python_code
stringlengths
0
229k
""" Support TorchDynamo(https://github.com/facebookresearch/torchdynamo) backends """ import argparse import contextlib import distutils.util from typing import List import torch import torch._dynamo as torchdynamo from torchbenchmark.util.model import is_staged_train_test def parse_torchdynamo_args(dynamo_args: List[str]) -> argparse.Namespace: parser = argparse.ArgumentParser() available_backends = torchdynamo.list_backends(exclude_tags=None) parser.add_argument( "--torchdynamo", choices=available_backends, help="Specify torchdynamo backends" ) parser.add_argument( "--tritonmm", type=str, help="torchinductor.config.triton.mm configuration" ) parser.add_argument( "--dynamic_shapes", action='store_true', help="dynamic shape and symbolic tracing", ) parser.add_argument( "--pt2_debug_log", action='store_true', help="enable debug log for PT2 (dynamo, inductor, AOTAutograd)", ) parser.add_argument( "--full_graph", action='store_true', help="capture full graph and no python", ) parser.add_argument( "--optimize_dynamo_ddp", action='store_true', help="enable extra optimizations for DDP + dynamo" ) parser.add_argument( "--torchinductor_cudagraph", type=distutils.util.strtobool, default="true", ) parser.add_argument( "--torchinductor_fallback_random", type=distutils.util.strtobool, default="false", ) parser.add_argument( "--torchinductor_enable_group_fusion", action='store_true', help="enable group fusion in Inductor" ) parser.add_argument( "--torchinductor_enable_batch_fusion", action='store_true', help="enable batch fusion in Inductor" ) parser.add_argument( "--torchinductor_enable_split_cat_fx_pass", action='store_true', help="enable split_cat_fx_pass in Inductor" ) parser.add_argument( "--dynamo_disable_optimizer_step", type=distutils.util.strtobool, default="false", ) args, extra_args = parser.parse_known_args(dynamo_args) return args, extra_args def apply_torchdynamo_args(model: 'torchbenchmark.util.model.BenchmarkModel', args: argparse.Namespace, precision: str): if args.torchdynamo == "fx2trt" and precision == "fp16": dynamo_optimizer = torchdynamo.optimize(torchdynamo.optimizations.backends.fx2trt_compiler_fp16) else: dynamo_kwargs = {} if args.dynamic_shapes: dynamo_kwargs["dynamic"] = True if args.full_graph: dynamo_kwargs["nopython"] = True dynamo_optimizer = torchdynamo.optimize(args.torchdynamo, **dynamo_kwargs) if args.pt2_debug_log: import logging torch._logging.set_logs(dynamo=logging.DEBUG, inductor=logging.DEBUG, aot=logging.DEBUG) if args.torchdynamo == "inductor": import torch._inductor as torchinductor torchinductor.config.triton.cudagraphs = bool(args.torchinductor_cudagraph) # Setup torchinductor.config.triton.mm if args.tritonmm == "triton": torchinductor.config.triton.mm = "triton" # currently can't pass correctness with use_bmm = True # torchinductor.config.triton.use_bmm = True if args.torchinductor_enable_group_fusion: torchinductor.config.group_fusion = True if args.torchinductor_enable_batch_fusion: torchinductor.config.pattern_matcher = True torchinductor.config.batch_fusion = True if args.torchinductor_enable_split_cat_fx_pass: torchinductor.config.split_cat_fx_passes = True # used for correctness checks, to avoid triton rand() behaving differently from torch rand(). torchinductor.config.fallback_random = bool(args.torchinductor_fallback_random) if bool(args.dynamo_disable_optimizer_step): found_optimizer_step = False try: model.cfg.optimizer.step = torch._dynamo.disable(model.cfg.optimizer.step) found_optimizer_step = True except AttributeError: pass try: model.optimizer.step = torch._dynamo.disable(model.optimizer.step) found_optimizer_step = True except AttributeError: pass if not found_optimizer_step: warnings.warn("--dynamo_disable_optimizer_step is set to True, but the optimizer could not be found on this model") if model.test == "train": if is_staged_train_test(model): model.forward = dynamo_optimizer(model.forward) else: model.train = dynamo_optimizer(model.train) else: model.eval = dynamo_optimizer(model.eval) if args.optimize_dynamo_ddp: @contextlib.contextmanager def optimize_ddp_ctx(val: bool): old_value = torchdynamo.config.optimize_ddp try: torchdynamo.config.optimize_ddp = val yield finally: torchdynamo.config.optimize_ddp = old_value model.add_context(lambda: optimize_ddp_ctx(True)) torchdynamo.reset()
""" Utils for managing backends """ import functools BACKENDS = dict() def create_backend(fn): @functools.wraps(fn) def inner(model: 'torchbenchmark.util.model.BenchmarkModel', **kwargs): if model is None: return None try: return fn(model, **kwargs) except KeyboardInterrupt: raise except Exception as e: print(f"{fn.__name__} error: {e}") raise BACKENDS[fn.__name__] = inner return inner def list_backends(): """ Return valid strings that can be passed to: @torchdynamo.optimize(<backend>) def foo(...): .... """ return sorted(BACKENDS.keys()) # register the backends from .jit import torchscript from .ait import fx2ait from .trt import fx2trt, torch_trt from .cudagraph import cudagraph __all__ = [list_backends, create_backend ]
import torch from torchbenchmark.util.backends import create_backend from typing import List WARMUP_ITER = 3 @create_backend def cudagraph(model: 'torchbenchmark.util.model.BenchmarkModel', backend_args: List[str]): cudagraph_func_name = f"cudagraph_{model.test}" assert hasattr(model, cudagraph_func_name), f"CUDA Graph only works on models implement {cudagraph_func_name}()" if model.test == "train": assert hasattr(model, "SKIP_ZERO_GRAD"), f"The model must support skipping zero grad in its train test." def _cudagraph(): # CUDAGraph can't be copied/pickled, disable copying in correctness checking model.DEEPCOPY = False model.SKIP_ZERO_GRAD = True # warmup s = torch.cuda.Stream() s.wait_stream(torch.cuda.current_stream()) with torch.cuda.stream(s): for _ in range(WARMUP_ITER): if model.test == "train": model.opt.zero_grad(set_to_none=True) model.invoke() torch.cuda.current_stream().wait_stream(s) # capture cuda_graph = torch.cuda.CUDAGraph() if model.test == "train": model.opt.zero_grad(set_to_none=True) with torch.cuda.graph(cuda_graph): model.invoke() model.g = cuda_graph if model.test == "train": model.train = getattr(model, cudagraph_func_name) elif model.test == "eval": model.eval = getattr(model, cudagraph_func_name) else: assert False, f"Expected model test train or eval, get {model.test}" return _cudagraph, backend_args
from typing import List import torch import argparse from torchbenchmark.util.backends import create_backend from torchbenchmark.util.env_check import is_hf_model def parse_torch_trt_args(backend_args: List[str]): """Parses CLI-provided backend arguments to extract Torch-TRT keywords Returns kwargs dictionary and remainder arguments which were unrecognized """ arg_parser = argparse.ArgumentParser() arg_parser.add_argument( "--truncate_long_and_double", default=None, action="store_true", help="Whether to automatically truncate long and double operations", ) arg_parser.add_argument( "--workspace_size", type=int, help="Size of workspace allotted to TensorRT" ) arg_parser.add_argument( "--min_block_size", type=int, help="Minimum number of operations in an accelerated TRT block", ) arg_parser.add_argument( "--ir", type=str, help="Which internal representation to use: {'ts', 'dynamo_compile', 'fx_ts_compat', ...}", ) args, unknown = arg_parser.parse_known_args(backend_args) # Remove unspecified arguments from the args dictionary # (Only pass through user-specified args) parsed_args = vars(args) for key in list(parsed_args.keys()): if parsed_args[key] is None: del parsed_args[key] return parsed_args, unknown @create_backend def fx2trt(model: "torchbenchmark.util.model.BenchmarkModel", backend_args: List[str]): FP16 = True if model.dargs.precision == "fp16" else False HF_MODEL = True if is_hf_model(model) else False assert ( model.device == "cuda" and model.test == "eval" ), f"fx2trt only works on CUDA inference tests." def _fx2trt(): from torch_tensorrt.fx import compile from torch_tensorrt.fx.utils import LowerPrecision module, example_inputs = model.get_module() precision = LowerPrecision.FP16 if FP16 else LowerPrecision.FP32 if HF_MODEL: from transformers.utils.fx import symbolic_trace as hf_symbolic_trace traced_model = hf_symbolic_trace( module, batch_size=model.batch_size, sequence_lenghth=model.max_length ) trt_model = compile( traced_model, example_inputs, max_batch_size=model.batch_size, lower_precision=precision, explicit_batch_dimension=True, max_workspace_size=20 << 30, ) else: trt_model = compile( module=module, input=example_inputs, max_batch_size=model.batch_size, lower_precision=precision, ) model.set_module(trt_model) return _fx2trt, backend_args @create_backend def torch_trt( model: "torchbenchmark.util.model.BenchmarkModel", backend_args: List[str] ): """Backend for Torch-TRT Can be directly invoked from the command line, for example via: python run.py resnet18 -d cuda -t eval --backend torch_trt --precision fp32 --truncate_long_and_double Options include: --truncate_long_and_double: Whether to automatically truncate long and double operations --min_block_size: Minimum number of operations in an accelerated TRT block --workspace_size: Size of workspace allotted to TensorRT --ir: Which internal representation to use: {"ts", "dynamo_compile", "fx_ts_compat", ...} """ FP16 = True if model.dargs.precision == "fp16" else False assert ( model.device == "cuda" and model.test == "eval" ), f"Torch-TRT only works on CUDA inference tests." # Extract relevant Torch-TRT arguments from the provided CLI arguments torch_trt_kwargs, backend_args = parse_torch_trt_args(backend_args) def _torch_trt(): """Helper function for invoking Torch-TRT""" import torch_tensorrt module, example_inputs = model.get_module() torch_dtype_precision = torch.half if FP16 else torch.float32 print( f"Compiling {model.name} with batch size {model.batch_size}, precision {model.dargs.precision}, " + f"and {'default' if 'ir' not in torch_trt_kwargs else torch_trt_kwargs['ir']} IR" ) trt_module = torch_tensorrt.compile( module, inputs=example_inputs, enabled_precisions={torch_dtype_precision}, **torch_trt_kwargs, ) model.set_module(trt_module) return _torch_trt, backend_args
""" Utilities to measure metrics of a model. """ import torch import time import dataclasses from torchbenchmark.util.model import BenchmarkModel from torchbenchmark.util.experiment.instantiator import TorchBenchModelConfig from torchbenchmark import ModelTask from typing import List, Union, Tuple, Optional WARMUP_ROUNDS = 10 BENCHMARK_ITERS = 15 MEMPROF_ITER = 2 NANOSECONDS_PER_MILLISECONDS = 1_000_000.0 @dataclasses.dataclass class TorchBenchModelMetrics: latencies: List[float] throughputs: List[float] cpu_peak_mem: Optional[float] gpu_peak_mem: Optional[float] pt2_compilation_time: Optional[float] pt2_graph_breaks: Optional[float] model_flops: Optional[float] def get_latencies(func, device: str, nwarmup=WARMUP_ROUNDS, num_iter=BENCHMARK_ITERS) -> List[float]: "Run one step of the model, and return the latency in milliseconds." # Warm-up `nwarmup` rounds for _i in range(nwarmup): func() result_summary = [] for _i in range(num_iter): if device == "cuda": torch.cuda.synchronize() # Collect time_ns() instead of time() which does not provide better precision than 1 # second according to https://docs.python.org/3/library/time.html#time.time. t0 = time.time_ns() func() torch.cuda.synchronize() # Wait for the events to be recorded! t1 = time.time_ns() else: t0 = time.time_ns() func() t1 = time.time_ns() result_summary.append((t1 - t0) / NANOSECONDS_PER_MILLISECONDS) return result_summary def get_peak_memory(func, device: str, num_iter=MEMPROF_ITER, export_metrics_file='', metrics_needed=[], metrics_gpu_backend='dcgm', cpu_monitored_pid=None) -> Tuple[Optional[float], Optional[str], Optional[float]]: "Run one step of the model, and return the peak memory in MB." from components.model_analyzer.TorchBenchAnalyzer import ModelAnalyzer new_metrics_needed = [_ for _ in metrics_needed if _ in ['cpu_peak_mem', 'gpu_peak_mem']] if not new_metrics_needed: raise ValueError(f"Expected metrics_needed to be non-empty, get: {metrics_needed}") mem_model_analyzer = ModelAnalyzer(export_metrics_file, new_metrics_needed, metrics_gpu_backend, cpu_monitored_pid) continue_num_iter = BENCHMARK_ITERS - num_iter def work_func(): if device == "cuda": torch.cuda.synchronize() func() torch.cuda.synchronize() else: func() t0 = time.time_ns() work_func() t1 = time.time_ns() # if total execution time is less than 15ms, we run the model for BENCHMARK_ITERS times # to get more accurate peak memory if (t1 - t0) < 15 * NANOSECONDS_PER_MILLISECONDS: num_iter = BENCHMARK_ITERS else: num_iter = MEMPROF_ITER mem_model_analyzer.start_monitor() for _i in range(num_iter): work_func() mem_model_analyzer.stop_monitor() mem_model_analyzer.aggregate() device_id = None gpu_peak_mem = None cpu_peak_mem = None if 'gpu_peak_mem' in metrics_needed: device_id, gpu_peak_mem = mem_model_analyzer.calculate_gpu_peak_mem() if 'cpu_peak_mem' in metrics_needed: cpu_peak_mem = mem_model_analyzer.calculate_cpu_peak_mem() if export_metrics_file: mem_model_analyzer.update_export_name("_peak_memory") mem_model_analyzer.export_all_records_to_csv() return cpu_peak_mem, device_id, gpu_peak_mem def get_model_flops(model: Union[BenchmarkModel, ModelTask]) -> float: "Run one step of the model, and return the model total flops." from torch.utils.flop_counter import FlopCounterMode flop_counter = FlopCounterMode() def work_func(): if model.device == "cuda": torch.cuda.synchronize() model.invoke() torch.cuda.synchronize() else: model.invoke() with flop_counter: work_func() total_flops = sum([v for _, v in flop_counter.flop_counts["Global"].items()]) return total_flops def get_model_test_metrics(model: Union[BenchmarkModel, ModelTask], metrics=[], export_metrics_file=False, metrics_gpu_backend='nvml', nwarmup=WARMUP_ROUNDS, num_iter=BENCHMARK_ITERS) -> TorchBenchModelMetrics: import os latencies = None throughputs = None cpu_peak_mem = None gpu_peak_mem = None pt2_compilation_time = None pt2_graph_breaks = None model_flops = None if not (isinstance(model, BenchmarkModel) or isinstance(model, ModelTask)): raise ValueError(f"Expected BenchmarkModel or ModelTask, get type: {type(model)}") model_pid = os.getpid() if isinstance(model, BenchmarkModel) else model.worker.proc_pid() device = model.device if isinstance(model, BenchmarkModel) else model.get_model_attribute("device") if 'latencies' in metrics or 'throughputs' in metrics: latencies = get_latencies(model.invoke, device, nwarmup=nwarmup, num_iter=num_iter) if 'cpu_peak_mem' in metrics or 'gpu_peak_mem' in metrics: cpu_peak_mem, _device_id, gpu_peak_mem = get_peak_memory(model.invoke, device, export_metrics_file=export_metrics_file, metrics_needed=metrics, metrics_gpu_backend=metrics_gpu_backend, cpu_monitored_pid=model_pid) if 'throughputs' in metrics: throughputs = [model.batch_size * 1000 / latency for latency in latencies] if 'pt2_compilation_time' in metrics: pt2_compilation_time = model.get_model_attribute('pt2_compilation_time') \ if isinstance(model, ModelTask) else model.pt2_compilation_time if 'pt2_graph_breaks' in metrics: pt2_graph_breaks = model.get_model_attribute('pt2_graph_breaks') \ if isinstance(model, ModelTask) else model.pt2_graph_breaks if 'model_flops' in metrics: model_flops = get_model_flops(model) return TorchBenchModelMetrics(latencies, throughputs, cpu_peak_mem, gpu_peak_mem, pt2_compilation_time, pt2_graph_breaks, model_flops) def get_model_accuracy(model_config: TorchBenchModelConfig, isolated: bool=True) -> str: import copy from torchbenchmark.util.experiment.instantiator import load_model_isolated, load_model # Try load minimal batch size, if fail, load the default batch size accuracy_model_config = copy.deepcopy(model_config) if not "--accuracy" in accuracy_model_config.extra_args: accuracy_model_config.extra_args = ["--accuracy"] + accuracy_model_config.extra_args if isolated: model = load_model_isolated(accuracy_model_config) accuracy = model.get_model_attribute("accuracy") del model return accuracy else: model = load_model(model_config) return model.accuracy
""" Utilities to instantiate TorchBench models in the same process or child process. Functions in this file don't handle exceptions. They expect callers handle all exceptions. """ import os import importlib import dataclasses from typing import Optional, List, Dict from torchbenchmark.util.model import BenchmarkModel from torchbenchmark import _list_model_paths, load_model_by_name, ModelTask WORKER_TIMEOUT = 3600 # seconds BS_FIELD_NAME = "batch_size" @dataclasses.dataclass class TorchBenchModelConfig: name: str test: str device: str batch_size: Optional[int] extra_args: List[str] extra_env: Optional[Dict[str, str]] = None def _set_extra_env(extra_env): if not extra_env: return for env_key in extra_env: os.environ[env_key] = extra_env[env_key] def inject_model_invoke(model_task: ModelTask, inject_function): model_task.replace_invoke(inject_function.__module__, inject_function.__name__) def load_model_isolated(config: TorchBenchModelConfig, timeout: float=WORKER_TIMEOUT) -> ModelTask: """ Load and return the model in a subprocess. """ task = ModelTask(config.name, timeout=timeout, extra_env=config.extra_env) if not task.model_details.exists: raise ValueError(f"Failed to import model task: {config.name}. Please run the model manually to make sure it succeeds, or report a bug.") task.make_model_instance(test=config.test, device=config.device, batch_size=config.batch_size, extra_args=config.extra_args) task_batch_size = task.get_model_attribute(BS_FIELD_NAME) # check batch size if not measuring accuracy if config.batch_size and (not config.batch_size == task_batch_size) and not task.get_model_attribute('accuracy'): raise ValueError(f"User specify batch size {config.batch_size}," + f"but model {task.name} runs with batch size {task_batch_size}. Please report a bug.") return task def load_model(config: TorchBenchModelConfig) -> BenchmarkModel: """Load and return a model instance in the same process. """ Model = load_model_by_name(config.name) model_instance = Model(test=config.test, device=config.device, batch_size=config.batch_size, extra_args=config.extra_args) # check name if not model_instance.name == config.name: raise ValueError(f"Required model {config.name}, loaded {model_instance.name}.") # check batch size if not measuring accuracy if config.batch_size and (not config.batch_size == model_instance.batch_size) and not model_instance.dargs.accuracy: raise ValueError(f"User specify batch size {config.batch_size}," + f"but model {model_instance.name} runs with batch size {model_instance.batch_size}. Please report a bug.") _set_extra_env(config.extra_env) return model_instance def list_devices() -> List[str]: """Return a list of available devices.""" devices = ["cpu"] import torch if torch.cuda.is_available(): devices.append("cuda") return devices def list_tests() -> List[str]: """Return a list of available tests.""" return ["train", "eval"] def list_models() -> List[str]: """Return a list of names of all TorchBench models""" model_paths = _list_model_paths() model_names = list(map(lambda x: os.path.basename(x), model_paths)) return model_names
from torchbenchmark.tasks import NLP from torchbenchmark.util.framework.huggingface.model_factory import HuggingFaceModel class Model(HuggingFaceModel): task = NLP.LANGUAGE_MODELING DEFAULT_TRAIN_BSIZE = 2 DEFAULT_EVAL_BSIZE = 1 def __init__(self, test, device, batch_size=None, extra_args=[]): super().__init__(name="hf_BigBird", test=test, device=device, batch_size=batch_size, extra_args=extra_args)
import subprocess import sys import os from torchbenchmark.util.framework.huggingface.patch_hf import patch_transformers, cache_model def pip_install_requirements(): subprocess.check_call([sys.executable, '-m', 'pip', 'install', '-q', '-r', 'requirements.txt']) if __name__ == '__main__': pip_install_requirements() patch_transformers() model_name = os.path.basename(os.path.dirname(os.path.abspath(__file__))) cache_model(model_name)
import dataclasses @dataclasses.dataclass class DRQConfig: env = "cartpole_swingup" # IMPORTANT: if action_repeat is used the effective number of env steps needs to be # multiplied by action_repeat in the result graphs. # This is a common practice for a fair comparison. # See the 2nd paragraph in Appendix C of SLAC: https://arxiv.org/pdf/1907.00953.pdf # See Dreamer TF2's implementation: https://github.com/danijar/dreamer/blob/02f0210f5991c7710826ca7881f19c64a012290c/dreamer.py#L340 action_repeat = 4 # train num_train_steps = 1 num_train_iters = 1 # num_seed_steps can't be zero # and steps in train must be bigger than num_seed_steps num_seed_steps = 1 replay_buffer_capacity = 100000 seed = 1 # eval eval_frequency = 5000 # observation image_size = 84 image_pad = 4 frame_stack = 3 # global params lr = 1e-3 # IMPORTANT: please use a batch size of 512 to reproduce the results in the paper. Hovewer, with a smaller batch size it still works well. batch_size = 128 # Agent configurations discount = 0.99 init_temperature = 0.1 actor_update_frequency = 2 critic_tau = 0.01 critic_target_update_frequency = 2 # Actor configurations hidden_dim = 1024 hidden_depth = 2 log_std_bounds = [-10, 2] # Encoder configurations feature_dim = 50 # obs data, relative to __file__ obs_path = "obs.pkl"
import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import copy import math from . import drqutils class Encoder(nn.Module): """Convolutional encoder for image-based observations.""" def __init__(self, obs_shape, feature_dim): super().__init__() assert len(obs_shape) == 3 self.num_layers = 4 self.num_filters = 32 self.output_dim = 35 self.output_logits = False self.feature_dim = feature_dim self.convs = nn.ModuleList([ nn.Conv2d(obs_shape[0], self.num_filters, 3, stride=2), nn.Conv2d(self.num_filters, self.num_filters, 3, stride=1), nn.Conv2d(self.num_filters, self.num_filters, 3, stride=1), nn.Conv2d(self.num_filters, self.num_filters, 3, stride=1) ]) self.head = nn.Sequential( nn.Linear(self.num_filters * 35 * 35, self.feature_dim), nn.LayerNorm(self.feature_dim)) self.outputs = dict() def forward_conv(self, obs): obs = obs / 255. self.outputs['obs'] = obs conv = torch.relu(self.convs[0](obs)) self.outputs['conv1'] = conv for i in range(1, self.num_layers): conv = torch.relu(self.convs[i](conv)) self.outputs['conv%s' % (i + 1)] = conv # Changed view to reshape here to support channels last input # TODO: upstream this change to https://github.com/denisyarats/drq/blob/master/drq.py#L48 h = conv.reshape(conv.size(0), -1) return h def forward(self, obs, detach=False): h = self.forward_conv(obs) if detach: h = h.detach() out = self.head(h) if not self.output_logits: out = torch.tanh(out) self.outputs['out'] = out return out def copy_conv_weights_from(self, source): """Tie convolutional layers""" for i in range(self.num_layers): drqutils.tie_weights(src=source.convs[i], trg=self.convs[i]) def log(self, logger, step): pass class Actor(nn.Module): """torch.distributions implementation of an diagonal Gaussian policy.""" def __init__(self, encoder_cfg, action_shape, hidden_dim, hidden_depth, log_std_bounds): super().__init__() self.encoder = Encoder(*encoder_cfg) self.log_std_bounds = log_std_bounds self.trunk = drqutils.mlp(self.encoder.feature_dim, hidden_dim, 2 * action_shape[0], hidden_depth) self.outputs = dict() self.apply(drqutils.weight_init) def forward(self, obs, detach_encoder=False): obs = self.encoder(obs, detach=detach_encoder) mu, log_std = self.trunk(obs).chunk(2, dim=-1) # constrain log_std inside [log_std_min, log_std_max] log_std = torch.tanh(log_std) log_std_min, log_std_max = self.log_std_bounds log_std = log_std_min + 0.5 * (log_std_max - log_std_min) * (log_std + 1) std = log_std.exp() self.outputs['mu'] = mu self.outputs['std'] = std dist = drqutils.SquashedNormal(mu, std) return dist def log(self, logger, step): pass class Critic(nn.Module): """Critic network, employes double Q-learning.""" def __init__(self, encoder_cfg, action_shape, hidden_dim, hidden_depth): super().__init__() self.encoder = Encoder(*encoder_cfg) self.Q1 = drqutils.mlp(self.encoder.feature_dim + action_shape[0], hidden_dim, 1, hidden_depth) self.Q2 = drqutils.mlp(self.encoder.feature_dim + action_shape[0], hidden_dim, 1, hidden_depth) self.outputs = dict() self.apply(drqutils.weight_init) def forward(self, obs, action, detach_encoder=False): assert obs.size(0) == action.size(0) obs = self.encoder(obs, detach=detach_encoder) obs_action = torch.cat([obs, action], dim=-1) q1 = self.Q1(obs_action) q2 = self.Q2(obs_action) self.outputs['q1'] = q1 self.outputs['q2'] = q2 return q1, q2 def log(self, logger, step): pass class DRQAgent: """Data regularized Q: actor-critic method for learning from pixels.""" def __init__(self, cfg, device, obs_shape, action_shape, action_range): self.action_range = action_range self.device = torch.device(device) self.discount = cfg.discount self.critic_tau = cfg.critic_tau self.actor_update_frequency = cfg.actor_update_frequency self.critic_target_update_frequency = cfg.critic_target_update_frequency self.batch_size = cfg.batch_size encoder_cfg = (obs_shape, cfg.feature_dim) self.actor = Actor(encoder_cfg=encoder_cfg, action_shape=action_shape, hidden_dim=cfg.hidden_dim, hidden_depth=cfg.hidden_depth, log_std_bounds=cfg.log_std_bounds).to(self.device) self.critic = Critic(encoder_cfg=encoder_cfg, action_shape=action_shape, hidden_dim=cfg.hidden_dim, hidden_depth=cfg.hidden_depth).to(self.device) self.critic_target = Critic(encoder_cfg=encoder_cfg, action_shape=action_shape, hidden_dim=cfg.hidden_dim, hidden_depth=cfg.hidden_depth).to(self.device) self.critic_target.load_state_dict(self.critic.state_dict()) # tie conv layers between actor and critic self.actor.encoder.copy_conv_weights_from(self.critic.encoder) self.log_alpha = torch.tensor(np.log(cfg.init_temperature)).to(device) self.log_alpha.requires_grad = True # set target entropy to -|A| self.target_entropy = -action_shape[0] # optimizers self.actor_optimizer = torch.optim.Adam(self.actor.parameters(), lr=cfg.lr) self.critic_optimizer = torch.optim.Adam(self.critic.parameters(), lr=cfg.lr) self.log_alpha_optimizer = torch.optim.Adam([self.log_alpha], lr=cfg.lr) self.train() self.critic_target.train() def train(self, training=True): self.training = training self.actor.train(training) self.critic.train(training) @property def alpha(self): return self.log_alpha.exp() def act(self, obs, sample=False): obs = torch.FloatTensor(obs).to(self.device) obs = obs.unsqueeze(0) dist = self.actor(obs) action = dist.sample() if sample else dist.mean action = action.clamp(*self.action_range) assert action.ndim == 2 and action.shape[0] == 1 return drqutils.to_np(action[0]) def update_critic(self, obs, obs_aug, action, reward, next_obs, next_obs_aug, not_done, logger, step): with torch.no_grad(): dist = self.actor(next_obs) next_action = dist.rsample() log_prob = dist.log_prob(next_action).sum(-1, keepdim=True) target_Q1, target_Q2 = self.critic_target(next_obs, next_action) target_V = torch.min(target_Q1, target_Q2) - self.alpha.detach() * log_prob target_Q = reward + (not_done * self.discount * target_V) dist_aug = self.actor(next_obs_aug) next_action_aug = dist_aug.rsample() log_prob_aug = dist_aug.log_prob(next_action_aug).sum(-1, keepdim=True) target_Q1, target_Q2 = self.critic_target(next_obs_aug, next_action_aug) target_V = torch.min( target_Q1, target_Q2) - self.alpha.detach() * log_prob_aug target_Q_aug = reward + (not_done * self.discount * target_V) target_Q = (target_Q + target_Q_aug) / 2 # get current Q estimates current_Q1, current_Q2 = self.critic(obs, action) critic_loss = F.mse_loss(current_Q1, target_Q) + F.mse_loss( current_Q2, target_Q) Q1_aug, Q2_aug = self.critic(obs_aug, action) critic_loss += F.mse_loss(Q1_aug, target_Q) + F.mse_loss( Q2_aug, target_Q) # logger.log('train_critic/loss', critic_loss, step) # Optimize the critic self.critic_optimizer.zero_grad() critic_loss.backward() self.critic_optimizer.step() self.critic.log(logger, step) def update_actor_and_alpha(self, obs, logger, step): # detach conv filters, so we don't update them with the actor loss dist = self.actor(obs, detach_encoder=True) action = dist.rsample() log_prob = dist.log_prob(action).sum(-1, keepdim=True) # detach conv filters, so we don't update them with the actor loss actor_Q1, actor_Q2 = self.critic(obs, action, detach_encoder=True) actor_Q = torch.min(actor_Q1, actor_Q2) actor_loss = (self.alpha.detach() * log_prob - actor_Q).mean() # optimize the actor self.actor_optimizer.zero_grad() actor_loss.backward() self.actor_optimizer.step() self.actor.log(logger, step) self.log_alpha_optimizer.zero_grad() alpha_loss = (self.alpha * (-log_prob - self.target_entropy).detach()).mean() alpha_loss.backward() self.log_alpha_optimizer.step() def update(self, replay_buffer, logger, step): obs, action, reward, next_obs, not_done, obs_aug, next_obs_aug = replay_buffer.sample( self.batch_size) self.update_critic(obs, obs_aug, action, reward, next_obs, next_obs_aug, not_done, logger, step) if step % self.actor_update_frequency == 0: self.update_actor_and_alpha(obs, logger, step) if step % self.critic_target_update_frequency == 0: drqutils.soft_update_params(self.critic, self.critic_target, self.critic_tau)
import math import os import random from collections import deque import numpy as np import scipy.linalg as sp_la import gym import torch import torch.nn as nn import torch.nn.functional as F from skimage.util.shape import view_as_windows from torch import distributions as pyd class eval_mode: def __init__(self, *models): self.models = models def __enter__(self): self.prev_states = [] for model in self.models: self.prev_states.append(model.training) model.train(False) def __exit__(self, *args): for model, state in zip(self.models, self.prev_states): model.train(state) return False def soft_update_params(net, target_net, tau): for param, target_param in zip(net.parameters(), target_net.parameters()): target_param.data.copy_(tau * param.data + (1 - tau) * target_param.data) def set_seed_everywhere(seed): torch.manual_seed(seed) if torch.cuda.is_available(): torch.cuda.manual_seed_all(seed) np.random.seed(seed) random.seed(seed) def make_dir(*path_parts): dir_path = os.path.join(*path_parts) try: os.mkdir(dir_path) except OSError: pass return dir_path def tie_weights(src, trg): assert type(src) == type(trg) trg.weight = src.weight trg.bias = src.bias def weight_init(m): """Custom weight init for Conv2D and Linear layers.""" if isinstance(m, nn.Linear): nn.init.orthogonal_(m.weight.data) if hasattr(m.bias, 'data'): m.bias.data.fill_(0.0) elif isinstance(m, nn.Conv2d) or isinstance(m, nn.ConvTranspose2d): gain = nn.init.calculate_gain('relu') nn.init.orthogonal_(m.weight.data, gain) if hasattr(m.bias, 'data'): m.bias.data.fill_(0.0) def mlp(input_dim, hidden_dim, output_dim, hidden_depth, output_mod=None): if hidden_depth == 0: mods = [nn.Linear(input_dim, output_dim)] else: mods = [nn.Linear(input_dim, hidden_dim), nn.ReLU(inplace=True)] for i in range(hidden_depth - 1): mods += [nn.Linear(hidden_dim, hidden_dim), nn.ReLU(inplace=True)] mods.append(nn.Linear(hidden_dim, output_dim)) if output_mod is not None: mods.append(output_mod) trunk = nn.Sequential(*mods) return trunk def to_np(t): if t is None: return None elif t.nelement() == 0: return np.array([]) else: return t.cpu().detach().numpy() class FrameStack(gym.Wrapper): def __init__(self, env, k): gym.Wrapper.__init__(self, env) self._k = k self._frames = deque([], maxlen=k) shp = env.observation_space.shape self.observation_space = gym.spaces.Box( low=0, high=1, shape=((shp[0] * k,) + shp[1:]), dtype=env.observation_space.dtype) self._max_episode_steps = env._max_episode_steps def reset(self): obs = self.env.reset() for _ in range(self._k): self._frames.append(obs) return self._get_obs() def step(self, action): obs, reward, done, info = self.env.step(action) self._frames.append(obs) return self._get_obs(), reward, done, info def _get_obs(self): assert len(self._frames) == self._k return np.concatenate(list(self._frames), axis=0) class TanhTransform(pyd.transforms.Transform): domain = pyd.constraints.real codomain = pyd.constraints.interval(-1.0, 1.0) bijective = True sign = +1 def __init__(self, cache_size=1): super().__init__(cache_size=cache_size) @staticmethod def atanh(x): return 0.5 * (x.log1p() - (-x).log1p()) def __eq__(self, other): return isinstance(other, TanhTransform) def _call(self, x): return x.tanh() def _inverse(self, y): # We do not clamp to the boundary here as it may degrade the performance of certain algorithms. # one should use `cache_size=1` instead return self.atanh(y) def log_abs_det_jacobian(self, x, y): # We use a formula that is more numerically stable, see details in the following link # https://github.com/tensorflow/probability/commit/ef6bb176e0ebd1cf6e25c6b5cecdd2428c22963f#diff-e120f70e92e6741bca649f04fcd907b7 return 2. * (math.log(2.) - x - F.softplus(-2. * x)) class SquashedNormal(pyd.transformed_distribution.TransformedDistribution): def __init__(self, loc, scale): self.loc = loc self.scale = scale self.base_dist = pyd.Normal(loc, scale) transforms = [TanhTransform()] super().__init__(self.base_dist, transforms) @property def mean(self): mu = self.loc for tr in self.transforms: mu = tr(mu) return mu
import copy import math import pickle as pkl import numpy as np import torch import os import sys import torch.nn as nn from typing import Tuple import torch.nn.functional as F from gym import spaces from ...util.model import BenchmarkModel from torchbenchmark.tasks import REINFORCEMENT_LEARNING from .drqutils import FrameStack, set_seed_everywhere, eval_mode from .drq import DRQAgent from .config import DRQConfig from .replay_buffer import ReplayBuffer class MockEnv: def __init__(self, obs): self._norm_action_space = spaces.Box( low=-1.0, high=1.0, shape=[1], dtype=np.float32) self._observation_space = spaces.Box( low=0, high=255, shape=[9, 84, 84], dtype=np.uint8 ) self.obs = obs self._max_episode_steps = 250 self.metadata = {'render.modes': []} self.reward_range = (-float('inf'), float('inf')) def step(self, action): reward = 0.0 done = False info_state = [0.016243, 3.1355, -0.0052817, -0.01073] info = dict() info["internal_state"] = info_state info["discount"] = 1.0 return (self.obs, reward, done, info) def seed(self, seed=None): self._norm_action_space.seed(seed) self._observation_space.seed(seed) def reset(self): return self.obs @property def observation_space(self): return self._observation_space @property def action_space(self): return self._norm_action_space def make_env(cfg): if cfg.env == 'ball_in_cup_catch': domain_name = 'ball_in_cup' task_name = 'catch' elif cfg.env == 'point_mass_easy': domain_name = 'point_mass' task_name = 'easy' else: domain_name = cfg.env.split('_')[0] task_name = '_'.join(cfg.env.split('_')[1:]) # per dreamer: https://github.com/danijar/dreamer/blob/02f0210f5991c7710826ca7881f19c64a012290c/wrappers.py#L26 camera_id = 2 if domain_name == 'quadruped' else 0 current_dir = os.path.dirname(os.path.realpath(__file__)) mockobs = pkl.load(open(os.path.join(current_dir, cfg.obs_path), "rb")) low = np.amin(mockobs) high = np.amax(mockobs) mockobs = np.random.randint(low=11, high=228, size=mockobs.shape, dtype=np.uint8) env = MockEnv(mockobs) env = FrameStack(env, k=cfg.frame_stack) env.seed(cfg.seed) assert env.action_space.low.min() >= -1 assert env.action_space.high.max() <= 1 return env class Model(BenchmarkModel): task = REINFORCEMENT_LEARNING.OTHER_RL # Batch size is not adjustable in this model DEFAULT_TRAIN_BSIZE = 1 DEFAULT_EVAL_BSIZE = 1 ALLOW_CUSTOMIZE_BSIZE = False CANNOT_SET_CUSTOM_OPTIMIZER = True # this model will cause infinite loop if deep-copied DEEPCOPY = False def __init__(self, test, device, batch_size=None, extra_args=[]): super().__init__(test=test, device=device, batch_size=batch_size, extra_args=extra_args) self.cfg = DRQConfig() set_seed_everywhere(self.cfg.seed) self.env = make_env(self.cfg) obs_shape = self.env.observation_space.shape action_shape = self.env.action_space.shape action_range = [ float(self.env.action_space.low.min()), float(self.env.action_space.high.max()) ] self.agent = DRQAgent(self.cfg, self.device, obs_shape, action_shape, action_range) self.replay_buffer = ReplayBuffer(self.env.observation_space.shape, self.env.action_space.shape, self.cfg.replay_buffer_capacity, self.cfg.image_pad, self.device) self.step = 0 def get_module(self): obs = self.env.reset() obs = torch.FloatTensor(obs).to(self.device) obs = obs.unsqueeze(0) return self.agent.actor, (obs, ) def set_module(self, new_model): self.agent.actor = new_model def train(self): episode, episode_reward, episode_step, done = 0, 0, 1, True if True: obs = self.env.reset() done = False episode_reward = 0 episode_step = 0 episode += 1 if self.step < self.cfg.num_seed_steps: action = self.env.action_space.sample() else: with eval_mode(self.agent): action = self.agent.act(obs, sample=True) # run training update if self.step >= self.cfg.num_seed_steps: for _ in range(self.cfg.num_train_iters): self.agent.update(self.replay_buffer, None, self.step) next_obs, reward, done, info = self.env.step(action) # allow infinite bootstrap done = float(done) done_no_max = 0 if episode_step + 1 == self.env._max_episode_steps else done episode_reward += reward self.replay_buffer.add(obs, action, reward, next_obs, done, done_no_max) obs = next_obs episode_step += 1 self.step += 1 def eval(self) -> Tuple[torch.Tensor]: average_episode_reward = 0 steps = 0 if True: obs = self.env.reset() episode_reward = 0 episode_step = 0 with eval_mode(self.agent): action = self.agent.act(obs, sample=False) obs, reward, done, info = self.env.step(action) episode_reward += reward episode_step += 1 average_episode_reward += episode_reward steps += 1 average_episode_reward /= float(steps) return (torch.Tensor(action), )
import numpy as np import kornia import torch import torch.nn as nn import torch.nn.functional as F class ReplayBuffer: """Buffer to store environment transitions.""" def __init__(self, obs_shape, action_shape, capacity, image_pad, device): self.capacity = capacity self.device = device self.aug_trans = nn.Sequential( nn.ReplicationPad2d(image_pad), kornia.augmentation.RandomCrop((obs_shape[-1], obs_shape[-1]))) self.obses = np.empty((capacity, *obs_shape), dtype=np.uint8) self.next_obses = np.empty((capacity, *obs_shape), dtype=np.uint8) self.actions = np.empty((capacity, *action_shape), dtype=np.float32) self.rewards = np.empty((capacity, 1), dtype=np.float32) self.not_dones = np.empty((capacity, 1), dtype=np.float32) self.not_dones_no_max = np.empty((capacity, 1), dtype=np.float32) self.idx = 0 self.full = False def __len__(self): return self.capacity if self.full else self.idx def add(self, obs, action, reward, next_obs, done, done_no_max): np.copyto(self.obses[self.idx], obs) np.copyto(self.actions[self.idx], action) np.copyto(self.rewards[self.idx], reward) np.copyto(self.next_obses[self.idx], next_obs) np.copyto(self.not_dones[self.idx], not done) np.copyto(self.not_dones_no_max[self.idx], not done_no_max) self.idx = (self.idx + 1) % self.capacity self.full = self.full or self.idx == 0 def sample(self, batch_size): x = self.capacity if self.full else self.idx idxs = np.random.randint(0, self.capacity if self.full else self.idx, size=batch_size) obses = self.obses[idxs] next_obses = self.next_obses[idxs] obses_aug = obses.copy() next_obses_aug = next_obses.copy() obses = torch.as_tensor(obses, device=self.device).float() next_obses = torch.as_tensor(next_obses, device=self.device).float() obses_aug = torch.as_tensor(obses_aug, device=self.device).float() next_obses_aug = torch.as_tensor(next_obses_aug, device=self.device).float() actions = torch.as_tensor(self.actions[idxs], device=self.device) rewards = torch.as_tensor(self.rewards[idxs], device=self.device) not_dones_no_max = torch.as_tensor(self.not_dones_no_max[idxs], device=self.device) obses = self.aug_trans(obses) next_obses = self.aug_trans(next_obses) obses_aug = self.aug_trans(obses_aug) next_obses_aug = self.aug_trans(next_obses_aug) return obses, actions, rewards, next_obses, not_dones_no_max, obses_aug, next_obses_aug
import subprocess import sys from utils import s3_utils def pip_install_requirements(): subprocess.check_call([sys.executable, '-m', 'pip', 'install', '-q', '-r', 'requirements.txt']) if __name__ == '__main__': pip_install_requirements() s3_utils.checkout_s3_data("MODEL_PKLS", "drq/obs.pkl", decompress=False)
from torchbenchmark.util.framework.timm.model_factory import TimmModel from torchbenchmark.tasks import COMPUTER_VISION class Model(TimmModel): task = COMPUTER_VISION.CLASSIFICATION DEFAULT_TRAIN_BSIZE = 32 DEFAULT_EVAL_BSIZE = 32 def __init__(self, test, device, batch_size=None, extra_args=[]): super().__init__(test=test, model_name='regnety_120', device=device, batch_size=batch_size, extra_args=extra_args)
from torchbenchmark.util.framework.vision.model_factory import TorchVisionModel from torchbenchmark.tasks import COMPUTER_VISION import torchvision.models as models class Model(TorchVisionModel): task = COMPUTER_VISION.CLASSIFICATION DEFAULT_TRAIN_BSIZE = 32 DEFAULT_EVAL_BSIZE = 32 def __init__(self, test, device, batch_size=None, extra_args=[]): super().__init__(model_name="resnet50", test=test, device=device, batch_size=batch_size, weights=models.ResNet50_Weights.IMAGENET1K_V1, extra_args=extra_args)
# Generated by gen_torchvision_benchmark.py import torch import torch.optim as optim import torchvision.models as models from torch.quantization import quantize_fx from ...util.model import BenchmarkModel from torchbenchmark.tasks import COMPUTER_VISION from typing import Tuple class Model(BenchmarkModel): task = COMPUTER_VISION.CLASSIFICATION # Train batch size: 32 # Source: https://openreview.net/pdf?id=B1Yy1BxCZ DEFAULT_TRAIN_BSIZE = 32 DEFAULT_EVAL_BSIZE = 32 def __init__(self, test, device, batch_size=None, extra_args=[]): if test == "eval" and device != "cpu": raise NotImplementedError("The eval test only supports CPU.") super().__init__(test=test, device=device, batch_size=batch_size, extra_args=extra_args) self.model = models.resnet50().to(self.device) self.example_inputs = (torch.randn((self.batch_size, 3, 224, 224)).to(self.device),) self.prep_qat_train() if self.test == "eval": self.prep_qat_eval() self.optimizer = None def prep_qat_train(self): qconfig_dict = {"": torch.quantization.get_default_qat_qconfig('fbgemm')} self.model.train() self.model = quantize_fx.prepare_qat_fx(self.model, qconfig_dict, self.example_inputs) def get_module(self): return self.model, self.example_inputs def prep_qat_eval(self): self.model = quantize_fx.convert_fx(self.model) self.model.eval() def train(self): if self.get_optimizer() is None: self.set_optimizer(optim.Adam(self.model.parameters())) loss = torch.nn.CrossEntropyLoss() self.optimizer.zero_grad() pred = self.model(*self.example_inputs) y = torch.empty(pred.shape[0], dtype=torch.long, device=self.device).random_(pred.shape[1]) loss(pred, y).backward() self.optimizer.step() def eval(self) -> Tuple[torch.Tensor]: model = self.model example_inputs = self.example_inputs example_inputs = example_inputs[0][0].unsqueeze(0) out = model(example_inputs) return (out, )
import os from torchbenchmark.tasks import COMPUTER_VISION from torchbenchmark.util.framework.detectron2.model_factory import Detectron2Model MODEL_NAME = os.path.basename(os.path.dirname(os.path.abspath(__file__))) MODEL_DIR = os.path.abspath(os.path.dirname(__file__)) class Model(Detectron2Model): task = COMPUTER_VISION.DETECTION model_file = os.path.join(MODEL_DIR, ".data", f"{MODEL_NAME}.pkl") def __init__(self, test, device, batch_size=None, extra_args=[]): super().__init__(variant="COCO-Detection/faster_rcnn_R_101_DC5_3x.yaml", test=test, device=device, batch_size=batch_size, extra_args=extra_args)
import os from torchbenchmark.util.framework.detectron2 import install_detectron2 MODEL_NAME = os.path.basename(os.path.dirname(os.path.abspath(__file__))) MODEL_DIR = os.path.abspath(os.path.dirname(__file__)) if __name__ == '__main__': install_detectron2(MODEL_NAME, MODEL_DIR)
""" https://github.com/phlippe/uvadlc_notebooks_benchmarking/blob/main/PyTorch/Tutorial5_Inception_ResNet_DenseNet.py """ from types import SimpleNamespace from torchbenchmark.tasks import COMPUTER_VISION from torchbenchmark.util.model import BenchmarkModel import torch.nn as nn import torch import torch.optim as optim import torch.utils.data as data class ResNetBlock(nn.Module): def __init__(self, c_in, act_fn, subsample=False, c_out=-1): """ Inputs: c_in - Number of input features act_fn - Activation class constructor (e.g. nn.ReLU) subsample - If True, we want to apply a stride inside the block and reduce the output shape by 2 in height and width c_out - Number of output features. Note that this is only relevant if subsample is True, as otherwise, c_out = c_in """ super().__init__() if not subsample: c_out = c_in # Network representing F self.net = nn.Sequential( # No bias needed as the Batch Norm handles it nn.Conv2d(c_in, c_out, kernel_size=3, padding=1, stride=1 if not subsample else 2, bias=False), nn.BatchNorm2d(c_out), act_fn(), nn.Conv2d(c_out, c_out, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(c_out) ) # 1x1 convolution with stride 2 means we take the upper left value, and transform it to new output size self.downsample = nn.Conv2d( c_in, c_out, kernel_size=1, stride=2) if subsample else None self.act_fn = act_fn() def forward(self, x): z = self.net(x) if self.downsample is not None: x = self.downsample(x) out = z + x out = self.act_fn(out) return out class ResNetModel(nn.Module): def __init__(self, num_classes=10, num_blocks=[3, 3, 3], c_hidden=[16, 32, 64], act_fn_name="relu", **kwargs): """ Inputs: num_classes - Number of classification outputs (10 for CIFAR10) num_blocks - List with the number of ResNet blocks to use. The first block of each group uses downsampling, except the first. c_hidden - List with the hidden dimensionalities in the different blocks. Usually multiplied by 2 the deeper we go. act_fn_name - Name of the activation function to use, looked up in "act_fn_by_name" block_name - Name of the ResNet block, looked up in "resnet_blocks_by_name" """ super().__init__() act_fn_by_name = { "tanh": nn.Tanh, "relu": nn.ReLU, "leakyrelu": nn.LeakyReLU, "gelu": nn.GELU } self.hparams = SimpleNamespace(num_classes=num_classes, c_hidden=c_hidden, num_blocks=num_blocks, act_fn_name=act_fn_name, act_fn=act_fn_by_name[act_fn_name], block_class=ResNetBlock) self._create_network() self._init_params() def _create_network(self): c_hidden = self.hparams.c_hidden self.input_net = nn.Sequential( nn.Conv2d(3, c_hidden[0], kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(c_hidden[0]), self.hparams.act_fn() ) # Creating the ResNet blocks blocks = [] for block_idx, block_count in enumerate(self.hparams.num_blocks): for bc in range(block_count): # Subsample the first block of each group, except the very first one. subsample = (bc == 0 and block_idx > 0) blocks.append( self.hparams.block_class(c_in=c_hidden[block_idx if not subsample else (block_idx - 1)], act_fn=self.hparams.act_fn, subsample=subsample, c_out=c_hidden[block_idx]) ) self.blocks = nn.Sequential(*blocks) # Mapping to classification output self.output_net = nn.Sequential( nn.AdaptiveAvgPool2d((1, 1)), nn.Flatten(), nn.Linear(c_hidden[-1], self.hparams.num_classes) ) def _init_params(self): # Based on our discussion in Tutorial 4, we should initialize the convolutions according to the activation function # Fan-out focuses on the gradient distribution, and is commonly used in ResNets for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_( m.weight, mode='fan_out', nonlinearity=self.hparams.act_fn_name) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) def forward(self, x): x = self.input_net(x) x = self.blocks(x) x = self.output_net(x) return x class Model(BenchmarkModel): task = COMPUTER_VISION.CLASSIFICATION DEFAULT_TRAIN_BSIZE = 128 DEFAULT_EVAL_BSIZE = 128 def __init__(self, test, device, batch_size=DEFAULT_TRAIN_BSIZE, extra_args=[]): super().__init__(test=test, device=device, batch_size=batch_size, extra_args=extra_args) self.model = ResNetModel() self.model.to(device) self.example_inputs = ( torch.randn((self.batch_size, 3, 32, 32), device=self.device), ) self.example_target = torch.randint(0, 10, (self.batch_size,), device=self.device) dataset = data.TensorDataset(self.example_inputs[0], self.example_target) self.optimizer = optim.SGD(self.model.parameters(), lr=0.1, momentum=0.9, weight_decay=1e-4) self.criterion = nn.CrossEntropyLoss() (self.images, ) = self.example_inputs def get_module(self): return self.model, self.example_inputs def train(self): self.model.train() targets = self.example_target output = self.model(self.images) loss = self.criterion(output, targets) loss.backward() self.optimizer.step() self.optimizer.zero_grad() def eval(self): self.model.eval() with torch.no_grad(): out=self.model(self.images) return (out,)
import torch import os import itertools import random import itertools from pathlib import Path from typing import Tuple from detectron2.checkpoint import DetectionCheckpointer # TorchBench imports from torchbenchmark.util.model import BenchmarkModel from torchbenchmark.tasks import COMPUTER_VISION MODEL_NAME = os.path.basename(os.path.dirname(os.path.abspath(__file__))) MODEL_DIR = os.path.abspath(os.path.dirname(__file__)) # setup environment variable CURRENT_DIR = Path(os.path.dirname(os.path.realpath(__file__))) DATA_DIR = os.path.join(CURRENT_DIR.parent.parent, "data", ".data", "coco2017-minimal") assert os.path.exists(DATA_DIR), "Couldn't find coco2017 minimal data dir, please run install.py again." if not 'DETECTRON2_DATASETS' in os.environ: os.environ['DETECTRON2_DATASETS'] = DATA_DIR from detectron2.config import instantiate from detectron2 import model_zoo from detectron2.utils.events import EventStorage from torch.utils._pytree import tree_map torch.backends.cudnn.deterministic = False torch.backends.cudnn.benchmark = False def prefetch(dataloader, device, precision="fp32"): r = [] dtype = torch.float16 if precision == "fp16" else torch.float32 for batch in dataloader: r.append(tree_map(lambda x: x.to(device, dtype=dtype) if isinstance(x, torch.Tensor) else x, batch)) return r class Model(BenchmarkModel): task = COMPUTER_VISION.DETECTION model_file = os.path.join(MODEL_DIR, ".data", f"{MODEL_NAME}.pkl") DEFAULT_TRAIN_BSIZE = 1 DEFAULT_EVAL_BSIZE = 1 # Skip correctness check, because the output tensor can't be verified using # cosine similarity or torch.close() SKIP_CORRECTNESS_CHECK = True def __init__(self, test, device, batch_size=None, extra_args=[]): super().__init__(test=test, device=device, batch_size=batch_size, extra_args=extra_args) model_cfg = model_zoo.get_config("common/models/mask_rcnn_fpn.py").model data_cfg = model_zoo.get_config("common/data/coco.py").dataloader if test == "train": # use a mini dataset data_cfg.train.dataset.names = "coco_2017_val_100" data_cfg.train.total_batch_size = self.batch_size self.model = instantiate(model_cfg).to(self.device) train_loader = instantiate(data_cfg.train) self.example_inputs = prefetch(itertools.islice(train_loader, 100), self.device) self.optimizer = torch.optim.SGD(self.model.parameters(), 0.) elif test == "eval": data_cfg.test.dataset.names = "coco_2017_val_100" data_cfg.test.batch_size = self.batch_size self.model = instantiate(model_cfg).to(self.device) # load model from checkpoint DetectionCheckpointer(self.model).load(self.model_file) self.model.eval() test_loader = instantiate(data_cfg.test) self.example_inputs = prefetch(itertools.islice(test_loader, 100), self.device) self.NUM_BATCHES = len(self.example_inputs) def get_module(self): return self.model, (self.example_inputs[0], ) def train(self): self.model.train() with EventStorage(): for idx in range(self.NUM_BATCHES): losses = self.model(self.example_inputs[idx]) loss = sum(losses.values()) loss.backward() self.optimizer.step() self.optimizer.zero_grad() def eval(self) -> Tuple[torch.Tensor]: self.model.eval() with torch.no_grad(): for idx in range(self.NUM_BATCHES): out = self.model(self.example_inputs[idx]) # retrieve output tensors outputs = [] for item in out: fields = list(map(lambda x: list(x.get_fields().values()), item.values())) for boxes in fields: tensor_box = list(filter(lambda x: isinstance(x, torch.Tensor), boxes)) outputs.extend(tensor_box) return tuple(outputs)
import os from torchbenchmark.util.framework.detectron2 import install_detectron2 MODEL_NAME = os.path.basename(os.path.dirname(os.path.abspath(__file__))) MODEL_DIR = os.path.abspath(os.path.dirname(__file__)) if __name__ == '__main__': install_detectron2(MODEL_NAME, MODEL_DIR)
"""General-purpose training script for image-to-image translation. This script works for various models (with option '--model': e.g., pix2pix, cyclegan, colorization) and different datasets (with option '--dataset_mode': e.g., aligned, unaligned, single, colorization). You need to specify the dataset ('--dataroot'), experiment name ('--name'), and model ('--model'). It first creates model, dataset, and visualizer given the option. It then does standard network training. During the training, it also visualize/save the images, print/save the loss plot, and save models. The script supports continue/resume training. Use '--continue_train' to resume your previous training. Example: Train a CycleGAN model: python train.py --dataroot ./datasets/maps --name maps_cyclegan --model cycle_gan Train a pix2pix model: python train.py --dataroot ./datasets/facades --name facades_pix2pix --model pix2pix --direction BtoA See options/base_options.py and options/train_options.py for more training options. See training and test tips at: https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/docs/tips.md See frequently asked questions at: https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/docs/qa.md """ import time from .options.train_options import TrainOptions from .data import create_dataset from .models import create_model import torch from torch.utils._pytree import tree_map from .util.visualizer import Visualizer def prefetch_device(example_inputs, device): if isinstance(example_inputs, torch.Tensor): return example_inputs.to(device=device) elif isinstance(example_inputs, (tuple, list, dict)): return tree_map(lambda x: prefetch_device(x, device), example_inputs) elif isinstance(example_inputs, (str, int, float)): return example_inputs assert False, f"Unsupported data type: {type(example_inputs)}" def prepare_training_loop(args): new_dataset = [] opt = TrainOptions().parse(args) # get training options dataset = create_dataset(opt) # create a dataset given opt.dataset_mode and other options # prefetch the dataset to the device for data in dataset: new_dataset.append(prefetch_device(data, opt.tb_device)) dataset = new_dataset dataset_size = len(dataset) # get the number of images in the dataset. model = create_model(opt) # create a model given opt.model and other options model.setup(opt) # regular setup: load and print networks; create schedulers visualizer = Visualizer(opt) # create a visualizer that display/save images and plots def training_loop(niteration): total_iters = 0 # the total number of training iterations if niteration is None: niteration = opt.n_epochs + opt.n_epochs_decay + 1 for epoch in range(opt.epoch_count, niteration): # outer loop for different epochs; we save the model by <epoch_count>, <epoch_count>+<save_latest_freq> epoch_start_time = time.time() # timer for entire epoch iter_data_time = time.time() # timer for data loading per iteration epoch_iter = 0 # the number of training iterations in current epoch, reset to 0 every epoch visualizer.reset() # reset the visualizer: make sure it saves the results to HTML at least once every epoch for i, data in enumerate(dataset): # inner loop within one epoch iter_start_time = time.time() # timer for computation per iteration if total_iters % opt.print_freq == 0: t_data = iter_start_time - iter_data_time total_iters += opt.batch_size epoch_iter += opt.batch_size model.set_input(data) # unpack data from dataset and apply preprocessing model.optimize_parameters() # calculate loss functions, get gradients, update network weights if total_iters % opt.display_freq == 0: # display images on visdom and save images to a HTML file save_result = total_iters % opt.update_html_freq == 0 model.compute_visuals() visualizer.display_current_results(model.get_current_visuals(), epoch, save_result) if total_iters % opt.print_freq == 0: # print training losses and save logging information to the disk losses = model.get_current_losses() t_comp = (time.time() - iter_start_time) / opt.batch_size visualizer.print_current_losses(epoch, epoch_iter, losses, t_comp, t_data) if opt.display_id > 0: visualizer.plot_current_losses(epoch, float(epoch_iter) / dataset_size, losses) if total_iters % opt.save_latest_freq == 0: # cache our latest model every <save_latest_freq> iterations save_suffix = 'iter_%d' % total_iters if opt.save_by_iter else 'latest' model.save_networks(save_suffix) # only run 1 batch in torchbench break iter_data_time = time.time() # only run 1 iter in torchbench break model.update_learning_rate() # update learning rates at the end of every epoch. return training_loop
#!/usr/bin/env python import torch import os from pathlib import Path torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False from ...util.model import BenchmarkModel from torchbenchmark.tasks import COMPUTER_VISION from typing import Tuple from torchbenchmark import DATA_PATH from .train_cyclegan import prepare_training_loop from .test_cyclegan import get_model def _create_data_dir(suffix): data_dir = Path(__file__).parent.joinpath(".data", suffix) data_dir.mkdir(parents=True, exist_ok=True) return data_dir class Model(BenchmarkModel): task = COMPUTER_VISION.GENERATION DEFAULT_TRAIN_BSIZE = 1 DEFAULT_EVAL_BSIZE = 1 ALLOW_CUSTOMIZE_BSIZE = False # TODO: Customizing the optimizer is nontrivial, perhaps a next step. CANNOT_SET_CUSTOM_OPTIMIZER = True def __init__(self, test, device, batch_size=None, extra_args=[]): super().__init__(test=test, device=device, batch_size=batch_size, extra_args=extra_args) checkpoints_dir = _create_data_dir("checkpoints") results_dir = _create_data_dir("results") checkpoints_arg = f"--checkpoints_dir {checkpoints_dir}" results_arg = f"--results_dir {results_dir}" data_root = os.path.join(DATA_PATH, "pytorch_CycleGAN_and_pix2pix_inputs") device_arg = "" if self.device == "cpu": device_arg = "--gpu_ids -1" elif self.device == "cuda": device_arg = "--gpu_ids 0" if self.test == "train": train_args = f"--tb_device {self.device} --dataroot {data_root}/datasets/horse2zebra --name horse2zebra --model cycle_gan --display_id 0 --n_epochs 3 " + \ f"--n_epochs_decay 3 {device_arg} {checkpoints_arg}" self.training_loop = prepare_training_loop(train_args.split(' ')) args = f"--dataroot {data_root}/datasets/horse2zebra/testA --name horse2zebra_pretrained --model test " + \ f"--no_dropout {device_arg} {checkpoints_arg} {results_arg}" self.model, self.input = get_model(args, self.device) def get_module(self): return self.model, self.input def set_train(self): # another model instance is used for training # and the train mode is on by default pass def train(self): # the training process is not patched to use scripted models # training_loop has its own count logic inside. It actually runs 7 epochs # (with each 'epoch' being limited to a small set of data) # it would be more in symmetry with the rest of torchbenchmark if it ran just one step # rather than 7 epochs, but changing it now would potentially cause # discontinuity with existing/historical measurement self.training_loop(None) def eval(self) -> Tuple[torch.Tensor]: model, example_inputs = self.get_module() out = model(*example_inputs) return (out, )
"""General-purpose test script for image-to-image translation. Once you have trained your model with train.py, you can use this script to test the model. It will load a saved model from '--checkpoints_dir' and save the results to '--results_dir'. It first creates model and dataset given the option. It will hard-code some parameters. It then runs inference for '--num_test' images and save results to an HTML file. Example (You need to train models first or download pre-trained models from our website): Test a CycleGAN model (both sides): python test.py --dataroot ./datasets/maps --name maps_cyclegan --model cycle_gan Test a CycleGAN model (one side only): python test.py --dataroot datasets/horse2zebra/testA --name horse2zebra_pretrained --model test --no_dropout The option '--model test' is used for generating CycleGAN results only for one side. This option will automatically set '--dataset_mode single', which only loads the images from one set. On the contrary, using '--model cycle_gan' requires loading and generating results in both directions, which is sometimes unnecessary. The results will be saved at ./results/. Use '--results_dir <directory_path_to_save_result>' to specify the results directory. Test a pix2pix model: python test.py --dataroot ./datasets/facades --name facades_pix2pix --model pix2pix --direction BtoA See options/base_options.py and options/test_options.py for more test options. See training and test tips at: https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/docs/tips.md See frequently asked questions at: https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/docs/qa.md """ import os from .options.test_options import TestOptions from .data import create_dataset from .models import create_model from .util.visualizer import save_images from .util import html import torch from pathlib import Path def get_model(args, device): opt = TestOptions().parse(args.split(' ')) opt.num_threads = 0 # test code only supports num_threads = 1 opt.batch_size = 1 # test code only supports batch_size = 1 opt.serial_batches = True # disable data shuffling; comment this line if results on randomly chosen images are needed. opt.no_flip = True # no flip; comment this line if results on flipped images are needed. opt.display_id = -1 # no visdom display; the test code saves the results to a HTML file. model = create_model(opt) # create a model given opt.model and other options if len(opt.gpu_ids) > 0: # When opt.gpu_ids > 0, netG is converted to torch.nn.DataParallel model = model.netG.module else: model = model.netG root = str(Path(__file__).parent) data = torch.load(f'{root}/example_input.pt') input = data['A'].to(device) return model, (input,) if __name__ == '__main__': opt = TestOptions().parse() # get test options # hard-code some parameters for test opt.num_threads = 0 # test code only supports num_threads = 1 opt.batch_size = 1 # test code only supports batch_size = 1 opt.serial_batches = True # disable data shuffling; comment this line if results on randomly chosen images are needed. opt.no_flip = True # no flip; comment this line if results on flipped images are needed. opt.display_id = -1 # no visdom display; the test code saves the results to a HTML file. dataset = create_dataset(opt) # create a dataset given opt.dataset_mode and other options model = create_model(opt) # create a model given opt.model and other options # model.setup(opt) # regular setup: load and print networks; create schedulers # create a website web_dir = os.path.join(opt.results_dir, opt.name, '{}_{}'.format(opt.phase, opt.epoch)) # define the website directory if opt.load_iter > 0: # load_iter is 0 by default web_dir = '{:s}_iter{:d}'.format(web_dir, opt.load_iter) print('creating web directory', web_dir) webpage = html.HTML(web_dir, 'Experiment = %s, Phase = %s, Epoch = %s' % (opt.name, opt.phase, opt.epoch)) # test with eval mode. This only affects layers like batchnorm and dropout. # For [pix2pix]: we use batchnorm and dropout in the original pix2pix. You can experiment it with and without eval() mode. # For [CycleGAN]: It should not affect CycleGAN as CycleGAN uses instancenorm without dropout. if opt.eval: model.eval() for i, data in enumerate(dataset): if i >= opt.num_test: # only apply our model to opt.num_test images. break model.set_input(data) # unpack data from data loader torch.save(data, 'example_input.pt') model.test() # run inference visuals = model.get_current_visuals() # get image results img_path = model.get_image_paths() # get image paths if i % 5 == 0: # save images to an HTML file print('processing (%04d)-th image... %s' % (i, img_path)) save_images(webpage, visuals, img_path, aspect_ratio=opt.aspect_ratio, width=opt.display_winsize) webpage.save() # save the HTML
import subprocess import sys from utils import s3_utils def pip_install_requirements(): subprocess.check_call([sys.executable, '-m', 'pip', 'install', '-q', '-r', 'requirements.txt']) if __name__ == '__main__': s3_utils.checkout_s3_data("INPUT_TARBALLS", "pytorch_CycleGAN_and_pix2pix_inputs.tar.gz", decompress=True) pip_install_requirements()
from .base_options import BaseOptions class TestOptions(BaseOptions): """This class includes test options. It also includes shared options defined in BaseOptions. """ def initialize(self, parser): parser = BaseOptions.initialize(self, parser) # define shared options parser.add_argument('--results_dir', type=str, default='./results/', help='saves results here.') parser.add_argument('--aspect_ratio', type=float, default=1.0, help='aspect ratio of result images') parser.add_argument('--phase', type=str, default='test', help='train, val, test, etc') # Dropout and Batchnorm has different behavioir during training and test. parser.add_argument('--eval', action='store_true', help='use eval mode during test time.') parser.add_argument('--num_test', type=int, default=50, help='how many test images to run') # rewrite devalue values parser.set_defaults(model='test') # To avoid cropping, the load_size should be the same as crop_size parser.set_defaults(load_size=parser.get_default('crop_size')) self.isTrain = False return parser
from .base_options import BaseOptions class TrainOptions(BaseOptions): """This class includes training options. It also includes shared options defined in BaseOptions. """ def initialize(self, parser): parser = BaseOptions.initialize(self, parser) # add torchbench options parser.add_argument('--tb_device', type=str, required=True, help="TorchBench device") # visdom and HTML visualization parameters parser.add_argument('--display_freq', type=int, default=400, help='frequency of showing training results on screen') parser.add_argument('--display_ncols', type=int, default=4, help='if positive, display all images in a single visdom web panel with certain number of images per row.') parser.add_argument('--display_id', type=int, default=1, help='window id of the web display') parser.add_argument('--display_server', type=str, default="http://localhost", help='visdom server of the web display') parser.add_argument('--display_env', type=str, default='main', help='visdom display environment name (default is "main")') parser.add_argument('--display_port', type=int, default=8097, help='visdom port of the web display') parser.add_argument('--update_html_freq', type=int, default=1000, help='frequency of saving training results to html') parser.add_argument('--print_freq', type=int, default=100, help='frequency of showing training results on console') parser.add_argument('--no_html', action='store_true', help='do not save intermediate training results to [opt.checkpoints_dir]/[opt.name]/web/') # network saving and loading parameters parser.add_argument('--save_latest_freq', type=int, default=5000, help='frequency of saving the latest results') parser.add_argument('--save_epoch_freq', type=int, default=5, help='frequency of saving checkpoints at the end of epochs') parser.add_argument('--save_by_iter', action='store_true', help='whether saves model by iteration') parser.add_argument('--continue_train', action='store_true', help='continue training: load the latest model') parser.add_argument('--epoch_count', type=int, default=1, help='the starting epoch count, we save the model by <epoch_count>, <epoch_count>+<save_latest_freq>, ...') parser.add_argument('--phase', type=str, default='train', help='train, val, test, etc') # training parameters parser.add_argument('--n_epochs', type=int, default=100, help='number of epochs with the initial learning rate') parser.add_argument('--n_epochs_decay', type=int, default=100, help='number of epochs to linearly decay learning rate to zero') parser.add_argument('--beta1', type=float, default=0.5, help='momentum term of adam') parser.add_argument('--lr', type=float, default=0.0002, help='initial learning rate for adam') parser.add_argument('--gan_mode', type=str, default='lsgan', help='the type of GAN objective. [vanilla| lsgan | wgangp]. vanilla GAN loss is the cross-entropy objective used in the original GAN paper.') parser.add_argument('--pool_size', type=int, default=50, help='the size of image buffer that stores previously generated images') parser.add_argument('--lr_policy', type=str, default='linear', help='learning rate policy. [linear | step | plateau | cosine]') parser.add_argument('--lr_decay_iters', type=int, default=50, help='multiply by a gamma every lr_decay_iters iterations') self.isTrain = True return parser
"""This package options includes option modules: training options, test options, and basic options (used in both training and test)."""
import argparse import os from ..util import util import torch from ..models import get_option_setter from ..data import get_option_setter as get_option_setter_data class BaseOptions(): """This class defines options used during both training and test time. It also implements several helper functions such as parsing, printing, and saving the options. It also gathers additional options defined in <modify_commandline_options> functions in both dataset class and model class. """ def __init__(self): """Reset the class; indicates the class hasn't been initailized""" self.initialized = False def initialize(self, parser): """Define the common options that are used in both training and test.""" # basic parameters parser.add_argument('--dataroot', required=True, help='path to images (should have subfolders trainA, trainB, valA, valB, etc)') parser.add_argument('--name', type=str, default='experiment_name', help='name of the experiment. It decides where to store samples and models') parser.add_argument('--gpu_ids', type=str, default='0', help='gpu ids: e.g. 0 0,1,2, 0,2. use -1 for CPU') parser.add_argument('--checkpoints_dir', type=str, default='./checkpoints', help='models are saved here') # model parameters parser.add_argument('--model', type=str, default='cycle_gan', help='chooses which model to use. [cycle_gan | pix2pix | test | colorization]') parser.add_argument('--input_nc', type=int, default=3, help='# of input image channels: 3 for RGB and 1 for grayscale') parser.add_argument('--output_nc', type=int, default=3, help='# of output image channels: 3 for RGB and 1 for grayscale') parser.add_argument('--ngf', type=int, default=64, help='# of gen filters in the last conv layer') parser.add_argument('--ndf', type=int, default=64, help='# of discrim filters in the first conv layer') parser.add_argument('--netD', type=str, default='basic', help='specify discriminator architecture [basic | n_layers | pixel]. The basic model is a 70x70 PatchGAN. n_layers allows you to specify the layers in the discriminator') parser.add_argument('--netG', type=str, default='resnet_9blocks', help='specify generator architecture [resnet_9blocks | resnet_6blocks | unet_256 | unet_128]') parser.add_argument('--n_layers_D', type=int, default=3, help='only used if netD==n_layers') parser.add_argument('--norm', type=str, default='instance', help='instance normalization or batch normalization [instance | batch | none]') parser.add_argument('--init_type', type=str, default='normal', help='network initialization [normal | xavier | kaiming | orthogonal]') parser.add_argument('--init_gain', type=float, default=0.02, help='scaling factor for normal, xavier and orthogonal.') parser.add_argument('--no_dropout', action='store_true', help='no dropout for the generator') # dataset parameters parser.add_argument('--dataset_mode', type=str, default='unaligned', help='chooses how datasets are loaded. [unaligned | aligned | single | colorization]') parser.add_argument('--direction', type=str, default='AtoB', help='AtoB or BtoA') parser.add_argument('--serial_batches', action='store_true', help='if true, takes images in order to make batches, otherwise takes them randomly') parser.add_argument('--num_threads', default=0, type=int, help='# threads for loading data') parser.add_argument('--batch_size', type=int, default=1, help='input batch size') parser.add_argument('--load_size', type=int, default=286, help='scale images to this size') parser.add_argument('--crop_size', type=int, default=256, help='then crop to this size') parser.add_argument('--max_dataset_size', type=int, default=float("inf"), help='Maximum number of samples allowed per dataset. If the dataset directory contains more than max_dataset_size, only a subset is loaded.') parser.add_argument('--preprocess', type=str, default='resize_and_crop', help='scaling and cropping of images at load time [resize_and_crop | crop | scale_width | scale_width_and_crop | none]') parser.add_argument('--no_flip', action='store_true', help='if specified, do not flip the images for data augmentation') parser.add_argument('--display_winsize', type=int, default=256, help='display window size for both visdom and HTML') # additional parameters parser.add_argument('--epoch', type=str, default='latest', help='which epoch to load? set to latest to use latest cached model') parser.add_argument('--load_iter', type=int, default='0', help='which iteration to load? if load_iter > 0, the code will load models by iter_[load_iter]; otherwise, the code will load models by [epoch]') parser.add_argument('--verbose', action='store_true', help='if specified, print more debugging information') parser.add_argument('--suffix', default='', type=str, help='customized suffix: opt.name = opt.name + suffix: e.g., {model}_{netG}_size{load_size}') self.initialized = True return parser def gather_options(self, args=None): """Initialize our parser with basic options(only once). Add additional model-specific and dataset-specific options. These options are defined in the <modify_commandline_options> function in model and dataset classes. """ if not self.initialized: # check if it has been initialized parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser = self.initialize(parser) # get the basic options opt, _ = parser.parse_known_args(args) # modify model-related parser options model_name = opt.model model_option_setter = get_option_setter(model_name) parser = model_option_setter(parser, self.isTrain) opt, _ = parser.parse_known_args(args) # parse again with new defaults # modify dataset-related parser options dataset_name = opt.dataset_mode dataset_option_setter = get_option_setter_data(dataset_name) parser = dataset_option_setter(parser, self.isTrain) # save and return the parser self.parser = parser return parser.parse_args(args) def print_options(self, opt): """Print and save options It will print both current options and default values(if different). It will save options into a text file / [checkpoints_dir] / opt.txt """ message = '' message += '----------------- Options ---------------\n' for k, v in sorted(vars(opt).items()): comment = '' default = self.parser.get_default(k) if v != default: comment = '\t[default: %s]' % str(default) message += '{:>25}: {:<30}{}\n'.format(str(k), str(v), comment) message += '----------------- End -------------------' print(message) # save to the disk expr_dir = os.path.join(opt.checkpoints_dir, opt.name) util.mkdirs(expr_dir) file_name = os.path.join(expr_dir, '{}_opt.txt'.format(opt.phase)) with open(file_name, 'wt') as opt_file: opt_file.write(message) opt_file.write('\n') def parse(self, args=None): """Parse our options, create checkpoints directory suffix, and set up gpu device.""" opt = self.gather_options(args) opt.isTrain = self.isTrain # train or test # process opt.suffix if opt.suffix: suffix = ('_' + opt.suffix.format(**vars(opt))) if opt.suffix != '' else '' opt.name = opt.name + suffix # set gpu ids str_ids = opt.gpu_ids.split(',') opt.gpu_ids = [] for str_id in str_ids: id = int(str_id) if id >= 0: opt.gpu_ids.append(id) if len(opt.gpu_ids) > 0: torch.cuda.set_device(opt.gpu_ids[0]) self.opt = opt return self.opt
import random import torch class ImagePool(): """This class implements an image buffer that stores previously generated images. This buffer enables us to update discriminators using a history of generated images rather than the ones produced by the latest generators. """ def __init__(self, pool_size): """Initialize the ImagePool class Parameters: pool_size (int) -- the size of image buffer, if pool_size=0, no buffer will be created """ self.pool_size = pool_size if self.pool_size > 0: # create an empty pool self.num_imgs = 0 self.images = [] def query(self, images): """Return an image from the pool. Parameters: images: the latest generated images from the generator Returns images from the buffer. By 50/100, the buffer will return input images. By 50/100, the buffer will return images previously stored in the buffer, and insert the current images to the buffer. """ if self.pool_size == 0: # if the buffer size is 0, do nothing return images return_images = [] for image in images: image = torch.unsqueeze(image.data, 0) if self.num_imgs < self.pool_size: # if the buffer is not full; keep inserting current images to the buffer self.num_imgs = self.num_imgs + 1 self.images.append(image) return_images.append(image) else: p = random.uniform(0, 1) if p > 0.5: # by 50% chance, the buffer will return a previously stored image, and insert the current image into the buffer random_id = random.randint(0, self.pool_size - 1) # randint is inclusive tmp = self.images[random_id].clone() self.images[random_id] = image return_images.append(tmp) else: # by another 50% chance, the buffer will return the current image return_images.append(image) return_images = torch.cat(return_images, 0) # collect all the images and return return return_images
"""This module contains simple helper functions """ from __future__ import print_function import torch import numpy as np from PIL import Image import os def tensor2im(input_image, imtype=np.uint8): """"Converts a Tensor array into a numpy image array. Parameters: input_image (tensor) -- the input image tensor array imtype (type) -- the desired type of the converted numpy array """ if not isinstance(input_image, np.ndarray): if isinstance(input_image, torch.Tensor): # get the data from a variable image_tensor = input_image.data else: return input_image image_numpy = image_tensor[0].cpu().float().numpy() # convert it into a numpy array if image_numpy.shape[0] == 1: # grayscale to RGB image_numpy = np.tile(image_numpy, (3, 1, 1)) image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + 1) / 2.0 * 255.0 # post-processing: tranpose and scaling else: # if it is a numpy array, do nothing image_numpy = input_image return image_numpy.astype(imtype) def diagnose_network(net, name='network'): """Calculate and print the mean of average absolute(gradients) Parameters: net (torch network) -- Torch network name (str) -- the name of the network """ mean = 0.0 count = 0 for param in net.parameters(): if param.grad is not None: mean += torch.mean(torch.abs(param.grad.data)) count += 1 if count > 0: mean = mean / count print(name) print(mean) def save_image(image_numpy, image_path, aspect_ratio=1.0): """Save a numpy image to the disk Parameters: image_numpy (numpy array) -- input numpy array image_path (str) -- the path of the image """ image_pil = Image.fromarray(image_numpy) h, w, _ = image_numpy.shape if aspect_ratio > 1.0: image_pil = image_pil.resize((h, int(w * aspect_ratio)), Image.BICUBIC) if aspect_ratio < 1.0: image_pil = image_pil.resize((int(h / aspect_ratio), w), Image.BICUBIC) image_pil.save(image_path) def print_numpy(x, val=True, shp=False): """Print the mean, min, max, median, std, and size of a numpy array Parameters: val (bool) -- if print the values of the numpy array shp (bool) -- if print the shape of the numpy array """ x = x.astype(np.float64) if shp: print('shape,', x.shape) if val: x = x.flatten() print('mean = %3.3f, min = %3.3f, max = %3.3f, median = %3.3f, std=%3.3f' % ( np.mean(x), np.min(x), np.max(x), np.median(x), np.std(x))) def mkdirs(paths): """create empty directories if they don't exist Parameters: paths (str list) -- a list of directory paths """ if isinstance(paths, list) and not isinstance(paths, str): for path in paths: mkdir(path) else: mkdir(paths) def mkdir(path): """create a single empty directory if it didn't exist Parameters: path (str) -- a single directory path """ if not os.path.exists(path): os.makedirs(path)
import dominate from dominate.tags import meta, h3, table, tr, td, p, a, img, br import os class HTML: """This HTML class allows us to save images and write texts into a single HTML file. It consists of functions such as <add_header> (add a text header to the HTML file), <add_images> (add a row of images to the HTML file), and <save> (save the HTML to the disk). It is based on Python library 'dominate', a Python library for creating and manipulating HTML documents using a DOM API. """ def __init__(self, web_dir, title, refresh=0): """Initialize the HTML classes Parameters: web_dir (str) -- a directory that stores the webpage. HTML file will be created at <web_dir>/index.html; images will be saved at <web_dir/images/ title (str) -- the webpage name refresh (int) -- how often the website refresh itself; if 0; no refreshing """ self.title = title self.web_dir = web_dir self.img_dir = os.path.join(self.web_dir, 'images') if not os.path.exists(self.web_dir): os.makedirs(self.web_dir) if not os.path.exists(self.img_dir): os.makedirs(self.img_dir) self.doc = dominate.document(title=title) if refresh > 0: with self.doc.head: meta(http_equiv="refresh", content=str(refresh)) def get_image_dir(self): """Return the directory that stores images""" return self.img_dir def add_header(self, text): """Insert a header to the HTML file Parameters: text (str) -- the header text """ with self.doc: h3(text) def add_images(self, ims, txts, links, width=400): """add images to the HTML file Parameters: ims (str list) -- a list of image paths txts (str list) -- a list of image names shown on the website links (str list) -- a list of hyperref links; when you click an image, it will redirect you to a new page """ self.t = table(border=1, style="table-layout: fixed;") # Insert a table self.doc.add(self.t) with self.t: with tr(): for im, txt, link in zip(ims, txts, links): with td(style="word-wrap: break-word;", halign="center", valign="top"): with p(): with a(href=os.path.join('images', link)): img(style="width:%dpx" % width, src=os.path.join('images', im)) br() p(txt) def save(self): """save the current content to the HMTL file""" html_file = '%s/index.html' % self.web_dir f = open(html_file, 'wt') f.write(self.doc.render()) f.close() if __name__ == '__main__': # we show an example usage here. html = HTML('web/', 'test_html') html.add_header('hello world') ims, txts, links = [], [], [] for n in range(4): ims.append('image_%d.png' % n) txts.append('text_%d' % n) links.append('image_%d.png' % n) html.add_images(ims, txts, links) html.save()
"""This package includes a miscellaneous collection of useful helper functions."""
from __future__ import print_function import os import tarfile import requests from warnings import warn from zipfile import ZipFile from bs4 import BeautifulSoup from os.path import abspath, isdir, join, basename class GetData: """A Python script for downloading CycleGAN or pix2pix datasets. Parameters: technique (str) -- One of: 'cyclegan' or 'pix2pix'. verbose (bool) -- If True, print additional information. Examples: >>> from util.get_data import GetData >>> gd = GetData(technique='cyclegan') >>> new_data_path = gd.get(save_path='./datasets') # options will be displayed. Alternatively, You can use bash scripts: 'scripts/download_pix2pix_model.sh' and 'scripts/download_cyclegan_model.sh'. """ def __init__(self, technique='cyclegan', verbose=True): url_dict = { 'pix2pix': 'http://efrosgans.eecs.berkeley.edu/pix2pix/datasets/', 'cyclegan': 'https://people.eecs.berkeley.edu/~taesung_park/CycleGAN/datasets' } self.url = url_dict.get(technique.lower()) self._verbose = verbose def _print(self, text): if self._verbose: print(text) @staticmethod def _get_options(r): soup = BeautifulSoup(r.text, 'lxml') options = [h.text for h in soup.find_all('a', href=True) if h.text.endswith(('.zip', 'tar.gz'))] return options def _present_options(self): r = requests.get(self.url) options = self._get_options(r) print('Options:\n') for i, o in enumerate(options): print("{0}: {1}".format(i, o)) choice = input("\nPlease enter the number of the " "dataset above you wish to download:") return options[int(choice)] def _download_data(self, dataset_url, save_path): if not isdir(save_path): os.makedirs(save_path) base = basename(dataset_url) temp_save_path = join(save_path, base) with open(temp_save_path, "wb") as f: r = requests.get(dataset_url) f.write(r.content) if base.endswith('.tar.gz'): obj = tarfile.open(temp_save_path) elif base.endswith('.zip'): obj = ZipFile(temp_save_path, 'r') else: raise ValueError("Unknown File Type: {0}.".format(base)) self._print("Unpacking Data...") obj.extractall(save_path) obj.close() os.remove(temp_save_path) def get(self, save_path, dataset=None): """ Download a dataset. Parameters: save_path (str) -- A directory to save the data to. dataset (str) -- (optional). A specific dataset to download. Note: this must include the file extension. If None, options will be presented for you to choose from. Returns: save_path_full (str) -- the absolute path to the downloaded data. """ if dataset is None: selected_dataset = self._present_options() else: selected_dataset = dataset save_path_full = join(save_path, selected_dataset.split('.')[0]) if isdir(save_path_full): warn("\n'{0}' already exists. Voiding Download.".format( save_path_full)) else: self._print('Downloading Data...') url = "{0}/{1}".format(self.url, selected_dataset) self._download_data(url, save_path=save_path) return abspath(save_path_full)
import numpy as np import os import sys import ntpath import time from . import util, html from subprocess import Popen, PIPE if sys.version_info[0] == 2: VisdomExceptionBase = Exception else: VisdomExceptionBase = ConnectionError def save_images(webpage, visuals, image_path, aspect_ratio=1.0, width=256): """Save images to the disk. Parameters: webpage (the HTML class) -- the HTML webpage class that stores these imaegs (see html.py for more details) visuals (OrderedDict) -- an ordered dictionary that stores (name, images (either tensor or numpy) ) pairs image_path (str) -- the string is used to create image paths aspect_ratio (float) -- the aspect ratio of saved images width (int) -- the images will be resized to width x width This function will save images stored in 'visuals' to the HTML file specified by 'webpage'. """ image_dir = webpage.get_image_dir() short_path = ntpath.basename(image_path[0]) name = os.path.splitext(short_path)[0] webpage.add_header(name) ims, txts, links = [], [], [] for label, im_data in visuals.items(): im = util.tensor2im(im_data) image_name = '%s_%s.png' % (name, label) save_path = os.path.join(image_dir, image_name) util.save_image(im, save_path, aspect_ratio=aspect_ratio) ims.append(image_name) txts.append(label) links.append(image_name) webpage.add_images(ims, txts, links, width=width) class Visualizer(): """This class includes several functions that can display/save images and print/save logging information. It uses a Python library 'visdom' for display, and a Python library 'dominate' (wrapped in 'HTML') for creating HTML files with images. """ def __init__(self, opt): """Initialize the Visualizer class Parameters: opt -- stores all the experiment flags; needs to be a subclass of BaseOptions Step 1: Cache the training/test options Step 2: connect to a visdom server Step 3: create an HTML object for saveing HTML filters Step 4: create a logging file to store training losses """ self.opt = opt # cache the option self.display_id = opt.display_id self.use_html = opt.isTrain and not opt.no_html self.win_size = opt.display_winsize self.name = opt.name self.port = opt.display_port self.saved = False if self.display_id > 0: # connect to a visdom server given <display_port> and <display_server> import visdom self.ncols = opt.display_ncols self.vis = visdom.Visdom(server=opt.display_server, port=opt.display_port, env=opt.display_env) if not self.vis.check_connection(): self.create_visdom_connections() if self.use_html: # create an HTML object at <checkpoints_dir>/web/; images will be saved under <checkpoints_dir>/web/images/ self.web_dir = os.path.join(opt.checkpoints_dir, opt.name, 'web') self.img_dir = os.path.join(self.web_dir, 'images') util.mkdirs([self.web_dir, self.img_dir]) # create a logging file to store training losses self.log_name = os.path.join(opt.checkpoints_dir, opt.name, 'loss_log.txt') with open(self.log_name, "a") as log_file: now = time.strftime("%c") log_file.write('================ Training Loss (%s) ================\n' % now) def reset(self): """Reset the self.saved status""" self.saved = False def create_visdom_connections(self): """If the program could not connect to Visdom server, this function will start a new server at port < self.port > """ cmd = sys.executable + ' -m visdom.server -p %d &>/dev/null &' % self.port print('\n\nCould not connect to Visdom server. \n Trying to start a server....') print('Command: %s' % cmd) Popen(cmd, shell=True, stdout=PIPE, stderr=PIPE) def display_current_results(self, visuals, epoch, save_result): """Display current results on visdom; save current results to an HTML file. Parameters: visuals (OrderedDict) - - dictionary of images to display or save epoch (int) - - the current epoch save_result (bool) - - if save the current results to an HTML file """ if self.display_id > 0: # show images in the browser using visdom ncols = self.ncols if ncols > 0: # show all the images in one visdom panel ncols = min(ncols, len(visuals)) h, w = next(iter(visuals.values())).shape[:2] table_css = """<style> table {border-collapse: separate; border-spacing: 4px; white-space: nowrap; text-align: center} table td {width: % dpx; height: % dpx; padding: 4px; outline: 4px solid black} </style>""" % (w, h) # create a table css # create a table of images. title = self.name label_html = '' label_html_row = '' images = [] idx = 0 for label, image in visuals.items(): image_numpy = util.tensor2im(image) label_html_row += '<td>%s</td>' % label images.append(image_numpy.transpose([2, 0, 1])) idx += 1 if idx % ncols == 0: label_html += '<tr>%s</tr>' % label_html_row label_html_row = '' white_image = np.ones_like(image_numpy.transpose([2, 0, 1])) * 255 while idx % ncols != 0: images.append(white_image) label_html_row += '<td></td>' idx += 1 if label_html_row != '': label_html += '<tr>%s</tr>' % label_html_row try: self.vis.images(images, nrow=ncols, win=self.display_id + 1, padding=2, opts=dict(title=title + ' images')) label_html = '<table>%s</table>' % label_html self.vis.text(table_css + label_html, win=self.display_id + 2, opts=dict(title=title + ' labels')) except VisdomExceptionBase: self.create_visdom_connections() else: # show each image in a separate visdom panel; idx = 1 try: for label, image in visuals.items(): image_numpy = util.tensor2im(image) self.vis.image(image_numpy.transpose([2, 0, 1]), opts=dict(title=label), win=self.display_id + idx) idx += 1 except VisdomExceptionBase: self.create_visdom_connections() if self.use_html and (save_result or not self.saved): # save images to an HTML file if they haven't been saved. self.saved = True # save images to the disk for label, image in visuals.items(): image_numpy = util.tensor2im(image) img_path = os.path.join(self.img_dir, 'epoch%.3d_%s.png' % (epoch, label)) util.save_image(image_numpy, img_path) # update website webpage = html.HTML(self.web_dir, 'Experiment name = %s' % self.name, refresh=1) for n in range(epoch, 0, -1): webpage.add_header('epoch [%d]' % n) ims, txts, links = [], [], [] for label, image_numpy in visuals.items(): image_numpy = util.tensor2im(image) img_path = 'epoch%.3d_%s.png' % (n, label) ims.append(img_path) txts.append(label) links.append(img_path) webpage.add_images(ims, txts, links, width=self.win_size) webpage.save() def plot_current_losses(self, epoch, counter_ratio, losses): """display the current losses on visdom display: dictionary of error labels and values Parameters: epoch (int) -- current epoch counter_ratio (float) -- progress (percentage) in the current epoch, between 0 to 1 losses (OrderedDict) -- training losses stored in the format of (name, float) pairs """ if not hasattr(self, 'plot_data'): self.plot_data = {'X': [], 'Y': [], 'legend': list(losses.keys())} self.plot_data['X'].append(epoch + counter_ratio) self.plot_data['Y'].append([losses[k] for k in self.plot_data['legend']]) try: self.vis.line( X=np.stack([np.array(self.plot_data['X'])] * len(self.plot_data['legend']), 1), Y=np.array(self.plot_data['Y']), opts={ 'title': self.name + ' loss over time', 'legend': self.plot_data['legend'], 'xlabel': 'epoch', 'ylabel': 'loss'}, win=self.display_id) except VisdomExceptionBase: self.create_visdom_connections() # losses: same format as |losses| of plot_current_losses def print_current_losses(self, epoch, iters, losses, t_comp, t_data): """print current losses on console; also save the losses to the disk Parameters: epoch (int) -- current epoch iters (int) -- current training iteration during this epoch (reset to 0 at the end of every epoch) losses (OrderedDict) -- training losses stored in the format of (name, float) pairs t_comp (float) -- computational time per data point (normalized by batch_size) t_data (float) -- data loading time per data point (normalized by batch_size) """ message = '(epoch: %d, iters: %d, time: %.3f, data: %.3f) ' % (epoch, iters, t_comp, t_data) for k, v in losses.items(): message += '%s: %.3f ' % (k, v) print(message) # print the message with open(self.log_name, "a") as log_file: log_file.write('%s\n' % message) # save the message
from .base_model import BaseModel from . import networks class TestModel(BaseModel): """ This TesteModel can be used to generate CycleGAN results for only one direction. This model will automatically set '--dataset_mode single', which only loads the images from one collection. See the test instruction for more details. """ @staticmethod def modify_commandline_options(parser, is_train=True): """Add new dataset-specific options, and rewrite default values for existing options. Parameters: parser -- original option parser is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options. Returns: the modified parser. The model can only be used during test time. It requires '--dataset_mode single'. You need to specify the network using the option '--model_suffix'. """ assert not is_train, 'TestModel cannot be used during training time' parser.set_defaults(dataset_mode='single') parser.add_argument('--model_suffix', type=str, default='', help='In checkpoints_dir, [epoch]_net_G[model_suffix].pth will be loaded as the generator.') return parser def __init__(self, opt): """Initialize the pix2pix class. Parameters: opt (Option class)-- stores all the experiment flags; needs to be a subclass of BaseOptions """ assert(not opt.isTrain) BaseModel.__init__(self, opt) # specify the training losses you want to print out. The training/test scripts will call <BaseModel.get_current_losses> self.loss_names = [] # specify the images you want to save/display. The training/test scripts will call <BaseModel.get_current_visuals> self.visual_names = ['real', 'fake'] # specify the models you want to save to the disk. The training/test scripts will call <BaseModel.save_networks> and <BaseModel.load_networks> self.model_names = ['G' + opt.model_suffix] # only generator is needed. self.netG = networks.define_G(opt.input_nc, opt.output_nc, opt.ngf, opt.netG, opt.norm, not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids) # assigns the model to self.netG_[suffix] so that it can be loaded # please see <BaseModel.load_networks> setattr(self, 'netG' + opt.model_suffix, self.netG) # store netG in self. def set_input(self, input): """Unpack input data from the dataloader and perform necessary pre-processing steps. Parameters: input: a dictionary that contains the data itself and its metadata information. We need to use 'single_dataset' dataset mode. It only load images from one domain. """ self.real = input['A'].to(self.device) self.image_paths = input['A_paths'] def forward(self): """Run forward pass.""" self.fake = self.netG(self.real) # G(real) def optimize_parameters(self): """No optimization for test model.""" pass
"""Model class template This module provides a template for users to implement custom models. You can specify '--model template' to use this model. The class name should be consistent with both the filename and its model option. The filename should be <model>_dataset.py The class name should be <Model>Dataset.py It implements a simple image-to-image translation baseline based on regression loss. Given input-output pairs (data_A, data_B), it learns a network netG that can minimize the following L1 loss: min_<netG> ||netG(data_A) - data_B||_1 You need to implement the following functions: <modify_commandline_options>: Add model-specific options and rewrite default values for existing options. <__init__>: Initialize this model class. <set_input>: Unpack input data and perform data pre-processing. <forward>: Run forward pass. This will be called by both <optimize_parameters> and <test>. <optimize_parameters>: Update network weights; it will be called in every training iteration. """ import torch from .base_model import BaseModel from . import networks class TemplateModel(BaseModel): @staticmethod def modify_commandline_options(parser, is_train=True): """Add new model-specific options and rewrite default values for existing options. Parameters: parser -- the option parser is_train -- if it is training phase or test phase. You can use this flag to add training-specific or test-specific options. Returns: the modified parser. """ parser.set_defaults(dataset_mode='aligned') # You can rewrite default values for this model. For example, this model usually uses aligned dataset as its dataset. if is_train: parser.add_argument('--lambda_regression', type=float, default=1.0, help='weight for the regression loss') # You can define new arguments for this model. return parser def __init__(self, opt): """Initialize this model class. Parameters: opt -- training/test options A few things can be done here. - (required) call the initialization function of BaseModel - define loss function, visualization images, model names, and optimizers """ BaseModel.__init__(self, opt) # call the initialization method of BaseModel # specify the training losses you want to print out. The program will call base_model.get_current_losses to plot the losses to the console and save them to the disk. self.loss_names = ['loss_G'] # specify the images you want to save and display. The program will call base_model.get_current_visuals to save and display these images. self.visual_names = ['data_A', 'data_B', 'output'] # specify the models you want to save to the disk. The program will call base_model.save_networks and base_model.load_networks to save and load networks. # you can use opt.isTrain to specify different behaviors for training and test. For example, some networks will not be used during test, and you don't need to load them. self.model_names = ['G'] # define networks; you can use opt.isTrain to specify different behaviors for training and test. self.netG = networks.define_G(opt.input_nc, opt.output_nc, opt.ngf, opt.netG, gpu_ids=self.gpu_ids) if self.isTrain: # only defined during training time # define your loss functions. You can use losses provided by torch.nn such as torch.nn.L1Loss. # We also provide a GANLoss class "networks.GANLoss". self.criterionGAN = networks.GANLoss().to(self.device) self.criterionLoss = torch.nn.L1Loss() # define and initialize optimizers. You can define one optimizer for each network. # If two networks are updated at the same time, you can use itertools.chain to group them. See cycle_gan_model.py for an example. self.optimizer = torch.optim.Adam(self.netG.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999)) self.optimizers = [self.optimizer] # Our program will automatically call <model.setup> to define schedulers, load networks, and print networks def set_input(self, input): """Unpack input data from the dataloader and perform necessary pre-processing steps. Parameters: input: a dictionary that contains the data itself and its metadata information. """ AtoB = self.opt.direction == 'AtoB' # use <direction> to swap data_A and data_B self.data_A = input['A' if AtoB else 'B'].to(self.device) # get image data A self.data_B = input['B' if AtoB else 'A'].to(self.device) # get image data B self.image_paths = input['A_paths' if AtoB else 'B_paths'] # get image paths def forward(self): """Run forward pass. This will be called by both functions <optimize_parameters> and <test>.""" self.output = self.netG(self.data_A) # generate output image given the input data_A def backward(self): """Calculate losses, gradients, and update network weights; called in every training iteration""" # caculate the intermediate results if necessary; here self.output has been computed during function <forward> # calculate loss given the input and intermediate results self.loss_G = self.criterionLoss(self.output, self.data_B) * self.opt.lambda_regression self.loss_G.backward() # calculate gradients of network G w.r.t. loss_G def optimize_parameters(self): """Update network weights; it will be called in every training iteration.""" self.forward() # first call forward to calculate intermediate results self.optimizer.zero_grad() # clear network G's existing gradients self.backward() # calculate gradients for network G self.optimizer.step() # update gradients for network G
import torch import itertools from ..util.image_pool import ImagePool from .base_model import BaseModel from . import networks class CycleGANModel(BaseModel): """ This class implements the CycleGAN model, for learning image-to-image translation without paired data. The model training requires '--dataset_mode unaligned' dataset. By default, it uses a '--netG resnet_9blocks' ResNet generator, a '--netD basic' discriminator (PatchGAN introduced by pix2pix), and a least-square GANs objective ('--gan_mode lsgan'). CycleGAN paper: https://arxiv.org/pdf/1703.10593.pdf """ @staticmethod def modify_commandline_options(parser, is_train=True): """Add new dataset-specific options, and rewrite default values for existing options. Parameters: parser -- original option parser is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options. Returns: the modified parser. For CycleGAN, in addition to GAN losses, we introduce lambda_A, lambda_B, and lambda_identity for the following losses. A (source domain), B (target domain). Generators: G_A: A -> B; G_B: B -> A. Discriminators: D_A: G_A(A) vs. B; D_B: G_B(B) vs. A. Forward cycle loss: lambda_A * ||G_B(G_A(A)) - A|| (Eqn. (2) in the paper) Backward cycle loss: lambda_B * ||G_A(G_B(B)) - B|| (Eqn. (2) in the paper) Identity loss (optional): lambda_identity * (||G_A(B) - B|| * lambda_B + ||G_B(A) - A|| * lambda_A) (Sec 5.2 "Photo generation from paintings" in the paper) Dropout is not used in the original CycleGAN paper. """ parser.set_defaults(no_dropout=True) # default CycleGAN did not use dropout if is_train: parser.add_argument('--lambda_A', type=float, default=10.0, help='weight for cycle loss (A -> B -> A)') parser.add_argument('--lambda_B', type=float, default=10.0, help='weight for cycle loss (B -> A -> B)') parser.add_argument('--lambda_identity', type=float, default=0.5, help='use identity mapping. Setting lambda_identity other than 0 has an effect of scaling the weight of the identity mapping loss. For example, if the weight of the identity loss should be 10 times smaller than the weight of the reconstruction loss, please set lambda_identity = 0.1') return parser def __init__(self, opt): """Initialize the CycleGAN class. Parameters: opt (Option class)-- stores all the experiment flags; needs to be a subclass of BaseOptions """ BaseModel.__init__(self, opt) # specify the training losses you want to print out. The training/test scripts will call <BaseModel.get_current_losses> self.loss_names = ['D_A', 'G_A', 'cycle_A', 'idt_A', 'D_B', 'G_B', 'cycle_B', 'idt_B'] # specify the images you want to save/display. The training/test scripts will call <BaseModel.get_current_visuals> visual_names_A = ['real_A', 'fake_B', 'rec_A'] visual_names_B = ['real_B', 'fake_A', 'rec_B'] if self.isTrain and self.opt.lambda_identity > 0.0: # if identity loss is used, we also visualize idt_B=G_A(B) ad idt_A=G_A(B) visual_names_A.append('idt_B') visual_names_B.append('idt_A') self.visual_names = visual_names_A + visual_names_B # combine visualizations for A and B # specify the models you want to save to the disk. The training/test scripts will call <BaseModel.save_networks> and <BaseModel.load_networks>. if self.isTrain: self.model_names = ['G_A', 'G_B', 'D_A', 'D_B'] else: # during test time, only load Gs self.model_names = ['G_A', 'G_B'] # define networks (both Generators and discriminators) # The naming is different from those used in the paper. # Code (vs. paper): G_A (G), G_B (F), D_A (D_Y), D_B (D_X) self.netG_A = networks.define_G(opt.input_nc, opt.output_nc, opt.ngf, opt.netG, opt.norm, not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids) self.netG_B = networks.define_G(opt.output_nc, opt.input_nc, opt.ngf, opt.netG, opt.norm, not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids) if self.isTrain: # define discriminators self.netD_A = networks.define_D(opt.output_nc, opt.ndf, opt.netD, opt.n_layers_D, opt.norm, opt.init_type, opt.init_gain, self.gpu_ids) self.netD_B = networks.define_D(opt.input_nc, opt.ndf, opt.netD, opt.n_layers_D, opt.norm, opt.init_type, opt.init_gain, self.gpu_ids) if self.isTrain: if opt.lambda_identity > 0.0: # only works when input and output images have the same number of channels assert(opt.input_nc == opt.output_nc) self.fake_A_pool = ImagePool(opt.pool_size) # create image buffer to store previously generated images self.fake_B_pool = ImagePool(opt.pool_size) # create image buffer to store previously generated images # define loss functions self.criterionGAN = networks.GANLoss(opt.gan_mode).to(self.device) # define GAN loss. self.criterionCycle = torch.nn.L1Loss() self.criterionIdt = torch.nn.L1Loss() # initialize optimizers; schedulers will be automatically created by function <BaseModel.setup>. self.optimizer_G = torch.optim.Adam(itertools.chain(self.netG_A.parameters(), self.netG_B.parameters()), lr=opt.lr, betas=(opt.beta1, 0.999)) self.optimizer_D = torch.optim.Adam(itertools.chain(self.netD_A.parameters(), self.netD_B.parameters()), lr=opt.lr, betas=(opt.beta1, 0.999)) self.optimizers.append(self.optimizer_G) self.optimizers.append(self.optimizer_D) def set_input(self, input): """Unpack input data from the dataloader and perform necessary pre-processing steps. Parameters: input (dict): include the data itself and its metadata information. The option 'direction' can be used to swap domain A and domain B. """ AtoB = self.opt.direction == 'AtoB' self.real_A = input['A' if AtoB else 'B'].to(self.device) self.real_B = input['B' if AtoB else 'A'].to(self.device) self.image_paths = input['A_paths' if AtoB else 'B_paths'] def forward(self): """Run forward pass; called by both functions <optimize_parameters> and <test>.""" self.fake_B = self.netG_A(self.real_A) # G_A(A) self.rec_A = self.netG_B(self.fake_B) # G_B(G_A(A)) self.fake_A = self.netG_B(self.real_B) # G_B(B) self.rec_B = self.netG_A(self.fake_A) # G_A(G_B(B)) def backward_D_basic(self, netD, real, fake): """Calculate GAN loss for the discriminator Parameters: netD (network) -- the discriminator D real (tensor array) -- real images fake (tensor array) -- images generated by a generator Return the discriminator loss. We also call loss_D.backward() to calculate the gradients. """ # Real pred_real = netD(real) loss_D_real = self.criterionGAN(pred_real, True) # Fake pred_fake = netD(fake.detach()) loss_D_fake = self.criterionGAN(pred_fake, False) # Combined loss and calculate gradients loss_D = (loss_D_real + loss_D_fake) * 0.5 loss_D.backward() return loss_D def backward_D_A(self): """Calculate GAN loss for discriminator D_A""" fake_B = self.fake_B_pool.query(self.fake_B) self.loss_D_A = self.backward_D_basic(self.netD_A, self.real_B, fake_B) def backward_D_B(self): """Calculate GAN loss for discriminator D_B""" fake_A = self.fake_A_pool.query(self.fake_A) self.loss_D_B = self.backward_D_basic(self.netD_B, self.real_A, fake_A) def backward_G(self): """Calculate the loss for generators G_A and G_B""" lambda_idt = self.opt.lambda_identity lambda_A = self.opt.lambda_A lambda_B = self.opt.lambda_B # Identity loss if lambda_idt > 0: # G_A should be identity if real_B is fed: ||G_A(B) - B|| self.idt_A = self.netG_A(self.real_B) self.loss_idt_A = self.criterionIdt(self.idt_A, self.real_B) * lambda_B * lambda_idt # G_B should be identity if real_A is fed: ||G_B(A) - A|| self.idt_B = self.netG_B(self.real_A) self.loss_idt_B = self.criterionIdt(self.idt_B, self.real_A) * lambda_A * lambda_idt else: self.loss_idt_A = 0 self.loss_idt_B = 0 # GAN loss D_A(G_A(A)) self.loss_G_A = self.criterionGAN(self.netD_A(self.fake_B), True) # GAN loss D_B(G_B(B)) self.loss_G_B = self.criterionGAN(self.netD_B(self.fake_A), True) # Forward cycle loss || G_B(G_A(A)) - A|| self.loss_cycle_A = self.criterionCycle(self.rec_A, self.real_A) * lambda_A # Backward cycle loss || G_A(G_B(B)) - B|| self.loss_cycle_B = self.criterionCycle(self.rec_B, self.real_B) * lambda_B # combined loss and calculate gradients self.loss_G = self.loss_G_A + self.loss_G_B + self.loss_cycle_A + self.loss_cycle_B + self.loss_idt_A + self.loss_idt_B self.loss_G.backward() def optimize_parameters(self): """Calculate losses, gradients, and update network weights; called in every training iteration""" # forward self.forward() # compute fake images and reconstruction images. # G_A and G_B self.set_requires_grad([self.netD_A, self.netD_B], False) # Ds require no gradients when optimizing Gs self.optimizer_G.zero_grad() # set G_A and G_B's gradients to zero self.backward_G() # calculate gradients for G_A and G_B self.optimizer_G.step() # update G_A and G_B's weights # D_A and D_B self.set_requires_grad([self.netD_A, self.netD_B], True) self.optimizer_D.zero_grad() # set D_A and D_B's gradients to zero self.backward_D_A() # calculate gradients for D_A self.backward_D_B() # calculate graidents for D_B self.optimizer_D.step() # update D_A and D_B's weights
import torch from .base_model import BaseModel from . import networks class Pix2PixModel(BaseModel): """ This class implements the pix2pix model, for learning a mapping from input images to output images given paired data. The model training requires '--dataset_mode aligned' dataset. By default, it uses a '--netG unet256' U-Net generator, a '--netD basic' discriminator (PatchGAN), and a '--gan_mode' vanilla GAN loss (the cross-entropy objective used in the orignal GAN paper). pix2pix paper: https://arxiv.org/pdf/1611.07004.pdf """ @staticmethod def modify_commandline_options(parser, is_train=True): """Add new dataset-specific options, and rewrite default values for existing options. Parameters: parser -- original option parser is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options. Returns: the modified parser. For pix2pix, we do not use image buffer The training objective is: GAN Loss + lambda_L1 * ||G(A)-B||_1 By default, we use vanilla GAN loss, UNet with batchnorm, and aligned datasets. """ # changing the default values to match the pix2pix paper (https://phillipi.github.io/pix2pix/) parser.set_defaults(norm='batch', netG='unet_256', dataset_mode='aligned') if is_train: parser.set_defaults(pool_size=0, gan_mode='vanilla') parser.add_argument('--lambda_L1', type=float, default=100.0, help='weight for L1 loss') return parser def __init__(self, opt): """Initialize the pix2pix class. Parameters: opt (Option class)-- stores all the experiment flags; needs to be a subclass of BaseOptions """ BaseModel.__init__(self, opt) # specify the training losses you want to print out. The training/test scripts will call <BaseModel.get_current_losses> self.loss_names = ['G_GAN', 'G_L1', 'D_real', 'D_fake'] # specify the images you want to save/display. The training/test scripts will call <BaseModel.get_current_visuals> self.visual_names = ['real_A', 'fake_B', 'real_B'] # specify the models you want to save to the disk. The training/test scripts will call <BaseModel.save_networks> and <BaseModel.load_networks> if self.isTrain: self.model_names = ['G', 'D'] else: # during test time, only load G self.model_names = ['G'] # define networks (both generator and discriminator) self.netG = networks.define_G(opt.input_nc, opt.output_nc, opt.ngf, opt.netG, opt.norm, not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids) if self.isTrain: # define a discriminator; conditional GANs need to take both input and output images; Therefore, #channels for D is input_nc + output_nc self.netD = networks.define_D(opt.input_nc + opt.output_nc, opt.ndf, opt.netD, opt.n_layers_D, opt.norm, opt.init_type, opt.init_gain, self.gpu_ids) if self.isTrain: # define loss functions self.criterionGAN = networks.GANLoss(opt.gan_mode).to(self.device) self.criterionL1 = torch.nn.L1Loss() # initialize optimizers; schedulers will be automatically created by function <BaseModel.setup>. self.optimizer_G = torch.optim.Adam(self.netG.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999)) self.optimizer_D = torch.optim.Adam(self.netD.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999)) self.optimizers.append(self.optimizer_G) self.optimizers.append(self.optimizer_D) def set_input(self, input): """Unpack input data from the dataloader and perform necessary pre-processing steps. Parameters: input (dict): include the data itself and its metadata information. The option 'direction' can be used to swap images in domain A and domain B. """ AtoB = self.opt.direction == 'AtoB' self.real_A = input['A' if AtoB else 'B'].to(self.device) self.real_B = input['B' if AtoB else 'A'].to(self.device) self.image_paths = input['A_paths' if AtoB else 'B_paths'] def forward(self): """Run forward pass; called by both functions <optimize_parameters> and <test>.""" self.fake_B = self.netG(self.real_A) # G(A) def backward_D(self): """Calculate GAN loss for the discriminator""" # Fake; stop backprop to the generator by detaching fake_B fake_AB = torch.cat((self.real_A, self.fake_B), 1) # we use conditional GANs; we need to feed both input and output to the discriminator pred_fake = self.netD(fake_AB.detach()) self.loss_D_fake = self.criterionGAN(pred_fake, False) # Real real_AB = torch.cat((self.real_A, self.real_B), 1) pred_real = self.netD(real_AB) self.loss_D_real = self.criterionGAN(pred_real, True) # combine loss and calculate gradients self.loss_D = (self.loss_D_fake + self.loss_D_real) * 0.5 self.loss_D.backward() def backward_G(self): """Calculate GAN and L1 loss for the generator""" # First, G(A) should fake the discriminator fake_AB = torch.cat((self.real_A, self.fake_B), 1) pred_fake = self.netD(fake_AB) self.loss_G_GAN = self.criterionGAN(pred_fake, True) # Second, G(A) = B self.loss_G_L1 = self.criterionL1(self.fake_B, self.real_B) * self.opt.lambda_L1 # combine loss and calculate gradients self.loss_G = self.loss_G_GAN + self.loss_G_L1 self.loss_G.backward() def optimize_parameters(self): self.forward() # compute fake images: G(A) # update D self.set_requires_grad(self.netD, True) # enable backprop for D self.optimizer_D.zero_grad() # set D's gradients to zero self.backward_D() # calculate gradients for D self.optimizer_D.step() # update D's weights # update G self.set_requires_grad(self.netD, False) # D requires no gradients when optimizing G self.optimizer_G.zero_grad() # set G's gradients to zero self.backward_G() # calculate graidents for G self.optimizer_G.step() # udpate G's weights
"""This package contains modules related to objective functions, optimizations, and network architectures. To add a custom model class called 'dummy', you need to add a file called 'dummy_model.py' and define a subclass DummyModel inherited from BaseModel. You need to implement the following five functions: -- <__init__>: initialize the class; first call BaseModel.__init__(self, opt). -- <set_input>: unpack data from dataset and apply preprocessing. -- <forward>: produce intermediate results. -- <optimize_parameters>: calculate loss, gradients, and update network weights. -- <modify_commandline_options>: (optionally) add model-specific options and set default options. In the function <__init__>, you need to define four lists: -- self.loss_names (str list): specify the training losses that you want to plot and save. -- self.model_names (str list): define networks used in our training. -- self.visual_names (str list): specify the images that you want to display and save. -- self.optimizers (optimizer list): define and initialize optimizers. You can define one optimizer for each network. If two networks are updated at the same time, you can use itertools.chain to group them. See cycle_gan_model.py for an usage. Now you can use the model class by specifying flag '--model dummy'. See our template model class 'template_model.py' for more details. """ import importlib from .base_model import BaseModel def find_model_using_name(model_name): """Import the module "models/[model_name]_model.py". In the file, the class called DatasetNameModel() will be instantiated. It has to be a subclass of BaseModel, and it is case-insensitive. """ model_filename = f'{__package__}.{model_name}_model' modellib = importlib.import_module(model_filename) model = None target_model_name = model_name.replace('_', '') + 'model' for name, cls in modellib.__dict__.items(): if name.lower() == target_model_name.lower() \ and issubclass(cls, BaseModel): model = cls if model is None: print("In %s.py, there should be a subclass of BaseModel with class name that matches %s in lowercase." % (model_filename, target_model_name)) exit(0) return model def get_option_setter(model_name): """Return the static method <modify_commandline_options> of the model class.""" model_class = find_model_using_name(model_name) return model_class.modify_commandline_options def create_model(opt): """Create a model given the option. This function warps the class CustomDatasetDataLoader. This is the main interface between this package and 'train.py'/'test.py' Example: >>> from models import create_model >>> model = create_model(opt) """ model = find_model_using_name(opt.model) instance = model(opt) return instance
from .pix2pix_model import Pix2PixModel import torch from skimage import color # used for lab2rgb import numpy as np class ColorizationModel(Pix2PixModel): """This is a subclass of Pix2PixModel for image colorization (black & white image -> colorful images). The model training requires '-dataset_model colorization' dataset. It trains a pix2pix model, mapping from L channel to ab channels in Lab color space. By default, the colorization dataset will automatically set '--input_nc 1' and '--output_nc 2'. """ @staticmethod def modify_commandline_options(parser, is_train=True): """Add new dataset-specific options, and rewrite default values for existing options. Parameters: parser -- original option parser is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options. Returns: the modified parser. By default, we use 'colorization' dataset for this model. See the original pix2pix paper (https://arxiv.org/pdf/1611.07004.pdf) and colorization results (Figure 9 in the paper) """ Pix2PixModel.modify_commandline_options(parser, is_train) parser.set_defaults(dataset_mode='colorization') return parser def __init__(self, opt): """Initialize the class. Parameters: opt (Option class)-- stores all the experiment flags; needs to be a subclass of BaseOptions For visualization, we set 'visual_names' as 'real_A' (input real image), 'real_B_rgb' (ground truth RGB image), and 'fake_B_rgb' (predicted RGB image) We convert the Lab image 'real_B' (inherited from Pix2pixModel) to a RGB image 'real_B_rgb'. we convert the Lab image 'fake_B' (inherited from Pix2pixModel) to a RGB image 'fake_B_rgb'. """ # reuse the pix2pix model Pix2PixModel.__init__(self, opt) # specify the images to be visualized. self.visual_names = ['real_A', 'real_B_rgb', 'fake_B_rgb'] def lab2rgb(self, L, AB): """Convert an Lab tensor image to a RGB numpy output Parameters: L (1-channel tensor array): L channel images (range: [-1, 1], torch tensor array) AB (2-channel tensor array): ab channel images (range: [-1, 1], torch tensor array) Returns: rgb (RGB numpy image): rgb output images (range: [0, 255], numpy array) """ AB2 = AB * 110.0 L2 = (L + 1.0) * 50.0 Lab = torch.cat([L2, AB2], dim=1) Lab = Lab[0].data.cpu().float().numpy() Lab = np.transpose(Lab.astype(np.float64), (1, 2, 0)) rgb = color.lab2rgb(Lab) * 255 return rgb def compute_visuals(self): """Calculate additional output images for visdom and HTML visualization""" self.real_B_rgb = self.lab2rgb(self.real_A, self.real_B) self.fake_B_rgb = self.lab2rgb(self.real_A, self.fake_B)
import os import torch from collections import OrderedDict from abc import ABC, abstractmethod from . import networks class BaseModel(ABC): """This class is an abstract base class (ABC) for models. To create a subclass, you need to implement the following five functions: -- <__init__>: initialize the class; first call BaseModel.__init__(self, opt). -- <set_input>: unpack data from dataset and apply preprocessing. -- <forward>: produce intermediate results. -- <optimize_parameters>: calculate losses, gradients, and update network weights. -- <modify_commandline_options>: (optionally) add model-specific options and set default options. """ def __init__(self, opt): """Initialize the BaseModel class. Parameters: opt (Option class)-- stores all the experiment flags; needs to be a subclass of BaseOptions When creating your custom class, you need to implement your own initialization. In this function, you should first call <BaseModel.__init__(self, opt)> Then, you need to define four lists: -- self.loss_names (str list): specify the training losses that you want to plot and save. -- self.model_names (str list): define networks used in our training. -- self.visual_names (str list): specify the images that you want to display and save. -- self.optimizers (optimizer list): define and initialize optimizers. You can define one optimizer for each network. If two networks are updated at the same time, you can use itertools.chain to group them. See cycle_gan_model.py for an example. """ self.opt = opt self.gpu_ids = opt.gpu_ids self.isTrain = opt.isTrain self.device = torch.device('cuda:{}'.format(self.gpu_ids[0])) if self.gpu_ids else torch.device('cpu') # get device name: CPU or GPU self.save_dir = os.path.join(opt.checkpoints_dir, opt.name) # save all the checkpoints to save_dir if opt.preprocess != 'scale_width': # with [scale_width], input images might have different sizes, which hurts the performance of cudnn.benchmark. torch.backends.cudnn.benchmark = True self.loss_names = [] self.model_names = [] self.visual_names = [] self.optimizers = [] self.image_paths = [] self.metric = 0 # used for learning rate policy 'plateau' @staticmethod def modify_commandline_options(parser, is_train): """Add new model-specific options, and rewrite default values for existing options. Parameters: parser -- original option parser is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options. Returns: the modified parser. """ return parser @abstractmethod def set_input(self, input): """Unpack input data from the dataloader and perform necessary pre-processing steps. Parameters: input (dict): includes the data itself and its metadata information. """ pass @abstractmethod def forward(self): """Run forward pass; called by both functions <optimize_parameters> and <test>.""" pass @abstractmethod def optimize_parameters(self): """Calculate losses, gradients, and update network weights; called in every training iteration""" pass def setup(self, opt): """Load and print networks; create schedulers Parameters: opt (Option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions """ if self.isTrain: self.schedulers = [networks.get_scheduler(optimizer, opt) for optimizer in self.optimizers] if not self.isTrain or opt.continue_train: load_suffix = 'iter_%d' % opt.load_iter if opt.load_iter > 0 else opt.epoch self.load_networks(load_suffix) def eval(self): """Make models eval mode during test time""" for name in self.model_names: if isinstance(name, str): net = getattr(self, 'net' + name) net.eval() def test(self): """Forward function used in test time. This function wraps <forward> function in no_grad() so we don't save intermediate steps for backprop It also calls <compute_visuals> to produce additional visualization results """ with torch.no_grad(): self.forward() self.compute_visuals() def compute_visuals(self): """Calculate additional output images for visdom and HTML visualization""" pass def get_image_paths(self): """ Return image paths that are used to load current data""" return self.image_paths def update_learning_rate(self): """Update learning rates for all the networks; called at the end of every epoch""" for scheduler in self.schedulers: if self.opt.lr_policy == 'plateau': scheduler.step(self.metric) else: scheduler.step() lr = self.optimizers[0].param_groups[0]['lr'] def get_current_visuals(self): """Return visualization images. train.py will display these images with visdom, and save the images to a HTML""" visual_ret = OrderedDict() for name in self.visual_names: if isinstance(name, str): visual_ret[name] = getattr(self, name) return visual_ret def get_current_losses(self): """Return traning losses / errors. train.py will print out these errors on console, and save them to a file""" errors_ret = OrderedDict() for name in self.loss_names: if isinstance(name, str): errors_ret[name] = float(getattr(self, 'loss_' + name)) # float(...) works for both scalar tensor and float number return errors_ret def save_networks(self, epoch): """Save all the networks to the disk. Parameters: epoch (int) -- current epoch; used in the file name '%s_net_%s.pth' % (epoch, name) """ for name in self.model_names: if isinstance(name, str): save_filename = '%s_net_%s.pth' % (epoch, name) save_path = os.path.join(self.save_dir, save_filename) net = getattr(self, 'net' + name) if len(self.gpu_ids) > 0 and torch.cuda.is_available(): torch.save(net.module.cpu().state_dict(), save_path) net.cuda(self.gpu_ids[0]) else: torch.save(net.cpu().state_dict(), save_path) def __patch_instance_norm_state_dict(self, state_dict, net): """Fix InstanceNorm checkpoints incompatibility (prior to 0.4)""" modules = dict(net.named_modules()) for key in list(state_dict.keys()): path, field = key.rsplit('.', 1) if modules[path].__class__.__name__.startswith('InstanceNorm'): if field in ['running_mean', 'running_var']: if getattr(modules[path], field) is None: state_dict.pop(key) if field == 'num_batches_tracked': state_dict.pop(key) def load_networks(self, epoch): """Load all the networks from the disk. Parameters: epoch (int) -- current epoch; used in the file name '%s_net_%s.pth' % (epoch, name) """ for name in self.model_names: if isinstance(name, str): load_filename = '%s_net_%s.pth' % (epoch, name) load_path = os.path.join(self.save_dir, load_filename) net = getattr(self, 'net' + name) if isinstance(net, torch.nn.DataParallel): net = net.module # if you are using PyTorch newer than 0.4 (e.g., built from # GitHub source), you can remove str() on self.device state_dict = torch.load(load_path, map_location=str(self.device)) if hasattr(state_dict, '_metadata'): del state_dict._metadata # patch InstanceNorm checkpoints prior to 0.4 self.__patch_instance_norm_state_dict(state_dict, net) net.load_state_dict(state_dict) def print_networks(self, verbose): """Print the total number of parameters in the network and (if verbose) network architecture Parameters: verbose (bool) -- if verbose: print the network architecture """ print('---------- Networks initialized -------------') for name in self.model_names: if isinstance(name, str): net = getattr(self, 'net' + name) num_params = 0 for param in net.parameters(): num_params += param.numel() if verbose: print(net) print('[Network %s] Total number of parameters : %.3f M' % (name, num_params / 1e6)) print('-----------------------------------------------') def set_requires_grad(self, nets, requires_grad=False): """Set requies_grad=Fasle for all the networks to avoid unnecessary computations Parameters: nets (network list) -- a list of networks requires_grad (bool) -- whether the networks require gradients or not """ if not isinstance(nets, list): nets = [nets] for net in nets: if net is not None: for param in net.parameters(): param.requires_grad = requires_grad
import torch import torch.nn as nn from torch.nn import init import functools from torch.optim import lr_scheduler ############################################################################### # Helper Functions ############################################################################### class Identity(nn.Module): def forward(self, x): return x def get_norm_layer(norm_type='instance'): """Return a normalization layer Parameters: norm_type (str) -- the name of the normalization layer: batch | instance | none For BatchNorm, we use learnable affine parameters and track running statistics (mean/stddev). For InstanceNorm, we do not use learnable affine parameters. We do not track running statistics. """ if norm_type == 'batch': norm_layer = functools.partial(nn.BatchNorm2d, affine=True, track_running_stats=True) elif norm_type == 'instance': norm_layer = functools.partial(nn.InstanceNorm2d, affine=False, track_running_stats=False) elif norm_type == 'none': def norm_layer(x): return Identity() else: raise NotImplementedError('normalization layer [%s] is not found' % norm_type) return norm_layer def get_scheduler(optimizer, opt): """Return a learning rate scheduler Parameters: optimizer -- the optimizer of the network opt (option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions.  opt.lr_policy is the name of learning rate policy: linear | step | plateau | cosine For 'linear', we keep the same learning rate for the first <opt.n_epochs> epochs and linearly decay the rate to zero over the next <opt.n_epochs_decay> epochs. For other schedulers (step, plateau, and cosine), we use the default PyTorch schedulers. See https://pytorch.org/docs/stable/optim.html for more details. """ if opt.lr_policy == 'linear': def lambda_rule(epoch): lr_l = 1.0 - max(0, epoch + opt.epoch_count - opt.n_epochs) / float(opt.n_epochs_decay + 1) return lr_l scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda_rule) elif opt.lr_policy == 'step': scheduler = lr_scheduler.StepLR(optimizer, step_size=opt.lr_decay_iters, gamma=0.1) elif opt.lr_policy == 'plateau': scheduler = lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.2, threshold=0.01, patience=5) elif opt.lr_policy == 'cosine': scheduler = lr_scheduler.CosineAnnealingLR(optimizer, T_max=opt.n_epochs, eta_min=0) else: return NotImplementedError('learning rate policy [%s] is not implemented', opt.lr_policy) return scheduler def init_weights(net, init_type='normal', init_gain=0.02): """Initialize network weights. Parameters: net (network) -- network to be initialized init_type (str) -- the name of an initialization method: normal | xavier | kaiming | orthogonal init_gain (float) -- scaling factor for normal, xavier and orthogonal. We use 'normal' in the original pix2pix and CycleGAN paper. But xavier and kaiming might work better for some applications. Feel free to try yourself. """ def init_func(m): # define the initialization function classname = m.__class__.__name__ if hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1): if init_type == 'normal': init.normal_(m.weight.data, 0.0, init_gain) elif init_type == 'xavier': init.xavier_normal_(m.weight.data, gain=init_gain) elif init_type == 'kaiming': init.kaiming_normal_(m.weight.data, a=0, mode='fan_in') elif init_type == 'orthogonal': init.orthogonal_(m.weight.data, gain=init_gain) else: raise NotImplementedError('initialization method [%s] is not implemented' % init_type) if hasattr(m, 'bias') and m.bias is not None: init.constant_(m.bias.data, 0.0) elif classname.find('BatchNorm2d') != -1: # BatchNorm Layer's weight is not a matrix; only normal distribution applies. init.normal_(m.weight.data, 1.0, init_gain) init.constant_(m.bias.data, 0.0) net.apply(init_func) # apply the initialization function <init_func> def init_net(net, init_type='normal', init_gain=0.02, gpu_ids=[]): """Initialize a network: 1. register CPU/GPU device (with multi-GPU support); 2. initialize the network weights Parameters: net (network) -- the network to be initialized init_type (str) -- the name of an initialization method: normal | xavier | kaiming | orthogonal gain (float) -- scaling factor for normal, xavier and orthogonal. gpu_ids (int list) -- which GPUs the network runs on: e.g., 0,1,2 Return an initialized network. """ if len(gpu_ids) > 0: assert(torch.cuda.is_available()) net.to(gpu_ids[0]) net = torch.nn.DataParallel(net, gpu_ids) # multi-GPUs init_weights(net, init_type, init_gain=init_gain) return net def define_G(input_nc, output_nc, ngf, netG, norm='batch', use_dropout=False, init_type='normal', init_gain=0.02, gpu_ids=[]): """Create a generator Parameters: input_nc (int) -- the number of channels in input images output_nc (int) -- the number of channels in output images ngf (int) -- the number of filters in the last conv layer netG (str) -- the architecture's name: resnet_9blocks | resnet_6blocks | unet_256 | unet_128 norm (str) -- the name of normalization layers used in the network: batch | instance | none use_dropout (bool) -- if use dropout layers. init_type (str) -- the name of our initialization method. init_gain (float) -- scaling factor for normal, xavier and orthogonal. gpu_ids (int list) -- which GPUs the network runs on: e.g., 0,1,2 Returns a generator Our current implementation provides two types of generators: U-Net: [unet_128] (for 128x128 input images) and [unet_256] (for 256x256 input images) The original U-Net paper: https://arxiv.org/abs/1505.04597 Resnet-based generator: [resnet_6blocks] (with 6 Resnet blocks) and [resnet_9blocks] (with 9 Resnet blocks) Resnet-based generator consists of several Resnet blocks between a few downsampling/upsampling operations. We adapt Torch code from Justin Johnson's neural style transfer project (https://github.com/jcjohnson/fast-neural-style). The generator has been initialized by <init_net>. It uses RELU for non-linearity. """ net = None norm_layer = get_norm_layer(norm_type=norm) if netG == 'resnet_9blocks': net = ResnetGenerator(input_nc, output_nc, ngf, norm_layer=norm_layer, use_dropout=use_dropout, n_blocks=9) elif netG == 'resnet_6blocks': net = ResnetGenerator(input_nc, output_nc, ngf, norm_layer=norm_layer, use_dropout=use_dropout, n_blocks=6) elif netG == 'unet_128': net = UnetGenerator(input_nc, output_nc, 7, ngf, norm_layer=norm_layer, use_dropout=use_dropout) elif netG == 'unet_256': net = UnetGenerator(input_nc, output_nc, 8, ngf, norm_layer=norm_layer, use_dropout=use_dropout) else: raise NotImplementedError('Generator model name [%s] is not recognized' % netG) return init_net(net, init_type, init_gain, gpu_ids) def define_D(input_nc, ndf, netD, n_layers_D=3, norm='batch', init_type='normal', init_gain=0.02, gpu_ids=[]): """Create a discriminator Parameters: input_nc (int) -- the number of channels in input images ndf (int) -- the number of filters in the first conv layer netD (str) -- the architecture's name: basic | n_layers | pixel n_layers_D (int) -- the number of conv layers in the discriminator; effective when netD=='n_layers' norm (str) -- the type of normalization layers used in the network. init_type (str) -- the name of the initialization method. init_gain (float) -- scaling factor for normal, xavier and orthogonal. gpu_ids (int list) -- which GPUs the network runs on: e.g., 0,1,2 Returns a discriminator Our current implementation provides three types of discriminators: [basic]: 'PatchGAN' classifier described in the original pix2pix paper. It can classify whether 70×70 overlapping patches are real or fake. Such a patch-level discriminator architecture has fewer parameters than a full-image discriminator and can work on arbitrarily-sized images in a fully convolutional fashion. [n_layers]: With this mode, you can specify the number of conv layers in the discriminator with the parameter <n_layers_D> (default=3 as used in [basic] (PatchGAN).) [pixel]: 1x1 PixelGAN discriminator can classify whether a pixel is real or not. It encourages greater color diversity but has no effect on spatial statistics. The discriminator has been initialized by <init_net>. It uses Leakly RELU for non-linearity. """ net = None norm_layer = get_norm_layer(norm_type=norm) if netD == 'basic': # default PatchGAN classifier net = NLayerDiscriminator(input_nc, ndf, n_layers=3, norm_layer=norm_layer) elif netD == 'n_layers': # more options net = NLayerDiscriminator(input_nc, ndf, n_layers_D, norm_layer=norm_layer) elif netD == 'pixel': # classify if each pixel is real or fake net = PixelDiscriminator(input_nc, ndf, norm_layer=norm_layer) else: raise NotImplementedError('Discriminator model name [%s] is not recognized' % netD) return init_net(net, init_type, init_gain, gpu_ids) ############################################################################## # Classes ############################################################################## class GANLoss(nn.Module): """Define different GAN objectives. The GANLoss class abstracts away the need to create the target label tensor that has the same size as the input. """ def __init__(self, gan_mode, target_real_label=1.0, target_fake_label=0.0): """ Initialize the GANLoss class. Parameters: gan_mode (str) - - the type of GAN objective. It currently supports vanilla, lsgan, and wgangp. target_real_label (bool) - - label for a real image target_fake_label (bool) - - label of a fake image Note: Do not use sigmoid as the last layer of Discriminator. LSGAN needs no sigmoid. vanilla GANs will handle it with BCEWithLogitsLoss. """ super(GANLoss, self).__init__() self.register_buffer('real_label', torch.tensor(target_real_label)) self.register_buffer('fake_label', torch.tensor(target_fake_label)) self.gan_mode = gan_mode if gan_mode == 'lsgan': self.loss = nn.MSELoss() elif gan_mode == 'vanilla': self.loss = nn.BCEWithLogitsLoss() elif gan_mode in ['wgangp']: self.loss = None else: raise NotImplementedError('gan mode %s not implemented' % gan_mode) def get_target_tensor(self, prediction, target_is_real): """Create label tensors with the same size as the input. Parameters: prediction (tensor) - - tpyically the prediction from a discriminator target_is_real (bool) - - if the ground truth label is for real images or fake images Returns: A label tensor filled with ground truth label, and with the size of the input """ if target_is_real: target_tensor = self.real_label else: target_tensor = self.fake_label return target_tensor.expand_as(prediction) def __call__(self, prediction, target_is_real): """Calculate loss given Discriminator's output and grount truth labels. Parameters: prediction (tensor) - - tpyically the prediction output from a discriminator target_is_real (bool) - - if the ground truth label is for real images or fake images Returns: the calculated loss. """ if self.gan_mode in ['lsgan', 'vanilla']: target_tensor = self.get_target_tensor(prediction, target_is_real) loss = self.loss(prediction, target_tensor) elif self.gan_mode == 'wgangp': if target_is_real: loss = -prediction.mean() else: loss = prediction.mean() return loss def cal_gradient_penalty(netD, real_data, fake_data, device, type='mixed', constant=1.0, lambda_gp=10.0): """Calculate the gradient penalty loss, used in WGAN-GP paper https://arxiv.org/abs/1704.00028 Arguments: netD (network) -- discriminator network real_data (tensor array) -- real images fake_data (tensor array) -- generated images from the generator device (str) -- GPU / CPU: from torch.device('cuda:{}'.format(self.gpu_ids[0])) if self.gpu_ids else torch.device('cpu') type (str) -- if we mix real and fake data or not [real | fake | mixed]. constant (float) -- the constant used in formula ( ||gradient||_2 - constant)^2 lambda_gp (float) -- weight for this loss Returns the gradient penalty loss """ if lambda_gp > 0.0: if type == 'real': # either use real images, fake images, or a linear interpolation of two. interpolatesv = real_data elif type == 'fake': interpolatesv = fake_data elif type == 'mixed': alpha = torch.rand(real_data.shape[0], 1, device=device) alpha = alpha.expand(real_data.shape[0], real_data.nelement() // real_data.shape[0]).contiguous().view(*real_data.shape) interpolatesv = alpha * real_data + ((1 - alpha) * fake_data) else: raise NotImplementedError('{} not implemented'.format(type)) interpolatesv.requires_grad_(True) disc_interpolates = netD(interpolatesv) gradients = torch.autograd.grad(outputs=disc_interpolates, inputs=interpolatesv, grad_outputs=torch.ones(disc_interpolates.size()).to(device), create_graph=True, retain_graph=True, only_inputs=True) gradients = gradients[0].view(real_data.size(0), -1) # flat the data gradient_penalty = (((gradients + 1e-16).norm(2, dim=1) - constant) ** 2).mean() * lambda_gp # added eps return gradient_penalty, gradients else: return 0.0, None class ResnetGenerator(nn.Module): """Resnet-based generator that consists of Resnet blocks between a few downsampling/upsampling operations. We adapt Torch code and idea from Justin Johnson's neural style transfer project(https://github.com/jcjohnson/fast-neural-style) """ def __init__(self, input_nc, output_nc, ngf=64, norm_layer=nn.BatchNorm2d, use_dropout=False, n_blocks=6, padding_type='reflect'): """Construct a Resnet-based generator Parameters: input_nc (int) -- the number of channels in input images output_nc (int) -- the number of channels in output images ngf (int) -- the number of filters in the last conv layer norm_layer -- normalization layer use_dropout (bool) -- if use dropout layers n_blocks (int) -- the number of ResNet blocks padding_type (str) -- the name of padding layer in conv layers: reflect | replicate | zero """ assert(n_blocks >= 0) super(ResnetGenerator, self).__init__() if type(norm_layer) == functools.partial: use_bias = norm_layer.func == nn.InstanceNorm2d else: use_bias = norm_layer == nn.InstanceNorm2d model = [nn.ReflectionPad2d(3), nn.Conv2d(input_nc, ngf, kernel_size=7, padding=0, bias=use_bias), norm_layer(ngf), nn.ReLU(True)] n_downsampling = 2 for i in range(n_downsampling): # add downsampling layers mult = 2 ** i model += [nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3, stride=2, padding=1, bias=use_bias), norm_layer(ngf * mult * 2), nn.ReLU(True)] mult = 2 ** n_downsampling for i in range(n_blocks): # add ResNet blocks model += [ResnetBlock(ngf * mult, padding_type=padding_type, norm_layer=norm_layer, use_dropout=use_dropout, use_bias=use_bias)] for i in range(n_downsampling): # add upsampling layers mult = 2 ** (n_downsampling - i) model += [nn.ConvTranspose2d(ngf * mult, int(ngf * mult / 2), kernel_size=3, stride=2, padding=1, output_padding=1, bias=use_bias), norm_layer(int(ngf * mult / 2)), nn.ReLU(True)] model += [nn.ReflectionPad2d(3)] model += [nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0)] model += [nn.Tanh()] self.model = nn.Sequential(*model) def forward(self, input): """Standard forward""" return self.model(input) class ResnetBlock(nn.Module): """Define a Resnet block""" def __init__(self, dim, padding_type, norm_layer, use_dropout, use_bias): """Initialize the Resnet block A resnet block is a conv block with skip connections We construct a conv block with build_conv_block function, and implement skip connections in <forward> function. Original Resnet paper: https://arxiv.org/pdf/1512.03385.pdf """ super(ResnetBlock, self).__init__() self.conv_block = self.build_conv_block(dim, padding_type, norm_layer, use_dropout, use_bias) def build_conv_block(self, dim, padding_type, norm_layer, use_dropout, use_bias): """Construct a convolutional block. Parameters: dim (int) -- the number of channels in the conv layer. padding_type (str) -- the name of padding layer: reflect | replicate | zero norm_layer -- normalization layer use_dropout (bool) -- if use dropout layers. use_bias (bool) -- if the conv layer uses bias or not Returns a conv block (with a conv layer, a normalization layer, and a non-linearity layer (ReLU)) """ conv_block = [] p = 0 if padding_type == 'reflect': conv_block += [nn.ReflectionPad2d(1)] elif padding_type == 'replicate': conv_block += [nn.ReplicationPad2d(1)] elif padding_type == 'zero': p = 1 else: raise NotImplementedError('padding [%s] is not implemented' % padding_type) conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p, bias=use_bias), norm_layer(dim), nn.ReLU(True)] if use_dropout: conv_block += [nn.Dropout(0.5)] p = 0 if padding_type == 'reflect': conv_block += [nn.ReflectionPad2d(1)] elif padding_type == 'replicate': conv_block += [nn.ReplicationPad2d(1)] elif padding_type == 'zero': p = 1 else: raise NotImplementedError('padding [%s] is not implemented' % padding_type) conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p, bias=use_bias), norm_layer(dim)] return nn.Sequential(*conv_block) def forward(self, x): """Forward function (with skip connections)""" out = x + self.conv_block(x) # add skip connections return out class UnetGenerator(nn.Module): """Create a Unet-based generator""" def __init__(self, input_nc, output_nc, num_downs, ngf=64, norm_layer=nn.BatchNorm2d, use_dropout=False): """Construct a Unet generator Parameters: input_nc (int) -- the number of channels in input images output_nc (int) -- the number of channels in output images num_downs (int) -- the number of downsamplings in UNet. For example, # if |num_downs| == 7, image of size 128x128 will become of size 1x1 # at the bottleneck ngf (int) -- the number of filters in the last conv layer norm_layer -- normalization layer We construct the U-Net from the innermost layer to the outermost layer. It is a recursive process. """ super(UnetGenerator, self).__init__() # construct unet structure unet_block = UnetSkipConnectionBlock(ngf * 8, ngf * 8, input_nc=None, submodule=None, norm_layer=norm_layer, innermost=True) # add the innermost layer for i in range(num_downs - 5): # add intermediate layers with ngf * 8 filters unet_block = UnetSkipConnectionBlock(ngf * 8, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer, use_dropout=use_dropout) # gradually reduce the number of filters from ngf * 8 to ngf unet_block = UnetSkipConnectionBlock(ngf * 4, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer) unet_block = UnetSkipConnectionBlock(ngf * 2, ngf * 4, input_nc=None, submodule=unet_block, norm_layer=norm_layer) unet_block = UnetSkipConnectionBlock(ngf, ngf * 2, input_nc=None, submodule=unet_block, norm_layer=norm_layer) self.model = UnetSkipConnectionBlock(output_nc, ngf, input_nc=input_nc, submodule=unet_block, outermost=True, norm_layer=norm_layer) # add the outermost layer def forward(self, input): """Standard forward""" return self.model(input) class UnetSkipConnectionBlock(nn.Module): """Defines the Unet submodule with skip connection. X -------------------identity---------------------- |-- downsampling -- |submodule| -- upsampling --| """ def __init__(self, outer_nc, inner_nc, input_nc=None, submodule=None, outermost=False, innermost=False, norm_layer=nn.BatchNorm2d, use_dropout=False): """Construct a Unet submodule with skip connections. Parameters: outer_nc (int) -- the number of filters in the outer conv layer inner_nc (int) -- the number of filters in the inner conv layer input_nc (int) -- the number of channels in input images/features submodule (UnetSkipConnectionBlock) -- previously defined submodules outermost (bool) -- if this module is the outermost module innermost (bool) -- if this module is the innermost module norm_layer -- normalization layer use_dropout (bool) -- if use dropout layers. """ super(UnetSkipConnectionBlock, self).__init__() self.outermost = outermost if type(norm_layer) == functools.partial: use_bias = norm_layer.func == nn.InstanceNorm2d else: use_bias = norm_layer == nn.InstanceNorm2d if input_nc is None: input_nc = outer_nc downconv = nn.Conv2d(input_nc, inner_nc, kernel_size=4, stride=2, padding=1, bias=use_bias) downrelu = nn.LeakyReLU(0.2, True) downnorm = norm_layer(inner_nc) uprelu = nn.ReLU(True) upnorm = norm_layer(outer_nc) if outermost: upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc, kernel_size=4, stride=2, padding=1) down = [downconv] up = [uprelu, upconv, nn.Tanh()] model = down + [submodule] + up elif innermost: upconv = nn.ConvTranspose2d(inner_nc, outer_nc, kernel_size=4, stride=2, padding=1, bias=use_bias) down = [downrelu, downconv] up = [uprelu, upconv, upnorm] model = down + up else: upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc, kernel_size=4, stride=2, padding=1, bias=use_bias) down = [downrelu, downconv, downnorm] up = [uprelu, upconv, upnorm] if use_dropout: model = down + [submodule] + up + [nn.Dropout(0.5)] else: model = down + [submodule] + up self.model = nn.Sequential(*model) def forward(self, x): if self.outermost: return self.model(x) else: # add skip connections return torch.cat([x, self.model(x)], 1) class NLayerDiscriminator(nn.Module): """Defines a PatchGAN discriminator""" def __init__(self, input_nc, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d): """Construct a PatchGAN discriminator Parameters: input_nc (int) -- the number of channels in input images ndf (int) -- the number of filters in the last conv layer n_layers (int) -- the number of conv layers in the discriminator norm_layer -- normalization layer """ super(NLayerDiscriminator, self).__init__() if type(norm_layer) == functools.partial: # no need to use bias as BatchNorm2d has affine parameters use_bias = norm_layer.func == nn.InstanceNorm2d else: use_bias = norm_layer == nn.InstanceNorm2d kw = 4 padw = 1 sequence = [nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, True)] nf_mult = 1 nf_mult_prev = 1 for n in range(1, n_layers): # gradually increase the number of filters nf_mult_prev = nf_mult nf_mult = min(2 ** n, 8) sequence += [ nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True) ] nf_mult_prev = nf_mult nf_mult = min(2 ** n_layers, 8) sequence += [ nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True) ] sequence += [nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw)] # output 1 channel prediction map self.model = nn.Sequential(*sequence) def forward(self, input): """Standard forward.""" return self.model(input) class PixelDiscriminator(nn.Module): """Defines a 1x1 PatchGAN discriminator (pixelGAN)""" def __init__(self, input_nc, ndf=64, norm_layer=nn.BatchNorm2d): """Construct a 1x1 PatchGAN discriminator Parameters: input_nc (int) -- the number of channels in input images ndf (int) -- the number of filters in the last conv layer norm_layer -- normalization layer """ super(PixelDiscriminator, self).__init__() if type(norm_layer) == functools.partial: # no need to use bias as BatchNorm2d has affine parameters use_bias = norm_layer.func == nn.InstanceNorm2d else: use_bias = norm_layer == nn.InstanceNorm2d self.net = [ nn.Conv2d(input_nc, ndf, kernel_size=1, stride=1, padding=0), nn.LeakyReLU(0.2, True), nn.Conv2d(ndf, ndf * 2, kernel_size=1, stride=1, padding=0, bias=use_bias), norm_layer(ndf * 2), nn.LeakyReLU(0.2, True), nn.Conv2d(ndf * 2, 1, kernel_size=1, stride=1, padding=0, bias=use_bias)] self.net = nn.Sequential(*self.net) def forward(self, input): """Standard forward.""" return self.net(input)
# Simple script to make sure basic usage # such as training, testing, saving and loading # runs without errors. import os def run(command): print(command) exit_status = os.system(command) if exit_status > 0: exit(1) if __name__ == '__main__': # download mini datasets if not os.path.exists('./datasets/mini'): run('bash ./datasets/download_cyclegan_dataset.sh mini') if not os.path.exists('./datasets/mini_pix2pix'): run('bash ./datasets/download_cyclegan_dataset.sh mini_pix2pix') # pretrained cyclegan model if not os.path.exists('./checkpoints/horse2zebra_pretrained/latest_net_G.pth'): run('bash ./scripts/download_cyclegan_model.sh horse2zebra') run('python test.py --model test --dataroot ./datasets/mini --name horse2zebra_pretrained --no_dropout --num_test 1 --no_dropout') # pretrained pix2pix model if not os.path.exists('./checkpoints/facades_label2photo_pretrained/latest_net_G.pth'): run('bash ./scripts/download_pix2pix_model.sh facades_label2photo') if not os.path.exists('./datasets/facades'): run('bash ./datasets/download_pix2pix_dataset.sh facades') run('python test.py --dataroot ./datasets/facades/ --direction BtoA --model pix2pix --name facades_label2photo_pretrained --num_test 1') # cyclegan train/test run('python train.py --model cycle_gan --name temp_cyclegan --dataroot ./datasets/mini --n_epochs 1 --n_epochs_decay 0 --save_latest_freq 10 --print_freq 1 --display_id -1') run('python test.py --model test --name temp_cyclegan --dataroot ./datasets/mini --num_test 1 --model_suffix "_A" --no_dropout') # pix2pix train/test run('python train.py --model pix2pix --name temp_pix2pix --dataroot ./datasets/mini_pix2pix --n_epochs 1 --n_epochs_decay 5 --save_latest_freq 10 --display_id -1') run('python test.py --model pix2pix --name temp_pix2pix --dataroot ./datasets/mini_pix2pix --num_test 1') # template train/test run('python train.py --model template --name temp2 --dataroot ./datasets/mini_pix2pix --n_epochs 1 --n_epochs_decay 0 --save_latest_freq 10 --display_id -1') run('python test.py --model template --name temp2 --dataroot ./datasets/mini_pix2pix --num_test 1') # colorization train/test (optional) if not os.path.exists('./datasets/mini_colorization'): run('bash ./datasets/download_cyclegan_dataset.sh mini_colorization') run('python train.py --model colorization --name temp_color --dataroot ./datasets/mini_colorization --n_epochs 1 --n_epochs_decay 0 --save_latest_freq 5 --display_id -1') run('python test.py --model colorization --name temp_color --dataroot ./datasets/mini_colorization --num_test 1')
# The following code is modified from https://github.com/shelhamer/clockwork-fcn import sys import os import glob import numpy as np from PIL import Image class cityscapes: def __init__(self, data_path): # data_path something like /data2/cityscapes self.dir = data_path self.classes = ['road', 'sidewalk', 'building', 'wall', 'fence', 'pole', 'traffic light', 'traffic sign', 'vegetation', 'terrain', 'sky', 'person', 'rider', 'car', 'truck', 'bus', 'train', 'motorcycle', 'bicycle'] self.mean = np.array((72.78044, 83.21195, 73.45286), dtype=np.float32) # import cityscapes label helper and set up label mappings sys.path.insert(0, '{}/scripts/helpers/'.format(self.dir)) labels = __import__('labels') self.id2trainId = {label.id: label.trainId for label in labels.labels} # dictionary mapping from raw IDs to train IDs self.trainId2color = {label.trainId: label.color for label in labels.labels} # dictionary mapping train IDs to colors as 3-tuples def get_dset(self, split): ''' List images as (city, id) for the specified split TODO(shelhamer) generate splits from cityscapes itself, instead of relying on these separately made text files. ''' if split == 'train': dataset = open('{}/ImageSets/segFine/train.txt'.format(self.dir)).read().splitlines() else: dataset = open('{}/ImageSets/segFine/val.txt'.format(self.dir)).read().splitlines() return [(item.split('/')[0], item.split('/')[1]) for item in dataset] def load_image(self, split, city, idx): im = Image.open('{}/leftImg8bit_sequence/{}/{}/{}_leftImg8bit.png'.format(self.dir, split, city, idx)) return im def assign_trainIds(self, label): """ Map the given label IDs to the train IDs appropriate for training Use the label mapping provided in labels.py from the cityscapes scripts """ label = np.array(label, dtype=np.float32) if sys.version_info[0] < 3: for k, v in self.id2trainId.iteritems(): label[label == k] = v else: for k, v in self.id2trainId.items(): label[label == k] = v return label def load_label(self, split, city, idx): """ Load label image as 1 x height x width integer array of label indices. The leading singleton dimension is required by the loss. """ label = Image.open('{}/gtFine/{}/{}/{}_gtFine_labelIds.png'.format(self.dir, split, city, idx)) label = self.assign_trainIds(label) # get proper labels for eval label = np.array(label, dtype=np.uint8) label = label[np.newaxis, ...] return label def preprocess(self, im): """ Preprocess loaded image (by load_image) for Caffe: - cast to float - switch channels RGB -> BGR - subtract mean - transpose to channel x height x width order """ in_ = np.array(im, dtype=np.float32) in_ = in_[:, :, ::-1] in_ -= self.mean in_ = in_.transpose((2, 0, 1)) return in_ def palette(self, label): ''' Map trainIds to colors as specified in labels.py ''' if label.ndim == 3: label = label[0] color = np.empty((label.shape[0], label.shape[1], 3)) if sys.version_info[0] < 3: for k, v in self.trainId2color.iteritems(): color[label == k, :] = v else: for k, v in self.trainId2color.items(): color[label == k, :] = v return color def make_boundaries(label, thickness=None): """ Input is an image label, output is a numpy array mask encoding the boundaries of the objects Extract pixels at the true boundary by dilation - erosion of label. Don't just pick the void label as it is not exclusive to the boundaries. """ assert(thickness is not None) import skimage.morphology as skm void = 255 mask = np.logical_and(label > 0, label != void)[0] selem = skm.disk(thickness) boundaries = np.logical_xor(skm.dilation(mask, selem), skm.erosion(mask, selem)) return boundaries def list_label_frames(self, split): """ Select labeled frames from a split for evaluation collected as (city, shot, idx) tuples """ def file2idx(f): """Helper to convert file path into frame ID""" city, shot, frame = (os.path.basename(f).split('_')[:3]) return "_".join([city, shot, frame]) frames = [] cities = [os.path.basename(f) for f in glob.glob('{}/gtFine/{}/*'.format(self.dir, split))] for c in cities: files = sorted(glob.glob('{}/gtFine/{}/{}/*labelIds.png'.format(self.dir, split, c))) frames.extend([file2idx(f) for f in files]) return frames def collect_frame_sequence(self, split, idx, length): """ Collect sequence of frames preceding (and including) a labeled frame as a list of Images. Note: 19 preceding frames are provided for each labeled frame. """ SEQ_LEN = length city, shot, frame = idx.split('_') frame = int(frame) frame_seq = [] for i in range(frame - SEQ_LEN, frame + 1): frame_path = '{0}/leftImg8bit_sequence/val/{1}/{1}_{2}_{3:0>6d}_leftImg8bit.png'.format( self.dir, city, shot, i) frame_seq.append(Image.open(frame_path)) return frame_seq
# The following code is modified from https://github.com/shelhamer/clockwork-fcn import numpy as np def get_out_scoremap(net): return net.blobs['score'].data[0].argmax(axis=0).astype(np.uint8) def feed_net(net, in_): """ Load prepared input into net. """ net.blobs['data'].reshape(1, *in_.shape) net.blobs['data'].data[...] = in_ def segrun(net, in_): feed_net(net, in_) net.forward() return get_out_scoremap(net) def fast_hist(a, b, n): k = np.where((a >= 0) & (a < n))[0] bc = np.bincount(n * a[k].astype(int) + b[k], minlength=n**2) if len(bc) != n**2: # ignore this example if dimension mismatch return 0 return bc.reshape(n, n) def get_scores(hist): # Mean pixel accuracy acc = np.diag(hist).sum() / (hist.sum() + 1e-12) # Per class accuracy cl_acc = np.diag(hist) / (hist.sum(1) + 1e-12) # Per class IoU iu = np.diag(hist) / (hist.sum(1) + hist.sum(0) - np.diag(hist) + 1e-12) return acc, np.nanmean(cl_acc), np.nanmean(iu), cl_acc, iu
import os import caffe import argparse import numpy as np import scipy.misc from PIL import Image from util import segrun, fast_hist, get_scores from cityscapes import cityscapes parser = argparse.ArgumentParser() parser.add_argument("--cityscapes_dir", type=str, required=True, help="Path to the original cityscapes dataset") parser.add_argument("--result_dir", type=str, required=True, help="Path to the generated images to be evaluated") parser.add_argument("--output_dir", type=str, required=True, help="Where to save the evaluation results") parser.add_argument("--caffemodel_dir", type=str, default='./scripts/eval_cityscapes/caffemodel/', help="Where the FCN-8s caffemodel stored") parser.add_argument("--gpu_id", type=int, default=0, help="Which gpu id to use") parser.add_argument("--split", type=str, default='val', help="Data split to be evaluated") parser.add_argument("--save_output_images", type=int, default=0, help="Whether to save the FCN output images") args = parser.parse_args() def main(): if not os.path.isdir(args.output_dir): os.makedirs(args.output_dir) if args.save_output_images > 0: output_image_dir = args.output_dir + 'image_outputs/' if not os.path.isdir(output_image_dir): os.makedirs(output_image_dir) CS = cityscapes(args.cityscapes_dir) n_cl = len(CS.classes) label_frames = CS.list_label_frames(args.split) caffe.set_device(args.gpu_id) caffe.set_mode_gpu() net = caffe.Net(args.caffemodel_dir + '/deploy.prototxt', args.caffemodel_dir + 'fcn-8s-cityscapes.caffemodel', caffe.TEST) hist_perframe = np.zeros((n_cl, n_cl)) for i, idx in enumerate(label_frames): if i % 10 == 0: print('Evaluating: %d/%d' % (i, len(label_frames))) city = idx.split('_')[0] # idx is city_shot_frame label = CS.load_label(args.split, city, idx) im_file = args.result_dir + '/' + idx + '_leftImg8bit.png' im = np.array(Image.open(im_file)) im = scipy.misc.imresize(im, (label.shape[1], label.shape[2])) out = segrun(net, CS.preprocess(im)) hist_perframe += fast_hist(label.flatten(), out.flatten(), n_cl) if args.save_output_images > 0: label_im = CS.palette(label) pred_im = CS.palette(out) scipy.misc.imsave(output_image_dir + '/' + str(i) + '_pred.jpg', pred_im) scipy.misc.imsave(output_image_dir + '/' + str(i) + '_gt.jpg', label_im) scipy.misc.imsave(output_image_dir + '/' + str(i) + '_input.jpg', im) mean_pixel_acc, mean_class_acc, mean_class_iou, per_class_acc, per_class_iou = get_scores(hist_perframe) with open(args.output_dir + '/evaluation_results.txt', 'w') as f: f.write('Mean pixel accuracy: %f\n' % mean_pixel_acc) f.write('Mean class accuracy: %f\n' % mean_class_acc) f.write('Mean class IoU: %f\n' % mean_class_iou) f.write('************ Per class numbers below ************\n') for i, cl in enumerate(CS.classes): while len(cl) < 15: cl = cl + ' ' f.write('%s: acc = %f, iou = %f\n' % (cl, per_class_acc[i], per_class_iou[i])) main()
# HED batch processing script; modified from https://github.com/s9xie/hed/blob/master/examples/hed/HED-tutorial.ipynb # Step 1: download the hed repo: https://github.com/s9xie/hed # Step 2: download the models and protoxt, and put them under {caffe_root}/examples/hed/ # Step 3: put this script under {caffe_root}/examples/hed/ # Step 4: run the following script: # python batch_hed.py --images_dir=/data/to/path/photos/ --hed_mat_dir=/data/to/path/hed_mat_files/ # The code sometimes crashes after computation is done. Error looks like "Check failed: ... driver shutting down". You can just kill the job. # For large images, it will produce gpu memory issue. Therefore, you better resize the images before running this script. # Step 5: run the MATLAB post-processing script "PostprocessHED.m" import caffe import numpy as np from PIL import Image import os import argparse import sys import scipy.io as sio def parse_args(): parser = argparse.ArgumentParser(description='batch proccesing: photos->edges') parser.add_argument('--caffe_root', dest='caffe_root', help='caffe root', default='../../', type=str) parser.add_argument('--caffemodel', dest='caffemodel', help='caffemodel', default='./hed_pretrained_bsds.caffemodel', type=str) parser.add_argument('--prototxt', dest='prototxt', help='caffe prototxt file', default='./deploy.prototxt', type=str) parser.add_argument('--images_dir', dest='images_dir', help='directory to store input photos', type=str) parser.add_argument('--hed_mat_dir', dest='hed_mat_dir', help='directory to store output hed edges in mat file', type=str) parser.add_argument('--border', dest='border', help='padding border', type=int, default=128) parser.add_argument('--gpu_id', dest='gpu_id', help='gpu id', type=int, default=1) args = parser.parse_args() return args args = parse_args() for arg in vars(args): print('[%s] =' % arg, getattr(args, arg)) # Make sure that caffe is on the python path: caffe_root = args.caffe_root # this file is expected to be in {caffe_root}/examples/hed/ sys.path.insert(0, caffe_root + 'python') if not os.path.exists(args.hed_mat_dir): print('create output directory %s' % args.hed_mat_dir) os.makedirs(args.hed_mat_dir) imgList = os.listdir(args.images_dir) nImgs = len(imgList) print('#images = %d' % nImgs) caffe.set_mode_gpu() caffe.set_device(args.gpu_id) # load net net = caffe.Net(args.prototxt, args.caffemodel, caffe.TEST) # pad border border = args.border for i in range(nImgs): if i % 500 == 0: print('processing image %d/%d' % (i, nImgs)) im = Image.open(os.path.join(args.images_dir, imgList[i])) in_ = np.array(im, dtype=np.float32) in_ = np.pad(in_, ((border, border), (border, border), (0, 0)), 'reflect') in_ = in_[:, :, 0:3] in_ = in_[:, :, ::-1] in_ -= np.array((104.00698793, 116.66876762, 122.67891434)) in_ = in_.transpose((2, 0, 1)) # remove the following two lines if testing with cpu # shape for input (data blob is N x C x H x W), set data net.blobs['data'].reshape(1, *in_.shape) net.blobs['data'].data[...] = in_ # run net and take argmax for prediction net.forward() fuse = net.blobs['sigmoid-fuse'].data[0][0, :, :] # get rid of the border fuse = fuse[(border+35):(-border+35), (border+35):(-border+35)] # save hed file to the disk name, ext = os.path.splitext(imgList[i]) sio.savemat(os.path.join(args.hed_mat_dir, name + '.mat'), {'edge_predict': fuse})
import os.path from data.base_dataset import BaseDataset, get_transform from data.image_folder import make_dataset from skimage import color # require skimage from PIL import Image import numpy as np import torchvision.transforms as transforms class ColorizationDataset(BaseDataset): """This dataset class can load a set of natural images in RGB, and convert RGB format into (L, ab) pairs in Lab color space. This dataset is required by pix2pix-based colorization model ('--model colorization') """ @staticmethod def modify_commandline_options(parser, is_train): """Add new dataset-specific options, and rewrite default values for existing options. Parameters: parser -- original option parser is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options. Returns: the modified parser. By default, the number of channels for input image is 1 (L) and the number of channels for output image is 2 (ab). The direction is from A to B """ parser.set_defaults(input_nc=1, output_nc=2, direction='AtoB') return parser def __init__(self, opt): """Initialize this dataset class. Parameters: opt (Option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions """ BaseDataset.__init__(self, opt) self.dir = os.path.join(opt.dataroot, opt.phase) self.AB_paths = sorted(make_dataset(self.dir, opt.max_dataset_size)) assert(opt.input_nc == 1 and opt.output_nc == 2 and opt.direction == 'AtoB') self.transform = get_transform(self.opt, convert=False) def __getitem__(self, index): """Return a data point and its metadata information. Parameters: index - - a random integer for data indexing Returns a dictionary that contains A, B, A_paths and B_paths A (tensor) - - the L channel of an image B (tensor) - - the ab channels of the same image A_paths (str) - - image paths B_paths (str) - - image paths (same as A_paths) """ path = self.AB_paths[index] im = Image.open(path).convert('RGB') im = self.transform(im) im = np.array(im) lab = color.rgb2lab(im).astype(np.float32) lab_t = transforms.ToTensor()(lab) A = lab_t[[0], ...] / 50.0 - 1.0 B = lab_t[[1, 2], ...] / 110.0 return {'A': A, 'B': B, 'A_paths': path, 'B_paths': path} def __len__(self): """Return the total number of images in the dataset.""" return len(self.AB_paths)
"""This module implements an abstract base class (ABC) 'BaseDataset' for datasets. It also includes common transformation functions (e.g., get_transform, __scale_width), which can be later used in subclasses. """ import random import numpy as np import torch.utils.data as data from PIL import Image import torchvision.transforms as transforms from abc import ABC, abstractmethod class BaseDataset(data.Dataset, ABC): """This class is an abstract base class (ABC) for datasets. To create a subclass, you need to implement the following four functions: -- <__init__>: initialize the class, first call BaseDataset.__init__(self, opt). -- <__len__>: return the size of dataset. -- <__getitem__>: get a data point. -- <modify_commandline_options>: (optionally) add dataset-specific options and set default options. """ def __init__(self, opt): """Initialize the class; save the options in the class Parameters: opt (Option class)-- stores all the experiment flags; needs to be a subclass of BaseOptions """ self.opt = opt self.root = opt.dataroot @staticmethod def modify_commandline_options(parser, is_train): """Add new dataset-specific options, and rewrite default values for existing options. Parameters: parser -- original option parser is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options. Returns: the modified parser. """ return parser @abstractmethod def __len__(self): """Return the total number of images in the dataset.""" return 0 @abstractmethod def __getitem__(self, index): """Return a data point and its metadata information. Parameters: index - - a random integer for data indexing Returns: a dictionary of data with their names. It ususally contains the data itself and its metadata information. """ pass def get_params(opt, size): w, h = size new_h = h new_w = w if opt.preprocess == 'resize_and_crop': new_h = new_w = opt.load_size elif opt.preprocess == 'scale_width_and_crop': new_w = opt.load_size new_h = opt.load_size * h // w x = random.randint(0, np.maximum(0, new_w - opt.crop_size)) y = random.randint(0, np.maximum(0, new_h - opt.crop_size)) flip = random.random() > 0.5 return {'crop_pos': (x, y), 'flip': flip} def get_transform(opt, params=None, grayscale=False, method=transforms.InterpolationMode.BICUBIC, convert=True): transform_list = [] if grayscale: transform_list.append(transforms.Grayscale(1)) if 'resize' in opt.preprocess: osize = [opt.load_size, opt.load_size] transform_list.append(transforms.Resize(osize, method)) elif 'scale_width' in opt.preprocess: transform_list.append(transforms.Lambda(lambda img: __scale_width(img, opt.load_size, opt.crop_size, method))) if 'crop' in opt.preprocess: if params is None: transform_list.append(transforms.RandomCrop(opt.crop_size)) else: transform_list.append(transforms.Lambda(lambda img: __crop(img, params['crop_pos'], opt.crop_size))) if opt.preprocess == 'none': transform_list.append(transforms.Lambda(lambda img: __make_power_2(img, base=4, method=method))) if not opt.no_flip: if params is None: transform_list.append(transforms.RandomHorizontalFlip()) elif params['flip']: transform_list.append(transforms.Lambda(lambda img: __flip(img, params['flip']))) if convert: transform_list += [transforms.ToTensor()] if grayscale: transform_list += [transforms.Normalize((0.5,), (0.5,))] else: transform_list += [transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))] return transforms.Compose(transform_list) def __make_power_2(img, base, method=Image.Resampling.BICUBIC): ow, oh = img.size h = int(round(oh / base) * base) w = int(round(ow / base) * base) if h == oh and w == ow: return img __print_size_warning(ow, oh, w, h) return img.resize((w, h), method) def __scale_width(img, target_size, crop_size, method=Image.Resampling.BICUBIC): ow, oh = img.size if ow == target_size and oh >= crop_size: return img w = target_size h = int(max(target_size * oh / ow, crop_size)) return img.resize((w, h), method) def __crop(img, pos, size): ow, oh = img.size x1, y1 = pos tw = th = size if (ow > tw or oh > th): return img.crop((x1, y1, x1 + tw, y1 + th)) return img def __flip(img, flip): if flip: return img.transpose(Image.FLIP_LEFT_RIGHT) return img def __print_size_warning(ow, oh, w, h): """Print warning information about image size(only print once)""" if not hasattr(__print_size_warning, 'has_printed'): print("The image size needs to be a multiple of 4. " "The loaded image size was (%d, %d), so it was adjusted to " "(%d, %d). This adjustment will be done to all images " "whose sizes are not multiples of 4" % (ow, oh, w, h)) __print_size_warning.has_printed = True
"""Dataset class template This module provides a template for users to implement custom datasets. You can specify '--dataset_mode template' to use this dataset. The class name should be consistent with both the filename and its dataset_mode option. The filename should be <dataset_mode>_dataset.py The class name should be <Dataset_mode>Dataset.py You need to implement the following functions: -- <modify_commandline_options>: Add dataset-specific options and rewrite default values for existing options. -- <__init__>: Initialize this dataset class. -- <__getitem__>: Return a data point and its metadata information. -- <__len__>: Return the number of images. """ from data.base_dataset import BaseDataset, get_transform # from data.image_folder import make_dataset # from PIL import Image class TemplateDataset(BaseDataset): """A template dataset class for you to implement custom datasets.""" @staticmethod def modify_commandline_options(parser, is_train): """Add new dataset-specific options, and rewrite default values for existing options. Parameters: parser -- original option parser is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options. Returns: the modified parser. """ parser.add_argument('--new_dataset_option', type=float, default=1.0, help='new dataset option') parser.set_defaults(max_dataset_size=10, new_dataset_option=2.0) # specify dataset-specific default values return parser def __init__(self, opt): """Initialize this dataset class. Parameters: opt (Option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions A few things can be done here. - save the options (have been done in BaseDataset) - get image paths and meta information of the dataset. - define the image transformation. """ # save the option and dataset root BaseDataset.__init__(self, opt) # get the image paths of your dataset; self.image_paths = [] # You can call sorted(make_dataset(self.root, opt.max_dataset_size)) to get all the image paths under the directory self.root # define the default transform function. You can use <base_dataset.get_transform>; You can also define your custom transform function self.transform = get_transform(opt) def __getitem__(self, index): """Return a data point and its metadata information. Parameters: index -- a random integer for data indexing Returns: a dictionary of data with their names. It usually contains the data itself and its metadata information. Step 1: get a random image path: e.g., path = self.image_paths[index] Step 2: load your data from the disk: e.g., image = Image.open(path).convert('RGB'). Step 3: convert your data to a PyTorch tensor. You can use helpder functions such as self.transform. e.g., data = self.transform(image) Step 4: return a data point as a dictionary. """ path = 'temp' # needs to be a string data_A = None # needs to be a tensor data_B = None # needs to be a tensor return {'data_A': data_A, 'data_B': data_B, 'path': path} def __len__(self): """Return the total number of images.""" return len(self.image_paths)
"""This package includes all the modules related to data loading and preprocessing To add a custom dataset class called 'dummy', you need to add a file called 'dummy_dataset.py' and define a subclass 'DummyDataset' inherited from BaseDataset. You need to implement four functions: -- <__init__>: initialize the class, first call BaseDataset.__init__(self, opt). -- <__len__>: return the size of dataset. -- <__getitem__>: get a data point from data loader. -- <modify_commandline_options>: (optionally) add dataset-specific options and set default options. Now you can use the dataset class by specifying flag '--dataset_mode dummy'. See our template dataset class 'template_dataset.py' for more details. """ import importlib import torch.utils.data from .base_dataset import BaseDataset def find_dataset_using_name(dataset_name): """Import the module "data/[dataset_name]_dataset.py". In the file, the class called DatasetNameDataset() will be instantiated. It has to be a subclass of BaseDataset, and it is case-insensitive. """ dataset_filename = f'{__package__}.{dataset_name}_dataset' datasetlib = importlib.import_module(dataset_filename) dataset = None target_dataset_name = dataset_name.replace('_', '') + 'dataset' for name, cls in datasetlib.__dict__.items(): if name.lower() == target_dataset_name.lower() \ and issubclass(cls, BaseDataset): dataset = cls if dataset is None: raise NotImplementedError("In %s.py, there should be a subclass of BaseDataset with class name that matches %s in lowercase." % (dataset_filename, target_dataset_name)) return dataset def get_option_setter(dataset_name): """Return the static method <modify_commandline_options> of the dataset class.""" dataset_class = find_dataset_using_name(dataset_name) return dataset_class.modify_commandline_options def create_dataset(opt): """Create a dataset given the option. This function wraps the class CustomDatasetDataLoader. This is the main interface between this package and 'train.py'/'test.py' Example: >>> from data import create_dataset >>> dataset = create_dataset(opt) """ data_loader = CustomDatasetDataLoader(opt) dataset = data_loader.load_data() return dataset class CustomDatasetDataLoader(): """Wrapper class of Dataset class that performs multi-threaded data loading""" def __init__(self, opt): """Initialize this class Step 1: create a dataset instance given the name [dataset_mode] Step 2: create a multi-threaded data loader. """ self.opt = opt dataset_class = find_dataset_using_name(opt.dataset_mode) self.dataset = dataset_class(opt) self.dataloader = torch.utils.data.DataLoader( self.dataset, batch_size=opt.batch_size, shuffle=not opt.serial_batches, num_workers=int(opt.num_threads) ) def load_data(self): return self def __len__(self): """Return the number of data in the dataset""" return min(len(self.dataset), self.opt.max_dataset_size) def __iter__(self): """Return a batch of data""" for i, data in enumerate(self.dataloader): if i * self.opt.batch_size >= self.opt.max_dataset_size: break yield data
"""A modified image folder class We modify the official PyTorch image folder (https://github.com/pytorch/vision/blob/master/torchvision/datasets/folder.py) so that this class can load images from both current directory and its subdirectories. """ import torch.utils.data as data from PIL import Image import os import os.path IMG_EXTENSIONS = [ '.jpg', '.JPG', '.jpeg', '.JPEG', '.png', '.PNG', '.ppm', '.PPM', '.bmp', '.BMP', '.tif', '.TIF', '.tiff', '.TIFF', ] def is_image_file(filename): return any(filename.endswith(extension) for extension in IMG_EXTENSIONS) def make_dataset(dir, max_dataset_size=float("inf")): images = [] assert os.path.isdir(dir), '%s is not a valid directory' % dir for root, _, fnames in sorted(os.walk(dir)): for fname in fnames: if is_image_file(fname): path = os.path.join(root, fname) images.append(path) return images[:min(max_dataset_size, len(images))] def default_loader(path): return Image.open(path).convert('RGB') class ImageFolder(data.Dataset): def __init__(self, root, transform=None, return_paths=False, loader=default_loader): imgs = make_dataset(root) if len(imgs) == 0: raise(RuntimeError("Found 0 images in: " + root + "\n" "Supported image extensions are: " + ",".join(IMG_EXTENSIONS))) self.root = root self.imgs = imgs self.transform = transform self.return_paths = return_paths self.loader = loader def __getitem__(self, index): path = self.imgs[index] img = self.loader(path) if self.transform is not None: img = self.transform(img) if self.return_paths: return img, path else: return img def __len__(self): return len(self.imgs)
from .base_dataset import BaseDataset, get_transform from .image_folder import make_dataset from PIL import Image class SingleDataset(BaseDataset): """This dataset class can load a set of images specified by the path --dataroot /path/to/data. It can be used for generating CycleGAN results only for one side with the model option '-model test'. """ def __init__(self, opt): """Initialize this dataset class. Parameters: opt (Option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions """ BaseDataset.__init__(self, opt) self.A_paths = sorted(make_dataset(opt.dataroot, opt.max_dataset_size)) input_nc = self.opt.output_nc if self.opt.direction == 'BtoA' else self.opt.input_nc self.transform = get_transform(opt, grayscale=(input_nc == 1)) def __getitem__(self, index): """Return a data point and its metadata information. Parameters: index - - a random integer for data indexing Returns a dictionary that contains A and A_paths A(tensor) - - an image in one domain A_paths(str) - - the path of the image """ A_path = self.A_paths[index] A_img = Image.open(A_path).convert('RGB') A = self.transform(A_img) return {'A': A, 'A_paths': A_path} def __len__(self): """Return the total number of images in the dataset.""" return len(self.A_paths)
import os.path from data.base_dataset import BaseDataset, get_params, get_transform from data.image_folder import make_dataset from PIL import Image class AlignedDataset(BaseDataset): """A dataset class for paired image dataset. It assumes that the directory '/path/to/data/train' contains image pairs in the form of {A,B}. During test time, you need to prepare a directory '/path/to/data/test'. """ def __init__(self, opt): """Initialize this dataset class. Parameters: opt (Option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions """ BaseDataset.__init__(self, opt) self.dir_AB = os.path.join(opt.dataroot, opt.phase) # get the image directory self.AB_paths = sorted(make_dataset(self.dir_AB, opt.max_dataset_size)) # get image paths assert(self.opt.load_size >= self.opt.crop_size) # crop_size should be smaller than the size of loaded image self.input_nc = self.opt.output_nc if self.opt.direction == 'BtoA' else self.opt.input_nc self.output_nc = self.opt.input_nc if self.opt.direction == 'BtoA' else self.opt.output_nc def __getitem__(self, index): """Return a data point and its metadata information. Parameters: index - - a random integer for data indexing Returns a dictionary that contains A, B, A_paths and B_paths A (tensor) - - an image in the input domain B (tensor) - - its corresponding image in the target domain A_paths (str) - - image paths B_paths (str) - - image paths (same as A_paths) """ # read a image given a random integer index AB_path = self.AB_paths[index] AB = Image.open(AB_path).convert('RGB') # split AB image into A and B w, h = AB.size w2 = int(w / 2) A = AB.crop((0, 0, w2, h)) B = AB.crop((w2, 0, w, h)) # apply the same transform to both A and B transform_params = get_params(self.opt, A.size) A_transform = get_transform(self.opt, transform_params, grayscale=(self.input_nc == 1)) B_transform = get_transform(self.opt, transform_params, grayscale=(self.output_nc == 1)) A = A_transform(A) B = B_transform(B) return {'A': A, 'B': B, 'A_paths': AB_path, 'B_paths': AB_path} def __len__(self): """Return the total number of images in the dataset.""" return len(self.AB_paths)
import os.path from .base_dataset import BaseDataset, get_transform from .image_folder import make_dataset from PIL import Image import random class UnalignedDataset(BaseDataset): """ This dataset class can load unaligned/unpaired datasets. It requires two directories to host training images from domain A '/path/to/data/trainA' and from domain B '/path/to/data/trainB' respectively. You can train the model with the dataset flag '--dataroot /path/to/data'. Similarly, you need to prepare two directories: '/path/to/data/testA' and '/path/to/data/testB' during test time. """ def __init__(self, opt): """Initialize this dataset class. Parameters: opt (Option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions """ BaseDataset.__init__(self, opt) self.dir_A = os.path.join(opt.dataroot, opt.phase + 'A') # create a path '/path/to/data/trainA' self.dir_B = os.path.join(opt.dataroot, opt.phase + 'B') # create a path '/path/to/data/trainB' self.A_paths = sorted(make_dataset(self.dir_A, opt.max_dataset_size)) # load images from '/path/to/data/trainA' self.B_paths = sorted(make_dataset(self.dir_B, opt.max_dataset_size)) # load images from '/path/to/data/trainB' self.A_size = len(self.A_paths) # get the size of dataset A self.B_size = len(self.B_paths) # get the size of dataset B btoA = self.opt.direction == 'BtoA' input_nc = self.opt.output_nc if btoA else self.opt.input_nc # get the number of channels of input image output_nc = self.opt.input_nc if btoA else self.opt.output_nc # get the number of channels of output image self.transform_A = get_transform(self.opt, grayscale=(input_nc == 1)) self.transform_B = get_transform(self.opt, grayscale=(output_nc == 1)) def __getitem__(self, index): """Return a data point and its metadata information. Parameters: index (int) -- a random integer for data indexing Returns a dictionary that contains A, B, A_paths and B_paths A (tensor) -- an image in the input domain B (tensor) -- its corresponding image in the target domain A_paths (str) -- image paths B_paths (str) -- image paths """ A_path = self.A_paths[index % self.A_size] # make sure index is within then range if self.opt.serial_batches: # make sure index is within then range index_B = index % self.B_size else: # randomize the index for domain B to avoid fixed pairs. index_B = random.randint(0, self.B_size - 1) B_path = self.B_paths[index_B] A_img = Image.open(A_path).convert('RGB') B_img = Image.open(B_path).convert('RGB') # apply image transformation A = self.transform_A(A_img) B = self.transform_B(B_img) return {'A': A, 'B': B, 'A_paths': A_path, 'B_paths': B_path} def __len__(self): """Return the total number of images in the dataset. As we have two datasets with potentially different number of images, we take a maximum of """ return max(self.A_size, self.B_size)
from torchbenchmark.util.framework.timm.model_factory import TimmModel from torchbenchmark.tasks import COMPUTER_VISION class Model(TimmModel): task = COMPUTER_VISION.GENERATION DEFAULT_TRAIN_BSIZE = 32 DEFAULT_EVAL_BSIZE = 32 def __init__(self, test, device, batch_size=None, extra_args=[]): super().__init__(test=test, model_name='vit_small_patch16_224', device=device, batch_size=batch_size, extra_args=extra_args)
from torchbenchmark.tasks import NLP from torchbenchmark.util.framework.huggingface.model_factory import HuggingFaceModel class Model(HuggingFaceModel): task = NLP.LANGUAGE_MODELING # Original train batch size per device: 8 # Source: https://github.com/huggingface/transformers/blob/master/examples/flax/language-modeling/run_t5_mlm_flax.py#L83 DEFAULT_TRAIN_BSIZE = 8 # Original eval batch size per device: 8 # Downscale to 1 to fit in Nvidia T4 of the infra DEFAULT_EVAL_BSIZE = 1 def __init__(self, test, device, batch_size=None, extra_args=[]): super().__init__(name="hf_T5_base", test=test, device=device, batch_size=batch_size, extra_args=extra_args)
import subprocess import sys import os from torchbenchmark.util.framework.huggingface.patch_hf import patch_transformers, cache_model def pip_install_requirements(): subprocess.check_call([sys.executable, '-m', 'pip', 'install', '-q', '-r', 'requirements.txt']) if __name__ == '__main__': pip_install_requirements() patch_transformers() model_name = os.path.basename(os.path.dirname(os.path.abspath(__file__))) cache_model(model_name)
from torchbenchmark.util.framework.timm.model_factory import TimmModel from torchbenchmark.tasks import COMPUTER_VISION class Model(TimmModel): task = COMPUTER_VISION.CLASSIFICATION # Original train batch size 128, hardware Nvidia rtx 3090 # Source: https://gist.github.com/rwightman/bb59f9e245162cee0e38bd66bd8cd77f#file-bench_by_train-csv-L147 # Eval batch size 256, hardware Nvidia rtx 3090 # Source: https://github.com/rwightman/pytorch-image-models/blob/f7d210d759beb00a3d0834a3ce2d93f6e17f3d38/results/model_benchmark_amp_nchw_rtx3090.csv # Downscale to 128 to fit T4 DEFAULT_TRAIN_BSIZE = 128 DEFAULT_EVAL_BSIZE = 128 def __init__(self, test, device, batch_size=None, extra_args=[]): super().__init__(test=test, model_name='dm_nfnet_f0', device=device, batch_size=batch_size, extra_args=extra_args)
import torch import torch.optim as optim import torch.nn as nn import torch.nn.functional as F from functorch import make_functional_with_buffers, vmap, grad import functools from pathlib import Path from typing import Tuple from ...util.model import BenchmarkModel from torchbenchmark.tasks import OTHER def loss_for_task(net, n_inner_iter, x_spt, y_spt, x_qry, y_qry): params, buffers, fnet = net querysz = x_qry.size(0) def compute_loss(new_params, buffers, x, y): logits = fnet(new_params, buffers, x) loss = F.cross_entropy(logits, y) return loss new_params = params for _ in range(n_inner_iter): grads = grad(compute_loss)(new_params, buffers, x_spt, y_spt) new_params = [p - g * 1e-1 for p, g, in zip(new_params, grads)] # The final set of adapted parameters will induce some # final loss and accuracy on the query dataset. # These will be used to update the model's meta-parameters. qry_logits = fnet(new_params, buffers, x_qry) qry_loss = F.cross_entropy(qry_logits, y_qry) qry_acc = (qry_logits.argmax( dim=1) == y_qry).sum() / querysz return qry_loss, qry_acc class Model(BenchmarkModel): task = OTHER.OTHER_TASKS DEFAULT_TRAIN_BSIZE = 1 DEFAULT_EVAL_BSIZE = 1 ALLOW_CUSTOMIZE_BSIZE = False # TODO: There _should_ be a way to plug in an optim here, but this # can be a next step. For now, the optim is not customizable. CANNOT_SET_CUSTOM_OPTIMIZER = True def __init__(self, test, device, batch_size=None, extra_args=[]): super().__init__(test=test, device=device, batch_size=batch_size, extra_args=extra_args) n_way = 5 inplace_relu = True net = nn.Sequential( nn.Conv2d(1, 64, 3), nn.BatchNorm2d(64, affine=True, track_running_stats=False), nn.ReLU(inplace=inplace_relu), nn.MaxPool2d(2, 2), nn.Conv2d(64, 64, 3), nn.BatchNorm2d(64, affine=True, track_running_stats=False), nn.ReLU(inplace=inplace_relu), nn.MaxPool2d(2, 2), nn.Conv2d(64, 64, 3), nn.BatchNorm2d(64, affine=True, track_running_stats=False), nn.ReLU(inplace=inplace_relu), nn.MaxPool2d(2, 2), nn.Flatten(), nn.Linear(64, n_way)).to(device) self.model = net root = str(Path(__file__).parent.parent) self.meta_inputs = torch.load(f'{root}/maml_omniglot/batch.pt') self.meta_inputs = tuple([torch.from_numpy(i).to(self.device) for i in self.meta_inputs]) self.example_inputs = (self.meta_inputs[0][0],) def get_module(self): return self.model, self.example_inputs def train(self): model = self.model model.train() fnet, params, buffers = make_functional_with_buffers(self.model) net = (params, buffers, fnet) meta_opt = optim.Adam(params, lr=1e-3) # Sample a batch of support and query images and labels. x_spt, y_spt, x_qry, y_qry = self.meta_inputs task_num, setsz, c_, h, w = x_spt.size() n_inner_iter = 5 meta_opt.zero_grad() # In parallel, trains one model per task. There is a support (x, y) # for each task and a query (x, y) for each task. compute_loss_for_task = functools.partial(loss_for_task, net, n_inner_iter) qry_losses, qry_accs = vmap(compute_loss_for_task)(x_spt, y_spt, x_qry, y_qry) # Compute the maml loss by summing together the returned losses. qry_losses.sum().backward() meta_opt.step() def eval(self) -> Tuple[torch.Tensor]: model, (example_input,) = self.get_module() model.eval() with torch.no_grad(): out = model(example_input) return (out, )
import subprocess import sys def pip_install_requirements(): subprocess.check_call([sys.executable, '-m', 'pip', 'install', '-q', '-r', 'requirements.txt']) if __name__ == '__main__': pip_install_requirements()
import torch from dalle2_pytorch import DALLE2, Unet, Decoder, DiffusionPriorNetwork, DiffusionPrior, OpenAIClipAdapter torch.backends.cudnn.deterministic = False torch.backends.cudnn.benchmark = False from ...util.model import BenchmarkModel from torchbenchmark.tasks import COMPUTER_VISION class Model(BenchmarkModel): task = COMPUTER_VISION.GENERATION DEFAULT_TRAIN_BSIZE = 4 DEFAULT_EVAL_BSIZE = 1 CANNOT_SET_CUSTOM_OPTIMIZER = True def __init__(self, test, device, batch_size=None, extra_args=[]): super().__init__(test=test, device=device, batch_size=batch_size, extra_args=extra_args) if self.device == "cpu": raise NotImplementedError("DALL-E 2 Not Supported on CPU") self.clip = OpenAIClipAdapter().to(self.device) self.sample_text = self.example_input = torch.randint(0, 49408, (self.batch_size, 256)).to(self.device) self.sample_images = torch.randn(self.batch_size, 3, 256, 256).to(self.device) prior_network = DiffusionPriorNetwork( dim = 512, depth = 6, dim_head = 64, heads = 8 ).to(self.device) diffusion_prior = DiffusionPrior( net = prior_network, clip = self.clip, timesteps = 1, cond_drop_prob = 0.2 ).to(self.device) unet1 = Unet( dim = 128, image_embed_dim = 512, cond_dim = 128, channels = 3, dim_mults=(1, 2, 4, 8), text_embed_dim = 512, cond_on_text_encodings = True # set to True for any unets that need to be conditioned on text encodings (ex. first unet in cascade) ).to(self.device) unet2 = Unet( dim = 16, image_embed_dim = 512, cond_dim = 128, channels = 3, dim_mults = (1, 2, 4, 8, 16) ).to(self.device) decoder = Decoder( unet = (unet1, unet2), image_sizes = (128, 256), clip = self.clip, timesteps = 1, sample_timesteps = (1, 1), image_cond_drop_prob = 0.1, text_cond_drop_prob = 0.5 ).to(self.device) self.model = DALLE2(prior=diffusion_prior, decoder=decoder).to(self.device) if test == "train": self.model.prior.train() self.model.decoder.train() elif test == "eval": self.model.prior.eval() self.model.decoder.eval() def get_module(self): return self.model, (self.example_input,) def set_module(self, new_model): self.model = new_model def eval(self): model, inputs = self.get_module() with torch.no_grad(): images = model(*inputs) return (images,) def train(self): # openai pretrained clip - defaults to ViT-B/32 clip = self.clip # prior networks (with transformer) diffusion_prior = self.model.prior loss = diffusion_prior(self.sample_text, self.sample_images) loss.backward() # decoder (with unet) decoder = self.model.decoder loss = decoder(self.sample_images, self.sample_text, unet_number=1) loss.backward() loss = decoder(self.sample_images, self.sample_text, unet_number=2) loss.backward()
import os import patch import subprocess import sys def patch_dalle2(): import dalle2_pytorch current_dir = os.path.dirname(os.path.abspath(__file__)) dalle2_dir = os.path.dirname(dalle2_pytorch.__file__) dalle2_patch = patch.fromfile(os.path.join(current_dir, "dalle2_pytorch.patch")) if not dalle2_patch.apply(strip=1, root=dalle2_dir): print("Failed to patch dalle2_pytorch/dalle2_pytorch.py. Exit.") exit(1) def pip_install_requirements(): subprocess.check_call([sys.executable, '-m', 'pip', 'install', '-q', '-r', 'requirements.txt']) # DALLE2_pytorch requires embedding-reader # https://github.com/lucidrains/DALLE2-pytorch/blob/00e07b7d61e21447d55e6d06d5c928cf8b67601d/setup.py#L34 # embedding-reader requires an old version of pandas and pyarrow # https://github.com/rom1504/embedding-reader/blob/a4fd55830a502685600ed8ef07947cd1cb92b083/requirements.txt#L5 # So we need to reinstall a newer version of pandas and pyarrow, to be compatible with other models subprocess.check_call([sys.executable, '-m', 'pip', 'install', '-U', 'pandas', 'pyarrow']) if __name__ == '__main__': pip_install_requirements() patch_dalle2()
from torchbenchmark.util.framework.vision.model_factory import TorchVisionModel from torchbenchmark.tasks import COMPUTER_VISION import torchvision.models as models class Model(TorchVisionModel): task = COMPUTER_VISION.CLASSIFICATION DEFAULT_TRAIN_BSIZE = 32 DEFAULT_EVAL_BSIZE = 32 def __init__(self, test, device, batch_size=None, extra_args=[]): super().__init__(model_name="mobilenet_v3_large", test=test, device=device, batch_size=batch_size, weights=models.MobileNet_V3_Large_Weights.IMAGENET1K_V1, extra_args=extra_args)
from torchbenchmark.tasks import NLP from torchbenchmark.util.framework.huggingface.model_factory import HuggingFaceModel class Model(HuggingFaceModel): task = NLP.LANGUAGE_MODELING DEFAULT_TRAIN_BSIZE = 8 DEFAULT_EVAL_BSIZE = 1 def __init__(self, test, device, batch_size=None, extra_args=[]): super().__init__(name="hf_Albert", test=test, device=device, batch_size=batch_size, extra_args=extra_args)
import subprocess import sys import os from torchbenchmark.util.framework.huggingface.patch_hf import patch_transformers, cache_model def pip_install_requirements(): subprocess.check_call([sys.executable, '-m', 'pip', 'install', '-q', '-r', 'requirements.txt']) if __name__ == '__main__': pip_install_requirements() patch_transformers() model_name = os.path.basename(os.path.dirname(os.path.abspath(__file__))) cache_model(model_name)
from torchbenchmark.util.framework.timm.model_factory import TimmModel from torchbenchmark.tasks import COMPUTER_VISION class Model(TimmModel): task = COMPUTER_VISION.CLASSIFICATION DEFAULT_TRAIN_BSIZE = 32 DEFAULT_EVAL_BSIZE = 64 def __init__(self, test, device, batch_size=None, extra_args=[]): super().__init__(test=test, model_name='efficientnet_b0', device=device, batch_size=batch_size, extra_args=extra_args)
""" Maskrcnn model from torchvision """ import torch import os import itertools import random import numpy as np from ...util.model import BenchmarkModel from torchbenchmark.tasks import COMPUTER_VISION from pathlib import Path from typing import Tuple # Model specific imports import torchvision from .coco_utils import ConvertCocoPolysToMask from torchvision.datasets.coco import CocoDetection # silence some spam from pycocotools import coco coco.print = lambda *args: None torch.backends.cudnn.deterministic = False torch.backends.cudnn.benchmark = False CURRENT_DIR = Path(os.path.dirname(os.path.realpath(__file__))) DATA_DIR = os.path.join(CURRENT_DIR.parent.parent, "data", ".data", "coco2017-minimal") assert os.path.exists(DATA_DIR), "Couldn't find coco2017 minimal data dir, please run install.py again." COCO_DATA_KEY = "coco_2017_val_100" COCO_DATA = { "coco_2017_val_100": ("coco/val2017", "coco/annotations/instances_val2017_100.json") } def _collate_fn(batch): return tuple(zip(*batch)) def _prefetch(loader, device): items = [] for images, targets in loader: images = list(image.to(device) for image in images) targets = [{k: v.to(device) for k, v in t.items()} for t in targets] items.append((images, targets)) return items class Model(BenchmarkModel): task = COMPUTER_VISION.DETECTION # MaskRCNN doesn't actually take the inputs in batches; it takes a list # of tensors which individually are CHW DEFAULT_TRAIN_BSIZE = 1 DEFAULT_EVAL_BSIZE = 1 NUM_OF_BATCHES = 1 ALLOW_CUSTOMIZE_BSIZE = False def __init__(self, test, device, batch_size=None, extra_args=[], model_kwargs={}): # reduce the eval batch size when running on CPU # see: https://github.com/pytorch/benchmark/issues/895 if device == "cpu": self.DEFAULT_EVAL_BSIZE = 1 super().__init__(test=test, device=device, batch_size=batch_size, extra_args=extra_args) self.model = torchvision.models.detection.maskrcnn_resnet50_fpn( weights=torchvision.models.detection.MaskRCNN_ResNet50_FPN_Weights.COCO_V1, **model_kwargs ).to(self.device) # setup optimizer # optimizer parameters copied from # https://github.com/pytorch/vision/blob/30f4d108319b0cd28ae5662947e300aad98c32e9/references/detection/train.py#L77 lr = 0.02 momentum = 0.9 weight_decay = 1e-4 params = [p for p in self.model.parameters() if p.requires_grad] self.optimizer = torch.optim.SGD(params, lr=lr, momentum=momentum, weight_decay=weight_decay) transforms = ConvertCocoPolysToMask() dataset = CocoDetection(root=os.path.join(DATA_DIR, COCO_DATA[COCO_DATA_KEY][0]), annFile=os.path.join(DATA_DIR, COCO_DATA[COCO_DATA_KEY][1]), transforms=transforms) sampler = torch.utils.data.SequentialSampler(dataset) self.data_loader = _prefetch(torch.utils.data.DataLoader(dataset, batch_size=self.batch_size, sampler=sampler, collate_fn=_collate_fn), self.device) def get_module(self): self.model.eval() for (example_inputs, _example_targets) in self.data_loader: return self.model, (example_inputs, ) def train(self): self.model.train() for _batch_id, (images, targets) in zip(range(self.NUM_OF_BATCHES), self.data_loader): # images = list(image.to(self.device) for image in images) # targets = [{k: v.to(self.device) for k, v in t.items()} for t in targets] loss_dict = self.model(images, targets) losses = sum(loss for loss in loss_dict.values()) self.optimizer.zero_grad() losses.backward() self.optimizer.step() def eval(self) -> Tuple[torch.Tensor]: self.model.eval() with torch.no_grad(): for _batch_id, (images, _targets) in zip(range(self.NUM_OF_BATCHES), self.data_loader): out = self.model(images) out = list(map(lambda x: x.values(), out)) return tuple(itertools.chain(*out))
import sys import subprocess from utils import s3_utils def pip_install_requirements(): subprocess.check_call([sys.executable, '-m', 'pip', 'install', '-q', '-r', 'requirements.txt']) if __name__ == '__main__': s3_utils.checkout_s3_data("INPUT_TARBALLS", "coco2017-minimal.tar.gz", decompress=True) pip_install_requirements()
import torch from pycocotools import mask as coco_mask from torchvision.transforms import functional as F def convert_coco_poly_to_mask(segmentations, height, width): masks = [] for polygons in segmentations: rles = coco_mask.frPyObjects(polygons, height, width) mask = coco_mask.decode(rles) if len(mask.shape) < 3: mask = mask[..., None] mask = torch.as_tensor(mask, dtype=torch.uint8) mask = mask.any(dim=2) masks.append(mask) if masks: masks = torch.stack(masks, dim=0) else: masks = torch.zeros((0, height, width), dtype=torch.uint8) return masks class ConvertCocoPolysToMask: def __call__(self, image, target): w, h = image.size image_id = target[0]["image_id"] if target else [] image_id = torch.tensor([image_id]) anno = target anno = [obj for obj in anno if obj["iscrowd"] == 0] boxes = [obj["bbox"] for obj in anno] # guard against no boxes via resizing boxes = torch.as_tensor(boxes, dtype=torch.float32).reshape(-1, 4) boxes[:, 2:] += boxes[:, :2] boxes[:, 0::2].clamp_(min=0, max=w) boxes[:, 1::2].clamp_(min=0, max=h) classes = [obj["category_id"] for obj in anno] classes = torch.tensor(classes, dtype=torch.int64) segmentations = [obj["segmentation"] for obj in anno] masks = convert_coco_poly_to_mask(segmentations, h, w) keypoints = None if anno and "keypoints" in anno[0]: keypoints = [obj["keypoints"] for obj in anno] keypoints = torch.as_tensor(keypoints, dtype=torch.float32) num_keypoints = keypoints.shape[0] if num_keypoints: keypoints = keypoints.view(num_keypoints, -1, 3) keep = (boxes[:, 3] > boxes[:, 1]) & (boxes[:, 2] > boxes[:, 0]) boxes = boxes[keep] classes = classes[keep] masks = masks[keep] if keypoints is not None: keypoints = keypoints[keep] target = {} target["boxes"] = boxes target["labels"] = classes target["masks"] = masks target["image_id"] = image_id if keypoints is not None: target["keypoints"] = keypoints # for conversion to coco api area = torch.tensor([obj["area"] for obj in anno]) iscrowd = torch.tensor([obj["iscrowd"] for obj in anno]) target["area"] = area target["iscrowd"] = iscrowd # Convert image from PIL to tensor image = F.pil_to_tensor(image) image = F.convert_image_dtype(image) return image, target
import os import logging import torch from pathlib import Path from contextlib import suppress # TorchBench imports from torchbenchmark.util.model import BenchmarkModel from torchbenchmark.tasks import COMPUTER_VISION # effdet imports from effdet import create_model, create_loader from effdet.data import resolve_input_config # timm imports from timm.models.layers import set_layer_config from timm.optim import create_optimizer from timm.utils import ModelEmaV2, NativeScaler from timm.scheduler import create_scheduler # local imports from .args import get_args from .train import train_epoch, validate from .loader import create_datasets_and_loaders from torch.utils._pytree import tree_map from typing import Tuple # setup coco2017 input path CURRENT_DIR = Path(os.path.dirname(os.path.realpath(__file__))) DATA_DIR = os.path.join(CURRENT_DIR.parent.parent, "data", ".data", "coco2017-minimal", "coco") def prefetch(loader, device, num_of_batches): prefetched_loader = [] for _bid, (input, target) in zip(range(num_of_batches), loader): prefetched_loader.append((tree_map(lambda x: x.to(device, dtype=torch.float32) if isinstance(x, torch.Tensor) else x, input), tree_map(lambda x: x.to(device, dtype=torch.float32) if isinstance(x, torch.Tensor) else x, target))) return prefetched_loader class Model(BenchmarkModel): task = COMPUTER_VISION.DETECTION # Original Train batch size 32 on 2x RTX 3090 (24 GB cards) # Downscale to batch size 16 on single GPU DEFAULT_TRAIN_BSIZE = 16 DEFAULT_EVAL_BSIZE = 128 # prefetch only 1 batch NUM_OF_BATCHES = 1 def __init__(self, test, device, batch_size=None, extra_args=[]): super().__init__(test=test, device=device, batch_size=batch_size, extra_args=extra_args) if not device == "cuda": # Only implemented on CUDA because the original model code explicitly calls the `Tensor.cuda()` API # https://github.com/rwightman/efficientdet-pytorch/blob/9cb43186711d28bd41f82f132818c65663b33c1f/effdet/data/loader.py#L114 raise NotImplementedError("The original model code forces the use of CUDA.") # generate arguments args = get_args() # setup train and eval batch size args.batch_size = self.batch_size # Disable distributed args.distributed = False args.device = self.device args.torchscript = False args.world_size = 1 args.rank = 0 args.pretrained_backbone = not args.no_pretrained_backbone args.prefetcher = not args.no_prefetcher args.root = DATA_DIR with set_layer_config(scriptable=args.torchscript): timm_extra_args = {} if args.img_size is not None: timm_extra_args = dict(image_size=(args.img_size, args.img_size)) if test == "train": model = create_model( model_name=args.model, bench_task='train', num_classes=args.num_classes, pretrained=args.pretrained, pretrained_backbone=args.pretrained_backbone, redundant_bias=args.redundant_bias, label_smoothing=args.smoothing, legacy_focal=args.legacy_focal, jit_loss=args.jit_loss, soft_nms=args.soft_nms, bench_labeler=args.bench_labeler, checkpoint_path=args.initial_checkpoint, ) elif test == "eval": model = create_model( model_name=args.model, bench_task='predict', num_classes=args.num_classes, pretrained=args.pretrained, redundant_bias=args.redundant_bias, soft_nms=args.soft_nms, checkpoint_path=args.checkpoint, checkpoint_ema=args.use_ema, **timm_extra_args, ) model_config = model.config # grab before we obscure with DP/DDP wrappers self.model = model.to(device) if args.channels_last: self.model = self.model.to(memory_format=torch.channels_last) self.loader_train, self.loader_eval, self.evaluator, _, dataset_eval = create_datasets_and_loaders(args, model_config) self.amp_autocast = suppress if test == "train": self.optimizer = create_optimizer(args, model) self.loss_scaler = None self.model_ema = None if args.model_ema: # Important to create EMA model after cuda(), DP wrapper, and AMP but before SyncBN and DDP wrapper self.model_ema = ModelEmaV2(model, decay=args.model_ema_decay) self.lr_scheduler, self.num_epochs = create_scheduler(args, self.optimizer) if model_config.num_classes < self.loader_train.dataset.parser.max_label: logging.error( f'Model {model_config.num_classes} has fewer classes than dataset {self.loader_train.dataset.parser.max_label}.') exit(1) if model_config.num_classes > self.loader_train.dataset.parser.max_label: logging.warning( f'Model {model_config.num_classes} has more classes than dataset {self.loader_train.dataset.parser.max_label}.') self.loader_train = prefetch(self.loader_train, self.device, self.NUM_OF_BATCHES) self.loader_eval = prefetch(self.loader_eval, self.device, self.NUM_OF_BATCHES) self.loader = self.loader_train elif test == "eval": # Create eval loader input_config = resolve_input_config(args, model_config) self.loader = create_loader( dataset_eval, input_size=input_config['input_size'], batch_size=args.batch_size, use_prefetcher=args.prefetcher, interpolation=args.eval_interpolation, fill_color=input_config['fill_color'], mean=input_config['mean'], std=input_config['std'], num_workers=args.workers, pin_mem=args.pin_mem) self.loader = prefetch(self.loader, self.device, self.NUM_OF_BATCHES) self.args = args # Only run 1 epoch self.num_epochs = 1 def get_module(self): for _, (input, target) in zip(range(self.NUM_OF_BATCHES), self.loader): return self.model, (input, target) def get_optimizer(self): return self.optimizer def set_optimizer(self, optimizer) -> None: self.optimizer = optimizer self.lr_scheduler, self.num_epochs = create_scheduler(args, self.optimizer) def enable_amp(self): if self.device == "cuda": self.amp_autocast = torch.cuda.amp.autocast elif self.device == "cpu": self.amp_autocast = torch.cpu.amp.autocast self.loss_scaler = NativeScaler() def train(self): eval_metric = self.args.eval_metric for epoch in range(self.num_epochs): train_metrics = train_epoch( epoch, self.model, self.loader_train, self.optimizer, self.args, lr_scheduler=self.lr_scheduler, amp_autocast = self.amp_autocast, loss_scaler=self.loss_scaler, model_ema=self.model_ema, num_batch=self.NUM_OF_BATCHES, ) # TorchBench: skip validation step in train # the overhead of evaluating with coco style datasets is fairly high, so just ema or non, not both # if self.model_ema is not None: # eval_metrics = validate(self.model_ema.module, self.loader_eval, self.args, self.evaluator, log_suffix=' (EMA)', num_batch=self.NUM_OF_BATCHES) # else: # eval_metrics = validate(self.model, self.loader_eval, self.args, self.evaluator, num_batch=self.NUM_OF_BATCHES) # if self.lr_scheduler is not None: # # step LR for next epoch # self.lr_scheduler.step(epoch + 1, eval_metrics[eval_metric]) def eval(self) -> Tuple[torch.Tensor]: with torch.no_grad(): for input, target in self.loader: with self.amp_autocast(): output = self.model(input, img_info=target) self.evaluator.add_predictions(output, target) return (output, )
from effdet.data import resolve_input_config, SkipSubset from effdet import create_loader, create_dataset, create_evaluator from effdet.anchors import Anchors, AnchorLabeler from effdet.data.dataset_config import CocoCfg from dataclasses import dataclass, field from typing import Dict @dataclass class Coco2017MinimalCfg(CocoCfg): variant: str = '2017-minimal' splits: Dict[str, dict] = field(default_factory=lambda: dict( train=dict(ann_filename='annotations/instances_val2017_100.json', img_dir='val2017', has_labels=True), val=dict(ann_filename='annotations/instances_val2017_100.json', img_dir='val2017', has_labels=True), )) def create_datasets_and_loaders( args, model_config, transform_train_fn=None, transform_eval_fn=None, collate_fn=None, ): """ Setup datasets, transforms, loaders, evaluator. Args: args: Command line args / config for training model_config: Model specific configuration dict / struct transform_train_fn: Override default image + annotation transforms (see note in loaders.py) transform_eval_fn: Override default image + annotation transforms (see note in loaders.py) collate_fn: Override default fast collate function Returns: Train loader, validation loader, evaluator """ input_config = resolve_input_config(args, model_config=model_config) dataset_train, dataset_eval = create_dataset(args.dataset, args.root, custom_dataset_cfg=Coco2017MinimalCfg()) # setup labeler in loader/collate_fn if not enabled in the model bench labeler = None if not args.bench_labeler: labeler = AnchorLabeler( Anchors.from_config(model_config), model_config.num_classes, match_threshold=0.5) loader_train = create_loader( dataset_train, input_size=input_config['input_size'], batch_size=args.batch_size, is_training=True, use_prefetcher=args.prefetcher, re_prob=args.reprob, re_mode=args.remode, re_count=args.recount, # color_jitter=args.color_jitter, # auto_augment=args.aa, interpolation=args.train_interpolation or input_config['interpolation'], fill_color=input_config['fill_color'], mean=input_config['mean'], std=input_config['std'], num_workers=args.workers, distributed=args.distributed, pin_mem=args.pin_mem, anchor_labeler=labeler, transform_fn=transform_train_fn, collate_fn=collate_fn, ) if args.val_skip > 1: dataset_eval = SkipSubset(dataset_eval, args.val_skip) loader_eval = create_loader( dataset_eval, input_size=input_config['input_size'], batch_size=args.batch_size, is_training=False, use_prefetcher=args.prefetcher, interpolation=input_config['interpolation'], fill_color=input_config['fill_color'], mean=input_config['mean'], std=input_config['std'], num_workers=args.workers, distributed=args.distributed, pin_mem=args.pin_mem, anchor_labeler=labeler, transform_fn=transform_eval_fn, collate_fn=collate_fn, ) evaluator = create_evaluator(args.dataset, loader_eval.dataset, distributed=args.distributed, pred_yxyx=False) return loader_train, loader_eval, evaluator, dataset_train, dataset_eval
import torch from collections import OrderedDict from contextlib import suppress from timm.utils import AverageMeter, reduce_tensor def train_epoch( epoch, model, loader, optimizer, args, lr_scheduler=None, saver=None, output_dir='', amp_autocast=suppress, loss_scaler=None, model_ema=None, num_batch=1): # batch_time_m = AverageMeter() # data_time_m = AverageMeter() losses_m = AverageMeter() model.train() # end = time.time() last_idx = len(loader) - 1 num_updates = epoch * len(loader) for batch_idx, (input, target) in zip(range(num_batch), loader): last_batch = batch_idx == last_idx # data_time_m.update(time.time() - end) if args.channels_last: input = input.contiguous(memory_format=torch.channels_last) with amp_autocast(): output = model(input, target) loss = output['loss'] if not args.distributed: losses_m.update(loss.item(), input.size(0)) optimizer.zero_grad() if loss_scaler is not None: loss_scaler(loss, optimizer, clip_grad=args.clip_grad, parameters=model.parameters()) else: loss.backward() if args.clip_grad: torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip_grad) optimizer.step() torch.cuda.synchronize() if model_ema is not None: model_ema.update(model) num_updates += 1 # batch_time_m.update(time.time() - end) if last_batch or batch_idx % args.log_interval == 0: lrl = [param_group['lr'] for param_group in optimizer.param_groups] lr = sum(lrl) / len(lrl) # if args.distributed: # reduced_loss = reduce_tensor(loss.data, args.world_size) # losses_m.update(reduced_loss.item(), input.size(0)) # # if args.local_rank == 0: # logging.info( # 'Train: {} [{:>4d}/{} ({:>3.0f}%)] ' # 'Loss: {loss.val:>9.6f} ({loss.avg:>6.4f}) ' # 'Time: {batch_time.val:.3f}s, {rate:>7.2f}/s ' # '({batch_time.avg:.3f}s, {rate_avg:>7.2f}/s) ' # 'LR: {lr:.3e} ' # 'Data: {data_time.val:.3f} ({data_time.avg:.3f})'.format( # epoch, # batch_idx, len(loader), # 100. * batch_idx / last_idx, # loss=losses_m, # batch_time=batch_time_m, # rate=input.size(0) * args.world_size / batch_time_m.val, # rate_avg=input.size(0) * args.world_size / batch_time_m.avg, # lr=lr, # data_time=data_time_m)) # if args.save_images and output_dir: # torchvision.utils.save_image( # input, # os.path.join(output_dir, 'train-batch-%d.jpg' % batch_idx), # padding=0, # normalize=True) # if saver is not None and args.recovery_interval and ( # last_batch or (batch_idx + 1) % args.recovery_interval == 0): # saver.save_recovery(epoch, batch_idx=batch_idx) if lr_scheduler is not None: lr_scheduler.step_update(num_updates=num_updates, metric=losses_m.avg) # end = time.time() # end for if hasattr(optimizer, 'sync_lookahead'): optimizer.sync_lookahead() return OrderedDict([('loss', losses_m.avg)]) def validate(model, loader, args, evaluator=None, log_suffix='', num_batch=1): # batch_time_m = AverageMeter() losses_m = AverageMeter() model.eval() # end = time.time() # last_idx = len(loader) - 1 with torch.no_grad(): for batch_idx, (input, target) in zip(range(num_batch), loader): # last_batch = batch_idx == last_idx output = model(input, target) loss = output['loss'] if evaluator is not None: evaluator.add_predictions(output['detections'], target) if args.distributed: reduced_loss = reduce_tensor(loss.data, args.world_size) else: reduced_loss = loss.data torch.cuda.synchronize() losses_m.update(reduced_loss.item(), input.size(0)) # batch_time_m.update(time.time() - end) # end = time.time() # if args.local_rank == 0 and (last_batch or batch_idx % args.log_interval == 0): # log_name = 'Test' + log_suffix # logging.info( # '{0}: [{1:>4d}/{2}] ' # 'Time: {batch_time.val:.3f} ({batch_time.avg:.3f}) ' # 'Loss: {loss.val:>7.4f} ({loss.avg:>6.4f}) '.format( # log_name, batch_idx, last_idx, batch_time=batch_time_m, loss=losses_m)) metrics = OrderedDict([('loss', losses_m.avg)]) if evaluator is not None: metrics['map'] = evaluator.evaluate() return metrics
import yaml import argparse from timm.utils import add_bool_arg def get_args(config_file=None): def _parse_args(): if config_file: with open(config_file, 'r') as f: cfg = yaml.safe_load(f) parser.set_defaults(**cfg) # There may be remaining unrecognized options # The main arg parser parses the rest of the args, the usual # defaults will have been overridden if config file specified. args, _ = parser.parse_known_args() # Cache the args as a text string to save them in the output dir later args_text = yaml.safe_dump(args.__dict__, default_flow_style=False) return args, args_text # The first arg parser parses out only the --config argument, this argument is used to # load a yaml file containing key-values that override the defaults for the main parser below parser = argparse.ArgumentParser(description='Training Config', add_help=False) parser.add_argument('-c', '--config', default='', type=str, metavar='FILE', help='YAML config file specifying default arguments') parser = argparse.ArgumentParser(description='PyTorch ImageNet Training') # Dataset / Model parameters # parser.add_argument('root', metavar='DIR', # help='path to dataset') parser.add_argument('--dataset', default='coco', type=str, metavar='DATASET', help='Name of dataset to train (default: "coco"') parser.add_argument('--model', default='tf_efficientdet_d1', type=str, metavar='MODEL', help='Name of model to train (default: "tf_efficientdet_d1"') add_bool_arg(parser, 'redundant-bias', default=None, help='override model config for redundant bias') add_bool_arg(parser, 'soft-nms', default=None, help='override model config for soft-nms') parser.add_argument('--val-skip', type=int, default=0, metavar='N', help='Skip every N validation samples.') parser.add_argument('--num-classes', type=int, default=None, metavar='N', help='Override num_classes in model config if set. For fine-tuning from pretrained.') parser.add_argument('--pretrained', action='store_true', default=False, help='Start with pretrained version of specified network (if avail)') parser.add_argument('--no-pretrained-backbone', action='store_true', default=False, help='Do not start with pretrained backbone weights, fully random.') parser.add_argument('--initial-checkpoint', default='', type=str, metavar='PATH', help='Initialize model from this checkpoint (default: none)') parser.add_argument('--resume', default='', type=str, metavar='PATH', help='Resume full model and optimizer state from checkpoint (default: none)') parser.add_argument('--no-resume-opt', action='store_true', default=False, help='prevent resume of optimizer state when resuming model') parser.add_argument('--mean', type=float, nargs='+', default=None, metavar='MEAN', help='Override mean pixel value of dataset') parser.add_argument('--std', type=float, nargs='+', default=None, metavar='STD', help='Override std deviation of of dataset') parser.add_argument('--interpolation', default='', type=str, metavar='NAME', help='Image resize interpolation type (overrides model)') parser.add_argument('--fill-color', default=None, type=str, metavar='NAME', help='Image augmentation fill (background) color ("mean" or int)') parser.add_argument('--batch-size', type=int, default=32, metavar='N', help='input batch size for training (default: 32)') parser.add_argument('--clip-grad', type=float, default=10.0, metavar='NORM', help='Clip gradient norm (default: 10.0)') # Optimizer parameters parser.add_argument('--opt', default='momentum', type=str, metavar='OPTIMIZER', help='Optimizer (default: "momentum"') parser.add_argument('--opt-eps', default=1e-3, type=float, metavar='EPSILON', help='Optimizer Epsilon (default: 1e-3)') parser.add_argument('--momentum', type=float, default=0.9, metavar='M', help='SGD momentum (default: 0.9)') parser.add_argument('--weight-decay', type=float, default=4e-5, help='weight decay (default: 0.00004)') # Learning rate schedule parameters parser.add_argument('--sched', default='cosine', type=str, metavar='SCHEDULER', help='LR scheduler (default: "step"') parser.add_argument('--lr', type=float, default=0.01, metavar='LR', help='learning rate (default: 0.01)') parser.add_argument('--lr-noise', type=float, nargs='+', default=None, metavar='pct, pct', help='learning rate noise on/off epoch percentages') parser.add_argument('--lr-noise-pct', type=float, default=0.67, metavar='PERCENT', help='learning rate noise limit percent (default: 0.67)') parser.add_argument('--lr-noise-std', type=float, default=1.0, metavar='STDDEV', help='learning rate noise std-dev (default: 1.0)') parser.add_argument('--lr-cycle-mul', type=float, default=1.0, metavar='MULT', help='learning rate cycle len multiplier (default: 1.0)') parser.add_argument('--lr-cycle-limit', type=int, default=1, metavar='N', help='learning rate cycle limit') parser.add_argument('--warmup-lr', type=float, default=0.0001, metavar='LR', help='warmup learning rate (default: 0.0001)') parser.add_argument('--min-lr', type=float, default=1e-5, metavar='LR', help='lower lr bound for cyclic schedulers that hit 0 (1e-5)') parser.add_argument('--epochs', type=int, default=300, metavar='N', help='number of epochs to train (default: 2)') parser.add_argument('--start-epoch', default=None, type=int, metavar='N', help='manual epoch number (useful on restarts)') parser.add_argument('--decay-epochs', type=float, default=30, metavar='N', help='epoch interval to decay LR') parser.add_argument('--warmup-epochs', type=int, default=5, metavar='N', help='epochs to warmup LR, if scheduler supports') parser.add_argument('--cooldown-epochs', type=int, default=10, metavar='N', help='epochs to cooldown LR at min_lr, after cyclic schedule ends') parser.add_argument('--patience-epochs', type=int, default=10, metavar='N', help='patience epochs for Plateau LR scheduler (default: 10') parser.add_argument('--decay-rate', '--dr', type=float, default=0.1, metavar='RATE', help='LR decay rate (default: 0.1)') # Augmentation parameters parser.add_argument('--color-jitter', type=float, default=0.4, metavar='PCT', help='Color jitter factor (default: 0.4)') parser.add_argument('--aa', type=str, default=None, metavar='NAME', help='Use AutoAugment policy. "v0" or "original". (default: None)'), parser.add_argument('--reprob', type=float, default=0., metavar='PCT', help='Random erase prob (default: 0.)') parser.add_argument('--remode', type=str, default='pixel', help='Random erase mode (default: "pixel")') parser.add_argument('--recount', type=int, default=1, help='Random erase count (default: 1)') parser.add_argument('--train-interpolation', type=str, default='random', help='Training interpolation (random, bilinear, bicubic default: "random")') # loss parser.add_argument('--smoothing', type=float, default=None, help='override model config label smoothing') add_bool_arg(parser, 'jit-loss', default=None, help='override model config for torchscript jit loss fn') add_bool_arg(parser, 'legacy-focal', default=None, help='override model config to use legacy focal loss') # Model Exponential Moving Average parser.add_argument('--model-ema', action='store_true', default=False, help='Enable tracking moving average of model weights') parser.add_argument('--model-ema-decay', type=float, default=0.9998, help='decay factor for model weights moving average (default: 0.9998)') # Misc parser.add_argument('--sync-bn', action='store_true', help='Enable NVIDIA Apex or Torch synchronized BatchNorm.') parser.add_argument('--dist-bn', type=str, default='', help='Distribute BatchNorm stats between nodes after each epoch ("broadcast", "reduce", or "")') parser.add_argument('--seed', type=int, default=42, metavar='S', help='random seed (default: 42)') parser.add_argument('--log-interval', type=int, default=50, metavar='N', help='how many batches to wait before logging training status') parser.add_argument('--recovery-interval', type=int, default=0, metavar='N', help='how many batches to wait before writing recovery checkpoint') parser.add_argument('-j', '--workers', type=int, default=0, metavar='N', help='how many training processes to use (default: 0)') parser.add_argument('--save-images', action='store_true', default=False, help='save images of input bathes every log interval for debugging') parser.add_argument('--amp', action='store_true', default=False, help='use NVIDIA Apex AMP or Native AMP for mixed precision training') parser.add_argument('--apex-amp', action='store_true', default=False, help='Use NVIDIA Apex AMP mixed precision') parser.add_argument('--native-amp', action='store_true', default=False, help='Use Native Torch AMP mixed precision') parser.add_argument('--channels-last', action='store_true', default=False, help='Use channels_last memory layout') parser.add_argument('--pin-mem', action='store_true', default=False, help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.') parser.add_argument('--no-prefetcher', action='store_true', default=False, help='disable fast prefetcher') parser.add_argument('--torchscript', dest='torchscript', action='store_true', help='convert model torchscript for inference') add_bool_arg(parser, 'bench-labeler', default=False, help='label targets in model bench, increases GPU load at expense of loader processes') parser.add_argument('--output', default='', type=str, metavar='PATH', help='path to output folder (default: none, current dir)') parser.add_argument('--eval-metric', default='map', type=str, metavar='EVAL_METRIC', help='Best metric (default: "map"') parser.add_argument('--tta', type=int, default=0, metavar='N', help='Test/inference time augmentation (oversampling) factor. 0=None (default: 0)') parser.add_argument("--local_rank", default=0, type=int) # Evaluation parameters parser.add_argument('--eval-interpolation', default='bilinear', type=str, metavar='NAME', help='Image resize interpolation type (overrides model)') parser.add_argument('--img-size', default=None, type=int, metavar='N', help='Input image dimension, uses model default if empty') parser.add_argument('--checkpoint', default='', type=str, metavar='PATH', help='path to latest checkpoint (default: none)') parser.add_argument('--use-ema', dest='use_ema', action='store_true', help='use ema version of weights if present') args, _ = _parse_args() return args
import os import sys import patch from pathlib import Path import subprocess from utils import s3_utils def patch_effdet(): import effdet current_dir = os.path.dirname(os.path.abspath(__file__)) patch_file = os.path.join(current_dir, "effdet.patch") target_dir = os.path.dirname(effdet.__file__) p = patch.fromfile(patch_file) if not p.apply(strip=1, root=target_dir): print("Failed to patch effdet. Exit.") exit(1) def patch_pycocotools(): import pycocotools current_dir = os.path.dirname(os.path.abspath(__file__)) patch_file = os.path.join(current_dir, "pycocotools.patch") target_dir = os.path.dirname(os.path.abspath(pycocotools.__file__)) p = patch.fromfile(patch_file) if not p.apply(strip=1, root=target_dir): print("Failed to patch pycocotools. Exit.") exit(1) def pip_install_requirements(): subprocess.check_call([sys.executable, '-m', 'pip', 'install', '-q', '-r', 'requirements.txt']) if __name__ == '__main__': s3_utils.checkout_s3_data("INPUT_TARBALLS", "coco2017-minimal.tar.gz", decompress=True) pip_install_requirements() patch_effdet() patch_pycocotools()
import os import torch from torch.distributed._tensor import DeviceMesh from torch.distributed.tensor.parallel import parallelize_module from torch.distributed.tensor.parallel.style import ColwiseParallel, RowwiseParallel from torchbenchmark.tasks import NLP from ...util.model import BenchmarkModel from .model import LLaMA class Model(BenchmarkModel): task = NLP.GENERATION DEFAULT_EVAL_BSIZE = 1 def validate_environment(self): if not torch.cuda.is_available() or "cuda" not in self.device: return NotImplementedError("Model requires CUDA") if not torch.cuda.is_bf16_supported(): return NotImplementedError("Model requires BF16") if not hasattr(self, "_world_size"): return NotImplementedError("Model needs to be run via dynamo torchbench and be provided distributed parameters") if self._world_size != torch.cuda.device_count(): return NotImplementedError( f"DTensor and all local GPUs to be within the device mesh. {torch.cuda.device_count()} local GPUs, but only world size is only {self._world_size}" ) return None def __init__(self, test, device, batch_size=None, extra_args=[]): super().__init__( test=test, device=device, batch_size=batch_size, extra_args=extra_args, ) error = self.validate_environment() if error: raise error self.model = LLaMA.from_name("7B", self._world_size).to(device=device, dtype=torch.bfloat16) # Tensor parallelism using DTensor mesh = DeviceMesh("cuda", list(range(self._world_size))) for block in self.model.transformer.h: # prepare attention weights to be parallelized block.attn.prepare_qkv_for_dtensor_tp() parallelize_module( module=block, device_mesh=mesh, parallelize_plan={ "attn.c_attn_q": ColwiseParallel(), "attn.c_attn_k": ColwiseParallel(), "attn.c_attn_v": ColwiseParallel(), "attn.c_proj": RowwiseParallel(), "mlp.c_fc1": ColwiseParallel(), "mlp.c_fc2": ColwiseParallel(), "mlp.c_proj": RowwiseParallel(), }, tp_mesh_dim=0, ) max_batch_size = self.DEFAULT_EVAL_BSIZE self.model.setup_caches( max_batch_size=max_batch_size, max_seq_length=self.model.config.block_size ) prompt_size = 10 idx = torch.randint( self.model.config.vocab_size, (max_batch_size, prompt_size), dtype=torch.int32, device=device, ) input_pos = torch.arange(prompt_size, device=device) self.example_inputs = [idx, input_pos] def get_module(self): return self.model, self.example_inputs def train(self): raise NotImplementedError("Training not supported for this model") def eval(self): raise NotImplementedError("Model needs to be run via dynamo torchbench and be provided distributed parameters")
"""Full definition of a LLaMA Language Model, all of it in this single file. Based on the nanoGPT implementation: https://github.com/karpathy/nanoGPT. """ # mypy: ignore-errors import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union from typing_extensions import Self import torch import torch.nn as nn from torch.nn import functional as F MaskCache = torch.Tensor RoPECache = torch.Tensor KVCache = Tuple[torch.Tensor, torch.Tensor] def find_multiple(n: int, k: int) -> int: if n % k == 0: return n return n + k - (n % k) class LinearInt8(torch.nn.Module): __constants__ = ['in_features', 'out_features'] in_features: int out_features: int weight: torch.Tensor def __init__(self, in_features: int, out_features: int, bias: bool = True, device=None, dtype=None) -> None: factory_kwargs = {'device': device, 'dtype': dtype} super().__init__() self.in_features = in_features self.out_features = out_features self.register_buffer("weight", torch.empty((out_features, in_features), dtype=torch.int8)) # if bias: # self.register_buffer("bias", torch.empty(out_features, **factory_kwargs, dtype=torch.int8)) # else: # self.bias('bias', None) def forward(self, input: torch.Tensor) -> torch.Tensor: return F.linear(input, self.weight.to(dtype=input.dtype)) # nn.Linear = LinearInt8 @dataclass class LLaMAConfig: block_size: int = 2048 vocab_size: int = 32000 padded_vocab_size: Optional[int] = None n_layer: int = 32 n_head: int = 32 n_embd: int = 4096 def __post_init__(self): if self.padded_vocab_size is None: self.padded_vocab_size = find_multiple(self.vocab_size, 64) @classmethod def from_name(cls, name: str) -> Self: return cls(**llama_configs[name]) llama_configs = { "7B": dict(n_layer=32, n_head=32, n_embd=4096), "13B": dict(n_layer=40, n_head=40, n_embd=5120), "30B": dict(n_layer=60, n_head=52, n_embd=6656), "65B": dict(n_layer=80, n_head=64, n_embd=8192), } class KVCache(nn.Module): @torch.no_grad() def __init__(self, max_batch_size, max_seq_length, n_heads, head_size, device='cuda', dtype=torch.bfloat16): super().__init__() cache_shape = (max_batch_size, n_heads, max_seq_length, head_size) self.k_cache = torch.nn.Parameter(torch.zeros(cache_shape, device=device, dtype=dtype)) self.v_cache = torch.nn.Parameter(torch.zeros(cache_shape, device=device, dtype=dtype)) @torch.no_grad() def update(self, input_pos, k_val, v_val): # input_pos: [S], k_val: [B, H, S, D] assert input_pos.shape[0] == k_val.shape[2] self.k_cache[:, :, input_pos] = k_val self.v_cache[:, :, input_pos] = v_val return self.k_cache, self.v_cache class KVCacheAggregator(nn.Module): def __init__(self): super().__init__() self.kv_caches = nn.ModuleList([]) def initialize(self,layers, max_batch_size, max_seq_length, n_heads, head_size, device='cuda', dtype=torch.bfloat16): cache_shape = (max_batch_size, n_heads, max_seq_length, head_size) self.kv_caches = nn.ModuleList([KVCache(max_batch_size, max_seq_length, n_heads, head_size) for _ in range(layers)]) def __getitem__(self, idx): return self.kv_caches[idx] def clear(self): self.kv_caches = nn.ParameterList([]) class LLaMA(nn.Module): def __init__(self, config: LLaMAConfig, world_size: int) -> None: super().__init__() self.world_size = world_size assert config.padded_vocab_size is not None self.config = config self.lm_head = nn.Linear(config.n_embd, config.padded_vocab_size, bias=False) self.transformer = nn.ModuleDict( dict( wte=nn.Embedding(config.padded_vocab_size, config.n_embd), h=nn.ModuleList(Block(config, self.world_size) for _ in range(config.n_layer)), ln_f=RMSNorm(config.n_embd), ) ) self.rope_cache: Optional[RoPECache] = None self.mask_cache: Optional[MaskCache] = None self.kv_caches = KVCacheAggregator() self.max_batch_size = None self.max_seq_length = None def setup_caches(self, max_batch_size, max_seq_length, device='cuda', dtype=torch.bfloat16): n_embd = self.config.n_embd // self.world_size n_head = self.config.n_head // self.world_size head_size = n_embd // n_head self.max_seq_length = max_seq_length self.max_batch_size = max_batch_size self.kv_caches.initialize(layers=self.config.n_layer, max_batch_size=max_batch_size, max_seq_length=max_seq_length, n_heads=n_head, head_size=head_size) self.rope_cache = build_rope_cache( seq_len=self.config.block_size, n_elem=head_size, dtype=dtype, device=device, ) ones = torch.ones((self.config.block_size, self.config.block_size), device=device, dtype=torch.bool) self.mask_cache = torch.tril(ones).unsqueeze(0).unsqueeze(0) def _init_weights(self, module: nn.Module) -> None: if isinstance(module, nn.Linear): torch.nn.init.normal_(module.weight, mean=0.0, std=0.02 / math.sqrt(2 * self.config.n_layer)) elif isinstance(module, nn.Embedding): torch.nn.init.normal_(module.weight, mean=0.0, std=0.02 / math.sqrt(2 * self.config.n_layer)) def forward( self, idx: torch.Tensor, input_pos: Optional[torch.Tensor] = None ) -> Union[torch.Tensor, Tuple[torch.Tensor, List[KVCache]]]: B, T = idx.size() assert self.rope_cache is not None, "Caches must be initialized first" block_size = self.config.block_size max_seq_length = self.max_seq_length if max_seq_length is None: max_seq_length = block_size assert T <= max_seq_length, f"Cannot forward sequence of length {T}, max seq length is only {max_seq_length}" assert max_seq_length <= block_size, f"Cannot attend to {max_seq_length}, block size is only {block_size}" assert T <= block_size, f"Cannot forward sequence of length {T}, block size is only {block_size}" rope = self.rope_cache.index_select(0, input_pos) mask = self.mask_cache.index_select(2, input_pos) mask = mask[:, :, :, :max_seq_length] # forward the model itself x = self.transformer.wte(idx) # token embeddings of shape (b, t, n_embd) for i, block in enumerate(self.transformer.h): x, new_kv_cache = block(x, rope, mask, max_seq_length, input_pos, self.kv_caches[i]) x = self.transformer.ln_f(x) logits = self.lm_head(x) # (b, t, vocab_size) return logits @classmethod def from_name(cls, name: str, world_size: int) -> Self: return cls(LLaMAConfig.from_name(name), world_size) def reset_cache(self) -> None: self.kv_caches.clear() class Block(nn.Module): def __init__(self, config: LLaMAConfig, world_size: int) -> None: super().__init__() self.rms_1 = RMSNorm(config.n_embd) self.attn = CausalSelfAttention(config, world_size) self.rms_2 = RMSNorm(config.n_embd) self.mlp = MLP(config) def forward( self, x: torch.Tensor, rope: RoPECache, mask: MaskCache, max_seq_length: int, input_pos: Optional[torch.Tensor] = None, kv_cache: Optional[KVCache] = None, ) -> Tuple[torch.Tensor, Optional[KVCache]]: h, new_kv_cache = self.attn(self.rms_1(x), rope, mask, max_seq_length, input_pos, kv_cache) x = x + h x = x + self.mlp(self.rms_2(x)) return x, new_kv_cache class CausalSelfAttention(nn.Module): def __init__(self, config: LLaMAConfig, world_size: int) -> None: super().__init__() self.world_size = world_size assert config.n_embd % config.n_head == 0 self.config = config # key, query, value projections for all heads, but in a batch self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=False) # output projection self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=False) self.n_head = config.n_head self.n_embd = config.n_embd self.block_size = config.block_size def forward( self, x: torch.Tensor, rope: RoPECache, mask: MaskCache, max_seq_length: int, input_pos: Optional[torch.Tensor] = None, kv_cache: Optional[KVCache] = None, ) -> Tuple[torch.Tensor, Optional[KVCache]]: B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd) _C = C // self.world_size # calculate query, key, values for all heads in batch and move head forward to be the batch dim q = self.c_attn_q(x) k = self.c_attn_k(x) v = self.c_attn_v(x) n_head = self.n_head // self.world_size head_size = _C // n_head k = k.view(B, T, n_head, head_size) q = q.view(B, T, n_head, head_size) v = v.view(B, T, n_head, head_size) q = apply_rope(q, rope) k = apply_rope(k, rope) k = k.transpose(1, 2) # (B, nh, T, hs) q = q.transpose(1, 2) # (B, nh, T, hs) v = v.transpose(1, 2) # (B, nh, T, hs) if kv_cache is not None: k, v = kv_cache.update(input_pos, k, v) # efficient attention using Flash Attention CUDA kernels # y = F.scaled_dot_product_attention(q, k, v) y = F.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0) y = y.transpose(1, 2).contiguous().view(B, T, _C) # re-assemble all head outputs side by side # output projection y = self.c_proj(y) return y, kv_cache def prepare_qkv_for_dtensor_tp(self): attn = self.c_attn assert attn.in_features % self.world_size == 0 # q, k, v must be shardeable attn.out_features = attn.out_features // self.world_size # Shard on dim 0 since attn.weight is transposed # Shard q, k, v separately q, k, v = attn.weight.split(self.config.n_embd, dim=0) # (C, C) self.c_attn_q = nn.Linear(self.config.n_embd, self.config.n_embd, bias=False) self.c_attn_q.weight = nn.Parameter(q) self.c_attn_k = nn.Linear(self.config.n_embd, self.config.n_embd, bias=False) self.c_attn_k.weight = nn.Parameter(k) self.c_attn_v = nn.Linear(self.config.n_embd, self.config.n_embd, bias=False) self.c_attn_v.weight = nn.Parameter(v) del self.c_attn class MLP(nn.Module): def __init__(self, config: LLaMAConfig) -> None: super().__init__() hidden_dim = 4 * config.n_embd n_hidden = int(2 * hidden_dim / 3) n_hidden = find_multiple(n_hidden, 256) self.c_fc1 = nn.Linear(config.n_embd, n_hidden, bias=False) self.c_fc2 = nn.Linear(config.n_embd, n_hidden, bias=False) self.c_proj = nn.Linear(n_hidden, config.n_embd, bias=False) def forward(self, x: torch.Tensor) -> torch.Tensor: x = F.silu(self.c_fc1(x)) * self.c_fc2(x) x = self.c_proj(x) return x class RMSNorm(nn.Module): """Root Mean Square Layer Normalization. Derived from https://github.com/bzhangGo/rmsnorm/blob/master/rmsnorm_torch.py. BSD 3-Clause License: https://github.com/bzhangGo/rmsnorm/blob/master/LICENSE. """ def __init__(self, size: int, dim: int = -1, eps: float = 1e-5) -> None: super().__init__() self.scale = nn.Parameter(torch.ones(size)) self.eps = eps self.dim = dim def forward(self, x: torch.Tensor) -> torch.Tensor: # NOTE: the original RMSNorm paper implementation is not equivalent # norm_x = x.norm(2, dim=self.dim, keepdim=True) # rms_x = norm_x * d_x ** (-1. / 2) # x_normed = x / (rms_x + self.eps) norm_x = torch.mean(x * x, dim=self.dim, keepdim=True) x_normed = x * torch.rsqrt(norm_x + self.eps) return self.scale * x_normed def build_rope_cache( seq_len: int, n_elem: int, dtype: torch.dtype, device: torch.device, base: int = 10000 ) -> RoPECache: """Enhanced Transformer with Rotary Position Embedding. Derived from: https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/ transformers/rope/__init__.py. MIT License: https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/license. """ # $\Theta = {\theta_i = 10000^{\frac{2(i-1)}{d}}, i \in [1, 2, ..., \frac{d}{2}]}$ theta = 1.0 / (base ** (torch.arange(0, n_elem, 2, dtype=dtype, device=device) / n_elem)) # Create position indexes `[0, 1, ..., seq_len - 1]` seq_idx = torch.arange(seq_len, dtype=dtype, device=device) # Calculate the product of position index and $\theta_i$ idx_theta = torch.outer(seq_idx, theta).float() cache = torch.stack([torch.cos(idx_theta), torch.sin(idx_theta)], dim=-1) # this is to mimic the behaviour of complex32, else we will get different results if dtype in (torch.float16, torch.bfloat16, torch.int8): cache = cache.half() return cache def apply_rope(x: torch.Tensor, rope_cache: RoPECache) -> torch.Tensor: # truncate to support variable sizes T = x.size(1) rope_cache = rope_cache[:T] # cast because the reference does xshaped = x.float().reshape(*x.shape[:-1], -1, 2) rope_cache = rope_cache.view(1, xshaped.size(1), 1, xshaped.size(3), 2) x_out2 = torch.stack( [ xshaped[..., 0] * rope_cache[..., 0] - xshaped[..., 1] * rope_cache[..., 1], xshaped[..., 1] * rope_cache[..., 0] + xshaped[..., 0] * rope_cache[..., 1], ], -1, ) x_out2 = x_out2.flatten(3) return x_out2.type_as(x)
from ...util.model import BenchmarkModel from torchbenchmark.tasks import NLP import torch from .model import SequenceGenerator, create_model import torch class Model(BenchmarkModel): task = NLP.LANGUAGE_MODELING DEFAULT_EVAL_BSIZE = 1 def __init__(self, test, device, batch_size=None, extra_args=[]): super().__init__(test=test, device=device, batch_size=batch_size, extra_args=extra_args) embed_dim = 1536 beam_size = 1 # This is quite a bit smaller than, e.g., T5, because this model is # quite a bit slower to run generate_size = 64 self.model = SequenceGenerator( create_model(embed_dim), beam_size, generate_size, ).eval().to(self.device) prompt_size = 64 vocab_size = 128 # cribbed from original script self.example_inputs = ( torch.randint(1, vocab_size, (self.batch_size, prompt_size)).to(self.device), ) def get_module(self): return self.model, self.example_inputs # The code included here is specialized for eval def train(self): return NotImplementedError("training script not published") def eval(self): with torch.no_grad(): out = self.model(*self.example_inputs) return (out,)
# Copyright (c) Meta Platforms, Inc. and affiliates. # Portions of this code are derived from https://github.com/facebookresearch/metaseq import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.benchmark as benchmark from torch import Tensor from typing import Optional, Dict, Any from tqdm import tqdm # torch.set_float32_matmul_precision("high") def fill_with_neg_inf(t): """FP16-compatible function that fills a tensor with -inf.""" return t.float().fill_(float("-inf")).type_as(t) def make_positions(tensor, padding_idx: int): """Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols are ignored. """ # The series of casts and type-conversions here are carefully # balanced to both work with ONNX export and XLA. In particular XLA # prefers ints, cumsum defaults to output longs, and ONNX doesn't know # how to handle the dtype kwarg in cumsum. mask = tensor.ne(padding_idx).int() return (torch.cumsum(mask, dim=1).type_as(mask) * mask).long() + padding_idx class LearnedPositionalEmbedding(nn.Embedding): """ This module learns positional embeddings up to a fixed maximum size. Padding ids are ignored by either offsetting based on padding_idx or by setting padding_idx to None and ensuring that the appropriate position ids are passed to the forward function. """ def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: int): super().__init__(num_embeddings, embedding_dim, padding_idx) if self.padding_idx is not None: self.max_positions = self.num_embeddings - self.padding_idx - 1 else: self.max_positions = self.num_embeddings def forward( self, input: Tensor, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, positions: Optional[Tensor] = None, ): """Input is expected to be of size [bsz x seqlen].""" assert (positions is None) or ( self.padding_idx is None ), "If positions is pre-computed then padding_idx should not be set." # we cannot use incremental state here because we must be aware of # padding. if positions is None and self.padding_idx is not None: positions = make_positions(input, self.padding_idx) assert positions is not None return F.embedding( positions, self.weight, self.padding_idx, self.max_norm, self.norm_type, self.scale_grad_by_freq, self.sparse, ) def PositionalEmbedding( num_embeddings: int, embedding_dim: int, padding_idx: int, learned: bool = False, learned_sinusoidal: bool = False, full_megatron_init=False, pos_init_scalar=1.0, megatron_init_sigma=None, truncate_init=False, ): def _init_emb(tensor, sigma): if sigma <= 1e-8: # effectively 0 return nn.init.zeros_(tensor) if truncate_init: return nn.init.trunc_normal_( tensor, mean=0.0, std=sigma, a=-3 * sigma, b=3 * sigma ) else: return nn.init.normal_(tensor, mean=0.0, std=sigma) if learned: # if padding_idx is specified then offset the embedding ids by # this index and adjust num_embeddings appropriately # TODO: The right place for this offset would be inside # LearnedPositionalEmbedding. Move this there for a cleaner implementation. if padding_idx is not None: num_embeddings = num_embeddings + padding_idx + 1 m = LearnedPositionalEmbedding(num_embeddings, embedding_dim, padding_idx) if full_megatron_init: _init_emb(m.weight, megatron_init_sigma * pos_init_scalar) else: _init_emb(m.weight, embedding_dim**-0.5 * pos_init_scalar) if padding_idx is not None: nn.init.constant_(m.weight[padding_idx], 0) elif learned_sinusoidal: if padding_idx is not None: num_embeddings = num_embeddings + padding_idx + 1 m = LearnedPositionalEmbedding(num_embeddings, embedding_dim, padding_idx) with torch.no_grad(): m.weight.copy_( SinusoidalPositionalEmbedding.get_embedding( num_embeddings, embedding_dim, padding_idx, ) ) else: m = SinusoidalPositionalEmbedding( embedding_dim, padding_idx, init_size=num_embeddings + padding_idx + 1, ) return m from typing import Tuple from torch.nn import Parameter, init import math import uuid def softmax(x, dim: int): return F.softmax(x, dim=dim, dtype=torch.float32) def LayerNorm(normalized_shape, eps=1e-5, elementwise_affine=True, export=False): return torch.nn.LayerNorm(normalized_shape, eps, elementwise_affine) class Linear(nn.Module): """ Exact same as pytorch nn.Linear but with option to initialize weight and bias directly on GPU """ __constants__ = ["in_features", "out_features"] in_features: int out_features: int weight: Tensor def __init__( self, in_features: int, out_features: int, bias: bool = True, initialize_params_on_gpu: bool = False, dtype: torch.dtype = None, ) -> None: super(Linear, self).__init__() self.in_features = in_features self.out_features = out_features device = torch.cuda.current_device() if initialize_params_on_gpu else None if dtype is None: dtype = torch.float self.weight = Parameter( torch.empty(out_features, in_features, device=device, dtype=dtype) ) if bias: self.bias = Parameter(torch.empty(out_features, device=device, dtype=dtype)) else: self.register_parameter("bias", None) def forward(self, input: Tensor) -> Tensor: return F.linear(input, self.weight, self.bias) def extra_repr(self) -> str: return "in_features={}, out_features={}, bias={}".format( self.in_features, self.out_features, self.bias is not None ) class Dropout(nn.Module): def __init__(self, p, module_name=None): super().__init__() self.p = p self.module_name = module_name self.apply_during_inference = False def extra_repr(self) -> str: return "p={}".format(self.p) def forward(self, x, inplace: bool = False): if self.p > 0 and (self.training or self.apply_during_inference): return F.dropout(x, p=self.p, training=True, inplace=inplace) else: return x class MultiheadAttention(nn.Module): """Multi-headed attention. See "Attention Is All You Need" for more details. """ def init_incremental_state(self): self._incremental_state_id = "5" # str(uuid.uuid4()) def _get_full_incremental_state_key(self, key: str) -> str: return "{}.{}".format(self._incremental_state_id, key) def get_incremental_state( self, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]], key: str, ) -> Optional[Dict[str, Optional[Tensor]]]: """Helper for getting incremental state for an nn.Module.""" full_key = self._get_full_incremental_state_key(key) if incremental_state is None or full_key not in incremental_state: return None return incremental_state[full_key] def set_incremental_state( self, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]], key: str, value: Dict[str, Optional[Tensor]], ) -> Optional[Dict[str, Dict[str, Optional[Tensor]]]]: """Helper for setting incremental state for an nn.Module.""" if incremental_state is not None: full_key = self._get_full_incremental_state_key(key) incremental_state[full_key] = value return incremental_state def __init__( self, embed_dim, num_heads, kdim=None, vdim=None, dropout=0.0, bias=True, add_bias_kv=False, add_zero_attn=False, self_attention=False, initialize_params_on_gpu=False, dtype: Optional[torch.dtype] = None, ): self.init_incremental_state() super().__init__() self.embed_dim = embed_dim self.kdim = kdim if kdim is not None else embed_dim self.vdim = vdim if vdim is not None else embed_dim self.qkv_same_dim = self.kdim == embed_dim and self.vdim == embed_dim self.num_heads = num_heads self.dropout_module = Dropout(dropout, module_name=self.__class__.__name__) self.head_dim = embed_dim // num_heads assert ( self.head_dim * num_heads == self.embed_dim ), "embed_dim must be divisible by num_heads" self.scaling = self.head_dim**-0.5 self.self_attention = self_attention assert not self.self_attention or self.qkv_same_dim, ( "Self-attention requires query, key and " "value to be of the same size" ) random_state = torch.get_rng_state() # random_state_cuda = torch.cuda.get_rng_state() self.k_proj = Linear( self.kdim, embed_dim, bias=bias, initialize_params_on_gpu=initialize_params_on_gpu, dtype=dtype, ) self.v_proj = Linear( self.vdim, embed_dim, bias=bias, initialize_params_on_gpu=initialize_params_on_gpu, dtype=dtype, ) self.q_proj = Linear( embed_dim, embed_dim, bias=bias, initialize_params_on_gpu=initialize_params_on_gpu, dtype=dtype, ) self.out_proj = Linear( embed_dim, embed_dim, bias=bias, initialize_params_on_gpu=initialize_params_on_gpu, dtype=dtype, ) torch.set_rng_state(random_state) if add_bias_kv: self.bias_k = Parameter(torch.Tensor(1, 1, embed_dim)) self.bias_v = Parameter(torch.Tensor(1, 1, embed_dim)) else: self.bias_k = self.bias_v = None self.add_zero_attn = add_zero_attn def forward( self, query, key: Optional[Tensor], value: Optional[Tensor], key_padding_mask: Optional[Tensor] = None, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, attn_mask: Optional[Tensor] = None, ) -> Tuple[Tensor, Optional[Tensor]]: """Input shape: Time x Batch x Channel Args: key_padding_mask (ByteTensor, optional): mask to exclude keys that are pads, of shape `(batch, src_len)`, where padding elements are indicated by 1s. attn_mask (ByteTensor, optional): typically used to implement causal attention, where the mask prevents the attention from looking forward in time (default: None). """ tgt_len, bsz, embed_dim = query.size() src_len = tgt_len assert embed_dim == self.embed_dim, f"query dim {embed_dim} != {self.embed_dim}" assert list(query.size()) == [tgt_len, bsz, embed_dim] if key is not None: src_len, key_bsz, _ = key.size() if not torch.jit.is_scripting(): assert key_bsz == bsz assert value is not None assert src_len, bsz == value.shape[:2] if ( incremental_state is None # A workaround for quantization to work. Otherwise JIT compilation # treats bias in linear module as method. and not torch.jit.is_scripting() ): assert key is not None and value is not None return F.multi_head_attention_forward( query, key, value, self.embed_dim, self.num_heads, torch.empty([0]), torch.cat((self.q_proj.bias, self.k_proj.bias, self.v_proj.bias)), self.bias_k, self.bias_v, self.add_zero_attn, self.dropout_module.p, self.out_proj.weight, self.out_proj.bias, self.training or self.dropout_module.apply_during_inference, key_padding_mask, False, attn_mask, use_separate_proj_weight=True, q_proj_weight=self.q_proj.weight, k_proj_weight=self.k_proj.weight, v_proj_weight=self.v_proj.weight, ) if incremental_state is not None: saved_state = self._get_input_buffer(incremental_state) else: saved_state = None if self.self_attention: q = self.q_proj(query) k = self.k_proj(query) v = self.v_proj(query) else: assert key is not None and value is not None q = self.q_proj(query) k = self.k_proj(key) v = self.v_proj(value) q *= self.scaling if self.bias_k is not None: assert self.bias_v is not None k = torch.cat([k, self.bias_k.repeat(1, bsz, 1)]) v = torch.cat([v, self.bias_v.repeat(1, bsz, 1)]) if attn_mask is not None: attn_mask = torch.cat( [attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1 ) if key_padding_mask is not None: key_padding_mask = torch.cat( [ key_padding_mask, key_padding_mask.new_zeros(key_padding_mask.size(0), 1), ], dim=1, ) q = ( q.contiguous() .view(tgt_len, bsz * self.num_heads, self.head_dim) .transpose(0, 1) ) if k is not None: k = ( k.contiguous() .view(-1, bsz * self.num_heads, self.head_dim) .transpose(0, 1) ) if v is not None: v = ( v.contiguous() .view(-1, bsz * self.num_heads, self.head_dim) .transpose(0, 1) ) if saved_state is not None: # saved states are stored with shape (bsz, num_heads, seq_len, head_dim) if "prev_key" in saved_state: _prev_key = saved_state["prev_key"] assert _prev_key is not None prev_key = _prev_key.view(bsz * self.num_heads, -1, self.head_dim) assert k is not None k = torch.cat([prev_key, k], dim=1) src_len = k.size(1) if "prev_value" in saved_state: _prev_value = saved_state["prev_value"] assert _prev_value is not None prev_value = _prev_value.view(bsz * self.num_heads, -1, self.head_dim) assert v is not None v = torch.cat([prev_value, v], dim=1) saved_state["prev_key"] = k.view(bsz, self.num_heads, -1, self.head_dim) saved_state["prev_value"] = v.view(bsz, self.num_heads, -1, self.head_dim) saved_state["prev_key_padding_mask"] = key_padding_mask # In this branch incremental_state is never None assert incremental_state is not None incremental_state = self._set_input_buffer(incremental_state, saved_state) assert k is not None assert k.size(1) == src_len # This is part of a workaround to get around fork/join parallelism # not supporting Optional types. if key_padding_mask is not None and key_padding_mask.dim() == 0: key_padding_mask = None if key_padding_mask is not None: assert key_padding_mask.size(0) == bsz assert key_padding_mask.size(1) == src_len if self.add_zero_attn: assert v is not None src_len += 1 k = torch.cat([k, k.new_zeros((k.size(0), 1) + k.size()[2:])], dim=1) v = torch.cat([v, v.new_zeros((v.size(0), 1) + v.size()[2:])], dim=1) if attn_mask is not None: attn_mask = torch.cat( [attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], dim=1 ) if key_padding_mask is not None: key_padding_mask = torch.cat( [ key_padding_mask, torch.zeros(key_padding_mask.size(0), 1).type_as( key_padding_mask ), ], dim=1, ) attn_weights = torch.bmm(q, k.transpose(1, 2)) assert list(attn_weights.size()) == [bsz * self.num_heads, tgt_len, src_len] if attn_mask is not None: # Replace any non-finite values with finite equivalents, since otherwise # we may get NaN when adding attn_mask or computing softmax. attn_weights = torch.nan_to_num(attn_weights) attn_mask = attn_mask.unsqueeze(0) attn_weights += attn_mask if key_padding_mask is not None: # don't attend to padding symbols attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights.masked_fill( key_padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool), float("-inf"), ) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) attn_weights_float = softmax(attn_weights, dim=-1) attn_weights = attn_weights_float.type_as(attn_weights) attn_probs = self.dropout_module(attn_weights) assert v is not None attn = torch.bmm(attn_probs, v) assert list(attn.size()) == [bsz * self.num_heads, tgt_len, self.head_dim] attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim) attn = self.out_proj(attn) return attn, None # To match return type of F.multi_head_attention_forward def reorder_incremental_state( self, incremental_state: Dict[str, Dict[str, Optional[Tensor]]], new_order: Tensor, ): """Reorder buffered internal state (for incremental generation).""" input_buffer = self._get_input_buffer(incremental_state) if input_buffer is not None: for k in input_buffer.keys(): input_buffer_k = input_buffer[k] if input_buffer_k is not None: input_buffer[k] = input_buffer_k.index_select(0, new_order) incremental_state = self._set_input_buffer(incremental_state, input_buffer) return incremental_state def _get_input_buffer( self, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] ) -> Dict[str, Optional[Tensor]]: result = self.get_incremental_state(incremental_state, "attn_state") if result is not None: return result else: empty_result: Dict[str, Optional[Tensor]] = {} return empty_result def _set_input_buffer( self, incremental_state: Dict[str, Dict[str, Optional[Tensor]]], buffer: Dict[str, Optional[Tensor]], ): return self.set_incremental_state(incremental_state, "attn_state", buffer) from typing import Callable, List class ActivationFn(nn.Module): def __init__(self, name, embed_dim, ffn_dim): super().__init__() self.fn = self.__get_fn(name) def forward(self, fc1_in, fc1_out, model_parallel: bool): return self.fn(fc1_out) def __get_fn(self, name: str) -> Callable: """Returns the activation function corresponding to the arg passed in the run""" if name == "relu": return F.relu elif name == "relu_squared": return relu_squared elif name == "gelu": return gelu elif name == "tanh": return torch.tanh elif name == "linear": return lambda x: x else: raise RuntimeError("--activation-fn {} not supported".format(name)) class TransformerDecoderLayer(nn.Module): """Pre-norm Decoder layer block. Note that we have found model training to require pre-norm to remain stable. Args: embed_dim (int): dimension of the model embedding decoder_embed_dim (int): dimension of the decoder embedding dropout (float): dropout probability decoder_attention_heads (int): number of decoder attention heads attention_dropout (float): dropout probability for attention weights decoder_ffn_embed_dim (int): dimension of the decoder feedforward network embedding activation_fn (str): activation function name add_bias_kv (bool): whether to add bias to the key and value projections add_zero_attn (bool): whether to add a zero attention vector for padding tokens disable_affine_ln (bool): whether to disable affine layer normalization disable_bias (bool): whether to disable bias in linear layers tensor_parallel_init_model_on_gpu (bool): whether to initialize model on GPU for tensor parallelism full_megatron_init (bool): whether to use full Megatron initialization megatron_init_sigma (float): sigma value for Megatron initialization truncate_init (bool): whether to truncate the initialization values """ def __init__( self, embed_dim, decoder_embed_dim, dropout=0.1, decoder_attention_heads=8, attention_dropout=0.1, decoder_ffn_embed_dim=2048, activation_fn="relu", add_bias_kv=False, add_zero_attn=False, disable_affine_ln=False, disable_bias=False, tensor_parallel_init_model_on_gpu=False, full_megatron_init=False, megatron_init_sigma=0.006, truncate_init=False, ): super().__init__() self.embed_dim = embed_dim self.dropout_module = Dropout(dropout, module_name=self.__class__.__name__) self.self_attn = self.build_self_attention( decoder_embed_dim, decoder_attention_heads, attention_dropout, add_bias_kv, add_zero_attn, tensor_parallel_init_model_on_gpu, disable_bias, megatron_init_sigma, truncate_init, ) self.nh = decoder_attention_heads self.head_dim = int(decoder_embed_dim / self.nh) affine_ln = not disable_affine_ln self.self_attn_layer_norm = LayerNorm( decoder_embed_dim, elementwise_affine=affine_ln ) self.fc1 = self.build_fc1( decoder_embed_dim, decoder_ffn_embed_dim, tensor_parallel_init_model_on_gpu, full_megatron_init, megatron_init_sigma, truncate_init, disable_bias, ) self.activation_fn = ActivationFn( activation_fn, decoder_embed_dim, decoder_ffn_embed_dim, ) self.fc2 = self.build_fc2( decoder_ffn_embed_dim, decoder_embed_dim, tensor_parallel_init_model_on_gpu, full_megatron_init, megatron_init_sigma, truncate_init, disable_bias, ) self.final_layer_norm = LayerNorm( decoder_embed_dim, elementwise_affine=affine_ln ) def build_fc1( self, input_dim, output_dim, initialize_params_on_gpu=False, full_megatron_init=False, megatron_init_sigma=0.006, truncate_init=False, disable_bias=False, ): return Linear( input_dim, output_dim, initialize_params_on_gpu=initialize_params_on_gpu, bias=not disable_bias, ) def build_fc2( self, input_dim, output_dim, initialize_params_on_gpu=False, full_megatron_init=False, megatron_init_sigma=0.006, truncate_init=False, disable_bias=False, ): return Linear( input_dim, output_dim, initialize_params_on_gpu=initialize_params_on_gpu, bias=not disable_bias, ) def build_self_attention( self, embed_dim, decoder_attention_heads, attention_dropout, add_bias_kv, add_zero_attn, tensor_parallel_init_model_on_gpu, disable_bias, megatron_init_sigma, truncate_init, ): return MultiheadAttention( embed_dim, decoder_attention_heads, dropout=attention_dropout, add_bias_kv=add_bias_kv, add_zero_attn=add_zero_attn, self_attention=True, initialize_params_on_gpu=tensor_parallel_init_model_on_gpu, bias=not disable_bias, ) def forward_attention( self, query, key, value, residual, key_padding_mask: Optional[Tensor] = None, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, attn_mask: Optional[Tensor] = None, ): x, _ = self.self_attn( query=query, key=key, value=value, key_padding_mask=key_padding_mask, incremental_state=incremental_state, attn_mask=attn_mask, ) x = self.dropout_module(x) x = residual + x return x def forward( self, x, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]], self_attn_mask: Optional[Tensor] = None, self_attn_padding_mask: Optional[Tensor] = None, ): """ Args: x (Tensor): input to the layer of shape `(seq_len, batch, embed_dim)` Returns: encoded output of shape `(seq_len, batch, embed_dim)` """ residual = x x = self.self_attn_layer_norm(x) x = self.forward_attention( query=x, key=x, value=x, residual=residual, key_padding_mask=self_attn_padding_mask, incremental_state=incremental_state, attn_mask=self_attn_mask, ) residual = x x = self.final_layer_norm(x) x = self.activation_fn(x, self.fc1(x), model_parallel=False) x = self.fc2(x) x = self.dropout_module(x) x = residual + x return x class TransformerDecoder(nn.Module): def __init__( self, embed_tokens, decoder_attention_heads, decoder_ffn_embed_dim, activation_fn="relu", dropout=0.1, attention_dropout=0.1, no_emb_dropout=False, share_decoder_input_output_embed=False, embed_dim=512, max_target_positions=1024, no_scale_embedding=False, decoder_learned_pos=False, decoder_learned_sinusoidal=False, full_megatron_init=False, pos_init_scalar=1.0, megatron_init_sigma=0.006, truncate_init=False, decoder_layers=6, self_attn_doc_sep=-1, initialize_params_on_gpu=False, dtype=torch.float32, add_bias_kv=False, add_zero_attn=False, disable_affine_ln=False, disable_bias=False, tensor_parallel_init_model_on_gpu=False, ): super().__init__() self.register_buffer("version", torch.Tensor([3])) self._future_mask = torch.empty(0) self.tensor_parallel_init_model_on_gpu = tensor_parallel_init_model_on_gpu self.megatron_init_sigma = megatron_init_sigma self.full_megatron_init = full_megatron_init self.activation_fn = activation_fn self.attention_dropout = attention_dropout self.dropout_module = Dropout(dropout, module_name=self.__class__.__name__) self.dropout = dropout self.truncate_init = truncate_init if no_emb_dropout: self.dropout_module = None self.add_bias_kv = add_bias_kv self.add_zero_attn = add_zero_attn self.disable_affine_ln = disable_affine_ln self.disable_bias = disable_bias self.decoder_attention_heads = decoder_attention_heads self.share_input_output_embed = share_decoder_input_output_embed self.embed_dim = embed_dim self.padding_idx: int = embed_tokens.padding_idx assert self.padding_idx is not None self.max_target_positions = max_target_positions self.embed_tokens = embed_tokens self.embed_scale = 1.0 if no_scale_embedding else math.sqrt(self.embed_dim) self.decoder_ffn_embed_dim = decoder_ffn_embed_dim # default value device = torch.cuda.current_device() if initialize_params_on_gpu else None # default value self.self_attn_doc_sep = self_attn_doc_sep self.embed_positions = ( PositionalEmbedding( self.max_target_positions, self.embed_dim, self.padding_idx, learned=decoder_learned_pos, learned_sinusoidal=decoder_learned_sinusoidal, full_megatron_init=full_megatron_init, pos_init_scalar=pos_init_scalar, megatron_init_sigma=megatron_init_sigma, truncate_init=truncate_init, ) if decoder_learned_pos else None ) self.embed_positions.to(device).to(dtype) self.layers = nn.ModuleList([]) layers = [] for i in range(decoder_layers): layers.append(self.build_decoder_layer()) self.layers = nn.ModuleList(layers) self.num_layers = len(self.layers) self.layer_norm = LayerNorm( self.embed_dim, elementwise_affine=not disable_affine_ln, ) self.layer_norm.to(device).to(dtype) self.output_projection = None if self.share_input_output_embed: self.output_projection = Linear( self.embed_tokens.weight.shape[1], self.embed_tokens.weight.shape[0], bias=False, initialize_params_on_gpu=initialize_params_on_gpu, dtype=dtype, ) self.output_projection.weight = self.embed_tokens.weight else: self.output_projection = Linear( self.embed_dim, len(dictionary), bias=False, initialize_params_on_gpu=initialize_params_on_gpu, dtype=dtype, ) nn.init.normal_( self.output_projection.weight, mean=0, std=self.embed_dim**-0.5 ) def build_base_decoder_layer(self): return TransformerDecoderLayer( self.embed_dim, self.embed_dim, self.dropout, self.decoder_attention_heads, self.attention_dropout, self.decoder_ffn_embed_dim, self.activation_fn, self.add_bias_kv, self.add_zero_attn, self.disable_affine_ln, self.disable_bias, self.tensor_parallel_init_model_on_gpu, self.full_megatron_init, self.megatron_init_sigma, self.truncate_init, ) def build_decoder_layer(self): layer = self.build_base_decoder_layer() return layer def forward_embedding( self, tokens, token_embedding: Optional[torch.Tensor] = None, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, ): # embed tokens and positions positions = None if self.embed_positions is not None: positions = self.embed_positions( tokens, incremental_state=incremental_state, positions=positions ) # see BaseDecoder for important information about # incremental state if incremental_state is not None: tokens = tokens[:, -1:] if positions is not None: positions = positions[:, -1:] if token_embedding is None: token_embedding = self.embed_tokens(tokens) x = embed = self.embed_scale * token_embedding if positions is not None: x += positions if self.dropout_module is not None: x = self.dropout_module(x) # Returning in T x B x C format as that makes integrating sequence parallelism easier. x = x.transpose(0, 1).contiguous() return x, embed, positions # forward for TransformerDecoder def forward( self, prev_output_tokens, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, features_only: bool = False, src_lengths: Optional[Any] = None, token_embeddings: Optional[torch.Tensor] = None, self_attn_padding_mask: Optional[Tensor] = None, ): """ Includes several features from "Jointly Learning to Align and Translate with Transformer Models" (Garg et al., EMNLP 2019). Args: prev_output_tokens (LongTensor): previous decoder outputs of shape `(batch, tgt_len)`, for teacher forcing incremental_state (dict): dictionary used for storing state during :ref:`Incremental decoding` features_only (bool, optional): only return features without applying output layer (default: False). token_embeddings (torch.Tensor, optional): precomputed embeddings default `None` will recompute embeddings self_attn_padding_mask (torch.Tensor, optional): precomputed padding mask for self-attention (default None will recompute mask) Returns: tuple: - the decoder's output of shape `(batch, tgt_len, vocab)` - a dictionary with any model-specific outputs """ # see BaseDecoder for important information about # incremental state x = self.extract_features( prev_output_tokens, incremental_state=incremental_state, token_embeddings=token_embeddings, self_attn_padding_mask=self_attn_padding_mask, ) if not features_only: x = self.output_layer(x) # Transposing back to B x T x C, so that the interface stays the same. x = x.transpose(0, 1).contiguous() return x def extract_features( self, prev_output_tokens: torch.Tensor, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, token_embeddings: Optional[torch.Tensor] = None, self_attn_padding_mask: Optional[Tensor] = None, ) -> torch.Tensor: # compute self-attention padding mask (involves device-to-host transfer, # so put it at the top of the forward) assert prev_output_tokens is not None assert self.padding_idx is not None if ( self_attn_padding_mask is None and prev_output_tokens.eq(self.padding_idx).any() ): self_attn_padding_mask = prev_output_tokens.eq(self.padding_idx) # assert self_attn_padding_mask is not None # embed tokens and positions # x is T x B x C x, tok, pos = self.forward_embedding( prev_output_tokens, token_embeddings, incremental_state ) # see BaseDecoder for important information about # incremental state. Note that it may be an empty dictionary. if incremental_state is not None: self_attn_mask = self.buffered_future_mask(x, prev_output_tokens) else: self_attn_mask = None # decoder layers # store other representations for instrumentation in VocabParallelCrossEntCrit # Note: we are only storing the embeddings output and output of final transformer block # instead of all inner representations, as thats the only thing being logged and storing # all intermediate representation causes OOM for large models during validation. for idx, layer in enumerate(self.layers): x = layer( x, incremental_state=incremental_state, self_attn_mask=self_attn_mask, self_attn_padding_mask=self_attn_padding_mask, ) if self.layer_norm is not None: x = self.layer_norm(x) # Returned x is T x B x C here, as sequence_parallel requires T to be first dim return x def output_layer(self, features): """Project features to the vocabulary size.""" return self.output_projection(features) def max_positions(self): """Maximum output length supported by the decoder.""" if self.embed_positions is None: return self.max_target_positions return min(self.max_target_positions, self.embed_positions.max_positions) def buffered_future_mask(self, tensor, input_tokens=None) -> torch.Tensor: cur_seq_len, batch_size = tensor.size(0), tensor.size(1) max_seq_len = self.max_positions() need_to_make_new_mask = ( self._future_mask.size(0) == 0 or (not self._future_mask.device == tensor.device) or self._future_mask.size(1) < max_seq_len or ( self._future_mask.size(0) != (batch_size * self.decoder_attention_heads) ) ) # self._future_mask.device != tensor.device is not working in TorchScript. This is a workaround. if need_to_make_new_mask: self._future_mask = torch.triu( fill_with_neg_inf( torch.zeros([max_seq_len, max_seq_len], device=tensor.device) ), 1, ) self._future_mask = self._future_mask.to(tensor) if self.self_attn_doc_sep != -1: return self._future_mask else: return self._future_mask[:cur_seq_len, :cur_seq_len] def _sample_topp(temperature: float, sampling_topp: float, lprobs: torch.Tensor): if temperature == 0.0 or sampling_topp == 0.0: # greedy search return tuple(lprobs.max(dim=-1)) probs = lprobs.exp() sprobs, sinds = probs.sort(dim=-1, descending=True) mask = (sprobs.cumsum(dim=-1) - sprobs) >= sampling_topp trunc_sprobs = sprobs.detach().clone() trunc_sprobs[mask] = 0 trunc_sprobs.div_(trunc_sprobs.sum(dim=-1).unsqueeze(-1)) choices = torch.multinomial(trunc_sprobs, 1)[:, 0] hyp_ids = torch.arange(lprobs.size(0)).to(lprobs.device) tok_ids = sinds[hyp_ids, choices] scores = sprobs[hyp_ids, choices].log() return scores, tok_ids class SequenceGenerator(nn.Module): def __init__( self, model, beam_size: int, generate_size: int, use_incremental: bool = True ) -> None: super().__init__() self.model = model self.beam_size = beam_size self.generate_size = generate_size self.use_incremental = use_incremental def forward(self, src_tokens): with torch.no_grad(): incremental_states = torch.jit.annotate( Dict[str, Dict[str, Optional[Tensor]]], {} ) bsz, src_len = src_tokens.size()[:2] beam_size = self.beam_size max_len = src_len + self.generate_size new_order = torch.arange(bsz).view(-1, 1).repeat(1, beam_size).view(-1) new_order = new_order.to(src_tokens.device).long() tokens = ( torch.zeros(bsz * beam_size, max_len).to(src_tokens).long().fill_(0) ) start_step = src_tokens.shape[1] tokens[:, :start_step] = src_tokens.repeat_interleave(beam_size, 0) model_out = self.model( tokens[:, :start_step], incremental_state=incremental_states if self.use_incremental else None, ) model_predictions = F.log_softmax(model_out.float()[:, -1, :]) for step in range(start_step, max_len): tokens[:, step] = model_predictions.max(-1)[1] # forward through the next pass model_out = self.model( tokens[:, : step + 1], incremental_state=incremental_states if self.use_incremental else None, ) # see above for why this must remain float model_predictions = F.log_softmax(model_out.float()[:, -1, :]) return tokens class SequenceGeneratorFixedSize(nn.Module): def __init__(self, model, beam_size: int, generate_size: int) -> None: super().__init__() self.model = model self.beam_size = beam_size self.generate_size = generate_size def forward(self, src_tokens): with torch.no_grad(): bsz, src_len = src_tokens.size()[:2] beam_size = self.beam_size max_len = src_len + self.generate_size new_order = torch.arange(bsz).view(-1, 1).repeat(1, beam_size).view(-1) new_order = new_order.to(src_tokens.device).long() start_step = src_tokens.shape[1] tokens = ( torch.zeros(bsz * beam_size, max_len).to(src_tokens).long().fill_(0) ) tokens[:, :start_step] = src_tokens.repeat_interleave(beam_size, 0) model_out = self.model(tokens) model_predictions = F.log_softmax(model_out.float()[:, start_step, :]) for step in range(start_step, max_len): tokens[:, step] = model_predictions.max(-1)[1] model_out = self.model( tokens, ) # see above for why this must remain float model_predictions = F.log_softmax(model_out.float()[:, step, :]) return tokens def create_model(embed_dim=1536): embed_tokens = torch.nn.Embedding(2048, embed_dim, padding_idx=-1) return ( TransformerDecoder( embed_tokens, decoder_layers=24, decoder_attention_heads=16, max_target_positions=2048, embed_dim=embed_dim, decoder_ffn_embed_dim=embed_dim * 4, no_scale_embedding=True, share_decoder_input_output_embed=True, decoder_learned_pos=True, dropout=0.1, ) )
from torchbenchmark.util.framework.timm.model_factory import TimmModel from torchbenchmark.tasks import COMPUTER_VISION class Model(TimmModel): task = COMPUTER_VISION.GENERATION DEFAULT_TRAIN_BSIZE = 32 DEFAULT_EVAL_BSIZE = 32 def __init__(self, test, device, batch_size=None, extra_args=[]): super().__init__(test=test, model_name='vit_giant_patch14_224', device=device, batch_size=batch_size, extra_args=extra_args)
from torchbenchmark.tasks import NLP from torchbenchmark.util.framework.huggingface.model_factory import HuggingFaceModel class Model(HuggingFaceModel): task = NLP.LANGUAGE_MODELING DEFAULT_TRAIN_BSIZE = 4 DEFAULT_EVAL_BSIZE = 1 def __init__(self, test, device, batch_size=None, extra_args=[]): super().__init__(name="hf_Bart", test=test, device=device, batch_size=batch_size, extra_args=extra_args)
import subprocess import sys import os from torchbenchmark.util.framework.huggingface.patch_hf import patch_transformers, cache_model def pip_install_requirements(): subprocess.check_call([sys.executable, '-m', 'pip', 'install', '-q', '-r', 'requirements.txt']) if __name__ == '__main__': pip_install_requirements() patch_transformers() model_name = os.path.basename(os.path.dirname(os.path.abspath(__file__))) cache_model(model_name)
import numpy as np import random import time import torch from argparse import Namespace from .meta import Meta from pathlib import Path from typing import Tuple from ...util.model import BenchmarkModel from torchbenchmark.tasks import OTHER torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False class Model(BenchmarkModel): task = OTHER.OTHER_TASKS DEFAULT_TRAIN_BSIZE = 1 DEFAULT_EVAL_BSIZE = 1 ALLOW_CUSTOMIZE_BSIZE = False CANNOT_SET_CUSTOM_OPTIMIZER = True # Skip correctness check, because maml runs backward and optimizer in eval() # Which will return non-deterministic results SKIP_CORRECTNESS_CHECK = True def __init__(self, test, device, batch_size=None, extra_args=[]): super().__init__(test=test, device=device, batch_size=batch_size, extra_args=extra_args) # load from disk or synthesize data use_data_file = False debug_print = False root = str(Path(__file__).parent) args = Namespace(**{ 'n_way': 5, 'k_spt': 1, 'k_qry': 15, 'imgsz': 28, 'imgc': 1, 'task_num': 32, 'meta_lr': 1e-3, 'update_lr': 0.4, 'update_step': 5, 'update_step_test': 10 }) config = [ ('conv2d', [64, args.imgc, 3, 3, 2, 0]), ('relu', [True]), ('bn', [64]), ('conv2d', [64, 64, 3, 3, 2, 0]), ('relu', [True]), ('bn', [64]), ('conv2d', [64, 64, 3, 3, 2, 0]), ('relu', [True]), ('bn', [64]), ('conv2d', [64, 64, 2, 2, 1, 0]), ('relu', [True]), ('bn', [64]), ('flatten', []), ('linear', [args.n_way, 64]) ] self.module = Meta(args, config).to(device) if use_data_file: self.example_inputs = torch.load(f'{root}/batch.pt') self.example_inputs = tuple([torch.from_numpy(i).to(self.device) for i in self.example_inputs]) else: # synthesize data parameterized by arg values self.example_inputs = ( torch.randn(args.task_num, args.n_way, args.imgc, args.imgsz, args.imgsz).to(device), torch.randint(0, args.n_way, [args.task_num, args.n_way], dtype=torch.long).to(device), torch.randn(args.task_num, args.n_way * args.k_qry, args.imgc, args.imgsz, args.imgsz).to(device), torch.randint(0, args.n_way, [args.task_num, args.n_way * args.k_qry], dtype=torch.long).to(device)) # print input shapes if debug_print: for i in range(len(self.example_inputs)): print(self.example_inputs[i].shape) def get_module(self): return self.module, self.example_inputs def eval(self) -> Tuple[torch.Tensor]: out = self.module(*self.example_inputs) return (out, ) def train(self): raise NotImplementedError("MAML model doesn't support train.") def eval_in_nograd(self): return False
import torch from torch import nn from torch import optim from torch.nn import functional as F from torch.utils.data import TensorDataset, DataLoader from torch import optim import numpy as np from .learner import Learner from copy import deepcopy class Meta(nn.Module): """ Meta Learner """ def __init__(self, args, config): """ :param args: """ super(Meta, self).__init__() self.update_lr = args.update_lr self.meta_lr = args.meta_lr self.n_way = args.n_way self.k_spt = args.k_spt self.k_qry = args.k_qry self.task_num = args.task_num self.update_step = args.update_step self.update_step_test = args.update_step_test self.net = Learner(config, args.imgc, args.imgsz) self.meta_optim = optim.Adam(self.net.parameters(), lr=self.meta_lr) def clip_grad_by_norm_(self, grad, max_norm): """ in-place gradient clipping. :param grad: list of gradients :param max_norm: maximum norm allowable :return: """ total_norm = 0 counter = 0 for g in grad: param_norm = g.data.norm(2) total_norm += param_norm.item() ** 2 counter += 1 total_norm = total_norm ** (1. / 2) clip_coef = max_norm / (total_norm + 1e-6) if clip_coef < 1: for g in grad: g.data.mul_(clip_coef) return total_norm/counter def forward(self, x_spt, y_spt, x_qry, y_qry): if self.training: return self.forward_train(x_spt, y_spt, x_qry, y_qry) else: return self.finetunning(x_spt[0], y_spt[0], x_qry[0], y_qry[0]) def forward_train(self, x_spt, y_spt, x_qry, y_qry): """ :param x_spt: [b, setsz, c_, h, w] :param y_spt: [b, setsz] :param x_qry: [b, querysz, c_, h, w] :param y_qry: [b, querysz] :return: """ task_num, setsz, c_, h, w = x_spt.size() querysz = x_qry.size(1) losses_q = [0 for _ in range(self.update_step + 1)] # losses_q[i] is the loss on step i corrects = [0 for _ in range(self.update_step + 1)] for i in range(task_num): # 1. run the i-th task and compute loss for k=0 logits = self.net(x_spt[i], vars=None, bn_training=True) loss = F.cross_entropy(logits, y_spt[i]) grad = torch.autograd.grad(loss, self.net.parameters()) fast_weights = list([p[1] - self.update_lr * p[0]for p in zip(grad, self.net.parameters())]) # this is the loss and accuracy before first update with torch.no_grad(): # [setsz, nway] logits_q = self.net(x_qry[i], self.net.parameters(), bn_training=True) loss_q = F.cross_entropy(logits_q, y_qry[i]) losses_q[0] += loss_q pred_q = F.softmax(logits_q, dim=1).argmax(dim=1) correct = torch.eq(pred_q, y_qry[i]).sum().item() corrects[0] = corrects[0] + correct # this is the loss and accuracy after the first update with torch.no_grad(): # [setsz, nway] logits_q = self.net(x_qry[i], fast_weights, bn_training=True) loss_q = F.cross_entropy(logits_q, y_qry[i]) losses_q[1] += loss_q # [setsz] pred_q = F.softmax(logits_q, dim=1).argmax(dim=1) correct = torch.eq(pred_q, y_qry[i]).sum().item() corrects[1] = corrects[1] + correct for k in range(1, self.update_step): # 1. run the i-th task and compute loss for k=1~K-1 logits = self.net(x_spt[i], fast_weights, bn_training=True) loss = F.cross_entropy(logits, y_spt[i]) # 2. compute grad on theta_pi grad = torch.autograd.grad(loss, fast_weights) # 3. theta_pi = theta_pi - train_lr * grad fast_weights = [p[1] - self.update_lr * p[0] for p in zip(grad, fast_weights)] logits_q = self.net(x_qry[i], fast_weights, bn_training=True) # loss_q will be overwritten and just keep the loss_q on last update step. loss_q = F.cross_entropy(logits_q, y_qry[i]) losses_q[k + 1] += loss_q with torch.no_grad(): pred_q = F.softmax(logits_q, dim=1).argmax(dim=1) correct = torch.eq(pred_q, y_qry[i]).sum().item() # convert to numpy corrects[k + 1] = corrects[k + 1] + correct # end of all tasks # sum over all losses on query set across all tasks loss_q = losses_q[-1] / task_num # optimize theta parameters self.meta_optim.zero_grad() loss_q.backward() # print('meta update') # for p in self.net.parameters()[:5]: # print(torch.norm(p).item()) self.meta_optim.step() accs = torch.tensor(corrects) / (querysz * task_num) return accs def finetunning(self, x_spt, y_spt, x_qry, y_qry): """ :param x_spt: [setsz, c_, h, w] :param y_spt: [setsz] :param x_qry: [querysz, c_, h, w] :param y_qry: [querysz] :return: """ querysz = x_qry.size(0) corrects = [0 for _ in range(self.update_step_test + 1)] # in order to not ruin the state of running_mean/variance and bn_weight/bias # we finetunning on the copied model instead of self.net net = deepcopy(self.net) # 1. run the i-th task and compute loss for k=0 logits = net(x_spt) loss = F.cross_entropy(logits, y_spt) grad = torch.autograd.grad(loss, net.parameters()) fast_weights = list(map(lambda p: p[1] - self.update_lr * p[0], zip(grad, net.parameters()))) # this is the loss and accuracy before first update with torch.no_grad(): # [setsz, nway] logits_q = net(x_qry, net.parameters(), bn_training=True) # [setsz] pred_q = F.softmax(logits_q, dim=1).argmax(dim=1) # scalar correct = torch.eq(pred_q, y_qry).sum().item() corrects[0] = corrects[0] + correct # this is the loss and accuracy after the first update with torch.no_grad(): # [setsz, nway] logits_q = net(x_qry, fast_weights, bn_training=True) # [setsz] pred_q = F.softmax(logits_q, dim=1).argmax(dim=1) # scalar correct = torch.eq(pred_q, y_qry).sum().item() corrects[1] = corrects[1] + correct for k in range(1, self.update_step_test): # 1. run the i-th task and compute loss for k=1~K-1 logits = net(x_spt, fast_weights, bn_training=True) loss = F.cross_entropy(logits, y_spt) # 2. compute grad on theta_pi grad = torch.autograd.grad(loss, fast_weights) # 3. theta_pi = theta_pi - train_lr * grad fast_weights = list(map(lambda p: p[1] - self.update_lr * p[0], zip(grad, fast_weights))) logits_q = net(x_qry, fast_weights, bn_training=True) # loss_q will be overwritten and just keep the loss_q on last update step. loss_q = F.cross_entropy(logits_q, y_qry) with torch.no_grad(): pred_q = F.softmax(logits_q, dim=1).argmax(dim=1) correct = torch.eq(pred_q, y_qry).sum().item() # convert to numpy corrects[k + 1] = corrects[k + 1] + correct del net accs = torch.tensor(corrects) / querysz return accs def main(): pass if __name__ == '__main__': main()
import torch from torch import nn from torch.nn import functional as F import numpy as np from typing import List class Learner(nn.Module): """ """ def __init__(self, config, imgc, imgsz): """ :param config: network config file, type:list of (string, list) :param imgc: 1 or 3 :param imgsz: 28 or 84 """ super(Learner, self).__init__() self.config = config # this dict contains all tensors needed to be optimized self.vars = nn.ParameterList() # running_mean and running_var self.vars_bn = nn.ParameterList() for i, (name, param) in enumerate(self.config): if name == 'conv2d': # [ch_out, ch_in, kernelsz, kernelsz] w = nn.Parameter(torch.ones(*param[:4])) # gain=1 according to cbfin's implementation torch.nn.init.kaiming_normal_(w) self.vars.append(w) # [ch_out] self.vars.append(nn.Parameter(torch.zeros(param[0]))) elif name == 'convt2d': # [ch_in, ch_out, kernelsz, kernelsz, stride, padding] w = nn.Parameter(torch.ones(*param[:4])) # gain=1 according to cbfin's implementation torch.nn.init.kaiming_normal_(w) self.vars.append(w) # [ch_in, ch_out] self.vars.append(nn.Parameter(torch.zeros(param[1]))) elif name == 'linear': # [ch_out, ch_in] w = nn.Parameter(torch.ones(*param)) # gain=1 according to cbfinn's implementation torch.nn.init.kaiming_normal_(w) self.vars.append(w) # [ch_out] self.vars.append(nn.Parameter(torch.zeros(param[0]))) elif name == 'bn': # [ch_out] w = nn.Parameter(torch.ones(param[0])) self.vars.append(w) # [ch_out] self.vars.append(nn.Parameter(torch.zeros(param[0]))) # must set requires_grad=False running_mean = nn.Parameter(torch.zeros(param[0]), requires_grad=False) running_var = nn.Parameter(torch.ones(param[0]), requires_grad=False) self.vars_bn.extend([running_mean, running_var]) elif name in ['tanh', 'relu', 'upsample', 'avg_pool2d', 'max_pool2d', 'flatten', 'reshape', 'leakyrelu', 'sigmoid']: continue else: raise NotImplementedError def extra_repr(self): info = '' for name, param in self.config: if name == 'conv2d': tmp = 'conv2d:(ch_in:%d, ch_out:%d, k:%dx%d, stride:%d, padding:%d)'\ %(param[1], param[0], param[2], param[3], param[4], param[5],) info += tmp + '\n' elif name == 'convt2d': tmp = 'convTranspose2d:(ch_in:%d, ch_out:%d, k:%dx%d, stride:%d, padding:%d)'\ %(param[0], param[1], param[2], param[3], param[4], param[5],) info += tmp + '\n' elif name == 'linear': tmp = 'linear:(in:%d, out:%d)'%(param[1], param[0]) info += tmp + '\n' elif name == 'leakyrelu': tmp = 'leakyrelu:(slope:%f)'%(param[0]) info += tmp + '\n' elif name == 'avg_pool2d': tmp = 'avg_pool2d:(k:%d, stride:%d, padding:%d)'%(param[0], param[1], param[2]) info += tmp + '\n' elif name == 'max_pool2d': tmp = 'max_pool2d:(k:%d, stride:%d, padding:%d)'%(param[0], param[1], param[2]) info += tmp + '\n' elif name in ['flatten', 'tanh', 'relu', 'upsample', 'reshape', 'sigmoid', 'use_logits', 'bn']: tmp = name + ':' + str(tuple(param)) info += tmp + '\n' else: raise NotImplementedError return info def forward(self, x, vars=None, bn_training=True): """ This function can be called by finetunning, however, in finetunning, we dont wish to update running_mean/running_var. Thought weights/bias of bn == updated, it has been separated by fast_weights. Indeed, to not update running_mean/running_var, we need set update_bn_statistics=False but weight/bias will be updated and not dirty initial theta parameters via fast_weiths. :param x: [b, 1, 28, 28] :param vars: :param bn_training: set False to not update :return: x, loss, likelihood, kld """ if vars == None: vars = self.vars idx = 0 bn_idx = 0 for name, param in self.config: if name == 'conv2d': w, b = vars[idx], vars[idx + 1] # remember to keep synchrozied of forward_encoder and forward_decoder! x = F.conv2d(x, w, b, stride=param[4], padding=param[5]) idx += 2 # print(name, param, '\tout:', x.shape) elif name == 'convt2d': w, b = vars[idx], vars[idx + 1] # remember to keep synchrozied of forward_encoder and forward_decoder! x = F.conv_transpose2d(x, w, b, stride=param[4], padding=param[5]) idx += 2 # print(name, param, '\tout:', x.shape) elif name == 'linear': w, b = vars[idx], vars[idx + 1] x = F.linear(x, w, b) idx += 2 # print('forward:', idx, x.norm().item()) elif name == 'bn': w, b = vars[idx], vars[idx + 1] running_mean, running_var = self.vars_bn[bn_idx], self.vars_bn[bn_idx+1] x = F.batch_norm(x, running_mean, running_var, weight=w, bias=b, training=bn_training) idx += 2 bn_idx += 2 elif name == 'flatten': # print(x.shape) x = x.view(x.size(0), -1) elif name == 'reshape': # [b, 8] => [b, 2, 2, 2] x = x.view(x.size(0), *param) elif name == 'relu': x = F.relu(x, inplace=param[0]) elif name == 'leakyrelu': x = F.leaky_relu(x, negative_slope=param[0], inplace=param[1]) elif name == 'tanh': x = F.tanh(x) elif name == 'sigmoid': x = torch.sigmoid(x) elif name == 'upsample': x = F.upsample_nearest(x, scale_factor=param[0]) elif name == 'max_pool2d': x = F.max_pool2d(x, param[0], param[1], param[2]) elif name == 'avg_pool2d': x = F.avg_pool2d(x, param[0], param[1], param[2]) else: raise NotImplementedError # make sure variable == used properly assert idx == len(vars) assert bn_idx == len(self.vars_bn) return x def zero_grad(self, vars=None): """ :param vars: :return: """ with torch.no_grad(): if vars == None: for p in self.vars: if not p.grad == None: p.grad.zero_() else: for p in vars: if not p.grad == None: p.grad.zero_() def parameters(self): """ override this function since initial parameters will return with a generator. :return: """ return self.vars
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import numpy as np import torch from typing import Optional, Tuple from .sam import Sam from .transforms import ResizeLongestSide class SamPredictor: def __init__( self, sam_model: Sam, ) -> None: """ Uses SAM to calculate the image embedding for an image, and then allow repeated, efficient mask prediction given prompts. Arguments: sam_model (Sam): The model to use for mask prediction. """ super().__init__() self.model = sam_model self.transform = ResizeLongestSide(sam_model.image_encoder.img_size) self.reset_image() def set_image( self, image: np.ndarray, image_format: str = "RGB", ) -> None: """ Calculates the image embeddings for the provided image, allowing masks to be predicted with the 'predict' method. Arguments: image (np.ndarray): The image for calculating masks. Expects an image in HWC uint8 format, with pixel values in [0, 255]. image_format (str): The color format of the image, in ['RGB', 'BGR']. """ assert image_format in [ "RGB", "BGR", ], f"image_format must be in ['RGB', 'BGR'], is {image_format}." if image_format != self.model.image_format: image = image[..., ::-1] # Transform the image to the form expected by the model input_image = self.transform.apply_image(image) input_image_torch = torch.as_tensor(input_image, device=self.device) input_image_torch = input_image_torch.permute(2, 0, 1).contiguous()[None, :, :, :] self.set_torch_image(input_image_torch, image.shape[:2]) @torch.no_grad() def set_torch_image( self, transformed_image: torch.Tensor, original_image_size: Tuple[int, ...], ) -> None: """ Calculates the image embeddings for the provided image, allowing masks to be predicted with the 'predict' method. Expects the input image to be already transformed to the format expected by the model. Arguments: transformed_image (torch.Tensor): The input image, with shape 1x3xHxW, which has been transformed with ResizeLongestSide. original_image_size (tuple(int, int)): The size of the image before transformation, in (H, W) format. """ assert ( len(transformed_image.shape) == 4 and transformed_image.shape[1] == 3 and max(*transformed_image.shape[2:]) == self.model.image_encoder.img_size ), f"set_torch_image input must be BCHW with long side {self.model.image_encoder.img_size}." self.reset_image() self.original_size = original_image_size self.input_size = tuple(transformed_image.shape[-2:]) input_image = self.model.preprocess(transformed_image) self.features = self.model.image_encoder(input_image) self.is_image_set = True def predict( self, point_coords: Optional[np.ndarray] = None, point_labels: Optional[np.ndarray] = None, box: Optional[np.ndarray] = None, mask_input: Optional[np.ndarray] = None, multimask_output: bool = True, return_logits: bool = False, ) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: """ Predict masks for the given input prompts, using the currently set image. Arguments: point_coords (np.ndarray or None): A Nx2 array of point prompts to the model. Each point is in (X,Y) in pixels. point_labels (np.ndarray or None): A length N array of labels for the point prompts. 1 indicates a foreground point and 0 indicates a background point. box (np.ndarray or None): A length 4 array given a box prompt to the model, in XYXY format. mask_input (np.ndarray): A low resolution mask input to the model, typically coming from a previous prediction iteration. Has form 1xHxW, where for SAM, H=W=256. multimask_output (bool): If true, the model will return three masks. For ambiguous input prompts (such as a single click), this will often produce better masks than a single prediction. If only a single mask is needed, the model's predicted quality score can be used to select the best mask. For non-ambiguous prompts, such as multiple input prompts, multimask_output=False can give better results. return_logits (bool): If true, returns un-thresholded masks logits instead of a binary mask. Returns: (np.ndarray): The output masks in CxHxW format, where C is the number of masks, and (H, W) is the original image size. (np.ndarray): An array of length C containing the model's predictions for the quality of each mask. (np.ndarray): An array of shape CxHxW, where C is the number of masks and H=W=256. These low resolution logits can be passed to a subsequent iteration as mask input. """ if not self.is_image_set: raise RuntimeError("An image must be set with .set_image(...) before mask prediction.") # Transform input prompts coords_torch, labels_torch, box_torch, mask_input_torch = None, None, None, None if point_coords is not None: assert ( point_labels is not None ), "point_labels must be supplied if point_coords is supplied." point_coords = self.transform.apply_coords(point_coords, self.original_size) coords_torch = torch.as_tensor(point_coords, dtype=torch.float, device=self.device) labels_torch = torch.as_tensor(point_labels, dtype=torch.int, device=self.device) coords_torch, labels_torch = coords_torch[None, :, :], labels_torch[None, :] if box is not None: box = self.transform.apply_boxes(box, self.original_size) box_torch = torch.as_tensor(box, dtype=torch.float, device=self.device) box_torch = box_torch[None, :] if mask_input is not None: mask_input_torch = torch.as_tensor(mask_input, dtype=torch.float, device=self.device) mask_input_torch = mask_input_torch[None, :, :, :] masks, iou_predictions, low_res_masks = self.predict_torch( coords_torch, labels_torch, box_torch, mask_input_torch, multimask_output, return_logits=return_logits, ) masks_np = masks[0].detach().cpu().numpy() iou_predictions_np = iou_predictions[0].to(torch.float32).detach().cpu().numpy() low_res_masks_np = low_res_masks[0].to(torch.float32).detach().cpu().numpy() return masks_np, iou_predictions_np, low_res_masks_np @torch.no_grad() def predict_torch( self, point_coords: Optional[torch.Tensor], point_labels: Optional[torch.Tensor], boxes: Optional[torch.Tensor] = None, mask_input: Optional[torch.Tensor] = None, multimask_output: bool = True, return_logits: bool = False, ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """ Predict masks for the given input prompts, using the currently set image. Input prompts are batched torch tensors and are expected to already be transformed to the input frame using ResizeLongestSide. Arguments: point_coords (torch.Tensor or None): A BxNx2 array of point prompts to the model. Each point is in (X,Y) in pixels. point_labels (torch.Tensor or None): A BxN array of labels for the point prompts. 1 indicates a foreground point and 0 indicates a background point. boxes (np.ndarray or None): A Bx4 array given a box prompt to the model, in XYXY format. mask_input (np.ndarray): A low resolution mask input to the model, typically coming from a previous prediction iteration. Has form Bx1xHxW, where for SAM, H=W=256. Masks returned by a previous iteration of the predict method do not need further transformation. multimask_output (bool): If true, the model will return three masks. For ambiguous input prompts (such as a single click), this will often produce better masks than a single prediction. If only a single mask is needed, the model's predicted quality score can be used to select the best mask. For non-ambiguous prompts, such as multiple input prompts, multimask_output=False can give better results. return_logits (bool): If true, returns un-thresholded masks logits instead of a binary mask. Returns: (torch.Tensor): The output masks in BxCxHxW format, where C is the number of masks, and (H, W) is the original image size. (torch.Tensor): An array of shape BxC containing the model's predictions for the quality of each mask. (torch.Tensor): An array of shape BxCxHxW, where C is the number of masks and H=W=256. These low res logits can be passed to a subsequent iteration as mask input. """ # if not self.is_image_set: # raise RuntimeError("An image must be set with .set_image(...) before mask prediction.") if point_coords is not None: points = (point_coords, point_labels) else: points = None # Embed prompts sparse_embeddings, dense_embeddings = self.model.prompt_encoder( points=points, boxes=boxes, masks=mask_input, ) # Predict masks low_res_masks, iou_predictions = self.model.mask_decoder( image_embeddings=self.features, image_pe=self.model.prompt_encoder.get_dense_pe(), sparse_prompt_embeddings=sparse_embeddings, dense_prompt_embeddings=dense_embeddings, multimask_output=multimask_output, ) # Upscale the masks to the original image resolution masks = self.model.postprocess_masks(low_res_masks, self.input_size, self.original_size) if not return_logits: masks = masks > self.model.mask_threshold return masks, iou_predictions, low_res_masks def get_image_embedding(self) -> torch.Tensor: """ Returns the image embeddings for the currently set image, with shape 1xCxHxW, where C is the embedding dimension and (H,W) are the embedding spatial dimension of SAM (typically C=256, H=W=64). """ # if not self.is_image_set: # raise RuntimeError( # "An image must be set with .set_image(...) to generate an embedding." # ) assert self.features is not None, "Features must exist if an image has been set." return self.features @property def device(self) -> torch.device: return self.model.device def reset_image(self) -> None: """Resets the currently set image.""" self.is_image_set = False self.features = None self.orig_h = None self.orig_w = None self.input_h = None self.input_w = None
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import torch from functools import partial from .image_encoder import ImageEncoderViT from .mask_decoder import MaskDecoder from .prompt_encoder import PromptEncoder from .transformer import TwoWayTransformer from .sam import Sam def build_sam_vit_h(checkpoint=None): return _build_sam( encoder_embed_dim=1280, encoder_depth=32, encoder_num_heads=16, encoder_global_attn_indexes=[7, 15, 23, 31], checkpoint=checkpoint, ) build_sam = build_sam_vit_h def build_sam_vit_l(checkpoint=None): return _build_sam( encoder_embed_dim=1024, encoder_depth=24, encoder_num_heads=16, encoder_global_attn_indexes=[5, 11, 17, 23], checkpoint=checkpoint, ) def build_sam_vit_b(checkpoint=None): return _build_sam( encoder_embed_dim=768, encoder_depth=12, encoder_num_heads=12, encoder_global_attn_indexes=[2, 5, 8, 11], checkpoint=checkpoint, ) sam_model_registry = { "default": build_sam_vit_h, "vit_h": build_sam_vit_h, "vit_l": build_sam_vit_l, "vit_b": build_sam_vit_b, } def _build_sam( encoder_embed_dim, encoder_depth, encoder_num_heads, encoder_global_attn_indexes, checkpoint=None, ): prompt_embed_dim = 256 image_size = 1024 vit_patch_size = 16 image_embedding_size = image_size // vit_patch_size sam = Sam( image_encoder=ImageEncoderViT( depth=encoder_depth, embed_dim=encoder_embed_dim, img_size=image_size, mlp_ratio=4, norm_layer=partial(torch.nn.LayerNorm, eps=1e-6), num_heads=encoder_num_heads, patch_size=vit_patch_size, qkv_bias=True, use_rel_pos=True, global_attn_indexes=encoder_global_attn_indexes, window_size=14, out_chans=prompt_embed_dim, ), prompt_encoder=PromptEncoder( embed_dim=prompt_embed_dim, image_embedding_size=(image_embedding_size, image_embedding_size), input_image_size=(image_size, image_size), mask_in_chans=16, ), mask_decoder=MaskDecoder( num_multimask_outputs=3, transformer=TwoWayTransformer( depth=2, embedding_dim=prompt_embed_dim, mlp_dim=2048, num_heads=8, ), transformer_dim=prompt_embed_dim, iou_head_depth=3, iou_head_hidden_dim=256, ), pixel_mean=[123.675, 116.28, 103.53], pixel_std=[58.395, 57.12, 57.375], ) sam.eval() if checkpoint is not None: with open(checkpoint, "rb") as f: state_dict = torch.load(f) sam.load_state_dict(state_dict) return sam
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import numpy as np import torch from torch.nn import functional as F from torchvision.transforms.functional import resize, to_pil_image # type: ignore from copy import deepcopy from typing import Tuple class ResizeLongestSide: """ Resizes images to the longest side 'target_length', as well as provides methods for resizing coordinates and boxes. Provides methods for transforming both numpy array and batched torch tensors. """ def __init__(self, target_length: int) -> None: self.target_length = target_length def apply_image(self, image: np.ndarray) -> np.ndarray: """ Expects a numpy array with shape HxWxC in uint8 format. """ target_size = self.get_preprocess_shape(image.shape[0], image.shape[1], self.target_length) return np.array(resize(to_pil_image(image), target_size)) def apply_coords(self, coords: np.ndarray, original_size: Tuple[int, ...]) -> np.ndarray: """ Expects a numpy array of length 2 in the final dimension. Requires the original image size in (H, W) format. """ old_h, old_w = original_size new_h, new_w = self.get_preprocess_shape( original_size[0], original_size[1], self.target_length ) coords = deepcopy(coords).astype(float) coords[..., 0] = coords[..., 0] * (new_w / old_w) coords[..., 1] = coords[..., 1] * (new_h / old_h) return coords def apply_boxes(self, boxes: np.ndarray, original_size: Tuple[int, ...]) -> np.ndarray: """ Expects a numpy array shape Bx4. Requires the original image size in (H, W) format. """ boxes = self.apply_coords(boxes.reshape(-1, 2, 2), original_size) return boxes.reshape(-1, 4) def apply_image_torch(self, image: torch.Tensor) -> torch.Tensor: """ Expects batched images with shape BxCxHxW and float format. This transformation may not exactly match apply_image. apply_image is the transformation expected by the model. """ # Expects an image in BCHW format. May not exactly match apply_image. target_size = self.get_preprocess_shape(image.shape[2], image.shape[3], self.target_length) return F.interpolate( image, target_size, mode="bilinear", align_corners=False, antialias=True ) def apply_coords_torch( self, coords: torch.Tensor, original_size: Tuple[int, ...] ) -> torch.Tensor: """ Expects a torch tensor with length 2 in the last dimension. Requires the original image size in (H, W) format. """ old_h, old_w = original_size new_h, new_w = self.get_preprocess_shape( original_size[0], original_size[1], self.target_length ) coords = deepcopy(coords).to(torch.float) coords[..., 0] = coords[..., 0] * (new_w / old_w) coords[..., 1] = coords[..., 1] * (new_h / old_h) return coords def apply_boxes_torch( self, boxes: torch.Tensor, original_size: Tuple[int, ...] ) -> torch.Tensor: """ Expects a torch tensor with shape Bx4. Requires the original image size in (H, W) format. """ boxes = self.apply_coords_torch(boxes.reshape(-1, 2, 2), original_size) return boxes.reshape(-1, 4) @staticmethod def get_preprocess_shape(oldh: int, oldw: int, long_side_length: int) -> Tuple[int, int]: """ Compute the output size given input size and target long side length. """ scale = long_side_length * 1.0 / max(oldh, oldw) newh, neww = oldh * scale, oldw * scale neww = int(neww + 0.5) newh = int(newh + 0.5) return (newh, neww)