeImprovement, CachedCholeskyMCAcquisitionFunction ): def __init__( self, model: Model, ref_point: Union[List[float], Tensor], X_baseline: Tensor, sampler: Optional[MCSampler] = None, objective: Optional[MCMultiOutputObjective] = None, constraints: Optional[List[Callable[[Tensor], Tensor]]] = None, X_pending: Optional[Tensor] = None, eta: Optional[Union[Tensor, float]] = 1e-3, prune_baseline: bool = False, alpha: float = 0.0, cache_pending: bool = True, max_iep: int = 0, incremental_nehvi: bool = True, cache_root: bool = True, marginalize_dim: Optional[int] = None, ) -> None: r"""q-Noisy Expected Hypervolume Improvement supporting m>=2 outcomes. See [Daulton2021nehvi]_ for details. Example: >>> model = SingleTaskGP(train_X, train_Y) >>> ref_point = [0.0, 0.0] >>> qNEHVI = qNoisyExpectedHypervolumeImprovement(model, ref_point, train_X) >>> qnehvi = qNEHVI(test_X) Args: model: A fitted model. ref_point: A list or tensor with `m` elements representing the reference point (in the outcome space) w.r.t. to which compute the hypervolume. This is a reference point for the objective values (i.e. after applying `objective` to the samples). X_baseline: A `r x d`-dim Tensor of `r` design points that have already been observed. These points are considered as potential approximate pareto-optimal design points. sampler: The sampler used to draw base samples. If not given, a sampler is generated using `get_sampler`. Note: a pareto front is created for each mc sample, which can be computationally intensive for `m` > 2. objective: The MCMultiOutputObjective under which the samples are evaluated. Defaults to `IdentityMultiOutputObjective()`. constraints: A list of callables, each mapping a Tensor of dimension `sample_shape x batch-shape x q x m` to a Tensor of dimension `sample_shape x batch-shape x q`, where negative values imply feasibility. The acqusition function will compute expected feasible hypervolume. X_pending: A `batch_shape x m x d`-dim Tensor of `m` design points that have points that have been submitted for function evaluation, but have not yet been evaluated. eta: The temperature parameter for the sigmoid function used for the differentiable approximation of the constraints. In case of a float the same eta is used for every constraint in constraints. In case of a tensor the length of the tensor must match the number of provided constraints. The i-th constraint is then estimated with the i-th eta value. For more details, on this parameter, see the docs of `compute_smoothed_feasibility_indicator`. prune_baseline: If True, remove points in `X_baseline` that are highly unlikely to be the pareto optimal and better than the reference point. This can significantly improve computation time and is generally recommended. In order to customize pruning parameters, instead manually call `prune_inferior_points_multi_objective` on `X_baseline` before instantiating the acquisition function. alpha: The hyperparameter controlling the approximate non-dominated partitioning. The default value of 0.0 means an exact partitioning is used. As the number of objectives `m` increases, consider increasing this parameter in order to limit computational complexity. cache_pending: A boolean indicating whether to use cached box decompositions (CBD) for handling pending points. This is generally recommended. max_iep: The maximum number of pending points before the box decompositions will be recomputed. incremental_nehvi: A boolean indicating whether to compute the incremental NEHVI from the `i`th point where `i=1, ..., q` under sequential greedy optimization, or the full qNEHVI over `q` points. cache_root: A boolean indicating whether to cache the root decomposition over `X_baseline` and use low-rank updates. """ if len(ref_point) < 2: raise ValueError( "qNoisyExpectedHypervolumeImprovement supports m>=2 outcomes " f"but ref_point has length {len(ref_point)}, which is smaller than 2." ) ref_point = torch.as_tensor( ref_point, dtype=X_baseline.dtype, device=X_baseline.device ) super(qExpectedHypervolumeImprovement, self).__init__( model=model, sampler=sampler, objective=objective, constraints=constraints, eta=eta, ) self._setup(model=model, cache_root=cache_root) if X_baseline.ndim > 2: raise UnsupportedError( "qNoisyExpectedHypervolumeImprovement does not support batched " f"X_baseline. Expected 2 dims, got {X_baseline.ndim}." ) if prune_baseline: X_baseline = prune_inferior_points_multi_objective( model=model, X=X_baseline, objective=objective, constraints=constraints, ref_point=ref_point, marginalize_dim=marginalize_dim, ) self.register_buffer("ref_point", ref_point) self.alpha = alpha self.q_in = -1 self.q_out = -1 self.q_subset_indices = BufferDict() self.partitioning = None # set partitioning class and args self.p_kwargs = {} if self.alpha > 0: self.p_kwargs["alpha"] = self.alpha self.p_class = NondominatedPartitioning else: self.p_class = FastNondominatedPartitioning self.register_buffer("_X_baseline", X_baseline) self.register_buffer("_X_baseline_and_pending", X_baseline) self.register_buffer( "cache_pending", torch.tensor(cache_pending, dtype=bool), ) self.register_buffer( "_prev_nehvi", torch.tensor(0.0, dtype=ref_point.dtype, device=ref_point.device), ) self.register_buffer( "_max_iep", torch.tensor(max_iep, dtype=torch.long), ) self.register_buffer( "incremental_nehvi", torch.tensor(incremental_nehvi, dtype=torch.bool), ) # Base sampler is initialized in _set_cell_bounds. self.base_sampler = None if X_pending is not None: # This will call self._set_cell_bounds if the number of pending # points is greater than self._max_iep. self.set_X_pending(X_pending) # In the case that X_pending is not None, but there are fewer than # max_iep pending points, the box decompositions are not performed in # set_X_pending. Therefore, we need to perform a box decomposition over # f(X_baseline) here. if X_pending is None or X_pending.shape[-2] <= self._max_iep: self._set_cell_bounds(num_new_points=X_baseline.shape[0]) # Set q_in=-1 to so that self.sampler is updated at the next forward call. self.q_in = -1 @property def X_baseline(self) -> Tensor: r"""Return X_baseline augmented with pending points cached using CBD.""" return self._X_baseline_and_pending def _compute_initial_hvs(self, obj: Tensor, feas: Optional[Tensor] = None) -> None: r"""Compute hypervolume dominated by f(X_baseline) under each sample. Args: obj: A `sample_shape x batch_shape x n x m`-dim tensor of samples of objectives. feas: `sample_shape x batch_shape x n`-dim tensor of samples of feasibility indicators. """ initial_hvs = [] for i, sample in enumerate(obj): if self.constraints is not None: sample = sample[feas[i]] dominated_partitioning = DominatedPartitioning( ref_point=self.ref_point, Y=sample, ) hv = dominated_partitioning.compute_hypervolume() initial_hvs.append(hv) self.register_buffer( "_initial_hvs", torch.tensor(initial_hvs, dtype=obj.dtype, device=obj.device).view( self._batch_sample_shape, *obj.shape[-2:] ), ) def _set_cell_bounds(self, num_new_points: int) -> None: r"""Compute the box decomposition under each posterior sample. Args: num_new_points: The number of new points (beyond the points in X_baseline) that were used in the previous box decomposition. In the first box decomposition, this should be the number of points in X_baseline. """ feas = None if self.X_baseline.shape[0] > 0: with torch.no_grad(): posterior = self.model.posterior(self.X_baseline) # Reset sampler, accounting for possible one-to-many transform. self.q_in = -1 if self.base_sampler is None: # Initialize the base sampler if needed. samples = self.get_posterior_samples(posterior) self.base_sampler = deepcopy(self.sampler) else: samples = self.base_sampler(posterior) n_w = posterior._extended_shape()[-2] // self.X_baseline.shape[-2] self._set_sampler(q_in=num_new_points * n_w, posterior=posterior) # cache posterior if self._cache_root: # Note that this implicitly uses LinearOperator's caching to check if # the proper root decomposition has already been cached to # `posterior.mvn.lazy_covariance_matrix`, which it may have been in # the call to `self.base_sampler`, and computes it if not found self._baseline_L = self._compute_root_decomposition(posterior=posterior) obj = self.objective(samples, X=self.X_baseline) if self.constraints is not None: feas = torch.stack( [c(samples) <= 0 for c in self.constraints], dim=0 ).all(dim=0) else: sample_shape = ( self.sampler.sample_shape if self.sampler is not None else self._default_sample_shape ) obj = torch.empty( *sample_shape, 0, self.ref_point.shape[-1], dtype=self.ref_point.dtype, device=self.ref_point.device, ) self._batch_sample_shape = obj.shape[:-2] # collapse batch dimensions # use numel() rather than view(-1) to handle case of no baseline points new_batch_shape = self._batch_sample_shape.numel() obj = obj.view(new_batch_shape, *obj.shape[-2:]) if self.constraints is not None and feas is not None: feas = feas.view(new_batch_shape, *feas.shape[-1:]) if self.partitioning is None and not self.incremental_nehvi: self._compute_initial_hvs(obj=obj, feas=feas) if self.ref_point.shape[-1] > 2: # the partitioning algorithms run faster on the CPU # due to advanced indexing ref_point_cpu = self.ref_point.cpu() obj_cpu = obj.cpu() if self.constraints is not None and feas is not None: feas_cpu = feas.cpu() obj_cpu = [obj_cpu[i][feas_cpu[i]] for i in range(obj.shape[0])] partitionings = [] for sample in obj_cpu: partitioning = self.p_class( ref_point=ref_point_cpu, Y=sample, **self.p_kwargs ) partitionings.append(partitioning) self.partitioning = BoxDecompositionList(*partitionings) else: # use batched partitioning obj = _pad_batch_pareto_frontier( Y=obj, ref_point=self.ref_point.unsqueeze(0).expand( obj.shape[0], self.ref_point.shape[-1] ), feasibility_mask=feas, ) self.partitioning = self.p_class( ref_point=self.ref_point, Y=obj, **self.p_kwargs ) cell_bounds = self.partitioning.get_hypercell_bounds().to(self.ref_point) cell_bounds = cell_bounds.view( 2, *self._batch_sample_shape, *cell_bounds.shape[-2:] ) self.register_buffer("cell_lower_bounds", cell_bounds[0]) self.register_buffer("cell_upper_bounds", cell_bounds[1]) def set_X_pending(self, X_pending: Optional[Tensor] = None) -> None: r"""Informs the acquisition function about pending design points. Args: X_pending: `n x d` Tensor with `n` `d`-dim design points that have been submitted for evaluation but have not yet been evaluated. """ if X_pending is None: self.X_pending = None else: if X_pending.requires_grad: warnings.warn( "Pending points require a gradient but the acquisition function" " will not provide a gradient to these points.", BotorchWarning, ) X_pending = X_pending.detach().clone() if self.cache_pending: X_baseline = torch.cat([self._X_baseline, X_pending], dim=-2) # Number of new points is the total number of points minus # (the number of previously cached pending points plus the # of number of baseline points). num_new_points = X_baseline.shape[0] - self.X_baseline.shape[0] if num_new_points > 0: if num_new_points > self._max_iep: # Set the new baseline points to include pending points. self.register_buffer("_X_baseline_and_pending", X_baseline) # Recompute box decompositions. self._set_cell_bounds(num_new_points=num_new_points) if not self.incremental_nehvi: self._prev_nehvi = ( (self._hypervolumes - self._initial_hvs) .clamp_min(0.0) .mean() ) # Set to None so that pending points are not concatenated in # forward. self.X_pending = None # Set q_in=-1 to so that self.sampler is updated at the next # forward call. self.q_in = -1 else: self.X_pending = X_pending[-num_new_points:] else: self.X_pending = X_pending @property def _hypervolumes(self) -> Tensor: r"""Compute hypervolume over X_baseline under each posterior sample. Returns: A `n_samples`-dim tensor of hypervolumes. """ return ( self.partitioning.compute_hypervolume() .to(self.ref_point) # for m > 2, the partitioning is on the CPU .view(self._batch_sample_shape) ) @concatenate_pending_points @t_batch_mode_transform() def forward(self, X: Tensor) -> Tensor: X_full = torch.cat([match_batch_shape(self.X_baseline, X), X], dim=-2) # Note: it is important to compute the full posterior over `(X_baseline, X)` # to ensure that we properly sample `f(X)` from the joint distribution ` # `f(X_baseline, X) ~ P(f | D)` given that we can already fixed the sampled # function values for `f(X_baseline)`. # TODO: improve efficiency by not recomputing baseline-baseline # covariance matrix. posterior = self.model.posterior(X_full) # Account for possible one-to-many transform and the MCMC batch dimension in # `SaasFullyBayesianSingleTaskGP` event_shape_lag = 1 if is_fully_bayesian(self.model) else 2 n_w = ( posterior._extended_shape()[X_full.dim() - event_shape_lag] // X_full.shape[-2] ) q_in = X.shape[-2] * n_w self._set_sampler(q_in=q_in, posterior=posterior) samples = self._get_f_X_samples(posterior=posterior, q_in=q_in) # Add previous nehvi from pending points. return self._compute_qehvi(samples=samples, X=X) + self._prev_nehvi
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. r""" Acquisition functions for joint entropy search for Bayesian optimization (JES). References: .. [Tu2022] B. Tu, A. Gandy, N. Kantas and B.Shafei. Joint Entropy Search for Multi-Objective Bayesian Optimization. Advances in Neural Information Processing Systems, 35. 2022. """ from __future__ import annotations from abc import abstractmethod from math import pi from typing import Any, Optional, Tuple, Union import torch from botorch import settings from botorch.acquisition.acquisition import AcquisitionFunction, MCSamplerMixin from botorch.exceptions.errors import UnsupportedError from botorch.models.model import Model from botorch.models.model_list_gp_regression import ModelListGP from botorch.models.utils import fantasize as fantasize_flag from botorch.posteriors.gpytorch import GPyTorchPosterior from botorch.sampling.normal import SobolQMCNormalSampler from botorch.utils.transforms import concatenate_pending_points, t_batch_mode_transform from torch import Tensor from torch.distributions import Normal class LowerBoundMultiObjectiveEntropySearch(AcquisitionFunction, MCSamplerMixin): r"""Abstract base class for the lower bound multi-objective entropy search acquisition functions. """ def __init__( self, model: Model, pareto_sets: Tensor, pareto_fronts: Tensor, hypercell_bounds: Tensor, X_pending: Optional[Tensor] = None, estimation_type: str = "LB", num_samples: int = 64, **kwargs: Any, ) -> None: r"""Lower bound multi-objective entropy search acquisition function. Args: model: A fitted batch model with 'M' number of outputs. pareto_sets: A `num_pareto_samples x num_pareto_points x d`-dim Tensor containing the sampled Pareto optimal sets of inputs. pareto_fronts: A `num_pareto_samples x num_pareto_points x M`-dim Tensor containing the sampled Pareto optimal sets of outputs. hypercell_bounds: A `num_pareto_samples x 2 x J x M`-dim Tensor containing the hyper-rectangle bounds for integration, where `J` is the number of hyper-rectangles. In the unconstrained case, this gives the partition of the dominated space. In the constrained case, this gives the partition of the feasible dominated space union the infeasible space. X_pending: A `m x d`-dim Tensor of `m` design points that have been submitted for function evaluation, but have not yet been evaluated. estimation_type: A string to determine which entropy estimate is computed: "0", "LB", "LB2", or "MC". num_samples: The number of Monte Carlo samples for the Monte Carlo estimate. """ super().__init__(model=model) sampler = SobolQMCNormalSampler(sample_shape=torch.Size([num_samples])) MCSamplerMixin.__init__(self, sampler=sampler) # Batch GP models (e.g. fantasized models) are not currently supported if isinstance(model, ModelListGP): train_X = model.models[0].train_inputs[0] else: train_X = model.train_inputs[0] if (model.num_outputs > 1 and train_X.ndim > 3) or ( model.num_outputs == 1 and train_X.ndim > 2 ): raise NotImplementedError( "Batch GP models (e.g. fantasized models) are not supported." ) self.initial_model = model if (pareto_sets is not None and pareto_sets.ndim != 3) or ( pareto_fronts is not None and pareto_fronts.ndim != 3 ): raise UnsupportedError( "The Pareto set and front should have a shape of " "`num_pareto_samples x num_pareto_points x input_dim` and " "`num_pareto_samples x num_pareto_points x num_objectives`, " "respectively" ) else: self.pareto_sets = pareto_sets self.pareto_fronts = pareto_fronts if hypercell_bounds.ndim != 4: raise UnsupportedError( "The hypercell_bounds should have a shape of " "`num_pareto_samples x 2 x num_boxes x num_objectives`." ) else: self.hypercell_bounds = hypercell_bounds self.num_pareto_samples = hypercell_bounds.shape[0] self.estimation_type = estimation_type estimation_types = ["0", "LB", "LB2", "MC"] if estimation_type not in estimation_types: raise NotImplementedError( "Currently the only supported estimation type are: " + ", ".join(f'"{h}"' for h in estimation_types) + "." ) self.set_X_pending(X_pending) @abstractmethod def _compute_posterior_statistics( self, X: Tensor ) -> dict[str, Union[GPyTorchPosterior, Tensor]]: r"""Compute the posterior statistics. Args: X: A `batch_shape x q x d`-dim Tensor of inputs. Returns: A dictionary containing the posterior variables used to estimate the entropy. - "initial_entropy": A `batch_shape`-dim Tensor containing the entropy of the Gaussian random variable `p(Y| X, D_n)`. - "posterior_mean": A `batch_shape x num_pareto_samples x q x 1 x M`-dim Tensor containing the posterior mean at the input `X`. - "posterior_variance": A `batch_shape x num_pareto_samples x q x 1 x M` -dim Tensor containing the posterior variance at the input `X` excluding the observation noise. - "observation_noise": A `batch_shape x num_pareto_samples x q x 1 x M` -dim Tensor containing the observation noise at the input `X`. - "posterior_with_noise": The posterior distribution at `X` which includes the observation noise. This is used to compute the marginal log-probabilities with respect to `p(y| x, D_n)` for `x` in `X`. """ pass # pragma: no cover @abstractmethod def _compute_monte_carlo_variables( self, posterior: GPyTorchPosterior ) -> Tuple[Tensor, Tensor]: r"""Compute the samples and log-probability associated with a posterior distribution. Args: posterior: A posterior distribution. Returns: A two-element tuple containing: - samples: A `num_mc_samples x batch_shape x num_pareto_samples x q x 1 x M`-dim Tensor containing the Monte Carlo samples. - samples_log_prob: A `num_mc_samples x batch_shape x num_pareto_samples x q`-dim Tensor containing the log-probabilities of the Monte Carlo samples. """ pass # pragma: no cover def _compute_lower_bound_information_gain(self, X: Tensor) -> Tensor: r"""Evaluates the lower bound information gain at the design points `X`. Args: X: A `batch_shape x q x d`-dim Tensor of `batch_shape` t-batches with `q` `d`-dim design points each. Returns: A `batch_shape`-dim Tensor of acquisition values at the given design points `X`. """ posterior_statistics = self._compute_posterior_statistics(X) initial_entropy = posterior_statistics["initial_entropy"] post_mean = posterior_statistics["posterior_mean"] post_var = posterior_statistics["posterior_variance"] obs_noise = posterior_statistics["observation_noise"] # Estimate the expected conditional entropy. # `batch_shape x q` dim Tensor of entropy estimates if self.estimation_type == "0": conditional_entropy = _compute_entropy_noiseless( hypercell_bounds=self.hypercell_bounds, mean=post_mean, variance=post_var, observation_noise=obs_noise, ) elif self.estimation_type == "LB": conditional_entropy = _compute_entropy_upper_bound( hypercell_bounds=self.hypercell_bounds, mean=post_mean, variance=post_var, observation_noise=obs_noise, only_diagonal=False, ) elif self.estimation_type == "LB2": conditional_entropy = _compute_entropy_upper_bound( hypercell_bounds=self.hypercell_bounds, mean=post_mean, variance=post_var, observation_noise=obs_noise, only_diagonal=True, ) elif self.estimation_type == "MC": posterior_with_noise = posterior_statistics["posterior_with_noise"] samples, samples_log_prob = self._compute_monte_carlo_variables( posterior_with_noise ) conditional_entropy = _compute_entropy_monte_carlo( hypercell_bounds=self.hypercell_bounds, mean=post_mean, variance=post_var, observation_noise=obs_noise, samples=samples, samples_log_prob=samples_log_prob, ) # Sum over the batch. return initial_entropy - conditional_entropy.sum(dim=-1) @abstractmethod def forward(self, X: Tensor) -> Tensor: r"""Compute lower bound multi-objective entropy search at the design points `X`. Args: X: A `batch_shape x q x d`-dim Tensor of `batch_shape` t-batches with `q` `d`-dim design points each. Returns: A `batch_shape`-dim Tensor of acquisition values at the given design points `X`. """ pass # pragma: no cover class qLowerBoundMultiObjectiveJointEntropySearch( LowerBoundMultiObjectiveEntropySearch ): r"""The acquisition function for the multi-objective joint entropy search, where the batches `q > 1` are supported through the lower bound formulation. This acquisition function computes the mutual information between the observation at a candidate point `X` and the Pareto optimal input-output pairs. See [Tu2022]_ for a discussion on the estimation procedure. NOTES: (i) The estimated acquisition value could be negative. (ii) The lower bound batch acquisition function might not be monotone in the sense that adding more elements to the batch does not necessarily increase the acquisition value. Specifically, the acquisition value can become smaller when more inputs are added. """ def __init__( self, model: Model, pareto_sets: Tensor, pareto_fronts: Tensor, hypercell_bounds: Tensor, X_pending: Optional[Tensor] = None, estimation_type: str = "LB", num_samples: int = 64, **kwargs: Any, ) -> None: r"""Lower bound multi-objective joint entropy search acquisition function. Args: model: A fitted batch model with 'M' number of outputs. pareto_sets: A `num_pareto_samples x num_pareto_points x d`-dim Tensor containing the sampled Pareto optimal sets of inputs. pareto_fronts: A `num_pareto_samples x num_pareto_points x M`-dim Tensor containing the sampled Pareto optimal sets of outputs. hypercell_bounds: A `num_pareto_samples x 2 x J x M`-dim Tensor containing the hyper-rectangle bounds for integration. In the unconstrained case, this gives the partition of the dominated space. In the constrained case, this gives the partition of the feasible dominated space union the infeasible space. X_pending: A `m x d`-dim Tensor of `m` design points that have been submitted for function evaluation, but have not yet been evaluated. estimation_type: A string to determine which entropy estimate is computed: "0", "LB", "LB2", or "MC". num_samples: The number of Monte Carlo samples used for the Monte Carlo estimate. """ super().__init__( model=model, pareto_sets=pareto_sets, pareto_fronts=pareto_fronts, hypercell_bounds=hypercell_bounds, X_pending=X_pending, estimation_type=estimation_type, num_samples=num_samples, ) # Condition the model on the sampled pareto optimal points. # TODO: Apparently, we need to make a call to the posterior otherwise # we run into a gpytorch runtime error: # "Fantasy observations can only be added after making predictions with a # model so that all test independent caches exist." with fantasize_flag(): with settings.propagate_grads(False): _ = self.initial_model.posterior( self.pareto_sets, observation_noise=False ) # Condition with observation noise. self.conditional_model = self.initial_model.condition_on_observations( X=self.initial_model.transform_inputs(self.pareto_sets), Y=self.pareto_fronts, ) def _compute_posterior_statistics( self, X: Tensor ) -> dict[str, Union[Tensor, GPyTorchPosterior]]: r"""Compute the posterior statistics. Args: X: A `batch_shape x q x d`-dim Tensor of inputs. Returns: A dictionary containing the posterior variables used to estimate the entropy. - "initial_entropy": A `batch_shape`-dim Tensor containing the entropy of the Gaussian random variable `p(Y| X, D_n)`. - "posterior_mean": A `batch_shape x num_pareto_samples x q x 1 x M`-dim Tensor containing the posterior mean at the input `X`. - "posterior_variance": A `batch_shape x num_pareto_samples x q x 1 x M` -dim Tensor containing the posterior variance at the input `X` excluding the observation noise. - "observation_noise": A `batch_shape x num_pareto_samples x q x 1 x M` -dim Tensor containing the observation noise at the input `X`. - "posterior_with_noise": The posterior distribution at `X` which includes the observation noise. This is used to compute the marginal log-probabilities with respect to `p(y| x, D_n)` for `x` in `X`. """ tkwargs = {"dtype": X.dtype, "device": X.device} CLAMP_LB = torch.finfo(tkwargs["dtype"]).eps # Compute the prior entropy term depending on `X`. initial_posterior_plus_noise = self.initial_model.posterior( X, observation_noise=True ) # Additional constant term. add_term = ( 0.5 * self.model.num_outputs * (1 + torch.log(2 * pi * torch.ones(1, **tkwargs))) ) # The variance initially has shape `batch_shape x (q*M) x (q*M)` # prior_entropy has shape `batch_shape`. initial_entropy = add_term + 0.5 * torch.logdet( initial_posterior_plus_noise.mvn.covariance_matrix ) posterior_statistics = {"initial_entropy": initial_entropy} # Compute the posterior entropy term. conditional_posterior_with_noise = self.conditional_model.posterior( X.unsqueeze(-2).unsqueeze(-3), observation_noise=True ) # `batch_shape x num_pareto_samples x q x 1 x M` post_mean = conditional_posterior_with_noise.mean.swapaxes(-4, -3) post_var_with_noise = conditional_posterior_with_noise.variance.clamp_min( CLAMP_LB ).swapaxes(-4, -3) # TODO: This computes the observation noise via a second evaluation of the # posterior. This step could be done better. conditional_posterior = self.conditional_model.posterior( X.unsqueeze(-2).unsqueeze(-3), observation_noise=False ) # `batch_shape x num_pareto_samples x q x 1 x M` post_var = conditional_posterior.variance.clamp_min(CLAMP_LB).swapaxes(-4, -3) obs_noise = (post_var_with_noise - post_var).clamp_min(CLAMP_LB) posterior_statistics["posterior_mean"] = post_mean posterior_statistics["posterior_variance"] = post_var posterior_statistics["observation_noise"] = obs_noise posterior_statistics["posterior_with_noise"] = conditional_posterior_with_noise return posterior_statistics def _compute_monte_carlo_variables( self, posterior: GPyTorchPosterior ) -> Tuple[Tensor, Tensor]: r"""Compute the samples and log-probability associated with the posterior distribution that conditions on the Pareto optimal points. Args: posterior: The conditional posterior distribution at an input `X`, where we have also conditioned over the `num_pareto_samples` of optimal points. Note that this posterior includes the observation noise. Returns: A two-element tuple containing - samples: A `num_mc_samples x batch_shape x num_pareto_samples x q x 1 x M`-dim Tensor containing the Monte Carlo samples. - samples_log_probs: A `num_mc_samples x batch_shape x num_pareto_samples x q`-dim Tensor containing the log-probabilities of the Monte Carlo samples. """ # `num_mc_samples x batch_shape x q x num_pareto_samples x 1 x M` samples = self.get_posterior_samples(posterior) # `num_mc_samples x batch_shape x q x num_pareto_samples` if self.model.num_outputs == 1: samples_log_prob = posterior.mvn.log_prob(samples.squeeze(-1)) else: samples_log_prob = posterior.mvn.log_prob(samples) # Swap axes to get the correct shape: # samples:`num_mc_samples x batch_shape x num_pareto_samples x q x 1 x M` # log prob:`num_mc_samples x batch_shape x num_pareto_samples x q` return samples.swapaxes(-4, -3), samples_log_prob.swapaxes(-2, -1) @concatenate_pending_points @t_batch_mode_transform() def forward(self, X: Tensor) -> Tensor: r"""Evaluates qLowerBoundMultiObjectiveJointEntropySearch at the design points `X`. Args: X: A `batch_shape x q x d`-dim Tensor of `batch_shape` t-batches with `q` `d`-dim design points each. Returns: A `batch_shape`-dim Tensor of acquisition values at the given design points `X`. """ return self._compute_lower_bound_information_gain(X) def _compute_entropy_noiseless( hypercell_bounds: Tensor, mean: Tensor, variance: Tensor, observation_noise: Tensor, ) -> Tensor: r"""Computes the entropy estimate at the design points `X` assuming noiseless observations. This is used for the JES-0 and MES-0 estimate. Args: hypercell_bounds: A `num_pareto_samples x 2 x J x M` -dim Tensor containing the box decomposition bounds, where `J = max(num_boxes)`. mean: A `batch_shape x num_pareto_samples x q x 1 x M`-dim Tensor containing the posterior mean at X. variance: A `batch_shape x num_pareto_samples x q x 1 x M`-dim Tensor containing the posterior variance at X excluding observation noise. observation_noise: A `batch_shape x num_pareto_samples x q x 1 x M`-dim Tensor containing the observation noise at X. Returns: A `batch_shape x q`-dim Tensor of entropy estimate at the given design points `X`. """ tkwargs = {"dtype": hypercell_bounds.dtype, "device": hypercell_bounds.device} CLAMP_LB = torch.finfo(tkwargs["dtype"]).eps variance_plus_noise = variance + observation_noise # Standardize the box decomposition bounds and compute normal quantities. # `batch_shape x num_pareto_samples x q x 2 x J x M` g = (hypercell_bounds.unsqueeze(-4) - mean.unsqueeze(-2)) / torch.sqrt( variance.unsqueeze(-2) ) normal = Normal(torch.zeros_like(g), torch.ones_like(g)) gcdf = normal.cdf(g) gpdf = torch.exp(normal.log_prob(g)) g_times_gpdf = g * gpdf # Compute the differences between the upper and lower terms. Wjm = (gcdf[..., 1, :, :] - gcdf[..., 0, :, :]).clamp_min(CLAMP_LB) Vjm = g_times_gpdf[..., 1, :, :] - g_times_gpdf[..., 0, :, :] # Compute W. Wj = torch.exp(torch.sum(torch.log(Wjm), dim=-1, keepdims=True)) W = torch.sum(Wj, dim=-2, keepdims=True).clamp_max(1.0) # Compute the sum of ratios. ratios = 0.5 * (Wj * (Vjm / Wjm)) / W # `batch_shape x num_pareto_samples x q x 1 x 1` ratio_term = torch.sum(ratios, dim=(-2, -1), keepdims=True) # Compute the logarithm of the variance. log_term = 0.5 * torch.log(variance_plus_noise).sum(-1, keepdims=True) # `batch_shape x num_pareto_samples x q x 1 x 1` log_term = log_term + torch.log(W) # Additional constant term. M_plus_K = mean.shape[-1] add_term = 0.5 * M_plus_K * (1 + torch.log(torch.ones(1, **tkwargs) * 2 * pi)) # `batch_shape x num_pareto_samples x q` entropy = add_term + (log_term - ratio_term).squeeze(-1).squeeze(-1) return entropy.mean(-2) def _compute_entropy_upper_bound( hypercell_bounds: Tensor, mean: Tensor, variance: Tensor, observation_noise: Tensor, only_diagonal: bool = False, ) -> Tensor: r"""Computes the entropy upper bound at the design points `X`. This is used for the JES-LB and MES-LB estimate. If `only_diagonal` is True, then this computes the entropy estimate for the JES-LB2 and MES-LB2. Args: hypercell_bounds: A `num_pareto_samples x 2 x J x M` -dim Tensor containing the box decomposition bounds, where `J` = max(num_boxes). mean: A `batch_shape x num_pareto_samples x q x 1 x M`-dim Tensor containing the posterior mean at X. variance: A `batch_shape x num_pareto_samples x q x 1 x M`-dim Tensor containing the posterior variance at X excluding observation noise. observation_noise: A `batch_shape x num_pareto_samples x q x 1 x M`-dim Tensor containing the observation noise at X. only_diagonal: If true, we only compute the diagonal elements of the variance. Returns: A `batch_shape x q`-dim Tensor of entropy estimate at the given design points `X`. """ tkwargs = {"dtype": hypercell_bounds.dtype, "device": hypercell_bounds.device} CLAMP_LB = torch.finfo(tkwargs["dtype"]).eps variance_plus_noise = variance + observation_noise # Standardize the box decomposition bounds and compute normal quantities. # `batch_shape x num_pareto_samples x q x 2 x J x M` g = (hypercell_bounds.unsqueeze(-4) - mean.unsqueeze(-2)) / torch.sqrt( variance.unsqueeze(-2) ) normal = Normal(torch.zeros_like(g), torch.ones_like(g)) gcdf = normal.cdf(g) gpdf = torch.exp(normal.log_prob(g)) g_times_gpdf = g * gpdf # Compute the differences between the upper and lower terms. Wjm = (gcdf[..., 1, :, :] - gcdf[..., 0, :, :]).clamp_min(CLAMP_LB) Vjm = g_times_gpdf[..., 1, :, :] - g_times_gpdf[..., 0, :, :] Gjm = gpdf[..., 1, :, :] - gpdf[..., 0, :, :] # Compute W. Wj = torch.exp(torch.sum(torch.log(Wjm), dim=-1, keepdims=True)) W = torch.sum(Wj, dim=-2, keepdims=True).clamp_max(1.0) Cjm = Gjm / Wjm # First moment: Rjm = Cjm * Wj / W # `batch_shape x num_pareto_samples x q x 1 x M mom1 = mean - torch.sqrt(variance) * Rjm.sum(-2, keepdims=True) # diagonal weighted sum # `batch_shape x num_pareto_samples x q x 1 x M diag_weighted_sum = (Wj * variance * Vjm / Wjm / W).sum(-2, keepdims=True) if only_diagonal: # `batch_shape x num_pareto_samples x q x 1 x M` mean_squared = mean.pow(2) cross_sum = -2 * (mean * torch.sqrt(variance) * Rjm).sum(-2, keepdims=True) # `batch_shape x num_pareto_samples x q x 1 x M` mom2 = variance_plus_noise - diag_weighted_sum + cross_sum + mean_squared var = (mom2 - mom1.pow(2)).clamp_min(CLAMP_LB) # `batch_shape x num_pareto_samples x q log_det_term = 0.5 * torch.log(var).sum(dim=-1).squeeze(-1) else: # First moment x First moment # `batch_shape x num_pareto_samples x q x 1 x M x M cross_mom1 = torch.einsum("...i,...j->...ij", mom1, mom1) # Second moment: # `batch_shape x num_pareto_samples x q x 1 x M x M # firstly compute the general terms mom2_cross1 = -torch.einsum( "...i,...j->...ij", mean, torch.sqrt(variance) * Cjm ) mom2_cross2 = -torch.einsum( "...i,...j->...ji", mean, torch.sqrt(variance) * Cjm ) mom2_mean_squared = torch.einsum("...i,...j->...ij", mean, mean) mom2_weighted_sum = ( (mom2_cross1 + mom2_cross2) * Wj.unsqueeze(-1) / W.unsqueeze(-1) ).sum(-3, keepdims=True) mom2_weighted_sum = mom2_weighted_sum + mom2_mean_squared # Compute the additional off-diagonal terms. mom2_off_diag = torch.einsum( "...i,...j->...ij", torch.sqrt(variance) * Cjm, torch.sqrt(variance) * Cjm ) mom2_off_diag_sum = (mom2_off_diag * Wj.unsqueeze(-1) / W.unsqueeze(-1)).sum( -3, keepdims=True ) # Compute the diagonal terms and subtract the diagonal computed before. init_diag = torch.diagonal(mom2_off_diag_sum, dim1=-2, dim2=-1) diag_weighted_sum = torch.diag_embed( variance_plus_noise - diag_weighted_sum - init_diag ) mom2 = mom2_weighted_sum + mom2_off_diag_sum + diag_weighted_sum # Compute the variance var = (mom2 - cross_mom1).squeeze(-3) # Jitter the diagonal. # The jitter is probably not needed here at all. jitter_diag = 1e-6 * torch.diag_embed(torch.ones(var.shape[:-1], **tkwargs)) log_det_term = 0.5 * torch.logdet(var + jitter_diag) # Additional terms. M_plus_K = mean.shape[-1] add_term = 0.5 * M_plus_K * (1 + torch.log(torch.ones(1, **tkwargs) * 2 * pi)) # `batch_shape x num_pareto_samples x q entropy = add_term + log_det_term return entropy.mean(-2) def _compute_entropy_monte_carlo( hypercell_bounds: Tensor, mean: Tensor, variance: Tensor, observation_noise: Tensor, samples: Tensor, samples_log_prob: Tensor, ) -> Tensor: r"""Computes the Monte Carlo entropy at the design points `X`. This is used for the JES-MC and MES-MC estimate. Args: hypercell_bounds: A `num_pareto_samples x 2 x J x M`-dim Tensor containing the box decomposition bounds, where `J` = max(num_boxes). mean: A `batch_shape x num_pareto_samples x q x 1 x M`-dim Tensor containing the posterior mean at X. variance: A `batch_shape x num_pareto_samples x q x 1 x M`-dim Tensor containing the posterior variance at X excluding observation noise. observation_noise: A `batch_shape x num_pareto_samples x q x 1 x M`-dim Tensor containing the observation noise at X. samples: A `num_mc_samples x batch_shape x num_pareto_samples x q x 1 x M`-dim Tensor containing the noisy samples at `X` from the posterior conditioned on the Pareto optimal points. samples_log_prob: A `num_mc_samples x batch_shape x num_pareto_samples x q`-dim Tensor containing the log probability densities of the samples. Returns: A `batch_shape x q`-dim Tensor of entropy estimate at the given design points `X`. """ tkwargs = {"dtype": hypercell_bounds.dtype, "device": hypercell_bounds.device} CLAMP_LB = torch.finfo(tkwargs["dtype"]).eps variance_plus_noise = variance + observation_noise #################################################################### # Standardize the box decomposition bounds and compute normal quantities. # `batch_shape x num_pareto_samples x q x 2 x J x M` g = (hypercell_bounds.unsqueeze(-4) - mean.unsqueeze(-2)) / torch.sqrt( variance.unsqueeze(-2) ) # `batch_shape x num_pareto_samples x q x 1 x M` rho = torch.sqrt(variance / variance_plus_noise) # Compute the initial normal quantities. normal = Normal(torch.zeros_like(g), torch.ones_like(g)) gcdf = normal.cdf(g) # Compute the differences between the upper and lower terms. Wjm = (gcdf[..., 1, :, :] - gcdf[..., 0, :, :]).clamp_min(CLAMP_LB) # Compute W. Wj = torch.exp(torch.sum(torch.log(Wjm), dim=-1, keepdims=True)) # `batch_shape x num_pareto_samples x q x 1 x 1` W = torch.sum(Wj, dim=-2, keepdims=True).clamp_max(1.0) #################################################################### g = g.unsqueeze(0) rho = rho.unsqueeze(0).unsqueeze(-2) # `num_mc_samples x batch_shape x num_pareto_samples x q x 1 x 1 x M` z = ((samples - mean) / torch.sqrt(variance_plus_noise)).unsqueeze(-2) # `num_mc_samples x batch_shape x num_pareto_samples x q x 2 x J x M` # Clamping here is important because `1 - rho^2 = 0` at an input where # observation noise is zero. g_new = (g - rho * z) / torch.sqrt((1 - rho * rho).clamp_min(CLAMP_LB)) # Compute the initial normal quantities. normal_new = Normal(torch.zeros_like(g_new), torch.ones_like(g_new)) gcdf_new = normal_new.cdf(g_new) # Compute the differences between the upper and lower terms. Wjm_new = (gcdf_new[..., 1, :, :] - gcdf_new[..., 0, :, :]).clamp_min(CLAMP_LB) # Compute W+. Wj_new = torch.exp(torch.sum(torch.log(Wjm_new), dim=-1, keepdims=True)) # `num_mc_samples x batch_shape x num_pareto_samples x q x 1 x 1` W_new = torch.sum(Wj_new, dim=-2, keepdims=True).clamp_max(1.0) #################################################################### # W_ratio = W+ / W W_ratio = torch.exp(torch.log(W_new) - torch.log(W).unsqueeze(0)) samples_log_prob = samples_log_prob.unsqueeze(-1).unsqueeze(-1) # Compute the Monte Carlo average: - E[W_ratio * log(W+ p(y))] + log(W) log_term = torch.log(W_new) + samples_log_prob mc_estimate = -(W_ratio * log_term).mean(0) # `batch_shape x num_pareto_samples x q entropy = (mc_estimate + torch.log(W)).squeeze(-1).squeeze(-1) # An alternative Monte Carlo estimate: - E[W_ratio * log(W_ratio p(y))] # log_term = torch.log(W_ratio) + samples_log_prob # mc_estimate = - (W_ratio * log_term).mean(0) # # `batch_shape x num_pareto_samples x q # entropy = mc_estimate.squeeze(-1).squeeze(-1) return entropy.mean(-2)
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. r""" Utilities for multi-objective acquisition functions. """ from __future__ import annotations import math import warnings from math import ceil from typing import Any, Callable, Dict, List, Optional, Tuple import torch from botorch.acquisition import monte_carlo # noqa F401 from botorch.acquisition.multi_objective.objective import ( IdentityMCMultiOutputObjective, MCMultiOutputObjective, ) from botorch.exceptions.errors import UnsupportedError from botorch.exceptions.warnings import BotorchWarning from botorch.models.deterministic import GenericDeterministicModel from botorch.models.fully_bayesian import MCMC_DIM from botorch.models.model import Model from botorch.sampling.get_sampler import get_sampler from botorch.utils.gp_sampling import get_gp_samples from botorch.utils.multi_objective.box_decompositions.box_decomposition import ( BoxDecomposition, ) from botorch.utils.multi_objective.box_decompositions.box_decomposition_list import ( BoxDecompositionList, ) from botorch.utils.multi_objective.box_decompositions.dominated import ( DominatedPartitioning, ) from botorch.utils.multi_objective.pareto import is_non_dominated from botorch.utils.sampling import draw_sobol_samples from botorch.utils.transforms import is_fully_bayesian, normalize_indices from torch import Tensor def get_default_partitioning_alpha(num_objectives: int) -> float: r"""Determines an approximation level based on the number of objectives. If `alpha` is 0, FastNondominatedPartitioning should be used. Otherwise, an approximate NondominatedPartitioning should be used with approximation level `alpha`. Args: num_objectives: the number of objectives. Returns: The approximation level `alpha`. """ if num_objectives <= 4: return 0.0 elif num_objectives > 6: warnings.warn("EHVI works best for less than 7 objectives.", BotorchWarning) return 10 ** (-8 + num_objectives) def prune_inferior_points_multi_objective( model: Model, X: Tensor, ref_point: Tensor, objective: Optional[MCMultiOutputObjective] = None, constraints: Optional[List[Callable[[Tensor], Tensor]]] = None, num_samples: int = 2048, max_frac: float = 1.0, marginalize_dim: Optional[int] = None, ) -> Tensor: r"""Prune points from an input tensor that are unlikely to be pareto optimal. Given a model, an objective, and an input tensor `X`, this function returns the subset of points in `X` that have some probability of being pareto optimal, better than the reference point, and feasible. This function uses sampling to estimate the probabilities, the higher the number of points `n` in `X` the higher the number of samples `num_samples` should be to obtain accurate estimates. Args: model: A fitted model. Batched models are currently not supported. X: An input tensor of shape `n x d`. Batched inputs are currently not supported. ref_point: The reference point. objective: The objective under which to evaluate the posterior. constraints: A list of callables, each mapping a Tensor of dimension `sample_shape x batch-shape x q x m` to a Tensor of dimension `sample_shape x batch-shape x q`, where negative values imply feasibility. num_samples: The number of samples used to compute empirical probabilities of being the best point. max_frac: The maximum fraction of points to retain. Must satisfy `0 < max_frac <= 1`. Ensures that the number of elements in the returned tensor does not exceed `ceil(max_frac * n)`. marginalize_dim: A batch dimension that should be marginalized. For example, this is useful when using a batched fully Bayesian model. Returns: A `n' x d` with subset of points in `X`, where n' = min(N_nz, ceil(max_frac * n)) with `N_nz` the number of points in `X` that have non-zero (empirical, under `num_samples` samples) probability of being pareto optimal. """ if marginalize_dim is None and is_fully_bayesian(model): # TODO: Properly deal with marginalizing fully Bayesian models marginalize_dim = MCMC_DIM if X.ndim > 2: # TODO: support batched inputs (req. dealing with ragged tensors) raise UnsupportedError( "Batched inputs `X` are currently unsupported by " "prune_inferior_points_multi_objective" ) max_points = math.ceil(max_frac * X.size(-2)) if max_points < 1 or max_points > X.size(-2): raise ValueError(f"max_frac must take values in (0, 1], is {max_frac}") with torch.no_grad(): posterior = model.posterior(X=X) sampler = get_sampler(posterior, sample_shape=torch.Size([num_samples])) samples = sampler(posterior) if objective is None: objective = IdentityMCMultiOutputObjective() obj_vals = objective(samples, X=X) if obj_vals.ndim > 3: if obj_vals.ndim == 4 and marginalize_dim is not None: obj_vals = obj_vals.mean(dim=marginalize_dim) else: # TODO: support batched inputs (req. dealing with ragged tensors) raise UnsupportedError( "Models with multiple batch dims are currently unsupported by" " prune_inferior_points_multi_objective." ) if constraints is not None: infeas = torch.stack([c(samples) > 0 for c in constraints], dim=0).any(dim=0) if infeas.ndim == 3 and marginalize_dim is not None: # make sure marginalize_dim is not negative if marginalize_dim < 0: # add 1 to the normalize marginalize_dim since we have already # removed the output dim marginalize_dim = ( 1 + normalize_indices([marginalize_dim], d=infeas.ndim)[0] ) infeas = infeas.float().mean(dim=marginalize_dim).round().bool() # set infeasible points to be the ref point obj_vals[infeas] = ref_point pareto_mask = is_non_dominated(obj_vals, deduplicate=False) & ( obj_vals > ref_point ).all(dim=-1) probs = pareto_mask.to(dtype=X.dtype).mean(dim=0) idcs = probs.nonzero().view(-1) if idcs.shape[0] > max_points: counts, order_idcs = torch.sort(probs, descending=True) idcs = order_idcs[:max_points] effective_n_w = obj_vals.shape[-2] // X.shape[-2] idcs = (idcs / effective_n_w).long().unique() return X[idcs] def compute_sample_box_decomposition( pareto_fronts: Tensor, partitioning: BoxDecomposition = DominatedPartitioning, maximize: bool = True, num_constraints: Optional[int] = 0, ) -> Tensor: r"""Computes the box decomposition associated with some sampled optimal objectives. This also supports the single-objective and constrained optimization setting. An objective `y` is feasible if `y <= 0`. To take advantage of batch computations, we pad the hypercell bounds with a `2 x (M + K)`-dim Tensor of zeros `[0, 0]`. Args: pareto_fronts: A `num_pareto_samples x num_pareto_points x M` dim Tensor containing the sampled optimal set of objectives. partitioning: A `BoxDecomposition` module that is used to obtain the hyper-rectangle bounds for integration. In the unconstrained case, this gives the partition of the dominated space. In the constrained case, this gives the partition of the feasible dominated space union the infeasible space. maximize: If true, the box-decomposition is computed assuming maximization. num_constraints: The number of constraints `K`. Returns: A `num_pareto_samples x 2 x J x (M + K)`-dim Tensor containing the bounds for the hyper-rectangles. The number `J` is the smallest number of boxes needed to partition all the Pareto samples. """ tkwargs = {"dtype": pareto_fronts.dtype, "device": pareto_fronts.device} # We will later compute `norm.log_prob(NEG_INF)`, this is `-inf` if `NEG_INF` is # too small. NEG_INF = -1e10 if pareto_fronts.ndim != 3: raise UnsupportedError( "Currently this only supports Pareto fronts of the shape " "`num_pareto_samples x num_pareto_points x num_objectives`." ) num_pareto_samples = pareto_fronts.shape[0] M = pareto_fronts.shape[-1] K = num_constraints ref_point = torch.ones(M, **tkwargs) * NEG_INF weight = 1.0 if maximize else -1.0 if M == 1: # Only consider a Pareto front with one element. extreme_values = weight * torch.max(weight * pareto_fronts, dim=-2).values ref_point = weight * ref_point.expand(extreme_values.shape) if maximize: hypercell_bounds = torch.stack( [ref_point, extreme_values], axis=-2 ).unsqueeze(-1) else: hypercell_bounds = torch.stack( [extreme_values, ref_point], axis=-2 ).unsqueeze(-1) else: bd_list = [] for i in range(num_pareto_samples): bd_list = bd_list + [ partitioning(ref_point=ref_point, Y=weight * pareto_fronts[i, :, :]) ] # `num_pareto_samples x 2 x J x (M + K)` hypercell_bounds = ( BoxDecompositionList(*bd_list).get_hypercell_bounds().movedim(0, 1) ) # If minimizing, then the bounds should be negated and flipped if not maximize: hypercell_bounds = weight * torch.flip(hypercell_bounds, dims=[1]) # Add an extra box for the inequality constraint. if K > 0: # `num_pareto_samples x 2 x (J - 1) x K` feasible_boxes = torch.zeros( hypercell_bounds.shape[:-1] + torch.Size([K]), **tkwargs ) feasible_boxes[..., 0, :, :] = NEG_INF # `num_pareto_samples x 2 x (J - 1) x (M + K)` hypercell_bounds = torch.cat([hypercell_bounds, feasible_boxes], dim=-1) # `num_pareto_samples x 2 x 1 x (M + K)` infeasible_box = torch.zeros( hypercell_bounds.shape[:-2] + torch.Size([1, M + K]), **tkwargs ) infeasible_box[..., 1, :, M:] = -NEG_INF infeasible_box[..., 0, :, 0:M] = NEG_INF infeasible_box[..., 1, :, 0:M] = -NEG_INF # `num_pareto_samples x 2 x J x (M + K)` hypercell_bounds = torch.cat([hypercell_bounds, infeasible_box], dim=-2) # `num_pareto_samples x 2 x J x (M + K)` return hypercell_bounds def random_search_optimizer( model: GenericDeterministicModel, bounds: Tensor, num_points: int, maximize: bool, pop_size: int = 1024, max_tries: int = 10, ) -> Tuple[Tensor, Tensor]: r"""Optimize a function via random search. Args: model: The model. bounds: A `2 x d`-dim Tensor containing the input bounds. num_points: The number of optimal points to be outputted. maximize: If true, we consider a maximization problem. pop_size: The number of function evaluations per try. max_tries: The maximum number of tries. Returns: A two-element tuple containing - A `num_points x d`-dim Tensor containing the collection of optimal inputs. - A `num_points x M`-dim Tensor containing the collection of optimal objectives. """ tkwargs = {"dtype": bounds.dtype, "device": bounds.device} weight = 1.0 if maximize else -1.0 optimal_inputs = torch.tensor([], **tkwargs) optimal_outputs = torch.tensor([], **tkwargs) num_tries = 0 ratio = 2 while ratio > 1 and num_tries < max_tries: X = draw_sobol_samples(bounds=bounds, n=pop_size, q=1).squeeze(-2) Y = model.posterior(X).mean X_aug = torch.cat([optimal_inputs, X], dim=0) Y_aug = torch.cat([optimal_outputs, Y], dim=0) pareto_mask = is_non_dominated(weight * Y_aug) optimal_inputs = X_aug[pareto_mask] optimal_outputs = Y_aug[pareto_mask] num_found = len(optimal_inputs) ratio = ceil(num_points / num_found) num_tries = num_tries + 1 # If maximum number of retries exceeded throw out a runtime error. if ratio > 1: error_text = f"Only found {num_found} optimal points instead of {num_points}." raise RuntimeError(error_text) else: return optimal_inputs[:num_points], optimal_outputs[:num_points] def sample_optimal_points( model: Model, bounds: Tensor, num_samples: int, num_points: int, optimizer: Callable[ [GenericDeterministicModel, Tensor, int, bool, Any], Tuple[Tensor, Tensor] ] = random_search_optimizer, num_rff_features: int = 512, maximize: bool = True, optimizer_kwargs: Optional[Dict[str, Any]] = None, ) -> Tuple[Tensor, Tensor]: r"""Compute a collection of optimal inputs and outputs from samples of a Gaussian Process (GP). Steps: (1) The samples are generated using random Fourier features (RFFs). (2) The samples are optimized sequentially using an optimizer. TODO: We can generalize the GP sampling step to accommodate for other sampling strategies rather than restricting to RFFs e.g. decoupled sampling. TODO: Currently this defaults to random search optimization, might want to explore some other alternatives. Args: model: The model. This does not support models which include fantasy observations. bounds: A `2 x d`-dim Tensor containing the input bounds. num_samples: The number of GP samples. num_points: The number of optimal points to be outputted. optimizer: A callable that solves the deterministic optimization problem. num_rff_features: The number of random Fourier features. maximize: If true, we consider a maximization problem. optimizer_kwargs: The additional arguments for the optimizer. Returns: A two-element tuple containing - A `num_samples x num_points x d`-dim Tensor containing the collection of optimal inputs. - A `num_samples x num_points x M`-dim Tensor containing the collection of optimal objectives. """ tkwargs = {"dtype": bounds.dtype, "device": bounds.device} M = model.num_outputs d = bounds.shape[-1] if M == 1: if num_points > 1: raise UnsupportedError( "For single-objective optimization `num_points` should be 1." ) if optimizer_kwargs is None: optimizer_kwargs = {} pareto_sets = torch.zeros((num_samples, num_points, d), **tkwargs) pareto_fronts = torch.zeros((num_samples, num_points, M), **tkwargs) for i in range(num_samples): sample_i = get_gp_samples( model=model, num_outputs=M, n_samples=1, num_rff_features=num_rff_features ) ps_i, pf_i = optimizer( model=sample_i, bounds=bounds, num_points=num_points, maximize=maximize, **optimizer_kwargs, ) pareto_sets[i, ...] = ps_i pareto_fronts[i, ...] = pf_i return pareto_sets, pareto_fronts
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. r""" Acquisition function for predictive entropy search for multi-objective Bayesian optimization (PES). The code does not support constraint handling. NOTE: The PES acquisition might not be differentiable. As a result, we recommend optimizing the acquisition function using finite differences. References: .. [Garrido-Merchan2019] E. Garrido-Merchan and D. Hernandez-Lobato. Predictive Entropy Search for Multi-objective Bayesian Optimization with Constraints. Neurocomputing. 2019. The computation follows the procedure described in the supplementary material: https://www.sciencedirect.com/science/article/abs/pii/S0925231219308525 """ from __future__ import annotations from typing import Any, Optional, Tuple import torch from botorch.acquisition.acquisition import AcquisitionFunction from botorch.exceptions import InputDataError from botorch.exceptions.errors import UnsupportedError from botorch.models.model import Model from botorch.models.model_list_gp_regression import ModelListGP from botorch.models.utils import check_no_nans from botorch.utils.transforms import concatenate_pending_points, t_batch_mode_transform from torch import Tensor from torch.distributions import Normal class qMultiObjectivePredictiveEntropySearch(AcquisitionFunction): r"""The acquisition function for Predictive Entropy Search. The code supports both single and multiple objectives as well as batching. This acquisition function approximates the mutual information between the observation at a candidate point `X` and the Pareto optimal input using the moment-matching procedure known as expectation propagation (EP). See the Appendix of [Garrido-Merchan2019]_ for the description of the EP procedure. IMPORTANT NOTES: (i) The PES acquisition function estimated using EP is sometimes not differentiable, and therefore we advise using a finite-difference estimate of the gradient as opposed to the gradients identified using automatic differentiation, which occasionally outputs `nan` values. The source of this differentiability is in the `_update_damping` function, which finds the damping factor `a` that is used to update the EP parameters `a * param_new + (1 - a) * param_old`. The damping factor has to ensure that the updated covariance matrices, `a * cov_f_new + (1 - a) cov_f_old`, is positive semi-definiteness. We follow the original paper, which identifies `a` via a successive halving scheme i.e. we check `a=1` then `a=0.5` etc. This procedure means `a` is a function of the test input `X`. This function is not differentiable in `X`. (ii) EP could potentially fail for a number of reasons: (a) When the sampled Pareto optimal points `x_p` is poor compared to the training or testing data `x_n`. (b) When the training or testing data `x_n` is close the Pareto optimal points `x_p`. (c) When the convergence threshold is set too small. Problem (a) occurs because we have to compute the variable: `alpha = (mean(x_n) - mean(x_p)) / std(x_n - x_p)`, which becomes very large when `x_n` is better than `x_p` with high-probability. This leads to a log(0) error when we compute `log(1 - cdf(alpha))`. We have pre-emptively clamped some values depending on `1`alpha` in order to mitigate this. Problem (b) occurs because we have to compute matrix inverses for the two-dimensional marginals (x_n, x_p). To address this we manually add jitter to the diagonal of the covariance matrix i.e. `ep_jitter` when training and `test_jitter` when testing. The default choice is not always appropriate because the same jitter is used for the inversion of the covariance and precision matrix, which are on different scales. TODO: come up with strategy to adaptively update the jitter. Problem (c) occurs because a smaller threshold usually means that more EP iterations are required. Running too many EP iterations could lead to invertibility problems such as in problem (b). Setting a larger threshold or reducing the number of EP iterations could alleviate this. (iii) The estimated acquisition value could be negative. """ def __init__( self, model: Model, pareto_sets: Tensor, maximize: bool = True, X_pending: Optional[Tensor] = None, max_ep_iterations: int = 250, ep_jitter: float = 1e-4, test_jitter: float = 1e-4, threshold: float = 1e-2, **kwargs: Any, ) -> None: r"""Multi-objective predictive entropy search acquisition function. Args: model: A fitted batched model with `M` number of outputs. pareto_sets: A `num_pareto_samples x P x d`-dim tensor containing the Pareto optimal set of inputs, where `P` is the number of pareto optimal points. The points in each sample have to be discrete otherwise expectation propagation will fail. maximize: If true, we consider a maximization problem. X_pending: A `m x d`-dim Tensor of `m` design points that have been submitted for function evaluation, but have not yet been evaluated. max_ep_iterations: The maximum number of expectation propagation iterations. (The minimum number of iterations is set at 3.) ep_jitter: The amount of jitter added for the matrix inversion that occurs during the expectation propagation update during the training phase. test_jitter: The amount of jitter added for the matrix inversion that occurs during the expectation propagation update in the testing phase. threshold: The convergence threshold for expectation propagation. This assesses the relative change in the mean and covariance. We default to one percent change i.e. `threshold = 1e-2`. """ super().__init__(model=model) self.model = model self.maximize = maximize self.set_X_pending(X_pending) if model.num_outputs > 1 or isinstance(model, ModelListGP): train_X = self.model.train_inputs[0][0] else: train_X = self.model.train_inputs[0] # Batch GP models (e.g. fantasized models) are not currently supported if train_X.ndim > 2: raise NotImplementedError( "Batch GP models (e.g. fantasized models) are not supported." ) if pareto_sets.ndim != 3 or pareto_sets.shape[-1] != train_X.shape[-1]: raise UnsupportedError( "The Pareto set should have a shape of " "`num_pareto_samples x num_pareto_points x input_dim`." ) else: self.pareto_sets = pareto_sets # add the pareto set to the existing training data self.num_pareto_samples = pareto_sets.shape[0] self.augmented_X = torch.cat( [train_X.repeat(self.num_pareto_samples, 1, 1), self.pareto_sets], dim=-2 ) self.max_ep_iterations = max_ep_iterations self.ep_jitter = ep_jitter self.test_jitter = test_jitter self.threshold = threshold self._expectation_propagation() def _expectation_propagation(self) -> None: r"""Perform expectation propagation to obtain the covariance factors that depend on the Pareto sets. The updates are performed in the natural parameter space. For a multivariate normal distribution with mean mu and covariance Sigma, we call Sigma^{-1} the natural covariance and Sigma^{-1} mu the natural mean. """ ########################################################################### # INITIALIZATION ########################################################################### M = self.model.num_outputs if self.model.num_outputs > 1 or isinstance(self.model, ModelListGP): train_X = self.model.train_inputs[0][0] else: train_X = self.model.train_inputs[0] tkwargs = {"dtype": train_X.dtype, "device": train_X.device} N = len(train_X) num_pareto_samples = self.num_pareto_samples P = self.pareto_sets.shape[-2] # initialize the predictive natural mean and variances ( pred_nat_mean, pred_nat_cov, pred_mean, pred_cov, ) = _initialize_predictive_matrices( X=self.augmented_X, model=self.model, observation_noise=False, jitter=self.ep_jitter, natural=True, ) pred_f_mean = pred_mean[..., 0:M, :] pred_f_nat_mean = pred_nat_mean[..., 0:M, :] pred_f_cov = pred_cov[..., 0:M, :, :] pred_f_nat_cov = pred_nat_cov[..., 0:M, :, :] # initialize the marginals # `num_pareto_samples x M x (N + P)` mean_f = pred_f_mean.clone() nat_mean_f = pred_f_nat_mean.clone() # `num_pareto_samples x M x (N + P) x (N + P)` cov_f = pred_f_cov.clone() nat_cov_f = pred_f_nat_cov.clone() # initialize omega the function which encodes the fact that the pareto points # are optimal in the feasible space i.e. any point in the feasible space # should not dominate the Pareto efficient points. # `num_pareto_samples x M x (N + P) x P x 2` omega_f_nat_mean = torch.zeros((num_pareto_samples, M, N + P, P, 2), **tkwargs) # `num_pareto_samples x M x (N + P) x P x 2 x 2` omega_f_nat_cov = torch.zeros( (num_pareto_samples, M, N + P, P, 2, 2), **tkwargs ) ########################################################################### # EXPECTATION PROPAGATION ########################################################################### damping = torch.ones(num_pareto_samples, M, **tkwargs) iteration = 0 while (torch.sum(damping) > 0) and (iteration < self.max_ep_iterations): # Compute the new natural mean and covariance #################################################################### # OBJECTIVE FUNCTION: OMEGA UPDATE #################################################################### omega_f_nat_mean_new, omega_f_nat_cov_new = _safe_update_omega( mean_f=mean_f, cov_f=cov_f, omega_f_nat_mean=omega_f_nat_mean, omega_f_nat_cov=omega_f_nat_cov, N=N, P=P, M=M, maximize=self.maximize, jitter=self.ep_jitter, ) #################################################################### # OBJECTIVE FUNCTION: MARGINAL UPDATE #################################################################### nat_mean_f_new, nat_cov_f_new = _update_marginals( pred_f_nat_mean=pred_f_nat_mean, pred_f_nat_cov=pred_f_nat_cov, omega_f_nat_mean=omega_f_nat_mean_new, omega_f_nat_cov=omega_f_nat_cov_new, N=N, P=P, ) ######################################################################## # OBJECTIVE FUNCTION: DAMPING UPDATE ######################################################################## # update damping of objectives damping, cholesky_nat_cov_f = _update_damping( nat_cov=nat_cov_f, nat_cov_new=nat_cov_f_new, damping_factor=damping, jitter=self.ep_jitter, ) check_no_nans(cholesky_nat_cov_f) ######################################################################## # OBJECTIVE FUNCTION: DAMPED UPDATE ######################################################################## # Damp update of omega omega_f_nat_mean = _damped_update( old_factor=omega_f_nat_mean, new_factor=omega_f_nat_mean_new, damping_factor=damping, ) omega_f_nat_cov = _damped_update( old_factor=omega_f_nat_cov, new_factor=omega_f_nat_cov_new, damping_factor=damping, ) # update the mean and covariance nat_mean_f = _damped_update( old_factor=nat_mean_f, new_factor=nat_mean_f_new, damping_factor=damping ) nat_cov_f = _damped_update( old_factor=nat_cov_f, new_factor=nat_cov_f_new, damping_factor=damping ) # compute cholesky inverse cov_f_new = torch.cholesky_inverse(cholesky_nat_cov_f) mean_f_new = torch.einsum("...ij,...j->...i", cov_f_new, nat_mean_f) check_no_nans(cov_f_new) ######################################################################## # OBJECTIVE FUNCTION: CONVERGENCE UPDATE ######################################################################## # Set the damping to zero when the change in the mean and # covariance is less than the threshold damping, delta_mean_f, delta_cov_f = _update_damping_when_converged( mean_old=mean_f, mean_new=mean_f_new, cov_old=cov_f, cov_new=cov_f_new, damping_factor=damping, threshold=self.threshold, iteration=iteration, ) cov_f = cov_f_new mean_f = mean_f_new iteration = iteration + 1 ############################################################################ # SAVE OMEGA AND PHI FACTORS ############################################################################ check_no_nans(omega_f_nat_mean) check_no_nans(omega_f_nat_cov) # save phi and omega for the forward self._omega_f_nat_mean = omega_f_nat_mean self._omega_f_nat_cov = omega_f_nat_cov def _compute_information_gain(self, X: Tensor) -> Tensor: r"""Evaluate qMultiObjectivePredictiveEntropySearch on the candidate set `X`. Args: X: A `batch_shape x q x d`-dim Tensor of t-batches with `q` `d`-dim design points each. Returns: A `batch_shape'`-dim Tensor of Predictive Entropy Search values at the given design points `X`. """ tkwargs = {"dtype": X.dtype, "device": X.device} batch_shape = X.shape[0:-2] q = X.shape[-2] M = self.model.num_outputs if M > 1 or isinstance(self.model, ModelListGP): N = len(self.model.train_inputs[0][0]) else: N = len(self.model.train_inputs[0]) P = self.pareto_sets.shape[-2] num_pareto_samples = self.num_pareto_samples ########################################################################### # AUGMENT X WITH THE SAMPLED PARETO SET ########################################################################### new_shape = batch_shape + torch.Size([num_pareto_samples]) + X.shape[-2:] expanded_X = X.unsqueeze(-3).expand(new_shape) expanded_ps = self.pareto_sets.expand(X.shape[0:-2] + self.pareto_sets.shape) # `batch_shape x num_pareto_samples x (q + P) x d` aug_X = torch.cat([expanded_X, expanded_ps], dim=-2) ########################################################################### # COMPUTE THE POSTERIORS AND OBSERVATION NOISE ########################################################################### # compute predictive distribution without observation noise ( pred_nat_mean, pred_nat_cov, pred_mean, pred_cov, ) = _initialize_predictive_matrices( X=aug_X, model=self.model, observation_noise=True, jitter=self.test_jitter, natural=True, ) pred_f_mean = pred_mean[..., 0:M, :] pred_f_nat_mean = pred_nat_mean[..., 0:M, :] pred_f_cov = pred_cov[..., 0:M, :, :] pred_f_nat_cov = pred_nat_cov[..., 0:M, :, :] (_, _, _, pred_cov_noise) = _initialize_predictive_matrices( X=aug_X, model=self.model, observation_noise=True, jitter=self.test_jitter, natural=False, ) pred_f_cov_noise = pred_cov_noise[..., 0:M, :, :] observation_noise = pred_f_cov_noise - pred_f_cov ########################################################################### # INITIALIZE THE EP FACTORS ########################################################################### # `batch_shape x num_pareto_samples x M x (q + P) x P x 2` omega_f_nat_mean = torch.zeros( batch_shape + torch.Size([num_pareto_samples, M, q + P, P, 2]), **tkwargs ) # `batch_shape x num_pareto_samples x M x (q + P) x P x 2 x 2` omega_f_nat_cov = torch.zeros( batch_shape + torch.Size([num_pareto_samples, M, q + P, P, 2, 2]), **tkwargs ) ########################################################################### # RUN EP ONCE ########################################################################### # run update omega once omega_f_nat_mean, omega_f_nat_cov = _safe_update_omega( mean_f=pred_f_mean, cov_f=pred_f_cov, omega_f_nat_mean=omega_f_nat_mean, omega_f_nat_cov=omega_f_nat_cov, N=q, P=P, M=M, maximize=self.maximize, jitter=self.test_jitter, ) ########################################################################### # ADD THE CACHE FACTORS BACK ########################################################################### omega_f_nat_mean, omega_f_nat_cov = _augment_factors_with_cached_factors( q=q, N=N, omega_f_nat_mean=omega_f_nat_mean, cached_omega_f_nat_mean=self._omega_f_nat_mean, omega_f_nat_cov=omega_f_nat_cov, cached_omega_f_nat_cov=self._omega_f_nat_cov, ) ########################################################################### # COMPUTE THE MARGINAL ########################################################################### nat_mean_f, nat_cov_f = _update_marginals( pred_f_nat_mean=pred_f_nat_mean, pred_f_nat_cov=pred_f_nat_cov, omega_f_nat_mean=omega_f_nat_mean, omega_f_nat_cov=omega_f_nat_cov, N=q, P=P, ) ########################################################################### # COMPUTE THE DAMPED UPDATE ########################################################################### # # update damping of objectives damping = torch.ones( batch_shape + torch.Size([num_pareto_samples, M]), **tkwargs ) damping, cholesky_nat_cov_f_new = _update_damping( nat_cov=pred_f_nat_cov, nat_cov_new=nat_cov_f, damping_factor=damping, jitter=self.test_jitter, ) # invert matrix cov_f_new = torch.cholesky_inverse(cholesky_nat_cov_f_new) check_no_nans(cov_f_new) ########################################################################### # COMPUTE THE LOG DETERMINANTS ########################################################################### # compute the initial log determinant term log_det_pred_f_cov_noise = _compute_log_determinant(cov=pred_f_cov_noise, q=q) # compute the post log determinant term log_det_cov_f = _compute_log_determinant(cov=cov_f_new + observation_noise, q=q) ########################################################################### # COMPUTE THE ACQUISITION FUNCTION ########################################################################### q_pes_f = log_det_pred_f_cov_noise - log_det_cov_f check_no_nans(q_pes_f) return 0.5 * q_pes_f @concatenate_pending_points @t_batch_mode_transform() def forward(self, X: Tensor) -> Tensor: r"""Evaluate qMultiObjectivePredictiveEntropySearch on the candidate set `X`. Args: X: A `batch_shape x q x d`-dim Tensor of t-batches with `q` `d`-dim design points each. Returns: A `batch_shape'`-dim Tensor of acquisition values at the given design points `X`. """ return self._compute_information_gain(X) def log_cdf_robust(x: Tensor) -> Tensor: r"""Computes the logarithm of the normal cumulative density robustly. This uses the approximation log(1-z) ~ -z when z is small: if x > 5: log(cdf(x)) = log(1-cdf(-x)) approx -cdf(-x) else: log(cdf(x)). Args: x: a `x_shape`-dim Tensor. Returns A `x_shape`-dim Tensor. """ CLAMP_LB = torch.finfo(x.dtype).eps NEG_INF = torch.finfo(x.dtype).min normal = Normal(torch.zeros_like(x), torch.ones_like(x)) cdf_x = normal.cdf(x) neg_cdf_neg_x = -normal.cdf(-x) log_cdf_x = torch.where(x < 5, torch.log(cdf_x), neg_cdf_neg_x) return log_cdf_x.clamp(NEG_INF, -CLAMP_LB) def _initialize_predictive_matrices( X: Tensor, model: Model, observation_noise: bool = True, jitter: float = 1e-4, natural: bool = True, ) -> Tuple[Tensor, Tensor, Tensor, Tensor]: r"""Initializes the natural predictive mean and covariance matrix. For a multivariate normal distribution with mean mu and covariance Sigma, the natural mean is Sigma^{-1} mu and the natural covariance is Sigma^{-1}. Args: X: A `batch_shape x R x d`-dim Tensor. model: The fitted model. observation_noise: If true, the posterior is computed with observation noise. jitter: The jitter added to the covariance matrix. natural: If true, we compute the natural statistics as well. Return: A four-element tuple containing - pred_nat_mean: A `batch_shape x num_outputs x R `-dim Tensor containing the predictive natural mean vectors. - pred_nat_cov: A `batch_shape x num_outputs x R x R`-dim Tensor containing the predictive natural covariance matrices. - pred_mean: A `batch_shape x num_outputs x R`-dim Tensor containing the predictive mean vectors. - pred_cov: A `batch_shape x num_outputs x R x R`-dim Tensor containing the predictive covariance matrices. """ tkwargs = {"dtype": X.dtype, "device": X.device} # compute the predictive mean and covariances at X posterior = model.posterior(X, observation_noise=observation_noise) # `batch_shape x (R * num_outputs) x (R * num_outputs)` init_pred_cov = posterior.mvn.covariance_matrix num_outputs = model.num_outputs R = int(init_pred_cov.shape[-1] / num_outputs) pred_cov = [ init_pred_cov[..., (m * R) : ((m + 1) * R), (m * R) : ((m + 1) * R)].unsqueeze( -1 ) for m in range(num_outputs) ] # `batch_shape x R x R x num_outputs` (before swap axes) # `batch_shape x num_outputs x R * R` pred_cov = torch.cat(pred_cov, axis=-1).swapaxes(-2, -1).swapaxes(-3, -2) identity = torch.diag_embed(torch.ones(pred_cov.shape[:-1], **tkwargs)) pred_cov = pred_cov + jitter * identity # `batch_shape x num_outputs x R` pred_mean = posterior.mean.swapaxes(-2, -1) ############################################################# if natural: # natural parameters # `batch_shape x num_outputs x R x R` cholesky_pred_cov, _ = torch.linalg.cholesky_ex(pred_cov) pred_nat_cov = torch.cholesky_inverse(cholesky_pred_cov) # `batch_shape x num_outputs x R` pred_nat_mean = torch.einsum("...ij,...j->...i", pred_nat_cov, pred_mean) return pred_nat_mean, pred_nat_cov, pred_mean, pred_cov else: return None, None, pred_mean, pred_cov def _get_omega_f_contribution( mean: Tensor, cov: Tensor, N: int, P: int, M: int ) -> Tuple[Tensor, Tensor]: r"""Extract the mean vector and covariance matrix corresponding to the `2 x 2` multivariate normal blocks in the objective model between the points in `X` and the Pareto optimal set. [There is likely a more efficient way to do this.] Args: mean: A `batch_shape x M x (N + P)`-dim Tensor containing the natural mean matrix for the objectives. cov: A `batch_shape x M x (N + P) x (N + P)`-dim Tensor containing the natural mean matrix for the objectives. N: The number of design points. P: The number of Pareto optimal points. M: The number of objectives. Return: A two-element tuple containing - mean_fX_fS: A `batch_shape x M x (N + P) x P x 2`-dim Tensor containing the means of the inputs and Pareto optimal points. - cov_fX_fS: A `batch_shape x M x (N + P) x P x 2 x 2`-dim Tensor containing the covariances between the inputs and Pareto optimal points. """ tkwargs = {"dtype": mean.dtype, "device": mean.device} batch_shape = mean.shape[:-2] # `batch_shape x M x (N + P) x P x 2 x 2` cov_fX_fS = torch.zeros(batch_shape + torch.Size([M, N + P, P, 2, 2]), **tkwargs) # `batch_shape x M x (N + P) x P x 2` mean_fX_fS = torch.zeros(batch_shape + torch.Size([M, N + P, P, 2]), **tkwargs) # `batch_shape x M x (N + P) x P` mean_fX_fS[..., 0] = mean.unsqueeze(-1).expand(mean.shape + torch.Size([P])) # `batch_shape x M x (N + P) x P` mean_fX_fS[..., 1] = ( mean[..., N:].unsqueeze(-2).expand(mean.shape + torch.Size([P])) ) # `batch_shape x M x (N + P) x P` cov_fX_fS[..., 0, 0] = ( cov[..., range(N + P), range(N + P)] .unsqueeze(-1) .expand(batch_shape + torch.Size([M, N + P, P])) ) # `batch_shape x M x (N + P) x P` cov_fX_fS[..., 1, 1] = ( cov[..., range(N, N + P), range(N, N + P)] .unsqueeze(-2) .expand(batch_shape + torch.Size([M, N + P, P])) ) for p in range(P): # `batch_shape x M x (N + P)` cov_p = cov[..., range(N + P), N + p] cov_fX_fS[..., p, 0, 1] = cov_p cov_fX_fS[..., p, 1, 0] = cov_p return mean_fX_fS, cov_fX_fS def _replace_pareto_diagonal(A: Tensor) -> Tensor: """Replace the pareto diagonal with identity matricx. The Pareto diagonal of the omega factor shouldn't be updated because does not contribute anything: `omega(x_p, x_p) = 1` for any pareto optimal input `x_p`. Args: A: a `batch_shape x M x (N + P) x P x 2 x 2`-dim Tensor. Returns: A `batch_shape x M x (N + P) x P x 2 x 2`-dim Tensor, where the Pareto diagonal is padded with identity matrices. """ tkwargs = {"dtype": A.dtype, "device": A.device} batch_shape = A.shape[:-5] P = A.shape[-3] N = A.shape[-4] - P M = A.shape[-5] identity = torch.diag_embed(torch.ones(batch_shape + torch.Size([M, 2]), **tkwargs)) for p in range(P): A[..., N + p, p, :, :] = identity return A def _update_omega( mean_f: Tensor, cov_f: Tensor, omega_f_nat_mean: Tensor, omega_f_nat_cov: Tensor, N: int, P: int, M: int, maximize: bool = True, jitter: float = 1e-6, ) -> Tuple[Tensor, Tensor]: r"""Computes the new omega factors by matching the moments. Args: mean_f: A `batch_shape x M x (N + P)`-dim Tensor containing the mean vector for the objectives. cov_f: A `batch_shape x M x (N + P) x (N + P)`-dim Tensor containing the covariance matrix for the objectives. omega_f_nat_mean: A `batch_shape x M x (N + P) x P x 2`-dim Tensor containing the omega natural mean factors for the objective matrix. omega_f_nat_cov: A `batch_shape x M x (N + P) x P x 2 x 2`-dim Tensor containing the omega natural covariance factors for the objective matrix. N: The number of design points. M: The number of Pareto optimal points. M: The number of objectives. maximize: If true, we consider the Pareto maximum domination relation. jitter: The jitter for the matrix inverse. Return: A two-element tuple containing - omega_f_nat_mean_new: A `batch_shape x M x (N + P) x P x 2` containing the new omega natural mean factors for the objective matrix. - omega_f_nat_cov_new: A `batch_shape x M x (N + P) x P x 2 x 2` containing the new omega natural covariance factors for the objective matrix. """ tkwargs = {"dtype": mean_f.dtype, "device": mean_f.device} CLAMP_LB = torch.finfo(tkwargs["dtype"]).eps NEG_INF = torch.finfo(tkwargs["dtype"]).min weight = 1.0 if maximize else -1.0 ############################################################################### # EXTRACT THE NECESSARY COMPONENTS ############################################################################### # `batch_shape x M x (N + P) x P x 2`-dim mean # `batch_shape x M x (N + P) x P x 2 x 2`-dim covariance mean_fX_fS, cov_fX_fS = _get_omega_f_contribution(mean_f, cov_f, N, P, M) identity = torch.diag_embed(torch.ones(cov_fX_fS.shape[:-1], **tkwargs)) # remove the Pareto diagonal cov_fX_fS = _replace_pareto_diagonal(cov_fX_fS + jitter * identity) nat_cov_fX_fS = torch.inverse(cov_fX_fS) nat_mean_fX_fS = torch.einsum("...ij,...j->...i", nat_cov_fX_fS, mean_fX_fS) ############################################################################### # COMPUTE THE CAVITIES ############################################################################### # cavity distribution # natural parameters cav_nat_mean_f = nat_mean_fX_fS - omega_f_nat_mean cav_nat_cov_f = nat_cov_fX_fS - omega_f_nat_cov # transform to standard parameters # remove the Pareto diagonal cav_nat_cov_f = _replace_pareto_diagonal(cav_nat_cov_f) identity = torch.diag_embed(torch.ones(cav_nat_cov_f.shape[:-1], **tkwargs)) cav_cov_f = torch.inverse(cav_nat_cov_f + jitter * identity) cav_mean_f = torch.einsum("...ij,...j->...i", cav_cov_f, cav_nat_mean_f) ############################################################################### # COMPUTE THE NORMALIZATION CONSTANT ############################################################################### # `batch_shape x M x (N + P) x P` # Equation 29 cav_var_fX_minus_fS = ( cav_cov_f[..., 0, 0] + cav_cov_f[..., 1, 1] - 2 * cav_cov_f[..., 0, 1] ).clamp_min(CLAMP_LB) cav_std_fX_minus_fS = torch.sqrt(cav_var_fX_minus_fS).clamp_min(CLAMP_LB) # `batch_shape x M x (N + P) x P` cav_mean_fX_minus_fS = weight * (cav_mean_f[..., 0] - cav_mean_f[..., 1]) # Equation 30 cav_alpha = cav_mean_fX_minus_fS / cav_std_fX_minus_fS # compute alpha pdf and cdf normal_alpha = Normal(torch.zeros_like(cav_alpha), torch.ones_like(cav_alpha)) # `batch_shape x M x (N + P) x P` cav_alpha_log_cdf = log_cdf_robust(cav_alpha) # `batch_shape x M x (N + P) x P` cav_alpha_log_pdf = normal_alpha.log_prob(cav_alpha).clamp_min(NEG_INF) # `batch_shape x (N + P) x P` cav_sum_alpha_log_cdf = torch.sum(cav_alpha_log_cdf, dim=-3).clamp_min(NEG_INF) # compute normalization constant Z # Equation 35 cav_log_zeta = torch.log1p(-torch.exp(cav_sum_alpha_log_cdf)).clamp_min(NEG_INF) # Need to clamp log values to prevent `exp(-inf) = nan` cav_logZ = cav_log_zeta # Equation 40 [first bit] # `batch_shape x (N + P) x P` cav_log_rho = -cav_logZ + cav_sum_alpha_log_cdf # Equation 40 [second bit] # `batch_shape x M x (N + P) x P` cav_log_rho = cav_log_rho.unsqueeze(-3) - cav_alpha_log_cdf + cav_alpha_log_pdf cav_rho = -torch.exp(cav_log_rho).clamp(NEG_INF, -NEG_INF) ############################################################################### # COMPUTE THE PARTIAL DERIVATIVES ############################################################################### # `batch_shape x M x (N + P) x P x 2` # Final vector: `[1, -1]` ones_mean = torch.ones(cav_mean_f.shape, **tkwargs) ones_mean[..., 1] = -ones_mean[..., 1] # `batch_shape x M x (N + P) x P x 2 x 2` # Final matrix: `[[1, -1], [-1, 1]]` ones_cov = torch.ones(cav_cov_f.shape, **tkwargs) ones_cov[..., 0, 1] = -ones_cov[..., 0, 1] ones_cov[..., 1, 0] = -ones_cov[..., 1, 0] # first partial derivation of the log Z with respect to the mean # assuming maximization (this is also where the sign will change) # Equation 41 cav_dlogZ_dm = cav_rho / cav_std_fX_minus_fS cav_dlogZ_dm = weight * cav_dlogZ_dm.unsqueeze(-1) * ones_mean # second partial derivation of the log Z with respect to the mean # Equation 42 cav_d2logZ_dm2 = -cav_rho * (cav_rho + cav_alpha) / cav_var_fX_minus_fS cav_d2logZ_dm2 = cav_d2logZ_dm2.unsqueeze(-1).unsqueeze(-1) * ones_cov ############################################################################### # COMPUTE THE NEW MEAN AND COVARIANCE ############################################################################### # compute the new mean and covariance cav_updated_mean_f = cav_mean_f + torch.einsum( "...ij,...j->...i", cav_cov_f, cav_dlogZ_dm ) cav_updated_cov_f = cav_cov_f + torch.einsum( "...ij,...jk,...kl->...il", cav_cov_f, cav_d2logZ_dm2, cav_cov_f ) # transform to natural parameters # remove the Pareto diagonal cav_updated_cov_f = _replace_pareto_diagonal(cav_updated_cov_f) identity = torch.diag_embed(torch.ones(cav_updated_cov_f.shape[:-1], **tkwargs)) cav_updated_nat_cov_f = torch.inverse(cav_updated_cov_f + jitter * identity) cav_updated_nat_mean_f = torch.einsum( "...ij,...j->...i", cav_updated_nat_cov_f, cav_updated_mean_f ) # match the moments to compute the gain omega_f_nat_mean_new = cav_updated_nat_mean_f - cav_nat_mean_f omega_f_nat_cov_new = cav_updated_nat_cov_f - cav_nat_cov_f # it is also possible to calculate the update directly as in the original paper: # identity = torch.diag_embed(torch.ones(cav_d2logZ_dm2.shape[:-1], **tkwargs)) # denominator = torch.inverse(cav_cov_f @ cav_d2logZ_dm2 + identity) # omega_f_nat_cov_new = - cav_d2logZ_dm2 @ denominator # omega_f_nat_mean_new = torch.einsum( # '...ij,...j->...i', denominator, # cav_dlogZ_dm - torch.einsum('...ij,...j->...i', cav_d2logZ_dm2, cav_mean_f) # ) return omega_f_nat_mean_new, omega_f_nat_cov_new def _safe_update_omega( mean_f: Tensor, cov_f: Tensor, omega_f_nat_mean: Tensor, omega_f_nat_cov: Tensor, N: int, P: int, M: int, maximize: bool = True, jitter: float = 1e-6, ) -> Tuple[Tensor, Tensor]: r"""Try to update the new omega factors by matching the moments. If the update is not possible then this returns the initial omega factors. Args: mean_f: A `batch_shape x M x (N + P)`-dim Tensor containing the mean vector for the objectives. cov_f: A `batch_shape x M x (N + P) x (N + P)`-dim Tensor containing the covariance matrix for the objectives. omega_f_nat_mean: A `batch_shape x M x (N + P) x P x 2`-dim Tensor containing the omega natural mean factors for the objective matrix. omega_f_nat_cov: A `batch_shape x M x (N + P) x P x 2 x 2`-dim Tensor containing the omega natural covariance factors for the objective matrix. N: The number of design points. M: The number of Pareto optimal points. M: The number of objectives. maximize: If true, we consider the Pareto maximum domination relation. jitter: The jitter for the matrix inverse. Return: A two-element tuple containing - omega_f_nat_mean_new: A `batch_shape x M x (N + P) x P x 2` containing the new omega natural mean factors for the objective matrix. - omega_f_nat_cov_new: A `batch_shape x M x (N + P) x P x 2 x 2` containing the new omega natural covariance factors for the objective matrix. """ try: omega_f_nat_mean_new, omega_f_nat_cov_new = _update_omega( mean_f=mean_f, cov_f=cov_f, omega_f_nat_mean=omega_f_nat_mean, omega_f_nat_cov=omega_f_nat_cov, N=N, P=P, M=M, maximize=maximize, jitter=jitter, ) check_no_nans(omega_f_nat_mean_new) check_no_nans(omega_f_nat_cov_new) return omega_f_nat_mean_new, omega_f_nat_cov_new except RuntimeError or InputDataError: return omega_f_nat_mean, omega_f_nat_cov def _update_marginals( pred_f_nat_mean: Tensor, pred_f_nat_cov: Tensor, omega_f_nat_mean: Tensor, omega_f_nat_cov: Tensor, N: int, P: int, ) -> Tuple[Tensor, Tensor]: r"""Computes the new marginal by summing up all the natural factors. Args: pred_f_nat_mean: A `batch_shape x M x (N + P)`-dim Tensor containing the natural predictive mean matrix for the objectives. pred_f_nat_cov: A `batch_shape x M x (N + P) x (N + P)`-dim Tensor containing the natural predictive covariance matrix for the objectives. omega_f_nat_mean: A `batch_shape x M x (N + P) x P x 2`-dim Tensor containing the omega natural mean factors for the objective matrix. omega_f_nat_cov: A `batch_shape x M x (N + P) x P x 2 x 2`-dim Tensor containing the omega natural covariance factors for the objective matrix. N: The number of design points. P: The number of Pareto optimal points. Returns: A two-element tuple containing - nat_mean_f: A `batch_shape x M x (N + P)`-dim Tensor containing the updated natural mean matrix for the objectives. - nat_cov_f: A `batch_shape x M x (N + P) x (N + P)`-dim Tensor containing the updated natural predictive covariance matrix for the objectives. """ # `batch_shape x M x (N + P)` nat_mean_f = pred_f_nat_mean.clone() # `batch_shape x M x (N + P) x (N + P) nat_cov_f = pred_f_nat_cov.clone() ################################################################################ # UPDATE THE OBJECTIVES ################################################################################ # remove Pareto diagonal # zero out the diagonal omega_f_nat_mean[..., range(N, N + P), range(P), :] = 0 omega_f_nat_cov[..., range(N, N + P), range(P), :, :] = 0 # `batch_shape x M x (N + P)` # sum over the pareto dim nat_mean_f = nat_mean_f + omega_f_nat_mean[..., 0].sum(dim=-1) # `batch_shape x M x P` # sum over the data dim nat_mean_f[..., N:] = nat_mean_f[..., N:] + omega_f_nat_mean[..., 1].sum(dim=-2) # `batch_shape x M x (N + P)` nat_cov_f[..., range(N + P), range(N + P)] = nat_cov_f[ ..., range(N + P), range(N + P) ] + omega_f_nat_cov[..., 0, 0].sum(dim=-1) # `batch_shape x M x P` nat_cov_f[..., range(N, N + P), range(N, N + P)] = nat_cov_f[ ..., range(N, N + P), range(N, N + P) ] + omega_f_nat_cov[..., 1, 1].sum(dim=-2) for p in range(P): # `batch_shape x M x (N + P)` nat_cov_f[..., range(N + P), N + p] = ( nat_cov_f[..., range(N + P), N + p] + omega_f_nat_cov[..., p, 0, 1] ) # `batch_shape x M x (N + P)` nat_cov_f[..., N + p, range(N + P)] = ( nat_cov_f[..., N + p, range(N + P)] + omega_f_nat_cov[..., p, 1, 0] ) return nat_mean_f, nat_cov_f def _damped_update( old_factor: Tensor, new_factor: Tensor, damping_factor: Tensor, ) -> Tensor: r"""Computes the damped updated for natural factor. Args: old_factor: A `batch_shape x param_shape`-dim Tensor containing the old natural factor. new_factor: A `batch_shape x param_shape`-dim Tensor containing the new natural factor. damping_factor: A `batch_shape`-dim Tensor containing the damping factor. Returns: A `batch_shape x param_shape`-dim Tensor containing the updated natural factor. """ bs = damping_factor.shape fs = old_factor.shape df = damping_factor for _ in range(len(fs[len(bs) :])): df = df.unsqueeze(-1) return df * new_factor + (1 - df) * old_factor def _update_damping( nat_cov: Tensor, nat_cov_new: Tensor, damping_factor: Tensor, jitter: Tensor, ) -> Tuple[Tensor, Tensor]: r"""Updates the damping factor whilst ensuring the covariance matrix is positive definite by trying a Cholesky decomposition. Args: nat_cov: A `batch_shape x R x R`-dim Tensor containing the old natural covariance matrix. nat_cov_new: A `batch_shape x R x R`-dim Tensor containing the new natural covariance matrix. damping_factor: A`batch_shape`-dim Tensor containing the damping factor. jitter: The amount of jitter added before matrix inversion. Returns: A two-element tuple containing - A `batch_shape x param_shape`-dim Tensor containing the updated damping factor. - A `batch_shape x R x R`-dim Tensor containing the Cholesky factor. """ tkwargs = {"dtype": nat_cov.dtype, "device": nat_cov.device} df = damping_factor jitter = jitter * torch.diag_embed(torch.ones(nat_cov.shape[:-1], **tkwargs)) _, info = torch.linalg.cholesky_ex(nat_cov + jitter) if torch.sum(info) > 1: raise ValueError( "The previous covariance is not positive semi-definite. " "This usually happens if the predictive covariance is " "ill-conditioned and the added jitter is insufficient." ) damped_nat_cov = _damped_update( old_factor=nat_cov, new_factor=nat_cov_new, damping_factor=df ) cholesky_factor, info = torch.linalg.cholesky_ex(damped_nat_cov) contains_nans = torch.any(torch.isnan(cholesky_factor)).item() run = 0 while torch.sum(info) > 1 or contains_nans: # propose an alternate damping factor which is half the original df_alt = 0.5 * df # hard threshold at 1e-3 df_alt = torch.where( df_alt > 1e-3, df_alt, torch.zeros(df_alt.shape, **tkwargs) ) # only change the damping factor where psd failure occurs df_new = torch.where(info == 0, df, df_alt) # new damped covariance damped_nat_cov = _damped_update(nat_cov, nat_cov_new, df_new) # try cholesky decomposition cholesky_factor, info = torch.linalg.cholesky_ex(damped_nat_cov + jitter) contains_nans = torch.any(torch.isnan(cholesky_factor)).item() df = df_new run = run + 1 return df, cholesky_factor def _update_damping_when_converged( mean_old: Tensor, mean_new: Tensor, cov_old: Tensor, cov_new: Tensor, damping_factor: Tensor, iteration: Tensor, threshold: float = 1e-3, ) -> Tensor: r"""Set the damping factor to 0 once converged. Convergence is determined by the relative change in the entries of the mean and covariance matrix. Args: mean_old: A `batch_shape x R`-dim Tensor containing the old natural mean matrix for the objective. mean_new: A `batch_shape x R`-dim Tensor containing the new natural mean matrix for the objective. cov_old: A `batch_shape x R x R`-dim Tensor containing the old natural covariance matrix for the objective. cov_new: A `batch_shape x R x R`-dim Tensor containing the new natural covariance matrix for the objective. iteration: The current iteration number damping_factor: A `batch_shape`-dim Tensor containing the damping factor. Returns: A `batch_shape x param_shape`-dim Tensor containing the updated damping factor. """ df = damping_factor.clone() delta_mean = mean_new - mean_old delta_cov = cov_new - cov_old am = torch.amax(abs(mean_old), dim=-1) ac = torch.amax(abs(cov_old), dim=(-2, -1)) if iteration > 2: mask_mean = torch.amax(abs(delta_mean), dim=-1) < threshold * am mask_cov = torch.amax(abs(delta_cov), dim=(-2, -1)) < threshold * ac mask = torch.logical_and(mask_mean, mask_cov) df[mask] = 0 return df, delta_mean, delta_cov def _augment_factors_with_cached_factors( q: int, N: int, omega_f_nat_mean: Tensor, cached_omega_f_nat_mean: Tensor, omega_f_nat_cov: Tensor, cached_omega_f_nat_cov: Tensor, ) -> Tuple[Tensor, Tensor]: r"""Incorporate the cached Pareto updated factors in the forward call and augment them with the previously computed factors. Args: q: The batch size. N: The number of training points. omega_f_nat_mean: A `batch_shape x num_pareto_samples x M x (q + P) x P x 2` -dim Tensor containing the omega natural mean for the objective at `X`. cached_omega_f_nat_mean: A `num_pareto_samples x M x (N + P) x P x 2`-dim Tensor containing the omega natural mean for the objective at `X`. omega_f_nat_cov: A `batch_shape x num_pareto_samples x M x (q + P) x P x 2 x 2` -dim Tensor containing the omega natural covariance for the objective at `X`. cached_omega_f_nat_cov: A `num_pareto_samples x M x (N + P) x P x 2 x 2`-dim Tensor containing the omega covariance mean for the objective at `X`. Returns: A two-element tuple containing - omega_f_nat_mean_new: A `batch_shape x num_pareto_samples x M x (q + P) x P x 2`-dim Tensor containing the omega natural mean for the objective at `X`. - omega_f_nat_cov_new: A `batch_shape x num_pareto_samples x M x (q + P) x P x 2 x 2`-dim Tensor containing the omega natural covariance for the objective at `X`. """ ############################################################################## # omega_f_nat_mean ############################################################################## # retrieve the natural mean contribution of the Pareto block omega(x_p, x_p) for # the objective exp_cached_omega_f_nat_mean = cached_omega_f_nat_mean[..., N:, :, :].expand( omega_f_nat_mean[..., q:, :, :].shape ) omega_f_nat_mean[..., q:, :, :] = exp_cached_omega_f_nat_mean ############################################################################## # omega_f_nat_cov ############################################################################## # retrieve the natural covariance contribution of the Pareto block # omega(x_p, x_p) for the objective exp_omega_f_nat_cov = cached_omega_f_nat_cov[..., N:, :, :, :].expand( omega_f_nat_cov[..., q:, :, :, :].shape ) omega_f_nat_cov[..., q:, :, :, :] = exp_omega_f_nat_cov return omega_f_nat_mean, omega_f_nat_cov def _compute_log_determinant(cov: Tensor, q: int) -> Tensor: r"""Computes the sum of the log determinants of a block diagonal covariance matrices averaged over the Pareto samples. Args: cov: A `batch_shape x num_pareto_samples x num_outputs x (q + P) x (q + P)` -dim Tensor containing the covariance matrices. q: The batch size. Return: log_det_cov: A `batch_shape`-dim Tensor containing the sum of the determinants for each output. """ log_det_cov = torch.logdet(cov[..., 0:q, 0:q]) check_no_nans(log_det_cov) return log_det_cov.sum(dim=-1).mean(dim=-1)
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. r""" Multi-output extensions of the risk measures, implemented as Monte-Carlo objectives. Except for MVaR, the risk measures are computed over each output dimension independently. In contrast, MVaR is computed using the joint distribution of the outputs, and provides more accurate risk estimates. References .. [Prekopa2012MVaR] A. Prekopa. Multivariate value at risk and related topics. Annals of Operations Research, 2012. .. [Cousin2013MVaR] A. Cousin and E. Di Bernardino. On multivariate extensions of Value-at-Risk. Journal of Multivariate Analysis, 2013. .. [Daulton2022MARS] S. Daulton, S, Cakmak, M. Balandat, M. Osborne, E. Zhou, and E. Bakshy. Robust multi-objective Bayesian optimization under input noise. Proceedings of the 39th International Conference on Machine Learning, 2022. """ import warnings from abc import ABC, abstractmethod from math import ceil from typing import Callable, List, Optional, Union import torch from botorch.acquisition.multi_objective.objective import ( IdentityMCMultiOutputObjective, MCMultiOutputObjective, ) from botorch.acquisition.risk_measures import CVaR, RiskMeasureMCObjective, VaR from botorch.exceptions.errors import UnsupportedError from botorch.exceptions.warnings import BotorchWarning from botorch.models.model import Model from botorch.utils.multi_objective.pareto import is_non_dominated from botorch.utils.transforms import normalize from torch import Tensor class MultiOutputRiskMeasureMCObjective( RiskMeasureMCObjective, MCMultiOutputObjective, ABC ): r"""Objective transforming the multi-output posterior samples to samples of a multi-output risk measure. The risk measure is calculated over joint q-batch samples from the posterior. If the q-batch includes samples corresponding to multiple inputs, it is assumed that first `n_w` samples correspond to first input, second `n_w` samples correspond to second input, etc. :meta private: """ def __init__( self, n_w: int, preprocessing_function: Optional[Callable[[Tensor], Tensor]] = None, ) -> None: r"""Transform the posterior samples to samples of a risk measure. Args: n_w: The size of the `w_set` to calculate the risk measure over. preprocessing_function: A preprocessing function to apply to the samples before computing the risk measure. This can be used to remove non-objective outcomes or to align all outcomes for maximization. For constrained optimization, this should also apply feasibility-weighting to samples. Given a `batch x m`-dim tensor of samples, this should return a `batch x m'`-dim tensor. """ super().__init__(n_w=n_w, preprocessing_function=preprocessing_function) def _prepare_samples(self, samples: Tensor) -> Tensor: r"""Prepare samples for risk measure calculations by scaling and separating out the q-batch dimension. Args: samples: A `sample_shape x batch_shape x (q * n_w) x m`-dim tensor of posterior samples. The q-batches should be ordered so that each `n_w` block of samples correspond to the same input. Returns: A `sample_shape x batch_shape x q x n_w x m'`-dim tensor of prepared samples. """ samples = self.preprocessing_function(samples) return samples.view(*samples.shape[:-2], -1, self.n_w, samples.shape[-1]) @abstractmethod def forward(self, samples: Tensor, X: Optional[Tensor] = None) -> Tensor: r"""Calculate the risk measure corresponding to the given samples. Args: samples: A `sample_shape x batch_shape x (q * n_w) x m`-dim tensor of posterior samples. The q-batches should be ordered so that each `n_w` block of samples correspond to the same input. X: A `batch_shape x q x d`-dim tensor of inputs. Ignored. Returns: A `sample_shape x batch_shape x q x m'`-dim tensor of risk measure samples. """ pass # pragma: no cover class MultiOutputExpectation(MultiOutputRiskMeasureMCObjective): r"""A multi-output MC expectation risk measure. For unconstrained problems, we recommend using the `ExpectationPosteriorTransform` instead. `ExpectationPosteriorTransform` directly transforms the posterior distribution over `q * n_w` to a posterior of `q` expectations, significantly reducing the cost of posterior sampling as a result. """ def forward(self, samples: Tensor, X: Optional[Tensor] = None) -> Tensor: r"""Calculate the expectation of the given samples. Expectation is calculated over each `n_w` samples in the q-batch dimension. Args: samples: A `sample_shape x batch_shape x (q * n_w) x m`-dim tensor of posterior samples. The q-batches should be ordered so that each `n_w` block of samples correspond to the same input. X: A `batch_shape x q x d`-dim tensor of inputs. Ignored. Returns: A `sample_shape x batch_shape x q x m'`-dim tensor of expectation samples. """ prepared_samples = self._prepare_samples(samples) return prepared_samples.mean(dim=-2) class IndependentCVaR(CVaR, MultiOutputRiskMeasureMCObjective): r"""The multi-output Conditional Value-at-Risk risk measure that operates on each output dimension independently. Since this does not consider the joint distribution of the outputs (i.e., that the outputs were evaluated on same perturbed input and are not independent), the risk estimates provided by `IndependentCVaR` in general are more optimistic than the definition of CVaR would suggest. The Conditional Value-at-Risk measures the expectation of the worst outcomes (small rewards or large losses) with a total probability of `1 - alpha`. It is commonly defined as the conditional expectation of the reward function, with the condition that the reward is smaller than the corresponding Value-at-Risk (also defined below). NOTE: Due to the use of a discrete `w_set` of samples, the VaR and CVaR calculated here are (possibly biased) Monte-Carlo approximations of the true risk measures. """ def _get_sorted_prepared_samples(self, samples: Tensor) -> Tensor: r"""Get the prepared samples that are sorted over the `n_w` dimension. Args: samples: A `sample_shape x batch_shape x (q * n_w) x m`-dim tensor of posterior samples. The q-batches should be ordered so that each `n_w` block of samples correspond to the same input. Returns: A `sample_shape x batch_shape x q x n_w x m'`-dim tensor of sorted samples. """ prepared_samples = self._prepare_samples(samples) return prepared_samples.sort(dim=-2, descending=True).values def forward(self, samples: Tensor, X: Optional[Tensor] = None) -> Tensor: r"""Calculate the CVaR corresponding to the given samples. Args: samples: A `sample_shape x batch_shape x (q * n_w) x m`-dim tensor of posterior samples. The q-batches should be ordered so that each `n_w` block of samples correspond to the same input. X: A `batch_shape x q x d`-dim tensor of inputs. Ignored. Returns: A `sample_shape x batch_shape x q x m'`-dim tensor of CVaR samples. """ sorted_samples = self._get_sorted_prepared_samples(samples) return sorted_samples[..., self.alpha_idx :, :].mean(dim=-2) class IndependentVaR(IndependentCVaR): r"""The multi-output Value-at-Risk risk measure that operates on each output dimension independently. For the same reasons as `IndependentCVaR`, the risk estimates provided by this are in general more optimistic than the definition of VaR would suggest. Value-at-Risk measures the smallest possible reward (or largest possible loss) after excluding the worst outcomes with a total probability of `1 - alpha`. It is commonly used in financial risk management, and it corresponds to the `1 - alpha` quantile of a given random variable. """ def forward(self, samples: Tensor, X: Optional[Tensor] = None) -> Tensor: r"""Calculate the VaR corresponding to the given samples. Args: samples: A `sample_shape x batch_shape x (q * n_w) x m`-dim tensor of posterior samples. The q-batches should be ordered so that each `n_w` block of samples correspond to the same input. X: A `batch_shape x q x d`-dim tensor of inputs. Ignored. Returns: A `sample_shape x batch_shape x q x m'`-dim tensor of VaR samples. """ sorted_samples = self._get_sorted_prepared_samples(samples) return sorted_samples[..., self.alpha_idx, :] class MultiOutputWorstCase(MultiOutputRiskMeasureMCObjective): r"""The multi-output worst-case risk measure.""" def forward(self, samples: Tensor, X: Optional[Tensor] = None) -> Tensor: r"""Calculate the worst-case measure corresponding to the given samples. Args: samples: A `sample_shape x batch_shape x (q * n_w) x m`-dim tensor of posterior samples. The q-batches should be ordered so that each `n_w` block of samples correspond to the same input. X: A `batch_shape x q x d`-dim tensor of inputs. Ignored. Returns: A `sample_shape x batch_shape x q x m'`-dim tensor of worst-case samples. """ prepared_samples = self._prepare_samples(samples) return prepared_samples.min(dim=-2).values class MVaR(MultiOutputRiskMeasureMCObjective): r"""The multivariate Value-at-Risk as introduced in [Prekopa2012MVaR]_. MVaR is defined as the non-dominated set of points in the extended domain of the random variable that have multivariate CDF greater than or equal to `alpha`. Note that MVaR is set valued and the size of the set depends on the particular realizations of the random variable. [Cousin2013MVaR]_ instead propose to use the expectation of the set-valued MVaR as the multivariate VaR. We support this alternative with an `expectation` flag. """ _verify_output_shape = False def __init__( self, n_w: int, alpha: float, expectation: bool = False, preprocessing_function: Optional[Callable[[Tensor], Tensor]] = None, *, pad_to_n_w: bool = False, filter_dominated: bool = True, ) -> None: r"""The multivariate Value-at-Risk. Args: n_w: The size of the `w_set` to calculate the risk measure over. alpha: The risk level of MVaR, float in `(0.0, 1.0]`. Each MVaR value dominates `alpha` fraction of all observations. expectation: If True, returns the expectation of the MVaR set as is done in [Cousin2013MVaR]_. Otherwise, it returns the union of all values in the MVaR set. Default: False. preprocessing_function: A preprocessing function to apply to the samples before computing the risk measure. This can be used to remove non-objective outcomes or to align all outcomes for maximization. For constrained optimization, this should also apply feasibility-weighting to samples. Given a `batch x m`-dim tensor of samples, this should return a `batch x m'`-dim tensor. pad_to_n_w: If True, instead of padding up to `k'`, which is the size of the largest MVaR set across all batches, we pad the MVaR set up to `n_w`. This produces a return tensor of known size, however, it may in general be much larger than the alternative. See `forward` for more details on the return shape. NOTE: this is only relevant if `expectation=False`. filter_dominated: If True, returns the non-dominated subset of alpha level points (this is MVaR as defined by [Prekopa2012MVaR]_). Disabling this will make it faster, and may be preferable if the dominated points will be filtered out later, e.g., while calculating the hypervolume. Disabling this is not recommended if `expectation=True`. """ super().__init__(n_w=n_w, preprocessing_function=preprocessing_function) if not 0 < alpha <= 1: raise ValueError("`alpha` must be in (0.0, 1.0]") self.alpha = alpha self.expectation = expectation self.pad_to_n_w = pad_to_n_w self.filter_dominated = filter_dominated def get_mvar_set_cpu(self, Y: Tensor) -> Tensor: r"""Find MVaR set based on the definition in [Prekopa2012MVaR]_. NOTE: This is much faster on CPU for large `n_w` than the alternative but it is significantly slower on GPU. Based on empirical evidence, this is recommended when running on CPU with `n_w > 64`. This first calculates the CDF for each point on the extended domain of the random variable (the grid defined by the given samples), then takes the values with CDF equal to (rounded if necessary) `alpha`. The non-dominated subset of these form the MVaR set. Args: Y: A `batch x n_w x m`-dim tensor of outcomes. This is currently restricted to `m = 2` objectives. TODO: Support `m > 2` objectives. Returns: A `batch` length list of `k x m`-dim tensor of MVaR values, where `k` depends on the corresponding batch inputs. Note that MVaR values in general are not in-sample points. """ if Y.dim() == 3: return [self.get_mvar_set_cpu(y_) for y_ in Y] m = Y.shape[-1] if m != 2: # pragma: no cover raise ValueError("`get_mvar_set_cpu` only supports `m=2` outcomes!") # Generate sets of all unique values in each output dimension. # Note that points in MVaR are bounded from above by the # independent VaR of each objective. Hence, we only need to # consider the unique outcomes that are less than or equal to # the VaR of the independent objectives var_alpha_idx = ceil(self.alpha * self.n_w) - 1 Y_sorted = Y.topk(Y.shape[0] - var_alpha_idx, dim=0, largest=False).values unique_outcomes_list = [ Y_sorted[:, i].unique().tolist()[::-1] for i in range(m) ] # Convert this into a list of m dictionaries mapping values to indices. unique_outcomes = [ dict(zip(outcomes, range(len(outcomes)))) for outcomes in unique_outcomes_list ] # Initialize a tensor counting the number of points in Y that a given grid point # is dominated by. This will essentially be a non-normalized CDF. counter_tensor = torch.zeros( [len(outcomes) for outcomes in unique_outcomes], dtype=torch.long, device=Y.device, ) # populate the tensor, counting the dominated points. # we only need to consider points in Y where at least one # objective is less than the max objective value in # unique_outcomes_list max_vals = torch.tensor( [o[0] for o in unique_outcomes_list], dtype=Y.dtype, device=Y.device ) mask = (Y < max_vals).any(dim=-1) counter_tensor += self.n_w - mask.sum() Y_pruned = Y[mask] for y_ in Y_pruned: starting_idcs = [unique_outcomes[i].get(y_[i].item(), 0) for i in range(m)] counter_tensor[starting_idcs[0] :, starting_idcs[1] :] += 1 # Get the count alpha-level points should have. alpha_count = ceil(self.alpha * self.n_w) # Get the alpha level indices. alpha_level_indices = (counter_tensor == alpha_count).nonzero(as_tuple=False) # If there are no exact alpha level points, get the smallest alpha' > alpha # and find the corresponding alpha level indices. if alpha_level_indices.numel() == 0: min_greater_than_alpha = counter_tensor[counter_tensor > alpha_count].min() alpha_level_indices = (counter_tensor == min_greater_than_alpha).nonzero( as_tuple=False ) unique_outcomes = [ torch.as_tensor(list(outcomes.keys()), device=Y.device, dtype=Y.dtype) for outcomes in unique_outcomes ] alpha_level_points = torch.stack( [ unique_outcomes[i][alpha_level_indices[:, i]] for i in range(len(unique_outcomes)) ], dim=-1, ) # MVaR is simply the non-dominated subset of alpha level points. if self.filter_dominated: mask = is_non_dominated(alpha_level_points) mvar = alpha_level_points[mask] else: mvar = alpha_level_points return mvar def get_mvar_set_gpu(self, Y: Tensor) -> Tensor: r"""Find MVaR set based on the definition in [Prekopa2012MVaR]_. NOTE: This is much faster on GPU than the alternative but it scales very poorly on CPU as `n_w` increases. This should be preferred if a GPU is available or when `n_w <= 64`. In addition, this supports `m >= 2` outcomes (vs `m = 2` for the CPU version) and it should be used if `m > 2`. This first calculates the CDF for each point on the extended domain of the random variable (the grid defined by the given samples), then takes the values with CDF equal to (rounded if necessary) `alpha`. The non-dominated subset of these form the MVaR set. Args: Y: A `batch x n_w x m`-dim tensor of observations. Returns: A `batch` length list of `k x m`-dim tensor of MVaR values, where `k` depends on the corresponding batch inputs. Note that MVaR values in general are not in-sample points. """ if Y.dim() == 2: Y = Y.unsqueeze(0) batch, m = Y.shape[0], Y.shape[-1] # Note that points in MVaR are bounded from above by the # independent VaR of each objective. Hence, we only need to # consider the unique outcomes that are less than or equal to # the VaR of the independent objectives var_alpha_idx = ceil(self.alpha * self.n_w) - 1 n_points = Y.shape[-2] - var_alpha_idx Y_sorted = Y.topk(n_points, dim=-2, largest=False).values # `y_grid` is the grid formed by all inputs in each batch. if m == 2: # This is significantly faster but only works with m=2. y_grid = torch.stack( [ Y_sorted[..., 0].repeat_interleave(repeats=n_points, dim=-1), Y_sorted[..., 1].repeat(1, n_points), ], dim=-1, ) else: y_grid = torch.stack( [ torch.stack( torch.meshgrid( [Y_sorted[b, :, i] for i in range(m)], indexing=None ), dim=-1, ).view(-1, m) for b in range(batch) ], dim=0, ) # Get the non-normalized CDF. cdf = (Y.unsqueeze(-2) >= y_grid.unsqueeze(-3)).all(dim=-1).sum(dim=-2) # Get the alpha level points alpha_count = ceil(self.alpha * self.n_w) # NOTE: Need to loop here since mvar may have different shapes. mvar = [] for b in range(batch): alpha_level_points = y_grid[b][cdf[b] == alpha_count] # If there are no exact alpha level points, get the smallest alpha' > alpha # and find the corresponding alpha level indices. if alpha_level_points.numel() == 0: min_greater_than_alpha = cdf[b][cdf[b] > alpha_count].min() alpha_level_points = y_grid[b][cdf[b] == min_greater_than_alpha] # MVaR is the non-dominated subset of alpha level points. if self.filter_dominated: mask = is_non_dominated(alpha_level_points) mvar.append(alpha_level_points[mask]) else: mvar.append(alpha_level_points) return mvar def forward(self, samples: Tensor, X: Optional[Tensor] = None) -> Tensor: r"""Calculate the MVaR corresponding to the given samples. Args: samples: A `sample_shape x batch_shape x (q * n_w) x m`-dim tensor of posterior samples. The q-batches should be ordered so that each `n_w` block of samples correspond to the same input. X: A `batch_shape x q x d`-dim tensor of inputs. Ignored. Returns: A `sample_shape x batch_shape x q x m'`-dim tensor of MVaR values, if `self.expectation=True`. Otherwise, this returns a `sample_shape x batch_shape x (q * k') x m'`-dim tensor, where `k'` is the maximum `k` across all batches that is returned by `get_mvar_set_...`. Each `(q * k') x m'` corresponds to the `k` MVaR values for each `q` batch of `n_w` inputs, padded up to `k'` by repeating the last element. If `self.pad_to_n_w`, we set `k' = self.n_w`, producing a deterministic return shape. """ batch_shape, m = samples.shape[:-2], samples.shape[-1] prepared_samples = self._prepare_samples(samples) # This is -1 x n_w x m. prepared_samples = prepared_samples.reshape(-1, *prepared_samples.shape[-2:]) # Get the mvar set using the appropriate method based on device, m & n_w. # NOTE: The `n_w <= 64` part is based on testing on a 24 core CPU. # `get_mvar_set_gpu` heavily relies on parallelized batch computations and # may scale worse on CPUs with fewer cores. # Using `no_grad` here since `MVaR` is not differentiable. with torch.no_grad(): if ( samples.device == torch.device("cpu") and m == 2 and prepared_samples.shape[-2] <= 64 ): mvar_set = self.get_mvar_set_cpu(prepared_samples) else: mvar_set = self.get_mvar_set_gpu(prepared_samples) if samples.requires_grad: # TODO: Investigate differentiability of MVaR. warnings.warn( "Got `samples` that requires grad, but computing MVaR involves " "non-differentable operations and the results will not be " "differentiable. This may lead to errors down the line!", RuntimeWarning, ) # Set the `pad_size` to either `self.n_w` or the size of the largest MVaR set. pad_size = self.n_w if self.pad_to_n_w else max([_.shape[0] for _ in mvar_set]) padded_mvar_list = [] for mvar_ in mvar_set: if self.expectation: padded_mvar_list.append(mvar_.mean(dim=0)) else: # Repeat the last entry to make `mvar_set` `pad_size x m`. repeats_needed = pad_size - mvar_.shape[0] padded_mvar_list.append( torch.cat([mvar_, mvar_[-1].expand(repeats_needed, m)], dim=0) ) mvars = torch.stack(padded_mvar_list, dim=0) return mvars.view(*batch_shape, -1, m) class MARS(VaR, MultiOutputRiskMeasureMCObjective): r"""MVaR Approximation based on Random Scalarizations as introduced in [Daulton2022MARS]_. This approximates MVaR via VaR of Chebyshev scalarizations, where each scalarization corresponds to a point in the MVaR set. As implemented, this uses one set of scalarization weights to approximate a single MVaR value. Note that due to the normalization within the Chebyshev scalarization, the output of this risk measure may not be on the same scale as its inputs. """ _is_mo: bool = False def __init__( self, alpha: float, n_w: int, chebyshev_weights: Union[Tensor, List[float]], baseline_Y: Optional[Tensor] = None, ref_point: Optional[Union[Tensor, List[float]]] = None, preprocessing_function: Optional[Callable[[Tensor], Tensor]] = None, ) -> None: r"""Transform the posterior samples to samples of a risk measure. Args: alpha: The risk level, float in `(0.0, 1.0]`. n_w: The size of the perturbation set to calculate the risk measure over. chebyshev_weights: The weights to use in the Chebyshev scalarization. The Chebyshev scalarization is applied before computing VaR. The weights must be non-negative. See `preprocessing_function` to support minimization objectives. baseline_Y: An `n' x d`-dim tensor of baseline outcomes to use in determining the normalization bounds for Chebyshev scalarization. It is recommended to set this via `set_baseline_Y` helper. ref_point: An optional MVaR reference point to use in determining the normalization bounds for Chebyshev scalarization. preprocessing_function: A preprocessing function to apply to the samples before computing the risk measure. This can be used to remove non-objective outcomes or to align all outcomes for maximization. For constrained optimization, this should also apply feasibility-weighting to samples. """ if preprocessing_function is None: preprocessing_function = IdentityMCMultiOutputObjective() super().__init__( alpha=alpha, n_w=n_w, preprocessing_function=preprocessing_function, ) self.chebyshev_weights = torch.as_tensor(chebyshev_weights) self.baseline_Y = baseline_Y self.register_buffer( "ref_point", torch.as_tensor(ref_point) if ref_point is not None else None ) self.mvar = MVaR(n_w=self.n_w, alpha=self.alpha) self._chebyshev_objective = None def set_baseline_Y( self, model: Optional[Model], X_baseline: Optional[Tensor], Y_samples: Optional[Tensor] = None, ) -> None: r"""Set the `baseline_Y` based on the MVaR predictions of the `model` for `X_baseline`. Args: model: The model being used for MARS optimization. Must have a compatible `InputPerturbation` transform attached. Ignored if `Y_samples` is given. X_baseline: An `n x d`-dim tensor of previously evaluated points. Ignored if `Y_samples` is given. Y_samples: An optional `(n * n_w) x d`-dim tensor of predictions. If given, instead of sampling from the model, these are used. """ if Y_samples is None: with torch.no_grad(): Y = model.posterior(X_baseline.unsqueeze(-2)).mean.squeeze(-2) else: if model is not None or X_baseline is not None: warnings.warn( "`model` and `X_baseline` are ignored when `Y_samples` is " "provided to `MARS.set_baseline_Y`.", BotorchWarning, ) Y = Y_samples Y = self.preprocessing_function(Y) Y = self.mvar(Y).view(-1, Y.shape[-1]) Y = Y[is_non_dominated(Y)] self.baseline_Y = Y @property def chebyshev_weights(self) -> Tensor: r"""The weights used in Chebyshev scalarization.""" return self._chebyshev_weights @chebyshev_weights.setter def chebyshev_weights(self, chebyshev_weights: Union[Tensor, List[float]]) -> None: r"""Update the Chebyshev weights. Invalidates the cached Chebyshev objective. Args: chebyshev_weights: The weights to use in the Chebyshev scalarization. The Chebyshev scalarization is applied before computing VaR. The weights must be non-negative. See `preprocessing_function` to support minimization objectives. """ self._chebyshev_objective = None chebyshev_weights = torch.as_tensor(chebyshev_weights) if torch.any(chebyshev_weights < 0): raise UnsupportedError("Negative weights are not supported in MARS.") if chebyshev_weights.dim() != 1: raise UnsupportedError("Batched weights are not supported in MARS.") self.register_buffer("_chebyshev_weights", chebyshev_weights) @property def baseline_Y(self) -> Optional[Tensor]: r"""Baseline outcomes used indetermining the normalization bounds.""" return self._baseline_Y @baseline_Y.setter def baseline_Y(self, baseline_Y: Optional[Tensor]) -> None: r"""Update the baseline outcomes. Invalidates the cached Chebyshev objective. Args: baseline_Y: An `n' x d`-dim tensor of baseline outcomes to use in determining the normalization bounds for Chebyshev scalarization. It is recommended to set this via `set_baseline_Y` helper. """ self._chebyshev_objective = None self.register_buffer("_baseline_Y", baseline_Y) @property def chebyshev_objective(self) -> Callable[[Tensor, Optional[Tensor]], Tensor]: r"""The objective for applying the Chebyshev scalarization.""" if self._chebyshev_objective is None: self._construct_chebyshev_objective() return self._chebyshev_objective def _construct_chebyshev_objective(self) -> None: r"""Construct a Chebyshev scalarization. Outcomes are first normalized to [0,1], then the Chebyshev scalarization is applied. NOTE: This is a modified version of the `get_chebyshev_scalarization` helper. It doesn't support negative weights. All objectives should be aligned for maximization using `preprocessing_function`. """ if self.baseline_Y is None: raise RuntimeError( "baseline_Y must be set before constructing the Chebyshev objective." ) ref_point = self.ref_point if ref_point is not None: ref_point = ref_point.to(self.baseline_Y) Y_bounds = self._get_Y_normalization_bounds( Y=self.baseline_Y, ref_point=ref_point ) if ref_point is not None: ref_point = normalize(ref_point.unsqueeze(0), bounds=Y_bounds).squeeze(0) def chebyshev_obj(Y: Tensor, X: Optional[Tensor] = None) -> Tensor: Y = self.preprocessing_function(Y) Y = normalize(Y, bounds=Y_bounds) if ref_point is not None: Y = Y - ref_point product = torch.einsum("...m,m->...m", Y, self.chebyshev_weights.to(Y)) return product.min(dim=-1).values self._chebyshev_objective = chebyshev_obj def _prepare_samples(self, samples: Tensor) -> Tensor: r"""Prepare samples for VaR computation by applying the Chebyshev scalarization and separating out the q-batch dimension. Args: samples: A `sample_shape x batch_shape x (q * n_w) x m`-dim tensor of posterior samples. The q-batches should be ordered so that each `n_w` block of samples correspond to the same input. Returns: A `sample_shape x batch_shape x q x n_w`-dim tensor of prepared samples. """ samples = self.chebyshev_objective(samples) return samples.view(*samples.shape[:-1], -1, self.n_w) @staticmethod def _get_Y_normalization_bounds( Y: Tensor, ref_point: Optional[Tensor] = None, ) -> Tensor: r"""Get normalization bounds for scalarizations. Args: Y: A `n x m`-dim tensor of outcomes. ref_point: The reference point. Returns: A `2 x m`-dim tensor containing the normalization bounds. """ if ref_point is not None: ref_point = ref_point.to(Y) if Y.ndim != 2: raise UnsupportedError("Batched Y is not supported.") if Y.shape[-2] == 0: # If there are no observations, return standard bounds. Y_bounds = torch.zeros(2, Y.shape[-1], dtype=Y.dtype, device=Y.device) Y_bounds[1] = 1.0 return Y_bounds pareto_Y = Y[is_non_dominated(Y)] if pareto_Y.shape[-2] == 1: if ref_point is not None and (pareto_Y > ref_point).all(): Y_bounds = torch.cat([ref_point.unsqueeze(0), pareto_Y], dim=0) else: # If there is only one observation, set the bounds to be [Y_m, Y_m + 1] # for each objective m. This ensures we do not divide by zero. Y_bounds = torch.cat([pareto_Y, pareto_Y + 1], dim=0) else: if ref_point is None: better_than_ref = torch.ones( pareto_Y.shape[0], device=pareto_Y.device, dtype=torch.long ) else: better_than_ref = (pareto_Y > ref_point).all(dim=-1) if ref_point is not None and better_than_ref.any(): nadir = ref_point pareto_Y = pareto_Y[better_than_ref] else: nadir = pareto_Y.min(dim=-2).values ideal = pareto_Y.max(dim=-2).values Y_bounds = torch.stack([nadir, ideal]) # If any of the lower bounds is equal to the upper bound, increase the # upper bound to prevent division by zero. Y_range = Y_bounds.max(dim=0).values - Y_bounds.min(dim=0).values mask = Y_range <= 0 Y_bounds[1, mask] = Y_bounds[1, mask] + 1.0 return Y_bounds
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. r""" Acquisition functions for max-value entropy search for multi-objective Bayesian optimization (MESMO). References .. [Belakaria2019] S. Belakaria, A. Deshwal, J. R. Doppa. Max-value Entropy Search for Multi-Objective Bayesian Optimization. Advances in Neural Information Processing Systems, 32. 2019. """ from __future__ import annotations from math import pi from typing import Any, Callable, Optional, Tuple, Union import torch from botorch.acquisition.max_value_entropy_search import qMaxValueEntropy from botorch.acquisition.multi_objective.joint_entropy_search import ( LowerBoundMultiObjectiveEntropySearch, ) from botorch.acquisition.multi_objective.monte_carlo import ( MultiObjectiveMCAcquisitionFunction, ) from botorch.models.converter import ( batched_multi_output_to_single_output, model_list_to_batched, ) from botorch.models.model import Model from botorch.models.model_list_gp_regression import ModelListGP from botorch.posteriors.gpytorch import GPyTorchPosterior from botorch.sampling.base import MCSampler from botorch.sampling.normal import SobolQMCNormalSampler from botorch.utils.transforms import concatenate_pending_points, t_batch_mode_transform from torch import Tensor class qMultiObjectiveMaxValueEntropy( qMaxValueEntropy, MultiObjectiveMCAcquisitionFunction ): r"""The acquisition function for MESMO. This acquisition function computes the mutual information of Pareto frontier and a candidate point. See [Belakaria2019]_ for a detailed discussion. q > 1 is supported through cyclic optimization and fantasies. Noisy observations are support by computing information gain with observation noise as in Appendix C in [Takeno2020mfmves]_. Note: this only supports maximization. Attributes: _default_sample_shape: The `sample_shape` for the default sampler. Example: >>> model = SingleTaskGP(train_X, train_Y) >>> MESMO = qMultiObjectiveMaxValueEntropy(model, sample_pfs) >>> mesmo = MESMO(test_X) """ _default_sample_shape = torch.Size([128]) def __init__( self, model: Model, sample_pareto_frontiers: Callable[[Model], Tensor], num_fantasies: int = 16, X_pending: Optional[Tensor] = None, sampler: Optional[MCSampler] = None, **kwargs: Any, ) -> None: r"""Multi-objective max-value entropy search acquisition function. Args: model: A fitted multi-output model. sample_pareto_frontiers: A callable that takes a model and returns a `num_samples x n' x m`-dim tensor of outcomes to use for constructing `num_samples` sampled Pareto frontiers. num_fantasies: Number of fantasies to generate. The higher this number the more accurate the model (at the expense of model complexity, wall time and memory). Ignored if `X_pending` is `None`. X_pending: A `m x d`-dim Tensor of `m` design points that have been submitted for function evaluation, but have not yet been evaluated. """ MultiObjectiveMCAcquisitionFunction.__init__(self, model=model, sampler=sampler) # Batch GP models (e.g. fantasized models) are not currently supported if isinstance(model, ModelListGP): train_X = model.models[0].train_inputs[0] else: train_X = model.train_inputs[0] if train_X.ndim > 3: raise NotImplementedError( "Batch GP models (e.g. fantasized models) " "are not yet supported by qMultiObjectiveMaxValueEntropy" ) # convert to batched MO model batched_mo_model = ( model_list_to_batched(model) if isinstance(model, ModelListGP) else model ) self._init_model = batched_mo_model self.mo_model = batched_mo_model self.model = batched_multi_output_to_single_output( batch_mo_model=batched_mo_model ) self.fantasies_sampler = SobolQMCNormalSampler( sample_shape=torch.Size([num_fantasies]) ) self.num_fantasies = num_fantasies # weight is used in _compute_information_gain self.maximize = True self.weight = 1.0 self.sample_pareto_frontiers = sample_pareto_frontiers # this avoids unnecessary model conversion if X_pending is None if X_pending is None: self._sample_max_values() else: self.set_X_pending(X_pending) # This avoids attribute errors in qMaxValueEntropy code. self.posterior_transform = None def set_X_pending(self, X_pending: Optional[Tensor] = None) -> None: r"""Set pending points. Informs the acquisition function about pending design points, fantasizes the model on the pending points and draws max-value samples from the fantasized model posterior. Args: X_pending: `m x d` Tensor with `m` `d`-dim design points that have been submitted for evaluation but have not yet been evaluated. """ MultiObjectiveMCAcquisitionFunction.set_X_pending(self, X_pending=X_pending) if X_pending is not None: # fantasize the model fantasy_model = self._init_model.fantasize( X=X_pending, sampler=self.fantasies_sampler, observation_noise=True ) self.mo_model = fantasy_model # convert model to batched single outcome model. self.model = batched_multi_output_to_single_output( batch_mo_model=self.mo_model ) self._sample_max_values() else: # This is mainly for setting the model to the original model # after the sequential optimization at q > 1 self.mo_model = self._init_model self.model = batched_multi_output_to_single_output( batch_mo_model=self.mo_model ) self._sample_max_values() def _sample_max_values(self) -> None: r"""Sample max values for MC approximation of the expectation in MES""" with torch.no_grad(): # num_samples x (num_fantasies) x n_pareto_points x m sampled_pfs = self.sample_pareto_frontiers(self.mo_model) if sampled_pfs.ndim == 3: # add fantasy dim sampled_pfs = sampled_pfs.unsqueeze(-3) # take component-wise max value self.posterior_max_values = sampled_pfs.max(dim=-2).values @t_batch_mode_transform(expected_q=1) def forward(self, X: Tensor) -> Tensor: r"""Compute max-value entropy at the design points `X`. Args: X: A `batch_shape x 1 x d`-dim Tensor of `batch_shape` t-batches with `1` `d`-dim design points each. Returns: A `batch_shape`-dim Tensor of MVE values at the given design points `X`. """ # `m` dim tensor of information gains # unsqueeze X to add a batch-dim for the batched model igs = qMaxValueEntropy.forward(self, X=X.unsqueeze(-3)) # sum over objectives return igs.sum(dim=-1) class qLowerBoundMultiObjectiveMaxValueEntropySearch( LowerBoundMultiObjectiveEntropySearch ): r"""The acquisition function for the multi-objective Max-value Entropy Search, where the batches `q > 1` are supported through the lower bound formulation. This acquisition function computes the mutual information between the observation at a candidate point `X` and the Pareto optimal outputs. See [Tu2022]_ for a discussion on the estimation procedure. NOTES: (i) The estimated acquisition value could be negative. (ii) The lower bound batch acquisition function might not be monotone in the sense that adding more elements to the batch does not necessarily increase the acquisition value. Specifically, the acquisition value can become smaller when more inputs are added. """ def __init__( self, model: Model, hypercell_bounds: Tensor, X_pending: Optional[Tensor] = None, estimation_type: str = "LB", num_samples: int = 64, **kwargs: Any, ) -> None: r"""Lower bound multi-objective max-value entropy search acquisition function. Args: model: A fitted batch model with 'M' number of outputs. hypercell_bounds: A `num_pareto_samples x 2 x J x M`-dim Tensor containing the hyper-rectangle bounds for integration, where `J` is the number of hyper-rectangles. In the unconstrained case, this gives the partition of the dominated space. In the constrained case, this gives the partition of the feasible dominated space union the infeasible space. X_pending: A `m x d`-dim Tensor of `m` design points that have been submitted for function evaluation, but have not yet been evaluated. estimation_type: A string to determine which entropy estimate is computed: "0", "LB", "LB2", or "MC". num_samples: The number of Monte Carlo samples for the Monte Carlo estimate. """ super().__init__( model=model, pareto_sets=None, pareto_fronts=None, hypercell_bounds=hypercell_bounds, X_pending=X_pending, estimation_type=estimation_type, num_samples=num_samples, ) def _compute_posterior_statistics( self, X: Tensor ) -> dict[str, Union[GPyTorchPosterior, Tensor]]: r"""Compute the posterior statistics. Args: X: A `batch_shape x q x d`-dim Tensor of inputs. Returns: A dictionary containing the posterior variables used to estimate the entropy. - "initial_entropy": A `batch_shape`-dim Tensor containing the entropy of the Gaussian random variable `p(Y| X, D_n)`. - "posterior_mean": A `batch_shape x num_pareto_samples x q x 1 x M`-dim Tensor containing the posterior mean at the input `X`. - "posterior_variance": A `batch_shape x num_pareto_samples x q x 1 x M`-dim Tensor containing the posterior variance at the input `X` excluding the observation noise. - "observation_noise": A `batch_shape x num_pareto_samples x q x 1 x M` -dim Tensor containing the observation noise at the input `X`. - "posterior_with_noise": The posterior distribution at `X` which includes the observation noise. This is used to compute the marginal log-probabilities with respect to `p(y| x, D_n)` for `x` in `X`. """ tkwargs = {"dtype": X.dtype, "device": X.device} CLAMP_LB = torch.finfo(tkwargs["dtype"]).eps # Compute the initial entropy term depending on `X`. # TODO: Below we compute posterior_plus_noise twice: # (1) Firstly, we compute p(Y| X, D_n) when computing the initial entropy # (2) Secondly, we compute p(y| x, D_n) for x in X in order to compute # log(p(y|x, D_n)) for x in X in the Monte Carlo estimate.. # This could be simplified if we could evaluate log(p(y|x, D_n)) using the # the posterior p(Y| X, D_n) posterior_plus_noise = self.initial_model.posterior(X, observation_noise=True) # Additional constant term. add_term = ( 0.5 * self.model.num_outputs * (1 + torch.log(2 * pi * torch.ones(1, **tkwargs))) ) # The variance initially has shape `batch_shape x (q*M) x (q*M)` # prior_entropy has shape `batch_shape x num_fantasies` initial_entropy = add_term + 0.5 * torch.logdet( posterior_plus_noise.mvn.covariance_matrix ) posterior_statistics = {"initial_entropy": initial_entropy} # Compute the posterior entropy term. posterior_plus_noise = self.model.posterior( X.unsqueeze(-2), observation_noise=True ) # `batch_shape x q x 1 x M` mean = posterior_plus_noise.mean var_plus_noise = posterior_plus_noise.variance.clamp_min(CLAMP_LB) # Expand shapes to `batch_shape x num_pareto_samples x q x 1 x M` new_shape = ( mean.shape[:-3] + torch.Size([self.num_pareto_samples]) + mean.shape[-3:] ) mean = mean.unsqueeze(-4).expand(new_shape) var_plus_noise = var_plus_noise.unsqueeze(-4).expand(new_shape) # TODO: This computes the observation noise via a second evaluation of the # posterior. This step could be done better. posterior = self.model.posterior(X.unsqueeze(-2), observation_noise=False) var = posterior.variance.clamp_min(CLAMP_LB) var = var.unsqueeze(-4).expand(new_shape) obs_noise = var_plus_noise - var posterior_statistics["posterior_mean"] = mean posterior_statistics["posterior_variance"] = var posterior_statistics["observation_noise"] = obs_noise posterior_statistics["posterior_with_noise"] = posterior_plus_noise return posterior_statistics def _compute_monte_carlo_variables( self, posterior: GPyTorchPosterior ) -> Tuple[Tensor, Tensor]: r"""Compute the samples and log-probability associated with a posterior distribution. Args: posterior: The posterior distribution, which includes the observation noise. Returns: A two-element tuple containing - samples: A `num_mc_samples x batch_shape x num_pareto_samples x q x 1 x M`-dim Tensor containing the Monte Carlo samples. - samples_log_prob: A `num_mc_samples x batch_shape x num_pareto_samples x q`-dim Tensor containing the log-probabilities of the Monte Carlo samples. """ # `num_mc_samples x batch_shape x q x 1 x M` samples = self.get_posterior_samples(posterior) # `num_mc_samples x batch_shape x q` if self.model.num_outputs == 1: samples_log_prob = posterior.mvn.log_prob(samples.squeeze(-1)) else: samples_log_prob = posterior.mvn.log_prob(samples) # Expand shape to `num_mc_samples x batch_shape x num_pareto_samples x # q x 1 x M` new_shape = ( samples.shape[:-3] + torch.Size([self.num_pareto_samples]) + samples.shape[-3:] ) samples = samples.unsqueeze(-4).expand(new_shape) # Expand shape to `num_mc_samples x batch_shape x num_pareto_samples x q` new_shape = ( samples_log_prob.shape[:-1] + torch.Size([self.num_pareto_samples]) + samples_log_prob.shape[-1:] ) samples_log_prob = samples_log_prob.unsqueeze(-2).expand(new_shape) return samples, samples_log_prob @concatenate_pending_points @t_batch_mode_transform() def forward(self, X: Tensor) -> Tensor: r"""Evaluates qLowerBoundMultiObjectiveMaxValueEntropySearch at the design points `X`. Args: X: A `batch_shape x q x d`-dim Tensor of `batch_shape` t-batches with `q` `d`-dim design points each. Returns: A `batch_shape`-dim Tensor of acquisition values at the given design points `X`. """ return self._compute_lower_bound_information_gain(X)
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. r""" Analytic Acquisition Functions for Multi-objective Bayesian optimization. References .. [Yang2019] Yang, K., Emmerich, M., Deutz, A. et al. Efficient computation of expected hypervolume improvement using box decomposition algorithms. J Glob Optim 75, 3–34 (2019) """ from __future__ import annotations from abc import abstractmethod from itertools import product from typing import List, Optional import torch from botorch.acquisition.acquisition import AcquisitionFunction from botorch.acquisition.objective import PosteriorTransform from botorch.exceptions.errors import UnsupportedError from botorch.models.model import Model from botorch.utils.multi_objective.box_decompositions.non_dominated import ( NondominatedPartitioning, ) from botorch.utils.transforms import t_batch_mode_transform from torch import Tensor from torch.distributions import Normal class MultiObjectiveAnalyticAcquisitionFunction(AcquisitionFunction): r"""Abstract base class for Multi-Objective batch acquisition functions.""" def __init__( self, model: Model, posterior_transform: Optional[PosteriorTransform] = None, ) -> None: r"""Constructor for the MultiObjectiveAnalyticAcquisitionFunction base class. Args: model: A fitted model. posterior_transform: A PosteriorTransform (optional). """ super().__init__(model=model) if posterior_transform is None or isinstance( posterior_transform, PosteriorTransform ): self.posterior_transform = posterior_transform else: raise UnsupportedError( "Only a posterior_transform of type PosteriorTransform is " "supported for Multi-Objective analytic acquisition functions." ) @abstractmethod def forward(self, X: Tensor) -> Tensor: r"""Takes in a `batch_shape x 1 x d` X Tensor of t-batches with `1` `d`-dim design point each, and returns a Tensor with shape `batch_shape'`, where `batch_shape'` is the broadcasted batch shape of model and input `X`. """ pass # pragma: no cover def set_X_pending(self, X_pending: Optional[Tensor] = None) -> None: raise UnsupportedError( "Analytic acquisition functions do not account for X_pending yet." ) class ExpectedHypervolumeImprovement(MultiObjectiveAnalyticAcquisitionFunction): def __init__( self, model: Model, ref_point: List[float], partitioning: NondominatedPartitioning, posterior_transform: Optional[PosteriorTransform] = None, **kwargs, ) -> None: r"""Expected Hypervolume Improvement supporting m>=2 outcomes. This implements the computes EHVI using the algorithm from [Yang2019]_, but additionally computes gradients via auto-differentiation as proposed by [Daulton2020qehvi]_. Note: this is currently inefficient in two ways due to the binary partitioning algorithm that we use for the box decomposition: - We have more boxes in our decomposition - If we used a box decomposition that used `inf` as the upper bound for the last dimension *in all hypercells*, then we could reduce the number of terms we need to compute from 2^m to 2^(m-1). [Yang2019]_ do this by using DKLV17 and LKF17 for the box decomposition. TODO: Use DKLV17 and LKF17 for the box decomposition as in [Yang2019]_ for greater efficiency. TODO: Add support for outcome constraints. Example: >>> model = SingleTaskGP(train_X, train_Y) >>> ref_point = [0.0, 0.0] >>> EHVI = ExpectedHypervolumeImprovement(model, ref_point, partitioning) >>> ehvi = EHVI(test_X) Args: model: A fitted model. ref_point: A list with `m` elements representing the reference point (in the outcome space) w.r.t. to which compute the hypervolume. This is a reference point for the objective values (i.e. after applying `objective` to the samples). partitioning: A `NondominatedPartitioning` module that provides the non- dominated front and a partitioning of the non-dominated space in hyper- rectangles. posterior_transform: A `PosteriorTransform`. """ # TODO: we could refactor this __init__ logic into a # HypervolumeAcquisitionFunction Mixin if len(ref_point) != partitioning.num_outcomes: raise ValueError( "The length of the reference point must match the number of outcomes. " f"Got ref_point with {len(ref_point)} elements, but expected " f"{partitioning.num_outcomes}." ) ref_point = torch.tensor( ref_point, dtype=partitioning.pareto_Y.dtype, device=partitioning.pareto_Y.device, ) better_than_ref = (partitioning.pareto_Y > ref_point).all(dim=1) if not better_than_ref.any() and partitioning.pareto_Y.shape[0] > 0: raise ValueError( "At least one pareto point must be better than the reference point." ) super().__init__(model=model, posterior_transform=posterior_transform, **kwargs) self.register_buffer("ref_point", ref_point) self.partitioning = partitioning cell_bounds = self.partitioning.get_hypercell_bounds() self.register_buffer("cell_lower_bounds", cell_bounds[0]) self.register_buffer("cell_upper_bounds", cell_bounds[1]) # create indexing tensor of shape `2^m x m` self._cross_product_indices = torch.tensor( list(product(*[[0, 1] for _ in range(ref_point.shape[0])])), dtype=torch.long, device=ref_point.device, ) self.normal = Normal(0, 1) def psi(self, lower: Tensor, upper: Tensor, mu: Tensor, sigma: Tensor) -> Tensor: r"""Compute Psi function. For each cell i and outcome k: Psi(lower_{i,k}, upper_{i,k}, mu_k, sigma_k) = ( sigma_k * PDF((upper_{i,k} - mu_k) / sigma_k) + ( mu_k - lower_{i,k} ) * (1 - CDF(upper_{i,k} - mu_k) / sigma_k) ) See Equation 19 in [Yang2019]_ for more details. Args: lower: A `num_cells x m`-dim tensor of lower cell bounds upper: A `num_cells x m`-dim tensor of upper cell bounds mu: A `batch_shape x 1 x m`-dim tensor of means sigma: A `batch_shape x 1 x m`-dim tensor of standard deviations (clamped). Returns: A `batch_shape x num_cells x m`-dim tensor of values. """ u = (upper - mu) / sigma return sigma * self.normal.log_prob(u).exp() + (mu - lower) * ( 1 - self.normal.cdf(u) ) def nu(self, lower: Tensor, upper: Tensor, mu: Tensor, sigma: Tensor) -> Tensor: r"""Compute Nu function. For each cell i and outcome k: nu(lower_{i,k}, upper_{i,k}, mu_k, sigma_k) = ( upper_{i,k} - lower_{i,k} ) * (1 - CDF((upper_{i,k} - mu_k) / sigma_k)) See Equation 25 in [Yang2019]_ for more details. Args: lower: A `num_cells x m`-dim tensor of lower cell bounds upper: A `num_cells x m`-dim tensor of upper cell bounds mu: A `batch_shape x 1 x m`-dim tensor of means sigma: A `batch_shape x 1 x m`-dim tensor of standard deviations (clamped). Returns: A `batch_shape x num_cells x m`-dim tensor of values. """ return (upper - lower) * (1 - self.normal.cdf((upper - mu) / sigma)) @t_batch_mode_transform() def forward(self, X: Tensor) -> Tensor: posterior = self.model.posterior( X, posterior_transform=self.posterior_transform ) mu = posterior.mean sigma = posterior.variance.clamp_min(1e-9).sqrt() # clamp here, since upper_bounds will contain `inf`s, which # are not differentiable cell_upper_bounds = self.cell_upper_bounds.clamp_max( 1e10 if X.dtype == torch.double else 1e8 ) # Compute psi(lower_i, upper_i, mu_i, sigma_i) for i=0, ... m-2 psi_lu = self.psi( lower=self.cell_lower_bounds, upper=cell_upper_bounds, mu=mu, sigma=sigma ) # Compute psi(lower_m, lower_m, mu_m, sigma_m) psi_ll = self.psi( lower=self.cell_lower_bounds, upper=self.cell_lower_bounds, mu=mu, sigma=sigma, ) # Compute nu(lower_m, upper_m, mu_m, sigma_m) nu = self.nu( lower=self.cell_lower_bounds, upper=cell_upper_bounds, mu=mu, sigma=sigma ) # compute the difference psi_ll - psi_lu psi_diff = psi_ll - psi_lu # this is batch_shape x num_cells x 2 x (m-1) stacked_factors = torch.stack([psi_diff, nu], dim=-2) # Take the cross product of psi_diff and nu across all outcomes # e.g. for m = 2 # for each batch and cell, compute # [psi_diff_0, psi_diff_1] # [nu_0, psi_diff_1] # [psi_diff_0, nu_1] # [nu_0, nu_1] # this tensor has shape: `batch_shape x num_cells x 2^m x m` all_factors_up_to_last = stacked_factors.gather( dim=-2, index=self._cross_product_indices.expand( stacked_factors.shape[:-2] + self._cross_product_indices.shape ), ) # compute product for all 2^m terms, # sum across all terms and hypercells return all_factors_up_to_last.prod(dim=-1).sum(dim=-1).sum(dim=-1)
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. r""" Multi-Fidelity Acquisition Functions for Multi-objective Bayesian optimization. References .. [Irshad2021MOMF] F. Irshad, S. Karsch, and A. Döpp. Expected hypervolume improvement for simultaneous multi-objective and multi-fidelity optimization. arXiv preprint arXiv:2112.13901, 2021. """ from __future__ import annotations from typing import Any, Callable, List, Optional, Union import torch from botorch.acquisition.cost_aware import InverseCostWeightedUtility from botorch.acquisition.multi_objective.monte_carlo import ( qExpectedHypervolumeImprovement, ) from botorch.acquisition.multi_objective.objective import MCMultiOutputObjective from botorch.models.cost import AffineFidelityCostModel from botorch.models.deterministic import GenericDeterministicModel from botorch.models.model import Model from botorch.sampling.base import MCSampler from botorch.utils.multi_objective.box_decompositions.non_dominated import ( NondominatedPartitioning, ) from botorch.utils.transforms import concatenate_pending_points, t_batch_mode_transform from torch import Tensor class MOMF(qExpectedHypervolumeImprovement): def __init__( self, model: Model, ref_point: Union[List[float], Tensor], partitioning: NondominatedPartitioning, sampler: Optional[MCSampler] = None, objective: Optional[MCMultiOutputObjective] = None, constraints: Optional[List[Callable[[Tensor], Tensor]]] = None, eta: Optional[Union[Tensor, float]] = 1e-3, X_pending: Optional[Tensor] = None, cost_call: Callable[Tensor, Tensor] = None, **kwargs: Any, ) -> None: r"""MOMF acquisition function supporting m>=2 outcomes. The model needs to have train_obj that has a fidelity objective appended to its end. In the following example we consider a 2-D output space but the ref_point is 3D because of fidelity objective. See [Irshad2021MOMF]_ for details. Example: >>> model = SingleTaskGP(train_X, train_Y) >>> ref_point = [0.0, 0.0, 0.0] >>> cost_func = lambda X: 5 + X[..., -1] >>> momf = MOMF(model, ref_point, partitioning, cost_func) >>> momf_val = momf(test_X) Args: model: A fitted model. There are two default assumptions in the training data. `train_X` should have fidelity parameter `s` as the last dimension of the input and `train_Y` contains a trust objective as its last dimension. ref_point: A list or tensor with `m+1` elements representing the reference point (in the outcome space) w.r.t. to which compute the hypervolume. The '+1' takes care of the trust objective appended to `train_Y`. This is a reference point for the objective values (i.e. after applying`objective` to the samples). partitioning: A `NondominatedPartitioning` module that provides the non- dominated front and a partitioning of the non-dominated space in hyper- rectangles. If constraints are present, this partitioning must only include feasible points. sampler: The sampler used to draw base samples. If not given, a sampler is generated using `get_sampler`. objective: The MCMultiOutputObjective under which the samples are evaluated. Defaults to `IdentityMultiOutputObjective()`. constraints: A list of callables, each mapping a Tensor of dimension `sample_shape x batch-shape x q x m` to a Tensor of dimension `sample_shape x batch-shape x q`, where negative values imply feasibility. The acquisition function will compute expected feasible hypervolume. X_pending: A `batch_shape x m x d`-dim Tensor of `m` design points that have points that have been submitted for function evaluation but have not yet been evaluated. Concatenated into `X` upon forward call. Copied and set to have no gradient. cost_call: A callable cost function mapping a Tensor of dimension `batch_shape x q x d` to a cost Tensor of dimension `batch_shape x q x m`. Defaults to an AffineCostModel with `C(s) = 1 + s`. eta: The temperature parameter for the sigmoid function used for the differentiable approximation of the constraints. In case of a float the same eta is used for every constraint in constraints. In case of a tensor the length of the tensor must match the number of provided constraints. The i-th constraint is then estimated with the i-th eta value. """ if len(ref_point) != partitioning.num_outcomes: raise ValueError( "The length of the reference point must match the number of outcomes. " f"Got ref_point with {len(ref_point)} elements, but expected " f"{partitioning.num_outcomes}." ) ref_point = torch.as_tensor( ref_point, dtype=partitioning.pareto_Y.dtype, device=partitioning.pareto_Y.device, ) super().__init__( model=model, ref_point=ref_point, partitioning=partitioning, sampler=sampler, objective=objective, constraints=constraints, eta=eta, X_pending=X_pending, ) if cost_call is None: cost_model = AffineFidelityCostModel( fidelity_weights={-1: 1.0}, fixed_cost=1.0 ) else: cost_model = GenericDeterministicModel(cost_call) cost_aware_utility = InverseCostWeightedUtility(cost_model=cost_model) self.cost_aware_utility = cost_aware_utility @concatenate_pending_points @t_batch_mode_transform() def forward(self, X: Tensor) -> Tensor: posterior = self.model.posterior(X) samples = self.get_posterior_samples(posterior) hv_gain = self._compute_qehvi(samples=samples, X=X) cost_weighted_qehvi = self.cost_aware_utility(X=X, deltas=hv_gain) return cost_weighted_qehvi
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. r""" Samplers to enable use cases that are not base sample driven, such as stochastic optimization of acquisition functions. """ from __future__ import annotations import torch from botorch.posteriors import Posterior from botorch.sampling.base import MCSampler from torch import Tensor class ForkedRNGSampler(MCSampler): r"""A sampler using `torch.fork_rng` to enable replicable sampling from a posterior that does not support base samples. NOTE: This approach is not a one-to-one replacement for base sample driven sampling. The main missing piece in this approach is that its outputs are not replicable across the batch dimensions. As a result, when an acquisition function is batch evaluated with repeated candidates, each candidate will produce a different acquisition value, which is not compatible with Sample Average Approximation. """ def forward(self, posterior: Posterior) -> Tensor: r"""Draws MC samples from the posterior in a `fork_rng` context. Args: posterior: The posterior to sample from. Returns: The samples drawn from the posterior. """ with torch.random.fork_rng(): torch.manual_seed(self.seed) return posterior.rsample(sample_shape=self.sample_shape) class StochasticSampler(MCSampler): r"""A sampler that simply calls `posterior.rsample` to generate the samples. This should only be used for stochastic optimization of the acquisition functions, e.g., via `gen_candidates_torch`. This should not be used with `optimize_acqf`, which uses deterministic optimizers under the hood. NOTE: This ignores the `seed` option. """ def forward(self, posterior: Posterior) -> Tensor: r"""Draws MC samples from the posterior. Args: posterior: The posterior to sample from. Returns: The samples drawn from the posterior. """ return posterior.rsample(sample_shape=self.sample_shape)
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. r""" A dummy sampler for use with deterministic models. """ from __future__ import annotations from botorch.posteriors.deterministic import DeterministicPosterior from botorch.sampling.stochastic_samplers import StochasticSampler class DeterministicSampler(StochasticSampler): r"""A sampler that simply calls `posterior.rsample`, intended to be used with `DeterministicModel` & `DeterministicPosterior`. [DEPRECATED] - Use `IndexSampler` in conjunction with `EnsemblePosterior` instead of `DeterministicSampler` with `DeterministicPosterior`. This is effectively signals that `StochasticSampler` is safe to use with deterministic models since their output is deterministic by definition. """ def _update_base_samples( self, posterior: DeterministicPosterior, base_sampler: DeterministicSampler ) -> None: r"""This is a no-op since there are no base samples to update. Args: posterior: The posterior for which the base samples are constructed. base_sampler: The base sampler to retrieve the base samples from. """ return
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. r""" Sampler modules producing N(0,1) samples, to be used with MC-evaluated acquisition functions and Gaussian posteriors. """ from __future__ import annotations from abc import ABC, abstractmethod import torch from botorch.exceptions import UnsupportedError from botorch.posteriors import Posterior from botorch.posteriors.higher_order import HigherOrderGPPosterior from botorch.posteriors.multitask import MultitaskGPPosterior from botorch.posteriors.transformed import TransformedPosterior from botorch.sampling.base import MCSampler from botorch.utils.sampling import draw_sobol_normal_samples, manual_seed from torch import Tensor from torch.quasirandom import SobolEngine class NormalMCSampler(MCSampler, ABC): r"""Base class for samplers producing (possibly QMC) N(0,1) samples. Subclasses must implement the `_construct_base_samples` method. """ def forward(self, posterior: Posterior) -> Tensor: r"""Draws MC samples from the posterior. Args: posterior: The posterior to sample from. Returns: The samples drawn from the posterior. """ self._construct_base_samples(posterior=posterior) samples = posterior.rsample_from_base_samples( sample_shape=self.sample_shape, base_samples=self.base_samples.expand( self._get_extended_base_sample_shape(posterior=posterior) ), ) return samples @abstractmethod def _construct_base_samples(self, posterior: Posterior) -> None: r"""Generate base samples (if necessary). This function will generate a new set of base samples and register the `base_samples` buffer if one of the following is true: - the MCSampler has no `base_samples` attribute. - the output of `_get_collapsed_shape` does not agree with the shape of `self.base_samples`. Args: posterior: The Posterior for which to generate base samples. """ pass # pragma: no cover def _update_base_samples( self, posterior: Posterior, base_sampler: NormalMCSampler ) -> None: r"""Update the sampler to use the original base samples for X_baseline. This is used in CachedCholeskyAcquisitionFunctions to ensure consistency. Args: posterior: The posterior for which the base samples are constructed. base_sampler: The base sampler to retrieve the base samples from. """ self._instance_check(base_sampler=base_sampler) self._construct_base_samples(posterior=posterior) if base_sampler.base_samples is not None: current_base_samples = base_sampler.base_samples.detach().clone() # This is the # of non-`sample_shape` dimensions. base_ndims = current_base_samples.dim() - 1 # Unsqueeze as many dimensions as needed to match target_shape. target_shape = self._get_collapsed_shape(posterior=posterior) view_shape = ( self.sample_shape + torch.Size([1] * (len(target_shape) - current_base_samples.dim())) + current_base_samples.shape[-base_ndims:] ) expanded_shape = ( target_shape[:-base_ndims] + current_base_samples.shape[-base_ndims:] ) # Use stored base samples: # Use all base_samples from the current sampler # this includes the base_samples from the base_sampler # and any base_samples for the new points in the sampler. # For example, when using sequential greedy candidate generation # then generate the new candidate point using last (-1) base_sample # in sampler. This copies that base sample. expanded_samples = current_base_samples.view(view_shape).expand( expanded_shape ) if isinstance(posterior, (HigherOrderGPPosterior, MultitaskGPPosterior)): n_train_samples = current_base_samples.shape[-1] // 2 # The train base samples. self.base_samples[..., :n_train_samples] = expanded_samples[ ..., :n_train_samples ] # The train noise base samples. self.base_samples[..., -n_train_samples:] = expanded_samples[ ..., -n_train_samples: ] else: batch_shape = ( posterior._posterior.batch_shape if isinstance(posterior, TransformedPosterior) else posterior.batch_shape ) single_output = ( len(posterior.base_sample_shape) - len(batch_shape) ) == 1 if single_output: self.base_samples[ ..., : current_base_samples.shape[-1] ] = expanded_samples else: self.base_samples[ ..., : current_base_samples.shape[-2], : ] = expanded_samples class IIDNormalSampler(NormalMCSampler): r"""Sampler for MC base samples using iid N(0,1) samples. Example: >>> sampler = IIDNormalSampler(1000, seed=1234) >>> posterior = model.posterior(test_X) >>> samples = sampler(posterior) """ def _construct_base_samples(self, posterior: Posterior) -> None: r"""Generate iid `N(0,1)` base samples (if necessary). This function will generate a new set of base samples and set the `base_samples` buffer if one of the following is true: - the MCSampler has no `base_samples` attribute. - the output of `_get_collapsed_shape` does not agree with the shape of `self.base_samples`. Args: posterior: The Posterior for which to generate base samples. """ target_shape = self._get_collapsed_shape(posterior=posterior) if self.base_samples is None or self.base_samples.shape != target_shape: with manual_seed(seed=self.seed): base_samples = torch.randn( target_shape, device=posterior.device, dtype=posterior.dtype ) self.register_buffer("base_samples", base_samples) if self.base_samples.device != posterior.device: self.to(device=posterior.device) # pragma: nocover if self.base_samples.dtype != posterior.dtype: self.to(dtype=posterior.dtype) class SobolQMCNormalSampler(NormalMCSampler): r"""Sampler for quasi-MC N(0,1) base samples using Sobol sequences. Example: >>> sampler = SobolQMCNormalSampler(torch.Size([1024]), seed=1234) >>> posterior = model.posterior(test_X) >>> samples = sampler(posterior) """ def _construct_base_samples(self, posterior: Posterior) -> None: r"""Generate quasi-random Normal base samples (if necessary). This function will generate a new set of base samples and set the `base_samples` buffer if one of the following is true: - the MCSampler has no `base_samples` attribute. - the output of `_get_collapsed_shape` does not agree with the shape of `self.base_samples`. Args: posterior: The Posterior for which to generate base samples. """ target_shape = self._get_collapsed_shape(posterior=posterior) if self.base_samples is None or self.base_samples.shape != target_shape: base_collapsed_shape = target_shape[len(self.sample_shape) :] output_dim = base_collapsed_shape.numel() if output_dim > SobolEngine.MAXDIM: raise UnsupportedError( "SobolQMCSampler only supports dimensions " f"`q * o <= {SobolEngine.MAXDIM}`. Requested: {output_dim}" ) base_samples = draw_sobol_normal_samples( d=output_dim, n=self.sample_shape.numel(), device=posterior.device, dtype=posterior.dtype, seed=self.seed, ) base_samples = base_samples.view(target_shape) self.register_buffer("base_samples", base_samples) self.to(device=posterior.device, dtype=posterior.dtype)
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from botorch.sampling.base import MCSampler from botorch.sampling.deterministic import DeterministicSampler from botorch.sampling.get_sampler import get_sampler from botorch.sampling.list_sampler import ListSampler from botorch.sampling.normal import IIDNormalSampler, SobolQMCNormalSampler from botorch.sampling.pairwise_samplers import ( PairwiseIIDNormalSampler, PairwiseMCSampler, PairwiseSobolQMCNormalSampler, ) from botorch.sampling.qmc import MultivariateNormalQMCEngine, NormalQMCEngine from botorch.sampling.stochastic_samplers import ForkedRNGSampler, StochasticSampler from torch.quasirandom import SobolEngine __all__ = [ "DeterministicSampler", "ForkedRNGSampler", "get_sampler", "IIDNormalSampler", "ListSampler", "MCSampler", "MultivariateNormalQMCEngine", "NormalQMCEngine", "PairwiseIIDNormalSampler", "PairwiseMCSampler", "PairwiseSobolQMCNormalSampler", "SobolEngine", "SobolQMCNormalSampler", "StochasticSampler", ]
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from __future__ import annotations from itertools import combinations from typing import Any, Optional import numpy as np import torch from botorch.posteriors.posterior import Posterior from botorch.sampling.base import MCSampler from botorch.sampling.normal import IIDNormalSampler, SobolQMCNormalSampler from torch import Tensor class PairwiseMCSampler(MCSampler): r""" Abstract class for Pairwise MC Sampler. This sampler will sample pairwise comparisons. It is to be used together with PairwiseGP and BoTorch acquisition functions (e.g., qKnowledgeGradient) """ def __init__(self, max_num_comparisons: int = None, seed: int = None) -> None: r""" Args: max_num_comparisons: Max number of comparisons drawn within samples. If None, use all possible pairwise comparisons seed: The seed for np.random.seed. If omitted, use a random seed. May be overwritten by sibling classes or subclasses. """ self.max_num_comparisons = max_num_comparisons self.seed = seed if seed is not None else torch.randint(0, 1000000, (1,)).item() def forward(self, posterior: Posterior) -> Tensor: r"""Draws MC samples from the posterior and make comparisons Args: posterior: The Posterior to sample from. The returned samples are expected to have output dimension of 1. Returns: Posterior sample pairwise comparisons. """ samples = super().forward(posterior) np.random.seed(self.seed) s_n = samples.shape[-2] # candidate number per batch if s_n < 2: raise RuntimeError("Number of samples < 2, cannot make comparisons") # TODO: Don't instantiate a generator all_pairs = np.array(list(combinations(range(s_n), 2))) if self.max_num_comparisons is None: comp_n = len(all_pairs) else: comp_n = min(self.max_num_comparisons, len(all_pairs)) comp_pairs = all_pairs[ np.random.choice(range(len(all_pairs)), comp_n, replace=False) ] s_comps_size = torch.Size((*samples.shape[:-2], comp_n, 2)) s_v = samples.view(-1, s_n) idx1, idx2 = comp_pairs[:, 0], comp_pairs[:, 1] prefs = (s_v[:, idx1] > s_v[:, idx2]).long().cpu() cpt = comp_pairs.T c1 = np.choose(prefs, cpt) c2 = np.choose(1 - prefs, cpt) s_comps = torch.stack([c1, c2], dim=-1).reshape(s_comps_size) return s_comps class PairwiseIIDNormalSampler(PairwiseMCSampler, IIDNormalSampler): def __init__( self, sample_shape: torch.Size, seed: Optional[int] = None, max_num_comparisons: int = None, **kwargs: Any, ) -> None: r""" Args: sample_shape: The `sample_shape` of the samples to generate. seed: The seed for the RNG. If omitted, use a random seed. max_num_comparisons: Max number of comparisons drawn within samples. If None, use all possible pairwise comparisons. kwargs: Catch-all for deprecated arguments. """ PairwiseMCSampler.__init__( self, max_num_comparisons=max_num_comparisons, seed=seed ) IIDNormalSampler.__init__(self, sample_shape=sample_shape, seed=seed, **kwargs) class PairwiseSobolQMCNormalSampler(PairwiseMCSampler, SobolQMCNormalSampler): def __init__( self, sample_shape: torch.Size, seed: Optional[int] = None, max_num_comparisons: int = None, **kwargs: Any, ) -> None: r""" Args: sample_shape: The `sample_shape` of the samples to generate. seed: The seed for the RNG. If omitted, use a random seed. max_num_comparisons: Max number of comparisons drawn within samples. If None, use all possible pairwise comparisons. kwargs: Catch-all for deprecated arguments. """ PairwiseMCSampler.__init__( self, max_num_comparisons=max_num_comparisons, seed=seed ) SobolQMCNormalSampler.__init__( self, sample_shape=sample_shape, seed=seed, **kwargs )
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import Any, Type, Union import torch from botorch.logging import logger from botorch.posteriors.deterministic import DeterministicPosterior from botorch.posteriors.ensemble import EnsemblePosterior from botorch.posteriors.gpytorch import GPyTorchPosterior from botorch.posteriors.posterior import Posterior from botorch.posteriors.posterior_list import PosteriorList from botorch.posteriors.torch import TorchPosterior from botorch.posteriors.transformed import TransformedPosterior from botorch.sampling.base import MCSampler from botorch.sampling.deterministic import DeterministicSampler from botorch.sampling.index_sampler import IndexSampler from botorch.sampling.list_sampler import ListSampler from botorch.sampling.normal import ( IIDNormalSampler, NormalMCSampler, SobolQMCNormalSampler, ) from botorch.utils.dispatcher import Dispatcher from gpytorch.distributions import MultivariateNormal from torch.distributions import Distribution from torch.quasirandom import SobolEngine def _posterior_to_distribution_encoder( posterior: Posterior, ) -> Union[Type[Distribution], Type[Posterior]]: r"""An encoder returning the type of the distribution for `TorchPosterior` and the type of the posterior for the rest. """ if isinstance(posterior, TorchPosterior): return type(posterior.distribution) return type(posterior) GetSampler = Dispatcher("get_sampler", encoder=_posterior_to_distribution_encoder) def get_sampler( posterior: TorchPosterior, sample_shape: torch.Size, **kwargs: Any ) -> MCSampler: r"""Get the sampler for the given posterior. The sampler can be used as `sampler(posterior)` to produce samples suitable for use in acquisition function optimization via SAA. Args: posterior: A `Posterior` to get the sampler for. sample_shape: The sample shape of the samples produced by the given sampler. The full shape of the resulting samples is given by `posterior._extended_shape(sample_shape)`. kwargs: Optional kwargs, passed down to the samplers during construction. Returns: The `MCSampler` object for the given posterior. """ kwargs["sample_shape"] = sample_shape return GetSampler(posterior, **kwargs) @GetSampler.register(MultivariateNormal) def _get_sampler_mvn( posterior: GPyTorchPosterior, sample_shape: torch.Size, **kwargs: Any ) -> NormalMCSampler: r"""The Sobol normal sampler for the `MultivariateNormal` posterior. If the output dim is too large, falls back to `IIDNormalSampler`. """ sampler = SobolQMCNormalSampler(sample_shape=sample_shape, **kwargs) collapsed_shape = sampler._get_collapsed_shape(posterior=posterior) base_collapsed_shape = collapsed_shape[len(sample_shape) :] if base_collapsed_shape.numel() > SobolEngine.MAXDIM: logger.warning( f"Output dim {base_collapsed_shape.numel()} is too large for the " "Sobol engine. Using IIDNormalSampler instead." ) sampler = IIDNormalSampler(sample_shape=sample_shape, **kwargs) return sampler @GetSampler.register(TransformedPosterior) def _get_sampler_derived( posterior: TransformedPosterior, sample_shape: torch.Size, **kwargs: Any ) -> MCSampler: r"""Get the sampler for the underlying posterior.""" return get_sampler( posterior=posterior._posterior, sample_shape=sample_shape, **kwargs ) @GetSampler.register(PosteriorList) def _get_sampler_list( posterior: PosteriorList, sample_shape: torch.Size, **kwargs: Any ) -> MCSampler: r"""Get the `ListSampler` with the appropriate list of samplers.""" samplers = [ get_sampler(posterior=p, sample_shape=sample_shape, **kwargs) for p in posterior.posteriors ] return ListSampler(*samplers) @GetSampler.register(DeterministicPosterior) def _get_sampler_deterministic( posterior: DeterministicPosterior, sample_shape: torch.Size, **kwargs: Any ) -> MCSampler: r"""Get the dummy `DeterministicSampler` for the `DeterministicPosterior`.""" return DeterministicSampler(sample_shape=sample_shape, **kwargs) @GetSampler.register(EnsemblePosterior) def _get_sampler_ensemble( posterior: EnsemblePosterior, sample_shape: torch.Size, **kwargs: Any ) -> MCSampler: r"""Get the `IndexSampler` for the `EnsemblePosterior`.""" return IndexSampler(sample_shape=sample_shape, **kwargs) @GetSampler.register(object) def _not_found_error( posterior: Posterior, sample_shape: torch.Size, **kwargs: Any ) -> None: raise NotImplementedError( f"A registered `MCSampler` for posterior {posterior} is not found. You can " "implement and register one using `@GetSampler.register`." )
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. r""" Sampler to be used with `EnsemblePosteriors` to enable deterministic optimization of acquisition functions with ensemble models. """ from __future__ import annotations import torch from botorch.posteriors.ensemble import EnsemblePosterior from botorch.sampling.base import MCSampler from torch import Tensor class IndexSampler(MCSampler): r"""A sampler that calls `posterior.rsample_from_base_samples` to generate the samples via index base samples.""" def forward(self, posterior: EnsemblePosterior) -> Tensor: r"""Draws MC samples from the posterior. Args: posterior: The ensemble posterior to sample from. Returns: The samples drawn from the posterior. """ self._construct_base_samples(posterior=posterior) samples = posterior.rsample_from_base_samples( sample_shape=self.sample_shape, base_samples=self.base_samples ) return samples def _construct_base_samples(self, posterior: EnsemblePosterior) -> None: r"""Constructs base samples as indices to sample with them from the Posterior. Args: posterior: The ensemble posterior to construct the base samples for. """ if self.base_samples is None or self.base_samples.shape != self.sample_shape: with torch.random.fork_rng(): torch.manual_seed(self.seed) base_samples = torch.multinomial( posterior.weights, num_samples=self.sample_shape.numel(), replacement=True, ).reshape(self.sample_shape) self.register_buffer("base_samples", base_samples) if self.base_samples.device != posterior.device: self.to(device=posterior.device) # pragma: nocover def _update_base_samples( self, posterior: EnsemblePosterior, base_sampler: IndexSampler ) -> None: r"""Null operation just needed for compatibility with `CachedCholeskyAcquisitionFunction`.""" pass
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. r""" Quasi Monte-Carlo sampling from Normal distributions. References: .. [Pages2018numprob] G. Pages. Numerical Probability: An Introduction with Applications to Finance. Universitext. Springer International Publishing, 2018. """ from __future__ import annotations import math from typing import Optional import torch from torch import Tensor from torch.quasirandom import SobolEngine class NormalQMCEngine: r"""Engine for qMC sampling from a Multivariate Normal `N(0, I_d)`. By default, this implementation uses Box-Muller transformed Sobol samples following pg. 123 in [Pages2018numprob]_. To use the inverse transform instead, set `inv_transform=True`. Example: >>> engine = NormalQMCEngine(3) >>> samples = engine.draw(16) """ def __init__( self, d: int, seed: Optional[int] = None, inv_transform: bool = False ) -> None: r"""Engine for drawing qMC samples from a multivariate normal `N(0, I_d)`. Args: d: The dimension of the samples. seed: The seed with which to seed the random number generator of the underlying SobolEngine. inv_transform: If True, use inverse transform instead of Box-Muller. """ self._d = d self._seed = seed self._inv_transform = inv_transform if inv_transform: sobol_dim = d else: # to apply Box-Muller, we need an even number of dimensions sobol_dim = 2 * math.ceil(d / 2) self._sobol_engine = SobolEngine(dimension=sobol_dim, scramble=True, seed=seed) def draw( self, n: int = 1, out: Optional[Tensor] = None, dtype: torch.dtype = torch.float ) -> Optional[Tensor]: r"""Draw `n` qMC samples from the standard Normal. Args: n: The number of samples to draw. As a best practice, use powers of 2. out: An option output tensor. If provided, draws are put into this tensor, and the function returns None. dtype: The desired torch data type (ignored if `out` is provided). Returns: A `n x d` tensor of samples if `out=None` and `None` otherwise. """ # get base samples samples = self._sobol_engine.draw(n, dtype=dtype) if self._inv_transform: # apply inverse transform (values to close to 0/1 result in inf values) v = 0.5 + (1 - torch.finfo(samples.dtype).eps) * (samples - 0.5) samples_tf = torch.erfinv(2 * v - 1) * math.sqrt(2) else: # apply Box-Muller transform (note: [1] indexes starting from 1) even = torch.arange(0, samples.shape[-1], 2) Rs = (-2 * torch.log(samples[:, even])).sqrt() thetas = 2 * math.pi * samples[:, 1 + even] cos = torch.cos(thetas) sin = torch.sin(thetas) samples_tf = torch.stack([Rs * cos, Rs * sin], -1).reshape(n, -1) # make sure we only return the number of dimension requested samples_tf = samples_tf[:, : self._d] if out is None: return samples_tf else: out.copy_(samples_tf) class MultivariateNormalQMCEngine: r"""Engine for qMC sampling from a multivariate Normal `N(\mu, \Sigma)`. By default, this implementation uses Box-Muller transformed Sobol samples following pg. 123 in [Pages2018numprob]_. To use the inverse transform instead, set `inv_transform=True`. Example: >>> mean = torch.tensor([1.0, 2.0]) >>> cov = torch.tensor([[1.0, 0.25], [0.25, 2.0]]) >>> engine = MultivariateNormalQMCEngine(mean, cov) >>> samples = engine.draw(16) """ def __init__( self, mean: Tensor, cov: Tensor, seed: Optional[int] = None, inv_transform: bool = False, ) -> None: r"""Engine for qMC sampling from a multivariate Normal `N(\mu, \Sigma)`. Args: mean: The mean vector. cov: The covariance matrix. seed: The seed with which to seed the random number generator of the underlying SobolEngine. inv_transform: If True, use inverse transform instead of Box-Muller. """ # validate inputs if not cov.shape[0] == cov.shape[1]: raise ValueError("Covariance matrix is not square.") if not mean.shape[0] == cov.shape[0]: raise ValueError("Dimension mismatch between mean and covariance.") if not torch.allclose(cov, cov.transpose(-1, -2)): raise ValueError("Covariance matrix is not symmetric.") self._mean = mean self._normal_engine = NormalQMCEngine( d=mean.shape[0], seed=seed, inv_transform=inv_transform ) # compute Cholesky decomp; if it fails, do the eigendecomposition try: self._corr_matrix = torch.linalg.cholesky(cov).transpose(-1, -2) except RuntimeError: eigval, eigvec = torch.linalg.eigh(cov) tol = 1e-8 if eigval.dtype == torch.double else 1e-6 if torch.any(eigval < -tol): raise ValueError("Covariance matrix not PSD.") eigval_root = eigval.clamp_min(0.0).sqrt() self._corr_matrix = (eigvec * eigval_root).transpose(-1, -2) def draw(self, n: int = 1, out: Optional[Tensor] = None) -> Optional[Tensor]: r"""Draw `n` qMC samples from the multivariate Normal. Args: n: The number of samples to draw. As a best practice, use powers of 2. out: An option output tensor. If provided, draws are put into this tensor, and the function returns None. Returns: A `n x d` tensor of samples if `out=None` and `None` otherwise. """ dtype = out.dtype if out is not None else self._mean.dtype device = out.device if out is not None else self._mean.device base_samples = self._normal_engine.draw(n, dtype=dtype).to(device=device) corr_mat = self._corr_matrix.to(dtype=dtype, device=device) mean = self._mean.to(dtype=dtype, device=device) qmc_samples = base_samples @ corr_mat + mean if out is None: return qmc_samples else: out.copy_(qmc_samples)
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. r""" The base class for sampler modules to be used with MC-evaluated acquisition functions. """ from __future__ import annotations import warnings from abc import ABC, abstractmethod from typing import Any, Optional, Tuple import torch from botorch.exceptions.errors import InputDataError from botorch.posteriors import Posterior from torch import Tensor from torch.nn import Module KWARGS_DEPRECATED_MSG = ( "The {} argument of `MCSampler`s has been deprecated and will raise an " "error in a future version." ) KWARG_ERR_MSG = ( "`MCSampler`s no longer support the `{}` argument. " "Consider using `{}` for similar functionality." ) class MCSampler(Module, ABC): r"""Abstract base class for Samplers. Subclasses must implement the `forward` method. Example: This method is usually not called directly, but via the sampler's `__call__` method: >>> posterior = model.posterior(test_X) >>> samples = sampler(posterior) :meta private: """ def __init__( self, sample_shape: torch.Size, seed: Optional[int] = None, **kwargs: Any, ) -> None: r"""Abstract base class for samplers. Args: sample_shape: The `sample_shape` of the samples to generate. The full shape of the samples is given by `posterior._extended_shape(sample_shape)`. seed: An optional seed to use for sampling. **kwargs: Catch-all for deprecated kwargs. """ super().__init__() if not isinstance(sample_shape, torch.Size): if isinstance(sample_shape, int): sample_shape = torch.Size([sample_shape]) warnings.warn( "The first positional argument of samplers, `num_samples`, has " "been deprecated and replaced with `sample_shape`, which expects " "a `torch.Size` object.", DeprecationWarning, ) else: raise InputDataError( "Expected `sample_shape` to be a `torch.Size` object, " f"got {sample_shape}." ) for k, v in kwargs.items(): if k == "resample": if v is True: raise RuntimeError(KWARG_ERR_MSG.format(k, "StochasticSampler")) else: warnings.warn(KWARGS_DEPRECATED_MSG.format(k), DeprecationWarning) elif k == "collapse_batch_dims": if v is False: raise RuntimeError(KWARG_ERR_MSG.format(k, "ForkedRNGSampler")) else: warnings.warn(KWARGS_DEPRECATED_MSG.format(k), DeprecationWarning) else: raise RuntimeError(f"Recevied an unknown argument {k}: {v}.") self.sample_shape = sample_shape self.seed = seed if seed is not None else torch.randint(0, 1000000, (1,)).item() self.register_buffer("base_samples", None) @abstractmethod def forward(self, posterior: Posterior) -> Tensor: r"""Draws MC samples from the posterior. Args: posterior: The posterior to sample from. Returns: The samples drawn from the posterior. """ pass # pragma no cover def _get_batch_range(self, posterior: Posterior) -> Tuple[int, int]: r"""Get the t-batch range of the posterior with an optional override. In rare cases, e.g., in `qMultiStepLookahead`, we may want to override the `batch_range` of the posterior. If this behavior is desired, one can set `batch_range_override` attribute on the samplers. Args: posterior: The posterior to sample from. Returns: The t-batch range to use for collapsing the base samples. """ if hasattr(self, "batch_range_override"): return self.batch_range_override return posterior.batch_range def _get_collapsed_shape(self, posterior: Posterior) -> torch.Size: r"""Get the shape of the base samples with the t-batches collapsed. Args: posterior: The posterior to sample from. Returns: The collapsed shape of the base samples expected by the posterior. The t-batch dimensions of the base samples are collapsed to size 1. This is useful to prevent sampling variance across t-batches. """ base_sample_shape = posterior.base_sample_shape batch_start, batch_end = self._get_batch_range(posterior) base_sample_shape = ( base_sample_shape[:batch_start] + torch.Size([1 for _ in base_sample_shape[batch_start:batch_end]]) + base_sample_shape[batch_end:] ) return self.sample_shape + base_sample_shape def _get_extended_base_sample_shape(self, posterior: Posterior) -> torch.Size: r"""Get the shape of the base samples expected by the posterior. Args: posterior: The posterior to sample from. Returns: The extended shape of the base samples expected by the posterior. """ return self.sample_shape + posterior.base_sample_shape def _update_base_samples( self, posterior: Posterior, base_sampler: MCSampler ) -> None: r"""Update the sampler to use the original base samples for X_baseline. This is used in CachedCholeskyAcquisitionFunctions to ensure consistency. Args: posterior: The posterior for which the base samples are constructed. base_sampler: The base sampler to retrieve the base samples from. """ raise NotImplementedError( f"{self.__class__.__name__} does not implement `_update_base_samples`." ) def _instance_check(self, base_sampler): r"""Check that `base_sampler` is an instance of `self.__class__`.""" if not isinstance(base_sampler, self.__class__): raise RuntimeError( "Expected `base_sampler` to be an instance of " f"{self.__class__.__name__}. Got {base_sampler}." )
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. r""" A `SamplerList` for sampling from a `PosteriorList`. """ from __future__ import annotations import torch from botorch.exceptions.errors import UnsupportedError from botorch.posteriors.posterior_list import PosteriorList from botorch.sampling.base import MCSampler from torch import Tensor from torch.nn import ModuleList class ListSampler(MCSampler): def __init__(self, *samplers: MCSampler) -> None: r"""A list of samplers for sampling from a `PosteriorList`. Args: samplers: A variable number of samplers. This should include a sampler for each posterior. """ super(MCSampler, self).__init__() self.samplers = ModuleList(samplers) self._validate_samplers() def _validate_samplers(self) -> None: r"""Checks that the samplers share the same sample shape.""" sample_shapes = [s.sample_shape for s in self.samplers] if not all(sample_shapes[0] == ss for ss in sample_shapes): raise UnsupportedError( "ListSampler requires all samplers to have the same sample shape." ) @property def sample_shape(self) -> torch.Size: r"""The sample shape of the underlying samplers.""" self._validate_samplers() return self.samplers[0].sample_shape def forward(self, posterior: PosteriorList) -> Tensor: r"""Samples from the posteriors and concatenates the samples. Args: posterior: A `PosteriorList` to sample from. Returns: The samples drawn from the posterior. """ samples_list = [ s(posterior=p) for s, p in zip(self.samplers, posterior.posteriors) ] return posterior._reshape_and_cat(tensors=samples_list) def _update_base_samples( self, posterior: PosteriorList, base_sampler: ListSampler ) -> None: r"""Update the sampler to use the original base samples for X_baseline. This is used in CachedCholeskyAcquisitionFunctions to ensure consistency. Args: posterior: The posterior for which the base samples are constructed. base_sampler: The base sampler to retrieve the base samples from. """ self._instance_check(base_sampler=base_sampler) for s, p, bs in zip(self.samplers, posterior.posteriors, base_sampler.samplers): s._update_base_samples(posterior=p, base_sampler=bs)
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from __future__ import annotations from typing import Any, Callable, List, Optional from botorch.models.approximate_gp import ApproximateGPyTorchModel from botorch.models.model_list_gp_regression import ModelListGP from botorch.sampling.pathwise.features import gen_kernel_features from botorch.sampling.pathwise.features.generators import TKernelFeatureMapGenerator from botorch.sampling.pathwise.paths import GeneralizedLinearPath, PathList, SamplePath from botorch.sampling.pathwise.utils import ( get_input_transform, get_output_transform, get_train_inputs, TInputTransform, TOutputTransform, ) from botorch.utils.dispatcher import Dispatcher from botorch.utils.sampling import draw_sobol_normal_samples from gpytorch.kernels import Kernel from gpytorch.models import ApproximateGP, ExactGP, GP from gpytorch.variational import _VariationalStrategy from torch import Size, Tensor from torch.nn import Module TPathwisePriorSampler = Callable[[GP, Size], SamplePath] DrawKernelFeaturePaths = Dispatcher("draw_kernel_feature_paths") def draw_kernel_feature_paths( model: GP, sample_shape: Size, **kwargs: Any ) -> GeneralizedLinearPath: r"""Draws functions from a Bayesian-linear-model-based approximation to a GP prior. When evaluted, sample paths produced by this method return Tensors with dimensions `sample_dims x batch_dims x [joint_dim]`, where `joint_dim` denotes the penultimate dimension of the input tensor. For multioutput models, outputs are returned as the final batch dimension. Args: model: The prior over functions. sample_shape: The shape of the sample paths to be drawn. """ return DrawKernelFeaturePaths(model, sample_shape=sample_shape, **kwargs) def _draw_kernel_feature_paths_fallback( num_inputs: int, mean_module: Optional[Module], covar_module: Kernel, sample_shape: Size, num_features: int = 1024, map_generator: TKernelFeatureMapGenerator = gen_kernel_features, input_transform: Optional[TInputTransform] = None, output_transform: Optional[TOutputTransform] = None, weight_generator: Optional[Callable[[Size], Tensor]] = None, ) -> GeneralizedLinearPath: # Generate a kernel feature map feature_map = map_generator( kernel=covar_module, num_inputs=num_inputs, num_outputs=num_features, ) # Sample random weights with which to combine kernel features if weight_generator is None: weight = draw_sobol_normal_samples( n=sample_shape.numel() * covar_module.batch_shape.numel(), d=feature_map.num_outputs, device=covar_module.device, dtype=covar_module.dtype, ).reshape(sample_shape + covar_module.batch_shape + (feature_map.num_outputs,)) else: weight = weight_generator( sample_shape + covar_module.batch_shape + (feature_map.num_outputs,) ).to(device=covar_module.device, dtype=covar_module.dtype) # Return the sample paths return GeneralizedLinearPath( feature_map=feature_map, weight=weight, bias_module=mean_module, input_transform=input_transform, output_transform=output_transform, ) @DrawKernelFeaturePaths.register(ExactGP) def _draw_kernel_feature_paths_ExactGP( model: ExactGP, **kwargs: Any ) -> GeneralizedLinearPath: (train_X,) = get_train_inputs(model, transformed=False) return _draw_kernel_feature_paths_fallback( num_inputs=train_X.shape[-1], mean_module=model.mean_module, covar_module=model.covar_module, input_transform=get_input_transform(model), output_transform=get_output_transform(model), **kwargs, ) @DrawKernelFeaturePaths.register(ModelListGP) def _draw_kernel_feature_paths_list( model: ModelListGP, join: Optional[Callable[[List[Tensor]], Tensor]] = None, **kwargs: Any, ) -> PathList: paths = [draw_kernel_feature_paths(m, **kwargs) for m in model.models] return PathList(paths=paths, join=join) @DrawKernelFeaturePaths.register(ApproximateGPyTorchModel) def _draw_kernel_feature_paths_ApproximateGPyTorchModel( model: ApproximateGPyTorchModel, **kwargs: Any ) -> GeneralizedLinearPath: (train_X,) = get_train_inputs(model, transformed=False) return DrawKernelFeaturePaths( model.model, num_inputs=train_X.shape[-1], input_transform=get_input_transform(model), output_transform=get_output_transform(model), **kwargs, ) @DrawKernelFeaturePaths.register(ApproximateGP) def _draw_kernel_feature_paths_ApproximateGP( model: ApproximateGP, **kwargs: Any ) -> GeneralizedLinearPath: return DrawKernelFeaturePaths(model, model.variational_strategy, **kwargs) @DrawKernelFeaturePaths.register(ApproximateGP, _VariationalStrategy) def _draw_kernel_feature_paths_ApproximateGP_fallback( model: ApproximateGP, _: _VariationalStrategy, *, num_inputs: int, **kwargs: Any, ) -> GeneralizedLinearPath: return _draw_kernel_feature_paths_fallback( num_inputs=num_inputs, mean_module=model.mean_module, covar_module=model.covar_module, **kwargs, )
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from __future__ import annotations from abc import ABC from typing import ( Any, Callable, Dict, Iterable, Iterator, List, Mapping, Optional, Tuple, Union, ) from botorch.exceptions.errors import UnsupportedError from botorch.sampling.pathwise.features import FeatureMap from botorch.sampling.pathwise.utils import ( TInputTransform, TOutputTransform, TransformedModuleMixin, ) from torch import Tensor from torch.nn import Module, ModuleDict, ModuleList, Parameter class SamplePath(ABC, TransformedModuleMixin, Module): r"""Abstract base class for Botorch sample paths.""" class PathDict(SamplePath): r"""A dictionary of SamplePaths.""" def __init__( self, paths: Optional[Mapping[str, SamplePath]] = None, join: Optional[Callable[[List[Tensor]], Tensor]] = None, input_transform: Optional[TInputTransform] = None, output_transform: Optional[TOutputTransform] = None, ) -> None: r"""Initializes a PathDict instance. Args: paths: An optional mapping of strings to sample paths. join: An optional callable used to combine each path's outputs. input_transform: An optional input transform for the module. output_transform: An optional output transform for the module. """ if join is None and output_transform is not None: raise UnsupportedError("Output transforms must be preceded by a join rule.") super().__init__() self.join = join self.input_transform = input_transform self.output_transform = output_transform self.paths = ( paths if isinstance(paths, ModuleDict) else ModuleDict({} if paths is None else paths) ) def forward(self, x: Tensor, **kwargs: Any) -> Union[Tensor, Dict[str, Tensor]]: out = [path(x, **kwargs) for path in self.paths.values()] return dict(zip(self.paths, out)) if self.join is None else self.join(out) def items(self) -> Iterable[Tuple[str, SamplePath]]: return self.paths.items() def keys(self) -> Iterable[str]: return self.paths.keys() def values(self) -> Iterable[SamplePath]: return self.paths.values() def __len__(self) -> int: return len(self.paths) def __iter__(self) -> Iterator[SamplePath]: yield from self.paths def __delitem__(self, key: str) -> None: del self.paths[key] def __getitem__(self, key: str) -> SamplePath: return self.paths[key] def __setitem__(self, key: str, val: SamplePath) -> None: self.paths[key] = val class PathList(SamplePath): r"""A list of SamplePaths.""" def __init__( self, paths: Optional[Iterable[SamplePath]] = None, join: Optional[Callable[[List[Tensor]], Tensor]] = None, input_transform: Optional[TInputTransform] = None, output_transform: Optional[TOutputTransform] = None, ) -> None: r"""Initializes a PathList instance. Args: paths: An optional iterable of sample paths. join: An optional callable used to combine each path's outputs. input_transform: An optional input transform for the module. output_transform: An optional output transform for the module. """ if join is None and output_transform is not None: raise UnsupportedError("Output transforms must be preceded by a join rule.") super().__init__() self.join = join self.input_transform = input_transform self.output_transform = output_transform self.paths = ( paths if isinstance(paths, ModuleList) else ModuleList({} if paths is None else paths) ) def forward(self, x: Tensor, **kwargs: Any) -> Union[Tensor, List[Tensor]]: out = [path(x, **kwargs) for path in self.paths] return out if self.join is None else self.join(out) def __len__(self) -> int: return len(self.paths) def __iter__(self) -> Iterator[SamplePath]: yield from self.paths def __delitem__(self, key: int) -> None: del self.paths[key] def __getitem__(self, key: int) -> SamplePath: return self.paths[key] def __setitem__(self, key: int, val: SamplePath) -> None: self.paths[key] = val class GeneralizedLinearPath(SamplePath): r"""A sample path in the form of a generalized linear model.""" def __init__( self, feature_map: FeatureMap, weight: Union[Parameter, Tensor], bias_module: Optional[Module] = None, input_transform: Optional[TInputTransform] = None, output_transform: Optional[TOutputTransform] = None, ): r"""Initializes a GeneralizedLinearPath instance. .. code-block:: text path(x) = output_transform(bias_module(z) + feature_map(z)^T weight), where z = input_transform(x). Args: feature_map: A map used to featurize the module's inputs. weight: A tensor of weights used to combine input features. bias_module: An optional module used to define additive offsets. input_transform: An optional input transform for the module. output_transform: An optional output transform for the module. """ super().__init__() self.feature_map = feature_map if not isinstance(weight, Parameter): self.register_buffer("weight", weight) self.weight = weight self.bias_module = bias_module self.input_transform = input_transform self.output_transform = output_transform def forward(self, x: Tensor, **kwargs) -> Tensor: feat = self.feature_map(x, **kwargs) out = (feat @ self.weight.unsqueeze(-1)).squeeze(-1) return out if self.bias_module is None else out + self.bias_module(x)
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. r""" .. [wilson2020sampling] J. Wilson, V. Borovitskiy, A. Terenin, P. Mostowsky, and M. Deisenroth. Efficiently sampling functions from Gaussian process posteriors. International Conference on Machine Learning (2020). .. [wilson2021pathwise] J. Wilson, V. Borovitskiy, A. Terenin, P. Mostowsky, and M. Deisenroth. Pathwise Conditioning of Gaussian Processes. Journal of Machine Learning Research (2021). """ from __future__ import annotations from typing import Any, Optional, Union from botorch.models.approximate_gp import ApproximateGPyTorchModel from botorch.models.model_list_gp_regression import ModelListGP from botorch.sampling.pathwise.paths import PathDict, PathList, SamplePath from botorch.sampling.pathwise.prior_samplers import ( draw_kernel_feature_paths, TPathwisePriorSampler, ) from botorch.sampling.pathwise.update_strategies import gaussian_update, TPathwiseUpdate from botorch.sampling.pathwise.utils import ( get_output_transform, get_train_inputs, get_train_targets, TInputTransform, TOutputTransform, ) from botorch.utils.context_managers import delattr_ctx from botorch.utils.dispatcher import Dispatcher from gpytorch.models import ApproximateGP, ExactGP, GP from torch import Size DrawMatheronPaths = Dispatcher("draw_matheron_paths") class MatheronPath(PathDict): r"""Represents function draws from a GP posterior via Matheron's rule: .. code-block:: text "Prior path" v (f | y)(·) = f(·) + Cov(f(·), y) Cov(y, y)^{-1} (y - f(X) - ε), \_______________________________________/ v "Update path" where `=` denotes equality in distribution, :math:`f \sim GP(0, k)`, :math:`y \sim N(f(X), \Sigma)`, and :math:`\epsilon \sim N(0, \Sigma)`. For more information, see [wilson2020sampling]_ and [wilson2021pathwise]_. """ def __init__( self, prior_paths: SamplePath, update_paths: SamplePath, input_transform: Optional[TInputTransform] = None, output_transform: Optional[TOutputTransform] = None, ) -> None: r"""Initializes a MatheronPath instance. Args: prior_paths: Sample paths used to represent the prior. update_paths: Sample paths used to represent the data. input_transform: An optional input transform for the module. output_transform: An optional output transform for the module. """ super().__init__( join=sum, paths={"prior_paths": prior_paths, "update_paths": update_paths}, input_transform=input_transform, output_transform=output_transform, ) def draw_matheron_paths( model: GP, sample_shape: Size, prior_sampler: TPathwisePriorSampler = draw_kernel_feature_paths, update_strategy: TPathwiseUpdate = gaussian_update, **kwargs: Any, ) -> MatheronPath: r"""Generates function draws from (an approximate) Gaussian process prior. When evaluted, sample paths produced by this method return Tensors with dimensions `sample_dims x batch_dims x [joint_dim]`, where `joint_dim` denotes the penultimate dimension of the input tensor. For multioutput models, outputs are returned as the final batch dimension. Args: model: Gaussian process whose posterior is to be sampled. sample_shape: Sizes of sample dimensions. prior_sample: A callable that takes a model and a sample shape and returns a set of sample paths representing the prior. update_strategy: A callable that takes a model and a tensor of prior process values and returns a set of sample paths representing the data. """ return DrawMatheronPaths( model, sample_shape=sample_shape, prior_sampler=prior_sampler, update_strategy=update_strategy, **kwargs, ) @DrawMatheronPaths.register(ModelListGP) def _draw_matheron_paths_ModelListGP(model: ModelListGP, **kwargs: Any): return PathList([draw_matheron_paths(m, **kwargs) for m in model.models]) @DrawMatheronPaths.register(ExactGP) def _draw_matheron_paths_ExactGP( model: ExactGP, *, sample_shape: Size, prior_sampler: TPathwisePriorSampler, update_strategy: TPathwiseUpdate, ) -> MatheronPath: (train_X,) = get_train_inputs(model, transformed=True) train_Y = get_train_targets(model, transformed=True) with delattr_ctx(model, "outcome_transform"): # Generate draws from the prior prior_paths = prior_sampler(model=model, sample_shape=sample_shape) sample_values = prior_paths.forward(train_X) # Compute pathwise updates update_paths = update_strategy( model=model, sample_values=sample_values, train_targets=train_Y, ) return MatheronPath( prior_paths=prior_paths, update_paths=update_paths, output_transform=get_output_transform(model), ) @DrawMatheronPaths.register((ApproximateGP, ApproximateGPyTorchModel)) def _draw_matheron_paths_ApproximateGP( model: Union[ApproximateGP, ApproximateGPyTorchModel], *, sample_shape: Size, prior_sampler: TPathwisePriorSampler, update_strategy: TPathwiseUpdate, **kwargs: Any, ) -> MatheronPath: # Note: Inducing points are assumed to be pre-transformed Z = ( model.model.variational_strategy.inducing_points if isinstance(model, ApproximateGPyTorchModel) else model.variational_strategy.inducing_points ) with delattr_ctx(model, "outcome_transform"): # Generate draws from the prior prior_paths = prior_sampler(model=model, sample_shape=sample_shape) sample_values = prior_paths.forward(Z) # `forward` bypasses transforms # Compute pathwise updates update_paths = update_strategy(model=model, sample_values=sample_values) return MatheronPath( prior_paths=prior_paths, update_paths=update_paths, output_transform=get_output_transform(model), )
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from botorch.sampling.pathwise.features import ( gen_kernel_features, KernelEvaluationMap, KernelFeatureMap, ) from botorch.sampling.pathwise.paths import ( GeneralizedLinearPath, PathDict, PathList, SamplePath, ) from botorch.sampling.pathwise.posterior_samplers import ( draw_matheron_paths, MatheronPath, ) from botorch.sampling.pathwise.prior_samplers import draw_kernel_feature_paths from botorch.sampling.pathwise.update_strategies import gaussian_update __all__ = [ "draw_matheron_paths", "draw_kernel_feature_paths", "gen_kernel_features", "gaussian_update", "GeneralizedLinearPath", "KernelEvaluationMap", "KernelFeatureMap", "MatheronPath", "SamplePath", "PathDict", "PathList", ]
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from __future__ import annotations from typing import Any, Callable, Optional, Union import torch from botorch.models.approximate_gp import ApproximateGPyTorchModel from botorch.models.transforms.input import InputTransform from botorch.sampling.pathwise.features import KernelEvaluationMap from botorch.sampling.pathwise.paths import GeneralizedLinearPath, SamplePath from botorch.sampling.pathwise.utils import ( get_input_transform, get_train_inputs, get_train_targets, TInputTransform, ) from botorch.utils.dispatcher import Dispatcher from botorch.utils.types import DEFAULT, NoneType from gpytorch.kernels.kernel import Kernel from gpytorch.likelihoods import _GaussianLikelihoodBase, Likelihood from gpytorch.models import ApproximateGP, ExactGP, GP from gpytorch.variational import VariationalStrategy from linear_operator.operators import ( LinearOperator, SumLinearOperator, ZeroLinearOperator, ) from torch import Tensor TPathwiseUpdate = Callable[[GP, Tensor], SamplePath] GaussianUpdate = Dispatcher("gaussian_update") def gaussian_update( model: GP, sample_values: Tensor, likelihood: Optional[Likelihood] = DEFAULT, **kwargs: Any, ) -> GeneralizedLinearPath: r"""Computes a Gaussian pathwise update in exact arithmetic: .. code-block:: text (f | y)(·) = f(·) + Cov(f(·), y) Cov(y, y)^{-1} (y - f(X) - ε), \_______________________________________/ V "Gaussian pathwise update" where `=` denotes equality in distribution, :math:`f \sim GP(0, k)`, :math:`y \sim N(f(X), \Sigma)`, and :math:`\epsilon \sim N(0, \Sigma)`. For more information, see [wilson2020sampling]_ and [wilson2021pathwise]_. Args: model: A Gaussian process prior together with a likelihood. sample_values: Assumed values for :math:`f(X)`. likelihood: An optional likelihood used to help define the desired update. Defaults to `model.likelihood` if it exists else None. """ if likelihood is DEFAULT: likelihood = getattr(model, "likelihood", None) return GaussianUpdate(model, likelihood, sample_values=sample_values, **kwargs) def _gaussian_update_exact( kernel: Kernel, points: Tensor, target_values: Tensor, sample_values: Tensor, noise_covariance: Optional[Union[Tensor, LinearOperator]] = None, scale_tril: Optional[Union[Tensor, LinearOperator]] = None, input_transform: Optional[TInputTransform] = None, ) -> GeneralizedLinearPath: # Prepare Cholesky factor of `Cov(y, y)` and noise sample values as needed if isinstance(noise_covariance, (NoneType, ZeroLinearOperator)): scale_tril = kernel(points).cholesky() if scale_tril is None else scale_tril else: noise_values = torch.randn_like(sample_values).unsqueeze(-1) noise_values = noise_covariance.cholesky() @ noise_values sample_values = sample_values + noise_values.squeeze(-1) scale_tril = ( SumLinearOperator(kernel(points), noise_covariance).cholesky() if scale_tril is None else scale_tril ) # Solve for `Cov(y, y)^{-1}(Y - f(X) - ε)` errors = target_values - sample_values weight = torch.cholesky_solve(errors.unsqueeze(-1), scale_tril.to_dense()) # Define update feature map and paths feature_map = KernelEvaluationMap( kernel=kernel, points=points, input_transform=input_transform, ) return GeneralizedLinearPath(feature_map=feature_map, weight=weight.squeeze(-1)) @GaussianUpdate.register(ExactGP, _GaussianLikelihoodBase) def _gaussian_update_ExactGP( model: ExactGP, likelihood: _GaussianLikelihoodBase, *, sample_values: Tensor, target_values: Optional[Tensor] = None, points: Optional[Tensor] = None, noise_covariance: Optional[Union[Tensor, LinearOperator]] = None, scale_tril: Optional[Union[Tensor, LinearOperator]] = None, **ignore: Any, ) -> GeneralizedLinearPath: if points is None: (points,) = get_train_inputs(model, transformed=True) if target_values is None: target_values = get_train_targets(model, transformed=True) if noise_covariance is None: noise_covariance = likelihood.noise_covar(shape=points.shape[:-1]) return _gaussian_update_exact( kernel=model.covar_module, points=points, target_values=target_values, sample_values=sample_values, noise_covariance=noise_covariance, scale_tril=scale_tril, input_transform=get_input_transform(model), ) @GaussianUpdate.register(ApproximateGPyTorchModel, (Likelihood, NoneType)) def _gaussian_update_ApproximateGPyTorchModel( model: ApproximateGPyTorchModel, likelihood: Union[Likelihood, NoneType], **kwargs: Any, ) -> GeneralizedLinearPath: return GaussianUpdate( model.model, likelihood, input_transform=get_input_transform(model), **kwargs ) @GaussianUpdate.register(ApproximateGP, (Likelihood, NoneType)) def _gaussian_update_ApproximateGP( model: ApproximateGP, likelihood: Union[Likelihood, NoneType], **kwargs: Any ) -> GeneralizedLinearPath: return GaussianUpdate(model, model.variational_strategy, **kwargs) @GaussianUpdate.register(ApproximateGP, VariationalStrategy) def _gaussian_update_ApproximateGP_VariationalStrategy( model: ApproximateGP, _: VariationalStrategy, *, sample_values: Tensor, target_values: Optional[Tensor] = None, noise_covariance: Optional[Union[Tensor, LinearOperator]] = None, input_transform: Optional[InputTransform] = None, **ignore: Any, ) -> GeneralizedLinearPath: # TODO: Account for jitter added by `psd_safe_cholesky` if not isinstance(noise_covariance, (NoneType, ZeroLinearOperator)): raise NotImplementedError( f"`noise_covariance` argument not yet supported for {type(model)}." ) # Inducing points `Z` are assumed to live in transformed space batch_shape = model.covar_module.batch_shape v = model.variational_strategy Z = v.inducing_points L = v._cholesky_factor(v(Z, prior=True).lazy_covariance_matrix).to( dtype=sample_values.dtype ) # Generate whitened inducing variables `u`, then location-scale transform if target_values is None: u = v.variational_distribution.rsample( sample_values.shape[: sample_values.ndim - len(batch_shape) - 1], ) target_values = model.mean_module(Z) + (u @ L.transpose(-1, -2)) return _gaussian_update_exact( kernel=model.covar_module, points=Z, target_values=target_values, sample_values=sample_values, scale_tril=L, input_transform=input_transform, )
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from __future__ import annotations from abc import ABC, abstractmethod from typing import Any, Callable, Iterable, List, Optional, overload, Tuple, Union import torch from botorch.models.approximate_gp import SingleTaskVariationalGP from botorch.models.gpytorch import GPyTorchModel from botorch.models.model import Model, ModelList from botorch.models.transforms.input import InputTransform from botorch.models.transforms.outcome import OutcomeTransform from botorch.utils.dispatcher import Dispatcher from gpytorch.kernels import ScaleKernel from gpytorch.kernels.kernel import Kernel from torch import LongTensor, Tensor from torch.nn import Module, ModuleList TInputTransform = Union[InputTransform, Callable[[Tensor], Tensor]] TOutputTransform = Union[OutcomeTransform, Callable[[Tensor], Tensor]] GetTrainInputs = Dispatcher("get_train_inputs") GetTrainTargets = Dispatcher("get_train_targets") class TransformedModuleMixin: r"""Mixin that wraps a module's __call__ method with optional transforms.""" input_transform: Optional[TInputTransform] output_transform: Optional[TOutputTransform] def __call__(self, values: Tensor, *args: Any, **kwargs: Any) -> Tensor: input_transform = getattr(self, "input_transform", None) if input_transform is not None: values = ( input_transform.forward(values) if isinstance(input_transform, InputTransform) else input_transform(values) ) output = super().__call__(values, *args, **kwargs) output_transform = getattr(self, "output_transform", None) if output_transform is None: return output return ( output_transform.untransform(output)[0] if isinstance(output_transform, OutcomeTransform) else output_transform(output) ) class TensorTransform(ABC, Module): r"""Abstract base class for transforms that map tensor to tensor.""" @abstractmethod def forward(self, values: Tensor, **kwargs: Any) -> Tensor: pass # pragma: no cover class ChainedTransform(TensorTransform): r"""A composition of TensorTransforms.""" def __init__(self, *transforms: TensorTransform): r"""Initializes a ChainedTransform instance. Args: transforms: A set of transforms to be applied from right to left. """ super().__init__() self.transforms = ModuleList(transforms) def forward(self, values: Tensor) -> Tensor: for transform in reversed(self.transforms): values = transform(values) return values class SineCosineTransform(TensorTransform): r"""A transform that returns concatenated sine and cosine features.""" def __init__(self, scale: Optional[Tensor] = None): r"""Initializes a SineCosineTransform instance. Args: scale: An optional tensor used to rescale the module's outputs. """ super().__init__() self.scale = scale def forward(self, values: Tensor) -> Tensor: sincos = torch.concat([values.sin(), values.cos()], dim=-1) return sincos if self.scale is None else self.scale * sincos class InverseLengthscaleTransform(TensorTransform): r"""A transform that divides its inputs by a kernels lengthscales.""" def __init__(self, kernel: Kernel): r"""Initializes an InverseLengthscaleTransform instance. Args: kernel: The kernel whose lengthscales are to be used. """ if not kernel.has_lengthscale: raise RuntimeError(f"{type(kernel)} does not implement `lengthscale`.") super().__init__() self.kernel = kernel def forward(self, values: Tensor) -> Tensor: return self.kernel.lengthscale.reciprocal() * values class OutputscaleTransform(TensorTransform): r"""A transform that multiplies its inputs by the square root of a kernel's outputscale.""" def __init__(self, kernel: ScaleKernel): r"""Initializes an OutputscaleTransform instance. Args: kernel: A ScaleKernel whose `outputscale` is to be used. """ super().__init__() self.kernel = kernel def forward(self, values: Tensor) -> Tensor: outputscale = ( self.kernel.outputscale[..., None, None] if self.kernel.batch_shape else self.kernel.outputscale ) return outputscale.sqrt() * values class FeatureSelector(TensorTransform): r"""A transform that returns a subset of its input's features. along a given tensor dimension.""" def __init__(self, indices: Iterable[int], dim: Union[int, LongTensor] = -1): r"""Initializes a FeatureSelector instance. Args: indices: A LongTensor of feature indices. dim: The dimensional along which to index features. """ super().__init__() self.register_buffer("dim", dim if torch.is_tensor(dim) else torch.tensor(dim)) self.register_buffer( "indices", indices if torch.is_tensor(indices) else torch.tensor(indices) ) def forward(self, values: Tensor) -> Tensor: return values.index_select(dim=self.dim, index=self.indices) class OutcomeUntransformer(TensorTransform): r"""Module acting as a bridge for `OutcomeTransform.untransform`.""" def __init__( self, transform: OutcomeTransform, num_outputs: Union[int, LongTensor], ): r"""Initializes an OutcomeUntransformer instance. Args: transform: The wrapped OutcomeTransform instance. num_outputs: The number of outcome features that the OutcomeTransform transforms. """ super().__init__() self.transform = transform self.register_buffer( "num_outputs", num_outputs if torch.is_tensor(num_outputs) else torch.tensor(num_outputs), ) def forward(self, values: Tensor) -> Tensor: # OutcomeTransforms expect an explicit output dimension in the final position. if self.num_outputs == 1: # BoTorch has suppressed the output dimension output_values, _ = self.transform.untransform(values.unsqueeze(-1)) return output_values.squeeze(-1) # BoTorch has moved the output dimension inside as the final batch dimension. output_values, _ = self.transform.untransform(values.transpose(-2, -1)) return output_values.transpose(-2, -1) def get_input_transform(model: GPyTorchModel) -> Optional[InputTransform]: r"""Returns a model's input_transform or None.""" return getattr(model, "input_transform", None) def get_output_transform(model: GPyTorchModel) -> Optional[OutcomeUntransformer]: r"""Returns a wrapped version of a model's outcome_transform or None.""" transform = getattr(model, "outcome_transform", None) if transform is None: return None return OutcomeUntransformer(transform=transform, num_outputs=model.num_outputs) @overload def get_train_inputs(model: Model, transformed: bool = False) -> Tuple[Tensor, ...]: pass # pragma: no cover @overload def get_train_inputs(model: ModelList, transformed: bool = False) -> List[...]: pass # pragma: no cover def get_train_inputs(model: Model, transformed: bool = False): return GetTrainInputs(model, transformed=transformed) @GetTrainInputs.register(Model) def _get_train_inputs_Model(model: Model, transformed: bool = False) -> Tuple[Tensor]: if not transformed: original_train_input = getattr(model, "_original_train_inputs", None) if torch.is_tensor(original_train_input): return (original_train_input,) (X,) = model.train_inputs transform = get_input_transform(model) if transform is None: return (X,) if model.training: return (transform.forward(X) if transformed else X,) return (X if transformed else transform.untransform(X),) @GetTrainInputs.register(SingleTaskVariationalGP) def _get_train_inputs_SingleTaskVariationalGP( model: SingleTaskVariationalGP, transformed: bool = False ) -> Tuple[Tensor]: (X,) = model.model.train_inputs if model.training != transformed: return (X,) transform = get_input_transform(model) if transform is None: return (X,) return (transform.forward(X) if model.training else transform.untransform(X),) @GetTrainInputs.register(ModelList) def _get_train_inputs_ModelList( model: ModelList, transformed: bool = False ) -> List[...]: return [get_train_inputs(m, transformed=transformed) for m in model.models] @overload def get_train_targets(model: Model, transformed: bool = False) -> Tensor: pass # pragma: no cover @overload def get_train_targets(model: ModelList, transformed: bool = False) -> List[...]: pass # pragma: no cover def get_train_targets(model: Model, transformed: bool = False): return GetTrainTargets(model, transformed=transformed) @GetTrainTargets.register(Model) def _get_train_targets_Model(model: Model, transformed: bool = False) -> Tensor: Y = model.train_targets # Note: Avoid using `get_output_transform` here since it creates a Module transform = getattr(model, "outcome_transform", None) if transformed or transform is None: return Y if model.num_outputs == 1: return transform.untransform(Y.unsqueeze(-1))[0].squeeze(-1) return transform.untransform(Y.transpose(-2, -1))[0].transpose(-2, -1) @GetTrainTargets.register(SingleTaskVariationalGP) def _get_train_targets_SingleTaskVariationalGP( model: Model, transformed: bool = False ) -> Tensor: Y = model.model.train_targets transform = getattr(model, "outcome_transform", None) if transformed or transform is None: return Y if model.num_outputs == 1: return transform.untransform(Y.unsqueeze(-1))[0].squeeze(-1) # SingleTaskVariationalGP.__init__ doesn't bring the multitoutpout dimension inside return transform.untransform(Y)[0] @GetTrainTargets.register(ModelList) def _get_train_targets_ModelList( model: ModelList, transformed: bool = False ) -> List[...]: return [get_train_targets(m, transformed=transformed) for m in model.models]
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from __future__ import annotations from typing import Optional, Union import torch from botorch.sampling.pathwise.utils import ( TInputTransform, TOutputTransform, TransformedModuleMixin, ) from gpytorch.kernels import Kernel from linear_operator.operators import LinearOperator from torch import Size, Tensor from torch.nn import Module class FeatureMap(TransformedModuleMixin, Module): num_outputs: int batch_shape: Size input_transform: Optional[TInputTransform] output_transform: Optional[TOutputTransform] class KernelEvaluationMap(FeatureMap): r"""A feature map defined by centering a kernel at a set of points.""" def __init__( self, kernel: Kernel, points: Tensor, input_transform: Optional[TInputTransform] = None, output_transform: Optional[TOutputTransform] = None, ) -> None: r"""Initializes a KernelEvaluationMap instance: .. code-block:: text feature_map(x) = output_transform(kernel(input_transform(x), points)). Args: kernel: The kernel :math:`k` used to define the feature map. points: A tensor passed as the kernel's second argument. input_transform: An optional input transform for the module. output_transform: An optional output transform for the module. """ try: torch.broadcast_shapes(points.shape[:-2], kernel.batch_shape) except RuntimeError: raise RuntimeError( f"Shape mismatch: {points.shape=}, but {kernel.batch_shape=}." ) super().__init__() self.kernel = kernel self.points = points self.input_transform = input_transform self.output_transform = output_transform def forward(self, x: Tensor) -> Union[Tensor, LinearOperator]: return self.kernel(x, self.points) @property def num_outputs(self) -> int: if self.output_transform is None: return self.points.shape[-1] canary = torch.empty( 1, self.points.shape[-1], device=self.points.device, dtype=self.points.dtype ) return self.output_transform(canary).shape[-1] @property def batch_shape(self) -> Size: return self.kernel.batch_shape class KernelFeatureMap(FeatureMap): r"""Representation of a kernel :math:`k: \mathcal{X}^2 \to \mathbb{R}` as an n-dimensional feature map :math:`\phi: \mathcal{X} \to \mathbb{R}^n` satisfying: :math:`k(x, x') ≈ \phi(x)^\top \phi(x')`. """ def __init__( self, kernel: Kernel, weight: Tensor, bias: Optional[Tensor] = None, input_transform: Optional[TInputTransform] = None, output_transform: Optional[TOutputTransform] = None, ) -> None: r"""Initializes a KernelFeatureMap instance: .. code-block:: text feature_map(x) = output_transform(input_transform(x)^{T} weight + bias). Args: kernel: The kernel :math:`k` used to define the feature map. weight: A tensor of weights used to linearly combine the module's inputs. bias: A tensor of biases to be added to the linearly combined inputs. input_transform: An optional input transform for the module. output_transform: An optional output transform for the module. """ super().__init__() self.kernel = kernel self.register_buffer("weight", weight) self.register_buffer("bias", bias) self.weight = weight self.bias = bias self.input_transform = input_transform self.output_transform = output_transform def forward(self, x: Tensor) -> Tensor: out = x @ self.weight.transpose(-2, -1) return out if self.bias is None else out + self.bias @property def num_outputs(self) -> int: if self.output_transform is None: return self.weight.shape[-2] canary = torch.empty( self.weight.shape[-2], device=self.weight.device, dtype=self.weight.dtype ) return self.output_transform(canary).shape[-1] @property def batch_shape(self) -> Size: return self.kernel.batch_shape
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from botorch.sampling.pathwise.features.generators import gen_kernel_features from botorch.sampling.pathwise.features.maps import ( FeatureMap, KernelEvaluationMap, KernelFeatureMap, ) __all__ = [ "FeatureMap", "gen_kernel_features", "KernelEvaluationMap", "KernelFeatureMap", ]
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. r""" .. [rahimi2007random] A. Rahimi and B. Recht. Random features for large-scale kernel machines. Advances in Neural Information Processing Systems 20 (2007). .. [sutherland2015error] D. J. Sutherland and J. Schneider. On the error of random Fourier features. arXiv preprint arXiv:1506.02785 (2015). """ from __future__ import annotations from typing import Any, Callable import torch from botorch.exceptions.errors import UnsupportedError from botorch.sampling.pathwise.features.maps import KernelFeatureMap from botorch.sampling.pathwise.utils import ( ChainedTransform, FeatureSelector, InverseLengthscaleTransform, OutputscaleTransform, SineCosineTransform, ) from botorch.utils.dispatcher import Dispatcher from botorch.utils.sampling import draw_sobol_normal_samples from gpytorch import kernels from gpytorch.kernels.kernel import Kernel from torch import Size, Tensor from torch.distributions import Gamma TKernelFeatureMapGenerator = Callable[[Kernel, int, int], KernelFeatureMap] GenKernelFeatures = Dispatcher("gen_kernel_features") def gen_kernel_features( kernel: kernels.Kernel, num_inputs: int, num_outputs: int, **kwargs: Any, ) -> KernelFeatureMap: r"""Generates a feature map :math:`\phi: \mathcal{X} \to \mathbb{R}^{n}` such that :math:`k(x, x') ≈ \phi(x)^{T} \phi(x')`. For stationary kernels :math:`k`, defaults to the method of random Fourier features. For more details, see [rahimi2007random]_ and [sutherland2015error]_. Args: kernel: The kernel :math:`k` to be represented via a finite-dim basis. num_inputs: The number of input features. num_outputs: The number of kernel features. """ return GenKernelFeatures( kernel, num_inputs=num_inputs, num_outputs=num_outputs, **kwargs, ) def _gen_fourier_features( kernel: kernels.Kernel, weight_generator: Callable[[Size], Tensor], num_inputs: int, num_outputs: int, ) -> KernelFeatureMap: r"""Generate a feature map :math:`\phi: \mathcal{X} \to \mathbb{R}^{2l}` that approximates a stationary kernel so that :math:`k(x, x') ≈ \phi(x)^\top \phi(x')`. Following [sutherland2015error]_, we represent complex exponentials by pairs of basis functions :math:`\phi_{i}(x) = \sin(x^\top w_{i})` and :math:`\phi_{i + l} = \cos(x^\top w_{i}). Args: kernel: A stationary kernel :math:`k(x, x') = k(x - x')`. weight_generator: A callable used to generate weight vectors :math:`w`. num_inputs: The number of input features. num_outputs: The number of Fourier features. """ if num_outputs % 2: raise UnsupportedError( f"Expected an even number of output features, but received {num_outputs=}." ) input_transform = InverseLengthscaleTransform(kernel) if kernel.active_dims is not None: num_inputs = len(kernel.active_dims) input_transform = ChainedTransform( input_transform, FeatureSelector(indices=kernel.active_dims) ) weight = weight_generator( Size([kernel.batch_shape.numel() * num_outputs // 2, num_inputs]) ).reshape(*kernel.batch_shape, num_outputs // 2, num_inputs) output_transform = SineCosineTransform( torch.tensor((2 / num_outputs) ** 0.5, device=kernel.device, dtype=kernel.dtype) ) return KernelFeatureMap( kernel=kernel, weight=weight, input_transform=input_transform, output_transform=output_transform, ) @GenKernelFeatures.register(kernels.RBFKernel) def _gen_kernel_features_rbf( kernel: kernels.RBFKernel, *, num_inputs: int, num_outputs: int, ) -> KernelFeatureMap: def _weight_generator(shape: Size) -> Tensor: try: n, d = shape except ValueError: raise UnsupportedError( f"Expected `shape` to be 2-dimensional, but {len(shape)=}." ) return draw_sobol_normal_samples( n=n, d=d, device=kernel.lengthscale.device, dtype=kernel.lengthscale.dtype, ) return _gen_fourier_features( kernel=kernel, weight_generator=_weight_generator, num_inputs=num_inputs, num_outputs=num_outputs, ) @GenKernelFeatures.register(kernels.MaternKernel) def _gen_kernel_features_matern( kernel: kernels.MaternKernel, *, num_inputs: int, num_outputs: int, ) -> KernelFeatureMap: def _weight_generator(shape: Size) -> Tensor: try: n, d = shape except ValueError: raise UnsupportedError( f"Expected `shape` to be 2-dimensional, but {len(shape)=}." ) dtype = kernel.lengthscale.dtype device = kernel.lengthscale.device nu = torch.tensor(kernel.nu, device=device, dtype=dtype) normals = draw_sobol_normal_samples(n=n, d=d, device=device, dtype=dtype) return Gamma(nu, nu).rsample((n, 1)).rsqrt() * normals return _gen_fourier_features( kernel=kernel, weight_generator=_weight_generator, num_inputs=num_inputs, num_outputs=num_outputs, ) @GenKernelFeatures.register(kernels.ScaleKernel) def _gen_kernel_features_scale( kernel: kernels.ScaleKernel, *, num_inputs: int, num_outputs: int, ) -> KernelFeatureMap: active_dims = kernel.active_dims feature_map = gen_kernel_features( kernel.base_kernel, num_inputs=num_inputs if active_dims is None else len(active_dims), num_outputs=num_outputs, ) if active_dims is not None and active_dims is not kernel.base_kernel.active_dims: feature_map.input_transform = ChainedTransform( feature_map.input_transform, FeatureSelector(indices=active_dims) ) feature_map.output_transform = ChainedTransform( OutputscaleTransform(kernel), feature_map.output_transform ) return feature_map
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. r""" Methods for optimizing acquisition functions. """ from __future__ import annotations import dataclasses import warnings from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from botorch.acquisition.acquisition import ( AcquisitionFunction, OneShotAcquisitionFunction, ) from botorch.acquisition.knowledge_gradient import qKnowledgeGradient from botorch.exceptions import InputDataError, UnsupportedError from botorch.exceptions.warnings import OptimizationWarning from botorch.generation.gen import gen_candidates_scipy, TGenCandidates from botorch.logging import logger from botorch.optim.initializers import ( gen_batch_initial_conditions, gen_one_shot_kg_initial_conditions, TGenInitialConditions, ) from botorch.optim.stopping import ExpMAStoppingCriterion from botorch.optim.utils import _filter_kwargs from torch import Tensor INIT_OPTION_KEYS = { # set of options for initialization that we should # not pass to scipy.optimize.minimize to avoid # warnings "alpha", "batch_limit", "eta", "init_batch_limit", "nonnegative", "n_burnin", "sample_around_best", "sample_around_best_sigma", "sample_around_best_prob_perturb", "seed", "thinning", } @dataclasses.dataclass(frozen=True) class OptimizeAcqfInputs: """ Container for inputs to `optimize_acqf`. See docstring for `optimize_acqf` for explanation of parameters. """ acq_function: AcquisitionFunction bounds: Tensor q: int num_restarts: int raw_samples: Optional[int] options: Optional[Dict[str, Union[bool, float, int, str]]] inequality_constraints: Optional[List[Tuple[Tensor, Tensor, float]]] equality_constraints: Optional[List[Tuple[Tensor, Tensor, float]]] nonlinear_inequality_constraints: Optional[List[Callable]] fixed_features: Optional[Dict[int, float]] post_processing_func: Optional[Callable[[Tensor], Tensor]] batch_initial_conditions: Optional[Tensor] return_best_only: bool gen_candidates: TGenCandidates sequential: bool ic_generator: Optional[TGenInitialConditions] = None timeout_sec: Optional[float] = None return_full_tree: bool = False retry_on_optimization_warning: bool = True ic_gen_kwargs: Dict = dataclasses.field(default_factory=dict) @property def full_tree(self) -> bool: return self.return_full_tree or ( not isinstance(self.acq_function, OneShotAcquisitionFunction) ) def __post_init__(self) -> None: if self.inequality_constraints is None and not ( self.bounds.ndim == 2 and self.bounds.shape[0] == 2 ): raise ValueError( "bounds should be a `2 x d` tensor, current shape: " f"{list(self.bounds.shape)}." ) d = self.bounds.shape[1] if self.batch_initial_conditions is not None: batch_initial_conditions_shape = self.batch_initial_conditions.shape if len(batch_initial_conditions_shape) not in (2, 3): raise ValueError( "batch_initial_conditions must be 2-dimensional or " "3-dimensional. Its shape is " f"{batch_initial_conditions_shape}." ) if batch_initial_conditions_shape[-1] != d: raise ValueError( f"batch_initial_conditions.shape[-1] must be {d}. The " f"shape is {batch_initial_conditions_shape}." ) elif self.ic_generator is None: if self.nonlinear_inequality_constraints is not None: raise RuntimeError( "`ic_generator` must be given if " "there are non-linear inequality constraints." ) if self.raw_samples is None: raise ValueError( "Must specify `raw_samples` when " "`batch_initial_conditions` is None`." ) def get_ic_generator(self) -> TGenInitialConditions: if self.ic_generator is not None: return self.ic_generator elif isinstance(self.acq_function, qKnowledgeGradient): return gen_one_shot_kg_initial_conditions return gen_batch_initial_conditions def _raise_deprecation_warning_if_kwargs(fn_name: str, kwargs: Dict[str, Any]) -> None: """ Raise a warning if kwargs are provided. Some functions used to support **kwargs. The applicable parameters have now been refactored to be named arguments, so no warning will be raised for users passing the expected arguments. However, if a user had been passing an inapplicable keyword argument, this will now raise a warning whereas in the past it did nothing. """ if len(kwargs) > 0: warnings.warn( f"`{fn_name}` does not support arguments {list(kwargs.keys())}. In " "the future, this will become an error.", DeprecationWarning, ) def _optimize_acqf_all_features_fixed( *, bounds: Tensor, fixed_features: Dict[int, float], q: int, acq_function: AcquisitionFunction, ) -> Tuple[Tensor, Tensor]: """ Helper function for `optimize_acqf` for the trivial case where all features are fixed. """ X = torch.tensor( [fixed_features[i] for i in range(bounds.shape[-1])], device=bounds.device, dtype=bounds.dtype, ) X = X.expand(q, *X.shape) with torch.no_grad(): acq_value = acq_function(X) return X, acq_value def _validate_sequential_inputs(opt_inputs: OptimizeAcqfInputs) -> None: # validate that linear constraints across the q-dim and # self.sequential are not present together if opt_inputs.inequality_constraints is not None: for constraint in opt_inputs.inequality_constraints: if len(constraint[0].shape) > 1: raise UnsupportedError( "Linear inequality constraints across the q-dimension are not " "supported for sequential optimization." ) if opt_inputs.equality_constraints is not None: for constraint in opt_inputs.equality_constraints: if len(constraint[0].shape) > 1: raise UnsupportedError( "Linear equality constraints across the q-dimension are not " "supported for sequential optimization." ) # TODO: Validate constraints if provided: # https://github.com/pytorch/botorch/pull/1231 if opt_inputs.batch_initial_conditions is not None: raise UnsupportedError( "`batch_initial_conditions` is not supported for sequential " "optimization. Either avoid specifying " "`batch_initial_conditions` to use the custom initializer or " "use the `ic_generator` kwarg to generate initial conditions " "for the case of nonlinear inequality constraints." ) if not opt_inputs.return_best_only: raise NotImplementedError( "`return_best_only=False` only supported for joint optimization." ) if isinstance(opt_inputs.acq_function, OneShotAcquisitionFunction): raise NotImplementedError( "sequential optimization currently not supported for one-shot " "acquisition functions. Must have `sequential=False`." ) def _optimize_acqf_sequential_q( opt_inputs: OptimizeAcqfInputs, ) -> Tuple[Tensor, Tensor]: """ Helper function for `optimize_acqf` when sequential=True and q > 1. For each of `q` times, generate a single candidate greedily, then add it to the list of pending points. """ _validate_sequential_inputs(opt_inputs) # When using sequential optimization, we allocate the total timeout # evenly across the individual acquisition optimizations. timeout_sec = ( opt_inputs.timeout_sec / opt_inputs.q if opt_inputs.timeout_sec is not None else None ) candidate_list, acq_value_list = [], [] base_X_pending = opt_inputs.acq_function.X_pending new_inputs = dataclasses.replace( opt_inputs, q=1, batch_initial_conditions=None, return_best_only=True, sequential=False, timeout_sec=timeout_sec, ) for i in range(opt_inputs.q): candidate, acq_value = _optimize_acqf_batch(new_inputs) candidate_list.append(candidate) acq_value_list.append(acq_value) candidates = torch.cat(candidate_list, dim=-2) new_inputs.acq_function.set_X_pending( torch.cat([base_X_pending, candidates], dim=-2) if base_X_pending is not None else candidates ) logger.info(f"Generated sequential candidate {i+1} of {opt_inputs.q}") opt_inputs.acq_function.set_X_pending(base_X_pending) return candidates, torch.stack(acq_value_list) def _optimize_acqf_batch(opt_inputs: OptimizeAcqfInputs) -> Tuple[Tensor, Tensor]: options = opt_inputs.options or {} initial_conditions_provided = opt_inputs.batch_initial_conditions is not None if initial_conditions_provided: batch_initial_conditions = opt_inputs.batch_initial_conditions else: # pyre-ignore[28]: Unexpected keyword argument `acq_function` to anonymous call. batch_initial_conditions = opt_inputs.get_ic_generator()( acq_function=opt_inputs.acq_function, bounds=opt_inputs.bounds, q=opt_inputs.q, num_restarts=opt_inputs.num_restarts, raw_samples=opt_inputs.raw_samples, fixed_features=opt_inputs.fixed_features, options=options, inequality_constraints=opt_inputs.inequality_constraints, equality_constraints=opt_inputs.equality_constraints, **opt_inputs.ic_gen_kwargs, ) batch_limit: int = options.get( "batch_limit", opt_inputs.num_restarts if not opt_inputs.nonlinear_inequality_constraints else 1, ) def _optimize_batch_candidates() -> Tuple[Tensor, Tensor, List[Warning]]: batch_candidates_list: List[Tensor] = [] batch_acq_values_list: List[Tensor] = [] batched_ics = batch_initial_conditions.split(batch_limit) opt_warnings = [] timeout_sec = ( opt_inputs.timeout_sec / len(batched_ics) if opt_inputs.timeout_sec is not None else None ) bounds = opt_inputs.bounds gen_kwargs: Dict[str, Any] = { "lower_bounds": None if bounds[0].isinf().all() else bounds[0], "upper_bounds": None if bounds[1].isinf().all() else bounds[1], "options": {k: v for k, v in options.items() if k not in INIT_OPTION_KEYS}, "fixed_features": opt_inputs.fixed_features, "timeout_sec": timeout_sec, } # only add parameter constraints to gen_kwargs if they are specified # to avoid unnecessary warnings in _filter_kwargs for constraint_name in [ "inequality_constraints", "equality_constraints", "nonlinear_inequality_constraints", ]: if (constraint := getattr(opt_inputs, constraint_name)) is not None: gen_kwargs[constraint_name] = constraint filtered_gen_kwargs = _filter_kwargs(opt_inputs.gen_candidates, **gen_kwargs) for i, batched_ics_ in enumerate(batched_ics): # optimize using random restart optimization with warnings.catch_warnings(record=True) as ws: warnings.simplefilter("always", category=OptimizationWarning) ( batch_candidates_curr, batch_acq_values_curr, ) = opt_inputs.gen_candidates( batched_ics_, opt_inputs.acq_function, **filtered_gen_kwargs ) opt_warnings += ws batch_candidates_list.append(batch_candidates_curr) batch_acq_values_list.append(batch_acq_values_curr) logger.info(f"Generated candidate batch {i+1} of {len(batched_ics)}.") batch_candidates = torch.cat(batch_candidates_list) has_scalars = batch_acq_values_list[0].ndim == 0 if has_scalars: batch_acq_values = torch.stack(batch_acq_values_list) else: batch_acq_values = torch.cat(batch_acq_values_list).flatten() return batch_candidates, batch_acq_values, opt_warnings batch_candidates, batch_acq_values, ws = _optimize_batch_candidates() optimization_warning_raised = any( (issubclass(w.category, OptimizationWarning) for w in ws) ) if optimization_warning_raised and opt_inputs.retry_on_optimization_warning: first_warn_msg = ( "Optimization failed in `gen_candidates_scipy` with the following " f"warning(s):\n{[w.message for w in ws]}\nBecause you specified " "`batch_initial_conditions`, optimization will not be retried with " "new initial conditions and will proceed with the current solution." " Suggested remediation: Try again with different " "`batch_initial_conditions`, or don't provide `batch_initial_conditions.`" if initial_conditions_provided else "Optimization failed in `gen_candidates_scipy` with the following " f"warning(s):\n{[w.message for w in ws]}\nTrying again with a new " "set of initial conditions." ) warnings.warn(first_warn_msg, RuntimeWarning) if not initial_conditions_provided: batch_initial_conditions = opt_inputs.get_ic_generator()( acq_function=opt_inputs.acq_function, bounds=opt_inputs.bounds, q=opt_inputs.q, num_restarts=opt_inputs.num_restarts, raw_samples=opt_inputs.raw_samples, fixed_features=opt_inputs.fixed_features, options=options, inequality_constraints=opt_inputs.inequality_constraints, equality_constraints=opt_inputs.equality_constraints, **opt_inputs.ic_gen_kwargs, ) batch_candidates, batch_acq_values, ws = _optimize_batch_candidates() optimization_warning_raised = any( (issubclass(w.category, OptimizationWarning) for w in ws) ) if optimization_warning_raised: warnings.warn( "Optimization failed on the second try, after generating a " "new set of initial conditions.", RuntimeWarning, ) if opt_inputs.post_processing_func is not None: batch_candidates = opt_inputs.post_processing_func(batch_candidates) with torch.no_grad(): acq_values_list = [ opt_inputs.acq_function(cand) for cand in batch_candidates.split(batch_limit, dim=0) ] batch_acq_values = torch.cat(acq_values_list, dim=0) if opt_inputs.return_best_only: best = torch.argmax(batch_acq_values.view(-1), dim=0) batch_candidates = batch_candidates[best] batch_acq_values = batch_acq_values[best] if not opt_inputs.full_tree: batch_candidates = opt_inputs.acq_function.extract_candidates( X_full=batch_candidates ) return batch_candidates, batch_acq_values def optimize_acqf( acq_function: AcquisitionFunction, bounds: Tensor, q: int, num_restarts: int, raw_samples: Optional[int] = None, options: Optional[Dict[str, Union[bool, float, int, str]]] = None, inequality_constraints: Optional[List[Tuple[Tensor, Tensor, float]]] = None, equality_constraints: Optional[List[Tuple[Tensor, Tensor, float]]] = None, nonlinear_inequality_constraints: Optional[List[Callable]] = None, fixed_features: Optional[Dict[int, float]] = None, post_processing_func: Optional[Callable[[Tensor], Tensor]] = None, batch_initial_conditions: Optional[Tensor] = None, return_best_only: bool = True, gen_candidates: Optional[TGenCandidates] = None, sequential: bool = False, *, ic_generator: Optional[TGenInitialConditions] = None, timeout_sec: Optional[float] = None, return_full_tree: bool = False, retry_on_optimization_warning: bool = True, **ic_gen_kwargs: Any, ) -> Tuple[Tensor, Tensor]: r"""Generate a set of candidates via multi-start optimization. Args: acq_function: An AcquisitionFunction. bounds: A `2 x d` tensor of lower and upper bounds for each column of `X` (if inequality_constraints is provided, these bounds can be -inf and +inf, respectively). q: The number of candidates. num_restarts: The number of starting points for multistart acquisition function optimization. raw_samples: The number of samples for initialization. This is required if `batch_initial_conditions` is not specified. options: Options for candidate generation. inequality_constraints: A list of tuples (indices, coefficients, rhs), with each tuple encoding an inequality constraint of the form `\sum_i (X[indices[i]] * coefficients[i]) >= rhs`. `indices` and `coefficients` should be torch tensors. See the docstring of `make_scipy_linear_constraints` for an example. When q=1, or when applying the same constraint to each candidate in the batch, `indices` should be a 1-d tensor. For inter-point constraints, `indices` must be a 2-d Tensor, where in each row `indices[i] = (k_i, l_i)` the first index `k_i` corresponds to the `k_i`-th element of the `q`-batch and the second index `l_i` corresponds to the `l_i`-th feature of that element. equality_constraints: A list of tuples (indices, coefficients, rhs), with each tuple encoding an equality constraint of the form `\sum_i (X[indices[i]] * coefficients[i]) = rhs`. See the docstring of `make_scipy_linear_constraints` for an example. nonlinear_inequality_constraints: A list of callables with that represent non-linear inequality constraints of the form `callable(x) >= 0`. Each callable is expected to take a `(num_restarts) x q x d`-dim tensor as an input and return a `(num_restarts) x q`-dim tensor with the constraint values. The constraints will later be passed to SLSQP. You need to pass in `batch_initial_conditions` in this case. Using non-linear inequality constraints also requires that `batch_limit` is set to 1, which will be done automatically if not specified in `options`. fixed_features: A map `{feature_index: value}` for features that should be fixed to a particular value during generation. post_processing_func: A function that post-processes an optimization result appropriately (i.e., according to `round-trip` transformations). batch_initial_conditions: A tensor to specify the initial conditions. Set this if you do not want to use default initialization strategy. return_best_only: If False, outputs the solutions corresponding to all random restart initializations of the optimization. gen_candidates: A callable for generating candidates (and their associated acquisition values) given a tensor of initial conditions and an acquisition function. Other common inputs include lower and upper bounds and a dictionary of options, but refer to the documentation of specific generation functions (e.g gen_candidates_scipy and gen_candidates_torch) for method-specific inputs. Default: `gen_candidates_scipy` sequential: If False, uses joint optimization, otherwise uses sequential optimization. ic_generator: Function for generating initial conditions. Not needed when `batch_initial_conditions` are provided. Defaults to `gen_one_shot_kg_initial_conditions` for `qKnowledgeGradient` acquisition functions and `gen_batch_initial_conditions` otherwise. Must be specified for nonlinear inequality constraints. timeout_sec: Max amount of time optimization can run for. return_full_tree: retry_on_optimization_warning: Whether to retry candidate generation with a new set of initial conditions when it fails with an `OptimizationWarning`. ic_gen_kwargs: Additional keyword arguments passed to function specified by `ic_generator` Returns: A two-element tuple containing - A tensor of generated candidates. The shape is -- `q x d` if `return_best_only` is True (default) -- `num_restarts x q x d` if `return_best_only` is False - a tensor of associated acquisition values. If `sequential=False`, this is a `(num_restarts)`-dim tensor of joint acquisition values (with explicit restart dimension if `return_best_only=False`). If `sequential=True`, this is a `q`-dim tensor of expected acquisition values conditional on having observed candidates `0,1,...,i-1`. Example: >>> # generate `q=2` candidates jointly using 20 random restarts >>> # and 512 raw samples >>> candidates, acq_value = optimize_acqf(qEI, bounds, 2, 20, 512) >>> generate `q=3` candidates sequentially using 15 random restarts >>> # and 256 raw samples >>> qEI = qExpectedImprovement(model, best_f=0.2) >>> bounds = torch.tensor([[0.], [1.]]) >>> candidates, acq_value_list = optimize_acqf( >>> qEI, bounds, 3, 15, 256, sequential=True >>> ) """ # using a default of None simplifies unit testing if gen_candidates is None: gen_candidates = gen_candidates_scipy opt_acqf_inputs = OptimizeAcqfInputs( acq_function=acq_function, bounds=bounds, q=q, num_restarts=num_restarts, raw_samples=raw_samples, options=options, inequality_constraints=inequality_constraints, equality_constraints=equality_constraints, nonlinear_inequality_constraints=nonlinear_inequality_constraints, fixed_features=fixed_features, post_processing_func=post_processing_func, batch_initial_conditions=batch_initial_conditions, return_best_only=return_best_only, gen_candidates=gen_candidates, sequential=sequential, ic_generator=ic_generator, timeout_sec=timeout_sec, return_full_tree=return_full_tree, retry_on_optimization_warning=retry_on_optimization_warning, ic_gen_kwargs=ic_gen_kwargs, ) return _optimize_acqf(opt_acqf_inputs) def _optimize_acqf(opt_inputs: OptimizeAcqfInputs) -> Tuple[Tensor, Tensor]: # Handle the trivial case when all features are fixed if ( opt_inputs.fixed_features is not None and len(opt_inputs.fixed_features) == opt_inputs.bounds.shape[-1] ): return _optimize_acqf_all_features_fixed( bounds=opt_inputs.bounds, fixed_features=opt_inputs.fixed_features, q=opt_inputs.q, acq_function=opt_inputs.acq_function, ) # Perform sequential optimization via successive conditioning on pending points if opt_inputs.sequential and opt_inputs.q > 1: return _optimize_acqf_sequential_q(opt_inputs=opt_inputs) # Batch optimization (including the case q=1) return _optimize_acqf_batch(opt_inputs=opt_inputs) def optimize_acqf_cyclic( acq_function: AcquisitionFunction, bounds: Tensor, q: int, num_restarts: int, raw_samples: Optional[int] = None, options: Optional[Dict[str, Union[bool, float, int, str]]] = None, inequality_constraints: Optional[List[Tuple[Tensor, Tensor, float]]] = None, equality_constraints: Optional[List[Tuple[Tensor, Tensor, float]]] = None, fixed_features: Optional[Dict[int, float]] = None, post_processing_func: Optional[Callable[[Tensor], Tensor]] = None, batch_initial_conditions: Optional[Tensor] = None, cyclic_options: Optional[Dict[str, Union[bool, float, int, str]]] = None, *, ic_generator: Optional[TGenInitialConditions] = None, timeout_sec: Optional[float] = None, return_full_tree: bool = False, retry_on_optimization_warning: bool = True, **ic_gen_kwargs: Any, ) -> Tuple[Tensor, Tensor]: r"""Generate a set of `q` candidates via cyclic optimization. Args: acq_function: An AcquisitionFunction bounds: A `2 x d` tensor of lower and upper bounds for each column of `X` (if inequality_constraints is provided, these bounds can be -inf and +inf, respectively). q: The number of candidates. num_restarts: Number of starting points for multistart acquisition function optimization. raw_samples: Number of samples for initialization. This is required if `batch_initial_conditions` is not specified. options: Options for candidate generation. inequality constraints: A list of tuples (indices, coefficients, rhs), with each tuple encoding an inequality constraint of the form `\sum_i (X[indices[i]] * coefficients[i]) >= rhs` equality constraints: A list of tuples (indices, coefficients, rhs), with each tuple encoding an inequality constraint of the form `\sum_i (X[indices[i]] * coefficients[i]) = rhs` fixed_features: A map `{feature_index: value}` for features that should be fixed to a particular value during generation. post_processing_func: A function that post-processes an optimization result appropriately (i.e., according to `round-trip` transformations). batch_initial_conditions: A tensor to specify the initial conditions. If no initial conditions are provided, the default initialization will be used. cyclic_options: Options for stopping criterion for outer cyclic optimization. ic_generator: Function for generating initial conditions. Not needed when `batch_initial_conditions` are provided. Defaults to `gen_one_shot_kg_initial_conditions` for `qKnowledgeGradient` acquisition functions and `gen_batch_initial_conditions` otherwise. Must be specified for nonlinear inequality constraints. timeout_sec: Max amount of time optimization can run for. return_full_tree: retry_on_optimization_warning: Whether to retry candidate generation with a new set of initial conditions when it fails with an `OptimizationWarning`. ic_gen_kwargs: Additional keyword arguments passed to function specified by `ic_generator` Returns: A two-element tuple containing - a `q x d`-dim tensor of generated candidates. - a `q`-dim tensor of expected acquisition values, where the value at index `i` is the acquisition value conditional on having observed all candidates except candidate `i`. Example: >>> # generate `q=3` candidates cyclically using 15 random restarts >>> # 256 raw samples, and 4 cycles >>> >>> qEI = qExpectedImprovement(model, best_f=0.2) >>> bounds = torch.tensor([[0.], [1.]]) >>> candidates, acq_value_list = optimize_acqf_cyclic( >>> qEI, bounds, 3, 15, 256, cyclic_options={"maxiter": 4} >>> ) """ opt_inputs = OptimizeAcqfInputs( acq_function=acq_function, bounds=bounds, q=q, num_restarts=num_restarts, raw_samples=raw_samples, options=options, inequality_constraints=inequality_constraints, equality_constraints=equality_constraints, nonlinear_inequality_constraints=None, fixed_features=fixed_features, post_processing_func=post_processing_func, batch_initial_conditions=batch_initial_conditions, return_best_only=True, gen_candidates=gen_candidates_scipy, sequential=True, ic_generator=ic_generator, timeout_sec=timeout_sec, return_full_tree=return_full_tree, retry_on_optimization_warning=retry_on_optimization_warning, ic_gen_kwargs=ic_gen_kwargs, ) # for the first cycle, optimize the q candidates sequentially candidates, acq_vals = _optimize_acqf(opt_inputs) q = opt_inputs.q opt_inputs = dataclasses.replace(opt_inputs, q=1) acq_function = opt_inputs.acq_function if q > 1: cyclic_options = cyclic_options or {} stopping_criterion = ExpMAStoppingCriterion(**cyclic_options) stop = stopping_criterion.evaluate(fvals=acq_vals) base_X_pending = acq_function.X_pending idxr = torch.ones(q, dtype=torch.bool, device=opt_inputs.bounds.device) while not stop: for i in range(q): # optimize only candidate i idxr[i] = 0 acq_function.set_X_pending( torch.cat([base_X_pending, candidates[idxr]], dim=-2) if base_X_pending is not None else candidates[idxr] ) opt_inputs = dataclasses.replace( opt_inputs, batch_initial_conditions=candidates[i].unsqueeze(0), sequential=False, ) candidate_i, acq_val_i = _optimize_acqf(opt_inputs) candidates[i] = candidate_i acq_vals[i] = acq_val_i idxr[i] = 1 stop = stopping_criterion.evaluate(fvals=acq_vals) acq_function.set_X_pending(base_X_pending) return candidates, acq_vals def optimize_acqf_list( acq_function_list: List[AcquisitionFunction], bounds: Tensor, num_restarts: int, raw_samples: Optional[int] = None, options: Optional[Dict[str, Union[bool, float, int, str]]] = None, inequality_constraints: Optional[List[Tuple[Tensor, Tensor, float]]] = None, equality_constraints: Optional[List[Tuple[Tensor, Tensor, float]]] = None, nonlinear_inequality_constraints: Optional[List[Callable]] = None, fixed_features: Optional[Dict[int, float]] = None, fixed_features_list: Optional[List[Dict[int, float]]] = None, post_processing_func: Optional[Callable[[Tensor], Tensor]] = None, ic_generator: Optional[TGenInitialConditions] = None, ic_gen_kwargs: Optional[Dict] = None, ) -> Tuple[Tensor, Tensor]: r"""Generate a list of candidates from a list of acquisition functions. The acquisition functions are optimized in sequence, with previous candidates set as `X_pending`. This is also known as sequential greedy optimization. Args: acq_function_list: A list of acquisition functions. bounds: A `2 x d` tensor of lower and upper bounds for each column of `X` (if inequality_constraints is provided, these bounds can be -inf and +inf, respectively). num_restarts: Number of starting points for multistart acquisition function optimization. raw_samples: Number of samples for initialization. This is required if `batch_initial_conditions` is not specified. options: Options for candidate generation. inequality constraints: A list of tuples (indices, coefficients, rhs), with each tuple encoding an inequality constraint of the form `\sum_i (X[indices[i]] * coefficients[i]) >= rhs` equality constraints: A list of tuples (indices, coefficients, rhs), with each tuple encoding an inequality constraint of the form `\sum_i (X[indices[i]] * coefficients[i]) = rhs` nonlinear_inequality_constraints: A list of callables with that represent non-linear inequality constraints of the form `callable(x) >= 0`. Each callable is expected to take a `(num_restarts) x q x d`-dim tensor as an input and return a `(num_restarts) x q`-dim tensor with the constraint values. The constraints will later be passed to SLSQP. You need to pass in `batch_initial_conditions` in this case. Using non-linear inequality constraints also requires that `batch_limit` is set to 1, which will be done automatically if not specified in `options`. fixed_features: A map `{feature_index: value}` for features that should be fixed to a particular value during generation. fixed_features_list: A list of maps `{feature_index: value}`. The i-th item represents the fixed_feature for the i-th optimization. If `fixed_features_list` is provided, `optimize_acqf_mixed` is invoked. post_processing_func: A function that post-processes an optimization result appropriately (i.e., according to `round-trip` transformations). ic_generator: Function for generating initial conditions. Not needed when `batch_initial_conditions` are provided. Defaults to `gen_one_shot_kg_initial_conditions` for `qKnowledgeGradient` acquisition functions and `gen_batch_initial_conditions` otherwise. Must be specified for nonlinear inequality constraints. ic_gen_kwargs: Additional keyword arguments passed to function specified by `ic_generator` Returns: A two-element tuple containing - a `q x d`-dim tensor of generated candidates. - a `q`-dim tensor of expected acquisition values, where the value at index `i` is the acquisition value conditional on having observed all candidates except candidate `i`. """ if fixed_features and fixed_features_list: raise ValueError( "Èither `fixed_feature` or `fixed_features_list` can be provided, not both." ) if not acq_function_list: raise ValueError("acq_function_list must be non-empty.") candidate_list, acq_value_list = [], [] candidates = torch.tensor([], device=bounds.device, dtype=bounds.dtype) base_X_pending = acq_function_list[0].X_pending for acq_function in acq_function_list: if candidate_list: acq_function.set_X_pending( torch.cat([base_X_pending, candidates], dim=-2) if base_X_pending is not None else candidates ) if fixed_features_list: candidate, acq_value = optimize_acqf_mixed( acq_function=acq_function, bounds=bounds, q=1, num_restarts=num_restarts, raw_samples=raw_samples, options=options or {}, inequality_constraints=inequality_constraints, equality_constraints=equality_constraints, nonlinear_inequality_constraints=nonlinear_inequality_constraints, fixed_features_list=fixed_features_list, post_processing_func=post_processing_func, ic_generator=ic_generator, ic_gen_kwargs=ic_gen_kwargs, ) else: ic_gen_kwargs = ic_gen_kwargs or {} candidate, acq_value = optimize_acqf( acq_function=acq_function, bounds=bounds, q=1, num_restarts=num_restarts, raw_samples=raw_samples, options=options or {}, inequality_constraints=inequality_constraints, equality_constraints=equality_constraints, nonlinear_inequality_constraints=nonlinear_inequality_constraints, fixed_features=fixed_features, post_processing_func=post_processing_func, return_best_only=True, sequential=False, ic_generator=ic_generator, **ic_gen_kwargs, ) candidate_list.append(candidate) acq_value_list.append(acq_value) candidates = torch.cat(candidate_list, dim=-2) return candidates, torch.stack(acq_value_list) def optimize_acqf_mixed( acq_function: AcquisitionFunction, bounds: Tensor, q: int, num_restarts: int, fixed_features_list: List[Dict[int, float]], raw_samples: Optional[int] = None, options: Optional[Dict[str, Union[bool, float, int, str]]] = None, inequality_constraints: Optional[List[Tuple[Tensor, Tensor, float]]] = None, equality_constraints: Optional[List[Tuple[Tensor, Tensor, float]]] = None, nonlinear_inequality_constraints: Optional[List[Callable]] = None, post_processing_func: Optional[Callable[[Tensor], Tensor]] = None, batch_initial_conditions: Optional[Tensor] = None, ic_generator: Optional[TGenInitialConditions] = None, ic_gen_kwargs: Optional[Dict] = None, **kwargs: Any, ) -> Tuple[Tensor, Tensor]: r"""Optimize over a list of fixed_features and returns the best solution. This is useful for optimizing over mixed continuous and discrete domains. For q > 1 this function always performs sequential greedy optimization (with proper conditioning on generated candidates). Args: acq_function: An AcquisitionFunction bounds: A `2 x d` tensor of lower and upper bounds for each column of `X` (if inequality_constraints is provided, these bounds can be -inf and +inf, respectively). q: The number of candidates. num_restarts: Number of starting points for multistart acquisition function optimization. raw_samples: Number of samples for initialization. This is required if `batch_initial_conditions` is not specified. fixed_features_list: A list of maps `{feature_index: value}`. The i-th item represents the fixed_feature for the i-th optimization. options: Options for candidate generation. inequality constraints: A list of tuples (indices, coefficients, rhs), with each tuple encoding an inequality constraint of the form `\sum_i (X[indices[i]] * coefficients[i]) >= rhs` equality constraints: A list of tuples (indices, coefficients, rhs), with each tuple encoding an inequality constraint of the form `\sum_i (X[indices[i]] * coefficients[i]) = rhs` nonlinear_inequality_constraints: A list of callables with that represent non-linear inequality constraints of the form `callable(x) >= 0`. Each callable is expected to take a `(num_restarts) x q x d`-dim tensor as an input and return a `(num_restarts) x q`-dim tensor with the constraint values. The constraints will later be passed to SLSQP. You need to pass in `batch_initial_conditions` in this case. Using non-linear inequality constraints also requires that `batch_limit` is set to 1, which will be done automatically if not specified in `options`. post_processing_func: A function that post-processes an optimization result appropriately (i.e., according to `round-trip` transformations). batch_initial_conditions: A tensor to specify the initial conditions. Set this if you do not want to use default initialization strategy. ic_generator: Function for generating initial conditions. Not needed when `batch_initial_conditions` are provided. Defaults to `gen_one_shot_kg_initial_conditions` for `qKnowledgeGradient` acquisition functions and `gen_batch_initial_conditions` otherwise. Must be specified for nonlinear inequality constraints. ic_gen_kwargs: Additional keyword arguments passed to function specified by `ic_generator` kwargs: kwargs do nothing. This is provided so that the same arguments can be passed to different acquisition functions without raising an error. Returns: A two-element tuple containing - a `q x d`-dim tensor of generated candidates. - an associated acquisition value. """ if not fixed_features_list: raise ValueError("fixed_features_list must be non-empty.") if isinstance(acq_function, OneShotAcquisitionFunction): if not hasattr(acq_function, "evaluate") and q > 1: raise ValueError( "`OneShotAcquisitionFunction`s that do not implement `evaluate` " "are currently not supported when `q > 1`. This is needed to " "compute the joint acquisition value." ) _raise_deprecation_warning_if_kwargs("optimize_acqf_mixed", kwargs) ic_gen_kwargs = ic_gen_kwargs or {} if q == 1: ff_candidate_list, ff_acq_value_list = [], [] for fixed_features in fixed_features_list: candidate, acq_value = optimize_acqf( acq_function=acq_function, bounds=bounds, q=q, num_restarts=num_restarts, raw_samples=raw_samples, options=options or {}, inequality_constraints=inequality_constraints, equality_constraints=equality_constraints, nonlinear_inequality_constraints=nonlinear_inequality_constraints, fixed_features=fixed_features, post_processing_func=post_processing_func, batch_initial_conditions=batch_initial_conditions, ic_generator=ic_generator, return_best_only=True, **ic_gen_kwargs, ) ff_candidate_list.append(candidate) ff_acq_value_list.append(acq_value) ff_acq_values = torch.stack(ff_acq_value_list) best = torch.argmax(ff_acq_values) return ff_candidate_list[best], ff_acq_values[best] # For batch optimization with q > 1 we do not want to enumerate all n_combos^n # possible combinations of discrete choices. Instead, we use sequential greedy # optimization. base_X_pending = acq_function.X_pending candidates = torch.tensor([], device=bounds.device, dtype=bounds.dtype) for _ in range(q): candidate, acq_value = optimize_acqf_mixed( acq_function=acq_function, bounds=bounds, q=1, num_restarts=num_restarts, raw_samples=raw_samples, fixed_features_list=fixed_features_list, options=options or {}, inequality_constraints=inequality_constraints, equality_constraints=equality_constraints, nonlinear_inequality_constraints=nonlinear_inequality_constraints, post_processing_func=post_processing_func, batch_initial_conditions=batch_initial_conditions, ic_generator=ic_generator, ic_gen_kwargs=ic_gen_kwargs, ) candidates = torch.cat([candidates, candidate], dim=-2) acq_function.set_X_pending( torch.cat([base_X_pending, candidates], dim=-2) if base_X_pending is not None else candidates ) acq_function.set_X_pending(base_X_pending) # compute joint acquisition value if isinstance(acq_function, OneShotAcquisitionFunction): acq_value = acq_function.evaluate(X=candidates, bounds=bounds) else: acq_value = acq_function(candidates) return candidates, acq_value def optimize_acqf_discrete( acq_function: AcquisitionFunction, q: int, choices: Tensor, max_batch_size: int = 2048, unique: bool = True, **kwargs: Any, ) -> Tuple[Tensor, Tensor]: r"""Optimize over a discrete set of points using batch evaluation. For `q > 1` this function generates candidates by means of sequential conditioning (rather than joint optimization), since for all but the smalles number of choices the set `choices^q` of discrete points to evaluate quickly explodes. Args: acq_function: An AcquisitionFunction. q: The number of candidates. choices: A `num_choices x d` tensor of possible choices. max_batch_size: The maximum number of choices to evaluate in batch. A large limit can cause excessive memory usage if the model has a large training set. unique: If True return unique choices, o/w choices may be repeated (only relevant if `q > 1`). kwargs: kwargs do nothing. This is provided so that the same arguments can be passed to different acquisition functions without raising an error. Returns: A three-element tuple containing - a `q x d`-dim tensor of generated candidates. - an associated acquisition value. """ if isinstance(acq_function, OneShotAcquisitionFunction): raise UnsupportedError( "Discrete optimization is not supported for" "one-shot acquisition functions." ) if choices.numel() == 0: raise InputDataError("`choices` must be non-emtpy.") _raise_deprecation_warning_if_kwargs("optimize_acqf_discrete", kwargs) choices_batched = choices.unsqueeze(-2) if q > 1: candidate_list, acq_value_list = [], [] base_X_pending = acq_function.X_pending for _ in range(q): with torch.no_grad(): acq_values = _split_batch_eval_acqf( acq_function=acq_function, X=choices_batched, max_batch_size=max_batch_size, ) best_idx = torch.argmax(acq_values) candidate_list.append(choices_batched[best_idx]) acq_value_list.append(acq_values[best_idx]) # set pending points candidates = torch.cat(candidate_list, dim=-2) acq_function.set_X_pending( torch.cat([base_X_pending, candidates], dim=-2) if base_X_pending is not None else candidates ) # need to remove choice from choice set if enforcing uniqueness if unique: choices_batched = torch.cat( [choices_batched[:best_idx], choices_batched[best_idx + 1 :]] ) # Reset acq_func to previous X_pending state acq_function.set_X_pending(base_X_pending) return candidates, torch.stack(acq_value_list) with torch.no_grad(): acq_values = _split_batch_eval_acqf( acq_function=acq_function, X=choices_batched, max_batch_size=max_batch_size ) best_idx = torch.argmax(acq_values) return choices_batched[best_idx], acq_values[best_idx] def _split_batch_eval_acqf( acq_function: AcquisitionFunction, X: Tensor, max_batch_size: int ) -> Tensor: return torch.cat([acq_function(X_) for X_ in X.split(max_batch_size)]) def _generate_neighbors( x: Tensor, discrete_choices: List[Tensor], X_avoid: Tensor, inequality_constraints: List[Tuple[Tensor, Tensor, float]], ): # generate all 1D perturbations npts = sum([len(c) for c in discrete_choices]) X_loc = x.repeat(npts, 1) j = 0 for i, c in enumerate(discrete_choices): X_loc[j : j + len(c), i] = c j += len(c) # remove invalid and infeasible points (also remove x) X_loc = _filter_invalid(X=X_loc, X_avoid=torch.cat((X_avoid, x))) X_loc = _filter_infeasible(X=X_loc, inequality_constraints=inequality_constraints) return X_loc def _filter_infeasible( X: Tensor, inequality_constraints: List[Tuple[Tensor, Tensor, float]] ): """Remove all points from `X` that don't satisfy the constraints.""" is_feasible = torch.ones(X.shape[0], dtype=torch.bool, device=X.device) for (inds, weights, bound) in inequality_constraints: is_feasible &= (X[..., inds] * weights).sum(dim=-1) >= bound return X[is_feasible] def _filter_invalid(X: Tensor, X_avoid: Tensor): """Remove all occurences of `X_avoid` from `X`.""" return X[~(X == X_avoid.unsqueeze(-2)).all(dim=-1).any(dim=-2)] def _gen_batch_initial_conditions_local_search( discrete_choices: List[Tensor], raw_samples: int, X_avoid: Tensor, inequality_constraints: List[Tuple[Tensor, Tensor, float]], min_points: int, max_tries: int = 100, ): """Generate initial conditions for local search.""" device = discrete_choices[0].device dtype = discrete_choices[0].dtype dim = len(discrete_choices) X = torch.zeros(0, dim, device=device, dtype=dtype) for _ in range(max_tries): X_new = torch.zeros(raw_samples, dim, device=device, dtype=dtype) for i, c in enumerate(discrete_choices): X_new[:, i] = c[ torch.randint(low=0, high=len(c), size=(raw_samples,), device=c.device) ] X = torch.unique(torch.cat((X, X_new)), dim=0) X = _filter_invalid(X=X, X_avoid=X_avoid) X = _filter_infeasible(X=X, inequality_constraints=inequality_constraints) if len(X) >= min_points: return X raise RuntimeError(f"Failed to generate at least {min_points} initial conditions") def optimize_acqf_discrete_local_search( acq_function: AcquisitionFunction, discrete_choices: List[Tensor], q: int, num_restarts: int = 20, raw_samples: int = 4096, inequality_constraints: Optional[List[Tuple[Tensor, Tensor, float]]] = None, X_avoid: Optional[Tensor] = None, batch_initial_conditions: Optional[Tensor] = None, max_batch_size: int = 2048, unique: bool = True, **kwargs: Any, ) -> Tuple[Tensor, Tensor]: r"""Optimize acquisition function over a lattice. This is useful when d is large and enumeration of the search space isn't possible. For q > 1 this function always performs sequential greedy optimization (with proper conditioning on generated candidates). NOTE: While this method supports arbitrary lattices, it has only been thoroughly tested for {0, 1}^d. Consider it to be in alpha stage for the more general case. Args: acq_function: An AcquisitionFunction discrete_choices: A list of possible discrete choices for each dimension. Each element in the list is expected to be a torch tensor. q: The number of candidates. num_restarts: Number of starting points for multistart acquisition function optimization. raw_samples: Number of samples for initialization. This is required if `batch_initial_conditions` is not specified. inequality_constraints: A list of tuples (indices, coefficients, rhs), with each tuple encoding an inequality constraint of the form `\sum_i (X[indices[i]] * coefficients[i]) >= rhs` X_avoid: An `n x d` tensor of candidates that we aren't allowed to pick. batch_initial_conditions: A tensor of size `n x 1 x d` to specify the initial conditions. Set this if you do not want to use default initialization strategy. max_batch_size: The maximum number of choices to evaluate in batch. A large limit can cause excessive memory usage if the model has a large training set. unique: If True return unique choices, o/w choices may be repeated (only relevant if `q > 1`). kwargs: kwargs do nothing. This is provided so that the same arguments can be passed to different acquisition functions without raising an error. Returns: A two-element tuple containing - a `q x d`-dim tensor of generated candidates. - an associated acquisition value. """ _raise_deprecation_warning_if_kwargs("optimize_acqf_discrete_local_search", kwargs) candidate_list = [] base_X_pending = acq_function.X_pending if q > 1 else None base_X_avoid = X_avoid device = discrete_choices[0].device dtype = discrete_choices[0].dtype dim = len(discrete_choices) if X_avoid is None: X_avoid = torch.zeros(0, dim, device=device, dtype=dtype) inequality_constraints = inequality_constraints or [] for i in range(q): # generate some starting points if i == 0 and batch_initial_conditions is not None: X0 = _filter_invalid(X=batch_initial_conditions.squeeze(1), X_avoid=X_avoid) X0 = _filter_infeasible( X=X0, inequality_constraints=inequality_constraints ).unsqueeze(1) else: X_init = _gen_batch_initial_conditions_local_search( discrete_choices=discrete_choices, raw_samples=raw_samples, X_avoid=X_avoid, inequality_constraints=inequality_constraints, min_points=num_restarts, ) # pick the best starting points with torch.no_grad(): acqvals_init = _split_batch_eval_acqf( acq_function=acq_function, X=X_init.unsqueeze(1), max_batch_size=max_batch_size, ).unsqueeze(-1) X0 = X_init[acqvals_init.topk(k=num_restarts, largest=True, dim=0).indices] # optimize from the best starting points best_xs = torch.zeros(len(X0), dim, device=device, dtype=dtype) best_acqvals = torch.zeros(len(X0), 1, device=device, dtype=dtype) for j, x in enumerate(X0): curr_x, curr_acqval = x.clone(), acq_function(x.unsqueeze(1)) while True: # this generates all feasible neighbors that are one bit away X_loc = _generate_neighbors( x=curr_x, discrete_choices=discrete_choices, X_avoid=X_avoid, inequality_constraints=inequality_constraints, ) # there may not be any neighbors if len(X_loc) == 0: break with torch.no_grad(): acqval_loc = acq_function(X_loc.unsqueeze(1)) # break if no neighbor is better than the current point (local optimum) if acqval_loc.max() <= curr_acqval: break best_ind = acqval_loc.argmax().item() curr_x, curr_acqval = X_loc[best_ind].unsqueeze(0), acqval_loc[best_ind] best_xs[j, :], best_acqvals[j] = curr_x, curr_acqval # pick the best best_idx = best_acqvals.argmax() candidate_list.append(best_xs[best_idx].unsqueeze(0)) # set pending points candidates = torch.cat(candidate_list, dim=-2) if q > 1: acq_function.set_X_pending( torch.cat([base_X_pending, candidates], dim=-2) if base_X_pending is not None else candidates ) # Update points to avoid if unique is True if unique: X_avoid = ( torch.cat([base_X_avoid, candidates], dim=-2) if base_X_avoid is not None else candidates ) # Reset acq_func to original X_pending state if q > 1: acq_function.set_X_pending(base_X_pending) with torch.no_grad(): acq_value = acq_function(candidates) # compute joint acquisition value return candidates, acq_value
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. r"""Tools for model fitting.""" from __future__ import annotations from functools import partial from itertools import filterfalse from time import monotonic from typing import ( Any, Callable, Dict, Iterator, List, Optional, Pattern, Sequence, Set, Tuple, Union, ) from warnings import warn from botorch.exceptions.warnings import OptimizationWarning from botorch.optim.closures import get_loss_closure_with_grads from botorch.optim.core import ( OptimizationResult, OptimizationStatus, scipy_minimize, torch_minimize, ) from botorch.optim.numpy_converter import ( _scipy_objective_and_grad, module_to_array, set_params_with_array, ) from botorch.optim.stopping import ExpMAStoppingCriterion from botorch.optim.utils import ( _filter_kwargs, _get_extra_mll_args, get_name_filter, get_parameters_and_bounds, TorchAttr, ) from botorch.optim.utils.model_utils import get_parameters from botorch.utils.types import DEFAULT from gpytorch.mlls.marginal_log_likelihood import MarginalLogLikelihood from gpytorch.settings import fast_computations from numpy import ndarray from scipy.optimize import Bounds, minimize from torch import Tensor from torch.nn import Module from torch.optim.adam import Adam from torch.optim.lr_scheduler import _LRScheduler from torch.optim.optimizer import Optimizer TBoundsDict = Dict[str, Tuple[Optional[float], Optional[float]]] TScipyObjective = Callable[ [ndarray, MarginalLogLikelihood, Dict[str, TorchAttr]], Tuple[float, ndarray] ] TModToArray = Callable[ [Module, Optional[TBoundsDict], Optional[Set[str]]], Tuple[ndarray, Dict[str, TorchAttr], Optional[ndarray]], ] TArrayToMod = Callable[[Module, ndarray, Dict[str, TorchAttr]], Module] def fit_gpytorch_mll_scipy( mll: MarginalLogLikelihood, parameters: Optional[Dict[str, Tensor]] = None, bounds: Optional[Dict[str, Tuple[Optional[float], Optional[float]]]] = None, closure: Optional[Callable[[], Tuple[Tensor, Sequence[Optional[Tensor]]]]] = None, closure_kwargs: Optional[Dict[str, Any]] = None, method: str = "L-BFGS-B", options: Optional[Dict[str, Any]] = None, callback: Optional[Callable[[Dict[str, Tensor], OptimizationResult], None]] = None, timeout_sec: Optional[float] = None, ) -> OptimizationResult: r"""Generic scipy.optimized-based fitting routine for GPyTorch MLLs. The model and likelihood in mll must already be in train mode. Args: mll: MarginalLogLikelihood to be maximized. parameters: Optional dictionary of parameters to be optimized. Defaults to all parameters of `mll` that require gradients. bounds: A dictionary of user-specified bounds for `parameters`. Used to update default parameter bounds obtained from `mll`. closure: Callable that returns a tensor and an iterable of gradient tensors. Responsible for setting the `grad` attributes of `parameters`. If no closure is provided, one will be obtained by calling `get_loss_closure_with_grads`. closure_kwargs: Keyword arguments passed to `closure`. method: Solver type, passed along to scipy.minimize. options: Dictionary of solver options, passed along to scipy.minimize. callback: Optional callback taking `parameters` and an OptimizationResult as its sole arguments. timeout_sec: Timeout in seconds after which to terminate the fitting loop (note that timing out can result in bad fits!). Returns: The final OptimizationResult. """ # Resolve `parameters` and update default bounds _parameters, _bounds = get_parameters_and_bounds(mll) bounds = _bounds if bounds is None else {**_bounds, **bounds} if parameters is None: parameters = {n: p for n, p in _parameters.items() if p.requires_grad} if closure is None: closure = get_loss_closure_with_grads(mll, parameters=parameters) if closure_kwargs is not None: closure = partial(closure, **closure_kwargs) result = scipy_minimize( closure=closure, parameters=parameters, bounds=bounds, method=method, options=options, callback=callback, timeout_sec=timeout_sec, ) if result.status != OptimizationStatus.SUCCESS: warn( f"`scipy_minimize` terminated with status {result.status}, displaying" f" original message from `scipy.optimize.minimize`: {result.message}", OptimizationWarning, ) return result def fit_gpytorch_mll_torch( mll: MarginalLogLikelihood, parameters: Optional[Dict[str, Tensor]] = None, bounds: Optional[Dict[str, Tuple[Optional[float], Optional[float]]]] = None, closure: Optional[Callable[[], Tuple[Tensor, Sequence[Optional[Tensor]]]]] = None, closure_kwargs: Optional[Dict[str, Any]] = None, step_limit: Optional[int] = None, stopping_criterion: Optional[Callable[[Tensor], bool]] = DEFAULT, # pyre-ignore [9] optimizer: Union[Optimizer, Callable[..., Optimizer]] = Adam, scheduler: Optional[Union[_LRScheduler, Callable[..., _LRScheduler]]] = None, callback: Optional[Callable[[Dict[str, Tensor], OptimizationResult], None]] = None, timeout_sec: Optional[float] = None, ) -> OptimizationResult: r"""Generic torch.optim-based fitting routine for GPyTorch MLLs. Args: mll: MarginalLogLikelihood to be maximized. parameters: Optional dictionary of parameters to be optimized. Defaults to all parameters of `mll` that require gradients. bounds: A dictionary of user-specified bounds for `parameters`. Used to update default parameter bounds obtained from `mll`. closure: Callable that returns a tensor and an iterable of gradient tensors. Responsible for setting the `grad` attributes of `parameters`. If no closure is provided, one will be obtained by calling `get_loss_closure_with_grads`. closure_kwargs: Keyword arguments passed to `closure`. step_limit: Optional upper bound on the number of optimization steps. stopping_criterion: A StoppingCriterion for the optimization loop. optimizer: A `torch.optim.Optimizer` instance or a factory that takes a list of parameters and returns an `Optimizer` instance. scheduler: A `torch.optim.lr_scheduler._LRScheduler` instance or a factory that takes an `Optimizer` instance and returns an `_LRSchedule`. callback: Optional callback taking `parameters` and an OptimizationResult as its sole arguments. timeout_sec: Timeout in seconds after which to terminate the fitting loop (note that timing out can result in bad fits!). Returns: The final OptimizationResult. """ if stopping_criterion == DEFAULT: stopping_criterion = ExpMAStoppingCriterion() # Resolve `parameters` and update default bounds param_dict, bounds_dict = get_parameters_and_bounds(mll) if parameters is None: parameters = {n: p for n, p in param_dict.items() if p.requires_grad} if closure is None: closure = get_loss_closure_with_grads(mll, parameters) if closure_kwargs is not None: closure = partial(closure, **closure_kwargs) return torch_minimize( closure=closure, parameters=parameters, bounds=bounds_dict if bounds is None else {**bounds_dict, **bounds}, optimizer=optimizer, scheduler=scheduler, step_limit=step_limit, stopping_criterion=stopping_criterion, callback=callback, timeout_sec=timeout_sec, ) def fit_gpytorch_scipy( mll: MarginalLogLikelihood, bounds: Optional[Dict[str, Tuple[Optional[float], Optional[float]]]] = None, method: str = "L-BFGS-B", options: Optional[Dict[str, Any]] = None, track_iterations: bool = False, approx_mll: bool = False, scipy_objective: TScipyObjective = _scipy_objective_and_grad, module_to_array_func: TModToArray = module_to_array, module_from_array_func: TArrayToMod = set_params_with_array, **kwargs: Any, ) -> Tuple[MarginalLogLikelihood, Dict[str, Union[float, List[OptimizationResult]]]]: r"""Legacy method for scipy-based fitting of gpytorch models. The model and likelihood in mll must already be in train mode. This method requires that the model has `train_inputs` and `train_targets`. Args: mll: MarginalLogLikelihood to be maximized. bounds: A dictionary mapping parameter names to tuples of lower and upper bounds. method: Solver type, passed along to scipy.optimize.minimize. options: Dictionary of solver options, passed along to scipy.optimize.minimize. approx_mll: If True, use gpytorch's approximate MLL computation. This is disabled by default since the stochasticity is an issue for determistic optimizers). Enabling this is only recommended when working with large training data sets (n>2000). Returns: 2-element tuple containing - MarginalLogLikelihood with parameters optimized in-place. - Dictionary with the following key/values: "fopt": Best mll value. "wall_time": Wall time of fitting. "iterations": List of OptimizationResult objects with information on each iteration. If track_iterations is False, will be empty. "OptimizeResult": The result returned by `scipy.optim.minimize`. """ warn( "`fit_gpytorch_scipy` is marked for deprecation, consider using " "`scipy_minimize` or its model fitting helper `fit_gpytorch_mll_scipy`.", DeprecationWarning, ) start_time = monotonic() iterations: List[OptimizationResult] = [] options = {} if options is None else options.copy() exclude: Iterator[Union[Pattern, str]] = options.pop("exclude", None) if exclude: exclude, _ = zip( # get the qualified names of excluded parameters *filterfalse(get_name_filter(exclude), mll.named_parameters()) ) x0, property_dict, bounds = module_to_array_func( module=mll, exclude=exclude, bounds=bounds ) if bounds is not None: bounds = Bounds(lb=bounds[0], ub=bounds[1], keep_feasible=True) def wrapper(x: ndarray) -> Tuple[float, ndarray]: with fast_computations(log_prob=approx_mll): return scipy_objective(x=x, mll=mll, property_dict=property_dict) def store_iteration(xk): iterations.append( OptimizationResult( step=len(iterations), fval=float(wrapper(xk)[0]), status=OptimizationStatus.RUNNING, runtime=monotonic() - start_time, ) ) result = minimize( wrapper, x0, bounds=bounds, method=method, jac=True, options=options, callback=store_iteration if track_iterations else None, ) info_dict = { "fopt": float(result.fun), "wall_time": monotonic() - start_time, "iterations": iterations, "OptimizeResult": result, } if not result.success: try: # Some result.message are bytes msg = result.message.decode("ascii") except AttributeError: # Others are str msg = result.message warn( f"Fitting failed with the optimizer reporting '{msg}'", OptimizationWarning ) # Set to optimum mll = module_from_array_func(mll, result.x, property_dict) return mll, info_dict def fit_gpytorch_torch( mll: MarginalLogLikelihood, bounds: Optional[Dict[str, Tuple[Optional[float], Optional[float]]]] = None, optimizer_cls: Optimizer = Adam, options: Optional[Dict[str, Any]] = None, track_iterations: bool = False, approx_mll: bool = False, ) -> Tuple[MarginalLogLikelihood, Dict[str, Union[float, List[OptimizationResult]]]]: r"""Legacy method for torch-based fitting of gpytorch models. The model and likelihood in mll must already be in train mode. Note: this method requires that the model has `train_inputs` and `train_targets`. Args: mll: MarginalLogLikelihood to be maximized. bounds: An optional dictionary mapping parameter names to tuples of lower and upper bounds. Bounds specified here take precedence over bounds on the same parameters specified in the constraints registered with the module. optimizer_cls: Torch optimizer to use. Must not require a closure. options: options for model fitting. Relevant options will be passed to the `optimizer_cls`. Additionally, options can include: "disp" to specify whether to display model fitting diagnostics and "maxiter" to specify the maximum number of iterations. Returns: 2-element tuple containing - mll with parameters optimized in-place. - Dictionary with the following key/values: "fopt": Best mll value. "wall_time": Wall time of fitting. "iterations": List of OptimizationResult objects with information on each iteration. If track_iterations is False, will be empty. Example: >>> gp = SingleTaskGP(train_X, train_Y) >>> mll = ExactMarginalLogLikelihood(gp.likelihood, gp) >>> mll.train() >>> fit_gpytorch_torch(mll) >>> mll.eval() """ warn( "`fit_gpytorch_torch` is marked for deprecation, consider using " "`torch_minimize` or its model fitting helper `fit_gpytorch_mll_torch`.", DeprecationWarning, ) _options = {"maxiter": 100, "disp": True, "lr": 0.05} _options.update(options or {}) exclude = _options.pop("exclude", None) parameters = get_parameters( mll, requires_grad=True, name_filter=None if exclude is None else get_name_filter(exclude), ) optimizer = optimizer_cls( params=list(parameters.values()), **_filter_kwargs(optimizer_cls, **_options) ) iterations: List[OptimizationResult] = [] stopping_criterion = ExpMAStoppingCriterion( **_filter_kwargs(ExpMAStoppingCriterion, **_options) ) def closure() -> Tuple[Tensor, Tuple[Tensor, ...]]: optimizer.zero_grad() with fast_computations(log_prob=approx_mll): out = mll.model(*mll.model.train_inputs) loss = -mll(out, mll.model.train_targets, *_get_extra_mll_args(mll)).sum() loss.backward() return loss, tuple(param.grad for param in parameters.values()) def store_iteration(parameters: Dict[str, Tensor], result: OptimizationResult): iterations.append(result) result = fit_gpytorch_mll_torch( mll=mll, closure=closure, bounds=bounds, parameters=parameters, optimizer=optimizer, stopping_criterion=stopping_criterion, callback=store_iteration if track_iterations else None, ) return mll, { "fopt": result.fval, "wall_time": result.runtime, "iterations": iterations, }
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from __future__ import annotations import math from abc import ABC, abstractmethod from dataclasses import dataclass from typing import Any, Callable, List, Optional, Union import torch from torch import Tensor from torch.nn import Parameter class HomotopySchedule(ABC): @property @abstractmethod def num_steps(self) -> int: """Number of steps in the schedule.""" @property @abstractmethod def value(self) -> Any: """Current value in the schedule.""" @property @abstractmethod def should_stop(self) -> bool: """Return true if we have incremented past the end of the schedule.""" @abstractmethod def restart(self) -> None: """Restart the schedule to start from the beginning.""" @abstractmethod def step(self) -> None: """Move to solving the next problem.""" class FixedHomotopySchedule(HomotopySchedule): """Homotopy schedule with a fixed list of values.""" def __init__(self, values: List[Any]) -> None: r"""Initialize FixedHomotopySchedule. Args: values: A list of values used in homotopy """ self._values = values self.idx = 0 @property def num_steps(self) -> int: return len(self._values) @property def value(self) -> Any: return self._values[self.idx] @property def should_stop(self) -> bool: return self.idx == len(self._values) def restart(self) -> None: self.idx = 0 def step(self) -> None: self.idx += 1 class LinearHomotopySchedule(FixedHomotopySchedule): """Linear homotopy schedule.""" def __init__(self, start: float, end: float, num_steps: int) -> None: r"""Initialize LinearHomotopySchedule. Args: start: start value of homotopy end: end value of homotopy num_steps: number of steps in the homotopy schedule. """ super().__init__( values=torch.linspace(start, end, num_steps, dtype=torch.double).tolist() ) class LogLinearHomotopySchedule(FixedHomotopySchedule): """Log-linear homotopy schedule.""" def __init__(self, start: float, end: float, num_steps: int): r"""Initialize LogLinearHomotopySchedule. Args: start: start value of homotopy end: end value of homotopy num_steps: number of steps in the homotopy schedule. """ super().__init__( values=torch.logspace( math.log10(start), math.log10(end), num_steps, dtype=torch.double ).tolist() ) @dataclass class HomotopyParameter: r"""Homotopy parameter. The parameter is expected to either be a torch parameter or a torch tensor which may correspond to a buffer of a module. The parameter has a corresponding schedule. """ parameter: Union[Parameter, Tensor] schedule: HomotopySchedule class Homotopy: """Generic homotopy class. This class is designed to be used in `optimize_acqf_homotopy`. Given a set of homotopy parameters and corresponding schedules we step through the homotopies until we have solved the final problem. We additionally support passing in a list of callbacks that will be executed each time `step`, `reset`, and `restart` are called. """ def __init__( self, homotopy_parameters: List[HomotopyParameter], callbacks: Optional[List[Callable]] = None, ) -> None: r"""Initialize the homotopy. Args: homotopy_parameters: List of homotopy parameters callbacks: Optional list of callbacks that are executed each time `restart`, `reset`, or `step` are called. These may be used to, e.g., reinitialize the acquisition function which is needed when using qNEHVI. """ self._homotopy_parameters = homotopy_parameters self._callbacks = callbacks or [] self._original_values = [ hp.parameter.item() for hp in self._homotopy_parameters ] assert all( isinstance(hp.parameter, Parameter) or isinstance(hp.parameter, Tensor) for hp in self._homotopy_parameters ) # Assume the same number of steps for now assert len({h.schedule.num_steps for h in self._homotopy_parameters}) == 1 # Initialize the homotopy parameters self.restart() def _execute_callbacks(self) -> None: """Execute the callbacks.""" for callback in self._callbacks: callback() @property def should_stop(self) -> bool: """Returns true if all schedules have reached the end.""" return all(h.schedule.should_stop for h in self._homotopy_parameters) def restart(self) -> None: """Restart the homotopy to use the initial value in the schedule.""" for hp in self._homotopy_parameters: hp.schedule.restart() hp.parameter.data.fill_(hp.schedule.value) self._execute_callbacks() def reset(self) -> None: """Reset the homotopy parameter to their original values.""" for hp, val in zip(self._homotopy_parameters, self._original_values): hp.parameter.data.fill_(val) self._execute_callbacks() def step(self) -> None: """Take a step according to the schedules.""" for hp in self._homotopy_parameters: hp.schedule.step() if not hp.schedule.should_stop: hp.parameter.data.fill_(hp.schedule.value) self._execute_callbacks()
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from botorch.optim.closures import ( ForwardBackwardClosure, get_loss_closure, get_loss_closure_with_grads, ) from botorch.optim.core import ( OptimizationResult, OptimizationStatus, scipy_minimize, torch_minimize, ) from botorch.optim.homotopy import ( FixedHomotopySchedule, Homotopy, HomotopyParameter, LinearHomotopySchedule, LogLinearHomotopySchedule, ) from botorch.optim.initializers import initialize_q_batch, initialize_q_batch_nonneg from botorch.optim.numpy_converter import module_to_array, set_params_with_array from botorch.optim.optimize import ( gen_batch_initial_conditions, optimize_acqf, optimize_acqf_cyclic, optimize_acqf_discrete, optimize_acqf_discrete_local_search, optimize_acqf_mixed, ) from botorch.optim.optimize_homotopy import optimize_acqf_homotopy from botorch.optim.stopping import ExpMAStoppingCriterion __all__ = [ "ForwardBackwardClosure", "get_loss_closure", "get_loss_closure_with_grads", "gen_batch_initial_conditions", "initialize_q_batch", "initialize_q_batch_nonneg", "OptimizationResult", "OptimizationStatus", "optimize_acqf", "optimize_acqf_cyclic", "optimize_acqf_discrete", "optimize_acqf_discrete_local_search", "optimize_acqf_mixed", "optimize_acqf_homotopy", "module_to_array", "scipy_minimize", "set_params_with_array", "torch_minimize", "ExpMAStoppingCriterion", "FixedHomotopySchedule", "Homotopy", "HomotopyParameter", "LinearHomotopySchedule", "LogLinearHomotopySchedule", ]
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. r"""Core abstractions and generic optimizers.""" from __future__ import annotations import re from dataclasses import dataclass, replace from enum import auto, Enum from itertools import count from sys import maxsize from time import monotonic from typing import Any, Callable, Dict, List, Optional, Sequence, Tuple, Union from botorch.optim.closures import NdarrayOptimizationClosure from botorch.optim.utils.numpy_utils import get_bounds_as_ndarray from botorch.optim.utils.timeout import minimize_with_timeout from numpy import asarray, float64 as np_float64, ndarray from torch import Tensor from torch.optim.adam import Adam from torch.optim.optimizer import Optimizer try: from torch.optim.lr_scheduler import LRScheduler except ImportError: # pragma: no cover from torch.optim.lr_scheduler import _LRScheduler as LRScheduler # pragma: no cover _LBFGSB_MAXITER_MAXFUN_REGEX = re.compile( # regex for maxiter and maxfun messages "TOTAL NO. of (ITERATIONS REACHED LIMIT|f AND g EVALUATIONS EXCEEDS LIMIT)" ) class OptimizationStatus(int, Enum): RUNNING = auto() # incomplete SUCCESS = auto() # optimizer converged FAILURE = auto() # terminated abnormally STOPPED = auto() # stopped due to user provided criterion @dataclass class OptimizationResult: step: int fval: Union[float, int] status: OptimizationStatus runtime: Optional[float] = None message: Optional[str] = None def scipy_minimize( closure: Union[ Callable[[], Tuple[Tensor, Sequence[Optional[Tensor]]]], NdarrayOptimizationClosure, ], parameters: Dict[str, Tensor], bounds: Optional[Dict[str, Tuple[Optional[float], Optional[float]]]] = None, callback: Optional[Callable[[Dict[str, Tensor], OptimizationResult], None]] = None, x0: Optional[ndarray] = None, method: str = "L-BFGS-B", options: Optional[Dict[str, Any]] = None, timeout_sec: Optional[float] = None, ) -> OptimizationResult: r"""Generic scipy.optimize.minimize-based optimization routine. Args: closure: Callable that returns a tensor and an iterable of gradient tensors or NdarrayOptimizationClosure instance. parameters: A dictionary of tensors to be optimized. bounds: A dictionary mapping parameter names to lower and upper bounds. callback: A callable taking `parameters` and an OptimizationResult as arguments. x0: An optional initialization vector passed to scipy.optimize.minimize. method: Solver type, passed along to scipy.minimize. options: Dictionary of solver options, passed along to scipy.minimize. timeout_sec: Timeout in seconds to wait before aborting the optimization loop if not converged (will return the best found solution thus far). Returns: An OptimizationResult summarizing the final state of the run. """ start_time = monotonic() wrapped_closure = ( closure if isinstance(closure, NdarrayOptimizationClosure) else NdarrayOptimizationClosure(closure, parameters) ) if bounds is None: bounds_np = None else: bounds_np = get_bounds_as_ndarray(parameters, bounds) if callback is None: wrapped_callback = None else: call_counter = count(1) # callbacks are typically made at the end of each iter def wrapped_callback(x: ndarray): result = OptimizationResult( step=next(call_counter), fval=float(wrapped_closure(x)[0]), status=OptimizationStatus.RUNNING, runtime=monotonic() - start_time, ) return callback(parameters, result) # pyre-ignore [29] raw = minimize_with_timeout( wrapped_closure, wrapped_closure.state if x0 is None else x0.astype(np_float64, copy=False), jac=True, bounds=bounds_np, method=method, options=options, callback=wrapped_callback, timeout_sec=timeout_sec, ) # Post-processing and outcome handling wrapped_closure.state = asarray(raw.x) # set parameter state to optimal values msg = raw.message if isinstance(raw.message, str) else raw.message.decode("ascii") if raw.success: status = OptimizationStatus.SUCCESS else: status = ( # Check whether we stopped due to reaching maxfun or maxiter OptimizationStatus.STOPPED if _LBFGSB_MAXITER_MAXFUN_REGEX.search(msg) or "Optimization timed out after" in msg else OptimizationStatus.FAILURE ) return OptimizationResult( fval=raw.fun, step=raw.nit, status=status, message=msg, runtime=monotonic() - start_time, ) def torch_minimize( closure: Callable[[], Tuple[Tensor, Sequence[Optional[Tensor]]]], parameters: Dict[str, Tensor], bounds: Optional[Dict[str, Tuple[Optional[float], Optional[float]]]] = None, callback: Optional[Callable[[Dict[str, Tensor], OptimizationResult], None]] = None, optimizer: Union[Optimizer, Callable[[List[Tensor]], Optimizer]] = Adam, scheduler: Optional[Union[LRScheduler, Callable[[Optimizer], LRScheduler]]] = None, step_limit: Optional[int] = None, timeout_sec: Optional[float] = None, stopping_criterion: Optional[Callable[[Tensor], bool]] = None, ) -> OptimizationResult: r"""Generic torch.optim-based optimization routine. Args: closure: Callable that returns a tensor and an iterable of gradient tensors. Responsible for setting relevant parameters' `grad` attributes. parameters: A dictionary of tensors to be optimized. bounds: An optional dictionary of bounds for elements of `parameters`. callback: A callable taking `parameters` and an OptimizationResult as arguments. optimizer: A `torch.optim.Optimizer` instance or a factory that takes a list of parameters and returns an `Optimizer` instance. scheduler: A `torch.optim.lr_scheduler._LRScheduler` instance or a factory that takes a `Optimizer` instance and returns a `_LRSchedule` instance. step_limit: Integer specifying a maximum number of optimization steps. One of `step_limit`, `stopping_criterion`, or `timeout_sec` must be passed. timeout_sec: Timeout in seconds before terminating the optimization loop. One of `step_limit`, `stopping_criterion`, or `timeout_sec` must be passed. stopping_criterion: A StoppingCriterion for the optimization loop. Returns: An OptimizationResult summarizing the final state of the run. """ result: OptimizationResult start_time = monotonic() if step_limit is None: if stopping_criterion is None and timeout_sec is None: raise RuntimeError("No termination conditions were given.") step_limit = maxsize if not isinstance(optimizer, Optimizer): optimizer = optimizer(list(parameters.values())) if not (scheduler is None or isinstance(scheduler, LRScheduler)): scheduler = scheduler(optimizer) _bounds = ( {} if bounds is None else {name: limits for name, limits in bounds.items() if name in parameters} ) for step in range(1, step_limit + 1): fval, _ = closure() runtime = monotonic() - start_time result = OptimizationResult( step=step, fval=fval.detach().cpu().item(), status=OptimizationStatus.RUNNING, runtime=runtime, ) # TODO: Update stopping_criterion API to return a message. if stopping_criterion and stopping_criterion(fval): result.status = OptimizationStatus.STOPPED result.message = "`torch_minimize` stopped due to `stopping_criterion`." if timeout_sec is not None and runtime >= timeout_sec: result.status = OptimizationStatus.STOPPED result.message = ( f"`torch_minimize` stopped due to timeout after {runtime} seconds." ) if callback: callback(parameters, result) if result.status != OptimizationStatus.RUNNING: break optimizer.step() for name, (lower, upper) in _bounds.items(): parameters[name].data = parameters[name].clamp(min=lower, max=upper) if scheduler: scheduler.step() if result.status != OptimizationStatus.RUNNING: return replace(result, runtime=monotonic() - start_time) # Account for final parameter update when stopping due to step_limit return OptimizationResult( step=step, fval=closure()[0].detach().cpu().item(), status=OptimizationStatus.STOPPED, runtime=monotonic() - start_time, message=f"`torch_minimize` stopped after reaching step_limit={step_limit}.", )
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. r""" A converter that simplifies using numpy-based optimizers with generic torch `nn.Module` classes. This enables using a `scipy.optim.minimize` optimizer for optimizing module parameters. """ from __future__ import annotations from collections import OrderedDict from math import inf from numbers import Number from typing import Dict, List, Optional, Set, Tuple from warnings import warn import numpy as np import torch from botorch.optim.utils import ( _get_extra_mll_args, _handle_numerical_errors, get_name_filter, get_parameters_and_bounds, TorchAttr, ) from gpytorch.mlls import MarginalLogLikelihood from torch.nn import Module def module_to_array( module: Module, bounds: Optional[Dict[str, Tuple[Optional[float], Optional[float]]]] = None, exclude: Optional[Set[str]] = None, ) -> Tuple[np.ndarray, Dict[str, TorchAttr], Optional[np.ndarray]]: r"""Extract named parameters from a module into a numpy array. Only extracts parameters with requires_grad, since it is meant for optimizing. Args: module: A module with parameters. May specify parameter constraints in a `named_parameters_and_constraints` method. bounds: A dictionary mapping parameter names t lower and upper bounds. of lower and upper bounds. Bounds specified here take precedence over bounds on the same parameters specified in the constraints registered with the module. exclude: A list of parameter names that are to be excluded from extraction. Returns: 3-element tuple containing - The parameter values as a numpy array. - An ordered dictionary with the name and tensor attributes of each parameter. - A `2 x n_params` numpy array with lower and upper bounds if at least one constraint is finite, and None otherwise. Example: >>> mll = ExactMarginalLogLikelihood(model.likelihood, model) >>> parameter_array, property_dict, bounds_out = module_to_array(mll) """ warn( "`module_to_array` is marked for deprecation, consider using " "`get_parameters_and_bounds`, `get_parameters_as_ndarray_1d`, or " "`get_bounds_as_ndarray` instead.", DeprecationWarning, ) param_dict, bounds_dict = get_parameters_and_bounds( module=module, name_filter=None if exclude is None else get_name_filter(exclude), requires_grad=True, ) if bounds is not None: bounds_dict.update(bounds) # Record tensor metadata and read parameter values to the tape param_tape: List[Number] = [] property_dict = OrderedDict() with torch.no_grad(): for name, param in param_dict.items(): property_dict[name] = TorchAttr(param.shape, param.dtype, param.device) param_tape.extend(param.view(-1).cpu().double().tolist()) # Extract lower and upper bounds start = 0 bounds_np = None params_np = np.asarray(param_tape) for name, param in param_dict.items(): numel = param.numel() if name in bounds_dict: for row, bound in enumerate(bounds_dict[name]): if bound is None: continue if torch.is_tensor(bound): if (bound == (2 * row - 1) * inf).all(): continue bound = bound.detach().cpu() elif bound == (2 * row - 1) * inf: continue if bounds_np is None: bounds_np = np.full((2, len(params_np)), ((-inf,), (inf,))) bounds_np[row, start : start + numel] = bound start += numel return params_np, property_dict, bounds_np def set_params_with_array( module: Module, x: np.ndarray, property_dict: Dict[str, TorchAttr] ) -> Module: r"""Set module parameters with values from numpy array. Args: module: Module with parameters to be set x: Numpy array with parameter values property_dict: Dictionary of parameter names and torch attributes as returned by module_to_array. Returns: Module: module with parameters updated in-place. Example: >>> mll = ExactMarginalLogLikelihood(model.likelihood, model) >>> parameter_array, property_dict, bounds_out = module_to_array(mll) >>> parameter_array += 0.1 # perturb parameters (for example only) >>> mll = set_params_with_array(mll, parameter_array, property_dict) """ warn( "`_set_params_with_array` is marked for deprecation, consider using " "`set_parameters_from_ndarray_1d` instead.", DeprecationWarning, ) param_dict = OrderedDict(module.named_parameters()) start_idx = 0 for p_name, attrs in property_dict.items(): # Construct the new tensor if len(attrs.shape) == 0: # deal with scalar tensors end_idx = start_idx + 1 new_data = torch.tensor( x[start_idx], dtype=attrs.dtype, device=attrs.device ) else: end_idx = start_idx + np.prod(attrs.shape) new_data = torch.tensor( x[start_idx:end_idx], dtype=attrs.dtype, device=attrs.device ).view(*attrs.shape) start_idx = end_idx # Update corresponding parameter in-place. Disable autograd to update. param_dict[p_name].requires_grad_(False) param_dict[p_name].copy_(new_data) param_dict[p_name].requires_grad_(True) return module def _scipy_objective_and_grad( x: np.ndarray, mll: MarginalLogLikelihood, property_dict: Dict[str, TorchAttr] ) -> Tuple[float, np.ndarray]: r"""Get objective and gradient in format that scipy expects. Args: x: The (flattened) input parameters. mll: The MarginalLogLikelihood module to evaluate. property_dict: The property dictionary required to "unflatten" the input parameter vector, as generated by `module_to_array`. Returns: 2-element tuple containing - The objective value. - The gradient of the objective. """ warn("`_scipy_objective_and_grad` is marked for deprecation.", DeprecationWarning) mll = set_params_with_array(mll, x, property_dict) train_inputs, train_targets = mll.model.train_inputs, mll.model.train_targets mll.zero_grad() try: # catch linear algebra errors in gpytorch output = mll.model(*train_inputs) args = [output, train_targets] + _get_extra_mll_args(mll) loss = -mll(*args).sum() except RuntimeError as e: return _handle_numerical_errors(error=e, x=x) loss.backward() i = 0 param_dict = OrderedDict(mll.named_parameters()) grad = np.zeros(sum([tattr.shape.numel() for tattr in property_dict.values()])) for p_name in property_dict: t = param_dict[p_name] size = t.numel() if t.requires_grad and t.grad is not None: grad[i : i + size] = t.grad.detach().view(-1).cpu().double().clone().numpy() i += size mll.zero_grad() return loss.item(), grad
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from __future__ import annotations from abc import ABC, abstractmethod import torch from torch import Tensor class StoppingCriterion(ABC): r"""Base class for evaluating optimization convergence. Stopping criteria are implemented as a objects rather than a function, so that they can keep track of past function values between optimization steps. :meta private: """ @abstractmethod def evaluate(self, fvals: Tensor) -> bool: r"""Evaluate the stopping criterion. Args: fvals: tensor containing function values for the current iteration. If `fvals` contains more than one element, then the stopping criterion is evaluated element-wise and True is returned if the stopping criterion is true for all elements. Returns: Stopping indicator (if True, stop the optimziation). """ pass # pragma: no cover def __call__(self, fvals: Tensor) -> bool: return self.evaluate(fvals) class ExpMAStoppingCriterion(StoppingCriterion): r"""Exponential moving average stopping criterion. Computes an exponentially weighted moving average over window length `n_window` and checks whether the relative decrease in this moving average between steps is less than a provided tolerance level. That is, in iteration `i`, it computes v[i,j] := fvals[i - n_window + j] * w[j] for all `j = 0, ..., n_window`, where `w[j] = exp(-eta * (1 - j / n_window))`. Letting `ma[i] := sum_j(v[i,j])`, the criterion evaluates to `True` whenever (ma[i-1] - ma[i]) / abs(ma[i-1]) < rel_tol (if minimize=True) (ma[i] - ma[i-1]) / abs(ma[i-1]) < rel_tol (if minimize=False) """ def __init__( self, maxiter: int = 10000, minimize: bool = True, n_window: int = 10, eta: float = 1.0, rel_tol: float = 1e-5, ) -> None: r"""Exponential moving average stopping criterion. Args: maxiter: Maximum number of iterations. minimize: If True, assume minimization. n_window: The size of the exponential moving average window. eta: The exponential decay factor in the weights. rel_tol: Relative tolerance for termination. """ self.maxiter = maxiter self.minimize = minimize self.n_window = n_window self.rel_tol = rel_tol self.iter = 0 weights = torch.exp(torch.linspace(-eta, 0, self.n_window)) self.weights = weights / weights.sum() self._prev_fvals = None def evaluate(self, fvals: Tensor) -> bool: r"""Evaluate the stopping criterion. Args: fvals: tensor containing function values for the current iteration. If `fvals` contains more than one element, then the stopping criterion is evaluated element-wise and True is returned if the stopping criterion is true for all elements. TODO: add support for utilizing gradient information Returns: Stopping indicator (if True, stop the optimziation). """ self.iter += 1 if self.iter == self.maxiter: return True if self._prev_fvals is None: self._prev_fvals = fvals.unsqueeze(0) else: self._prev_fvals = torch.cat( [self._prev_fvals[-self.n_window :], fvals.unsqueeze(0)] ) if self._prev_fvals.size(0) < self.n_window + 1: return False weights = self.weights weights = weights.to(fvals) if self._prev_fvals.ndim > 1: weights = weights.unsqueeze(-1) # TODO: Update the exp moving average efficiently prev_ma = (self._prev_fvals[:-1] * weights).sum(dim=0) ma = (self._prev_fvals[1:] * weights).sum(dim=0) # TODO: Handle approx. zero losses (normalize by min/max loss range) rel_delta = (prev_ma - ma) / prev_ma.abs() if not self.minimize: rel_delta = -rel_delta if torch.max(rel_delta) < self.rel_tol: return True return False
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. r""" References .. [Regis] R. G. Regis, C. A. Shoemaker. Combining radial basis function surrogates and dynamic coordinate search in high-dimensional expensive black-box optimization, Engineering Optimization, 2013. """ from __future__ import annotations import warnings from math import ceil from typing import Callable, Dict, List, Optional, Tuple, Union import torch from botorch import settings from botorch.acquisition import analytic, monte_carlo, multi_objective from botorch.acquisition.acquisition import AcquisitionFunction from botorch.acquisition.knowledge_gradient import ( _get_value_function, qKnowledgeGradient, ) from botorch.exceptions.errors import BotorchTensorDimensionError, UnsupportedError from botorch.exceptions.warnings import ( BadInitialCandidatesWarning, BotorchWarning, SamplingWarning, ) from botorch.models.model import Model from botorch.optim.utils import fix_features, get_X_baseline from botorch.utils.multi_objective.pareto import is_non_dominated from botorch.utils.sampling import ( batched_multinomial, draw_sobol_samples, get_polytope_samples, manual_seed, ) from botorch.utils.transforms import normalize, standardize, unnormalize from torch import Tensor from torch.distributions import Normal from torch.quasirandom import SobolEngine TGenInitialConditions = Callable[ [ # reasoning behind this annotation: contravariance qKnowledgeGradient, Tensor, int, int, int, Optional[Dict[int, float]], Optional[Dict[str, Union[bool, float, int]]], Optional[List[Tuple[Tensor, Tensor, float]]], Optional[List[Tuple[Tensor, Tensor, float]]], ], Optional[Tensor], ] def transform_constraints( constraints: Union[List[Tuple[Tensor, Tensor, float]], None], q: int, d: int ) -> List[Tuple[Tensor, Tensor, float]]: r"""Transform constraints to sample from a d*q-dimensional space instead of a d-dimensional state. This function assumes that constraints are the same for each input batch, and broadcasts the constraints accordingly to the input batch shape. Args: constraints: A list of tuples (indices, coefficients, rhs), with each tuple encoding an (in-)equality constraint of the form `\sum_i (X[indices[i]] * coefficients[i]) (>)= rhs`. If `indices` is a 2-d Tensor, this supports specifying constraints across the points in the `q`-batch (inter-point constraints). If `None`, this function is a nullop and simply returns `None`. q: Size of the `q`-batch. d: Dimensionality of the problem. Returns: List[Tuple[Tensor, Tensor, float]]: List of transformed constraints. """ if constraints is None: return None transformed = [] for constraint in constraints: if len(constraint[0].shape) == 1: transformed += transform_intra_point_constraint(constraint, d, q) else: transformed.append(transform_inter_point_constraint(constraint, d)) return transformed def transform_intra_point_constraint( constraint: Tuple[Tensor, Tensor, float], d: int, q: int ) -> List[Tuple[Tensor, Tensor, float]]: r"""Transforms an intra-point/pointwise constraint from d-dimensional space to a d*q-dimesional space. Args: constraints: A list of tuples (indices, coefficients, rhs), with each tuple encoding an (in-)equality constraint of the form `\sum_i (X[indices[i]] * coefficients[i]) (>)= rhs`. Here `indices` must be one-dimensional, and the constraint is applied to all points within the `q`-batch. d: Dimensionality of the problem. Raises: ValueError: If indices in the constraints are larger than the dimensionality d of the problem. Returns: List[Tuple[Tensor, Tensor, float]]: List of transformed constraints. """ indices, coefficients, rhs = constraint if indices.max() >= d: raise ValueError( f"Constraint indices cannot exceed the problem dimension {d=}." ) return [ ( torch.tensor( [i * d + j for j in indices], dtype=torch.int64, device=indices.device ), coefficients, rhs, ) for i in range(q) ] def transform_inter_point_constraint( constraint: Tuple[Tensor, Tensor, float], d: int ) -> Tuple[Tensor, Tensor, float]: r"""Transforms an inter-point constraint from d-dimensional space to a d*q dimesional space. Args: constraints: A list of tuples (indices, coefficients, rhs), with each tuple encoding an (in-)equality constraint of the form `\sum_i (X[indices[i]] * coefficients[i]) (>)= rhs`. `indices` must be a 2-d Tensor, where in each row `indices[i] = (k_i, l_i)` the first index `k_i` corresponds to the `k_i`-th element of the `q`-batch and the second index `l_i` corresponds to the `l_i`-th feature of that element. Raises: ValueError: If indices in the constraints are larger than the dimensionality d of the problem. Returns: List[Tuple[Tensor, Tensor, float]]: Transformed constraint. """ indices, coefficients, rhs = constraint if indices[:, 1].max() >= d: raise ValueError( f"Constraint indices cannot exceed the problem dimension {d=}." ) return ( torch.tensor( [r[0] * d + r[1] for r in indices], dtype=torch.int64, device=indices.device ), coefficients, rhs, ) def sample_q_batches_from_polytope( n: int, q: int, bounds: Tensor, n_burnin: int, thinning: int, seed: int, inequality_constraints: Optional[List[Tuple[Tensor, Tensor, float]]] = None, equality_constraints: Optional[List[Tuple[Tensor, Tensor, float]]] = None, ) -> Tensor: r"""Samples `n` q-baches from a polytope of dimension `d`. Args: n: Number of q-batches to sample. q: Number of samples per q-batch bounds: A `2 x d` tensor of lower and upper bounds for each column of `X`. n_burnin: The number of burn-in samples for the Markov chain sampler. thinning: The amount of thinning (number of steps to take between returning samples). seed: The random seed. inequality_constraints: A list of tuples (indices, coefficients, rhs), with each tuple encoding an inequality constraint of the form `\sum_i (X[indices[i]] * coefficients[i]) >= rhs`. equality_constraints: A list of tuples (indices, coefficients, rhs), with each tuple encoding an inequality constraint of the form `\sum_i (X[indices[i]] * coefficients[i]) = rhs`. Returns: A `n x q x d`-dim tensor of samples. """ # check if inter-point constraints are present inter_point = any( len(indices.shape) > 1 for constraints in (inequality_constraints or [], equality_constraints or []) for indices, _, _ in constraints ) if inter_point: samples = get_polytope_samples( n=n, bounds=torch.hstack([bounds for _ in range(q)]), inequality_constraints=transform_constraints( constraints=inequality_constraints, q=q, d=bounds.shape[1] ), equality_constraints=transform_constraints( constraints=equality_constraints, q=q, d=bounds.shape[1] ), seed=seed, n_burnin=n_burnin, thinning=thinning * q, ) else: samples = get_polytope_samples( n=n * q, bounds=bounds, inequality_constraints=inequality_constraints, equality_constraints=equality_constraints, seed=seed, n_burnin=n_burnin, thinning=thinning, ) return samples.view(n, q, -1).cpu() def gen_batch_initial_conditions( acq_function: AcquisitionFunction, bounds: Tensor, q: int, num_restarts: int, raw_samples: int, fixed_features: Optional[Dict[int, float]] = None, options: Optional[Dict[str, Union[bool, float, int]]] = None, inequality_constraints: Optional[List[Tuple[Tensor, Tensor, float]]] = None, equality_constraints: Optional[List[Tuple[Tensor, Tensor, float]]] = None, generator: Optional[Callable[[int, int, int], Tensor]] = None, ) -> Tensor: r"""Generate a batch of initial conditions for random-restart optimziation. TODO: Support t-batches of initial conditions. Args: acq_function: The acquisition function to be optimized. bounds: A `2 x d` tensor of lower and upper bounds for each column of `X`. q: The number of candidates to consider. num_restarts: The number of starting points for multistart acquisition function optimization. raw_samples: The number of raw samples to consider in the initialization heuristic. Note: if `sample_around_best` is True (the default is False), then `2 * raw_samples` samples are used. fixed_features: A map `{feature_index: value}` for features that should be fixed to a particular value during generation. options: Options for initial condition generation. For valid options see `initialize_q_batch` and `initialize_q_batch_nonneg`. If `options` contains a `nonnegative=True` entry, then `acq_function` is assumed to be non-negative (useful when using custom acquisition functions). In addition, an "init_batch_limit" option can be passed to specify the batch limit for the initialization. This is useful for avoiding memory limits when computing the batch posterior over raw samples. inequality constraints: A list of tuples (indices, coefficients, rhs), with each tuple encoding an inequality constraint of the form `\sum_i (X[indices[i]] * coefficients[i]) >= rhs`. equality constraints: A list of tuples (indices, coefficients, rhs), with each tuple encoding an inequality constraint of the form `\sum_i (X[indices[i]] * coefficients[i]) = rhs`. generator: Callable for generating samples that are then further processed. It receives `n`, `q` and `seed` as arguments and returns a tensor of shape `n x q x d`. Returns: A `num_restarts x q x d` tensor of initial conditions. Example: >>> qEI = qExpectedImprovement(model, best_f=0.2) >>> bounds = torch.tensor([[0.], [1.]]) >>> Xinit = gen_batch_initial_conditions( >>> qEI, bounds, q=3, num_restarts=25, raw_samples=500 >>> ) """ if bounds.isinf().any(): raise NotImplementedError( "Currently only finite values in `bounds` are supported " "for generating initial conditions for optimization." ) options = options or {} sample_around_best = options.get("sample_around_best", False) if sample_around_best and equality_constraints: raise UnsupportedError( "Option 'sample_around_best' is not supported when equality" "constraints are present." ) if sample_around_best and generator: raise UnsupportedError( "Option 'sample_around_best' is not supported when custom " "generator is be used." ) seed: Optional[int] = options.get("seed") batch_limit: Optional[int] = options.get( "init_batch_limit", options.get("batch_limit") ) factor, max_factor = 1, 5 init_kwargs = {} device = bounds.device bounds_cpu = bounds.cpu() if "eta" in options: init_kwargs["eta"] = options.get("eta") if options.get("nonnegative") or is_nonnegative(acq_function): init_func = initialize_q_batch_nonneg if "alpha" in options: init_kwargs["alpha"] = options.get("alpha") else: init_func = initialize_q_batch q = 1 if q is None else q # the dimension the samples are drawn from effective_dim = bounds.shape[-1] * q if effective_dim > SobolEngine.MAXDIM and settings.debug.on(): warnings.warn( f"Sample dimension q*d={effective_dim} exceeding Sobol max dimension " f"({SobolEngine.MAXDIM}). Using iid samples instead.", SamplingWarning, ) while factor < max_factor: with warnings.catch_warnings(record=True) as ws: n = raw_samples * factor if generator is not None: X_rnd = generator(n, q, seed) elif inequality_constraints is None and equality_constraints is None: if effective_dim <= SobolEngine.MAXDIM: X_rnd = draw_sobol_samples(bounds=bounds_cpu, n=n, q=q, seed=seed) else: with manual_seed(seed): # load on cpu X_rnd_nlzd = torch.rand( n, q, bounds_cpu.shape[-1], dtype=bounds.dtype ) X_rnd = bounds_cpu[0] + (bounds_cpu[1] - bounds_cpu[0]) * X_rnd_nlzd else: X_rnd = sample_q_batches_from_polytope( n=n, q=q, bounds=bounds, n_burnin=options.get("n_burnin", 10000), thinning=options.get("thinning", 32), seed=seed, equality_constraints=equality_constraints, inequality_constraints=inequality_constraints, ) # sample points around best if sample_around_best: X_best_rnd = sample_points_around_best( acq_function=acq_function, n_discrete_points=n * q, sigma=options.get("sample_around_best_sigma", 1e-3), bounds=bounds, subset_sigma=options.get("sample_around_best_subset_sigma", 1e-1), prob_perturb=options.get("sample_around_best_prob_perturb"), ) if X_best_rnd is not None: X_rnd = torch.cat( [ X_rnd, X_best_rnd.view(n, q, bounds.shape[-1]).cpu(), ], dim=0, ) X_rnd = fix_features(X_rnd, fixed_features=fixed_features) with torch.no_grad(): if batch_limit is None: batch_limit = X_rnd.shape[0] Y_rnd_list = [] start_idx = 0 while start_idx < X_rnd.shape[0]: end_idx = min(start_idx + batch_limit, X_rnd.shape[0]) Y_rnd_curr = acq_function( X_rnd[start_idx:end_idx].to(device=device) ).cpu() Y_rnd_list.append(Y_rnd_curr) start_idx += batch_limit Y_rnd = torch.cat(Y_rnd_list) batch_initial_conditions = init_func( X=X_rnd, Y=Y_rnd, n=num_restarts, **init_kwargs ).to(device=device) if not any(issubclass(w.category, BadInitialCandidatesWarning) for w in ws): return batch_initial_conditions if factor < max_factor: factor += 1 if seed is not None: seed += 1 # make sure to sample different X_rnd warnings.warn( "Unable to find non-zero acquisition function values - initial conditions " "are being selected randomly.", BadInitialCandidatesWarning, ) return batch_initial_conditions def gen_one_shot_kg_initial_conditions( acq_function: qKnowledgeGradient, bounds: Tensor, q: int, num_restarts: int, raw_samples: int, fixed_features: Optional[Dict[int, float]] = None, options: Optional[Dict[str, Union[bool, float, int]]] = None, inequality_constraints: Optional[List[Tuple[Tensor, Tensor, float]]] = None, equality_constraints: Optional[List[Tuple[Tensor, Tensor, float]]] = None, ) -> Optional[Tensor]: r"""Generate a batch of smart initializations for qKnowledgeGradient. This function generates initial conditions for optimizing one-shot KG using the maximizer of the posterior objective. Intutively, the maximizer of the fantasized posterior will often be close to a maximizer of the current posterior. This function uses that fact to generate the initital conditions for the fantasy points. Specifically, a fraction of `1 - frac_random` (see options) is generated by sampling from the set of maximizers of the posterior objective (obtained via random restart optimization) according to a softmax transformation of their respective values. This means that this initialization strategy internally solves an acquisition function maximization problem. The remaining `frac_random` fantasy points as well as all `q` candidate points are chosen according to the standard initialization strategy in `gen_batch_initial_conditions`. Args: acq_function: The qKnowledgeGradient instance to be optimized. bounds: A `2 x d` tensor of lower and upper bounds for each column of task features. q: The number of candidates to consider. num_restarts: The number of starting points for multistart acquisition function optimization. raw_samples: The number of raw samples to consider in the initialization heuristic. fixed_features: A map `{feature_index: value}` for features that should be fixed to a particular value during generation. options: Options for initial condition generation. These contain all settings for the standard heuristic initialization from `gen_batch_initial_conditions`. In addition, they contain `frac_random` (the fraction of fully random fantasy points), `num_inner_restarts` and `raw_inner_samples` (the number of random restarts and raw samples for solving the posterior objective maximization problem, respectively) and `eta` (temperature parameter for sampling heuristic from posterior objective maximizers). inequality constraints: A list of tuples (indices, coefficients, rhs), with each tuple encoding an inequality constraint of the form `\sum_i (X[indices[i]] * coefficients[i]) >= rhs`. equality constraints: A list of tuples (indices, coefficients, rhs), with each tuple encoding an inequality constraint of the form `\sum_i (X[indices[i]] * coefficients[i]) = rhs`. Returns: A `num_restarts x q' x d` tensor that can be used as initial conditions for `optimize_acqf()`. Here `q' = q + num_fantasies` is the total number of points (candidate points plus fantasy points). Example: >>> qKG = qKnowledgeGradient(model, num_fantasies=64) >>> bounds = torch.tensor([[0., 0.], [1., 1.]]) >>> Xinit = gen_one_shot_kg_initial_conditions( >>> qKG, bounds, q=3, num_restarts=10, raw_samples=512, >>> options={"frac_random": 0.25}, >>> ) """ options = options or {} frac_random: float = options.get("frac_random", 0.1) if not 0 < frac_random < 1: raise ValueError( f"frac_random must take on values in (0,1). Value: {frac_random}" ) q_aug = acq_function.get_augmented_q_batch_size(q=q) # TODO: Avoid unnecessary computation by not generating all candidates ics = gen_batch_initial_conditions( acq_function=acq_function, bounds=bounds, q=q_aug, num_restarts=num_restarts, raw_samples=raw_samples, fixed_features=fixed_features, options=options, inequality_constraints=inequality_constraints, equality_constraints=equality_constraints, ) # compute maximizer of the value function value_function = _get_value_function( model=acq_function.model, objective=acq_function.objective, posterior_transform=acq_function.posterior_transform, sampler=acq_function.inner_sampler, project=getattr(acq_function, "project", None), ) from botorch.optim.optimize import optimize_acqf fantasy_cands, fantasy_vals = optimize_acqf( acq_function=value_function, bounds=bounds, q=1, num_restarts=options.get("num_inner_restarts", 20), raw_samples=options.get("raw_inner_samples", 1024), fixed_features=fixed_features, return_best_only=False, inequality_constraints=inequality_constraints, equality_constraints=equality_constraints, ) # sampling from the optimizers n_value = int((1 - frac_random) * (q_aug - q)) # number of non-random ICs eta = options.get("eta", 2.0) weights = torch.exp(eta * standardize(fantasy_vals)) idx = torch.multinomial(weights, num_restarts * n_value, replacement=True) # set the respective initial conditions to the sampled optimizers ics[..., -n_value:, :] = fantasy_cands[idx, 0].view(num_restarts, n_value, -1) return ics def gen_value_function_initial_conditions( acq_function: AcquisitionFunction, bounds: Tensor, num_restarts: int, raw_samples: int, current_model: Model, fixed_features: Optional[Dict[int, float]] = None, options: Optional[Dict[str, Union[bool, float, int]]] = None, ) -> Tensor: r"""Generate a batch of smart initializations for optimizing the value function of qKnowledgeGradient. This function generates initial conditions for optimizing the inner problem of KG, i.e. its value function, using the maximizer of the posterior objective. Intutively, the maximizer of the fantasized posterior will often be close to a maximizer of the current posterior. This function uses that fact to generate the initital conditions for the fantasy points. Specifically, a fraction of `1 - frac_random` (see options) of raw samples is generated by sampling from the set of maximizers of the posterior objective (obtained via random restart optimization) according to a softmax transformation of their respective values. This means that this initialization strategy internally solves an acquisition function maximization problem. The remaining raw samples are generated using `draw_sobol_samples`. All raw samples are then evaluated, and the initial conditions are selected according to the standard initialization strategy in 'initialize_q_batch' individually for each inner problem. Args: acq_function: The value function instance to be optimized. bounds: A `2 x d` tensor of lower and upper bounds for each column of task features. num_restarts: The number of starting points for multistart acquisition function optimization. raw_samples: The number of raw samples to consider in the initialization heuristic. current_model: The model of the KG acquisition function that was used to generate the fantasy model of the value function. fixed_features: A map `{feature_index: value}` for features that should be fixed to a particular value during generation. options: Options for initial condition generation. These contain all settings for the standard heuristic initialization from `gen_batch_initial_conditions`. In addition, they contain `frac_random` (the fraction of fully random fantasy points), `num_inner_restarts` and `raw_inner_samples` (the number of random restarts and raw samples for solving the posterior objective maximization problem, respectively) and `eta` (temperature parameter for sampling heuristic from posterior objective maximizers). Returns: A `num_restarts x batch_shape x q x d` tensor that can be used as initial conditions for `optimize_acqf()`. Here `batch_shape` is the batch shape of value function model. Example: >>> fant_X = torch.rand(5, 1, 2) >>> fantasy_model = model.fantasize(fant_X, SobolQMCNormalSampler(16)) >>> value_function = PosteriorMean(fantasy_model) >>> bounds = torch.tensor([[0., 0.], [1., 1.]]) >>> Xinit = gen_value_function_initial_conditions( >>> value_function, bounds, num_restarts=10, raw_samples=512, >>> options={"frac_random": 0.25}, >>> ) """ options = options or {} seed: Optional[int] = options.get("seed") frac_random: float = options.get("frac_random", 0.6) if not 0 < frac_random < 1: raise ValueError( f"frac_random must take on values in (0,1). Value: {frac_random}" ) # compute maximizer of the current value function value_function = _get_value_function( model=current_model, objective=getattr(acq_function, "objective", None), posterior_transform=acq_function.posterior_transform, sampler=getattr(acq_function, "sampler", None), project=getattr(acq_function, "project", None), ) from botorch.optim.optimize import optimize_acqf fantasy_cands, fantasy_vals = optimize_acqf( acq_function=value_function, bounds=bounds, q=1, num_restarts=options.get("num_inner_restarts", 20), raw_samples=options.get("raw_inner_samples", 1024), fixed_features=fixed_features, return_best_only=False, options={ k: v for k, v in options.items() if k not in ("frac_random", "num_inner_restarts", "raw_inner_samples", "eta") }, ) batch_shape = acq_function.model.batch_shape # sampling from the optimizers n_value = int((1 - frac_random) * raw_samples) # number of non-random ICs if n_value > 0: eta = options.get("eta", 2.0) weights = torch.exp(eta * standardize(fantasy_vals)) idx = batched_multinomial( weights=weights.expand(*batch_shape, -1), num_samples=n_value, replacement=True, ).permute(-1, *range(len(batch_shape))) resampled = fantasy_cands[idx] else: resampled = torch.empty( 0, *batch_shape, 1, bounds.shape[-1], dtype=fantasy_cands.dtype, device=fantasy_cands.device, ) # add qMC samples randomized = draw_sobol_samples( bounds=bounds, n=raw_samples - n_value, q=1, batch_shape=batch_shape, seed=seed ).to(resampled) # full set of raw samples X_rnd = torch.cat([resampled, randomized], dim=0) X_rnd = fix_features(X_rnd, fixed_features=fixed_features) # evaluate the raw samples with torch.no_grad(): Y_rnd = acq_function(X_rnd) # select the restart points using the heuristic return initialize_q_batch( X=X_rnd, Y=Y_rnd, n=num_restarts, eta=options.get("eta", 2.0) ) def initialize_q_batch(X: Tensor, Y: Tensor, n: int, eta: float = 1.0) -> Tensor: r"""Heuristic for selecting initial conditions for candidate generation. This heuristic selects points from `X` (without replacement) with probability proportional to `exp(eta * Z)`, where `Z = (Y - mean(Y)) / std(Y)` and `eta` is a temperature parameter. When using an acquisiton function that is non-negative and possibly zero over large areas of the feature space (e.g. qEI), you should use `initialize_q_batch_nonneg` instead. Args: X: A `b x batch_shape x q x d` tensor of `b` - `batch_shape` samples of `q`-batches from a d`-dim feature space. Typically, these are generated using qMC sampling. Y: A tensor of `b x batch_shape` outcomes associated with the samples. Typically, this is the value of the batch acquisition function to be maximized. n: The number of initial condition to be generated. Must be less than `b`. eta: Temperature parameter for weighting samples. Returns: A `n x batch_shape x q x d` tensor of `n` - `batch_shape` `q`-batch initial conditions, where each batch of `n x q x d` samples is selected independently. Example: >>> # To get `n=10` starting points of q-batch size `q=3` >>> # for model with `d=6`: >>> qUCB = qUpperConfidenceBound(model, beta=0.1) >>> Xrnd = torch.rand(500, 3, 6) >>> Xinit = initialize_q_batch(Xrnd, qUCB(Xrnd), 10) """ n_samples = X.shape[0] batch_shape = X.shape[1:-2] or torch.Size() if n > n_samples: raise RuntimeError( f"n ({n}) cannot be larger than the number of " f"provided samples ({n_samples})" ) elif n == n_samples: return X Ystd = Y.std(dim=0) if torch.any(Ystd == 0): warnings.warn( "All acquisition values for raw samples points are the same for " "at least one batch. Choosing initial conditions at random.", BadInitialCandidatesWarning, ) return X[torch.randperm(n=n_samples, device=X.device)][:n] max_val, max_idx = torch.max(Y, dim=0) Z = (Y - Y.mean(dim=0)) / Ystd etaZ = eta * Z weights = torch.exp(etaZ) while torch.isinf(weights).any(): etaZ *= 0.5 weights = torch.exp(etaZ) if batch_shape == torch.Size(): idcs = torch.multinomial(weights, n) else: idcs = batched_multinomial( weights=weights.permute(*range(1, len(batch_shape) + 1), 0), num_samples=n ).permute(-1, *range(len(batch_shape))) # make sure we get the maximum if max_idx not in idcs: idcs[-1] = max_idx if batch_shape == torch.Size(): return X[idcs] else: return X.gather( dim=0, index=idcs.view(*idcs.shape, 1, 1).expand(n, *X.shape[1:]) ) def initialize_q_batch_nonneg( X: Tensor, Y: Tensor, n: int, eta: float = 1.0, alpha: float = 1e-4 ) -> Tensor: r"""Heuristic for selecting initial conditions for non-neg. acquisition functions. This function is similar to `initialize_q_batch`, but designed specifically for acquisition functions that are non-negative and possibly zero over large areas of the feature space (e.g. qEI). All samples for which `Y < alpha * max(Y)` will be ignored (assuming that `Y` contains at least one positive value). Args: X: A `b x q x d` tensor of `b` samples of `q`-batches from a `d`-dim. feature space. Typically, these are generated using qMC. Y: A tensor of `b` outcomes associated with the samples. Typically, this is the value of the batch acquisition function to be maximized. n: The number of initial condition to be generated. Must be less than `b`. eta: Temperature parameter for weighting samples. alpha: The threshold (as a fraction of the maximum observed value) under which to ignore samples. All input samples for which `Y < alpha * max(Y)` will be ignored. Returns: A `n x q x d` tensor of `n` `q`-batch initial conditions. Example: >>> # To get `n=10` starting points of q-batch size `q=3` >>> # for model with `d=6`: >>> qEI = qExpectedImprovement(model, best_f=0.2) >>> Xrnd = torch.rand(500, 3, 6) >>> Xinit = initialize_q_batch(Xrnd, qEI(Xrnd), 10) """ n_samples = X.shape[0] if n > n_samples: raise RuntimeError("n cannot be larger than the number of provided samples") elif n == n_samples: return X max_val, max_idx = torch.max(Y, dim=0) if torch.any(max_val <= 0): warnings.warn( "All acquisition values for raw sampled points are nonpositive, so " "initial conditions are being selected randomly.", BadInitialCandidatesWarning, ) return X[torch.randperm(n=n_samples, device=X.device)][:n] # make sure there are at least `n` points with positive acquisition values pos = Y > 0 num_pos = pos.sum().item() if num_pos < n: # select all positive points and then fill remaining quota with randomly # selected points remaining_indices = (~pos).nonzero(as_tuple=False).view(-1) rand_indices = torch.randperm(remaining_indices.shape[0], device=Y.device) sampled_remaining_indices = remaining_indices[rand_indices[: n - num_pos]] pos[sampled_remaining_indices] = 1 return X[pos] # select points within alpha of max_val, iteratively decreasing alpha by a # factor of 10 as necessary alpha_pos = Y >= alpha * max_val while alpha_pos.sum() < n: alpha = 0.1 * alpha alpha_pos = Y >= alpha * max_val alpha_pos_idcs = torch.arange(len(Y), device=Y.device)[alpha_pos] weights = torch.exp(eta * (Y[alpha_pos] / max_val - 1)) idcs = alpha_pos_idcs[torch.multinomial(weights, n)] if max_idx not in idcs: idcs[-1] = max_idx return X[idcs] def sample_points_around_best( acq_function: AcquisitionFunction, n_discrete_points: int, sigma: float, bounds: Tensor, best_pct: float = 5.0, subset_sigma: float = 1e-1, prob_perturb: Optional[float] = None, ) -> Optional[Tensor]: r"""Find best points and sample nearby points. Args: acq_function: The acquisition function. n_discrete_points: The number of points to sample. sigma: The standard deviation of the additive gaussian noise for perturbing the best points. bounds: A `2 x d`-dim tensor containing the bounds. best_pct: The percentage of best points to perturb. subset_sigma: The standard deviation of the additive gaussian noise for perturbing a subset of dimensions of the best points. prob_perturb: The probability of perturbing each dimension. Returns: An optional `n_discrete_points x d`-dim tensor containing the sampled points. This is None if no baseline points are found. """ X = get_X_baseline(acq_function=acq_function) if X is None: return with torch.no_grad(): try: posterior = acq_function.model.posterior(X) except AttributeError: warnings.warn( "Failed to sample around previous best points.", BotorchWarning, ) return mean = posterior.mean while mean.ndim > 2: # take average over batch dims mean = mean.mean(dim=0) try: f_pred = acq_function.objective(mean) # Some acquisition functions do not have an objective # and for some acquisition functions the objective is None except (AttributeError, TypeError): f_pred = mean if hasattr(acq_function, "maximize"): # make sure that the optimiztaion direction is set properly if not acq_function.maximize: f_pred = -f_pred try: # handle constraints for EHVI-based acquisition functions constraints = acq_function.constraints if constraints is not None: neg_violation = -torch.stack( [c(mean).clamp_min(0.0) for c in constraints], dim=-1 ).sum(dim=-1) feas = neg_violation == 0 if feas.any(): f_pred[~feas] = float("-inf") else: # set objective equal to negative violation f_pred = neg_violation except AttributeError: pass if f_pred.ndim == mean.ndim and f_pred.shape[-1] > 1: # multi-objective # find pareto set is_pareto = is_non_dominated(f_pred) best_X = X[is_pareto] else: if f_pred.shape[-1] == 1: f_pred = f_pred.squeeze(-1) n_best = max(1, round(X.shape[0] * best_pct / 100)) # the view() is to ensure that best_idcs is not a scalar tensor best_idcs = torch.topk(f_pred, n_best).indices.view(-1) best_X = X[best_idcs] use_perturbed_sampling = best_X.shape[-1] >= 20 or prob_perturb is not None n_trunc_normal_points = ( n_discrete_points // 2 if use_perturbed_sampling else n_discrete_points ) perturbed_X = sample_truncated_normal_perturbations( X=best_X, n_discrete_points=n_trunc_normal_points, sigma=sigma, bounds=bounds, ) if use_perturbed_sampling: perturbed_subset_dims_X = sample_perturbed_subset_dims( X=best_X, bounds=bounds, # ensure that we return n_discrete_points n_discrete_points=n_discrete_points - n_trunc_normal_points, sigma=sigma, prob_perturb=prob_perturb, ) perturbed_X = torch.cat([perturbed_X, perturbed_subset_dims_X], dim=0) # shuffle points perm = torch.randperm(perturbed_X.shape[0], device=X.device) perturbed_X = perturbed_X[perm] return perturbed_X def sample_truncated_normal_perturbations( X: Tensor, n_discrete_points: int, sigma: float, bounds: Tensor, qmc: bool = True, ) -> Tensor: r"""Sample points around `X`. Sample perturbed points around `X` such that the added perturbations are sampled from N(0, sigma^2 I) and truncated to be within [0,1]^d. Args: X: A `n x d`-dim tensor starting points. n_discrete_points: The number of points to sample. sigma: The standard deviation of the additive gaussian noise for perturbing the points. bounds: A `2 x d`-dim tensor containing the bounds. qmc: A boolean indicating whether to use qmc. Returns: A `n_discrete_points x d`-dim tensor containing the sampled points. """ X = normalize(X, bounds=bounds) d = X.shape[1] # sample points from N(X_center, sigma^2 I), truncated to be within # [0, 1]^d. if X.shape[0] > 1: rand_indices = torch.randint(X.shape[0], (n_discrete_points,), device=X.device) X = X[rand_indices] if qmc: std_bounds = torch.zeros(2, d, dtype=X.dtype, device=X.device) std_bounds[1] = 1 u = draw_sobol_samples(bounds=std_bounds, n=n_discrete_points, q=1).squeeze(1) else: u = torch.rand((n_discrete_points, d), dtype=X.dtype, device=X.device) # compute bounds to sample from a = -X b = 1 - X # compute z-score of bounds alpha = a / sigma beta = b / sigma normal = Normal(0, 1) cdf_alpha = normal.cdf(alpha) # use inverse transform perturbation = normal.icdf(cdf_alpha + u * (normal.cdf(beta) - cdf_alpha)) * sigma # add perturbation and clip points that are still outside perturbed_X = (X + perturbation).clamp(0.0, 1.0) return unnormalize(perturbed_X, bounds=bounds) def sample_perturbed_subset_dims( X: Tensor, bounds: Tensor, n_discrete_points: int, sigma: float = 1e-1, qmc: bool = True, prob_perturb: Optional[float] = None, ) -> Tensor: r"""Sample around `X` by perturbing a subset of the dimensions. By default, dimensions are perturbed with probability equal to `min(20 / d, 1)`. As shown in [Regis]_, perturbing a small number of dimensions can be beneificial. The perturbations are sampled from N(0, sigma^2 I) and truncated to be within [0,1]^d. Args: X: A `n x d`-dim tensor starting points. `X` must be normalized to be within `[0, 1]^d`. bounds: The bounds to sample perturbed values from n_discrete_points: The number of points to sample. sigma: The standard deviation of the additive gaussian noise for perturbing the points. qmc: A boolean indicating whether to use qmc. prob_perturb: The probability of perturbing each dimension. If omitted, defaults to `min(20 / d, 1)`. Returns: A `n_discrete_points x d`-dim tensor containing the sampled points. """ if bounds.ndim != 2: raise BotorchTensorDimensionError("bounds must be a `2 x d`-dim tensor.") elif X.ndim != 2: raise BotorchTensorDimensionError("X must be a `n x d`-dim tensor.") d = bounds.shape[-1] if prob_perturb is None: # Only perturb a subset of the features prob_perturb = min(20.0 / d, 1.0) if X.shape[0] == 1: X_cand = X.repeat(n_discrete_points, 1) else: rand_indices = torch.randint(X.shape[0], (n_discrete_points,), device=X.device) X_cand = X[rand_indices] pert = sample_truncated_normal_perturbations( X=X_cand, n_discrete_points=n_discrete_points, sigma=sigma, bounds=bounds, qmc=qmc, ) # find cases where we are not perturbing any dimensions mask = ( torch.rand( n_discrete_points, d, dtype=bounds.dtype, device=bounds.device, ) <= prob_perturb ) ind = (~mask).all(dim=-1).nonzero() # perturb `n_perturb` of the dimensions n_perturb = ceil(d * prob_perturb) perturb_mask = torch.zeros(d, dtype=mask.dtype, device=mask.device) perturb_mask[:n_perturb].fill_(1) # TODO: use batched `torch.randperm` when available: # https://github.com/pytorch/pytorch/issues/42502 for idx in ind: mask[idx] = perturb_mask[torch.randperm(d, device=bounds.device)] # Create candidate points X_cand[mask] = pert[mask] return X_cand def is_nonnegative(acq_function: AcquisitionFunction) -> bool: r"""Determine whether a given acquisition function is non-negative. Args: acq_function: The `AcquisitionFunction` instance. Returns: True if `acq_function` is non-negative, False if not, or if the behavior is unknown (for custom acquisition functions). Example: >>> qEI = qExpectedImprovement(model, best_f=0.1) >>> is_nonnegative(qEI) # returns True """ return isinstance( acq_function, ( analytic.ExpectedImprovement, analytic.ConstrainedExpectedImprovement, analytic.ProbabilityOfImprovement, analytic.NoisyExpectedImprovement, monte_carlo.qExpectedImprovement, monte_carlo.qNoisyExpectedImprovement, monte_carlo.qProbabilityOfImprovement, multi_objective.analytic.ExpectedHypervolumeImprovement, multi_objective.monte_carlo.qExpectedHypervolumeImprovement, multi_objective.monte_carlo.qNoisyExpectedHypervolumeImprovement, ), )
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import Callable, Dict, Optional, Tuple, Union import torch from botorch.acquisition import AcquisitionFunction from botorch.optim.homotopy import Homotopy from botorch.optim.optimize import optimize_acqf from torch import Tensor def prune_candidates( candidates: Tensor, acq_values: Tensor, prune_tolerance: float ) -> Tensor: r"""Prune candidates based on their distance to other candidates. Args: candidates: An `n x d` tensor of candidates. acq_values: An `n` tensor of candidate values. prune_tolerance: The minimum distance to prune candidates. Returns: An `m x d` tensor of pruned candidates. """ if candidates.ndim != 2: raise ValueError("`candidates` must be of size `n x d`.") if acq_values.ndim != 1 or len(acq_values) != candidates.shape[0]: raise ValueError("`acq_values` must be of size `n`.") if prune_tolerance < 0: raise ValueError("`prune_tolerance` must be >= 0.") sorted_inds = acq_values.argsort(descending=True) candidates = candidates[sorted_inds] candidates_new = candidates[:1, :] for i in range(1, candidates.shape[0]): if ( torch.cdist(candidates[i : i + 1, :], candidates_new).min() > prune_tolerance ): candidates_new = torch.cat( [candidates_new, candidates[i : i + 1, :]], dim=-2 ) return candidates_new def optimize_acqf_homotopy( acq_function: AcquisitionFunction, bounds: Tensor, q: int, homotopy: Homotopy, num_restarts: int, raw_samples: Optional[int] = None, fixed_features: Optional[Dict[int, float]] = None, options: Optional[Dict[str, Union[bool, float, int, str]]] = None, final_options: Optional[Dict[str, Union[bool, float, int, str]]] = None, batch_initial_conditions: Optional[Tensor] = None, post_processing_func: Optional[Callable[[Tensor], Tensor]] = None, prune_tolerance: float = 1e-4, ) -> Tuple[Tensor, Tensor]: r"""Generate a set of candidates via multi-start optimization. Args: acq_function: An AcquisitionFunction. bounds: A `2 x d` tensor of lower and upper bounds for each column of `X`. q: The number of candidates. homotopy: Homotopy object that will make the necessary modifications to the problem when calling `step()`. num_restarts: The number of starting points for multistart acquisition function optimization. raw_samples: The number of samples for initialization. This is required if `batch_initial_conditions` is not specified. fixed_features: A map `{feature_index: value}` for features that should be fixed to a particular value during generation. options: Options for candidate generation. final_options: Options for candidate generation in the last homotopy step. batch_initial_conditions: A tensor to specify the initial conditions. Set this if you do not want to use default initialization strategy. post_processing_func: Post processing function (such as roundingor clamping) that is applied before choosing the final candidate. """ candidate_list, acq_value_list = [], [] if q > 1: base_X_pending = acq_function.X_pending for _ in range(q): candidates = batch_initial_conditions homotopy.restart() while not homotopy.should_stop: candidates, acq_values = optimize_acqf( q=1, acq_function=acq_function, bounds=bounds, num_restarts=num_restarts, batch_initial_conditions=candidates, raw_samples=raw_samples, fixed_features=fixed_features, return_best_only=False, options=options, ) homotopy.step() # Prune candidates candidates = prune_candidates( candidates=candidates.squeeze(1), acq_values=acq_values, prune_tolerance=prune_tolerance, ).unsqueeze(1) # Optimize one more time with the final options candidates, acq_values = optimize_acqf( q=1, acq_function=acq_function, bounds=bounds, num_restarts=num_restarts, batch_initial_conditions=candidates, return_best_only=False, options=final_options, ) # Post-process the candidates and grab the best candidate if post_processing_func is not None: candidates = post_processing_func(candidates) acq_values = acq_function(candidates) best = torch.argmax(acq_values.view(-1), dim=0) candidate, acq_value = candidates[best], acq_values[best] # Keep the new candidate and update the pending points candidate_list.append(candidate) acq_value_list.append(acq_value) selected_candidates = torch.cat(candidate_list, dim=-2) if q > 1: acq_function.set_X_pending( torch.cat([base_X_pending, selected_candidates], dim=-2) if base_X_pending is not None else selected_candidates ) if q > 1: # Reset acq_function to previous X_pending state acq_function.set_X_pending(base_X_pending) homotopy.reset() # Reset the homotopy parameters return selected_candidates, torch.stack(acq_value_list)
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. r""" Utility functions for constrained optimization. """ from __future__ import annotations from functools import partial from typing import Callable, Dict, List, Optional, Tuple, Union import numpy as np import torch from botorch.exceptions.errors import CandidateGenerationError, UnsupportedError from scipy.optimize import Bounds from torch import Tensor ScipyConstraintDict = Dict[ str, Union[str, Callable[[np.ndarray], float], Callable[[np.ndarray], np.ndarray]] ] NLC_TOL = -1e-6 def make_scipy_bounds( X: Tensor, lower_bounds: Optional[Union[float, Tensor]] = None, upper_bounds: Optional[Union[float, Tensor]] = None, ) -> Optional[Bounds]: r"""Creates a scipy Bounds object for optimziation Args: X: `... x d` tensor lower_bounds: Lower bounds on each column (last dimension) of `X`. If this is a single float, then all columns have the same bound. upper_bounds: Lower bounds on each column (last dimension) of `X`. If this is a single float, then all columns have the same bound. Returns: A scipy `Bounds` object if either lower_bounds or upper_bounds is not None, and None otherwise. Example: >>> X = torch.rand(5, 2) >>> scipy_bounds = make_scipy_bounds(X, 0.1, 0.8) """ if lower_bounds is None and upper_bounds is None: return None def _expand(bounds: Union[float, Tensor], X: Tensor, lower: bool) -> Tensor: if bounds is None: ebounds = torch.full_like(X, float("-inf" if lower else "inf")) else: if not torch.is_tensor(bounds): bounds = torch.tensor(bounds) ebounds = bounds.expand_as(X) return _arrayify(ebounds).flatten() lb = _expand(bounds=lower_bounds, X=X, lower=True) ub = _expand(bounds=upper_bounds, X=X, lower=False) return Bounds(lb=lb, ub=ub, keep_feasible=True) def make_scipy_linear_constraints( shapeX: torch.Size, inequality_constraints: Optional[List[Tuple[Tensor, Tensor, float]]] = None, equality_constraints: Optional[List[Tuple[Tensor, Tensor, float]]] = None, ) -> List[ScipyConstraintDict]: r"""Generate scipy constraints from torch representation. Args: shapeX: The shape of the torch.Tensor to optimize over (i.e. `(b) x q x d`) inequality constraints: A list of tuples (indices, coefficients, rhs), with each tuple encoding an inequality constraint of the form `\sum_i (X[indices[i]] * coefficients[i]) >= rhs`, where `indices` is a single-dimensional index tensor (long dtype) containing indices into the last dimension of `X`, `coefficients` is a single-dimensional tensor of coefficients of the same length, and rhs is a scalar. equality constraints: A list of tuples (indices, coefficients, rhs), with each tuple encoding an inequality constraint of the form `\sum_i (X[indices[i]] * coefficients[i]) == rhs` (with `indices` and `coefficients` of the same form as in `inequality_constraints`). Returns: A list of dictionaries containing callables for constraint function values and Jacobians and a string indicating the associated constraint type ("eq", "ineq"), as expected by `scipy.minimize`. This function assumes that constraints are the same for each input batch, and broadcasts the constraints accordingly to the input batch shape. This function does support constraints across elements of a q-batch if the indices are a 2-d Tensor. Example: The following will enforce that `x[1] + 0.5 x[3] >= -0.1` for each `x` in both elements of the q-batch, and each of the 3 t-batches: >>> constraints = make_scipy_linear_constraints( >>> torch.Size([3, 2, 4]), >>> [(torch.tensor([1, 3]), torch.tensor([1.0, 0.5]), -0.1)], >>> ) The following will enforce that `x[0, 1] + 0.5 x[1, 3] >= -0.1` where x[0, :] is the first element of the q-batch and x[1, :] is the second element of the q-batch, for each of the 3 t-batches: >>> constraints = make_scipy_linear_constraints( >>> torch.size([3, 2, 4]) >>> [(torch.tensor([[0, 1], [1, 3]), torch.tensor([1.0, 0.5]), -0.1)], >>> ) """ constraints = [] if inequality_constraints is not None: for indcs, coeffs, rhs in inequality_constraints: constraints += _make_linear_constraints( indices=indcs, coefficients=coeffs, rhs=rhs, shapeX=shapeX, eq=False ) if equality_constraints is not None: for indcs, coeffs, rhs in equality_constraints: constraints += _make_linear_constraints( indices=indcs, coefficients=coeffs, rhs=rhs, shapeX=shapeX, eq=True ) return constraints def eval_lin_constraint( x: np.ndarray, flat_idxr: List[int], coeffs: np.ndarray, rhs: float ) -> np.float64: r"""Evaluate a single linear constraint. Args: x: The input array. flat_idxr: The indices in `x` to consider. coeffs: The coefficients corresponding to the indices. rhs: The right-hand-side of the constraint. Returns: The evaluted constraint: `\sum_i (coeffs[i] * x[i]) - rhs` """ return np.sum(x[flat_idxr] * coeffs, -1) - rhs def lin_constraint_jac( x: np.ndarray, flat_idxr: List[int], coeffs: np.ndarray, n: int ) -> np.ndarray: r"""Return the Jacobian associated with a linear constraint. Args: x: The input array. flat_idxr: The indices for the elements of x that appear in the constraint. coeffs: The coefficients corresponding to the indices. n: number of elements Returns: The Jacobian. """ # TODO: Use sparse representation (not sure if scipy optim supports that) jac = np.zeros(n) jac[flat_idxr] = coeffs return jac def _arrayify(X: Tensor) -> np.ndarray: r"""Convert a torch.Tensor (any dtype or device) to a numpy (double) array. Args: X: The input tensor. Returns: A numpy array of double dtype with the same shape and data as `X`. """ return X.cpu().detach().contiguous().double().clone().numpy() def _validate_linear_constraints_shape_input(shapeX: torch.Size) -> torch.Size: """ Validate `shapeX` input to `_make_linear_constraints`. Check that it has either 2 or 3 dimensions, and add a scalar batch dimension if it is only 2d. """ if len(shapeX) not in (2, 3): raise UnsupportedError( f"`shapeX` must be `(b) x q x d` (at least two-dimensional). It is " f"{shapeX}." ) if len(shapeX) == 2: shapeX = torch.Size([1, *shapeX]) return shapeX def _validate_linear_constraints_indices_input(indices: Tensor, q: int, d: int) -> None: if indices.dim() > 2: raise UnsupportedError( "Linear constraints supported only on individual candidates and " "across q-batches, not across general batch shapes." ) elif indices.dim() == 2: if indices[:, 0].max() > q - 1: raise RuntimeError(f"Index out of bounds for {q}-batch") if indices[:, 1].max() > d - 1: raise RuntimeError(f"Index out of bounds for {d}-dim parameter tensor") elif indices.dim() == 1: if indices.max() > d - 1: raise RuntimeError(f"Index out of bounds for {d}-dim parameter tensor") else: raise ValueError("`indices` must be at least one-dimensional") def _make_linear_constraints( indices: Tensor, coefficients: Tensor, rhs: float, shapeX: torch.Size, eq: bool = False, ) -> List[ScipyConstraintDict]: r"""Create linear constraints to be used by `scipy.minimize`. Encodes constraints of the form `\sum_i (coefficients[i] * X[..., indices[i]]) ? rhs` where `?` can be designated either as `>=` by setting `eq=False`, or as `=` by setting `eq=True`. If indices is one-dimensional, the constraints are broadcasted across all elements of the q-batch. If indices is two-dimensional, then constraints are applied across elements of a q-batch. In either case, constraints are created for all t-batches. Args: indices: A tensor of shape `c` or `c x 2`, where c is the number of terms in the constraint. If single-dimensional, contains the indices of the dimensions of the feature space that occur in the linear constraint. If two-dimensional, contains pairs of indices of the q-batch (0) and the feature space (1) that occur in the linear constraint. coefficients: A single-dimensional tensor of coefficients with the same number of elements as `indices`. rhs: The right hand side of the constraint. shapeX: The shape of the torch tensor to construct the constraints for (i.e. `(b) x q x d`). Must have two or three dimensions. eq: If True, return an equality constraint, o/w return an inequality constraint (indicated by "eq" / "ineq" value of the `type` key). Returns: A list of constraint dictionaries with the following keys - "type": Indicates the type of the constraint ("eq" if `eq=True`, "ineq" o/w) - "fun": A callable evaluating the constraint value on `x`, a flattened version of the input tensor `X`, returning a scalar. - "jac": A callable evaluating the constraint's Jacobian on `x`, a flattened version of the input tensor `X`, returning a numpy array. >>> shapeX = torch.Size([3, 5, 4]) >>> constraints = _make_linear_constraints( ... indices=torch.tensor([1., 2.]), ... coefficients=torch.tensor([-0.5, 1.3]), ... rhs=0.49, ... shapeX=shapeX, ... eq=True ... ) >>> len(constraints) 15 >>> constraints[0].keys() dict_keys(['type', 'fun', 'jac']) >>> x = np.arange(60).reshape(shapeX) >>> constraints[0]["fun"](x) 1.61 # 1 * -0.5 + 2 * 1.3 - 0.49 >>> constraints[0]["jac"](x) [0., -0.5, 1.3, 0., 0., ...] >>> constraints[1]["fun"](x) # 4.81 """ shapeX = _validate_linear_constraints_shape_input(shapeX) b, q, d = shapeX _validate_linear_constraints_indices_input(indices, q, d) n = shapeX.numel() constraints: List[ScipyConstraintDict] = [] coeffs = _arrayify(coefficients) ctype = "eq" if eq else "ineq" offsets = [q * d, d] if indices.dim() == 2: # indices has two dimensions (potential constraints across q-batch elements) # rule is [i, j, k] is at # i * offsets[0] + j * offsets[1] + k for i in range(b): list_ind = (idx.tolist() for idx in indices) idxr = [i * offsets[0] + idx[0] * offsets[1] + idx[1] for idx in list_ind] fun = partial( eval_lin_constraint, flat_idxr=idxr, coeffs=coeffs, rhs=float(rhs) ) jac = partial(lin_constraint_jac, flat_idxr=idxr, coeffs=coeffs, n=n) constraints.append({"type": ctype, "fun": fun, "jac": jac}) elif indices.dim() == 1: # indices is one-dim - broadcast constraints across q-batches and t-batches for i in range(b): for j in range(q): idxr = (i * offsets[0] + j * offsets[1] + indices).tolist() fun = partial( eval_lin_constraint, flat_idxr=idxr, coeffs=coeffs, rhs=float(rhs) ) jac = partial(lin_constraint_jac, flat_idxr=idxr, coeffs=coeffs, n=n) constraints.append({"type": ctype, "fun": fun, "jac": jac}) return constraints def _generate_unfixed_nonlin_constraints( constraints: Optional[List[Callable[[Tensor], Tensor]]], fixed_features: Dict[int, float], dimension: int, ) -> Optional[List[Callable[[Tensor], Tensor]]]: """Given a dictionary of fixed features, returns a list of callables for nonlinear inequality constraints expecting only a tensor with the non-fixed features as input. """ if not constraints: return constraints selector = [] idx_X, idx_f = 0, dimension - len(fixed_features) for i in range(dimension): if i in fixed_features.keys(): selector.append(idx_f) idx_f += 1 else: selector.append(idx_X) idx_X += 1 values = torch.tensor(list(fixed_features.values()), dtype=torch.double) def _wrap_nonlin_constraint( constraint: Callable[[Tensor], Tensor] ) -> Callable[[Tensor], Tensor]: def new_nonlin_constraint(X: Tensor) -> Tensor: ivalues = values.to(X).expand(*X.shape[:-1], len(fixed_features)) X_perm = torch.cat([X, ivalues], dim=-1) return constraint(X_perm[..., selector]) return new_nonlin_constraint return [ _wrap_nonlin_constraint(constraint=constraint) for constraint in constraints ] def _generate_unfixed_lin_constraints( constraints: Optional[List[Tuple[Tensor, Tensor, float]]], fixed_features: Dict[int, float], dimension: int, eq: bool, ) -> Optional[List[Tuple[Tensor, Tensor, float]]]: # If constraints is None or an empty list, then return itself if not constraints: return constraints # replace_index generates the new indices for the unfixed dimensions # after eliminating the fixed dimensions. # Example: dimension = 5, ff.keys() = [1, 3], replace_index = {0: 0, 2: 1, 4: 2} unfixed_keys = sorted(set(range(dimension)) - set(fixed_features)) unfixed_keys = torch.tensor(unfixed_keys).to(constraints[0][0]) replace_index = torch.arange(dimension - len(fixed_features)).to(constraints[0][0]) new_constraints = [] # parse constraints one-by-one for constraint_id, (indices, coefficients, rhs) in enumerate(constraints): new_rhs = rhs new_indices = [] new_coefficients = [] # the following unsqueeze is done to facilitate a simpler for-loop. indices_2dim = indices if indices.ndim == 2 else indices.unsqueeze(-1) for coefficient, index in zip(coefficients, indices_2dim): ffval_or_None = fixed_features.get(index[-1].item()) # if ffval_or_None is None, then the index is not fixed if ffval_or_None is None: new_indices.append(index) new_coefficients.append(coefficient) # otherwise, we "remove" the constraints corresponding to that index else: new_rhs = new_rhs - coefficient.item() * ffval_or_None # all indices were fixed, so the constraint is gone. if len(new_indices) == 0: if (eq and new_rhs != 0) or (not eq and new_rhs > 0): prefix = "Eq" if eq else "Ineq" raise CandidateGenerationError( f"{prefix}uality constraint {constraint_id} not met " "with fixed_features." ) else: # However, one key transformation has to be noted. # new_indices is with respect to the older (fuller) domain, and so it will # have to be converted using replace_index. new_indices = torch.stack(new_indices, dim=0) # generate new index location after the removal of fixed_features indices new_indices_dim_d = new_indices[:, -1].unsqueeze(-1) new_indices_dim_d = replace_index[ torch.nonzero(new_indices_dim_d == unfixed_keys, as_tuple=True)[1] ] new_indices[:, -1] = new_indices_dim_d # squeeze(-1) is a no-op if dim -1 is not singleton new_indices.squeeze_(-1) # convert new_coefficients to Tensor new_coefficients = torch.stack(new_coefficients) new_constraints.append((new_indices, new_coefficients, new_rhs)) return new_constraints def _make_f_and_grad_nonlinear_inequality_constraints( f_np_wrapper: Callable, nlc: Callable ) -> Tuple[Callable[[Tensor], Tensor], Callable[[Tensor], Tensor]]: """ Create callables for objective + grad for the nonlinear inequality constraints. The Scipy interface requires specifying separate callables and we use caching to avoid evaluating the same input twice. This caching onlh works if the returned functions are evaluated on the same input in immediate sequence (i.e., calling `f_obj(X_1)`, `f_grad(X_1)` will result in a single forward pass, while `f_obj(X_1)`, `f_grad(X_2)`, `f_obj(X_1)` will result in three forward passes). """ def f_obj_and_grad(x): obj, grad = f_np_wrapper(x, f=nlc) return obj, grad cache = {"X": None, "obj": None, "grad": None} def f_obj(X): X_c = cache["X"] if X_c is None or not np.array_equal(X_c, X): cache["X"] = X.copy() cache["obj"], cache["grad"] = f_obj_and_grad(X) return cache["obj"] def f_grad(X): X_c = cache["X"] if X_c is None or not np.array_equal(X_c, X): cache["X"] = X.copy() cache["obj"], cache["grad"] = f_obj_and_grad(X) return cache["grad"] return f_obj, f_grad def make_scipy_nonlinear_inequality_constraints( nonlinear_inequality_constraints: List[Callable], f_np_wrapper: Callable, x0: Tensor, ) -> List[Dict]: r"""Generate Scipy nonlinear inequality constraints from callables. Args: nonlinear_inequality_constraints: List of callables for the nonlinear inequality constraints. Each callable represents a constraint of the form >= 0 and takes a torch tensor of size (p x q x dim) and returns a torch tensor of size (p x q). f_np_wrapper: A wrapper function that given a constraint evaluates the value and gradient (using autograd) of a numpy input and returns both the objective and the gradient. x0: The starting point for SLSQP. We return this starting point in (rare) cases where SLSQP fails and thus require it to be feasible. Returns: A list of dictionaries containing callables for constraint function values and Jacobians and a string indicating the associated constraint type ("eq", "ineq"), as expected by `scipy.minimize`. """ if not isinstance(nonlinear_inequality_constraints, list): raise ValueError( "`nonlinear_inequality_constraints` must be a list of callables, " f"got {type(nonlinear_inequality_constraints)}." ) scipy_nonlinear_inequality_constraints = [] for nlc in nonlinear_inequality_constraints: if _arrayify(nlc(x0)).item() < NLC_TOL: raise ValueError( "`batch_initial_conditions` must satisfy the non-linear inequality " "constraints." ) f_obj, f_grad = _make_f_and_grad_nonlinear_inequality_constraints( f_np_wrapper=f_np_wrapper, nlc=nlc ) scipy_nonlinear_inequality_constraints.append( { "type": "ineq", "fun": f_obj, "jac": f_grad, } ) return scipy_nonlinear_inequality_constraints
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. r"""Utilities for fitting and manipulating models.""" from __future__ import annotations from re import Pattern from typing import ( Any, Callable, Dict, Iterator, List, NamedTuple, Optional, Tuple, Union, ) from warnings import warn import torch from botorch.exceptions.warnings import BotorchWarning from botorch.models.gpytorch import GPyTorchModel from gpytorch.mlls.exact_marginal_log_likelihood import ExactMarginalLogLikelihood from gpytorch.mlls.marginal_log_likelihood import MarginalLogLikelihood from gpytorch.mlls.sum_marginal_log_likelihood import SumMarginalLogLikelihood from torch import Tensor from torch.nn import Module from torch.utils.data import DataLoader, TensorDataset class TorchAttr(NamedTuple): shape: torch.Size dtype: torch.dtype device: torch.device def _get_extra_mll_args( mll: MarginalLogLikelihood, ) -> Union[List[Tensor], List[List[Tensor]]]: r"""Obtain extra arguments for MarginalLogLikelihood objects. Get extra arguments (beyond the model output and training targets) required for the particular type of MarginalLogLikelihood for a forward pass. Args: mll: The MarginalLogLikelihood module. Returns: Extra arguments for the MarginalLogLikelihood. Returns an empty list if the mll type is unknown. """ warn("`_get_extra_mll_args` is marked for deprecation.", DeprecationWarning) if isinstance(mll, ExactMarginalLogLikelihood): return list(mll.model.train_inputs) elif isinstance(mll, SumMarginalLogLikelihood): return [list(x) for x in mll.model.train_inputs] return [] def get_data_loader( model: GPyTorchModel, batch_size: int = 1024, **kwargs: Any ) -> DataLoader: dataset = TensorDataset(*model.train_inputs, model.train_targets) return DataLoader( dataset=dataset, batch_size=min(batch_size, len(model.train_targets)), **kwargs ) def get_parameters( module: Module, requires_grad: Optional[bool] = None, name_filter: Optional[Callable[[str], bool]] = None, ) -> Dict[str, Tensor]: r"""Helper method for obtaining a module's parameters and their respective ranges. Args: module: The target module from which parameters are to be extracted. requires_grad: Optional Boolean used to filter parameters based on whether or not their require_grad attribute matches the user provided value. name_filter: Optional Boolean function used to filter parameters by name. Returns: A dictionary of parameters. """ parameters = {} for name, param in module.named_parameters(): if requires_grad is not None and param.requires_grad != requires_grad: continue if name_filter and not name_filter(name): continue parameters[name] = param return parameters def get_parameters_and_bounds( module: Module, requires_grad: Optional[bool] = None, name_filter: Optional[Callable[[str], bool]] = None, default_bounds: Tuple[float, float] = (-float("inf"), float("inf")), ) -> Tuple[Dict[str, Tensor], Dict[str, Tuple[Optional[float], Optional[float]]]]: r"""Helper method for obtaining a module's parameters and their respective ranges. Args: module: The target module from which parameters are to be extracted. name_filter: Optional Boolean function used to filter parameters by name. requires_grad: Optional Boolean used to filter parameters based on whether or not their require_grad attribute matches the user provided value. default_bounds: Default lower and upper bounds for constrained parameters with `None` typed bounds. Returns: A dictionary of parameters and a dictionary of parameter bounds. """ if hasattr(module, "named_parameters_and_constraints"): bounds = {} params = {} for name, param, constraint in module.named_parameters_and_constraints(): if (requires_grad is None or (param.requires_grad == requires_grad)) and ( name_filter is None or name_filter(name) ): params[name] = param if constraint is None: continue bounds[name] = tuple( default if bound is None else constraint.inverse_transform(bound) for (bound, default) in zip(constraint, default_bounds) ) return params, bounds params = get_parameters( module, requires_grad=requires_grad, name_filter=name_filter ) return params, {} def get_name_filter( patterns: Iterator[Union[Pattern, str]] ) -> Callable[[Union[str, Tuple[str, Any, ...]]], bool]: r"""Returns a binary function that filters strings (or iterables whose first element is a string) according to a bank of excluded patterns. Typically, used in conjunction with generators such as `module.named_parameters()`. Args: patterns: A collection of regular expressions or strings that define the set of names to be excluded. Returns: A binary function indicating whether or not an item should be filtered. """ names = set() _patterns = set() for pattern in patterns: if isinstance(pattern, str): names.add(pattern) elif isinstance(pattern, Pattern): _patterns.add(pattern) else: raise TypeError( "Expected `patterns` to contain `str` or `re.Pattern` typed elements, " f"but found {type(pattern)}." ) def name_filter(item: Union[str, Tuple[str, Any, ...]]) -> bool: name = item if isinstance(item, str) else next(iter(item)) if name in names: return False for pattern in _patterns: if pattern.search(name): return False return True return name_filter def sample_all_priors(model: GPyTorchModel, max_retries: int = 100) -> None: r"""Sample from hyperparameter priors (in-place). Args: model: A GPyTorchModel. """ for _, module, prior, closure, setting_closure in model.named_priors(): if setting_closure is None: raise RuntimeError( "Must provide inverse transform to be able to sample from prior." ) for i in range(max_retries): try: setting_closure(module, prior.sample(closure(module).shape)) break except NotImplementedError: warn( f"`rsample` not implemented for {type(prior)}. Skipping.", BotorchWarning, ) break except RuntimeError as e: if "out of bounds of its current constraints" in str(e): if i == max_retries - 1: raise RuntimeError( "Failed to sample a feasible parameter value " f"from the prior after {max_retries} attempts." ) else: raise e
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. r"""Utilities for interfacing Numpy and Torch.""" from __future__ import annotations from itertools import tee from typing import Callable, Dict, Iterator, Optional, Tuple, Union import numpy as np import torch from botorch.utils.types import NoneType from numpy import ndarray from torch import Tensor torch_to_numpy_dtype_dict = { torch.bool: bool, torch.uint8: np.uint8, torch.int8: np.int8, torch.int16: np.int16, torch.int32: np.int32, torch.int64: np.int64, torch.float16: np.float16, torch.float32: np.float32, torch.float64: np.float64, torch.complex64: np.complex64, torch.complex128: np.complex128, } def as_ndarray( values: Tensor, dtype: Optional[np.dtype] = None, inplace: bool = True ) -> ndarray: r"""Helper for going from torch.Tensor to numpy.ndarray. Args: values: Tensor to be converted to ndarray. dtype: Optional numpy.dtype for the converted tensor. inplace: Boolean indicating whether memory should be shared if possible. Returns: An ndarray with the same data as `values`. """ with torch.no_grad(): out = values.cpu() # maybe transfer to cpu # Determine whether or not to `clone` if ( # cond 1: are we not in `inplace` mode? not inplace # cond 2: did we already copy when calling `cpu` above? and out.device == values.device # cond 3: will we copy when calling `astype` below? and (dtype is None or out.dtype == torch_to_numpy_dtype_dict[dtype]) ): out = out.clone() # Convert to ndarray and maybe cast to `dtype` out = out.numpy() return out.astype(dtype, copy=False) def get_tensors_as_ndarray_1d( tensors: Union[Iterator[Tensor], Dict[str, Tensor]], out: Optional[ndarray] = None, dtype: Optional[Union[np.dtype, str]] = None, as_array: Callable[[Tensor], ndarray] = as_ndarray, ) -> ndarray: # Create a pair of iterators, one for setup and one for data transfer named_tensors_iter, named_tensors_iter2 = tee( iter(tensors.items()) if isinstance(tensors, dict) else enumerate(tensors), 2 ) # Use `named_tensors_iter` to get size of `out` and `dtype` when None try: name, tnsr = next(named_tensors_iter) except StopIteration: raise RuntimeError(f"Argument `tensors` with type {type(tensors)} is empty.") size = tnsr.numel() + sum(tnsr.numel() for _, tnsr in named_tensors_iter) dtype = torch_to_numpy_dtype_dict[tnsr.dtype] if dtype is None else dtype # Preallocate or validate `out` if out is None: # use first tensor as a reference when `dtype` is None out = np.empty([size], dtype=dtype) elif out.ndim != 1: raise ValueError(f"Expected a vector for `out`, but out.shape={out.shape}.") elif out.size != size: raise ValueError( f"Size of `parameters` ({size}) does not match size of `out` ({out.size})." ) # Use `named_tensors_iter2` to transfer data from `tensors` to `out` index = 0 for name, tnsr in named_tensors_iter2: try: size = tnsr.numel() out[index : index + size] = as_array(tnsr.view(-1)) index += size except Exception as e: raise RuntimeError( "`get_tensors_as_ndarray_1d` failed while copying values from " f"tensor {name}; rethrowing original exception." ) from e return out def set_tensors_from_ndarray_1d( tensors: Union[Iterator[Tensor], Dict[str, Tensor]], array: ndarray, as_tensor: Callable[[ndarray], Tensor] = torch.as_tensor, ) -> None: r"""Sets the values of one more tensors based off of a vector of assignments.""" named_tensors_iter = ( iter(tensors.items()) if isinstance(tensors, dict) else enumerate(tensors) ) with torch.no_grad(): index = 0 for name, tnsr in named_tensors_iter: try: size = tnsr.numel() vals = array[index : index + size] if tnsr.ndim else array[index] tnsr.copy_(as_tensor(vals).to(tnsr).view(tnsr.shape).to(tnsr)) index += size except Exception as e: raise RuntimeError( "`set_tensors_from_ndarray_1d` failed while copying values to " f"tensor {name}; rethrowing original exception." ) from e def get_bounds_as_ndarray( parameters: Dict[str, Tensor], bounds: Dict[ str, Tuple[Union[float, Tensor, NoneType], Union[float, Tensor, NoneType]] ], ) -> Optional[np.ndarray]: r"""Helper method for converting bounds into an ndarray. Args: parameters: A dictionary of parameters. bounds: A dictionary of (optional) lower and upper bounds. Returns: An ndarray of bounds. """ inf = float("inf") full_size = sum(param.numel() for param in parameters.values()) out = np.full((full_size, 2), (-inf, inf)) index = 0 for name, param in parameters.items(): size = param.numel() if name in bounds: lower, upper = bounds[name] lower = -inf if lower is None else lower upper = inf if upper is None else upper if isinstance(lower, Tensor): lower = lower.cpu() if isinstance(upper, Tensor): upper = upper.cpu() out[index : index + size, 0] = lower out[index : index + size, 1] = upper index = index + size # If all bounds are +/- inf, return None. if np.isinf(out).all(): out = None return out
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from __future__ import annotations import time from typing import Any, Callable, Dict, Optional, Sequence, Tuple, Union import numpy as np from botorch.exceptions.errors import OptimizationTimeoutError from scipy import optimize def minimize_with_timeout( fun: Callable[[np.ndarray, *Any], float], x0: np.ndarray, args: Tuple[Any, ...] = (), method: Optional[str] = None, jac: Optional[Union[str, Callable, bool]] = None, hess: Optional[Union[str, Callable, optimize.HessianUpdateStrategy]] = None, hessp: Optional[Callable] = None, bounds: Optional[Union[Sequence[Tuple[float, float]], optimize.Bounds]] = None, constraints=(), # Typing this properly is a s**t job tol: Optional[float] = None, callback: Optional[Callable] = None, options: Optional[Dict[str, Any]] = None, timeout_sec: Optional[float] = None, ) -> optimize.OptimizeResult: r"""Wrapper around scipy.optimize.minimize to support timeout. This method calls scipy.optimize.minimize with all arguments forwarded verbatim. The only difference is that if provided a `timeout_sec` argument, it will automatically stop the optimziation after the timeout is reached. Internally, this is achieved by automatically constructing a wrapper callback method that is injected to the scipy.optimize.minimize call and that keeps track of the runtime and the optimization variables at the current iteration. """ if timeout_sec: start_time = time.monotonic() callback_data = {"num_iterations": 0} # update from withing callback below def timeout_callback(xk: np.ndarray) -> bool: runtime = time.monotonic() - start_time callback_data["num_iterations"] += 1 if runtime > timeout_sec: raise OptimizationTimeoutError(current_x=xk, runtime=runtime) return False if callback is None: wrapped_callback = timeout_callback elif callable(method): raise NotImplementedError( "Custom callable not supported for `method` argument." ) elif method == "trust-constr": # special signature def wrapped_callback( xk: np.ndarray, state: optimize.OptimizeResult ) -> bool: # order here is important to make sure base callback gets executed return callback(xk, state) or timeout_callback(xk=xk) else: def wrapped_callback(xk: np.ndarray) -> None: timeout_callback(xk=xk) callback(xk) else: wrapped_callback = callback try: return optimize.minimize( fun=fun, x0=x0, args=args, method=method, jac=jac, hess=hess, hessp=hessp, bounds=bounds, constraints=constraints, tol=tol, callback=wrapped_callback, options=options, ) except OptimizationTimeoutError as e: msg = f"Optimization timed out after {e.runtime} seconds." current_fun, *_ = fun(e.current_x, *args) return optimize.OptimizeResult( fun=current_fun, x=e.current_x, nit=callback_data["num_iterations"], success=False, # same as when maxiter is reached status=1, # same as when L-BFGS-B reaches maxiter message=msg, )
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from botorch.optim.utils.acquisition_utils import ( columnwise_clamp, fix_features, get_X_baseline, ) from botorch.optim.utils.common import ( _filter_kwargs, _handle_numerical_errors, _warning_handler_template, ) from botorch.optim.utils.model_utils import ( _get_extra_mll_args, get_data_loader, get_name_filter, get_parameters, get_parameters_and_bounds, sample_all_priors, TorchAttr, ) from botorch.optim.utils.numpy_utils import ( as_ndarray, get_bounds_as_ndarray, get_tensors_as_ndarray_1d, set_tensors_from_ndarray_1d, ) from botorch.optim.utils.timeout import minimize_with_timeout __all__ = [ "_filter_kwargs", "_get_extra_mll_args", "_handle_numerical_errors", "_warning_handler_template", "as_ndarray", "columnwise_clamp", "fix_features", "get_name_filter", "get_bounds_as_ndarray", "get_data_loader", "get_parameters", "get_parameters_and_bounds", "get_tensors_as_ndarray_1d", "get_X_baseline", "minimize_with_timeout", "sample_all_priors", "set_tensors_from_ndarray_1d", "TorchAttr", ]
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. r"""Utilities for maximizing acquisition functions.""" from __future__ import annotations from typing import Dict, Optional, Union from warnings import warn import torch from botorch.acquisition.acquisition import AcquisitionFunction from botorch.exceptions.errors import BotorchError from botorch.exceptions.warnings import BotorchWarning from botorch.models.gpytorch import ModelListGPyTorchModel from torch import Tensor def columnwise_clamp( X: Tensor, lower: Optional[Union[float, Tensor]] = None, upper: Optional[Union[float, Tensor]] = None, raise_on_violation: bool = False, ) -> Tensor: r"""Clamp values of a Tensor in column-wise fashion (with support for t-batches). This function is useful in conjunction with optimizers from the torch.optim package, which don't natively handle constraints. If you apply this after a gradient step you can be fancy and call it "projected gradient descent". This funtion is also useful for post-processing candidates generated by the scipy optimizer that satisfy bounds only up to numerical accuracy. Args: X: The `b x n x d` input tensor. If 2-dimensional, `b` is assumed to be 1. lower: The column-wise lower bounds. If scalar, apply bound to all columns. upper: The column-wise upper bounds. If scalar, apply bound to all columns. raise_on_violation: If `True`, raise an exception when the elments in `X` are out of the specified bounds (up to numerical accuracy). This is useful for post-processing candidates generated by optimizers that satisfy imposed bounds only up to numerical accuracy. Returns: The clamped tensor. """ if lower is None and upper is None: return X if lower is not None: lower = torch.as_tensor(lower).expand_as(X).to(X) if upper is not None: upper = torch.as_tensor(upper).expand_as(X).to(X) if lower is not None and (lower > upper).any(): raise ValueError("Lower bounds cannot exceed upper bounds.") out = X.clamp(lower, upper) if raise_on_violation and not X.allclose(out): raise BotorchError("Original value(s) are out of bounds.") return out def fix_features( X: Tensor, fixed_features: Optional[Dict[int, Optional[float]]] = None ) -> Tensor: r"""Fix feature values in a Tensor. The fixed features will have zero gradient in downstream calculations. Args: X: input Tensor with shape `... x p`, where `p` is the number of features fixed_features: A dictionary with keys as column indices and values equal to what the feature should be set to in `X`. If the value is None, that column is just considered fixed. Keys should be in the range `[0, p - 1]`. Returns: The tensor X with fixed features. """ if fixed_features is None: return X columns = list(X.unbind(dim=-1)) for index, value in fixed_features.items(): if value is None: columns[index] = columns[index].detach() else: columns[index] = torch.full_like(columns[index], value) return torch.stack(columns, dim=-1) def get_X_baseline(acq_function: AcquisitionFunction) -> Optional[Tensor]: r"""Extract X_baseline from an acquisition function. This tries to find the baseline set of points. First, this checks if the acquisition function has an `X_baseline` attribute. If it does not, then this method attempts to use the model's `train_inputs` as `X_baseline`. Args: acq_function: The acquisition function. Returns An optional `n x d`-dim tensor of baseline points. This is None if no baseline points are found. """ try: X = acq_function.X_baseline # if there are no baseline points, use training points if X.shape[0] == 0: raise BotorchError except (BotorchError, AttributeError): try: # for entropy MOO methods model = acq_function.mo_model except AttributeError: try: # some acquisition functions do not have a model attribute # e.g. FixedFeatureAcquisitionFunction model = acq_function.model except AttributeError: warn("Failed to extract X_baseline.", BotorchWarning) return try: # Make sure we get the original train inputs. m = model.models[0] if isinstance(model, ModelListGPyTorchModel) else model if m._has_transformed_inputs: X = m._original_train_inputs else: X = m.train_inputs[0] except (BotorchError, AttributeError): warn("Failed to extract X_baseline.", BotorchWarning) return # just use one batch while X.ndim > 2: X = X[0] return X
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. r"""General-purpose optimization utilities.""" from __future__ import annotations from inspect import signature from logging import debug as logging_debug from typing import Any, Callable, Optional, Tuple from warnings import warn, warn_explicit, WarningMessage import numpy as np from linear_operator.utils.errors import NanError, NotPSDError def _filter_kwargs(function: Callable, **kwargs: Any) -> Any: r"""Filter out kwargs that are not applicable for a given function. Return a copy of given kwargs dict with only the required kwargs.""" allowed_params = signature(function).parameters removed = {k for k in kwargs.keys() if k not in allowed_params} if len(removed) > 0: fn_descriptor = ( f" for function {function.__name__}" if hasattr(function, "__name__") else "" ) warn( f"Keyword arguments {list(removed)} will be ignored because they are" f" not allowed parameters{fn_descriptor}. Allowed " f"parameters are {list(allowed_params.keys())}." ) return {k: v for k, v in kwargs.items() if k not in removed} def _handle_numerical_errors( error: RuntimeError, x: np.ndarray, dtype: Optional[np.dtype] = None ) -> Tuple[np.ndarray, np.ndarray]: if isinstance(error, NotPSDError): raise error error_message = error.args[0] if len(error.args) > 0 else "" if ( isinstance(error, NanError) or "singular" in error_message # old pytorch message or "input is not positive-definite" in error_message # since pytorch #63864 ): _dtype = x.dtype if dtype is None else dtype return np.full((), "nan", dtype=_dtype), np.full_like(x, "nan", dtype=_dtype) raise error # pragma: nocover def _warning_handler_template( w: WarningMessage, debug: Optional[Callable[[WarningMessage], bool]] = None, rethrow: Optional[Callable[[WarningMessage], bool]] = None, ) -> bool: r"""Helper for making basic warning handlers. Typically used with functools.partial. Args: w: The WarningMessage to be resolved and filtered out or returned unresolved. debug: Optional callable used to specify that a warning should be resolved as a logging statement at the DEBUG level. rethrow: Optional callable used to specify that a warning should be resolved by rethrowing the warning. Returns: Boolean indicating whether or not the warning message was resolved. """ if debug and debug(w): logging_debug(str(w.message)) return True if rethrow and rethrow(w): warn_explicit(str(w.message), w.category, w.filename, w.lineno) return True return False
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from botorch.optim.closures.core import ( ForwardBackwardClosure, NdarrayOptimizationClosure, ) from botorch.optim.closures.model_closures import ( get_loss_closure, get_loss_closure_with_grads, ) __all__ = [ "ForwardBackwardClosure", "get_loss_closure", "get_loss_closure_with_grads", "NdarrayOptimizationClosure", ]
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """Core methods for building closures in torch and interfacing with numpy.""" from __future__ import annotations from functools import partial from typing import Any, Callable, Dict, Optional, Sequence, Tuple import torch from botorch.optim.utils import ( _handle_numerical_errors, get_tensors_as_ndarray_1d, set_tensors_from_ndarray_1d, ) from botorch.optim.utils.numpy_utils import as_ndarray from botorch.utils.context_managers import zero_grad_ctx from numpy import float64 as np_float64, full as np_full, ndarray, zeros as np_zeros from torch import Tensor class ForwardBackwardClosure: r"""Wrapper for fused forward and backward closures.""" def __init__( self, forward: Callable[[], Tensor], parameters: Dict[str, Tensor], backward: Callable[[Tensor], None] = Tensor.backward, reducer: Optional[Callable[[Tensor], Tensor]] = torch.sum, callback: Optional[Callable[[Tensor, Sequence[Optional[Tensor]]], None]] = None, context_manager: Callable = None, # pyre-ignore [9] ) -> None: r"""Initializes a ForwardBackwardClosure instance. Args: closure: Callable that returns a tensor. parameters: A dictionary of tensors whose `grad` fields are to be returned. backward: Callable that takes the (reduced) output of `forward` and sets the `grad` attributes of tensors in `parameters`. reducer: Optional callable used to reduce the output of the forward pass. callback: Optional callable that takes the reduced output of `forward` and the gradients of `parameters` as positional arguments. context_manager: A ContextManager used to wrap each forward-backward call. When passed as `None`, `context_manager` defaults to a `zero_grad_ctx` that zeroes the gradients of `parameters` upon entry. """ if context_manager is None: context_manager = partial(zero_grad_ctx, parameters) self.forward = forward self.backward = backward self.parameters = parameters self.reducer = reducer self.callback = callback self.context_manager = context_manager def __call__(self, **kwargs: Any) -> Tuple[Tensor, Tuple[Optional[Tensor], ...]]: with self.context_manager(): values = self.forward(**kwargs) value = values if self.reducer is None else self.reducer(values) self.backward(value) grads = tuple(param.grad for param in self.parameters.values()) if self.callback: self.callback(value, grads) return value, grads class NdarrayOptimizationClosure: r"""Adds stateful behavior and a numpy.ndarray-typed API to a closure with an expected return type Tuple[Tensor, Union[Tensor, Sequence[Optional[Tensor]]]].""" def __init__( self, closure: Callable[[], Tuple[Tensor, Sequence[Optional[Tensor]]]], parameters: Dict[str, Tensor], as_array: Callable[[Tensor], ndarray] = None, # pyre-ignore [9] as_tensor: Callable[[ndarray], Tensor] = torch.as_tensor, get_state: Callable[[], ndarray] = None, # pyre-ignore [9] set_state: Callable[[ndarray], None] = None, # pyre-ignore [9] fill_value: float = 0.0, persistent: bool = True, ) -> None: r"""Initializes a NdarrayOptimizationClosure instance. Args: closure: A ForwardBackwardClosure instance. parameters: A dictionary of tensors representing the closure's state. Expected to correspond with the first `len(parameters)` optional gradient tensors returned by `closure`. as_array: Callable used to convert tensors to ndarrays. as_tensor: Callable used to convert ndarrays to tensors. get_state: Callable that returns the closure's state as an ndarray. When passed as `None`, defaults to calling `get_tensors_as_ndarray_1d` on `closure.parameters` while passing `as_array` (if given by the user). set_state: Callable that takes a 1-dimensional ndarray and sets the closure's state. When passed as `None`, `set_state` defaults to calling `set_tensors_from_ndarray_1d` with `closure.parameters` and a given ndarray while passing `as_tensor`. fill_value: Fill value for parameters whose gradients are None. In most cases, `fill_value` should either be zero or NaN. persistent: Boolean specifying whether an ndarray should be retained as a persistent buffer for gradients. """ if get_state is None: # Note: Numpy supports copying data between ndarrays with different dtypes. # Hence, our default behavior need not coerce the ndarray representations # of tensors in `parameters` to float64 when copying over data. _as_array = as_ndarray if as_array is None else as_array get_state = partial( get_tensors_as_ndarray_1d, tensors=parameters, dtype=np_float64, as_array=_as_array, ) if as_array is None: # per the note, do this after resolving `get_state` as_array = partial(as_ndarray, dtype=np_float64) if set_state is None: set_state = partial( set_tensors_from_ndarray_1d, parameters, as_tensor=as_tensor ) self.closure = closure self.parameters = parameters self.as_array = as_ndarray self.as_tensor = as_tensor self._get_state = get_state self._set_state = set_state self.fill_value = fill_value self.persistent = persistent self._gradient_ndarray: Optional[ndarray] = None def __call__( self, state: Optional[ndarray] = None, **kwargs: Any ) -> Tuple[ndarray, ndarray]: if state is not None: self.state = state try: value_tensor, grad_tensors = self.closure(**kwargs) value = self.as_array(value_tensor) grads = self._get_gradient_ndarray(fill_value=self.fill_value) index = 0 for param, grad in zip(self.parameters.values(), grad_tensors): size = param.numel() if grad is not None: grads[index : index + size] = self.as_array(grad.view(-1)) index += size except RuntimeError as e: value, grads = _handle_numerical_errors(e, x=self.state, dtype=np_float64) return value, grads @property def state(self) -> ndarray: return self._get_state() @state.setter def state(self, state: ndarray) -> None: self._set_state(state) def _get_gradient_ndarray(self, fill_value: Optional[float] = None) -> ndarray: if self.persistent and self._gradient_ndarray is not None: if fill_value is not None: self._gradient_ndarray.fill(fill_value) return self._gradient_ndarray size = sum(param.numel() for param in self.parameters.values()) array = ( np_zeros(size, dtype=np_float64) if fill_value is None or fill_value == 0.0 else np_full(size, fill_value, dtype=np_float64) ) if self.persistent: self._gradient_ndarray = array return array
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. r"""Utilities for building model-based closures.""" from __future__ import annotations from itertools import chain, repeat from typing import Any, Callable, Dict, Optional, Sequence, Tuple from botorch.optim.closures.core import ForwardBackwardClosure from botorch.utils.dispatcher import Dispatcher, type_bypassing_encoder from botorch.utils.types import NoneType from gpytorch.mlls import ( ExactMarginalLogLikelihood, MarginalLogLikelihood, SumMarginalLogLikelihood, ) from torch import Tensor from torch.utils.data import DataLoader GetLossClosure = Dispatcher("get_loss_closure", encoder=type_bypassing_encoder) GetLossClosureWithGrads = Dispatcher( "get_loss_closure_with_grads", encoder=type_bypassing_encoder ) def get_loss_closure( mll: MarginalLogLikelihood, data_loader: Optional[DataLoader] = None, **kwargs: Any, ) -> Callable[[], Tensor]: r"""Public API for GetLossClosure dispatcher. This method, and the dispatcher that powers it, acts as a clearing house for factory functions that define how `mll` is evaluated. Users may specify custom evaluation routines by registering a factory function with GetLossClosure. These factories should be registered using the type signature `Type[MarginalLogLikeLihood], Type[Likelihood], Type[Model], Type[DataLoader]`. The final argument, Type[DataLoader], is optional. Evaluation routines that obtain training data from, e.g., `mll.model` should register this argument as `type(None)`. Args: mll: A MarginalLogLikelihood instance whose negative defines the loss. data_loader: An optional DataLoader instance for cases where training data is passed in rather than obtained from `mll.model`. Returns: A closure that takes zero positional arguments and returns the negated value of `mll`. """ return GetLossClosure( mll, type(mll.likelihood), type(mll.model), data_loader, **kwargs ) def get_loss_closure_with_grads( mll: MarginalLogLikelihood, parameters: Dict[str, Tensor], data_loader: Optional[DataLoader] = None, backward: Callable[[Tensor], None] = Tensor.backward, reducer: Optional[Callable[[Tensor], Tensor]] = Tensor.sum, context_manager: Optional[Callable] = None, **kwargs: Any, ) -> Callable[[], Tuple[Tensor, Tuple[Tensor, ...]]]: r"""Public API for GetLossClosureWithGrads dispatcher. In most cases, this method simply adds a backward pass to a loss closure obtained by calling `get_loss_closure`. For further details, see `get_loss_closure`. Args: mll: A MarginalLogLikelihood instance whose negative defines the loss. parameters: A dictionary of tensors whose `grad` fields are to be returned. reducer: Optional callable used to reduce the output of the forward pass. data_loader: An optional DataLoader instance for cases where training data is passed in rather than obtained from `mll.model`. context_manager: An optional ContextManager used to wrap each forward-backward pass. Defaults to a `zero_grad_ctx` that zeroes the gradients of `parameters` upon entry. None may be passed as an alias for `nullcontext`. Returns: A closure that takes zero positional arguments and returns the reduced and negated value of `mll` along with the gradients of `parameters`. """ return GetLossClosureWithGrads( mll, type(mll.likelihood), type(mll.model), data_loader, parameters=parameters, reducer=reducer, backward=backward, context_manager=context_manager, **kwargs, ) @GetLossClosureWithGrads.register(object, object, object, object) def _get_loss_closure_with_grads_fallback( mll: MarginalLogLikelihood, _: object, __: object, data_loader: Optional[DataLoader], parameters: Dict[str, Tensor], reducer: Callable[[Tensor], Tensor] = Tensor.sum, backward: Callable[[Tensor], None] = Tensor.backward, context_manager: Callable = None, # pyre-ignore [9] **kwargs: Any, ) -> ForwardBackwardClosure: r"""Wraps a `loss_closure` with a ForwardBackwardClosure.""" loss_closure = get_loss_closure(mll, data_loader=data_loader, **kwargs) return ForwardBackwardClosure( forward=loss_closure, backward=backward, parameters=parameters, reducer=reducer, context_manager=context_manager, ) @GetLossClosure.register(MarginalLogLikelihood, object, object, DataLoader) def _get_loss_closure_fallback_external( mll: MarginalLogLikelihood, _: object, __: object, data_loader: DataLoader, **ignore: Any, ) -> Callable[[], Tensor]: r"""Fallback loss closure with externally provided data.""" batch_generator = chain.from_iterable(iter(data_loader) for _ in repeat(None)) def closure(**kwargs: Any) -> Tensor: batch = next(batch_generator) if not isinstance(batch, Sequence): raise TypeError( "Expected `data_loader` to generate a batch of tensors, " f"but found {type(batch)}." ) num_inputs = len(mll.model.train_inputs) model_output = mll.model(*batch[:num_inputs]) log_likelihood = mll(model_output, *batch[num_inputs:], **kwargs) return -log_likelihood return closure @GetLossClosure.register(MarginalLogLikelihood, object, object, NoneType) def _get_loss_closure_fallback_internal( mll: MarginalLogLikelihood, _: object, __: object, ___: NoneType, **ignore: Any ) -> Callable[[], Tensor]: r"""Fallback loss closure with internally managed data.""" def closure(**kwargs: Any) -> Tensor: model_output = mll.model(*mll.model.train_inputs) log_likelihood = mll(model_output, mll.model.train_targets, **kwargs) return -log_likelihood return closure @GetLossClosure.register(ExactMarginalLogLikelihood, object, object, NoneType) def _get_loss_closure_exact_internal( mll: ExactMarginalLogLikelihood, _: object, __: object, ___: NoneType, **ignore: Any ) -> Callable[[], Tensor]: r"""ExactMarginalLogLikelihood loss closure with internally managed data.""" def closure(**kwargs: Any) -> Tensor: model_output = mll.model(*mll.model.train_inputs) log_likelihood = mll( model_output, mll.model.train_targets, *mll.model.train_inputs, **kwargs ) return -log_likelihood return closure @GetLossClosure.register(SumMarginalLogLikelihood, object, object, NoneType) def _get_loss_closure_sum_internal( mll: SumMarginalLogLikelihood, _: object, __: object, ___: NoneType, **ignore: Any ) -> Callable[[], Tensor]: r"""SumMarginalLogLikelihood loss closure with internally managed data.""" def closure(**kwargs: Any) -> Tensor: model_output = mll.model(*mll.model.train_inputs) log_likelihood = mll( model_output, mll.model.train_targets, *map(list, mll.model.train_inputs), **kwargs, ) return -log_likelihood return closure
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from __future__ import annotations from inspect import getsource, getsourcefile from typing import Any, Callable, Optional, Tuple, Type from multipledispatch.dispatcher import ( Dispatcher as MDDispatcher, MDNotImplementedError, # trivial subclass of NotImplementedError str_signature, ) def type_bypassing_encoder(arg: Any) -> Type: # Allow type variables to be passed as pre-encoded arguments return arg if isinstance(arg, type) else type(arg) class Dispatcher(MDDispatcher): r"""Clearing house for multiple dispatch functionality. This class extends `<multipledispatch.Dispatcher>` by: (i) generalizing the argument encoding convention during method lookup, (ii) implementing `__getitem__` as a dedicated method lookup function. """ def __init__( self, name: str, doc: Optional[str] = None, encoder: Callable[Any, Type] = type, ) -> None: """ Args: name: A string identifier for the `Dispatcher` instance. doc: A docstring for the multiply dispatched method(s). encoder: A callable that individually transforms the arguments passed at runtime in order to construct the key used for method lookup as `tuple(map(encoder, args))`. Defaults to `type`. """ super().__init__(name=name, doc=doc) self._encoder = encoder def __getitem__( self, args: Optional[Any] = None, types: Optional[Tuple[Type]] = None, ) -> Callable: r"""Method lookup. Args: args: A set of arguments that act as identifiers for a stored method. types: A tuple of types that encodes `args`. Returns: A callable corresponding to the given `args` or `types`. """ if types is None: if args is None: raise RuntimeError("One of `args` or `types` must be provided.") types = self.encode_args(args) elif args is not None: raise RuntimeError("Only one of `args` or `types` may be provided.") try: func = self._cache[types] except KeyError: func = self.dispatch(*types) if not func: msg = f"{self.name}: <{', '.join(cls.__name__ for cls in types)}" raise NotImplementedError(f"Could not find signature for {msg}") self._cache[types] = func return func def __call__(self, *args: Any, **kwargs: Any) -> Any: r"""Multiply dispatches a call to a collection of methods. Args: args: A set of arguments that act as identifiers for a stored method. kwargs: Optional keyword arguments passed to the retrieved method. Returns: The result of evaluating `func(*args, **kwargs)`, where `func` is the function obtained via method lookup. """ types = self.encode_args(args) func = self.__getitem__(types=types) try: return func(*args, **kwargs) except MDNotImplementedError: # Traverses registered methods in order, yields whenever a match is found funcs = self.dispatch_iter(*types) next(funcs) # burn first, same as self.__getitem__(types=types) for func in funcs: try: return func(*args, **kwargs) except MDNotImplementedError: pass raise NotImplementedError( f"Matching functions for {self.name:s}: {str_signature(types):s} " "found, but none completed successfully" ) def dispatch(self, *types: Type) -> Callable: r"""Method lookup strategy. Checks for an exact match before traversing the set of registered methods according to the current ordering. Args: types: A tuple of types that gets compared with the signatures of registered methods to determine compatibility. Returns: The first method encountered with a matching signature. """ if types in self.funcs: return self.funcs[types] try: return next(self.dispatch_iter(*types)) except StopIteration: return None def encode_args(self, args: Any) -> Tuple[Type]: r"""Converts arguments into a tuple of types used during method lookup.""" return tuple(map(self.encoder, args if isinstance(args, tuple) else (args,))) def _help(self, *args: Any) -> str: r"""Returns the retrieved method's docstring.""" return self.dispatch(*self.encode_args(args)).__doc__ def help(self, *args: Any, **kwargs: Any) -> None: r"""Prints the retrieved method's docstring.""" print(self._help(*args)) def _source(self, *args: Any) -> str: r"""Returns the retrieved method's source types as a string.""" func = self.dispatch(*self.encode_args(args)) if not func: raise TypeError("No function found") return f"File: {getsourcefile(func)}\n\n{getsource(func)}" def source(self, *args, **kwargs) -> None: r"""Prints the retrieved method's source types.""" print(self._source(*args)) @property def encoder(self) -> Callable[Any, Type]: return self._encoder
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. r""" Some basic data transformation helpers. """ from __future__ import annotations import warnings from functools import wraps from typing import Any, Callable, List, Optional, TYPE_CHECKING import torch from torch import Tensor if TYPE_CHECKING: from botorch.acquisition import AcquisitionFunction # pragma: no cover from botorch.model import Model # pragma: no cover def standardize(Y: Tensor) -> Tensor: r"""Standardizes (zero mean, unit variance) a tensor by dim=-2. If the tensor is single-dimensional, simply standardizes the tensor. If for some batch index all elements are equal (or if there is only a single data point), this function will return 0 for that batch index. Args: Y: A `batch_shape x n x m`-dim tensor. Returns: The standardized `Y`. Example: >>> Y = torch.rand(4, 3) >>> Y_standardized = standardize(Y) """ stddim = -1 if Y.dim() < 2 else -2 Y_std = Y.std(dim=stddim, keepdim=True) Y_std = Y_std.where(Y_std >= 1e-9, torch.full_like(Y_std, 1.0)) return (Y - Y.mean(dim=stddim, keepdim=True)) / Y_std def normalize(X: Tensor, bounds: Tensor) -> Tensor: r"""Min-max normalize X w.r.t. the provided bounds. Args: X: `... x d` tensor of data bounds: `2 x d` tensor of lower and upper bounds for each of the X's d columns. Returns: A `... x d`-dim tensor of normalized data, given by `(X - bounds[0]) / (bounds[1] - bounds[0])`. If all elements of `X` are contained within `bounds`, the normalized values will be contained within `[0, 1]^d`. Example: >>> X = torch.rand(4, 3) >>> bounds = torch.stack([torch.zeros(3), 0.5 * torch.ones(3)]) >>> X_normalized = normalize(X, bounds) """ return (X - bounds[0]) / (bounds[1] - bounds[0]) def unnormalize(X: Tensor, bounds: Tensor) -> Tensor: r"""Un-normalizes X w.r.t. the provided bounds. Args: X: `... x d` tensor of data bounds: `2 x d` tensor of lower and upper bounds for each of the X's d columns. Returns: A `... x d`-dim tensor of unnormalized data, given by `X * (bounds[1] - bounds[0]) + bounds[0]`. If all elements of `X` are contained in `[0, 1]^d`, the un-normalized values will be contained within `bounds`. Example: >>> X_normalized = torch.rand(4, 3) >>> bounds = torch.stack([torch.zeros(3), 0.5 * torch.ones(3)]) >>> X = unnormalize(X_normalized, bounds) """ return X * (bounds[1] - bounds[0]) + bounds[0] def normalize_indices(indices: Optional[List[int]], d: int) -> Optional[List[int]]: r"""Normalize a list of indices to ensure that they are positive. Args: indices: A list of indices (may contain negative indices for indexing "from the back"). d: The dimension of the tensor to index. Returns: A normalized list of indices such that each index is between `0` and `d-1`, or None if indices is None. """ if indices is None: return indices normalized_indices = [] for i in indices: if i < 0: i = i + d if i < 0 or i > d - 1: raise ValueError(f"Index {i} out of bounds for tensor or length {d}.") normalized_indices.append(i) return normalized_indices def _verify_output_shape(acqf: Any, X: Tensor, output: Tensor) -> bool: r""" Performs the output shape checks for `t_batch_mode_transform`. Output shape checks help in catching the errors due to AcquisitionFunction arguments with erroneous return shapes before these errors propagate further down the line. This method checks that the `output` shape matches either the t-batch shape of X or the `batch_shape` of `acqf.model`. Args: acqf: The AcquisitionFunction object being evaluated. X: The `... x q x d`-dim input tensor with an explicit t-batch. output: The return value of `acqf.method(X, ...)`. Returns: True if `output` has the correct shape, False otherwise. """ try: X_batch_shape = X.shape[:-2] if output.shape == X_batch_shape: return True if output.shape == torch.Size() and X_batch_shape == torch.Size([1]): # X has a batch shape of [1] which gets squeezed. return True # Cases with model batch shape involved. model_b_shape = acqf.model.batch_shape if output.shape == model_b_shape: # Simple inputs with batched model. return True model_b_dim = len(model_b_shape) if output.shape == X_batch_shape[:-model_b_dim] + model_b_shape and all( xs in [1, ms] for xs, ms in zip(X_batch_shape[-model_b_dim:], model_b_shape) ): # X has additional batch dimensions beyond the model batch shape. # For a batched model, some of the input dimensions might get broadcasted # to the model batch shape. In that case the acquisition function output # should replace the right-most batch dim of X with the model's batch shape. return True return False except (AttributeError, NotImplementedError): # acqf does not have model or acqf.model does not define `batch_shape` warnings.warn( "Output shape checks failed! Expected output shape to match t-batch shape" f"of X, but got output with shape {output.shape} for X with shape" f"{X.shape}. Make sure that this is the intended behavior!", RuntimeWarning, ) return True def is_fully_bayesian(model: Model) -> bool: r"""Check if at least one model is a SaasFullyBayesianSingleTaskGP Args: model: A BoTorch model (may be a `ModelList` or `ModelListGP`) d: The dimension of the tensor to index. Returns: True if at least one model is a `SaasFullyBayesianSingleTaskGP` """ from botorch.models import ModelList from botorch.models.fully_bayesian import SaasFullyBayesianSingleTaskGP from botorch.models.fully_bayesian_multitask import SaasFullyBayesianMultiTaskGP full_bayesian_model_cls = ( SaasFullyBayesianSingleTaskGP, SaasFullyBayesianMultiTaskGP, ) if isinstance(model, full_bayesian_model_cls) or getattr( model, "is_fully_bayesian", False ): return True elif isinstance(model, ModelList): for m in model.models: if is_fully_bayesian(m): return True return False def t_batch_mode_transform( expected_q: Optional[int] = None, assert_output_shape: bool = True, ) -> Callable[ [Callable[[AcquisitionFunction, Any], Any]], Callable[[AcquisitionFunction, Any], Any], ]: r"""Factory for decorators enabling consistent t-batch behavior. This method creates decorators for instance methods to transform an input tensor `X` to t-batch mode (i.e. with at least 3 dimensions). This assumes the tensor has a q-batch dimension. The decorator also checks the q-batch size if `expected_q` is provided, and the output shape if `assert_output_shape` is `True`. Args: expected_q: The expected q-batch size of `X`. If specified, this will raise an AssertionError if `X`'s q-batch size does not equal expected_q. assert_output_shape: If `True`, this will raise an AssertionError if the output shape does not match either the t-batch shape of `X`, or the `acqf.model.batch_shape` for acquisition functions using batched models. Returns: The decorated instance method. Example: >>> class ExampleClass: >>> @t_batch_mode_transform(expected_q=1) >>> def single_q_method(self, X): >>> ... >>> >>> @t_batch_mode_transform() >>> def arbitrary_q_method(self, X): >>> ... """ def decorator( method: Callable[[AcquisitionFunction, Any], Any], ) -> Callable[[AcquisitionFunction, Any], Any]: @wraps(method) def decorated( acqf: AcquisitionFunction, X: Any, *args: Any, **kwargs: Any ) -> Any: # Allow using acquisition functions for other inputs (e.g. lists of strings) if not isinstance(X, Tensor): return method(acqf, X, *args, **kwargs) if X.dim() < 2: raise ValueError( f"{type(acqf).__name__} requires X to have at least 2 dimensions," f" but received X with only {X.dim()} dimensions." ) elif expected_q is not None and X.shape[-2] != expected_q: raise AssertionError( f"Expected X to be `batch_shape x q={expected_q} x d`, but" f" got X with shape {X.shape}." ) # add t-batch dim X = X if X.dim() > 2 else X.unsqueeze(0) output = method(acqf, X, *args, **kwargs) if hasattr(acqf, "model") and is_fully_bayesian(acqf.model): output = output.mean(dim=-1) if assert_output_shape and not _verify_output_shape( acqf=acqf, X=X, output=output, ): raise AssertionError( "Expected the output shape to match either the t-batch shape of " "X, or the `model.batch_shape` in the case of acquisition " "functions using batch models; but got output with shape " f"{output.shape} for X with shape {X.shape}." ) return output return decorated return decorator def concatenate_pending_points( method: Callable[[Any, Tensor], Any] ) -> Callable[[Any, Tensor], Any]: r"""Decorator concatenating X_pending into an acquisition function's argument. This decorator works on the `forward` method of acquisition functions taking a tensor `X` as the argument. If the acquisition function has an `X_pending` attribute (that is not `None`), this is concatenated into the input `X`, appropriately expanding the pending points to match the batch shape of `X`. Example: >>> class ExampleAcquisitionFunction: >>> @concatenate_pending_points >>> @t_batch_mode_transform() >>> def forward(self, X): >>> ... """ @wraps(method) def decorated(cls: Any, X: Tensor, **kwargs: Any) -> Any: if cls.X_pending is not None: X = torch.cat([X, match_batch_shape(cls.X_pending, X)], dim=-2) return method(cls, X, **kwargs) return decorated def match_batch_shape(X: Tensor, Y: Tensor) -> Tensor: r"""Matches the batch dimension of a tensor to that of another tensor. Args: X: A `batch_shape_X x q x d` tensor, whose batch dimensions that correspond to batch dimensions of `Y` are to be matched to those (if compatible). Y: A `batch_shape_Y x q' x d` tensor. Returns: A `batch_shape_Y x q x d` tensor containing the data of `X` expanded to the batch dimensions of `Y` (if compatible). For instance, if `X` is `b'' x b' x q x d` and `Y` is `b x q x d`, then the returned tensor is `b'' x b x q x d`. Example: >>> X = torch.rand(2, 1, 5, 3) >>> Y = torch.rand(2, 6, 4, 3) >>> X_matched = match_batch_shape(X, Y) >>> X_matched.shape torch.Size([2, 6, 5, 3]) """ return X.expand(X.shape[: -(Y.dim())] + Y.shape[:-2] + X.shape[-2:]) def convert_to_target_pre_hook(module, *args): r"""Pre-hook for automatically calling `.to(X)` on module prior to `forward`""" module.to(args[0][0])
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from __future__ import annotations import torch from botorch.exceptions.errors import BotorchError from botorch.posteriors.base_samples import _reshape_base_samples_non_interleaved from botorch.posteriors.gpytorch import GPyTorchPosterior from gpytorch.distributions.multitask_multivariate_normal import ( MultitaskMultivariateNormal, ) from linear_operator.operators import BlockDiagLinearOperator, LinearOperator from linear_operator.utils.cholesky import psd_safe_cholesky from linear_operator.utils.errors import NanError from torch import Tensor def extract_batch_covar(mt_mvn: MultitaskMultivariateNormal) -> LinearOperator: r"""Extract a batched independent covariance matrix from an MTMVN. Args: mt_mvn: A multi-task multivariate normal with a block diagonal covariance matrix. Returns: A lazy covariance matrix consisting of a batch of the blocks of the diagonal of the MultitaskMultivariateNormal. """ lazy_covar = mt_mvn.lazy_covariance_matrix if not isinstance(lazy_covar, BlockDiagLinearOperator): raise BotorchError( f"Expected BlockDiagLinearOperator, but got {type(lazy_covar)}." ) return lazy_covar.base_linear_op def _reshape_base_samples( base_samples: Tensor, sample_shape: torch.Size, posterior: GPyTorchPosterior ) -> Tensor: r"""Manipulate shape of base_samples to match `MultivariateNormal.rsample`. This ensure that base_samples are used in the same way as in gpytorch.distributions.MultivariateNormal. For CBD, it is important to ensure that the same base samples are used for the in-sample points here and in the cached box decompositions. Args: base_samples: The base samples. sample_shape: The sample shape. posterior: The joint posterior is over (X_baseline, X). Returns: Reshaped and expanded base samples. """ mvn = posterior.distribution loc = mvn.loc peshape = posterior._extended_shape() base_samples = base_samples.view( sample_shape + torch.Size([1] * (loc.ndim - 1)) + peshape[-2:] ).expand(sample_shape + loc.shape[:-1] + peshape[-2:]) if posterior._is_mt: base_samples = _reshape_base_samples_non_interleaved( mvn=posterior.distribution, base_samples=base_samples, sample_shape=sample_shape, ) base_samples = base_samples.reshape( -1, *loc.shape[:-1], mvn.lazy_covariance_matrix.shape[-1] ) base_samples = base_samples.permute(*range(1, loc.dim() + 1), 0) return base_samples.reshape( *peshape[:-2], peshape[-1], peshape[-2], *sample_shape, ) def sample_cached_cholesky( posterior: GPyTorchPosterior, baseline_L: Tensor, q: int, base_samples: Tensor, sample_shape: torch.Size, max_tries: int = 6, ) -> Tensor: r"""Get posterior samples at the `q` new points from the joint multi-output posterior. Args: posterior: The joint posterior is over (X_baseline, X). baseline_L: The baseline lower triangular cholesky factor. q: The number of new points in X. base_samples: The base samples. sample_shape: The sample shape. max_tries: The number of tries for computing the Cholesky decomposition with increasing jitter. Returns: A `sample_shape x batch_shape x q x m`-dim tensor of posterior samples at the new points. """ # compute bottom left covariance block mvn = posterior.distribution lazy_covar = ( extract_batch_covar(mt_mvn=mvn) if isinstance(mvn, MultitaskMultivariateNormal) else mvn.lazy_covariance_matrix ) # Get the `q` new rows of the batched covariance matrix bottom_rows = lazy_covar[..., -q:, :].to_dense() # The covariance in block form is: # [K(X_baseline, X_baseline), K(X_baseline, X)] # [K(X, X_baseline), K(X, X)] # bl := K(X, X_baseline) # br := K(X, X) # Get bottom right block of new covariance bl, br = bottom_rows.split([bottom_rows.shape[-1] - q, q], dim=-1) # Solve Ax = b # where A = K(X_baseline, X_baseline) and b = K(X, X_baseline)^T # and bl_chol := x^T # bl_chol is the new `(batch_shape) x q x n`-dim bottom left block # of the cholesky decomposition bl_chol = torch.linalg.solve_triangular( baseline_L, bl.transpose(-2, -1), upper=False ).transpose(-2, -1) # Compute the new bottom right block of the Cholesky # decomposition via: # Cholesky(K(X, X) - bl_chol @ bl_chol^T) br_to_chol = br - bl_chol @ bl_chol.transpose(-2, -1) # TODO: technically we should make sure that we add a # consistent nugget to the cached covariance and the new block br_chol = psd_safe_cholesky(br_to_chol, max_tries=max_tries) # Create a `(batch_shape) x q x (n+q)`-dim tensor containing the # `q` new bottom rows of the Cholesky decomposition new_Lq = torch.cat([bl_chol, br_chol], dim=-1) mean = posterior.distribution.mean base_samples = _reshape_base_samples( base_samples=base_samples, sample_shape=sample_shape, posterior=posterior, ) if not isinstance(posterior.distribution, MultitaskMultivariateNormal): # add output dim mean = mean.unsqueeze(-1) # add batch dim corresponding to output dim new_Lq = new_Lq.unsqueeze(-3) new_mean = mean[..., -q:, :] res = ( new_Lq.matmul(base_samples) .add(new_mean.transpose(-1, -2).unsqueeze(-1)) .permute(-1, *range(posterior.distribution.loc.dim() - 1), -2, -3) .contiguous() ) contains_nans = torch.isnan(res).any() contains_infs = torch.isinf(res).any() if contains_nans or contains_infs: suffix_args = [] if contains_nans: suffix_args.append("nans") if contains_infs: suffix_args.append("infs") suffix = " and ".join(suffix_args) raise NanError(f"Samples contain {suffix}.") return res
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. r""" Helpers for handling objectives. """ from __future__ import annotations import warnings from typing import Callable, List, Optional, Union import torch from botorch.utils.safe_math import log_fatmoid, logexpit from torch import Tensor def get_objective_weights_transform( weights: Optional[Tensor], ) -> Callable[[Tensor, Optional[Tensor]], Tensor]: r"""Create a linear objective callable from a set of weights. Create a callable mapping a Tensor of size `b x q x m` and an (optional) Tensor of size `b x q x d` to a Tensor of size `b x q`, where `m` is the number of outputs of the model using scalarization via the objective weights. This callable supports broadcasting (e.g. for calling on a tensor of shape `mc_samples x b x q x m`). For `m = 1`, the objective weight is used to determine the optimization direction. Args: weights: a 1-dimensional Tensor containing a weight for each task. If not provided, the identity mapping is used. Returns: Transform function using the objective weights. Example: >>> weights = torch.tensor([0.75, 0.25]) >>> transform = get_objective_weights_transform(weights) """ # if no weights provided, just extract the single output if weights is None: return lambda Y: Y.squeeze(-1) def _objective(Y: Tensor, X: Optional[Tensor] = None): r"""Evaluate objective. Note: einsum multiples Y by weights and sums over the `m`-dimension. Einsum is ~2x faster than using `(Y * weights.view(1, 1, -1)).sum(dim-1)`. Args: Y: A `... x b x q x m` tensor of function values. Returns: A `... x b x q`-dim tensor of objective values. """ return torch.einsum("...m, m", [Y, weights]) return _objective def apply_constraints_nonnegative_soft( obj: Tensor, constraints: List[Callable[[Tensor], Tensor]], samples: Tensor, eta: Union[Tensor, float], ) -> Tensor: r"""Applies constraints to a non-negative objective. This function uses a sigmoid approximation to an indicator function for each constraint. Args: obj: A `n_samples x b x q (x m')`-dim Tensor of objective values. constraints: A list of callables, each mapping a Tensor of size `b x q x m` to a Tensor of size `b x q`, where negative values imply feasibility. This callable must support broadcasting. Only relevant for multi- output models (`m` > 1). samples: A `n_samples x b x q x m` Tensor of samples drawn from the posterior. eta: The temperature parameter for the sigmoid function. Can be either a float or a 1-dim tensor. In case of a float the same eta is used for every constraint in constraints. In case of a tensor the length of the tensor must match the number of provided constraints. The i-th constraint is then estimated with the i-th eta value. Returns: A `n_samples x b x q (x m')`-dim tensor of feasibility-weighted objectives. """ w = compute_smoothed_feasibility_indicator( constraints=constraints, samples=samples, eta=eta ) if obj.dim() == samples.dim(): w = w.unsqueeze(-1) # Need to unsqueeze to accommodate the outcome dimension. return obj.clamp_min(0).mul(w) # Enforce non-negativity of obj, apply constraints. def compute_feasibility_indicator( constraints: Optional[List[Callable[[Tensor], Tensor]]], samples: Tensor, ) -> Tensor: r"""Computes the feasibility of a list of constraints given posterior samples. Args: constraints: A list of callables, each mapping a batch_shape x q x m`-dim Tensor to a `batch_shape x q`-dim Tensor, where negative values imply feasibility. samples: A batch_shape x q x m`-dim Tensor of posterior samples. Returns: A `batch_shape x q`-dim tensor of Boolean feasibility values. """ ind = torch.ones(samples.shape[:-1], dtype=torch.bool, device=samples.device) if constraints is not None: for constraint in constraints: ind = ind.logical_and(constraint(samples) < 0) return ind def compute_smoothed_feasibility_indicator( constraints: List[Callable[[Tensor], Tensor]], samples: Tensor, eta: Union[Tensor, float], log: bool = False, fat: bool = False, ) -> Tensor: r"""Computes the smoothed feasibility indicator of a list of constraints. Given posterior samples, using a sigmoid to smoothly approximate the feasibility indicator of each individual constraint to ensure differentiability and high gradient signal. The `fat` and `log` options improve the numerical behavior of the smooth approximation. NOTE: *Negative* constraint values are associated with feasibility. Args: constraints: A list of callables, each mapping a Tensor of size `b x q x m` to a Tensor of size `b x q`, where negative values imply feasibility. This callable must support broadcasting. Only relevant for multi- output models (`m` > 1). samples: A `n_samples x b x q x m` Tensor of samples drawn from the posterior. eta: The temperature parameter for the sigmoid function. Can be either a float or a 1-dim tensor. In case of a float the same eta is used for every constraint in constraints. In case of a tensor the length of the tensor must match the number of provided constraints. The i-th constraint is then estimated with the i-th eta value. log: Toggles the computation of the log-feasibility indicator. fat: Toggles the computation of the fat-tailed feasibility indicator. Returns: A `n_samples x b x q`-dim tensor of feasibility indicator values. """ if type(eta) is not Tensor: eta = torch.full((len(constraints),), eta) if len(eta) != len(constraints): raise ValueError( "Number of provided constraints and number of provided etas do not match." ) if not (eta > 0).all(): raise ValueError("eta must be positive.") is_feasible = torch.zeros_like(samples[..., 0]) log_sigmoid = log_fatmoid if fat else logexpit for constraint, e in zip(constraints, eta): is_feasible = is_feasible + log_sigmoid(-constraint(samples) / e) return is_feasible if log else is_feasible.exp() # TODO: deprecate this function def soft_eval_constraint(lhs: Tensor, eta: float = 1e-3) -> Tensor: r"""Element-wise evaluation of a constraint in a 'soft' fashion `value(x) = 1 / (1 + exp(x / eta))` Args: lhs: The left hand side of the constraint `lhs <= 0`. eta: The temperature parameter of the softmax function. As eta decreases, this approximates the Heaviside step function. Returns: Element-wise 'soft' feasibility indicator of the same shape as `lhs`. For each element `x`, `value(x) -> 0` as `x` becomes positive, and `value(x) -> 1` as x becomes negative. """ warnings.warn( "`soft_eval_constraint` is deprecated. Please consider `torch.utils.sigmoid` " + "with its `fat` and `log` options to compute feasibility indicators.", DeprecationWarning, ) if eta <= 0: raise ValueError("eta must be positive.") return torch.sigmoid(-lhs / eta) def apply_constraints( obj: Tensor, constraints: List[Callable[[Tensor], Tensor]], samples: Tensor, infeasible_cost: float, eta: Union[Tensor, float] = 1e-3, ) -> Tensor: r"""Apply constraints using an infeasible_cost `M` for negative objectives. This allows feasibility-weighting an objective for the case where the objective can be negative by using the following strategy: (1) Add `M` to make obj non-negative; (2) Apply constraints using the sigmoid approximation; (3) Shift by `-M`. Args: obj: A `n_samples x b x q (x m')`-dim Tensor of objective values. constraints: A list of callables, each mapping a Tensor of size `b x q x m` to a Tensor of size `b x q`, where negative values imply feasibility. This callable must support broadcasting. Only relevant for multi- output models (`m` > 1). samples: A `n_samples x b x q x m` Tensor of samples drawn from the posterior. infeasible_cost: The infeasible value. eta: The temperature parameter of the sigmoid function. Can be either a float or a 1-dim tensor. In case of a float the same eta is used for every constraint in constraints. In case of a tensor the length of the tensor must match the number of provided constraints. The i-th constraint is then estimated with the i-th eta value. Returns: A `n_samples x b x q (x m')`-dim tensor of feasibility-weighted objectives. """ # obj has dimensions n_samples x b x q (x m') obj = obj.add(infeasible_cost) # now it is nonnegative obj = apply_constraints_nonnegative_soft( obj=obj, constraints=constraints, samples=samples, eta=eta, ) return obj.add(-infeasible_cost)
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. r"""Representations for different kinds of data.""" from __future__ import annotations from abc import ABC, abstractmethod from dataclasses import dataclass, fields from typing import Any from torch import device as Device, dtype as Dtype, LongTensor, Size, Tensor class BotorchContainer(ABC): r"""Abstract base class for BoTorch's data containers. A BotorchContainer represents a tensor, which should be the sole object returned by its `__call__` method. Said tensor is expected to consist of one or more "events" (e.g. data points or feature vectors), whose shape is given by the required `event_shape` field. Notice: Once version 3.10 becomes standard, this class should be reworked to take advantage of dataclasses' `kw_only` flag. :meta private: """ event_shape: Size def __post_init__(self, validate_init: bool = True) -> None: if validate_init: self._validate() @abstractmethod def __call__(self) -> Tensor: raise NotImplementedError @abstractmethod def __eq__(self, other: Any) -> bool: raise NotImplementedError @property @abstractmethod def shape(self) -> Size: raise NotImplementedError @property @abstractmethod def device(self) -> Device: raise NotImplementedError @property @abstractmethod def dtype(self) -> Dtype: raise NotImplementedError def _validate(self) -> None: for field in fields(self): if field.name == "event_shape": return raise AttributeError("Missing required field `event_shape`.") @dataclass(eq=False) class DenseContainer(BotorchContainer): r"""Basic representation of data stored as a dense Tensor.""" values: Tensor event_shape: Size def __call__(self) -> Tensor: """Returns a dense tensor representation of the container's contents.""" return self.values def __eq__(self, other: Any) -> bool: return ( type(other) is type(self) and self.shape == other.shape and self.values.equal(other.values) ) @property def shape(self) -> Size: return self.values.shape @property def device(self) -> Device: return self.values.device @property def dtype(self) -> Dtype: return self.values.dtype def _validate(self) -> None: super()._validate() for a, b in zip(reversed(self.event_shape), reversed(self.values.shape)): if a != b: raise ValueError( f"Shape of `values` {self.values.shape} incompatible with " f"`event shape` {self.event_shape}." ) @dataclass(eq=False) class SliceContainer(BotorchContainer): r"""Represent data points formed by concatenating (n-1)-dimensional slices taken from the leading dimension of an n-dimensional source tensor.""" values: Tensor indices: LongTensor event_shape: Size def __call__(self) -> Tensor: flat = self.values.index_select(dim=0, index=self.indices.view(-1)) return flat.view(*self.indices.shape[:-1], -1, *self.values.shape[2:]) def __eq__(self, other: Any) -> bool: return ( type(other) is type(self) and self.values.equal(other.values) and self.indices.equal(other.indices) ) @property def shape(self) -> Size: return self.indices.shape[:-1] + self.event_shape @property def device(self) -> Device: return self.values.device @property def dtype(self) -> Dtype: return self.values.dtype def _validate(self) -> None: super()._validate() values = self.values indices = self.indices assert indices.ndim > 1 assert (-1 < indices.min()) & (indices.max() < len(values)) event_shape = self.event_shape _event_shape = (indices.shape[-1] * values.shape[1],) + values.shape[2:] if event_shape != _event_shape: raise ValueError( f"Shapes of `values` {values.shape} and `indices` " f"{indices.shape} incompatible with `event_shape` {event_shape}." )
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from __future__ import annotations from functools import lru_cache from numbers import Number from typing import Iterator, Optional, Tuple, Union import torch from torch import Tensor @lru_cache(maxsize=None) def get_constants( values: Union[Number, Iterator[Number]], device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None, ) -> Union[Tensor, Tuple[Tensor, ...]]: r"""Returns scalar-valued Tensors containing each of the given constants. Used to expedite tensor operations involving scalar arithmetic. Note that the returned Tensors should not be modified in-place.""" if isinstance(values, Number): return torch.full((), values, dtype=dtype, device=device) return tuple(torch.full((), val, dtype=dtype, device=device) for val in values) def get_constants_like( values: Union[Number, Iterator[Number]], ref: Tensor, ) -> Union[Tensor, Iterator[Tensor]]: return get_constants(values, device=ref.device, dtype=ref.dtype)
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. r""" Discretization (rounding) functions for acquisition optimization. References .. [Daulton2022bopr] S. Daulton, X. Wan, D. Eriksson, M. Balandat, M. A. Osborne, E. Bakshy. Bayesian Optimization over Discrete and Mixed Spaces via Probabilistic Reparameterization. Advances in Neural Information Processing Systems 35, 2022. """ from __future__ import annotations import torch from torch import Tensor from torch.autograd import Function from torch.nn.functional import one_hot def approximate_round(X: Tensor, tau: float = 1e-3) -> Tensor: r"""Diffentiable approximate rounding function. This method is a piecewise approximation of a rounding function where each piece is a hyperbolic tangent function. Args: X: The tensor to round to the nearest integer (element-wise). tau: A temperature hyperparameter. Returns: The approximately rounded input tensor. """ offset = X.floor() scaled_remainder = (X - offset - 0.5) / tau rounding_component = (torch.tanh(scaled_remainder) + 1) / 2 return offset + rounding_component class IdentitySTEFunction(Function): """Base class for functions using straight through gradient estimators. This class approximates the gradient with the identity function. """ @staticmethod def backward(ctx, grad_output: Tensor) -> Tensor: r"""Use a straight-through estimator the gradient. This uses the identity function. Args: grad_output: A tensor of gradients. Returns: The provided tensor. """ return grad_output class RoundSTE(IdentitySTEFunction): r"""Round the input tensor and use a straight-through gradient estimator. [Daulton2022bopr]_ proposes using this in acquisition optimization. """ @staticmethod def forward(ctx, X: Tensor) -> Tensor: r"""Round the input tensor element-wise. Args: X: The tensor to be rounded. Returns: A tensor where each element is rounded to the nearest integer. """ return X.round() class OneHotArgmaxSTE(IdentitySTEFunction): r"""Discretize a continuous relaxation of a one-hot encoded categorical. This returns a one-hot encoded categorical and use a straight-through gradient estimator via an identity function. [Daulton2022bopr]_ proposes using this in acquisition optimization. """ @staticmethod def forward(ctx, X: Tensor) -> Tensor: r"""Discretize the input tensor. This applies a argmax along the last dimensions of the input tensor and one-hot encodes the result. Args: X: The tensor to be rounded. Returns: A tensor where each element is rounded to the nearest integer. """ return one_hot(X.argmax(dim=-1), num_classes=X.shape[-1]).to(X)
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. r"""Representations for different kinds of datasets.""" from __future__ import annotations import warnings from itertools import count, repeat from typing import Any, Dict, Hashable, Iterable, Optional, TypeVar, Union import torch from botorch.utils.containers import BotorchContainer, SliceContainer from torch import long, ones, Tensor T = TypeVar("T") MaybeIterable = Union[T, Iterable[T]] class SupervisedDataset: r"""Base class for datasets consisting of labelled pairs `(X, Y)` and an optional `Yvar` that stipulates observations variances so that `Y[i] ~ N(f(X[i]), Yvar[i])`. Example: .. code-block:: python X = torch.rand(16, 2) Y = torch.rand(16, 1) A = SupervisedDataset(X, Y) B = SupervisedDataset( DenseContainer(X, event_shape=X.shape[-1:]), DenseContainer(Y, event_shape=Y.shape[-1:]), ) assert A == B """ def __init__( self, X: Union[BotorchContainer, Tensor], Y: Union[BotorchContainer, Tensor], Yvar: Union[BotorchContainer, Tensor, None] = None, validate_init: bool = True, ) -> None: r"""Constructs a `SupervisedDataset`. Args: X: A `Tensor` or `BotorchContainer` representing the input features. Y: A `Tensor` or `BotorchContainer` representing the outcomes. Yvar: An optional `Tensor` or `BotorchContainer` representing the observation noise. validate_init: If `True`, validates the input shapes. """ self._X = X self._Y = Y self._Yvar = Yvar if validate_init: self._validate() @property def X(self) -> Tensor: if isinstance(self._X, Tensor): return self._X return self._X() @property def Y(self) -> Tensor: if isinstance(self._Y, Tensor): return self._Y return self._Y() @property def Yvar(self) -> Optional[Tensor]: if self._Yvar is None or isinstance(self._Yvar, Tensor): return self._Yvar return self._Yvar() def _validate(self) -> None: shape_X = self.X.shape if isinstance(self._X, BotorchContainer): shape_X = shape_X[: len(shape_X) - len(self._X.event_shape)] else: shape_X = shape_X[:-1] shape_Y = self.Y.shape if isinstance(self._Y, BotorchContainer): shape_Y = shape_Y[: len(shape_Y) - len(self._Y.event_shape)] else: shape_Y = shape_Y[:-1] if shape_X != shape_Y: raise ValueError("Batch dimensions of `X` and `Y` are incompatible.") if self.Yvar is not None and self.Yvar.shape != self.Y.shape: raise ValueError("Shapes of `Y` and `Yvar` are incompatible.") @classmethod def dict_from_iter( cls, X: MaybeIterable[Union[BotorchContainer, Tensor]], Y: MaybeIterable[Union[BotorchContainer, Tensor]], Yvar: Optional[MaybeIterable[Union[BotorchContainer, Tensor]]] = None, *, keys: Optional[Iterable[Hashable]] = None, ) -> Dict[Hashable, SupervisedDataset]: r"""Returns a dictionary of `SupervisedDataset` from iterables.""" single_X = isinstance(X, (Tensor, BotorchContainer)) single_Y = isinstance(Y, (Tensor, BotorchContainer)) if single_X: X = (X,) if single_Y else repeat(X) if single_Y: Y = (Y,) if single_X else repeat(Y) Yvar = repeat(Yvar) if isinstance(Yvar, (Tensor, BotorchContainer)) else Yvar # Pass in Yvar only if it is not None. iterables = (X, Y) if Yvar is None else (X, Y, Yvar) return { elements[0]: cls(*elements[1:]) for elements in zip(keys or count(), *iterables) } def __eq__(self, other: Any) -> bool: return ( type(other) is type(self) and torch.equal(self.X, other.X) and torch.equal(self.Y, other.Y) and ( other.Yvar is None if self.Yvar is None else torch.equal(self.Yvar, other.Yvar) ) ) class FixedNoiseDataset(SupervisedDataset): r"""A SupervisedDataset with an additional field `Yvar` that stipulates observations variances so that `Y[i] ~ N(f(X[i]), Yvar[i])`. NOTE: This is deprecated. Use `SupervisedDataset` instead. """ def __init__( self, X: Union[BotorchContainer, Tensor], Y: Union[BotorchContainer, Tensor], Yvar: Union[BotorchContainer, Tensor], validate_init: bool = True, ) -> None: r"""Initialize a `FixedNoiseDataset` -- deprecated!""" warnings.warn( "`FixedNoiseDataset` is deprecated. Use `SupervisedDataset` instead.", DeprecationWarning, ) super().__init__(X=X, Y=Y, Yvar=Yvar, validate_init=validate_init) class RankingDataset(SupervisedDataset): r"""A SupervisedDataset whose labelled pairs `(x, y)` consist of m-ary combinations `x ∈ Z^{m}` of elements from a ground set `Z = (z_1, ...)` and ranking vectors `y {0, ..., m - 1}^{m}` with properties: a) Ranks start at zero, i.e. min(y) = 0. b) Sorted ranks are contiguous unless one or more ties are present. c) `k` ranks are skipped after a `k`-way tie. Example: .. code-block:: python X = SliceContainer( values=torch.rand(16, 2), indices=torch.stack([torch.randperm(16)[:3] for _ in range(8)]), event_shape=torch.Size([3 * 2]), ) Y = DenseContainer( torch.stack([torch.randperm(3) for _ in range(8)]), event_shape=torch.Size([3]) ) dataset = RankingDataset(X, Y) """ def __init__( self, X: SliceContainer, Y: Union[BotorchContainer, Tensor], validate_init: bool = True, ) -> None: r"""Construct a `RankingDataset`. Args: X: A `SliceContainer` representing the input features being ranked. Y: A `Tensor` or `BotorchContainer` representing the rankings. validate_init: If `True`, validates the input shapes. """ super().__init__(X=X, Y=Y, Yvar=None, validate_init=validate_init) def _validate(self) -> None: super()._validate() Y = self.Y arity = self._X.indices.shape[-1] if Y.min() < 0 or Y.max() >= arity: raise ValueError("Invalid ranking(s): out-of-bounds ranks detected.") # Ensure that rankings are well-defined Y_sort = Y.sort(descending=False, dim=-1).values y_incr = ones([], dtype=long) y_prev = None for i, y in enumerate(Y_sort.unbind(dim=-1)): if i == 0: if (y != 0).any(): raise ValueError("Invalid ranking(s): missing zero-th rank.") y_prev = y continue y_diff = y - y_prev y_prev = y # Either a tie or next ranking when accounting for previous ties if not ((y_diff == 0) | (y_diff == y_incr)).all(): raise ValueError("Invalid ranking(s): ranks not skipped after ties.") # Same as: torch.where(y_diff == 0, y_incr + 1, 1) y_incr = y_incr - y_diff + 1
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from botorch.utils.constraints import get_outcome_constraint_transforms from botorch.utils.feasible_volume import estimate_feasible_volume from botorch.utils.objective import apply_constraints, get_objective_weights_transform from botorch.utils.rounding import approximate_round from botorch.utils.sampling import ( batched_multinomial, draw_sobol_normal_samples, draw_sobol_samples, manual_seed, ) from botorch.utils.transforms import standardize, t_batch_mode_transform __all__ = [ "apply_constraints", "approximate_round", "batched_multinomial", "draw_sobol_normal_samples", "draw_sobol_samples", "estimate_feasible_volume", "get_objective_weights_transform", "get_outcome_constraint_transforms", "manual_seed", "standardize", "t_batch_mode_transform", ]
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from __future__ import annotations NoneType = type(None) # stop gap for the return of NoneType in 3.10 class _DefaultType(type): r""" Private class whose sole instance `DEFAULT` is as a special indicator representing that a default value should be assigned to an argument. Typically used in cases where `None` is an allowed argument. """ DEFAULT = _DefaultType("DEFAULT", (), {})
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. r""" Utilities for optimization. """ from __future__ import annotations from contextlib import contextmanager from typing import Any, Callable, Dict, Generator, Iterable, NamedTuple, Optional, Union from torch import device as Device, dtype as Dtype, Tensor from torch.nn import Module class TensorCheckpoint(NamedTuple): values: Tensor device: Optional[Device] = None dtype: Optional[Dtype] = None @contextmanager def delattr_ctx( instance: object, *attrs: str, enforce_hasattr: bool = False ) -> Generator[None, None, None]: r"""Contextmanager for temporarily deleting attributes.""" try: cache = {} for key in attrs: if hasattr(instance, key): cache[key] = getattr(instance, key) delattr(instance, key) elif enforce_hasattr: raise ValueError( f"Attribute {key} missing from {type(instance)} instance." ) yield finally: for key, cached_val in cache.items(): setattr(instance, key, cached_val) @contextmanager def requires_grad_ctx( module: Module, assignments: Dict[str, bool] ) -> Generator[None, None, None]: r"""Contextmanager for temporarily setting the requires_grad field of a module's parameters.""" try: cache = {} for name, mode in assignments.items(): parameter = module.get_parameter(name) cache[name] = parameter.requires_grad parameter.requires_grad_(mode) yield finally: for name, mode in cache.items(): module.get_parameter(name).requires_grad_(mode) @contextmanager def parameter_rollback_ctx( parameters: Dict[str, Tensor], checkpoint: Optional[Dict[str, TensorCheckpoint]] = None, **tkwargs: Any, ) -> Generator[Dict[str, TensorCheckpoint], None, None]: r"""Contextmanager that exits by rolling back a module's state_dict. Args: module: Module instance. name_filter: Optional Boolean function used to filter items by name. checkpoint: Optional cache of values and tensor metadata specifying the rollback state for the module (or some subset thereof). **tkwargs: Keyword arguments passed to `torch.Tensor.to` when copying data from each tensor in `module.state_dict()` to the internally created checkpoint. Only adhered to when the `checkpoint` argument is None. Yields: A dictionary of TensorCheckpoints for the module's state_dict. Any in-places changes to the checkpoint will be observed at rollback time. If the checkpoint is cleared, no rollback will occur. """ # Create copies of the orginal values if checkpoint is None: checkpoint = { name: TensorCheckpoint( values=param.detach().to(**tkwargs).clone(), device=param.device, dtype=param.dtype, ) for name, param in parameters.items() } try: # yield the checkpoint dictionary to the user yield checkpoint finally: # restore original values of tracked parameters if checkpoint: for name, param in parameters.items(): if name in checkpoint: values, device, dtype = checkpoint[name] param.data.copy_(values.to(device=device, dtype=dtype)) @contextmanager def module_rollback_ctx( module: Module, name_filter: Optional[Callable[[str], bool]] = None, checkpoint: Optional[Dict[str, TensorCheckpoint]] = None, **tkwargs: Any, ) -> Generator[Dict[str, TensorCheckpoint], None, None]: r"""Contextmanager that exits by rolling back a module's state_dict. Args: module: Module instance. name_filter: Optional Boolean function used to filter items by name. checkpoint: Optional cache of values and tensor metadata specifying the rollback state for the module (or some subset thereof). **tkwargs: Keyword arguments passed to `torch.Tensor.to` when copying data from each tensor in `module.state_dict()` to the internally created checkpoint. Only adhered to when the `checkpoint` argument is None. Yields: A dictionary of TensorCheckpoints for the module's state_dict. Any in-places changes to the checkpoint will be observed at rollback time. If the checkpoint is cleared, no rollback will occur. """ # Create copies of the orginal values if checkpoint is None: checkpoint = { name: TensorCheckpoint( values=values.detach().to(**tkwargs).clone(), device=values.device, dtype=values.dtype, ) for name, values in module.state_dict().items() if name_filter is None or name_filter(name) } try: # yield the checkpoint dictionary to the user yield checkpoint finally: # restore original values of tracked parameters if checkpoint: state_dict = module.state_dict() for key, (values, device, dtype) in checkpoint.items(): tnsr = state_dict.get(key) if tnsr is None: state_dict[key] = values.to(device=device, dtype=dtype) else: tnsr[...] = values.to(device=device, dtype=dtype) module.load_state_dict(state_dict) @contextmanager def zero_grad_ctx( parameters: Union[Dict[str, Tensor], Iterable[Tensor]], zero_on_enter: bool = True, zero_on_exit: bool = False, ) -> Generator[None, None, None]: def zero_() -> None: for param in ( parameters.values() if isinstance(parameters, dict) else parameters ): if param.grad is not None: param.grad.zero_() if zero_on_enter: zero_() try: yield finally: if zero_on_exit: zero_()
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. r""" Utilities for MC and qMC sampling. References .. [Trikalinos2014polytope] T. A. Trikalinos and G. van Valkenhoef. Efficient sampling from uniform density n-polytopes. Technical report, Brown University, 2014. """ from __future__ import annotations from abc import ABC, abstractmethod from contextlib import contextmanager from typing import Any, Generator, Iterable, List, Optional, Tuple, TYPE_CHECKING import numpy as np import scipy import torch from botorch.exceptions.errors import BotorchError from botorch.sampling.qmc import NormalQMCEngine from botorch.utils.transforms import unnormalize from scipy.spatial import Delaunay, HalfspaceIntersection from torch import LongTensor, Tensor from torch.quasirandom import SobolEngine if TYPE_CHECKING: from botorch.sampling.pathwise.paths import SamplePath # pragma: no cover @contextmanager def manual_seed(seed: Optional[int] = None) -> Generator[None, None, None]: r"""Contextmanager for manual setting the torch.random seed. Args: seed: The seed to set the random number generator to. Returns: Generator Example: >>> with manual_seed(1234): >>> X = torch.rand(3) """ old_state = torch.random.get_rng_state() try: if seed is not None: torch.random.manual_seed(seed) yield finally: if seed is not None: torch.random.set_rng_state(old_state) def draw_sobol_samples( bounds: Tensor, n: int, q: int, batch_shape: Optional[Iterable[int], torch.Size] = None, seed: Optional[int] = None, ) -> Tensor: r"""Draw qMC samples from the box defined by bounds. Args: bounds: A `2 x d` dimensional tensor specifying box constraints on a `d`-dimensional space, where bounds[0, :] and bounds[1, :] correspond to lower and upper bounds, respectively. n: The number of (q-batch) samples. As a best practice, use powers of 2. q: The size of each q-batch. batch_shape: The batch shape of the samples. If given, returns samples of shape `n x batch_shape x q x d`, where each batch is an `n x q x d`-dim tensor of qMC samples. seed: The seed used for initializing Owen scrambling. If None (default), use a random seed. Returns: A `n x batch_shape x q x d`-dim tensor of qMC samples from the box defined by bounds. Example: >>> bounds = torch.stack([torch.zeros(3), torch.ones(3)]) >>> samples = draw_sobol_samples(bounds, 16, 2) """ batch_shape = batch_shape or torch.Size() batch_size = int(torch.prod(torch.tensor(batch_shape))) d = bounds.shape[-1] lower = bounds[0] rng = bounds[1] - bounds[0] sobol_engine = SobolEngine(q * d, scramble=True, seed=seed) samples_raw = sobol_engine.draw(batch_size * n, dtype=lower.dtype) samples_raw = samples_raw.view(*batch_shape, n, q, d).to(device=lower.device) if batch_shape != torch.Size(): samples_raw = samples_raw.permute(-3, *range(len(batch_shape)), -2, -1) return lower + rng * samples_raw def draw_sobol_normal_samples( d: int, n: int, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None, seed: Optional[int] = None, ) -> Tensor: r"""Draw qMC samples from a multi-variate standard normal N(0, I_d). A primary use-case for this functionality is to compute an QMC average of f(X) over X where each element of X is drawn N(0, 1). Args: d: The dimension of the normal distribution. n: The number of samples to return. As a best practice, use powers of 2. device: The torch device. dtype: The torch dtype. seed: The seed used for initializing Owen scrambling. If None (default), use a random seed. Returns: A tensor of qMC standard normal samples with dimension `n x d` with device and dtype specified by the input. Example: >>> samples = draw_sobol_normal_samples(2, 16) """ normal_qmc_engine = NormalQMCEngine(d=d, seed=seed, inv_transform=True) samples = normal_qmc_engine.draw(n, dtype=torch.float if dtype is None else dtype) return samples.to(device=device) def sample_hypersphere( d: int, n: int = 1, qmc: bool = False, seed: Optional[int] = None, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None, ) -> Tensor: r"""Sample uniformly from a unit d-sphere. Args: d: The dimension of the hypersphere. n: The number of samples to return. qmc: If True, use QMC Sobol sampling (instead of i.i.d. uniform). seed: If provided, use as a seed for the RNG. device: The torch device. dtype: The torch dtype. Returns: An `n x d` tensor of uniform samples from from the d-hypersphere. Example: >>> sample_hypersphere(d=5, n=10) """ dtype = torch.float if dtype is None else dtype if d == 1: rnd = torch.randint(0, 2, (n, 1), device=device, dtype=dtype) return 2 * rnd - 1 if qmc: rnd = draw_sobol_normal_samples(d=d, n=n, device=device, dtype=dtype, seed=seed) else: with manual_seed(seed=seed): rnd = torch.randn(n, d, dtype=dtype) samples = rnd / torch.linalg.norm(rnd, dim=-1, keepdim=True) if device is not None: samples = samples.to(device) return samples def sample_simplex( d: int, n: int = 1, qmc: bool = False, seed: Optional[int] = None, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None, ) -> Tensor: r"""Sample uniformly from a d-simplex. Args: d: The dimension of the simplex. n: The number of samples to return. qmc: If True, use QMC Sobol sampling (instead of i.i.d. uniform). seed: If provided, use as a seed for the RNG. device: The torch device. dtype: The torch dtype. Returns: An `n x d` tensor of uniform samples from from the d-simplex. Example: >>> sample_simplex(d=3, n=10) """ dtype = torch.float if dtype is None else dtype if d == 1: return torch.ones(n, 1, device=device, dtype=dtype) if qmc: sobol_engine = SobolEngine(d - 1, scramble=True, seed=seed) rnd = sobol_engine.draw(n, dtype=dtype) else: with manual_seed(seed=seed): rnd = torch.rand(n, d - 1, dtype=dtype) srnd, _ = torch.sort(rnd, dim=-1) zeros = torch.zeros(n, 1, dtype=dtype) ones = torch.ones(n, 1, dtype=dtype) srnd = torch.cat([zeros, srnd, ones], dim=-1) if device is not None: srnd = srnd.to(device) return srnd[..., 1:] - srnd[..., :-1] def sample_polytope( A: Tensor, b: Tensor, x0: Tensor, n: int = 10000, n0: int = 100, seed: Optional[int] = None, ) -> Tensor: r""" Hit and run sampler from uniform sampling points from a polytope, described via inequality constraints A*x<=b. Args: A: A Tensor describing inequality constraints so that all samples satisfy Ax<=b. b: A Tensor describing the inequality constraints so that all samples satisfy Ax<=b. x0: A `d`-dim Tensor representing a starting point of the chain satisfying the constraints. n: The number of resulting samples kept in the output. n0: The number of burn-in samples. The chain will produce n+n0 samples but the first n0 samples are not saved. seed: The seed for the sampler. If omitted, use a random seed. Returns: (n, d) dim Tensor containing the resulting samples. """ n_tot = n + n0 seed = seed if seed is not None else torch.randint(0, 1000000, (1,)).item() with manual_seed(seed=seed): rands = torch.rand(n_tot, dtype=A.dtype, device=A.device) # pre-sample samples from hypersphere d = x0.size(0) # uniform samples from unit ball in d dims Rs = sample_hypersphere( d=d, n=n_tot, dtype=A.dtype, device=A.device, seed=seed ).unsqueeze(-1) # compute matprods in batch ARs = (A @ Rs).squeeze(-1) out = torch.empty(n, A.size(-1), dtype=A.dtype, device=A.device) x = x0.clone() for i, (ar, r, rnd) in enumerate(zip(ARs, Rs, rands)): # given x, the next point in the chain is x+alpha*r # it also satisfies A(x+alpha*r)<=b which implies A*alpha*r<=b-Ax # so alpha<=(b-Ax)/ar for ar>0, and alpha>=(b-Ax)/ar for ar<0. # b - A @ x is always >= 0, clamping for numerical tolerances w = (b - A @ x).squeeze().clamp(min=0.0) / ar pos = w >= 0 alpha_max = w[pos].min() # important to include equality here in cases x is at the boundary # of the polytope neg = w <= 0 alpha_min = w[neg].max() # alpha~Unif[alpha_min, alpha_max] alpha = alpha_min + rnd * (alpha_max - alpha_min) x = x + alpha * r if i >= n0: # save samples after burn-in period out[i - n0] = x.squeeze() return out def batched_multinomial( weights: Tensor, num_samples: int, replacement: bool = False, generator: Optional[torch.Generator] = None, out: Optional[Tensor] = None, ) -> LongTensor: r"""Sample from multinomial with an arbitrary number of batch dimensions. Args: weights: A `batch_shape x num_categories` tensor of weights. For each batch index `i, j, ...`, this functions samples from a multinomial with `input` `weights[i, j, ..., :]`. Note that the weights need not sum to one, but must be non-negative, finite and have a non-zero sum. num_samples: The number of samples to draw for each batch index. Must be smaller than `num_categories` if `replacement=False`. replacement: If True, samples are drawn with replacement. generator: A a pseudorandom number generator for sampling. out: The output tensor (optional). If provided, must be of size `batch_shape x num_samples`. Returns: A `batch_shape x num_samples` tensor of samples. This is a thin wrapper around `torch.multinomial` that allows weight (`input`) tensors with an arbitrary number of batch dimensions (`torch.multinomial` only allows a single batch dimension). The calling signature is the same as for `torch.multinomial`. Example: >>> weights = torch.rand(2, 3, 10) >>> samples = batched_multinomial(weights, 4) # shape is 2 x 3 x 4 """ batch_shape, n_categories = weights.shape[:-1], weights.size(-1) flat_samples = torch.multinomial( input=weights.view(-1, n_categories), num_samples=num_samples, replacement=replacement, generator=generator, out=None if out is None else out.view(-1, num_samples), ) return flat_samples.view(*batch_shape, num_samples) def _convert_bounds_to_inequality_constraints(bounds: Tensor) -> Tuple[Tensor, Tensor]: r"""Convert bounds into inequality constraints of the form Ax <= b. Args: bounds: A `2 x d`-dim tensor of bounds Returns: A two-element tuple containing - A: A `2d x d`-dim tensor of coefficients - b: A `2d x 1`-dim tensor containing the right hand side """ d = bounds.shape[-1] eye = torch.eye(d, dtype=bounds.dtype, device=bounds.device) lower, upper = bounds lower_finite, upper_finite = bounds.isfinite() A = torch.cat([-eye[lower_finite], eye[upper_finite]], dim=0) b = torch.cat([-lower[lower_finite], upper[upper_finite]], dim=0).unsqueeze(-1) return A, b def find_interior_point( A: np.ndarray, b: np.ndarray, A_eq: Optional[np.ndarray] = None, b_eq: Optional[np.ndarray] = None, ) -> np.ndarray: r"""Find an interior point of a polytope via linear programming. Args: A: A `n_ineq x d`-dim numpy array containing the coefficients of the constraint inequalities. b: A `n_ineq x 1`-dim numpy array containing the right hand sides of the constraint inequalities. A_eq: A `n_eq x d`-dim numpy array containing the coefficients of the constraint equalities. b_eq: A `n_eq x 1`-dim numpy array containing the right hand sides of the constraint equalities. Returns: A `d`-dim numpy array containing an interior point of the polytope. This function will raise a ValueError if there is no such point. This method solves the following Linear Program: min -s subject to A @ x <= b - 2 * s, s >= 0, A_eq @ x = b_eq In case the polytope is unbounded, then it will also constrain the slack variable `s` to `s<=1`. """ # augment inequality constraints: A @ (x, s) <= b d = A.shape[-1] ncon = A.shape[-2] + 1 c = np.zeros(d + 1) c[-1] = -1 b_ub = np.zeros(ncon) b_ub[:-1] = b.reshape(-1) A_ub = np.zeros((ncon, d + 1)) A_ub[:-1, :-1] = A A_ub[:-1, -1] = 2.0 A_ub[-1, -1] = -1.0 result = scipy.optimize.linprog( c=c, A_ub=A_ub, b_ub=b_ub, A_eq=A_eq, b_eq=b_eq, bounds=(None, None), method="highs", ) if result.status == 3: # problem is unbounded - to find a bounded solution we constrain the # slack variable `s` to `s <= 1.0`. A_s = np.concatenate([np.zeros((1, d)), np.ones((1, 1))], axis=-1) A_ub = np.concatenate([A_ub, A_s], axis=0) b_ub = np.concatenate([b_ub, np.ones(1)], axis=-1) result = scipy.optimize.linprog( c=c, A_ub=A_ub, b_ub=b_ub, A_eq=A_eq, b_eq=b_eq, bounds=(None, None), method="highs", ) if result.status == 2: raise ValueError( "No feasible point found. Constraint polytope appears empty. " + "Check your constraints." ) elif result.status > 0: raise ValueError( "Problem checking constraint specification. " + "linprog status: {}".format(result.message) ) # the x in the result is really (x, s) return result.x[:-1] class PolytopeSampler(ABC): r""" Base class for samplers that sample points from a polytope. :meta private: """ def __init__( self, inequality_constraints: Optional[Tuple[Tensor, Tensor]] = None, equality_constraints: Optional[Tuple[Tensor, Tensor]] = None, bounds: Optional[Tensor] = None, interior_point: Optional[Tensor] = None, ) -> None: r""" Args: inequality_constraints: Tensors `(A, b)` describing inequality constraints `A @ x <= b`, where `A` is a `n_ineq_con x d`-dim Tensor and `b` is a `n_ineq_con x 1`-dim Tensor, with `n_ineq_con` the number of inequalities and `d` the dimension of the sample space. equality_constraints: Tensors `(C, d)` describing the equality constraints `C @ x = d`, where `C` is a `n_eq_con x d`-dim Tensor and `d` is a `n_eq_con x 1`-dim Tensor with `n_eq_con` the number of equalities. bounds: A `2 x d`-dim tensor of box bounds, where `inf` (`-inf`) means that the respective dimension is unbounded above (below). interior_point: A `d x 1`-dim Tensor presenting a point in the (relative) interior of the polytope. If omitted, determined automatically by solving a Linear Program. """ if inequality_constraints is None: if bounds is None: raise BotorchError( "PolytopeSampler requires either inequality constraints or bounds." ) A = torch.empty( 0, bounds.shape[-1], dtype=bounds.dtype, device=bounds.device ) b = torch.empty(0, 1, dtype=bounds.dtype, device=bounds.device) else: A, b = inequality_constraints if bounds is not None: # add inequality constraints for bounds # TODO: make sure there are not deduplicate constraints A2, b2 = _convert_bounds_to_inequality_constraints(bounds=bounds) A = torch.cat([A, A2], dim=0) b = torch.cat([b, b2], dim=0) self.A = A self.b = b self.equality_constraints = equality_constraints if equality_constraints is not None: self.C, self.d = equality_constraints U, S, Vh = torch.linalg.svd(self.C) r = torch.nonzero(S).size(0) # rank of matrix C self.nullC = Vh[r:, :].transpose(-1, -2) # orthonormal null space of C, # satisfying # C @ nullC = 0 and nullC.T @ nullC = I # using the change of variables x=x0+nullC*y, # sample y satisfies A*nullC*y<=b-A*x0. # the linear constraint is automatically satisfied as x0 satisfies it. else: self.C = None self.d = None self.nullC = torch.eye( self.A.size(-1), dtype=self.A.dtype, device=self.A.device ) self.new_A = self.A @ self.nullC # doesn't depend on the initial point # initial point for the original, not transformed, problem if interior_point is not None: if self.feasible(interior_point): self.x0 = interior_point else: raise ValueError("The given input point is not feasible.") else: self.x0 = self.find_interior_point() def feasible(self, x: Tensor) -> bool: r"""Check whether a point is contained in the polytope. Args: x: A `d x 1`-dim Tensor. Returns: True if `x` is contained inside the polytope (incl. its boundary), False otherwise. """ ineq = (self.A @ x - self.b <= 0).all() if self.equality_constraints is not None: eq = (self.C @ x - self.d == 0).all() return ineq & eq return ineq def find_interior_point(self) -> Tensor: r"""Find an interior point of the polytope. Returns: A `d x 1`-dim Tensor representing a point contained in the polytope. This function will raise a ValueError if there is no such point. """ if self.equality_constraints: # equality constraints: A_eq * (x, s) = b_eq A_eq = np.zeros((self.C.size(0), self.C.size(-1) + 1)) A_eq[:, :-1] = self.C.cpu().numpy() b_eq = self.d.cpu().numpy() else: A_eq = None b_eq = None x0 = find_interior_point( A=self.A.cpu().numpy(), b=self.b.cpu().numpy(), A_eq=A_eq, b_eq=b_eq ) return torch.from_numpy(x0).to(self.A).unsqueeze(-1) # -------- Abstract methods to be implemented by subclasses -------- # @abstractmethod def draw(self, n: int = 1, seed: Optional[int] = None) -> Tensor: r"""Draw samples from the polytope. Args: n: The number of samples. seed: The random seed. Returns: A `n x d` Tensor of samples from the polytope. """ pass # pragma: no cover class HitAndRunPolytopeSampler(PolytopeSampler): r"""A sampler for sampling from a polyope using a hit-and-run algorithm.""" def __init__( self, inequality_constraints: Optional[Tuple[Tensor, Tensor]] = None, equality_constraints: Optional[Tuple[Tensor, Tensor]] = None, bounds: Optional[Tensor] = None, interior_point: Optional[Tensor] = None, n_burnin: int = 0, ) -> None: r"""A sampler for sampling from a polyope using a hit-and-run algorithm. Args: inequality_constraints: Tensors `(A, b)` describing inequality constraints `A @ x <= b`, where `A` is a `n_ineq_con x d`-dim Tensor and `b` is a `n_ineq_con x 1`-dim Tensor, with `n_ineq_con` the number of inequalities and `d` the dimension of the sample space. equality_constraints: Tensors `(C, d)` describing the equality constraints `C @ x = d`, where `C` is a `n_eq_con x d`-dim Tensor and `d` is a `n_eq_con x 1`-dim Tensor with `n_eq_con` the number of equalities. bounds: A `2 x d`-dim tensor of box bounds, where `inf` (`-inf`) means that the respective dimension is unbounded from above (below). interior_point: A `d x 1`-dim Tensor representing a point in the (relative) interior of the polytope. If omitted, determined automatically by solving a Linear Program. n_burnin: The number of burn in samples. """ super().__init__( inequality_constraints=inequality_constraints, equality_constraints=equality_constraints, bounds=bounds, interior_point=interior_point, ) self.n_burnin = n_burnin def draw(self, n: int = 1, seed: Optional[int] = None) -> Tensor: r"""Draw samples from the polytope. Args: n: The number of samples. seed: The random seed. Returns: A `n x d` Tensor of samples from the polytope. """ transformed_samples = sample_polytope( # run this on the cpu A=self.new_A.cpu(), b=(self.b - self.A @ self.x0).cpu(), x0=torch.zeros((self.nullC.size(1), 1), dtype=self.A.dtype), n=n, n0=self.n_burnin, seed=seed, ).to(self.b) init_shift = self.x0.transpose(-1, -2) samples = init_shift + transformed_samples @ self.nullC.transpose(-1, -2) # keep the last element of the resulting chain as # the beginning of the next chain self.x0 = samples[-1].reshape(-1, 1) # reset counter so there is no burn-in for subsequent samples self.n_burnin = 0 return samples class DelaunayPolytopeSampler(PolytopeSampler): r"""A polytope sampler using Delaunay triangulation. This sampler first enumerates the vertices of the constraint polytope and then uses a Delaunay triangulation to tesselate its convex hull. The sampling happens in two stages: 1. First, we sample from the set of hypertriangles generated by the Delaunay triangulation (i.e. which hyper-triangle to draw the sample from) with probabilities proportional to the triangle volumes. 2. Then, we sample uniformly from the chosen hypertriangle by sampling uniformly from the unit simplex of the appropriate dimension, and then computing the convex combination of the vertices of the hypertriangle according to that draw from the simplex. The best reference (not exactly the same, but functionally equivalent) is [Trikalinos2014polytope]_. A simple R implementation is available at https://github.com/gertvv/tesselample. """ def __init__( self, inequality_constraints: Optional[Tuple[Tensor, Tensor]] = None, equality_constraints: Optional[Tuple[Tensor, Tensor]] = None, bounds: Optional[Tensor] = None, interior_point: Optional[Tensor] = None, ) -> None: r"""Initialize DelaunayPolytopeSampler. Args: inequality_constraints: Tensors `(A, b)` describing inequality constraints `A @ x <= b`, where `A` is a `n_ineq_con x d`-dim Tensor and `b` is a `n_ineq_con x 1`-dim Tensor, with `n_ineq_con` the number of inequalities and `d` the dimension of the sample space. equality_constraints: Tensors `(C, d)` describing the equality constraints `C @ x = d`, where `C` is a `n_eq_con x d`-dim Tensor and `d` is a `n_eq_con x 1`-dim Tensor with `n_eq_con` the number of equalities. bounds: A `2 x d`-dim tensor of box bounds, where `inf` (`-inf`) means that the respective dimension is unbounded from above (below). interior_point: A `d x 1`-dim Tensor representing a point in the (relative) interior of the polytope. If omitted, determined automatically by solving a Linear Program. Warning: The vertex enumeration performed in this algorithm can become extremely costly if there are a large number of inequalities. Similarly, the triangulation can get very expensive in high dimensions. Only use this algorithm for moderate dimensions / moderately complex constraint sets. An alternative is the `HitAndRunPolytopeSampler`. """ super().__init__( inequality_constraints=inequality_constraints, equality_constraints=equality_constraints, bounds=bounds, interior_point=interior_point, ) # shift coordinate system to be anchored at x0 new_b = self.b - self.A @ self.x0 if self.new_A.shape[-1] < 2: # if the polytope is in dim 1 (i.e. a line segment) Qhull won't work tshlds = new_b / self.new_A neg = self.new_A < 0 self.y_min = tshlds[neg].max() self.y_max = tshlds[~neg].min() self.dim = 1 else: # Qhull expects inputs of the form A @ x + b <= 0, so we need to negate here halfspaces = torch.cat([self.new_A, -new_b], dim=-1).cpu().numpy() vertices = HalfspaceIntersection( halfspaces=halfspaces, interior_point=np.zeros(self.new_A.shape[-1]) ).intersections self.dim = vertices.shape[-1] try: delaunay = Delaunay(vertices) except ValueError as e: if "Points cannot contain NaN" in str(e): raise ValueError("Polytope is unbounded.") raise e # pragma: no cover polytopes = torch.from_numpy( np.array([delaunay.points[s] for s in delaunay.simplices]), ).to(self.A) volumes = torch.stack([torch.det(p[1:] - p[0]).abs() for p in polytopes]) self._polytopes = polytopes self._p = volumes / volumes.sum() def draw(self, n: int = 1, seed: Optional[int] = None) -> Tensor: r"""Draw samples from the polytope. Args: n: The number of samples. seed: The random seed. Returns: A `n x d` Tensor of samples from the polytope. """ if self.dim == 1: with manual_seed(seed): e = torch.rand(n, 1, device=self.new_A.device, dtype=self.new_A.dtype) transformed_samples = self.y_min + (self.y_max - self.y_min) * e else: if seed is None: generator = None else: generator = torch.Generator(device=self.A.device) generator.manual_seed(seed) index_rvs = torch.multinomial( self._p, num_samples=n, replacement=True, generator=generator, ) simplex_rvs = sample_simplex( d=self.dim + 1, n=n, seed=seed, device=self.A.device, dtype=self.A.dtype ) transformed_samples = torch.stack( [rv @ self._polytopes[idx] for rv, idx in zip(simplex_rvs, index_rvs)] ) init_shift = self.x0.transpose(-1, -2) samples = init_shift + transformed_samples @ self.nullC.transpose(-1, -2) return samples def normalize_linear_constraints( bounds: Tensor, constraints: List[Tuple[Tensor, Tensor, float]] ) -> List[Tuple[Tensor, Tensor, float]]: r"""Normalize linear constraints to the unit cube. Args: bounds (Tensor): A `2 x d`-dim tensor containing the box bounds. constraints (List[Tuple[Tensor, Tensor, float]]): A list of tuples (indices, coefficients, rhs), with each tuple encoding an inequality constraint of the form `\sum_i (X[indices[i]] * coefficients[i]) >= rhs` or `\sum_i (X[indices[i]] * coefficients[i]) = rhs`. """ new_constraints = [] for index, coefficient, rhs in constraints: lower, upper = bounds[:, index] s = upper - lower new_constraints.append( (index, s * coefficient, (rhs - torch.dot(coefficient, lower)).item()) ) return new_constraints def get_polytope_samples( n: int, bounds: Tensor, inequality_constraints: Optional[List[Tuple[Tensor, Tensor, float]]] = None, equality_constraints: Optional[List[Tuple[Tensor, Tensor, float]]] = None, seed: Optional[int] = None, thinning: int = 32, n_burnin: int = 10_000, ) -> Tensor: r"""Sample from polytope defined by box bounds and (in)equality constraints. This uses a hit-and-run Markov chain sampler. TODO: make this method return the sampler object, to avoid doing burn-in every time we draw samples. Args: n: The number of samples. bounds: A `2 x d`-dim tensor containing the box bounds. inequality constraints: A list of tuples (indices, coefficients, rhs), with each tuple encoding an inequality constraint of the form `\sum_i (X[indices[i]] * coefficients[i]) >= rhs`. equality constraints: A list of tuples (indices, coefficients, rhs), with each tuple encoding an inequality constraint of the form `\sum_i (X[indices[i]] * coefficients[i]) = rhs`. seed: The random seed. thinning: The amount of thinning. n_burnin: The number of burn-in samples for the Markov chain sampler. Returns: A `n x d`-dim tensor of samples. """ # create tensors representing linear inequality constraints # of the form Ax >= b. if inequality_constraints: # normalize_linear_constraints is called to solve this issue: # https://github.com/pytorch/botorch/issues/1225 constraints = normalize_linear_constraints(bounds, inequality_constraints) A, b = sparse_to_dense_constraints( d=bounds.shape[-1], constraints=constraints, ) # Note the inequality constraints are of the form Ax >= b, # but PolytopeSampler expects inequality constraints of the # form Ax <= b, so we multiply by -1 below. dense_inequality_constraints = -A, -b else: dense_inequality_constraints = None if equality_constraints: constraints = normalize_linear_constraints(bounds, equality_constraints) dense_equality_constraints = sparse_to_dense_constraints( d=bounds.shape[-1], constraints=constraints ) else: dense_equality_constraints = None normalized_bounds = torch.zeros_like(bounds) normalized_bounds[1, :] = 1.0 polytope_sampler = HitAndRunPolytopeSampler( bounds=normalized_bounds, inequality_constraints=dense_inequality_constraints, equality_constraints=dense_equality_constraints, n_burnin=n_burnin, ) samples = polytope_sampler.draw(n=n * thinning, seed=seed)[::thinning] return bounds[0] + samples * (bounds[1] - bounds[0]) def sparse_to_dense_constraints( d: int, constraints: List[Tuple[Tensor, Tensor, float]], ) -> Tuple[Tensor, Tensor]: r"""Convert parameter constraints from a sparse format into a dense format. This method converts sparse triples of the form (indices, coefficients, rhs) to constraints of the form Ax >= b or Ax = b. Args: d: The input dimension. inequality constraints: A list of tuples (indices, coefficients, rhs), with each tuple encoding an (in)equality constraint of the form `\sum_i (X[indices[i]] * coefficients[i]) >= rhs` or `\sum_i (X[indices[i]] * coefficients[i]) = rhs`. Returns: A two-element tuple containing: - A: A `n_constraints x d`-dim tensor of coefficients. - b: A `n_constraints x 1`-dim tensor of right hand sides. """ _t = constraints[0][1] A = torch.zeros(len(constraints), d, dtype=_t.dtype, device=_t.device) b = torch.zeros(len(constraints), 1, dtype=_t.dtype, device=_t.device) for i, (indices, coefficients, rhs) in enumerate(constraints): A[i, indices.long()] = coefficients b[i] = rhs return A, b def optimize_posterior_samples( paths: SamplePath, bounds: Tensor, candidates: Optional[Tensor] = None, raw_samples: Optional[int] = 1024, num_restarts: int = 20, maximize: bool = True, **kwargs: Any, ) -> Tuple[Tensor, Tensor]: r"""Cheaply maximizes posterior samples by random querying followed by vanilla gradient descent on the best num_restarts points. Args: paths: Random Fourier Feature-based sample paths from the GP bounds: The bounds on the search space. candidates: A priori good candidates (typically previous design points) which acts as extra initial guesses for the optimization routine. raw_samples: The number of samples with which to query the samples initially. num_restarts: The number of points selected for gradient-based optimization. maximize: Boolean indicating whether to maimize or minimize Returns: A two-element tuple containing: - X_opt: A `num_optima x [batch_size] x d`-dim tensor of optimal inputs x*. - f_opt: A `num_optima x [batch_size] x 1`-dim tensor of optimal outputs f*. """ if maximize: def path_func(x): return paths(x) else: def path_func(x): return -paths(x) candidate_set = unnormalize( SobolEngine(dimension=bounds.shape[1], scramble=True).draw(raw_samples), bounds ) # queries all samples on all candidates - output shape # raw_samples * num_optima * num_models candidate_queries = path_func(candidate_set) argtop_k = torch.topk(candidate_queries, num_restarts, dim=-1).indices X_top_k = candidate_set[argtop_k, :] # to avoid circular import, the import occurs here from botorch.generation.gen import gen_candidates_torch X_top_k, f_top_k = gen_candidates_torch( X_top_k, path_func, lower_bounds=bounds[0], upper_bounds=bounds[1], **kwargs ) f_opt, arg_opt = f_top_k.max(dim=-1, keepdim=True) # For each sample (and possibly for every model in the batch of models), this # retrieves the argmax. We flatten, pick out the indices and then reshape to # the original batch shapes (so instead of pickig out the argmax of a # (3, 7, num_restarts, D)) along the num_restarts dim, we pick it out of a # (21 , num_restarts, D) final_shape = candidate_queries.shape[:-1] X_opt = X_top_k.reshape(final_shape.numel(), num_restarts, -1)[ torch.arange(final_shape.numel()), arg_opt.flatten() ].reshape(*final_shape, -1) if not maximize: f_opt = -f_opt return X_opt, f_opt
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. r""" Helpers for handling input or outcome constraints. """ from __future__ import annotations from functools import partial from typing import Callable, List, Optional, Tuple import torch from torch import Tensor def get_outcome_constraint_transforms( outcome_constraints: Optional[Tuple[Tensor, Tensor]] ) -> Optional[List[Callable[[Tensor], Tensor]]]: r"""Create outcome constraint callables from outcome constraint tensors. Args: outcome_constraints: A tuple of `(A, b)`. For `k` outcome constraints and `m` outputs at `f(x)``, `A` is `k x m` and `b` is `k x 1` such that `A f(x) <= b`. Returns: A list of callables, each mapping a Tensor of size `b x q x m` to a tensor of size `b x q`, where `m` is the number of outputs of the model. Negative values imply feasibility. The callables support broadcasting (e.g. for calling on a tensor of shape `mc_samples x b x q x m`). Example: >>> # constrain `f(x)[0] <= 0` >>> A = torch.tensor([[1., 0.]]) >>> b = torch.tensor([[0.]]) >>> outcome_constraints = get_outcome_constraint_transforms((A, b)) """ if outcome_constraints is None: return None A, b = outcome_constraints def _oc(a: Tensor, rhs: Tensor, Y: Tensor) -> Tensor: r"""Evaluate constraints. Note: einsum multiples Y by a and sums over the `m`-dimension. Einsum is ~2x faster than using `(Y * a.view(1, 1, -1)).sum(dim-1)`. Args: a: `m`-dim tensor of weights for the outcomes rhs: Singleton tensor containing the outcome constraint value Y: `... x b x q x m` tensor of function values Returns: A `... x b x q`-dim tensor where negative values imply feasibility """ lhs = torch.einsum("...m, m", [Y, a]) return lhs - rhs return [partial(_oc, a, rhs) for a, rhs in zip(A, b)] def get_monotonicity_constraints( d: int, descending: bool = False, dtype: Optional[torch.dtype] = None, device: Optional[torch.device] = None, ) -> Tuple[Tensor, Tensor]: """Returns a system of linear inequalities `(A, b)` that generically encodes order constraints on the elements of a `d`-dimsensional space, i.e. `A @ x < b` implies `x[i] < x[i + 1]` for a `d`-dimensional vector `x`. Idea: Could encode `A` as sparse matrix, if it is supported well. Args: d: Dimensionality of the constraint space, i.e. number of monotonic parameters. descending: If True, forces the elements of a vector to be monotonically de- creasing and be monotonically increasing otherwise. dtype: The dtype of the returned Tensors. device: The device of the returned Tensors. Returns: A tuple of Tensors `(A, b)` representing the monotonicity constraint as a system of linear inequalities `A @ x < b`. `A` is `(d - 1) x d`-dimensional and `b` is `(d - 1) x 1`-dimensional. """ A = torch.zeros(d - 1, d, dtype=dtype, device=device) idx = torch.arange(d - 1) A[idx, idx] = 1 A[idx, idx + 1] = -1 b = torch.zeros(d - 1, 1, dtype=dtype, device=device) if descending: A = -A return A, b