python_code
stringlengths
0
229k
from torchbenchmark.tasks import NLP from torchbenchmark.util.framework.huggingface.model_factory import HuggingFaceModel class Model(HuggingFaceModel): task = NLP.LANGUAGE_MODELING DEFAULT_TRAIN_BSIZE = 8 DEFAULT_EVAL_BSIZE = 1 def __init__(self, test, device, batch_size=None, extra_args=[]): super().__init__(name="hf_Albert", test=test, device=device, batch_size=batch_size, extra_args=extra_args)
import subprocess import sys import os from torchbenchmark.util.framework.huggingface.patch_hf import patch_transformers, cache_model def pip_install_requirements(): subprocess.check_call([sys.executable, '-m', 'pip', 'install', '-q', '-r', 'requirements.txt']) if __name__ == '__main__': pip_install_requirements() patch_transformers() model_name = os.path.basename(os.path.dirname(os.path.abspath(__file__))) cache_model(model_name)
from torchbenchmark.util.framework.timm.model_factory import TimmModel from torchbenchmark.tasks import COMPUTER_VISION class Model(TimmModel): task = COMPUTER_VISION.CLASSIFICATION DEFAULT_TRAIN_BSIZE = 32 DEFAULT_EVAL_BSIZE = 64 def __init__(self, test, device, batch_size=None, extra_args=[]): super().__init__(test=test, model_name='efficientnet_b0', device=device, batch_size=batch_size, extra_args=extra_args)
""" Maskrcnn model from torchvision """ import torch import os import itertools import random import numpy as np from ...util.model import BenchmarkModel from torchbenchmark.tasks import COMPUTER_VISION from pathlib import Path from typing import Tuple # Model specific imports import torchvision from .coco_utils import ConvertCocoPolysToMask from torchvision.datasets.coco import CocoDetection # silence some spam from pycocotools import coco coco.print = lambda *args: None torch.backends.cudnn.deterministic = False torch.backends.cudnn.benchmark = False CURRENT_DIR = Path(os.path.dirname(os.path.realpath(__file__))) DATA_DIR = os.path.join(CURRENT_DIR.parent.parent, "data", ".data", "coco2017-minimal") assert os.path.exists(DATA_DIR), "Couldn't find coco2017 minimal data dir, please run install.py again." COCO_DATA_KEY = "coco_2017_val_100" COCO_DATA = { "coco_2017_val_100": ("coco/val2017", "coco/annotations/instances_val2017_100.json") } def _collate_fn(batch): return tuple(zip(*batch)) def _prefetch(loader, device): items = [] for images, targets in loader: images = list(image.to(device) for image in images) targets = [{k: v.to(device) for k, v in t.items()} for t in targets] items.append((images, targets)) return items class Model(BenchmarkModel): task = COMPUTER_VISION.DETECTION # MaskRCNN doesn't actually take the inputs in batches; it takes a list # of tensors which individually are CHW DEFAULT_TRAIN_BSIZE = 1 DEFAULT_EVAL_BSIZE = 1 NUM_OF_BATCHES = 1 ALLOW_CUSTOMIZE_BSIZE = False def __init__(self, test, device, batch_size=None, extra_args=[], model_kwargs={}): # reduce the eval batch size when running on CPU # see: https://github.com/pytorch/benchmark/issues/895 if device == "cpu": self.DEFAULT_EVAL_BSIZE = 1 super().__init__(test=test, device=device, batch_size=batch_size, extra_args=extra_args) self.model = torchvision.models.detection.maskrcnn_resnet50_fpn( weights=torchvision.models.detection.MaskRCNN_ResNet50_FPN_Weights.COCO_V1, **model_kwargs ).to(self.device) # setup optimizer # optimizer parameters copied from # https://github.com/pytorch/vision/blob/30f4d108319b0cd28ae5662947e300aad98c32e9/references/detection/train.py#L77 lr = 0.02 momentum = 0.9 weight_decay = 1e-4 params = [p for p in self.model.parameters() if p.requires_grad] self.optimizer = torch.optim.SGD(params, lr=lr, momentum=momentum, weight_decay=weight_decay) transforms = ConvertCocoPolysToMask() dataset = CocoDetection(root=os.path.join(DATA_DIR, COCO_DATA[COCO_DATA_KEY][0]), annFile=os.path.join(DATA_DIR, COCO_DATA[COCO_DATA_KEY][1]), transforms=transforms) sampler = torch.utils.data.SequentialSampler(dataset) self.data_loader = _prefetch(torch.utils.data.DataLoader(dataset, batch_size=self.batch_size, sampler=sampler, collate_fn=_collate_fn), self.device) def get_module(self): self.model.eval() for (example_inputs, _example_targets) in self.data_loader: return self.model, (example_inputs, ) def train(self): self.model.train() for _batch_id, (images, targets) in zip(range(self.NUM_OF_BATCHES), self.data_loader): # images = list(image.to(self.device) for image in images) # targets = [{k: v.to(self.device) for k, v in t.items()} for t in targets] loss_dict = self.model(images, targets) losses = sum(loss for loss in loss_dict.values()) self.optimizer.zero_grad() losses.backward() self.optimizer.step() def eval(self) -> Tuple[torch.Tensor]: self.model.eval() with torch.no_grad(): for _batch_id, (images, _targets) in zip(range(self.NUM_OF_BATCHES), self.data_loader): out = self.model(images) out = list(map(lambda x: x.values(), out)) return tuple(itertools.chain(*out))
import sys import subprocess from utils import s3_utils def pip_install_requirements(): subprocess.check_call([sys.executable, '-m', 'pip', 'install', '-q', '-r', 'requirements.txt']) if __name__ == '__main__': s3_utils.checkout_s3_data("INPUT_TARBALLS", "coco2017-minimal.tar.gz", decompress=True) pip_install_requirements()
import torch from pycocotools import mask as coco_mask from torchvision.transforms import functional as F def convert_coco_poly_to_mask(segmentations, height, width): masks = [] for polygons in segmentations: rles = coco_mask.frPyObjects(polygons, height, width) mask = coco_mask.decode(rles) if len(mask.shape) < 3: mask = mask[..., None] mask = torch.as_tensor(mask, dtype=torch.uint8) mask = mask.any(dim=2) masks.append(mask) if masks: masks = torch.stack(masks, dim=0) else: masks = torch.zeros((0, height, width), dtype=torch.uint8) return masks class ConvertCocoPolysToMask: def __call__(self, image, target): w, h = image.size image_id = target[0]["image_id"] if target else [] image_id = torch.tensor([image_id]) anno = target anno = [obj for obj in anno if obj["iscrowd"] == 0] boxes = [obj["bbox"] for obj in anno] # guard against no boxes via resizing boxes = torch.as_tensor(boxes, dtype=torch.float32).reshape(-1, 4) boxes[:, 2:] += boxes[:, :2] boxes[:, 0::2].clamp_(min=0, max=w) boxes[:, 1::2].clamp_(min=0, max=h) classes = [obj["category_id"] for obj in anno] classes = torch.tensor(classes, dtype=torch.int64) segmentations = [obj["segmentation"] for obj in anno] masks = convert_coco_poly_to_mask(segmentations, h, w) keypoints = None if anno and "keypoints" in anno[0]: keypoints = [obj["keypoints"] for obj in anno] keypoints = torch.as_tensor(keypoints, dtype=torch.float32) num_keypoints = keypoints.shape[0] if num_keypoints: keypoints = keypoints.view(num_keypoints, -1, 3) keep = (boxes[:, 3] > boxes[:, 1]) & (boxes[:, 2] > boxes[:, 0]) boxes = boxes[keep] classes = classes[keep] masks = masks[keep] if keypoints is not None: keypoints = keypoints[keep] target = {} target["boxes"] = boxes target["labels"] = classes target["masks"] = masks target["image_id"] = image_id if keypoints is not None: target["keypoints"] = keypoints # for conversion to coco api area = torch.tensor([obj["area"] for obj in anno]) iscrowd = torch.tensor([obj["iscrowd"] for obj in anno]) target["area"] = area target["iscrowd"] = iscrowd # Convert image from PIL to tensor image = F.pil_to_tensor(image) image = F.convert_image_dtype(image) return image, target
import os import logging import torch from pathlib import Path from contextlib import suppress # TorchBench imports from torchbenchmark.util.model import BenchmarkModel from torchbenchmark.tasks import COMPUTER_VISION # effdet imports from effdet import create_model, create_loader from effdet.data import resolve_input_config # timm imports from timm.models.layers import set_layer_config from timm.optim import create_optimizer from timm.utils import ModelEmaV2, NativeScaler from timm.scheduler import create_scheduler # local imports from .args import get_args from .train import train_epoch, validate from .loader import create_datasets_and_loaders from torch.utils._pytree import tree_map from typing import Tuple # setup coco2017 input path CURRENT_DIR = Path(os.path.dirname(os.path.realpath(__file__))) DATA_DIR = os.path.join(CURRENT_DIR.parent.parent, "data", ".data", "coco2017-minimal", "coco") def prefetch(loader, device, num_of_batches): prefetched_loader = [] for _bid, (input, target) in zip(range(num_of_batches), loader): prefetched_loader.append((tree_map(lambda x: x.to(device, dtype=torch.float32) if isinstance(x, torch.Tensor) else x, input), tree_map(lambda x: x.to(device, dtype=torch.float32) if isinstance(x, torch.Tensor) else x, target))) return prefetched_loader class Model(BenchmarkModel): task = COMPUTER_VISION.DETECTION # Original Train batch size 32 on 2x RTX 3090 (24 GB cards) # Downscale to batch size 16 on single GPU DEFAULT_TRAIN_BSIZE = 16 DEFAULT_EVAL_BSIZE = 128 # prefetch only 1 batch NUM_OF_BATCHES = 1 def __init__(self, test, device, batch_size=None, extra_args=[]): super().__init__(test=test, device=device, batch_size=batch_size, extra_args=extra_args) if not device == "cuda": # Only implemented on CUDA because the original model code explicitly calls the `Tensor.cuda()` API # https://github.com/rwightman/efficientdet-pytorch/blob/9cb43186711d28bd41f82f132818c65663b33c1f/effdet/data/loader.py#L114 raise NotImplementedError("The original model code forces the use of CUDA.") # generate arguments args = get_args() # setup train and eval batch size args.batch_size = self.batch_size # Disable distributed args.distributed = False args.device = self.device args.torchscript = False args.world_size = 1 args.rank = 0 args.pretrained_backbone = not args.no_pretrained_backbone args.prefetcher = not args.no_prefetcher args.root = DATA_DIR with set_layer_config(scriptable=args.torchscript): timm_extra_args = {} if args.img_size is not None: timm_extra_args = dict(image_size=(args.img_size, args.img_size)) if test == "train": model = create_model( model_name=args.model, bench_task='train', num_classes=args.num_classes, pretrained=args.pretrained, pretrained_backbone=args.pretrained_backbone, redundant_bias=args.redundant_bias, label_smoothing=args.smoothing, legacy_focal=args.legacy_focal, jit_loss=args.jit_loss, soft_nms=args.soft_nms, bench_labeler=args.bench_labeler, checkpoint_path=args.initial_checkpoint, ) elif test == "eval": model = create_model( model_name=args.model, bench_task='predict', num_classes=args.num_classes, pretrained=args.pretrained, redundant_bias=args.redundant_bias, soft_nms=args.soft_nms, checkpoint_path=args.checkpoint, checkpoint_ema=args.use_ema, **timm_extra_args, ) model_config = model.config # grab before we obscure with DP/DDP wrappers self.model = model.to(device) if args.channels_last: self.model = self.model.to(memory_format=torch.channels_last) self.loader_train, self.loader_eval, self.evaluator, _, dataset_eval = create_datasets_and_loaders(args, model_config) self.amp_autocast = suppress if test == "train": self.optimizer = create_optimizer(args, model) self.loss_scaler = None self.model_ema = None if args.model_ema: # Important to create EMA model after cuda(), DP wrapper, and AMP but before SyncBN and DDP wrapper self.model_ema = ModelEmaV2(model, decay=args.model_ema_decay) self.lr_scheduler, self.num_epochs = create_scheduler(args, self.optimizer) if model_config.num_classes < self.loader_train.dataset.parser.max_label: logging.error( f'Model {model_config.num_classes} has fewer classes than dataset {self.loader_train.dataset.parser.max_label}.') exit(1) if model_config.num_classes > self.loader_train.dataset.parser.max_label: logging.warning( f'Model {model_config.num_classes} has more classes than dataset {self.loader_train.dataset.parser.max_label}.') self.loader_train = prefetch(self.loader_train, self.device, self.NUM_OF_BATCHES) self.loader_eval = prefetch(self.loader_eval, self.device, self.NUM_OF_BATCHES) self.loader = self.loader_train elif test == "eval": # Create eval loader input_config = resolve_input_config(args, model_config) self.loader = create_loader( dataset_eval, input_size=input_config['input_size'], batch_size=args.batch_size, use_prefetcher=args.prefetcher, interpolation=args.eval_interpolation, fill_color=input_config['fill_color'], mean=input_config['mean'], std=input_config['std'], num_workers=args.workers, pin_mem=args.pin_mem) self.loader = prefetch(self.loader, self.device, self.NUM_OF_BATCHES) self.args = args # Only run 1 epoch self.num_epochs = 1 def get_module(self): for _, (input, target) in zip(range(self.NUM_OF_BATCHES), self.loader): return self.model, (input, target) def get_optimizer(self): return self.optimizer def set_optimizer(self, optimizer) -> None: self.optimizer = optimizer self.lr_scheduler, self.num_epochs = create_scheduler(args, self.optimizer) def enable_amp(self): if self.device == "cuda": self.amp_autocast = torch.cuda.amp.autocast elif self.device == "cpu": self.amp_autocast = torch.cpu.amp.autocast self.loss_scaler = NativeScaler() def train(self): eval_metric = self.args.eval_metric for epoch in range(self.num_epochs): train_metrics = train_epoch( epoch, self.model, self.loader_train, self.optimizer, self.args, lr_scheduler=self.lr_scheduler, amp_autocast = self.amp_autocast, loss_scaler=self.loss_scaler, model_ema=self.model_ema, num_batch=self.NUM_OF_BATCHES, ) # TorchBench: skip validation step in train # the overhead of evaluating with coco style datasets is fairly high, so just ema or non, not both # if self.model_ema is not None: # eval_metrics = validate(self.model_ema.module, self.loader_eval, self.args, self.evaluator, log_suffix=' (EMA)', num_batch=self.NUM_OF_BATCHES) # else: # eval_metrics = validate(self.model, self.loader_eval, self.args, self.evaluator, num_batch=self.NUM_OF_BATCHES) # if self.lr_scheduler is not None: # # step LR for next epoch # self.lr_scheduler.step(epoch + 1, eval_metrics[eval_metric]) def eval(self) -> Tuple[torch.Tensor]: with torch.no_grad(): for input, target in self.loader: with self.amp_autocast(): output = self.model(input, img_info=target) self.evaluator.add_predictions(output, target) return (output, )
from effdet.data import resolve_input_config, SkipSubset from effdet import create_loader, create_dataset, create_evaluator from effdet.anchors import Anchors, AnchorLabeler from effdet.data.dataset_config import CocoCfg from dataclasses import dataclass, field from typing import Dict @dataclass class Coco2017MinimalCfg(CocoCfg): variant: str = '2017-minimal' splits: Dict[str, dict] = field(default_factory=lambda: dict( train=dict(ann_filename='annotations/instances_val2017_100.json', img_dir='val2017', has_labels=True), val=dict(ann_filename='annotations/instances_val2017_100.json', img_dir='val2017', has_labels=True), )) def create_datasets_and_loaders( args, model_config, transform_train_fn=None, transform_eval_fn=None, collate_fn=None, ): """ Setup datasets, transforms, loaders, evaluator. Args: args: Command line args / config for training model_config: Model specific configuration dict / struct transform_train_fn: Override default image + annotation transforms (see note in loaders.py) transform_eval_fn: Override default image + annotation transforms (see note in loaders.py) collate_fn: Override default fast collate function Returns: Train loader, validation loader, evaluator """ input_config = resolve_input_config(args, model_config=model_config) dataset_train, dataset_eval = create_dataset(args.dataset, args.root, custom_dataset_cfg=Coco2017MinimalCfg()) # setup labeler in loader/collate_fn if not enabled in the model bench labeler = None if not args.bench_labeler: labeler = AnchorLabeler( Anchors.from_config(model_config), model_config.num_classes, match_threshold=0.5) loader_train = create_loader( dataset_train, input_size=input_config['input_size'], batch_size=args.batch_size, is_training=True, use_prefetcher=args.prefetcher, re_prob=args.reprob, re_mode=args.remode, re_count=args.recount, # color_jitter=args.color_jitter, # auto_augment=args.aa, interpolation=args.train_interpolation or input_config['interpolation'], fill_color=input_config['fill_color'], mean=input_config['mean'], std=input_config['std'], num_workers=args.workers, distributed=args.distributed, pin_mem=args.pin_mem, anchor_labeler=labeler, transform_fn=transform_train_fn, collate_fn=collate_fn, ) if args.val_skip > 1: dataset_eval = SkipSubset(dataset_eval, args.val_skip) loader_eval = create_loader( dataset_eval, input_size=input_config['input_size'], batch_size=args.batch_size, is_training=False, use_prefetcher=args.prefetcher, interpolation=input_config['interpolation'], fill_color=input_config['fill_color'], mean=input_config['mean'], std=input_config['std'], num_workers=args.workers, distributed=args.distributed, pin_mem=args.pin_mem, anchor_labeler=labeler, transform_fn=transform_eval_fn, collate_fn=collate_fn, ) evaluator = create_evaluator(args.dataset, loader_eval.dataset, distributed=args.distributed, pred_yxyx=False) return loader_train, loader_eval, evaluator, dataset_train, dataset_eval
import torch from collections import OrderedDict from contextlib import suppress from timm.utils import AverageMeter, reduce_tensor def train_epoch( epoch, model, loader, optimizer, args, lr_scheduler=None, saver=None, output_dir='', amp_autocast=suppress, loss_scaler=None, model_ema=None, num_batch=1): # batch_time_m = AverageMeter() # data_time_m = AverageMeter() losses_m = AverageMeter() model.train() # end = time.time() last_idx = len(loader) - 1 num_updates = epoch * len(loader) for batch_idx, (input, target) in zip(range(num_batch), loader): last_batch = batch_idx == last_idx # data_time_m.update(time.time() - end) if args.channels_last: input = input.contiguous(memory_format=torch.channels_last) with amp_autocast(): output = model(input, target) loss = output['loss'] if not args.distributed: losses_m.update(loss.item(), input.size(0)) optimizer.zero_grad() if loss_scaler is not None: loss_scaler(loss, optimizer, clip_grad=args.clip_grad, parameters=model.parameters()) else: loss.backward() if args.clip_grad: torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip_grad) optimizer.step() torch.cuda.synchronize() if model_ema is not None: model_ema.update(model) num_updates += 1 # batch_time_m.update(time.time() - end) if last_batch or batch_idx % args.log_interval == 0: lrl = [param_group['lr'] for param_group in optimizer.param_groups] lr = sum(lrl) / len(lrl) # if args.distributed: # reduced_loss = reduce_tensor(loss.data, args.world_size) # losses_m.update(reduced_loss.item(), input.size(0)) # # if args.local_rank == 0: # logging.info( # 'Train: {} [{:>4d}/{} ({:>3.0f}%)] ' # 'Loss: {loss.val:>9.6f} ({loss.avg:>6.4f}) ' # 'Time: {batch_time.val:.3f}s, {rate:>7.2f}/s ' # '({batch_time.avg:.3f}s, {rate_avg:>7.2f}/s) ' # 'LR: {lr:.3e} ' # 'Data: {data_time.val:.3f} ({data_time.avg:.3f})'.format( # epoch, # batch_idx, len(loader), # 100. * batch_idx / last_idx, # loss=losses_m, # batch_time=batch_time_m, # rate=input.size(0) * args.world_size / batch_time_m.val, # rate_avg=input.size(0) * args.world_size / batch_time_m.avg, # lr=lr, # data_time=data_time_m)) # if args.save_images and output_dir: # torchvision.utils.save_image( # input, # os.path.join(output_dir, 'train-batch-%d.jpg' % batch_idx), # padding=0, # normalize=True) # if saver is not None and args.recovery_interval and ( # last_batch or (batch_idx + 1) % args.recovery_interval == 0): # saver.save_recovery(epoch, batch_idx=batch_idx) if lr_scheduler is not None: lr_scheduler.step_update(num_updates=num_updates, metric=losses_m.avg) # end = time.time() # end for if hasattr(optimizer, 'sync_lookahead'): optimizer.sync_lookahead() return OrderedDict([('loss', losses_m.avg)]) def validate(model, loader, args, evaluator=None, log_suffix='', num_batch=1): # batch_time_m = AverageMeter() losses_m = AverageMeter() model.eval() # end = time.time() # last_idx = len(loader) - 1 with torch.no_grad(): for batch_idx, (input, target) in zip(range(num_batch), loader): # last_batch = batch_idx == last_idx output = model(input, target) loss = output['loss'] if evaluator is not None: evaluator.add_predictions(output['detections'], target) if args.distributed: reduced_loss = reduce_tensor(loss.data, args.world_size) else: reduced_loss = loss.data torch.cuda.synchronize() losses_m.update(reduced_loss.item(), input.size(0)) # batch_time_m.update(time.time() - end) # end = time.time() # if args.local_rank == 0 and (last_batch or batch_idx % args.log_interval == 0): # log_name = 'Test' + log_suffix # logging.info( # '{0}: [{1:>4d}/{2}] ' # 'Time: {batch_time.val:.3f} ({batch_time.avg:.3f}) ' # 'Loss: {loss.val:>7.4f} ({loss.avg:>6.4f}) '.format( # log_name, batch_idx, last_idx, batch_time=batch_time_m, loss=losses_m)) metrics = OrderedDict([('loss', losses_m.avg)]) if evaluator is not None: metrics['map'] = evaluator.evaluate() return metrics
import yaml import argparse from timm.utils import add_bool_arg def get_args(config_file=None): def _parse_args(): if config_file: with open(config_file, 'r') as f: cfg = yaml.safe_load(f) parser.set_defaults(**cfg) # There may be remaining unrecognized options # The main arg parser parses the rest of the args, the usual # defaults will have been overridden if config file specified. args, _ = parser.parse_known_args() # Cache the args as a text string to save them in the output dir later args_text = yaml.safe_dump(args.__dict__, default_flow_style=False) return args, args_text # The first arg parser parses out only the --config argument, this argument is used to # load a yaml file containing key-values that override the defaults for the main parser below parser = argparse.ArgumentParser(description='Training Config', add_help=False) parser.add_argument('-c', '--config', default='', type=str, metavar='FILE', help='YAML config file specifying default arguments') parser = argparse.ArgumentParser(description='PyTorch ImageNet Training') # Dataset / Model parameters # parser.add_argument('root', metavar='DIR', # help='path to dataset') parser.add_argument('--dataset', default='coco', type=str, metavar='DATASET', help='Name of dataset to train (default: "coco"') parser.add_argument('--model', default='tf_efficientdet_d1', type=str, metavar='MODEL', help='Name of model to train (default: "tf_efficientdet_d1"') add_bool_arg(parser, 'redundant-bias', default=None, help='override model config for redundant bias') add_bool_arg(parser, 'soft-nms', default=None, help='override model config for soft-nms') parser.add_argument('--val-skip', type=int, default=0, metavar='N', help='Skip every N validation samples.') parser.add_argument('--num-classes', type=int, default=None, metavar='N', help='Override num_classes in model config if set. For fine-tuning from pretrained.') parser.add_argument('--pretrained', action='store_true', default=False, help='Start with pretrained version of specified network (if avail)') parser.add_argument('--no-pretrained-backbone', action='store_true', default=False, help='Do not start with pretrained backbone weights, fully random.') parser.add_argument('--initial-checkpoint', default='', type=str, metavar='PATH', help='Initialize model from this checkpoint (default: none)') parser.add_argument('--resume', default='', type=str, metavar='PATH', help='Resume full model and optimizer state from checkpoint (default: none)') parser.add_argument('--no-resume-opt', action='store_true', default=False, help='prevent resume of optimizer state when resuming model') parser.add_argument('--mean', type=float, nargs='+', default=None, metavar='MEAN', help='Override mean pixel value of dataset') parser.add_argument('--std', type=float, nargs='+', default=None, metavar='STD', help='Override std deviation of of dataset') parser.add_argument('--interpolation', default='', type=str, metavar='NAME', help='Image resize interpolation type (overrides model)') parser.add_argument('--fill-color', default=None, type=str, metavar='NAME', help='Image augmentation fill (background) color ("mean" or int)') parser.add_argument('--batch-size', type=int, default=32, metavar='N', help='input batch size for training (default: 32)') parser.add_argument('--clip-grad', type=float, default=10.0, metavar='NORM', help='Clip gradient norm (default: 10.0)') # Optimizer parameters parser.add_argument('--opt', default='momentum', type=str, metavar='OPTIMIZER', help='Optimizer (default: "momentum"') parser.add_argument('--opt-eps', default=1e-3, type=float, metavar='EPSILON', help='Optimizer Epsilon (default: 1e-3)') parser.add_argument('--momentum', type=float, default=0.9, metavar='M', help='SGD momentum (default: 0.9)') parser.add_argument('--weight-decay', type=float, default=4e-5, help='weight decay (default: 0.00004)') # Learning rate schedule parameters parser.add_argument('--sched', default='cosine', type=str, metavar='SCHEDULER', help='LR scheduler (default: "step"') parser.add_argument('--lr', type=float, default=0.01, metavar='LR', help='learning rate (default: 0.01)') parser.add_argument('--lr-noise', type=float, nargs='+', default=None, metavar='pct, pct', help='learning rate noise on/off epoch percentages') parser.add_argument('--lr-noise-pct', type=float, default=0.67, metavar='PERCENT', help='learning rate noise limit percent (default: 0.67)') parser.add_argument('--lr-noise-std', type=float, default=1.0, metavar='STDDEV', help='learning rate noise std-dev (default: 1.0)') parser.add_argument('--lr-cycle-mul', type=float, default=1.0, metavar='MULT', help='learning rate cycle len multiplier (default: 1.0)') parser.add_argument('--lr-cycle-limit', type=int, default=1, metavar='N', help='learning rate cycle limit') parser.add_argument('--warmup-lr', type=float, default=0.0001, metavar='LR', help='warmup learning rate (default: 0.0001)') parser.add_argument('--min-lr', type=float, default=1e-5, metavar='LR', help='lower lr bound for cyclic schedulers that hit 0 (1e-5)') parser.add_argument('--epochs', type=int, default=300, metavar='N', help='number of epochs to train (default: 2)') parser.add_argument('--start-epoch', default=None, type=int, metavar='N', help='manual epoch number (useful on restarts)') parser.add_argument('--decay-epochs', type=float, default=30, metavar='N', help='epoch interval to decay LR') parser.add_argument('--warmup-epochs', type=int, default=5, metavar='N', help='epochs to warmup LR, if scheduler supports') parser.add_argument('--cooldown-epochs', type=int, default=10, metavar='N', help='epochs to cooldown LR at min_lr, after cyclic schedule ends') parser.add_argument('--patience-epochs', type=int, default=10, metavar='N', help='patience epochs for Plateau LR scheduler (default: 10') parser.add_argument('--decay-rate', '--dr', type=float, default=0.1, metavar='RATE', help='LR decay rate (default: 0.1)') # Augmentation parameters parser.add_argument('--color-jitter', type=float, default=0.4, metavar='PCT', help='Color jitter factor (default: 0.4)') parser.add_argument('--aa', type=str, default=None, metavar='NAME', help='Use AutoAugment policy. "v0" or "original". (default: None)'), parser.add_argument('--reprob', type=float, default=0., metavar='PCT', help='Random erase prob (default: 0.)') parser.add_argument('--remode', type=str, default='pixel', help='Random erase mode (default: "pixel")') parser.add_argument('--recount', type=int, default=1, help='Random erase count (default: 1)') parser.add_argument('--train-interpolation', type=str, default='random', help='Training interpolation (random, bilinear, bicubic default: "random")') # loss parser.add_argument('--smoothing', type=float, default=None, help='override model config label smoothing') add_bool_arg(parser, 'jit-loss', default=None, help='override model config for torchscript jit loss fn') add_bool_arg(parser, 'legacy-focal', default=None, help='override model config to use legacy focal loss') # Model Exponential Moving Average parser.add_argument('--model-ema', action='store_true', default=False, help='Enable tracking moving average of model weights') parser.add_argument('--model-ema-decay', type=float, default=0.9998, help='decay factor for model weights moving average (default: 0.9998)') # Misc parser.add_argument('--sync-bn', action='store_true', help='Enable NVIDIA Apex or Torch synchronized BatchNorm.') parser.add_argument('--dist-bn', type=str, default='', help='Distribute BatchNorm stats between nodes after each epoch ("broadcast", "reduce", or "")') parser.add_argument('--seed', type=int, default=42, metavar='S', help='random seed (default: 42)') parser.add_argument('--log-interval', type=int, default=50, metavar='N', help='how many batches to wait before logging training status') parser.add_argument('--recovery-interval', type=int, default=0, metavar='N', help='how many batches to wait before writing recovery checkpoint') parser.add_argument('-j', '--workers', type=int, default=0, metavar='N', help='how many training processes to use (default: 0)') parser.add_argument('--save-images', action='store_true', default=False, help='save images of input bathes every log interval for debugging') parser.add_argument('--amp', action='store_true', default=False, help='use NVIDIA Apex AMP or Native AMP for mixed precision training') parser.add_argument('--apex-amp', action='store_true', default=False, help='Use NVIDIA Apex AMP mixed precision') parser.add_argument('--native-amp', action='store_true', default=False, help='Use Native Torch AMP mixed precision') parser.add_argument('--channels-last', action='store_true', default=False, help='Use channels_last memory layout') parser.add_argument('--pin-mem', action='store_true', default=False, help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.') parser.add_argument('--no-prefetcher', action='store_true', default=False, help='disable fast prefetcher') parser.add_argument('--torchscript', dest='torchscript', action='store_true', help='convert model torchscript for inference') add_bool_arg(parser, 'bench-labeler', default=False, help='label targets in model bench, increases GPU load at expense of loader processes') parser.add_argument('--output', default='', type=str, metavar='PATH', help='path to output folder (default: none, current dir)') parser.add_argument('--eval-metric', default='map', type=str, metavar='EVAL_METRIC', help='Best metric (default: "map"') parser.add_argument('--tta', type=int, default=0, metavar='N', help='Test/inference time augmentation (oversampling) factor. 0=None (default: 0)') parser.add_argument("--local_rank", default=0, type=int) # Evaluation parameters parser.add_argument('--eval-interpolation', default='bilinear', type=str, metavar='NAME', help='Image resize interpolation type (overrides model)') parser.add_argument('--img-size', default=None, type=int, metavar='N', help='Input image dimension, uses model default if empty') parser.add_argument('--checkpoint', default='', type=str, metavar='PATH', help='path to latest checkpoint (default: none)') parser.add_argument('--use-ema', dest='use_ema', action='store_true', help='use ema version of weights if present') args, _ = _parse_args() return args
import os import sys import patch from pathlib import Path import subprocess from utils import s3_utils def patch_effdet(): import effdet current_dir = os.path.dirname(os.path.abspath(__file__)) patch_file = os.path.join(current_dir, "effdet.patch") target_dir = os.path.dirname(effdet.__file__) p = patch.fromfile(patch_file) if not p.apply(strip=1, root=target_dir): print("Failed to patch effdet. Exit.") exit(1) def patch_pycocotools(): import pycocotools current_dir = os.path.dirname(os.path.abspath(__file__)) patch_file = os.path.join(current_dir, "pycocotools.patch") target_dir = os.path.dirname(os.path.abspath(pycocotools.__file__)) p = patch.fromfile(patch_file) if not p.apply(strip=1, root=target_dir): print("Failed to patch pycocotools. Exit.") exit(1) def pip_install_requirements(): subprocess.check_call([sys.executable, '-m', 'pip', 'install', '-q', '-r', 'requirements.txt']) if __name__ == '__main__': s3_utils.checkout_s3_data("INPUT_TARBALLS", "coco2017-minimal.tar.gz", decompress=True) pip_install_requirements() patch_effdet() patch_pycocotools()
import os import torch from torch.distributed._tensor import DeviceMesh from torch.distributed.tensor.parallel import parallelize_module from torch.distributed.tensor.parallel.style import ColwiseParallel, RowwiseParallel from torchbenchmark.tasks import NLP from ...util.model import BenchmarkModel from .model import LLaMA class Model(BenchmarkModel): task = NLP.GENERATION DEFAULT_EVAL_BSIZE = 1 def validate_environment(self): if not torch.cuda.is_available() or "cuda" not in self.device: return NotImplementedError("Model requires CUDA") if not torch.cuda.is_bf16_supported(): return NotImplementedError("Model requires BF16") if not hasattr(self, "_world_size"): return NotImplementedError("Model needs to be run via dynamo torchbench and be provided distributed parameters") if self._world_size != torch.cuda.device_count(): return NotImplementedError( f"DTensor and all local GPUs to be within the device mesh. {torch.cuda.device_count()} local GPUs, but only world size is only {self._world_size}" ) return None def __init__(self, test, device, batch_size=None, extra_args=[]): super().__init__( test=test, device=device, batch_size=batch_size, extra_args=extra_args, ) error = self.validate_environment() if error: raise error self.model = LLaMA.from_name("7B", self._world_size).to(device=device, dtype=torch.bfloat16) # Tensor parallelism using DTensor mesh = DeviceMesh("cuda", list(range(self._world_size))) for block in self.model.transformer.h: # prepare attention weights to be parallelized block.attn.prepare_qkv_for_dtensor_tp() parallelize_module( module=block, device_mesh=mesh, parallelize_plan={ "attn.c_attn_q": ColwiseParallel(), "attn.c_attn_k": ColwiseParallel(), "attn.c_attn_v": ColwiseParallel(), "attn.c_proj": RowwiseParallel(), "mlp.c_fc1": ColwiseParallel(), "mlp.c_fc2": ColwiseParallel(), "mlp.c_proj": RowwiseParallel(), }, tp_mesh_dim=0, ) max_batch_size = self.DEFAULT_EVAL_BSIZE self.model.setup_caches( max_batch_size=max_batch_size, max_seq_length=self.model.config.block_size ) prompt_size = 10 idx = torch.randint( self.model.config.vocab_size, (max_batch_size, prompt_size), dtype=torch.int32, device=device, ) input_pos = torch.arange(prompt_size, device=device) self.example_inputs = [idx, input_pos] def get_module(self): return self.model, self.example_inputs def train(self): raise NotImplementedError("Training not supported for this model") def eval(self): raise NotImplementedError("Model needs to be run via dynamo torchbench and be provided distributed parameters")
"""Full definition of a LLaMA Language Model, all of it in this single file. Based on the nanoGPT implementation: https://github.com/karpathy/nanoGPT. """ # mypy: ignore-errors import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union from typing_extensions import Self import torch import torch.nn as nn from torch.nn import functional as F MaskCache = torch.Tensor RoPECache = torch.Tensor KVCache = Tuple[torch.Tensor, torch.Tensor] def find_multiple(n: int, k: int) -> int: if n % k == 0: return n return n + k - (n % k) class LinearInt8(torch.nn.Module): __constants__ = ['in_features', 'out_features'] in_features: int out_features: int weight: torch.Tensor def __init__(self, in_features: int, out_features: int, bias: bool = True, device=None, dtype=None) -> None: factory_kwargs = {'device': device, 'dtype': dtype} super().__init__() self.in_features = in_features self.out_features = out_features self.register_buffer("weight", torch.empty((out_features, in_features), dtype=torch.int8)) # if bias: # self.register_buffer("bias", torch.empty(out_features, **factory_kwargs, dtype=torch.int8)) # else: # self.bias('bias', None) def forward(self, input: torch.Tensor) -> torch.Tensor: return F.linear(input, self.weight.to(dtype=input.dtype)) # nn.Linear = LinearInt8 @dataclass class LLaMAConfig: block_size: int = 2048 vocab_size: int = 32000 padded_vocab_size: Optional[int] = None n_layer: int = 32 n_head: int = 32 n_embd: int = 4096 def __post_init__(self): if self.padded_vocab_size is None: self.padded_vocab_size = find_multiple(self.vocab_size, 64) @classmethod def from_name(cls, name: str) -> Self: return cls(**llama_configs[name]) llama_configs = { "7B": dict(n_layer=32, n_head=32, n_embd=4096), "13B": dict(n_layer=40, n_head=40, n_embd=5120), "30B": dict(n_layer=60, n_head=52, n_embd=6656), "65B": dict(n_layer=80, n_head=64, n_embd=8192), } class KVCache(nn.Module): @torch.no_grad() def __init__(self, max_batch_size, max_seq_length, n_heads, head_size, device='cuda', dtype=torch.bfloat16): super().__init__() cache_shape = (max_batch_size, n_heads, max_seq_length, head_size) self.k_cache = torch.nn.Parameter(torch.zeros(cache_shape, device=device, dtype=dtype)) self.v_cache = torch.nn.Parameter(torch.zeros(cache_shape, device=device, dtype=dtype)) @torch.no_grad() def update(self, input_pos, k_val, v_val): # input_pos: [S], k_val: [B, H, S, D] assert input_pos.shape[0] == k_val.shape[2] self.k_cache[:, :, input_pos] = k_val self.v_cache[:, :, input_pos] = v_val return self.k_cache, self.v_cache class KVCacheAggregator(nn.Module): def __init__(self): super().__init__() self.kv_caches = nn.ModuleList([]) def initialize(self,layers, max_batch_size, max_seq_length, n_heads, head_size, device='cuda', dtype=torch.bfloat16): cache_shape = (max_batch_size, n_heads, max_seq_length, head_size) self.kv_caches = nn.ModuleList([KVCache(max_batch_size, max_seq_length, n_heads, head_size) for _ in range(layers)]) def __getitem__(self, idx): return self.kv_caches[idx] def clear(self): self.kv_caches = nn.ParameterList([]) class LLaMA(nn.Module): def __init__(self, config: LLaMAConfig, world_size: int) -> None: super().__init__() self.world_size = world_size assert config.padded_vocab_size is not None self.config = config self.lm_head = nn.Linear(config.n_embd, config.padded_vocab_size, bias=False) self.transformer = nn.ModuleDict( dict( wte=nn.Embedding(config.padded_vocab_size, config.n_embd), h=nn.ModuleList(Block(config, self.world_size) for _ in range(config.n_layer)), ln_f=RMSNorm(config.n_embd), ) ) self.rope_cache: Optional[RoPECache] = None self.mask_cache: Optional[MaskCache] = None self.kv_caches = KVCacheAggregator() self.max_batch_size = None self.max_seq_length = None def setup_caches(self, max_batch_size, max_seq_length, device='cuda', dtype=torch.bfloat16): n_embd = self.config.n_embd // self.world_size n_head = self.config.n_head // self.world_size head_size = n_embd // n_head self.max_seq_length = max_seq_length self.max_batch_size = max_batch_size self.kv_caches.initialize(layers=self.config.n_layer, max_batch_size=max_batch_size, max_seq_length=max_seq_length, n_heads=n_head, head_size=head_size) self.rope_cache = build_rope_cache( seq_len=self.config.block_size, n_elem=head_size, dtype=dtype, device=device, ) ones = torch.ones((self.config.block_size, self.config.block_size), device=device, dtype=torch.bool) self.mask_cache = torch.tril(ones).unsqueeze(0).unsqueeze(0) def _init_weights(self, module: nn.Module) -> None: if isinstance(module, nn.Linear): torch.nn.init.normal_(module.weight, mean=0.0, std=0.02 / math.sqrt(2 * self.config.n_layer)) elif isinstance(module, nn.Embedding): torch.nn.init.normal_(module.weight, mean=0.0, std=0.02 / math.sqrt(2 * self.config.n_layer)) def forward( self, idx: torch.Tensor, input_pos: Optional[torch.Tensor] = None ) -> Union[torch.Tensor, Tuple[torch.Tensor, List[KVCache]]]: B, T = idx.size() assert self.rope_cache is not None, "Caches must be initialized first" block_size = self.config.block_size max_seq_length = self.max_seq_length if max_seq_length is None: max_seq_length = block_size assert T <= max_seq_length, f"Cannot forward sequence of length {T}, max seq length is only {max_seq_length}" assert max_seq_length <= block_size, f"Cannot attend to {max_seq_length}, block size is only {block_size}" assert T <= block_size, f"Cannot forward sequence of length {T}, block size is only {block_size}" rope = self.rope_cache.index_select(0, input_pos) mask = self.mask_cache.index_select(2, input_pos) mask = mask[:, :, :, :max_seq_length] # forward the model itself x = self.transformer.wte(idx) # token embeddings of shape (b, t, n_embd) for i, block in enumerate(self.transformer.h): x, new_kv_cache = block(x, rope, mask, max_seq_length, input_pos, self.kv_caches[i]) x = self.transformer.ln_f(x) logits = self.lm_head(x) # (b, t, vocab_size) return logits @classmethod def from_name(cls, name: str, world_size: int) -> Self: return cls(LLaMAConfig.from_name(name), world_size) def reset_cache(self) -> None: self.kv_caches.clear() class Block(nn.Module): def __init__(self, config: LLaMAConfig, world_size: int) -> None: super().__init__() self.rms_1 = RMSNorm(config.n_embd) self.attn = CausalSelfAttention(config, world_size) self.rms_2 = RMSNorm(config.n_embd) self.mlp = MLP(config) def forward( self, x: torch.Tensor, rope: RoPECache, mask: MaskCache, max_seq_length: int, input_pos: Optional[torch.Tensor] = None, kv_cache: Optional[KVCache] = None, ) -> Tuple[torch.Tensor, Optional[KVCache]]: h, new_kv_cache = self.attn(self.rms_1(x), rope, mask, max_seq_length, input_pos, kv_cache) x = x + h x = x + self.mlp(self.rms_2(x)) return x, new_kv_cache class CausalSelfAttention(nn.Module): def __init__(self, config: LLaMAConfig, world_size: int) -> None: super().__init__() self.world_size = world_size assert config.n_embd % config.n_head == 0 self.config = config # key, query, value projections for all heads, but in a batch self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=False) # output projection self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=False) self.n_head = config.n_head self.n_embd = config.n_embd self.block_size = config.block_size def forward( self, x: torch.Tensor, rope: RoPECache, mask: MaskCache, max_seq_length: int, input_pos: Optional[torch.Tensor] = None, kv_cache: Optional[KVCache] = None, ) -> Tuple[torch.Tensor, Optional[KVCache]]: B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd) _C = C // self.world_size # calculate query, key, values for all heads in batch and move head forward to be the batch dim q = self.c_attn_q(x) k = self.c_attn_k(x) v = self.c_attn_v(x) n_head = self.n_head // self.world_size head_size = _C // n_head k = k.view(B, T, n_head, head_size) q = q.view(B, T, n_head, head_size) v = v.view(B, T, n_head, head_size) q = apply_rope(q, rope) k = apply_rope(k, rope) k = k.transpose(1, 2) # (B, nh, T, hs) q = q.transpose(1, 2) # (B, nh, T, hs) v = v.transpose(1, 2) # (B, nh, T, hs) if kv_cache is not None: k, v = kv_cache.update(input_pos, k, v) # efficient attention using Flash Attention CUDA kernels # y = F.scaled_dot_product_attention(q, k, v) y = F.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0) y = y.transpose(1, 2).contiguous().view(B, T, _C) # re-assemble all head outputs side by side # output projection y = self.c_proj(y) return y, kv_cache def prepare_qkv_for_dtensor_tp(self): attn = self.c_attn assert attn.in_features % self.world_size == 0 # q, k, v must be shardeable attn.out_features = attn.out_features // self.world_size # Shard on dim 0 since attn.weight is transposed # Shard q, k, v separately q, k, v = attn.weight.split(self.config.n_embd, dim=0) # (C, C) self.c_attn_q = nn.Linear(self.config.n_embd, self.config.n_embd, bias=False) self.c_attn_q.weight = nn.Parameter(q) self.c_attn_k = nn.Linear(self.config.n_embd, self.config.n_embd, bias=False) self.c_attn_k.weight = nn.Parameter(k) self.c_attn_v = nn.Linear(self.config.n_embd, self.config.n_embd, bias=False) self.c_attn_v.weight = nn.Parameter(v) del self.c_attn class MLP(nn.Module): def __init__(self, config: LLaMAConfig) -> None: super().__init__() hidden_dim = 4 * config.n_embd n_hidden = int(2 * hidden_dim / 3) n_hidden = find_multiple(n_hidden, 256) self.c_fc1 = nn.Linear(config.n_embd, n_hidden, bias=False) self.c_fc2 = nn.Linear(config.n_embd, n_hidden, bias=False) self.c_proj = nn.Linear(n_hidden, config.n_embd, bias=False) def forward(self, x: torch.Tensor) -> torch.Tensor: x = F.silu(self.c_fc1(x)) * self.c_fc2(x) x = self.c_proj(x) return x class RMSNorm(nn.Module): """Root Mean Square Layer Normalization. Derived from https://github.com/bzhangGo/rmsnorm/blob/master/rmsnorm_torch.py. BSD 3-Clause License: https://github.com/bzhangGo/rmsnorm/blob/master/LICENSE. """ def __init__(self, size: int, dim: int = -1, eps: float = 1e-5) -> None: super().__init__() self.scale = nn.Parameter(torch.ones(size)) self.eps = eps self.dim = dim def forward(self, x: torch.Tensor) -> torch.Tensor: # NOTE: the original RMSNorm paper implementation is not equivalent # norm_x = x.norm(2, dim=self.dim, keepdim=True) # rms_x = norm_x * d_x ** (-1. / 2) # x_normed = x / (rms_x + self.eps) norm_x = torch.mean(x * x, dim=self.dim, keepdim=True) x_normed = x * torch.rsqrt(norm_x + self.eps) return self.scale * x_normed def build_rope_cache( seq_len: int, n_elem: int, dtype: torch.dtype, device: torch.device, base: int = 10000 ) -> RoPECache: """Enhanced Transformer with Rotary Position Embedding. Derived from: https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/ transformers/rope/__init__.py. MIT License: https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/license. """ # $\Theta = {\theta_i = 10000^{\frac{2(i-1)}{d}}, i \in [1, 2, ..., \frac{d}{2}]}$ theta = 1.0 / (base ** (torch.arange(0, n_elem, 2, dtype=dtype, device=device) / n_elem)) # Create position indexes `[0, 1, ..., seq_len - 1]` seq_idx = torch.arange(seq_len, dtype=dtype, device=device) # Calculate the product of position index and $\theta_i$ idx_theta = torch.outer(seq_idx, theta).float() cache = torch.stack([torch.cos(idx_theta), torch.sin(idx_theta)], dim=-1) # this is to mimic the behaviour of complex32, else we will get different results if dtype in (torch.float16, torch.bfloat16, torch.int8): cache = cache.half() return cache def apply_rope(x: torch.Tensor, rope_cache: RoPECache) -> torch.Tensor: # truncate to support variable sizes T = x.size(1) rope_cache = rope_cache[:T] # cast because the reference does xshaped = x.float().reshape(*x.shape[:-1], -1, 2) rope_cache = rope_cache.view(1, xshaped.size(1), 1, xshaped.size(3), 2) x_out2 = torch.stack( [ xshaped[..., 0] * rope_cache[..., 0] - xshaped[..., 1] * rope_cache[..., 1], xshaped[..., 1] * rope_cache[..., 0] + xshaped[..., 0] * rope_cache[..., 1], ], -1, ) x_out2 = x_out2.flatten(3) return x_out2.type_as(x)
from ...util.model import BenchmarkModel from torchbenchmark.tasks import NLP import torch from .model import SequenceGenerator, create_model import torch class Model(BenchmarkModel): task = NLP.LANGUAGE_MODELING DEFAULT_EVAL_BSIZE = 1 def __init__(self, test, device, batch_size=None, extra_args=[]): super().__init__(test=test, device=device, batch_size=batch_size, extra_args=extra_args) embed_dim = 1536 beam_size = 1 # This is quite a bit smaller than, e.g., T5, because this model is # quite a bit slower to run generate_size = 64 self.model = SequenceGenerator( create_model(embed_dim), beam_size, generate_size, ).eval().to(self.device) prompt_size = 64 vocab_size = 128 # cribbed from original script self.example_inputs = ( torch.randint(1, vocab_size, (self.batch_size, prompt_size)).to(self.device), ) def get_module(self): return self.model, self.example_inputs # The code included here is specialized for eval def train(self): return NotImplementedError("training script not published") def eval(self): with torch.no_grad(): out = self.model(*self.example_inputs) return (out,)
# Copyright (c) Meta Platforms, Inc. and affiliates. # Portions of this code are derived from https://github.com/facebookresearch/metaseq import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.benchmark as benchmark from torch import Tensor from typing import Optional, Dict, Any from tqdm import tqdm # torch.set_float32_matmul_precision("high") def fill_with_neg_inf(t): """FP16-compatible function that fills a tensor with -inf.""" return t.float().fill_(float("-inf")).type_as(t) def make_positions(tensor, padding_idx: int): """Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols are ignored. """ # The series of casts and type-conversions here are carefully # balanced to both work with ONNX export and XLA. In particular XLA # prefers ints, cumsum defaults to output longs, and ONNX doesn't know # how to handle the dtype kwarg in cumsum. mask = tensor.ne(padding_idx).int() return (torch.cumsum(mask, dim=1).type_as(mask) * mask).long() + padding_idx class LearnedPositionalEmbedding(nn.Embedding): """ This module learns positional embeddings up to a fixed maximum size. Padding ids are ignored by either offsetting based on padding_idx or by setting padding_idx to None and ensuring that the appropriate position ids are passed to the forward function. """ def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: int): super().__init__(num_embeddings, embedding_dim, padding_idx) if self.padding_idx is not None: self.max_positions = self.num_embeddings - self.padding_idx - 1 else: self.max_positions = self.num_embeddings def forward( self, input: Tensor, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, positions: Optional[Tensor] = None, ): """Input is expected to be of size [bsz x seqlen].""" assert (positions is None) or ( self.padding_idx is None ), "If positions is pre-computed then padding_idx should not be set." # we cannot use incremental state here because we must be aware of # padding. if positions is None and self.padding_idx is not None: positions = make_positions(input, self.padding_idx) assert positions is not None return F.embedding( positions, self.weight, self.padding_idx, self.max_norm, self.norm_type, self.scale_grad_by_freq, self.sparse, ) def PositionalEmbedding( num_embeddings: int, embedding_dim: int, padding_idx: int, learned: bool = False, learned_sinusoidal: bool = False, full_megatron_init=False, pos_init_scalar=1.0, megatron_init_sigma=None, truncate_init=False, ): def _init_emb(tensor, sigma): if sigma <= 1e-8: # effectively 0 return nn.init.zeros_(tensor) if truncate_init: return nn.init.trunc_normal_( tensor, mean=0.0, std=sigma, a=-3 * sigma, b=3 * sigma ) else: return nn.init.normal_(tensor, mean=0.0, std=sigma) if learned: # if padding_idx is specified then offset the embedding ids by # this index and adjust num_embeddings appropriately # TODO: The right place for this offset would be inside # LearnedPositionalEmbedding. Move this there for a cleaner implementation. if padding_idx is not None: num_embeddings = num_embeddings + padding_idx + 1 m = LearnedPositionalEmbedding(num_embeddings, embedding_dim, padding_idx) if full_megatron_init: _init_emb(m.weight, megatron_init_sigma * pos_init_scalar) else: _init_emb(m.weight, embedding_dim**-0.5 * pos_init_scalar) if padding_idx is not None: nn.init.constant_(m.weight[padding_idx], 0) elif learned_sinusoidal: if padding_idx is not None: num_embeddings = num_embeddings + padding_idx + 1 m = LearnedPositionalEmbedding(num_embeddings, embedding_dim, padding_idx) with torch.no_grad(): m.weight.copy_( SinusoidalPositionalEmbedding.get_embedding( num_embeddings, embedding_dim, padding_idx, ) ) else: m = SinusoidalPositionalEmbedding( embedding_dim, padding_idx, init_size=num_embeddings + padding_idx + 1, ) return m from typing import Tuple from torch.nn import Parameter, init import math import uuid def softmax(x, dim: int): return F.softmax(x, dim=dim, dtype=torch.float32) def LayerNorm(normalized_shape, eps=1e-5, elementwise_affine=True, export=False): return torch.nn.LayerNorm(normalized_shape, eps, elementwise_affine) class Linear(nn.Module): """ Exact same as pytorch nn.Linear but with option to initialize weight and bias directly on GPU """ __constants__ = ["in_features", "out_features"] in_features: int out_features: int weight: Tensor def __init__( self, in_features: int, out_features: int, bias: bool = True, initialize_params_on_gpu: bool = False, dtype: torch.dtype = None, ) -> None: super(Linear, self).__init__() self.in_features = in_features self.out_features = out_features device = torch.cuda.current_device() if initialize_params_on_gpu else None if dtype is None: dtype = torch.float self.weight = Parameter( torch.empty(out_features, in_features, device=device, dtype=dtype) ) if bias: self.bias = Parameter(torch.empty(out_features, device=device, dtype=dtype)) else: self.register_parameter("bias", None) def forward(self, input: Tensor) -> Tensor: return F.linear(input, self.weight, self.bias) def extra_repr(self) -> str: return "in_features={}, out_features={}, bias={}".format( self.in_features, self.out_features, self.bias is not None ) class Dropout(nn.Module): def __init__(self, p, module_name=None): super().__init__() self.p = p self.module_name = module_name self.apply_during_inference = False def extra_repr(self) -> str: return "p={}".format(self.p) def forward(self, x, inplace: bool = False): if self.p > 0 and (self.training or self.apply_during_inference): return F.dropout(x, p=self.p, training=True, inplace=inplace) else: return x class MultiheadAttention(nn.Module): """Multi-headed attention. See "Attention Is All You Need" for more details. """ def init_incremental_state(self): self._incremental_state_id = "5" # str(uuid.uuid4()) def _get_full_incremental_state_key(self, key: str) -> str: return "{}.{}".format(self._incremental_state_id, key) def get_incremental_state( self, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]], key: str, ) -> Optional[Dict[str, Optional[Tensor]]]: """Helper for getting incremental state for an nn.Module.""" full_key = self._get_full_incremental_state_key(key) if incremental_state is None or full_key not in incremental_state: return None return incremental_state[full_key] def set_incremental_state( self, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]], key: str, value: Dict[str, Optional[Tensor]], ) -> Optional[Dict[str, Dict[str, Optional[Tensor]]]]: """Helper for setting incremental state for an nn.Module.""" if incremental_state is not None: full_key = self._get_full_incremental_state_key(key) incremental_state[full_key] = value return incremental_state def __init__( self, embed_dim, num_heads, kdim=None, vdim=None, dropout=0.0, bias=True, add_bias_kv=False, add_zero_attn=False, self_attention=False, initialize_params_on_gpu=False, dtype: Optional[torch.dtype] = None, ): self.init_incremental_state() super().__init__() self.embed_dim = embed_dim self.kdim = kdim if kdim is not None else embed_dim self.vdim = vdim if vdim is not None else embed_dim self.qkv_same_dim = self.kdim == embed_dim and self.vdim == embed_dim self.num_heads = num_heads self.dropout_module = Dropout(dropout, module_name=self.__class__.__name__) self.head_dim = embed_dim // num_heads assert ( self.head_dim * num_heads == self.embed_dim ), "embed_dim must be divisible by num_heads" self.scaling = self.head_dim**-0.5 self.self_attention = self_attention assert not self.self_attention or self.qkv_same_dim, ( "Self-attention requires query, key and " "value to be of the same size" ) random_state = torch.get_rng_state() # random_state_cuda = torch.cuda.get_rng_state() self.k_proj = Linear( self.kdim, embed_dim, bias=bias, initialize_params_on_gpu=initialize_params_on_gpu, dtype=dtype, ) self.v_proj = Linear( self.vdim, embed_dim, bias=bias, initialize_params_on_gpu=initialize_params_on_gpu, dtype=dtype, ) self.q_proj = Linear( embed_dim, embed_dim, bias=bias, initialize_params_on_gpu=initialize_params_on_gpu, dtype=dtype, ) self.out_proj = Linear( embed_dim, embed_dim, bias=bias, initialize_params_on_gpu=initialize_params_on_gpu, dtype=dtype, ) torch.set_rng_state(random_state) if add_bias_kv: self.bias_k = Parameter(torch.Tensor(1, 1, embed_dim)) self.bias_v = Parameter(torch.Tensor(1, 1, embed_dim)) else: self.bias_k = self.bias_v = None self.add_zero_attn = add_zero_attn def forward( self, query, key: Optional[Tensor], value: Optional[Tensor], key_padding_mask: Optional[Tensor] = None, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, attn_mask: Optional[Tensor] = None, ) -> Tuple[Tensor, Optional[Tensor]]: """Input shape: Time x Batch x Channel Args: key_padding_mask (ByteTensor, optional): mask to exclude keys that are pads, of shape `(batch, src_len)`, where padding elements are indicated by 1s. attn_mask (ByteTensor, optional): typically used to implement causal attention, where the mask prevents the attention from looking forward in time (default: None). """ tgt_len, bsz, embed_dim = query.size() src_len = tgt_len assert embed_dim == self.embed_dim, f"query dim {embed_dim} != {self.embed_dim}" assert list(query.size()) == [tgt_len, bsz, embed_dim] if key is not None: src_len, key_bsz, _ = key.size() if not torch.jit.is_scripting(): assert key_bsz == bsz assert value is not None assert src_len, bsz == value.shape[:2] if ( incremental_state is None # A workaround for quantization to work. Otherwise JIT compilation # treats bias in linear module as method. and not torch.jit.is_scripting() ): assert key is not None and value is not None return F.multi_head_attention_forward( query, key, value, self.embed_dim, self.num_heads, torch.empty([0]), torch.cat((self.q_proj.bias, self.k_proj.bias, self.v_proj.bias)), self.bias_k, self.bias_v, self.add_zero_attn, self.dropout_module.p, self.out_proj.weight, self.out_proj.bias, self.training or self.dropout_module.apply_during_inference, key_padding_mask, False, attn_mask, use_separate_proj_weight=True, q_proj_weight=self.q_proj.weight, k_proj_weight=self.k_proj.weight, v_proj_weight=self.v_proj.weight, ) if incremental_state is not None: saved_state = self._get_input_buffer(incremental_state) else: saved_state = None if self.self_attention: q = self.q_proj(query) k = self.k_proj(query) v = self.v_proj(query) else: assert key is not None and value is not None q = self.q_proj(query) k = self.k_proj(key) v = self.v_proj(value) q *= self.scaling if self.bias_k is not None: assert self.bias_v is not None k = torch.cat([k, self.bias_k.repeat(1, bsz, 1)]) v = torch.cat([v, self.bias_v.repeat(1, bsz, 1)]) if attn_mask is not None: attn_mask = torch.cat( [attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1 ) if key_padding_mask is not None: key_padding_mask = torch.cat( [ key_padding_mask, key_padding_mask.new_zeros(key_padding_mask.size(0), 1), ], dim=1, ) q = ( q.contiguous() .view(tgt_len, bsz * self.num_heads, self.head_dim) .transpose(0, 1) ) if k is not None: k = ( k.contiguous() .view(-1, bsz * self.num_heads, self.head_dim) .transpose(0, 1) ) if v is not None: v = ( v.contiguous() .view(-1, bsz * self.num_heads, self.head_dim) .transpose(0, 1) ) if saved_state is not None: # saved states are stored with shape (bsz, num_heads, seq_len, head_dim) if "prev_key" in saved_state: _prev_key = saved_state["prev_key"] assert _prev_key is not None prev_key = _prev_key.view(bsz * self.num_heads, -1, self.head_dim) assert k is not None k = torch.cat([prev_key, k], dim=1) src_len = k.size(1) if "prev_value" in saved_state: _prev_value = saved_state["prev_value"] assert _prev_value is not None prev_value = _prev_value.view(bsz * self.num_heads, -1, self.head_dim) assert v is not None v = torch.cat([prev_value, v], dim=1) saved_state["prev_key"] = k.view(bsz, self.num_heads, -1, self.head_dim) saved_state["prev_value"] = v.view(bsz, self.num_heads, -1, self.head_dim) saved_state["prev_key_padding_mask"] = key_padding_mask # In this branch incremental_state is never None assert incremental_state is not None incremental_state = self._set_input_buffer(incremental_state, saved_state) assert k is not None assert k.size(1) == src_len # This is part of a workaround to get around fork/join parallelism # not supporting Optional types. if key_padding_mask is not None and key_padding_mask.dim() == 0: key_padding_mask = None if key_padding_mask is not None: assert key_padding_mask.size(0) == bsz assert key_padding_mask.size(1) == src_len if self.add_zero_attn: assert v is not None src_len += 1 k = torch.cat([k, k.new_zeros((k.size(0), 1) + k.size()[2:])], dim=1) v = torch.cat([v, v.new_zeros((v.size(0), 1) + v.size()[2:])], dim=1) if attn_mask is not None: attn_mask = torch.cat( [attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1 ) if key_padding_mask is not None: key_padding_mask = torch.cat( [ key_padding_mask, torch.zeros(key_padding_mask.size(0), 1).type_as( key_padding_mask ), ], dim=1, ) attn_weights = torch.bmm(q, k.transpose(1, 2)) assert list(attn_weights.size()) == [bsz * self.num_heads, tgt_len, src_len] if attn_mask is not None: # Replace any non-finite values with finite equivalents, since otherwise # we may get NaN when adding attn_mask or computing softmax. attn_weights = torch.nan_to_num(attn_weights) attn_mask = attn_mask.unsqueeze(0) attn_weights += attn_mask if key_padding_mask is not None: # don't attend to padding symbols attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights.masked_fill( key_padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool), float("-inf"), ) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) attn_weights_float = softmax(attn_weights, dim=-1) attn_weights = attn_weights_float.type_as(attn_weights) attn_probs = self.dropout_module(attn_weights) assert v is not None attn = torch.bmm(attn_probs, v) assert list(attn.size()) == [bsz * self.num_heads, tgt_len, self.head_dim] attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim) attn = self.out_proj(attn) return attn, None # To match return type of F.multi_head_attention_forward def reorder_incremental_state( self, incremental_state: Dict[str, Dict[str, Optional[Tensor]]], new_order: Tensor, ): """Reorder buffered internal state (for incremental generation).""" input_buffer = self._get_input_buffer(incremental_state) if input_buffer is not None: for k in input_buffer.keys(): input_buffer_k = input_buffer[k] if input_buffer_k is not None: input_buffer[k] = input_buffer_k.index_select(0, new_order) incremental_state = self._set_input_buffer(incremental_state, input_buffer) return incremental_state def _get_input_buffer( self, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] ) -> Dict[str, Optional[Tensor]]: result = self.get_incremental_state(incremental_state, "attn_state") if result is not None: return result else: empty_result: Dict[str, Optional[Tensor]] = {} return empty_result def _set_input_buffer( self, incremental_state: Dict[str, Dict[str, Optional[Tensor]]], buffer: Dict[str, Optional[Tensor]], ): return self.set_incremental_state(incremental_state, "attn_state", buffer) from typing import Callable, List class ActivationFn(nn.Module): def __init__(self, name, embed_dim, ffn_dim): super().__init__() self.fn = self.__get_fn(name) def forward(self, fc1_in, fc1_out, model_parallel: bool): return self.fn(fc1_out) def __get_fn(self, name: str) -> Callable: """Returns the activation function corresponding to the arg passed in the run""" if name == "relu": return F.relu elif name == "relu_squared": return relu_squared elif name == "gelu": return gelu elif name == "tanh": return torch.tanh elif name == "linear": return lambda x: x else: raise RuntimeError("--activation-fn {} not supported".format(name)) class TransformerDecoderLayer(nn.Module): """Pre-norm Decoder layer block. Note that we have found model training to require pre-norm to remain stable. Args: embed_dim (int): dimension of the model embedding decoder_embed_dim (int): dimension of the decoder embedding dropout (float): dropout probability decoder_attention_heads (int): number of decoder attention heads attention_dropout (float): dropout probability for attention weights decoder_ffn_embed_dim (int): dimension of the decoder feedforward network embedding activation_fn (str): activation function name add_bias_kv (bool): whether to add bias to the key and value projections add_zero_attn (bool): whether to add a zero attention vector for padding tokens disable_affine_ln (bool): whether to disable affine layer normalization disable_bias (bool): whether to disable bias in linear layers tensor_parallel_init_model_on_gpu (bool): whether to initialize model on GPU for tensor parallelism full_megatron_init (bool): whether to use full Megatron initialization megatron_init_sigma (float): sigma value for Megatron initialization truncate_init (bool): whether to truncate the initialization values """ def __init__( self, embed_dim, decoder_embed_dim, dropout=0.1, decoder_attention_heads=8, attention_dropout=0.1, decoder_ffn_embed_dim=2048, activation_fn="relu", add_bias_kv=False, add_zero_attn=False, disable_affine_ln=False, disable_bias=False, tensor_parallel_init_model_on_gpu=False, full_megatron_init=False, megatron_init_sigma=0.006, truncate_init=False, ): super().__init__() self.embed_dim = embed_dim self.dropout_module = Dropout(dropout, module_name=self.__class__.__name__) self.self_attn = self.build_self_attention( decoder_embed_dim, decoder_attention_heads, attention_dropout, add_bias_kv, add_zero_attn, tensor_parallel_init_model_on_gpu, disable_bias, megatron_init_sigma, truncate_init, ) self.nh = decoder_attention_heads self.head_dim = int(decoder_embed_dim / self.nh) affine_ln = not disable_affine_ln self.self_attn_layer_norm = LayerNorm( decoder_embed_dim, elementwise_affine=affine_ln ) self.fc1 = self.build_fc1( decoder_embed_dim, decoder_ffn_embed_dim, tensor_parallel_init_model_on_gpu, full_megatron_init, megatron_init_sigma, truncate_init, disable_bias, ) self.activation_fn = ActivationFn( activation_fn, decoder_embed_dim, decoder_ffn_embed_dim, ) self.fc2 = self.build_fc2( decoder_ffn_embed_dim, decoder_embed_dim, tensor_parallel_init_model_on_gpu, full_megatron_init, megatron_init_sigma, truncate_init, disable_bias, ) self.final_layer_norm = LayerNorm( decoder_embed_dim, elementwise_affine=affine_ln ) def build_fc1( self, input_dim, output_dim, initialize_params_on_gpu=False, full_megatron_init=False, megatron_init_sigma=0.006, truncate_init=False, disable_bias=False, ): return Linear( input_dim, output_dim, initialize_params_on_gpu=initialize_params_on_gpu, bias=not disable_bias, ) def build_fc2( self, input_dim, output_dim, initialize_params_on_gpu=False, full_megatron_init=False, megatron_init_sigma=0.006, truncate_init=False, disable_bias=False, ): return Linear( input_dim, output_dim, initialize_params_on_gpu=initialize_params_on_gpu, bias=not disable_bias, ) def build_self_attention( self, embed_dim, decoder_attention_heads, attention_dropout, add_bias_kv, add_zero_attn, tensor_parallel_init_model_on_gpu, disable_bias, megatron_init_sigma, truncate_init, ): return MultiheadAttention( embed_dim, decoder_attention_heads, dropout=attention_dropout, add_bias_kv=add_bias_kv, add_zero_attn=add_zero_attn, self_attention=True, initialize_params_on_gpu=tensor_parallel_init_model_on_gpu, bias=not disable_bias, ) def forward_attention( self, query, key, value, residual, key_padding_mask: Optional[Tensor] = None, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, attn_mask: Optional[Tensor] = None, ): x, _ = self.self_attn( query=query, key=key, value=value, key_padding_mask=key_padding_mask, incremental_state=incremental_state, attn_mask=attn_mask, ) x = self.dropout_module(x) x = residual + x return x def forward( self, x, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]], self_attn_mask: Optional[Tensor] = None, self_attn_padding_mask: Optional[Tensor] = None, ): """ Args: x (Tensor): input to the layer of shape `(seq_len, batch, embed_dim)` Returns: encoded output of shape `(seq_len, batch, embed_dim)` """ residual = x x = self.self_attn_layer_norm(x) x = self.forward_attention( query=x, key=x, value=x, residual=residual, key_padding_mask=self_attn_padding_mask, incremental_state=incremental_state, attn_mask=self_attn_mask, ) residual = x x = self.final_layer_norm(x) x = self.activation_fn(x, self.fc1(x), model_parallel=False) x = self.fc2(x) x = self.dropout_module(x) x = residual + x return x class TransformerDecoder(nn.Module): def __init__( self, embed_tokens, decoder_attention_heads, decoder_ffn_embed_dim, activation_fn="relu", dropout=0.1, attention_dropout=0.1, no_emb_dropout=False, share_decoder_input_output_embed=False, embed_dim=512, max_target_positions=1024, no_scale_embedding=False, decoder_learned_pos=False, decoder_learned_sinusoidal=False, full_megatron_init=False, pos_init_scalar=1.0, megatron_init_sigma=0.006, truncate_init=False, decoder_layers=6, self_attn_doc_sep=-1, initialize_params_on_gpu=False, dtype=torch.float32, add_bias_kv=False, add_zero_attn=False, disable_affine_ln=False, disable_bias=False, tensor_parallel_init_model_on_gpu=False, ): super().__init__() self.register_buffer("version", torch.Tensor([3])) self._future_mask = torch.empty(0) self.tensor_parallel_init_model_on_gpu = tensor_parallel_init_model_on_gpu self.megatron_init_sigma = megatron_init_sigma self.full_megatron_init = full_megatron_init self.activation_fn = activation_fn self.attention_dropout = attention_dropout self.dropout_module = Dropout(dropout, module_name=self.__class__.__name__) self.dropout = dropout self.truncate_init = truncate_init if no_emb_dropout: self.dropout_module = None self.add_bias_kv = add_bias_kv self.add_zero_attn = add_zero_attn self.disable_affine_ln = disable_affine_ln self.disable_bias = disable_bias self.decoder_attention_heads = decoder_attention_heads self.share_input_output_embed = share_decoder_input_output_embed self.embed_dim = embed_dim self.padding_idx: int = embed_tokens.padding_idx assert self.padding_idx is not None self.max_target_positions = max_target_positions self.embed_tokens = embed_tokens self.embed_scale = 1.0 if no_scale_embedding else math.sqrt(self.embed_dim) self.decoder_ffn_embed_dim = decoder_ffn_embed_dim # default value device = torch.cuda.current_device() if initialize_params_on_gpu else None # default value self.self_attn_doc_sep = self_attn_doc_sep self.embed_positions = ( PositionalEmbedding( self.max_target_positions, self.embed_dim, self.padding_idx, learned=decoder_learned_pos, learned_sinusoidal=decoder_learned_sinusoidal, full_megatron_init=full_megatron_init, pos_init_scalar=pos_init_scalar, megatron_init_sigma=megatron_init_sigma, truncate_init=truncate_init, ) if decoder_learned_pos else None ) self.embed_positions.to(device).to(dtype) self.layers = nn.ModuleList([]) layers = [] for i in range(decoder_layers): layers.append(self.build_decoder_layer()) self.layers = nn.ModuleList(layers) self.num_layers = len(self.layers) self.layer_norm = LayerNorm( self.embed_dim, elementwise_affine=not disable_affine_ln, ) self.layer_norm.to(device).to(dtype) self.output_projection = None if self.share_input_output_embed: self.output_projection = Linear( self.embed_tokens.weight.shape[1], self.embed_tokens.weight.shape[0], bias=False, initialize_params_on_gpu=initialize_params_on_gpu, dtype=dtype, ) self.output_projection.weight = self.embed_tokens.weight else: self.output_projection = Linear( self.embed_dim, len(dictionary), bias=False, initialize_params_on_gpu=initialize_params_on_gpu, dtype=dtype, ) nn.init.normal_( self.output_projection.weight, mean=0, std=self.embed_dim**-0.5 ) def build_base_decoder_layer(self): return TransformerDecoderLayer( self.embed_dim, self.embed_dim, self.dropout, self.decoder_attention_heads, self.attention_dropout, self.decoder_ffn_embed_dim, self.activation_fn, self.add_bias_kv, self.add_zero_attn, self.disable_affine_ln, self.disable_bias, self.tensor_parallel_init_model_on_gpu, self.full_megatron_init, self.megatron_init_sigma, self.truncate_init, ) def build_decoder_layer(self): layer = self.build_base_decoder_layer() return layer def forward_embedding( self, tokens, token_embedding: Optional[torch.Tensor] = None, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, ): # embed tokens and positions positions = None if self.embed_positions is not None: positions = self.embed_positions( tokens, incremental_state=incremental_state, positions=positions ) # see BaseDecoder for important information about # incremental state if incremental_state is not None: tokens = tokens[:, -1:] if positions is not None: positions = positions[:, -1:] if token_embedding is None: token_embedding = self.embed_tokens(tokens) x = embed = self.embed_scale * token_embedding if positions is not None: x += positions if self.dropout_module is not None: x = self.dropout_module(x) # Returning in T x B x C format as that makes integrating sequence parallelism easier. x = x.transpose(0, 1).contiguous() return x, embed, positions # forward for TransformerDecoder def forward( self, prev_output_tokens, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, features_only: bool = False, src_lengths: Optional[Any] = None, token_embeddings: Optional[torch.Tensor] = None, self_attn_padding_mask: Optional[Tensor] = None, ): """ Includes several features from "Jointly Learning to Align and Translate with Transformer Models" (Garg et al., EMNLP 2019). Args: prev_output_tokens (LongTensor): previous decoder outputs of shape `(batch, tgt_len)`, for teacher forcing incremental_state (dict): dictionary used for storing state during :ref:`Incremental decoding` features_only (bool, optional): only return features without applying output layer (default: False). token_embeddings (torch.Tensor, optional): precomputed embeddings default `None` will recompute embeddings self_attn_padding_mask (torch.Tensor, optional): precomputed padding mask for self-attention (default None will recompute mask) Returns: tuple: - the decoder's output of shape `(batch, tgt_len, vocab)` - a dictionary with any model-specific outputs """ # see BaseDecoder for important information about # incremental state x = self.extract_features( prev_output_tokens, incremental_state=incremental_state, token_embeddings=token_embeddings, self_attn_padding_mask=self_attn_padding_mask, ) if not features_only: x = self.output_layer(x) # Transposing back to B x T x C, so that the interface stays the same. x = x.transpose(0, 1).contiguous() return x def extract_features( self, prev_output_tokens: torch.Tensor, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, token_embeddings: Optional[torch.Tensor] = None, self_attn_padding_mask: Optional[Tensor] = None, ) -> torch.Tensor: # compute self-attention padding mask (involves device-to-host transfer, # so put it at the top of the forward) assert prev_output_tokens is not None assert self.padding_idx is not None if ( self_attn_padding_mask is None and prev_output_tokens.eq(self.padding_idx).any() ): self_attn_padding_mask = prev_output_tokens.eq(self.padding_idx) # assert self_attn_padding_mask is not None # embed tokens and positions # x is T x B x C x, tok, pos = self.forward_embedding( prev_output_tokens, token_embeddings, incremental_state ) # see BaseDecoder for important information about # incremental state. Note that it may be an empty dictionary. if incremental_state is not None: self_attn_mask = self.buffered_future_mask(x, prev_output_tokens) else: self_attn_mask = None # decoder layers # store other representations for instrumentation in VocabParallelCrossEntCrit # Note: we are only storing the embeddings output and output of final transformer block # instead of all inner representations, as thats the only thing being logged and storing # all intermediate representation causes OOM for large models during validation. for idx, layer in enumerate(self.layers): x = layer( x, incremental_state=incremental_state, self_attn_mask=self_attn_mask, self_attn_padding_mask=self_attn_padding_mask, ) if self.layer_norm is not None: x = self.layer_norm(x) # Returned x is T x B x C here, as sequence_parallel requires T to be first dim return x def output_layer(self, features): """Project features to the vocabulary size.""" return self.output_projection(features) def max_positions(self): """Maximum output length supported by the decoder.""" if self.embed_positions is None: return self.max_target_positions return min(self.max_target_positions, self.embed_positions.max_positions) def buffered_future_mask(self, tensor, input_tokens=None) -> torch.Tensor: cur_seq_len, batch_size = tensor.size(0), tensor.size(1) max_seq_len = self.max_positions() need_to_make_new_mask = ( self._future_mask.size(0) == 0 or (not self._future_mask.device == tensor.device) or self._future_mask.size(1) < max_seq_len or ( self._future_mask.size(0) != (batch_size * self.decoder_attention_heads) ) ) # self._future_mask.device != tensor.device is not working in TorchScript. This is a workaround. if need_to_make_new_mask: self._future_mask = torch.triu( fill_with_neg_inf( torch.zeros([max_seq_len, max_seq_len], device=tensor.device) ), 1, ) self._future_mask = self._future_mask.to(tensor) if self.self_attn_doc_sep != -1: return self._future_mask else: return self._future_mask[:cur_seq_len, :cur_seq_len] def _sample_topp(temperature: float, sampling_topp: float, lprobs: torch.Tensor): if temperature == 0.0 or sampling_topp == 0.0: # greedy search return tuple(lprobs.max(dim=-1)) probs = lprobs.exp() sprobs, sinds = probs.sort(dim=-1, descending=True) mask = (sprobs.cumsum(dim=-1) - sprobs) >= sampling_topp trunc_sprobs = sprobs.detach().clone() trunc_sprobs[mask] = 0 trunc_sprobs.div_(trunc_sprobs.sum(dim=-1).unsqueeze(-1)) choices = torch.multinomial(trunc_sprobs, 1)[:, 0] hyp_ids = torch.arange(lprobs.size(0)).to(lprobs.device) tok_ids = sinds[hyp_ids, choices] scores = sprobs[hyp_ids, choices].log() return scores, tok_ids class SequenceGenerator(nn.Module): def __init__( self, model, beam_size: int, generate_size: int, use_incremental: bool = True ) -> None: super().__init__() self.model = model self.beam_size = beam_size self.generate_size = generate_size self.use_incremental = use_incremental def forward(self, src_tokens): with torch.no_grad(): incremental_states = torch.jit.annotate( Dict[str, Dict[str, Optional[Tensor]]], {} ) bsz, src_len = src_tokens.size()[:2] beam_size = self.beam_size max_len = src_len + self.generate_size new_order = torch.arange(bsz).view(-1, 1).repeat(1, beam_size).view(-1) new_order = new_order.to(src_tokens.device).long() tokens = ( torch.zeros(bsz * beam_size, max_len).to(src_tokens).long().fill_(0) ) start_step = src_tokens.shape[1] tokens[:, :start_step] = src_tokens.repeat_interleave(beam_size, 0) model_out = self.model( tokens[:, :start_step], incremental_state=incremental_states if self.use_incremental else None, ) model_predictions = F.log_softmax(model_out.float()[:, -1, :]) for step in range(start_step, max_len): tokens[:, step] = model_predictions.max(-1)[1] # forward through the next pass model_out = self.model( tokens[:, : step + 1], incremental_state=incremental_states if self.use_incremental else None, ) # see above for why this must remain float model_predictions = F.log_softmax(model_out.float()[:, -1, :]) return tokens class SequenceGeneratorFixedSize(nn.Module): def __init__(self, model, beam_size: int, generate_size: int) -> None: super().__init__() self.model = model self.beam_size = beam_size self.generate_size = generate_size def forward(self, src_tokens): with torch.no_grad(): bsz, src_len = src_tokens.size()[:2] beam_size = self.beam_size max_len = src_len + self.generate_size new_order = torch.arange(bsz).view(-1, 1).repeat(1, beam_size).view(-1) new_order = new_order.to(src_tokens.device).long() start_step = src_tokens.shape[1] tokens = ( torch.zeros(bsz * beam_size, max_len).to(src_tokens).long().fill_(0) ) tokens[:, :start_step] = src_tokens.repeat_interleave(beam_size, 0) model_out = self.model(tokens) model_predictions = F.log_softmax(model_out.float()[:, start_step, :]) for step in range(start_step, max_len): tokens[:, step] = model_predictions.max(-1)[1] model_out = self.model( tokens, ) # see above for why this must remain float model_predictions = F.log_softmax(model_out.float()[:, step, :]) return tokens def create_model(embed_dim=1536): embed_tokens = torch.nn.Embedding(2048, embed_dim, padding_idx=-1) return ( TransformerDecoder( embed_tokens, decoder_layers=24, decoder_attention_heads=16, max_target_positions=2048, embed_dim=embed_dim, decoder_ffn_embed_dim=embed_dim * 4, no_scale_embedding=True, share_decoder_input_output_embed=True, decoder_learned_pos=True, dropout=0.1, ) )
from torchbenchmark.util.framework.timm.model_factory import TimmModel from torchbenchmark.tasks import COMPUTER_VISION class Model(TimmModel): task = COMPUTER_VISION.GENERATION DEFAULT_TRAIN_BSIZE = 32 DEFAULT_EVAL_BSIZE = 32 def __init__(self, test, device, batch_size=None, extra_args=[]): super().__init__(test=test, model_name='vit_giant_patch14_224', device=device, batch_size=batch_size, extra_args=extra_args)
from torchbenchmark.tasks import NLP from torchbenchmark.util.framework.huggingface.model_factory import HuggingFaceModel class Model(HuggingFaceModel): task = NLP.LANGUAGE_MODELING DEFAULT_TRAIN_BSIZE = 4 DEFAULT_EVAL_BSIZE = 1 def __init__(self, test, device, batch_size=None, extra_args=[]): super().__init__(name="hf_Bart", test=test, device=device, batch_size=batch_size, extra_args=extra_args)
import subprocess import sys import os from torchbenchmark.util.framework.huggingface.patch_hf import patch_transformers, cache_model def pip_install_requirements(): subprocess.check_call([sys.executable, '-m', 'pip', 'install', '-q', '-r', 'requirements.txt']) if __name__ == '__main__': pip_install_requirements() patch_transformers() model_name = os.path.basename(os.path.dirname(os.path.abspath(__file__))) cache_model(model_name)
import numpy as np import random import time import torch from argparse import Namespace from .meta import Meta from pathlib import Path from typing import Tuple from ...util.model import BenchmarkModel from torchbenchmark.tasks import OTHER torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False class Model(BenchmarkModel): task = OTHER.OTHER_TASKS DEFAULT_TRAIN_BSIZE = 1 DEFAULT_EVAL_BSIZE = 1 ALLOW_CUSTOMIZE_BSIZE = False CANNOT_SET_CUSTOM_OPTIMIZER = True # Skip correctness check, because maml runs backward and optimizer in eval() # Which will return non-deterministic results SKIP_CORRECTNESS_CHECK = True def __init__(self, test, device, batch_size=None, extra_args=[]): super().__init__(test=test, device=device, batch_size=batch_size, extra_args=extra_args) # load from disk or synthesize data use_data_file = False debug_print = False root = str(Path(__file__).parent) args = Namespace(**{ 'n_way': 5, 'k_spt': 1, 'k_qry': 15, 'imgsz': 28, 'imgc': 1, 'task_num': 32, 'meta_lr': 1e-3, 'update_lr': 0.4, 'update_step': 5, 'update_step_test': 10 }) config = [ ('conv2d', [64, args.imgc, 3, 3, 2, 0]), ('relu', [True]), ('bn', [64]), ('conv2d', [64, 64, 3, 3, 2, 0]), ('relu', [True]), ('bn', [64]), ('conv2d', [64, 64, 3, 3, 2, 0]), ('relu', [True]), ('bn', [64]), ('conv2d', [64, 64, 2, 2, 1, 0]), ('relu', [True]), ('bn', [64]), ('flatten', []), ('linear', [args.n_way, 64]) ] self.module = Meta(args, config).to(device) if use_data_file: self.example_inputs = torch.load(f'{root}/batch.pt') self.example_inputs = tuple([torch.from_numpy(i).to(self.device) for i in self.example_inputs]) else: # synthesize data parameterized by arg values self.example_inputs = ( torch.randn(args.task_num, args.n_way, args.imgc, args.imgsz, args.imgsz).to(device), torch.randint(0, args.n_way, [args.task_num, args.n_way], dtype=torch.long).to(device), torch.randn(args.task_num, args.n_way * args.k_qry, args.imgc, args.imgsz, args.imgsz).to(device), torch.randint(0, args.n_way, [args.task_num, args.n_way * args.k_qry], dtype=torch.long).to(device)) # print input shapes if debug_print: for i in range(len(self.example_inputs)): print(self.example_inputs[i].shape) def get_module(self): return self.module, self.example_inputs def eval(self) -> Tuple[torch.Tensor]: out = self.module(*self.example_inputs) return (out, ) def train(self): raise NotImplementedError("MAML model doesn't support train.") def eval_in_nograd(self): return False
import torch from torch import nn from torch import optim from torch.nn import functional as F from torch.utils.data import TensorDataset, DataLoader from torch import optim import numpy as np from .learner import Learner from copy import deepcopy class Meta(nn.Module): """ Meta Learner """ def __init__(self, args, config): """ :param args: """ super(Meta, self).__init__() self.update_lr = args.update_lr self.meta_lr = args.meta_lr self.n_way = args.n_way self.k_spt = args.k_spt self.k_qry = args.k_qry self.task_num = args.task_num self.update_step = args.update_step self.update_step_test = args.update_step_test self.net = Learner(config, args.imgc, args.imgsz) self.meta_optim = optim.Adam(self.net.parameters(), lr=self.meta_lr) def clip_grad_by_norm_(self, grad, max_norm): """ in-place gradient clipping. :param grad: list of gradients :param max_norm: maximum norm allowable :return: """ total_norm = 0 counter = 0 for g in grad: param_norm = g.data.norm(2) total_norm += param_norm.item() ** 2 counter += 1 total_norm = total_norm ** (1. / 2) clip_coef = max_norm / (total_norm + 1e-6) if clip_coef < 1: for g in grad: g.data.mul_(clip_coef) return total_norm/counter def forward(self, x_spt, y_spt, x_qry, y_qry): if self.training: return self.forward_train(x_spt, y_spt, x_qry, y_qry) else: return self.finetunning(x_spt[0], y_spt[0], x_qry[0], y_qry[0]) def forward_train(self, x_spt, y_spt, x_qry, y_qry): """ :param x_spt: [b, setsz, c_, h, w] :param y_spt: [b, setsz] :param x_qry: [b, querysz, c_, h, w] :param y_qry: [b, querysz] :return: """ task_num, setsz, c_, h, w = x_spt.size() querysz = x_qry.size(1) losses_q = [0 for _ in range(self.update_step + 1)] # losses_q[i] is the loss on step i corrects = [0 for _ in range(self.update_step + 1)] for i in range(task_num): # 1. run the i-th task and compute loss for k=0 logits = self.net(x_spt[i], vars=None, bn_training=True) loss = F.cross_entropy(logits, y_spt[i]) grad = torch.autograd.grad(loss, self.net.parameters()) fast_weights = list([p[1] - self.update_lr * p[0]for p in zip(grad, self.net.parameters())]) # this is the loss and accuracy before first update with torch.no_grad(): # [setsz, nway] logits_q = self.net(x_qry[i], self.net.parameters(), bn_training=True) loss_q = F.cross_entropy(logits_q, y_qry[i]) losses_q[0] += loss_q pred_q = F.softmax(logits_q, dim=1).argmax(dim=1) correct = torch.eq(pred_q, y_qry[i]).sum().item() corrects[0] = corrects[0] + correct # this is the loss and accuracy after the first update with torch.no_grad(): # [setsz, nway] logits_q = self.net(x_qry[i], fast_weights, bn_training=True) loss_q = F.cross_entropy(logits_q, y_qry[i]) losses_q[1] += loss_q # [setsz] pred_q = F.softmax(logits_q, dim=1).argmax(dim=1) correct = torch.eq(pred_q, y_qry[i]).sum().item() corrects[1] = corrects[1] + correct for k in range(1, self.update_step): # 1. run the i-th task and compute loss for k=1~K-1 logits = self.net(x_spt[i], fast_weights, bn_training=True) loss = F.cross_entropy(logits, y_spt[i]) # 2. compute grad on theta_pi grad = torch.autograd.grad(loss, fast_weights) # 3. theta_pi = theta_pi - train_lr * grad fast_weights = [p[1] - self.update_lr * p[0] for p in zip(grad, fast_weights)] logits_q = self.net(x_qry[i], fast_weights, bn_training=True) # loss_q will be overwritten and just keep the loss_q on last update step. loss_q = F.cross_entropy(logits_q, y_qry[i]) losses_q[k + 1] += loss_q with torch.no_grad(): pred_q = F.softmax(logits_q, dim=1).argmax(dim=1) correct = torch.eq(pred_q, y_qry[i]).sum().item() # convert to numpy corrects[k + 1] = corrects[k + 1] + correct # end of all tasks # sum over all losses on query set across all tasks loss_q = losses_q[-1] / task_num # optimize theta parameters self.meta_optim.zero_grad() loss_q.backward() # print('meta update') # for p in self.net.parameters()[:5]: # print(torch.norm(p).item()) self.meta_optim.step() accs = torch.tensor(corrects) / (querysz * task_num) return accs def finetunning(self, x_spt, y_spt, x_qry, y_qry): """ :param x_spt: [setsz, c_, h, w] :param y_spt: [setsz] :param x_qry: [querysz, c_, h, w] :param y_qry: [querysz] :return: """ querysz = x_qry.size(0) corrects = [0 for _ in range(self.update_step_test + 1)] # in order to not ruin the state of running_mean/variance and bn_weight/bias # we finetunning on the copied model instead of self.net net = deepcopy(self.net) # 1. run the i-th task and compute loss for k=0 logits = net(x_spt) loss = F.cross_entropy(logits, y_spt) grad = torch.autograd.grad(loss, net.parameters()) fast_weights = list(map(lambda p: p[1] - self.update_lr * p[0], zip(grad, net.parameters()))) # this is the loss and accuracy before first update with torch.no_grad(): # [setsz, nway] logits_q = net(x_qry, net.parameters(), bn_training=True) # [setsz] pred_q = F.softmax(logits_q, dim=1).argmax(dim=1) # scalar correct = torch.eq(pred_q, y_qry).sum().item() corrects[0] = corrects[0] + correct # this is the loss and accuracy after the first update with torch.no_grad(): # [setsz, nway] logits_q = net(x_qry, fast_weights, bn_training=True) # [setsz] pred_q = F.softmax(logits_q, dim=1).argmax(dim=1) # scalar correct = torch.eq(pred_q, y_qry).sum().item() corrects[1] = corrects[1] + correct for k in range(1, self.update_step_test): # 1. run the i-th task and compute loss for k=1~K-1 logits = net(x_spt, fast_weights, bn_training=True) loss = F.cross_entropy(logits, y_spt) # 2. compute grad on theta_pi grad = torch.autograd.grad(loss, fast_weights) # 3. theta_pi = theta_pi - train_lr * grad fast_weights = list(map(lambda p: p[1] - self.update_lr * p[0], zip(grad, fast_weights))) logits_q = net(x_qry, fast_weights, bn_training=True) # loss_q will be overwritten and just keep the loss_q on last update step. loss_q = F.cross_entropy(logits_q, y_qry) with torch.no_grad(): pred_q = F.softmax(logits_q, dim=1).argmax(dim=1) correct = torch.eq(pred_q, y_qry).sum().item() # convert to numpy corrects[k + 1] = corrects[k + 1] + correct del net accs = torch.tensor(corrects) / querysz return accs def main(): pass if __name__ == '__main__': main()
import torch from torch import nn from torch.nn import functional as F import numpy as np from typing import List class Learner(nn.Module): """ """ def __init__(self, config, imgc, imgsz): """ :param config: network config file, type:list of (string, list) :param imgc: 1 or 3 :param imgsz: 28 or 84 """ super(Learner, self).__init__() self.config = config # this dict contains all tensors needed to be optimized self.vars = nn.ParameterList() # running_mean and running_var self.vars_bn = nn.ParameterList() for i, (name, param) in enumerate(self.config): if name == 'conv2d': # [ch_out, ch_in, kernelsz, kernelsz] w = nn.Parameter(torch.ones(*param[:4])) # gain=1 according to cbfin's implementation torch.nn.init.kaiming_normal_(w) self.vars.append(w) # [ch_out] self.vars.append(nn.Parameter(torch.zeros(param[0]))) elif name == 'convt2d': # [ch_in, ch_out, kernelsz, kernelsz, stride, padding] w = nn.Parameter(torch.ones(*param[:4])) # gain=1 according to cbfin's implementation torch.nn.init.kaiming_normal_(w) self.vars.append(w) # [ch_in, ch_out] self.vars.append(nn.Parameter(torch.zeros(param[1]))) elif name == 'linear': # [ch_out, ch_in] w = nn.Parameter(torch.ones(*param)) # gain=1 according to cbfinn's implementation torch.nn.init.kaiming_normal_(w) self.vars.append(w) # [ch_out] self.vars.append(nn.Parameter(torch.zeros(param[0]))) elif name == 'bn': # [ch_out] w = nn.Parameter(torch.ones(param[0])) self.vars.append(w) # [ch_out] self.vars.append(nn.Parameter(torch.zeros(param[0]))) # must set requires_grad=False running_mean = nn.Parameter(torch.zeros(param[0]), requires_grad=False) running_var = nn.Parameter(torch.ones(param[0]), requires_grad=False) self.vars_bn.extend([running_mean, running_var]) elif name in ['tanh', 'relu', 'upsample', 'avg_pool2d', 'max_pool2d', 'flatten', 'reshape', 'leakyrelu', 'sigmoid']: continue else: raise NotImplementedError def extra_repr(self): info = '' for name, param in self.config: if name == 'conv2d': tmp = 'conv2d:(ch_in:%d, ch_out:%d, k:%dx%d, stride:%d, padding:%d)'\ %(param[1], param[0], param[2], param[3], param[4], param[5],) info += tmp + '\n' elif name == 'convt2d': tmp = 'convTranspose2d:(ch_in:%d, ch_out:%d, k:%dx%d, stride:%d, padding:%d)'\ %(param[0], param[1], param[2], param[3], param[4], param[5],) info += tmp + '\n' elif name == 'linear': tmp = 'linear:(in:%d, out:%d)'%(param[1], param[0]) info += tmp + '\n' elif name == 'leakyrelu': tmp = 'leakyrelu:(slope:%f)'%(param[0]) info += tmp + '\n' elif name == 'avg_pool2d': tmp = 'avg_pool2d:(k:%d, stride:%d, padding:%d)'%(param[0], param[1], param[2]) info += tmp + '\n' elif name == 'max_pool2d': tmp = 'max_pool2d:(k:%d, stride:%d, padding:%d)'%(param[0], param[1], param[2]) info += tmp + '\n' elif name in ['flatten', 'tanh', 'relu', 'upsample', 'reshape', 'sigmoid', 'use_logits', 'bn']: tmp = name + ':' + str(tuple(param)) info += tmp + '\n' else: raise NotImplementedError return info def forward(self, x, vars=None, bn_training=True): """ This function can be called by finetunning, however, in finetunning, we dont wish to update running_mean/running_var. Thought weights/bias of bn == updated, it has been separated by fast_weights. Indeed, to not update running_mean/running_var, we need set update_bn_statistics=False but weight/bias will be updated and not dirty initial theta parameters via fast_weiths. :param x: [b, 1, 28, 28] :param vars: :param bn_training: set False to not update :return: x, loss, likelihood, kld """ if vars == None: vars = self.vars idx = 0 bn_idx = 0 for name, param in self.config: if name == 'conv2d': w, b = vars[idx], vars[idx + 1] # remember to keep synchrozied of forward_encoder and forward_decoder! x = F.conv2d(x, w, b, stride=param[4], padding=param[5]) idx += 2 # print(name, param, '\tout:', x.shape) elif name == 'convt2d': w, b = vars[idx], vars[idx + 1] # remember to keep synchrozied of forward_encoder and forward_decoder! x = F.conv_transpose2d(x, w, b, stride=param[4], padding=param[5]) idx += 2 # print(name, param, '\tout:', x.shape) elif name == 'linear': w, b = vars[idx], vars[idx + 1] x = F.linear(x, w, b) idx += 2 # print('forward:', idx, x.norm().item()) elif name == 'bn': w, b = vars[idx], vars[idx + 1] running_mean, running_var = self.vars_bn[bn_idx], self.vars_bn[bn_idx+1] x = F.batch_norm(x, running_mean, running_var, weight=w, bias=b, training=bn_training) idx += 2 bn_idx += 2 elif name == 'flatten': # print(x.shape) x = x.view(x.size(0), -1) elif name == 'reshape': # [b, 8] => [b, 2, 2, 2] x = x.view(x.size(0), *param) elif name == 'relu': x = F.relu(x, inplace=param[0]) elif name == 'leakyrelu': x = F.leaky_relu(x, negative_slope=param[0], inplace=param[1]) elif name == 'tanh': x = F.tanh(x) elif name == 'sigmoid': x = torch.sigmoid(x) elif name == 'upsample': x = F.upsample_nearest(x, scale_factor=param[0]) elif name == 'max_pool2d': x = F.max_pool2d(x, param[0], param[1], param[2]) elif name == 'avg_pool2d': x = F.avg_pool2d(x, param[0], param[1], param[2]) else: raise NotImplementedError # make sure variable == used properly assert idx == len(vars) assert bn_idx == len(self.vars_bn) return x def zero_grad(self, vars=None): """ :param vars: :return: """ with torch.no_grad(): if vars == None: for p in self.vars: if not p.grad == None: p.grad.zero_() else: for p in vars: if not p.grad == None: p.grad.zero_() def parameters(self): """ override this function since initial parameters will return with a generator. :return: """ return self.vars
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import numpy as np import torch from typing import Optional, Tuple from .sam import Sam from .transforms import ResizeLongestSide class SamPredictor: def __init__( self, sam_model: Sam, ) -> None: """ Uses SAM to calculate the image embedding for an image, and then allow repeated, efficient mask prediction given prompts. Arguments: sam_model (Sam): The model to use for mask prediction. """ super().__init__() self.model = sam_model self.transform = ResizeLongestSide(sam_model.image_encoder.img_size) self.reset_image() def set_image( self, image: np.ndarray, image_format: str = "RGB", ) -> None: """ Calculates the image embeddings for the provided image, allowing masks to be predicted with the 'predict' method. Arguments: image (np.ndarray): The image for calculating masks. Expects an image in HWC uint8 format, with pixel values in [0, 255]. image_format (str): The color format of the image, in ['RGB', 'BGR']. """ assert image_format in [ "RGB", "BGR", ], f"image_format must be in ['RGB', 'BGR'], is {image_format}." if image_format != self.model.image_format: image = image[..., ::-1] # Transform the image to the form expected by the model input_image = self.transform.apply_image(image) input_image_torch = torch.as_tensor(input_image, device=self.device) input_image_torch = input_image_torch.permute(2, 0, 1).contiguous()[None, :, :, :] self.set_torch_image(input_image_torch, image.shape[:2]) @torch.no_grad() def set_torch_image( self, transformed_image: torch.Tensor, original_image_size: Tuple[int, ...], ) -> None: """ Calculates the image embeddings for the provided image, allowing masks to be predicted with the 'predict' method. Expects the input image to be already transformed to the format expected by the model. Arguments: transformed_image (torch.Tensor): The input image, with shape 1x3xHxW, which has been transformed with ResizeLongestSide. original_image_size (tuple(int, int)): The size of the image before transformation, in (H, W) format. """ assert ( len(transformed_image.shape) == 4 and transformed_image.shape[1] == 3 and max(*transformed_image.shape[2:]) == self.model.image_encoder.img_size ), f"set_torch_image input must be BCHW with long side {self.model.image_encoder.img_size}." self.reset_image() self.original_size = original_image_size self.input_size = tuple(transformed_image.shape[-2:]) input_image = self.model.preprocess(transformed_image) self.features = self.model.image_encoder(input_image) self.is_image_set = True def predict( self, point_coords: Optional[np.ndarray] = None, point_labels: Optional[np.ndarray] = None, box: Optional[np.ndarray] = None, mask_input: Optional[np.ndarray] = None, multimask_output: bool = True, return_logits: bool = False, ) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: """ Predict masks for the given input prompts, using the currently set image. Arguments: point_coords (np.ndarray or None): A Nx2 array of point prompts to the model. Each point is in (X,Y) in pixels. point_labels (np.ndarray or None): A length N array of labels for the point prompts. 1 indicates a foreground point and 0 indicates a background point. box (np.ndarray or None): A length 4 array given a box prompt to the model, in XYXY format. mask_input (np.ndarray): A low resolution mask input to the model, typically coming from a previous prediction iteration. Has form 1xHxW, where for SAM, H=W=256. multimask_output (bool): If true, the model will return three masks. For ambiguous input prompts (such as a single click), this will often produce better masks than a single prediction. If only a single mask is needed, the model's predicted quality score can be used to select the best mask. For non-ambiguous prompts, such as multiple input prompts, multimask_output=False can give better results. return_logits (bool): If true, returns un-thresholded masks logits instead of a binary mask. Returns: (np.ndarray): The output masks in CxHxW format, where C is the number of masks, and (H, W) is the original image size. (np.ndarray): An array of length C containing the model's predictions for the quality of each mask. (np.ndarray): An array of shape CxHxW, where C is the number of masks and H=W=256. These low resolution logits can be passed to a subsequent iteration as mask input. """ if not self.is_image_set: raise RuntimeError("An image must be set with .set_image(...) before mask prediction.") # Transform input prompts coords_torch, labels_torch, box_torch, mask_input_torch = None, None, None, None if point_coords is not None: assert ( point_labels is not None ), "point_labels must be supplied if point_coords is supplied." point_coords = self.transform.apply_coords(point_coords, self.original_size) coords_torch = torch.as_tensor(point_coords, dtype=torch.float, device=self.device) labels_torch = torch.as_tensor(point_labels, dtype=torch.int, device=self.device) coords_torch, labels_torch = coords_torch[None, :, :], labels_torch[None, :] if box is not None: box = self.transform.apply_boxes(box, self.original_size) box_torch = torch.as_tensor(box, dtype=torch.float, device=self.device) box_torch = box_torch[None, :] if mask_input is not None: mask_input_torch = torch.as_tensor(mask_input, dtype=torch.float, device=self.device) mask_input_torch = mask_input_torch[None, :, :, :] masks, iou_predictions, low_res_masks = self.predict_torch( coords_torch, labels_torch, box_torch, mask_input_torch, multimask_output, return_logits=return_logits, ) masks_np = masks[0].detach().cpu().numpy() iou_predictions_np = iou_predictions[0].to(torch.float32).detach().cpu().numpy() low_res_masks_np = low_res_masks[0].to(torch.float32).detach().cpu().numpy() return masks_np, iou_predictions_np, low_res_masks_np @torch.no_grad() def predict_torch( self, point_coords: Optional[torch.Tensor], point_labels: Optional[torch.Tensor], boxes: Optional[torch.Tensor] = None, mask_input: Optional[torch.Tensor] = None, multimask_output: bool = True, return_logits: bool = False, ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """ Predict masks for the given input prompts, using the currently set image. Input prompts are batched torch tensors and are expected to already be transformed to the input frame using ResizeLongestSide. Arguments: point_coords (torch.Tensor or None): A BxNx2 array of point prompts to the model. Each point is in (X,Y) in pixels. point_labels (torch.Tensor or None): A BxN array of labels for the point prompts. 1 indicates a foreground point and 0 indicates a background point. boxes (np.ndarray or None): A Bx4 array given a box prompt to the model, in XYXY format. mask_input (np.ndarray): A low resolution mask input to the model, typically coming from a previous prediction iteration. Has form Bx1xHxW, where for SAM, H=W=256. Masks returned by a previous iteration of the predict method do not need further transformation. multimask_output (bool): If true, the model will return three masks. For ambiguous input prompts (such as a single click), this will often produce better masks than a single prediction. If only a single mask is needed, the model's predicted quality score can be used to select the best mask. For non-ambiguous prompts, such as multiple input prompts, multimask_output=False can give better results. return_logits (bool): If true, returns un-thresholded masks logits instead of a binary mask. Returns: (torch.Tensor): The output masks in BxCxHxW format, where C is the number of masks, and (H, W) is the original image size. (torch.Tensor): An array of shape BxC containing the model's predictions for the quality of each mask. (torch.Tensor): An array of shape BxCxHxW, where C is the number of masks and H=W=256. These low res logits can be passed to a subsequent iteration as mask input. """ # if not self.is_image_set: # raise RuntimeError("An image must be set with .set_image(...) before mask prediction.") if point_coords is not None: points = (point_coords, point_labels) else: points = None # Embed prompts sparse_embeddings, dense_embeddings = self.model.prompt_encoder( points=points, boxes=boxes, masks=mask_input, ) # Predict masks low_res_masks, iou_predictions = self.model.mask_decoder( image_embeddings=self.features, image_pe=self.model.prompt_encoder.get_dense_pe(), sparse_prompt_embeddings=sparse_embeddings, dense_prompt_embeddings=dense_embeddings, multimask_output=multimask_output, ) # Upscale the masks to the original image resolution masks = self.model.postprocess_masks(low_res_masks, self.input_size, self.original_size) if not return_logits: masks = masks > self.model.mask_threshold return masks, iou_predictions, low_res_masks def get_image_embedding(self) -> torch.Tensor: """ Returns the image embeddings for the currently set image, with shape 1xCxHxW, where C is the embedding dimension and (H,W) are the embedding spatial dimension of SAM (typically C=256, H=W=64). """ # if not self.is_image_set: # raise RuntimeError( # "An image must be set with .set_image(...) to generate an embedding." # ) assert self.features is not None, "Features must exist if an image has been set." return self.features @property def device(self) -> torch.device: return self.model.device def reset_image(self) -> None: """Resets the currently set image.""" self.is_image_set = False self.features = None self.orig_h = None self.orig_w = None self.input_h = None self.input_w = None
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import torch from functools import partial from .image_encoder import ImageEncoderViT from .mask_decoder import MaskDecoder from .prompt_encoder import PromptEncoder from .transformer import TwoWayTransformer from .sam import Sam def build_sam_vit_h(checkpoint=None): return _build_sam( encoder_embed_dim=1280, encoder_depth=32, encoder_num_heads=16, encoder_global_attn_indexes=[7, 15, 23, 31], checkpoint=checkpoint, ) build_sam = build_sam_vit_h def build_sam_vit_l(checkpoint=None): return _build_sam( encoder_embed_dim=1024, encoder_depth=24, encoder_num_heads=16, encoder_global_attn_indexes=[5, 11, 17, 23], checkpoint=checkpoint, ) def build_sam_vit_b(checkpoint=None): return _build_sam( encoder_embed_dim=768, encoder_depth=12, encoder_num_heads=12, encoder_global_attn_indexes=[2, 5, 8, 11], checkpoint=checkpoint, ) sam_model_registry = { "default": build_sam_vit_h, "vit_h": build_sam_vit_h, "vit_l": build_sam_vit_l, "vit_b": build_sam_vit_b, } def _build_sam( encoder_embed_dim, encoder_depth, encoder_num_heads, encoder_global_attn_indexes, checkpoint=None, ): prompt_embed_dim = 256 image_size = 1024 vit_patch_size = 16 image_embedding_size = image_size // vit_patch_size sam = Sam( image_encoder=ImageEncoderViT( depth=encoder_depth, embed_dim=encoder_embed_dim, img_size=image_size, mlp_ratio=4, norm_layer=partial(torch.nn.LayerNorm, eps=1e-6), num_heads=encoder_num_heads, patch_size=vit_patch_size, qkv_bias=True, use_rel_pos=True, global_attn_indexes=encoder_global_attn_indexes, window_size=14, out_chans=prompt_embed_dim, ), prompt_encoder=PromptEncoder( embed_dim=prompt_embed_dim, image_embedding_size=(image_embedding_size, image_embedding_size), input_image_size=(image_size, image_size), mask_in_chans=16, ), mask_decoder=MaskDecoder( num_multimask_outputs=3, transformer=TwoWayTransformer( depth=2, embedding_dim=prompt_embed_dim, mlp_dim=2048, num_heads=8, ), transformer_dim=prompt_embed_dim, iou_head_depth=3, iou_head_hidden_dim=256, ), pixel_mean=[123.675, 116.28, 103.53], pixel_std=[58.395, 57.12, 57.375], ) sam.eval() if checkpoint is not None: with open(checkpoint, "rb") as f: state_dict = torch.load(f) sam.load_state_dict(state_dict) return sam
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import numpy as np import torch from torch.nn import functional as F from torchvision.transforms.functional import resize, to_pil_image # type: ignore from copy import deepcopy from typing import Tuple class ResizeLongestSide: """ Resizes images to the longest side 'target_length', as well as provides methods for resizing coordinates and boxes. Provides methods for transforming both numpy array and batched torch tensors. """ def __init__(self, target_length: int) -> None: self.target_length = target_length def apply_image(self, image: np.ndarray) -> np.ndarray: """ Expects a numpy array with shape HxWxC in uint8 format. """ target_size = self.get_preprocess_shape(image.shape[0], image.shape[1], self.target_length) return np.array(resize(to_pil_image(image), target_size)) def apply_coords(self, coords: np.ndarray, original_size: Tuple[int, ...]) -> np.ndarray: """ Expects a numpy array of length 2 in the final dimension. Requires the original image size in (H, W) format. """ old_h, old_w = original_size new_h, new_w = self.get_preprocess_shape( original_size[0], original_size[1], self.target_length ) coords = deepcopy(coords).astype(float) coords[..., 0] = coords[..., 0] * (new_w / old_w) coords[..., 1] = coords[..., 1] * (new_h / old_h) return coords def apply_boxes(self, boxes: np.ndarray, original_size: Tuple[int, ...]) -> np.ndarray: """ Expects a numpy array shape Bx4. Requires the original image size in (H, W) format. """ boxes = self.apply_coords(boxes.reshape(-1, 2, 2), original_size) return boxes.reshape(-1, 4) def apply_image_torch(self, image: torch.Tensor) -> torch.Tensor: """ Expects batched images with shape BxCxHxW and float format. This transformation may not exactly match apply_image. apply_image is the transformation expected by the model. """ # Expects an image in BCHW format. May not exactly match apply_image. target_size = self.get_preprocess_shape(image.shape[2], image.shape[3], self.target_length) return F.interpolate( image, target_size, mode="bilinear", align_corners=False, antialias=True ) def apply_coords_torch( self, coords: torch.Tensor, original_size: Tuple[int, ...] ) -> torch.Tensor: """ Expects a torch tensor with length 2 in the last dimension. Requires the original image size in (H, W) format. """ old_h, old_w = original_size new_h, new_w = self.get_preprocess_shape( original_size[0], original_size[1], self.target_length ) coords = deepcopy(coords).to(torch.float) coords[..., 0] = coords[..., 0] * (new_w / old_w) coords[..., 1] = coords[..., 1] * (new_h / old_h) return coords def apply_boxes_torch( self, boxes: torch.Tensor, original_size: Tuple[int, ...] ) -> torch.Tensor: """ Expects a torch tensor with shape Bx4. Requires the original image size in (H, W) format. """ boxes = self.apply_coords_torch(boxes.reshape(-1, 2, 2), original_size) return boxes.reshape(-1, 4) @staticmethod def get_preprocess_shape(oldh: int, oldw: int, long_side_length: int) -> Tuple[int, int]: """ Compute the output size given input size and target long side length. """ scale = long_side_length * 1.0 / max(oldh, oldw) newh, neww = oldh * scale, oldw * scale neww = int(neww + 0.5) newh = int(newh + 0.5) return (newh, neww)
# Copyright (c) Meta Platforms, Inc. and affiliates. # This software may be used and distributed according to the terms of the GNU General Public License version 3. from ...util.model import BenchmarkModel from .build_sam import sam_model_registry from .predictor import SamPredictor from PIL import Image import numpy as np import cv2 from torchbenchmark.tasks import COMPUTER_VISION import torch import os class Model(BenchmarkModel): task = COMPUTER_VISION.SEGMENTATION DEFAULT_EVAL_BSIZE = 32 def __init__(self, test, device, batch_size=1, extra_args=[]): super().__init__(test=test, device=device, batch_size=batch_size, extra_args=extra_args) # Checkpoint options are here https://github.com/facebookresearch/segment-anything#model-checkpoints data_folder = os.path.join(os.path.dirname(os.path.abspath(__file__)), '.data') sam_checkpoint = os.path.join(data_folder, 'sam_vit_h_4b8939.pth') model_type = "vit_h" self.model = sam_model_registry[model_type](checkpoint=sam_checkpoint) self.model.to(device=device) data_folder = os.path.join(os.path.dirname(os.path.abspath(__file__)), '.data') image_path = os.path.join(data_folder, 'truck.jpg') self.image = cv2.imread(image_path) self.image = cv2.cvtColor(self.image, cv2.COLOR_BGR2RGB) self.sample_image = torch.randn((3, 256, 256)).to(device) def get_module(self): example_input = [ { 'image': self.sample_image, 'original_size': (256, 256), } ] multimask_output = False return self.model, (example_input, multimask_output) def train(self): error_msg = """ As of May 17, 2023 Some base VIT checkpoints are available for SAM but getting the dataset requires a research license. It's easy to make up a training loop on random data and if that's interesting please let @msaroufim know https://github.com/facebookresearch/segment-anything#dataset """ return NotImplementedError(error_msg) def eval(self): # To test for bfloat16 uncomment the below line # predictor = SamPredictor(self.model.to(dtype=torch.bfloat16)) predictor = SamPredictor(self.model) predictor.set_image(self.image) input_point = np.array([[500, 375]]) input_label = np.array([1]) masks, scores, logits = predictor.predict( point_coords=input_point, point_labels=input_label, multimask_output=True) return (masks,)
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import torch import torch.nn as nn from typing import Type class MLPBlock(nn.Module): def __init__( self, embedding_dim: int, mlp_dim: int, act: Type[nn.Module] = nn.GELU, ) -> None: super().__init__() self.lin1 = nn.Linear(embedding_dim, mlp_dim) self.lin2 = nn.Linear(mlp_dim, embedding_dim) self.act = act() def forward(self, x: torch.Tensor) -> torch.Tensor: return self.lin2(self.act(self.lin1(x))) # From https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/batch_norm.py # noqa # Itself from https://github.com/facebookresearch/ConvNeXt/blob/d1fa8f6fef0a165b27399986cc2bdacc92777e40/models/convnext.py#L119 # noqa class LayerNorm2d(nn.Module): def __init__(self, num_channels: int, eps: float = 1e-6) -> None: super().__init__() self.weight = nn.Parameter(torch.ones(num_channels)) self.bias = nn.Parameter(torch.zeros(num_channels)) self.eps = eps def forward(self, x: torch.Tensor) -> torch.Tensor: u = x.mean(1, keepdim=True) s = (x - u).pow(2).mean(1, keepdim=True) x = (x - u) / torch.sqrt(s + self.eps) x = self.weight[:, None, None] * x + self.bias[:, None, None] return x
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import torch from torch import Tensor, nn import math from typing import Tuple, Type from .common import MLPBlock class TwoWayTransformer(nn.Module): def __init__( self, depth: int, embedding_dim: int, num_heads: int, mlp_dim: int, activation: Type[nn.Module] = nn.ReLU, attention_downsample_rate: int = 2, ) -> None: """ A transformer decoder that attends to an input image using queries whose positional embedding is supplied. Args: depth (int): number of layers in the transformer embedding_dim (int): the channel dimension for the input embeddings num_heads (int): the number of heads for multihead attention. Must divide embedding_dim mlp_dim (int): the channel dimension internal to the MLP block activation (nn.Module): the activation to use in the MLP block """ super().__init__() self.depth = depth self.embedding_dim = embedding_dim self.num_heads = num_heads self.mlp_dim = mlp_dim self.layers = nn.ModuleList() for i in range(depth): self.layers.append( TwoWayAttentionBlock( embedding_dim=embedding_dim, num_heads=num_heads, mlp_dim=mlp_dim, activation=activation, attention_downsample_rate=attention_downsample_rate, skip_first_layer_pe=(i == 0), ) ) self.final_attn_token_to_image = Attention( embedding_dim, num_heads, downsample_rate=attention_downsample_rate ) self.norm_final_attn = nn.LayerNorm(embedding_dim) def forward( self, image_embedding: Tensor, image_pe: Tensor, point_embedding: Tensor, ) -> Tuple[Tensor, Tensor]: """ Args: image_embedding (torch.Tensor): image to attend to. Should be shape B x embedding_dim x h x w for any h and w. image_pe (torch.Tensor): the positional encoding to add to the image. Must have the same shape as image_embedding. point_embedding (torch.Tensor): the embedding to add to the query points. Must have shape B x N_points x embedding_dim for any N_points. Returns: torch.Tensor: the processed point_embedding torch.Tensor: the processed image_embedding """ # BxCxHxW -> BxHWxC == B x N_image_tokens x C bs, c, h, w = image_embedding.shape image_embedding = image_embedding.flatten(2).permute(0, 2, 1) image_pe = image_pe.flatten(2).permute(0, 2, 1) # Prepare queries queries = point_embedding keys = image_embedding # Apply transformer blocks and final layernorm for layer in self.layers: queries, keys = layer( queries=queries, keys=keys, query_pe=point_embedding, key_pe=image_pe, ) # Apply the final attention layer from the points to the image q = queries + point_embedding k = keys + image_pe attn_out = self.final_attn_token_to_image(q=q, k=k, v=keys) queries = queries + attn_out queries = self.norm_final_attn(queries) return queries, keys class TwoWayAttentionBlock(nn.Module): def __init__( self, embedding_dim: int, num_heads: int, mlp_dim: int = 2048, activation: Type[nn.Module] = nn.ReLU, attention_downsample_rate: int = 2, skip_first_layer_pe: bool = False, ) -> None: """ A transformer block with four layers: (1) self-attention of sparse inputs, (2) cross attention of sparse inputs to dense inputs, (3) mlp block on sparse inputs, and (4) cross attention of dense inputs to sparse inputs. Arguments: embedding_dim (int): the channel dimension of the embeddings num_heads (int): the number of heads in the attention layers mlp_dim (int): the hidden dimension of the mlp block activation (nn.Module): the activation of the mlp block skip_first_layer_pe (bool): skip the PE on the first layer """ super().__init__() self.self_attn = Attention(embedding_dim, num_heads) self.norm1 = nn.LayerNorm(embedding_dim) self.cross_attn_token_to_image = Attention( embedding_dim, num_heads, downsample_rate=attention_downsample_rate ) self.norm2 = nn.LayerNorm(embedding_dim) self.mlp = MLPBlock(embedding_dim, mlp_dim, activation) self.norm3 = nn.LayerNorm(embedding_dim) self.norm4 = nn.LayerNorm(embedding_dim) self.cross_attn_image_to_token = Attention( embedding_dim, num_heads, downsample_rate=attention_downsample_rate ) self.skip_first_layer_pe = skip_first_layer_pe def forward( self, queries: Tensor, keys: Tensor, query_pe: Tensor, key_pe: Tensor ) -> Tuple[Tensor, Tensor]: # Self attention block if self.skip_first_layer_pe: queries = self.self_attn(q=queries, k=queries, v=queries) else: q = queries + query_pe attn_out = self.self_attn(q=q, k=q, v=queries) queries = queries + attn_out queries = self.norm1(queries) # Cross attention block, tokens attending to image embedding q = queries + query_pe k = keys + key_pe attn_out = self.cross_attn_token_to_image(q=q, k=k, v=keys) queries = queries + attn_out queries = self.norm2(queries) # MLP block mlp_out = self.mlp(queries) queries = queries + mlp_out queries = self.norm3(queries) # Cross attention block, image embedding attending to tokens q = queries + query_pe k = keys + key_pe attn_out = self.cross_attn_image_to_token(q=k, k=q, v=queries) keys = keys + attn_out keys = self.norm4(keys) return queries, keys class Attention(nn.Module): """ An attention layer that allows for downscaling the size of the embedding after projection to queries, keys, and values. """ def __init__( self, embedding_dim: int, num_heads: int, downsample_rate: int = 1, ) -> None: super().__init__() self.embedding_dim = embedding_dim self.internal_dim = embedding_dim // downsample_rate self.num_heads = num_heads assert self.internal_dim % num_heads == 0, "num_heads must divide embedding_dim." self.q_proj = nn.Linear(embedding_dim, self.internal_dim) self.k_proj = nn.Linear(embedding_dim, self.internal_dim) self.v_proj = nn.Linear(embedding_dim, self.internal_dim) self.out_proj = nn.Linear(self.internal_dim, embedding_dim) def _separate_heads(self, x: Tensor, num_heads: int) -> Tensor: b, n, c = x.shape x = x.reshape(b, n, num_heads, c // num_heads) return x.transpose(1, 2) # B x N_heads x N_tokens x C_per_head def _recombine_heads(self, x: Tensor) -> Tensor: b, n_heads, n_tokens, c_per_head = x.shape x = x.transpose(1, 2) return x.reshape(b, n_tokens, n_heads * c_per_head) # B x N_tokens x C def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor: # Input projections q = self.q_proj(q) k = self.k_proj(k) v = self.v_proj(v) # Separate into heads q = self._separate_heads(q, self.num_heads) k = self._separate_heads(k, self.num_heads) v = self._separate_heads(v, self.num_heads) # Attention _, _, _, c_per_head = q.shape attn = q @ k.permute(0, 1, 3, 2) # B x N_heads x N_tokens x N_tokens attn = attn / math.sqrt(c_per_head) attn = torch.softmax(attn, dim=-1) # Get output out = attn @ v out = self._recombine_heads(out) out = self.out_proj(out) return out
import os import subprocess import sys def pip_install_requirements(): subprocess.check_call([sys.executable, '-m', 'pip', 'install', '-q', '-r', 'requirements.txt']) def download_checkpoint(): subprocess.check_call(['wget', '-P', '.data', 'https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth']) def download_data(): subprocess.check_call(['wget', '-P', '.data', 'https://github.com/facebookresearch/segment-anything/raw/main/notebooks/images/truck.jpg']) if __name__ == '__main__': pip_install_requirements() # Create .data folder in the script's directory data_folder = os.path.join(os.path.dirname(os.path.abspath(__file__)), '.data') os.makedirs(data_folder, exist_ok=True) # Download checkpoint and data files to the .data folder download_checkpoint() download_data()
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import torch import torch.nn as nn import torch.nn.functional as F from typing import Optional, Tuple, Type from .common import LayerNorm2d, MLPBlock # This class and its supporting functions below lightly adapted from the ViTDet backbone available at: https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/backbone/vit.py # noqa class ImageEncoderViT(nn.Module): def __init__( self, img_size: int = 1024, patch_size: int = 16, in_chans: int = 3, embed_dim: int = 768, depth: int = 12, num_heads: int = 12, mlp_ratio: float = 4.0, out_chans: int = 256, qkv_bias: bool = True, norm_layer: Type[nn.Module] = nn.LayerNorm, act_layer: Type[nn.Module] = nn.GELU, use_abs_pos: bool = True, use_rel_pos: bool = False, rel_pos_zero_init: bool = True, window_size: int = 0, global_attn_indexes: Tuple[int, ...] = (), ) -> None: """ Args: img_size (int): Input image size. patch_size (int): Patch size. in_chans (int): Number of input image channels. embed_dim (int): Patch embedding dimension. depth (int): Depth of ViT. num_heads (int): Number of attention heads in each ViT block. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. qkv_bias (bool): If True, add a learnable bias to query, key, value. norm_layer (nn.Module): Normalization layer. act_layer (nn.Module): Activation layer. use_abs_pos (bool): If True, use absolute positional embeddings. use_rel_pos (bool): If True, add relative positional embeddings to the attention map. rel_pos_zero_init (bool): If True, zero initialize relative positional parameters. window_size (int): Window size for window attention blocks. global_attn_indexes (list): Indexes for blocks using global attention. """ super().__init__() self.img_size = img_size self.patch_embed = PatchEmbed( kernel_size=(patch_size, patch_size), stride=(patch_size, patch_size), in_chans=in_chans, embed_dim=embed_dim, ) self.pos_embed: Optional[nn.Parameter] = None if use_abs_pos: # Initialize absolute positional embedding with pretrain image size. self.pos_embed = nn.Parameter( torch.zeros(1, img_size // patch_size, img_size // patch_size, embed_dim) ) self.blocks = nn.ModuleList() for i in range(depth): block = Block( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, norm_layer=norm_layer, act_layer=act_layer, use_rel_pos=use_rel_pos, rel_pos_zero_init=rel_pos_zero_init, window_size=window_size if i not in global_attn_indexes else 0, input_size=(img_size // patch_size, img_size // patch_size), ) self.blocks.append(block) self.neck = nn.Sequential( nn.Conv2d( embed_dim, out_chans, kernel_size=1, bias=False, ), LayerNorm2d(out_chans), nn.Conv2d( out_chans, out_chans, kernel_size=3, padding=1, bias=False, ), LayerNorm2d(out_chans), ) def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.patch_embed(x) if self.pos_embed is not None: x = x + self.pos_embed for blk in self.blocks: x = blk(x) x = self.neck(x.permute(0, 3, 1, 2)) return x class Block(nn.Module): """Transformer blocks with support of window attention and residual propagation blocks""" def __init__( self, dim: int, num_heads: int, mlp_ratio: float = 4.0, qkv_bias: bool = True, norm_layer: Type[nn.Module] = nn.LayerNorm, act_layer: Type[nn.Module] = nn.GELU, use_rel_pos: bool = False, rel_pos_zero_init: bool = True, window_size: int = 0, input_size: Optional[Tuple[int, int]] = None, ) -> None: """ Args: dim (int): Number of input channels. num_heads (int): Number of attention heads in each ViT block. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. qkv_bias (bool): If True, add a learnable bias to query, key, value. norm_layer (nn.Module): Normalization layer. act_layer (nn.Module): Activation layer. use_rel_pos (bool): If True, add relative positional embeddings to the attention map. rel_pos_zero_init (bool): If True, zero initialize relative positional parameters. window_size (int): Window size for window attention blocks. If it equals 0, then use global attention. input_size (tuple(int, int) or None): Input resolution for calculating the relative positional parameter size. """ super().__init__() self.norm1 = norm_layer(dim) self.attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, use_rel_pos=use_rel_pos, rel_pos_zero_init=rel_pos_zero_init, input_size=input_size if window_size == 0 else (window_size, window_size), ) self.norm2 = norm_layer(dim) self.mlp = MLPBlock(embedding_dim=dim, mlp_dim=int(dim * mlp_ratio), act=act_layer) self.window_size = window_size def forward(self, x: torch.Tensor) -> torch.Tensor: shortcut = x x = self.norm1(x) # Window partition if self.window_size > 0: H, W = x.shape[1], x.shape[2] x, pad_hw = window_partition(x, self.window_size) x = self.attn(x) # Reverse window partition if self.window_size > 0: x = window_unpartition(x, self.window_size, pad_hw, (H, W)) x = shortcut + x x = x + self.mlp(self.norm2(x)) return x class Attention(nn.Module): """Multi-head Attention block with relative position embeddings.""" def __init__( self, dim: int, num_heads: int = 8, qkv_bias: bool = True, use_rel_pos: bool = False, rel_pos_zero_init: bool = True, input_size: Optional[Tuple[int, int]] = None, ) -> None: """ Args: dim (int): Number of input channels. num_heads (int): Number of attention heads. qkv_bias (bool): If True, add a learnable bias to query, key, value. rel_pos (bool): If True, add relative positional embeddings to the attention map. rel_pos_zero_init (bool): If True, zero initialize relative positional parameters. input_size (tuple(int, int) or None): Input resolution for calculating the relative positional parameter size. """ super().__init__() self.num_heads = num_heads head_dim = dim // num_heads self.scale = head_dim**-0.5 self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.proj = nn.Linear(dim, dim) self.use_rel_pos = use_rel_pos if self.use_rel_pos: assert ( input_size is not None ), "Input size must be provided if using relative positional encoding." # initialize relative positional embeddings self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim)) self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim)) def forward(self, x: torch.Tensor) -> torch.Tensor: B, H, W, _ = x.shape # qkv with shape (3, B, nHead, H * W, C) qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) # q, k, v with shape (B * nHead, H * W, C) q, k, v = qkv.reshape(3, B * self.num_heads, H * W, -1).unbind(0) attn = (q * self.scale) @ k.transpose(-2, -1) if self.use_rel_pos: attn = add_decomposed_rel_pos(attn, q, self.rel_pos_h, self.rel_pos_w, (H, W), (H, W)) attn = attn.softmax(dim=-1) x = (attn @ v).view(B, self.num_heads, H, W, -1).permute(0, 2, 3, 1, 4).reshape(B, H, W, -1) x = self.proj(x) return x def window_partition(x: torch.Tensor, window_size: int) -> Tuple[torch.Tensor, Tuple[int, int]]: """ Partition into non-overlapping windows with padding if needed. Args: x (tensor): input tokens with [B, H, W, C]. window_size (int): window size. Returns: windows: windows after partition with [B * num_windows, window_size, window_size, C]. (Hp, Wp): padded height and width before partition """ B, H, W, C = x.shape pad_h = (window_size - H % window_size) % window_size pad_w = (window_size - W % window_size) % window_size if pad_h > 0 or pad_w > 0: x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h)) Hp, Wp = H + pad_h, W + pad_w x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C) windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) return windows, (Hp, Wp) def window_unpartition( windows: torch.Tensor, window_size: int, pad_hw: Tuple[int, int], hw: Tuple[int, int] ) -> torch.Tensor: """ Window unpartition into original sequences and removing padding. Args: windows (tensor): input tokens with [B * num_windows, window_size, window_size, C]. window_size (int): window size. pad_hw (Tuple): padded height and width (Hp, Wp). hw (Tuple): original height and width (H, W) before padding. Returns: x: unpartitioned sequences with [B, H, W, C]. """ Hp, Wp = pad_hw H, W = hw B = windows.shape[0] // (Hp * Wp // window_size // window_size) x = windows.view(B, Hp // window_size, Wp // window_size, window_size, window_size, -1) x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1) if Hp > H or Wp > W: x = x[:, :H, :W, :].contiguous() return x def get_rel_pos(q_size: int, k_size: int, rel_pos: torch.Tensor) -> torch.Tensor: """ Get relative positional embeddings according to the relative positions of query and key sizes. Args: q_size (int): size of query q. k_size (int): size of key k. rel_pos (Tensor): relative position embeddings (L, C). Returns: Extracted positional embeddings according to relative positions. """ max_rel_dist = int(2 * max(q_size, k_size) - 1) # Interpolate rel pos if needed. if rel_pos.shape[0] != max_rel_dist: # Interpolate rel pos. rel_pos_resized = F.interpolate( rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1), size=max_rel_dist, mode="linear", ) rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0) else: rel_pos_resized = rel_pos # Scale the coords with short length if shapes for q and k are different. q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0) k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0) relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0) return rel_pos_resized[relative_coords.long()] def add_decomposed_rel_pos( attn: torch.Tensor, q: torch.Tensor, rel_pos_h: torch.Tensor, rel_pos_w: torch.Tensor, q_size: Tuple[int, int], k_size: Tuple[int, int], ) -> torch.Tensor: """ Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`. https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py # noqa B950 Args: attn (Tensor): attention map. q (Tensor): query q in the attention layer with shape (B, q_h * q_w, C). rel_pos_h (Tensor): relative position embeddings (Lh, C) for height axis. rel_pos_w (Tensor): relative position embeddings (Lw, C) for width axis. q_size (Tuple): spatial sequence size of query q with (q_h, q_w). k_size (Tuple): spatial sequence size of key k with (k_h, k_w). Returns: attn (Tensor): attention map with added relative positional embeddings. """ q_h, q_w = q_size k_h, k_w = k_size Rh = get_rel_pos(q_h, k_h, rel_pos_h) Rw = get_rel_pos(q_w, k_w, rel_pos_w) B, _, dim = q.shape r_q = q.reshape(B, q_h, q_w, dim) rel_h = torch.einsum("bhwc,hkc->bhwk", r_q, Rh) rel_w = torch.einsum("bhwc,wkc->bhwk", r_q, Rw) attn = ( attn.view(B, q_h, q_w, k_h, k_w) + rel_h[:, :, :, :, None] + rel_w[:, :, :, None, :] ).view(B, q_h * q_w, k_h * k_w) return attn class PatchEmbed(nn.Module): """ Image to Patch Embedding. """ def __init__( self, kernel_size: Tuple[int, int] = (16, 16), stride: Tuple[int, int] = (16, 16), padding: Tuple[int, int] = (0, 0), in_chans: int = 3, embed_dim: int = 768, ) -> None: """ Args: kernel_size (Tuple): kernel size of the projection layer. stride (Tuple): stride of the projection layer. padding (Tuple): padding size of the projection layer. in_chans (int): Number of input image channels. embed_dim (int): Patch embedding dimension. """ super().__init__() self.proj = nn.Conv2d( in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding ) def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.proj(x) # B C H W -> B H W C x = x.permute(0, 2, 3, 1) return x
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import numpy as np import torch from torch import nn from typing import Any, Optional, Tuple, Type from .common import LayerNorm2d class PromptEncoder(nn.Module): def __init__( self, embed_dim: int, image_embedding_size: Tuple[int, int], input_image_size: Tuple[int, int], mask_in_chans: int, activation: Type[nn.Module] = nn.GELU, ) -> None: """ Encodes prompts for input to SAM's mask decoder. Arguments: embed_dim (int): The prompts' embedding dimension image_embedding_size (tuple(int, int)): The spatial size of the image embedding, as (H, W). input_image_size (int): The padded size of the image as input to the image encoder, as (H, W). mask_in_chans (int): The number of hidden channels used for encoding input masks. activation (nn.Module): The activation to use when encoding input masks. """ super().__init__() self.embed_dim = embed_dim self.input_image_size = input_image_size self.image_embedding_size = image_embedding_size self.pe_layer = PositionEmbeddingRandom(embed_dim // 2) self.num_point_embeddings: int = 4 # pos/neg point + 2 box corners point_embeddings = [nn.Embedding(1, embed_dim) for i in range(self.num_point_embeddings)] self.point_embeddings = nn.ModuleList(point_embeddings) self.not_a_point_embed = nn.Embedding(1, embed_dim) self.mask_input_size = (4 * image_embedding_size[0], 4 * image_embedding_size[1]) self.mask_downscaling = nn.Sequential( nn.Conv2d(1, mask_in_chans // 4, kernel_size=2, stride=2), LayerNorm2d(mask_in_chans // 4), activation(), nn.Conv2d(mask_in_chans // 4, mask_in_chans, kernel_size=2, stride=2), LayerNorm2d(mask_in_chans), activation(), nn.Conv2d(mask_in_chans, embed_dim, kernel_size=1), ) self.no_mask_embed = nn.Embedding(1, embed_dim) def get_dense_pe(self) -> torch.Tensor: """ Returns the positional encoding used to encode point prompts, applied to a dense set of points the shape of the image encoding. Returns: torch.Tensor: Positional encoding with shape 1x(embed_dim)x(embedding_h)x(embedding_w) """ return self.pe_layer(self.image_embedding_size).unsqueeze(0) def _embed_points( self, points: torch.Tensor, labels: torch.Tensor, pad: bool, ) -> torch.Tensor: """Embeds point prompts.""" points = points + 0.5 # Shift to center of pixel if pad: padding_point = torch.zeros((points.shape[0], 1, 2), device=points.device) padding_label = -torch.ones((labels.shape[0], 1), device=labels.device) points = torch.cat([points, padding_point], dim=1) labels = torch.cat([labels, padding_label], dim=1) point_embedding = self.pe_layer.forward_with_coords(points, self.input_image_size) point_embedding[labels == -1] = 0.0 point_embedding[labels == -1] += self.not_a_point_embed.weight point_embedding[labels == 0] += self.point_embeddings[0].weight point_embedding[labels == 1] += self.point_embeddings[1].weight return point_embedding def _embed_boxes(self, boxes: torch.Tensor) -> torch.Tensor: """Embeds box prompts.""" boxes = boxes + 0.5 # Shift to center of pixel coords = boxes.reshape(-1, 2, 2) corner_embedding = self.pe_layer.forward_with_coords(coords, self.input_image_size) corner_embedding[:, 0, :] += self.point_embeddings[2].weight corner_embedding[:, 1, :] += self.point_embeddings[3].weight return corner_embedding def _embed_masks(self, masks: torch.Tensor) -> torch.Tensor: """Embeds mask inputs.""" mask_embedding = self.mask_downscaling(masks) return mask_embedding def _get_batch_size( self, points: Optional[Tuple[torch.Tensor, torch.Tensor]], boxes: Optional[torch.Tensor], masks: Optional[torch.Tensor], ) -> int: """ Gets the batch size of the output given the batch size of the input prompts. """ if points is not None: return points[0].shape[0] elif boxes is not None: return boxes.shape[0] elif masks is not None: return masks.shape[0] else: return 1 def _get_device(self) -> torch.device: return self.point_embeddings[0].weight.device def forward( self, points: Optional[Tuple[torch.Tensor, torch.Tensor]], boxes: Optional[torch.Tensor], masks: Optional[torch.Tensor], ) -> Tuple[torch.Tensor, torch.Tensor]: """ Embeds different types of prompts, returning both sparse and dense embeddings. Arguments: points (tuple(torch.Tensor, torch.Tensor) or none): point coordinates and labels to embed. boxes (torch.Tensor or none): boxes to embed masks (torch.Tensor or none): masks to embed Returns: torch.Tensor: sparse embeddings for the points and boxes, with shape BxNx(embed_dim), where N is determined by the number of input points and boxes. torch.Tensor: dense embeddings for the masks, in the shape Bx(embed_dim)x(embed_H)x(embed_W) """ bs = self._get_batch_size(points, boxes, masks) sparse_embeddings = torch.empty((bs, 0, self.embed_dim), device=self._get_device()) if points is not None: coords, labels = points point_embeddings = self._embed_points(coords, labels, pad=(boxes is None)) sparse_embeddings = torch.cat([sparse_embeddings, point_embeddings], dim=1) if boxes is not None: box_embeddings = self._embed_boxes(boxes) sparse_embeddings = torch.cat([sparse_embeddings, box_embeddings], dim=1) if masks is not None: dense_embeddings = self._embed_masks(masks) else: dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1, 1).expand( bs, -1, self.image_embedding_size[0], self.image_embedding_size[1] ) return sparse_embeddings, dense_embeddings class PositionEmbeddingRandom(nn.Module): """ Positional encoding using random spatial frequencies. """ def __init__(self, num_pos_feats: int = 64, scale: Optional[float] = None) -> None: super().__init__() if scale is None or scale <= 0.0: scale = 1.0 self.register_buffer( "positional_encoding_gaussian_matrix", scale * torch.randn((2, num_pos_feats)), ) def _pe_encoding(self, coords: torch.Tensor) -> torch.Tensor: """Positionally encode points that are normalized to [0,1].""" # assuming coords are in [0, 1]^2 square and have d_1 x ... x d_n x 2 shape coords = 2 * coords - 1 coords = coords.to(self.positional_encoding_gaussian_matrix.dtype) coords = coords @ self.positional_encoding_gaussian_matrix coords = 2 * np.pi * coords # outputs d_1 x ... x d_n x C shape return torch.cat([torch.sin(coords), torch.cos(coords)], dim=-1) def forward(self, size: Tuple[int, int]) -> torch.Tensor: """Generate positional encoding for a grid of the specified size.""" h, w = size device: Any = self.positional_encoding_gaussian_matrix.device grid = torch.ones((h, w), device=device, dtype=torch.float32) y_embed = grid.cumsum(dim=0) - 0.5 x_embed = grid.cumsum(dim=1) - 0.5 y_embed = y_embed / h x_embed = x_embed / w pe = self._pe_encoding(torch.stack([x_embed, y_embed], dim=-1)) return pe.permute(2, 0, 1) # C x H x W def forward_with_coords( self, coords_input: torch.Tensor, image_size: Tuple[int, int] ) -> torch.Tensor: """Positionally encode points that are not normalized to [0,1].""" coords = coords_input.clone() coords[:, :, 0] = coords[:, :, 0] / image_size[1] coords[:, :, 1] = coords[:, :, 1] / image_size[0] return self._pe_encoding(coords.to(torch.float)) # B x N x C
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import torch from torch import nn from torch.nn import functional as F from typing import Any, Dict, List, Tuple from .image_encoder import ImageEncoderViT from .mask_decoder import MaskDecoder from .prompt_encoder import PromptEncoder class Sam(nn.Module): mask_threshold: float = 0.0 image_format: str = "RGB" def __init__( self, image_encoder: ImageEncoderViT, prompt_encoder: PromptEncoder, mask_decoder: MaskDecoder, pixel_mean: List[float] = [123.675, 116.28, 103.53], pixel_std: List[float] = [58.395, 57.12, 57.375], ) -> None: """ SAM predicts object masks from an image and input prompts. Arguments: image_encoder (ImageEncoderViT): The backbone used to encode the image into image embeddings that allow for efficient mask prediction. prompt_encoder (PromptEncoder): Encodes various types of input prompts. mask_decoder (MaskDecoder): Predicts masks from the image embeddings and encoded prompts. pixel_mean (list(float)): Mean values for normalizing pixels in the input image. pixel_std (list(float)): Std values for normalizing pixels in the input image. """ super().__init__() self.image_encoder = image_encoder self.prompt_encoder = prompt_encoder self.mask_decoder = mask_decoder self.register_buffer("pixel_mean", torch.Tensor(pixel_mean).view(-1, 1, 1), False) self.register_buffer("pixel_std", torch.Tensor(pixel_std).view(-1, 1, 1), False) @property def device(self) -> Any: return self.pixel_mean.device @torch.no_grad() def forward( self, batched_input: List[Dict[str, Any]], multimask_output: bool, ) -> List[Dict[str, torch.Tensor]]: """ Predicts masks end-to-end from provided images and prompts. If prompts are not known in advance, using SamPredictor is recommended over calling the model directly. Arguments: batched_input (list(dict)): A list over input images, each a dictionary with the following keys. A prompt key can be excluded if it is not present. 'image': The image as a torch tensor in 3xHxW format, already transformed for input to the model. 'original_size': (tuple(int, int)) The original size of the image before transformation, as (H, W). 'point_coords': (torch.Tensor) Batched point prompts for this image, with shape BxNx2. Already transformed to the input frame of the model. 'point_labels': (torch.Tensor) Batched labels for point prompts, with shape BxN. 'boxes': (torch.Tensor) Batched box inputs, with shape Bx4. Already transformed to the input frame of the model. 'mask_inputs': (torch.Tensor) Batched mask inputs to the model, in the form Bx1xHxW. multimask_output (bool): Whether the model should predict multiple disambiguating masks, or return a single mask. Returns: (list(dict)): A list over input images, where each element is as dictionary with the following keys. 'masks': (torch.Tensor) Batched binary mask predictions, with shape BxCxHxW, where B is the number of input prompts, C is determined by multimask_output, and (H, W) is the original size of the image. 'iou_predictions': (torch.Tensor) The model's predictions of mask quality, in shape BxC. 'low_res_logits': (torch.Tensor) Low resolution logits with shape BxCxHxW, where H=W=256. Can be passed as mask input to subsequent iterations of prediction. """ input_images = torch.stack([self.preprocess(x["image"]) for x in batched_input], dim=0) image_embeddings = self.image_encoder(input_images) outputs = [] for image_record, curr_embedding in zip(batched_input, image_embeddings): if "point_coords" in image_record: points = (image_record["point_coords"], image_record["point_labels"]) else: points = None sparse_embeddings, dense_embeddings = self.prompt_encoder( points=points, boxes=image_record.get("boxes", None), masks=image_record.get("mask_inputs", None), ) low_res_masks, iou_predictions = self.mask_decoder( image_embeddings=curr_embedding.unsqueeze(0), image_pe=self.prompt_encoder.get_dense_pe(), sparse_prompt_embeddings=sparse_embeddings, dense_prompt_embeddings=dense_embeddings, multimask_output=multimask_output, ) masks = self.postprocess_masks( low_res_masks, input_size=image_record["image"].shape[-2:], original_size=image_record["original_size"], ) masks = masks > self.mask_threshold outputs.append( { "masks": masks, "iou_predictions": iou_predictions, "low_res_logits": low_res_masks, } ) return outputs def postprocess_masks( self, masks: torch.Tensor, input_size: Tuple[int, ...], original_size: Tuple[int, ...], ) -> torch.Tensor: """ Remove padding and upscale masks to the original image size. Arguments: masks (torch.Tensor): Batched masks from the mask_decoder, in BxCxHxW format. input_size (tuple(int, int)): The size of the image input to the model, in (H, W) format. Used to remove padding. original_size (tuple(int, int)): The original size of the image before resizing for input to the model, in (H, W) format. Returns: (torch.Tensor): Batched masks in BxCxHxW format, where (H, W) is given by original_size. """ masks = F.interpolate( masks, (self.image_encoder.img_size, self.image_encoder.img_size), mode="bilinear", align_corners=False, ) masks = masks[..., : input_size[0], : input_size[1]] masks = F.interpolate(masks, original_size, mode="bilinear", align_corners=False) return masks def preprocess(self, x: torch.Tensor) -> torch.Tensor: """Normalize pixel values and pad to a square input.""" # Normalize colors x = (x - self.pixel_mean) / self.pixel_std # Pad h, w = x.shape[-2:] padh = self.image_encoder.img_size - h padw = self.image_encoder.img_size - w x = F.pad(x, (0, padw, 0, padh)) return x
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import torch from torch import nn from torch.nn import functional as F from typing import List, Tuple, Type from .common import LayerNorm2d class MaskDecoder(nn.Module): def __init__( self, *, transformer_dim: int, transformer: nn.Module, num_multimask_outputs: int = 3, activation: Type[nn.Module] = nn.GELU, iou_head_depth: int = 3, iou_head_hidden_dim: int = 256, ) -> None: """ Predicts masks given an image and prompt embeddings, using a transformer architecture. Arguments: transformer_dim (int): the channel dimension of the transformer transformer (nn.Module): the transformer used to predict masks num_multimask_outputs (int): the number of masks to predict when disambiguating masks activation (nn.Module): the type of activation to use when upscaling masks iou_head_depth (int): the depth of the MLP used to predict mask quality iou_head_hidden_dim (int): the hidden dimension of the MLP used to predict mask quality """ super().__init__() self.transformer_dim = transformer_dim self.transformer = transformer self.num_multimask_outputs = num_multimask_outputs self.iou_token = nn.Embedding(1, transformer_dim) self.num_mask_tokens = num_multimask_outputs + 1 self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim) self.output_upscaling = nn.Sequential( nn.ConvTranspose2d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2), LayerNorm2d(transformer_dim // 4), activation(), nn.ConvTranspose2d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2), activation(), ) self.output_hypernetworks_mlps = nn.ModuleList( [ MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3) for i in range(self.num_mask_tokens) ] ) self.iou_prediction_head = MLP( transformer_dim, iou_head_hidden_dim, self.num_mask_tokens, iou_head_depth ) def forward( self, image_embeddings: torch.Tensor, image_pe: torch.Tensor, sparse_prompt_embeddings: torch.Tensor, dense_prompt_embeddings: torch.Tensor, multimask_output: bool, ) -> Tuple[torch.Tensor, torch.Tensor]: """ Predict masks given image and prompt embeddings. Arguments: image_embeddings (torch.Tensor): the embeddings from the image encoder image_pe (torch.Tensor): positional encoding with the shape of image_embeddings sparse_prompt_embeddings (torch.Tensor): the embeddings of the points and boxes dense_prompt_embeddings (torch.Tensor): the embeddings of the mask inputs multimask_output (bool): Whether to return multiple masks or a single mask. Returns: torch.Tensor: batched predicted masks torch.Tensor: batched predictions of mask quality """ masks, iou_pred = self.predict_masks( image_embeddings=image_embeddings, image_pe=image_pe, sparse_prompt_embeddings=sparse_prompt_embeddings, dense_prompt_embeddings=dense_prompt_embeddings, ) # Select the correct mask or masks for output if multimask_output: mask_slice = slice(1, None) else: mask_slice = slice(0, 1) masks = masks[:, mask_slice, :, :] iou_pred = iou_pred[:, mask_slice] # Prepare output return masks, iou_pred def predict_masks( self, image_embeddings: torch.Tensor, image_pe: torch.Tensor, sparse_prompt_embeddings: torch.Tensor, dense_prompt_embeddings: torch.Tensor, ) -> Tuple[torch.Tensor, torch.Tensor]: """Predicts masks. See 'forward' for more details.""" # Concatenate output tokens output_tokens = torch.cat([self.iou_token.weight, self.mask_tokens.weight], dim=0) output_tokens = output_tokens.unsqueeze(0).expand(sparse_prompt_embeddings.size(0), -1, -1) tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1) # Expand per-image data in batch direction to be per-mask src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0) src = src + dense_prompt_embeddings pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0) b, c, h, w = src.shape # Run the transformer tokens = tokens.to(src.dtype) hs, src = self.transformer(src, pos_src, tokens) iou_token_out = hs[:, 0, :] mask_tokens_out = hs[:, 1 : (1 + self.num_mask_tokens), :] # Upscale mask embeddings and predict masks using the mask tokens src = src.transpose(1, 2).view(b, c, h, w) upscaled_embedding = self.output_upscaling(src) hyper_in_list: List[torch.Tensor] = [] for i in range(self.num_mask_tokens): hyper_in_list.append(self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :])) hyper_in = torch.stack(hyper_in_list, dim=1) b, c, h, w = upscaled_embedding.shape masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w) # Generate mask quality predictions iou_pred = self.iou_prediction_head(iou_token_out) return masks, iou_pred # Lightly adapted from # https://github.com/facebookresearch/MaskFormer/blob/main/mask_former/modeling/transformer/transformer_predictor.py # noqa class MLP(nn.Module): def __init__( self, input_dim: int, hidden_dim: int, output_dim: int, num_layers: int, sigmoid_output: bool = False, ) -> None: super().__init__() self.num_layers = num_layers h = [hidden_dim] * (num_layers - 1) self.layers = nn.ModuleList( nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]) ) self.sigmoid_output = sigmoid_output def forward(self, x): for i, layer in enumerate(self.layers): x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x) if self.sigmoid_output: x = F.sigmoid(x) return x
from torchbenchmark.tasks import NLP from torchbenchmark.util.framework.huggingface.model_factory import HuggingFaceModel class Model(HuggingFaceModel): task = NLP.LANGUAGE_MODELING DEFAULT_TRAIN_BSIZE = 4 DEFAULT_EVAL_BSIZE = 1 def __init__(self, test, device, batch_size=None, extra_args=[]): super().__init__(name="hf_Bert", test=test, device=device, batch_size=batch_size, extra_args=extra_args)
import subprocess import sys import os from torchbenchmark.util.framework.huggingface.patch_hf import patch_transformers, cache_model def pip_install_requirements(): subprocess.check_call([sys.executable, '-m', 'pip', 'install', '-q', '-r', 'requirements.txt']) if __name__ == '__main__': pip_install_requirements() patch_transformers() model_name = os.path.basename(os.path.dirname(os.path.abspath(__file__))) cache_model(model_name)
import torch from . import tke_pytorch from typing import Tuple from torchbenchmark.tasks import OTHER from ...util.model import BenchmarkModel def _generate_inputs(size): import numpy as np import math np.random.seed(17) shape = ( math.ceil(2 * size ** (1 / 3)), math.ceil(2 * size ** (1 / 3)), math.ceil(0.25 * size ** (1 / 3)), ) # masks maskU, maskV, maskW = ( (np.random.rand(*shape) < 0.8).astype("float64") for _ in range(3) ) # 1d arrays dxt, dxu = (np.random.randn(shape[0]) for _ in range(2)) dyt, dyu = (np.random.randn(shape[1]) for _ in range(2)) dzt, dzw = (np.random.randn(shape[2]) for _ in range(2)) cost, cosu = (np.random.randn(shape[1]) for _ in range(2)) # 2d arrays kbot = np.random.randint(0, shape[2], size=shape[:2]) forc_tke_surface = np.random.randn(*shape[:2]) # 3d arrays kappaM, mxl, forc = (np.random.randn(*shape) for _ in range(3)) # 4d arrays u, v, w, tke, dtke = (np.random.randn(*shape, 3) for _ in range(5)) return ( u, v, w, maskU, maskV, maskW, dxt, dxu, dyt, dyu, dzt, dzw, cost, cosu, kbot, kappaM, mxl, forc, forc_tke_surface, tke, dtke, ) class TurbulentKineticEnergy(torch.nn.Module): def __init__(self, device): super(TurbulentKineticEnergy, self).__init__() self.device = device def forward( self, u, v, w, maskU, maskV, maskW, dxt, dxu, dyt, dyu, dzt, dzw, cost, cosu, kbot, kappaM, mxl, forc, forc_tke_surface, tke, dtke, ): # tke and dtke will be modified in integrate_tke and generate inconsistent results # so clone them before passing them in return tke_pytorch.integrate_tke( u, v, w, maskU, maskV, maskW, dxt, dxu, dyt, dyu, dzt, dzw, cost, cosu, kbot, kappaM, mxl, forc, forc_tke_surface, torch.clone(tke), torch.clone(dtke), ) class Model(BenchmarkModel): task = OTHER.OTHER_TASKS # Original input size: [2 ** i for i in range(12, 23, 2)] # Source: https://github.com/dionhaefner/pyhpc-benchmarks/blob/650ecc650e394df829944ffcf09e9d646ec69691/run.py#L25 # Pick data-point when i = 20, size = 1048576 DEFAULT_EVAL_BSIZE = 1048576 ALLOW_CUSTOMIZE_BSIZE = False CANNOT_SET_CUSTOM_OPTIMIZER = True def __init__(self, test, device, batch_size=None, extra_args=[]): super().__init__(test=test, device=device, batch_size=batch_size, extra_args=extra_args) self.model = TurbulentKineticEnergy(self.device).to(device=self.device) input_size = self.batch_size self.example_inputs = tuple( torch.from_numpy(x).to(self.device) for x in _generate_inputs(input_size) ) def get_module(self): return self.model, self.example_inputs def train(self): raise NotImplementedError("Training not supported") def eval(self) -> Tuple[torch.Tensor]: model, example_inputs = self.get_module() with torch.no_grad(): out = model(*example_inputs) return out
import torch def solve_tridiag(a, b, c, d): """ Solves a tridiagonal matrix system with diagonals a, b, c and RHS vector d. """ assert a.shape == b.shape and a.shape == c.shape and a.shape == d.shape n = a.shape[-1] for i in range(1, n): w = a[..., i] / b[..., i - 1] b[..., i] += -w * c[..., i - 1] d[..., i] += -w * d[..., i - 1] out = torch.empty_like(a) out[..., -1] = d[..., -1] / b[..., -1] for i in range(n - 2, -1, -1): out[..., i] = (d[..., i] - c[..., i] * out[..., i + 1]) / b[..., i] return out def solve_implicit(ks, a, b, c, d, b_edge): land_mask = (ks >= 0)[:, :, None] edge_mask = land_mask & ( torch.arange(a.shape[2], device=ks.device)[None, None, :] == ks[:, :, None] ) water_mask = land_mask & ( torch.arange(a.shape[2], device=ks.device)[None, None, :] >= ks[:, :, None] ) a_tri = water_mask * a * torch.logical_not(edge_mask) b_tri = torch.where(water_mask, b, 1.0) b_tri = torch.where(edge_mask, b_edge, b_tri) c_tri = water_mask * c d_tri = water_mask * d return solve_tridiag(a_tri, b_tri, c_tri, d_tri), water_mask def _calc_cr(rjp, rj, rjm, vel): """ Calculates cr value used in superbee advection scheme """ eps = 1e-20 # prevent division by 0 return torch.where(vel > 0.0, rjm, rjp) / torch.where(torch.abs(rj) < eps, eps, rj) def pad_z_edges(arr): arr_shape = list(arr.shape) arr_shape[2] += 2 out = torch.zeros(arr_shape, dtype=arr.dtype, device=arr.device) out[:, :, 1:-1] = arr return out def limiter(cr): return torch.maximum( torch.tensor([0.0], device=cr.device), torch.maximum( torch.minimum(torch.tensor([1.0], device=cr.device), 2 * cr), torch.minimum(torch.tensor([2.0], device=cr.device), cr), ), ) def _adv_superbee(vel, var, mask, dx, axis: int, cost, cosu, dt_tracer: float): if axis == 0: dx = cost[None, 2:-2, None] * dx[1:-2, None, None] uCFL = torch.abs(vel[1:-2, 2:-2, :] * dt_tracer / dx) rjp = (var[3:, 2:-2, :] - var[2:-1, 2:-2, :]) * mask[2:-1, 2:-2, :] rj = (var[2:-1, 2:-2, :] - var[1:-2, 2:-2, :]) * mask[1:-2, 2:-2, :] rjm = (var[1:-2, 2:-2, :] - var[:-3, 2:-2, :]) * mask[:-3, 2:-2, :] cr = limiter(_calc_cr(rjp, rj, rjm, vel[1:-2, 2:-2, :])) return ( vel[1:-2, 2:-2, :] * (var[2:-1, 2:-2, :] + var[1:-2, 2:-2, :]) * 0.5 - torch.abs(vel[1:-2, 2:-2, :]) * ((1.0 - cr) + uCFL * cr) * rj * 0.5 ) elif axis == 1: dx = (cost * dx)[None, 1:-2, None] velfac = cosu[None, 1:-2, None] uCFL = torch.abs(velfac * vel[2:-2, 1:-2, :] * dt_tracer / dx) rjp = (var[2:-2, 3:, :] - var[2:-2, 2:-1, :]) * mask[2:-2, 2:-1, :] rj = (var[2:-2, 2:-1, :] - var[2:-2, 1:-2, :]) * mask[2:-2, 1:-2, :] rjm = (var[2:-2, 1:-2, :] - var[2:-2, :-3, :]) * mask[2:-2, :-3, :] cr = limiter(_calc_cr(rjp, rj, rjm, vel[2:-2, 1:-2, :])) return ( velfac * vel[2:-2, 1:-2, :] * (var[2:-2, 2:-1, :] + var[2:-2, 1:-2, :]) * 0.5 - torch.abs(velfac * vel[2:-2, 1:-2, :]) * ((1.0 - cr) + uCFL * cr) * rj * 0.5 ) elif axis == 2: vel, var, mask = [pad_z_edges(a) for a in (vel, var, mask)] dx = dx[None, None, :-1] uCFL = torch.abs(vel[2:-2, 2:-2, 1:-2] * dt_tracer / dx) rjp = (var[2:-2, 2:-2, 3:] - var[2:-2, 2:-2, 2:-1]) * mask[2:-2, 2:-2, 2:-1] rj = (var[2:-2, 2:-2, 2:-1] - var[2:-2, 2:-2, 1:-2]) * mask[2:-2, 2:-2, 1:-2] rjm = (var[2:-2, 2:-2, 1:-2] - var[2:-2, 2:-2, :-3]) * mask[2:-2, 2:-2, :-3] cr = limiter(_calc_cr(rjp, rj, rjm, vel[2:-2, 2:-2, 1:-2])) return ( vel[2:-2, 2:-2, 1:-2] * (var[2:-2, 2:-2, 2:-1] + var[2:-2, 2:-2, 1:-2]) * 0.5 - torch.abs(vel[2:-2, 2:-2, 1:-2]) * ((1.0 - cr) + uCFL * cr) * rj * 0.5 ) else: raise ValueError("axis must be 0, 1, or 2") def adv_flux_superbee_wgrid( adv_fe, adv_fn, adv_ft, var, u_wgrid, v_wgrid, w_wgrid, maskW, dxt, dyt, dzw, cost, cosu, dt_tracer: float, ): """ Calculates advection of a tracer defined on Wgrid """ maskUtr = torch.zeros_like(maskW) maskUtr[:-1, :, :] = maskW[1:, :, :] * maskW[:-1, :, :] adv_fe[...] = 0.0 adv_fe[1:-2, 2:-2, :] = _adv_superbee( u_wgrid, var, maskUtr, dxt, 0, cost, cosu, dt_tracer ) maskVtr = torch.zeros_like(maskW) maskVtr[:, :-1, :] = maskW[:, 1:, :] * maskW[:, :-1, :] adv_fn[...] = 0.0 adv_fn[2:-2, 1:-2, :] = _adv_superbee( v_wgrid, var, maskVtr, dyt, 1, cost, cosu, dt_tracer ) maskWtr = torch.zeros_like(maskW) maskWtr[:, :, :-1] = maskW[:, :, 1:] * maskW[:, :, :-1] adv_ft[...] = 0.0 adv_ft[2:-2, 2:-2, :-1] = _adv_superbee( w_wgrid, var, maskWtr, dzw, 2, cost, cosu, dt_tracer ) def integrate_tke( u, v, w, maskU, maskV, maskW, dxt, dxu, dyt, dyu, dzt, dzw, cost, cosu, kbot, kappaM, mxl, forc, forc_tke_surface, tke, dtke, ): tau = 0 taup1 = 1 taum1 = 2 dt_tracer = 1.0 dt_mom = 1 AB_eps = 0.1 alpha_tke = 1.0 c_eps = 0.7 K_h_tke = 2000.0 flux_east = torch.zeros_like(maskU) flux_north = torch.zeros_like(maskU) flux_top = torch.zeros_like(maskU) sqrttke = torch.sqrt( torch.maximum(torch.tensor([0.0], device=tke.device), tke[:, :, :, tau]) ) """ integrate Tke equation on W grid with surface flux boundary condition """ dt_tke = dt_mom # use momentum time step to prevent spurious oscillations """ vertical mixing and dissipation of TKE """ ks = kbot[2:-2, 2:-2] - 1 a_tri = torch.zeros_like(maskU[2:-2, 2:-2]) b_tri = torch.zeros_like(maskU[2:-2, 2:-2]) c_tri = torch.zeros_like(maskU[2:-2, 2:-2]) d_tri = torch.zeros_like(maskU[2:-2, 2:-2]) delta = torch.zeros_like(maskU[2:-2, 2:-2]) delta[:, :, :-1] = ( dt_tke / dzt[None, None, 1:] * alpha_tke * 0.5 * (kappaM[2:-2, 2:-2, :-1] + kappaM[2:-2, 2:-2, 1:]) ) a_tri[:, :, 1:-1] = -delta[:, :, :-2] / dzw[None, None, 1:-1] a_tri[:, :, -1] = -delta[:, :, -2] / (0.5 * dzw[-1]) b_tri[:, :, 1:-1] = ( 1 + (delta[:, :, 1:-1] + delta[:, :, :-2]) / dzw[None, None, 1:-1] + dt_tke * c_eps * sqrttke[2:-2, 2:-2, 1:-1] / mxl[2:-2, 2:-2, 1:-1] ) b_tri[:, :, -1] = ( 1 + delta[:, :, -2] / (0.5 * dzw[-1]) + dt_tke * c_eps / mxl[2:-2, 2:-2, -1] * sqrttke[2:-2, 2:-2, -1] ) b_tri_edge = ( 1 + delta / dzw[None, None, :] + dt_tke * c_eps / mxl[2:-2, 2:-2, :] * sqrttke[2:-2, 2:-2, :] ) c_tri[:, :, :-1] = -delta[:, :, :-1] / dzw[None, None, :-1] d_tri[...] = tke[2:-2, 2:-2, :, tau] + dt_tke * forc[2:-2, 2:-2, :] d_tri[:, :, -1] += dt_tke * forc_tke_surface[2:-2, 2:-2] / (0.5 * dzw[-1]) sol, water_mask = solve_implicit(ks, a_tri, b_tri, c_tri, d_tri, b_edge=b_tri_edge) tke[2:-2, 2:-2, :, taup1] = torch.where(water_mask, sol, tke[2:-2, 2:-2, :, taup1]) """ Add TKE if surface density flux drains TKE in uppermost box """ tke_surf_corr = torch.zeros(maskU.shape[:2], device=maskU.device) mask = tke[2:-2, 2:-2, -1, taup1] < 0.0 tke_surf_corr[2:-2, 2:-2] = torch.where( mask, -tke[2:-2, 2:-2, -1, taup1] * 0.5 * dzw[-1] / dt_tke, 0.0 ) tke[2:-2, 2:-2, -1, taup1] = torch.maximum( torch.tensor([0.0], device=tke.device), tke[2:-2, 2:-2, -1, taup1] ) """ add tendency due to lateral diffusion """ flux_east[:-1, :, :] = ( K_h_tke * (tke[1:, :, :, tau] - tke[:-1, :, :, tau]) / (cost[None, :, None] * dxu[:-1, None, None]) * maskU[:-1, :, :] ) flux_east[-1, :, :] = 0.0 flux_north[:, :-1, :] = ( K_h_tke * (tke[:, 1:, :, tau] - tke[:, :-1, :, tau]) / dyu[None, :-1, None] * maskV[:, :-1, :] * cosu[None, :-1, None] ) flux_north[:, -1, :] = 0.0 tke[2:-2, 2:-2, :, taup1] += ( dt_tke * maskW[2:-2, 2:-2, :] * ( (flux_east[2:-2, 2:-2, :] - flux_east[1:-3, 2:-2, :]) / (cost[None, 2:-2, None] * dxt[2:-2, None, None]) + (flux_north[2:-2, 2:-2, :] - flux_north[2:-2, 1:-3, :]) / (cost[None, 2:-2, None] * dyt[None, 2:-2, None]) ) ) """ add tendency due to advection """ adv_flux_superbee_wgrid( flux_east, flux_north, flux_top, tke[:, :, :, tau], u[..., tau], v[..., tau], w[..., tau], maskW, dxt, dyt, dzw, cost, cosu, dt_tracer, ) dtke[2:-2, 2:-2, :, tau] = maskW[2:-2, 2:-2, :] * ( -(flux_east[2:-2, 2:-2, :] - flux_east[1:-3, 2:-2, :]) / (cost[None, 2:-2, None] * dxt[2:-2, None, None]) - (flux_north[2:-2, 2:-2, :] - flux_north[2:-2, 1:-3, :]) / (cost[None, 2:-2, None] * dyt[None, 2:-2, None]) ) dtke[:, :, 0, tau] += -flux_top[:, :, 0] / dzw[0] dtke[:, :, 1:-1, tau] += -(flux_top[:, :, 1:-1] - flux_top[:, :, :-2]) / dzw[1:-1] dtke[:, :, -1, tau] += -(flux_top[:, :, -1] - flux_top[:, :, -2]) / (0.5 * dzw[-1]) """ Adam Bashforth time stepping """ tke[:, :, :, taup1] += dt_tracer * ( (1.5 + AB_eps) * dtke[:, :, :, tau] - (0.5 + AB_eps) * dtke[:, :, :, taum1] ) return tke, dtke, tke_surf_corr def prepare_inputs(*inputs, device): out = [ torch.as_tensor(a, device=device) for a in inputs ] if device == "gpu": torch.cuda.synchronize() return out def run(*inputs, device="cpu"): with torch.no_grad(): outputs = integrate_tke(*inputs) if device == "gpu": torch.cuda.synchronize() return outputs
if __name__ == "__main__": pass
from torchbenchmark.tasks import NLP from torchbenchmark.util.framework.huggingface.model_factory import HuggingFaceModel class Model(HuggingFaceModel): task = NLP.LANGUAGE_MODELING # Original train batch size per device: 8 # Source: https://github.com/huggingface/transformers/blob/master/examples/flax/language-modeling/run_t5_mlm_flax.py#L83 DEFAULT_TRAIN_BSIZE = 8 # Original eval batch size per device: 8 # Downscale to 1 to fit in Nvidia T4 of the infra DEFAULT_EVAL_BSIZE = 1 def __init__(self, test, device, batch_size=None, extra_args=[]): super().__init__(name="hf_T5", test=test, device=device, batch_size=batch_size, extra_args=extra_args)
import subprocess import sys import os from torchbenchmark.util.framework.huggingface.patch_hf import patch_transformers, cache_model def pip_install_requirements(): subprocess.check_call([sys.executable, '-m', 'pip', 'install', '-q', '-r', 'requirements.txt']) if __name__ == '__main__': pip_install_requirements() patch_transformers() model_name = os.path.basename(os.path.dirname(os.path.abspath(__file__))) cache_model(model_name)
# Copyright (c) 2017 NVIDIA Corporation import argparse from math import sqrt parser = argparse.ArgumentParser(description='RMSE_calculator') parser.add_argument('--path_to_predictions', type=str, default="", metavar='N', help='Path file with actual ratings and predictions') parser.add_argument('--round', action='store_true', help='round predictions to nearest') args = parser.parse_args() print(args) def main(): with open(args.path_to_predictions, 'r') as inpt: lines = inpt.readlines() n = 0 denom = 0.0 for line in lines: parts = line.split('\t') prediction = float(parts[2]) if not args.round else round(float(parts[2])) rating = float(parts[3]) denom += (prediction - rating)*(prediction - rating) n += 1 print("####################") print("RMSE: {}".format(sqrt(denom/n))) print("####################") if __name__ == '__main__': main()
# Benchmark created from NVidia DeepRecommender github project: # https://github.com/NVIDIA/DeepRecommender # a32a8a5c23092c551616acf6fac5b32e1155d18b # Test supports eval and train modes for cpu and cuda targets. # # Both nvtrain.py and nvinfer.py support all original command # line parameters but tensorflow dependency for logging has # been removed. import torch from ...util.model import BenchmarkModel from torchbenchmark.tasks import RECOMMENDATION from typing import Tuple import gc from .nvtrain import DeepRecommenderTrainBenchmark from .nvinfer import DeepRecommenderInferenceBenchmark class Model(BenchmarkModel): task = RECOMMENDATION.RECOMMENDATION DEFAULT_TRAIN_BSIZE = 256 DEFAULT_EVAL_BSIZE = 256 def __init__(self, test, device, batch_size=None, extra_args=[]): super().__init__(test=test, device=device, batch_size=batch_size, extra_args=extra_args) self.eval_mode = True if self.test == "eval" else False if test == "train": self.model = DeepRecommenderTrainBenchmark(device = self.device, jit = False, batch_size=self.batch_size) elif test == "eval": self.model = DeepRecommenderInferenceBenchmark(device = self.device, jit = False, batch_size=self.batch_size) def jit_callback(self): self.model.rencoder = torch.jit.trace(self.model.rencoder, (self.model.toyinputs, )) def get_module(self): if self.eval_mode: return self.model.rencoder, (self.model.toyinputs,) return self.model.rencoder, (self.model.toyinputs,) def set_module(self, new_model): self.model.rencoder = new_model def set_eval(self): self.eval_mode = True def set_train(self): self.eval_mode = False def get_optimizer(self): return self.model.get_optimizer() def set_optimizer(self, optimizer) -> None: self.model.set_optimizer(optimizer) def train(self): self.model.train() def eval(self) -> Tuple[torch.Tensor]: out = self.model.eval() return (out, ) def timed_infer(self): self.model.TimedInferenceRun() def timed_train(self): self.model.TimedTrainingRun()
# Copyright (c) 2017 NVIDIA Corporation # parameters to run benchmark on cpu # --path_to_train_data Netflix/N1W_TRAIN --path_to_eval_data Netflix/N1W_TEST --hidden_layers 512,512,1024 --non_linearity_type selu --save_path model_save/model.epoch_0 --drop_prob 0.8 --predictions_path preds.txt --nooutput --forcecpu # parameters to run benchmark on cuda # --path_to_train_data Netflix/N1W_TRAIN --path_to_eval_data Netflix/N1W_TEST --hidden_layers 512,512,1024 --non_linearity_type selu --save_path model_save/model.epoch_0 --drop_prob 0.8 --predictions_path preds.txt --nooutput --forcecuda import torch import argparse import copy import time import os from .reco_encoder.data import input_layer from .reco_encoder.model import model from torch.autograd import Variable from pathlib import Path import torch.autograd.profiler as profiler def getCommandLineArgs() : parser = argparse.ArgumentParser(description='RecoEncoder') parser.add_argument('--drop_prob', type=float, default=0.0, metavar='N', help='dropout drop probability') parser.add_argument('--constrained', action='store_true', help='constrained autoencoder') parser.add_argument('--skip_last_layer_nl', action='store_true', help='if present, decoder\'s last layer will not apply non-linearity function') parser.add_argument('--hidden_layers', type=str, default="1024,512,512,128", metavar='N', help='hidden layer sizes, comma-separated') parser.add_argument('--path_to_train_data', type=str, default="", metavar='N', help='Path to training data') parser.add_argument('--path_to_eval_data', type=str, default="", metavar='N', help='Path to evaluation data') parser.add_argument('--non_linearity_type', type=str, default="selu", metavar='N', help='type of the non-linearity used in activations') parser.add_argument('--save_path', type=str, default="autorec.pt", metavar='N', help='where to save model') parser.add_argument('--predictions_path', type=str, default="out.txt", metavar='N', help='where to save predictions') parser.add_argument('--batch_size', type=int, default=1, metavar='N', help='inference batch size') parser.add_argument('--jit', action='store_true', help='jit-ify model before running') parser.add_argument('--forcecuda', action='store_true', help='force cuda use') parser.add_argument('--forcecpu', action='store_true', help='force cpu use') parser.add_argument('--nooutput', action='store_true', help='disable writing output to file') parser.add_argument('--silent', action='store_true', help='disable output messages') parser.add_argument('--profile', action='store_true', help='enable profiler and stat print') args = parser.parse_args() return args def getBenchmarkArgs(forceCuda): class Args: pass args = Args() args.drop_prob = 0.8 args.constrained = False args.skip_last_layer_nl = False args.hidden_layers = '512,512,1024' args.path_to_train_data = os.path.dirname(__file__) + '/Netflix/N1W_TRAIN' args.path_to_eval_data = os.path.dirname(__file__) + '/Netflix/N1W_TEST' args.non_linearity_type = 'selu' args.save_path = 'model_save/model.epoch_0' args.predictions_path = 'preds.txt' args.batch_size = 1 args.jit = False args.forcecuda = forceCuda args.forcecpu = not forceCuda args.nooutput = True args.silent = True args.profile = False return args def processArgState(args) : if not args.silent: print(args) if args.forcecpu and args.forcecuda: print("Error, force cpu and cuda cannot both be set") quit() args.use_cuda = torch.cuda.is_available() # global flag if not args.silent: if args.use_cuda: print('GPU is available.') else: print('GPU is not available.') if args.use_cuda and args.forcecpu: args.use_cuda = False if not args.silent: if args.use_cuda: print('Running On GPU') else: print('Running On CUDA') if args.profile: print('Profiler Enabled') return args class DeepRecommenderInferenceBenchmark: def __init__(self, device = 'cpu', jit=False, batch_size=256, usecommandlineargs = False) : self.toytest = True self.batch_size = batch_size # number of movies in netflix training set. self.node_count = 197951 if self.toytest: self.toyinputs = torch.randn(self.batch_size,self.node_count).to(device) if usecommandlineargs: self.args = getCommandLineArgs() else: if device == "cpu": forcecuda = False elif device == "cuda": forcecuda = True else: # unknown device string, quit init return self.args = getBenchmarkArgs(forcecuda) args = processArgState(self.args) self.params = dict() self.params['batch_size'] = self.args.batch_size self.params['data_dir'] = self.args.path_to_train_data self.params['major'] = 'users' self.params['itemIdInd'] = 1 self.params['userIdInd'] = 0 if not self.args.silent: print("Loading training data") if self.toytest == False: self.data_layer = input_layer.UserItemRecDataProvider(params=self.params) if not self.args.silent: print("Data loaded") print("Total items found: {}".format(len(self.data_layer.data.keys()))) print("Vector dim: {}".format(self.data_layer.vector_dim)) print("Loading eval data") self.eval_params = copy.deepcopy(self.params) # must set eval batch size to 1 to make sure no examples are missed self.eval_params['batch_size'] = 1 self.eval_params['data_dir'] = self.args.path_to_eval_data if self.toytest: self.rencoder = model.AutoEncoder(layer_sizes=[self.node_count] + [int(l) for l in self.args.hidden_layers.split(',')], nl_type=self.args.non_linearity_type, is_constrained=self.args.constrained, dp_drop_prob=self.args.drop_prob, last_layer_activations=not self.args.skip_last_layer_nl) else: self.eval_data_layer = input_layer.UserItemRecDataProvider(params=self.eval_params, user_id_map=self.data_layer.userIdMap, item_id_map=self.data_layer.itemIdMap) self.rencoder = model.AutoEncoder(layer_sizes=[self.data_layer.vector_dim] + [int(l) for l in self.args.hidden_layers.split(',')], nl_type=self.args.non_linearity_type, is_constrained=self.args.constrained, dp_drop_prob=self.args.drop_prob, last_layer_activations=not self.args.skip_last_layer_nl) self.path_to_model = Path(self.args.save_path) if self.path_to_model.is_file(): print("Loading model from: {}".format(self.path_to_model)) self.rencoder.load_state_dict(torch.load(self.args.save_path)) if not self.args.silent: print('######################################################') print('######################################################') print('############# AutoEncoder Model: #####################') print(self.rencoder) print('######################################################') print('######################################################') self.rencoder.eval() if self.args.use_cuda: self.rencoder = self.rencoder.cuda() if self.toytest == False: self.inv_userIdMap = {v: k for k, v in self.data_layer.userIdMap.items()} self.inv_itemIdMap = {v: k for k, v in self.data_layer.itemIdMap.items()} self.eval_data_layer.src_data = self.data_layer.data def eval(self, niter=1): for iteration in range(niter): if self.toytest: out = self.rencoder(self.toyinputs) continue for i, ((out, src), majorInd) in enumerate(self.eval_data_layer.iterate_one_epoch_eval(for_inf=True)): inputs = Variable(src.cuda().to_dense() if self.args.use_cuda else src.to_dense()) targets_np = out.to_dense().numpy()[0, :] out = self.rencoder(inputs) if not self.args.nooutput: self.outputs = out.cpu().data.numpy()[0, :] non_zeros = targets_np.nonzero()[0].tolist() major_key = self.inv_userIdMap [majorInd] with open(self.args.predictions_path, 'w') as outf: for ind in non_zeros: outf.write("{}\t{}\t{}\t{}\n".format(major_key, self.inv_itemIdMap[ind], self.outputs[ind], targets_np[ind])) if i % 10000 == 0: print("Done: {}".format(i)) return out def TimedInferenceRun(self) : print('Timed Inference Start') e_start_time = time.time() if self.args.profile: with profiler.profile(record_shapes=True, use_cuda=True) as prof: with profiler.record_function("Inference"): self.eval() else: self.eval() e_end_time = time.time() print('Timed Inference Complete') print('Inference finished in {} seconds' .format(e_end_time - e_start_time)) if self.args.profile: print(prof.key_averages().table(sort_by="cpu_time_total", row_limit=10)) prof.export_chrome_trace("trace.json") def main(): benchmarkCuda = DeepRecommenderInferenceBenchmark(device='cuda') benchmarkCuda.TimedInferenceRun() benchmarkCPU = DeepRecommenderInferenceBenchmark(device='cpu') benchmarkCPU.TimedInferenceRun() if __name__ == '__main__': main()
# Copyright (c) 2017 NVIDIA Corporation # to run against cuda: # --gpu_ids 0 --path_to_train_data Netflix/N1W_TRAIN --path_to_eval_data Netflix/N1W_VALID --hidden_layers 512,512,1024 --non_linearity_type selu --batch_size 128 --logdir model_save --drop_prob 0.8 --optimizer momentum --lr 0.005 --weight_decay 0 --aug_step 1 --noise_prob 0 --num_epochs 1 --summary_frequency 1000 --forcecuda # to run on cpu: # --gpu_ids 0 --path_to_train_data Netflix/N1W_TRAIN --path_to_eval_data Netflix/N1W_VALID --hidden_layers 512,512,1024 --non_linearity_type selu --batch_size 128 --logdir model_save --drop_prob 0.8 --optimizer momentum --lr 0.005 --weight_decay 0 --aug_step 1 --noise_prob 0 --num_epochs 1 --summary_frequency 1000 --forcecpu import torch import argparse from .reco_encoder.data import input_layer from .reco_encoder.model import model import torch.optim as optim from torch.optim.lr_scheduler import MultiStepLR import torch.nn as nn from torch.autograd import Variable import copy import time from pathlib import Path #from .logger import Logger from math import sqrt import numpy as np import os import torch.autograd.profiler as profiler def getTrainBenchmarkArgs() : class Args: pass args = Args() args.lr = 0.005 args.weight_decay = 0 args.drop_prob = 0.8 args.noise_prob = 0 args.batch_size = 128 args.summary_frequency = 1000 args.aug_step = 1 args.constrained = False args.skip_last_layer_nl = False args.num_epochs = 1 args.save_every = 3 args.optimizer = 'momentum' args.hidden_layers = '512,512,1024' args.gpu_ids = '0' args.path_to_train_data = os.path.dirname(__file__) + '/Netflix/N1W_TRAIN' args.path_to_eval_data = os.path.dirname(__file__) + '/Netflix/N1W_VALID' args.non_linearity_type = 'selu' args.logdir = 'model_save' args.nooutput = True args.silent = True args.forcecuda = False args.forcecpu = False args.profile = False return args def getTrainCommandLineArgs() : parser = argparse.ArgumentParser(description='RecoEncoder') parser.add_argument('--lr', type=float, default=0.00001, metavar='N', help='learning rate') parser.add_argument('--weight_decay', type=float, default=0.0, metavar='N', help='L2 weight decay') parser.add_argument('--drop_prob', type=float, default=0.0, metavar='N', help='dropout drop probability') parser.add_argument('--noise_prob', type=float, default=0.0, metavar='N', help='noise probability') parser.add_argument('--batch_size', type=int, default=64, metavar='N', help='global batch size') parser.add_argument('--summary_frequency', type=int, default=100, metavar='N', help='how often to save summaries') parser.add_argument('--aug_step', type=int, default=-1, metavar='N', help='do data augmentation every X step') parser.add_argument('--constrained', action='store_true', help='constrained autoencoder') parser.add_argument('--skip_last_layer_nl', action='store_true', help='if present, decoder\'s last layer will not apply non-linearity function') parser.add_argument('--num_epochs', type=int, default=50, metavar='N', help='maximum number of epochs') parser.add_argument('--save_every', type=int, default=3, metavar='N', help='save every N number of epochs') parser.add_argument('--optimizer', type=str, default="momentum", metavar='N', help='optimizer kind: adam, momentum, adagrad or rmsprop') parser.add_argument('--hidden_layers', type=str, default="1024,512,512,128", metavar='N', help='hidden layer sizes, comma-separated') parser.add_argument('--gpu_ids', type=str, default="0", metavar='N', help='comma-separated gpu ids to use for data parallel training') parser.add_argument('--path_to_train_data', type=str, default="", metavar='N', help='Path to training data') parser.add_argument('--path_to_eval_data', type=str, default="", metavar='N', help='Path to evaluation data') parser.add_argument('--non_linearity_type', type=str, default="selu", metavar='N', help='type of the non-linearity used in activations') parser.add_argument('--logdir', type=str, default="logs", metavar='N', help='where to save model and write logs') parser.add_argument('--nooutput', action='store_true', help='disable writing output to file') parser.add_argument('--silent', action='store_true', help='disable all messages') parser.add_argument('--forcecuda', action='store_true', help='force cuda use') parser.add_argument('--forcecpu', action='store_true', help='force cpu use') parser.add_argument('--profile', action='store_true', help='enable profiler and stat print') args = parser.parse_args() return args def processTrainArgState(args) : if not args.silent: print(args) if args.forcecpu and args.forcecuda: print("Error, force cpu and cuda cannot both be set") quit() args.use_cuda = torch.cuda.is_available() # global flag if not args.silent: if args.use_cuda: print('GPU is available.') else: print('GPU is not available.') if args.use_cuda and args.forcecpu: args.use_cuda = False if not args.silent: if args.use_cuda: print('Running On CUDA') else: print('Running On CPU') return args def log_var_and_grad_summaries(logger, layers, global_step, prefix, log_histograms=False): """ Logs variable and grad stats for layer. Transfers data from GPU to CPU automatically :param logger: TB logger :param layers: param list :param global_step: global step for TB :param prefix: name prefix :param log_histograms: (default: False) whether or not log histograms :return: """ for ind, w in enumerate(layers): # Variables w_var = w.data.cpu().numpy() logger.scalar_summary("Variables/FrobNorm/{}_{}".format(prefix, ind), np.linalg.norm(w_var), global_step) if log_histograms: logger.histo_summary(tag="Variables/{}_{}".format(prefix, ind), values=w.data.cpu().numpy(), step=global_step) # Gradients w_grad = w.grad.data.cpu().numpy() logger.scalar_summary("Gradients/FrobNorm/{}_{}".format(prefix, ind), np.linalg.norm(w_grad), global_step) if log_histograms: logger.histo_summary(tag="Gradients/{}_{}".format(prefix, ind), values=w.grad.data.cpu().numpy(), step=global_step) def DoTrainEval(encoder, evaluation_data_layer, use_cuda): encoder.eval() denom = 0.0 total_epoch_loss = 0.0 for i, (eval, src) in enumerate(evaluation_data_layer.iterate_one_epoch_eval()): inputs = Variable(src.cuda().to_dense() if use_cuda else src.to_dense()) targets = Variable(eval.cuda().to_dense() if use_cuda else eval.to_dense()) outputs = encoder(inputs) loss, num_ratings = model.MSEloss(outputs, targets) total_epoch_loss += loss.item() denom += num_ratings.item() return sqrt(total_epoch_loss / denom) class DeepRecommenderTrainBenchmark: def __init__(self, device="cpu", jit=False, batch_size=256, processCommandLine = False): self.TrainInit(device, jit, batch_size, processCommandLine) def TrainInit(self, device="cpu", jit=False, batch_size=256, processCommandLine = False): # Force test to run in toy mode. Single call of fake data to model. self.toytest = True self.toybatch = batch_size # number of movies in netflix training set. self.toyvocab = 197951 self.toyinputs = torch.randn(self.toybatch, self.toyvocab) if (processCommandLine) : self.args = getTrainCommandLineArgs() else: self.args = getTrainBenchmarkArgs() if device == "cpu": forcecuda = False elif device == "cuda": forcecuda = True else: # unknown device string, quit init return self.args.forcecuda = forcecuda self.args.forcecpu = not forcecuda self.args = processTrainArgState(self.args) if self.toytest == False: self.logger = Logger(self.args.logdir) self.params = dict() self.params['batch_size'] = self.args.batch_size self.params['data_dir'] = self.args.path_to_train_data self.params['major'] = 'users' self.params['itemIdInd'] = 1 self.params['userIdInd'] = 0 if self.toytest == False: if not self.args.silent: print("Loading training data") self.data_layer = input_layer.UserItemRecDataProvider(params=self.params) if not self.args.silent: print("Data loaded") print("Total items found: {}".format(len(self.data_layer.data.keys()))) print("Vector dim: {}".format(self.data_layer.vector_dim)) print("Loading eval data") self.eval_params = copy.deepcopy(self.params) # must set eval batch size to 1 to make sure no examples are missed if self.toytest: self.rencoder = model.AutoEncoder(layer_sizes=[self.toyvocab] + [int(l) for l in self.args.hidden_layers.split(',')], nl_type=self.args.non_linearity_type, is_constrained=self.args.constrained, dp_drop_prob=self.args.drop_prob, last_layer_activations=not self.args.skip_last_layer_nl) else: self.eval_params['data_dir'] = self.args.path_to_eval_data self.eval_data_layer = input_layer.UserItemRecDataProvider(params=self.eval_params, user_id_map=self.data_layer.userIdMap, # the mappings are provided item_id_map=self.data_layer.itemIdMap) self.eval_data_layer.src_data = self.data_layer.data self.rencoder = model.AutoEncoder(layer_sizes=[self.data_layer.vector_dim] + [int(l) for l in self.args.hidden_layers.split(',')], nl_type=self.args.non_linearity_type, is_constrained=self.args.constrained, dp_drop_prob=self.args.drop_prob, last_layer_activations=not self.args.skip_last_layer_nl) os.makedirs(self.args.logdir, exist_ok=True) self.model_checkpoint = self.args.logdir + "/model" self.path_to_model = Path(self.model_checkpoint) if self.path_to_model.is_file(): print("Loading model from: {}".format(self.model_checkpoint)) self.rencoder.load_state_dict(torch.load(self.model_checkpoint)) if not self.args.silent: print('######################################################') print('######################################################') print('############# AutoEncoder Model: #####################') print(self.rencoder) print('######################################################') print('######################################################') if self.args.use_cuda: gpu_ids = [int(g) for g in self.args.gpu_ids.split(',')] if not self.args.silent: print('Using GPUs: {}'.format(gpu_ids)) if len(gpu_ids)>1: self.rencoder = nn.DataParallel(self.rencoder, device_ids=gpu_ids) self.rencoder = self.rencoder.cuda() self.toyinputs = self.toyinputs.to(device) if self.args.optimizer == "adam": self.optimizer = optim.Adam(self.rencoder.parameters(), lr=self.args.lr, weight_decay=self.args.weight_decay) elif self.args.optimizer == "adagrad": self.optimizer = optim.Adagrad(self.rencoder.parameters(), lr=self.args.lr, weight_decay=self.args.weight_decay) elif self.args.optimizer == "momentum": self.optimizer = optim.SGD(self.rencoder.parameters(), lr=self.args.lr, momentum=0.9, weight_decay=self.args.weight_decay) self.scheduler = MultiStepLR(self.optimizer, milestones=[24, 36, 48, 66, 72], gamma=0.5) elif args.optimizer == "rmsprop": self.optimizer = optim.RMSprop(self.rencoder.parameters(), lr=self.args.lr, momentum=0.9, weight_decay=self.args.weight_decay) else: raise ValueError('Unknown optimizer kind') self.t_loss = 0.0 self.t_loss_denom = 0.0 self.denom = 0.0 self.total_epoch_loss = 0.0 self.global_step = 0 if self.args.noise_prob > 0.0: self.dp = nn.Dropout(p=self.args.noise_prob) def get_optimizer(self): return self.optimizer def set_optimizer(self, optimizer): self.optimizer = optimizer def DoTrain(self): self.rencoder.train() #if self.args.optimizer == "momentum": # self.scheduler.step() for i, mb in enumerate(self.data_layer.iterate_one_epoch()): inputs = Variable(mb.cuda().to_dense() if self.args.use_cuda else mb.to_dense()) self.optimizer.zero_grad() outputs = self.rencoder(inputs) loss, num_ratings = model.MSEloss(outputs, inputs) loss = loss / num_ratings loss.backward() self.optimizer.step() self.global_step += 1 self.t_loss += loss.item() self.t_loss_denom += 1 if not self.args.nooutput: if i % self.args.summary_frequency == 0: print('[%d, %5d] RMSE: %.7f' % (self.epoch, i, sqrt(self.t_loss / self.t_loss_denom))) self.logger.scalar_summary("Training_RMSE", sqrt(self.t_loss/self.t_loss_denom), self.global_step) self.t_loss = 0 self.t_loss_denom = 0.0 log_var_and_grad_summaries(self.logger, self.rencoder.encode_w, self.global_step, "Encode_W") log_var_and_grad_summaries(self.logger, self.rencoder.encode_b, self.global_step, "Encode_b") if not self.rencoder.is_constrained: log_var_and_grad_summaries(self.logger, self.rencoder.decode_w, self.global_step, "Decode_W") log_var_and_grad_summaries(self.logger, self.rencoder.decode_b, self.global_step, "Decode_b") self.total_epoch_loss += loss.item() self.denom += 1 #if args.aug_step > 0 and i % args.aug_step == 0 and i > 0: if self.args.aug_step > 0: # Magic data augmentation trick happen here for t in range(self.args.aug_step): inputs = Variable(outputs.data) if self.args.noise_prob > 0.0: inputs = dp(inputs) self.optimizer.zero_grad() outputs = self.rencoder(inputs) loss, num_ratings = model.MSEloss(outputs, inputs) loss = loss / num_ratings loss.backward() self.optimizer.step() def train(self, niter=1) : for self.epoch in range(niter): if self.toytest: self.rencoder.train() self.optimizer.zero_grad() outputs = self.rencoder(self.toyinputs) loss, num_ratings = model.MSEloss(outputs, self.toyinputs) loss = loss / num_ratings loss.backward() self.optimizer.step() continue if not self.args.silent: print('Doing epoch {} of {}'.format(self.epoch, niter)) print('Timing Start') e_start_time = time.time() self.DoTrain() if not self.args.silent: e_end_time = time.time() print('Timing End') if self.args.profile: print(prof.key_averages().table(sort_by="cpu_time_total", row_limit=10)) prof.export_chrome_trace("trace.json") print('Total epoch {} finished in {} seconds with TRAINING RMSE loss: {}' .format(self.epoch, e_end_time - e_start_time, sqrt(self.total_epoch_loss/self.denom))) if not self.args.silent: self.logger.scalar_summary("Training_RMSE_per_epoch", sqrt(self.total_epoch_loss/self.denom), self.epoch) self.logger.scalar_summary("Epoch_time", e_end_time - e_start_time, self.epoch) if self.epoch % self.args.save_every == 0 or self.epoch == self.args.num_epochs - 1: eval_loss = DoTrainEval(self.rencoder, self.eval_data_layer, self.args.use_cuda) print('Epoch {} EVALUATION LOSS: {}'.format(self.epoch, eval_loss)) self.logger.scalar_summary("EVALUATION_RMSE", eval_loss, self.epoch) print("Saving model to {}".format(self.model_checkpoint + ".epoch_"+str(self.epoch))) torch.save(self.rencoder.state_dict(), self.model_checkpoint + ".epoch_"+str(self.epoch)) if not self.args.nooutput: print("Saving model to {}".format(self.model_checkpoint + ".last")) torch.save(self.rencoder.state_dict(), self.model_checkpoint + ".last") # save to onnx dummy_input = Variable(torch.randn(self.params['batch_size'], self.data_layer.vector_dim).type(torch.float)) torch.onnx.export(self.rencoder.float(), dummy_input.cuda() if self.args.use_cuda else dummy_input, self.model_checkpoint + ".onnx", verbose=True) print("ONNX model saved to {}!".format(self.model_checkpoint + ".onnx")) def TimedTrainingRun(self): if self.args.profile: with profiler.profile(record_shapes=True, use_cuda=self.args.use_cuda) as prof: with profiler.record_function("training_epoch"): self.train(self.args.num_epochs) else: self.train(self.args.num_epochs) def main() : gpuTrain = DeepRecommenderTrainBenchmark(device = 'cuda') gpuTrain.TimedTrainingRun() gpuTrain = DeepRecommenderBenchmark(device = 'cpu') gpuTrain.TimedTrainingRun() if __name__ == '__main__': main()
import subprocess import sys def pip_install_requirements(): subprocess.check_call([sys.executable, '-m', 'pip', 'install', '-q', '-r', 'requirements.txt']) if __name__ == '__main__': pip_install_requirements()
# Copyright (c) 2017 NVIDIA Corporation from os import listdir, path, makedirs import random import sys import time import datetime def print_stats(data): total_ratings = 0 print("STATS") for user in data: total_ratings += len(data[user]) print("Total Ratings: {}".format(total_ratings)) print("Total User count: {}".format(len(data.keys()))) def save_data_to_file(data, filename): with open(filename, 'w') as out: for userId in data: for record in data[userId]: out.write("{}\t{}\t{}\n".format(userId, record[0], record[1])) def create_NETFLIX_data_timesplit(all_data, train_min, train_max, test_min, test_max): """ Creates time-based split of NETFLIX data into train, and (validation, test) :param all_data: :param train_min: :param train_max: :param test_min: :param test_max: :return: """ train_min_ts = time.mktime(datetime.datetime.strptime(train_min,"%Y-%m-%d").timetuple()) train_max_ts = time.mktime(datetime.datetime.strptime(train_max, "%Y-%m-%d").timetuple()) test_min_ts = time.mktime(datetime.datetime.strptime(test_min, "%Y-%m-%d").timetuple()) test_max_ts = time.mktime(datetime.datetime.strptime(test_max, "%Y-%m-%d").timetuple()) training_data = dict() validation_data = dict() test_data = dict() train_set_items = set() for userId, userRatings in all_data.items(): time_sorted_ratings = sorted(userRatings, key=lambda x: x[2]) # sort by timestamp for rating_item in time_sorted_ratings: if rating_item[2] >= train_min_ts and rating_item[2] <= train_max_ts: if not userId in training_data: training_data[userId] = [] training_data[userId].append(rating_item) train_set_items.add(rating_item[0]) # keep track of items from training set elif rating_item[2] >= test_min_ts and rating_item[2] <= test_max_ts: if not userId in training_data: # only include users seen in the training set continue p = random.random() if p <=0.5: if not userId in validation_data: validation_data[userId] = [] validation_data[userId].append(rating_item) else: if not userId in test_data: test_data[userId] = [] test_data[userId].append(rating_item) # remove items not not seen in training set for userId, userRatings in test_data.items(): test_data[userId] = [rating for rating in userRatings if rating[0] in train_set_items] for userId, userRatings in validation_data.items(): validation_data[userId] = [rating for rating in userRatings if rating[0] in train_set_items] return training_data, validation_data, test_data def main(args): user2id_map = dict() item2id_map = dict() userId = 0 itemId = 0 all_data = dict() folder = args[1] out_folder = args[2] # create necessary folders: for output_dir in [(out_folder + f) for f in [ "/N1W_TRAIN", "/N1W_VALID", "/N1W_TEST", "/N3M_TRAIN", "/N3M_VALID", "/N3M_TEST", "/N6M_TRAIN", "/N6M_VALID", "/N6M_TEST", "/N1Y_TRAIN", "/N1Y_VALID", "/N1Y_TEST", "/NF_TRAIN", "/NF_VALID", "/NF_TEST"]]: makedirs(output_dir, exist_ok=True) text_files = [path.join(folder, f) for f in listdir(folder) if path.isfile(path.join(folder, f)) and ('.txt' in f)] for text_file in text_files: with open(text_file, 'r') as f: print("Processing: {}".format(text_file)) lines = f.readlines() item = int(lines[0][:-2]) # remove newline and : if not item in item2id_map: item2id_map[item] = itemId itemId += 1 for rating in lines[1:]: parts = rating.strip().split(",") user = int(parts[0]) if not user in user2id_map: user2id_map[user] = userId userId += 1 rating = float(parts[1]) ts = int(time.mktime(datetime.datetime.strptime(parts[2],"%Y-%m-%d").timetuple())) if user2id_map[user] not in all_data: all_data[user2id_map[user]] = [] all_data[user2id_map[user]].append((item2id_map[item], rating, ts)) print("STATS FOR ALL INPUT DATA") print_stats(all_data) # Netflix 1 week, for benchmark (n1w_train, n1w_valid, n1w_test) = create_NETFLIX_data_timesplit(all_data, "2005-09-01", "2005-09-07", "2005-09-10", "2005-09-11") print("Netflix 1w train") print_stats(n1w_train) save_data_to_file(n1w_train, out_folder+"/N1W_TRAIN/n1w.train.txt") print("Netflix 1w valid") print_stats(n1w_valid) save_data_to_file(n1w_valid, out_folder + "/N1W_VALID/n1w.valid.txt") print("Netflix 1w test") print_stats(n1w_test) save_data_to_file(n1w_test, out_folder + "/N1W_TEST/n1w.test.txt") print("finished 1 week!") quit() # Netflix full (nf_train, nf_valid, nf_test) = create_NETFLIX_data_timesplit(all_data, "1999-12-01", "2005-11-30", "2005-12-01", "2005-12-31") print("Netflix full train") print_stats(nf_train) save_data_to_file(nf_train, out_folder + "/NF_TRAIN/nf.train.txt") print("Netflix full valid") print_stats(nf_valid) save_data_to_file(nf_valid, out_folder + "/NF_VALID/nf.valid.txt") print("Netflix full test") print_stats(nf_test) save_data_to_file(nf_test, out_folder + "/NF_TEST/nf.test.txt") (n3m_train, n3m_valid, n3m_test) = create_NETFLIX_data_timesplit(all_data, "2005-09-01", "2005-11-30", "2005-12-01", "2005-12-31") print("Netflix 3m train") print_stats(n3m_train) save_data_to_file(n3m_train, out_folder+"/N3M_TRAIN/n3m.train.txt") print("Netflix 3m valid") print_stats(n3m_valid) save_data_to_file(n3m_valid, out_folder + "/N3M_VALID/n3m.valid.txt") print("Netflix 3m test") print_stats(n3m_test) save_data_to_file(n3m_test, out_folder + "/N3M_TEST/n3m.test.txt") (n6m_train, n6m_valid, n6m_test) = create_NETFLIX_data_timesplit(all_data, "2005-06-01", "2005-11-30", "2005-12-01", "2005-12-31") print("Netflix 6m train") print_stats(n6m_train) save_data_to_file(n6m_train, out_folder+"/N6M_TRAIN/n6m.train.txt") print("Netflix 6m valid") print_stats(n6m_valid) save_data_to_file(n6m_valid, out_folder + "/N6M_VALID/n6m.valid.txt") print("Netflix 6m test") print_stats(n6m_test) save_data_to_file(n6m_test, out_folder + "/N6M_TEST/n6m.test.txt") # Netflix 1 year (n1y_train, n1y_valid, n1y_test) = create_NETFLIX_data_timesplit(all_data, "2004-06-01", "2005-05-31", "2005-06-01", "2005-06-30") print("Netflix 1y train") print_stats(n1y_train) save_data_to_file(n1y_train, out_folder + "/N1Y_TRAIN/n1y.train.txt") print("Netflix 1y valid") print_stats(n1y_valid) save_data_to_file(n1y_valid, out_folder + "/N1Y_VALID/n1y.valid.txt") print("Netflix 1y test") print_stats(n1y_test) save_data_to_file(n1y_test, out_folder + "/N1Y_TEST/n1y.test.txt") if __name__ == "__main__": main(sys.argv)
# Copyright (c) 2017 NVIDIA Corporation import sys import datetime import random from math import floor def print_stats(data): total_ratings = 0 print("STATS") for user in data: total_ratings += len(data[user]) print("Total Ratings: {}".format(total_ratings)) print("Total User count: {}".format(len(data.keys()))) def save_data_to_file(data, filename): with open(filename, 'w') as out: for userId in data: for record in data[userId]: out.write("{}\t{}\t{}\n".format(userId, record[0], record[1])) def main(args): inpt = args[1] out_prefix = args[2] percent = 0.7 user2id_map = dict() item2id_map = dict() userId = 0 itemId = 0 data = dict() min_ts = 100000000000 max_ts = 0 total_rating_count = 0 with open(inpt, 'r') as inpt_f: #ratings.csv headers: userId,movieId,rating,timestamp for line in inpt_f: if 'userId' in line: continue parts = line.split(',') user = int(parts[0]) item = int(parts[1]) rating = float(parts[2]) ts = int(parts[3]) if min_ts > ts: min_ts = ts if max_ts < ts: max_ts = ts if not user in user2id_map: user2id_map[user] = userId userId += 1 if not item in item2id_map: item2id_map[item] = itemId itemId += 1 total_rating_count += 1 if user2id_map[user] not in data: data[user2id_map[user]] = [] data[user2id_map[user]].append((item2id_map[item], rating, ts)) print("STATS") print("Total Ratings: {}".format(total_rating_count)) print("Total User count: {}".format(len(user2id_map))) print("Total Item count: {}".format(len(item2id_map))) print("Minimum ts: {}, which is {}".format(min_ts, datetime.datetime.fromtimestamp(min_ts).strftime('%Y-%m-%d'))) print("Maximum ts: {}, which is {}".format(max_ts, datetime.datetime.fromtimestamp(max_ts).strftime('%Y-%m-%d'))) training_data = dict() validation_data = dict() test_data = dict() train_set_items = set() for userId in data.keys(): if len(data[userId]) < 2: #print("WARNING, userId {} has less than 2 ratings, skipping user...".format(userId)) continue time_sorted_ratings = sorted(data[userId], key=lambda x: x[2]) # sort by timestamp last_train_ind = floor(percent * len(time_sorted_ratings)) training_data[userId] = time_sorted_ratings[:last_train_ind] for rating_item in time_sorted_ratings[:last_train_ind]: train_set_items.add(rating_item[0]) # keep track of items from training set p = random.random() if p <= 0.5: validation_data[userId] = time_sorted_ratings[last_train_ind:] else: test_data[userId] = time_sorted_ratings[last_train_ind:] # remove items not not seen in training set for userId, userRatings in test_data.items(): test_data[userId] = [rating for rating in userRatings if rating[0] in train_set_items] for userId, userRatings in validation_data.items(): validation_data[userId] = [rating for rating in userRatings if rating[0] in train_set_items] print("Training Data") print_stats(training_data) save_data_to_file(training_data, out_prefix+".train") print("Validation Data") print_stats(validation_data) save_data_to_file(validation_data, out_prefix + ".valid") print("Test Data") print_stats(test_data) save_data_to_file(test_data, out_prefix + ".test") if __name__ == "__main__": main(sys.argv)
# Copyright (c) 2017 NVIDIA Corporation
# Copyright (c) 2017 NVIDIA Corporation
# Copyright (c) 2017 NVIDIA Corporation import torch import torch.nn as nn import torch.nn.functional as F import torch.nn.init as weight_init from torch.autograd import Variable def activation(input, kind): #print("Activation: {}".format(kind)) if kind == 'selu': return F.selu(input) elif kind == 'relu': return F.relu(input) elif kind == 'relu6': return F.relu6(input) elif kind == 'sigmoid': return F.sigmoid(input) elif kind == 'tanh': return F.tanh(input) elif kind == 'elu': return F.elu(input) elif kind == 'lrelu': return F.leaky_relu(input) elif kind == 'swish': return input*F.sigmoid(input) elif kind == 'none': return input else: raise ValueError('Unknown non-linearity type') def MSEloss(inputs, targets, size_average=False): mask = targets != 0 num_ratings = torch.sum(mask.float()) criterion = nn.MSELoss(reduction='sum' if not size_average else 'mean') return criterion(inputs * mask.float(), targets), Variable(torch.Tensor([1.0])) if size_average else num_ratings class AutoEncoder(nn.Module): def __init__(self, layer_sizes, nl_type='selu', is_constrained=True, dp_drop_prob=0.0, last_layer_activations=True): """ Describes an AutoEncoder model :param layer_sizes: Encoder network description. Should start with feature size (e.g. dimensionality of x). For example: [10000, 1024, 512] will result in: - encoder 2 layers: 10000x1024 and 1024x512. Representation layer (z) will be 512 - decoder 2 layers: 512x1024 and 1024x10000. :param nl_type: (default 'selu') Type of no-linearity :param is_constrained: (default: True) Should constrain decoder weights :param dp_drop_prob: (default: 0.0) Dropout drop probability :param last_layer_activations: (default: True) Whether to apply activations on last decoder layer """ super(AutoEncoder, self).__init__() self._dp_drop_prob = dp_drop_prob self._last_layer_activations = last_layer_activations if dp_drop_prob > 0: self.drop = nn.Dropout(dp_drop_prob) self._last = len(layer_sizes) - 2 self._nl_type = nl_type self.encode_w = nn.ParameterList( [nn.Parameter(torch.rand(layer_sizes[i + 1], layer_sizes[i])) for i in range(len(layer_sizes) - 1)]) for ind, w in enumerate(self.encode_w): weight_init.xavier_uniform_(w) self.encode_b = nn.ParameterList( [nn.Parameter(torch.zeros(layer_sizes[i + 1])) for i in range(len(layer_sizes) - 1)]) reversed_enc_layers = list(reversed(layer_sizes)) self.is_constrained = is_constrained if not is_constrained: self.decode_w = nn.ParameterList( [nn.Parameter(torch.rand(reversed_enc_layers[i + 1], reversed_enc_layers[i])) for i in range(len(reversed_enc_layers) - 1)]) for ind, w in enumerate(self.decode_w): nn.init.xavier_uniform_(w) self.decode_b = nn.ParameterList( [nn.Parameter(torch.zeros(reversed_enc_layers[i + 1])) for i in range(len(reversed_enc_layers) - 1)]) if False: print("******************************") print("******************************") print(layer_sizes) print("Dropout drop probability: {}".format(self._dp_drop_prob)) print("Encoder pass:") for ind, w in enumerate(self.encode_w): print(w.data.size()) print(self.encode_b[ind].size()) print("Decoder pass:") if self.is_constrained: print('Decoder is constrained') for ind, w in enumerate(list(reversed(self.encode_w))): print(w.transpose(0, 1).size()) print(self.decode_b[ind].size()) else: for ind, w in enumerate(self.decode_w): print(w.data.size()) print(self.decode_b[ind].size()) print("******************************") print("******************************") def encode(self, x): for ind, w in enumerate(self.encode_w): x = activation(input=F.linear(input=x, weight=w, bias=self.encode_b[ind]), kind=self._nl_type) if self._dp_drop_prob > 0: # apply dropout only on code layer x = self.drop(x) return x def decode(self, z): if False: #self.is_constrained: for ind, w in enumerate(list(reversed(self.encode_w))): # constrained autoencode re-uses weights from encoder z = activation(input=F.linear(input=z, weight=w.transpose(0, 1), bias=self.decode_b[ind]), # last layer or decoder should not apply non linearities kind=self._nl_type if ind!=self._last or self._last_layer_activations else 'none') #if self._dp_drop_prob > 0 and ind!=self._last: # and no dp on last layer # z = self.drop(z) else: for ind, w in enumerate(self.decode_w): z = activation(input=F.linear(input=z, weight=w, bias=self.decode_b[ind]), # last layer or decoder should not apply non linearities kind=self._nl_type if ind!=self._last or self._last_layer_activations else 'none') #if self._dp_drop_prob > 0 and ind!=self._last: # and no dp on last layer # z = self.drop(z) return z def forward(self, x): return self.decode(self.encode(x))
# Copyright (c) 2017 NVIDIA Corporation
# Copyright (c) 2017 NVIDIA Corporation """Data Layer Classes""" from os import listdir, path from random import shuffle import torch class UserItemRecDataProvider: def __init__(self, params, user_id_map=None, item_id_map=None): self._params = params self._data_dir = self.params['data_dir'] self._extension = ".txt" if 'extension' not in self.params else self.params['extension'] self._i_id = 0 if 'itemIdInd' not in self.params else self.params['itemIdInd'] self._u_id = 1 if 'userIdInd' not in self.params else self.params['userIdInd'] self._r_id = 2 if 'ratingInd' not in self.params else self.params['ratingInd'] self._major = 'items' if 'major' not in self.params else self.params['major'] if not (self._major == 'items' or self._major == 'users'): raise ValueError("Major must be 'users' or 'items', but got {}".format(self._major)) self._major_ind = self._i_id if self._major == 'items' else self._u_id self._minor_ind = self._u_id if self._major == 'items' else self._i_id self._delimiter = '\t' if 'delimiter' not in self.params else self.params['delimiter'] if user_id_map is None or item_id_map is None: self._build_maps() else: self._user_id_map = user_id_map self._item_id_map = item_id_map major_map = self._item_id_map if self._major == 'items' else self._user_id_map minor_map = self._user_id_map if self._major == 'items' else self._item_id_map self._vector_dim = len(minor_map) src_files = [path.join(self._data_dir, f) for f in listdir(self._data_dir) if path.isfile(path.join(self._data_dir, f)) and f.endswith(self._extension)] self._batch_size = self.params['batch_size'] self.data = dict() for source_file in src_files: with open(source_file, 'r') as src: for line in src.readlines(): parts = line.strip().split(self._delimiter) if len(parts)<3: raise ValueError('Encountered badly formatted line in {}'.format(source_file)) key = major_map[int(parts[self._major_ind])] value = minor_map[int(parts[self._minor_ind])] rating = float(parts[self._r_id]) #print("Key: {}, Value: {}, Rating: {}".format(key, value, rating)) if key not in self.data: self.data[key] = [] self.data[key].append((value, rating)) def _build_maps(self): self._user_id_map = dict() self._item_id_map = dict() src_files = [path.join(self._data_dir, f) for f in listdir(self._data_dir) if path.isfile(path.join(self._data_dir, f)) and f.endswith(self._extension)] u_id = 0 i_id = 0 for source_file in src_files: with open(source_file, 'r') as src: for line in src.readlines(): parts = line.strip().split(self._delimiter) if len(parts)<3: raise ValueError('Encountered badly formatted line in {}'.format(source_file)) u_id_orig = int(parts[self._u_id]) if u_id_orig not in self._user_id_map: self._user_id_map[u_id_orig] = u_id u_id += 1 i_id_orig = int(parts[self._i_id]) if i_id_orig not in self._item_id_map: self._item_id_map[i_id_orig] = i_id i_id += 1 def iterate_one_epoch(self): data = self.data keys = list(data.keys()) shuffle(keys) s_ind = 0 e_ind = self._batch_size while e_ind < len(keys): local_ind = 0 inds1 = [] inds2 = [] vals = [] for ind in range(s_ind, e_ind): inds2 += [v[0] for v in data[keys[ind]]] inds1 += [local_ind]*len([v[0] for v in data[keys[ind]]]) vals += [v[1] for v in data[keys[ind]]] local_ind += 1 i_torch = torch.LongTensor([inds1, inds2]) v_torch = torch.FloatTensor(vals) mini_batch = torch.sparse.FloatTensor(i_torch, v_torch, torch.Size([self._batch_size, self._vector_dim])) s_ind += self._batch_size e_ind += self._batch_size yield mini_batch def iterate_one_epoch_eval(self, for_inf=False): keys = list(self.data.keys()) s_ind = 0 while s_ind < len(keys): inds1 = [0] * len([v[0] for v in self.data[keys[s_ind]]]) inds2 = [v[0] for v in self.data[keys[s_ind]]] vals = [v[1] for v in self.data[keys[s_ind]]] src_inds1 = [0] * len([v[0] for v in self.src_data[keys[s_ind]]]) src_inds2 = [v[0] for v in self.src_data[keys[s_ind]]] src_vals = [v[1] for v in self.src_data[keys[s_ind]]] i_torch = torch.LongTensor([inds1, inds2]) v_torch = torch.FloatTensor(vals) src_i_torch = torch.LongTensor([src_inds1, src_inds2]) src_v_torch = torch.FloatTensor(src_vals) mini_batch = (torch.sparse.FloatTensor(i_torch, v_torch, torch.Size([1, self._vector_dim])), torch.sparse.FloatTensor(src_i_torch, src_v_torch, torch.Size([1, self._vector_dim]))) s_ind += 1 if not for_inf: yield mini_batch else: yield mini_batch, keys[s_ind - 1] @property def vector_dim(self): return self._vector_dim @property def userIdMap(self): return self._user_id_map @property def itemIdMap(self): return self._item_id_map @property def params(self): return self._params
import os from torchbenchmark.tasks import COMPUTER_VISION from torchbenchmark.util.framework.detectron2.model_factory import Detectron2Model MODEL_NAME = os.path.basename(os.path.dirname(os.path.abspath(__file__))) MODEL_DIR = os.path.abspath(os.path.dirname(__file__)) class Model(Detectron2Model): task = COMPUTER_VISION.SEGMENTATION model_file = os.path.join(MODEL_DIR, ".data", f"{MODEL_NAME}.pkl") def __init__(self, test, device, batch_size=None, extra_args=[]): super().__init__(variant="COCO-InstanceSegmentation/mask_rcnn_R_101_FPN_3x.yaml", test=test, device=device, batch_size=batch_size, extra_args=extra_args)
import os from torchbenchmark.util.framework.detectron2 import install_detectron2 MODEL_NAME = os.path.basename(os.path.dirname(os.path.abspath(__file__))) MODEL_DIR = os.path.abspath(os.path.dirname(__file__)) if __name__ == '__main__': install_detectron2(MODEL_NAME, MODEL_DIR)
import torch import torch.optim as optim import torch.nn as nn import torch.utils.data as data import torchvision.models as models from opacus import PrivacyEngine from opacus.validators.module_validator import ModuleValidator from typing import Tuple from ...util.model import BenchmarkModel from torchbenchmark.tasks import OTHER class Model(BenchmarkModel): task = OTHER.OTHER_TASKS DEFAULT_TRAIN_BSIZE = 64 DEFAULT_EVAL_BSIZE = 64 def __init__(self, test, device, batch_size=None, extra_args=[]): # disable torchdynamo-fx2trt because it never terminates if "--torchdynamo" in extra_args and "fx2trt" in extra_args: raise NotImplementedError("TorchDynamo Fx2trt is not supported because of hanging issue. " "See: https://github.com/facebookresearch/torchdynamo/issues/109") super().__init__(test=test, device=device, batch_size=batch_size, extra_args=extra_args) self.model = models.resnet18(num_classes=10) self.model = ModuleValidator.fix(self.model) self.model = self.model.to(device) # Cifar10 images are 32x32 and have 10 classes self.example_inputs = ( torch.randn((self.batch_size, 3, 32, 32), device=self.device), ) self.example_target = torch.randint(0, 10, (self.batch_size,), device=self.device) dataset = data.TensorDataset(self.example_inputs[0], self.example_target) self.dummy_loader = data.DataLoader(dataset, batch_size=self.batch_size) self.noise_multiplier: float=1.0 self.max_grad_norm: float=1.0 self.poisson_sampling: bool=False self.optimizer = optim.Adam(self.model.parameters(), lr=0.001) self.criterion = nn.CrossEntropyLoss() self.privacy_engine = PrivacyEngine() self.model, self.optimizer, _ = self.privacy_engine.make_private( module=self.model, optimizer=self.optimizer, data_loader=self.dummy_loader, noise_multiplier=self.noise_multiplier, max_grad_norm=self.max_grad_norm, poisson_sampling=self.poisson_sampling, ) def get_module(self): return self.model, self.example_inputs def get_optimizer(self): return self.optimizer def set_optimizer(self, optimizer) -> None: self.optimizer = optimizer self.model, self.optimizer, _ = self.privacy_engine.make_private( module=self.model, optimizer=self.optimizer, data_loader=self.dummy_loader, noise_multiplier=1.0, max_grad_norm=1.0, poisson_sampling=False, ) def train(self): model = self.model (images, ) = self.example_inputs model.train() targets = self.example_target output = model(images) loss = self.criterion(output, targets) loss.backward() self.optimizer.step() self.optimizer.zero_grad() def eval(self) -> Tuple[torch.Tensor]: model = self.model (images, ) = self.example_inputs model.eval() targets = self.example_target with torch.no_grad(): out = model(images) return (out, )
import subprocess import sys def pip_install_requirements(): subprocess.check_call([sys.executable, '-m', 'pip', 'install', '-q', '-r', 'requirements.txt']) if __name__ == '__main__': pip_install_requirements()
from ...util.model import BenchmarkModel from torchbenchmark.tasks import NLP import torch from .model import GPT, SequenceGeneratorNanoGPT, GPTConfig, GPTGenerationConfig class Model(BenchmarkModel): task = NLP.GENERATION DEFAULT_EVAL_BSIZE = 1 def __init__(self, test, device, batch_size=None, extra_args=[]): super().__init__(test=test, device=device, batch_size=batch_size, extra_args=extra_args) # Use the default configs self.gpt_config = GPTConfig() self.generator_config = GPTGenerationConfig(32, 0.8, 200) self.model = SequenceGeneratorNanoGPT(GPT(self.gpt_config), self.generator_config).eval().to(self.device) self.prompt_size = 64 self.example_inputs = ( torch.randint(1, self.gpt_config.vocab_size, (self.batch_size, self.prompt_size)).to(self.device), ) def get_module(self): return self.model, self.example_inputs def train(self): return NotImplementedError("Training not supported for this model") def eval(self): with torch.no_grad(): out = self.model(*self.example_inputs) return (out,)
""" Full definition of a GPT Language Model, all of it in this single file. References: 1) the official GPT-2 TensorFlow implementation released by OpenAI: https://github.com/openai/gpt-2/blob/master/src/model.py 2) huggingface/transformers PyTorch implementation: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py """ import math import inspect from typing import Optional from dataclasses import dataclass import torch import torch.nn as nn from torch.nn import functional as F # @torch.jit.script # good to enable when not using torch.compile, disable when using (our default) def new_gelu(x): """ Implementation of the GELU activation function currently in Google BERT repo (identical to OpenAI GPT). Reference: Gaussian Error Linear Units (GELU) paper: https://arxiv.org/abs/1606.08415 """ return 0.5 * x * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi) * (x + 0.044715 * torch.pow(x, 3.0)))) class LayerNorm(nn.Module): """ LayerNorm but with an optional bias. PyTorch doesn't support simply bias=False """ def __init__(self, ndim, bias): super().__init__() self.weight = nn.Parameter(torch.ones(ndim)) self.bias = nn.Parameter(torch.zeros(ndim)) if bias else None def forward(self, input): return F.layer_norm(input, self.weight.shape, self.weight, self.bias, 1e-5) class CausalSelfAttention(nn.Module): def __init__(self, config): super().__init__() assert config.n_embd % config.n_head == 0 # key, query, value projections for all heads, but in a batch self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias) # output projection self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias) # regularization self.attn_dropout = nn.Dropout(config.dropout) self.resid_dropout = nn.Dropout(config.dropout) self.n_head = config.n_head self.n_embd = config.n_embd self.dropout = config.dropout # flash attention make GPU go brrrrr but support is only in PyTorch >= 2.0 self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention') if not self.flash: print("WARNING: using slow attention. Flash Attention requires PyTorch >= 2.0") # causal mask to ensure that attention is only applied to the left in the input sequence self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)) .view(1, 1, config.block_size, config.block_size)) def forward(self, x): B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd) # calculate query, key, values for all heads in batch and move head forward to be the batch dim q, k, v = self.c_attn(x).split(self.n_embd, dim=2) k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) # causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T) if self.flash: # efficient attention using Flash Attention CUDA kernels y = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=self.dropout if self.training else 0, is_causal=True) else: # manual implementation of attention att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1))) att = att.masked_fill(self.bias[:,:,:T,:T] == 0, float('-inf')) att = F.softmax(att, dim=-1) att = self.attn_dropout(att) y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs) y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side # output projection y = self.resid_dropout(self.c_proj(y)) return y class MLP(nn.Module): def __init__(self, config): super().__init__() self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias) self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias) self.dropout = nn.Dropout(config.dropout) def forward(self, x): x = self.c_fc(x) x = new_gelu(x) x = self.c_proj(x) x = self.dropout(x) return x class Block(nn.Module): def __init__(self, config): super().__init__() self.ln_1 = LayerNorm(config.n_embd, bias=config.bias) self.attn = CausalSelfAttention(config) self.ln_2 = LayerNorm(config.n_embd, bias=config.bias) self.mlp = MLP(config) def forward(self, x): x = x + self.attn(self.ln_1(x)) x = x + self.mlp(self.ln_2(x)) return x @dataclass class GPTConfig: block_size: int = 1024 vocab_size: int = 50304 # GPT-2 vocab_size of 50257, padded up to nearest multiple of 64 for efficiency n_layer: int = 12 n_head: int = 12 n_embd: int = 768 dropout: float = 0.0 bias: bool = True # True: bias in Linears and LayerNorms, like GPT-2. False: a bit better and faster @dataclass class GPTGenerationConfig: max_new_tokens: int = 512 # max number of new tokens to generate temperature: float = 1.0 # temperature for sampling. > 1.0: more exploring, < 1.0: more conservative. top_k: Optional[int] = None # top_k > 0: keep only top k tokens with highest probability (top-k filtering). class GPT(nn.Module): def __init__(self, config): super().__init__() assert config.vocab_size is not None assert config.block_size is not None self.config = config self.transformer = nn.ModuleDict(dict( wte = nn.Embedding(config.vocab_size, config.n_embd), wpe = nn.Embedding(config.block_size, config.n_embd), drop = nn.Dropout(config.dropout), h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]), ln_f = LayerNorm(config.n_embd, bias=config.bias), )) self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) # with weight tying when using torch.compile() some warnings get generated: # "UserWarning: functional_call was passed multiple values for tied weights. # This behavior is deprecated and will be an error in future versions" # not 100% sure what this is, so far seems to be harmless. TODO investigate self.transformer.wte.weight = self.lm_head.weight # https://paperswithcode.com/method/weight-tying # init all weights self.apply(self._init_weights) # apply special scaled init to the residual projections, per GPT-2 paper for pn, p in self.named_parameters(): if pn.endswith('c_proj.weight'): torch.nn.init.normal_(p, mean=0.0, std=0.02/math.sqrt(2 * config.n_layer)) # report number of parameters print("number of parameters: %.2fM" % (self.get_num_params()/1e6,)) def get_num_params(self, non_embedding=True): """ Return the number of parameters in the model. For non-embedding count (default), the position embeddings get subtracted. The token embeddings would too, except due to the parameter sharing these params are actually used as weights in the final layer, so we include them. """ n_params = sum(p.numel() for p in self.parameters()) if non_embedding: n_params -= self.transformer.wpe.weight.numel() return n_params def _init_weights(self, module): if isinstance(module, nn.Linear): torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) if module.bias is not None: torch.nn.init.zeros_(module.bias) elif isinstance(module, nn.Embedding): torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) def forward(self, idx, targets=None): device = idx.device b, t = idx.size() assert t <= self.config.block_size, f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}" pos = torch.arange(0, t, dtype=torch.long, device=device).unsqueeze(0) # shape (1, t) # forward the GPT model itself tok_emb = self.transformer.wte(idx) # token embeddings of shape (b, t, n_embd) pos_emb = self.transformer.wpe(pos) # position embeddings of shape (1, t, n_embd) x = self.transformer.drop(tok_emb + pos_emb) for block in self.transformer.h: x = block(x) x = self.transformer.ln_f(x) if targets is not None: # if we are given some desired targets also calculate the loss logits = self.lm_head(x) loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1) else: # inference-time mini-optimization: only forward the lm_head on the very last position logits = self.lm_head(x[:, [-1], :]) # note: using list [-1] to preserve the time dim loss = None return logits, loss def crop_block_size(self, block_size): # model surgery to decrease the block size if necessary # e.g. we may load the GPT2 pretrained model checkpoint (block size 1024) # but want to use a smaller block size for some smaller, simpler model assert block_size <= self.config.block_size self.config.block_size = block_size self.transformer.wpe.weight = nn.Parameter(self.transformer.wpe.weight[:block_size]) for block in self.transformer.h: if hasattr(block.attn, 'bias'): block.attn.bias = block.attn.bias[:,:,:block_size,:block_size] @classmethod def from_pretrained(cls, model_type, override_args=None): assert model_type in {'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'} override_args = override_args or {} # default to empty dict # only dropout can be overridden see more notes below assert all(k == 'dropout' for k in override_args) from transformers import GPT2LMHeadModel print("loading weights from pretrained gpt: %s" % model_type) # n_layer, n_head and n_embd are determined from model_type config_args = { 'gpt2': dict(n_layer=12, n_head=12, n_embd=768), # 124M params 'gpt2-medium': dict(n_layer=24, n_head=16, n_embd=1024), # 350M params 'gpt2-large': dict(n_layer=36, n_head=20, n_embd=1280), # 774M params 'gpt2-xl': dict(n_layer=48, n_head=25, n_embd=1600), # 1558M params }[model_type] print("forcing vocab_size=50257, block_size=1024, bias=True") config_args['vocab_size'] = 50257 # always 50257 for GPT model checkpoints config_args['block_size'] = 1024 # always 1024 for GPT model checkpoints config_args['bias'] = True # always True for GPT model checkpoints # we can override the dropout rate, if desired if 'dropout' in override_args: print(f"overriding dropout rate to {override_args['dropout']}") config_args['dropout'] = override_args['dropout'] # create a from-scratch initialized minGPT model config = GPTConfig(**config_args) model = GPT(config) sd = model.state_dict() sd_keys = sd.keys() sd_keys = [k for k in sd_keys if not k.endswith('.attn.bias')] # discard this mask / buffer, not a param # init a huggingface/transformers model model_hf = GPT2LMHeadModel.from_pretrained(model_type) sd_hf = model_hf.state_dict() # copy while ensuring all of the parameters are aligned and match in names and shapes sd_keys_hf = sd_hf.keys() sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.masked_bias')] # ignore these, just a buffer sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.bias')] # same, just the mask (buffer) transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight'] # basically the openai checkpoints use a "Conv1D" module, but we only want to use a vanilla Linear # this means that we have to transpose these weights when we import them assert len(sd_keys_hf) == len(sd_keys), f"mismatched keys: {len(sd_keys_hf)} != {len(sd_keys)}" for k in sd_keys_hf: if any(k.endswith(w) for w in transposed): # special treatment for the Conv1D weights we need to transpose assert sd_hf[k].shape[::-1] == sd[k].shape with torch.no_grad(): sd[k].copy_(sd_hf[k].t()) else: # vanilla copy over the other parameters assert sd_hf[k].shape == sd[k].shape with torch.no_grad(): sd[k].copy_(sd_hf[k]) return model def configure_optimizers(self, weight_decay, learning_rate, betas, device_type): # start with all of the candidate parameters param_dict = {pn: p for pn, p in self.named_parameters()} # filter out those that do not require grad param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad} # create optim groups. Any parameters that is 2D will be weight decayed, otherwise no. # i.e. all weight tensors in matmuls + embeddings decay, all biases and layernorms don't. decay_params = [p for n, p in param_dict.items() if p.dim() >= 2] nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2] optim_groups = [ {'params': decay_params, 'weight_decay': weight_decay}, {'params': nodecay_params, 'weight_decay': 0.0} ] num_decay_params = sum(p.numel() for p in decay_params) num_nodecay_params = sum(p.numel() for p in nodecay_params) print(f"num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters") print(f"num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters") # Create AdamW optimizer and use the fused version if it is available fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters use_fused = fused_available and device_type == 'cuda' extra_args = dict(fused=True) if use_fused else dict() optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=betas, **extra_args) print(f"using fused AdamW: {use_fused}") return optimizer def estimate_mfu(self, fwdbwd_per_iter, dt): """ estimate model flops utilization (MFU) in units of A100 bfloat16 peak FLOPS """ # first estimate the number of flops we do per iteration. # see PaLM paper Appendix B as ref: https://arxiv.org/abs/2204.02311 N = self.get_num_params() cfg = self.config L, H, Q, T = cfg.n_layer, cfg.n_head, cfg.n_embd//cfg.n_head, cfg.block_size flops_per_token = 6*N + 12*L*H*Q*T flops_per_fwdbwd = flops_per_token * T flops_per_iter = flops_per_fwdbwd * fwdbwd_per_iter # express our flops throughput as ratio of A100 bfloat16 peak flops flops_achieved = flops_per_iter * (1.0/dt) # per second flops_promised = 312e12 # A100 GPU bfloat16 peak flops is 312 TFLOPS mfu = flops_achieved / flops_promised return mfu @torch.no_grad() def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None): """ Take a conditioning sequence of indices idx (LongTensor of shape (b,t)) and complete the sequence max_new_tokens times, feeding the predictions back into the model each time. Most likely you'll want to make sure to be in model.eval() mode of operation for this. """ for _ in range(max_new_tokens): # if the sequence context is growing too long we must crop it at block_size idx_cond = idx if idx.size(1) <= self.config.block_size else idx[:, -self.config.block_size:] # forward the model to get the logits for the index in the sequence logits, _ = self(idx_cond) # pluck the logits at the final step and scale by desired temperature logits = logits[:, -1, :] / temperature # optionally crop the logits to only the top k options if top_k is not None: v, _ = torch.topk(logits, min(top_k, logits.size(-1))) logits[logits < v[:, [-1]]] = -float('Inf') # apply softmax to convert logits to (normalized) probabilities probs = F.softmax(logits, dim=-1) # sample from the distribution idx_next = torch.multinomial(probs, num_samples=1) # append sampled index to the running sequence and continue idx = torch.cat((idx, idx_next), dim=1) return idx class SequenceGeneratorNanoGPT(nn.Module): def __init__(self, model, generate_config) -> None: super().__init__() self.base_model: GPT = model self.generate_config: GPTGenerationConfig = generate_config def forward(self, idx): return self.base_model.generate(idx, self.generate_config.max_new_tokens, self.generate_config.temperature, self.generate_config.top_k)
from torchbenchmark.util.framework.vision.model_factory import TorchVisionModel from torchbenchmark.tasks import COMPUTER_VISION import torch.optim as optim import torch import torchvision.models as models class Model(TorchVisionModel): task = COMPUTER_VISION.CLASSIFICATION # Original train batch size: 512, out of memory on V100 GPU # Use hierarchical batching to scale down: 512 = batch_size (32) * epoch_size (16) # Source: https://github.com/forresti/SqueezeNet DEFAULT_TRAIN_BSIZE = 32 DEFAULT_EVAL_BSIZE = 16 def __init__(self, test, device, batch_size=None, extra_args=[]): super().__init__(model_name="squeezenet1_1", test=test, device=device, batch_size=batch_size, weights=models.SqueezeNet1_1_Weights.IMAGENET1K_V1, extra_args=extra_args) self.epoch_size = 16 def train(self): optimizer = optim.Adam(self.model.parameters()) loss = torch.nn.CrossEntropyLoss() optimizer.zero_grad() for _ in range(self.epoch_size): pred = self.model(*self.example_inputs) y = torch.empty(pred.shape[0], dtype=torch.long, device=self.device).random_(pred.shape[1]) loss(pred, y).backward() optimizer.step()
import argparse import random from collections import deque import math import gym import numpy as np class ActionRepeatWrapper(gym.Wrapper): def __init__(self, env, repeat_multiplier=8): super().__init__(env) self.action_space = gym.spaces.Box( -1.0, 1.0, shape=(1 + self.env.action_space.shape[0],) ) self.repeat_multiplier = repeat_multiplier / 2.0 def step(self, action): repeat_action = max(math.floor((action[0] + 1.0) * self.repeat_multiplier), 1) main_action = action[1:] total_reward = 0 for _ in range(repeat_action): next_state, reward, done, _ = self.env.step(main_action) total_reward += reward return next_state, total_reward, done, {} class ChannelsFirstWrapper(gym.ObservationWrapper): """ Some pixel-based gym environments use a (Height, Width, Channel) image format. This wrapper rolls those axes to (Channel, Height, Width) to work with pytorch Conv2D layers. """ def __init__(self, env): super().__init__(env) self.observation_space.shape = ( env.observation_space.shape[-1], ) + env.observation_space.shape[:-1] def observation(self, frame): frame = np.transpose(frame, (2, 0, 1)) return np.ascontiguousarray(frame) class NormalizeObservationSpace(gym.ObservationWrapper): def __init__(self, env, obs_mean, obs_std): super().__init__(env) self.mean = obs_mean self.std = obs_std + 1e-5 def observation(self, x): return (x - self.mean) / self.std class NormalizeContinuousActionSpace(gym.ActionWrapper): def __init__(self, env): super().__init__(env) self._true_action_space = env.action_space self.action_space = gym.spaces.Box( low=-1.0, high=1.0, shape=self._true_action_space.shape, dtype=np.float32, ) def action(self, action): true_delta = self._true_action_space.high - self._true_action_space.low norm_delta = self.action_space.high - self.action_space.low action = (action - self.action_space.low) / norm_delta action = action * true_delta + self._true_action_space.low return action def robosuite_action_adjustment(robosuite_env, verbose=False): if verbose: action_space = robosuite_env.action_space high = action_space.high same_high = np.all(high == high[0]) low = action_space.low same_low = np.all(low == low[0]) shape = action_space.shape[0] print("RoboSuite Action Space Report:") if same_high and same_low: print(f"Uniformly Bounded Action Space in [{low[0]}, {high[0]}]^{shape}") else: print(f"Non-uniform Bounded Action Space with elements = {zip(low, high)}") print("\nAttempting to normalize action space using dc.envs.Normalize...\n") env = NormalizeContinuousActionSpace(robosuite_env) if verbose: action_space = env.action_space high = action_space.high same_high = np.all(high == high[0]) low = action_space.low same_low = np.all(low == low[0]) shape = action_space.shape[0] print("Normalized RoboSuite Action Space Report:") if same_high and same_low: print(f"Uniformly Bounded Action Space in [{low[0]}, {high[0]}]^{shape}") else: print(f"Non-uniform Bounded Action Space with elements = {zip(low, high)}") return env class FlattenObsWrapper(gym.ObservationWrapper): """ Simple wrapper that flattens an image observation into a state vector when CNNs are overkill. """ def __init__(self, env): super().__init__(env) self.observation_space.shape = (np.prod(env.observation_space.shape),) def observation(self, obs): return obs.flatten() class ConcatObsWrapper(gym.ObservationWrapper): def __init__(self, env): super().__init__(env) obs_space_shape = sum(x.shape[0] for x in self.observation_space) self.observation_space.shape = (obs_space_shape,) def observation(self, obs): return np.concatenate(obs, axis=0) def highway_env(env_id): """ Convenience function to turn all the highway_env environments into continuous control tasks. highway_env: https://highway-env.readthedocs.io/en/latest/index.html """ import gym import highway_env env = gym.make(env_id) env.configure({"action": {"type": "ContinuousAction"}}) env.reset() env = NormalizeContinuousActionSpace(env) env = FlattenObsWrapper(env) return env class DiscreteActionWrapper(gym.ActionWrapper): """ This is intended to let the action be any scalar (float or int) or np array (float or int) of size 1. floats are cast to ints using python's standard rounding. """ def __init__(self, env): super().__init__(env) self.action_space.shape = (env.action_space.n,) def action(self, action): if isinstance(action, np.ndarray): if len(action.shape) > 0: action = action[0] return int(action) class FrameStack(gym.Wrapper): def __init__(self, env, num_stack): gym.Wrapper.__init__(self, env) self._k = num_stack self._frames = deque([], maxlen=num_stack) shp = env.observation_space.shape self.observation_space = gym.spaces.Box( low=0, high=1, shape=((shp[0] * num_stack,) + shp[1:]), dtype=env.observation_space.dtype, ) def reset(self): obs = self.env.reset() for _ in range(self._k): self._frames.append(obs) return self._get_obs() def step(self, action): obs, reward, done, info = self.env.step(action) self._frames.append(obs) return self._get_obs(), reward, done, info def _get_obs(self): assert len(self._frames) == self._k return np.concatenate(list(self._frames), axis=0) class GoalBasedWrapper(gym.ObservationWrapper): """ Some goal-based envs (like the Gym Robotics suite) use dictionary observations with one entry for the current state and another to describe the goal. This wrapper concatenates those into a single vector so it can be used just like any other env. """ def __init__(self, env): super().__init__(env) self.observation_space.shape = ( env.observation_space["observation"].shape[0] + env.observation_space["desired_goal"].shape[0], ) def observation(self, obs_dict): return self._flatten_obs(obs_dict) def _flatten_obs(self, obs_dict): return np.concatenate((obs_dict["observation"], obs_dict["desired_goal"])) def add_gym_args(parser): """ Add a --env_id cl flag to an argparser """ parser.add_argument("--env_id", type=str, default="Pendulum-v1") parser.add_argument("--seed", type=int, default=123) def load_gym(env_id="CartPole-v1", seed=None, normalize_action_space=True, **_): """ Load an environment from OpenAI gym (or pybullet_gym, if installed) """ # optional pybullet import try: import pybullet import pybulletgym except ImportError: pass env = gym.make(env_id) if normalize_action_space and isinstance(env.action_space, gym.spaces.Box): env = NormalizeContinuousActionSpace(env) if seed is None: seed = random.randint(1, 100000) env.reset(seed=seed) return env def add_dmc_args(parser): """ Add cl flags associated with the deepmind control suite to a parser """ parser.add_argument("--domain_name", type=str, default="fish") parser.add_argument("--task_name", type=str, default="swim") parser.add_argument( "--from_pixels", action="store_true", help="Use image observations" ) parser.add_argument("--height", type=int, default=84) parser.add_argument("--width", type=int, default=84) parser.add_argument("--camera_id", type=int, default=0) parser.add_argument("--frame_skip", type=int, default=1) parser.add_argument("--frame_stack", type=int, default=3) parser.add_argument("--channels_last", action="store_true") parser.add_argument("--rgb", action="store_true") parser.add_argument("--seed", type=int, default=231) def add_atari_args(parser): parser.add_argument("--game_id", type=str, default="Boxing-v0") parser.add_argument("--noop_max", type=int, default=30) parser.add_argument("--frame_skip", type=int, default=1) parser.add_argument("--screen_size", type=int, default=84) parser.add_argument("--terminal_on_life_loss", action="store_true") parser.add_argument("--rgb", action="store_true") parser.add_argument("--normalize", action="store_true") parser.add_argument("--frame_stack", type=int, default=4) parser.add_argument("--seed", type=int, default=231) def load_atari( game_id, seed=None, noop_max=30, frame_skip=1, screen_size=84, terminal_on_life_loss=False, rgb=False, normalize=False, frame_stack=4, clip_reward=True, **_, ): """ Load a game from the Atari benchmark, with the usual settings Note that the simplest game ids (e.g. Boxing-v0) come with frame skipping by default, and you'll get an error if the frame_skp arg > 1. Use `BoxingNoFrameskip-v0` with frame_skip > 1. """ env = gym.make(game_id) if seed is None: seed = random.randint(1, 100000) env.reset(seed=seed) env = gym.wrappers.AtariPreprocessing( env, noop_max=noop_max, frame_skip=frame_skip, screen_size=screen_size, terminal_on_life_loss=terminal_on_life_loss, grayscale_obs=False, # use GrayScale wrapper instead... scale_obs=normalize, ) if not rgb: env = gym.wrappers.GrayScaleObservation(env, keep_dim=True) if clip_reward: env = ClipReward(env) env = ChannelsFirstWrapper(env) env = FrameStack(env, num_stack=frame_stack) env = DiscreteActionWrapper(env) return env class ClipReward(gym.RewardWrapper): def __init__(self, env, low=-1.0, high=1.0): super().__init__(env) self._clip_low = low self._clip_high = high def reward(self, rew): return max(min(rew, self._clip_high), self._clip_low) def load_dmc( domain_name, task_name, seed=None, from_pixels=False, frame_stack=1, height=84, width=84, camera_id=0, frame_skip=1, channels_last=False, rgb=False, **_, ): """ Load a task from the deepmind control suite. Uses dmc2gym (https://github.com/denisyarats/dmc2gym) Note that setting seed=None (the default) picks a random seed """ import dmc2gym if seed is None: seed = random.randint(1, 100000) env = dmc2gym.make( domain_name=domain_name, task_name=task_name, from_pixels=from_pixels, height=height, width=width, camera_id=camera_id, visualize_reward=False, frame_skip=frame_skip, channels_first=not channels_last if rgb else False, # if we're using RGB, set the channel order here ) if not rgb and from_pixels: env = gym.wrappers.GrayScaleObservation(env, keep_dim=True) env = ChannelsFirstWrapper(env) if from_pixels: env = FrameStack(env, num_stack=frame_stack) return env
import dataclasses @dataclasses.dataclass class SACConfig: env_id = "Pendulum-v1" seed = 123 num_steps = 1 transitions_per_step = 1 max_episode_steps = 10 batch_size = 512 tau = 0.005 actor_lr = 1e-4 critic_lr = 1e-4 gamma = 0.99 init_alpha = 0.1 alpha_lr = 1e-4 buffer_size = 1_000_000 eval_interval = 5000 eval_episodes = 10 warmup_steps = 1 render = False actor_clip = 0.0 critic_clip = 0.0 name = "sac_run" actor_l2 = 0.0 critic_l2 = 0.0 target_delay = 2 actor_delay = 1 save_interval = 100_000 verbosy = 0 gradient_updates_per_step = 1 prioritized_replay = False skip_save_to_disk = True skip_log_to_disk = True discrete_actions = False log_std_low = -10.0 log_std_high = 2.0 self_regularized = False sr_max_critic_updates_per_step = 10 sr_critic_target_improvement_init = 0.7 sr_critic_target_improvement_final = 0.9 train_env_path = "input_data/train_env.pkl" test_env_path = "input_data/test_env.pkl"
import torch import os import copy import pickle import math from itertools import chain from ...util.model import BenchmarkModel from torchbenchmark.tasks import REINFORCEMENT_LEARNING from typing import Tuple from .config import SACConfig from .envs import load_gym from .sac import SACAgent from .replay import PrioritizedReplayBuffer, ReplayBuffer from .utils import hard_update, soft_update def learn_standard( buffer, target_agent, agent, actor_optimizer, critic_optimizer, log_alpha_optimizer, target_entropy, batch_size, log_alpha, gamma, critic_clip, actor_clip, update_policy=True, device=None, ): per = isinstance(buffer, PrioritizedReplayBuffer) if per: batch, imp_weights, priority_idxs = buffer.sample(batch_size) imp_weights = imp_weights.to(device) else: batch = buffer.sample(batch_size) # prepare transitions for models state_batch, action_batch, reward_batch, next_state_batch, done_batch = batch state_batch = state_batch.to(device) next_state_batch = next_state_batch.to(device) action_batch = action_batch.to(device) reward_batch = reward_batch.to(device) done_batch = done_batch.to(device) agent.train() ################### ## CRITIC UPDATE ## ################### alpha = torch.exp(log_alpha) with torch.no_grad(): action_dist_s1 = agent.actor(next_state_batch) action_s1 = action_dist_s1.rsample() logp_a1 = action_dist_s1.log_prob(action_s1).sum(-1, keepdim=True) target_action_value_s1 = torch.min( target_agent.critic1(next_state_batch, action_s1), target_agent.critic2(next_state_batch, action_s1), ) td_target = reward_batch + gamma * (1.0 - done_batch) * ( target_action_value_s1 - (alpha * logp_a1) ) # update critics agent_critic1_pred = agent.critic1(state_batch, action_batch) agent_critic2_pred = agent.critic2(state_batch, action_batch) td_error1 = td_target - agent_critic1_pred td_error2 = td_target - agent_critic2_pred critic_loss = 0.5 * (td_error1 ** 2 + td_error2 ** 2) if per: critic_loss *= imp_weights critic_loss = critic_loss.mean() critic_optimizer.zero_grad() critic_loss.backward() if critic_clip: torch.nn.utils.clip_grad_norm_( chain(agent.critic1.parameters(), agent.critic2.parameters()), critic_clip ) critic_optimizer.step() if update_policy: ################## ## ACTOR UPDATE ## ################## dist = agent.actor(state_batch) agent_actions = dist.rsample() logp_a = dist.log_prob(agent_actions).sum(-1, keepdim=True) actor_loss = -( torch.min( agent.critic1(state_batch, agent_actions), agent.critic2(state_batch, agent_actions), ) - (alpha.detach() * logp_a) ).mean() actor_optimizer.zero_grad() actor_loss.backward() if actor_clip: torch.nn.utils.clip_grad_norm_(agent.actor.parameters(), actor_clip) actor_optimizer.step() ################## ## ALPHA UPDATE ## ################## alpha_loss = (-alpha * (logp_a + target_entropy).detach()).mean() log_alpha_optimizer.zero_grad() alpha_loss.backward() log_alpha_optimizer.step() if per: new_priorities = (abs(td_error1) + 1e-5).cpu().detach().squeeze(1).numpy() buffer.update_priorities(priority_idxs, new_priorities) class Model(BenchmarkModel): task = REINFORCEMENT_LEARNING.OTHER_RL # Original train batch size: 256 # Source: https://github.com/pranz24/pytorch-soft-actor-critic/blob/398595e0d9dca98b7db78c7f2f939c969431871a/main.py#L31 # This model doesn't support customizing batch size, or data prefetching DEFAULT_TRAIN_BSIZE = 256 DEFAULT_EVAL_BSIZE = 256 ALLOW_CUSTOMIZE_BSIZE = False def __init__(self, test, device, batch_size=None, extra_args=[]): super().__init__(test=test, device=device, batch_size=batch_size, extra_args=extra_args) self.args = SACConfig() self.args.batch_size = self.batch_size # Construct agent current_dir = os.path.dirname(os.path.abspath(__file__)) self.train_env = load_gym(self.args.env_id, self.args.seed) self.test_env = load_gym(self.args.env_id, self.args.seed) self.obs_shape = self.train_env.observation_space.shape self.actions_shape = self.train_env.action_space.shape self.agent = SACAgent(self.obs_shape[0], self.actions_shape[0], self.args.log_std_low, self.args.log_std_high, self.device) if self.args.prioritized_replay: buffer_t = PrioritizedReplayBuffer else: buffer_t = ReplayBuffer self.buffer = buffer_t( self.args.buffer_size, device=self.device, state_shape=self.train_env.observation_space.shape, state_dtype=float, action_shape=(1,), ) self.learning_method = "Standard" self.agent.to(device) if not self.args.self_regularized: # initialize target networks self.target_agent = copy.deepcopy(self.agent) self.target_agent.to(device) hard_update(self.target_agent.critic1, self.agent.critic1) hard_update(self.target_agent.critic2, self.agent.critic2) self.target_agent.train() self.critic_optimizer = torch.optim.Adam( chain(self.agent.critic1.parameters(), self.agent.critic2.parameters(),), lr=self.args.critic_lr, weight_decay=self.args.critic_l2, betas=(0.9, 0.999), ) self.actor_optimizer = torch.optim.Adam( self.agent.actor.parameters(), lr=self.args.actor_lr, weight_decay=self.args.actor_l2, betas=(0.9, 0.999), ) self.log_alpha = torch.Tensor([math.log(self.args.init_alpha)]).to(device) self.log_alpha.requires_grad = True self.log_alpha_optimizer = torch.optim.Adam([self.log_alpha], lr=self.args.alpha_lr, betas=(0.5, 0.999)) if not self.args.discrete_actions: self.target_entropy = -self.train_env.action_space.shape[0] else: self.target_entropy = -math.log(1.0 / self.train_env.action_space.n) * 0.98 if self.args.self_regularized: # the critic target improvement ratio is annealed during training self.critic_target_imp_slope = ( self.args.sr_critic_target_improvement_final - self.args.sr_critic_target_improvement_init ) / self.args.num_steps self.current_target_imp = lambda step: min( self.args.sr_critic_target_improvement_init + self.critic_target_imp_slope * step, self.args.sr_critic_target_improvement_final, ) def get_module(self): model = self.agent.actor state = self.train_env.reset() action = self.agent.sample_action(state) next_state, reward, done, info = self.train_env.step(action) self.buffer.push(state, action, reward, next_state, done) batch = self.buffer.sample(self.args.batch_size) state_batch, action_batch, reward_batch, next_state_batch, done_batch = batch state_batch = state_batch.to(self.device) return model, (state_batch, ) def set_module(self, new_model): self.agent.actor = new_model def train(self): # Setup self.target_agent.train() done = True niter = 1 for step in range(niter): if done: state = self.train_env.reset() steps_this_ep = 0 done = False action = self.agent.sample_action(state) next_state, reward, done, info = self.train_env.step(action) self.buffer.push(state, action, reward, next_state, done) state = next_state steps_this_ep += 1 if steps_this_ep >= self.args.max_episode_steps: done = True for _ in range(self.args.gradient_updates_per_step): learn_standard( buffer=self.buffer, target_agent=self.target_agent, agent=self.agent, actor_optimizer=self.actor_optimizer, critic_optimizer=self.critic_optimizer, log_alpha=self.log_alpha, log_alpha_optimizer=self.log_alpha_optimizer, target_entropy=self.target_entropy, batch_size=self.args.batch_size, gamma=self.args.gamma, critic_clip=self.args.critic_clip, actor_clip=self.args.actor_clip, update_policy=step % self.args.actor_delay == 0, device=self.device ) # move target model towards training model if not self.args.self_regularized and (step % self.args.target_delay == 0): soft_update(self.target_agent.critic1, self.agent.critic1, self.args.tau) soft_update(self.target_agent.critic2, self.agent.critic2, self.args.tau) def eval(self) -> Tuple[torch.Tensor]: niter = 1 with torch.no_grad(): discount= 1.0 episode_return_history = [] for episode in range(niter): episode_return = 0.0 state = self.test_env.reset() done, info = False, {} for step_num in range(self.args.max_episode_steps): if done: break action = self.agent.forward(state) state, reward, done, info = self.test_env.step(action) episode_return += reward * (discount ** step_num) episode_return_history.append(episode_return) retval = torch.tensor(episode_return_history) return (torch.tensor(action), ) def get_optimizer(self): return (self.actor_optimizer, self.critic_optimizer, self.log_alpha_optimizer) def set_optimizer(self, optimizer) -> None: self.actor_optimizer, self.critic_optimizer, self.log_alpha_optimizer = optimizer
import argparse import copy import math import os from itertools import chain import numpy as np import tensorboardX import torch import torch.nn.functional as F import tqdm from . import envs, nets, replay, utils class SACAgent: def __init__( self, obs_space_size, act_space_size, log_std_low, log_std_high, device, actor_net_cls=nets.StochasticActor, critic_net_cls=nets.BigCritic, hidden_size=1024, ): self.actor = actor_net_cls( obs_space_size, act_space_size, log_std_low, log_std_high, dist_impl="pyd", hidden_size=hidden_size, ) self.critic1 = critic_net_cls(obs_space_size, act_space_size, hidden_size) self.critic2 = critic_net_cls(obs_space_size, act_space_size, hidden_size) self.device = device def to(self, device): self.actor = self.actor.to(device) self.critic1 = self.critic1.to(device) self.critic2 = self.critic2.to(device) def eval(self): self.actor.eval() self.critic1.eval() self.critic2.eval() def train(self): self.actor.train() self.critic1.train() self.critic2.train() def save(self, path): actor_path = os.path.join(path, "actor.pt") critic1_path = os.path.join(path, "critic1.pt") critic2_path = os.path.join(path, "critic2.pt") torch.save(self.actor.state_dict(), actor_path) torch.save(self.critic1.state_dict(), critic1_path) torch.save(self.critic2.state_dict(), critic2_path) def load(self, path): actor_path = os.path.join(path, "actor.pt") critic1_path = os.path.join(path, "critic1.pt") critic2_path = os.path.join(path, "critic2.pt") self.actor.load_state_dict(torch.load(actor_path)) self.critic1.load_state_dict(torch.load(critic1_path)) self.critic2.load_state_dict(torch.load(critic2_path)) def forward(self, state, from_cpu=True): if from_cpu: state = self.process_state(state) self.actor.eval() with torch.no_grad(): act_dist = self.actor.forward(state) act = act_dist.mean self.actor.train() if from_cpu: act = self.process_act(act) return act def sample_action(self, state, from_cpu=True): if from_cpu: state = self.process_state(state) self.actor.eval() with torch.no_grad(): act_dist = self.actor.forward(state) act = act_dist.sample() self.actor.train() if from_cpu: act = self.process_act(act) return act def process_state(self, state): return torch.from_numpy(np.expand_dims(state, 0).astype(np.float32)).to( self.device ) def process_act(self, act): return np.squeeze(act.clamp(-1.0, 1.0).cpu().numpy(), 0) class SACDAgent(SACAgent): def __init__(self, obs_space_size, act_space_size): self.actor = nets.BaselineDiscreteActor(obs_space_size, act_space_size) self.critic1 = nets.BaselineDiscreteCritic(obs_space_size, act_space_size) self.critic2 = nets.BaselineDiscreteCritic(obs_space_size, act_space_size) def forward(self, state): state = self.process_state(state) self.actor.eval() with torch.no_grad(): act_dist = self.actor.forward(state) act = torch.argmax(act_dist.probs, dim=1) self.actor.train() return self.process_act(act)
import numpy as np import torch def unique(sorted_array): """ More efficient implementation of np.unique for sorted arrays :param sorted_array: (np.ndarray) :return:(np.ndarray) sorted_array without duplicate elements """ if len(sorted_array) == 1: return sorted_array left = sorted_array[:-1] right = sorted_array[1:] uniques = np.append(right != left, True) return sorted_array[uniques] class SegmentTree: def __init__(self, capacity, operation, neutral_element): """ Build a Segment Tree data structure. https://en.wikipedia.org/wiki/Segment_tree Can be used as regular array that supports Index arrays, but with two important differences: a) setting item's value is slightly slower. It is O(lg capacity) instead of O(1). b) user has access to an efficient ( O(log segment size) ) `reduce` operation which reduces `operation` over a contiguous subsequence of items in the array. :param capacity: (int) Total size of the array - must be a power of two. :param operation: (lambda (Any, Any): Any) operation for combining elements (eg. sum, max) must form a mathematical group together with the set of possible values for array elements (i.e. be associative) :param neutral_element: (Any) neutral element for the operation above. eg. float('-inf') for max and 0 for sum. """ assert ( capacity > 0 and capacity & (capacity - 1) == 0 ), "capacity must be positive and a power of 2." self._capacity = capacity self._value = [neutral_element for _ in range(2 * capacity)] self._operation = operation self.neutral_element = neutral_element def _reduce_helper(self, start, end, node, node_start, node_end): if start == node_start and end == node_end: return self._value[node] mid = (node_start + node_end) // 2 if end <= mid: return self._reduce_helper(start, end, 2 * node, node_start, mid) else: if mid + 1 <= start: return self._reduce_helper(start, end, 2 * node + 1, mid + 1, node_end) else: return self._operation( self._reduce_helper(start, mid, 2 * node, node_start, mid), self._reduce_helper(mid + 1, end, 2 * node + 1, mid + 1, node_end), ) def reduce(self, start=0, end=None): """ Returns result of applying `self.operation` to a contiguous subsequence of the array. self.operation(arr[start], operation(arr[start+1], operation(... arr[end]))) :param start: (int) beginning of the subsequence :param end: (int) end of the subsequences :return: (Any) result of reducing self.operation over the specified range of array elements. """ if end is None: end = self._capacity if end < 0: end += self._capacity end -= 1 return self._reduce_helper(start, end, 1, 0, self._capacity - 1) def __setitem__(self, idx, val): # indexes of the leaf idxs = idx + self._capacity self._value[idxs] = val if isinstance(idxs, int): idxs = np.array([idxs]) # go up one level in the tree and remove duplicate indexes idxs = unique(idxs // 2) while len(idxs) > 1 or idxs[0] > 0: # as long as there are non-zero indexes, update the corresponding values self._value[idxs] = self._operation( self._value[2 * idxs], self._value[2 * idxs + 1] ) # go up one level in the tree and remove duplicate indexes idxs = unique(idxs // 2) def __getitem__(self, idx): assert np.max(idx) < self._capacity assert 0 <= np.min(idx) return self._value[self._capacity + idx] class SumSegmentTree(SegmentTree): def __init__(self, capacity): super(SumSegmentTree, self).__init__( capacity=capacity, operation=np.add, neutral_element=0.0 ) self._value = np.array(self._value) def sum(self, start=0, end=None): """ Returns arr[start] + ... + arr[end] :param start: (int) start position of the reduction (must be >= 0) :param end: (int) end position of the reduction (must be < len(arr), can be None for len(arr) - 1) :return: (Any) reduction of SumSegmentTree """ return super(SumSegmentTree, self).reduce(start, end) def find_prefixsum_idx(self, prefixsum): """ Find the highest index `i` in the array such that sum(arr[0] + arr[1] + ... + arr[i - i]) <= prefixsum for each entry in prefixsum if array values are probabilities, this function allows to sample indexes according to the discrete probability efficiently. :param prefixsum: (np.ndarray) float upper bounds on the sum of array prefix :return: (np.ndarray) highest indexes satisfying the prefixsum constraint """ if isinstance(prefixsum, float): prefixsum = np.array([prefixsum]) assert 0 <= np.min(prefixsum) assert np.max(prefixsum) <= self.sum() + 1e-5 assert isinstance(prefixsum[0], float) idx = np.ones(len(prefixsum), dtype=int) cont = np.ones(len(prefixsum), dtype=bool) while np.any(cont): # while not all nodes are leafs idx[cont] = 2 * idx[cont] prefixsum_new = np.where( self._value[idx] <= prefixsum, prefixsum - self._value[idx], prefixsum ) # prepare update of prefixsum for all right children idx = np.where( np.logical_or(self._value[idx] > prefixsum, np.logical_not(cont)), idx, idx + 1, ) # Select child node for non-leaf nodes prefixsum = prefixsum_new # update prefixsum cont = idx < self._capacity # collect leafs return idx - self._capacity class MinSegmentTree(SegmentTree): def __init__(self, capacity): super(MinSegmentTree, self).__init__( capacity=capacity, operation=np.minimum, neutral_element=float("inf") ) self._value = np.array(self._value) def min(self, start=0, end=None): """ Returns min(arr[start], ..., arr[end]) :param start: (int) start position of the reduction (must be >= 0) :param end: (int) end position of the reduction (must be < len(arr), can be None for len(arr) - 1) :return: (Any) reduction of MinSegmentTree """ return super(MinSegmentTree, self).reduce(start, end) class ReplayBufferStorage: def __init__(self, size, obs_shape, act_shape, device, obs_dtype=torch.float32): self.s_dtype = obs_dtype self.device = device # buffer arrays self.s_stack = torch.zeros((size,) + obs_shape, dtype=self.s_dtype, device=device) self.action_stack = torch.zeros((size,) + act_shape, dtype=torch.float32, device=device) self.reward_stack = torch.zeros((size, 1), dtype=torch.float32, device=device) self.s1_stack = torch.zeros((size,) + obs_shape, dtype=self.s_dtype, device=device) self.done_stack = torch.zeros((size, 1), dtype=torch.int, device=device) self.obs_shape = obs_shape self.size = size self._next_idx = 0 self._max_filled = 0 def __len__(self): return self._max_filled def add(self, s, a, r, s_1, d): # this buffer supports batched experience if len(s.shape) > len(self.obs_shape): # there must be a batch dimension num_samples = len(s) else: num_samples = 1 r, d = [r], [d] if not isinstance(s, torch.Tensor): # convert states to numpy (checking for LazyFrames) if not isinstance(s, np.ndarray): s = np.asarray(s) if not isinstance(s_1, np.ndarray): s_1 = np.asarray(s_1) # convert to torch tensors s = torch.from_numpy(s) a = torch.from_numpy(a).float() r = torch.Tensor(r).float() s_1 = torch.from_numpy(s_1) d = torch.Tensor(d).int() # make sure tensors are floats not doubles if self.s_dtype is torch.float32: s = s.float() s_1 = s_1.float() s = s.to(self.device) a = a.to(self.device) r = r.to(self.device) s_1 = s_1.to(self.device) d = d.int().to(self.device) # Store at end of buffer. Wrap around if past end. R = np.arange(self._next_idx, self._next_idx + num_samples) % self.size self.s_stack[R] = s self.action_stack[R] = a self.reward_stack[R] = r self.s1_stack[R] = s_1 self.done_stack[R] = d # Advance index. self._max_filled = min( max(self._next_idx + num_samples, self._max_filled), self.size ) self._next_idx = (self._next_idx + num_samples) % self.size return R def __getitem__(self, indices): try: iter(indices) except ValueError: raise IndexError( "ReplayBufferStorage getitem called with indices object that is not iterable" ) # converting states and actions to float here instead of inside the learning loop # of each agent seems fine for now. state = self.s_stack[indices].float() action = self.action_stack[indices].float() reward = self.reward_stack[indices] next_state = self.s1_stack[indices].float() done = self.done_stack[indices] return (state, action, reward, next_state, done) def __setitem__(self, indices, experience): s, a, r, s1, d = experience self.s_stack[indices] = s.float() self.action_stack[indices] = a.float() self.reward_stack[indices] = r self.s1_stack[indices] = s1.float() self.done_stack[indices] = d def get_all_transitions(self): return ( self.s_stack[: self._max_filled], self.action_stack[: self._max_filled], self.reward_stack[: self._max_filled], self.s1_stack[: self._max_filled], self.done_stack[: self._max_filled], ) class ReplayBuffer: def __init__(self, size, device, state_shape=None, action_shape=None, state_dtype=float): self.device=device self._maxsize = size self.state_shape = state_shape self.state_dtype = self._convert_dtype(state_dtype) self.action_shape = action_shape self._storage = None assert self.state_shape, "Must provide shape of state space to ReplayBuffer" assert self.action_shape, "Must provide shape of action space to ReplayBuffer" def _convert_dtype(self, dtype): if dtype in [int, np.uint8, torch.uint8]: return torch.uint8 elif dtype in [float, np.float32, np.float64, torch.float32, torch.float64]: return torch.float32 elif dtype in ["int32", np.int32]: return torch.int32 else: raise ValueError(f"Uncreocgnized replay buffer dtype: {dtype}") def __len__(self): return len(self._storage) if self._storage is not None else 0 def push(self, state, action, reward, next_state, done): if self._storage is None: self._storage = ReplayBufferStorage( self._maxsize, device=self.device, obs_shape=self.state_shape, act_shape=self.action_shape, obs_dtype=self.state_dtype, ) return self._storage.add(state, action, reward, next_state, done) def sample(self, batch_size, get_idxs=False): random_idxs = torch.randint(len(self._storage), (batch_size,)).to(self.device) if get_idxs: return self._storage[random_idxs], random_idxs.cpu().numpy() else: return self._storage[random_idxs] def get_all_transitions(self): return self._storage.get_all_transitions() def load_experience(self, s, a, r, s1, d): assert ( s.shape[0] <= self._maxsize ), "Experience dataset is larger than the buffer." if len(r.shape) < 2: r = np.expand_dims(r, 1) if len(d.shape) < 2: d = np.expand_dims(d, 1) self.push(s, a, r, s1, d) class PrioritizedReplayBuffer(ReplayBuffer): def __init__( self, size, state_shape, action_shape, state_dtype=float, alpha=0.6, beta=1.0 ): super(PrioritizedReplayBuffer, self).__init__( size, state_shape, action_shape, state_dtype ) assert alpha >= 0 self.alpha = alpha self.beta = beta it_capacity = 1 while it_capacity < size: it_capacity *= 2 self._it_sum = SumSegmentTree(it_capacity) self._it_min = MinSegmentTree(it_capacity) self._max_priority = 1.0 def push(self, s, a, r, s_1, d, priorities=None): R = super().push(s, a, r, s_1, d) if priorities is None: priorities = self._max_priority self._it_sum[R] = priorities ** self.alpha self._it_min[R] = priorities ** self.alpha def _sample_proportional(self, batch_size): mass = [] total = self._it_sum.sum(0, len(self._storage) - 1) mass = np.random.random(size=batch_size) * total idx = self._it_sum.find_prefixsum_idx(mass) return idx def sample(self, batch_size): idxes = self._sample_proportional(batch_size) p_min = self._it_min.min() / self._it_sum.sum() max_weight = (p_min * len(self._storage)) ** (-self.beta) p_sample = self._it_sum[idxes] / self._it_sum.sum() weights = (p_sample * len(self._storage)) ** (-self.beta) / max_weight return self._storage[idxes], torch.from_numpy(weights), idxes def sample_uniform(self, batch_size): return super().sample(batch_size, get_idxs=True) def update_priorities(self, idxes, priorities): assert len(idxes) == len(priorities) assert np.min(priorities) > 0 assert np.min(idxes) >= 0 assert np.max(idxes) < len(self._storage) self._it_sum[idxes] = priorities ** self.alpha self._it_min[idxes] = priorities ** self.alpha self._max_priority = max(self._max_priority, np.max(priorities)) class MultiPriorityBuffer(ReplayBuffer): def __init__( self, size, trees, state_shape, action_shape, state_dtype=float, alpha=0.6, beta=1.0, ): super(MultiPriorityBuffer, self).__init__( size, state_shape, action_shape, state_dtype ) assert alpha >= 0 self.alpha = alpha self.beta = beta it_capacity = 1 while it_capacity < size: it_capacity *= 2 self.sum_trees = [SumSegmentTree(it_capacity) for _ in range(trees)] self.min_trees = [MinSegmentTree(it_capacity) for _ in range(trees)] self._max_priority = 1.0 def push(self, s, a, r, s_1, d, priorities=None): R = super().push(s, a, r, s_1, d) if priorities is None: priorities = self._max_priority for sum_tree in self.sum_trees: sum_tree[R] = priorities ** self.alpha for min_tree in self.min_trees: min_tree[R] = priorities ** self.alpha def _sample_proportional(self, batch_size, tree_num): mass = [] total = self.sum_trees[tree_num].sum(0, len(self._storage) - 1) mass = np.random.random(size=batch_size) * total idx = self.sum_trees[tree_num].find_prefixsum_idx(mass) return idx def sample(self, batch_size, tree_num): idxes = self._sample_proportional(batch_size, tree_num) p_min = self.min_trees[tree_num].min() / self.sum_trees[tree_num].sum() max_weight = (p_min * len(self._storage)) ** (-self.beta) p_sample = self.sum_trees[tree_num][idxes] / self.sum_trees[tree_num].sum() weights = (p_sample * len(self._storage)) ** (-self.beta) / max_weight return self._storage[idxes], torch.from_numpy(weights), idxes def sample_uniform(self, batch_size): return super().sample(batch_size, get_idxs=True) def update_priorities(self, idxes, priorities, tree_num): assert len(idxes) == len(priorities) assert np.min(priorities) > 0 assert np.min(idxes) >= 0 assert np.max(idxes) < len(self._storage) self.sum_trees[tree_num][idxes] = priorities ** self.alpha self.min_trees[tree_num][idxes] = priorities ** self.alpha self._max_priority = max(self._max_priority, np.max(priorities))
import math import os import random from collections import namedtuple import gym import numpy as np import torch def clean_hparams_dict(hparams_dict): return {key: val for key, val in hparams_dict.items() if val} def get_grad_norm(model): total_norm = 0.0 for p in model.parameters(): try: param = p.grad.data except AttributeError: continue else: param_norm = param.norm(2) total_norm += param_norm.item() ** 2 total_norm = total_norm ** (1.0 / 2) return total_norm def torch_and_pad(x): if not isinstance(x, np.ndarray): x = np.array(x) return torch.from_numpy(x.astype(np.float32)).unsqueeze(0) def mean(lst): return float(sum(lst)) / len(lst) def make_process_dirs(run_name, base_path="dc_saves"): base_dir = os.path.join(base_path, run_name) i = 0 while os.path.exists(base_dir + f"_{i}"): i += 1 base_dir += f"_{i}" os.makedirs(base_dir) return base_dir def compute_conv_output( inp_shape, kernel_size, padding=(0, 0), dilation=(1, 1), stride=(1, 1) ): """ Compute the shape of the output of a torch Conv2d layer using the formula from the docs. every argument is a tuple corresponding to (height, width), e.g. kernel_size=(3, 4) """ height_out = math.floor( ( (inp_shape[0] + 2 * padding[0] - dilation[0] * (kernel_size[0] - 1) - 1) / stride[0] ) + 1 ) width_out = math.floor( ( (inp_shape[1] + 2 * padding[1] - dilation[1] * (kernel_size[1] - 1) - 1) / stride[1] ) + 1 ) return height_out, width_out def soft_update(target, source, tau): for target_param, param in zip(target.parameters(), source.parameters()): target_param.data.copy_(target_param.data * (1.0 - tau) + param.data * tau) def hard_update(target, source): for target_param, param in zip(target.parameters(), source.parameters()): target_param.data.copy_(param.data) """ This is all from: https://github.com/matthiasplappert/keras-rl/blob/master/rl/random.py """ class AnnealedGaussianProcess: def __init__(self, mu, sigma, sigma_min, n_steps_annealing): self.mu = mu self.sigma = sigma self.n_steps = 0 if sigma_min is not None: self.m = -float(sigma - sigma_min) / float(n_steps_annealing) self.c = sigma self.sigma_min = sigma_min else: self.m = 0.0 self.c = sigma self.sigma_min = sigma @property def current_sigma(self): sigma = max(self.sigma_min, self.m * float(self.n_steps) + self.c) return sigma class OrnsteinUhlenbeckProcess(AnnealedGaussianProcess): def __init__( self, theta, mu=0.0, sigma=1.0, dt=1e-2, x0=None, size=1, sigma_min=None, n_steps_annealing=1000, ): super(OrnsteinUhlenbeckProcess, self).__init__( mu=mu, sigma=sigma, sigma_min=sigma_min, n_steps_annealing=n_steps_annealing ) self.theta = theta self.mu = mu self.dt = dt self.x0 = x0 self.size = size self.reset_states() def sample(self): x = ( self.x_prev + self.theta * (self.mu - self.x_prev) * self.dt + self.current_sigma * np.sqrt(self.dt) * np.random.normal(size=self.size) ) self.x_prev = x self.n_steps += 1 return x def reset_states(self): self.x_prev = self.x0 if self.x0 is not None else np.zeros(self.size) class GaussianExplorationNoise: def __init__(self, size, start_scale=1.0, final_scale=0.1, steps_annealed=1000): assert start_scale >= final_scale self.size = size self.start_scale = start_scale self.final_scale = final_scale self.steps_annealed = steps_annealed self._current_scale = start_scale self._scale_slope = (start_scale - final_scale) / steps_annealed def sample(self): noise = self._current_scale * torch.randn(*self.size) self._current_scale = max( self._current_scale - self._scale_slope, self.final_scale ) return noise.numpy() def reset_states(self): pass
import os import subprocess import sys def pip_install_requirements(): subprocess.check_call([sys.executable, '-m', 'pip', 'install', '-q', '-r', 'requirements.txt']) if __name__ == '__main__': pip_install_requirements()
import math import numpy as np import torch import torch.nn.functional as F from torch import distributions as pyd from torch import nn from . import utils def weight_init(m): if isinstance(m, nn.Linear): nn.init.orthogonal_(m.weight.data) m.bias.data.fill_(0.0) elif isinstance(m, nn.Conv2d) or isinstance(m, nn.ConvTranspose2d): # delta-orthogonal init from https://arxiv.org/pdf/1806.05393.pdf assert m.weight.size(2) == m.weight.size(3) m.weight.data.fill_(0.0) m.bias.data.fill_(0.0) mid = m.weight.size(2) // 2 gain = nn.init.calculate_gain("relu") nn.init.orthogonal_(m.weight.data[:, :, mid, mid], gain) class BigPixelEncoder(nn.Module): def __init__(self, obs_shape, out_dim=50): super().__init__() channels = obs_shape[0] self.conv1 = nn.Conv2d(channels, 32, kernel_size=3, stride=2) self.conv2 = nn.Conv2d(32, 32, kernel_size=3, stride=1) self.conv3 = nn.Conv2d(32, 32, kernel_size=3, stride=1) self.conv4 = nn.Conv2d(32, 32, kernel_size=3, stride=1) output_height, output_width = utils.compute_conv_output( obs_shape[1:], kernel_size=(3, 3), stride=(2, 2) ) for _ in range(3): output_height, output_width = utils.compute_conv_output( (output_height, output_width), kernel_size=(3, 3), stride=(1, 1) ) self.fc = nn.Linear(output_height * output_width * 32, out_dim) self.ln = nn.LayerNorm(out_dim) self.apply(weight_init) def forward(self, obs): obs /= 255.0 x = F.relu(self.conv1(obs)) x = F.relu(self.conv2(x)) x = F.relu(self.conv3(x)) x = F.relu(self.conv4(x)) x = x.view(x.size(0), -1) x = self.fc(x) x = self.ln(x) state = torch.tanh(x) return state class SmallPixelEncoder(nn.Module): def __init__(self, obs_shape, out_dim=50): super().__init__() channels = obs_shape[0] self.conv1 = nn.Conv2d(channels, 32, kernel_size=8, stride=4) self.conv2 = nn.Conv2d(32, 64, kernel_size=4, stride=2) self.conv3 = nn.Conv2d(64, 64, kernel_size=3, stride=1) output_height, output_width = utils.compute_conv_output( obs_shape[1:], kernel_size=(8, 8), stride=(4, 4) ) output_height, output_width = utils.compute_conv_output( (output_height, output_width), kernel_size=(4, 4), stride=(2, 2) ) output_height, output_width = utils.compute_conv_output( (output_height, output_width), kernel_size=(3, 3), stride=(1, 1) ) self.fc = nn.Linear(output_height * output_width * 64, out_dim) self.apply(weight_init) def forward(self, obs): obs /= 255.0 x = F.relu(self.conv1(obs)) x = F.relu(self.conv2(x)) x = F.relu(self.conv3(x)) x = x.view(x.size(0), -1) state = self.fc(x) return state class StochasticActor(nn.Module): def __init__( self, state_space_size, act_space_size, log_std_low=-10, log_std_high=2, hidden_size=1024, dist_impl="pyd", ): super().__init__() assert dist_impl in ["pyd", "beta"] self.fc1 = nn.Linear(state_space_size, hidden_size) self.fc2 = nn.Linear(hidden_size, hidden_size) self.fc3 = nn.Linear(hidden_size, 2 * act_space_size) self.log_std_low = log_std_low self.log_std_high = log_std_high self.apply(weight_init) self.dist_impl = dist_impl def forward(self, state): x = F.relu(self.fc1(state)) x = F.relu(self.fc2(x)) out = self.fc3(x) mu, log_std = out.chunk(2, dim=1) if self.dist_impl == "pyd": log_std = torch.tanh(log_std) log_std = self.log_std_low + 0.5 * ( self.log_std_high - self.log_std_low ) * (log_std + 1) std = log_std.exp() dist = SquashedNormal(mu, std) elif self.dist_impl == "beta": out = 1.0 + F.softplus(out) alpha, beta = out.chunk(2, dim=1) dist = BetaDist(alpha, beta) return dist class BigCritic(nn.Module): def __init__(self, state_space_size, act_space_size, hidden_size=1024): super().__init__() self.fc1 = nn.Linear(state_space_size + act_space_size, hidden_size) self.fc2 = nn.Linear(hidden_size, hidden_size) self.fc3 = nn.Linear(hidden_size, 1) self.apply(weight_init) def forward(self, state, action): x = F.relu(self.fc1(torch.cat((state, action), dim=1))) x = F.relu(self.fc2(x)) out = self.fc3(x) return out class BaselineActor(nn.Module): def __init__(self, state_size, action_size, hidden_size=400): super().__init__() self.fc1 = nn.Linear(state_size, hidden_size) self.fc2 = nn.Linear(hidden_size, hidden_size) self.out = nn.Linear(hidden_size, action_size) def forward(self, state): x = F.relu(self.fc1(state)) x = F.relu(self.fc2(x)) act = torch.tanh(self.out(x)) return act class BaselineCritic(nn.Module): def __init__(self, state_size, action_size): super().__init__() self.fc1 = nn.Linear(state_size + action_size, 400) self.fc2 = nn.Linear(400, 300) self.out = nn.Linear(300, 1) def forward(self, state, action): x = torch.cat((state, action), dim=1) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) val = self.out(x) return val class BetaDist(pyd.transformed_distribution.TransformedDistribution): class _BetaDistTransform(pyd.transforms.Transform): domain = pyd.constraints.real codomain = pyd.constraints.interval(-1.0, 1.0) def __init__(self, cache_size=1): super().__init__(cache_size=cache_size) def __eq__(self, other): return isinstance(other, _BetaDistTransform) def _inverse(self, y): return (y.clamp(-0.99, 0.99) + 1.0) / 2.0 def _call(self, x): return (2.0 * x) - 1.0 def log_abs_det_jacobian(self, x, y): # return log det jacobian |dy/dx| given input and output return torch.Tensor([math.log(2.0)]).to(x.device) def __init__(self, alpha, beta): self.base_dist = pyd.beta.Beta(alpha, beta) transforms = [self._BetaDistTransform()] super().__init__(self.base_dist, transforms) @property def mean(self): mu = self.base_dist.mean for tr in self.transforms: mu = tr(mu) return mu """ Credit for actor distribution code: https://github.com/denisyarats/pytorch_sac/blob/master/agent/actor.py """ class TanhTransform(pyd.transforms.Transform): domain = pyd.constraints.real codomain = pyd.constraints.interval(-1.0, 1.0) bijective = True sign = +1 def __init__(self, cache_size=1): super().__init__(cache_size=cache_size) @staticmethod def atanh(x): return 0.5 * (x.log1p() - (-x).log1p()) def __eq__(self, other): return isinstance(other, TanhTransform) def _call(self, x): return x.tanh() def _inverse(self, y): return self.atanh(y.clamp(-0.99, 0.99)) def log_abs_det_jacobian(self, x, y): return 2.0 * (math.log(2.0) - x - F.softplus(-2.0 * x)) class SquashedNormal(pyd.transformed_distribution.TransformedDistribution): def __init__(self, loc, scale): self.loc = loc self.scale = scale self.base_dist = pyd.Normal(loc, scale) transforms = [TanhTransform()] super().__init__(self.base_dist, transforms) @property def mean(self): mu = self.loc for tr in self.transforms: mu = tr(mu) return mu class GracBaselineActor(nn.Module): def __init__(self, obs_size, action_size): super().__init__() self.fc1 = nn.Linear(obs_size, 400) self.fc2 = nn.Linear(400, 300) self.fc_mean = nn.Linear(300, action_size) self.fc_std = nn.Linear(300, action_size) def forward(self, state, stochastic=False): x = F.relu(self.fc1(state)) x = F.relu(self.fc2(x)) mean = torch.tanh(self.fc_mean(x)) std = F.softplus(self.fc_std(x)) + 1e-3 dist = pyd.Normal(mean, std) return dist class BaselineDiscreteActor(nn.Module): def __init__(self, obs_shape, action_size, hidden_size=300): super().__init__() self.fc1 = nn.Linear(obs_shape, hidden_size) self.fc2 = nn.Linear(hidden_size, hidden_size) self.act_p = nn.Linear(hidden_size, action_size) def forward(self, state): x = F.relu(self.fc1(state)) x = F.relu(self.fc2(x)) act_p = F.softmax(self.act_p(x), dim=1) dist = pyd.categorical.Categorical(act_p) return dist class BaselineDiscreteCritic(nn.Module): def __init__(self, obs_shape, action_shape, hidden_size=300): super().__init__() self.fc1 = nn.Linear(obs_shape, hidden_size) self.fc2 = nn.Linear(hidden_size, hidden_size) self.out = nn.Linear(hidden_size, action_shape) def forward(self, state): x = F.relu(self.fc1(state)) x = F.relu(self.fc2(x)) vals = self.out(x) return vals
from torchbenchmark.util.framework.vision.model_factory import TorchVisionModel from torchbenchmark.tasks import COMPUTER_VISION import torchvision.models as models class Model(TorchVisionModel): task = COMPUTER_VISION.CLASSIFICATION # Train batch size: use the training batch in paper. # Source: https://arxiv.org/pdf/1608.06993.pdf DEFAULT_TRAIN_BSIZE = 256 DEFAULT_EVAL_BSIZE = 64 def __init__(self, test, device, batch_size=None, extra_args=[]): super().__init__(model_name="densenet121", test=test, device=device, batch_size=batch_size, weights=models.DenseNet121_Weights.IMAGENET1K_V1, extra_args=extra_args)
# Ported from pytorch example: # https://github.com/pytorch/examples/blob/master/dcgan/main.py from __future__ import print_function import argparse import os import random from typing import Any, Tuple import torch import torch.nn as nn import torch.nn.parallel import torch.backends.cudnn as cudnn import torch.optim as optim import torch.utils.data import torchvision.datasets as dset import torchvision.transforms as transforms import torchvision.utils as vutils import numpy as np from pathlib import Path from ...util.model import BenchmarkModel from torchbenchmark.tasks import COMPUTER_VISION class DCGAN: def __init__(self, bench): # Spatial size of training images. All images will be resized to this # size using a transformer. self.image_size = 64 # Number of channels in the training images. For color images this is 3 self.nc = 3 # Size of z latent vector (i.e. size of generator input) self.nz = 100 # Size of feature maps in generator self.ngf = 64 # Size of feature maps in discriminator self.ndf = 64 # Number of training epochs self.num_epochs = 5 # Learning rate for optimizers self.lr = 0.0002 # Beta1 hyperparam for Adam optimizers self.beta1 = 0.5 # Number of GPUs available. Use 0 for CPU mode. self.ngpu = 1 self.device = bench.device # custom weights initialization called on netG and netD def weights_init(m): classname = m.__class__.__name__ if classname.find('Conv') != -1: nn.init.normal_(m.weight.data, 0.0, 0.02) elif classname.find('BatchNorm') != -1: nn.init.normal_(m.weight.data, 1.0, 0.02) nn.init.constant_(m.bias.data, 0) class Generator(nn.Module): def __init__(self, dcgan): super(Generator, self).__init__() self.ngpu = dcgan.ngpu self.main = nn.Sequential( # input is Z, going into a convolution nn.ConvTranspose2d( dcgan.nz, dcgan.ngf * 8, 4, 1, 0, bias=False), nn.BatchNorm2d(dcgan.ngf * 8), nn.ReLU(True), # state size. (dcgan.ngf*8) x 4 x 4 nn.ConvTranspose2d(dcgan.ngf * 8, dcgan.ngf * 4, 4, 2, 1, bias=False), nn.BatchNorm2d(dcgan.ngf * 4), nn.ReLU(True), # state size. (dcgan.ngf*4) x 8 x 8 nn.ConvTranspose2d( dcgan.ngf * 4, dcgan.ngf * 2, 4, 2, 1, bias=False), nn.BatchNorm2d(dcgan.ngf * 2), nn.ReLU(True), # state size. (dcgan.ngf*2) x 16 x 16 nn.ConvTranspose2d( dcgan.ngf * 2, dcgan.ngf, 4, 2, 1, bias=False), nn.BatchNorm2d(dcgan.ngf), nn.ReLU(True), # state size. (dcgan.ngf) x 32 x 32 nn.ConvTranspose2d( dcgan.ngf, dcgan.nc, 4, 2, 1, bias=False), nn.Tanh() # state size. (dcgan.nc) x 64 x 64 ) self.debug_print = False def forward(self, input): if self.debug_print: print(input.shape) return self.main(input) class Discriminator(nn.Module): def __init__(self, ncgan): ngpu = ncgan.ngpu nc = ncgan.nc ndf = ncgan.ndf super(Discriminator, self).__init__() self.ngpu = ngpu self.main = nn.Sequential( # input is (nc) x 64 x 64 nn.Conv2d(nc, ndf, 4, 2, 1, bias=False), nn.LeakyReLU(0.2, inplace=True), # state size. (ndf) x 32 x 32 nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False), nn.BatchNorm2d(ndf * 2), nn.LeakyReLU(0.2, inplace=True), # state size. (ndf*2) x 16 x 16 nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1, bias=False), nn.BatchNorm2d(ndf * 4), nn.LeakyReLU(0.2, inplace=True), # state size. (ndf*4) x 8 x 8 nn.Conv2d(ndf * 4, ndf * 8, 4, 2, 1, bias=False), nn.BatchNorm2d(ndf * 8), nn.LeakyReLU(0.2, inplace=True), # state size. (ndf*8) x 4 x 4 nn.Conv2d(ndf * 8, 1, 4, 1, 0, bias=False), nn.Sigmoid() ) def forward(self, input): return self.main(input) class Model(BenchmarkModel): task = COMPUTER_VISION.GENERATION DEFAULT_TRAIN_BSIZE = 32 DEFAULT_EVAL_BSIZE = 256 def __init__(self, test, device, batch_size=None, extra_args=[]): super().__init__(test=test, device=device, batch_size=batch_size, extra_args=extra_args) self.debug_print = False self.root = str(Path(__file__).parent) self.dcgan = DCGAN(self) dcgan = self.dcgan device = dcgan.device ngpu = dcgan.ngpu nz = dcgan.nz lr = dcgan.lr beta1 = dcgan.beta1 num_epochs = dcgan.num_epochs # Create the generator self.netG = Generator(dcgan).to(device) # Handle multi-gpu if desired if (dcgan.device == 'cuda') and (ngpu > 1): self.netG = nn.DataParallel(self.netG, list(range(ngpu))) # Apply the weights_init function to randomly initialize all weights # to mean=0, stdev=0.2. self.netG.apply(weights_init) if self.debug_print: # Print the model print(self.netG) # Create the Discriminator netD = Discriminator(dcgan).to(device) # Handle multi-gpu if desired if (dcgan.device == 'cuda') and (ngpu > 1): netD = nn.DataParallel(self.netD, list(range(ngpu))) # Apply the weights_init function to randomly initialize all weights # to mean=0, stdev=0.2. netD.apply(weights_init) if self.debug_print: # Print the model print(netD) # Initialize BCELoss function self.criterion = nn.BCELoss() # Create batch of latent vectors that we will use to visualize # the progression of the generator self.fixed_noise = torch.randn(64, nz, 1, 1, device=device) # Establish convention for real and fake labels during training self.real_label = 1. self.fake_label = 0. # Random values as surrogate for batch of photos self.exmaple_inputs = torch.randn(self.batch_size, 3, 64, 64, device=self.device) self.model = netD if test == "train": # Setup Adam optimizers for both G and D self.optimizerD = optim.Adam(netD.parameters(), lr=lr, betas=(beta1, 0.999)) self.optimizerG = optim.Adam(self.netG.parameters(), lr=lr, betas=(beta1, 0.999)) elif test == "eval": # inference would just run descriminator so thats what we'll do too. self.inference_just_descriminator = True if False == self.inference_just_descriminator: self.eval_noise = torch.randn(self.batch_size, nz, 1, 1, device=self.device) def jit_callback(self): self.model = torch.jit.trace(self.model,(self.exmaple_inputs,)) if self.test == "eval" and False == self.inference_just_descriminator: self.netG = torch.jit.trace(self.netG,(self.eval_noise,)) def get_module(self): return self.model, (self.exmaple_inputs,) def eval(self): if False == self.inference_just_descriminator: # Generate fake image batch with G self.eval_fake = self.netG(self.eval_noise) # Since we just updated D, perform another forward pass of all-fake batch through D output = self.model(self.exmaple_inputs).view(-1) return (output, ) def train(self): # Training Loop # Lists to keep track of progress img_list = [] iters = 0 dcgan = self.dcgan device = dcgan.device num_epochs = dcgan.num_epochs num_train_batch = 1 lr = dcgan.lr nz = dcgan.nz beta1 = dcgan.beta1 netD = self.model netG = self.netG criterion = self.criterion optimizerD = self.optimizerD optimizerG = self.optimizerG real_label = self.real_label fake_label = self.fake_label benchmark_pic = self.exmaple_inputs # For each epoch for epoch in range(num_epochs): for i in range(num_train_batch): ############################ # (1) Update D network: maximize log(D(x)) + log(1 - D(G(z))) ########################### ## Train with all-real batch netD.zero_grad() # Format batch real_cpu = benchmark_pic b_size = real_cpu.size(0) label = torch.full((b_size,), real_label, dtype=torch.float, device=device) # Forward pass real batch through D output = netD(real_cpu).view(-1) # Calculate loss on all-real batch errD_real = criterion(output, label) # Calculate gradients for D in backward pass errD_real.backward() D_x = output.mean().item() ## Train with all-fake batch # Generate batch of latent vectors noise = torch.randn(b_size, nz, 1, 1, device=device) # Generate fake image batch with G fake = netG(noise) label.fill_(fake_label) # Classify all fake batch with D output = netD(fake.detach()).view(-1) # Calculate D's loss on the all-fake batch errD_fake = criterion(output, label) # Calculate the gradients for this batch, accumulated (summed) with previous gradients errD_fake.backward() D_G_z1 = output.mean().item() # Compute error of D as sum over the fake and the real batches errD = errD_real + errD_fake # Update D optimizerD.step() ############################ # (2) Update G network: maximize log(D(G(z))) ########################### netG.zero_grad() label.fill_(real_label) # fake labels are real for generator cost # Since we just updated D, perform another forward pass of all-fake batch through D output = netD(fake).view(-1) # Calculate G's loss based on this output errG = criterion(output, label) # Calculate gradients for G errG.backward() D_G_z2 = output.mean().item() # Update G optimizerG.step() # This model has TWO optimizers! Try returning both. def get_optimizer(self): return (self.optimizerD, self.optimizerG) # `optimizer` has type Tuple but we want this function to override the parent's # so keep the name and schema the same. def set_optimizer(self, optimizer) -> None: self.optimizerD, self.optimizerG = optimizer
import subprocess import sys def pip_install_requirements(): subprocess.check_call([sys.executable, '-m', 'pip', 'install', '-q', '-r', 'requirements.txt']) if __name__ == '__main__': pip_install_requirements()
from torchbenchmark.util.framework.huggingface.model_factory import HuggingFaceModel from torchbenchmark.tasks import SPEECH import torch class Model(HuggingFaceModel): task = SPEECH.RECOGNITION DEFAULT_EVAL_BSIZE = 8 DEFAULT_EVAL_CUDA_PRECISION = "fp16" def __init__(self, test, device, batch_size=None, extra_args=[]): super().__init__(name="hf_Whisper", test=test, device=device, batch_size=batch_size, extra_args=extra_args) self.feature_size = 80 self.sequence_length = 3000 self.input_features = torch.randn(size=(self.batch_size, self.feature_size, self.sequence_length),device=self.device) self.example_inputs = {"input_features": self.input_features.to(self.device), "input_ids" : self.input_features.to(self.device)} self.model.to(self.device) def train(self): raise NotImplementedError("Training is not implemented.") def eval(self): self.model.eval() with torch.no_grad(): self.model(self.example_inputs["input_ids"]) def enable_fp16_half(self): self.model.half() self.example_inputs = {"input_features": self.input_features.half().to(self.device), "input_ids" : self.input_features.half().to(self.device)}
import subprocess import sys import os from torchbenchmark.util.framework.huggingface.patch_hf import patch_transformers, cache_model def pip_install_requirements(): subprocess.check_call([sys.executable, '-m', 'pip', 'install', '-q', '-r', 'requirements.txt']) if __name__ == '__main__': pip_install_requirements() patch_transformers() model_name = os.path.basename(os.path.dirname(os.path.abspath(__file__))) cache_model(model_name)
import os from torchbenchmark.tasks import COMPUTER_VISION from torchbenchmark.util.framework.detectron2.model_factory import Detectron2Model MODEL_NAME = os.path.basename(os.path.dirname(__file__)) MODEL_DIR = os.path.abspath(os.path.dirname(__file__)) class Model(Detectron2Model): task = COMPUTER_VISION.DETECTION model_file = os.path.join(MODEL_DIR, ".data", f"{MODEL_NAME}.pkl") def __init__(self, test, device, batch_size=None, extra_args=[]): super().__init__(variant="COCO-Detection/faster_rcnn_R_50_DC5_1x.yaml", test=test, device=device, batch_size=batch_size, extra_args=extra_args)
import os from torchbenchmark.util.framework.detectron2 import install_detectron2 MODEL_NAME = os.path.basename(os.path.dirname(os.path.abspath(__file__))) MODEL_DIR = os.path.abspath(os.path.dirname(__file__)) if __name__ == '__main__': install_detectron2(MODEL_NAME, MODEL_DIR)
import os from torchbenchmark.tasks import COMPUTER_VISION from torchbenchmark.util.framework.detectron2.model_factory import Detectron2Model MODEL_NAME = os.path.basename(os.path.dirname(os.path.abspath(__file__))) MODEL_DIR = os.path.abspath(os.path.dirname(__file__)) class Model(Detectron2Model): task = COMPUTER_VISION.SEGMENTATION model_file = os.path.join(MODEL_DIR, ".data", f"{MODEL_NAME}.pkl") def __init__(self, test, device, batch_size=None, extra_args=[]): super().__init__(variant="COCO-InstanceSegmentation/mask_rcnn_R_50_C4_1x.yaml", test=test, device=device, batch_size=batch_size, extra_args=extra_args)
import os from torchbenchmark.util.framework.detectron2 import install_detectron2 MODEL_NAME = os.path.basename(os.path.dirname(os.path.abspath(__file__))) MODEL_DIR = os.path.abspath(os.path.dirname(__file__)) if __name__ == '__main__': install_detectron2(MODEL_NAME, MODEL_DIR)
from torchbenchmark.util.framework.vision.model_factory import TorchVisionModel from torchbenchmark.tasks import COMPUTER_VISION import torchvision.models as models class Model(TorchVisionModel): task = COMPUTER_VISION.CLASSIFICATION DEFAULT_TRAIN_BSIZE = 128 DEFAULT_EVAL_BSIZE = 64 def __init__(self, test, device, batch_size=None, extra_args=[]): super().__init__(model_name="shufflenet_v2_x1_0", test=test, device=device, batch_size=batch_size, weights=models.ShuffleNet_V2_X1_0_Weights.IMAGENET1K_V1, extra_args=extra_args)
from torchbenchmark.util.framework.gnn.model_factory import BasicGNNModel from torchbenchmark.tasks import GNN class Model(BasicGNNModel): def __init__(self, test, device, batch_size=None, extra_args=[]): super().__init__(model_name="gcn", test=test, device=device, batch_size=batch_size, extra_args=extra_args)
from torchbenchmark.util.framework.gnn import install_pytorch_geometric if __name__ == '__main__': install_pytorch_geometric()
from torchbenchmark.util.framework.gnn.model_factory import BasicGNNModel from torchbenchmark.tasks import GNN class Model(BasicGNNModel): def __init__(self, test, device, batch_size=None, extra_args=[]): super().__init__(model_name="gin", test=test, device=device, batch_size=batch_size, extra_args=extra_args)
from torchbenchmark.util.framework.gnn import install_pytorch_geometric if __name__ == '__main__': install_pytorch_geometric()
import torch def get_drhodT(salt, temp, p): rho0 = 1024.0 z0 = 0.0 theta0 = 283.0 - 273.15 grav = 9.81 betaT = 1.67e-4 betaTs = 1e-5 gammas = 1.1e-8 zz = -p - z0 thetas = temp - theta0 return -(betaTs * thetas + betaT * (1 - gammas * grav * zz * rho0)) * rho0 def get_drhodS(salt, temp, p): betaS = 0.78e-3 rho0 = 1024.0 return betaS * rho0 * torch.ones_like(temp) def dm_taper(sx): """ tapering function for isopycnal slopes """ iso_slopec = 1e-3 iso_dslope = 1e-3 return 0.5 * (1.0 + torch.tanh((-torch.abs(sx) + iso_slopec) / iso_dslope)) def isoneutral_diffusion_pre( maskT, maskU, maskV, maskW, dxt, dxu, dyt, dyu, dzt, dzw, cost, cosu, salt, temp, zt, K_iso, K_11, K_22, K_33, Ai_ez, Ai_nz, Ai_bx, Ai_by, ): """ Isopycnal diffusion for tracer following functional formulation by Griffies et al Code adopted from MOM2.1 """ epsln = 1e-20 K_iso_steep = 50.0 tau = 0 device = K_11.device dTdx = torch.zeros_like(K_11) dSdx = torch.zeros_like(K_11) dTdy = torch.zeros_like(K_11) dSdy = torch.zeros_like(K_11) dTdz = torch.zeros_like(K_11) dSdz = torch.zeros_like(K_11) """ drho_dt and drho_ds at centers of T cells """ drdT = maskT * get_drhodT(salt[:, :, :, tau], temp[:, :, :, tau], torch.abs(zt)) drdS = maskT * get_drhodS(salt[:, :, :, tau], temp[:, :, :, tau], torch.abs(zt)) """ gradients at top face of T cells """ dTdz[:, :, :-1] = ( maskW[:, :, :-1] * (temp[:, :, 1:, tau] - temp[:, :, :-1, tau]) / dzw[None, None, :-1] ) dSdz[:, :, :-1] = ( maskW[:, :, :-1] * (salt[:, :, 1:, tau] - salt[:, :, :-1, tau]) / dzw[None, None, :-1] ) """ gradients at eastern face of T cells """ dTdx[:-1, :, :] = ( maskU[:-1, :, :] * (temp[1:, :, :, tau] - temp[:-1, :, :, tau]) / (dxu[:-1, None, None] * cost[None, :, None]) ) dSdx[:-1, :, :] = ( maskU[:-1, :, :] * (salt[1:, :, :, tau] - salt[:-1, :, :, tau]) / (dxu[:-1, None, None] * cost[None, :, None]) ) """ gradients at northern face of T cells """ dTdy[:, :-1, :] = ( maskV[:, :-1, :] * (temp[:, 1:, :, tau] - temp[:, :-1, :, tau]) / dyu[None, :-1, None] ) dSdy[:, :-1, :] = ( maskV[:, :-1, :] * (salt[:, 1:, :, tau] - salt[:, :-1, :, tau]) / dyu[None, :-1, None] ) """ Compute Ai_ez and K11 on center of east face of T cell. """ diffloc = torch.zeros_like(K_11) diffloc[1:-2, 2:-2, 1:] = 0.25 * ( K_iso[1:-2, 2:-2, 1:] + K_iso[1:-2, 2:-2, :-1] + K_iso[2:-1, 2:-2, 1:] + K_iso[2:-1, 2:-2, :-1] ) diffloc[1:-2, 2:-2, 0] = 0.5 * (K_iso[1:-2, 2:-2, 0] + K_iso[2:-1, 2:-2, 0]) sumz = torch.zeros_like(K_11)[1:-2, 2:-2] for kr in range(2): ki = 0 if kr == 1 else 1 if kr == 1: su = K_11.shape[2] else: su = K_11.shape[2] - 1 for ip in range(2): drodxe = ( drdT[1 + ip : -2 + ip, 2:-2, ki:] * dTdx[1:-2, 2:-2, ki:] + drdS[1 + ip : -2 + ip, 2:-2, ki:] * dSdx[1:-2, 2:-2, ki:] ) drodze = ( drdT[1 + ip : -2 + ip, 2:-2, ki:] * dTdz[1 + ip : -2 + ip, 2:-2, :su] + drdS[1 + ip : -2 + ip, 2:-2, ki:] * dSdz[1 + ip : -2 + ip, 2:-2, :su] ) sxe = -drodxe / ( torch.min(drodze, torch.tensor([0.0], device=device)) - epsln ) taper = dm_taper(sxe) sumz[:, :, ki:] += ( dzw[None, None, :su] * maskU[1:-2, 2:-2, ki:] * torch.max( torch.tensor([K_iso_steep], device=device), diffloc[1:-2, 2:-2, ki:] * taper, ) ) Ai_ez[1:-2, 2:-2, ki:, ip, kr] = taper * sxe * maskU[1:-2, 2:-2, ki:] K_11[1:-2, 2:-2, :] = sumz / (4.0 * dzt[None, None, :]) """ Compute Ai_nz and K_22 on center of north face of T cell. """ diffloc[...] = 0 diffloc[2:-2, 1:-2, 1:] = 0.25 * ( K_iso[2:-2, 1:-2, 1:] + K_iso[2:-2, 1:-2, :-1] + K_iso[2:-2, 2:-1, 1:] + K_iso[2:-2, 2:-1, :-1] ) diffloc[2:-2, 1:-2, 0] = 0.5 * (K_iso[2:-2, 1:-2, 0] + K_iso[2:-2, 2:-1, 0]) sumz = torch.zeros_like(K_11)[2:-2, 1:-2] for kr in range(2): ki = 0 if kr == 1 else 1 if kr == 1: su = K_11.shape[2] else: su = K_11.shape[2] - 1 for jp in range(2): drodyn = ( drdT[2:-2, 1 + jp : -2 + jp, ki:] * dTdy[2:-2, 1:-2, ki:] + drdS[2:-2, 1 + jp : -2 + jp, ki:] * dSdy[2:-2, 1:-2, ki:] ) drodzn = ( drdT[2:-2, 1 + jp : -2 + jp, ki:] * dTdz[2:-2, 1 + jp : -2 + jp, :su] + drdS[2:-2, 1 + jp : -2 + jp, ki:] * dSdz[2:-2, 1 + jp : -2 + jp, :su] ) syn = -drodyn / ( torch.min(torch.tensor([0.0], device=device), drodzn) - epsln ) taper = dm_taper(syn) sumz[:, :, ki:] += ( dzw[None, None, :su] * maskV[2:-2, 1:-2, ki:] * torch.max( torch.tensor([K_iso_steep], device=device), diffloc[2:-2, 1:-2, ki:] * taper, ) ) Ai_nz[2:-2, 1:-2, ki:, jp, kr] = taper * syn * maskV[2:-2, 1:-2, ki:] K_22[2:-2, 1:-2, :] = sumz / (4.0 * dzt[None, None, :]) """ compute Ai_bx, Ai_by and K33 on top face of T cell. """ sumx = torch.zeros_like(K_11)[2:-2, 2:-2, :-1] sumy = torch.zeros_like(K_11)[2:-2, 2:-2, :-1] for kr in range(2): if kr == 1: sl = 1 su = K_11.shape[2] else: sl = 0 su = K_11.shape[2] - 1 drodzb = ( drdT[2:-2, 2:-2, sl:su] * dTdz[2:-2, 2:-2, :-1] + drdS[2:-2, 2:-2, sl:su] * dSdz[2:-2, 2:-2, :-1] ) # eastward slopes at the top of T cells for ip in range(2): drodxb = ( drdT[2:-2, 2:-2, sl:su] * dTdx[1 + ip : -3 + ip, 2:-2, sl:su] + drdS[2:-2, 2:-2, sl:su] * dSdx[1 + ip : -3 + ip, 2:-2, sl:su] ) sxb = -drodxb / ( torch.min(torch.tensor([0.0], device=device), drodzb) - epsln ) taper = dm_taper(sxb) sumx += ( dxu[1 + ip : -3 + ip, None, None] * K_iso[2:-2, 2:-2, :-1] * taper * sxb ** 2 * maskW[2:-2, 2:-2, :-1] ) Ai_bx[2:-2, 2:-2, :-1, ip, kr] = taper * sxb * maskW[2:-2, 2:-2, :-1] # northward slopes at the top of T cells for jp in range(2): facty = cosu[1 + jp : -3 + jp] * dyu[1 + jp : -3 + jp] drodyb = ( drdT[2:-2, 2:-2, sl:su] * dTdy[2:-2, 1 + jp : -3 + jp, sl:su] + drdS[2:-2, 2:-2, sl:su] * dSdy[2:-2, 1 + jp : -3 + jp, sl:su] ) syb = -drodyb / ( torch.min(torch.tensor([0.0], device=device), drodzb) - epsln ) taper = dm_taper(syb) sumy += ( facty[None, :, None] * K_iso[2:-2, 2:-2, :-1] * taper * syb ** 2 * maskW[2:-2, 2:-2, :-1] ) Ai_by[2:-2, 2:-2, :-1, jp, kr] = taper * syb * maskW[2:-2, 2:-2, :-1] K_33[2:-2, 2:-2, :-1] = sumx / (4 * dxt[2:-2, None, None]) + sumy / ( 4 * dyt[None, 2:-2, None] * cost[None, 2:-2, None] ) K_33[2:-2, 2:-2, -1] = 0.0 return K_11, K_22, K_33, Ai_ez, Ai_nz, Ai_bx, Ai_by def prepare_inputs(*inputs, device): out = [ torch.as_tensor(a, device=device) for a in inputs ] if device == "gpu": torch.cuda.synchronize() return out def run(*inputs, device="cpu"): with torch.no_grad(): outputs = isoneutral_diffusion_pre(*inputs) if device == "gpu": torch.cuda.synchronize() return outputs
import torch from . import isoneutral_pytorch from torchbenchmark.tasks import OTHER from ...util.model import BenchmarkModel from typing import Tuple def _generate_inputs(size): import math import numpy as np np.random.seed(17) shape = ( math.ceil(2 * size ** (1 / 3)), math.ceil(2 * size ** (1 / 3)), math.ceil(0.25 * size ** (1 / 3)), ) # masks maskT, maskU, maskV, maskW = ( (np.random.rand(*shape) < 0.8).astype("float64") for _ in range(4) ) # 1d arrays dxt, dxu = (np.random.randn(shape[0]) for _ in range(2)) dyt, dyu = (np.random.randn(shape[1]) for _ in range(2)) dzt, dzw, zt = (np.random.randn(shape[2]) for _ in range(3)) cost, cosu = (np.random.randn(shape[1]) for _ in range(2)) # 3d arrays K_iso, K_iso_steep, K_11, K_22, K_33 = (np.random.randn(*shape) for _ in range(5)) # 4d arrays salt, temp = (np.random.randn(*shape, 3) for _ in range(2)) # 5d arrays Ai_ez, Ai_nz, Ai_bx, Ai_by = (np.zeros((*shape, 2, 2)) for _ in range(4)) return ( maskT, maskU, maskV, maskW, dxt, dxu, dyt, dyu, dzt, dzw, cost, cosu, salt, temp, zt, K_iso, K_11, K_22, K_33, Ai_ez, Ai_nz, Ai_bx, Ai_by, ) class IsoneutralMixing(torch.nn.Module): def __init__(self): super(IsoneutralMixing, self).__init__() def forward( self, maskT, maskU, maskV, maskW, dxt, dxu, dyt, dyu, dzt, dzw, cost, cosu, salt, temp, zt, K_iso, K_11, K_22, K_33, Ai_ez, Ai_nz, Ai_bx, Ai_by, ): return isoneutral_pytorch.isoneutral_diffusion_pre( maskT, maskU, maskV, maskW, dxt, dxu, dyt, dyu, dzt, dzw, cost, cosu, salt, temp, zt, K_iso, K_11, K_22, K_33, Ai_ez, Ai_nz, Ai_bx, Ai_by, ) class Model(BenchmarkModel): task = OTHER.OTHER_TASKS # Original input size: [2 ** i for i in range(12, 23, 2)] # Source: https://github.com/dionhaefner/pyhpc-benchmarks/blob/650ecc650e394df829944ffcf09e9d646ec69691/run.py#L25 # Pick data-point when i = 20, size = 1048576 DEFAULT_EVAL_BSIZE = 1048576 CANNOT_SET_CUSTOM_OPTIMIZER = True def __init__(self, test, device, batch_size=None, extra_args=[]): super().__init__(test=test, device=device, batch_size=batch_size, extra_args=extra_args) self.model = IsoneutralMixing().to(device=device) input_size = self.batch_size raw_inputs = _generate_inputs(input_size) if hasattr(isoneutral_pytorch, "prepare_inputs"): inputs = isoneutral_pytorch.prepare_inputs(*raw_inputs, device=device) self.example_inputs = inputs def get_module(self): return self.model, self.example_inputs def train(self): raise NotImplementedError("Training not supported") def eval(self) -> Tuple[torch.Tensor]: model, example_inputs = self.get_module() with torch.no_grad(): out = model(*example_inputs) return out
if __name__ == "__main__": pass
# This example was adapated from https://github.com/muhrin/milad # It is licensed under the GLPv3 license. You can find a copy of it # here: https://www.gnu.org/licenses/gpl-3.0.en.html . import torch import torch.optim as optim import torch.nn as nn import torch.nn.functional as F from functorch import vmap, jacrev from typing import Tuple from ...util.model import BenchmarkModel from torchbenchmark.tasks import OTHER sigma = 0.5 epsilon = 4. def lennard_jones(r): return epsilon * ((sigma / r)**12 - (sigma / r)**6) def lennard_jones_force(r): """Get magnitude of LJ force""" return -epsilon * ((-12 * sigma**12 / r**13) + (6 * sigma**6 / r**7)) def make_prediction(model, drs): norms = torch.linalg.norm(drs, dim=1).reshape(-1, 1) energies = model(norms) network_derivs = vmap(jacrev(model))(norms).squeeze(-1) forces = -network_derivs * drs / norms return energies, forces def loss_fn(energies, forces, predicted_energies, predicted_forces): return F.mse_loss(energies, predicted_energies) + 0.01 * F.mse_loss(forces, predicted_forces) / 3 class Model(BenchmarkModel): task = OTHER.OTHER_TASKS DEFAULT_TRAIN_BSIZE = 1000 DEFAULT_EVAL_BSIZE = 1000 def __init__(self, test, device, batch_size=None, extra_args=[]): super().__init__(test=test, device=device, batch_size=batch_size, extra_args=extra_args) self.model = nn.Sequential( nn.Linear(1, 16), nn.Tanh(), nn.Linear(16, 16), nn.Tanh(), nn.Linear(16, 16), nn.Tanh(), nn.Linear(16, 16), nn.Tanh(), nn.Linear(16, 1) ) self.model = self.model.to(device) r = torch.linspace(0.5, 2 * sigma, steps=self.batch_size) # Create a bunch of vectors that point along positive-x. # These are the dummy inputs to the model. self.drs = torch.outer(r, torch.tensor([1.0, 0, 0])).to(device=device) # Generate some dummy targets based off of some interpretation of the lennard_jones force. norms = torch.linalg.norm(self.drs, dim=1).reshape(-1, 1) self.norms = norms # Create training energies self.training_energies = torch.stack(list(map(lennard_jones, norms))).reshape(-1, 1) # Create forces with random direction vectors self.training_forces = torch.stack([ force * dr for force, dr in zip(map(lennard_jones_force, norms), self.drs) ]) self.optimizer = torch.optim.Adam(self.model.parameters(), lr=1e-3) def get_module(self): return self.model, (self.norms, ) def train(self): model = self.model optimizer = self.optimizer model.train() optimizer.zero_grad() energies, forces = make_prediction(model, self.drs) loss = loss_fn(self.training_energies, self.training_forces, energies, forces) loss.backward() optimizer.step() def eval(self) -> Tuple[torch.Tensor]: model = self.model model.eval() with torch.no_grad(): out = make_prediction(model, self.drs) return out
import subprocess import sys def pip_install_requirements(): subprocess.check_call([sys.executable, '-m', 'pip', 'install', '-q', '-r', 'requirements.txt']) if __name__ == '__main__': pip_install_requirements()
from torchbenchmark.tasks import NLP from torchbenchmark.util.framework.huggingface.model_factory import HuggingFaceModel class Model(HuggingFaceModel): task = NLP.LANGUAGE_MODELING DEFAULT_TRAIN_BSIZE = 4 DEFAULT_EVAL_BSIZE = 1 def __init__(self, test, device, batch_size=None, extra_args=[]): super().__init__(name="hf_Bert_large", test=test, device=device, batch_size=batch_size, extra_args=extra_args)
import subprocess import sys import os from torchbenchmark.util.framework.huggingface.patch_hf import patch_transformers, cache_model def pip_install_requirements(): subprocess.check_call([sys.executable, '-m', 'pip', 'install', '-q', '-r', 'requirements.txt']) if __name__ == '__main__': pip_install_requirements() patch_transformers() model_name = os.path.basename(os.path.dirname(os.path.abspath(__file__))) cache_model(model_name)
""" fastNLP model (TorchBenchmark Version) This model resembles the "BertEmedding Q&A" task in [fastNLP Tutorial](https://fastnlp.readthedocs.io/zh/latest/tutorials/extend_1_bert_embedding.html). Input data simulates [CMRC2018 dataset](https://ymcui.com/cmrc2018/). The program runs only for benchmark purposes and doesn't provide correctness results. """ import logging from typing import Tuple import torch import random import inspect import numpy as np from fastNLP.embeddings import BertEmbedding from fastNLP.models import BertForQuestionAnswering from fastNLP.core.callback import CallbackManager from fastNLP.core.batch import DataSetIter from fastNLP.core.losses import CMRC2018Loss from fastNLP.core.metrics import CMRC2018Metric from fastNLP.io.pipe.qa import CMRC2018BertPipe from fastNLP import WarmupCallback, GradientClipCallback from fastNLP.core.optimizer import AdamW from fastNLP.core import logger # Import CMRC2018 data generator from .cmrc2018_simulator import generate_inputs from .cmrc2018_simulator import CMRC2018_DIR, CMRC2018_CONFIG_DIR # TorchBench imports from torchbenchmark.util.model import BenchmarkModel from torchbenchmark.tasks import NLP torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False logger.setLevel(logging.WARNING) class Model(BenchmarkModel): task = NLP.LANGUAGE_MODELING # Use the train batch size from the original CMRC2018 Q&A task # Source: https://fastnlp.readthedocs.io/zh/latest/tutorials/extend_1_bert_embedding.html DEFAULT_TRAIN_BSIZE = 6 DEFAULT_EVAL_BSIZE = 1 def __init__(self, test, device, batch_size=None, extra_args=[]): super().__init__(test=test, device=device, batch_size=batch_size, extra_args=extra_args) self.input_dir = CMRC2018_DIR # Generate input data files # FastNLP loader requires both train and eval files, so we need to generate both of them if test == "train": generate_inputs(train_batch_size=self.batch_size, eval_batch_size=self.DEFAULT_EVAL_BSIZE) elif test == "eval": generate_inputs(train_batch_size=self.DEFAULT_TRAIN_BSIZE, eval_batch_size=self.batch_size) data_bundle = CMRC2018BertPipe().process_from_file(paths=self.input_dir) data_bundle.rename_field('chars', 'words') self.embed = BertEmbedding(data_bundle.get_vocab('words'), model_dir_or_name=CMRC2018_CONFIG_DIR, requires_grad=True, include_cls_sep=False, auto_truncate=True, dropout=0.5, word_dropout=0.01) self.model = self._move_model_to_device(BertForQuestionAnswering(self.embed), device=device) if self._model_contains_inner_module(self.model): self._forward_func = self.model.module.forward else: self._forward_func = self.model.forward # Do not spawn new processes on small scale of data self.num_workers = 0 if self.test == "train": self.model.train() self.trainer = self.model self.train_data = data_bundle.get_dataset('train') self.data = self.train_data self.losser = CMRC2018Loss() self.metrics = CMRC2018Metric() self.update_every = 10 wm_callback = WarmupCallback(schedule='linear') gc_callback = GradientClipCallback(clip_value=1, clip_type='norm') callbacks = [wm_callback, gc_callback] self.optimizer = AdamW(self.model.parameters(), lr=5e-5) self.callback_manager = CallbackManager(env={"trainer":self}, callbacks=callbacks) elif self.test == "eval": self.model.eval() self.data = data_bundle.get_dataset('dev') example_inputs = DataSetIter(dataset=self.data, batch_size=self.batch_size, sampler=None, num_workers=self.num_workers, drop_last=False) self.example_inputs = self._prefetch(example_inputs) def get_module(self): batch_x, _batch_y = list(self.example_inputs)[0] return self.model, (batch_x["words"], ) # Sliced version of fastNLP.Tester._test() def eval(self) -> Tuple[torch.Tensor]: self._mode(self.model, is_test=True) self._predict_func = self.model.forward with torch.no_grad(): for batch_x, _batch_y in self.example_inputs: pred_dict = self._data_forward(self._predict_func, batch_x) # return a tuple of Tensors return (pred_dict['pred_start'], pred_dict['pred_end'] ) # Sliced version of fastNLP.Trainer._train() def train(self): self.step = 0 self.n_epochs = 1 self._mode(self.model, is_test=False) self.callback_manager.on_train_begin() for _epoch in range(self.n_epochs): self.callback_manager.on_epoch_begin() for batch_x, batch_y in self.example_inputs: self.step += 1 prediction = self._data_forward(self.model, batch_x) self.callback_manager.on_loss_begin(batch_y, prediction) loss = self._compute_loss(prediction, batch_y).mean() self.callback_manager.on_backward_begin(loss) self._grad_backward(loss) self.callback_manager.on_backward_end() self._update() self.callback_manager.on_step_end() self.callback_manager.on_batch_end() self.callback_manager.on_epoch_end() self.callback_manager.on_train_end() def _prefetch(self, example_inputs): prefetched_data = [] for batch_x, batch_y in example_inputs: self._move_dict_value_to_device(batch_x, batch_y, device=self.device) prefetched_data.append((batch_x, batch_y)) return prefetched_data # Helper functions def _build_args(self, func, **kwargs): spect = inspect.getfullargspec(func) if spect.varkw is not None: return kwargs needed_args = set(spect.args) defaults = [] if spect.defaults is not None: defaults = [arg for arg in spect.defaults] start_idx = len(spect.args) - len(defaults) output = {name: default for name, default in zip(spect.args[start_idx:], defaults)} output.update({name: val for name, val in kwargs.items() if name in needed_args}) return output def _move_dict_value_to_device(self, *args, device, non_blocking=False): for arg in args: if isinstance(arg, dict): for key, value in arg.items(): if isinstance(value, torch.Tensor): arg[key] = value.to(device, non_blocking=non_blocking) else: raise TypeError("Only support `dict` type right now.") def _model_contains_inner_module(self, model): if isinstance(model, torch.nn.Module): if isinstance(model, (torch.nn.DataParallel, torch.nn.parallel.DistributedDataParallel)): return True return False def _move_model_to_device(self, model, device): model = model.to(device) return model def _mode(self, model, is_test=False): r"""Train mode or Test mode. This is for PyTorch currently. :param model: a PyTorch model :param bool is_test: whether in test mode or not. """ if is_test: model.eval() else: model.train() def _update(self): r"""Perform weight update on a model. """ if self.step % self.update_every == 0: self.optimizer.step() def _data_forward(self, network, x): x = self._build_args(self._forward_func, **x) y = network(**x) if not isinstance(y, dict): raise TypeError( f"The return value of {_get_func_signature(self._forward_func)} should be dict, got {type(y)}.") return y def _grad_backward(self, loss): r"""Compute gradient with link rules. :param loss: a scalar where back-prop starts For PyTorch, just do "loss.backward()" """ if (self.step-1) % self.update_every == 0: self.model.zero_grad() loss.backward() def _compute_loss(self, predict, truth): r"""Compute loss given prediction and ground truth. :param predict: prediction dict, produced by model.forward :param truth: ground truth dict, produced by batch_y :return: a scalar """ return self.losser(predict, truth) def get_optimizer(self): r"""Gets the optimizer if initiated""" if hasattr(self, "optimizer"): return self.optimizer return None def set_optimizer(self, optimizer) -> None: r"""Sets the optimizer regardless of whether it's been initiated""" self.optimizer = optimizer
import subprocess import os import sys import patch def patch_fastnlp(): import fastNLP current_dir = os.path.dirname(os.path.abspath(__file__)) patch_file = os.path.join(current_dir, "fastnlp.patch") fastNLP_dir = os.path.dirname(fastNLP.__file__) fastNLP_target_file = os.path.join(fastNLP_dir, "embeddings", "bert_embedding.py") p = patch.fromfile(patch_file) if not p.apply(strip=1, root=fastNLP_dir): print("Failed to patch fastNLP. Exit.") exit(1) def pip_install_requirements(): subprocess.check_call([sys.executable, '-m', 'pip', 'install', '-q', '-r', 'requirements.txt']) if __name__ == '__main__': pip_install_requirements() patch_fastnlp()
""" Generator of a simulated CMRC2018 dataset. Use random Chinese characters with the same length as the original dataset. """ import os import pathlib import json import random TRAIN_NUM_BATCH = 1 EVAL_NUM_BATCH = 1 CMRC2018_TRAIN_SPEC = { # Original # "data_size": 2403, # Benchmark "data_size": 6, # placeholder, will be replaced by the true batch size "title_length": 5, "paragraph_size": 1, "context_length": 456, "qas_size": 5, "query_length": 15, "answers_size": 1, "answers_length": 7 } CMRC2018_DEV_SPEC = { # Original # "data_size": 848, # Benchmark "data_size": 1, # placeholder, will be replaced by the true batch size "title_length": 4, "paragraph_size": 1, "context_length": 455, "qas_size": 4, "query_length": 15, "answers_size": 3, "answers_length": 7 } CMRC2018_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), ".data", "cmrc2018-sim") CMRC2018_CONFIG_DIR = os.path.join(CMRC2018_DIR, "config") CMRC2018_TRAIN_SIM = os.path.join(CMRC2018_DIR, "train.json") CMRC2018_DEV_SIM = os.path.join(CMRC2018_DIR, "dev.json") CMRC2018_VOCAB_SIM = os.path.join(CMRC2018_CONFIG_DIR, "vocab.txt") CMRC2018_BERT_CONFIG = os.path.join(CMRC2018_CONFIG_DIR, "bert_config.json") VOCAB_SET = set() # Generate random Chinese string with length l def _GBK2312(l): head = 0xd7 while head == 0xd7: head = random.randint(0xb0, 0xf7) body = random.randint(0xa1, 0xfe) val = f'{head:x} {body:x}' s = bytes.fromhex(val).decode('gb2312') VOCAB_SET.add(s) if l == 0: return s else: return s + _GBK2312(l-1) def _generate_cmrc2018(spec): simdata = {} simdata["version"] = "v1.0-sim" simdata["data"] = [] for ind in range(spec["data_size"]): item = {} para = {} item["id"] = f"DEV_{ind}" item["title"] = _GBK2312(spec["title_length"]) item["paragraphs"] = [] para["id"] = item["id"] para["context"] = _GBK2312(spec["context_length"]) para["qas"] = [] for qind in range(spec["qas_size"]): q = {} q["question"] = _GBK2312(spec["query_length"]) q["id"] = f"{item['id']}_QUERY_{qind}" q["answers"] = [] for ans in range(spec["answers_size"]): ans = {} ans["text"] = _GBK2312(spec["answers_length"]) ans["answer_start"] = 0 q["answers"].append(ans) para["qas"].append(q) item["paragraphs"].append(para) simdata["data"].append(item) return simdata def _create_dir_if_nonexist(dirpath): pathlib.Path(dirpath).mkdir(parents=True, exist_ok=True) def _dump_data(data, path): with open(path, "w", encoding='utf8') as dp: json.dump(data, dp, indent=4, ensure_ascii=False) def _generate_dev(batch_size): CMRC2018_DEV_SPEC["data_size"] = batch_size * EVAL_NUM_BATCH dev_data = _generate_cmrc2018(CMRC2018_DEV_SPEC) _dump_data(dev_data, CMRC2018_DEV_SIM) def _generate_train(batch_size): CMRC2018_TRAIN_SPEC["data_size"] = batch_size * TRAIN_NUM_BATCH dev_data = _generate_cmrc2018(CMRC2018_TRAIN_SPEC) _dump_data(dev_data, CMRC2018_TRAIN_SIM) # MUST be called after generate_dev() AND generate_train()! def _generate_vocab(): never_split = ["[UNK]", "[SEP]", "[PAD]", "[CLS]", "[MASK]"] VOCAB_SET.update(never_split) with open(CMRC2018_VOCAB_SIM, "w") as vf: vf.write("\n".join(list(VOCAB_SET))) def _copy_bert_config(): current_dir = os.path.dirname(os.path.abspath(__file__)) with open(os.path.join(current_dir, "bert_config.json"), "r") as configf: config = configf.read() with open(CMRC2018_BERT_CONFIG, "w") as configf: configf.write(config) def _setup_os_env(): os.environ["TORCHBENCH_FASTNLP_CONFIG_PATH"] = CMRC2018_BERT_CONFIG def _create_empty_bin(): CMRC2018_CONFIG_DIR = os.path.join(CMRC2018_DIR, "config") bin_file = os.path.join(CMRC2018_CONFIG_DIR, "chinese_wwm_pytorch.bin") with open(bin_file, "w") as bf: bf.write("") def generate_inputs(train_batch_size, eval_batch_size): _create_dir_if_nonexist(CMRC2018_DIR) _create_dir_if_nonexist(os.path.join(CMRC2018_DIR, "config")) _generate_dev(eval_batch_size) _generate_train(train_batch_size) _generate_vocab() _create_empty_bin() _copy_bert_config() _setup_os_env()
import torch from . import eos_pytorch from torchbenchmark.tasks import OTHER from ...util.model import BenchmarkModel from typing import Tuple def _generate_inputs(size): import math import numpy as np np.random.seed(17) shape = ( math.ceil(2 * size ** (1/3)), math.ceil(2 * size ** (1/3)), math.ceil(0.25 * size ** (1/3)), ) s = np.random.uniform(1e-2, 10, size=shape) t = np.random.uniform(-12, 20, size=shape) p = np.random.uniform(0, 1000, size=(1, 1, shape[-1])) return s, t, p class EquationOfState(torch.nn.Module): def __init__(self): super(EquationOfState, self).__init__() def forward(self, s, t, p): return eos_pytorch.gsw_dHdT(s, t, p) class Model(BenchmarkModel): task = OTHER.OTHER_TASKS # Original size: [2 ** i for i in range(12, 23, 2) # Source: https://github.com/dionhaefner/pyhpc-benchmarks/blob/650ecc650e394df829944ffcf09e9d646ec69691/run.py#L25 # Pick data point: i = 20, size = 1048576 DEFAULT_EVAL_BSIZE = 1048576 CANNOT_SET_CUSTOM_OPTIMIZER = True def __init__(self, test, device, batch_size=None, extra_args=[]): super().__init__(test=test, device=device, batch_size=batch_size, extra_args=extra_args) self.model = EquationOfState().to(device=self.device) input_size = self.batch_size raw_inputs = _generate_inputs(input_size) if hasattr(eos_pytorch, "prepare_inputs"): inputs = eos_pytorch.prepare_inputs(*raw_inputs, device=device) self.example_inputs = inputs def get_module(self): return self.model, self.example_inputs def train(self): raise NotImplementedError("Training not supported") def eval(self) -> Tuple[torch.Tensor]: model, example_inputs = self.get_module() with torch.no_grad(): out = model(*example_inputs) return (out, )
""" ========================================================================== in-situ density, dynamic enthalpy and derivatives from Absolute Salinity and Conservative Temperature, using the computationally-efficient 48-term expression for density in terms of SA, CT and p (IOC et al., 2010). ========================================================================== """ import torch def gsw_dHdT(sa, ct, p): """ d/dT of dynamic enthalpy, analytical derivative sa : Absolute Salinity [g/kg] ct : Conservative Temperature [deg C] p : sea pressure [dbar] """ v01 = 9.998420897506056e2 v02 = 2.839940833161907e0 v03 = -3.147759265588511e-2 v04 = 1.181805545074306e-3 v05 = -6.698001071123802e0 v06 = -2.986498947203215e-2 v07 = 2.327859407479162e-4 v08 = -3.988822378968490e-2 v09 = 5.095422573880500e-4 v10 = -1.426984671633621e-5 v11 = 1.645039373682922e-7 v12 = -2.233269627352527e-2 v13 = -3.436090079851880e-4 v14 = 3.726050720345733e-6 v15 = -1.806789763745328e-4 v16 = 6.876837219536232e-7 v17 = -3.087032500374211e-7 v18 = -1.988366587925593e-8 v19 = -1.061519070296458e-11 v20 = 1.550932729220080e-10 v21 = 1.0e0 v22 = 2.775927747785646e-3 v23 = -2.349607444135925e-5 v24 = 1.119513357486743e-6 v25 = 6.743689325042773e-10 v26 = -7.521448093615448e-3 v27 = -2.764306979894411e-5 v28 = 1.262937315098546e-7 v29 = 9.527875081696435e-10 v30 = -1.811147201949891e-11 v31 = -3.303308871386421e-5 v32 = 3.801564588876298e-7 v33 = -7.672876869259043e-9 v34 = -4.634182341116144e-11 v35 = 2.681097235569143e-12 v36 = 5.419326551148740e-6 v37 = -2.742185394906099e-5 v38 = -3.212746477974189e-7 v39 = 3.191413910561627e-9 v40 = -1.931012931541776e-12 v41 = -1.105097577149576e-7 v42 = 6.211426728363857e-10 v43 = -1.119011592875110e-10 v44 = -1.941660213148725e-11 v45 = -1.864826425365600e-14 v46 = 1.119522344879478e-14 v47 = -1.200507748551599e-15 v48 = 6.057902487546866e-17 t1 = v45 * ct t2 = 0.2e1 * t1 t3 = v46 * sa t4 = 0.5 * v12 t5 = v14 * ct t7 = ct * (v13 + t5) t8 = 0.5 * t7 t11 = sa * (v15 + v16 * ct) t12 = 0.5 * t11 t13 = t4 + t8 + t12 t15 = v19 * ct t19 = v17 + ct * (v18 + t15) + v20 * sa t20 = 1.0 / t19 t24 = v47 + v48 * ct t25 = 0.5 * v13 t26 = 1.0 * t5 t27 = sa * v16 t28 = 0.5 * t27 t29 = t25 + t26 + t28 t33 = t24 * t13 t34 = t19 ** 2 t35 = 1.0 / t34 t37 = v18 + 2.0 * t15 t38 = t35 * t37 t48 = ct * (v44 + t1 + t3) t57 = v40 * ct t59 = ct * (v39 + t57) t64 = t13 ** 2 t68 = t20 * t29 t71 = t24 * t64 t74 = v04 * ct t76 = ct * (v03 + t74) t79 = v07 * ct t82 = torch.sqrt(sa) t83 = v11 * ct t85 = ct * (v10 + t83) t92 = ( v01 + ct * (v02 + t76) + sa * (v05 + ct * (v06 + t79) + t82 * (v08 + ct * (v09 + t85))) ) t93 = v48 * t92 t105 = ( v02 + t76 + ct * (v03 + 2.0 * t74) + sa * (v06 + 2.0 * t79 + t82 * (v09 + t85 + ct * (v10 + 2.0 * t83))) ) t106 = t24 * t105 t107 = v44 + t2 + t3 t110 = v43 + t48 t117 = t24 * t92 t120 = 4.0 * t71 * t20 - t117 - 2.0 * t110 * t13 t123 = ( v38 + t59 + ct * (v39 + 2.0 * t57) + sa * v42 + ( 4.0 * v48 * t64 * t20 + 8.0 * t33 * t68 - 4.0 * t71 * t38 - t93 - t106 - 2.0 * t107 * t13 - 2.0 * t110 * t29 ) * t20 - t120 * t35 * t37 ) t128 = t19 * p t130 = p * (1.0 * v12 + 1.0 * t7 + 1.0 * t11 + t128) t131 = 1.0 / t92 t133 = 1.0 + t130 * t131 t134 = torch.log(t133) t143 = v37 + ct * (v38 + t59) + sa * (v41 + v42 * ct) + t120 * t20 t152 = t37 * p t156 = t92 ** 2 t165 = v25 * ct t167 = ct * (v24 + t165) t169 = ct * (v23 + t167) t175 = v30 * ct t177 = ct * (v29 + t175) t179 = ct * (v28 + t177) t185 = v35 * ct t187 = ct * (v34 + t185) t189 = ct * (v33 + t187) t199 = t13 * t20 t217 = 2.0 * t117 * t199 - t110 * t92 t234 = ( v21 + ct * (v22 + t169) + sa * (v26 + ct * (v27 + t179) + v36 * sa + t82 * (v31 + ct * (v32 + t189))) + t217 * t20 ) t241 = t64 - t92 * t19 t242 = torch.sqrt(t241) t243 = 1.0 / t242 t244 = t4 + t8 + t12 - t242 t245 = 1.0 / t244 t247 = t4 + t8 + t12 + t242 + t128 t248 = 1.0 / t247 t249 = t242 * t245 * t248 t252 = 1.0 + 2.0 * t128 * t249 t253 = torch.log(t252) t254 = t243 * t253 t259 = t234 * t19 - t143 * t13 t264 = t259 * t20 t272 = 2.0 * t13 * t29 - t105 * t19 - t92 * t37 t282 = t128 * t242 t283 = t244 ** 2 t287 = t243 * t272 / 2.0 t292 = t247 ** 2 t305 = ( 0.1e5 * p * ( v44 + t2 + t3 - 2.0 * v48 * t13 * t20 - 2.0 * t24 * t29 * t20 + 2.0 * t33 * t38 + 0.5 * v48 * p ) * t20 - 0.1e5 * p * (v43 + t48 - 2.0 * t33 * t20 + 0.5 * t24 * p) * t38 + 0.5e4 * t123 * t20 * t134 - 0.5e4 * t143 * t35 * t134 * t37 + 0.5e4 * t143 * t20 * (p * (1.0 * v13 + 2.0 * t5 + 1.0 * t27 + t152) * t131 - t130 / t156 * t105) / t133 + 0.5e4 * ( ( v22 + t169 + ct * (v23 + t167 + ct * (v24 + 2.0 * t165)) + sa * ( v27 + t179 + ct * (v28 + t177 + ct * (v29 + 2.0 * t175)) + t82 * (v32 + t189 + ct * (v33 + t187 + ct * (v34 + 2.0 * t185))) ) + ( 2.0 * t93 * t199 + 2.0 * t106 * t199 + 2.0 * t117 * t68 - 2.0 * t117 * t13 * t35 * t37 - t107 * t92 - t110 * t105 ) * t20 - t217 * t35 * t37 ) * t19 + t234 * t37 - t123 * t13 - t143 * t29 ) * t20 * t254 - 0.5e4 * t259 * t35 * t254 * t37 - 0.25e4 * t264 / t242 / t241 * t253 * t272 + 0.5e4 * t264 * t243 * ( 2.0 * t152 * t249 + t128 * t243 * t245 * t248 * t272 - 2.0 * t282 / t283 * t248 * (t25 + t26 + t28 - t287) - 2.0 * t282 * t245 / t292 * (t25 + t26 + t28 + t287 + t152) ) / t252 ) return t305 def prepare_inputs(sa, ct, p, device): out = [ torch.as_tensor(a, device=device) for a in (sa, ct, p) ] if device == "gpu": torch.cuda.synchronize() return out def run(sa, ct, p, device="cpu"): with torch.no_grad(): out = gsw_dHdT(sa, ct, p) if device == "gpu": torch.cuda.synchronize() return out
if __name__ == "__main__": pass